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“. . . Soun is noght but air y-broke” 
—Geoffrey Chaucer 
end of the 14th century 

Traditionally, acoustics has formed one of the fundamental branches of physics. In 
the twentieth century, the field has broadened considerably and become increas-
ingly interdisciplinary. At the present time, specialists in modern acoustics can be 
encountered not only in Physics Departments, but also in Electrical and Mechanical 
Engineering Departments, as well as in Departments of Mathematics, Oceanography, 
and even Psychology. They work in areas spanning from musical instruments to 
architecture to problems related to speech perception. Today, six hundred years 
after Chaucer made his brilliant remark, we recognize that sound and acoustics is a 
discipline extremely broad in scope, literally covering waves and vibrations in all 
media at all frequencies and at all intensities.  

This series of scientific literature, entitled Modern Acoustics and Signal 
Processing (MASP), covers all areas of today’s acoustics as an interdisciplinary 
field. It offers scientific monographs, graduate level textbooks, and reference 
materials in such areas as: architectural acoustics; structural sound and vibration; 
musical acoustics; noise; bioacoustics; physiological and psychological acoustics; 
speech; ocean acoustics; underwater sound; and acoustical signal processing.  

Acoustics is primarily a matter of communication. Whether it be speech or 
music, listening spaces or hearing, signaling in sonar or in ultrasonography, we 
seek to maximize our ability to convey information and, at the same time, to 
minimize the effects of noise. Signaling has itself given birth to the field of signal 
processing, the analysis of all received acoustic information or, indeed, all 
information in any electronic form. With the extreme importance of acoustics for 
both modern science and industry in mind, AIP Press is initiating this series as a 
new and promising publishing venture. We hope that this venture will be 
beneficial to the entire international acoustical community, as represented by the 
Acoustical Society of America, a founding member of the American Institute of 
Physics, and other related societies and professional interest groups.  

PREFACE TO THE FIRST PRINTING 



viii / Preface to the First Printing

It is our hope that scientists and graduate students will find the books in this 
series useful in their research, teaching, and studies.  

James Russell Lowell, once wrote: “In creating, the only hard thing’s to begin.” 
This is such a beginning.  

Robert T. Beyer 
Series Editor-in-Chief  
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ix

The structure of the earth has been extensively studied using seismic waves 
generated by natural earthquakes and man-made sources. In classical seismology, 
the earth is considered to consist of a sequence of horizontal layers having 
differing elastic properties, which are determined from travel-time readings of 
body waves and the dispersion of surface waves. More recently, three-dimensional 
inhomogeneity having scale larger than the predominant seismic wavelength has 
been characterized using travel-time data with velocity tomography. Forward and 
inverse waveform modeling methods for deterministic models have been 
developed that can model complicated structures allowing many features of 
complex waveforms to be successfully explained. Classical seismic methods are 
described in books like Quantitative Seismology: Theory and Methods by Aki and 
Richards [1980], Seismic Waves and Sources by Ben-Menahem and Singh [1981], 
Theory and Application of Microearthquake Networks by Lee and Stewart [1981], 
Seismic Wave Propagation in Stratified Media by Kennett [1985], and Modern 
Global Seismology by Lay and Wallace [1995]. High-frequency (>1 Hz) 
seismograms of local earthquakes, however, often contain continuous wave trains 
following the direct S-wave that cannot be explained by the deterministic 
structures developed from tomographic or other methods. Array observations have 
shown that these wave trains, known as ‘‘coda waves’’, are incoherent waves 
scattered by randomly distributed heterogeneities having random sizes and 
contrasts of physical properties. The characteristic scale of the heterogeneity that 
has the most influence on a given wave is not always much longer than but is 
sometimes the same order of the wavelength of the seismic wave. Strong random 
fluctuations in seismic velocity and density having short wavelengths superposed 
on a step-like structure are found in well-logs of boreholes drilled even in old 
crystalline rocks located in stable tectonic environments. These observations 
suggest a description of the earth as a random medium with a broad spectrum of 
spatial velocity fluctuations and the resulting importance of seismic wave 
scattering.  

In the 1970s, geophysicists began to investigate the relationship between 
seismogram envelopes and the spectral structure of the random heterogeneity in 
the earth. Initial models were based on a phenomenological description of the 
scattering process. Later, in parallel with additional observational work, there have 
been theoretical studies using perturbation methods, the parabolic approximation, 
the phase screen method, and another empirical method known as the radiative 
transfer theory. These developments have gradually established a description of 
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the scattering process of seismic waves in the inhomogeneous earth and have 
allowed a characterization of the statistical properties of the inhomogeneity.  

This book focuses on developments over the last two decades in the areas of 
seismic wave propagation and scattering through the randomly heterogeneous 
structure of the earth with emphasis on the lithosphere. The characterization of the 
earth as a random medium is complementary to the classical stratified media 
characterization. We have tried to combine information from many sources to 
present a coherent introduction to the theory of scattering in acoustic and elastic 
materials that has been developed for the analysis of seismic data on various 
scales. Throughout the book, we include discussions of observational studies made 
using the various theoretical methods so the reader can see the practical use of the 
methods for characterizing the earth. The audience includes both undergraduate 
and graduate students in the fields of physics, geophysics, planetary sciences, civil 
engineering, and earth resources. In addition, scientists and engineers who are 
interested in the structure of the earth and wave propagation characteristics are 
included.  

Many people have helped us. Keiiti Aki’s encouragement and pioneering work 
in this field were major factors in getting this project started. Yoichi Ando kindly 
invited us to contribute to this book series. We benefited from careful reviewing of 
the manuscript by Keiiti Aki and Ru-Shan Wu. We thank Masakazu Ohtake, 
Ryosuke Sato, Alexei Nikolaev, Tania Rautian, Vitaly Khalturin, and Eystein 
Husebye for continuous encouragement. Many of our colleagues, friends, and 
graduate students have collaborated with us in the development of stochastic 
studies of seismic wave scattering, helping us to learn more than we knew: Shigeo 
Kinoshita, Frank Scherbaum, Leigh House, Peter Roberts, Rafael Benites, Steve 
Hildebrand, W. Scott Phillips, Hans Hartse, Kazushige Obara, Mitsuyuki Hoshiba, 
Anshu Jin, Bernard Chouet, Alexander Gusev, Yuri Kopnichev, Osamu 
Nishizawa, Satoshi Matsumoto, Kiyoshi Yomogida, Teruo Yamashita, Yasuto 
Kuwahara, Kinichiro Kusunose, Yanis Baskoutas, Kazuo Yoshimoto, Hisashi 
Nakahara, Ken Sakurai, Kazutoshi Watanabe, Katsuhiko Shiomi, Lee Steck, Lian-
Jie Huang, Takeshi Nishimura, Fred Moreno, and Tong Fei. Michael Fehler 
gratefully acknowledges James Albright and C. Wes Myers for encouraging his 
work on this book. Ruth Bigio assisted in drafting some of the figures. We thank 
Maria Taylor of Springer-Verlag/AIP Press for her encouragement throughout this 
project and Anthony Battle of Springer-Verlag for his cooperation.  

Haruo Sato  
Michael C. Fehler  



Preface to the First Printing

Preface

1 Introduction 1

2 Heterogeneity in the Lithosphere 7
2.1 Geological Evidence 7
2.2 Well-Logs 11

2.2.1 Velocity Inhomogeneity Revealed by Well-Logs 11
2.2.2 Autocorrelation Function and Power Spectral Density Function 12

2.3 Deterministic Imaging Using Seismological Methods 17
2.3.1 Velocity Tomography 18
2.3.2 Refraction Surveys 23
2.3.3 Reflection Surveys 25

2.4 Scattering of High-Frequency Seismic Waves 29
2.4.1 S-Coda Waves 30
2.4.2 Three-Component Seismogram Envelopes 37
2.4.3 Broadening of S-Wave Seismogram Envelopes 39

3 Phenomenological Modeling of Coda-Wave Excitation 41
3.1 Single Scattering Models 44

3.1.1 Single Backscattering Model for a Common Source and
Receiver Location 44

3.1.2 Single Isotropic Scattering Model for General Source
and Receiver Locations 45

3.2 Multiple Scattering Models 50
3.2.1 Diffusion Model 50
3.2.2 Energy-Flux Model 51
3.2.3 Simulations of Coda-Wave Excitation 53

3.3 Coda Analysis 55
3.3.1 Coda-Excitation Measurements 56
3.3.2 Coda-Attenuation Measurements 58
3.3.3 Temporal Change in Coda Characteristics 62

3.4 Coda-Normalization Method 69
3.4.1 Site Amplification Measurements 70
3.4.2 Source Radiation Measurements 74

xi

vii

ix

CONTENTS 



3.4.3 Attenuation Measurements 77
3.5 Related Coda Studies 80

3.5.1 S-Coda Anomalies 80
3.5.2 Teleseismic P-Coda 82
3.5.3 Lg and Lg-Coda 84

4 Born Approximation for Wave Scattering in Inhomogeneous Media 87
4.1 Scalar Waves 87

4.1.1 Born Approximation for a Localized Velocity Inhomogeneity 87
4.1.2 Scattering by Distributed Velocity Inhomogeneities 91

4.2 Elastic Vector Waves 95
4.2.1 Born Approximation for a Localized Elastic Inhomogeneity 95
4.2.2 Reduction of Independent Medium Fluctuations Using Birch’s Law 101
4.2.3 Scattering by Distributed Elastic Inhomogeneities 104

5 Attenuation of High-Frequency Seismic Waves 109
5.1 Attenuation in the Lithosphere 109
5.2 Intrinsic Attenuation Mechanisms 115
5.3 Scattering Attenuation Due to Distributed Random Inhomogeneities 118

5.3.1 Use of the Born Approximation for Estimating Scattering
Attenuation of Scalar Waves 119

5.3.2 Use of the Born Approximation for Estimating Scattering
Attenuation of Elastic Vector Waves 127

5.4 Scattering Attenuation Due to Distributed Cracks and Cavities 140
5.5 Power-Law Decay of Maximum Amplitude with Travel Distance 145

6 Synthesis of Three-Component Seismogram Envelopes for
Earthquakes Using Scattering Amplitudes from the Born
Approximation 149

6.1 Earthquake Source 150
6.1.1 Point Shear-Dislocation 150
6.1.2 Omega-Square Model for the Source Spectrum 151

6.2 Envelope Synthesis in an Infinite Space 153
6.2.1 Geometry of Source and Receiver 153
6.2.2 Power Spectral Density of Velocity Wavefield at the Receiver 154
6.2.3 Numerical Simulations 161

6.3 Envelope Synthesis in a Half-Space 166
6.3.1 Effects of the Free Surface 167
6.3.2 Numerical Simulations 168
6.3.3 Crustal Inhomogeneity in the Nikko Area, Northern Kanto, Japan 169

7 Envelope Synthesis Based on the Radiative Transfer Theory:
Multiple Scattering Models 173

7.1 Multiple Isotropic Scattering Process for Spherical Source Radiation 174
7.1.1 Three-Dimensional Case 175
7.1.2 One- and Two-Dimensional Cases 182
7.1.3 Nonuniform Distribution of Scatterers 185

xii / Contents



7.2 Separation of Scattering and Intrinsic Attenuation of S-Waves 189
7.2.1 Seismic Albedo 189
7.2.2 Multiple Lapse-Time Window Analysis 189

7.3 Multiple Isotropic Scattering Process for Nonspherical Source 
Radiation 197
7.3.1 Formulation 197
7.3.2 Simulation for a Point Shear-Dislocation Source 204
7.3.3 Using the Radiative Transfer Theory to Invert for the

High-Frequency Radiation from an Earthquake 205
7.4 Multiple Nonisotropic Scattering Process for Spherical Source Radiation 209

7.4.1 Formulation 209
7.4.2 Simulation 214

7.5 Whole Seismogram Envelope: Isotropic Scattering Including 
Conversions between P- and S-Waves 219
7.5.1 Formulation 220
7.5.2 Analytical Representation of the Single Scattering Term 222
7.5.3 Time Trace of the Total Energy Density 226

8 Diffraction and Broadening of Seismogram Envelopes 229
8.1 Amplitude and Phase Distortions of Scalar Waves 230

8.1.1 Parabolic Wave Equation 230
8.1.2 Transverse Correlations of Amplitude and Phase Fluctuations 231
8.1.3 Measurements of Amplitude and Phase Fluctuations 238

8.2 Markov Approximation for Predicting the MS Envelope Due to
Diffraction 242
8.2.1 Coherent Wavefield 242
8.2.2 Mutual Coherence Function 244
8.2.3 Two-Frequency Mutual Coherence Function 245
8.2.4 Master Equation for Quasi-Monochromatic Waves 246
8.2.5 MS Envelope 248

8.3 Observed Broadening of S-Wave Seismogram Envelopes 253
8.3.1 Envelope Broadening Observed in Kanto, Japan 254
8.3.2 Differences of Random Inhomogeneities across the Volcanic

Front in the Kanto-Tokai District, Japan 257
8.4 Split-Step Fourier Method for Modeling Wave Propagation Through

an Inhomogeneous Medium 263

9 Summary and Epilogue 269
9.1 Summary of Methods and Observations 269
9.2 Future Developments 274

Appendix 277

Glossary of Symbols 279

References 283

Subject Index 303

Contents / xiii



1

CHAPTER 1

Introduction

The region of the earth down to about 100 km is called the lithosphere.
Rigorously speaking, lithosphere refers to the solid portion of the earth that
overlays the low velocity zone or the asthenosphere, and the thickness varies from
place to place depending on the tectonic setting; however, we will use this term
loosely for the upper 100 km of the earth that consists of the crust and the
uppermost mantle. The structure of the earth’s crust has been investigated using
layered models since the discovery of the Mohorovicic discontinuity or Moho at the
base of the crust [Mohorovicic, 1909] and the Conrad discontinuity in the mid crust
[Conrad, 1925]. The characterization of the earth as a random medium is
complementary to the classical stratified medium characterization. Recent surveys
using the reflection method, such as those conducted by the Consortium for
Continental Reflection Profiling (COCORP) reveal that the Moho is not a simple
discontinuity but a transition zone consisting of many segments of small reflectors,
and the crust is heterogeneous on scales of a few kilometers to tens of kilometers
[Schilt et al., 1979]. Well-log data collected in the shallow crust exhibit strong
random heterogeneity with short wavelengths [Telford et al., 1976, p. 402].
Moreover, the development and application of regional velocity tomography [Aki et
al., 1976; Husebye et al., 1976], which uses travel-time readings from
seismograms of teleseismic waves, local earthquakes, or man-made sources such
as explosions has allowed the delineation of the inhomogeneous velocity structure
on scales from a few meters to a few tens of kilometers in various regions of the
world.

Aki [1969] first focused interest on the appearance of continuous wave trains in
the tail portion of individual seismograms of local earthquakes as direct evidence of
the random heterogeneity of the lithosphere. Local earthquakes are those having
magnitudes less than about 5, recorded at distances less than 100 km, and radiating
frequencies ranging from 1–30 Hz. These wave trains, which are named “coda,”
look like random signals having an envelope whose amplitude gradually decreases
with increasing time. Aki proposed that coda is composed of a superposition of
incoherent waves scattered by distributed heterogeneities in the earth. Rautian and
Khalturin [1978] showed that coda envelopes in central Asia decay stably
irrespective of epicentral distance and the envelopes at all distances have a similar
temporal dependence where time is measured from the initiation time of an
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earthquake, a time referred to as lapse time. This observed characteristic of seismic
coda is strongly linked to the historic and continuing use of the duration of a
recorded seismogram as a measure of the magnitude of a local earthquake
[Solov’ev, 1965; Tsumura, 1967a].

Until recently, most seismograms of local and regional earthquakes, those
recorded at distances to as long as 300 km, were recorded on regional networks
whose primary function was to record first arrival times to be used for locating
earthquakes. Since these networks relied on analog transmission of data from
multiple stations over radio link or phone lines, the dynamic range of the recordings
was limited. This necessitated that the stations be run at high gain to allow
identification of the first arriving P-waves from small local earthquakes. High gains
often clipped the early portions of seismograms. The first methods for analysis of
coda waves were thus developed to be used on seismograms whose early portions
were clipped. Coda analysis gained in popularity as a means for obtaining
information about seismic source spectra and media properties from data collected
by these high-gain networks. Coda waves with frequencies on the order of one Hz
were thought to offer a useful seismological tool for the quantitative estimation of
the strength of random heterogeneity [Aki and Chouet, 1975; Sato, 1978]. As
seismometers were placed in boreholes where ambient seismic noise was greatly
reduced compared to that on the surface and as the onset of digital recording
allowed dynamic range to be increased, envelopes of entire seismograms including
the coda portion were recorded and modeled to learn more about the heterogeneity
of the earth’s lithosphere using frequencies in the range of 1 to 30 Hz. Envelopes of
seismograms of artificial sources and extremely small earthquakes having
magnitudes less than zero that are recorded in boreholes have been useful for the
study of scattering processes in the frequency range of the order of kHz revealing
information about inhomogeneity on the scale of meters [Fehler, 1982].

Models for seismic wave propagation through inhomogeneous elastic media
have been developed using deterministic approaches such as mode theory for
layered structures or high-frequency approaches such as the eikonal approximation.
However, array analysis has shown that coda waves are not regular plane waves
coming from the epicenter, but are composed of scattered waves coming from all
directions [Aki and Tsujiura, 1959]. Ray theoretical approaches are thus unsuitable
for the study of coda. In the 1970s, S-coda waves were studied using the single
scattering approximation to the wave equation as one end-member model and a
model based on the diffusion equation as another end-member [Wesley, 1965; Aki
and Chouet, 1975; Kopnichev, 1975; Sato, 1977a]. The single scattering theory
based on the Born approximation for elastic media has been used to explain
characteristics of observed three-component seismogram envelopes using a point
shear-dislocation earthquake-like source [Sato, 1984a]. In parallel with the
development of theoretical modeling, S-coda characteristics such as scattering
coefficient and S-coda attenuation QC

−1 have been measured throughout the world
and compared with seismotectonic settings. There have been reports of temporal
changes in these parameters in relation to the occurrence of large earthquakes
[Gusev and Lemzikov, 1985; Jin and Aki, 1986].

Since the middle of the 1980s, the multiple scattering process has been modeled
analytically using the radiative transfer theory, which has been extended from one
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based on a stationary solution [Wu, 1985] that was borrowed from astrophysics
[Ishimaru, 1978] to the inclusion of explicit temporal dependence. The radiative
transfer theory models the transfer of energy in the medium so the detailed
mathematical treatment of phase can be ignored. This theory has been extended to
include cases of importance to propagation in the earth such as nonisotropic
scattering and nonspherical radiation from a point shear-dislocation earthquake-like
source [Wu and Aki, 1988a; Shang and Gao, 1988; Zeng et al., 1991; Sato,
1994b]. In parallel, Monte-Carlo simulations have been developed for numerical
syntheses of seismogram envelopes based on the radiative transfer approach in
more complex structures [Gusev and Abubakirov, 1987; Hoshiba, 1994].
Although the radiative transfer theory has shown considerable utility for explaining
observed seismic data, its formal basis in the wave equation lacks rigorous
foundation. It has, however, provided tractable models for the analysis of multiple
scattering, can be shown to be consistent with conservation of energy, and gives
model predictions for single scattering cases that are consistent with those derived
from the wave equation. The incoherent sum of scattered waves has been shown to
be a suitable model not only for S-coda envelope but also for whole seismogram
envelopes.

As a natural consequence of energy conservation, the excitation of coda waves
in scattering media means that the direct wave that propagates along the minimum
travel-time path from the source to the receiver loses energy with increasing
propagation distance. Until the 1970s, however, there was little theoretical
understanding of the contribution of scattering loss as a mechanism for attenuation
of seismic waves. Intrinsic attenuation was considered dominant and frequency-
independent. Using data from dense regional networks that were constructed in the
U. S. A. and Japan for observations of microearthquakes, the frequency
dependence of S-wave attenuation QS

−1 was measured. Results showed that QS
−1

decreases with increasing frequency for frequencies higher than 1 Hz. Combining
attenuation measurements for lower frequencies made on surface waves, Aki
[1980a] conjectured that QS

−1 has a peak around 0.5 Hz. If scattering is the
dominant mechanism of attenuation, the observed frequency dependence cannot be
explained by the ordinary stochastic mean field theory for wave propagation
through random media, which predicts that attenuation increases with frequency.
To resolve the discrepancy, improvements were introduced to the stochastic theory
to make it a more realistic model for the practical seismological measurement of
amplitude attenuation. One improvement was to ignore the effects of forward
scattering by integrating energy of scattered waves only for scattering angles larger
than 90˚ [Wu, 1982a, b]; the other is to subtract the travel-time fluctuation caused
by the slowly varying velocity perturbation before using the stochastic averaging
procedure [Sato, 1982a]. The spectral structure of the random inhomogeneity has
been quantitatively studied using these models and measurements of attenuation.

As the concept of scattering loss was accepted in the seismological community,
Wu [1985] introduced the seismic albedo as a phenomenological measure of the
contribution of scattering attenuation to the total attenuation. Fehler et al. [1992]
proposed a method to estimate the seismic albedo by analysis of whole S-
seismogram envelopes. The seismic albedo measurement is based on the solution
of the radiative transfer theory for the multiple isotropic scattering process for an
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impulsive spherically symmetric source radiation [Hoshiba et al. 1991; Zeng et al.,
1991]. Since this method, known as the multiple lapse-time window analysis
method, was developed, we have been able to measure the ratio of scattering
attenuation and intrinsic attenuation quantitatively and many measurements have
been reported worldwide.

In general, when waves propagate through random media, the interaction
excites coda waves and, in addition, changes the characteristics of the early portion
of the seismogram envelope. Although the source duration of small earthquakes is
often less than 1 s, the duration of S-wave envelopes are found to be much longer
than 1 s at hypocentral distances greater than 100 km [Sato, 1989]. There is an
observed time delay between the S-wave onset and the occurrence of the maximum
of the S-wave envelope. Both the envelope broadening and the peak delay were
quantitatively studied using the stochastic averaging method for the parabolic
approximation, which was originally developed for optical waves or acoustic waves
through media with random refractive index. The theory gives a good explanation
for the observed characteristics of the early portions of S-wave envelopes at large
travel distances as a result of strong diffraction.

Measurements of amplitude fluctuation of direct waves arriving from artificial
explosions using data from arrays up to a few hundred km long were interpreted
with a model based on a stochastic description of random inhomogeneity to
quantify the statistical properties of the crust [Nikolaev, 1975]. Phase and amplitude
correlation measurements of teleseismic P-waves on a seismic array revealed the
scale of inhomogeneity [Aki, 1973]. These observations suggest a description of
the earth as a random medium with a broad spectrum of spatial velocity

FIGURE 1.1. Fractional velocity fluctuations for different scales estimated by various
methods: 1, global average, mode splitting of free oscillations; 2–3, lower mantle,
velocity tomography; 4–9, upper mantle, surface wave inversion and velocity
tomography; 10–12, lithosphere, transmission fluctuation; 13–14, lithosphere, coda-
wave excitation; 15–16, upper crust, acoustic well-log. [From Wu and Aki, 1988b, with
permission from Birkhäuser Verlag AG, Switzerland.]
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fluctuations and the resulting importance of the scattering processes.
Wu and Aki [1988b] compiled measurements of fractional velocity fluctuations

made in the 1980s. Figure 1.1 shows the RMS fractional velocity fluctuation
plotted against scale length of the heterogeneity of the earth. This figure illustrates
the wide range of scales over which heterogeneities are spread within the earth.
Various methods for the estimation of the heterogeneity strength are used
depending on the scale length. Well-log data are reliable for short scale lengths of
1–100 m in the shallow crust; coda excitation measurements of local earthquakes
are useful for scale lengths of 0.1–10 km in the lithosphere; the resolution of
velocity tomography analysis using travel-time readings of seismic waves is a few
to a few tens of km for the crust to upper mantle; surface-wave inversion and free
oscillation analysis become useful for scale lengths longer than a few tens of km.
Several special issues of journals which focus on these subjects have been
published [Husebye, 1981; Wu and Aki, 1988c, 1989, 1990; Sato, 1991b; Korn et
al., 1997].

This book focuses on developments over the last two decades in the areas of
seismic wave propagation and scattering characteristics through the randomly
inhomogeneous earth structure, especially in the lithosphere. In Chapter 2, we will
briefly review data and observations that support the view that the lithosphere is
heterogeneous. Chapter 3 is an introduction to coda-wave excitation using
phenomenological modeling, which forms the basis of S-coda analysis and the
coda-normalization method. We discuss the Born approximation for
inhomogeneous elastic media in Chapter 4. Scalar wave theory is introduced as a
mathematical introduction. In Chapter 5, we first review the frequency dependence
of observed QS

−1 and discuss several of the proposed mechanisms of intrinsic
absorption. Then we introduce an improved stochastic averaging method that is
consistent with observational methods, and we will derive a formula describing the
frequency dependence of scattering attenuation in random media. In Chapter 6, a
method for synthesizing three-component seismogram envelopes of a local
earthquake based on the summation of incoherent waves scattered by random
elastic inhomogeneities will be developed. This model includes the effects of
nonspherical radiation from a realistic point shear-dislocation source in addition to
nonisotropic scattering from the inhomogeneities. Chapter 7 contains an
introduction to approaches for seismogram envelope synthesis based on the
radiative transfer theory for the case of spherical source radiation and multiple
isotropic scattering. After the theory is developed, we present the multiple lapse-
time window analysis for the estimation of seismic albedo. We will also introduce
extensions of the theory to cases of non-spherical source radiation, nonisotropic
scattering, and wave-type conversions. In Chapter 8, we will review the parabolic
approximation for scalar waves and its stochastic treatment. Correlation
measurements of teleseismic P-waves by an array and the broadening of S-wave
seismogram envelopes will be discussed. Finally, in Chapter 9, we will summarize
the results developed in the last two decades and discuss issues for future research.
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CHAPTER 2

Heterogeneity in the Lithosphere

Geologists and geophysicists have numerous ways to investigate and charac-
terize heterogeneity in the earth. Geophysical characterization includes measurement
of physical properties such as seismic velocities and density of rocks. Geological
characterization includes mineralogical composition and grain size distribution that
are both controlled by the processes by which the rock evolved. Geologists observe
the surface of the earth and analyze rocks that originated from within the earth for
signs of heterogeneity. The wide variation of rocks erupted from volcanoes pro-
vides geochemical and geological evidence of heterogeneity within the earth. Tec-
tonic processes such as folding, faulting, and large scale crustal movements associ-
ated with plate tectonics contribute to making the lithosphere heterogeneous. Rocks
recovered from boreholes show wide variation and rapid changes in chemical com-
position with depth. Geophysical measurements in wells show correlation and lack
of correlation with chemical composition of the rocks, indicating that mineral com-
position alone is not the only factor that controls the physical properties of rocks.
Deterministic seismic studies reveal a wide spatial variation in elastic properties
within the earth’s lithosphere. Scattering of high-frequency seismic waves shows
the existence of small scale heterogeneities in the lithosphere. In this chapter, we
will review some of the methods by which the heterogeneous structure of the
earth’s crust can be evaluated.

2.1 GEOLOGICAL EVIDENCE

The earth has heterogeneities on many scales. Rocks have crystals that range in
size from fractions of mm to a few cm in scale. Properties of minerals that make
up the bulk of rocks in the earth's crust vary a great deal [Simmons and Wang,
1971]. For example, the bulk modulus of quartz, one of the major constituents of
crustal rocks, is about 0.39x1012 dyn/cm2 whereas that of the mineral plagioclase,
another major constituent, is about 0.65x1012 dyn/cm2 [Simmons and Wang, 1971].
Thus, the relative abundance of these two minerals in a rock can greatly influence
its elastic properties. In addition to mineralogy, fractures influence the elastic prop-
erties of a rock [Simmons and Nur, 1968]. Fractures range in size from submicro-
scopic to many tens of meters. Since fractures are more compliant than intact min-
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erals, the spatial variations in fracture content and size can have a larger influence on
elastic properties of crustal rocks than mineral composition. Table 2.1 lists the P-
and S-wave velocities of some common rocks that compose the earth's crust. Fig-
ure 2.1 shows laboratory measurements of velocity variation with pressure for
granite from Westerly, Rhode Island, U. S. A. The variation with pressure is due to
the closure of fractures having lengths ranging from 0.01 mm to 1 cm and is typi-
cal of most crustal rocks. The P-wave velocity is more sensitive to the presence of
fluids in the fractures than the S-wave velocity since fluids transmit compressional
waves but not shear waves.

The earth's crust contains a wide variation of rock types. The variations in rock
composition can range on scales of a few mm to many km. Holliger and Levander
[1992] examined geological maps and properties of rocks for a region of northern
Italy that is believed to be an exposed section of the earth’s lower crust and con-
cluded that the spatial variation of this region has a characteristic scale of 200–800
m. Intrusions of magma into preexisting country rock can result in dikes and sills
that have different composition from the country rock. These dikes and sills can be
as small as a few mm wide resulting in a rapid spatial variation in rock properties.
Variations in rock properties in volcanic regions can occur on scales of a few m to a
few km due to variations in composition of magmas erupted at differing stages of a
volcano’s life. The variation in tectonic provinces occurs over tens to hundreds of
km. For example, the Cascade range in the western U. S. A. is largely made up of
young volcanic rocks whose elastic properties are dramatically different from those
of the old Precambrian rocks of the central U. S. A.

The earth’s crust has largely been formed through volcanic processes. Large
silicic batholiths like the Sierra Nevada, U. S. A. are the intrusive remains of vol-
canic complexes that have been eroded away. Geochemists argue that silicic rocks
that intrude into the shallow crust and erupt at volcanoes were formed by either
fractionation of iron-rich rocks that intrude into the lower crust from the mantle or
by the transfer of heat from intruded iron-rich mantle rocks to silicic rocks in the
deep crust [Perry et al., 1990]. In either case, there will be high-velocity material
remaining within the silicic crust. The velocity of the high-density material may be
as high as 7.5 km/s [Fountain and Christensen, 1989]. If heat is transferred from
mantle-derived magmas, the resulting magmas may have velocities of about 7.0

Table 2.1. Velocities of rocks in the earth’s crust. Data are for near-surface rocks
[Press, 1966].

Rock Type Location P-Wave
Velocity

S-Wave
Velocity

Granite Westerly
Rhode Island

U. S. A.

5.76 km/s 3.23 km/s

Quartz
Monzonite

Westerly
Rhode Island

U. S. A.

5.26 2.89

Andesite Colorado,
U. S. A.

5.23 2.73

Basalt Germany 5.0–6.4 2.7–3.2
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km/s. The intrusion process thus results in considerable heterogeneity in the earth’s
crust.

Extensive study of most volcanoes reveals that erupted magmas show consid-
erable geochemical variation [Perry et al., 1990]. This variation may result from
differences in the origin of the mantle-derived magmas, from the evolution of a
single crustal magma system with time, or due to mixing of various sources of
magma. In any case, the result of magmatic processes is a wide spatial variation in
chemical composition of the earth’s crust and a wide variation in mechanical prop-
erties of the rocks. Figure 2.2 shows a schematic cross section through the subsur-
face of the Mount Taylor, New Mexico, U. S. A. volcanic field for the period 1.5–
2.5 million years ago developed largely from geochemical data by Perry et al.
[1990]. Note that the types of magmas erupted require that several different types
of intrusions were present in the earth’s crust. These magmas all have differing
mechanical properties and would eventually crystallize into rocks with differing
seismic velocities.

Other geological processes that contribute to heterogeneity in the lithosphere
include erosion and metamorphism that act to transport rocks or change their char-
acter in place. Tectonic processes, such as faulting and folding, move rocks relative
to one another and result in heterogeneity. Large scale movements of lithospheric
plates distribute rocks having a common origin over a wide range. The collision of
tectonic plates at plate boundaries, such as subduction zones or collision zones,
causes rocks of differing types to come into contact.

The direct relationship between material elastic parameters and seismic veloci-
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ties are given by

α λ μ
ρ

β μ
ρ

= + =2
     and (2.1)

where α β λ μ ρ, , , , are P-wave velocity, S-wave velocity, Lamé coefficients, and
mass density, respectively. These relations give the impression that velocities de-
crease with increasing density. However, velocity is generally observed to increase
with increasing density since λ  and μ are influenced by mass density. From ex-
perimental data on rocks of many types, Birch [1960, 1961] found that seismic
velocity increases roughly linearly with mass density for rocks having the same
mean atomic weight, which is the atomic weight of the minerals that comprise the
rocks averaged in proportion to the mass they contribute to the rock. Mean atomic
weight for most crustal rocks ranges from about 21 for silica-rich rocks like granite
to 22 for iron-rich igneous rocks. Figure 2.3 shows velocities measured at 10 kbar
pressure on common lithospheric rocks having mean atomic weights between 20.5
and 22.5 plotted vs. mass density and the relationship between seismic velocities
and mass densities derived from the data. For P-waves measured at 10 kbar pres-
sure, Birch [1961] found α ρkm/s g/cm3[ ] = [ ] −3 05 1 87. .  for rocks having mean
atomic weight ~21. Kanamori and Mizutani [1965] found α ρ= −2 8 1 3. . at 6 kbar
for dunite, peridotite and eclogite in Japan. Christensen [1968] made laboratory
measurements on rocks typical of those suspected to compose the upper mantle
and found that S-wave velocity varies as β ρ= −1 63 0 88. . at 10 kbar for mean
atomic weight ~22. Manghnani et al. [1974] measured both P- and S-wave veloci-
ties for granulite facies rocks and eclogite and found α ρ= −2 87 1 85. .   and
β ρ= −1 40 0 33. .  at 10 kbar where mean atomic weight ~22.
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FIGURE 2.3. (a) P-wave velocity against mass density and (b) S-wave velocity against
mass density for common lithospheric igneous and metamorphic rocks measured at
10 kbar. Dashed lines show fits to data for rocks having mean atomic weights be-
tween 20.5 and 21.5 by Birch [1961] for P-waves and Manghnani et al. [1974] for S-
waves. Solid lines show fits for rocks having mean atomic weights between 21.5 and
22.5 by Manghnani et al. [1974] for both P- and S-waves. Data from Manghnani et
al. [1974] and Birch [1960, 1961].
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Christensen and Mooney [1995] reported on laboratory P-wave velocity meas-
urements of many rocks that compose the earth’s crust. They grouped the rocks
into a total of 29 categories by common rock type. They made measurements using
a common laboratory technique on all the rocks at various pressures corresponding
to depths of 5 to 50 km. They give an extensive analysis of these data including the
changes in density with depth and the changes in velocity and mass density with
temperature. They give a relationship between P-wave velocity and mass density
that is appropriate for rocks at 10, 20, 30, 40, and 50 km depths. For 20 km depth,
they find α ρkm/s g/cm3[ ] = [ ] −2 41 0 454. . . For rocks typical of the crust and upper
mantle, they propose that a better fit to the data is obtained using a relationship of

the form α ρkm/s g/cm3[ ]( ) = − ⋅ [ ]( ) +− −1 3 3
2 3691 10 0 2110. . . Christensen [1996]

reported on laboratory measurements of P- and S-wave velocities of 678 crustal
rocks. He investigated the average ratio of P- to S-wave velocity for crustal rocks
by comparing his data with average crustal composition obtained from seismic re-
fraction studies of the crust that are summarized by Christensen and Mooney
[1995]. He found that the average ratio is 1.768 for the continental crust. He esti-
mates that Poisson’s ratio varies from 0.253 in the upper crust to 0.283 at a depth
of 30 km and down to 0.279 in the lower crust.

2.2 WELL-LOGS

2.2.1 Velocity Inhomogeneity Revealed by Well-Logs

Direct evidence for the existence of random inhomogeneities can be found in
log data from wells drilled in the earth. Figure 2.4a shows velocity and density log
data from well YT2 drilled through lava, tuff, and volcanic breccia in Kyushu, Ja-
pan [Shiomi et al., 1996]. The velocity structure was determined from the travel
times of ultrasonic waves having frequencies of a few tens of kHz. Rock density is
measured from the intensity of gamma rays received at a borehole detector when an
artificial source of gamma rays is located about 0.4 m below the receiver in the
borehole. The intensity of received gamma rays can be shown to be a function of
the formation density [Telford et al., 1976]. Wave propagation velocity usually in-
creases with increasing depth in the earth; however, considerable spatial variation of
velocity is evident in the logs. We find that the P-wave velocity has a clear correla-
tion with S-wave velocity as shown in scattergram in Figure 2.4b. As predicted by
Birch’s law [Birch, 1961], the P-wave velocity has a positive correlation with mass
density.

Making a scattergram from bandpass-filtered trace pairs, we can estimate the
correlation coefficient. The correlation coefficient generally decreases as the pass
band center-wavelength becomes shorter. The correlation coefficient between P-
and S-wave velocities is as large as 0.7 even when the center-wavelength is as
small as a few meters as shown in Figure 2.5. Those between the P- and S-wave
velocities and the mass density drop to less than 0.7 for center-wavelengths less
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than 30 m. We note that the transducer-receiver separation for the velocity logging
tool of 0.61 m works as a high-wavenumber-cut filter.

2.2.2 Autocorrelation Function and Power Spectral Density
Function

Spectral characteristics of inhomogeneities, such as those found in well-log data
and elsewhere in the earth, are conveniently described by using mathematical tools
such as the autocorrelation function and the power spectral density function. These
concepts will be described, and several types of power spectral density functions

                                                             a                                                  b

FIGURE 2.4. (a) Well-logs showing P- and S-wave velocities and mass density vs.
depth for well YT2 in Kyushu, Japan. (b) Scattergrams showing correlation among
the physical properties measured at the same depth. Data from New Energy and In-
dustrial Technology Development Organization, Japan [1992a, b]. [Courtesy of K.
Shiomi.]
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that are used for characterizing inhomogeneities in the earth’s lithosphere will be
introduced.

Ensemble of Homogeneous and Isotropic Random Media

We suppose wave velocity V  is not a constant but depends on the location x . It
is decomposed into a sum of the mean velocity V0  and the perturbed velocity δV :

V V V Vx x x( ) ≡ + ( ) = + ( )[ ]0 0 1δ ξ    (2.2)

where we call ξ x( )  the fractional fluctuation of wave velocity. We introduce an en-
semble of inhomogeneous media ξ x( ){ }, and denote the average over this ensem-
ble by ⋅⋅⋅ , where V0  is chosen so that

V V0 = ( )x   and ξ x( ) = 0    (2.3)

In addition, we suppose that ξ x( )  is a homogeneous (stationary) and isotropic ran-
dom function of coordinate x  [Uscinski, 1977, p. 3].

First, we define the autocorrelation function (ACF) as an ensemble average by

R x y y x( ) ≡ ( ) +( )ξ ξ  (2.4)

The ACF is a statistical measure of the spatial scale and the magnitude of irregular-
ity in the medium. We note that “homogeneous” or “stationary” means that the
ACF is a function of lag-distance x irrespective of y , and “isotropic” means that
the ACF is a function of r ≡ x . The magnitude of the fractional fluctuation is given
by the mean square (MS) fractional fluctuation:
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ε ξ2 20≡ ( ) = ( )R x (2.5)

We call R x( ) ε2  the normalized ACF. The spatial variation of randomness is char-
acterized by another parameter, correlation distance (or length) a . The Fourier
transform of the autocorrelation function in 3-D space is the power spectral density
function (PSDF) where m  is the wavenumber vector:

P R e dim x xmx( ) ≡ ( )
−∞

∞

−∞

∞

−∞

∞
−∫∫∫ (2.6)

We may explicitly write arguments of R and P as r ≡ x  and m ≡ m , respectively,
because of isotropy.

Gaussian ACF

The most popular form for the ACF is the Gaussian ACF (see Figure 2.6a):

R R r e r ax( ) = ( ) = −ε2 2 2

(2.7)

where r ≡ x  and a  is the correlation distance. The PSDF is also Gaussian:

P P m a e m am( ) = ( ) = −ε π2 3 3 42 2 (2.8)

The Gaussian ACF is used to describe media that are poor in short wavelength
components since the form of the PSDF goes rapidly to zero for large m.
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FIGURE 2.6. Plots of (a) Gaussian ACF and (b) von Kármán ACF in 3-D. The von
Kármán ACF becomes an exponential ACF when κ=0.5.
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Exponential ACF

The next example is the exponential form (see Figure 2.6b):

R R r e r ax( ) = ( ) = −ε2 /  (2.9)

We note that the PSDF obeys the power law for large wavenumbers (see Figure
2.7a):

P P m
a

a m

am am

m( ) = ( ) =
+( )

∝ ( ) >>−

8

1

1

2 3

2 2 2

4

πε

for

(2.10)

von Kármán ACF

This is an extension of the exponential ACF appropriate for turbid media
[Uscinski, 1977, p. 5] (see Figure 2.6b):

R R r
r

a
K

r

a
x( ) = ( ) =

( )
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

−ε
κ

κ κ

κ

2 12
Γ

    for κ =0~ 0.5 (2.11)

where Γ is the gamma function and Kκ  is the modified Bessel function of the sec-
ond kind of order κ. We note that lim

z
z K z

→

− +( ) = ( ) >
0

12 0κ
κ

κ κ κΓ for

[Abramowitz and Stegun, 1970, p. 375]. The von Kármán ACF coincides exactly
with the exponential ACF when κ=0.5. The PSDF corresponding to the von
Kármán ACF is
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FIGURE 2.7. PSDF for von Kármán type in (a) 3-D and (b) 1-D, where m is
wavenumber.
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The PSDF obeys the power law for large wavenumbers (see Figure 2.7a). The
power-law decay for large wavenumbers means that the PSDF for the von
Kármán type ACF is rich in short wavelength components compared with the
Gaussian PSDF that is given by (2.8).

Replacing x → z  in (2.11), we may define a 1-D von Kármán ACF. Then, the
corresponding PSDF (see Figure 2.7b) is
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If we consider that well-log data are derived from a stationary random process,
we can calculate the ACF from the spatial average instead of the ensemble average.
Figure 2.8a shows normalized ACFs of log data obtained from well YT2 (see Fig-
ure 2.4) for velocities and densities where the same depth range has been used for
each. Correlation lengths scatter over a few tens of meters for these sampled data;
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FIGURE 2.8. Statistical characteristics of well-log data from well YT2 in Kyushu, Ja-
pan for depth range 600–1700 m (see Figure 2.4a): (a) normalized ACFs for frac-
tional fluctuations of three physical properties. Numerals are the MS fractional fluctua-
tion for each property;  (b) PSDF of the P-wave velocity fractional fluctuation, where
gray shows raw data and dark the data after logging tool correction. Numeral is the
power index. [Courtesy of K. Shiomi.]
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however, the shape is not consistent with a Gaussian ACF but more closely fol-
lows the exponential or von Kármán type. Suzuki et al. [1981] reported that the
exponential type ACF fits the P-wave velocity fluctuations measured in logs of
pretertiary basement rock in Kanto, Japan.

Figure 2.8b shows the PSDF of the P-wave velocity in YT2. The PSDF de-
creases according to the –1.37th power of the wavenumber for a wide range of
wavelengths from one meter to a few hundred meters, where the high-
wavenumber-cut filtering effect due to the logging tool has been corrected [Shiomi
et al., 1996, 1997]. A similar power-law characteristic was found for the KTB deep
wells in Germany [Wu et al., 1994], where the power is reported to be –1.1. The
power of the wavenumber may be correlated with tectonic activity. As the total
length of log data increases, the power law has been found to hold well for an in-
creased range of wavenumbers indicating self-affinity. But we will restrict our-
selves to the case that the statistical characteristics are independent of the sample
size. We will use the forms of ACFs and PSDFs presented in this section through-
out the book. We may expect that the correlation distance and the MS fractional
fluctuation vary from place to place, with depth, and in relation to seismotectonic
setting.

2.3 DETERMINISTIC IMAGING USING SEISMOLOGICAL
METHODS

One of the main focuses of seismology is the deterministic characterization of
the spatial heterogeneity of the earth’s lithosphere. These efforts are undertaken for
economic as well as purely scientific goals. Characterizing the spatial heterogeneity
of the lithosphere has enabled investigators to better understand the mechanism by
which the earth’s crust is formed, volcanic processes, and the nature of active seis-
mic zones. In petroleum exploration, the shallow crust is investigated and subsur-
face structures that are considered to be good petroleum reservoirs are identified.
For each study of subsurface structure, the spatial resolution of the desired infor-
mation about structure must be determined prior to data collection. A brief discus-
sion of the role that various seismic techniques play in the determination of crustal
structure can be found in Braile et al. [1995].

Deterministic characterization has been undertaken using both travel times of
seismic phases and waveform characteristics. Figure 2.9 shows travel-time data
from teleseismic P-wave arrivals recorded on a seismic network in the Jemez vol-
canic field in northern New Mexico, U. S. A. Teleseismic arrivals are those from
earthquakes occurring at distances larger than about 1000 km. The relative arrival
times measured at 49 stations spread across the volcanic field with spacing of about
3 km are contoured for various wave arrival directions. The variations in arrival
times at the stations as a function of incidence direction are a direct indication of
spatial heterogeneity in the crust beneath the volcanic field.

The reflection and refraction methods are the oldest deterministic methods used
to characterize the crust. Refractions from the crust-mantle boundary were discov-
ered in 1909 by Mohorovicic and provided the first direct evidence of the large
contrast in seismic velocity between the crust and mantle. In current applications,
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both amplitudes and arrival times are used in the reflection and refraction methods.
Refraction studies are used mostly for studying regional seismic structure to depths
as great as the crust-mantle boundary. Sizes of regions studied are generally on the
order of a few tens to hundreds of km. Reflection studies are generally used on a
more local scale for studies of a few to a few tens of km and to depths of about 10
km.

Seismic tomography was introduced in the 1970s as an extension of the meth-
ods developed in materials testing and the medical community. Initially seismic
tomography was applied only to arrival times but later methods were introduced to
take account of waveform characteristics. Seismic tomography can be conducted on
scales ranging from the whole earth to the laboratory scale.

2.3.1 Velocity Tomography

Velocity tomography was introduced into seismology by Aki et al. [1976,
1977], who showed how to use travel times from distant earthquakes recorded on a
closely spaced network of seismometers to determine the 3-D seismic structure of
the region beneath the network. Subsequently, Aki and Lee [1976] and Crosson
[1976] showed how to use travel times of local earthquakes recorded on a regional
seismic array to simultaneously determine the 3-D velocity structure and earth-
quake locations. Since that time, velocity tomography has been widely used on re-
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FIGURE 2.9. Relative travel-time anomalies observed for teleseisms recorded by an
array of seismometers located in the Jemez volcanic field of northern New Mexico, U.
S. A. The inner thick dashed line shows the location of the ring fracture associated
with the volcanic caldera. Average anomalies are shown for wavefronts arriving from
directions as indicated by arrows. The contour interval is 0.1 s, where the solid lines
are for positive and the dashed lines are for negative. Positive anomalies indicate
late arrivals. [Courtesy of L. Steck.]
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gional and global scales with travel times from local and distant earthquakes to de-
termine the P- and S-wave velocity structure of the lithosphere.

The basis of the tomography method is that travel time through a structure can
be written as

t p dcij

cij

= ∫ ( )x                                           (2.14)

where tij  is the travel time for source i to receiver j , cij  is the travel path from
source i to receiver j , p( )x  is the slowness (inverse velocity) at location x in the
earth and dc is the infinitesimal line element. Since the predicted ray path is not
known until the velocity structure is known, inversion of (2.14) for p( )x  using
known tij  is a nonlinear problem. Generally, solution proceeds by the following
approach. An initial velocity structure is assumed and the travel times through that
structure are calculated from

t p dcij

cij

0 0

0

= ∫ ( )x                                         (2.15)

where p0 ( )x  is the initial slowness structure, cij
0  is the travel path between source

and receiver for this initial model, and tij
0  is the travel time along this initial path.

The ray path and travel times can be determined using ray-tracing methods, such as
initial value approaches [Cerveny, 1987], ray bending [Um and Thurber, 1987], or
solutions of the eikonal equation [Vidale, 1988; Fei et al., 1995]. Defining the dif-
ference between the measured travel time and tij

0  as the delay time δtij , we find that

δ δt t t p dc p dc p p dc p dcij ij ij

c c c cij ij ij ij

= − = − ≈ − =∫ ∫ ∫ ∫0 0 0

0 0 0

( ) ( ) ( ( ) ( )) ( )x x x x x      (2.16)

We may solve (2.16) for perturbations in slowness that give a better fit to the ob-
served data than the initial model. The basic assumption in deriving (2.16) is that
the changes in the slowness model do not result in significant changes in the ray
path. It can be shown that this assumption is good so long as the slowness pertur-
bations are small. Equations of the form of (2.16) are known as Radon transforms,
named after Radon who showed a formal inverse transform to find the slowness
δp( )x  in the case that the rays follow straight lines [Radon, 1917]. As pointed out
by Chapman [1987], (2.16) shows that the data δtij  are obtained as an integral over
the slowness and are thus smoother than the slowness. Inverting (2.16) for slow-
ness involves computing derivatives of data, which are numerically unstable with
seismic data. Thus, seismologists usually include smoothness constraints in the
solution for slowness. These constraints limit the resolution of the spatial variation
in structure that can be found with travel-time tomography.

Deans [1983] discusses the problem of inverting Radon transforms using real
data. In general, the inversion is nonunique due to the fact that data are not available
over all paths cij in (2.16). The projection-slice theorem illustrates how available
data may help to constrain a slowness model. For the 2-D case in which slowness
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variations are small enough that rays follow straight paths, consider that we have 
travel-time anomaly measurements t(r, )  along coordinate r at angle  to the x-
axis,where coordinate r is perpendicular to ray-paths that travel through the medi-
um at angle + / 2 . In 2-D, the theorem can be written as 
t (kr , ) = p(kr cos ,kr sin ) , where t̃  stands for the 1-D Fourier transform of 
t  with respect to r  and p̃  for the 2-D Fourier transform of the slowness in x-y

space [see Menke, 1984a, p. 178]. The projection slice theorem states that the Fou-
rier transform of the travel-time anomaly data along a line perpendicular to the ray-
paths traveling through the structure is equal to a slice of the Fourier transform 
taken through the slowness model. We can thus think of the image as built up in 
the Fourier domain from slices of travel-time data for rays propagating at various 
angles through the structure. Since observations of seismic travel time can usually 
be made for only a limited range of propagation angles, we have limited constraints 
on the structure of the earth available from travel-time tomography. 
  When studying the earth, (2.16) is valid only if the ray path does not depart 
from the path calculated for the original, unperturbed slowness structure. Thus, an 
iterative approach is used to solve (2.16),  and slowness is constrained to vary 
slowly during each iteration. In addition, when (2.16) is to be solved using data 
collected in the earth, the inversion for slowness is not a well posed problem. Parts 
of the velocity structure are overdetermined and, due to noise in the data, generally 
overdetermined with inconsistent data. Portions of the structure are also underde-
termined due to the limited angle that waves propagate through the region of study. 
Various methods for solving equations like (2.16) can be found in Menke [1984a] 
or Tarantola [1987].
 When interpreting results of tomography, we must consider the resolution lim-
its. In deriving (2.16) we have assumed that seismic information propagates along 
rays that are infinitely narrow. Ray theory is a high-frequency approximation to the 
wave equation, and we know that it is not appropriate for finite wavelength waves. 
One approximate measure of the spatial resolution of tomography is given by a 
measure of ray width [Nolet, 1987]: r = Z W /8 , where r  is the minimum 
separation of two objects to be resolved, Z  is the travel distance between source 
and receiver, and W  is the wavelength. When the spatial structure reaches a cer-
tain level of complexity, scattering effects become important and travel-time tomo-
graphy cannot be applied. Devaney [1982] introduced the concept of diffraction 
tomography or inverse scattering, which uses both the amplitude and phase of inci-
dent energy. Diffraction tomography is based on a comparison of the observed 
wavefield with a scattered wavefield that is calculated using the Born (or Rytov) 
approximation for the perturbed media. Devaney [1982] showed that resolution of 
features as small as a half wavelength is possible using diffraction tomography. Wu 
and Toksöz [1987] examined the application of diffraction tomography to geo-
physical data sets. Williamson [1991] investigated the effects of scattering on 
travel-time tomography by calculating the scale at which images calculated with 
travel time and diffraction formulations begin to differ. He found that the images 
begin to depart significantly when structure has variations on a scale smaller than 
r = Z W , which should be viewed as the limiting resolution of travel-time to-

mography imposed by scattering effects. 

π
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Tomography has been applied to study the velocity structure of the mantle
[Vasco et al., 1994], regional lithospheric structures using teleseismic data
[Weiland et al., 1995], regional structures using local earthquakes and explosions as
sources [Thurber, 1993; Pujol, 1996], the small-scale structure of a man-made
geothermal reservoir [Block et al., 1994], the small-scale structure of the region
between two boreholes, and the structure near a borehole using surface seismic
sources and borehole receivers in a configuration known as Vertical Seismic Pro-
filing (VSP). We show results from three studies. Figure 2.10 shows a horizontal
slice through a 3-D S-wave velocity tomogram calculated by Block et al. [1994]
using data collected at a geothermal site in New Mexico, U. S. A. Data from mi-
croearthquakes induced by hydraulic fracturing and small explosions were used in
the analysis. Figure 2.11 shows a P-wave velocity tomogram constructed using
arrival-time anomalies like those shown in Figure 2.9 from teleseisms recorded on
an array of receivers spread across the Jemez volcanic field in New Mexico. The
low-velocity anomaly located in the center of the image is thought to be due to the
presence of molten magma beneath the center of the volcanic caldera. Beneath is-
land arcs, strong velocity inhomogeneities are caused by the subduction of oceanic
slabs and the related volcanic activities. Figure 2.12 shows an EW section of the
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FIGURE 2.11. Horizontal slice through P-
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volcanic field in New Mexico, U. S. A. at
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perturbation in P-wave velocity structure beneath northeastern Japan. The subduct-
ing Pacific plate appears as a high-velocity zone; low-velocity bodies are found in
the crust beneath the double volcanic zone that runs from north to south [Zhao et
al., 1992].

Autocorrelation Function of Velocity Tomograms

In Section 2.2.2 we introduced the concept of the autocorrelation function as a
means of characterizing heterogeneity. Here, we investigate the autocorrelation of
velocity tomograms. This should be done with caution since artifacts introduced by
the construction of the tomogram may influence the autocorrelation. For example,
tomograms are often constructed using constraints, such as a smoothing of the de-
rived velocity model, to regularize the system of equations that must be solved to
find the velocity model. In addition, the poor resolution of some portions of the
model will lead to artifacts that influence the autocorrelation function.

The normalized ACF in three directions of the velocity tomogram for the Jemez
volcanic field is shown in Figure 2.13. A 2-D slice through the velocity model de-
rived from analysis of travel times from teleseisms is shown in Figure 2.11. The
calculated autocorrelation function shows a shorter correlation length in the vertical
direction than the horizontal direction. The shorter characteristic length in the verti-
cal direction is probably due to the change in velocity with depth, which is large
compared to the change in velocity in the horizontal direction caused by the velocity

FIGURE 2.13. Normalized ACF of P-
wave velocity tomogram for the Jemez
volcanic field constructed from teleseis-
mic data. The ACF is calculated in three
directions: vertical, north-south (NS) and
east-west (EW). A slice through the to-
mogram is shown in Figure 2.11.

FIGURE 2.12. EW section showing the
perturbation of P-wave velocity beneath
northeastern Japan, where the Pacific
plate is subducting from east to west.
Large open circles show regions of low
velocity; large plusses show regions of
high velocity. [From Zhao et al., 1992,
copyright by the American Geophysical
Union.]
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anomaly beneath the center of the volcanic field.
The ratio of the scale length in the horizontal direction to that in the vertical di-

rection was estimated by analysis of log data from closely spaced wells at the KTB
deep boreholes in Germany and found to be 1.8 [Wu et al., 1994], which is similar
to that shown in Figure 2.13 for the Jemez volcanic field. The difference in correla-
tion length scales measured for borehole data may be due to the characteristic thick-
ness of rock layers in the region under study. If the boreholes cross many rock lay-
ers in the study region, as was the case for the KTB site, the characteristic length in
the vertical direction may be smaller than in the horizontal direction. If no layers are
encountered and the rock mass is geologically homogeneous, the elastic heteroge-
neity may be dominated by microfractures, which may be isotropically oriented,
leading to similar autocorrelation functions in the vertical and horizontal directions.

Digitizing the lithological map of the Ivrea zone in northern Italy, which is con-
sidered a typical exposure of the lower continental crust, Holliger and Levander
[1992] estimated the ACF in two orthogonal directions. They found that the ACF is
a von Kármán type having nonisotropic randomness: the shorter correlation dis-
tance is 150–180 m and the longer is 550–750 m, that is, the aspect ratio is 3–5.

It is desirable to compute the autocorrelation function directly from arrival-time
data rather than from velocity models derived from travel-time data. In Section 8.1,
we will discuss the relationship between amplitude and phase fluctuations and me-
dia parameters. Müller et al. [1992] developed a method for estimating fractional
fluctuation of medium slowness and correlation length from measurements of the
autocorrelation function of travel times measured parallel to a wavefront. Using 2-
D finite difference simulations, they tested the validity of their method and show
that it is reliable when the ratio of seismic wavelength to correlation distance is less
than about 0.5. Roth [1997] describes an extension of the method proposed by
Müller et al. [1992] to the case that measurements are not made parallel to the
wavefront. He tested the method using simulations and shows that it is reliable for
cases where the propagation distances is less than about ten times the correlation
distance. He applied the method to active seismic data collected using air guns in
the ocean off Sweden and found that the correlation distance is 330–600 m.

2.3.2 Refraction Surveys

The refraction technique is probably the oldest method used to characterize the
earth’s crust. Although refraction studies conducted today generally provide less
resolution of crustal structure than reflection studies used for petroleum exploration,
refraction studies do provide information about larger regions of the crust. As con-
ducted today, refraction surveys can be considered transmission surveys or refrac-
tion combined with wide-angle reflection surveys since waves other than refrac-
tions are identified in the data collected and provide additional constraints on the
models derived.

Processing methods for refraction seismic studies include forward modeling of
travel times, forward modeling of waveforms using methods such as finite differ-
ence or reflectivity [Mooney, 1989], and travel-time tomography [Zelt and Smith,
1992]. Each method has limitations: forward modeling of travel times may provide



24 / Chapter 2

some information about crustal heterogeneity but provides little information about
uniqueness of the derived model. Forward modeling of waveforms provides con-
straints from data of both amplitudes and phase and can result in more reliable
models; however, due to the difficulty of matching data and the large amount of
computation involved in forward modeling, usually only simple models can be
tested. Inversion of travel times provides information about uniqueness of the
model and usually provides a good fit between predicted arrival times and meas-
ured times, but the limited angles at which rays propagate in refraction surveys
limit the resolving power of this method.

Christensen and Mooney [1995] summarize results of refraction surveys made
worldwide and discuss the implications of these surveys for our understanding of
crustal composition. They divided the results into those obtained in five tectonic
provinces and generated average P-wave velocity structural models as illustrated in
Figure 2.14. The layered velocity structures are the first information that is usually
derived from refraction surveys and represent the most basic information about in-
homogeneity in the crust. Using information about velocities of various types of
rocks under in situ conditions, Christensen and Mooney [1995] developed models
for the average composition of the tectonic provinces. They argue that the average
P-wave velocity of the crust is 6.45 km/s and the average for the upper mantle is
8.09 km/s.
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2.3.3 Reflection Surveys

Due to the widespread use by the petroleum industry, data from reflection sur-
veys make up a majority of the data collected for imaging the earth’s crust. In typi-
cal industry surveys, each source location is recorded by as many as 500 receivers.
Source locations at sea can be as closely spaced as 30 m, and surface areas of the
scale of 25 km2 can be surveyed. Generally, such reflection data are processed us-
ing a method known as migration [Schneider, 1978], which is an approach to
backpropagate the wavefield measured at the surface to develop an image of the
reflectivity of the earth’s subsurface. Migration is based on the representation theo-
rem for scalar waves [see Schneider, 1978] by using reciprocity, which shows how
to relate known values of the wavefield on a surface S  bounding a medium to the
wavefield at any point interior to the surface:

u t dt dS G t t u t u t G t t
S

x x x x n x x n x x, ' ' , ; ' , ' ' ( ' , ' ) ' , ' ' , ; ' , '( ) = ( ) − ( ) ∇[ + ( ) ∇ ( )]∫∫
−∞

∞

  (2.17)

where u t( , )x  is the wavefield at location x interior to S  and at time t, u t( ' , ' )x  is
the wavefield at point x'  on the surface S , n is the outward pointing unit normal
vector to the surface, and ∇'  is the derivative with respect to x'  on the surface.
G t t( , ; ' , ' )x x  is the Green function for a source located at x' at time t'  with a re-
ceiver located at x  at time t. Since we know the wavefield near the earth’s surface
from measurements, we choose a Green function that vanishes at the surface, and
we obtain the migration integral for reflection data

u t dt dS u t G t t
S

( , ) ' ' ( ' , ' ) ' , ; ' , 'x x x n x x= ( ) ∇ ( )∫∫
−∞

∞

(2.18)

Eq. (2.18) needs boundary and initial conditions. The boundary condition at the
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FIGURE 2.15. Slice through 3-D model of region containing a salt body thought to
be typical of the Gulf of Mexico. The velocity through the salt is as much as a factor
of three times that of the surrounding strata. Solid lines represent layer interfaces.
[Courtesy of T. Fei.]
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surface is the observed seismic data. At other boundaries, we use a radiation condi-
tion that states that the wavefield goes to zero at infinity. The initial condition is the
causality condition that limits the time integral from time zero to some finite time.
Physically, (2.18) allows us to predict the scattered wavefield below the surface of
the earth. To obtain a reflection coefficient for a layer, we use a simple imaging
concept. We take the scattered wavefield just above a virtual reflector at the time it
takes to propagate energy from the source to the reflector and back to the receiver.

In general, the Green function for (2.18) has no analytic representation. Two
popular numerical techniques to compute the Green function consist of solving a
finite difference representation of the scalar wave equation or solving the eikonal

FIGURE 2.17. Results of migrating synthetic zero-offset data for the salt structure
shown in Figure 2.15. Migration adequately accounts for complexity of seismograms
like those shown in Figure 2.16 and the structure is nearly recovered by the determi-
nistic treatment of the data. [Courtesy of T. Fei and the Gulf of Mexico Imaging Con-
sortium.]

Trace from SEG/EAEG Subsalt Model

1 s

FIGURE 2.16. Synthetic seismogram calculated using 3-D finite difference solution of
the scalar wave equation (constant density) for the salt model whose cross section is
shown in Figure 2.15. Shot and receiver are located on the earth’s surface (in water)
above the location of the salt body. Data are calculated as in Aminzadeh et al.
[1994].
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equation to obtain an asymptotic ray equation solution. The finite difference solu-
tion can be used to propagate the wavefield at the surface backward in time and into
the earth; this is called reverse time migration. The formal limit of resolution of
seismic migration for wavelength λW  is given by δ λr W= / 4 [Claerbout, 1985].

Figure 2.15 shows a 2-D cross section through a synthetic model developed to
represent the earth’s structure in a typical region of the Gulf of Mexico where salt
features are common. In the Gulf region, the velocity through salt is dramatically
higher than that of the surrounding strata, and the interface between the salt and the
strata is irregular and often steeply dipping. The scattering by the salt results in ex-
tremely complicated seismograms during reflection profiling. Figure 2.16 shows a
synthetic seismogram calculated using 3-D finite differencing of the scalar wave
equation (constant density) for the 3-D model whose cross section is shown in
Figure 2.15 [Aminzadeh et al., 1994]. Note the complexity of the seismogram cal-
culated for this structure.

Figure 2.17 shows the result of migrating zero-offset data calculated for the 3-D
salt model. Zero offset data are calculated by assuming that the source and the re-
ceiver are located at the same location on the earth’s surface. The migration was
calculated using almost 300,000 seismograms over the 3-D structure. Surprisingly,
complicated seismograms like those shown in Figure 2.16 can be properly proc-
essed to yield an image of the earth’s subsurface that is close to the actual model
shown in Figure 2.15 [Fei et al., 1996].

On a larger scale, observations of earthquake waveforms have provided evi-
dence for reflected phases in the earth’s crust. One notable observation of reflec-
tions, interpreted as coming from a mid-crustal reflector near Socorro, New Mex-
ico, U. S. A. was made by Sanford and Long [1965] and later refined by Hartse et
al. [1992]. A waveform from an earthquake showing where reflected phases are
observed is shown in Figure 2.18. Extensive investigation of the reflected phases
has led to the conclusion that the reflections are caused by a mid-crustal magma
intrusion that is perhaps as thin as 60 m, located at a depth of 19 km, and covering
an area as large as 1,700 km2 [Hartse et al., 1992]. The existence of S-wave reflec-
tors in the mid-crust was also reported to be associated with the Nikko–Shirane
volcano in northern Kanto, Japan [Matsumoto and Hasegawa, 1996].

Lapse Time  [s]
2 10 126 84

P S SzP SzS

Station CC1

FIGURE 2.18. Seismogram from an earthquake located near Socorro, New Mexico,
U. S. A., where lapse time is measured from the earthquake’s origin time. Phases
SzP and SzS are phases reflected from a magma body located in the mid-crust.
[Data courtesy of H. Hartse, A. Sanford, and J. Knapp.]
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In many continental regions, sequences of reflections are often observed from
the lower crust and the vicinity of the crust–mantle boundary. The surveys show
that the lower continental crust is heterogeneous compared with upper crust and the
upper mantle as shown in Figure 2.19 [Warner, 1990b]. Warner [1990a] discusses
the amplitudes of these reflections and indicates that some data show as many as 40
strong spatially consistent reflectors in 200 km-long 2-D seismic lines. Such spa-
tially consistent and strong reflectors are not observed at shallow or mid-crustal
depths. Warner [1990b] argues that these reflectors are due to the intrusion of iron-
rich mantle material into the silica-rich crust that flattens out into layers as it reaches
a depth where the density contrast between the intrusion and the surrounding mate-
rial no longer allows it to continue its ascent to the surface. To further investigate
the sequence of reflections observed from the lower crust, Holliger et al. [1993]
examined geological maps of a region of northern Italy that is considered an out-
crop of material that used to be in the lower crust. They estimated the spatial varia-
tions of material properties by comparing geological units with seismic velocities
measured on rocks from the region and developed model sections for the lower
crust. They used 2-D finite difference calculations to generate synthetic seismo-
grams for the near and far offset seismic response for a region that contains a lower
crust similar to the one developed from geological data. They found that the layered
appearance of seismic data from the lower crust may be explained by small scale

FIGURE 2.19. Record section showing
bright subhorizontal layered reflections
in the lower crust. The Moho is located
at the base of the layering. [From War-
ner, 1990b, with permission from El-
sevier Science - NL, Sara Burger-
hartsraat 25, 1055 KV, Amsterdam, The
Netherlands.]

FIGURE 2.20. Distribution of aspect ra-
tio of P-wave particle motion for earth-
quakes in Kanto, Japan observed at
borehole seismic station IWT. The as-
pect ratio is plotted at the position of
each epicenter using open circles (0.–
0.48), crosses (0.48–0.69) and closed
circles (0.69–1.0). [From Matsumura,
1981, with permission from Center for
Academic Publications Japan, Bunkyo-
ku, Tokyo, Japan.]
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(500–1000 m) spatial variation in material properties with maximum velocity
variations of about 0.55 km/s against a flat background velocity of 6.3 km/s.

2.4 SCATTERING OF HIGH-FREQUENCY SEISMIC
WAVES

High-frequency seismograms contain features that reflect the random inho-
mogeneities in the earth. For local earthquakes, those recorded at distances of less
than about 100–200 km, “high frequency” generally means higher than 1 Hz in this
book. Traditionally, networks record waveforms of local earthquakes with a band-
width of about 1–30 Hz although recent instrumentation records higher frequencies.
Recording of frequencies higher than about 30 Hz requires that the seismic sensor
be placed in a borehole at depths below the highly attenuating surface layers. When
active sources such as explosions are used, frequencies as high as many kHz can be
recorded, especially when both source and receiver are in boreholes.

When we examine the particle motion around the direct-wave arrival, we find
evidence of scattering along the propagation path from the source to the receiver.
The 3-D particle motion trajectory, which gives some information about the types
of seismic waves and their directions of travel, can be analyzed using the 3-D co-
variance matrix. In a simple medium, the P-wave should be linearly polarized along
the direction of travel and the S-wave is polarized in the plane perpendicular to the
direction of travel. In most cases, the P-wave particle motion is observed to be el-
liptical, which indicates scattering. The aspect ratio of the ellipsoid, given by the
square root of the ratio of the middle eigen value to the maximum eigen value of
the covariance matrix composed of three-component data for a short interval of
time around the P-wave, indicates the strength of scattering. If the ratio is zero, the
particle motion is needle-like indicating no scattering. On the other hand, if the ratio
is close to one, the particle motion is spherical representing strong scattering.

Matsumura [1981] measured the ratios of eigen values for P-waves from seis-
mograms of local earthquakes recorded at station IWT in the Kanto district, Japan,
which is run by the National Research Institute for Earth Science and Disaster Pre-
vention, Japan (NIED). At station IWT, a three-component velocity-type seismo-
graph is installed in a borehole in pretertiary formation rock at a depth of 3510 m.
The predominant frequency of the data is about 10 Hz, and no phases reflected
from the free surface are included in the 0.8 s time window used for the analysis.
He found differences in scattering strength for earthquakes occurring in different
regions, as shown in Figure 2.20, where the scattering is stronger for earthquakes
in the north than in the south. He found a similar pattern in scattering strength for
S-waves. Nishizawa et al. [1983] examined the particle motion of 10 kHz-band P-
wave seismograms of microearthquakes induced by water injection at Fenton Hill
in New Mexico. They found stronger scattering for waves which traverse through
the known location of a fracture zone.

In this section we will describe some of the observed characteristics of seismo-
grams of local and regional earthquakes that can be interpreted using scattering
models. We will briefly describe some of the approaches used in the modeling,
which will be further developed in Chapters 3–8.
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2.4.1 S-Coda Waves

The most prominent evidence for the short-wavelength random heterogeneity of
the earth is the appearance of coda waves in seismograms. On typical seismograms
of local earthquakes, like those illustrated in Figure 2.21, the direct S-wave is fol-
lowed by wave trains whose amplitude decreases smoothly with increasing lapse
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FIGURE 2.21. (a) Horizontal-component velocity seismograms of an earthquake
whose magnitude is ML =4.6 and focal depth is 19.3 km. Seismograms are arranged
from top to bottom by increasing distance from the earthquake epicenter. (b) Distribu-
tion of the NIED network stations (diamonds) in Kanto-Tokai, Japan whose seismo-
grams are shown. Star indicates the epicenter. [Courtesy of K. Obara.]
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time. These wave trains are called “S-
coda waves”, or simply “S-coda” or
“coda”. Initially the word “coda” was
used to refer to the oscillations of the
ground continuing after the passage of
surface waves or the tail portion of a
seismogram. Recently, this word has
been used to refer to all wave trains ex-
cept direct waves: “P-coda” for waves
between direct P- and S-waves and “S-
coda” for waves following the direct S-
waves. Direct S-wave amplitude de-
creases with increasing epicentral dis-
tance; however, average S-coda ampli-
tudes, for example, those at lapse time of
100 s, have nearly equal amplitudes irrespective of epicentral distance.

To characterize the S-coda envelopes we often calculate the smoothed trace of
the square of the seismogram, which is called the MS seismogram envelope.
Sometimes taking the square root of the MS trace, we make the RMS seismogram
envelope. In Figure 2.22, we show a velocity seismogram of a local earthquake
(top), the corresponding RMS seismogram envelope (middle), and MS seismo-
gram envelope (bottom). The MS envelope, whose amplitude is linearly propor-
tional to energy density, is appropriate for comparison with the synthesis based on
the radiative transfer theory. On the other hand, the RMS envelopes reflect the vis-
ual image of the seismograms themselves.

Rautian and Khalturin [1978] studied coda amplitude for a wide range of lapse
times and frequency bands. They found that early portions of the coda are different
from station to station; however, the coda of bandpass-filtered seismograms have a
common shape at all stations after about two times and always after three times the
S-wave travel-time from the source to the receiver. Figure 2.23a shows the RMS
envelopes measured from bandpass-filtered seismograms at two stations for a local
earthquake in Central Asia, where the station separation is about 45 km. The figure
shows the similarity of the shape of the coda portion of the envelope at the two sta-
tions. Figure 2.23b shows coda amplitude vs. lapse time for a suite of small earth-
quakes in Kanto, Japan recorded at a single station [Tsujiura, 1978]. The similarity
of the curve shape for all the earthquakes is clear. We also note that there is little
difference between vertical and horizontal components of S-coda envelopes of
small local earthquakes as shown in Figure 2.24.

The magnitude of local earthquakes can be determined from the average of the
direct wave amplitudes measured at many stations after a distance correction is ap-
plied to data from each station. The magnitude calculated from amplitudes has been
found to be proportional to the logarithm of the duration of a local seismogram,
which is the length of time measured from the P-wave arrival to the time when the
S-coda amplitude decreases to the level of microseisms or noise [Solov’ev, 1965].
The proportionality is shown in Figure 2.25, where earthquake local magnitudes
determined from measurements of amplitude by the Japan Meteorological Agency
(JMA) are plotted against the duration time at a station in Wakayama, Japan
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FIGURE 2.22. Example of a velocity
seismogram of a local earthquake.
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[Tsumura, 1967a, b]. The logarithm of duration time has been used for the quick
determination of earthquake magnitudes in many regions of the world. This corre-
lation between magnitude and duration time is consistent with the similarity in
shape of the later portion of seismograms observed at regional seismic stations and
the conclusion that coda portions of seismograms are composed of scattered waves.
We will discuss a model to explain the correlation of coda duration and earthquake
magnitude in Section 3.3.2.

The nature of coda waves has been studied using array observations. Aki and
Tsujiura [1959] analyzed correlations of seismograms among six vertical-
component seismographs deployed on granitic rock at the foot of Mt. Tsukuba in
Kanto, Japan and reported that there was little energy at the receiver array that had
left the epicenter region of the earthquake as plane waves. One way to find the
propagation direction of component waves using array observations is to use a fre-
quency–wavenumber power spectrum. For a stationary time series u tx,( ) , we de-

a                                                                  b

FIGURE 2.23. (a) RMS seismogram envelopes in different frequency bands begin-
ning at the S-wave arrival-time (large symbols) for an event recorded at two stations
having different epicentral distances in Central Asia. [From Rautian and Khalturin,
1978, copyright by the Seismological Society of America.]  (b) RMS coda-amplitude
decay with lapse time for local earthquakes of the 6 Hz-band recorded at Tsukuba in
Kanto, Japan, where the broken curve is the average decay curve. [From Tsujiura,
1978, copyright by Earthquake Research Institute, University of Tokyo.]
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fine the frequency-wavenumber (f–k) power spectral density as the Fourier trans-
form of the autocorrelation function u t u t tx x x, ' , '( ) + +( )  [Lacoss et al., 1969]:

P f u t u t t e d dtf w
i f tk x x x xkx, , , '( ) = ( ) + ′ + ′( ) ′− ′+ ′( )

−∞

∞

−∞

∞

−∞

∞

∫∫∫ 2π (2.19)

For wavefield data having a finite duration in a given frequency band having center
frequency f, we usually make a contour plot of the estimated f–k power spectral
density Pf w in the k kx y- plane. A peak in the plot indicates the direction of ap-
proach and the apparent propagation velocity of the plane wave that crosses the ar-
ray. Figure 2.26 shows results of an f–k analysis of data recorded by an eight-
element seismic array located SE of the center of the Valles Caldera of northern
New Mexico, U. S. A. (see Figure 2.11). The analysis was performed on narrow-
band filtered data from three 2 s time windows, one surrounding the direct P-
arrival, one surrounding the direct S-arrival, and one beginning 20 s after the direct
S-arrival. The f–k analysis of waveform data that includes the direct waves (Figure
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a local earthquake recorded at hard rock
site GER in central Japan. Solid curve is
for UD component and dotted curve is
for NS component.

10                        100                     1000
F-P [s]

MJMA

5

4

3

2

FIGURE 2.25. Relationship between the
magnitude MJMA determined using ampli-
tude data by JMA and the F-P duration
time at a station of the Wakayama Ob-
servatory, Japan. [From Tsumura,
1967a, with permission from the Seis-
mological Society of Japan.]
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2.26b and c) shows that the direct waves are dominated by energy arriving from the
direction of the event indicated by the peaks in the SSE portion of the plots. The S-
coda, on the other hand, shows no consistent arrival direction, as shown by Figure
2.26d where high amplitude contours appear in all quadrants of the plot.

Spudich and Bostwick [1987] proposed to use seismograms recorded at a sin-
gle station for a cluster of earthquakes as a virtual seismic array. Source and re-
ceiver positions are exchangeable because of the reciprocity of the Green function
of elastodynamics, so the earthquake cluster can be considered an array of seismic
stations within the earth that records seismograms from a single source located at
the position of the real seismic receiver that recorded the earthquakes. Making the
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FIGURE 2.26. (a) Vertical component seismograms recorded by an eight element
array located in the Valles Caldera, New Mexico, U. S. A. of a small local earthquake
located at a distance approximately 80 km SSE of the array, where bold bars indicate
2 s long time windows used for f–k analyses.  (b) Results of f–k analysis of vertical
component data surrounding the direct P-arrival. Data were filtered into the 2–5 Hz
frequency band prior to analysis. Numbers inside circle refer to velocity of waves
crossing array.  (c) Results of f–k analysis of EW component data surrounding the
direct S-arrival. Frequency band is 1.3–3 Hz.  (d) Results of f–k analysis of EW com-
ponent S-coda data beginning 20 s after the direct S-arrival. Frequency band is 1.3–3
Hz.
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f–k analysis of a set of aftershocks of the 1984 Morgan Hill, California earthquake,
they measured the propagation directions and slownesses of the component waves
as they travel through the earthquake focal region. The early S-coda, starting imme-
diately after the direct S-wave and ending at twice the S-wave travel-time, was
dominated by waves that are multiply scattered near the station since the propaga-
tion direction is upward and almost the same as the direct S-wave. Using the same
method, Scherbaum et al. [1991] analyzed microearthquake clusters in northern
Switzerland. All events were relocated using a master event technique and inter-
event arrival-times estimated by a cross-correlation method. This relocation method
greatly reduces the errors in relative event locations making the array analysis more
reliable. The f–k analysis plots show two different patterns: early coda immediately
following the direct S-wave was composed of wavelets leaving the source region
with the same slowness vector as the direct S-waves; however, latter S-coda waves
are composed of wavelets leaving the source region in a variety of directions. The
transition between the two types often takes place at 1.5–2 times the S-wave travel-
time from source to receiver.

Semblance is another measure of the coherency of waves that is sensitive to
amplitude of waves. Semblance coefficient is defined as [Neidell and Taner, 1971]
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where M is the number of stations and N the number of samples. When the aper-
ture of the array is small and we may consider the waves as plane waves, we may
set the starting time of the window as K i t i( ) = + px , where xi  is the coordinate of
the ith station, p the apparent slowness in 2-D, and t the arrival time at the center of
array. Semblance may be viewed as the ratio of the power of the stacked beam to
the product of the total power in the traces and the number of channels M. The time
resolution of semblance measurements decreases as the number of time samples
used in the estimation increases but the resolution increases with increasing number
of time samples.

Kuwahara et al. [1990, 1991, 1997] calculated semblance coefficients using ar-
ray observations of microearthquakes in Kanto, Japan to analyze propagation char-
acteristics of waves. Seismograms from 13 seismometers having average spacing
of 50 m were used. Figure 2.27 shows an example of the temporal variation of ar-
rival azimuth, slowness, and the semblance coefficient for vertical components of
motion. Results for the vertical component show that the P-coda has almost the
same propagation direction and apparent velocity as those of the direct P-wave that
arrives from the direction of the epicenter. The semblance coefficient for the P-coda
is quite high, but it rapidly drops in the S-coda. The S-coda is composed of waves
with widely distributed propagation directions and low semblance coefficient.

The above observations strongly suggest an incoherent nature for high-
frequency coda waves. We cannot expect phases other than direct P- and S-waves
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if the propagation medium is transparent. To explain the observed smooth temporal
decay of coda amplitude that is independent of hypocentral distance, Aki and
Chouet [1975] proposed a model in which S-coda is composed of S-waves that
have been scattered by heterogeneities distributed in a large region outside the zone
containing the direct wave path from the source to the receiver. Reverberations in
soft layers or the trapping and release of seismic energy by lakes or ponds cannot
explain the observed characteristics. In Chapters 3 and 7, we will introduce recently
developed models of S-coda that focus on S-wave scattering by distributed hetero-
geneities.

If we consider that S-coda wave excitation is dominated by scattering of S-
waves from heterogeneities in the earth, conservation of energy says that the energy
is supplied from the direct S-wave as schematically illustrated in Figure 2.28.
Measured S-wave attenuation per distance in the lithosphere is of the order of
0.01 km 1−  [Aki, 1980a, b], which is almost the same order as the reciprocal of the
mean free path of S-waves measured from the S-coda excitation [Sato, 1978]. This
coincidence supports the idea of scattering as a mechanism of attenuation. Quanti-
tative laboratory measurements of ultrasonic (~0.5 MHz) elastic wave propagation
in granitic blocks were made by Nishizawa et al. [1997]. They reported a larger at-
tenuation of direct wave amplitude and stronger excitation of coda waves for Inada
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granite, which has coarse grain sizes (> 10 mm), compared with those in Westerly
granite, which has fine grain sizes (~1 mm). Assuming that the P-wave velocities
of the laboratory samples are 5 km/s and spectra peaked at 0.25 MHz, the P-wave
wavelength is 20 mm. Thus, the wavelength is closer to the grain size for the Inada
granite than for the fine-grained Westerly granite. Their experiments clearly show
that the energy transfer from direct waves to coda waves is controlled by the scat-
tering characteristics that depend on the grain sizes of rock media.

Scattering attenuation was left out of early models for the mechanism of at-
tenuation in the earth [Jackson and Anderson, 1970]; however, the importance was
pointed out by Aki [1980a] and theoretical models for scattering attenuation were
proposed by Wu [1982a, b] and Sato [1982a, b]. Since then, there have been
mathematical investigations of scattering attenuation caused by random heterogene-
ity in the lithosphere. Amplitude and travel-time fluctuations of seismic rays trav-
eling through structures composed of random heterogeneities superposed on a lay-
ered velocity structure have been studied numerically [Mereu and Ojo, 1981; Le-
vander and Holliger, 1992]. A model for the attenuation caused by scattering in
randomly inhomogeneous elastic media based on the Born approximation will be
given in Chapter 5.

2.4.2 Three-Component Seismogram Envelopes

The whole seismogram starting from the P-wave onset until the end of the S-
coda reflects not only the source process characterized by the fault-plane geometry
and the source-time function but also the scattering characteristics of the heteroge-
neous earth. Figure 2.29 shows typical three-component seismograms recorded at
five stations having epicentral distances between 10 and 60 km located in the vicin-
ity of the Izu Peninsula, Japan. The earthquake source is a strike slip type. The P-
wave first motions are shown on the lower hemisphere projection in the figure. We
find considerable spatial variation in the amplitudes of the P and S-codas that are
functions of both source-receiver azimuths and hypocentral distances.

At station NRY, located near the P-wave nodal line, the direct P-phase is un-
clear on the vertical component and the S-phase is a large pulse having a period of
0.2 s on the NS component. The P-coda amplitude gradually increases with time on
all three components, and the maximum peak amplitude of the S-phase on the ver-
tical component occurs a little later than those on the horizontal components. At
stations YMK, SMD and JIZ located near the maximum P-wave radiation direc-
tions, the direct P-wave is dominated by one pulse having a period of 0.2 s on the
vertical component. P-coda envelopes are concave between the P- and S-phases,
decreasing with increasing time after the direct P-arrival. As a result of scattering,
the durations of the S-phases on the horizontal components are much larger than
the source duration time of 0.2 s. The maximum peak arrival of S-phase on the
vertical component appears to occur a little later than those on the horizontal com-
ponents at each station. Modeling the wave trains of P- and S-coda as incoherent
scattered waves, we may sum up the incoherent singly scattered waves and synthe-
size the whole seismogram envelope. We will introduce a method in Chapter 6 for
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synthesizing three-component seismogram envelopes by using scattering ampli-
tudes from the Born approximation for elastic waves.

FIGURE 2.29. Three-component seismograms of a strike slip microearthquake
(closed circle on the map) recorded near the Izu Peninsula, Japan at five stations
(solid squares), where the amplification gains are the same for three components but
different for different stations. Initial P-motions are plotted on the lower hemisphere.
[From Sato, 1991a, with permission from Elsevier Science - NL, Sara Burgerhartsraat
25, 1055 KV, Amsterdam, The Netherlands.]
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2.4.3 Broadening of S-Wave Seismogram Envelopes

Another piece of evidence supporting the existence of heterogeneities in the
lithosphere is the observed broadening of the envelopes of the S-wave seismo-
grams of earthquakes recorded at distances between 100 and 300 km. The source
duration of earthquakes having local magnitude less than 5 is shorter than 1 s as
estimated from the empirical relationship describing the fault rupture process
[Kikuchi and Ishida, 1993]; however, we find that the duration of observed S-wave
first arrival packets at long distances is much longer than 1 s. In Figure 2.30 we
show typical seismogram envelopes, recorded at NIED station ASO in Kanto, Ja-
pan, of two earthquakes having different hypocentral distances. The maximum
peak, indicated by an open circle on each bandpass-filtered RMS seismogram, oc-
curs several seconds after the S-wave onset that is indicated by a vertical bar. The
seismometer is installed on hard rock; therefore, it is difficult to explain the broad-
ening by reverberation in shallow soft deposits. The delay in arrival time of the
maximum amplitude is not caused by source effects since we find that the average
delay time increases with increasing travel distance. We also find a delay in the time
of arrival of the half-maximum amplitude as indicated by a closed circle in Figure
2.30, that is, the wave that is initially an impulse at the source collapses and broad-

FIGURE 2.30. RMS envelopes of bandpass-filtered seismograms (NS component,
octave-width frequency) of two earthquakes in southeast Honshu, Japan, recorded at
station ASO. S-wave onset (vertical bar), arrival of the maximum peak (open circle),
and the arrival of half-maximum amplitude (closed circle) are shown. [From Sato,
1989, copyright by the American Geophysical Union.]



40 / Chapter 2

ens with increasing travel distance. Increasing packet duration is called envelope
broadening. It was initially proposed that S-wave seismogram broadening is due to
strong diffraction and multiple forward scattering caused by slowly varying veloc-
ity structure, which was modeled by employing a stochastic treatment of the para-
bolic approximation of the wave equation [Sato, 1989]. Later, Obara and Sato
[1995] used the model to investigate the regional difference in the S-wave envelope
broadening relative to the location of the volcanic front in Japan. This work will be
discussed in Chapter 8.
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CHAPTER 3

Phenomenological Modeling of Coda-Wave
Excitation

As discussed in Section 2.4.1, the excitation of S-coda waves is one of the most
compelling pieces of evidence supporting the existence of random heterogeneity in
the lithosphere. Aki and Chouet [1975] summarized the characteristics of high-
frequency S-coda waves of local earthquakes, like those shown in Figure 2.21, as
follows: (1) the spectral contents of the later portions of the S-coda observed at dif-
ferent stations are nearly the same; (2) the total duration of a seismogram, defined
as the length of time between the P-wave onset and the time when the coda ampli-
tude equals the level of microseisms, is a reliable measure of earthquake magni-
tude; (3) bandpass-filtered S-coda traces of different local earthquakes recorded
within a given region have a common envelope shape whose time dependence is
independent of epicentral distance; (4) the temporal decay of S-coda amplitudes are
independent of earthquake magnitude at least for ML  < 6; (5) the S-coda amplitude
depends on the local geology of the recording site; (6) array measurements show
that S-coda waves are not regular plane waves coming directly from the epicenter
[Aki and Tsujiura, 1959]. S-coda waves have the same site amplification factor as
that of direct S-waves confirming that coda-waves are composed primarily of S-
waves [Tsujiura, 1978]. Clear S-coda waves have even been identified on seismo-
grams recorded at the bottom of deep boreholes drilled in hard rock beneath soft
deposits [Sato, 1978; Leary and Abercrombie, 1994].

We will present a phenomenological model for coda-wave generation based on
a view of the earth’s lithosphere as composed of a random and uniform distribution
of point-like scatterers in a homogeneous background medium having a constant
propagation velocity as schematically illustrated in Figure 3.1. We neglect diffrac-
tion effects caused by gradual changes in velocity. This model was originally pro-
posed by Aki and Chouet [1975] for the case of collocated source and receiver. An
extension to the case of source-receiver separation was done by Sato [1977a] for
body waves and by Kopnichev [1975] for surface waves.

Alternative phenomenological models for coda-wave generation have been pro-
posed. Prior to the work of Aki and Chouet [1975], Wesley [1965] proposed a dif-
fusion-like process as an explanation for seismogram envelopes. The observed
long duration of the coda of lunar seismograms was studied using the diffusion
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model [Dainty and Toksöz, 1981]. Due to the extremely low intrinsic attenuation of
the lunar crust and large amount of scattering, the diffusion approach works well to
explain wave propagation in the lunar crust. Frankel and Wennerberg [1987] devel-
oped a model called the energy-flux model based on the uniform distribution of
scattered-wave energy that was found in finite difference simulations of wave
propagation in 2-D random media.

The parameters that control the shape and amplitude of the coda envelopes pre-
dicted by the phenomenological models are the total scattering coefficient and the
coda-wave attenuation. Applying these models to observed seismogram envelopes
has resulted in measurements of these two parameters throughout the world
[Herraiz and Espinosa, 1987; Rautian et al., 1981; Kopnichev, 1985]. There have
been many reports of temporal change in coda characteristics as precursors to
earthquakes and volcanic eruptions [Jin and Aki, 1986; Sato, 1988c; Fehler et al.,
1988]. Temporal change in coda has been studied using earthquake doublets, which
are earthquakes that are thought to have identical locations but occur at differing
times [Got et al., 1990; Aster et al., 1996]. The most practical tool that has origi-
nated from the study of coda-waves is the coda-normalization method, which is
based on the assumption of a uniform spatial distribution of coda energy for long
lapse times. The coda-normalization method allows us to estimate the difference of
site amplification factors as a function of frequency, to distinguish differences in
source spectral characteristics, and to measure attenuation using data from only a
single station [Aki, 1969; Phillips and Aki, 1986; Aki, 1980a].

In this chapter we first introduce the mathematics for the phenomenological
modeling of S-coda-wave excitation. Then, we describe measurements of coda
characteristics and introduce the coda-normalization method.

Scattering Characteristics

 Randomly inhomogeneous media will be modeled as homogeneous back-
ground media having propagation velocity V0 that are filled with distributed point-

Randomly Inhomogeneous Medium     Distribution of Point-like Scatterers 

Wave Propagation                              Energy Propagation

FIGURE 3.1. Modeling a random medium as a distribution of point-like scatterers.
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like scatterers with number density n (see Figure 3.1). The distribution is assumed
to be randomly homogenous and isotropic, and the scattering is characterized by the
differential scattering cross section d dσ / Ω . As illustrated in Figure 3.2, we imag-
ine a stationary process in which the incident wave with energy-flux density J 0  in-
teracts with a scatterer and generates spherically outgoing waves with energy-flux
density J1 . The energy-flux density is defined as the amount of energy passing
through a unit area perpendicular to the propagation direction per unit time. Then,
the amount of energy scattered per unit time into a given solid angle element dΩ  is
J r d1 2 Ω , where r d2 Ω  is the corresponding surface element. We define the differ-
ential scattering cross section as the ratio

d

d

J r

J

σ
Ω

=
1 2

0
(3.1)

For a medium filled with such scatterers, the scattering power per unit volume
is given by the product of the number density and the differential scattering cross
section, which is called the scattering coefficient [Aki and Chouet, 1975]:

g n
d

d
≡ 4π σ

Ω
(3.2)

Quantity g  has dimension of reciprocal length. We may characterize the scattering
power using only the scattering coefficient. In this formulation, we do not distin-
guish between a small number distribution of strong scatterers and a large number
of weak scatterers. The total scattering coefficient is defined as the average over all
directions:
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where σ0 is the total scattering cross section which is the integral of the differential
scattering cross section over a solid angle. The reciprocal of the total scattering coef-
ficient is the mean free path   l . The incident wave energy decreases with increasing
travel distance due to scattering, where we define scattering attenuation ScQ−1 for

dΩ

J1r 2dΩ
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Scatterer

FIGURE 3.2. Concept of the differential
scattering cross section of a single scat-
terer.
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FIGURE 3.3. Geometry of the single
backscattering model.
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waves of wavenumber k. For plane-wave incidence, the energy-flux density at
travel distance x  decays as exp exp−( ) = −( )−g x Q k xSc

0
1 .

The simplest model is isotropic scattering:

dσ
dΩ

= σ0

4π
    and g g= 0  (3.4)

Since the scatterers are considered randomly distributed, the scattered waves are
incoherent, so that phase may be neglected, and the scattered wave power may be
obtained as a sum of power from individual scattered waves.

3.1 SINGLE SCATTERING MODELS

3.1.1 Single Backscattering Model for a Common Source and
Receiver Location

Aki and Chouet [1975] proposed the single backscattering model to explain the
time dependence of the scattered energy density at the source location in 3-D space.
They considered the case of impulsive spherical radiation of total energy W from
the source located at the origin as illustrated in Figure 3.3. They did not consider
polarization and partition of energy into three components. The incident energy-flux
density upon a scatterer located at z is given by
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where ra = z . Single backscattered energy-flux density at the origin from a single
scatterer is given by
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The delta function includes the time delay for the round trip between source and
receiver, and subscript π indicates backward scattering. Dividing the energy-flux
density by wave velocity V0 , we get the energy density. Summing up the energy
density for all scatterers,
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where the superscript 1 means single scattering. Multiplying by the number density
of scatterers n , we replace the summation with an integral over the whole space.
The energy density is given by
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Substituting (3.2) and integrating the above in spherical coordinates,
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where H  is the step function. The single scattered energy density at the source lo-
cation decreases with the inverse square of lapse time, that is, the RMS coda am-
plitude decreases with the inverse of lapse time. The single scattered energy is pro-
portional to the backscattering coefficient g n d dπ π

π σ= ( )4 / Ω .
For practical analysis, we introduce phenomenological attenuation by multipli-

cation with an exponential damping factor at angular frequency ω :
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where QC
−1  is called the coda-attenuation factor. The interpretation of this factor

will be discussed in Sections 3.3.2 and 7.1.1.

3.1.2 Single Isotropic Scattering Model for General Source and
Receiver Locations

Three-Dimensional Case

We calculate the spatiotemporal change in energy density for a receiver located
at a distance r  from a source located at the origin. As for the single backscattering
model, we do not consider polarization and the partition of energy into three com-
ponents of motion. We suppose that the scattering is isotropic as in (3.4). When
energy W  is impulsively radiated spherically from the source, the energy-flux den-
sity at a scatterer located at z is given by (3.5). The energy-flux density at the re-
ceiver at x  is given by
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where rb = x − z . Dividing by V0  and multiplying by the number density of scat-
terers n , the energy density is given by
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where g n0 0= σ , and ra  and rb are distances from the source to a scatterer and the
scatterer to the receiver, respectively. The delta function in (3.12) means that the
integral in 3-D is reduced to an integral over the surface of a prolate spheroid with
foci at the source and the receiver. Integration of (3.12) is accomplished by the in-
troduction of prolate spheroidal coordinates ( w v, ,φ ) [Morse and Feshbach, 1953,
p. 661] as
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where r ≡ x . The ranges of coordinates are − ≤ ≤ ≤ < ∞ ≤ <1 1 1 0 2w v, and φ π.
The coordinates of the source at the origin and the receiver at r in the prolate
spheroidal coordinate system are v w= = −1 1and and v w= =1 1and , respec-
tively as illustrated in Figure 3.4. We note that
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FIGURE 3.4. Geometry of the single scattering process. The source and the receiver
are located at the foci of the prolate spherical coordinate system.
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The infinitesimal volume element in (3.12) is given by

d
z z z

w v
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r
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, ,
     (3.15)

A prolate spheroidal shell is defined by coordinate v :

r r rva b+ =                                              (3.16)

Thus the delta function in (3.12) defines a spheroidal shell given by spheroidal co-
ordinate v V t r= 0 / . We refer to the single scattering isochron defined by constant ν
as the “Isochronal scattering shell” corresponding to a given lapse time t. Scattering
angle ψ  and radiation angle θ  (see Figure 3.4) are given by

ψ θ= − −
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+
-   (3.17)

As shown in Figure 3.5a, scattering angle ψ approaches π  as lapse time increases,
that is, as v increases. This means that the source and receiver can be considered
collocated at large lapse times.

Transforming integral (3.12) into an integral over a prolate spheroidal surface of
constant v , we can integrate analytically as follows [Sato, 1977a]:
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where

K(v) ≡ dw
1

v2 − w2
−1

1

∫ = 2
v

tanh−1 1
v
= 1

v
ln

v +1
v −1

for v > 1 (3.19a)

Function K v( ) logarithmically diverges as v → 1+  and has asymptotic behavior
given by

K v
v

v( ) ≈ >>2
12 for (3.19b)

Figure 3.5b is a plot of K , where the asymptote is plotted using a dotted curve. The
asymptotic time dependence of scattered energy density is given by



48 / Chapter 3

E t
Wg

V t
V t r1 0

0
2 2 02

x,( ) ≈ >>
π

for   (3.20)

which coincides with the single backscattering model (3.9) for g gπ = 0 .
We may scale physical quantities using the total scattering coefficient, the

propagation velocity, and the radiated energy as

x x= = = ( )g t g V t E E g W0 0 0 0
3, ,   and     (3.21)

where the overbar denotes the nondimensional normalized quantity. Then, the nor-
malized energy density is given by

E t
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K
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r
H t r1

2

1
4

x, ( )( ) = −( )
π

(3.22)

where r = x , and the asymptotic behavior of (3.20) is given by

E t
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t r1
2

1
2

x,( ) ≈ >>
π

       for    (3.23)

The spatiotemporal change in the normalized energy density is shown in Figure
3.6. Each temporal trace shown in Figure 3.6a asymptotically approaches the bro-
ken curve which is independent of distance from the source. The difference be-
tween (3.22) and (3.23) is less than 10% for lapse times greater than twice the
travel time. The spatial sections show the uniform distribution of coda energy
around the source located at the origin.
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FIGURE 3.5. (a) Plot of ψ  vs. θ  for (3.17) for different v corresponding to normal-
ized lapse time. (b) Plot of K v( ) from (3.19a), where the dotted curve shows the as-
ymptote (3.19b).
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 The spatial integral of the energy density gives the total energy: 

E1 x,t( )dx
0

= E1 x,t( )4 r2dr
0

V0 t

= Wg0V0t     (3.24) 

The total energy increases monotonously with increasing lapse time. To satisfy 
the conservation of total energy, we multiply by the exponential scattering at-
tenuation term e g0 V0 t  to account for energy lost due to scattering by the direct en-
ergy propagation term (3.5). Later, in the study of the multiple scattering process 
in Chapter 7, we correctly introduce the scattering attenuation term into the for-
mulation. As discussed in Section 3.1.1, we introduce a phenomenological at-
tenuation factor, coda attenuation QC

1  at angular frequency 

E1 x,t( ) =
Wg0

4 r2
K(

V0t

r
)H V0t r( ) e QC

1 t

Wg0

2 V0
2t2

e QC
1 t V0t >> r     (3.25)

The resultant formulas (3.10) and (3.25) have been used worldwide for measure-
ments of coda characteristics as will be summarized in Section 3.3.

Two-Dimensional Case 

  For the study of surface wave scattering, Kopnichev [1975] derived a formula 
for isotropic scattering in 2-D space. The single scattering energy density at a re-
ceiver located at x for impulsive circular radiation from a source at the origin is 
given by 
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FIGURE 3.6. (a) Time trace and (b) spatial distribution of normalized energy density 
(3.22) for the single isotropic scattering model, where the broken curve shows the asymp-
tote (3.23).
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where r = x . The energy density diverges at the arrival time of the direct wave and
decreases with the inverse power of lapse time near the source location.

3.2 MULTIPLE SCATTERING MODELS

3.2.1 Diffusion Model

As lapse time increases, we expect that multiple scattering will dominate com-
pared to single scattering. For large lapse times, it is reasonable to assume that di-
rect energy is small and that multiple scattering produces a smooth spatial distribu-
tion of energy density. Consider a medium having a randomly homogeneous and
isotropic distribution of isotropic scatterers in which energy W  is spherically radi-
ated from a source located at the origin and the source time function is a delta func-
tion in time. A strong multiple scattering process can be described by the diffusion
equation [Morse and Feshbach, 1953, p.191]

∂ δ δt CD E t W t−( ) ( ) = ( ) ( )Δ x x, (3.27)

where the diffusivity for isotropic scattering   D V g VC = ( ) =0 0 03 3/ /l . The analytical
solution for (3.27) is known as the diffusion solution
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Scaling by using (3.21) to put (3.28) into nondimensional form
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2 3

4

2
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Energy decreases with the –1.5th power of lapse time near the source location,
which is slower than that of the single scattering model. The diffusion solution is
the continuous limit of a discretized random walk. Figure 3.7 shows the spatial
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distribution of the energy density for various scaled times and the time traces for
various scaled distances. For the diffusion equation, energy spreads in front of the
wavefront violating causality. In Chapter 7, we will show that the energy density
calculated using the radiative transfer theory for the multiple isotropic scattering
process converges to the diffusion solution for large lapse times.

The total energy, given by the spatial integral of the energy density in (3.29), is
conserved. Introducing intrinsic attenuation IQ−1 at angular frequency ω, we may
write (3.28) for practical analysis as

E t
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D
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t

r
t

t
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x, /( ) = ( ) ( )
− − −

4
3 2

4

2
1

π

ω
(3.30)

The diffusion model solution (3.30) was used for the analysis of coda recorded
near the hypocenter of earthquakes [Wesley, 1965; Aki and Chouet, 1975] and the
coda of lunar-quakes [Nakamura, 1977; Dainty and Toksöz, 1981] as will be dis-
cussed in Section 3.3.

3.2.2 Energy-Flux Model

From analysis of 2-D finite difference simulations of wave propagation in in-
homogeneous media, Frankel and Clayton [1986] observed the excitation of coda-
waves. The results of the numerical simulations, as illustrated in Figure 3.8, led
Frankel and Wennerberg [1987] to the conclusion that waves scattered from the
direct wave rapidly spread over the spherical volume behind the direct wavefront.
They proposed a phenomenological model for the spatiotemporal distribution of
energy density that is consistent with observations that seismogram envelopes re-
corded at different distances asymptotically approach a common decay curve and
with the similarity of coda amplitude in the region behind the S-wavefront for large
lapse times.
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FIGURE 3.7. Diffusion model: (a) time traces at different scaled distances and (b)
spatial distribution of normalized energy density (3.29) at different scaled times.
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For total energy W  radiated spherically from a source at the origin, Frankel and
Wennerberg [1987] a priori assume that scattering leads to a spatially uniform dis-
tribution of coda energy density E tEF x,( ) within a sphere of radius V t0 . The direct
energy decreases due to scattering attenuation at an exponential rate given by ScQ−1

with increasing travel distance. This model strictly discriminates between direct and
scattered waves. When there is no intrinsic absorption, the conservation of total en-
ergy at angular frequency ω can be written as

We V t E t W V t r
ScQ t EF− −

+ ( ) ( ) = >
1 4

3 0

3

0
ω π

x, for    (3.31)

where r = x , the first term on the left-hand side corresponds to the direct wave
energy, and the second term is the energy scattered within a volume behind the di-
rect wavefront, Then,
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For small lapse times, the energy density decreases with the inverse second power
of lapse time in agreement with (3.9). The amplitude of direct-wave energy density
at the wavefront depends on the source duration T0 .

                                              a                                                                      b

FIGURE 3.8. Average log-amplitude envelopes of synthetic seismograms from 2-D
finite difference calculations at 25–35 Hz: (a) time traces at different distances and (b)
spatial sections at different lapse times for radiation from a source at the origin, where
the random acoustic media are characterized by the exponential ACF with ε=10%
and a=40 m. [From Frankel and Wennerberg, 1987, copyright by the Seismological
Society of America.]
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Using the relationship between the total scattering coefficient and the direct-
wave scattering attenuation described by (3.3) to replace ScQ−1  with g V0 0 ω  and
scaling quantities using (3.21), we may write (3.32) as

E t
e

t
H t rEF

t

x,( ) =
−( )

−( )
−3 1

4 3π
 (3.33)

As illustrated in Figure 3.9, the spatial distribution of energy density is uniform
within the sphere behind the wavefront, and the temporal decay is common irre-
spective of distance except near the direct wave. This model has no clear mecha-
nism to explain how scattered energy is spread over space but incorporates the ef-
fects of both multiple scattering and causality.

When we introduce intrinsic absorption IQ−1, we may modify (3.32) to
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Frankel and Wennerberg [1987] point out that the phenomenological exponential
decay factor of coda amplitude QC

−1  is not a simple combination of scattering and

intrinsic attenuation, but is far more sensitive to IQ−1 than ScQ−1.

3.2.3 Simulations of Coda-Wave Excitation

Frankel and Clayton [1986] measured the effects of wavelength and correlation
distance on the spatial coherence of coda-waves in a random medium from their
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FIGURE 3.9. Energy-flux model: (a) time traces at different scaled distances and (b)
spatial distribution of normalized energy density (3.33) at different scaled times.
Shaded area corresponds to the direct-wave energy density.
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2 - D numerical simulations. They observed a decrease in correlation for a fixed
separation as the wavelength and correlation distance become shorter. There have
been several numerical and physical simulations of wave propagation through in-
homogeneous media focusing on envelope formation and coda characteristics.
Menke and Chen [1984] analyzed a 1-D model of strongly scattering media com-
posed of a series of layers having randomly fluctuating impedance to investigate the
coda envelope of multiply scattered waves. Fitting an exponential decay curve to the
numerically simulated wave envelopes, they found that strong multiple reflections
make the fall-off rate slower than that predicted by the single backscattering model.
They found that the dependence of QC

−1  on wavenumber k varies as QC
− ∝1

k P k− −( )2 1 22Imp
/ , where PImp  is the PSDF of acoustic impedance. From various

numerical simulations using RMS fractional fluctuations of impedance between 1
and 20%, they found that early coda decay is slower for media having larger im-
pedance fluctuations. Numerical simulations of 2-D SH-wave propagation through
a medium containing 50 cavities using the boundary integral method were made by
Yomogida and Benites [1995] who studied the relation between the seismogram
envelopes, the wavelength of the SH wave, and the diameter of the cavities. They
found a coincidence between QC

−1  and the apparent attenuation of direct wave am-

plitude QS
−1 . Their method will be described in more detail in Section 5.4 along with

a discussion of their scattering attenuation study.
Hestholm et al. [1994] numerically simulated wave propagation through a

complex heterogeneous 2-D medium consisting of a random velocity structure
characterized by a nonisotropic von Kármán type ACF superimposed on a layered
velocity structure. Their medium had an irregular surface topography and irregular
Moho boundary along with a low-velocity layer near the surface. They reported the
importance for coda formation of scattering by the irregular interfaces and surface
including conversion from body waves to surface waves. Semblance analysis of
synthesized array seismograms showed the dominance of scattered S-waves in S-
coda as predicted but showed the dominance of P- and Rg-waves in P-coda.

Physical model simulations of wave propagation through cracked media have
also been conducted. Matsunami [1991] measured ultrasonic wave propagation
through a plate with many holes. Changing the number of holes and frequency of
incident waves, he found a strong correlation between the strength of scattering at-
tenuation and the excitation level of coda in 2-D. He also concluded that there is a
large contribution of intrinsic attenuation to coda attenuation. Vinogradov et al.
[1992] experimentally studied the excitation of scattered waves through a thin
Plexiglas sheet containing many parallel cracks. They reported not only the excita-
tion of coda but a delay of the peak arrival in highly cracked media.

It has been well established that there is a strong link between the medium het-
erogeneity and the characteristics of seismogram envelopes; however, we note that
there is not yet a wave theoretical method to derive coda attenuation QC

−1  from the
stochastic characterization of random media. A relation between coda attenuation
and media properties based on the phenomenological radiative transfer theory will
be discussed in Section 7.1.1.
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3.3 CODA ANALYSIS

The phenomenological models for high-frequency seismograms of local earth-
quakes described in Sections 3.1 and 3.2 can be used to estimate the scattering
characteristics of the lithosphere from seismic data. The two most commonly
measured parameters are the total scattering coefficient and the coda attenuation.
The total scattering coefficient was introduced in (3.3) and is the parameter that
governs the strength of S-coda excitation. The coda attenuation QC

−1 empirically
characterizes the exponential decay of the coda amplitude envelope with increasing
lapse time. Temporal change of coda attenuation has been proposed as a precursory
indicator for the occurrence of large earthquakes.
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FIGURE 3.10. Total scattering coefficient g0  for S-to-S wave scattering vs. frequency
from regional measurements made throughout the world. Based on the single scat-
tering model (Plots include backscattering coefficient gπ ): 1, Kanto, Japan [Sato,
1978]; 2, Kanto, Japan [Aki, 1980b]; 3, New Brunswick, Canada [Dainty et al., 1987];
4, western Nagano, Japan [Kosuga, 1992]; 5, central Greece [Baskoutas, 1996].
Based on the multiple lapse-time window analysis (Isotropic scattering is as-
sumed. See Section 7.2): 6, Kanto-Tokai, Japan [Fehler et al., 1992]; 7.1, central
California; 7.2, Hawaii; 7.3, Long Valley in California [Mayeda et al. 1992]; 8, 16
measurements in Japan [Hoshiba, 1993].
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3.3.1 Coda-Excitation Measurements

The energy density of coda waves in a frequency band having central frequency
f  is written as a sum of three components of the mean square particle velocity of S

coda ˙ ;u t fi
S Coda ( )  as

E t f u t f

u t f

i
i

i
i
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T
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(3.35)

where ρ0  is the mass density, elastic energy is the potential energy stored in the
media, and   L T  is a moving time average over a few cycles around time t. The
last expression is obtained by using the equality of kinetic energy and elastic en-
ergy, which is valid for stationary waves. When we use seismograms recorded at a
hard rock site on the surface, we take half the observed velocity amplitude to
roughly account for the free surface effect. When only one component of motion is
available, we often multiply the energy density calculated from the single compo-
nent by three to account for the missing data since, as illustrated in Figure 2.24,
vertical component coda amplitudes are nearly equal to those of horizontal compo-
nents. Substituting (3.35) in (3.10), (3.25), or (3.30), we can estimate total scatter-
ing coefficient g0  for S-to-S scattering.

The total scattering coefficient has been measured in many regions throughout
the world. Roughly, this parameter is the ratio of S-coda energy to radiated S-
energy. Some investigators used an empirical relationship between radiated energy
and local earthquake magnitude to estimate W . Others used joint analysis of direct
S-wave and S-coda envelopes which will be discussed in detail in Section 7.2. The

FIGURE 3.11. Seismogram of a lunar-quake
showing long coda duration. [From Nakamura,
Fig. 1, 1977, copyright by Springer-Verlag
GmbH & Co. KG, Germany.]

Smaller QC
-1

Larger QC
-1

FIGURE 3.12. Seismograms
showing large and small coda at-
tenuation.
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scatter is a factor of two for individual measurements of g0 . We compile reported
values of g0 in Figure 3.10, where we include reported backscattering coefficient
gπ  as total scattering coefficient g0 by assuming isotropic scattering. We find that

total scattering coefficient g0  for S-to-S wave scattering is of the order of 10 2− km−1

for frequencies 1–30Hz; however, regional differences related to tectonic activity
have not yet been quantitatively clarified.

Compared to seismograms recorded on the Earth, lunar seismograms, as
shown in Figure 3.11, contain evidence for strong scattering and low intrinsic at-
tenuation. As noted by Nakamura [1977] and Dainty and Toksöz [1981], lunar
seismograms often have coda durations exceeding one hour. Applying the diffu-
sion model of Section 3.2.1 for the explanation of the spindle-like envelopes,
Dainty and Toksöz [1981] estimated that g0  is as large as 0.05–0.5 km-1 at 0.45 Hz
for long-range data (70–150 km).
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FIGURE 3.13. Coda attenuation QC

−1
 against frequency for various regions: 1, central

and south central Alaska [Biswas and Aki, 1984]; 2.1, (Iceland), 2.2, (Galapagos),
2.3, (Guam), oceanic lithosphere [Jin et al., 1985]; 3.1, Central California; 3.2, Hawaii;
3.3, Long Valley in California [Mayeda et al. 1992]; 4, Campi Flegrei volcano, south-
ern Italy [Del Pezzo et al., 1985]; 5, Dead sea [Eck, 1988]; 6, Garm, Central Asia
[Rautian and Khalturin., 1978]; 7, Hindu-Kush [Roecker et al., 1982]; 8, Kanto-Tokai,
Japan [Fehler et al., 1992]; 9, New England, U. S. A. [Pulli, 1984]; 10, southern Nor-
way [Kvamme and Havskov, 1989]; 11, Petatlan, Gurrero, Mexico [Rodriguez et al.,
1983]; 12, South Carolina, USA [Reha, 1984]; 13, western Nagano, Japan [Kosuga,
1992]; 14, shallow crust at Ashio, Kanto, Japan [Baskoutas and Sato, 1989]; 15,
shallow crust at Western Nagano, Japan [Kosuga, 1992].
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3.3.2 Coda-Attenuation Measurements

As reported by Rautian and Khalturin [1978], for a given region, the S coda has
a common amplitude decay curve for lapse time greater than the twice the S-wave
travel-time. The shape of this decay curve is quantified using a parameter known as
coda attenuation. For practical analysis of data from a single station, we use (3.10),
(3.25), or (3.30) in (3.35) to write the MS velocity amplitude of coda in a frequency
band with central frequency f  vs. time as the product of a power of lapse-time and
an exponential decay factor as

˙ ; expu t f
t

Q f f tn C
S Coda

T
( ) ∝ − ( )[ ]−2 11

2π (3.36)

where power n  is 1–2 depending on the dominance of surface, diffusive, or body
waves. Recently, most investigators fix the power at two for the geometrical decay
in the single scattering model. The exponential decay term, characterized by coda
attenuation QC

−1, is independent of the source and station location but depends on
the frequency band. It is possible to measure QC

−1 from analysis of records ob-
tained at a single station, which allows measurements to be made even in regions of
sparse station coverage. Coda attenuation QC

−1 characterizes the seismogram coda
amplitude decay with lapse time as schematically illustrated in Figure 3.12. Larger
QC

−1 means rapid decay of coda amplitude. While (3.36) is valid for a single fre-
quency, coda attenuation is often measured from octave-width, bandpass-filtered
seismograms [Tsujiura, 1978]. If we make the band-width too small, the filtered
coda envelope changes rapidly and a stable estimation of QC

−1 becomes difficult.

Estimations of QC
−1 are typically made from plots of the logarithm of the product of

the lapse time raised to the correct power and the MS coda amplitude measured
over a few cycles against lapse time. We can then estimate QC

−1 directly from the
decay gradient against lapse time using the least square method. Takahara and Yo-

FIGURE 3.14. Contour curves of coda attenuation QC  at 1 Hz in United States. [From
Singh and Herrmann, 1983, copyright by the American Geophysical Union.]
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mogida [1992] proposed a way to estimate QC
−1 based on the maximum likelihood

method. In some studies, the estimate is stabilized by using data from many seis-
mograms and simultaneously finding the decay gradient that best fits all the data
[Fehler et al., 1988].

Regional measurements of QC
−1 made throughout the world have been com-

pared with seismotectonic activity and review papers on S-coda measurements
have been published [Herraiz and Espinosa, 1987; Matsumoto, 1995]. Figure 3.13
is a compilation of reported QC

−1. The variation from region to region is more than

a factor of 10. In general, QC
−1 is about 10 2−  at 1 Hz and decreases to about 10 3− at

20 Hz. QC
−1 is generally larger in volcanic regions and in the shallow crust.

The variation of QC
−1 with frequency also has some relationship to tectonic ac-

tivity. The frequency dependence can be written in the form of a power of fre-
quency f  as Q fC

n− −∝1  for f > 1 Hz. The power n  ranges between 0.5 and 1.
Figure 3.14 shows contour curves of QC at 1 Hz developed by Singh and
Herrmann [1983] from analysis of short period WWSSN seismograms of local
earthquakes in the U. S. A. Note that these measurements are QC  and not QC

−1. QC

is highest in the central U. S. A. where exposed rocks are oldest. To the west, it de-
creases to 400–500 in Utah, and to 200–300 in Nevada. QC decreases to 800–700
in the Appalachian mountains and eastern U. S. A. This figure clearly shows that
QC  is higher ( QC

−1 is smaller) in tectonically stable areas and lower in active areas.
Jin and Aki [1988] measured QC  in China. Figure 3.15 shows their contours of QC

at 1 Hz along with the locations of large historical earthquakes. They found that
large historical earthquakes took place in low QC  regions. Note that QC  is as low as
100 in Tibet where active continental collision has caused rapid and large uplift.

FIGURE 3.15. Contour curves of coda attenuation QC  at 1 Hz in China. Circles indi-
cate locations of historical earthquakes of magnitude greater than 7. [From Jin and
Aki, 1988, copyright by the Seismological Society of America.]
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Matsumoto and Hasegawa [1989] reported large QC
−1 near active volcanoes and the

coast of the Japan sea where the S-wave velocity is relatively low.
Coda attenuation QC

−1 has been widely measured in the world, mostly for a fre-
quency range between 1 to 30 Hz, as a parameter for characterizing the heterogene-
ity of the lithosphere. There have been some attempts to reveal shorter-wavelength
heterogeneity: seismogram envelopes containing frequencies of more than several
hundred Hz have been analyzed as a part of surveys for fracture detection and char-
acterization in gold mines [Cichowicz and Green, 1989; Gibowicz and Kijko,
1994].

Lapse-Time Dependence of Coda Attenuation

Examination of data over a wide range of lapse times led Rautian and Khalturin
[1978] to conclude that coda envelopes cannot be described by a single QC

−1 value.
Figure 3.16 is a log-log plot of bandpass-filtered coda envelopes of seismograms
from regional earthquakes in Central Asia vs. lapse time. The coda envelopes show
a systematic change in decay rate with
lapse time. For example, for the 1.25
Hz band, we find three segments in the
S-coda envelope decay curve, which
correspond to three different values of
QC

−1. Decreasing QC
−1 with increasing

lapse time was observed in the Hindu–
Kush [Roecker et al., 1982], in France
[Gagnepain–Beyneix, 1987], in south-
ern Norway [Kvamme and Havskov,
1989], in Antarctica [Akamatsu, 1991],
and in the shallow crust in central Japan
[Kosuga, 1992].

Single scattering coda models that
are based on the assumption of spatial
homogeneity of g0 and intrinsic at-

tenuation predict that QC
−1 is independ-

ent of lapse time. Most of the investi-
gators who found a lapse-time depend-
ence of the coda decay rate suggested
that the later portion of the coda is
dominated by energy that has propa-
gated in zones with attenuation lower
than energy in the early coda. Gusev
[1995a] investigated the single isotropic
scattering model for the case where g0

decreases according to an inverse
power of depth and found that QC

−1 de-

FIGURE 3.16. Bandpass-filtered RMS
coda amplitude vs. lapse time for a local
earthquake in Central Asia, where the
numeral is the center frequency in Hz of
the passband. [From Rautian and  Khal-
turin, 1978, copyright by the Seismologi-
cal Society of America.]
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creases with increasing lapse time and that such a model is consistent with many
observations of lapse-time dependence of coda attenuation. Peng [1989] plotted the
spatial autocorrelation function of QC

−1 measured in southern California in different
frequency bands and different time windows. He found that the autocorrelations are
similar among different frequencies, but depend on the time window selected to
measure QC

−1: longer and later time windows give slower decays in the autocorrela-
tion with increasing lag distance. Lapse-time dependence of coda decay is still an
unresolved issue and will be briefly discussed again in Section 7.1.

Duration Magnitude

The most widely used coda measurement is the determination of earthquake
magnitude from the S-coda duration. As shown in Figure 2.25, there is a good re-
lationship between magnitudes determined from direct-arrival-wave-packet ampli-
tude and the coda length of seismograms. This relationship has lead to the wide-
spread use of coda duration to estimate magnitude since coda duration can be more
reliably measured from poorly calibrated instruments than amplitude. For the single
scattering model, the end of the coda wave tF  is the time when the energy density
of the scattered waves given by (3.25) is equal to that of noise ENoise :

log log log log log logW g t V fQ e t EF C F Noise+ = + + ( ) +−
0 0

2 12 2 2π π    (3.37)
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tF
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20
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FIGURE 3.17. Plot of coda duration
against local magnitude given by (3.39).

FIGURE 3.18. Plot of coda duration
against local magnitude in California.
[From Bakun and Lindh, 1977, copy-
right by the Seismological Society of
America.]
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We may estimate  source energy W [erg] by using the Gutenberg–Richter formula
[Gutenberg, 1956]:

log . .W ML= +1 5 11 8 (3.38)

Putting the observed relationship f QC
− − −=1 2 110 s , as shown in Figure 3.13, into

(3.37),

M t t E gL F F Noise= + +1 33 0 018 0. log . .( , )Const (3.39)

The second term makes the relation between magnitude and coda duration convex
as illustrated in Figure 3.17, where the constant is chosen so that ML=5 at tF =100 s.
The constant usually depends on the noise level and the site amplification factor at
the observation site. We may replace tF  with the lapse time measured from the P-
wave onset tF P−  for local earthquakes located near the receiver. If we approximate
(3.39) by

M C C tL F P= + −0 1 log (3.40)

for lapse time between 10 s and 200 s, coefficient C1 is 2.5 for 10–60 s, and in-
creases to 4 for 10–200 s. These values agree well with the observed values for
small local earthquakes: 2.85 in Wakayama, Japan as shown in Figure 2.25
[Tsumura, 1967a] and 2.92–3.32 for tF P−  > 40 s in California as shown in Figure
3.18 [Bakun and Lindh, 1977].

3.3.3 Temporal Change in Coda Characteristics

The generally observed correlation of QC
−1 with the level of tectonic activity or

the amount of lithospheric fracturing that was described in Section 3.3.2 suggests
that seismic coda monitoring could provide information about the temporal change
in fractures and attenuation caused by changes in tectonic stress during the earth-
quake cycle. Since coda waves sample a volume of rock within a region, measure-
ments of coda characteristics may be more sensitive to small temporal changes than
measurements of velocity or attenuation using direct waves which sample a 1-D
ray path between the source and the receiver [Aki, 1985].

Chouet [1979] was the first to report a temporal change in QC
−1 from observa-

tions made in Stone Canyon, California. He found a significant increase in QC
−1 in

the 1.5 to 24 Hz frequency range during an observational period of about one year;
however, the temporal change could not be correlated with any seismic activity. Jin
and Aki [1986] reported a temporal change in QC

−1 associated with the occurrence
of the Tangshan earthquake ( MS=7.8, July 27, 1976) in China. They measured the
average shape of the coda envelope vs. lapse time using data from many earth-
quakes by first correcting for source size and then plotting a parameter they called
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reduced B t( ) from coda-wave amplitude uS Coda  as a function of lapse time based
on the single isotropic scattering model:

B t
u t

u t
K

t

t
e

S

S

f Q t tC S( ) ≡
( )
( )

⎛
⎝⎜

⎞
⎠⎟
∝ 2 −( )−

S Direct

S Coda

T

2

2

1π                       (3.41)

where u tS
S Direct ( )  is the maximum amplitude of the direct S-wave, tS  is the S-wave

travel time, and K  is given by (3.19a). Figure 3.19 shows that there was a change
in QC

−1 in the frequency range 1.6 to 2.9 Hz measured at a station about 120 km
from the mainshock epicenter during three time periods. The trend of
ln B t t tS( ) vs. -  was a straight line for 1969–1972. However, ln B t t tS( ) vs. -  has a
bend during 1973–1976, where early coda shows anomalously strong attenuation
that was about 3 times stronger than before. ln B t t tS( ) vs. - became linear after the
mainshock that occurred in July, 1976; however, QC

−1 was higher than during the
first time period. Jin and Aki [1986] also reported a difference in QC

−1 between the
time periods before and after the Haicheng, China earthquake ( MS=7.3, Feb. 4,
1975).

Gusev and Lemzikov [1985] reported a precursor-like decrease in the coda de-
cay parameter, corresponding to an increase in QC

−1, before the Ust–Kamchatsk
earthquake ( MS=7.8, 1971). The anomaly started at the end of 1970 and took the
minimum value a half year before the mainshock. They also observed an increase
in the scatter of measurements for one year before the main shock (see Figure
3.20). Gusev [1995b] summarized
coda observations made during the 24-
year period from 1967 to 1992 in
Kamchatka by plotting coda magni-
tude residuals ΔKC at each station as
illustrated in Figure 3.21a. The coda
magnitude residual ΔKC is equal to the
log of the ratio of the coda amplitude
at 100 s lapse time at the station to the
network average of the coda amplitude
at 100 s lapse time. Coda amplitudes
were read from photographic record-
ings of the ground motion measured
by 1.2 s period displacement seis-
mometers filtered between 1 and
10Hz. The plots in Figure 3.21b show
moderate but statistically significant
oscillations around a constant level. He
reported two prominent anomalies.
One anomaly lasted for three years at
station KBG and was followed by two

FIGURE 3.19. Coda decay measurements
in the 1.6 to 2.9 Hz band made before
and after the Tangshan earthquake (July
27, 1976) in China. N is the number of
earthquakes used. [From Jin and Aki,
1986, copyright by the American Geo-
physical Union.]
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M 8 earthquakes (E69, E71) within 100km distance. Another anomaly that lasted
for 1.5 year at station APH preceded a major (volume of 2.5 km3) fissure volcanic
eruption (V75) within 70 km of the station. These changes can be interpreted as an
increase of 30% in S-wave attenuation in the lithosphere near the station.

An increase in scatter among individual measurements of QC
−1 was reported

before an earthquake with ML =5.2 (Feb. 26, 1983) in Central Asia [Sato et al.,
1988]. A change in the relationship between coda duration and local magnitude de-
termined from the network average of maximum amplitudes was reported by Sato
[1987] for the western Nagano earthquake ( MS=6.8, September 14, 1984) in Ja-
pan. Data from February 1982 to December 1984 were analyzed. As shown in
Figure 3.22, during the period May 1983 – September 1984 mostly preceding the

FIGURE 3.20. Measure of coda decay parameter corresponding to QC  vs. time be-
fore and after the Ust–Kamchatsk earthquake of Ms=7.8. The solid curve is a running
mean over eight data points. [From Gusev and Lemzikov, 1985, with permission from
Elsevier Science - NL, Sara Burgerhartsraat 25, 1055 KV, Amsterdam, The Nether-
lands.]

                               a                                                                b

FIGURE 3.21. (a) Locations of Kamchatka seismic stations, major earthquakes (E69,
E71A, E71B, and E73), and a volcanic eruption (V75). (b) Coda magnitude residual
ΔKC  vs. time at two stations, KBG and APH. [From Gusev, 1995b, copyright by the
American Geophysical Union.]
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main shock, coda duration (open cir-
cles) was longer for a given local
magnitude than the average for the
whole period (solid line). The length-
ening of coda duration can be inter-
preted as an increase of scattering
strength during the earthquake prepa-
ration stage.

Malamud [1974] monitored the
temporal change in the ratio of coda
duration on a horizontal component
of motion to that on the vertical com-
ponent. He found the ratio took lower
values for periods lasting up to a few
months preceding moderate earth-
quakes in Central Asia. Yan and Mo
[1984] reported a decrease of the ratio
of coda duration on the horizontal
component to that on the vertical
component during the few days be-
fore the Jianchuan, China earthquake
( ML =5.3, July 3, 1982). These reports suggest the possibility of changes in scat-
tering and attenuation due to aligned cracks.

Including the reports described here, Jin and Aki [1991] cited 12 cases where
precursor-like temporal changes in QC

−1 had been reported to be associated with
moderate to large earthquakes [e.g. Novelo–Casanova et al., 1985; Tsukuda, 1988;
Sato, 1986].
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FIGURE 3.23. (a) Stacked seismograms before and after an eruption of Mt. St. Hel-
ens showing the different coda characteristics for the two periods. (b) Coda attenua-
tion before, during, and after the eruption. [From Fehler et al., 1988, copyright by the
American Geophysical Union.]
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FIGURE 3.22. Logarithm of coda duration
[s] vs. local magnitude before and after the
western Nagano earthquake, Japan of
Ms=6.8, where the solid line is the regres-
sion line for all the data. [From Sato, 1987,
copyright by the American Geophysical
Union.]
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Temporal change in QC
−1 was reported before and after an eruption of Mt. St.

Helens volcano [Fehler et al., 1988]. Figure 3.23a shows stacked seismograms of
local earthquakes recorded close to the summit before and after the eruption on
September 2–6, 1981. The difference between their envelopes is characterized by
QC

−1 as illustrated in Figure 3.23b: QC
−1 was 20–30% larger before the eruption

than after. They interpreted the changes in QC
−1 as having been caused by volcanic

inflation-induced crack density changes.
Although there have been many studies that indicate a positive correlation be-

tween temporal change in coda characteristics and the occurrence of large earth-
quakes, there were significant criticisms of the studies in the mid-1980s [Sato,
1988c; Frankel, 1991; Ellsworth, 1991]. Among the most serious criticisms are the
possible influences of using different lapse times, different earthquake focal re-
gions, and earthquakes having differing focal mechanisms to establish the temporal
change in coda characteristics. The variation of QC

−1 with lapse time was discussed
in Section 3.3.2. When studying the temporal variation of QC

−1 as a possible pre-
cursor to large earthquakes, changes in the lapse times of data used could lead to an
erroneous conclusion about the temporal variation of QC

−1. Since many of the in-
vestigators who have studied temporal variation have not reported the lapse times
used in their studies, there is concern that their results may be influenced by varia-
tions in the lapse times of the data analyzed. In addition, if data from the early coda
are used, the results can be significantly influenced by the focal mechanism of the
earthquakes studied and the angle between the normal to the focal plane and obser-
vation station, which will be discussed more in Chapter 6. Thus, studies that used
earthquakes from a wide range of locations and with a variety of focal mechanisms
to establish temporal variations in QC

−1 may be suspect. The signs of QC
−1 changes

are not systematic among the studies reported; in some cases increases were re-
ported and in other cases decreases before large earthquakes. As a result of these
criticisms, recent analysis of the temporal change in QC

−1 has been conducted with
more attention to the lapse-time window and focal depths of earthquakes studied.

FIGURE 3.24. Temporal variation in coda attenuation QC

−1
 for two lapse-time win-

dows for each of two frequency bands measured before and after the 1986 North
Palm Springs earthquake, California (indicated by an arrow). [From Su and Aki, 1990,
with permission from Birkhäuser Verlag AG, Switzerland.]
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Su and Aki [1990] studied data collected from 1981 to 1987 in the epicentral
area of the 1986 North Palm Springs earthquake. They measured QC

−1 for various
lapse times corresponding to the sizes of regions the waves had sampled. For lapse
times less than 20 s, they argued that waves sampled primarily the epicentral region
whereas lapse times close to 40 s sampled a region much larger than the epicentral
area. They found that, beginning in 1983, there was a gradual increase in QC

−1

measured for 10–20 s lapse times that was followed by a rapid drop during the one
year period before the main shock in the 12 Hz band (see Figure 3.24). QC

−1 of the
surrounding area, corresponding to lapse times up to 40 s, did not change during
the same period.

Analyzing short-period seismograms recorded at Riverside, California for the
55-year period between 1933 to 1987, Jin and Aki [1989] found a temporal vari-
ability in QC

−1 at frequency of about 1.6 Hz in southern California as shown in Fig-
ure 3.25. This is the longest baseline study published. They found a positive corre-
lation between QC

−1 and the seismic b-value calculated for ML > 3 earthquakes
within a 180 km radius. Seismic b-value is a measure of the ratio between the
number of small to large earthquakes; smaller b-values mean there are relatively
fewer small earthquakes compared to the number of larger ones [Lee and Stewart,
1981]. The positive correlation between QC

−1 and the b-value implies that QC
−1 in-

creased when the number of small earthquakes increased relative to the number of
large earthquakes. They found that the cross-correlation of QC

−1 and the b-value is
highest at 0.79 for zero time lag and decays with increasing time shift. They also
observed a small negative correlation between QC

−1 and the b-value with variation
of the b-value preceding that of coda attenuation by 5–12 years. These two quanti-
ties were determined by independent observation. Therefore, the temporal changes
seem to be reliable. A similar correlation between two values was found in central

FIGURE 3.25. Measurements of coda attenuation QC

−1
 (lower) and b-value (upper) in

southern California as a function of time. [From Jin and Aki, 1989, copyright by the
American Geophysical Union.]
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California [Jin and Aki, 1993; Aki, 1995]. However, other studies report an anticor-
relation between QC

1  and the b-value [e.g., Jin and Aki, 1986, for the Tangshan 
earthquake in China; Novelo–Casanova et al., 1985, for the 1979 Petatlan earth-
quake, Mexico]. Hiramatsu et al. [1992] examined the temporal change in QC

1  of 
crustal earthquakes in the Hida region, central Japan for the period from 1985 to 
1991. They found a small increase in QC

1  in the volcanic area,  especially for fre-
quencies of 12–24 Hz, that was related to earthquake swarms that occurred in 1990. 
 Roughly speaking, coda shape is stable and independent of focal mechanism 
and source location in a stochastic sense. However, when we are looking for very 
small changes, source characteristics may be important and should not be neglected.
The strong criticism about the effects of differing focal mechanisms and earthquake 
locations on the conventional QC

1  measurements was investigated by Got et al. 
[1990]. They showed that small changes in rupture kinematics can create variations 
in coda excitation that mimic significant changes in QC

1 . They proposed using 
doublets, two earthquakes having the same location and focal-plane solution but 
occurring at different times. The temporal change in the ratio of squared spectral 
amplitude of coda particle velocity u̇a,b

S Coda  at frequency f  and lapse time t for earth-
quakes a and b is written as 

ln
ua

S Coda t; f( )
2

T

ub
S Coda t; f( )

2

T

= 2 f QCa
1 QCb

1( )t + Const. Wa
Sg0a Wb

Sg0b( )     (3.42) 

from (3.35) and (3.36). Assuming no change in total scattering coefficient with re-
spect to the difference in origin times, they proposed to measure the difference in 
coda attenuation QC

1 QCa
1 QCb

1 from the plot of the spectral ratio of the left 
hand of (3.42) against lapse time for each frequency.Analyzing doublets in the 
vicinity of and close in time to the Coyo-
te Lake earthquake (August 1979, 
M=5.9), they reported no major change 
in the coda attenuation in the crust pre-
ceding this shock. Taking the same pro-
cedure for 21 doublets recorded between 
1978 and 1991 in three frequency bands 
from 2 to 15 Hz, Beroza et al. [1995] ex-
amined the temporal change in QC

1  for 
the Loma Prieta earthquake sequence in 
California whose main shock had magni-
tude MW =6.9 and occurred on October 
1989. They found that the upper bound 
of the change in QC

1  was about 5%. 
There might have been a precursory de-
crease in QC

1  during the two years be-
fore the main shock, as shown in Figure
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3.26. Aster et al. [1996] and Antolik et al. [1996] have used a method similar to the
one introduced by Got et al. [1990] to investigate variations in QC

−1 in two regions,
the Anza seismic gap and Parkfield, California. By using a large number of dou-
blets that all have similar waveforms and whose locations are estimated to be
within 20 m, Antolik et al. [1996] estimate that QC

−1 in the Parkfield region was
constant to within 5% over a frequency range 3–30 Hz during the study period
from 1987–1994. No major earthquakes occurred at Parkfield during the study pe-
riod.

3.4 CODA-NORMALIZATION METHOD

The coda-normalization method provides a reliable way to estimate the fre-
quency dependence of important parameters quantifying the seismic source radia-
tion and receiver site amplification, both of which are used in seismic risk assess-
ment. It also allows the investigation of propagation effects. Most of seismology is
focused on characterizing one of these three influences, source radiation, propaga-
tion, and site amplification, on seismograms. Usually, this is accomplished by
eliminating the influence of two of them so that the one of interest can be isolated
and studied in more detail.  Source radiation quantifies the frequency dependence of
the wavefield leaving the vicinity of the seismic source. The propagation effect
combines all the influences on the seismic wavefield between the seismic source
and the recording site. This includes the effect of deterministic structure and other
influences along the source–receiver path. The site amplification effect includes in-
fluences of near-surface geology that modifies the character of the recorded wave-
form only near the recording site. Near-surface geology may cause reverberations,
local amplification of signal, or introduction of additional complexity in the wave-
form that cannot be modeled deterministically from available information.

Estimates of the source radiation are most important for quantifying the size of
earthquakes and explosions. As a first-order description of the size of a seismic
source, seismologists wish to characterize the radiation as a function of frequency.
The site effect is important in seismic hazards analysis. Obtaining reliable estimates
of the relative ground motion as a function of spatial location in seismically active
zones is essential for establishing building codes and in estimating which areas will
be most prone to seismic hazards. Such estimates are most useful if they can be
given as a function of frequency since the response of buildings to ground motion
varies with frequency.

Conventional methods for estimating source and site amplification factors at
regional distances, less than about 100 km, rely on use of the direct P or S-arrival
on the seismic trace. Since regional networks are usually designed to reliably record
the time of the first arrival, the first arrival waveform is often clipped. The later
portions of the waveform are usually not clipped. This means that coda methods
may be the only means by which site and source information can be obtained from
high-gain regional seismic networks.

The coda-normalization method is based on the idea that at some lapse time, the
seismic energy is uniformly distributed in some volume surrounding the source.
The limits of this assumption have recently been investigated theoretically in the
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framework of the multiple scattering process based on the radiative transfer theory
as discussed in Chapter 7, but the reliability of the results obtained by the coda-
normalization method helps confirm the validity of the assumption. The assump-
tion is consistent with that used to develop the energy-flux model in Section 3.2.2.
The idea of the coda normalization method grew out of the empirical observation
discussed in Sections 2.4.1 and 3.3.2 that the length of a seismogram recorded by a
regional seismic network is proportional to the magnitude of the event. Another key
observation in support of the coda-normalization method is that, for local earth-
quakes recorded at times greater than roughly twice the travel time of an S-wave
from a source to a receiver, the envelope of a bandpass-filtered seismogram has a
common shape that is independent of the source-receiver distance as shown in Fig-
ure 2.23a. The amplitude of the envelope varies with source size and recording site
amplification. Figure 2.23b shows the similarity in the shape of the coda for earth-
quakes of different sizes recorded by a single station. It is important to note that,
contrary to a popular misconception, the coda-normalization method is not founded
on any theoretical model of wave propagation in the earth. In particular, it does not
rely on the validity of the single scattering model. The original foundation of the
approach is empirical.

Interpreting S-coda as an incoherent superposition of scattered S-waves, we
may explicitly write the S-coda power as a convolution of the source, propagation,
and site effects using (3.36) with either (3.25), (3.26), or (3.30) as
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where ˙ ;u t fij
S Coda ( )  is the S-coda velocity wavefield at receiver j filtered in a fre-

quency band having center frequency f , W fi
S ( ) is the energy radiation from

source i in the same frequency band, N fj
S ( ) is the S-wave site amplification factor

for site j, and power n  is 1–2 depending on the dominance of surface, diffusive, or
body waves. Here in Section 3.4, we suppose that the proportionality factor in
(3.43), which characterizes the coda-wave excitation as a function of total scattering
coefficient of S-waves g f0 ( ), is constant irrespective of source and site locations.

3.4.1 Site Amplification Measurements

At lapse times tc large enough that energy is uniformly distributed in some
volume surrounding the seismic source that contains two recording sites, the rela-
tive amplitude of the seismograms recorded at the two sites should be the same ex-
cept for the influence of the near-recording site amplification. The relative amplitude
of the two recording sites can thus be obtained from (3.43) by dividing the ampli-
tude of the seismogram at one site by the amplitude at another site taken at the same
absolute time for the same source i:
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Here, station k  is chosen as the reference site. To obtain a more robust measure of
the relative amplitude, we usually take the amplitudes of the seismogram envelopes
by using the Hilbert transform or the RMS of the bandpass-filtered trace. The en-
velope can be calculated for selected frequency bands so that the frequency depend-
ence of the site amplification can be measured. The estimate of the relative ampli-
tude can be stabilized by taking the average of the ratio determined for many time
windows. The relative amplification factors for an array of recording sites can be
determined by computing the ratios relative to one reference site. The reference site
is usually chosen as one on solid rock in simple terrain or in a deep borehole where
one can consider that the near-recording site amplification is minimal.

Tsujiura [1978] first demonstrated the reliability of the coda-normalization
method for finding relative site amplifications using the coda approach and com-
pared with measurements on direct waves. He analyzed many bandpass-filtered
seismograms of local earthquakes recorded at four sites at Mt. Dodaira, Japan
having differing lithology. He plotted the spectral ratios of S-coda waves measured
on horizontal component seismograms recorded at pairs of sites taking hard rock
site H5 as the reference (see Figure 3.27). He also took the spectral ratio of direct S-

FIGURE 3.27. Amplification factors of direct S-wave and S-coda waves at seismic
stations at Mt. Dodaira, Japan having differing lithology relative to site H5; H1 and H3
are on low-grade metamorphic rocks like slate and chert, and H5 and H7 are on crys-
talline rocks. The aperture of the Dodaira array is about 2 km. [From Tsujiura, 1978,
copyright by Earthquake Research Institute, University of Tokyo.]
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waves. The resultant spectral ratio of S-coda is almost the same as that of direct S-
waves for frequencies from 0.75 to 24 Hz. The S-coda thus has the same site am-
plification factors as that of the S-wave. The similarity of site amplifications meas-
ured using S-coda waves and direct S-waves provides direct observational support
of the basic hypothesis that S-coda is composed mostly of scattered S-waves. Tsu-
jiura also reported that the S-coda wave amplitude ratios are different from the am-
plitude ratios obtained using direct P-waves. These results established the viability
of the coda-normalization method for determining S-wave site amplification fac-
tors. As seen in Figure 3.27, S-coda measurements have less scatter than direct S-
wave measurements. Thus, when few data are present, the coda method is likely to
give more reliable results than the spectral ratio method applied to direct waves.

In a study similar to that of Tsujiura [1978], Tucker and King [1984] compared
the site amplification factors obtained by the coda-normalization method with those
obtained using measurements of direct S-arrivals. They reported good agreement
between the measurements on direct and coda waves but also concluded that the
results obtained using the coda method had less scatter than the results obtained
using direct arrivals.

Phillips and Aki [1986] presented a method for inverting relative amplitudes
determined at a suite of sites using a series of time windows to determine a site
amplification factor for each site relative to the array of sites. They assume that the
shape of the coda decay curves is the same at all sites for all sources and that only
the amplitude of the curves differs depending on the site and source factors. By as-
suming that the source factors for all seismograms from a given earthquake are the
same and that the site amplification is the same for all events recorded at a given
site, they arrive at an expression relating the source factors, site amplification fac-
tors, and the shape of the common decay curve to the observed data. They applied
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Figure 3.28. (a) Distribution of site amplification measurements using many 10 s win-
dows of coda from many events in the Kanto–Tokai region, Japan. Percent differ-
ences between individual measurements using one time window for a station-event
pair and mean value for all data at the station are shown. (b) Site amplification factor
for the 6 Hz band estimated from the coda-normalization method vs. local magnitude
residual. [From Fehler et al., 1992, with permission from Blackwell Science, United
Kingdom.]
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their method to determine site amplifications for 150 stations in northern California.
They found that the site amplifications determined were independent of the earth-
quakes or lapse times used in their analysis for most stations. For a few stations,
the results were lapse-time dependent. They attributed this lapse-time dependence to
the existence of energy trapped near the recording sites caused by local geological
structures. This trapped energy violates the basic assumptions of the coda-
normalization method since the trapped energy dissipates more slowly than the en-
ergy in the nearby earth medium.

Mayeda et al. [1991] measured site amplification factors in and around the
Long Valley Caldera area of California. They found that relative site amplifications
computed for octave frequency bands centered at 1.5 and 3.0 Hz agreed well with
magnitude residuals for each site found using both amplitude and coda-duration
measures of magnitude. The conventional amplitude and coda-duration measures
of magnitude are made on raw, unfiltered seismograms. At higher frequencies, the
agreement between coda results and the other methods was not so good. They con-
cluded that the magnitude residuals measured using the conventional amplitude and
coda duration measures were dominated by the 1.5-3 Hz frequency range in the
Long Valley region.

Fehler et al. [1992] developed a map of site amplification factors for the Kanto–
Tokai region of Japan using coda-wave data. They analyzed the spread of the
measurements from individual time windows from many events and showed that
the spread was small for frequencies below about 8 Hz where signal-to-noise was
high. Figure 3.28a shows the spread of their site amplification measurements ob-
tained using many earthquakes and many lapse times. This figure shows that the
coda-normalization method can provide consistent measures of site amplification
independent of the earthquakes or lapse times used. Figure 3.28b shows that the
site amplification factors obtained from the coda-normalization method for the oc-
tave frequency band centered at 6 Hz
agreed well with local magnitude re-
siduals, which were obtained by
Noguchi [1990] from maximum am-
plitude measurements for the same sta-
tions.

Kato et al. [1995] compared ampli-
fication factors obtained using direct S-
waves and S-coda waves for three sta-
tions in southern California. They used
high-quality digital recordings of after-
shocks of the 1992 Landers earthquake.
They found that the site amplifications
obtained using the two methods over
the six frequency bands studied agreed
to within a factor of 1.5 as shown in
Figure 3.29.

Air-gun sources are considered to
generate P-waves efficiently. Using ar-
ray measurements of air-gun generated

FIGURE 3.29. Comparison of direct S-
wave site factor with S-coda site factor in
southern California for 0.75–6 Hz. [From
Kato et al., 1995, copyright by the Seis-
mological Society of America.]
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signals in the Bandai volcanic area, Japan, Matsumoto and Hasegawa [1991] re-
ported that there is a strong correlation between S-coda amplitude on horizontal
components at a fixed lapse time and direct P-wave site amplification factor meas-
ured on the vertical component in the 10 Hz band. This result suggests that there is
a large contribution of conversion scattering from P to S for the excitation of S-
coda in this volcanic area even when there is no source radiation of S-waves.

The coda-normalization method has often been applied to data recorded on rock
sites. There are reports of nonlinear amplitude dependence of site amplification
factors for soil sites. This nonlinear effect means that it may not be possible to es-
timate shaking during strong earthquakes by using simple scaling of amplitudes
measured for small earthquakes. From the analysis of strong motion records of the
Loma Prieta earthquake in California, Chin and Aki [1991] reported that peak ac-
celerations predicted from site factors, which were determined using the coda-
normalization method and small amplitude seismograms of local mi-
croearthquakes, overestimated the accelerations observed for sediment sites and
underestimated it for the Franciscan formation. The systematic disagreement occurs
for stations within 50 km from the mainshock epicenter, where the acceleration
level was above 0.1 to 0.3 g.

3.4.2 Source Radiation Measurements

Aki [1967] and Brune [1970] first showed how to quantify the size of an earth-
quake as a function of frequency. They argued that the source-radiation displace-
ment spectrum of earthquakes is flat at low frequencies. Above a corner frequency,
the spectrum rolls off like a negative power of frequency. The corner frequency is
related to a physical dimension of the fault. The amplitude of the low-frequency
portion of the displacement spectrum is related to a parameter called the seismic
moment, which is a function of the amount of slip along the fault [Aki and
Richards, 1980]. Seismic moment is known to be a better measure of earthquake
size than magnitude [Kanamori, 1977]. Spectral analysis of direct waves can be
used to determine the spectral shapes of source radiation and the relative source ra-
diation vs. frequency for different earthquakes [Tucker and Brune, 1977]. To de-
termine relative or absolute sizes of earthquakes, spectral measurements on direct-
arriving phases need to be corrected for the nonisotropic radiation from the source
and propagation effects. These corrections are difficult to make. Often, there are too
few stations to allow an estimation of the directional radiation pattern for regional
earthquakes. The coda-normalization method provides an easy method for charac-
terizing the spectral differences in source radiation among nearby seismic sources
without requiring knowledge of source radiation pattern or propagation effects.
Thus, the relative seismic moment, or magnitude, can be reliably determined using
the coda-normalization method.

From (3.43), we can find relative source radiation as a function of frequency by
dividing the amplitude of the seismogram recorded at one site for a given earth-
quake by the amplitude at the same site for a different earthquake taken at the same
absolute lapse time tc  at site j:
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where event k  has been chosen as the reference event. Since coda waves are scat-
tered, waves leaving the source region in all directions arrive at a given receiver.
Thus, to first order, coda waves average over the angular radiation from the source
and no radiation-pattern correction is necessary for estimating source excitation
when using the coda-normalization method.

Reliable relative source radiation measurements can be made using data from
only a single station. Figure 3.30 shows Lg-wave amplitude measures at two sta-
tions in Nevada, U. S. A. made on (a) coda waves and (b) direct waves by Mayeda
and Walter [1996]. Lg-waves are common in continental regions and are composed
of multiply reflected S-waves in the crust. Although considerable effort has been
made to correct the direct-wave measurements for propagation and site amplifica-
tion effects, the figure shows clearly that there is a more consistent relationship
between the measurements made on the coda waves than on the direct arrivals even
though there is a large station separation of 500km.

Biswas and Aki [1984] used seismic moments from two well-analyzed earth-
quakes in Alaska to develop a coda-amplitude vs. seismic-moment scale for earth-
quakes in Alaska. They found a relationship between coda amplitude measured at

FIGURE 3.30. (a) Amplitude measurements made using Lg-coda waves at two sta-
tions, KNB and MNV in Nevada, U. S. A. for regional earthquakes, where the station
separation is about 500 km. (b) Measurements made from direct Lg-waves with path
corrections at the same two stations for the same set of earthquakes. [From Mayeda
and Walter, 1996, copyright by the American Geophysical Union.]
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some lapse time after the earthquake
origin-time and the seismic moment
for the earthquake. This relationship
can be used to make a fast and reli-
able determination of the size of an
earthquake using data from only one
station. The advantage of the coda
amplitude to moment relationship
developed for Alaska is that it uses
coda data occurring well after the
arrival time of the direct waves.
Since direct waves are often clipped,
conventional measures of seismic
moment cannot be applied. Mayeda
[1991] used spectral ratios of coda
waves from earthquakes in Califor-
nia to examine the departure of
source spectra from the well-known
ω2  model. Dewberry and Crosson

[1995] performed a detailed analysis of the seismic source spectrum of earthquakes
in the U. S. Pacific Northwest using data from coda waves. They employed a for-
mal inversion technique and data from many stations to find the differences in
source radiation among events as a function of frequency for 78 events. They
scaled their results to an absolute scale by choosing one of the events as a reference
event and estimated the seismic moment and corner frequency for that event using
other information. Then the differences between the reference event and the other
events determined from the inversion are used to find the absolute spectra for each
event.

Obtaining reliable relative source radiation estimates for many events as a func-
tion of frequency has been a method employed by seismologists to discriminate
natural from man-made seismic events. Su et al. [1991] used the coda-
normalization method as one part of a technique to distinguish quarry blasts from
earthquakes. They found that quarry blasts excite relatively less high-frequency en-
ergy than earthquakes having the same low-frequency excitation. An observed
rapid temporal decay of 1.5–3 Hz coda for quarry blasts for lapse times less than
30 s is attributed to the larger portion of surface waves in the early coda of seismo-
grams from quarry blasts. The difference disappears as lapse time increases beyond
30s due to the contribution of scattering from deeper regions. Hartse et al. [1995]
used the coda-normalization method to determine source radiation as a function of
frequency for earthquakes and nuclear explosions in the Basin and Range province
of the western U. S. A. Instead of using the spectral ratio of a single time window,
they developed type curves for the shape of the coda envelope vs. lapse time. This
allowed them to effectively use data from a large portion of the seismic coda to ob-
tain a more robust measure of relative source size using data from only a single
station. Figure 3.31 shows examples of the type curves developed for a single sta-
tion located in Nevada, U. S. A. Measures of the envelope shape vs. lapse time are
plotted for both earthquakes and explosions. Also shown are the average shapes for
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FIGURE 3.31. Coda decay curves for explo-
sions at Nevada Test Site and earthquakes
in the Southern Great Basin, U. S. A. [From
Hartse et al., 1995, copyright by the Seis-
mological Society of America.]
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earthquakes, explosions, and earthquakes and explosions combined. These average-
shape curves are determined by inversion using the method of Phillips and Aki
[1986]. The curves show a remarkable similarity in shape that is independent of
source size and source–receiver distance. Hartse et al. [1995] found that the fre-
quency dependence of the source radiation obtained at a single station provided a
reliable means of distinguishing between the explosions and the earthquakes. Their
method used frequency characteristics that had previously been developed using
measurements on direct arrivals. The coda method provided reliable results using
data from only a single station; the direct-arrival method required averaging over
many stations to average the angular dependence of the source radiation.

3.4.3 Attenuation Measurements

Aki [1980a] proposed a coda-normalization approach for measuring the am-
plitude attenuation of direct S-waves with travel distance in the lithosphere. The
square of the direct S-wave particle velocity amplitude at station j in a frequency
band having central frequency f  for local earthquake source i is written as
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where QS
−1  is the S-wave attenuation. From (3.43), the time average squared S-coda
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where the site amplification of S-coda waves is the same as that for direct S-waves
as discussed in Section 3.4.1. Taking the natural logarithm of the ratio of the prod-
uct of hypocentral distance and the direct S-wave amplitude to the averaged coda
amplitude, the site amplification and source terms cancel, and we get

ln
˙

˙ ;
/

r u f

u t f
Q f f r

ij ij
S

ij
S

c

S ij

 Direct

 Coda

T

Const.
( )

( )
= − ( )( ) +−

2

1
0π β  (3.48)

where we suppose that focal mechanisms are random. We may smooth out the ra-
diation pattern differences when the measurements are made over a large enough
number of earthquakes. Plotting the left-hand side against hypocentral distances for
many earthquakes, the gradient gives the attenuation of direct S-waves per travel
distance. Aki [1980a] applied this method to high-frequency seismograms of 900
earthquakes recorded in Kanto, Japan. Figure 3.32a is a plot of the left-hand side of
(3.48) against travel distance for several frequency bands. Regression analysis
gives an estimate of QS

−1 for frequencies from 1.5 to 24 Hz, which are plotted in
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Figure 3.32b. This plot shows that QS
−1 decreases according to the negative power

of frequency for f > 1 Hz. Aki’s [1980a] method has become known as the single
station method or the coda-normalization method. Aki’s work stimulated meas-
urements of attenuation in many areas of the world and the development of the
theoretical study of scattering attenuation caused by heterogeneous structure. We
will compile results from some of these studies in Chapter 5. Combining the fact
that QS

−1 for very low frequencies estimated from surface wave analysis is less

than about 2 10 3× − , Aki [1980a, b] first conjectured that QS
−1 has a peak around

0.5 Hz as indicated in Figure 3.32b.
Yoshimoto et al. [1993] extended the conventional coda-normalization method

to measure the attenuation of the direct P-wave with travel distance. They assumed
that the ratio of P- to S-wave radiated energy W f W fi

P
i
S( ) ( )/  is independent of

magnitude for earthquakes within a small magnitude range. Similar to the S-wave
case, the square of the direct P-wave amplitude at station j is written as
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FIGURE 3.32. (a) The average of the natural logarithm of S- to coda-amplitude ratio
multiplied by the source–receiver distance (left-hand side of (3.48)) plotted against
the source-receiver distance for station TSK in Kanto, Japan. (b) Frequency depend-

ence of QS

−1
 for earthquakes in the southeast part of Kanto, Japan. Open circles are

for data from earthquakes having focal depth less than 35 km and solid circles for
deeper than 35 km. [From Aki, 1980a, with permission from Elsevier Science - NL,
Sara Burgerhartsraat 25, 1055 KV, Amsterdam, The Netherlands.]
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Proceeding as above for S–waves, we get
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since the ratio of P- to S-wave site amplification factors N Nj
P

j
S  is constant at the

jth station. From regression analysis, QP
−1 can be evaluated in each frequency band.

Yoshimoto et al. [1993] applied this method for measuring both QP
−1 and QS

−1 to
seismograms from 174 small earthquakes that took place around Kanto, Japan. The
top portion of Figure 3.33a shows a plot of the left-hand side of (3.50) for P-waves
and the bottom part shows the left-hand side of (3.48) for S waves for data in the
8–16 Hz frequency band. The magnitude range of earthquakes used for the S-wave
analysis was from 2 to 5.5. However, the P-wave analysis was restricted to earth-
quakes having magnitudes between 2.5 and 3.5 to satisfy the assumption about the
constant ratio of P- to S-wave radiated energy. Figure 3.33b shows the resultant
plots of attenuation against frequency for both P- and S-waves showing that QP

−1 is
higher than QS

−1 for frequencies from 1 to 32 Hz.
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FIGURE 3.33. (a) Plot of the left-hand side of (3.50) (upper) and (3.48) (lower)
against the source–receiver distance for data from Kanto, Japan, where solid lines

are regression lines. (b) Frequency dependence of QP

−1
 (triangle) and QS

−1
(circle) for

Kanto, Japan, where the vertical bar denotes one standard deviation. [From Yoshi-
moto et al., 1993, with permission from Blackwell Science, United Kingdom.]
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3.5 RELATED CODA STUDIES

3.5.1 S-Coda Anomalies

Reflection from a Subducting Oceanic Slab

Examining the envelope decay of S-coda of crustal earthquakes in the southern
Kanto district, Japan, Obara and Sato [1988] found a very late reflected S-phase
arrival from the upper layer of the subducting Pacific plate as shown in Figure 3.34.
By using an inversion technique, they found that the location of the reflector coin-
cides with the upper layer of the double seismic zone associated with the subducting
slab. The reflected S-phase is followed by its own coda whose decay curve is al-
most parallel to the coda decay curve following the direct S-phase. Tracing the re-
flector to the north parallel to the trench axis of the Pacific plate, Obara [1989] re-
ported that the reflected S-phase disappears under the coda level.

Surface Waves in S-Coda

Phillips et al. [1993] observed large amplitude phases on horizontal components
of motion in the S-coda of earthquakes recorded by the Fuchu array in the Kanto
region, Japan. These phases were strongest in the 1 Hz band and were observed
most strongly on recordings at the surface. They were much weaker on borehole
recordings at depths as shallow as 150 m. Since the phases were recorded only on
horizontal components of motion and were small or nonexistent in borehole re-
cordings, they concluded that the phases were Love waves. Polarization and slant

FIGURE 3.34. (a) Upper, horizontal component seismogram of a crustal earthquake
recorded at a nearby station showing reflected S-wave from the subducting Pacific
plate; lower, RMS-log trace of seismogram. (b) Vertical cross section showing geome-
try of source (solid circle), S reflector (bold line), and receiver (solid triangle) in Kanto,
Japan, where small dots are microearthquakes and VF indicates the trace of the vol-
canic front. [From Obara and Sato, 1988, copyright by the American Geophysical
Union.]
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stack analysis led them to conclude that they were waves scattered from the portion
of the Kanto basin boundary located closest to the array. In S-coda recorded on soft
deposits, we may expect a considerable contribution of surface waves which are
converted at surface topographic variations and the irregular boundary between hard
rock and deposits.

Inversion for the Spatial Variation in the Total Scattering
Coefficient

The models for S-coda envelope synthesis developed in Sections 3.1 and 3.2
are based on the assumption of a homogenous distribution of isotropic scatterers
and predict results consistent with the observed characteristics of coda as outlined at
the beginning of this chapter. However, detailed observations show that there may
be departures from the observed characteristics of S-coda waves. If the distribution
of scatterers is inhomogeneous, we may introduce a coordinate dependence of total
scattering coefficient g0 z( )  in (3.12). Then, we get the single scattering energy den-
sity at frequency f as
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FIGURE 3.35. (a) Epicenters of earthquakes (circles) and stations (crosses) in the
Hokuriku district, Japan used in the inversion for the S-wave total scattering coeffi-
cient. Traces of major active faults are shown by solid lines. The region analyzed has
dimensions 120 km (EW) x160 km (NS) x75 km (depth). (b) Plan view cross sections
at various depths showing the spatial distribution of the fractional fluctuation of the
total scattering coefficient from S-coda analysis around 10 Hz. Symbol size repre-
sents the perturbation of the total scattering coefficient. [From Nishigami, 1991, copy-
right by the American Geophysical Union.]
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where coda attenuation has been included. The difference between (3.12) and (3.51)
is characterized by the spatial inhomogeneity in the total scattering coefficient,
g g0 0z( ) − . Then, small variations in the temporal dependence of observed coda en-
velopes at many stations may be used to estimate the spatial change in the total
scattering coefficient [Kostrov, 1980]. Nishigami [1991] developed an inversion
scheme to estimate the spatial inhomogeneity of the total scattering coefficient from
readings at many stations of the temporal difference between the S-coda MS am-
plitude and the average long-term decay curve. Figure 3.35 shows the estimated
spatial distribution of the fractional fluctuation of the total scattering coefficient
g g g0 0 0z( ) −[ ] /  in the Hokuriku district, Japan determined from analysis of records

of 50 earthquakes at 7 stations for the 10 Hz band. Nishigami [1991] found that the
locations of some of the strong scatterers found in the upper crust are close to the
locations of major active faults and that the horizontal variation of total scattering
coefficient is smaller in the uppermost mantle than in the crust.

Nishimura et al. [1997] used a single scattering approach to model three-
component seismic data from an active experiment using explosion sources that
was conducted across the Jemez volcanic field in New Mexico, U. S. A. (see Fig-
ures 2.9 and 2.11). They divided the subsurface into layers and considered that each
layer has different total scattering coefficients, which are chosen to be those for iso-
tropic scattering for P-to-P waves and P- to S-waves. They numerically calculated a
Green function for scattering from each layer, where the geometrical spreading
factor was calculated appropriately for the velocity structure assumed. Using the
Green functions, they performed an inversion to find the ratio of total scattering co-
efficients for each layer relative to a reference layer that gave the best fit to the ob-
served MS envelope shapes on all three components of motion from P-wave onset
until early S-coda. They found that the midcrust under most of the region was fairly
transparent but that the lower crust was heterogeneous. The strongest scattering oc-
curs at shallow depths beneath the center of the caldera.

3.5.2 Teleseismic P-Coda

Cessaro and Butler [1987] examined the partition of teleseismic P-coda wave
energy into radial and transverse components. 3-D heterogeneity is necessary to
explain the excitation of P-waves on the transverse component. They speculated that
the low level of transverse energy observed for many teleseisms may be caused by
near-receiver scattering, but that higher levels observed at all frequencies for re-
gional earthquakes may be attributed to the contribution of near-source scattering.
Analyzing teleseismic P waves, Langston [1989] found high coda levels and slower
decay rates in California compared to Pennsylvania where lower coda levels and
more rapid decay were observed. He proposed an extension of the energy-flux
model [Frankel and Wennerberg, 1987] for 1-D propagation in a medium consist-
ing of an inhomogeneous layer over a homogeneous half-space. In addition to the
uniform distribution of multiple scattered energy in the inhomogeneous layer, he
considered the energy transferred into the homogenous lower space to arrive at a
model for the teleseismic P-coda at frequency f:
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where the t  dependence is due to the linearly increasing volume with time of the
region of the layer over which energy is distributed. The last exponential term is for
intrinsic attenuation and includes the radiation loss into the lower half-space. Figure
3.36 shows stacked P-wave envelopes of teleseisms recorded in California and
Pennsylvania. The difference in the character of the codas indicates stronger inho-
mogeneities in California than in Pennsylvania. Considering the diffusion of energy
from the surface scattering layer to the adjacent semi-infinite homogeneous me-
dium, Korn [1990] proposed a similar model for the coda of vertically incident
teleseismic P-waves. Applying the extended energy-flux model to explain scatter-
ing of high-frequency teleseismic P-wave data collected by stations of the Global
Digital Seismic Network (GDSN) in the circum-Pacific area, Korn [1993] found
strong scattering ( Sc

PQ − = −1 0 005 0 01. . ) at island arcs and smaller scattering
( Sc

PQ − <1 0 002. ) on stable continental areas like Australia.
Key [1967] investigated the contribution of topographic features to P-coda in

the 1–2 Hz band using array data at Eskdalemuir, Scotland. He concluded that an
observed elliptic particle motion of the P-coda was caused by Rayleigh waves that
were generated from a deep river valley located 13 km from the array. Wagner and
Langston [1992a] used a finite difference method to simulate scattering of vertically
incident P-waves by an inhomogeneous layer having a nonisotropic ACF. Analyz-
ing teleseismic P-wave records obtained at the NORESS array in Norway, they
found a large-amplitude phase in the 0.5 Hz band that arrived 15 s after the initial P

FIGURE 3.36. Stacked teleseismic P-
coda envelopes obtained in California
(PAS) and Pennsylvania (SCP). [From
Langston, 1989, copyright by the
American Geophysical Union.]

FIGURE 3.37. Synthesis of Lg-waves at
a distance of 370 km, where the lower
crust contains layers having random
thicknesses between 100 m and 1000
m. [Reprinted from Campillo and Paul,
1992, copyright by the American Geo-
physical Union.]
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phase. This late phase had a slow apparent velocity of 3 km/s [Wagner and Lang-
ston, 1992b]. By using f-k, particle motion analyses, and comparison with numeri-
cal simulations, they identified the Mjosa lake and nearby hills southwest of the ar-
ray as the scattering point for P-to-Rayleigh scattering. They also suggested that the
correlation distance is much longer in the horizontal than in the vertical direction.
This result is consistent with other studies in this area [Gupta et al., 1990; Bannister
et al., 1990]. Using ideas similar to those used to investigate near-receiver scatter-
ing, there was an attempt to resolve near-source scattering especially for under-
ground nuclear explosions [Lay, 1987].

3.5.3 Lg and Lg-Coda

The regional phase Lg is a characteristic feature of high-frequency seismograms
recorded in continental regions. It is observed at epicentral distances ranging from
as close as 150 km up to several thousand kilometers. Campillo [1990] numerically
simulated Lg-waves as multiply reflected waves within the crust. Assuming strong
inhomogeneity of the lower crust, Campillo and Paul [1992] numerically simulated
well-developed early Lg-coda as illustrated in Figure 3.37. Their model predicts that
layering in the lower crust increases the duration of the Lg-phase on both the verti-
cal and radial components and that the amplitude of the early Lg-coda depends on
the distribution of layer thicknesses in the lower crust.

Toksöz et al. [1991] examined how Lg-arrivals lose coherence over propagation
distances on the order of 10 km. Even for the direct Lg-window, Toksöz et al.
[1991] reported that coherency declines with increasing separation and declines
faster for higher frequencies as illustrated in Figure 3.38. Examining the coherence
and the amplitude level of Lg-wave trains in different time windows, Der et al.
[1984] and Dainty and Toksöz [1990] found that the early part consists of forward
scattered waves, but the later portion consists of omnidirectionally scattered waves,

FIGURE 3.38. Coherency of Lg-waves in two frequency bands for a quarry blast.
[From Toksöz et al., 1991, with permission from Elsevier Science - NL, Sara Burger-
hartsraat 25, 1055 KV, Amsterdam, The Netherlands.]
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as shown in Figure 2.26 for S-coda. Layered structure models cannot explain the
omnidirectional propagation characteristics of late Lg-coda waves and 3-D hetero-
geneities are necessary.



87

CHAPTER 4

Born Approximation for Wave Scattering
 in Inhomogeneous Media

As shown by well-log data introduced in Chapter 2, the earth’s lithosphere can
be characterized as a randomly inhomogeneous elastic medium using an autocor-
relation function (ACF). Characteristics of seismograms discussed in Chapter 2
support the view of treating wave propagation in the earth with a scattering ap-
proach. The phenomenological approaches discussed in Chapter 3 provide reason-
able models of some features of the observed seismograms. We will now present
the mathematical basis for the study of wave propagation and/or scattering in in-
homogeneous media based on the first-order perturbation method known as the
Born approximation. We will begin with the scalar wave equation and investigate
the Born approximation for a plane wave incident on a localized inhomogeneity.
Then we will present the concepts of an ensemble of random media and the sto-
chastic average. Finally, we will study scattering of elastic vector waves in inho-
mogeneous elastic media.

4.1 SCALAR WAVES

4.1.1 Born Approximation for a Localized Velocity
Inhomogeneity

We begin our study using the scalar wave equation in inhomogeneous media to
simplify the development and allow us to gain better insight into the scattering
characteristics. The wave propagation velocity is written as a sum of an average
background velocity V0  and a spatially varying fluctuation of coordinate x :

V V V Vx x x( ) ≡ + ( ) = + ( )[ ]0 0 1δ ξ (4.1)

where we assume that the fractional fluctuation is small, ξ << 1. Initially, we sup-
pose a localized inhomogeneity around the origin having dimension L  as illustrated
in Figure 4.1:
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ξ( ) / / ( ~ )x ≠ − < < =0 2 2 1 3 only for L x L ii (4.2)

The scalar wave equation is
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V
u ttx
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which, for small fluctuation in velocity, may be written as
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+ =1 2
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0
2

2

0
2

2

V
u

V
ut t∂ ξ ∂( )x (4.4)

We solve wave equation (4.4) for the localized inhomogeneity given by (4.2)
for a given frequency using the first-order perturbation method. The total wavefield
is written as a sum of an incident plane wave u0  and a scattered wave u1 :

u u u= +0 1 (4.5)

where we assume u1 << u0 . The incident wave obeys the homogenous equation

Δ −
⎛
⎝⎜

⎞
⎠⎟

=1
0

0
2

2 0

V
ut∂ (4.6)

Substituting (4.5) in (4.4) and neglecting the cross term ξ ∂t u2 1, we arrive at a wave
equation for u1 :

O

ζ

ψ
r

x3

x1

x2
L

e1

e2

e3

er

eψ

eζ

Incident Wave

Scattered Wave

FIGURE 4.1. Geometry of scattering by a localized inhomogeneity of extent L , where
r, ,ψ ζ( )  are spherical coordinates and ( ), ,e e er ψ ζ are unit base vectors.
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where the incident wave appears on the right-hand side as a source term: the inter-
action between the incident wave and the inhomogeneity generates the scattered
wave. Taking the unit base vectors in Cartesian coordinates as e e e1 2 3, ,( ) and the
incident wave of unit amplitude ( A0 1= ) at angular frequency ω propagating along

the third direction as u t A ei k t0
0

3x e x,( ) = −( )ω ,

Δ −
⎛
⎝⎜

⎞
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= −( )1
2

0
2

2 1 2
0

3

V
u k A et

i k t∂ ξ ωe x (4.8)

where the wavenumber k V= ω 0 . Figure 4.1 schematically illustrates the genera-
tion of scattered waves by the inhomogeneity localized around the origin, where

r, ,ψ ζ( ) are spherical coordinates and e e er , ,ψ ζ( ) are unit base vectors.

To solve (4.8), we use the scalar Green function G  in 3-D homogeneous space
with background velocity V0 , which satisfies

Δ −
⎛
⎝⎜

⎞
⎠⎟

( ) = ( ) ( )1

0
2

2

V
G t tt∂ δ δx x, (4.9)

where δ  is a delta function. The causal retarded solution is given by [Morse and
Feshbach, 1953, p. 838]

G t t
V

H tx
x

x
,( ) = − −

⎛
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( )1
4 0π

δ (4.10)

By using the Green function, we may explicitly write the scattered wave as a
convolution integral:

u t dt d G t t k A e
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(4.11)

The 3-D integral is nonzero only over the volume of extent L3. When the observa-
tion distance r ≡ x  is in the far field r L>> , we may approximate x x− ≈' r in
the denominator of (4.11). Furthermore, when
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r L k>> 1 2

π
(4.12)

we can approximate x x e x− ≈ −' 'r r in the exponent, where e xr r= . This is the
condition for the Fraunhofer zone [Chernov, 1960, p. 45]. Then, (4.11) can be
written as an outgoing spherical wave having wavenumber vector k re :

u t
e
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k
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e
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where the tilde means the Fourier transform in 3-D space:

ξ̃ ξm x xmx( ) ≡ ( )
−∞

∞

−∞

∞

−∞

∞
−∫∫∫ e di (4.14)

The argument of ξ̃ in (4.13) is the exchange wavenumber between the scattered
wave and the incident plane wave. The scattering pattern is characterized by the
factor

F
k

k kr= − −( )
2

32π
ξ̃ e e (4.15)

which is called the scattering amplitude for a localized inhomogeneity of extent L3.
The scattering amplitude depends on frequency and is generally nonisotropic.

For incident plane waves of angular frequency ω, the energy-flux density in the
third direction can be written as a product of wave velocity V0  and energy density

E0  [see Howe, 1973]:

J
V

u u u u V A V Et t
0 0 0

2
0 0 0 0

3
0 0

2
0

2

0
0

2
≡ − ∇ + ∇( ) = =ρ ∂ ∂ ρ ω* *  (4.16a)

where the asterisk means a complex conjugate and

{ξ}

FIGURE 4.2. Concept of an ensemble of random fluctuations.
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We have introduced mass density ρ0  of the background medium for comparison
with the elastic vector theory in the following section. The energy-flux density of
the outgoing spherically scattered waves in the far field is given by

J V u
V A F
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F

r
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0
2
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1 2 0

2
0 0

2 2

2

2

2
0= = =ρ ω

ρ ω
(4.17)

The amount of scattered energy per time within solid angle dΩ  is J r d1 2 Ω . As
given by (3.1), the differential scattering cross section of this localized inho-
mogeneity is given by

d

d
F

σ
Ω

= 2
(4.18)

This is just a square of the scattering amplitude.

4.1.2 Scattering by Distributed Velocity Inhomogeneities

Now we introduce the concept of an ensemble, and we make a statistical study
of the scattering power per unit volume for media having distributed velocity in-
homogeneities. We imagine an ensemble of random functions ξ x( ){ }, where

ξ = 0  as illustrated in Figure 4.2. We suppose that the inhomogeneous media are
homogeneous and isotropic random media having ACF and PSDF that are charac-
terized by MS fractional fluctuation ε2 and correlation distance a . As illustrated in
Figure 4.3, we divide the inhomogeneous medium into blocks of dimension L
with L a> . Replacing L with a in condition (4.12), we have the least restrictive
condition for the mutual relationship between distance, wavenumber, and correla-
tion distance as r a k>> 2 / π , since the minimum dimensions of the scattering vol-
ume are of the order of a [see Chernov, 1960, p. 45]. Then, the ensemble average
of the scattering cross section due to one block is given by

ξ(x3)

x3

L

FIGURE 4.3. One-dimensional schematic illustration of velocity fractional fluctuation
having continuous spatial extent. One block of extent L  from the random medium is
sampled.
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where x x x x x x' , "= + = −c d c d2 2and , and we have replaced the integral over

the center-of-mass coordinate xc  with L3. The argument of the PSDF in (4.19) is
the exchange wavenumber vector, which is the difference between the wavenum-
bers of the incident plane wave and the outgoing scattered wave. The scattering co-
efficient defined by (3.2) as the scattering power per unit volume is given by

g
L

d

d L
F

k
P k k

k
P kr

ψ ζ ω π σ π

π π
ψ

, ;

sin

( ) ≡ =

= −( ) = ⎛
⎝

⎞
⎠

4
1

4
1

2
2

3 3

2

4

3

4

Ω

e e
   (4.20)

where the exchange wavenumber appearing as the argument of the PSDF is written
using the scattering angle ψ . Thus, the scattering coefficient is directly related to the
PSDF of the fractional fluctuation. This makes a bridge between the distribution of
point-like scatterers and the random inhomogeneity that are schematically illustrated
in Figure 3.1. When the random media are statistically homogeneous and isotropic,
the scattering coefficient is axially symmetric with respect to the incident direction
since the PSDF depends only on the absolute value of the exchange wavenumber.
The scattering pattern is not necessarily isotropic even though the statistical charac-
terization of the random media is isotropic. Combining (4.20) with (4.16), (4.17),
and (4,18), we get the ratio of the square of the scattered wavefield from the vol-
ume L3  to the square of the incident wavefield as

5000ε2/a
1000ε2/a0.01ε2/a0 0

ak=5ak=0.2

ψ ψ

a                                                                      b

FIGURE 4.4. Angular dependence of scattering coefficient (4.22) for scalar waves in
3-D random media characterized by an exponential ACF: (a) low wavenumber
ak =0.2; (b) high wavenumber ak =5.
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Exponential ACF

When ACF is an exponential type, we can substitute the PSDF given by (2.10)
in (4.20) to get
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Scattering is isotropic for low frequencies ak << 1, as illustrated in Figure 4.4a. For
high frequencies ak >> 1, scattering is large in a narrow cone around the forward
direction defined by ψ < 1/ ak , as shown in Figure 4.4b. That is, scattering is
strong in the forward direction for high frequencies. Even for the case of Gaussian
ACF with correlation distance a , there is a large scattering within the cone
ψ < 1/ ak , as is the case for the exponential ACF. This means that the Born ap-
proximation is violated for large wavenumbers.

We illustrate the change in the scattering coefficient with a wavenumber by
plotting the backscattering coefficient for the exponential ACF in Figure 4.5:
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ak
1 10

1

10-2

10-2 10-1

10-4

10-6

xε2/a

gπ

FIGURE 4.5. Wavenumber dependence of the backscattering coefficient for scalar
waves in 3-D random media characterized by an exponential ACF, where k is the
wavenumber.
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The backscattering coefficient increases with the fourth power of the wavenumber
for small wavenumbers and becomes constant for large wavenumbers.

Backscattering Coefficient Estimated from Numerical Simulation

It is possible to use numerical simulation to examine the validity of the Born
approximation. A finite difference method for acoustic wave propagation in 2-D
random media characterized by the Gaussian ACF was used by Jannaud et al.
[1991a] to model coda waves. In the 2-D case, the ensemble average of the square
of the scattered wavefield due to localized inhomogeneities of extent L for incident
plane waves is written using the scattering coefficient as

u g
L

r
u1 2

2
0 2

2
≈ ( )ψ ω

π
; (4.24)

where the backward scattering coefficient for 2-D random media having Gaussian
ACF is given by

g g k P k a k e a k
π ω ψ π ω πε( ) ≡ =( ) = ( ) = −; 3 2 2 32

2 2

(4.25)

The backscattering coefficient has a peak at ak = 3 2/ . Jannaud et al. [1991a]
compared the ratio of the spectral of coda wave to that of the direct wave with the
backscattering coefficient given by (4.25), as shown in Figure 4.6. The smooth
curves, showing the theoretical backscattering coefficient from (4.25), decay with
increasing frequency because the Gaussian ACF is poor in short-wavelength com-
ponents. They found that the backscattering coefficients inverted from the coda
power spectrum, shown by the irregular curves, are reasonably coincident with the
theoretical curves for small velocity fluctuations ε ≤5%. However, the discrepancy
between model and theory becomes clear for higher frequencies for ε =20%,

FIGURE 4.6. Backscattering coefficient estimated from the power spectral ratio of
coda to that of the direct wave for 2-D random acoustic media characterized by a
Gaussian ACF with a=25 m, V0 =1.5 km/s for different values of ε . Irregular curves
show results for numerical experiments, and regular curves show theoretical predic-
tion using (4.25). Plots are normalized by the peak value of the theoretical curve.
[From Jannaud, et al., 1991a, copyright by the American Geophysical Union.]
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where scattering is strong, because of the breakdown of the Born approximation.
Coda excitation in 2-D nonisotropic random media was numerically studied by
Ikelle et al. [1993] and Jannaud et al. [1992].

The Born approximation does not account for the feedback of scattered waves
into incident waves. This means that total energy is not conserved when using the
approximation. The basic assumption of the Born approximation is that scattered
wave amplitude is small. A small velocity fluctuation for the random inho-
mogeneity is a necessary, but not a sufficient condition: scattering amplitude be-
comes large enough to violate the smallness condition near the forward direction for
high frequencies even though the velocity fluctuation is small. In Chapter 5, we will
further discuss the mechanism of large forward scattering for high frequencies and
seek a way to use the Born approximation for high frequencies.

4.2 ELASTIC VECTOR WAVES

4.2.1 Born Approximation for a Localized Elastic Inhomogeneity

We apply the same procedure that was introduced for scalar waves in the pre-
ceding section to vector wave scattering by a localized inhomogeneity [Miles, 1960;
Knopoff and Hudson, 1964; Sato, 1984a, b, 1990; Wu and Aki, 1985b; Wu,
1989]. There have been studies of wave scattering in anisotropic elastic media
[Gibson and Ben-Menahem, 1991]; however, we will restrict ourselves to scatter-
ing in locally isotropic media. Following the procedure used for scalar waves, we
write the spatial variation in Lamé coefficients and mass density as

λ λ δλ μ μ δμ ρ ρ δρ( ) ( ), ( ) ( ), ( ) ( )x x x x x x= + = + = +0 0 0and (4.26)

Fractional fluctuations are assumed to be small: δλ λ δμ μ δρ ρ0 0 0 1, , << . The

wave equation for the displacement vector wavefield u x,t( )  is

ρ ∂ λ μx x( ) ( ) − ( ) =˙̇ , , ;u t T ui j ij k 0 (4.27)

where an overdot means time derivative. The stress tensor is given by

T u u t u t u tij k ij l l i j j iλ μ λ δ ∂ μ ∂ ∂, ; , , ,( ) = ( ) ( ) + ( ) ( ) + ( )[ ]x x x x x (4.28)

Initially, we focus on scattering from a block of dimension L located around the
origin:

δλ δμ δρ( ), ( ), ( ) / / ( – )x x x ≠ − < < =0 2 2 1 3 only for L x L ii (4.29)

As an extension of (2.1), P- and S-wave velocities are given by
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 We can solve (4.27) by using a first-order perturbation, the Born approxima-
tion. The total vector wavefield is written as a sum of the incident plane wave and 
the scattered wave: 

u = u0
+ u1        (4.32) 

where we expect the scattered wave amplitude to be much smaller than the inci-

dent wave amplitude: u1
<< u0 . The incident plane wave satisfies the homoge-

neous wave equation 

0ui
0

jTij 0 , 0;uk
0( ) = 0       (4.33) 

Substituting (4.32) in (4.27) and using (4.33), we get the wave equation for the 
scattered wave: 

0
˙̇ui

1
jTij 0 , 0 ;uk

1( ) = fi x,t( )       (4.34) 

where we have neglected cross terms of , ,( ) ui
1  because they are assum-

ed to be small. The right-hand side is called the equivalent body force and repre-
sents the interaction of the incident wave with the inhomogeneity 
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If we consider an incident plane P-wave of unit amplitude propagating in the third 
direction given by  

u0P
= e3e

i ke3x t( )    where    k =
0

       (4.36) 

we have the corresponding equivalent body force 

fk
P x,t( ) =

2 k 2
+2( ) +2ik 3[ ] k 3 + ik k{ } e

i ke 3x t( )     (4.37) 
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For an incident plane S-wave of unit amplitude propagating in the third direction
having polarization in the first direction,

u e e x0
1

0

3S i l te l= =−( )ω ω
β

where (4.38)

with equivalent body force
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3 1 3 1
3 (4.39)

To solve (4.34) with (4.37) or (4.39), we need the explicit form of the Green func-
tion of elastic vector waves in 3-D space, which satisfies

ρ ∂ λ μ δ δ δ0 0 0
˙̇ , , ;G t T G tik j ij lk ikx x( ) − ( ) = ( ) ( ) (4.40)

The causal retarded solution [Aki and Richards, 1980, p. 73] is given by
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where r = x  and eri  means the ith component of the unit radial vector er . The first
term in brackets represents the far-field P-wave, the second term the far-field S-
wave, and the last term shows the near-field term that becomes extremely small in
the far field. In the far field r >> L , we use only the first two terms.

Scattered P-waves in the far field for the incident plane P-wave of unit ampli-
tude are given by the convolution of the far-field component of the Green function
with the equivalent body force to obtain
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where superscript PP represents the P-to-P scattering mode. When the observation
distance is large enough so that r L>>  and r L k>> 2 / π , we may use the approxi-
mation x x e x− ≈ −' 'r r  in the argument of equivalent body force. Then, we have
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where we used partial integration for a finite distribution of the inhomogeneity and
defined the velocity ratio γ α β0 0 0≡ . The P-to-P scattering amplitude vector can
be explicitly written as
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where the tilde means the Fourier transform in 3-D space as in (4.14). Using the
same approach, we get the spherically outgoing scattered waves in the far field and
the corresponding scattering amplitude vectors as follows: For P-to-S scattering,
using the second term in brackets of (4.41), we get
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where
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For S-to-P scattering
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where
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For S-to-S scattering
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where
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Each argument in the Fourier transform of the fractional fluctuation is the corre-
sponding exchange wavenumber vector defined as the difference between the scat-
tered wavenumber vector and the incident wavenumber vector.

Scattering Amplitudes in the Spherical Coordinate System

Writing the scattering amplitude vectors (4.43a’–d’) in spherical coordinates
r, ,ψ ζ( ) gives some insight into the scattering process resulting from the Born ap-

proximation. The scattering amplitude for scalar waves is axially symmetric; how-
ever, it is more complicated for elastic vector waves. The transformation of the unit
base vectors from Cartesian coordinates to spherical coordinates is given by

e e e e

e e e e

e e e

r = + +
+ −

− +

sin cos sin sin cos

cos cos cos sin sin

sin cos

ψ ζ ψ ζ ψ
ψ ζ ψ ζ ψ

ζ ζ
ψ

1 2 3

1 2 3

1 2

=

=ζ

 (4.44)

where ψ  is measured from the positive third axis and ζ from the positive first axis
(see Figure 4.1). The P-to-P scattering amplitude in spherical coordinates is given
by
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In the same way, we define the other terms as
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For an incident P-wave, the scattered P-wave is nonzero only for the radial compo-
nent
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The scattered S-wave has only transverse components
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The other scattering amplitudes are given by
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and
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In the forward direction ( ψ = 0), there are no converted PS- and SP-phases. Also,
in the forward direction, PP scattering is caused only by P-wave velocity fluctua-
tion, and SS-scattering is due only to S-wave velocity fluctuation.

4.2.2 Reduction of Independent Medium Fluctuations Using
Birch’s Law

Well-log data plotted in Figure 2.4b show that P- and S-wave velocities are
linearly well correlated. From this result, we assume that P-wave velocity fluctua-
tion is proportional to S-wave velocity fluctuation for rocks that comprise the real
earth medium

ξ δα
α

δβ
β

x
x x( ) ≡ ( ) = ( )

0 0

(4.47)

In addition, Figure 2.4b and the discussion in Section 2.1 show evidence of an em-
pirical linear relationship between wave velocity and mass density for rock. Using
the empirical relation, known as Birch’s Law [Birch, 1961], α km/s[ ] =
3 05 1 87. .ρ g cm 3⋅[ ] −−  as shown in Figure 2.3, we obtain δρ ρ/ 0 =
α α δα α0 0 01 87/ . /+( )( ) . Choosing α0 =6.0–8.5 km/s as typical lithospheric ve-

locities, we get δρ ρ δα α/ . . /0 00 78 0 82= −( ) . Birch’s law along with (4.47) allows
us to reduce the number of independent fractional fluctuations in (4.46a–d) from
three to one [Sato, 1984a; Malin and Phinney, 1985]:

δρ
ρ

νξx
x

( ) = ( )
0

 (4.48)

where we choose the linear coefficient ν = 0 8.  for the following equations. Using
larger ν values systematically increases the contributions from both velocity and
density fluctuations to backward scattering.

We can thus write each nonzero scattering amplitude as a product of the square
of the S-wave wavenumber l 2 , a basic scattering pattern X∗

∗∗ , and the Fourier trans-

form of the fractional fluctuation ξ̃ :
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where the basic scattering patterns are given by
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Angular dependence of scattering comes from both terms X∗
∗∗  and ξ̃ , but the fre-

quency-dependent nonisotropic scattering comes only from the ξ̃  term. Contrary to
the scalar wave case, these scattering patterns have lobes that depend on ψ  and ζ.
Figure 4.7 shows the ψ -dependence of basic scattering patterns at specific values
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FIGURE 4.7. ψ -dependence of basic scattering patterns for γ 0 3=  and ν = 0 8. .



Born Approximation for Wave Scattering in Inhomogeneous Media / 103

of ζ for given γ 0 and ν. Figure 4.8 shows 3-D views of basic scattering patterns.
The angular dependence of basic scattering pattern X∗

∗∗( )ψ ζ,  is axially symmetric
only for the case of P-wave incidence.

Scattering Cross Sections

We can define the scattering cross section for the block of dimension L  for dif-
ferent scattering modes using an extension of (4.18). We note the difference in ve-
locity between incident waves and spherically outgoing scattered waves for conver-
sion scattering. For the stationary process of P-to-P scattering,
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In the same way,
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FIGURE 4.8. 3-D views of basic scattering patterns in 3-D elastic random media for
γ 0 3=  and ν = 0 8. . Incident wave is propagating in direction x3 and S-wave is po-

larized in direction x1 .
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Here, we do not take account of the polarization of the scattered S-waves. If neces-
sary, we can define scattering cross section with polarization information.

4.2.3 Scattering by Distributed Elastic Inhomogeneities

Scattering Coefficients

Following the same procedure as used for scalar waves, we imagine an ensem-
ble of homogeneous and isotropic random media described by fractional fluctua-
tions ξ x( ){ }, where ξ = 0. Then, we can define the statistical scattering coeffi-
cients as the scattering power per unit volume of inhomogeneous elastic media. The
scattering coefficient for P-to-P scattering is given by
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In the same way,
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where l = ω β/ 0  is S-wave wavenumber corresponding to angular frequency ω .
The basic scattering patterns defined in (4.50) are independent of angular frequency.

In (4.52a–d), the contribution from the PSDF is symmetric around the axis of
the propagation direction. Figure 4.9 illustrates the ψ -dependence of the PSDF
terms of the scattering pattern for the case of an exponential ACF for three different
angular frequencies. The scattering contribution from the PSDF is nearly isotropic
for all four scattering modes for lower angular frequencies; however, at high angu-
lar frequencies the contribution of PP- and SS-scattering is larger in a narrow cone
around the forward direction compared with those for large scattering angles, since
the PSDF term in (4.52a and d) is 8 2 3πε a  for all wavenumbers at ψ =0. The prod-
uct with the fourth power of wavenumber makes the scattering coefficient much
larger at higher angular frequencies. For PS- and SP-conversion scattering at a
given angular frequency, the minimum argument of the PSDF in (4.52b and c) is
not zero but γ γ0 01−( )l / , which occurs in the forward direction ψ =0. The PSDF
term rapidly decreases with increasing angular frequency even in the forward direc-
tion. PSDF contributions to conversion scattering are too small to show in the bot-
tom plot of Figure 4.9. For scalar waves, the angular dependence of scattering coef-
ficient is controlled only by the PSDF term; however, the angular dependence of
scattering coefficient for elastic vector waves is a product of the square of the basic
scattering patterns X*

**  and the PSDF term, as illustrated in Figures 4.8 and 4.9,
respectively. In a narrow cone around the forward direction corresponding to low
wavenumbers, the scattering patterns show very small PS- and SP-scattering. This
means that the contribution of long wavelength components of random inho-
mogeneity is very small for conversion scattering.

The average of the scattering cross section over the solid angle gives the total
scattering coefficient. For conversion scattering,

g gSP PS
0

0
2 0

1

2
=

γ
(4.53)

from (4.50). This relationship is valid for any kind of inhomogeneity. Aki [1992]
derived relationship (4.53) as a consequence of the reciprocal theorem [see also Pa-
panicolaou et al., 1996; Korneev and Johnson, 1996]. This means that P-waves
scatter to S-waves more readily than S-waves scatter to P-waves.



106 / Chapter 4

S-to-S Backscattering Coefficient

The backscattering coefficient for S-wave to S-wave is important for practical
analysis of coda:

g g
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4
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As expected from a 1-D reflection study [Aki and Richards, 1980, p. 661], the
backscattering coefficient in 3-D is proportional to the PSDF of S-wave impedance:
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When the ACF is a von Kármán type, the PSDF is given by (2.12). The S-to-S
backscattering coefficient is explicitly written as
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In the case of an exponential ACF, which is a special case of (4.56) with κ =0.5,
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tering coefficient against scaled
wavenumber al for the exponential
ACF (κ=0.5, solid) and the von Kármán
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The backscattering coefficient is constant for high frequencies for κ =0.5. Figure
4.10 shows the frequency dependence of the S-to-S backscattering coefficient for
κ =0.5 and 0.35, where l = ω β/ 0 . As κ decreases, the backscattering coefficient
increases with increasing frequency for high frequencies because of the increasing
richness of the PSDF in short-wavelength components.
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CHAPTER 5

Attenuation of High-Frequency Seismic
Waves

We will now discuss the attenuation with propagation distance of seismic wave
amplitude in the lithosphere for frequencies mostly higher than 1 Hz. First we re-
view the frequency dependence of observed amplitude attenuation in the earth’s
lithosphere. We discuss various proposed mechanisms of intrinsic attenuation and
describe their frequency characteristics. We have already discussed the scattering of
seismic waves caused by random heterogeneities as a mechanism to explain the
excitation of incoherent S-coda waves. The amplitude decay with travel distance
will now be derived as a natural consequence of the application of energy conserva-
tion to the scattering model; scattering attenuates the direct wave amplitude and ex-
cites coda waves. Taking scalar waves as an example, we introduce an approach for
calculating the amount of scattering attenuation in a manner consistent with con-
ventional seismological attenuation measurements. Then, extending the method to
elastic waves, we calculate the scattering attenuation of P- and S-waves in inho-
mogeneous elastic media. The randomness of the lithosphere will then be quantita-
tively estimated from S-wave attenuation and S-coda excitation measurements.

5.1 ATTENUATION IN THE LITHOSPHERE

Seismic wave amplitude generally decreases with increasing travel distance
through the earth. Except where wave interference occurs, the observed change in
amplitude is usually exponentially related to travel distance, and decay rates are
proportional to QP

−1  and QS
−1 which characterize the spatial attenuation for P- and S-

waves, respectively. For plane waves of frequency f , the exponential decay with
travel distance r  is given by – π αr f QP

−1
0  for  P-waves and – π βr f QS

−1
0 for S-

waves. For spherically outgoing body waves in a uniform velocity structure in 3-D
space, there is an additional geometrical spreading factor r−1, so the spectral ampli-
tudes of P- and S-waves, uP  and uS , go roughly as
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A popular method of making attenuation measurements is the spectral decay
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FIGURE 5.1. Reported values of QS

−1  for the lithosphere. Surface wave analysis: 1,
depth < 45 km, SL8 global model [Anderson and Hart, 1978]; 2.1, upper crust (depth
< 18 km) in the Basin and Range Province; 2.2, upper crust in the Colorado plateau;
2.3, upper crust in the eastern U. S. A.; 2.4, lower crust (depth>18 km) in the U. S. A.
[Cheng and Mitchell, 1981]. Coda-normalization method (see Section 3.4.3): 3,
Hindu–Kush [Roecker et al., 1982]; 4, Kanto, Japan [Aki, 1980a]; 5.1, eastern Kanto,
Japan [Sato and Matsumura, 1980]; 5.2, Kanto, Japan [Yoshimoto et al., 1993]; 6,
northern Greece [Hatzidimitriou, 1995]; 7, shallow crust at western Nagano, Japan
[Yoshimoto et al., 1994]. Multiple lapse-time window analysis (see Section 7.2):
8.1, Central California; 8.2, Hawaii; 8.3, Long Valley in California, U. S. A. [Mayeda et
al. 1992]; 9, Kanto-Tokai, Japan [Fehler et al., 1992]; 10, Kyushu, Japan [Hoshiba,
1993]. Spectral decay analysis: 11.1, Basin and Range Province; 11.2, U. S.
Shield [Taylor et al., 1986]; 12, Sg and Lg, Utah, U. S. A. [Brockman and Bollinger,
1992]; 13, depth 5–25 km, southern Kurils [Fedotov and Boldyrev, 1969]; 14, Lg,
France [Campillo and Plantet, 1991]; 15, Imperial fault, California [Singh et al., 1982];
16, depth < 50 km, southern Kanto, Japan [Kinoshita, 1994]; 17, Pacific coast of
Kanto, Japan [Takemura et al., 1991]; 18, Montenegro, Yugoslavia [Rovelli, 1984];
19, Mexico [Ordaz and Singh, 1992]; 20, depth < 40 km, northern Caribbean
[Frankel, 1982]; 21, northern Italy [Console and Rovelli, 1981]; 22, southern Norway
[Kvamme and Havskov, 1989]; 23.1, New York State, U. S. A.; 23.2, southern Cali-
fornia [Frankel et al., 1990]; 24, depth < 10 km, Arette, Pyrénées [Modiano and
Hatzfeld, 1982]; 25, San Andreas Fault, California [Kurita, 1975]; 26, southern Italy
[Rovelli, 1983].
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method for body waves or surface waves. The spectral decay method uses meas-
urements of spectral amplitudes vs. frequency for at least two propagation dis-
tances. If we know uP r1; f( )  and uP r2; f( ) ,

ln
r2 uP r2 ; f( )

r1 uP r1; f( )
= (r2 r1 ) fQP

1
0 + Const.     (5.2) 

If QP
1  is assumed to be frequency independent, its value can be determined from 

the slope of the left-hand side of (5.2) vs. f  from data at a single station. Other 
measurements have been based on observations of the change in direct-wave am-
plitude with distance using the coda-normalization method with data from a single 
station as mentioned in Section 3.4.3. More recent QS

1  measurements have been 
based on the multiple lapse-time window analysis of whole S-wave seismograms 
(see Section 7.2). 
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western Nagano, Japan [Yoshimoto et al., 1994]. 

π



112 / Chapter 5

We will first discuss reported values of QS
−1 and QP

−1 for the lithosphere. We

focus our attention on QS
−1 and QP

−1 as opposed to coda QC
−1, which is a phenome-

nological parameter discussed in Chapter 3. We will briefly enumerate the meas-
urements; plots of reported QS

−1, QP
−1 and the ratio Q QP S

− −1 1 are shown in Figures
5.1, 5.2 and 5.3, respectively.

For low frequencies, the ratio Q QP S
− − ≈1 1 0.4–0.47 in global model MM8 of

Anderson et al. [1965] derived from analysis of surface wave data. Anderson and
Hart [1978] proposed Q models of the earth having QS

−1≈0.002 and QP
− ≈1 0.0009

and ratio Q QP S
− −1 1 ≈0.5 for frequencies < 0.05 Hz over a depth range from the

surface to 45 km. Analyzing higher mode surface waves, Cheng and Mitchell
[1981] determined crustal attenuation in the United States for 0.01–0.5 Hz and
found that QS

−1 in the upper crust (depth < 18 km) is smallest in the eastern U. S.
A., larger in the Colorado Plateau region, and largest in the Basin and Range Prov-
ince. Zhu et al. [1991] obtained Q fP

− −≈1 0 870 0053. .  for 1–20 Hz from the analysis
of Pn waves in eastern Canada. Analyzing Pg- and Lg-waves in France, Campillo
and Plantet [1991] obtained frequency dependent Q fS

− −≈1 0 50 0031. .  and
Q fP

− −≈1 0 60 042. .  for 2–10 Hz. Taylor et al. [1986] measured the differential at-
tenuation of teleseismic P- and S-waves across the Basin and Range Province and
Shield regions of the U. S. A. using broad-band seismic data between 0.05 and 5
Hz. They reported that the depth sampled by the waves reached a few hundred km.
They found that both QS

−1 and QP
−1 decrease with increasing frequency for both

provinces, however, the frequency dependence of QS
−1  is more pronounced. QS

−1

was larger in the Basin and Range Province than in the Shield region. Their meas-
ured ratio of Q QP S

− −1 1  increases with frequency and becomes larger than 1 for fre-
quencies higher than 1 Hz in both regions.

There are several reported measurements made near subduction zones and other
seismically active areas. Fedotov and Boldyrev [1969] measured values for several
layers in the crust to the upper mantle in the southern Kurils. From spectral analysis
of P- and S-waves near Garm, Tadjikistan in Central Asia, Rautian et al. [1978]
reported that the ratio Q QP S

− −1 1  is equal to the velocity ratio of P- to  S-waves for
2–12 Hz. In Mexico, Ordaz and Singh [1992] estimated Q fS

− −≈1 0 660 037. .  for 0.2–
10 Hz.

Analyzing records of microearthquakes in Kanto, Japan using the coda nor-
malization method as discussed in Section 3.4.3, Aki [1980a] found that QS

−1 de-

creases with increasing frequency as a power law Q fS
− −( )∝1 0 6 0 8. .–  for frequencies

1–25 Hz. Combining the low QS
−1 estimated around 0.05 Hz from surface wave

analysis with measurements of QS
−1 at frequencies higher than 1 Hz, Aki [1980a]

conjectured that QS
−1 has a peak around 0.5 Hz and decreases for both lower and

higher frequencies (Figure 3.32b). His conjecture was confirmed observationally
by Kinoshita [1994] from spectral decay analysis of strong motion records of
earthquakes having focal depths < 50 km in southern Kanto, Japan. Kinoshita
[1994] found a decrease in attenuation with decreasing frequency for frequencies
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less than about 0.8 Hz as shown by curve 16 in Figure 5.1. At higher frequencies,
he found Q fS

− −=1 0 70 0077. .  for 2–16 Hz. He estimated that the uncertainty in the

measurements of QS
−1  is about a factor of two. The power of frequency dependence

of about 0.7 found by Kinoshita [1994] for this area agrees with previous meas-
urements [Aki, 1980a; Sato, 1984b, 1990]. Extending the coda-normalization
method (see Section 3.4.3), Yoshimoto et al. [1993] estimated attenuation in Kanto,
Japan for depth < 100 km and found Q fS

− −≈1 0 730 012. .  and Q fP
− −≈1 0 50 031. .  for

1–32 Hz and the resultant ratio Q QP S
− −1 1  is larger than 1. Fixing the power of the

frequency at 1, since this form simply makes the amplitude attenuation independent
of frequency, Sato [1984a] estimated Q fS

− −≈1 10 014.  for 2–30 Hz in Kanto.
Attenuation measurements in the upper crust and/or near active faults include
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− −1 1  for the lithosphere based on measurements of P- and S-
wave attenuation: 1, MM8 global model [Anderson et al., 1965]; 2.1, Basin and
Range Province; 2.2, U. S. Shield [Taylor et al., 1986]; 3, depth < 45 km of the SL8
global model [Anderson and Hart, 1978]; 4, Garm, Central Asia [Rautian et al.,
1978]; 5, Kanto, Japan [Yoshimoto et al., 1993]; 6, Pg and Lg, France [Campillo and
Plantet, 1991]; 7, depth < 40 km, northern Caribbean [Frankel, 1982]; 8, southern
Norway [Kvamme and Havskov, 1989]; 9, depth < 10 km, Arette, Pyrénées [Modiano
and Hatzfeld, 1982]; 10, upper crust of the Rio Grande Rift, U. S. A. [Carpenter and
Sanford, 1985]; 11, depth < 7 km, San Andreas Fault [Bakun et al., 1976]; 12, depth
< 7 km, Swabian Jura, Germany [Hoang-Trong, 1983]; 13, southern Kurils [Fedotov
and Boldyrev, 1969]; 14, Anza, California [Hough et al., 1988]; 15, upper crust of
western Nagano, Japan [Yoshimoto et al., 1994]; 16, western Pacific [Butler et al.,
1987].
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those made by Kurita [1975], who reported QS
− ≈1 0 01 0 05. – .  for 0.3–1 Hz in the

shallow crust along the San Andreas Fault. From measurements of SH waves
along the Imperial fault in California for depth > 4 km, Singh et al. [1982] reported
strong attenuation Q fS

− −≈1 10 05.  for 3–25 Hz. Modiano and Hatzfeld [1982] ana-
lyzed seismograms of microearthquakes having depth < 10 km in the Arette region
in the Pyrénées and obtained both QS

−1 and QP
−1 for 10–50 Hz and the resultant ratio

Q QP S
− −1 1 ≈1.64. Carpenter and Sanford [1985] measured apparent attenuation in

the upper crustal regions of the central Rio Grande Rift, U. S. A. and found
Q QP S

− − ≈1 1 1 5.  for 3–30 Hz. Yoshimoto et al. [1994] applied the extended coda-
normalization method to waveforms from shallow microearthquakes having S-P
time less than 1 s in western Nagano, central Japan. They found rather strong at-
tenuation for both QS

−1 and QP
−1 for frequencies from 13 to 128 Hz:

Q fS
− −≈1 0 200 0047. .  and Q fP

− −≈1 0 30 012. . .
A recently developed approach for measuring attenuation is the multiple lapse-

time window analysis (see Section 7.2) first proposed by Fehler et al. [1992] for
whole S-wave seismograms. The method was first applied to data from epicentral
distances up to 250 km collected by the NIED network in the Kanto-Tokai region,
Japan for the estimation of QS

−1. Since then, this method has become popular and
applied to data from many regions of the world including Hawaii and California
[Mayeda et al., 1992; Jin et al., 1994] and Japan [Hoshiba, 1993].

From results presented in the above discussion and Figure 5.1, it seems reason-
able to write the frequency dependence of attenuation in the form of a power law as
Q fS

n− −∝1  for frequencies higher than 1 Hz. Values of the exponent n range from
0.5 to 1. The frequency dependence near 1 Hz remains poorly understood because
seismic measurements are difficult to make at this frequency and, since most of the
events that provide the best data have S-wave corner frequencies near 1 Hz, it is
difficult to discriminate attenuation effects from source effects. Even though P-
wave data are poor compared to S-wave data, results in Figure 5.2 show that QP

−1

also decreases with increasing frequency according to a power law for frequencies
higher than 1 Hz. For frequencies lower than 0.05 Hz, the ratio Q QP S

− −1 1  has been
taken to be constant at 0.4–0.47 by many investigators. Many have assumed that
the ratio for higher frequencies is the same as for low frequencies. However, recent
observations have clearly shown that the ratio ranges between 1 and 2, and some-
times up to 3, for frequencies higher than 1 Hz, as shown in Figure 5.3.

We may summarize the characteristics of observed attenuation in the litho-
sphere as follows: QS

−1 is of the order of 10 2−  at 1 Hz and decreases to the order of
10 3−  at 20 Hz. Considering QS

−1 to be of the order of 10 3− at 0.01 Hz from surface

wave analysis, we may expect that QS
−1 has a peak of the order of 10 2−  around 0.5

Hz and decays for both increasing and decreasing frequencies as conjectured by
Aki [1980a]. The ratio Q QP S

− −1 1  is smaller than 1 for frequencies lower than 1 Hz;
however, the ratio increases and becomes larger than 1 for frequencies higher than
1 Hz.
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5.2 INTRINSIC ATTENUATION MECHANISMS

The mechanism of seismic wave attenuation has been a topic of interest among
seismologists and rock physicists for many years and numerous physical mecha-
nisms to explain the cause of seismic wave attenuation have been proposed. Seis-
mic attenuation is usually considered to be caused by two mechanisms, scattering
and intrinsic mechanisms, so that total attenuation is the sum of the two types:

Q Q QP
Sc

P
I

P
− − −= +1 1 1  and Q Q QS

Sc
S

I
S

− − −= +1 1 1 (5.3)

As we have seen, scattering redistributes wave energy within the medium but does
not remove energy from the overall wavefield. Conversely, intrinsic attenuation re-
fers to various mechanisms that convert vibration energy into heat through friction,
viscosity, and thermal relaxation processes. Measurements of attenuation of direct
seismic waves give values for total attenuation. There has been considerable specu-
lation about which process, intrinsic or scattering, dominates attenuation and several
methods have been proposed to determine the amounts of both scattering and in-
trinsic attenuation [Jacobson, 1987; Fehler et al., 1992].

Models of seismic attenuation were initially developed to explain an apparently
observed frequency-independence of Q−1 at low frequencies. There are several re-
view papers that discuss proposed mechanisms for intrinsic attenuation that lead to
frequency-independent QP

−1  and QS
−1  [Knopoff, 1964; Jackson and Anderson,

1970; Dziewonski, 1979]. Attenuation has been considered an important parameter
to measure and characterize in sedimentary rocks for petroleum exploration and this
has led to an effort to develop models explaining the observed attenuation in sedi-
mentary rocks [Mavko et al., 1979; Toksöz and Johnston, 1981]. Many proposed
intrinsic attenuation models are relaxation mechanisms having characteristic relaxa-
tion times that depend on the physical dimensions of the elements in the rock. The
characteristic time leads to a Q−1 that peaks at some frequency and decreases rap-
idly away from that frequency. By assuming that rocks are composed of elements
with a range of dimensions, the attenuation caused by the mechanism can be made
frequency-independent over some frequency range. For seismic waves to remain
causal in the presence of attenuation, there must be frequency-dependent amplitude
and phase changes [Aki and Richards, 1980, p 173]. The relationship between fre-
quency-dependent attenuation and velocity dispersion was discussed by Liu et al.
[1976].

Although we will not describe all proposed mechanisms of intrinsic attenuation,
we will briefly examine some and give their predicted relation between physical
dimensions and characteristic frequencies. Our discussion follows closely that of
Aki [1980a]. Many of the papers we will refer to have been reprinted in Toksöz and
Johnston [1981]. Models whose characteristic frequencies are well removed from
the frequency band of observed regional seismic phases cannot be considered as the
dominant attenuation mechanisms in that band. Any viable model must be consis-
tent with the observed and partially conjectured frequency-dependence of QS

−1  hav-
ing a peak on the order of 0.01 around 0.5 Hz.
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Many proposed mechanisms of intrinsic attenuation are based on the observa-
tion that crustal rocks have microscopic cracks and pores which may contain fluids.
These features have dimensions much smaller than the wavelengths of regional
seismic phases. As discussed in Section 2.1, these cracks can have a profound in-
fluence on the propagation velocity of P- and S-waves through rocks (Figure 2.1).
It is well-known that static stress-strain curves of rocks show hysteresis [McCall
and Guyer, 1994]. The area enclosed by the hysteretic loop is the energy lost from
the elastic field during the stress-strain cycle. McCall and Guyer [1994] discuss the
effects of hysteresis in dynamic behavior of rocks and show that attenuation caused
by hysteresis is frequency-independent. This model is consistent with the presence
of cracks that open, close, and slip during elastic loading. Although they do not
model the physical process that causes the hysteresis, they successfully account for
the difference between the static and dynamic behavior of rocks, the observed hys-
teresis in stress-strain measurements, and the nonlinear behavior of rocks.

Crack aspect ratio d , which is the ratio of width to length of a crack, is one of
the dominant parameters controlling the frequency-dependence of many attenuation
models. Hadley [1976] used a scanning electron microscope to measure crack
lengths and aspect ratios of virgin and prestressed samples of Westerly granite. She
found crack lengths up to 150 microns and aspect ratios of 10 4−  to 10 1− .

Walsh [1966] proposed frictional sliding on dry surfaces of thin cracks as an
intrinsic attenuation mechanism. The frictional model predicts that IQ−1 is fre-
quency-independent over the frequency range of regional seismic phases. Walsh
[1969] proposed viscous dissipation of energy due to liquid movement through
cracks as another attenuation mechanism. This model predicts a peak in attenuation
at frequency d μ πη/ 2 , where μ  is the rigidity of the surrounding rock and η  is the
viscosity of the fluid. If water fills the pores, the viscosity η ≈ −10 2 poise at 20 ˚C
decreases with increasing temperature and increases with increasing pressure
[Keenan et al., 1969]. Using μ ≈ 1012 g cm s2⋅  for rocks and the range of aspect
ratios for rocks found by Hadley [1976], we find that predicted attenuation peaks at
109 to 1012 Hz for this mechanism. To get a peak frequency at 0.5 Hz as conjec-
tured by Aki [1980a] would require aspect ratios of d ≈ × −3 10 14 which is incon-
sistent with Hadley’s [1976] measurements. Nur [1971] proposed viscous dissipa-
tion in a zone of partially molten rock to explain the low velocity/high attenuation
zone at the base of the lithosphere. The addition of water reduces the melting tem-
perature of rocks. However, the melting temperature of granite at 15 kb is 600 ˚C,
and it is 800 ˚C for peridotite [Boettcher, 1977]. At Moho depths beneath Kanto,
Japan, the temperature is estimated to be around 200–300 ˚C [Uyeda and Horai,
1964]. Therefore, it is unlikely that melted rock exists in most regions of the litho-
sphere.

Biot [1956a, b] analyzed wave propagation in isotropic porous solids where the
coupling of motion between the fluid and the solid matrix was considered. He ar-
rives at expressions for attenuation due to the flow of fluids within nonconnecting
pores initiated by elastic waves. White [1965, p.131] discusses Biot’s models and
concludes that the attenuation predicted by this model is extremely small for fre-
quencies less than 100 Hz. He shows that the model includes the loss of elastic en-
ergy only through viscous drag on the fluid at the crack walls and that this loss is
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too small to be consistent with seismic measurements. Mavko and Nur [1979] ex-
amined the effect of partial saturation of cracks on attenuation. In their model, fluid
movement within cracks is enhanced by the presence of gas bubbles, and predicted
attenuation is larger than that in Biot’s [1956a, b] models. The partial saturation
model has a peak attenuation at frequency K af f fρ π2 , where K f  is the fluid

bulk modulus, ρ f the fluid density and a f the half-length of the fluid drop in the

crack: IQ−1 is proportional to ω3 2/  for lower frequencies and to ω−3 2/  at higher fre-
quencies. For water, K f ≈ 1012 g cm s2⋅  and ρ f ≈ 1 g cm3 . For attenuation to peak
in the regional seismic frequency band, af ≈105 cm, which is too large.

As an alternative to considering just the effects of fluid movement within one
crack, O’Connell and Budiansky [1977] proposed a model in which fluid moves
between closely spaced adjacent cracks. There is a characteristic frequency corre-
sponding to the transition from saturated isolated to saturated isobaric behaviors:
f Kd≈ 3 2πη , where K  is the bulk modulus of the rock. This frequency is lower

than the peak frequency predicted by the Walsh [1969] viscous dissipation model.
When η ≈ −10 2 poise for water and K ≈ 1012 g cm s2⋅ , a 0.5 Hz attenuation peak in
rock requires aspect ratio d ≈ −10 5, which is close to a range consistent with
Hadley’s [1976] measurements. However, numerical simulation by O’Connell and
Budiansky [1977] predicts Q QP S

− −<1 1, which contradicts observations discussed in
Section 5.1.

After drying an olivine basalt sample in a moderately heated high vacuum,
Tittmann [1977] found that QP

−1 decreased from 2 10 2× − to 0 9 10 3. × − at 56 Hz.
This measured low attenuation for a dry rock is consistent with the very low at-
tenuation values measured on lunar rock samples that contain little water [Tittmann
et al., 1976]. Gradually adding a small amount of volatile to a dry rock, Tittmann et
al. [1980] measured an increase of QS

−1 and a change in electric dipole moment

which indicated adsorption of the volatile. They found that the rapid increase of QS
−1

was not due to the classical viscous fluid movement through fractures but due to an
interaction between adsorbed water film on the solid surface by thermally activated
motions. This is due to relaxation involving liquid molecules. Controlling the
amount of water, Spencer [1981] identified individual relaxation peaks in rocks. He
found a peak in QE

−1 at frequencies as low as 17 Hz in limestone, where E  is
Young’s modulus. However, the peak frequency is of the order of kHz for other
kinds of rocks. He argued that most rocks have a range of relaxation frequencies
and that the dominant mechanism of attenuation observed in his measurements is a
frequency-dependent softening of the rock due to the bonding of fluid molecules to
crack surfaces.

Thermally activated processes at grain boundaries have been proposed as an
attenuation mechanism for the upper mantle [Anderson and Hart, 1978; Lundquist
and Cormier, 1980]. In polycrystalline rocks, temperature-activated relaxation
thought to be stress relaxation at a viscous boundary layer between grains took
place [Jackson and Anderson, 1970]. In this case attenuation has a peak whose am-
plitude increases with increasing temperature. Dislocation motion in rock materials
has been proposed as an attenuation mechanism [Mason, 1969]. However, the peak
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frequency of Q−1 is in the MHz range [Mason et al., 1978]. Aki [1980a] excluded
dislocation glide as a factor in attenuation at low temperature in the lithosphere.

Spatial temperature differences induced by a passing wave due to adiabatic
compression are reduced by thermal diffusion [Zener, 1948; Savage, 1966a]. This
thermoelastic effect removes vibrational energy from a wavefield. Grain-sized het-
erogeneities in a rock increase the amount of predicted attenuation. Thermoelastic
attenuation peaks at frequency D aT g/ 2 , where ag  is the grain size and DT  is the

thermal diffusivity. For DT ≈ × −5 10 2 cm s2  for quartz and a peak frequency of 0.5
Hz, ag ≈  0.3 cm, which is reasonable for rocks. The exchange of heat between ad-

jacent grains plays an important role for QP
−1. Because of rock heterogeneity, ther-

moelasticity causes S-wave attenuation, but it causes more attenuation for compres-
sional waves. Therefore, the model predicts QP

−1 > QS
−1. Savage [1966b] investi-

gated thermoelasticity caused by stress concentrations induced by the presence of
empty cracks having the shape of elliptic cylinders. This model predicts a peak in
attenuation at a frequency given by D aT C/ 2 , where aC  is the half-length of the
crack, which yields crack sizes similar to grain sizes predicted by Zener’s [1948]
model. For ordinary materials containing cracks, the theory predicts Q QP S

− −>1 1,
which is consistent with the measurements illustrated in Figure 5.3.

Most of the mechanisms discussed above can predict QS
−1 having values in the

range of 10 3− ; however, the importance of various mechanisms varies with depth,
temperature, fracture content, fracture aspect ratios, pressure, and the presence of
fluids. Aki [1980a] preferred thermoelasticity as the most viable model to explain
intrinsic attenuation at lithospheric temperatures because the required scales for rock
grains and cracks along with the amount of attenuation caused by thermoelasticity
are in closest agreement with observations.

5.3 SCATTERING ATTENUATION DUE TO DISTRIBUTED
RANDOM INHOMOGENEITIES

A first step in making a model of attenuation is to determine whether it is con-
trolled by some characteristic scale in time or space. In Figures 5.1–5.3 we took
frequency as the abscissa, which allows us to look at characteristic time scales.
Choosing wavenumber as the abscissa allows us to investigate the spatial scale of
attenuation. Figure 5.4 shows direct wave attenuation QS

−1 and QP
−1 in Kanto, Japan,

measured using an extension of the coda-normalization method described in Sec-
tion 3.4.3 [Yoshimoto et al., 1993], plotted against wavenumber, where frequency
0.5 Hz corresponds to S-wave wavenumber of 0.8 km 1− . The results show good
coincidence between QS

−1 and QP
−1. This coincidence implicitly suggests that at-

tenuation is characterized by a spatial scale. As described in Section 5.1 and Figure
3.32b, attenuation for  S-waves QS

−1 is conjectured to have a peak of amplitude

about 10 2−  at about 0.5 Hz and to decrease for both increasing and decreasing fre-
quency away from 0.5 Hz. Figure 5.4 shows that attenuation per travel distance
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2 1
0

1π βf Q l QS S
− −=  is approximately constant for 1 to 20 Hz and has a value on the

order of 10 2 1− −km , which is nearly the same order as the total scattering coefficient
g0 of  S-waves as shown in Figure 3.10. The coincidence between g0 and l QS

−1

leads to the idea that scattering attenuation may be the dominant mechanism for
amplitude attenuation of seismic waves in the lithosphere [Aki, 1980a, 1981,
1982]. As schematically illustrated in Figure 2.28, we may expect that scattering
attenuates direct wave amplitude and excites coda waves. However, we will show
that the ordinary derivation of amplitude attenuation using the Born approximation
to estimate scattering attenuation leads to a prediction that QS

−1 increases with fre-
quency, as shown in Figure 5.5. There have been two attempts to resolve the dis-
crepancy between observations that QS

−1 decreases with frequency above 0.5 Hz

and the scattering theory, which predicts that QS
−1 increases with frequency. One

improves the statistical averaging procedure by isolating the effect of the travel-time
fluctuation caused by slowly varying velocity fluctuation from other scattering phe-
nomena that are caused by more rapidly varying velocity inhomogeneities [Sato,
1982a, b]; the second attempt neglects scattering in the forward direction during
calculation of the attenuation [Wu, 1982a]. Using scalar wave propagation as an
example, we will demonstrate the discrepancy between attenuation observations
and the theory based on the ordinary Born approximation and show how the two
proposals to resolve the discrepancy are implemented. We will show that the two
approaches are equivalent, and then we will extend the analysis to elastic waves.

5.3.1 Use of the Born Approximation for Estimating Scattering
Attenuation of Scalar Waves

10 -1 1 10 10 2

Wavenumber [km-1]

10 -1

QP
-1

10 -2

10 -3

10 -4

QS
-1

A
tt

en
u

at
io

n

FIGURE 5.4. QS

−1  (closed circle) and QP

−1

(triangle) vs. wavenumber measured in
Kanto, Japan. [From Yoshimoto et al.,
1993, with permission from Blackwell
Science, United Kingdom.]
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FIGURE 5.5. Scattering attenuation vs.
normalized wavenumber for scalar
waves: dotted, ordinary Born approxi-
mation; solid ( υC =1/2) and broken
( υC =1/4), travel-time corrected Born ap-
proximation, where k V= ω / 0 .
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Here, we study the scattering attenuation of scalar waves that travel through ran-
domly inhomogeneous media. Using an ensemble of random media whose spatial 
velocity distributions are described by x( ){ } , where = 0 , we can calculate the 
statistical scattering coefficient g  from the PSDF using the Born approximation 
derived in Section 4.1.2. The integral over the solid angle of the average of the 
square scattering amplitude over an ensemble of inhomogeneous media is identi-
fied as the scattering energy loss from the incident plane wave. Taking the ensem-
ble average of (4.17) with (4.21), the scattered wave energy generated per unit 
time by a cube of inhomogeneity having volume L3  is given by 

0
2V0 d r2 gL3 /4 r2( ) = 0

2V0g0L
3 , where the incident energy-flux having 

unit amplitude passing through an area L2  is 0
2V0 L2 . The fractional scattering 

attenuation of the incident-wave energy per unit travel distance is thus equal to g0 .
Dividing g0  by k , the scattering attenuation based on the ordinary Born approxi-
mation [Aki and Richards, p. 742; Chernov, 1960] is given by 

BScQ 1( )
1
k

g0

1
4 k

gd =
1
k

1
L3

d

d
d

=
1

k

1

L3 F
2

d =
k 3

4 2 P 2ksin
2

d ,( )

=
k 3

2
P 2ksin

2
0

sin d

      (5.4)

where scattering is axially symmetric,  is the scattering angle, and the prefix 
“BSc” explicitly means the attenuation due to scattering by distributed random in-
homogeneities based on the ordinary Born approximation. The resultant represen-
tation of scattering attenuation is independent of dimension L .
 In the case where the exponential ACF describes the random media, substitut-
ing (2.10) for the PSDF, we may write the above integral as 

BScQ 1( ) = 4 2a3k 3
2sin

2
cos

2

1+ 4a2k 2sin2

2

2
0

d = 4 2a3k 3

1+ a2k 2 2( )
2

0

2

d

=
2 2ak

1+ a2k 2 2

0

2

=
8 2a3k 3

1+ 4a2k 2

8 2a3k 3 for ak << 1

2 2ak for  ak >> 1

    (5.5) 

where = 2sin / 2( ) .The scattering attenuation is proportional to the mean square 
(MS) fractional fluctuation of velocity. The dotted curve in Figure 5.5 shows the 
predicted scattering attenuation against ak . It is proportional to the cube of the 
wavenumber or frequency for low frequencies, and it increases linearly with fre-
quency for high frequencies. Even if the MS fractional fluctuation is small, (5.5) 
predicts  a larger attenuation  for large ak  compared to  small ak   which does not 
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agree with observations like those shown in Figure 5.4. The large theoretically pre-
dicted scattering attenuation for high frequencies is caused by strong forward scat-
tering. As discussed in Section 4.1, the Born approximation is valid only when the
energy loss per distance L  is small [Aki and Richards, 1980, p. 742; Hudson and
Heritage, 1981]: BScQ kL− <<1 1. Replacing L with a, we get the least restrictive con-
dition for the applicability of the Born approximation as

BScQ ak− <<1 1  (5.6)

To better understand the effects of the slowly varying velocity inhomogeneity
on the prediction of scattering attenuation, consider an ensemble of wave propaga-
tion experiments through 1-D random media whose wave velocities vary slowly.
The experiments are done for high frequencies so we choose a wavelength for the
incident seismic wave that is much shorter than the scale length of the velocity in-
homogeneity. Figure 5.6a is a schematic diagram showing the time traces (bold
curves) u  obtained from these experiments for different random media. We expect
good resemblance in waveform between differing traces; however, first arrival
travel-times are expected to vary considerably from trace to trace. The bottom trace
is the average over the ensemble of the traces corresponding to the mean wavefield
u . It differs greatly from all measured traces because of travel-time fluctuations.

The amplitude of the ensemble average trace is much smaller than that of individual
traces. The wave trace next to the bottom shows the wave trace u0 in the homoge-
nous medium. Each fine broken curve in Figure 5.6a is the difference between the
measured (bold) trace and the wave trace (next to the bottom) in the homogenous

Waves in 
Inhomo.
Media

Wave in 
Homo.  
Medium

Ensemble 
Average

u

u0 u0

u Tu

Tu

u1=u-u0 Tu1=Tu-u0

                                                                    a                                   b

FIGURE 5.6. Time traces (bold curves) after traveling through random media con-
taining inhomogeneities with wavelengths longer than the wavelength of the propa-
gating wave. Fine broken traces show the differences from the time trace in the ho-
mogenous medium u0 , which is shown next to the bottom. The bottom trace is the
ensemble average: (a) raw traces; (b) travel-time corrected traces.
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medium, which corresponds to scattered waves u u u1 0= − . The ensemble average
of the square of the fine broken traces (not shown), which is used to predict scat-
tering attenuation by the ordinary Born approximation, is large. A blind application
of the Born approximation thus predicts a large attenuation because of the relative
travel-time shift due to the long wavelength structure. Thus, we find a link between
the predicted large attenuation caused by large forward scattering for high frequen-
cies and the travel-time fluctuation caused by the velocity inhomogeneity.

Seismological attenuation measurements are done by measuring amplitudes of
pulse-like direct waves irrespective of travel times because travel-time fluctuations
are unobservable on individual seismograms. Ignoring travel-time fluctuations is
similar to correcting for them, so that waveforms Tu appear aligned, as illustrated
in Figure 5.6b. The ensemble average trace after travel-time correction Tu  is
shown as the bottom trace in Figure 5.6b. The difference between each observed
trace and the wave trace in the homogenous medium, T Tu u u1 0= − , has a small am-
plitude, as shown by a fine broken curve. Since the difference is small, we find that
predicted scattering attenuation is small. We may say that the amplitude decay of

Tu  corresponds to the conventional attenuation measurement [Sato, 1982a, b,
1984a, b].

The stochastic treatment of wave propagation through random media has been
extensively studied using the mean wavefield theory and the smooth perturbation
method [Karal and Keller, 1964; Frisch, 1968; Beaudet, 1970; Howe, 1971; Sato,
1979]. Wu [1982b] showed that the mean wavefield u decays exponentially due
to a loss of coherency at a more rapid rate than predicted by point measurements
made for a single realization of the random medium. Wu [1982a, b] pointed out
that the predicted attenuation of the mean wavefield is related only to the statistical
treatment of the ensemble of random media and is unrelated to attenuation meas-
urements in a real medium. The relationship between the stochastic averaging pro-
cedure and the attenuation measurement in seismology has been made clear based
on these studies. This will be further discussed in Section 5.3.2.

We can use the results of the above thought experiment to modify the Born
scattering theory to make a prediction of scattering attenuation consistent with the
manner in which seismological observations are made. Our approach is to subtract
the travel-time shift caused by the long wavelength component of velocity fluctua-
tion and then calculate scattering amplitude based on the Born approximation.

      δξ(x)     =    δξ
L
(x)     + δξ

S
(x)

Travel Time 
Fluctuation

Scattering Loss
Coda Excitation

λW

λC

λ>λC
λ<λC

FIGURE 5.7. Decomposition of the fractional fluctuation of wave velocity into two
components in the case of cutoff-wavelength λ λC W= 2 , where λW  is the dominant
wavelength.
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Scattering attenuation will then be given by an ensemble average of the integral over
the solid angle of the square of travel-time corrected scattering amplitude.

For an incident wave of dominant wavelength λW , we first decompose the
fractional fluctuation of wave velocity ξ x( ) into long-wavelength and short-
wavelength components by choosing a cutoff wavelength λC = λ υW C/ :

ξ ξ ξx x x( ) = ( ) + ( )L S (5.7)

Figure 5.7 shows the concept of decomposition in the case of υC = 1 2/ . The de-
composition is accomplished using the Fourier transform:
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where k W= 2π λ/ is the wavenumber of the incident wave and υCk  is the cutoff
wavenumber for the velocity fluctuation. The corresponding power spectral densi-
ties are given by

P m P m H k mC
L ( ) = ( ) −( )υ  and P m P m H m kC

S ( ) = ( ) −( )υ (5.9)

Then the long-wavelength component of velocity fluctuation causes a travel-time
fluctuation whose size is given by a 1-D integral along the incident ray path. For
plane wave incident along the third axis,

δ ξt
V V

dx
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dx
x x

x
x
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L (5.10)

In differential form,

∂ δ δ ξ ∂ ∂ δi i i jt
V

t= =1
0

0
3

L and (5.11)

where the latter condition is added [Yoshimoto, 1995] to ensure that the travel-time
correction term is locally constant on a plane normal to the incident ray and its sec-
ond derivative with respect to the propagation direction is also zero since the spatial
variation of the long-wavelength component is small. Subtracting the travel-time
fluctuation δt x( ) , we can define the travel-time corrected wavefield as

u t u t tT( , ) ,x x x= + ( )[ ]δ (5.12)

where prefix “T” denotes the travel-time correction. Substituting (5.12) in (4.4)
and neglecting second-order quantities, we get the wave equation
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We decompose the wavefield into the incident plane wave u0 which satisfies the
homogenous wave equation (4.6) and the first-order perturbation term T u1:

T Tu u u= +0 1 (5.14)

where Tu u1 0<< . Substituting u t ei k t0 3x e x,( ) = −( )ω  as the incident wave propagat-
ing to the third direction in (5.13) and using (5.11),
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V
u k et

T i k t∂ ξ ωS x e x (5.15)

where ω = V k0 . Accounting for the travel-time correction gives the result that
waves are scattered only by the short-wavelength components of the inho-
mogeneity. As done in Section 4.1, we solve (5.15) under the condition that the in-
homogeneity is localized in a volume having dimension L  around the origin, where
L a> . Using the retarded Green function given by (4.10) and following a proce-
dure like the one that leads to (4.13), spherically outgoing scattered waves in the far
field are given by
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The longer wavelength component ξL x( ) causes travel-time fluctuation; scattering
due to shorter wavelength component ξS x( ) excites coda waves. The travel-time
corrected scattering amplitude can now be written using the Fourier transform of
the short-wavelength component of the fractional fluctuation:
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Substituting (5.17) in (4.20), we get the travel-time corrected scattering coefficient
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where C  is the cutoff scattering angle corresponding to the cutoff wavenumber 
in (5.8):

C 2sin 1 C

2
        (5.19) 

Integrating (5.18) over the solid angle as in (5.4), we get the scattering attenuation 
as
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where prefix “TSc” denotes scattering attenuation based on the travel-time cor-
rected Born approximation. Adjusting for the travel-time fluctuation resulted in 
the introduction of a lower bound for the integral in (5.4) that reduces the scatter-
ing attenuation for large wavenumbers, that is, the travel-time correction is 
equivalent to neglecting the contribution of large forward scattering within a cut-
off scattering angle when calculating scattering attenuation. 
 When the ACF is exponential, 

TScQ 1( ) = 4 2a3k 3

1+ a2k 2 2( )
2

C

2

d =
2 2a3k 3 4 C

2( )
1+ C

2a2k 2( ) 1+ 4a2k 2( )

2 4 C
2( ) 2a3k 3 for ak << 1

4 C
2( )

2 C
2

2

ak
for  ak >> 1

  (5.21)

The resultant scattering attenuation decreases with increasing frequency for high 
frequencies. We plot the travel-time corrected scattering attenuation for C =1/2
(solid) and 1/4 (broken) in Figure 5.5. As C  decreases, the travel-time correction 
becomes weaker and scattering attenuation increases, particularly for larger 
wavenumbers. The minimum fractional velocity fluctuation cutoff wavelength C ,
for which a wave having wavelength W  will have the same sign of travel-time 
fluctuation over its wavelength, is C = 2 W . This corresponds to C =1/2 and

C 2sin 1
C / 2( ) 29  [Sato, 1982a, b]. We will use this value in the following. 

Then, (5.21) becomes
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and

TSc
MaxQ ak− ≈ ≈1 21 8 2 2. .ε at (5.23)

Thus, correcting for the travel-time fluctuation, we get scattering attenuation that has
a peak whose amplitude is of the order of the MS fractional fluctuation and that de-
creases with the reciprocal of wavenumber for large wavenumbers. The resultant
scattering attenuation satisfies condition (5.6) TScQ ak− <<1 1 for high frequencies if
ε2 1<< . For the calculation of attenuation, Chernov [1960, p.56] proposed to inte-
grate outside of angle ψ C ak= 1/ , by arguing that forward scattering causes only
phase fluctuations.  Wu [1982a] proposed a method to calculate the scattering at-
tenuation specifying   ψ C = 90o in (5.20) by arguing that this is the back-scattered
energy, which is lost, and that forward scattered energy is not lost. Wu’s [1982a]
proposal corresponds to υC = 2 , which gives a smaller peak attenuation for the
same fractional velocity fluctuation. Dainty [1984] and Menke [1984b] discussed
the general relationship between the spectra of inhomogeneity and corresponding
scattering attenuation in the frequency domain.

Taking the third axis as the incident ray direction and writing x = x⊥ , z( ) in
(5.10), we get the MS travel-time fluctuation for travel distance Z a>>  as
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where z z zc d' /= + 2 and z z zc d" /= − 2 . This travel-time fluctuation does not con-
tain diffraction effects. For the exponential ACF,
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where we used (2.10). For the Gaussian ACF,
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where we used (2.8). The MS travel-time fluctuation increases with increasing
travel distance. The travel-time fluctuation will be discussed in relation to the phase
fluctuation in the parabolic approximation in Chapter 8.

5.3.2 Use of the Born Approximation for Estimating Scattering
Attenuation of Elastic Vector Waves

Following the procedure described in Section 5.3.1 for scalar waves, we will
now describe the procedure to correct for travel-time fluctuation due to long wave-
length velocity structure to estimate scattering attenuation for vector waves that is
consistent with seismological observation methods. We define the travel-time cor-
rected vector wavefield T u , which is related to vector wavefield u  as

u x u x x, ,t t tT( ) = + ( )[ ]δ (5.27)

where travel-time fluctuation δ δt t P=  or δt S  for incident P- or S-waves propagat-
ing to the third direction, respectively. Substituting (5.27) in (4.27), we get the wave
equation for T u as
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where terms of the second power of δt  or higher order and cross terms of δt  and
fluctuations of elastic coefficients are neglected. We solve (5.28) using the first-
order perturbation method. We decompose the vector wave into the incident plane
wave that satisfies the homogeneous equation (4.33) and the scattered wave having
small amplitude:

T Tu u u= +0 1 (5.29)
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where T u u1 0<< . The perturbation term satisfies
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where Tij  is the stress tensor defined by (4.28), the first term on the right-hand side
is the equivalent body force due to the inhomogeneity given by (4.35), and the sec-
ond term is the equivalent body force corresponding to the travel-time correction:
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We first decompose the fluctuation of P-wave velocity following (5.7):

δα δα δα( ) ( ) ( )x x x= +L S (5.32)

where
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where υC k  is the cutoff wavenumber for a given angular frequency. For an inci-
dent plane P-wave propagating along the third axis, the travel-time fluctuation satis-
fies (5.11):

∂ δ δ δα
αi

P
it = 3

0
2

L

    and ∂ ∂ δi j
Pt = 0 (5.34)

The latter condition is according to Yoshimoto et al. [1997a] as discussed in rela-
tion to (5.11). This condition allows us to neglect the second line of eq. (5.31).
Combining (5.31) and (5.34) for an incident plane P-wave of unit amplitude propa-
gating along the third direction (4.36),

C
i
P

i
i k tf t k eδ ωρ δα δ ωx x e x,( ) = ( ) −( )2 0 3

3L (5.35)

Solving (5.30) for body forces (5.35) and (4.37), we get scattered waves as outgo-
ing spherical waves from the inhomogeneity. Then, the travel-time corrected PP-
scattering amplitude having prefix “T” is given as a sum of terms given by (4.46)
and correction terms:

T
r
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r
PP C

r
PPF F F, , , , , ,ψ ζ ψ ζ ψ ζ= +   (5.36)
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where the correction terms having prefix “C” are
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In the same manner, the fluctuation of S-wave velocity is decomposed to

δβ δβ δβ( ) ( ) ( )x x x= +L S (5.38)

where
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where υCl is the cutoff wavenumber for a given angular frequency. For an incident
plane S-wave propagating along the third axis, the travel-time fluctuation satisfies

∂ δ δ δβ
βi

S
it = ( )
3

0
2

L x
   and ∂ ∂ δi j

St = 0    (5.40)

For the incidence of a plane S-wave (4.38) propagating in the third direction, having
unit amplitude, and polarized in the first direction, we combine (5.31) and (5.40) to
find the equivalent body force term

C
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i
i l tf t l eδ ωρ δβ δ ωx x e x,( ) = ( ) −( )2 0 1

3L (5.41)

Solving (5.30) for body forces (5.41) and (4.39), we get the scattered waves as
outgoing spherical waves from the inhomogeneity. The travel-time corrected SS-
scattering amplitude is given as a sum of terms given by (4.46) and correction
terms:

T
r
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r
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r
SSF F F, , , , , ,ψ ζ ψ ζ ψ ζ= +   (5.42)

where the correction terms are
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The correction terms for both P- and S-waves are nonzero only within a cone in the
forward direction satisfying ψ ψ< C. Correction terms (5.37) and (5.43) are
slightly different from the corresponding correction terms in Sato [1984a] because
of the second condition of (5.34) and (5.40), but the following results are quantita-
tively similar to those given in Sato [1984a, 1990].

As discussed in Section 4.2.2, we assume that the fractional fluctuations for
α βand  are given by one isotropic and homogeneous random function ξ x( ) as in
(4.47). Using Birch’s law, the fractional fluctuation of density is taken to be pro-
portional to ξ x( ) as given by (4.48). Then, combining (4.49) with (5.36), (5.37),
(5.42), and (5.43), the scattering amplitudes are written by using the Fourier trans-
form of ξ x( ), where the argument is the exchange wavenumber vector corre-
sponding to each scattering mode:
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Travel-time correction has been done only for PP- and SS-scattering since the time
correction is necessary only when the scattered wave and the incident wave are the
same wave type. As shown in Figure 4.9, basic scattering patterns X*

**  for conver-
sion scattering have no lobes in the forward direction. Here, T X*

**  is a function of

angle ψ ζ,( ) representing the basic scattering pattern including the effect of travel-
time correction:
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Contrary to the scalar wave case, the travel-time correction for vector waves does
not completely eliminate the contribution of scattering within a cone defined by cut-
off scattering angle ψC around the forward direction. However, for angles smaller
than ψC , the travel-time correction makes the scattering amplitude very small. In
addition, T

r
PP T SS T SSX X X0( )= 0( )= 0( ) =, , ,ζ ζ ζψ ζ 0. This means that the correction for

the travel-time fluctuation is almost the same as neglecting scattering loss within a
cone around the forward direction. Figure 5.8 shows the ψ dependence of basic
scattering patterns for the travel-time corrected Born approximation, where γ 0= 3 ,
ν =0.8 and υC =1/2. The backward scattering coefficient for the S-wave is the same
as (4.54) since (5.43) shows that the travel-time correction does not effect scattering
for angles larger than the cutoff scattering angle ψC .

We imagine an ensemble of media having fluctuations described by { ξ x( )}.
Then, we define scattering coefficients with travel-time correction as in (4.52):
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where we write the ensemble average of the squared scattering amplitude per unit
volume by using the PSDF of the random fluctuation. Scattering loss is written as
an integral of the scattering coefficient over a solid angle as an extension of (5.4):
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Substituting (5.46) and (4.52b and c) in (5.47), we finally get
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For PS- and SP-conversion scattering, the argument of the PSDF in (5.48) cannot
take a value smaller than γ γ0 01−( )l /  for a given angular frequency, that is, only
the short wavelength components of the random inhomogeneity contribute to scat-
tering loss.
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FIGURE 5.9. (a) Frequency dependence of scattering attenuation TSc

SQ−1  (solid curve)
and TSc

PQ−1  (broken curve) and (b) ratio of TSc

PQ−1  to TSc

SQ−1 theoretically predicted by the
travel-time corrected Born approximation for the exponential ACF (κ = 0 5. ) for
γ 0 3= , ν = 0 8. , and υC = 1 2/  ( ψ

C
≈29˚), where l = ω β/ 0 .
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Exponential ACF

For the case of the exponential ACF, substituting the PSDF (2.10) in (5.48) and
taking the grid size to be 0.5˚⊗0.5˚ for cos− ⊗1 w φ , we numerically integrate to get
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For low frequency, aω β/ 0 1<< ,
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where TSc
P

TSc
SQ Q− − ≈1 1 2 2. . Thus, scattering attenuation decreases according to the

reciprocal of frequency for both P- and S-waves.
Figure 5.9 shows the frequency dependence of scattering attenuation for P-

waves, S-waves, and their ratio, where the abscissa is scaled S-wave wavenumber
al . Ratio TSc

P
TSc

SQ Q− −1 1  is smaller than 1 for lower frequencies; however, it be-
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FIGURE 5.10. Theoretical prediction of S-to-S backscattering coefficient gSS

π  vs. fre-

quency for vector waves ( β0 4= km/s , γ 0 3= , ν = 0 8. ): solid curve for the exponential
ACF ( κ = 0 5. , ε2 0 01= .  and a = 2 km ); broken curve for the von Kármán ACF

( κ = 0 35. , ε2 0 0072= . a = 2 1. km ). Background shows total scattering coefficient g
0

and backscattering coefficient gπ based on coda-excitation measurements for vari-
ous regions of the world shown in Figure 3.10.
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comes larger than 1 for higher frequencies. Comparing different scattering modes,
we find that SS scattering is dominant in S-wave attenuation [see Sato, 1984a, Fig.
10].

We plot the theoretical S-to-S backscattering coefficient gSS
π  (4.57) for the ex-

ponential ACF where ε2=0.01 and a=2 km using solid curves along with both
backscattering coefficient and total scattering coefficient measured from S-coda ex-
citation of local earthquakes from various regions of the world in Figure 5.10. We
plot the theoretical scattering attenuation of S-waves TSc

SQ−1 and ratio TSc
P

TSc
SQ Q− −1 1

along with worldwide observations in Figure 5.11. The theoretical curves provide a
good fit to the observed data.

von Kármán ACF

The predicted rate of decrease in QS
−1  with increasing frequency at high fre-

quency given by (5.51) appears to be faster than observations [see Figure 5.11a].
Using data collected in the Kanto area, Japan, Sato [1984b, 1990] and Kinoshita
[1994] estimated that Q fS

− −∝1 0 7. . Introducing the von Kármán ACF, by substi-
tuting (2.12) in (5.48), we get frequency dependent scattering attenuation that de-
pends on the order κ for high frequency, aω β/ 0 1>>  as
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FIGURE 5.11. Values of (a) TSc

SQ−1 and (b) ratio of TSc

PQ−1 to TSc

SQ−1 vs. frequency pre-

dicted by the travel-time corrected Born approximation for β0 4= km/s, γ 0 3= ,
ν = 0 8. , and υC = 1 2/ : solid curve for the exponential ACF ( κ = 0 5. , ε2 0 01= . and
a = 2 km); broken curve for the von Kármán ACF ( κ = 0 35. , ε2 0 0072= . and
a = 2 1. km). Background shows regional measurements worldwide as given by Fig-
ures 5.1 and 5.3.
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The backscattering coefficient for this case is given by (4.56) and is shown in Fig-
ure 4.10 by a broken curve for κ =0.35 corresponding to TSc

SQ f− −∝1 0 7. . Figure
5.12 shows the frequency dependence of S-wave attenuation and the ratio of P- to
S-wave attenuation for κ =0.35 and κ =0.5 (Exponential ACF). For κ =0.35 the
ratio of P- to S-wave attenuation is 2.03 at high frequencies. The ratio slightly de-
creases as order κ  becomes smaller. In Figures 5.10 and 5.11, broken curves show
theoretical predictions for the von Kármán ACF with κ =0.35, ε2=0.0072 and
a=2.1 km along with data observed throughout the world.

Evaluation of Cutoff Scattering Angle

As shown in Figure 5.5, the choice of the cutoff scattering angle impacts the
attenuation predictions made by the single scattering theory. Several investigators
have evaluated scattering attenuation using 2-D acoustic finite difference simulation
for media having random velocity fluctuation to estimate the cutoff scattering angle,
or the lower bound for the integral over the scattering angle [Frankel and Clayton,
1986; Roth and Korn, 1993]. For the 2-D scalar wave equation, the travel-time cor-
rected scattering attenuation is similar to that in 3-D given in (5.20). For the expo-
nential ACF,
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FIGURE 5.12. (a) Frequency-dependence of predicted scattering attenuation for S-
wave TSc

SQ−1  and (b) ratio TSc

P

TSc

SQ Q− −1 1  for the von Kármán ACF (κ = 0 35. , broken curve)
and the exponential ACF (κ = 0 5. , solid curve) for γ 0 3= , ν = 0 8. , and υC = 1 2/
( ψ

C
≈29˚), where l = ω β/ 0

.
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where ψC  is the lower bound of the angular integral. Frankel and Clayton [1986]
measured the apparent attenuation of direct amplitude with travel distance from
their 2-D numerical simulations and plotted apparent attenuation against the product
of wavenumber and correlation distance for the exponential ACF with ε=10%.
They found that apparent attenuation measured from their simulations roughly fol-
lows the theoretical curve given for 0 2 6. < <ak  by (5.53) when ψC =30˚–45˚. The
lower bound of angle ψC  for the calculation of scattering loss was examined using
numerical experiments for a wider range of media parameters by Roth and Korn
[1993]. Changing the RMS fractional fluctuation from 3 to 9% and using the expo-
nential ACF, they measured scattering loss from the amplitude change of an iso-
lated pulse over travel distance in 2-D acoustic random media. Their results are
shown in Figure 5.13. For 0 2 20. < <ak , they concluded that ψC  ranges from 20
to 40˚. The studies of Frankel and Clayton [1986] and Roth and Korn [1993] pro-
vide evidence supporting the value of 29˚ proposed for the 3-D case. Fang and
Müller [1996] preferred that the lower bound of scattering angle about 20˚ for scat-
tering attenuation based on measurements of the decay of the envelope maximum
and spectral amplitude with travel distance. Only Jannaud et al. [1991b] suggested
that the critical scattering angle could be as large as 90˚.

For the calculation of scattering attenuation through distributed cracks, the idea
of neglecting scattering energy within a cone around the forward direction is useful.
From the measurement of amplitude attenuation through an aluminum block con-
taining parallel cylindrical voids, Dubendorff and Menke [1986] found that the ap-
parent attenuation was well fit by the corrected scattering attenuation model when
the cutoff scattering angle is 10˚ for P-waves, 6˚ for SH-waves, and 15˚ for SV-
waves.

FIGURE 5.13. Scattering attenuation in 2-D acoustic random media. Irregular line
shows measurements made from 2-D finite difference simulations. Regular lines
show predictions of (5.53) for various values of ψ

C . Medium is characterized by an
exponential ACF with ε=9%. [From Roth and Korn, 1993, with permission from
Blackwell Science, United Kingdom.]
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Diffraction Effects

The derivation of scattering attenuation using the Born approximation can be
viewed as a kind of differential approach since the correction for travel-time fluc-
tuation is given in differential form in (5.11). Diffraction effects caused by long-
wavelength components of the inhomogeneity were neglected. These diffraction
effects become increasingly important as travel distance increases.

Shapiro and Kneib [1993] investigated this phenomena in detail for isotropic
random acoustic media in 2-D and 3-D. They measured the decay of amplitude of
the coherent wavefield u  and that of the mean logarithm of amplitude ln A0

with travel distance in a frequency range dominated by forward scattering. Recall
that coherent wavefield is the mean wavefield from many realizations of random
media (see Figure 5.6a). Regressions of ln A0  vs. travel distance are common

methods for measuring attenuation in the earth. Figure 5.14a shows ln A0  and

ln u predicted by the parabolic approximation (see Section 8.1.1) at 100 Hz
against travel distance for short travel distances in 3-D, where 100 Hz corresponds
to a wavelength of 30 m and ak ≈4.2. ln u  decreases linearly with travel distance.
However, ln A0 decreases more slowly and is similar to the curve predicted by

Wu’s [1982a] approximation for short travel distances that uses   ψ C = 90o  and
counts scattering only into the back half-space for the estimation of scattering at-
tenuation. This means that attenuation of the coherent wavefield is caused mainly
by travel-time fluctuations but that backscattering alone is insufficient to explain the
observed amplitude attenuation. Shapiro and Kneib [1993] also measured ln A0

Wu [1982]
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FIGURE 5.14. (a) Plots of logarithm amplitude vs. travel distance of 100 Hz waves in
a 3-D acoustic random medium of average velocity V0=3 km/s having an exponential
ACF with a=20 m and ε=3%. The bold convex curve is ln A0 predicted from the
parabolic approximation theory. The broken curve is the prediction by Wu [1982a]
who used single scattering theory with   ψ C = 90o . (b) Plots of logarithm amplitude vs.
travel distance of 100 Hz waves in a 2-D acoustic random medium of the same statis-
tical characteristics as in (a). Dots are ln A0 measured from numerical simulations.

The bold convex curve is ln A0 predicted from the parabolic approximation theory,
and the horizontal bar corresponds to saturation due to strong scattering. [From
Shapiro and Kneib, 1993, with permission from Blackwell Science, United Kingdom.]
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from 2-D finite difference calculations for the scalar wave equation by taking many
point measurements of the wavefield, computing the spectra, and averaging the
natural logarithms. Figure 5.14b plots ln A0  vs. distance at long travel distances
measured from the numerical simulations. Numerical results, represented by dots,
agree well with the bold convex curve, which is predicted to be due to de-focusing
of the wavefield by the parabolic approximation for the specific model structure
with ak >>1, where backscattering is neglected. Even though the medium fluctua-
tion is small, at distances larger than 500 m in the simulation, the mean logarithm
amplitude stays at the same level irrespective of travel distance because of the
dominance of the incoherent wavefield due to diffraction and forward scattering.
There is a difference between the global estimate and the local estimate of attenua-
tion. The parabolic approximation does not work for obtaining scattering attenua-
tion over a wide range of frequencies, since it is a high-frequency approximation.
However, the results of Shapiro and Kneib [1993] show that logarithms of ampli-
tude spectra do not decay linearly with travel distance over a broad distance range.
They raised concern about the careless use of the linear regression to estimate the
characteristics of random media.

In Chapter 8 we will discuss the use of the parabolic approximation to model
the scattered wavefield for strong forward scattering. Rather than study the first ar-
rival amplitude, we will show that it is more appropriate to model and analyze the
shape of the envelope containing the first arriving energy. Strong diffraction causes
much slower decay of the peak amplitude of the envelope than exponential. The
spectra of random inhomogeneities seems to be very broad in the earth, therefore,
we will have to include the contribution of diffraction effects due to long-
wavelength inhomogeneities when modeling amplitude attenuation in addition to
large angle scattering due to short-wavelength inhomogeneities.

Scattering Attenuation in One-Dimensional Inhomogeneous Elastic
Media

As discussed in Section 2.2, well-log data clearly show evidence for random
inhomogeneity in the earth. The importance of stratigraphic effects in causing
transmission attenuation was raised by O’Doherty and Anstey [1971]. Richards
and Menke [1983] studied wave propagation though a 1-D multilayered structure
as a model of the heterogeneous crust. Their model is composed of a sequence of
layers each having one of two different velocities with thickness distributed as a
Poisson process, as illustrated in Figure 5.15a. They investigated waveform char-
acteristics caused by scattering and intrinsic attenuation through stratified media.
Figure 5.15b shows the transmission responses for an impulsive source in two
cases. The upper trace shows strong excitation of high-frequency coda waves for a
medium having no intrinsic attenuation IQ− =1 0. The lower trace shows that, for a
medium having frequency-independent intrinsic attenuation IQ− =1 0 01. , high-
frequency components in the coda diminish in size. Scattering causes a broadening
of the pulse width with increasing travel distance but preserves the high-frequency
content of a waveform. Such a modulation effect has been studied as a tool for
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characterizing random media [Lerche and Menke, 1986; Burridge et al., 1988,
1989].

The scattering attenuation for an elastic wave traveling through 1-D random
media can be derived using the mean wavefield theory or the Born approximation
[Sato, 1982a; Wenzel, 1982; Banik et al., 1985]:

TScQ k k P k− ( ) = ( )1 2Imp.  (5.54)

where PImp.  is the PSDF of the fractional fluctuation of impedance and the argu-
ment of the PSDF is the exchange wavenumber equal to twice the wavenumber of
the incident wave, which corresponds to backward scattering. For 1-D media, using
the travel-time correction is equivalent to neglecting forward scattering, which has
zero exchange wavenumber. This formula has been used to study scattering loss in
a 1-D random structure derived from well-log data [Görich and Müller, 1987]. It
has also been derived from a self averaging procedure [Shapiro and Zien, 1993].

Shiomi et al. [1996] numerically examined elastic wave propagation in 1-D
random media having PSDF ∝ −k 1 5.  for fractional fluctuation of elastic wave ve-
locity with RMS fluctuation of 15% and mass density PSDF ∝ −k 1 3.  with RMS
fractional fluctuation of 6%. They studied a suite of models, each 1 km long. Each
sample medium was divided into 2,000 layers having thickness of 0.5 m. They
used an exact solution for the wave equation and numerically simulated wave
propagation in time. The amplitude of the incident Ricker wavelets decay with
travel distance as coda waves are excited. Apparent attenuation vs. frequency was

FIGURE 5.15. (a) Acoustic velocity log for a medium composed of layers having one
of two velocities; (b) Transmission response for an impulsive signal propagating
through the medium illustrated in (a) for two values of intrinsic attenuation. [From
Richards and Menke, 1983, copyright by the Seismological Society of America.]
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estimated by measuring the change with propagation distance of the amplitude of
the first trough in the first arriving wave packet. Figure 5.16 shows the measured
apparent attenuation against frequency where each solid circle is an ensemble aver-
age over 10 trials for media having the same statistical characterizations and for
Ricker wavelet sources having the corresponding central frequency. The solid curve
in Figure 5.16 shows scattering attenuation predicted from (5.54), which is nearly
proportional to the –0.5th power of frequency for the given structure. The ampli-
tude decay of the first arriving trough is well explained by the first-order perturba-
tion method; however, they found that the maximum trace amplitude between the
first trough and the following peak does not agree with the single scattering theory
and they argue that the theory needs to include contributions from multiple reflec-
tions to provide a better fit to the later portions of the waveforms.

5.4 SCATTERING ATTENUATION DUE TO DISTRIBUTED
CRACKS AND CAVITIES

As discussed in Section 2.1, microscopic cracks are known to be pervasive in
crustal rocks. Several models for predicting the influence of cracks and inclusions
in rocks on elastic properties have been developed since the pioneering work of
Walsh [1965]. Although Walsh’s work was based on a static model, other models
were based on a dynamic approach, in which the scattering of waves by cracks and
inclusions having lengths much smaller than the seismic wavelength was modeled.
One such model was due to Budiansky and O’Connell [1976]. This model used a
self-consistent approach in which the interaction of cracks was not specifically cal-
culated but the effects of other cracks were incorporated by considering that the
media surrounding a given crack have the unknown elastic properties of a rock
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FIGURE 5.16. Apparent attenuation of the first-trough amplitude of a Ricker wavelet
with travel distance (solid circles) and scattering attenuation (solid curve) predicted
from (5.54), where the shaded region shows the standard deviation of the measure-
ments from the 10 trials for each frequency. [Courtesy of K. Shiomi.]
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containing a distribution of cracks. The models of Walsh [1965] and Budiansky
and O’Connell [1976] both predict that, to first order, the effect of cracks on the
elastic properties of rocks is scaled by a parameter known as the crack density,
which is the ratio of the total porosity of all the cracks to the aspect ratio of the
cracks. Several models have been developed to predict the effects of empty and
fluid-filled cracks on intrinsic seismic attenuation, as discussed in Section 5.2.
These models were developed to predict the bulk properties of rocks, so little atten-
tion was paid to the character of the scattered wavefield. It is natural to imagine a
single crack or a distribution of cracks as the heterogeneity and to investigate the
characteristics of the scattered wavefield.

There have been several attempts to solve the boundary value problem for the
scattered wavefield caused by plane waves incident on an isolated spherical inclu-
sion [Ying and Truell, 1956; Einspruch et al., 1960; Yamakawa, 1962; Korneev
and Johnson, 1993a, b]. Gritto et al. [1995] and Korneev and Johnson [1996] ex-
amined conversion scattering characteristics for the incidence of both P- and S-
waves on a spherical inclusion. They pointed out the significant amount of P-to-S
scattering compared with S-to-P scattering.

Kikuchi [1981] analytically calculated elastic wave attenuation due to distributed
cracks of half-length aC in 2-D space. The crack is geometrically described as the
limit of an ellipsoid on which the stress is free. The resultant scattering attenuation
QP

−1 for waves arriving normal to the crack plane has a peak at a kC ≈ 0 64. , and the

peak value is a few times larger than the peak value of scattering attenuation QS
−1.

However, it is difficult to imagine open cracks having dimensions large enough to
be comparable to regional seismic wavelengths deep within the earth. Kawahara
and Yamashita [1992] used an integral equation to examine elastic wave attenuation
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FIGURE 5.18. Schematic illustration of
distributed cylindrical cavities and the
incident SH-wave u0 x,ω( ) , where total
wavefield is given by u x,ω( ).

FIGURE 5.17. Scattering loss due to
aligned nonopening cracks for SH-
waves having various incident angles
relative to the plane of the aligned
cracks, where nC is the number density
of cracks, and l=ω/β0. [From Kawahara
and Yamashita, 1992, with permission
of Birkhäuser Verlag AG, Switzerland.]
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for waves at oblique incidence on a fracture zone containing randomly distributed
cracks whose planes are aligned parallel to the fracture plane. Figure 5.17 shows
scattering attenuation for SH-waves, where the peak at a lC ≈ 1 4.  is almost inde-
pendent of the incidence angle [Kawahara and Yamashita, 1992]. The higher
wavenumber asymptote of scattering attenuation is proportional to the reciprocal of
the wavenumber. If we fit the scattering attenuation to the predicted peak in ob-
served attenuation at 0.5 Hz discussed in Section 5.1, aC ≈ 1 8.  km. It is difficult to
imagine such large cracks in the earth. Yamashita [1990] used an integral equation
to calculate SH-wave scattering attenuation through a medium composed of a dis-
tribution of cracks whose half-sizes aC  obey an inverse power of dimension and
whose orientations are random. He discussed the change in scattering attenuation in
relation to the power of the crack size distribution. Later, using the boundary inte-
gral method, Murai et al. [1995] numerically simulated SH-wave propagation
through a medium containing 72 distributed parallel plane cracks containing New-
tonian viscous fluid. Matsunami [1990] measured attenuation and amplitude fluc-
tuation of acoustic waves propagating through an aluminum plate with many clus-
ters of small open holes. He found a peak in Q−1 when the wavelength is about 1.5
times the average diameter of the cluster of holes. For all models investigated, the
crack model predicts a peak in Q−1 when the wavelength is of the same order as the
dimension of the crack.

Scattering attenuation due to distributed cylindrical cavities was analytically
studied using a scattering matrix by Varadan et al. [1978]. Numerical synthesis of
time domain seismograms for waves incident on a distribution of open cavities was
done by Benites et al. [1992]. They used the boundary integral method to deter-
ministically model multiple scattering of SH-waves in 2-D media containing a dis-
tribution of randomly spaced cylindrical cavities of radius aC , as schematically il-
lustrated in Figure 5.18. Since an exact numerical method was employed, they were
able to investigate wave scattering in media containing strong velocity contrasts.
The boundary integral approach used by Benites et al. [1992] was a frequency-
domain implementation. The total SH-wavefield u x,ω( ) at angular frequency ω
obeys the Helmholtz equation:

Δ +( ) ( ) =l u2 0x,ω  (5.55)

where wavenumber l = ω β/ 0 . The solution is written in the form of an indirect in-
tegral representation where the total wavefield is the sum of the incident wave and
scattered waves from sources located along the boundaries of the M cavities:

u u G dc
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x x x x x x, , ' , ' , 'ω ω ω ω( ) = ( ) + −( ) ( ) ( )
=
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−

0

1

Λ  (5.56)

where x'  is the location of a source Λ i  for the scattered wavefield, dci  is an infini-
tesimal line element, and a circle Ci−  is interior to boundary Ci  of the ith cavity.
Practically they took the radius of Ci−  as 80% of the radius of Ci to avoid the sin-
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gularity of the Green function at the location where boundary conditions must be
met. The Green function corresponding to outgoing waves at a large distance is
written using the Hankel function of the first kind of zeroth order as

G
i

H lrx, ( )ω( ) = − ( )
4 0

1   (5.57)

where r ≡ x . It is the solution of

Δ +( ) ( ) = ( )l G2 x x,ω δ  (5.58)

It is necessary to describe the boundary condition to solve (5.56), since it is a class
of indirect integral representation problems. Benites et al. [1992] discretized the
source distribution for the i-th cavity as

Λ i ij ij
j

N

Ax x x, 'ω ω δ( ) = ( ) −( )
=

∑
1

 (5.59)

where Aij  is a complex constant that represents the strength of the source located at
the jth point along a circle Ci−  of the ith cavity xij '  and N is the number of sources.
The minimum number of sources required is 2 4π λaC S/( / ) for wavelength λS .
Then, they wrote (5.56) as
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   (5.60)

They imposed the Neumann boundary conditions on the cavity surfaces in a least
square sense, that is, they minimized the square sum of traction along all bounda-
ries:
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where nk  is the outward normal vector to boundary Ck . Substituting (5.60) in
(5.61), they got a system of simultaneous linear equations for Aij :
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where asterisk stands for complex conjugate and Gmn  means G mnx x−( )' ,ω  for x
on the mth boundary. The right-hand side represents the interaction between the in-
cident wave and nth source of the mth cavity. The left-hand side represents the in-
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teraction between the nth source of the mth cavity and the jth source of the ith cav-
ity. Solving these simultaneous linear equations in the angular-frequency domain,
they get the strength of the sources Aij . By using the inverse Fourier transform of
the solutions obtained for many frequencies, they obtained synthetic seismograms
in the time domain.

Solving the problem for the incidence of a plane wave or a line source, Benites
et al. [1992] synthesized seismograms for the medium containing 50 cavities illus-
trated in Figure 5.19a. They numerically simulated waves on the earth’s surface for
a Ricker wavelet incident from below. They found that the S-coda is composed of
many wave trains following the direct S-wave arrival. They also measured the am-
plitude of direct SH-wave against travel distance through an infinite medium that
includes a region containing distributed cavities, like that shown in Figure 5.19a,
and calculated scattering attenuation. Solid circles in Figure 5.19b show the calcu-
lated scattering attenuation for the SH-wave, which has a peak amplitude of the or-
der of 0.01. Their scattering attenuation measurements are well explained by the
solid curve which is obtained by using the optical theorem based on the dispersion
relationship [Kawahara and Yomogida, 1996].

Another approach for modeling wave propagation in inhomogeneous media is
to use the finite difference solution to the wave equation [Alford et al. 1974; Amin-
zadeh et al., 1994]. This approach is based on a discretization of the medium and
the equations of motion describing wave propagation. Although this method is  re-
liable for modeling wave propagation in media having relatively modest spatial
variations in elastic properties, it does not work well in media that are strongly het-
erogeneous since derivatives are calculated as averages over many grid points in the
medium, which is equivalent to assuming that the medium varies smoothly rather
than having discontinuous variations in medium properties. Finite difference simu-
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FIGURE 5.19. (a) Configuration of 50 cavities of radius aC used in numerical simula-
tions, where the SH-wave is incident from below. [From Benites et al., 1992, with
permission of Birkhäuser Verlag AG, Switzerland.]  (b) Scattering loss of direct SH-
waves due to distribution of cavities shown in (a) where l=ω/β0. Vertical bars denote
the standard deviation of measurements made from numerical simulations using the
boundary integral approach [Benites et al., 1992]. Solid curve shows the scattering
loss calculated using the optical theorem. [From Kawahara and Yomogida, 1996,
with permission of the Seismological Society of Japan.]
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lations of wave propagation in inhomogeneous media have been conducted by
Frankel and Clayton [1986] as described in Section 3.3.2. Figure 2.16 shows a
seismogram calculated using a 3-D finite difference simulation of wave propaga-
tion in a strongly heterogeneous medium. In this case, the simulation was con-
ducted to provide correct arrival times of signals in the seismogram but little atten-
tion was made to calculating the correct amplitudes.

Another approach for doing numerical simulations of wave propagation is the
phononic lattice solid method introduced by Mora [1992], in which the medium is
discretized and wave motion is transmitted by quasi-particles. The phononic lattice
solid method is an extension to wave propagation of the lattice gas [Hardy et al.,
1973] and the Boltzmann lattice gas [Holme and Rothman, 1992] approaches that
have been used to numerically simulate fluid flow including fluid flow in porous
media for geological applications [Rothman, 1988]. In the Boltzmann lattice gas
approach to modeling fluid flow, quasi-particles are used to simulate the number
density of particles in the fluid. Mora [1992] used quasi-particles traveling between
lattice points in a grid describing a medium to simulate wave propagation in hetero-
geneous media. Huang and Mora [1994] presented an improved version of the
phononic lattice solid approach for propagating waves in heterogeneous media that
they call the phononic lattice solid by interpolation. Their method is computationally
faster and more reliable in strongly heterogeneous media than the phononic lattice
solid method of Mora [1992]. Huang and Mora [1994] show how to use a
Boltzmann lattice gas approach to model the movement of quasi-particles between
lattice points, the scattering of the quasi-particles by medium inhomogeneities, and
the interaction of quasi-particles at lattice points. They demonstrate that their ap-
proach is equivalent to solving the acoustic wave equation for the inhomogeneous
medium in the macroscopic limit. Huang and Mora [1996] used the method to in-
vestigate scattering by a medium containing a suite of solid inclusions and one
containing empty pores. The inhomogeneities are randomly located and have ran-
dom sizes ranging between 0.0625 and 0.15 times the wavelength of the incident
wave. The solid inclusions have a velocity that is 25% lower than that of the sur-
rounding medium. A point source was located in the center of the medium. They
show that the seismograms obtained for the solid inclusion case are dominated by
the direct-arriving energy and have little coda whereas the seismograms for the me-
dium with empty pores contain significant coda energy whose amplitudes are
similar to those of the direct arrivals.

5.5 POWER-LAW DECAY OF MAXIMUM AMPLITUDE
WITH TRAVEL DISTANCE

Models developed in this chapter have been based on the assumption that the
first arrival amplitude decays exponentially with increasing travel distance. How-
ever, measurements of earthquake magnitude are based on the observation that the
maximum amplitude of the first arrival packet decays as a power law with increas-
ing travel distance. Richter's [1935] formula for measuring local magnitudes ML  of
earthquakes and subsequent modifications of the formula have often been based on
a linear relationship between logarithms of maximum amplitude AMax  and hy-
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pocentral distance r . This phenomenologically determined relationship applies
worldwide. Tsuboi [1954] and later Watanabe [1971] proposed the following rela-
tionship for Japan

log . logA r c MMax L= − + ( )1 73 (5.63)

Analyzing the maximum amplitude on vertical component seismograms against
hypocentral distance for 10–200 km in the Kanto–Tokai area, Japan, Noguchi
[1990] reported that the power law

log . logA r c MMax L= − + ( )1 96 (5.64)

fits the observed data as shown in Figure 5.20. These observed power-law decay
relationships have been considered empirical rules.

Mandelbrot [1983] suggested that, in general, there is a fractal structure under-
lying the occurrence of power laws. The hypocenter distribution of earthquakes has
clustering characteristics [Kagan and Knopoff, 1980]. Figure 5.21 shows the clus-
ter-like epicenter distribution of microearthquakes in Kanto, Japan. The fractal di-
mension characterizing the clustering is generally less than the Euclidean dimen-
sion: 1.6 for the epicenter distribution in Central Asia [Sadovskiy et al., 1984] and
2.2 for hypocenter distribution in Kanto, Japan [Hirata and Imoto, 1991] where the
epicenter is the projection onto the earth’s surface of the location of the hypocenter.
Amplitude attenuation of seismic waves is caused by distributed attenuation bodies

FIGURE 5.20. Maximum amplitude of
vertical component seismic waves
against travel distance in the Kanto–
Tokai region, Japan, where the solid line
is (5.64). [From Noguchi, 1990, with
permission of NIED, Japan.]

FIGURE 5.21. Epicenter distribution of
microearthquakes located in Kanto, Ja-
pan by NIED (1982–1988). Note strong
clustering of locations. [Data, Courtesy of
K. Obara.]
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regardless of whether attenuation is dominated by intrinsic mechanisms or scatter-
ing. Following the characterization of the hypocenter distribution as a fractal struc-
ture, we extend the concept of “homogenous random distribution” to “fractally
homogenous random distribution” of attenuation bodies in a statistical sense.

We consider a medium having a fractally homogenous random distribution of
attenuation bodies with effective cross section σA and number density nA in 3-D
space:

n r c rA A
DA( ) = −3 (5.65)

where DA  is the fractal dimension and cA is a scaling coefficient [Sato, 1988b].
Cross section may be considered that for either scattering or intrinsic absorption.
We may take any point as the origin in the fractally homogeneous medium. The
number of attenuation bodies within a sphere of radius r  is proportional to r DA .

For seismic energy radiated spherically from the origin, the decrease of energy-
flux density J r( )  at radius r  due to traversing a distance dr  is written as

d

dr
r J r n r r J rA A4 42 2π σ π( )[ ] = − ( ) ( )[ ]  (5.66)

Analytically integrating and making the correspondence J r Amp( ) ⇒ . 2 , we get
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For a fractal distribution of attenuation bodies, the amplitude of seismic waves
Amp.  decays exponentially with travel distance for only one value of fractal dimen-
sion DA = 3. Amp.  decays as a power of increasing distance only for DA = 2 . Fig-
ure 5.22 shows how Amp.  varies with distance on a logarithmic scale. The power-
law decay as given by (5.63) can be interpreted as the case of DA = 2 and
cA Aσ = 1 46. . The curvature of Amp. against distance r  is very sensitive to the
fractal dimension of the distribution.

Applying (5.67) to observed maximum amplitudes of acceleration seismo-
grams from 20 earthquakes in Kanto, Japan, Kishimoto and Kinoshita [1990] es-
timated fractal dimension DA  for frequencies 3–20 Hz. Fractal dimension DA was
estimated by finding the minimum AIC value for each frequency, where AIC=
−2 ×(maximum likelihood – number of free parameters) [Sakamoto et al., 1986].
The AIC is minimized around DA=2.1 for frequencies higher than 10 Hz. Their
result means that the logarithmic plot of maximum amplitude against travel dis-
tance is almost a straight line but a little bit convex. The fractal dimension estimated
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from the dependence of maximum amplitude with travel distance nearly agrees
with the fractal dimension of 2.2 for the hypocenter distribution of mi-
croearthquakes found for this region by Hirata and Imoto [1991]. Applying (5.67)
to the measurement of attenuation in New Mexico, U. S. A. [Carpenter and San-
ford, 1985], Godano et al. [1994] estimated that DA=2.3.
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FIGURE 5.22. Plot of Amp. against distance r  from (5.67), where cA Aσ = 1 46. . All
curves are normalized by their value at r =1.
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CHAPTER 6

Synthesis of Three-Component Seismogram
Envelopes for Earthquakes Using Scattering

Amplitudes from the Born Approximation

Figure 2.29 shows that the initial direction of motion of the P-wave, the ampli-
tudes of the direct P- and S-waves, and the high-frequency character of the P- and
S-coda envelopes on all three components of motion from a local microearthquake
are influenced by the angle between the fault plane and the receiver and the scatter-
ing characteristics of the lithosphere. To better understand the effects of scattering
on recorded regional seismograms, we desire a method to synthesize three-
component seismogram envelopes for realistic earthquake sources in an inho-
mogeneous medium. The simplest  way to synthesize seismograms is to sum up
all waves scattered by distributed heterogeneities in the time domain. Craig et al.
[1991] synthesized the high-frequency seismograms of a local explosion by sum-
ming up all singly scattered waves from distributed spherical obstacles; however,
this method needs detailed information about the scatterers and considerable com-
putational work. It is easier to synthesize the
MS envelope by adding the power of scat-
tered waves. Assuming the complete inco-
herence of scattered waves, Malin [1980]
synthesized the MS acoustic-wave envelope
by summing up scattered wave power. Ex-
tending the method of summing up single
scattered energy that was developed in
Chapter 3, we will introduce a way to syn-
thesize three-component seismogram en-
velops [Sato, 1984a] resulting from realistic
earthquake sources in an infinite inho-
mogeneous medium. We include the source
radiation from a point shear-dislocation and
the frequency-dependent nonisotropic scat-
tering resulting from the Born approxima-
tion that was discussed in Chapters 4 and 5.
Next, we compare the synthesized enve-
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FIGURE 6.1. Geometry of the point
shear-dislocation, where n is normal
to the fault and s represents the fault
slip direction.
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lopes with observed envelopes. In the last section, a simulation method for an in-
homogeneous half-space is introduced, and we show a comparison with high-
frequency seismogram envelopes of microearthquakes observed by a local net-
work.

6.1 EARTHQUAKE SOURCE

6.1.1 Point Shear-Dislocation

An earthquake is considered to be a rupture along a fault in the earth. We will
not concern ourselves with the dynamics of rupture propagation [see e.g. Kostrov
and Das, 1988] but instead choose to use a simple model describing nonspherical
radiation from the fault region. When the travel distance and the wavelength of radi-
ated waves are much larger than the fault dimension LF , the earthquake source can
be represented as a point shear-dislocation. This source is geometrically character-
ized by a unit vector n normal to the fault plane and a unit vector s parallel to the
direction of fault slip as illustrated in Figure 6.1. Aki and Richards [1980, p. 113]
show that the far-field displacement vector in an infinite homogenous elastic me-
dium is related to the seismic moment time function M t( ) representing the particle
slip along the fault by

u z e e e,
˙ ˙

t B
M t r

r
B B

M t r

rr
P

r
a

a

S S a

a
a

( ) =
−( ) + +[ ] −( )2

15 4
2
5 4

0

0 0
3

0

0 0
3

α
πρ α

β
πρ βθ θ φ φ         (6.1)

where z = ( )ra , ,θ φ in spherical coordinates and the overdot means time derivative.
The three orthogonal unit vectors of the spherical coordinate system are given by
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The first term in (6.1) is the far-field P-wave and the second term is the far-field S-
wave, where B B Br

P S S,  andθ φ  are the radiation patterns of P- and S-waves:
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The P-wave displacement vector has only a radial component. The S-wave dis-
placement vector appears only on transverse components. Radiation patterns are
normalized by

B d B B dr
P S Sθ φ θ φ θ φ θ φ θ φ πθ φ, ; , , , ; , , ; , ,n s n s n s( ) ( ) = ( ) + ( )[ ] ( ) =∫ ∫

2 2 2
4Ω Ω   (6.4)

where d d dΩ θ φ θ θ φ, sin( ) = . For example, for a fault whose plane is parallel to the
z z2 3- plane with normal in the direction z1  and fault slip in the z2 direction, the
fault geometry is given by n=(1, 0, 0) and s=(0, 1, 0), and the radiation patterns
are given by
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(6.5)

Figure 6.2 shows 3-D perspective views of the corresponding radiation patterns.
Br

P  and B S
φ  have four lobes each, and B S

θ  has eight lobes of smaller amplitudes.
There is no far-field radiation in the null direction which is given by n s× .

6.1.2 Omega-Square Model for the Source Spectrum

Integrating energy-flux density α ρ0 0
2u̇ given by (6.1) for P-waves over the

surface of a sphere and time, we get the radiated P-wave energy

FIGURE 6.2. Radiation patterns of a point shear-dislocation source, where n=(1,0,0)
and s=(0,1,0). From left to right, B Br

P Sθ φ θ φφ, , ,( ) ( )  and B S

θ θ φ,( ) .
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where T0  is the source duration. The P-wave source energy spectral density is given
by

  

)
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MP ω
ω ω

πρ α
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( )4 2

0 0
515
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where M ω( ) is the Fourier transform of the seismic moment time function. Using
the same procedure, we get the radiated S-wave energy
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where the S-wave source energy spectral density is expressed by

  

)
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ω ω

πρ β
( ) =

( )4 2
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510

    (6.9)

S-wave energy in a frequency band of width Δf  and central frequency f is

  
)

W f fS 2π( )Δ . The ratio of radiated S- to P-wave energy is a function of the ratio of
P- to S-wave velocity γ 0:
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The ratio of the energies  is about 23.4 for a Poisson solid, γ 0 3= .
One well-known source spectrum that has been shown to be consistent with

observed radiation from earthquakes is the omega-square model [Aki and Richards,
1980, p. 823]:

ω ω
ω π

M
M

fC

( ) =
+ ( )

0
2

1 2
(6.11)

where fC  is the corner frequency and M0  is the seismic moment. From (6.1) the
spectrum of far-field displacement waveform is flat at low frequencies and rolls off
like ω−2 at high frequencies. For small earthquakes, there is an empirical rule be-
tween M0 [dyn cm]⋅  and the local magnitude ML  [Thatcher and Hanks, 1973]:

log M0 = 1.5ML + 16.0     (6.12)
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There is an empirical rule relating observed corner frequency fC  [Hz] and ML

[Watanabe, 1971]: 

log fC = 1.5 0.20ML        (6.13) 

In Figure 6.3, we illustrate the velocity source spectrum 2 M( )  for an earthquake 
having ML =3. The spectrum has a maximum at 7.9 Hz.

6.2 ENVELOPE SYNTHESIS IN AN INFINITE SPACE 

6.2.1 Geometry of Source and Receiver 

 We imagine an ensemble of infinite 3-D inhomogeneous media characterized by 
their fractional fluctuation of wave velocity x( ) , where the ensemble average 

= 0 . As discussed in Section 4.2.2, we assume that the fractional fluctuations of 
P- and S-wave velocities are the same and that of mass density is equal to  with 

=0.8. The inhomogeneous elastic media can thus be characterized statistically us-
ing one ACF or its PSDF.
 The seismic source is taken as a point shear-dislocation source, as given in Sec-
tion 6.1. The source is located at the origin and a three-component seismometer is 
located at distance r  along the z3  axis, so x = (0,0,r). Particle motions are recorded 
in directions e1, e2 ,  and e3  as illustrated in Figure 6.4. We divide the inhomogene-
ous medium into cubes having dimension L  with L > a  in order to assure the inco-
herency of waves scattered from different cubes. We consider a ray whose path 
starts from the source, is singly scattered within a cube having center coordinate z ,
and reaches the receiver. The distances between the source and scatterer and be-
tween the scatterer and receiver are ra = z  and rb = x z , respectively. We define

1 2 5 10 20 50 100
Frequency[Hz]

1. 1021

5. 1021

2. 1021

 [dyn cm/s ]

|M( ) |
f C =7.9Hz

FIGURE 6.3. Velocity source spectrum predicted by the omega-square source model for an 
ML=3 earthquake.

ω ω
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the unit vector pointing from the scatterer to the receiver by

e
x z
x z

e e

e e e

r rb a
≡ −

−
= −

= − −( ) − −( ) + −( )

cos sin

sin cos sin sin cos

ψ ψ

ψ θ φ ψ θ φ ψ θ

θ

1 2 3

(6.14)

The unit vector corresponding to a scattering angle is defined as

e e e

e e e

ψ θψ ψ

ψ θ φ ψ θ φ ψ θ

≡ −

= − −( ) − −( ) − −( )
−sin cos

cos cos cos sin sin

ra

1 2 3

(6.15)

It will be useful in the following to note that e e erb
, ,ψ φ−( ) are orthogonal unit vec-

tors of a spherical coordinate system whose origin is at the scatterer.

6.2.2 Power Spectral Density of Velocity Wavefield at the
Receiver

Power Spectral Density

We may define the Fourier transform of the velocity wavefield vector at loca-
tion z  for a time window having length ΔT beginning at time t as

L

s

n

era

eφ

eθ

ψ

-eφ

eψ erb

e1

e3

e2

φ

O

z

ra=|z| rb=|re3-z|

r

θ ψ−θ

z1

z2

z3

Source

Receiver

Scatterer

x=re3

FIGURE 6.4. Geometry of the single scattering process. A point shear-dislocation
source is located at the origin. The inhomogeneous medium is broken into cubic
elements of length L  in which scattering occurs. A three-component seismometer is
located at distance r  along the z3 axis.
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The corresponding power spectral density of the ith component of the velocity
wavefield is a function of both time and angular frequency:

S t
T

u ti iz z, ; ˙ , ;ω ω( ) = ( )1 2

Δ
(6.17)

We assume that the window length ΔT  is longer than the source duration T0 . We
expect that the change in Si  is a smooth function of t, that is, we take the time
resolution to be of the order of ΔT  in the following and assume that the variation of
wavefield is quasi-stationary within a window having  such a time length.

The time average of the energy density for component i at the receiver is twice
the kinetic energy. It is written as

E t u t S t di i ix x x, ˙ , , ;( ) = ( ) = ( )
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ω ω0

2 0

2T
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where   L T  is a time average over ΔT . From the single scattering model for elastic
waves, we can construct the power spectral density at the receiver as the sum of
two direct propagation terms and four scattering modes:

S t S t S t

S t S t S t S t

i i
P

i
S

i
PP

i
PS

i
SP

i
SS

x x x

x x x x

, ; , ; , ;

, ; , ; , ; , ;

ω ω ω

ω ω ω ω

( ) = ( ) + ( )
+ ( ) + ( ) + ( ) + ( )

0 0

(6.19)

where Si
P0  and Si

S0 are the power spectral densities of direct waves, Si
PS  is a P-

wave from the source that is scattered to an S-wave in the medium and recorded as
an S-wave at the receiver, etc. To solve for the waveform envelope, we must de-
termine each of the six terms in (6.19) for each component of motion.

Example: Solving for the Contribution from S-to-P Single Scattering

From (6.1), the direct velocity wavefield spectra at angular frequency ω at a
scatterer at z are given by
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(6.20a)

and



156 / Chapter 6

˙ , ;u z e e0
2

0 0
3

2

0

2
5 4

0

0

1

0S S S

a

Q
r

at B B
M

r
e t

r
T

S
a

ω ω ω
πρ β βθ θ φ φ

ω
ω

β( ) = +[ ] − ( ) < − <

=

− ( )−

for

   otherwise

Δ
(6.20b)

where the trailing exponential term accounts for energy loss between the source and
scattering location.

We first consider SP single scattering amplitude for each S-wave polarization.
Since we consider that the scattering occurs in the far field of the earthquake source,
we assume that the spherical wavefront representing the S-waves radiated from the
source can be represented as plane waves in a cube of extent L  so that lra >> 1 and
r La >> . The plane waves are scattered by the inhomogeneous cube with dimension
L . We also assume that the receiver is located in the far field of the scattered P-
waves so that krb >> 1, and r Lb >> . We also introduce a factor to account for at-
tenuation between the scattering region and the receiver. Then, using (4.43c), the SP
scattered wavefield spectra at angular frequency ω at the receiver is given by
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where scattering angle ζ=π for incident S-waves polarized to eθ , and ζ=π/2 for

the polarization to eφ. We discarded the common phase factor eik rb . We take time
window length ΔT L≥ / β0 , since we consider only the power of incoherent scat-
tered waves from scattering cubes of linear dimension L. To evaluate the partition
of the scattered energy that contributes to the ith component of motion, we take the
inner product of the scattered velocity wavefield vector with the ith unit vector ei .
Using Fr

SP ψ π ω, / ;2 0( ) =  as given by (4.46c) and the source energy spectral den-
sity given by (6.9), the square of ith velocity wavefield spectra due to S-waves
from the source that are singly scattered to P-waves in one scattering cube is given
by
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Dividing (6.22) by window length ΔT  and summing up the contribution of all
scattering cubes with volume L3, we have the power spectral density Si

SP at the re-
ceiver. Then, we replace the summation over all scattering cubes by an integral over
infinite 3-D space and the square of scattering amplitude with its ensemble average.
We may replace the time condition with the delta function in time. It is equivalent to
assuming that the source energy radiation at angular frequency ω  is   

)
W tS ω δ( ) ( ) for

S-waves. Finally, we obtain the power spectral density for single SP-scattering
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This final representation is independent of the choice of ΔT . From (4.52c), the
square of SP-scattering amplitude per volume L3 is independent of the choice of
dimension L . The integral is practically taken over the isochronal scattering shell
corresponding to a given lapse time.

Contributions from Other Scattering Modes

In the same way, we can derive the contribution to the power spectral density of
the ith velocity wavefield component at the receiver for the other scattering modes:
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where we use explicit representation of scattering amplitudes for PP- and SS-
scattering as given by (5.44) and (5.45) that were derived by using the travel-time
corrected Born approximation since scattering by only the short-wavelength com-
ponents of random inhomogeneity contributes to the envelope formation. We note
that FPS

ψ  and T
r

PPF are independent of ζ as shown in (4.46) and (5.37), respec-
tively. Similar to (4.52), we can write the ensemble average of the squared scatter-
ing amplitude per unit volume by using the PSDF of the random fluctuation.

Isochronal Scattering Shells in Prolate Spheroidal Coordinates

Since there are delta functions in the volume integrals over 3-D space in (6.23a-
d) we can reduce the triple integrals to double integrals by using the prolate
spheroidal coordinate system having foci at the source and the receiver as was done
in Section 3.1.2. This transformation is necessary to allow us to numerically evalu-
ate the integrals when we want to simulate average seismogram envelopes. Intro-
ducing the transformation (3.13), we write the distances between the source and the
scatterer and the scatterer to the receiver as in (3.14). Then, delta functions can be
written as
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(6.24)

where α0t r/  is the lapse time normalized by the P-wave travel-time. The argument
of each delta function is a linear combination of prolate spheroidal coordinates
w vand . The isochronal scattering shell, which defines the locus of points where
waves arriving at a given lapse time at the receiver must have scattered for a given
scattering mode, is found by setting the argument of each delta function equal to
zero. The first and last lines of (6.24) are the delta functions in the expressions for
PP- and SS-scattering, respectively. The zeros of these two delta functions occur
where v  is equal to the lapse time divided by the direct wave travel-time, which
means that the isochronal scattering shells are spheroidal. For PS- and SP-
scattering, the second and third lines of (6.24), respectively, linear combinations of
w , v , and the normalized lapse-time determine the isochronal scattering shells,
which are axially symmetric around the source-receiver axis and look like egg
shells in space. We illustrate cross sections of the isochronal scattering shells for
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four scattering modes at different normalized lapse-times in Figure 6.5. Their sur-
faces become larger as lapse time increases. We note that the point-source model,
the far-field condition, and the condition for the Fraunhofer zone may not be valid
in a strict sense when the lapse time is near the direct P- or S-wave arrival-time
since either path length ra  or rb  can take very small values.

Scattering angle ψ  and radiation angle θ  can be found for each scattering mode
using (3.17) with v  given as a function of w  and normalized lapse time α0t r/  by
setting the argument of (6.24) to zero. Figure 6.6 shows plots of ψ  versus θ  for
different scattering modes at different normalized lapse time α0t r/ .

The infinitesimal volume element dz in (6.23a–d) is given by (3.15) for the
prolate spheroidal coordinate system. We rewrite equations (6.23a-d) as follows:
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where v
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t= α0 .
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where v
r

t= β0 .

S-Coda Excitation

The predicted S-coda-wave excitation can be compared with the phenomenol-
ogical predictions made in Chapter 3. For late arriving S-coda waves, β0 1t r/ >> ,
we may set ψ π≈ as shown in Figure 6.6. From (4.49) and (4.52d),
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Setting e eψ θ≈ in (6.25d), we get the same lapse-time dependence found in the
single backscattering model as given by (3.10):
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However, the partition of the energy into different components is strongly con-
trolled by the source radiation pattern
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When we take the fault geometry as n s= ( ) ( )0 0 1, , and = 0,1,0 ,
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= = =and (6.29)

where we note that C1 + C2 + C3 = 1. The S-coda amplitude is small in the null di-
rection. If the source radiation is spherical, there is no difference in the coda excita-
tion among components since C1 = C2 = C3 = 1 / 3.

6.2.3 Numerical Simulations

Power Spectral Densities for a Microearthquake

Using (6.20a, b) with (6.3), (6.7) and (6.9), we obtain the power spectral den-
sity of the direct velocity wavefield smoothed over the time window ΔT at the re-
ceiver on the third axis:
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The total power spectral density is the sum of power spectral densities due to direct
propagation (6.30a-b) and single scattering (6.25a-d) as given by (6.19); therefore,
the synthesized time trace is not smooth around the direct wave arrivals.

To illustrate the envelope calculation, we choose an ML=3 earthquake having
geometry given by n=(0,0,1) and s=(0,1,0). The receiver is located at a distance of
30 km on the z3 axis. We may consider the first and the second components as
transverse and the third component as radial. The unperturbed medium parameters
are β0 =4 km/s, γ 0 3=  and ρ0 3= g/cm3 with no intrinsic absorption. The pa-
rameters for the exponential ACF describing the medium inhomogeneity are
ε2 0 01= . , a = 2km and ν = 0.8. We use theoretical scattering attenuation TSc

SQ−1

and TSc
PQ−1  based on the travel-time corrected Born approximation as derived in

Section 5.3.2. These values agree with the backscattering coefficient of S-waves in
the lithosphere that were used to model the S-coda excitation and the frequency-
dependent scattering attenuation for S-waves (see solid curves in Figures 5.10 and
5.11).

Dividing the w ⊗ φ  space into 50x36 grids, we numerically evaluate the double
integrals in (6.25a–d). The power spectral density is calculated at every integer sec-
ond of lapse time ( ΔT = 1 s) from 5 s to 60 s in eight octave-width frequency
bands ranging from 0.5 to 64 Hz with central frequency fn

n= −2 2  Hz and width
Δf fn n= ln2 [Hz] for n=1–8. These frequencies cover the frequency range of data
recorded by commonly used short period (moving coil type) velocity seismome-
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FIGURE 6.7. (a) Contour plot of the logarithm of power spectral densities Si  in CGS
units for three components of particle velocity at a distance of 30 km along the third
axis from a point shear-dislocation source with ML =3. (b) Temporal traces of RMS
velocity amplitude envelopes. Medium perturbation is characterized by an exponen-
tial ACF with ε2 0 01 2= =. , a km , and ν = 0.8 . The background elastic medium has
β0 4= km/s , γ 0 3= , and ρ0 3= g/cm3. [From Sato, 1984a, copyright by the American
Geophysical Union.]
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ters. The source duration T0  for an ML=3 earthquake is smaller than 1 s. Arrival
times of direct P- and S-waves at the receiver are 4.3 s and 7.5 s, respectively. The
minimum of the scattering angle ψ  becomes larger with increasing lapse time for
PP- and SS-scattering, as illustrated in Figure 6.6. We used travel-time corrected
scattering amplitudes choosing ψC ≡ ( ) ≈−2 1 4 291sin ˚. The travel-time correction
has impact only when the scattering angle is smaller than the cutoff scattering angle
as discussed in Section 5.3.2, the time period 4.3–4.5 s of the P-wave and 7.5–7.8 s
of the S-wave. Direct wave contributions dominate the single scattering waves
whose travel times are in these time intervals. Using (5.25), the RMS travel-time
fluctuation for the direct S-wave at 8 Hz due to the long-wavelength components of
velocity fluctuation is about 0.3 s and is about 0.8 s at lapse time 60 s.

Contour plots of the power spectral density for the three components of particle
velocity are shown in Figure 6.7a. The second component has the largest amplitude
of all three components when the direct S-wave arrives. The S-coda has the maxi-

FIGURE 6.8. Three-component velocity seismogram envelopes for the 0.5–64 Hz
band at a distance of 30 km in five different directions for a point shear-dislocation
earthquake source of ML =3. [From Sato, 1984a, copyright by the American Geo-
physical Union.]
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mum value at the same frequency for every lapse-time since the scattering loss
f QS/  is frequency independent for  f > 1 Hz. SS-scattering dominates the S-coda

on the transverse components because of strong radiation of S-waves from the
source. P coda is composed of different kinds of scattering modes. However, SP-
scattering dominates the early P-coda on the radial component.

RMS Velocity Amplitude Envelopes

Using the power spectral density of particle velocity, we may estimate the aver-
age velocity amplitude for each component on the free surface. Practically, we may
consider the first and the second components as horizontal components of motion
and the third component as vertical movement on the free surface. Taking the
square root of the numerically evaluated values of (6.25a–d) for the eight octave-
width frequency bands and multiplying by two to account for surface amplification,
we get the RMS velocity amplitude of the ith component for the 0.5–64 Hz band as

˙ , , ;u t S t f fi
T

i n n
n

x x( ) = ( )
=

∑2

1

8

2 2 2π Δ  (6.31)

where the leading factor of 2 on the right-hand side accounts for the free surface
effect and factor 2 in the root accounts for positive and negative frequencies. The
temporal trace of average amplitude for each component is shown in Figure 6.7b.
P-coda amplitudes gradually increase with increasing lapse time. Early S-coda am-
plitudes are larger than P-coda amplitudes. S-coda amplitudes smoothly decrease
with increasing lapse time. Even at long lapse-time, there is a predicted difference
among components in S-coda amplitudes that is caused by the radiation pattern.

Figure 6.8 shows a simulation of three-component seismogram envelopes at a
distance of 30 km for five different directions from a point shear-dislocation earth-
quake source of ML=3. Direction I is a nodal direction for direct P-waves and the
direction of maximum S-wave radiation. Direction IV is in the direction of maxi-
mum P-wave radiation, and a nodal direction of S-wave radiation. Direction III is
along the null axis where no energy is radiated. Direction II is at the middle of di-
rections I and III. Directions (I) and (II), which have been added for clarity, are
equivalent to directions  I and II for the energy radiation, respectively. Direction V
is at the middle of directions I and (II). The amplitudes of the P-coda on the trans-
verse components increase with lapse time in directions I, II, and III, and are nearly
constant in directions IV and V. The amplitudes of the radial component P-codas
increase with lapse time in directions I and II, but decrease with lapse time in direc-
tions III, IV, and V. P-coda appears just after the calculated P-arrival in directions I,
II, and III even though they are in nodal directions for direct P-wave radiation. For
the radial component P-coda, the contribution of SP-conversion scattering near the
hypocenter is particularly large. S-coda amplitudes are large on all three compo-
nents in all directions. Those of the transverse components of motion decrease
rapidly with increasing lapse time immediately after the calculated S arrival-time
but decrease gradually at large lapse time. S-coda appears on the radial component
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but shows a more complicated time-dependence than on transverse components. In
directions III, IV, and V, radial component S-coda amplitude increases with lapse
time and peaks a little later than the calculated S-arrival time. S-coda appears even
in the nodal direction IV of S-wave radiation. We note that pseudo P- and S-phases
appear due to scattering even in direction III located along the null axis, where the
whole seismogram is composed only of scattered waves. For S-coda, SS-scattering
contributes significantly to all three components for a wide range of lapse times.
Partitions of S-coda energy into different components is controlled by the radiation
pattern even in the latter part of S-coda in this simulation.

Comparison with Observed Envelopes

As shown in Figure 2.27, Kuwahara et al. [1991] reported a rapid drop of the
semblance coefficient value in the S-coda of a local earthquake indicating that S-
coda is composed of scattered waves arriving from many directions. For large
lapse times, the radius of the isochronal scattering shells are larger, as shown in
Figure 6.5, so scattered waves can arrive simultaneously from many directions in
the S-coda. In radial-component P-coda, the contribution of SP-conversion scatter-
ing is dominant and scattered waves come from around the hypocenter, as illus-
trated by the scattering isochrons shown for small lapse times in Figure 6.5. The
predicted importance of SP-conversion scattering agrees with the semblance analy-
sis of P-coda as shown in Figure 2.27. Kuwahara et al. [1991] found that P-coda in
the vertical component has almost the same propagation direction as that of the di-
rect P-wave arriving from the epicenter of a local earthquake which means that the
P-coda is also composed of P-waves propagating from the hypocentral region [see
also Wagner and Owens, 1993]. Kuwahara et al. [1997] analyzed and discussed the
large contribution to P-coda, especially in the vertical component, of S-to-P conver-
sion scattering occurring at lateral impedance contrasts in the crust. Using f-k analy-
sis, Dainty and Schultz [1995] also showed the importance of lateral heterogeneities
for the excitation of P-coda.

Figure 2.29 shows an example of observed three-component seismograms re-
corded from a shallow strike-slip earthquake that occurred east of the Izu Peninsula,
Japan. These seismograms were recorded at stations with epicentral distances be-
tween 10 and 60 km. The fault plane solution of the earthquake is well determined
by observed initial P-wave motions shown in the figure. Station NRY is near the P-
wave nodal line corresponding to directions I–II in Figure 6.8. The P-phase is un-
clear in the vertical component and the S-phase is large in the horizontal compo-
nents at this station. The P-coda amplitudes gradually increase with time for all
three components. Stations YMK and SMD correspond to direction IV, and JIZ
corresponds to directions IV–V. The direct P-wave in the vertical component of
JIZ is one pulse with the same period of 0.2 s as the S-pulse in the NS component
of NRY. Vertical-component P-coda envelopes first decrease in amplitude, then
increase between the P- and S-phases for these three stations. Scattering has in-
creased the apparent duration of the S-phases in the horizontal components on
YMK, SMD, and JIZ. The S-wave peak in the vertical component occurs later than
those in the horizontal components at these three stations. Station HTS corresponds
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to directions II–V, where P- and S-phases appear in all three components. Good
agreement is due to the fact that SH-waves dominate the horizontal-component S-
waves for shallow strike-slip earthquakes. The agreement between model and the-
ory is not so good for reverse fault earthquakes since the ray take-off angle and
hence the mix of SH- and SV-motion depend strongly of the crustal velocity
model. The good qualitative agreement between the observed seismograms in Fig-
ure 2.29 and the predicted envelopes in Figure 6.8 shows the validity of the enve-
lope synthesis based on the addition of the power of single scattered waves. How-
ever, more quantitative analysis is necessary to examine how S-coda excitation lev-
els of different components depend on the radiation pattern.

We have used scattering amplitudes for random elastic inhomogeneity based on
the travel-time corrected Born approximation; however, note that the formulation
developed here accepts scattering amplitudes from any kind of obstacles; for exam-
ple cracks, cavities, and/or low-velocity anomalies.

6.3 ENVELOPE SYNTHESIS IN A HALF-SPACE

For comparison with observed three-component seismogram envelopes of re-
gional earthquakes, it is necessary to reliably account for the contribution of the free
surface since it acts as a reflector for seismic body waves. To account for the effect
of the free surface on the amplitudes of seismogram envelopes, we multiplied the
infinite space amplitudes by two in (6.31). The factor two is valid only for S-waves
polarized parallel to the free surface or for normally incident waves of any type.
Here, we will briefly introduce a more realistic approach for modeling the contribu-
tion of the free surface that was developed by Yoshimoto [1995] and Yoshimoto et
al. [1997a, b].

Earthquake
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Scatterer
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Free Surface

Up
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SH

PSV
SH
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Receiver
Three-Comp. Seismograph

E

FIGURE 6.9. Geometry of scattered ray undergoing reflection at the free surface. Ray
is singly scattered within the medium.
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6.3.1 Effects of the Free Surface

We imagine a point shear-dislocation source in a randomly inhomogeneous
elastic half-space and a three-component seismograph installed on the free surface,
as illustrated in Figure 6.9. The description of the scattering process of elastic vector
waves is the same as described in Section 6.2. The reflection and mode conversion
at the free surface are calculated from the incident angle and the polarization using
Snell’s law [Aki and Richards, 1980, p. 133], where the incident wave is assumed
to be a plane wave near the reflection point. It is convenient to decompose the S-
waves into two components with orthogonal polarization directions. The SH-wave
is polarized parallel to the flat free surface and the SV-wave is polarized perpen-
dicular to the SH-wave. For a flat surface, an incident SH-wave generates only a
reflected SH-wave. However, incident P- or SV-waves generate a combination of
reflected P- and SV-waves. The geometrical spreading factors and the conversion
reflection effects can be calculated from the incidence angle, the reflection angle, the
background medium velocities, and the distances between the reflection point to the
source and the scattering point and between the scattering point and the receiver
[Cerveny and Ravindra, 1971]. We will account for only the total reflection and ne-
glect the excitation of inhomogeneous waves.

In addition to the four fundamental modes of scattering, PP, PS, SP, and SS, as
discussed for an infinite space, we have to consider eight additional modes corre-
sponding to the single scattering of waves reflected by the free surface: PPP, PPS,
PSP, PSS, SPP, SPS, SSP and SSS, where the first phase name indicates the
mode of the direct wave from the source to the free surface. For example, SPS
means that the direct S-wave radiated from the source is converted to a P-wave
upon reflection by the free surface and then scattered to an S-wave by conversion
scattering within the inhomogeneous medium. For the four fundamental scattering

PPPS

SS

SP SP

Free
Surface

SSS

SPP

SPS

SSP

Source Source

Receiver
Receiver

a b

SS

FIGURE 6.10. (a) Slice through a plane containing the source, scattering points, and
the receiver showing isochronal scattering shells for the four fundamental scattering
modes PP, SS, PS, and SP in infinite space. (b) Vertical slice through a plane con-
taining the source, reflection points, scattering points, and the receiver showing iso-
chronal scattering shells for scattering modes with reflection at the free surface.
Shells for S-wave radiation from the source are shown. [Courtesy of K. Yoshimoto.]
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modes, the source, scattering point, and receiver are located in a plane, as in Section
6.2 and the isochronal scattering shells are axially symmetric around the source–
receiver line (see Figure 6.10a). The geometry of the eight isochronal scattering
shells that include free surface reflections are complex; the source, free surface re-
flection point, and scattering point are located on one plane, but free surface reflec-
tion point, scattering point and the receiver are generally located on a different plane,
as illustrated in Figure 6.9. Figure 6.10b illustrates the isochronal scattering shells
for a special case when one plane contains the source, reflection points, scattering
points, and the receiver for S-energy source radiation, as an example.

6.3.2 Numerical Simulations

Yoshimoto [1995] and Yoshimoto et al. [1997a] numerically synthesized
seismogram envelopes for an ML=2 earthquake with a focal depth of 3.5 km in an
elastic inhomogeneous half-space. The fault geometry and the configuration of
source and receiver are shown in Figure 6.11. The source velocity spectrum has a
peak around 13 Hz. The medium inhomogeneity is characterized by an exponential
ACF with ε=4% and a rather short correlation distance a=100 m compared with
the case studied in the last section. The background parameters for the elastic me-
dium are α0 =6 km/s, γ 0=1.71 (β0 =3.5 km/s), ρ0 =2.7 g/cm3 and ν = 0 8. . The
inhomogeneous half-space was divided into cubes of 200 m on a side. The power
spectral density of each component of particle velocity on the free surface was cal-
culated as the sum of the power spectral densities of scattered waves arriving from
discretized cubes located on isochronal scattering shells for all scattering modes for
a given lapse time in each frequency band as a numerical extension of (6.23a–d).
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FIGURE 6.11. Synthesized RMS velocity amplitude envelopes on the free surface of
an elastic inhomogeneous half-space (solid curve) and twice those in an infinite me-
dium (broken curve) in the 2–64 Hz band. Traces are single scattered wave ampli-
tudes only, and direct waves are not shown. Portions of envelopes dominated by di-
rect waves are shaded. [Courtesy of K. Yoshimoto.]
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The RMS velocity amplitude envelope for each component was obtained by tak-
ing the square root of the sum of the power spectral densities over the 2–64 Hz 
band. Figure 6.11 shows RMS velocity envelopes on the free surface (solid 
curves) and twice the velocity envelopes for an infinite medium obtained in Sec-
tion 6.2.3 (broken curves). There are few differences in the P-coda excitation be-
tween the full-space and half-space results. However, a clear difference is found 
in the early S-coda in the vertical component of motion, where SS scattered waves 
dominate, because the multiplication by two overestimates the amplitude for large 
incidence angles to the free surface. 

6.3.3 Crustal Inhomogeneity in the Nikko Area, Northern Kanto, 
Japan

 A large-scale array observation experiment in the Nikko area, northern Kanto, 
Japan in 1993 provided the opportunity to analyze three-component seismogram 
envelopes of regional microearthquakes with well-determined focal plane solu-
tions. Yoshimoto [1995] analyzed some of the data collected using the forward 
modeling procedure discussed in Section 6.3.1 to determine statistical properties 
of the medium required to fit seismogram envelopes. There are many volcanoes in 
this area resulting in high seismicity in the shallow crust. Most of earthquakes 
took place at depths shallower than 15 km. There are reports of a mid-crustal seis-
mic reflector that might be related to the presence of partially molten bodies near  

FIGURE 6.12. Vertical-component velocity seismograms (2–16 Hz) of a shallow ML=1.7
microearthquake observed in the Nikko area, northern Kanto, Japan. [Courtesy of K. Yo-
shimoto.] 
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some active volcanoes [Matsumoto and Hasegawa, 1996]. Waveforms from 38 
three-component seismometers were digitized at 200 Hz. Hypocenter locations 
and focal plane solutions were determined using a uniform half-space model with 

0 =6 km/s and 0 / 0 =1.73. Yoshimoto [1995] studied 10 earthquakes that had 
high-quality records and well-determined focal mechanisms.
 Most of the earthquakes have similar reverse fault type focal mechanisms in 
harmony with a regional compressional stress oriented in the NW-SE direction in 
northern Kanto. The three-component velocity seismograms show variations in 
envelopes. Examples of observed UD (vertical) component traces are shown in 
Figure 6.12. Yoshimoto [1995] analyzed the RMS velocity amplitude envelopes 
in the 2–16 Hz band. RMS envelopes of the traces shown in Figure 6.12 are plot-
ted using solid curves in Figure 6.13, where the ordinate is a logarithmic scale. 
 For analysis, the source spectra of events were estimated from the spectra of 
direct P- and S-waves using data from stations having hypocentral distances 
smaller than 15 km. Site amplification factors at each station in this frequency 
band were found by the coda-normalization technique for S-waves discussed in 
Section 3.4.1 and by comparison of P-wave spectra of teleseisms. Station GNZ 
was chosen as the reference station. QP

1  and QS
1  were chosen to have the same 

value of 0.01 for 2-8 Hz and were taken as 0.005 and 0.003 for 8-16 Hz, respec-
tively. The velocity fluctuation of the crust is characterized by an exponential 
ACF with two parameters 2  and a.
 Using the above parameters for characterizing the source and the random me-
dium, Yoshimoto [1995] numerically synthesized three-component RMS velocity

FIGURE 6.13. Observed vertical-component RMS velocity amplitude envelopes (solid 
curves) for the microearthquake shown in Figure 6.12 and the best fit theoretical curves 
(dotted curves) for the 2–16 Hz band. Shaded portions around the direct P- and S-phases 
were not included in calculation of residuals to find the best fitting model. The half-space 
inhomogeneous medium is characterized by an exponential ACF with =5.7% and 
a =400 m. [Courtesy of K. Yoshimoto.] 
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amplitude envelopes by discretizing the medium into cubes of dimension 0.5 km
on each side, where the small cube size was chosen to make the synthesized enve-
lopes smooth. Values of ε2  and a  were varied to minimize the sum of the square
difference between the synthesized and observed three-component RMS seismo-
gram envelopes for a time window of 7 s long starting from the P-wave onset. The
misfits at each time were weighted by the square of lapse time giving more weight
to the later portions of the seismograms. The residual was calculated using only the
portions of the envelopes dominated by scattered waves, neglecting the direct wave
windows indicated by shading in Figure 6.13. A total of 149 traces from the 10
earthquakes were analyzed. Inhomogeneity having ε > 8% produces scattering at-
tenuation larger than the values assumed for total attenuation, and inhomogeneity
having ε < 4% is not strong enough to excite sufficient S-coda amplitude to match
observed data. The residual was minimized when ε2 38 10/ a ≈ × − km-1. Yoshi-
moto [1995] concluded that the inhomogeneity in the shallow crust of the study
area is characterized by the exponential ACF with ε=5–8% and a=300–800 m.

Figure 6.13 shows the predicted logarithm of RMS velocity amplitude enve-
lopes in the 2–16 Hz band for the UD component (broken curves) using the best
fitting model ε=5.7% and a=400 m along with the smoothed observed envelope
(solid curves). Figure 6.14 shows logarithmic plots of the three-component enve-
lopes at station OKR. Although the later portion of the S-coda was weighted more
heavily in fitting the data, there is a good agreement between observed and synthe-
sized P-coda amplitude. To investigate differences in the characteristics of the in-
homogeneity with the frequency band of seismic waves, Yoshimoto et al. [1997b]
examined the Nikko data using only the frequency band 8–16 Hz. They obtained
the same result for ε  and a that Yoshimoto [1995] obtained from the analysis of
data in the 2–16 Hz band. The correlation distance estimated here is shorter than
estimated from the analysis discussed in Chapter 5 since the region under investi-
gation here is shallower and more complex because of the presence of active volca-
noes.
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FIGURE 6.14. Three-component RMS velocity amplitude envelopes observed (solid
curves) for the microearthquake shown in Figure 6.12 and the theoretically predicted
envelopes (dotted curves) for the 2–16 Hz band at station OKR. [Courtesy of K.
Yoshimoto.]
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CHAPTER 7

Envelope Synthesis Based on the Radiative
Transfer Theory: Multiple Scattering Models

In Chapter 3, we found that the squared sum of incoherent S-waves that are
singly scattered by distributed random heterogeneities can provide an adequate first-
order model of the MS envelope of S-wave seismograms. As lapse time increases,
however, we expect that double, triple, and higher-order multiple scattering contrib-
ute more than the single scattering process, so we need a model that includes the
effects of multiple scattering. Kopnichev [1977] and Gao et al. [1983] modeled
multiple scattering effects by summing up higher order scattering terms as a simple
extension of the single scattering model; however, their models do not conserve
total energy.

A systematic approach for modeling the multiple scattering process is to use the
radiative transfer theory (energy transport theory) for the energy density. The basic
equation of this approach is called the equation of transfer and is equivalent to
Boltzmann’s equation used in the kinetic theory of gases and neutron scattering.
This theory has been successfully employed for modeling atmospheric and under-
water visibility and the propagation of light in the atmospheres of planets
[Chandrasekhar, 1960]. It deals directly with the transport of energy through a me-
dium containing scatterers. It is assumed that the addition of power holds rather
than the addition of wavefields. The development of the radiative transfer theory is
rather heuristic, and it lacks a rigorous basis on the wave equation. There is a way
to include some information about the correlation of wavefields into the radiative
transfer theory [Foldy, 1945; Frisch, 1968; Ishimaru, 1978, Chapter 14]; however,
we restrict ourselves to a rather phenomenological treatment that deals only with
energy transport.

Initial seismological models using the radiative transfer theory were borrowed
from other fields and did not include mode conversion between P- and S-waves
upon scattering. Wu [1985] and Wu and Aki [1988a] first explored the use of the
radiative transfer theory as a model for high-frequency seismogram envelopes of
local earthquakes. They applied the stationary-state solution for media having iso-
tropic scattering [Lin and Ishimaru, 1974] to the estimation of seismic albedo,
which Wu [1985] defined as the ratio of scattering attenuation to total attenuation.
Shang and Gao [1988] first formulated the multiple isotropic scattering process in
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2-D space as an integral equation for the nonstationary state appropriate for the case
of impulsive radiation. Later, Zeng et al. [1991] extended the nonstationary case to
3-D space, and Sato [1993] and Wu [1993] analytically solved the problem in 1-D
space. The solutions obtained with the radiative transfer theory conserve total en-
ergy for media having no intrinsic absorption, isotropic scattering, and spherical
radiation from the source. Sato et al. [1997] used the radiative transfer theory to in-
vestigate the multiple isotropic scattering process for nonspherical source radiation.
Their results showed that the azimuthal dependence of coda excitation diminishes
with increasing lapse time even for nonspherical radiation from a point shear-
dislocation. Using the concept of the specific intensity [see Ishimaru, 1978, p. 148],
Sato [1994b, 1995a] investigated the multiple nonisotropic scattering process in the
framework of the radiative transfer theory. In the case of large forward scattering,
this model predicts a concentration of scattered energy just after the direct wave ar-
rival and smaller excitation of coda energy compared with the isotropic scattering
case. Note that a uniform distribution of coda energy density for large lapse time is
predicted for the multiple isotropic scattering process in a medium having a fractal
distribution of scatterers [Sato, 1995b]. There have been a few studies using the
radiative transfer theory to investigate whole seismogram envelopes including P-
and S-phases. Supposing isotropic scattering for PP-, PS-, SP- and SS-scattering,
Zeng [1993] and Sato [1994a] synthesized time traces of the energy density for the
case of spherical source radiation.

In parallel with the analytical studies, several investigations using Monte Carlo
simulation of the multiple scattering process for envelope synthesis were conducted
[Gusev and Abubakirov, 1987; Abubakirov and Gusev, 1990; Hoshiba, 1991].
Parallel to the theoretical development of the radiative transfer theory, practical
analysis of S-wave seismogram envelopes was undertaken and used to investigate
the limitations of the theory. The radiative transfer approach provided a framework
for measuring seismic albedo, scattering attenuation, and intrinsic attenuation which
has led to measurements throughout the world [Fehler et al., 1992].

In this chapter, we introduce the application of the radiative transfer theory to
model the multiple scattering process and several extensions of the theory that are
appropriate for modeling lithospheric seismic propagation processes. We will also
discuss the multiple lapse-time window analysis for the estimation of seismic al-
bedo, intrinsic attenuation, and scattering attenuation of S-waves.

7.1 MULTIPLE ISOTROPIC SCATTERING PROCESS FOR
SPHERICAL SOURCE RADIATION

As discussed in Chapter 3, we assume that point-like isotropic scatterers of
cross section σ0 are distributed randomly and homogeneously in infinite space
with number density n , where g n0 0≡ σ is the total scattering coefficient charac-
terizing the scattering power per unit volume. The background medium propagation
velocity V0  is constant.
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7.1.1 Three-Dimensional Case

Formulation of the temporal evolution of the multiple scattering process in 3-D
space was done by Zeng et al. [1991]. We assume an impulsive spherical source
radiating energy at time zero from the hypocenter located at the origin. Source en-
ergy is described by W tδ( ) . We schematically show the configuration of the
source, the receiver, and the last scattering point in Figure 7.1. The energy density

due to the propagation of coherent waves from the source is We V g b t− +( ) ×0 0

δ πt V V−( )x x0 0
24 , where we include the exponential decay term V g0 0 to ac-

count for scattering attenuation and b  for intrinsic attenuation per time in addition to
the geometrical spreading term 1 4 2/ π x . Generation of scattered energy per unit
time from a unit volume at scattering point x' ,t'( ) is a product of g0, V0 , and en-
ergy density E tx' , '( ). Including geometrical spreading and the time lag due to
propagation between the scatterer and the receiver at x,t( ) , we get the energy-flux
density at the receiver due to scattered waves from a unit volume as

dt V E t g t t V e V g b t t' ' , ' ' ' / '( ' )∫ ( ) − − −( ) −− +( ) −
0 0 0

20 0 4x x x x xδ π . Integrating x' over

the entire space and dividing by V0 , we get the total contribution of scattered energy
density from infinite space. Adding the energy density of direct propagation of co-
herent waves from the source to that of the scattered waves, we arrive at the fol-
lowing integral equation:

E t W G t V g G t t E t dt dx x x x x x, , ' , ' ' , ' ' '( ) = ( ) + − −( ) ( )
−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫∫∫∫0 0  (7.1)

The Green function for the coherent wave energy is given by
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FIGURE 7.1. Configuration of the
source, the receiver, and the last scat-
tering point in a scattering medium.
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FIGURE 7.2. Integral contour in the
complex k-plane to evaluate the single
scattering term.
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G t
V r

H t t r V e
V g b t

x,( ) = ( ) −( ) − +( )1
4 0

2 0
0 0

π
δ (7.2)

where r = x . We may explicitly write the argument of the Green function using
scalar r. This function rigorously corresponds to the propagator for the coherent
intensity [Ishimaru, 1978, p. 261]. The scattering system is assumed to be exactly
described by (7.1) and (7.2), not only in the far field but also in near field since
scatterers are assumed to be point-like. Function (7.2) is not the solution to a differ-
ential equation with a boundary condition; however, we dare to call that function
“Green function” for simplicity. The solution of (7.1) for unit energy radiation
practically gives “the effective Green function” for an impulsive source radiation in
the scattering medium. We can evaluate the energy density for any type of radiation
time function as a convolution integral by using “the effective Green function”.

Substituting the explicit representation (7.2) in (7.1) and integrating over time,
we can get the following integral form

E t W
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V r
t r V

g
dr d e E r t r V
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g b V r
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q x q
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"' "' "' "' , "'/ "'

( ) = −( )

+ ( ) + −( )

− +( )

− +( )∫∫

0 0

0 0

0

4

4

0
2 0

0
0

0

π
δ

π
Ω

(7.3)

where r"' '≡ −x x . The integral over the solid angle in the second line is taken with
respect to direction q x x"' ' / "'≡ −( ) r , which is the unit vector pointing to the last
scatterer from the receiver. This is an extension of the radiative transfer equation for
the multiple isotropic scattering process for the stationary state as given in Ishimaru
[1978, p. 161].

For simplicity, we scale quantities using the following

t V g t g b
b

V g
G

G

g
E

E

g
= = =0 0 0

0 0

, ,  ,  = ,  and  =
W0

3
0

3
x x (7.4)

where the overbar means the nondimensional quantity. Then, (7.1) and (7.2) are
written as

E t G t G t t E t dt dx x x x x x, , , ,( ) = ( ) + − ′ − ′( ) ′ ′( ) ′ ′
−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫∫∫∫ (7.5)

and

G t
r

H t t r e
b t

x,( ) = ( ) −( ) − +( )1
4 2

1

π
δ (7.6)

where r = x . To solve these equations, first we take the Fourier transform in space
and the Laplace transform in time of (7.6):
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where the argument is scalar k = k because there is no specific orientation. The
tilde and the caret mean the Fourier transform in 3-D space and the Laplace trans-
form in time, respectively. We note that tan−1 z ≡ ( ) ( ) ( )[ ]1 2 1 1/ i iz izln + -
[Abramowitz and Stegun, 1990, p. 80]. Taking the Fourier–Laplace transform of
the convolution integral (7.5),
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The energy density in space-time written as the inverse Fourier–Laplace transform
of (7.8) is given by
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where we used ˜̂ , ˜̂ ,E k s E k s( ) = −( ) since ˜̂ , ˜̂ ,G k s G k s( ) = −( ) . There is no specific
orientation, so E  depends on r = x . Therefore, we may write the argument of E
as scalar r . The path of integration in the complex s -plane runs parallel to the
imaginary axis in positive real space so that all the singularities of the integrand are
on the left-hand side in the complex s -plane. We have substituted the inverse
Fourier transform for the inverse Laplace transform in the last step of (7.9) for
convenience of numerical evaluation with a 2-D FFT [Zeng et al., 1991].
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Conservation of Total Energy

We can derive the temporal dependence of total energy defined as the space in-
tegral of energy density as a function of time, which is given by the Fourier trans-
form of (7.8) at wavenumber k = 0
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˜̂ ,

˜̂ ,
E s

G s

G s
s b

0
0

1 0

1( ) = ( )

− ( )
=

+
  (7.10)

This means that the total energy decreases exponentially with increasing lapse time
only due to intrinsic absorption:

d E t e btx x,( ) =
−∞

∞

−∞

∞

−∞

∞
−∫∫∫  (7.11)

The conservation of total energy with no intrinsic absorption ( b=0) confirms the
mathematical consistency of the formulation.

Analytical Representation of the Single Scattering Term

By using the inverse Fourier–Laplace transformation (7.9), we have formally
derived the space-time distribution of energy density. But the convergence of the
numerical integration is slow since the integral kernel oscillates rapidly for large
wavenumbers. Therefore, first we formally decompose the energy density into
three terms corresponding to direct, single scattering, and multiple scattering of or-
der greater than or equal to two:

E t G t E t E tMx x x x, , , ,( ) = ( ) + ( ) + ( )1 (7.12)

In parallel, we rewrite (7.8) as
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(7.13)

Following Zeng et al. [1991], we analytically evaluate the single scattering term af-
ter by writing it as an integral on the real k -axis:
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Closing the contour of integration at infinity in the upper complex k -plane, we
adopt the technique of residue and branch cut integration. We take a branch cut
from the branch point k s b i= + +( )1  to infinity on the imaginary k axis. The inte-
gral contour is taken as a half circle (two quarter circles) and along the branch cut
on the imaginary axis, as schematically illustrated in Figure 7.2. As k → ∞ , the

integral along a half circle vanishes since lim tan
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Therefore, the integral is given only by the integral along the branch cut, which is
written as a Laplace transform with respect to time:
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where we used tan tanh /− −= ( ) ±1 1 1 2iz i z π  on the right/left of the branch cut, and
K  is given by (3.19a). The integral kernel of (7.16) gives the solution in time:
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This is the same as (3.22) and makes a connection to the single scattering theory
developed in Chapter 3. The exponential scattering attenuation term is necessary
even when there is no intrinsic absorption.

Spatiotemporal Variation of the Energy Density

The multiple scattering term E tM x,( ) can be numerically evaluated using (7.9):
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where the integrand is the last term of (7.13). Adding the direct, the single scatter-
ing, and the multiple scattering terms, we obtain the energy density.

Figure 7.3 shows results of numerical simulations illustrating the spatiotempo-
ral dependence of the normalized energy density for the case of no intrinsic absorp-
tion ( b b= = 0). The traces in Figure 7.3a show temporal variations of normalized
energy density at various distances from the source. At small distances from the
source the energy density decreases rapidly after the direct arrival, as predicted by
the single scattering approximation. However, as distance increases, r = 3 2. , en-
ergy density of early coda becomes stationary because of multiple scattering. Figure
7.3b shows spatial variations in normalized energy density at various normalized
lapse times. There is a concentration of energy density around the source. As lapse
time increases, the energy density distribution asymptotically approaches a Gaus-
sian curve corresponding to the diffusion solutions given by (3.30) and Figure
3.7b. Zeng [1991] showed that the time dependence of the energy density for the
multiple scattering model asymptotically converges to the diffusion solution: the
temporal decay is proportional to the −1 5. th power of lapse time.

Figure 7.4 shows the temporal change in the spatial integrals of normalized en-
ergy density for direct, single scattering, and multiple scattering. The contribution of
multiple scattering dominates over the single scattering for lapse times larger than
the mean free time, t >> 1. The sum of all three terms equals 1 as given by (7.11)
since energy is conserved when there is no intrinsic attenuation.

Interpretation of QC
−1

The radiative transfer theory for the case of spherical source radiation, a uni-
form distribution of isotropic scatterers, and no intrinsic attenuation predicts that the
MS coda envelope decays according to the –1.5th power of lapse time. Thus, with
intrinsic attenuation, the shape of the MS coda envelope is given by
t Q tI

S
− −−1 5 1. exp( )ω . If we use (3.36) with n = 2 to find coda attenuation QC

−1 , we

find that it is smaller than I
SQ−1 and may even be less than zero if intrinsic attenua-
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tion is small. When intrinsic attenuation is large, QC
−1  is dominated by intrinsic at-

tenuation. This relationship between QC
−1  and I

SQ−1 found from the radiative transfer
theory was pointed out by Hoshiba [1991] and Wennerberg [1993]. Based on the
observation that QC

− >1 0 in field data, Wennerberg [1993] argued that the close

agreement between QS
−1 and QC

−1 reported by Aki [1980a] implies that S-wave at-
tenuation is dominated by intrinsic mechanisms. Hoshiba [1991] argued that the
relation is imprecise due to the restriction of the model that scatterers are uniformly
distributed.
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FIGURE 7.3. Spatiotemporal change in the normalized energy density for spherically
symmetric source radiation and no intrinsic absorption. (a) Time traces at different
distances. (b) Spatial distribution at different lapse times. For the calculation, the 2-D
FFT in (7.18) was done over 200x200 points for ((0–16), (0–16)) in the normalized
space-time r t,( ) . The source duration is taken as 0.16 and is two samples long.
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7.1.2 One- and Two-Dimensional Cases

One-Dimensional Case

Here we examine the 1-D case in detail since it is easy to understand how the
analytical solution approaches the diffusion solution [after Sato, 1993, with permis-
sion of Blackwell Science, United Kingdom]. We assume that point-like isotropic
scatterers of total scattering cross section σ 0 are distributed homogeneously and
randomly with number density n in a 1-D medium with propagation velocity V0 .
In 1-D, isotropic scattering means that the scattering in the forward direction is the
same as that in the backward direction. The scattering medium is characterized by
constant total scattering coefficient g n0 0= σ . Energy W / 2 radiated in one direc-
tion from the source at the origin is the same as that in the opposite direction. The
multiple scattering process for the case of no intrinsic absorption b =( )0  is de-
scribed by the following integral equation for energy density:

E x t W G x t V g G x x t t E x t dt dx, , ' , ' ' , ' ' '( ) = ( ) + − −( ) ( )
−∞

∞

−∞

∞

∫∫0 0  (7.19)

where the Green function for the coherent part is given by

G x t
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H t t x V e V g t,( ) = ( ) −( ) −1
2 0

0
0 0δ (7.20)

Let us keep the dimensional quantities here. First we take the Fourier transform
in space and the Laplace transform in time of the Green function (7.20) as
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FIGURE 7.4. Temporal variation in the spatial integral of the normalized energy den-
sity for direct, single scattering, and multiple scattering for the case of no intrinsic at-
tenuation.
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Solving the integral equation (7.19) in the Fourier–Laplace space, we get the energy
density as
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Note that this form is different from (7.8) because now we are working with di-
mensional quantities. Next, we take the inverse Fourier transform of (7.22) with
respect to space coordinate x [see Gradshteyn and Ryzhik, 1994, p. 445]:
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By using a Laplace transform formula [Abramowitz and Stegun, 1970, p. 1027],
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Substituting this in (7.23) and using partial integration, we obtain
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where I0  and I1 are modified Bessel functions and I0' z( ) = I1 z( )  [Abramowitz and
Stegun, 1970, p. 376]. The first term on the right-hand side of (7.25) is composed
of the direct and forward-scattered energy. The exponential factor for the direct en-
ergy density in (7.25) is half that in (7.20) since forward-scattered energy arrives at
the same time as the direct energy in 1-D. In Figure 7.5, we show temporal traces
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of the normalized energy density at different source-receiver distances and spatial
sections at different lapse times.

Knowing the asymptotic behavior of the modified Bessel functions
[Abramowitz and Stegun, 1970, p. 377]
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we get the asymptotic expansion for energy density at large lapse times
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where diffusivity D V gC = 0 0  for the 1-D case. The second term exactly coincides
with the so called 1-D diffusion solution for t x V> / 0 . The smooth distribution of
energy density due to multiple scattering is described by the diffusion equation for a
continuous limit of a discretized random walk. We note that the solution for the
multiple scattering process (7.25) satisfies causality. A similar expression for the
energy density in 1-D was obtained by Wu [1993]. Wu and Xie [1994] found an
agreement between the energy density propagation in scattering media based on the
radiative transfer theory and numerical simulations using a full-wave theory in ran-
dom media.
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FIGURE 7.5. Normalized energy density for 1-D multiple scattering against (a) nor-
malized lapse time for selected normalized distances and (b) normalized distance for
selected normalized times, where the normalized source duration is g V T0 0 0 0 2= . .
[From Sato, 1993, with permission of Blackwell Science, United Kingdom.]
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Two-Dimensional Case

The multiple isotropic scattering process in 2-D space was first formulated by
Shang and Gao [1988] in advance of the formulation in 3-D space. With dimen-
sions included, the master equation for the multiple isotropic scattering process
with no intrinsic absorption is
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where r = x . Shang and Gao [1988] heuristically obtained the analytical solution in
the space-time domain, and Sato [1993] solved (7.28) and (7.29) using the same
procedure taken in the 1-D case to obtain
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The second term is asymptotically close to the diffusion solution for V0t >> r . We
find that the first-order perturbation of the second term coincides with (3.26), which
is the single scattering term derived by Kopnichev [1975] for 2-D space.

7.1.3 Nonuniform Distribution of Scatterers

Observed spatial variations in velocity structure caused by geological processes
as discussed in Section 2.1 and the nonuniform distribution of microearthquakes
discussed in Section 5.5 lead to the idea that the distribution of heterogeneities in the
lithosphere may not be uniform. Possible models for the distribution of scatterers
include that it is depth-dependent or that it is a fractal distribution. The former con-
ceptually agrees with the conventional image of the lithosphere in which the veloc-
ity inhomogeneity decreases with depth. The latter is appropriate for introducing
into the framework of the radiative transfer theory.

Depth-Dependent Distribution of Scatterers

Hoshiba [1994] used a Monte Carlo method to numerically simulate coda
power envelopes for a structure where the distribution of scatterers decreases with
depth. He assumed spherical radiation from the source, isotropic scattering, and
only one wave mode. The structural model he used has a constant velocity and no
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intrinsic absorption. Figure 7.6 shows temporal traces of the normalized energy
density at epicentral distances of 20 km and 80 km for two sources: one located on
the surface (solid line) and the other located at a depth of 40 km (broken line). The
computed normalized energy density asymptotically approaches a common curve
irrespective of epicentral distance as the lapse time increases for each focal depth.
However, the asymptotic energy levels of coda are not always the same at long
lapse time when the focal depths are different; the difference is as much as 10 dB at
60 s lapse time. He cautioned about the use of the conventional coda-normalization
method for estimating the source energy. His simulation shows that the synthesized
envelopes give QC

−1  decreasing with increasing lapse time as predicted by the sin-
gle scattering model of Gusev [1995a] and consistent with many field observations.
Distributing more than a hundred cavities in a 2-D half-space composed of two
layers having different amounts of intrinsic absorption, Yomogida et al. [1996]
used the boundary integral method to synthesize time traces of SH-waves for a
point source radiation. They reported that QC

−1  depends strongly on the intrinsic
attenuation in the lower layer when the scattering strength of the lower layer is
above a certain value.

Fractal Distribution of Scatterers

As shown in Section 5.5, a medium containing a distribution of attenuation
bodies with fractal dimension two has a power-law decay of amplitudes with travel
distance in agreement with observations that the maximum amplitude on regional
seismograms obeys a power-law decay with travel distance. We can mathemati-
cally introduce the concept of fractal distribution for scatterers [Sato, 1988a, 1995b]
or fractal inhomogeneity [Wu and Aki, 1985a; Main et al., 1990; Shapiro, 1992]
into the framework of the radiative transfer theory and/or elastic wave theory. Scat-
tering due to fractally distributed reflectors has been studied in atmospheric radar
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FIGURE 7.6. Temporal evolution of normalized energy density in a medium with
depth-dependent scattering coefficient. Results for two sources with focal depths on
the surface (solid) and at 40 km (broken) are shown. Medium velocity is β0 =4 km/s,
intrinsic attenuation is zero throughout the medium, and scattering coefficient
g0=0.02 km-1 for 0-2 km depth, 0.01 km-1 for 2-6 km, and 10-5 km-1  at depths greater
than 6 km. [From Hoshiba, 1994, copyright by the American Geophysical Union.]
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experiments in meteorology [Rastogi and Scheucher, 1990]. We will show that a
medium having a fractal distribution of scatterers with a small fractal dimension
has a smaller excitation of coda compared to a medium having a uniform distribu-
tion of scatterers.

Consider a fractally homogeneous random distribution of isotropic scatterers of
cross section σ 0  with fractal dimension DS in 3-D space. In the spherical coordi-
nate system, we choose the number density of scatterers at radius r  as
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where g n0 0 0= σ and h  is a nondimensional cutoff parameter in length. This is one
of the simplest functions that is constant for small radius and decays with the
power of distance for large distance. The total number of scatterers within a sphere
is proportional to the DS  power of radius for g r h0 >> . This is an extension of
(5.65), where the power of radius means the fractal dimension. The most familiar
example is the Levi dust [Mandelbrot, 1983]. We suppose that the distribution
(7.31) is valid for any origin but can be realized only statistically.

As a natural extension of the radiative transfer equation (7.1), the energy density
is written as a convolution integral as follows:
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where n x x−( )'  means the number density of scatterers at distance x − x' from
the receiver. We choose to ignore intrinsic absorption. The Green function for the
coherent part becomes
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where r = x . The scattering attenuation term, given by a line integral, is written
using the Gauss hypergeometric function 2 1F  [Gradshteyn and Ryzhik, 1994, p.
1066] as
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where e e DB g r
S

− −= =0 3for  and e h g rB h− ≈ ( )/ 2 0 for g r h DS0 2>> =and . Tak-
ing the Fourier transform in space and the Laplace transform in time, we can solve
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the integral equation (7.32) with (7.33) and confirm the conservation of total en-
ergy.

Figure 7.7 shows spatiotemporal plots of the normalized energy density for
DS=2 (solid curve) and DS=3 (broken curve) [Sato, 1995b]. Consistent with Fig-
ure 5.22, the direct energy density when DS=2 decays more slowly with increasing
distance than when DS=3. Recall from Section 5.5 that the larger fractal dimension
gave an exponential decay of amplitude whereas the lower fractal dimension led to
a power-law dependence on travel distance. These simulations are qualitative.
However, we may say that coda excitation for DS=2 is smaller than that for DS=3
and is spatially uniform at long lapse time agreeing with the observed uniform dis-
tribution of coda energy that forms the basic assumption for the coda-normalization
method discussed in Section 3.4.

When intrinsic attenuation is nonzero and the distribution of intrinsic attenuation
bodies is uniform, we modify the energy density by simply multiplying the tempo-
ral dependence of the energy density by an exponential factor for the intrinsic ab-
sorption. However, if the distribution of intrinsic attenuation bodies is also fractal,
we have to add the decay term for the intrinsic absorption in (7.34).

The uniform distribution of coda energy at long lapse time and the power-law
decay of maximum amplitude with travel distance are observations that might be
explained by a fractal distribution of scatterers and/or intrinsic absorbers. It is left
for us to examine quantitatively the evidence for such a fractal heterogeneity in the
real earth.
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7.2 SEPARATION OF SCATTERING AND INTRINSIC
ATTENUATION OF S-WAVES

We will now discuss the application to data of the radiative transfer theory that
was developed in Section 7.1. The theory has been applied to data in a number of
ways. Focusing on a procedure known as the multiple lapse-time window
(MLTW) analysis method of Fehler et al. [1992], we will summarize the method
and the results of its application to data.

7.2.1 Seismic Albedo

As discussed in Sections 5.1 and 5.2, total S-wave attenuation QS
−1  is a combi-

nation of intrinsic or anelastic attenuation I
SQ−1 and scattering attenuation Sc

SQ−1 as
given by (5.3). The estimation of parameters characterizing the random heterogene-
ity of the lithosphere, discussed in Section 5.3.2, that uses the frequency-domain
comparison between theoretical scattering attenuation curves and observed attenua-
tion data is an extreme limit that neglects intrinsic absorption. The multiple isotropic
scattering model gives us a way to estimate quantitatively the amount of intrinsic
and scattering attenuation from regional seismic data. Scattering attenuation is writ-
ten using the total scattering coefficient for S-waves at angular frequency ω  as
Sc

SQ g− ≡1
0 0β ω/  (see (3.3)). Wu [1985] introduced the concept of seismic albedo,

which is the ratio of scattering attenuation to total attenuation:
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The term seismic albedo is due to the origin of the radiative transfer theory. Seismic
albedo ranges from 0 to 1; media with strong heterogeneity and no-intrinsic ab-
sorption have high albedo, and homogeneous media have zero seismic albedo.

7.2.2 Multiple Lapse-Time Window Analysis

Several methods have been proposed to determine the amount of total attenua-
tion caused by scattering and intrinsic mechanisms [Aki, 1980a; Taylor et al., 1986;
Jacobson, 1987; Frankel and Wennerberg, 1987]. The MLTW method of Fehler et
al. [1992] is based on two observations: the early portion of an S-wave seismo-
gram is dominated by the direct S-wave whose amplitude is controlled by the total
attenuation of the media; and S-coda is composed entirely of scattered S-waves
whose amplitudes are controlled by the total scattering coefficient.
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Method Based on the Stationary Solution of the Radiative Transfer
Theory

The initial application of the radiative transfer theory to seismology was done
by Wu [1985], who calculated a suite of curves showing the variation of the inte-
grated energy density with source–receiver distance for various values of media
parameters for the case of isotropic scattering. Since Wu’s [1985] work was based
on a stationary solution [see Ishimaru, 1978, Chapter 12], the resulting curves can
be compared with data only if energy in observed seismograms can be integrated
over infinite time. Wu and Aki [1988a], however, using the curves derived from
the stationary solution, estimated attenuation parameters from the energy density
integrated over a finite time in seismograms. After using the coda-normalization
method discussed in Section 3.4 to correct for source and site effects, they arrived
at mean curves for the observed shape of the integrated seismic energy density vs.
source–receiver distance. The shapes of the observed curves were compared with
the shapes predicted from the theory for various values of seismic albedo. Wu and
Aki [1988a] concluded that scattering is the dominant cause of attenuation for fre-
quencies lower than 2 Hz and intrinsic absorption dominates for frequencies above
2 Hz in the Hindu–Kush region in Pakistan. Since energy was integrated over a
limited time in each seismogram (about 30 s), there may be an inconsistency be-
tween their result that scattering is a dominant mechanism of attenuation for lower
frequencies and their comparison with the stationary theory. If scattering is domi-
nant, seismograms will have long codas, and the effect of ignoring the energy in the
seismogram arriving later than the window over which energy was integrated may
be substantial.

Multiple Station Approach Using Time-Domain Solution

To remove the uncertainty from comparing finite seismograms with a theory
for infinite lapse-time, Fehler et al. [1992] proposed the MLTW method. This
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FIGURE 7.8. Velocity seismograms of a regional earthquake recorded by two stations
in the Kanto-Tokai region, Japan and three time windows used for the MLTW analy-
sis. [From Fehler et al., 1992, with permission from Blackwell Science, United King-
dom.]



Envelope Synthesis Based on the Radiative Transfer Theory / 191

method was made possible by the development of time-domain solutions to the
radiative transfer theory, as described in Section 7.1, in which scattering is assumed
to be isotropic and radiation is spherically symmetric. Fehler et al. [1992] used the
Monte Carlo calculations of the energy density for the multiple isotropic scattering
process corresponding to (7.1–7.2) by Hoshiba et al. [1991], which evaluates the
integrated energy density for finite time windows as a function of source-receiver
distance and medium parameters. The Monte Carlo calculations give results identi-
cal to those obtained in Section 7.1.1. The MLTW method is based on the observa-
tion that the integrated energy density in various time windows is influenced by the
relative amounts of scattering and intrinsic attenuation. Further, the variation of in-
tegrated energy density vs. distance is controlled by the absolute amount of scatter-
ing and intrinsic attenuation. Fehler et al. [1992] defined three time windows, 0–15
s, 15–30 s, and 30–100 s over which they integrated energy density, where the
lapse time is measured from the S-wave onset. Figure 7.8 shows the three time
windows on velocity seismograms of a regional earthquake recorded in the Kanto-
Tokai region, Japan. For three time windows, the integral EI f

kj1 2 3, , ( )  for event k at

site j was calculated using
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where ˙ ;u t fkj
S ( ) is the S-wave velocity seismogram in a frequency band centered at f

Hz at lapse time t. Figure 7.9 shows the integrated energy density vs. source–
receiver distance for a medium with β0=4 km/s and QS

− =1
0ω β/ g QI S0

1
0+ =− ω β/

0 03 1. km−  calculated by the Monte Carlo simulations. Figure 7.9a shows the energy
density integrated over the first 15 s after the S-wave arrival at each distance, and
Figure 7.9b shows that over the time period 30–100 s after the S-arrival. Energy
density integrated in each plot has been corrected for geometric spreading by multi-
plying by distance squared. In each plot, results for various values of seismic al-
bedo B0  are shown. When seismic albedo is small, indicating little scattering com-
pared to intrinsic attenuation, there is a nearly linear dependence of log integrated
energy density for the first time-window on distance indicating no scattering of en-
ergy to and from the primary wavefield. For the later time window, the curves for
small albedo have low amplitude compared to the early time window. Small seis-
mic albedo means little scattering so there is little energy in the coda.

Fehler et al. [1992] analyzed three-component velocity seismograms of 20 local
earthquakes recorded at 66 stations of the NIED seismic network, which covers an
area of about 350 200× km2 in the Kanto–Tokai region, Japan. The local magni-
tude of earthquakes used for the analysis ranges from 2 to 6.1 and their focal depths
are less than 50 km.

For practical analysis, Fehler et al. [1992] corrected the integrated energy den-
sity for source and site amplification factors using

30
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where W fk
S ( ) is the S-wave source radiation energy and N fj

S ( ) is the S-wave site
amplification factor. Relative source factors were determined using the coda-
normalization method as described in Section 3.4 by finding the mean coda ampli-
tude in 10 s windows beginning at 50 s lapse-time and averaging over a number of
stations that recorded a given event. The average obtained for each event was nor-
malized by the average obtained for a reference event to scale all source factors to
this single reference event. Similarly, relative site amplifications were obtained by
the coda-normalization method by calculating the mean coda amplitude in 10 s
windows centered at the same lapse time at each station for a given earthquake.
This mean was normalized by the amplitude recorded by reference station TRU in
the middle of the network, at the same lapse time for the same event. The average
of the normalized amplitudes obtained using many 10 s lapse-time windows for
many events gave a stable estimate of the site amplification relative to the reference
site.

Integrated energy density from individual seismograms is plotted vs. source–
receiver distance. Fehler et al. [1992] took a running mean over 15 km windows to
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find curves representing N EI1, N EI2,

N EI3 vs. source-receiver distance.
These means will be denoted as

N D
EI1 , N D

EI2 , and N D
EI3 . The

shapes and relative differences of the
curves for each time window of inte-
gration are compared with the theory
to find the values of scattering and
intrinsic attenuation. The comparison
between data and theory can be done
in many ways. The most direct way
is to overlay N D

EI1 , N D
EI2 , and

N D
EI3  with curves generated from

the theory until acceptable fits are
found to both shape and relative am-
plitude of the curves. Fehler et al.
[1992] observed that the difference
between N D

EI1  and N D
EI3  is

dominated by the amount of scatter-
ing. They also observed that the slope
of N D

EI1  is dominated by the
amount of total attenuation. They de-
fined a measure of the difference
between N D

EI1  and N D
EI3  at the same distance as
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They also defined a measure of the slope of N D
EI1  as
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They used Monte Carlo simulations [Hoshiba et al., 1991] of the multiple isotropic
scattering process to make theoretical characteristic curves for the scattering at-
tenuation vs. total attenuation per distance for various values of R1  and R2 . Exam-
ples of such curves are shown in Figure 7.10. By making measurements of R1  and
R2  from data curves and comparing with values derived from theory, the medium
parameters can be obtained. They estimated that g0=0.004 km-1 and B0 =0.45 for 1–

2 Hz, g0=0.0065 km-1 and B0 =0.34 at 2–4 Hz, g0=0.01 km-1 and B0 =0.33 for 4–8
Hz. Figure 7.11 shows the log of integrated energy density corrected for geometri-
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FIGURE 7.10. Total scattering coefficient
against total attenuation per distance,
where solid and broken curves correspond
to constant R1  and R2 defined in (7.38a)
and (7.38b), respectively. Dark and light
shaded areas are the estimates for two
frequency bands in the Kanto–Tokai re-
gion, Japan. [From Fehler et al., 1992, with
permission from Blackwell Science, United
Kingdom.]
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cal spreading plotted vs. hypocentral distance. Only the shapes and relative differ-
ences in amplitude among three curves are important. The running means of the
data over 15 km vs. distance N D

EI1 , N D
EI2 , and N D

EI3 are plotted in fine
lines, and the bold lines show the fit to the data from the theory obtained using Fig-
ure 7.10 and measurements of R1  and R2  from the data.

Single Station Approach Using Time-Domain Solution

Hoshiba [1993] proposed a method to use data from only one station to de-
velop curves N D

EI1 , N D
EI2 , and N D

EI3  similar to those shown in Figure
7.11. When data from a single station are analyzed, the site amplification term
N fj

S ( ) is not necessary since it will be the same for all events. By developing
curves for individual stations, the spatial variability of results can be investigated.
Hoshiba [1993] integrated energy density EI f

kj1 2 3, , ( )  as in (7.36), where he defined

three time-windows having equal lengths of 15 s. He corrected the integrated en-
ergy density for the source radiation factor using the coda energy density at 60 s
lapse-time measured from the earthquake origin time E f

kj
SCoda ( ) . The observed

integrated energy density was compared with the integrated energy density
EI g B f

kj1 2 3 0 0, , , ,Theory( ) calculated from Monte Carlo simulations for the three time

windows for various values of g0 and B0 , and the following residual was mini-
mized for each station j:
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FIGURE 7.11. Plots of normalized integrated energy density with geometrical
spreading correction vs. hypocentral distance in the Kanto–Tokai region, Japan, rela-
tive to the value at a borehole hard rock site TRU for vertical component data, where
running means over a 15 km window and best fit theoretical curves are shown by fine
lines and bold curves, respectively : (a) for 2–4 Hz band; (b) for 4–8 Hz band. [From
Fehler et al., 1992, with permission from Blackwell Science, United Kingdom.]
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where rkj  is the hypocentral distance of the kth earthquake and N the total number

of earthquakes. Offset Cj , which is related to the unknown site factor N fj
S ( ) and

an adjustment for dimension, was introduced to minimize the residual since only
the relative differences of curves are important. Analyzing data at individual stations
in Japan, Hoshiba [1993] concluded that the total attenuation is smaller in regions
away from active volcanic zones.

Results of Studies Based on the MLTW Analysis

Mayeda et al. [1992] analyzed data from many stations in Hawaii, central Cali-
fornia, and Long Valley, California. Jin et al. [1994] analyzed data from five sta-
tions in southern California by fitting data for various time windows of integration
using curves calculated from the analytic solution of Zeng et al. [1991], as given in
Section 7.1. Jin et al. [1994] concluded that for the five southern California stations
that span a region having about 200 km radius, the seismic albedo and scattering
attenuation show a spatial dependence for frequencies below about 6 Hz but are
similar above 6 Hz. They found that scattering attenuation below 6 Hz is larger near
fault zones. They argued that the waves above 6 Hz preferentially travel in the more
homogeneous lower portion of the lithosphere resulting in less spatial variation in
estimated parameters. They concluded that there is little difference in intrinsic at-
tenuation among the stations. Akinci et al. [1995] reported the predominance of
scattering attenuation for frequencies less than 4 Hz but the predominance of intrin-
sic attenuation for frequencies larger than 8 Hz in southern Spain. Most of these
studies are based on the single station method. Figure 7.12 summarizes the results
of these measurements. The results indicate a wide variety of relations between
scattering and intrinsic attenuation although the general trend is that scattering and
intrinsic attenuation decrease with increasing frequency over the range of 1–20 Hz.
On average g0  is estimated to be on the order of 10 2 1− −km .

The MLTW method was applied to high-frequency (400-1600 Hz) data from a
mine in Canada [Feustel et al., 1996]. The investigators inferred that the observed
increase in scattering up to 1000 Hz is caused by the 4–6 m characteristic length of
the mapped fractures.

Examination of the data in Figure 7.11 reveals that N EI1, has significantly more
scatter than N EI3 or N EI2. Since the first time window contains the direct S-wave
arrival, the increased scatter is probably caused by nonspherical radiation from the
source. We have assumed spherically symmetric radiation from the source in our
analysis even though we know that radiated energy is nonspherical as predicted
from a fault source model. Nonspherical source radiation will be studied further in
the following section.
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7.3 MULTIPLE ISOTROPIC SCATTERING PROCESS FOR
NONSPHERICAL SOURCE RADIATION

As discussed in Section 6.1.1,
radiation of seismic energy from an
earthquake source is not spherically
symmetric. Figure 7.13 shows MS
seismogram envelopes, recorded at a
hard rock site, of regional earth-
quakes having nearly equal hy-
pocentral distances. Amplitudes have
been normalized by the average coda
amplitude at 60 s lapse-time indi-
cated by an arrow. We find a large
variation in amplitudes near the di-
rect S-arrival. However, the variation
reduces as lapse time increases and
shows no dependence on lapse time
after about 30 s. The variation in
amplitude near the direct S-arrival is
caused by the nonspherical radiation
from the earthquake source and is
well documented from studies using
different types of seismic data. Here,
we show how the energy density
corresponding to MS seismogram
envelope loses its memory of the nonspherical radiation pattern from the source
with increasing lapse time [After Sato et al., 1997, with permission from Elsevier
Science - NL, Sara Burgerhartsraat 25, 1055 KV, Amsterdam, The Netherlands].

7.3.1 Formulation

We assume nonspherical radiation of energy Ψ θ φ,( ) from a point source lo-
cated at the origin in a scattering medium, where the distribution of point-like iso-
tropic scatterers is randomly homogenous, as mentioned in Section 7.1. We use the
point shear-dislocation model for an earthquake source, as discussed in Section 6.1.
Figure 7.14 shows the angular dependence of the far-field radiation of S-wave en-
ergy from the source derived from the square of amplitude radiation patterns given
by (6.3) and the geometry of the receiver and the last scattering point. Substituting
this radiation pattern in the direct propagation term of (7.5), we may describe the
energy propagation through the scattering medium by

E t G t G t t E t dt dx x x x x x, , , , ,( ) = ( ) ( ) + − ′ − ′( ) ′ ′( ) ′ ′
−∞

∞
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N
o

rm
al

iz
ed

 M
S

 A
m

p
lit

u
d

e

104

100

102

106

Lapse Time [s]
0                20               40                60              80

ts 2ts

ONG-NS 8-16 Hz

FIGURE 7.13. Horizontal-component seis-
mogram envelopes in the 8-16 Hz band
recorded at a hard rock site, Onagawa,
near Sendai, Japan of regional earth-
quakes having nearly the same hypocen-
tral distance. Amplitudes are normalized by
the coda amplitudes at 60s lapse-time,
which is indicated by an arrow. [From Sato
et al., 1997, with permission from Elsevier
Science - NL, Sara Burgerhartsraat 25,
1055 KV, Amsterdam, The Netherlands.]
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The radiation pattern is normalized as

dΩ Ψθ φ θ φ π, ,( ) ( ) =∫ 4 (7.41)

where d d dΩ θ φ θ θ φ, sin( ) =  and the normalized Green function is given by (7.6).
Following Section 7.1.1, the solution of (7.40) in the Fourier–Laplace domain is
given by

˜̂ ,
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1
(7.42)
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We note that the argument is not scalar k  but vector k because there is a specific
orientation of the source radiation.

Measuring angle θ  from the third axis and angle φ  from the first axis, we in-
troduce spherical harmonic functions Ylm θ φ,( ) (see the Appendix) for the decom-
position of the radiation pattern as

Ψ Ψθ φ θ φ, ,( ) = ( )
=−=

∞

∑∑ lm lm
m l

l

l

Y
0

(7.44)
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FIGURE 7.14. Geometry of the multiple scattering process for nonspherical radiation
of S-wave energy from a point shear-dislocation source located at the origin. The unit
normal vector to the fault plane (see Figure 6.1) is n = ( )1 0 0, ,  and the unit slip vector
is s = ( )0 1 0, , . The third axis is the null axis. [From Sato et al., 1997, with permission
from Elsevier Science - NL, Sara Burgerhartsraat 25, 1055 KV, Amsterdam, The
Netherlands.]
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where Ψ00 4= π  from the normalization condition (7.41). We take the phase
factor of the spherical harmonic functions according to Landau and Lifshitz [1989].
The integral (7.43) can be written as a spherical harmonic expansion:
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where k = ( )k k k, ,θ φ in spherical coordinates in the wavenumber vector space and

we used (A.7). Function G k sl ,( ) , which is defined as a Laplace transform of the
spherical Bessel function, is explicitly written by using the Gauss hypergeometric
function [Gradshteyn and Ryzhik, 1994, p. 732]:
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where the argument is scalar k  and we note that
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By using the recurrence formula for the spherical Bessel function [Abramowitz and
Stegun, 1970, p. 439]

2 1 11 1l
d

dz
j z l j z l j zl l l+( ) ( ) = ( ) − +( ) ( )− +                          (7.49)
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we get the following recurrence relationship for G k sl ,( ) :
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We can get every higher order term by using this recurrence relationship. Substi-
tuting (7.45) and (7.47) in (7.42) and taking the inverse Fourier transform,
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where d d dk k k k kΩ θ φ θ θ φ, sin( ) = in the wavenumber space. We can write the
spherical Bessel function [Arfken and Weber, 1995, p. 681] in the following form:
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By using this, we have the lth order term in (7.51) as
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where we used G k s G k sl
l

l−( ) = −( ) ( ), ,1 . Taking the inverse Laplace transform of
(7.51), we get the normalized energy density in space and time:
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The lth order term can be formally written using a 2-D Fourier transform:
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Using w z0 1( ) =  from (7.52), we find that the integral kernel of (7.55) for l=0 re-
duces to (7.8) which was obtained for the case of spherical radiation from the
source. Taking the limit k → 0, we can easily confirm the conservation of total en-
ergy in the case of no intrinsic absorption (b=0), when the contribution due to
source radiation comes only from the lowest order term, l=0.

To practically evaluate E r tl ,( ), we follow Section 7.1.1 and formally decom-
pose it into three terms: the direct energy density, the single scattered energy den-
sity, and the energy density of multiple scattering of order greater than or equal to
two:

E r t G r t E r t E r tl l l
M, , , ,( ) = ( ) + ( ) + ( )1 (7.56)

Solving the first-order perturbation of (7.40) in the space-time domain, we get the
single scattering term
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where ′ = ′r x , ′′ = − ′r x x  and cos cos cos ' sin sin ' cos 'θ θ θ θ θ φ φ0 = + −( ). We
also used
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By using
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where function Q xn ( ) is the Legendre polynomial of the second kind [Abramowitz
and Stegun, 1970, p.334], and the addition theorem for the Legendre polynomials
(A.6),
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where we used the orthogonality condition for spherical harmonic functions, (A.5).
Finally we obtain
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Eq. (7.60) with (7.61) is the energy density derived for single isotropic scattering
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FIGURE 7.15. Temporal change in the single scattering energy density for nonspheri-
cal radiation of different orders. As source radiation departs from spherically symmet-
ric, radiation having order l increases in importance but the effect on the energy den-
sity decreases more rapidly with increasing lapse time than for order 0. [From Sato et
al., 1997, with permission from Elsevier Science - NL, Sara Burgerhartsraat 25, 1055
KV, Amsterdam, The Netherlands.]
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from a point shear-dislocation source radiation [Sato, 1982c]. The lowest order
term having l=0 corresponds to spherical source radiation. Then, substituting the
explicit form for Q0 , we obtain
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which is the same as (7.17). Figure 7.15 shows time traces of 4 2 1 1πr E r t
b t

le
+( ) ( ),

for selected even orders l. We find that terms of order l > 0 decrease more rapidly
with increasing lapse time than the lowest order term, that is, the spherical radiation
term corresponding to l =0 dominates at long lapse times.

Using (7.55), we obtain the multiple scattering energy density for the lth order
as
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We can evaluate (7.63) by using a 2-D FFT. Substituting (7.61) and (7.63) in
(7.56), and putting the sum into (7.54), we get the energy density.
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FIGURE 7.16. Spatiotemporal changes in energy density at different azimuths de-
fined in Figure 7.14 for nonspherical radiation from a point shear-dislocation source,
where the broken curve corresponds to results for spherical source radiation: (a) time
traces at r =1; (b) spatial sections at t =2. [From Sato et al., 1997, with permission
from Elsevier Science - NL, Sara Burgerhartsraat 25, 1055 KV, Amsterdam, The
Netherlands.]
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7.3.2 Simulation for a Point Shear-Dislocation Source

For a point shear-dislocation source having unit normal vector n = ( )1 0 0, ,  and
unit slip vector s = ( )0 1 0, , , we can decompose the radiation of S-wave energy that
is schematically illustrated in Figure 7.14 as follows
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(7.64)

where the null vector is taken in the direction of the third axis and the radiation pat-
terns for S-waves BS

θ  and BS
φ  are given by (6.5).

For the numerical simulation, we choose b = 0 . Figure 7.16 shows the tempo-
ral evolution of the normalized energy density at r =1 and spatial distributions of
energy density at t =2 in three different directions from the source. The broken
curves show results for spherical source radiation as a reference. Figure 7.17 shows
the angular distribution of energy density at r =1 on the equatorial plane θ π= / 2 at
various normalized lapse times. Energy densities in Figure 7.17 are normalized by
that for the spherical source radiation. The energy density for t =1 represents the
nonspherical radiation pattern of the direct S-wave energy from the point shear-

t=1.0

t=1.05

t=1.2

t=2.0

φ=0

φ=90˚

FIGURE 7.17. Energy density on the equatorial plane ( θ π= / 2  in Figure 7.14) at r =1
for nonspherical radiation from a point shear-dislocation at various normalized lapse
times. The energy density is normalized by that for the case of spherical source radia-
tion, which is shown by a dashed curve in each plot. [From Sato et al., 1997, with
permission from Elsevier Science - NL, Sara Burgerhartsraat 25, 1055 KV, Amster-
dam, The Netherlands.]
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dislocation. However, the azimuth dependence diminishes as lapse time increases
and the energy density asymptotically converges to that obtained for spherical
source radiation in Section 7.1.1, which corresponds to the lowest mode, l=0. The
angular variation in energy density becomes less than 3% when the lapse time ex-
ceeds twice the direct wave travel-time at a distance of r =1. This simulation quali-
tatively agrees with the observed radiation pattern independence of coda amplitudes
at long lapse time as shown in Figure 7.13 and the empirical observations that form
the basis for the coda-normalization method described in Section 3.4.

7.3.3 Using the Radiative Transfer Theory to Invert for the
High-Frequency Radiation from an Earthquake

We have modeled the earthquake source using a point shear-dislocation, which
is a reasonable representation for a small earthquake with a simple geometry. For a
larger earthquake, it is necessary to consider variations in radiation from different
portions of the fault plane and the timing of the radiation from fault segments due
to the finite rupture propagation velocity. It has been shown that the amount of slip
and the timing of slip along a fault plane can be determined from low-frequency

FIGURE 7.18. EW component velocity seismograms ( f >1 Hz) of the 1994 far east
off Sanriku earthquake, Japan, where each trace is normalized by its maximum
value. The location of the initial break is indicated by a star at the east end of the
main fault (bold rectangle), where small boxes are eight subfaults used in the inver-
sion study. [Courtesy of H. Nakahara.]
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regional seismograms of an earthquake [Olson and Anderson, 1988]. Variations in
observed seismogram envelopes at different recording locations reflect not only the
fault plane geometry but the rupture propagation and differing amounts of radiation
from individual fault segments. For an example, in Figure 7.18, we show high-
frequency seismograms for the 1994 Mw=7.7 far east off Sanriku earthquake that
took place offshore of the Pacific coast of northeastern Honshu, Japan. The maxi-
mum acceleration of 604 gal was recorded at station HAC, which is the nearest re-
cording site to the earthquake fault. From analysis of teleseismic waves, the fault
plane solution was a reverse fault type and the seismic moment was 4 1020× Nm.
The aftershock distribution shows that the fault dimension was about 160 km by 80
km and the depth was as shallow as 13 km at the east end and deepened to 50 km
on the west end. Results of inversion of long-period waveforms using data from
station TYM located about 300 km from the earthquake, as shown in Figure 7.18,
were consistent with the model that the fault ruptured from east to west having an
average slip of 0.4 m [Nishimura et al., 1996]. The duration of the seismic signal
was very short at HAC located in front of the rupture propagation; however, the
signal has longer duration at OFU and URK which are at large angles from the
rupture direction.

For assessing hazards due to future earthquakes, it is useful to determine the
temporal dependence of the radiation of high-frequency energy from the fault since
the temporal dependence controls constructive and destructive interference at vari-
ous sites and hence the amplitude and duration of high-frequency shaking. Seismic
waves with frequencies higher than 1 Hz are rather incoherent, particularly at the
long source–receiver distances of observations of this earthquake, and the short-
wavelength crustal inhomogeneities are complex, as shown in the previous chap-
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FIGURE 7.19. Sum of the observed three-component MS velocity envelopes at four
stations in the 4–8 Hz band (solid) for the 1994 far east off Sanriku earthquake, Ja-
pan and the synthesized envelopes (broken) obtained using the effective Green
function from the radiative transfer theory for a shear-dislocation source. [Courtesy of
H. Nakahara.]
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ters. Therefore, the conventional inver-
sion method for estimating the rupture
process was not successful when applied
to high-frequency waves. This suggests
that an appropriate analytical procedure
may be to disregard the phase informa-
tion and focus instead on seismogram
envelopes.

Zeng et al. [1993] mapped the high-
frequency radiation from the fault plane
for the 1989 Loma Prieta earthquake
from analysis of seismogram envelopes.
They used a Green function derived
from geometrical ray theory. Gusev and
Pavlov [1991] proposed a method to in-
vert for the radiation history from a fault
where MS seismogram envelopes of
small aftershocks are used as empirical
Green functions. Kakehi and Irikura
[1996] estimated the high-frequency wave radiation from the fault plane of the
1993 Kushiro–Oki earthquake (Mw=7.6) by using RMS acceleration seismogram
envelopes of small aftershocks as empirical Green functions.

Here, we introduce a method proposed by Nakahara [1996] in which the energy
density for a point shear-dislocation source obtained in Sections 7.3.1 and 7.3.2 is
used as the effective Green function for the high-frequency MS seismogram enve-
lope. By using knowledge of the size of the fault plane, its orientation, its location,
and the location where rupture initiated, Nakahara [1996] sought to find the rupture
velocity, the average duration and the amount of high-frequency energy radiation on
each portion of the fault. His approach is based on the assumption that the whole
seismogram starting from the S-wave onset is composed only of direct and scat-
tered S-waves and conversions between S- and surface waves are ignored; how-
ever, the advantage of this method is that a small number of parameters describe
the entire model. Nakahara [1996] considered only S-waves in octave-width fre-
quency bands having central frequency f Hz. Solid curves in Figure 7.19 show the
sum of the three components of observed MS velocity envelopes for the 4–8 Hz
band. Multiplying the mass density by the sum of the three components of ob-
served MS velocity envelopes in each octave-width frequency band, he obtained a
smoothed time trace of observed energy density.

For modeling the energy density, Nakahara [1996] used the configuration of the
earthquake fault plane and seismic stations that is schematically illustrated in Figure
7.20. The rupture propagates from the initial break, whose location is indicated by a
star on the fault. Positions of the rupture front along the fault are indicated by bro-
ken curves. He let W fk

S
( )( ) be the S-wave energy radiated from the subfault k, and

E fij( )( ) the energy density recorded at station i at time j measured from the earth-

quake origin time. G fijk
E
( )( ) is the effective Green function for unit energy radiation

from subfault k  as given by (7.54) at station i and time j for the known fault ge-

E(ij)(f )

G(ijk)(f )

W (f )(k)

|N (f )|i
S

S

2

E

FIGURE 7.20. Geometry of the inver-
sion scheme for the high-frequency en-
ergy radiation for the kth subfault
showing station i, time j in the f Hz
band. The star indicates the initial break
and broken curves are isochrons of rup-
ture propagation along the main fault.
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ometry. The effective Green function is delayed for each subfault according to the
rupture propagation velocity, which is assumed constant along the fault. The site
amplification factor at station i is given by N fi

S( ). Then the predicted S-wave en-
ergy density envelope at station i for frequency f and time j is written as the product

N f G f W fi
S

ijk
E

k
S

k

( ) ( ) ( )( ) ( )∑2
. To fit the data, Nakahara [1996] sought to find W fk

S
( )( )

that minimizes the difference of the square of the residual of the synthesized and
observed envelopes:

i j i
ij i

S
ijk
E

k
S

k

E f N f G f W f
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∑ ∑( ) ( ) ( )( ) − ( ) ( ) ( ) ⇒1
2

2
2

σ
Min (7.65)

where σi
−2  is a weight for station i.

Nakahara [1996] divided the main-fault into eight subfaults of size 44x44 km2 ,
and chose the site amplification factor as 1 at reference station TYM, whose seis-
mometer is located on hard rock. The fault geometry was taken from the Harvard
Centroid Moment Tensor (CMT) solution determined from long-period waves. He
used values of total scattering coefficient and intrinsic absorption estimated for this
area [Hoshiba, 1993] using the MLTW analysis (see Section 7.2). The contribution
of each station was equalized by choosing the weight σi

−2  equal to the reciprocal of
the peak value of the observed energy density at the station. The solution was found
by an iterative method to fit the observed energy density envelope data in four fre-
quency bands (1–2, 2–4, 4–8, and 8–16 Hz) at ten stations. The minimum residual
was obtained by choosing rupture velocity as 2.7 km/s and the duration of energy
radiation from each subfault as 6 s. The broken curves in Figure 7.19 show the
synthesized envelopes at four stations in the 4–8 Hz band. The coincidence between
observation and model is very good for station HAC with a short duration packet
and for stations with long duration packets, such as SAP, TYM and KUS. Figure
7.21a shows histograms of energy radiated from different subfaults for the 4–8 Hz
band. He concluded that more than 90% of high-frequency energy was radiated
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FIGURE 7.21. (a) Histogram of energy radiated in the 4–8 Hz band from the eight
subfaults used to model the 1994 far east off Sanriku earthquake, Japan.  (b) Histo-
gram of slip based on an inversion study using long-period records at station TYM by
Nishimura et al. [1996]. Star indicates location of initial rupture. [Courtesy of H. Naka-
hara and T. Nishimura.]
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from the western half of the fault, where a large amount of slip took place. A total
of 50% of the high-frequency energy radiation was from the subfault at the NW
end of the fault, at the end of rupture. Madariaga [1977] used a dynamic model of
faulting to investigate the high-frequency radiation from a fault with irregular rup-
ture velocity and concluded that any abrupt change in the rupture velocity causes
large high-frequency radiation. Thus a region where fault strength varies may
dominate the radiation of high-frequency from the fault. The maximum fault dis-
placement occurred on a subfault neighboring the center of the fault as shown in
Figure 7.21b. We note that the subfault on the NW end coincides with the location
where the largest amount of slip and the largest high-frequency radiation occurred
during the 1968 Ms=7.9 off Tokachi earthquake [Mori and Shimazaki, 1985]. Di-
viding the main-fault into 32 subfaults, Nakahara et al. [1997] made a more precise
analysis of the radiation from the earthquake.

7.4 MULTIPLE NONISOTROPIC SCATTERING PROCESS
FOR SPHERICAL SOURCE RADIATION

In Sections 7.1 and 7.3, we
examined the multiple isotropic
scattering process including the
effects of nonspherical source ra-
diation; however, as shown in
Figure 4.4b, forward-scattering
strength increases with increasing
frequency. Scattering patterns of
elastic vector waves are noniso-
tropic in general as illustrated in
Figure 4.8. How does nonisotropic
scattering affect the seismogram
envelope? What is the effect of
multiple nonisotropic scattering at
long lapse time? We will now ex-
amine these issues. The first
analysis using the radiative transfer
theory for nonisotropic scattering was done for the 2-D case of surface wave scat-
tering; it was later studied for the 3-D case [Sato, 1994b, 1995a]. We introduce the
formulation for the 3-D case in the following, which corrects an error in Sato
[1995a].

7.4.1 Formulation

Similar to Section 7.1, we assume a homogenous and random distribution of
point-like scatterers in 3-D space; however, we assume nonisotropic scattering. We
describe the axial symmetric nonisotropic scattering power per volume by scatter-
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FIGURE 7.22. Geometry used for the study of
multiple nonisotropic scattering.



210 / Chapter 7

ing coefficient g( )  for scattering angle . The total scattering coefficient is given 
by the average over solid angle (see (3.3)):

g0

1

4
g( )d ( ) =

1

2
g( )

0

sin d          (7.66) 

 We formulate the multiple nonisotropic scattering process in 3-D space after 
Sato [1995a, with permission from Blackwell Science, United Kingdom]. The 
background medium is characterized by wave velocity V0 , and the source radiation 
is spherically symmetric. We define f x, t;q( )  as the directional distribution of ener-
gy density at x  in the direction given by unit vector q  at time t , where
q = (1, q , q )  in spherical coordinates. Integrating f  over the solid angle with re-
spect to q , the energy density 

E x,t( ) = f x,t;q( )d q, q( )      (7.67) 

where d q , q( ) = sin qd qd q . f x,t;q( )V0q  gives the energy-flux density in di-

rection q , which is called specific intensity in the radiative transfer theory [Ishi-
maru, 1978, p. 148]. The stochastic study of the wave equation in random media  
shows that the correlation function of the wavefield corresponds to the Fourier 
transform of the specific intensity [Ishimaru, 1978, p. 275].
 We introduce the directional Green function for coherent wave energy. It repre-
sents the distribution of energy density in the direction q  at location x  due to radia-
tion from an impulsive source that is spherically symmetric, has unit energy, and is 
located at the origin at t =0:

G x,t;q( ) =
e g0 V0 + b( )t

4 V0 r2 t
r

V0

H t( ) x;q( )     (7.68) 

where r = x , b is for intrinsic absorption, and  is the delta function for the solid 
angle as given by (A.9) and (A.10). The delta-function term means that energy-flux 
density exists only in the radial direction. The total scattering coefficient g0  appear-
ing in the exponent accounts for the scattering attenuation. 
 We derive the spatiotemporal change in f  when the total energy W  is spheri-
cally radiated instantaneously from the origin at t =0. As an extension of (7.1), the 
integral equation describing the multiple nonisotropic scattering process is 

f x,t;q( ) = WG x,t;q( )

+ G x",t t ';q( )V0g( ) f x ', t ';q '( )dx 'dt 'd q ' , q '( )
(7.69)

where x"= x x'  is the vector from the last scatterer at x'  to the receiver at x , as 
illustrated in Figure 7.22. The second term in (7.69) is a convolution integral which
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means that the energy flux in the direction q'  ( q' = 1) hits the last scatterer gener-
ating scattered energy flux proportional to g ψ( ) in the direction x", where ψ is the
angle between directions q'  and x". The directional Green function appears in the
convolution integral to account for propagation from the last scatterer to the re-
ceiver. When scattering is isotropic, g = g0 integrating (7.69) over the solid angle,
we get (7.1). Equations (7.66)–(7.69) can be considered a natural extension of the
radiative transfer theory for isotropic scattering to the case of nonisotropic scatter-
ing.

We normalize time, length, and related quantities by V0  and g0 as done in (7.4):
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The normalization of (7.66) becomes gdΩ =∫ 1. Then, the integral equation (7.69)

is rewritten as
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(7.71)

where ′′ ′x x x= − , and ψ is the angle between directions q'  and x". The nondi-
mensional normalized directional Green function is given by
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e
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t r H t

b t
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− +( )1

24π
δ δΩ (7.72)

where r = x  .
In addition to the Fourier transform in space and the Laplace transform in time,

we use a spherical harmonic series expansion of the solid angle with respect to q
(see the Appendix):
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The inverse transform is
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Taking the Laplace transform with respect to time and the spherical harmonic
series expansion of (7.72),

ˆ , ,*G s
e

r
Ylm

s b r

lmx( ) = ( )
− + +( )1

24π
θ φ (7.75)

where subscripts have the same meaning as when used with f . The Fourier trans-
form of (7.75) with respect to space coordinates becomes the product of a spherical
harmonic function and a function of k = k :
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where wavenumber vector k = ( )k k k, ,θ φ  in spherical coordinates and Gl  is given
by (7.46). We used expansion formula (A.7) and the orthogonality of spherical
harmonic functions (A.5).

Next, using the addition theorem (A.6), we expand the nondimensional nor-
malized scattering coefficient using spherical harmonic functions as
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where x" ", ", "= ( )r θ φ and ′ = ′ ′q ( , , )1 θ φq q in spherical coordinates and expansion
coefficients gl  are real quantities. The lowest term with l=0 corresponds to isotropic

scattering, where g0 1 4= π .
Substituting (7.77) in the Laplace transform of (7.71),
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Substituting the spherical harmonic expansion of Ĝ  with respect to q  in (7.78) and
using the orthogonality relationship (A.5),
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The second term is a convolution integral over ′x . By using (7.75) and (7.76),
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where Yl"m"( )l' m'

lm
can be written explicitly using the definition of the Wigner 3-j

symbols given in (A.11) to represent the integral of a product of three spherical
harmonic functions. This term vanishes except when the triangular condition de-
scribed following (A.11) holds. Taking the Fourier transform of (7.79) with respect
to space coordinates and substituting (7.80) in the result, we finally obtain a set of
simultaneous linear equations for 0 ≤ < ∞l  and − ≤ ≤l m l :
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We try to find a solution as a product of a spherical harmonic function and a
function of k  as

˜̂ , , ,*f s i f k s Ylm
l

l lm k kk( ) =( ) ( ) ( )− θ φ (7.82)

That is, we may write f  as a Legendre expansion of angle θxq between directions
q  and x  as
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The factorization (7.82) means that f x,t ;q( ) is a function of angle θxq . However,

our objective is not to obtain f   but the lowest order term f0 , which is the only
term needed to describe the energy density, as will be shown below. Multiplying
Ylm k kθ φ,( ) by (7.81), integrating over the solid angle in the wavenumber space, and

summing up for m from -l to l, we get the equation for f l
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(7.84)

where we set m m m= +' "  for the nonvanishing component according to the selec-

tion rule for the addition of angular momenta. Functions f l  and Gl are real since
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the exponent of -i, which is l l l' "+ − , is even for nonvanishing Yl"m"( )l' m'

l,m' +m"
. In the

equation corresponding to (7.84), denominator 2l+1 was missing in Sato [1995a].
If the scattering coefficient is written as a finite series of spherical harmonic

functions, the triangular inequality for the Wigner 3-j symbols makes the right-
hand side of (7.84) a finite series, that is, if the highest order of the expansion is
lMax , we have to solve the simultaneous linear equations for lMax + 1 unknowns. For

isotropic scattering, solving (7.84) with gl l= δ π0 4/ , we get f G G0 0 01= −/( ),
which coincides with (7.8).

Although the mathematical derivation involves expansion of f l into spherical
harmonics, only the lowest order term of l=0 remains in the energy density (7.67),
given as an integral over the solid angle, since other terms vanish. Thus, we obtain
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With no intrinsic absorption b = 0, taking the limit k → 0, we can prove that the
total energy given by the space integral of E x,t( ) is conserved.

7.4.2 Simulation

Now we will show a method for simulating seismogram envelopes in media
with nonisotropic scattering using the method developed in Section 7.4.1. We for-

mally decompose each of f 0  and E  into three terms corresponding to the direct,
the single scattering, and the multiple scattering term with order greater than or
equal to two as (7.12–13)

f 0 k,s( ) = G0 k,s( ) + f 0
1 k,s( ) + f 0

M k,s( )   (7.86)

E x,t( ) = G x,t( ) + E 1 x,t( ) + E M x,t( )       (7.87)

In practice, we use integral (7.85) only to evaluate the multiple scattering term,
which converges quickly.

Substituting Gl  in place of f l  on the right-hand side of (7.84) for l=0, we get
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where we used the explicit representation of the Wigner 3-j symbols. Substituting

(7.88) in (7.86), where f0  is the solution of simultaneous linear equations (7.84),

we get f 0
M . Substituting it in (7.85), we numerically calculate E M x,t( )  by using a

2-D FFT.
To calculate E 1 x,t( ), we directly integrate the single nonisotropic scattering

term in space. Substituting G0 in f in the second term of the right-hand side of

(7.71), we get the single scattering term f 1 x,t ;q( ), whose integral over the solid
angle gives E 1 x,t( ). We take the source and the receiver as the foci of the dimen-
sionless prolate spheroidal coordinates w v, ,φ( ) defined in (3.13), where we replace
z x→ ′, r r→ , r ra → ′ and r rb → ′′ . Then,
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(7.89)

The single scattering term given by the surface integral over the isochronal scatter-
ing shell corresponding to v = t / r  is written as an integral over the prolate
spheroidal coordinate w  [Sato, 1982c]. Then, ψ  becomes the scattering angle be-
tween directions ′x  and ′′x , which is explicitly written as a function of w  and
v = t / r  as in (3.17). We have to numerically integrate (7.89) in general; however,
we can analytically integrate it using (3.19a) and get (7.17) for isotropic scattering
g = 1 4/ π . Thus, adding the three terms representing the direct, single scattered,
and multiple scattered energy, we get the spatiotemporal distribution of the nor-
malized energy density E x,t( ).
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One-Parameter Model

To examine the mathematical structure of the formulation, we take the
following nonisotropic scattering model having one parameter g1:

g g Y ig Y

g

ψ ψ ψ

π π
ψ

( ) = ( ) − ( )

= +

0 00 1 10

1

0 0

1
4

3
4

, ,

cos
 (7.90)

This is the simplest model of the spherical harmonic series (7.77). There is a limit
on the range of g1  in this one-parameter model since we require that g ψ( ) > 0. We
show g ψ( ) for various values of g1 in Figure 7.23. By using the explicit
representation of the Wigner 3-j symbols, we write the first two linear equations of
(7.84) as

f G g G f g G f

f G g G f g G f g G f

0 0 0 0 0 1 1 1

1 1 0 1 0 1 0 1 1 2 1

4 2 3

4 2 3 4 3

= + −

= + + −

π π

π π π/ /
(7.91)

Substituting Gl  in f l  in the right-hand side of the first equation, we get the single
scattering term in (7.86) as

f g G g G0
1

0 0
2

1 1
24 2 3= −π π (7.92)

Subtracting G0  and f 0
1 given by (7.92) from the solution f 0  of (7.91) and using

4 10π g = , we get f M
0  using (7.86). Then, substituting it in (7.85), we numerically

calculate E M x,t( )  by using a 2-D FFT, where we use the explicit representation of

Gl  for l =0, 1, and 2, as given by (7.47,
7.48 and 7.50).

We plot temporal traces and the
spatial sections of the normalized energy
density in Figures 7.24a and b,
respectively, for g1=0.08 and no intrinsic
absorption. Forward scattering is stronger
than backward scattering, as illustrated in
Figure 7.23. In Figure 7.24a, comparison
of the solid lines showing the result for
nonisotropic scattering with the broken
lines, which give the results for the
isotropic scattering model ( g1=0), reveals
that the temporal traces are very close to
the isotropic scattering case for short
distances. At slightly longer distances,

g1 = 0
0.04

0.08
0.10

ψ

FIGURE 7.23. Nonisotropic scattering
pattern of one-parameter model (7.90)
for different values of g1, where the
broken line is for isotropic scattering
( g1=0).
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such as r =0.8 and 1.6, strong forward scattering increases the energy density
immediately after the direct arrival, and weak backward scattering decreases the
later coda energy density compared with the isotropic scattering case. Nonisotropic
scattering has a strong effect even at times when multiple scattering dominates the
envelope. At longer distances, such as r =3.2, a broad secondary peak appears after
the direct arrival and occurs much earlier than in the isotropic scattering case. If
forward scattering is stronger than in the case investigated here, the secondary peak
will appear closer to the direct arrival. Thus, we may infer that both the direct and
the secondary peaks constitute a broadened envelope due to multiple forward
scattering as will be discussed in Chapter 8 for the observed broadening of S-wave
envelopes [Sato, 1989; Scherbaum and Sato, 1991; Obara and Sato, 1995].

In Figure 7.24b, the difference in the spatial distribution of energy density
between the isotropic and nonisotropic scattering cases is apparent even at short
lapse times, as illustrated by the top spatial section. Most of the energy propagates
outward for the nonisotropic case, but the spatial section has a Gaussian-like peak at
the hypocenter for isotropic scattering. As lapse time increases, the spatial section
for nonisotropic scattering also becomes a Gaussian-like curve because of multiple
scattering, but the maximum energy density at the hypocenter is smaller than that
for isotropic scattering. At lapse times t =0.96 and 1.92, spatial sections for the
nonisotropic scattering case look similar to those derived using the energy-flux
model in Section 3.2.2 and shown in Figure 3.9. When scattering is much stronger
in the forward direction and described by a higher order series expansion than used
in (7.90), we will expect more uniform spatial distribution of energy density around
the hypocenter for longer lapse times than in Figure 7.24b.

The coda-normalization method for attenuation measurements and site factor
estimation is based on the hypothesis that coda energy is uniformly distributed
within some volume whose size depends on lapse time. Typically, a lapse time of
50 s is chosen as appropriate for a 100 km region surrounding the source for S-
wave velocity 4km/s. Normalized lapse time t =2 for g0=0.01 km-1 corresponds to
a 50 s lapse time. Normalized distance r =1 corresponds to 100 km in this case.
The results derived from our simple case study, shown in Figure 7.24b, show that
energy is relatively uniformly distributed within a 100 km radius surrounding the
source at 50 s lapse time. This provides some theoretical support for the coda-
normalization method as applied in regional seismology. We have already
discussed a fractal distribution of scatterers in Section 7.1.3 which also predicts the
uniform distribution of coda energy even though isotropic scattering is assumed.
Both nonisotropic scattering and fractal distribution of scatterers are physically
important.

Gusev and Abubakirov [1987] and Hoshiba [1995] used Monte Carlo
simulations to study the envelope formation due to nonisotropic multiple scattering
with much stronger forward scattering than modeled in this Section. To model
these stronger forward scattering cases using the method developed in this Section,
we would have to include additional higher order terms of the spherical harmonic
series with respect to the solid angle.

The MLTW method for finding the contributions to total attenuation of
scattering attenuation and intrinsic absorption based on the multiple isotropic
scattering model was presented in Section 7.2.2. As found in the above simulation,
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large forward scattering increases the amplitude just after the direct-wave arrival
and decreases the amplitude of the late S-coda compared to an isotropic scattering
model with the same total scattering coefficient. The isotropic scattering MLTW
analysis using the single station method described by (7.39) can easily be extended
to nonisotropic scattering.

For the practical study of seismogram envelopes, it is necessary to develop a
method to simultaneously account for multiple nonisotropic scattering as developed
in this section along with nonspherical radiation from a point shear-dislocation
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FIGURE 7.24. Plots of normalized energy density resulting from the one-parameter
model of the nonisotropic scattering process given in (7.90) for g1 0 08= .  and no
intrinsic absorption: (a) temporal traces, where numerals show the normalized
hypocentral distance at which the temporal plots are made; (b) spatial sections,
where numerals show the normalized lapse times at which the spatial distributions
are plotted. The broken curves show normalized energy density distribution for
isotropic scattering for reference (see Fig. 7.3). For the calculation, the 2-D FFT was
done over 200x200 points for ((0–16), (0–16)) in the normalized space-time r t,( ) .
The source duration time is taken as 0.16 and is two samples long.
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source as discussed in Section 7.3, since nonisotropic scattering impacts both the
direct arrival and the early coda. Watanabe et al. [1996] mathematically formulated
a multiple scattering process based on the radiative transfer theory, and derived a
coupling relationship between the spherical harmonic expansion coefficients of the
source radiation pattern and the nonspherical scattering coefficients by using the
Wigner 3-j symbols.

7.5 WHOLE SEISMOGRAM ENVELOPE: ISOTROPIC
SCATTERING INCLUDING CONVERSIONS BETWEEN
P- AND S-WAVES

Up to this point in this chapter, we have been studying the radiative transfer
theory for a single-wave mode. However, the shape of a seismogram envelope
beginning with the P-wave onset and continuing through the S-coda contains a
great deal of information about seismic propagation effects. Seismogram envelopes
have been used to classify earthquakes into groups by their hypocentral location,
focal depth, and seismotectonic province [Tsujiura, 1988]. Three-component
seismograms of a local microearthquake observed in Kanto, Japan are shown in
Figure 7.25a. In addition to the large excitation of S-coda as discussed in Chapter 3,
seismograms of local earthquakes have incoherent wave trains, called P-coda,
which have nearly stationary amplitude between the direct P- and S-wave arrivals.
From timing considerations, the P-coda must consist of a combination of P-to-P,
P-to-S and S-to-P scattered waves, as discussed in Chapter 6. The existence of P-
coda implies the importance of scattering with conversions between P and S.
Figure 7.25b shows examples of high-frequency seismograms in the 50–500 Hz

09/28/1986,  ML=2.2, Δ=116 km, 9km in Depth 
V

H1

H2

RMS Env.

MS Env.

Lapse Time [s]
20                     40                    60                    80

Hydraulic Fracturing, Dec. 1986, r=680m

V
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Lapse Time [s]
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                                  a                                                         b

FIGURE 7.25. (a) Velocity seismograms of a local microearthquake in Kanto, Japan,
recorded at NIED borehole station IWT [Data courtesy of K. Obara]. (b) High-
frequency velocity seismograms of a microearthquake induced by water injection at
the Fenton Hill hot dry rock geothermal site, New Mexico, U. S. A. The bottom two
traces are RMS and MS envelopes. Note the differences in time scale between the
natural and induced events.
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band from microearthquakes induced by water injection into a borehole drilled in
crystalline rock [Fehler and Phillips, 1991]. Although the frequencies of the
induced microearthquakes are much higher than those from natural earthquakes,
without time scales in the plots, it would not be possible to distinguish which
seismograms came from the natural sources and which came from the induced
events. The bottom trace of each figure shows the smoothed trace of the square
sum of the three components of the particle velocity, the MS envelope, which is
linearly proportional to energy density.

Now we will extend the multiple isotropic scattering model presented in Section
7.1 to include conversion scattering between P- and S-wave modes [Sato, 1994a;
Zeng, 1993] to arrive at a model to explain the entire seismogram envelope.
Conversion scattering is nonisotropic in general as shown in Chapter 4. However,
isotropic scattering is the lowest order term of the spherical harmonic expansion of
the scattering coefficient as discussed in Section 7.4. This isotropic-scattering
analysis including mode conversions will help us to obtain a better understanding
of the basic characteristics of the envelope of seismograms of regional earthquakes.
The following derivation is according to Sato [1994a, with permission from
Blackwell Science, United Kingdom].

7.5.1 Formulation

We suppose an impulsive spherical radiation of P- and S-wave energies W P

and W S  from a source located at the origin, where two types of wave modes are
considered. Scattering is isotropic for four scattering modes: P-to-P, P-to-S, S-to-P,
and S-to-S scattering. The distribution of point-like scatterers is random and
uniform in 3-D space. Scattering strengths of the four modes are characterized by
four total scattering coefficients g0

PP , g0
PS , g0

SP and g0
SS . The energy density is written

as a sum of P- and S-wave energy densities:

E x,t( ) = EP x,t( ) + ES x,t( )  (7.93)

Spherical Radiation 
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Receiver

Multiple
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Direct
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GPGP
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+WP

EP+ES

Last
Scattering

PointsESβ0 gSS

EPα0 gPS

0

 0

EPα0 gPP
0

ESβ0 gSP
0

FIGURE 7.26. Configuration of the source, receiver, and last scattering points for
multiple isotropic scattering including P–S conversions.
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Using an approach similar to that presented in Section 7.1, P- and S-wave energy
densities can be expressed as sums of coherent wave energy densities and
contributions from last scattering points, as shown schematically in Figure 7.26:
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 (7.94)

where α0  and β0 are the P- and S-wave velocities in the background medium,
respectively. We choose Green functions for coherent wave energies that include
the effects of geometric spreading, attenuation due to scattering and intrinsic
mechanisms, and causality as given by
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where r = x  and b is the parameter for intrinsic absorption which is chosen to be
the same for P- and S-waves. Since scatterers are assumed to be point-like, the
scattering field is exactly described by the above three equations (7.93–7.95). This
is a natural extension of the formulation for a single wave-propagation mode given
by (7.1–7.2).

To solve for the energy distribution as a function of space and time from
equation (7.94), we use the Fourier transform in space and the Laplace transform in
time, as done in Section 7.1. Here we keep the dimensional quantities. We first take
the Fourier–Laplace transform of the Green functions as
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where the argument is k = k  since there is no specific orientation.
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Taking the Fourier-Laplace transform of (7.94) and rearranging,
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As a check on our formulation, now we investigate the temporal dependence of
the total energy in the P- and S-wavefields. The total energies in the P- and S-
wavefields are defined as space integrals of the P- and S-energy densities, each
determined from the Fourier transform at wavenumber k =0:
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The last term in (7.98) shows that energy is removed from the total wavefield only
by intrinsic attenuation; when b = 0, the total energy in the wavefield is conserved.

The partition of energy into P- and S-wave modes for large lapse times is
controlled by the ratio of conversion scattering power per time between P and S,
which is the first term on the right-hand side of the first two equations in (7.98)
since the second terms vanish as lapse time increases. If we take g gSP PS

0 0 0
22= γ ,

as given by reciprocity between modes (4.53), the ratio of P-wave energy to S-
wave energy asymptotically approaches β α γ0 0 0 0 0

31 2 0 1g gSP PS = ≈ . .

7.5.2 Analytical Representation of the Single Scattering Term

By using the inverse Fourier–Laplace transform of (7.97), we can formally
solve for the space-time distribution of energy density. This must be done
numerically; however, the convergence of the numerical integration is slow since
the integral kernel oscillates rapidly for large wavenumbers. A procedure for
performing the numerical integration that overcomes the rapid oscillation is
described by Zeng [1993]. Here, we take another method along the line discussed
in the case of single propagation mode in Section 7.1. The direct energy density can
be expressed as a delta function and the single scattering energy density diverges
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logarithmically at the wave front in the time domain. Therefore, we formally
decompose the energy density in the Fourier–Laplace domain into three terms: the
direct energy density E0 , the single scattered energy density E1, and the energy
density for multiple scattering of order greater than or equal to two EM :

˜̂E k,s( ) = ˜̂E0 k,s( ) + ˜̂E1 k,s( ) + ˜̂EM k,s( )   (7.99)

where
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(7.100c)

As shown in Figure 5.3, the ratio of P- to S-attenuation observed for
frequencies higher than 1 Hz in the lithosphere is in the range Q QP S

− − =1 1 0 7 2. –
[Yoshimoto et al. 1993]. Therefore, for mathematical simplicity, we assume that
the total attenuation, equal to the sum of scattering attenuation and intrinsic
absorption, is the same for P- and S-waves

+∞-∞

Branch cuts of 

GP and G S

0

~~

Re k

Im k

(s+η)i/β 0
(s+η)i/α 0

FIGURE 7.27. Contour of integral in the complex k-plane for the single scattering
term where mode conversion occurs. Broken lines are branch cuts. [From Sato,
1994a, with permission from Blackwell Science, United Kingdom.]
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α α β β η0 0 0 0 0 0 0 0g g b g g bPP PS SS SP+ + = + + = (7.101)

Using (7.101) allows us to solve analytically for the single scattering term. The
inverse Fourier transform is written as an integral along the real k-axis. For
example, the second term of (7.100b) gives the integral kernel for the energy
density due to single PS-scattering:
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where ˜̂GP,S k,s( ) = ˜̂GP,S −k,s( ). We use the technique of residue and branch cut
integration by closing the contour of integration at infinity in the complex k-plane.

The branch points of ˜̂GP  and ˜̂GS in the complex k-plane are s i+( )η α
0  and

s i+( )η β
0 , respectively, as illustrated in Figure 7.27. Branch cuts are taken from

these branch points to infinity on the imaginary k-axis. We take the integral contour
as two quarter-circles and along two branch cuts on the imaginary axis. The integral
around the two quarter-circles vanishes as discussed in Section 7.1, and there

remains an integral between the branch points of ˜̂GP  and ˜̂GS and that between the

branch point of ˜̂GS  and infinity on the imaginary k-axis:
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where γ α β0 0 0≡ / >1, and we used tan tanh− −=1 1iz i z  for z < 1 and

tan tanh / /− −= ( ) ±1 1 1 2iz i z π  for z > 1 on the right/left side of the imaginary axis.
The result is written in the form of a Laplace transform. We introduce a function
[Sato, 1977b, 1994a]
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Thus, the integral kernel of (7.103) gives the solution in time:

E t
W g

r
K

t

r
H

t

r
e

PS
P PS

C
t1 0 0

2
0 0

4
1x,( ) = ⎛

⎝
⎞
⎠ −⎛

⎝
⎞
⎠

−γ
π

α α η  (7.105a)

In a similar way, for single SP-scattering,
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In the case of PP- and SS-single scattering, using the integral  around one branch
cut as derived in Section 7.1, we obtain
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where K is given by (3.19a). Functions K x( ) and KC x( ) diverge logarithmically at
x = 1 and x = γ 0 , respectively, as shown in Figure 7.28. These functions show
that single PP- and SS-scattering transfer energy in the volume behind the direct

0 1 3 2 3 4 5

1

2

3

x

K(x)

KC(x)

FIGURE 7.28. Plots of K x( )  in (3.19a) (solid) and K xC ( ) in (7.104) (broken), where
γ 0 3= . [From Sato, 1977b, with permission from Center for Academic Publications
Japan, Tokyo, Japan.]
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wave arrivals; however, both single PS and SP scattering have peaks at the S-wave
arrival and scattered energy appears later than the P-arrival and earlier and later than
the S-arrival.

7.5.3 Time Trace of the Total Energy Density

We can numerically evaluate the multiple scattering term EM in (7.100c) in a
manner similar to that in Section 7.1 by using an FFT instead of an inverse Laplace
transform along the imaginary s-axis. Adding the multiple scattering term to the
direct terms (7.95) and single scattering terms (7.105a–d), we get the total energy
density in space-time. We numerically synthesize time traces of energy density,
where we choose γ 0 3= , no intrinsic absorption (b=0), and use two choices of
total scattering coefficients. So far, our model assumes spherical radiation from the
source, but we suppose that the ratio of P- to S-wave radiation is that of a point
shear-dislocation, W WS P/ .= 1 5 0

5γ , as given by (6.10). We normalize time, length
and energy density by η, α0  and the radiated energy W P + W S respectively:
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, t t E
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W WP Sand     (7.106)

A 2-D FFT is done over 256 × 256 points for ((0–8.), (0–8.)) in normalized
space-time r ,t( ) where r = x . The single scattering term diverges logarithmically
at t = r and t r= γ 0 because of singularities in K x( ) and KC x( ). However, the
integrals over the windows containing the singularities are finite. The first example
is chosen for mathematical simplicity: α α0 0 0 0g gPP PS= = β β η0 0 0 0 2g gSS SP= = / . The

cross-term containing ˜̂GP ˜̂GS in the denominator of (7.97) vanishes. Figure 7.29a
shows the temporal evolution of the normalized energy density E at three
distances. The arrival time of the P-wave corresponds to the scaled hypocentral
distance. P-coda is excited by a combination of  PP- and conversion scattering. The
P-coda level is initially small but gradually increases approaching the S-arrival. The
multiple scattering contribution, shown by a broken curve, gradually increases with
increasing lapse time. The direct wave energy rapidly decreases with increasing
travel distance due to scattering. The second example is for
α η α η0 0 0 02 3 3g gPP PS= =/ , / , β η β η0 0 0 09 10 10g gSS SP= =/ , / . This example has a
smaller SP scattering coefficient than PS-scattering coefficient, in agreement with
the result of elastic wave scattering (4.53). The time traces in Figure 7.29b show
that the P-coda maintains a rather stable amplitude irrespective of lapse time until
just before the direct S-wave arrival. These two simulations give a good qualitative
explanation of the stable or gradual increase in amplitude of the P-coda that is often
observed (see envelopes in Figures 2.29, 7.25a and b).

In this chapter, the radiative transfer equation in the form of a convolution
integral has been used. This is a phenomenological approach consistent with
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causality in a background medium having a constant velocity and including
geometrical spreading. These assumptions are generally acceptable; however, the
only link with the wave equation approach is the use of total scattering coefficients.
There have been attempts to derive the transport equation for energy density from
the wave equation. Introducing the Wigner distribution, Ryzhik et al. [1996]
derived the energy transport equation for elastic waves when the wavelength is
much smaller than the characteristic scale of heterogeneity. Their formulation also
correctly modeled S-wave polarization and showed the diffusive behavior of energy
at long lapse time and large source–receiver distance.
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FIGURE 7.29. Temporal evolution of energy density at three distances for various
scattering orders and two sets of total scattering coefficients: (a) α α0 0 0 0g gPP PS= =
β β η0 0 0 0 2g gSS SP= = / ; (b) α η α η0 0 0 02 3 3g gPP PS= =/ , / , β η β η0 0 0 09 10 10g gSS SP= =/ /, and . Solid
line shows total normalized energy density, dotted lines show analytical solution for
the single scattering and direct energy terms, and the broken curves show the
contributions due to the multiple scattering term obtained by a 2-D FFT. Source
duration is two samples, 1/16 in normalized time. [From Sato, 1994a, with permission
from Blackwell Science, United Kingdom.]
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CHAPTER 8

Diffraction and Broadening of Seismogram
Envelopes

The inhomogeneity of the earth’s lithosphere has a broad spectrum compared
with the wavelength of regional seismic waves. We have presented models for
wave propagation through inhomogeneous media, in which scattering by inho-
mogeneities of characteristic scales shorter than or equal to the wavelength domi-
nates S-coda wave excitation. For the evaluation of scattering loss, as discussed in
Chapter 5, subtraction of the travel-time fluctuation due to long-wavelength com-
ponents of velocity inhomogeneities gave us a model that is consistent with meas-
urement practice and in agreement with observed frequency characteristics. We will
now present a model for wave propagation through media having long-wavelength
components of velocity inhomogeneity, that is, we focus on diffraction and multi-
ple forward-scattering effects.

Coherence measurements based on seismic array data have been used to detect
variations in the phase and amplitude of seismic waves with increasing travel dis-
tance. These measurements have helped quantify the inhomogeneity of the litho-
sphere under the seismic arrays. As shown in Section 2.4.3, the time width of the
S-wave portion of seismogram envelopes recorded at hypocentral distances of a
few hundred kilometers is much longer than the source duration time estimated
from earthquake magnitude. This phenomenon can be interpreted as resulting from
strong diffraction.

Starting from the mathematical study of the parabolic wave equation through
random media, we investigate the amplitude and phase correlations of scalar waves.
We will use the concept of the ensemble average of these correlations and show
how to statistically characterize wave propagation. Quantitative measurements of
phase and amplitude correlations will be presented and interpreted. Next, we intro-
duce a method to synthesize mean square envelopes for quasi-monochromatic
waves based on the Markov approximation. We discuss the application of this
formalism to observed field data and show quantitative measurements of the
broadening of high-frequency S-wave seismogram envelopes. Finally, we briefly
introduce how the phase-screen (split-step Fourier) method can be used to model
wave propagation in inhomogeneous media.
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8.1 AMPLITUDE AND PHASE DISTORTIONS OF SCALAR
WAVES

8.1.1 Parabolic Wave Equation

We assume an inhomogeneous medium with a large correlation length com-
pared with the wavelength of the propagating waves. As found by the Born ap-
proximation in Section 4.1.2 and shown in Figure 4.4b, scattering occurs into a
small angle around the forward direction in such a case. Then we may neglect the
gradient of the velocity inhomogeneity, conversion scattering between P- and S-
waves and backscattering [see Richards, 1974]. Therefore, we can study the main
propagation characteristics of P- or S-waves through inhomogeneous media using
the wave equation for a scalar wavefield u x,t( ):

Δ −
( )

⎛
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⎞
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( ) =1
02

2

V
u ttx

x∂ ,     (8.1)

We will study the line-of-sight propagation through a randomly inhomogeneous
medium extending over z > 0 of a plane wave incident along the z -axis, where the
medium is homogeneous for z < 0. The receiver is located at z = Z > 0, and the
propagation distance is long compared with the correlation distance, Z >> a. Ιnho-
mogeneous structure in velocity is written as V V( ) ( ( ))x x= +0 1 ξ , where the frac-

tional fluctuation is assumed to be small: ξ << 1. Then, (8.1) can be written
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Introducing transverse coordinates x⊥ = ( , )x y orthogonal to the mean propagation
direction, the z-direction, we write the scalar wavefield using the Fourier transform
with respect to time as

u z t d U z ei kz tx x⊥
−∞

∞

⊥
−( )( ) = ( )∫, , , ,

1
2π

ω ω ω   (8.3)

where wavenumber k V= ω / 0  and U zx⊥( ), ,ω  is the amplitude of a harmonic
wave. Substituting (8.3) in (8.2), we get

∂ ∂ ξz zU ik U U k U2 22 2 0+ + − =⊥Δ (8.4)

where Δ⊥ ≡ +∂ ∂x y
2 2  is Laplacian in the transverse plane. When

ak >> 1 (8.5)
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the amplitude changes very slowly; therefore, we may neglect the first term in (8.4)
and we obtain the parabolic equation

2 2 02ik U U k Uz∂ ξ+ − =⊥Δ (8.6)

8.1.2 Transverse Correlations of Amplitude and Phase
Fluctuations

We solve (8.6) using a perturbation method known as the Rytov method, in
which amplitude in (8.3) is written as

U z z A ix x⊥ ⊥( ) = ( )[ ] = +( ), , exp , , exp lnω ω ϕΞ Δ Δ0 (8.7)

where Ξ is a first-order small quantity, Δ ln A0  is the log-amplitude fluctuation, and
Δϕ  is the phase fluctuation for the mean propagation direction in the z-direction.
Δ Δln A0 0= =ϕ  for an incident plane wave of unit amplitude for z ≤ 0. This ex-
ponential expression represents wave propagation better than the algebraic series of
the Born approximation for line-of-sight propagation problems [see Ishimaru,
1978, p.346]. Neglecting ∇( )⊥Ξ 2

 because Ξ is considered smooth in the transverse
plane, the wave equation for Ξ is

2 2 2ik kz∂ ξΞ Δ Ξ+ =⊥ (8.8)

Using the Fourier transform in the transverse plane
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where m⊥  is the wavenumber vector in the transverse plane, the parabolic equation
(8.6) becomes

  2 22 2ik m kz∂ ξ
( ( (
Ξ Ξ− =⊥ (8.10)

where m⊥ ⊥≡ m  and   
(
ξ  is the Fourier transform of ξ in the transverse plane. By

using the Green function
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that satisfies

  2
2ik m G z zz∂ ω δ−( ) ( ) = ( )⊥ ⊥

(
m , ,     (8.12)



232 / Chapter 8

we can solve (8.10) as
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where the convolution integral between 0 and Z means that we have neglected the
backward scattering contribution from the region z > Z. Taking the inverse Fourier
transform,
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Now, imagine an ensemble of random media ξ x( ){ }, where ξ x( ) is a spatially

uniform and isotropic random function of coordinate x, and ξ x( ) = 0. We will
investigate wavefield statistics for this ensemble. The characteristic of the ensemble
is statistically given by the ACF or the PSDF of ξ x( ). We summarize the statisti-
cal relations which will be used in the following. The PSDF of the random fluctua-
tion given in (2.6) can be written
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The double integral term in (8.15) is the Fourier transform of the ACF in the trans-
verse plane. We define the longitudinal integral of the ACF along the mean propa-
gation direction on the z-axis as
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where we may write the argument as scalar r⊥ ⊥= x because of the assumed isot-
ropy of the inhomogeneity. Using (8.15), the Fourier transform of A in the trans-
verse plane is written using the isotropic PSDF:
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where we may write the argument as scalar m⊥ ⊥= m . Because of the homogene-
ity of the randomness,



Diffraction and Broadening of Seismogram Envelopes / 233

  

( ( (
ξ ξ π δm m m m m⊥ ⊥ ⊥ ⊥ ⊥( ) ( ) = ( ) +( ) −( )' , ' ", " ' " ' , ' "z z R z z2 2 (8.18)

Using

  

( (
ξ ξ* , ,m m⊥ ⊥( ) = −( )z z   and   

( (
G z G z−( ) = ( )⊥ ⊥m m, , , ,ω ω (8.19)

we get the complex conjugate of (8.14) as
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The following derivation is due to Chernov [1960] and Ishimaru [1978]. From
(8.14) and (8.20),
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Taking an average over the ensemble, we get the correlation of log-amplitude fluc-
tuations on the transverse plane as
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where we used (8.18). To evaluate integrals in (8.22), we introduce the center-of-
mass and difference coordinates as z z zc = +( )' " / 2, z z zd = −' ",

x x x⊥ ⊥ ⊥= +( )c ' " 2 , and x x x⊥ ⊥ ⊥= −d ' " . We note that   
(
R zm⊥( ), is very small for

m a⊥ > 1/ . Therefore, it is sufficient to study only m a⊥ < 1/ . For a travel distance
of the order of a, the diffraction effect given by sin /Z z m k−( ) ⊥

2 2  is small for
m a⊥ < 1/ since m a k ak⊥ < <<2 1 1/ / . We note that sin /Z z m k−( ) ⊥

2 2  is a slowly
varying function of z . Therefore, we may discard argument zd in the diffraction
term. For Z a>>  we may write (8.22) as
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This correlation depends only on the transverse distance r d d⊥ ⊥≡ x  and is insensi-
tive to the fluctuation in the mean propagation direction. In the same way,
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where '  and " abbreviate functions whose arguments depend on transverse coordi-
nates x⊥ ' and x⊥", respectively.

We introduce the scattering strength parameter Φ [after Flatté et al., 1979, p.
92], whose square is known as the optical distance [Ishimaru, 1978, p. 119]. The
square of this parameter is the MS of the phase fluctuation in the geometrical optic
region for Z >> a :
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This function increases linearly with increasing travel distance. We introduce the
wave parameter D  following Chernov [1960, p. 74]:

D
Z

a k
= 4

2 (8.25)

Diffraction effects begin to be significant when the radius of the first Fresnel zone
πZ k  exceeds the correlation distance a . The wave parameter is the square of the



Diffraction and Broadening of Seismogram Envelopes / 235

ratio of the first Fresnel zone to the scale of inhomogeneities, so it characterizes the
order of the diffraction effect.

Gaussian ACF

For the Gaussian ACF (2.7), from (8.16-8.17),
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Then, the square of scattering strength parameter is given by

Φ2 2 2= πε ak Z   (8.27)

At x⊥ =d 0, substituting (8.26) and (8.27) into (8.23a–b), we get
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We plot the correlation functions (8.28) normalized by Φ2 against D  in Figure 8.1.
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FIGURE 8.1. Phase and log-amplitude fluctuations (8.28) against wave parameter D
for the Gaussian ACF.
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The phase fluctuation is of the order of Φ2 . This tends to (5.26) as D  goes to zero.
Numerically simulating wave propagation through a random medium, Frankel

and Clayton [1986] measured the travel-time fluctuation of waves with ak >> 1 for
a fixed travel distance with differing values of a . They determined the standard de-
viation of the travel times measured for media characterized by a given a  by using
several realizations of media having the given value. They found that the standard
deviation of the measured travel time at a fixed propagation distance increases with
increasing a . Their measured standard deviation agrees well with the prediction of
(8.28) for a Gaussian ACF and even for an exponential ACF; however, their meas-
ured standard deviation is half the theoretical prediction for a von Kármán ACF.
When the wavelength is much shorter than the correlation distance, the travel time
at large distances in a random medium can be estimated using a ray theoretical ap-
proach. Müller et al. [1992] and Roth et al. [1993] numerically confirmed that the
effective propagation velocity is higher than the average propagation velocity be-
cause of diffraction around low-velocity regions, that is, waves prefer fast paths.
These numerical experiments confirm the validity of the parabolic approximation
for Gaussian and exponential ACF media and the breakdown for von Kármán
ACF media which are rich in short-wavelength inhomogeneities.

Ratios of the correlations are independent of Φ2 and uniquely determined by
wave parameter D  as
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FIGURE 8.2. Parametric plots of the ratio of log-amplitude fluctuation to phase fluc-
tuation vs. correlation between them for the Gaussian ACF (solid curve) and the
power-law PSDF with power index 4 and 11/3, where closed symbols are observa-
tions made by Aki [1973] and Capon [1974] at Montana LASA and the large open
circle is for NORSAR. [Adapted from Flatté and Wu, 1988, copyright by the American
Geophysical Union.]
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Figure 8.2 shows the ratio of log-amplitude fluctuation to phase fluctuation vs. cor-
relation between log-amplitude and phase fluctuations, where a solid curve labeled
with D values is for the Gaussian ACF.

When D << 1, in the geometrical optics region, taking the lowest order term of
the expansion of the diffraction term in (8.23),
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where 1 1F  is the confluent hypergeometric function.
For D >> 1, in the diffraction region, we may discard the highly oscillating dif-

fraction factor sin /Zm k⊥
2  in integral (8.23). Then,
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We plot these correlations against the transverse separation in Figure 8.3. They de-
crease with increasing separation in the transverse direction. The behavior of the
transverse correlation for intermediate values of D is discussed in Chernov [1960].

The range of applicability of the parabolic approximation has implicit conditions
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FIGURE 8.3. Transverse correlation functions of log-amplitude and phase fluctuations
for extreme cases of D.
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in addition to condition ak >> 1 given by (8.5). Here we briefly discuss the appli-
cation conditions for a Gaussian ACF [Rytov et al., 1989]. The parabolic approxi-
mation models strong forward scattering for large wavenumbers, where the char-
acteristic scattering angle is of the order of 1/ ak , that is, r Z ak⊥ ≈ 1/ , as discussed
in Section 4.1.2. The phase term in the exponent of the spherically outgoing scat-
tered wave is written as k Z r kZ kr Z kr Z2 2 2 4 32 8+ ≈ + −⊥ ⊥ ⊥ . The second term is of the
order of the wave parameter D. The parabolic approximation corresponds to ne-
glecting the third term, which is written as Z a k/ 4 3 1<< , that is,

D ak<< ( )2 (8.32)

The diffraction effect is accounted for in the parabolic approximation. The other
limiting condition for the approximation is due to the neglect of backscattering in
(8.13). The effect of backscattering can be found by the corrected Born approxima-
tion as given by (5.20). For the Gaussian ACF, scattering attenuation correspond-
ing to the backward half-space is given by
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for cutoff scattering angle ψ πC = / 2 . Under condition (8.5), the condition for a
small backscattering loss for propagation distance Z is written as

TSc k aQ kZ ak Ze− −≈ <<1 2 2 22 2

1π ε /  (8.34)

Therefore, the neglect of backscattering is not a severe restriction for the parabolic
approximation.

8.1.3 Measurements of Amplitude and Phase Fluctuations

P-Wave Turbidity Coefficient in the Lithosphere

For a plane wave propagating a long travel distance through a randomly inho-
mogeneous medium, the MS of log-amplitude fluctuation increases with travel
distance as given by (8.28). The ratio of Δ ln A0

2( )  to travel distance Z characterizes

the randomness or turbidity of the heterogeneous medium [Chernov, 1960; Niko-
laev, 1975, p. 16]:

g A ZF ≡ ( )Δ ln 0

2
 (8.35)

The turbidity coefficient gF can be considered related to the total scattering coeffi-
cient. The P-wave turbidity coefficient of the crust and the upper mantle was exten-
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sively measured by Russian investigators in the 1960s by analyzing the amplitude
fluctuation of P-wave first motions from explosions and natural earthquakes [see
Nikolaev, 1975, p. 113]. In these measurements the turbidity coefficient is a rather
phenomenological parameter that includes spatial variations of site factors and at-
tenuation strength, and the ensemble average was replaced with a spatial average.
The measurements were made on horizontally propagating P waves from the Zha-
lanash–Kurgan 200 km long deep seismic sounding profile in southern Kazakhstan
in which the sensor interval was 250 m and the predominant frequency was 7–8
Hz. The depth profile of turbidity coefficient gF  was made by estimating the con-
tribution to amplitude fluctuations of the different layers in which seismic rays trav-
eled. The value of gF  was as high as 2 10 3× − km−1 near the surface and dropped
rapidly as depth increased to 10 km. A layer of high “transparency” with
gF ≈ 10 -5 km−1 was found at depths between 10–25 km [Nikolajev and Tregub,
1970]. Between depths of 28–54 km, gF  is constant of the order of 10 -4 km−1. Es-
timates of gF  were also made using data from active seismic experiments con-
ducted at sea. In the Tatar Strait, gF  for the crust was 0.0025 km−1. Values of
0.002 km−1 for the crust and 0.0007 km−1 were found for the upper mantle beneath
the Kuril Islands (Iturup and Ishishir Islands); 0.001 km−1 for the crust and
0.0005 km−1 for the upper mantle east of Iturup island and east of southern Kam-
chatka; 0.002 km−1 for the crust under the Sea of Okhotsk; 0.0013 km−1 in the crust
and 0.00015 km−1 in the upper mantle under the Black Sea. Nikolaev [1975] con-
cluded that gF  for 5 Hz P-waves in the crust to the upper mantle is 0.0001–
0.0025 km−1 with an error of about a factor of two.

Amplitude and Phase Correlations of Teleseismic P-Waves

Aki [1973] first analyzed array recordings of teleseismic P-waves made at the
Large Aperture Seismic Array (LASA) in Montana. The aperture of this array is
about 200 km and waveforms contained frequencies centered on about 0.6 Hz. He
measured transverse correlation functions of teleseismic P-waves arriving from
near vertical incidence and estimated a=10 km. He found a positive correlation
between log-amplitude and phase fluctuations that agreed with the theoretical pre-
diction given by (8.29). From plots of the ratio of RMS log-amplitude to RMS
phase fluctuations against the correlation between log-amplitude and phase fluctua-
tions as given by Figure 8.2, he estimated D=5, Z =60 km and ε2=0.0016
( ε=4%). He predicted gF ≈ 0.008 km−1, which is much larger than the turbidity
coefficient estimated for horizontally traveling rays by Nikolaev and his colleagues,
as discussed above. The difference between the estimated turbidities might be at-
tributed to the difference in ray directions and the departure of the real randomness
from the assumed isotropic randomness. The difference may also be due to differ-
ences in tectonic settings of the regions where the measurements were made or due
to differences in the frequency band used for the measurements.

Comparing 0.8 Hz band P-wave slowness fluctuations across subarrays at
LASA with those for the whole array, Capon [1974] estimated D=6 and a=12 km
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(see Figure 8.2), which are similar to Aki’s [1973] results. However, Capon’s es-
timates of ε2=0.00036 ( ε=1.9%) and Z =136 km are quite different from Aki’s
since it is difficult to separate the product ε2 Z  into ε2 and Z  in Φ2 .

Analyzing travel-time fluctuations of teleseismic P-waves of dominant fre-
quency near 1 Hz observed in southern California, Powell and Meltzer [1984] in-
ferred that a=25 km with ε2=0.001 ( ε=3.26%) to depths of at least 119 km. Ex-
amining array data at both Montana LASA and a large seismic array NORSAR in
Norway, Berteussen et al. [1975] pointed out difficulties in uniquely determining
the parameters characterizing the randomness because of the finite aperture of the
seismic array. Haddon and Husebye [1978] tried to explain both amplitude and
travel-time anomalies observed for P-waves at NORSAR in terms of deterministic
velocity inhomogeneities in the upper mantle.

Flatté and Wu [1988] measured the transverse correlation of log-amplitude and
phase fluctuations of more than one hundred teleseismic P-wave beams with 2 Hz
center frequency recorded at NORSAR. They also introduced the concept of angu-
lar correlation functions, which are based on measurements of two rays with differ-

FIGURE 8.4. Transverse correlation functions and angular correlation functions
measured at NORSAR, where closed circles and vertical bars are observed teleseis-
mic P-wave data and standard deviations, respectively. Solid curves are predictions
for a two-layer model. [From Flatté and Wu, 1988, copyright by the American Geo-
physical Union.]
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ent incident angles. The rigorous derivation of angular correlation functions was
done by Wu and Flatté [1990] and later by Chen and Aki [1991]. Flatté and Wu
[1988] suggested that the von Kármán type ACF is more appropriate than the
Gaussian ACF for modeling the NORSAR data. Figure 8.4 shows both the trans-
verse and angular correlation functions at NORSAR. Investigating the depth de-
pendence of random inhomogeneity, Flatté and Wu [1988] proposed a model for
lithospheric and asthenospheric inhomogeneities beneath NORSAR that consists of
two overlapping layers. The spectra of inhomogeneities in both layers are band-
limited between the wavelengths of 5.5 and 110 km. The upper layer has a flat
PSDF, P m m( ) ~ 0 , extending from the surface to about the 200 km depth. The
lower layer has P m m( ) ~ −4  extending from 15 to 250 km. The latter spectrum cor-
responds to an exponential ACF having a longer scale than the observation aperture
of 110 km and ε in the range 1–4%. The difference between the power spectra
means that there are more small scale inhomogeneities near the surface compared
with the deeper portions.

Mori and Frankel [1992] correlated observed relative amplitudes with travel-
time residuals of teleseismic P-waves in southern California. Their data show an
amplitude increase of about factor of two for a 1 s increase in travel time. The sim-
plest interpretation of this result is that velocity inhomogeneity causes both ampli-
tude and travel-time variations. Figure 8.5 shows the average amplitude measured
at a number of stations vs. the station average time residual. Stations are separated
into two groups based on surface geology; hard sites are located on bedrock and
soft sites on alluvium or soil. Travel times to the soft sites are longer on average
than the average on hard sites. Soft sites have larger amplitudes. The soft sites also
show a stronger correlation between the time residuals and amplitudes than the hard
sites. Mori and Frankel [1992] pointed out the importance of surface geology for
travel-time fluctuations. Their interpretation is in general agreement with the larger
velocity fluctuation and the shorter correlation distance at shallower depth that Flatté
and Wu [1988] obtained from studying data at NORSAR.

The studies we have described led to the interpretation of observed amplitude
and phase fluctuations of P-waves using random media models. The model of a
homogeneous random medium first assumed was later expanded to include a depth
dependence for the randomness. The power-law spectra corresponding to the expo-
nential ACF fits data better than the Gaussian ACF. It would be appropriate to ex-
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FIGURE 8.5. Relative amplitude versus travel-time residual for stations in southern
California. [Modified from Mori and Frankel, 1992, published by the American Geo-
physical Union.]
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pand the model presented here by including an anisotropic inhomogeneity and then
reanalyze the amplitude and phase fluctuations of S-waves in the lithosphere.

8.2 MARKOV APPROXIMATION FOR PREDICTING
THE MS ENVELOPE DUE TO DIFFRACTION

For seismograms of regional earthquakes, the time difference between the S-
wave onset and the time that the S-wave envelope has its maximum amplitude is
much larger than the source duration, as introduced in Section 2.4.3. Therefore, we
infer that the observed delay or broadening of the S-wave energy packet is caused
by the effects of wave propagation through randomly inhomogeneous media. Pulse
broadening in random media has been an important subject in fields other than
seismology [Tatarskii, 1971; Rytov et al., 1989]. For example, an impulsive source
emitted from a ruby laser whose duration is on the order of nanoseconds broadens
more than 100 times after passing through a typical fog with a fluctuating refractive
index [Ishimaru, 1978, p. 325]. Lee and Jokipii [1975a, b] studied the broadening
of radio waves by turbulent plasma. Pulse broadening of acoustic waves in the
ocean is caused by wave-speed fluctuation through internal waves [Flatté et al.,
1979].

Now we will describe a model for wave propagation in randomly inhomogene-
ous media where the wavelength is much smaller than the correlation distance.
Using the parabolic approximation, we will develop a model that predicts that an
impulsive wave packet at the source stretches out in time and reduces amplitude
with increasing travel distance. First, we introduce the concepts of coherent wave-
field, mutual coherence function, and two-frequency mutual coherence function.
These are necessary to describe how wavefields lose their original form with in-
creasing travel distance. Then we derive the equation for each quantity based on the
Markov approximation. Solving the master equation for the two-frequency mutual
coherence function for quasi-monochromatic waves, we will get the time trace of
the intensity of the wavefield, which corresponds to the mean square envelope of
the wavefield in a frequency band. We will discuss the relationship between the
characteristics of the time trace intensity and the stochastic characteristics of the
random medium.

8.2.1 Coherent Wavefield

First, we study the propagation of the coherent wavefield U in (8.3). Taking
the ensemble average of (8.6),

2 2 02ik U U k Uz∂ ξ+ − =⊥Δ   (8.36)

We follow the simple derivation according to Lee and Jokipii [1975a] to evaluate
the last term of the left-hand side. From (8.6), we can write the wavefield at z  in an
integral form by using the wavefield at z z− Δ , where Δz > 0 :
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U z U z z

i

k
dz U z k z U z

z z
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x x

x x x
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+ ( ) − ( ) ( )[ ]∫
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2 2
   (8.37)

We suppose the existence of an intermediate scale Δz , which is larger than the cor-
relation distance a  but smaller than the scale of variation of U . Then, we can write

U z U z z
i

k
z U z z

ikU z z dz z
z z

z

x x x

x x

⊥ ⊥ ⊥ ⊥
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−
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( ) ≈ −( ) + −( )

− −( ) ( )∫

, , , , , ,
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ω ω ω

ω ξ

Δ Δ Δ Δ

Δ
Δ

2
  (8.38)

Multiplying ξ x⊥( )' , z  and taking the ensemble average, we have

ξ ω ξ ξ ω

ω
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x x x x x

x x x

x x x

⊥ ⊥
−

⊥ ⊥ ⊥

∞
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i
k A U z

z z

z

d d

Δ

Δ

0

2

 (8.39)

Since the variation of U  is small, U z z U zx x⊥ ⊥−( ) ≈ ( ), , , ,Δ ω ω , and there is no
contribution of the inhomogeneity at z to the wavefield at z z− Δ ,
ξ ωx x⊥ ⊥( ) −( ) =' , , ,z U z zΔ 0. This means that we neglect backward scattering.

Substituting (8.39) with x x⊥ ⊥='  in (8.36),

2 0 03ik U U ik A Uz∂ + + ( ) =⊥Δ (8.40)

The derivation of this stochastic equation is called the Markov approximation
[Tatarskii, 1971] since the last term in (8.40) depends only on the local value of z .
Alternative derivations based on a functional formulation are given in Tatarskii
[1971], Ishimaru [1978] and Rytov et al. [1989]. The range of application condi-
tions for this approximation is discussed in detail by Barabanenkov et al. [1971].
The above derivation was not based on the assumption of isotropy of the ACF in 3-
D space. The longitudinal integral of ACF is taken along the mean propagation di-
rection and the resultant function A describes the correlation of media on the trans-
verse plane.

Under the initial condition U zx⊥ =( ) =, ,0 1ω ,

U Z e eA k Zx⊥
− ( ) −( ) = =, , / /ω 0 2 22 2Φ (8.41)
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The coherent component decays exponentially with increasing propagation distance
characterized by the square of the scattering strength parameter.

8.2.2 Mutual Coherence Function

We define the mutual coherence function of wavefield U  measured at different
locations on the transverse plane at distance z and angular frequency ω  as

Γ1 x x x x⊥ ⊥ ⊥ ⊥( ) ≡ ( ) ( )' , ", , ' , , ", ,
*

z U z U zω ω ω (8.42)

Multiplying U  by (8.6) and taking the ensemble average, we obtain

2 2 01 1
2ik k U Uz∂ ξ ξΓ Δ Δ Γ+ −( ) − −( ) =⊥ ⊥' " ' " ' "*  (8.43)

where U'  and U" mean that their arguments are at x ⊥ '  and x ⊥ ", respectively. Us-
ing the same procedure as for the derivation of (8.39),

ξ ξ' " ' "*−( ) = − ( ) − ( )[ ]⊥U U ik A A r d0 1Γ (8.44)

where r d⊥ ⊥ ⊥= −x x' " . Then, the equation for Γ1 is

2 2 0 01 1
3

1ik ik A A rz d∂ Γ Δ Δ Γ Γ+ −( ) + ( ) − ( )[ ] =⊥ ⊥ ⊥' "  (8.45)

Introducing center-of-mass and difference coordinates in the transverse plane
x x x⊥ ⊥ ⊥= +' /c d 2 and x x x⊥ ⊥ ⊥= −" /c d 2, we write Laplacians in the transverse
plane as

Δ⊥ ' = Δ⊥d + 1
4

Δ⊥c + ∇⊥c∇⊥d and Δ⊥"= Δ⊥d + 1
4

Δ⊥c − ∇⊥c∇⊥d  (8.46)

Because of the statistical homogeneity of the random media, Γ1 is independent of
the center-of-mass coordinates: Δ⊥ ' −Δ⊥ "( )Γ1 = 0 . Then, (8.45) becomes

∂z dk A A rΓ Γ1
2

10 0+ ( ) − ( )[ ] =⊥  (8.47)

Under the initial condition Γ1 0 1x x⊥ ⊥ =( ) =' , ", ,z ω , the solution for the mutual co-
herence function is given by

Γ1
2 0x x⊥ ⊥ ⊥( ) = − ( ) − ( )[ ]{ }' , ", , expZ k A A r Zdω (8.48)
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For the Gaussian ACF,

Γ Φ1
2 2 21x x⊥ ⊥ ⊥( ) = − − −( )[ ]{ }' , ", , exp expZ r adω    (8.49)

The asymptotic behavior is given by

Γ Φ Φ Φ

Φ Φ
1

2 2 2 2 2

2 2 2 2 2 2

1 1

1

x x⊥ ⊥ ⊥

⊥ ⊥ ⊥

( ) ≈ −( ) + −( ) <<

≈ −( ) = −( ) >>

' , ", , exp /

exp / exp /

Z r a

r a r a

d

d d

ω for

for
    (8.50)

where we introduce the transverse correlation distance at large travel distance:

a
a a

aZk
⊥ ≡ =

Φ πε2 2
    (8.51)

Mutual coherence on a transverse plane decreases with increasing travel distance, as
shown in Figure 8.6. This means that the coherence parallel to an isochron becomes
smaller as the propagation distance increases. This characteristic will be used in the
first-order expansion of A on the transverse plane in the following. Parameter Φ2

characterizes not only the decay of the coherent wavefield itself, as shown in (8.41),
but also the decay of mutual coherence in the transverse plane.

8.2.3 Two-Frequency Mutual Coherence Function

We define the two-frequency mutual coherence function at distance z  as the
correlation between different locations on the transverse plane and different angular
frequencies at ω'  and ω" [Hong and Ishimaru, 1976] as

Γ2 x x x x⊥ ⊥ ⊥ ⊥( ) ≡ ( ) ( )' , ", , ' , " ' , , ' ", , "
*

z U z U zω ω ω ω (8.52)
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FIGURE 8.6. Decay of the mutual coherence function for the Gaussian ACF with in-
creasing travel distance for different values of Φ2 .
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This coherence function is important since it is the integral kernel of the wavefield
intensity in the frequency domain. Multiplying U  by (8.6) and taking the ensemble
average, we obtain

2 2 02 2i
k k

k k U Uz∂ ξ ξΓ Δ Δ Γ+ −⎛
⎝

⎞
⎠ − −( ) =⊥ ⊥'

'
"

"
' ' " " ' "* (8.53)

where U'  and U" now mean that their arguments are ( ' , ' )x⊥ ω  and ( ", ")x⊥ ω , re-
spectively. Using the same procedure as for the derivation of (8.39) and (8.44),

k k U U
i

k k A k k A r d' ' " " ' " ' " ' "*ξ ξ−( ) = − +( ) ( ) − ( )[ ]⊥2
0 22 2

2Γ  (8.54)

We finally obtain the master equation for the two-frequency mutual coherence
function

2 0 2 02 2
2 2

2i
k k

i k k A k k A rz d∂ Γ Δ Δ Γ Γ+ −⎛
⎝

⎞
⎠ + +( ) ( ) − ( )[ ] =⊥ ⊥

⊥
'

'
"

"
' " ' "    (8.55)

We have to solve this differential equation to get the temporal change in the inten-
sity of the wavefield; however, it is difficult to analytically solve (8.55) in general. It
is possible to solve this equation under the condition that the waves are quasi-
monochromatic.

8.2.4 Master Equation for Quasi-Monochromatic Waves

Since the random media are statistically homogenous, Γ2  depends on the dif-
ference coordinates in the transverse plane, and we may put Δ⊥ ' = Δ⊥ "= Δ⊥d in
(8.55). We study quasi-monochromatic waves having angular frequency centered
around ωc  following Lee and Jokipii [1975a, b]. We introduce center-of-mass and
difference coordinates in the wavenumber space as k k kc = +( )' " / 2  and
k k kd = −' ". Then, k k k kc d' " /2 2 2 22 2+ ≈ + , k k k kc d' " /≈ −2 2 4 , and 1 1/ ' / "k k− ≈
−k kd c/ 2 . Corresponding coordinates for angular frequency will also be used. When
we study propagation over a long travel distance, contributions to variations in Γ2

come from only short offsets in the transverse plane, as shown in Figure 8.6. Sub-
stituting these coordinates in (8.55), we get

∂zΓ2 + i
kd

2kc
2

Δ⊥dΓ2 + kc
2 A 0( ) − A r⊥d( )[ ]Γ2 + kd

2

2
A 0( )Γ2 = 0 (8.56)

Lerche [1979] discussed the validity of the above equation for a wide spectral
range.
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We may factor Γ2  into the following product

Γ Γ2 0 2
0 22

= − ( )e k A zd  (8.57)

The master equation for 0Γ2  is written as

∂z 0Γ2 + i
kd

2kc
2

Δ⊥d 0Γ2 + kc
2 A 0( ) − A r⊥d( )[ ]0Γ2 = 0 (8.58)

We will examine the meaning of the above factorization in the following.

Intensity

We define the intensity of wavefield at distance z  and time t as
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 (8.59)

The intensity spectral density   
)
I  is written as the integral over the difference angular

frequency as

  

)
I z t d z ec d d

i t z Vd, ; , , ' , "ω
π

ω ω ω ω( ) = =( )⊥
−∞

∞
− −( )∫1

2
02

0Γ x     (8.60)

where the integral kernel is the two-frequency mutual coherence function.
The intensity spectral density corresponding to only the exponential term of

(8.57) is written as

1
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d d
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/

     (8.61)

which represents the phase fluctuation. This term does not correspond to the broad-
ening of the individual wave packet but shows the wandering effect from the statis-
tical averaging of the phase fluctuations of different rays on the transverse plane at
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distance z [Lee and Jokipii, 1975b]. To study envelope broadening through a sin-
gle realization,we need to find 0 2  that solves (8.58). The intensity spectral den-
sity (8.60) for this term is given by 

I z,t; c( ) =
1

2
d d 0 2 x d = 0, z, ', "( )e i d t z V0( )    (8.62) 

This corresponds to the mean square of a bandpass-filtered trace, that is, the MS 
envelope.  
 For plane wave incidence U = 1, we have 0 2 =1 and I z,t; c( ) = t z / V0( )

for z < 0. We may put the initial condition as 

0 2 x d , z = 0, ', "( ) = 1        (8.63) 

Conservation  

 Integrating (8.62) over time, we have 

dt I z,t; c( ) = 0 2 x d = 0, z, c , d = 0( ) = 1        (8.64) 

since z 0 2 x d = 0, z, c , d = 0( ) = 0  from (8.58) and the initial condition 

(8.63). The time integral of intensity spectral density is constant at any distance 
z > 0.

8.2.5 MS Envelope 

 Using the fact that the contribution to the MS envelope at a long travel dis-
tance comes from a small transverse distance, as shown by the study of the mutual 
coherence given by (8.50) and Figure 8.6, we solve (8.58). We will then derive 
the MS envelope. 

Gaussian ACF 

 For the Gaussian ACF, we may expand A  given by (8.26) for a small trans-
verse distance as  

A x( ) = A r( ) 2a 1 r / a( )
2

for   r << a   (8.65) 
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Substituting this in (8.58),

∂z
d

c
d

di
k

k Z

r

a0 2 2 0 2

2 2

0 22
0Γ Δ Γ Φ Γ+ + ⎛

⎝
⎞
⎠ =⊥

⊥ (8.66)

We introduce the nondimensional transverse distance χ  and longitudinal distance
τ  scaled by the transverse correlation distance a⊥ , as defined by (8.51), where k  is
replaced with kc, and travel distance Z  as

z = Zτ   and r ad⊥ ⊥= χ (8.67)

We define the characteristic wavenumber and characteristic time as

k
k a

Z
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ZM
c≡ =⊥2 22 2

2 2πε
   and t
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M c

≡ = =1
2 80
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0
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ω
Φ

(8.68)

Then, we may write (8.66) in nondimensional form as

∂ ∂
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(8.69)

We solve this differential equation following Sreenivasiah et al. [1976]. Under the
initial condition 0 2 0 1Γ τ χ=( ) =,  , we want to find 0 2 1 0Γ τ χ= =( ),  . First, we as-
sume that the solution has the following form:

0 2
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,  ( ) =
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( )e

w

v

(8.70)

Then, (8.69) reduces to
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(8.71)

Each term in brackets in (8.71) must be zero to satisfy the equation regardless of
χ . The differential equation for v τ( ) is a Riccati equation. Using the initial condi-
tion, v 0 0( ) =  and w 0 1( ) = ,

v v
v

τ τ( ) = − 0
0

tanh  and w
v

τ τ( ) = cosh
0

(8.72)

where v
k k

e
d M

i
0

3 41
2

= − π . Finally we obtain
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0 2
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(8.73)

At τ=1 and χ=0, it becomes

0 2
3 41 0 2Γ ,( ) = ( )sech e k ki

d M
π (8.74)

Substituting (8.74) in (8.62), we get the intensity spectral density as

  

)
I Z t d e

V k
ec d

i d

M

i t Z Vd, ;ω
π

ω ωπ ω( ) =
⎛

⎝⎜
⎞

⎠⎟−∞

∞
− −( )∫1

2
2 3 4

0

0sech (8.75)

To evaluate this integral, we use the following expansion [see Gradshteyn and
Ryzhik, 1994, p. 44]:

sech x
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x n
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There are poles on the lower half of the complex ωd plane. We close the integral
contour by following the upper or lower semicircle according to t Z V− / 0  < 0 or
> 0. By using the residue integral, we get the following analytical solution

  

)
I Z t H t

Z

V t
n ec

M

n
n t Z V

t

n

M, ;
/

ω π π

( ) = −
⎛
⎝⎜

⎞
⎠⎟

−( ) +( )
− +⎛

⎝
⎞
⎠

−( )

=

∞

∑
0

2 1

4

04
1 2 1

2
0

 (8.77)
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FIGURE 8.7. (a) Real and imaginary parts of 0 2 1 0Γ τ χ= =( ),  .  (b) Temporal evolution
of the intensity spectral density corresponding to the MS envelope.
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The time integral of the intensity spectral density is conserved at any travel distance
since

  
dt I Z t

nc
n

n−∞

∞

=

∞

∫ ∑( ) = −( )
+

=
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, ;ω
π
4

1
1
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 (8.78)

[see Gradshteyn and Ryzhik, 1994, p. 9].
We plot the real and imaginary parts of 0 2 1 0Γ τ χ= =( ),   in Figure 8.7a and the

resultant temporal trace of the intensity spectral density   
)
I  in Figure 8.7b. This is the

MS envelope. The time delay between the direct wave onset and the peak arrival t p

and the duration tq , defined as the time between the onset and when the MS enve-
lope amplitude decreases to one quarter of its peak value, are given by

t t t tp M q M≈ ≈0 67 3 11. .and  (8.79)

where tM  is defined as in (8.68). We note that tq  corresponds to the time when the
RMS trace reaches half its maximum height.

General Form for the Longitudinal Integral of the ACF

Here we study the envelope shape for a more general form of the longitudinal
integral of the autocorrelation function A as an extension of (8.65). We introduce
the following functional form characterizing the transverse correlation of random
media, as shown in Figure 8.8:

A A r a r a

a r a r a

p

p

x⊥ ⊥ ⊥
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( ) = ( ) = −( )[ ]
≈ − ( )[ ] <<

π ε

π ε

2

2 1

exp /

/ for
  

(8.80)

As parameter p  decreases, function A drops off more rapidly for small distances in
a manner similar to an exponential and the corresponding PSDF in the transverse
plane becomes richer in short-wavelength components compared with the Gaussian
( p=2). We focus on the correlation or power spectra of random media on the
transverse plane with respect to the mean propagation direction, where we do not
insist on isotropic randomness. The master equation (8.58) becomes

∂z
d

c
d

d
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i
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k Z

r

a0 2 2 0 2

2

0 22
0Γ Δ Γ Φ Γ+ + ⎛

⎝
⎞
⎠ =⊥

⊥  (8.81)

From the comparison with (8.66), it is necessary to introduce a correlation scale in
the transverse plane appropriate to (8.80) instead of (8.51). We normalize the lon-
gitudinal distance and the transverse distance by using the transverse correlation
distance redefined as an extension of (8.51):
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z = Zτ   and r ad⊥ ⊥= χ    (8.82)

where a a a aZkp
c

p

⊥
≡ = ( )− −

Φ 2 2 2 1/ /
πε . The transverse correlation distance de-

creases with increasing travel distance, where the power of travel distance depends
on –1/p. The characteristic wavenumber and the characteristic time are written as
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(8.83)

The characteristic time is proportional to the power 4 / p  of the fractional fluctua-
tion, that is, scattering becomes stronger for a smaller p value. The dependence of
characteristic time on wavenumber is power 4 2/ p( ) − . This means there is no fre-
quency dependence of MS envelope for the Gaussian ( p=2), but the frequency de-
pendence increases as the p  value decreases. The non-dimensional master equation
becomes
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p (8.84)

Solving this equation numerically and substituting the solution at τ = 1 and χ=0 in
(8.62), we can numerically simulate the intensity spectral density for different p
values as illustrated in Figure 8.9 [Sato, 1989]. The peak becomes sharper and the
duration decreases as the p  value decreases.
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FIGURE 8.8. Plots of A  for differ-
ent p values, as defined in
(8.80).

0 1 2 3 4
0.

0.2

0.4

0.6

0.8

M
S

 E
n

ve
lo

p
e

x 1/tM

xtM

t-Z/V0

p=1.0
1.2 1.4 1.6

1.8
2.0

FIGURE 8.9. Temporal evolution of the inten-
sity spectral density corresponding to the MS
envelope for different p values. [From Sato,
1989, copyright by the American Geophysical
Union.]



Diffraction and Broadening of Seismogram Envelopes / 253

8.3 OBSERVED BROADENING OF S-WAVE SEISMOGRAM
ENVELOPES

High-frequency seismogram envelopes around direct P- and S-arrivals have
been characterized and modeled. While more observations have been reported of
the S-wave portion of the seismogram, there have been some studies of the P-wave
portion. The complexity of direct P-wave and P coda of nuclear explosions in 0.5–
2.25 Hz band recorder at epicentral distances of 27˚–44˚ was pointed out by Doug-
las et al. [1973]. They discussed two possibilities: greater absorption of the direct P-
wave relative to the following P-coda and multipathing. On teleseismic P-waves
recorded in the French Massif Central, Ritter et al. [1997] found a delay of high-
frequency components (2–4 Hz) of about 2–4 s and longer duration compared with
lower-frequency components. They interpreted the delay of the high-frequency
wavelets to be caused by P-to-S scattering that takes place mostly in the strongly
heterogeneous lower crust. Examining the long propagation distance (greater than
3000 km) P-wave signals from an explosion recorded at the NORSAR array,
McLaughlin and Anderson [1987] found that 5 Hz-band signals arrive later than
those in the 1 Hz band. Comparison with numerical simulations of P-wave propa-
gation through a random medium characterized by a Gaussian ACF, they inter-
preted this observed velocity dispersion to be caused by randomness having multi-
ple correlation distances. Analyzing array seismograms of crustal earthquakes in
southern California and Nevada, Wagner [1997] reported that the P- and S-wave
trains are composed predominantly of forward scattered waves with relatively little
mode conversions.

Envelope broadening phenomena are more prominent in high-frequency S-
wave seismograms recorded at long travel distances. Figure 2.30 shows horizontal
NS-component velocity seismograms and their bandpass filtered RMS traces of
magnitude 2.6 and 3.6 earthquakes recorded distances at 91 km and 175 km in
southeastern Japan. The lithosphere in this region is thought to be very heterogene-
ous since the Pacific plate is subducting beneath the Eurasian plate. The strong het-
erogeneity is revealed from the microearthquake distribution and 3-D velocity to-
mography investigations of this region [Ishida and Hasemi, 1988]. The recording
station ASO is located in northern Kanto, Japan (see Figure 8.10a), and has a 1 Hz
natural frequency seismometer installed on hard chert. The time difference between
the arrival of the maximum peak and the S-wave onset is much larger than the
source duration time, which is thought to be much less than 1 s for earthquakes as
small as magnitude 2.6 or 3.6. The delay in arrival time of the maximum amplitude
signal relative to the direct arrival must be due to a path effect. Broadening of S
waveforms is also found on continents. Atkinson [1993] reported an increase in the
duration of S-wave trains with increasing travel distance in the distance range from
10 to 500 km in eastern North America. She defined the time duration of the initial
wave packet as the interval containing 90% of the S-wave energy of 1 to 10 Hz
seismograms. She reported that the duration Td [s] is proportional to travel distance
although the scatter of data is large. She suggested that the observed duration time
is related to the reciprocal of the corner frequency fC [Hz] of the earthquake source
spectrum and propagation distance r [km] by the linear relation: T fd C r= +1 0 05/ . .
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Here, applying the model developed in Section 8.2 for the envelope broadening
to observed S-wave data, we will estimate the strength and the scale of the long
wavelength component of the inhomogeneity in the lithosphere.

8.3.1 Envelope Broadening Observed in Kanto, Japan

First, we examine the broadening of S-wave seismogram envelopes (NS com-
ponent) observed at station ASO in Kanto, Japan [Sato, 1989]. Figure 8.10a shows
epicenters of 103 earthquakes with local magnitudes from 2 to 4.5 and hypocentral
distances ranging from 80 km to about 300 km used for the analysis. Crustal earth-
quakes with focal depths shallower than 30 km were excluded from the data set,
since the Moho head wave might be larger than the direct S-wave through the crust
for shallow events. As shown by two examples in Figure 2.30, there is a time lag
between the S-wave onset and the maximum amplitude arrival. We can interpret
the time lag as caused by the contribution of diffraction and multiple forward scat-
tering due to long-wavelength components of velocity inhomogeneity. We define
two quantities that are independent of the absolute amplitude as illustrated in Figure
2.30: time lag t p [s], equal to the difference in time between the arrival of the
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FIGURE 8.10. (a) Station ASO and epicenter distribution of earthquakes having focal
depths between 30–140 km in SE Honshu, Japan that were used in the analysis of
S-wave envelope characteristics.  (b) Plots of log tp (open circles) and log tq (closed

circles) against log r . Solid and broken lines are predicted by the model (8.85) using
the Gaussian ACF and the sum of intrinsic and scattering attenuation parameterized
by Q fS

− −≈1 10 014. . [From Sato, 1989, copyright by the American Geophysical Union.]
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maximum RMS amplitude and the direct S-wave arrival, and the envelope duration
time tq[s], which is the time between the direct S-wave onset and the time when the
envelope has decreased to half the maximum RMS amplitude (the quarter-
maximum power spectrum). These times were read from RMS traces in octave-
width frequency bands. Figure 8.10b shows the measured times plotted against hy-
pocentral distance r  [km] for four frequency bands. Even though there is consider-
able scatter, a positive correlation appears without any correction for radiation pat-
tern. The slopes of regression lines for log t p against logr  range from 1.35 to 1.59,
and those for log tq range from 1.68 to 1.82. The delay of the arrival time of the
peak amplitude increases and the envelope broadens with increasing hypocentral
distance. We note that t p  and tq are much longer than the source duration empiri-
cally predicted from local magnitude.

Analysis Using the Gaussian ACF and QS
−1

When we model the observations shown in Figure 8.10 with the theory devel-
oped in Section 8.2 using the parabolic approximation for a plane wave incident on
a random medium characterized by a Gaussian ACF, distance Z  should be re-
placed with hypocentral distance r . As given by (8.79), both t p  and tq are propor-
tional to tM , which is proportional to the square of r  from (8.68). However, plots
of data in Figure 8.10b show that the observed power of r  is less than two.

Recall that we neglected attenuation in the formulation of envelope synthesis.
To include attenuation , we multiply exp −[ ]−Q tS

1ω  by the intensity spectral density
(8.77), where we interpret the attenuation as the sum of intrinsic absorption and
scattering attenuation due to short-wavelength components of inhomogeneities.
This means that our model is appropriate for only the long-wavelength components
of the real earth medium. Based on the analytical solution, we show in Figure 8.11
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FIGURE 8.11. Temporal character of the synthesized intensity spectral density corre-
sponding to the MS envelope at r =200 km, where lapse time is measured from the
origin time. Each trace is normalized by its maximum value. (a) For different values of
attenuation and a fixed character of inhomogeneity. (b) For different characterizations
of inhomogeneity and a fixed attenuation. All results are for a Gaussian ACF. [From
Sato, 1991a, with permission from Elsevier Science - NL, Sara Burgerhartsraat 25,
1055 KV, Amsterdam, The Netherlands.]
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how inhomogeneity and attenuation control the temporal trace of the intensity spec-
tral density in random media characterized by a Gaussian ACF. As expected, at-
tenuation decreases the envelope duration time but does not affect the arrival time of
the envelope peak. The amount and scale of inhomogeneity changes both the peak
delay and the envelope duration. Choosing Q fS

− −≈1 10 014.  as observed in Kanto,
Japan [Sato, 1984a], we numerically synthesize the intensity spectral density and
estimate both t p  and tq  as functions of ratio ε2 / a  and travel distance r :
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 (8.85)

where V0 =4 km/s for S-waves. The introduction of attenuation reduces the pre-
dicted coefficient of logr to be less than two, which is more consistent with the
observed relationship between time and travel distance shown in Figure 8.10b.

Applying (8.85) to observed data plotted in Figure 8.10b, we estimate the ratio
ε2 / a . The values of ε2 / a  found by fitting tp and tq  are nearly the same and inde-

pendent of frequency band: ε2 2 98 0 32 110/ . .a ≈ − ± −km . The frequency independence
means that the Gaussian ACF is a reasonable choice to statistically characterize the
inhomogeneity.

Full Envelope Inversion for the Character of Inhomogeneity and QS
−1

Scherbaum and Sato [1991] removed the a priori assumption of the specific
frequency dependence of attenuation QS

−1 and modeled the entire SH seismogram
envelopes of earthquakes in southeastern Honshu using the theory outlined in Sec-
tion 8.2. They used tM , QS

−1, the onset time of the S-arrival and the gain factor as
model parameters and applied an inversion scheme based on the Marquardt–
Levenberg method [Marquardt, 1963] to model the observed MS seismogram en-
velopes in four octave-width frequency bands (see Figure 8.12a). The Gaussian
ACF was used to characterize the inhomogeneities. The time window for analysis
was extended beyond the arrival time of the maximum peak amplitude by up to
half the travel time of the direct S-wave. S-wave attenuation obtained from the in-
version agrees well with the result of the earlier attenuation study in the same re-
gion, QS

−1 = 0.014 f −1 . The estimated f QS/  shows a strong scatter for distances
smaller than 150–200 km, where tM < 2 s; however, the scatter reduces rapidly with
increasing distance, that is, increasing characteristic time tM >>2 s. They estimated
ε2 3 27 0 32 110/ . .a ≈ − ± −km  (see Figure 8.12b), which is smaller than the previous es-
timate. The smaller estimated value may have resulted because they discarded some
complex seismograms from earthquakes that took place beneath the Boso Penin-
sula.
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8.3.2 Differences of Random Inhomogeneities across the
Volcanic Front in the Kanto–Tokai District, Japan

On the island arc of Japan, the sharp boundary defined by the distribution of
volcanoes running from north to south on the fore-arc side of the island is called the
volcanic front (VF) [Sugimura, 1960]. The VF is located at the projection onto the
surface of the 110 km isodepth contour of seismicity associated with the subduct-
ing Pacific plate [Tatsumi, 1986] and is shown by a bold broken line in Figure
8.13a. The distribution of heat flow is quite different on either side of the front
[Yuhara, 1973]. The upper mantle above the descending plate on the back-arc side
is an aseismic region called a mantle wedge. Seismogram envelope broadening in
this region was studied by Obara and Sato [1995], who found differences in wave-
form characteristics depending upon which side of the VF the propagation path
followed. Earthquakes occurring along the subducting Pacific plate with depths
ranging from 80 to 500 km were observed at 73 stations of the NIED seismic ob-
servation network and were used in this analysis (see Figure 8.13a).

Figure 8.13b shows seismogram envelopes recorded at two stations for event E
in Figure 8.13a that took place at a depth of 201 km beneath the southern end of the
Izu Peninsula. The top panel of Figure 8.13b shows the observed EW component
seismogram for station KGN and the RMS traces of the seismogram after band-
pass filtering using central frequencies of 1, 2, 4, 8 and 16 Hz. The lower panel
shows those observed at station KIB located near the Pacific coast. At KIB, enve-
lope shapes are impulsive at all frequencies, and the envelope broadening is inde-
pendent of frequency, as seen at ASO (see Figure 8.12a). On the other hand, at sta-
tion KGN, which is located west of the VF, we find a frequency dependence of en-
velope broadening: envelopes at this station are impulsive at low frequencies like
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FIGURE 8.12. (a) Example of the inversion of full MS seismogram envelopes re-
corded at station ASO, where time is measured from the S-wave onset. Smoothed
curves correspond to differing constraints used in the inversion.  (b) Histogram of
log /ε2 a[km-1] estimated for SE Honshu, Japan from inversion of many MS enve-
lope traces. All results are for a Gaussian ACF. [From Scherbaum and Sato, 1991,
copyright by the American Geophysical Union.]
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the 1- and 2-Hz band, however, they look spindle-like at frequencies higher than 4
Hz. The frequency dependence of the observed envelope broadening is different
from station to station even for the same earthquake.

Distance Dependence and Frequency Dependence

Obara and Sato [1995] read the differences between the S-wave onset and the
arrival time of the maximum amplitude t p  and the time when the envelope had de-
cayed to half of the maximum amplitude tq in each frequency band. Figure 8.14
shows plots of log t p  (cross) and log tq  (open circle) against log hypocentral dis-
tance r  for each frequency band at stations KGN and KIB. Solid lines and broken
lines are linear regression lines calculated for log t p  and log tq , respectively:

                                  a                                                              b

FIGURE 8.13. (a) Epicenter distribution of 58 earthquakes in the Kanto–Tokai area,
Japan used in the analysis and 73 seismic stations (solid squares) of the NIED net-
work. (b) Horizontal component (EW) seismograms and their RMS octave-width
bandpass-filtered traces at two stations KGN and KIB for event E at a focal depth of
201 km beneath the location indicated on the map. Each trace is normalized by its
maximum RMS amplitude. Vertical bars indicate S-wave onsets. [From Obara and
Sato, 1995, copyright by the American Geophysical Union.]
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At station KIB the correlation coefficients are small. The slope of the regression
line for KGN is steep and the correlation coefficient is large. Data for the 1 Hz band
from most stations studied have considerable scatter; however, the data scatter be-
comes smaller with increasing frequency. From plots at 73 stations, Obara and
Sato [1995] found that the slope of the regression shows a clear increase from east
to west indicating that the envelope width has a stronger dependence on hypocentral
distance as observation location moves from east to west. The hypocentral distance
dependence is not clear east of the VF.

Figure 8.15 shows the range of time lag t p  and envelope width tq obtained us-
ing data from many source-receiver measurements, where each measurement is
normalized by the value at 2 Hz for the same source–receiver combination. Nor-
malizing by the measurements at 2 Hz has removed the distance dependence
shown in Figure 8.14. These plots show a frequency dependence of envelope
broadening that is independent of travel distance. At stations KIB and KTU, the
frequency dependence of the normalized time lags is weak. At stations YMK and
ENZ located near the VF, normalized time lags increase slightly with increasing
frequencies. At JIZ, HDA, HTN, KGN, and GER, all located west of the VF, the
frequency dependence becomes strong. To compare the frequency dependence of
t p  and tq at each station, taking 2 Hz as the reference frequency, we calculate the
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linear regressions for tq  and tq  against frequency f  in Hz:
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We plot regression coefficients Bpf
obs  and Bqf

obs at each station in Figure 8.16, where
the size of symbol indicates the value of the regression coefficient. At stations along
the Pacific coastline, the envelope broadening is independent of frequency. How-
ever, frequency dependence increases from east to west across the network with the
VF acting as a sharp boundary.

Figure 8.17 schematically illustrates the characteristics of the envelope width on
the west-east section. The frequency dependence of the envelope broadening is not
observed at all stations when the earthquake occurs east of the VF. However, the
frequency dependence becomes stronger at stations near and west of the VF, when
the earthquakes occurs on the back-arc (west) side. Therefore, the frequency de-
pendence of the envelope broadening suggests that the velocity structure of the
mantle wedge west of the VF is more inhomogeneous than that to the east, because
the envelope broadening is more conspicuous for seismic rays that have traveled
through the western region.
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Estimation of the Spectral Structure of the Inhomogeneity

Using the theory outlined in Section 8.2.5, we can interpret the observed differ-
ences in the frequency dependence of envelope broadening as being caused by a
difference in the spectral structure of the velocity inhomogeneity. Obara and Sato
[1995] removed the a priori assumption that the Gaussian ACF is appropriate to
explain the velocity inhomogeneity. They assumed a general form for A the longi-
tudinal integral of the autocorrelation function, using parameter p  defined in (8.80).
As p decreases, function A becomes sharper at zero lag-distance and the PSDF
becomes richer in short-wavelength components. Replacing Z  by r in (8.83), we
get the characteristic time t fM

p p pr∝ − +ε4 4 2 2 1/ / / . We know that t fM r∝ ε2 0 2  for the
Gaussian case ( p=2). On the other hand, t fM r∝ ε4 2 3  for p=1. Thus, a smaller
value of p  gives a stronger frequency dependence for envelope broadening and
more envelope broadening in general. The theoretical prediction of more envelope
broadening and stronger frequency dependence is in good qualitative agreement
with the observed data. Figure 8.18 shows numerical simulations of RMS enve-
lopes for different frequency bands at a distance of 200 km for Q fS

− −=1 10 014. .
For the Gaussian case ( p=2), the envelope is the same for all frequency bands;
however, envelopes for higher frequencies are broadened more than lower fre-
quency envelopes as p  becomes smaller.

In Figure 8.19 we show the value of p at each station that was determined
from the frequency dependence of t p  and tq  shown in Figure 8.16. In general, at
stations located east of the VF, p  is close to 2 and function A is Gaussian. Near the
VF, parameter p takes a value ranging from 1.6 to 1.8. West of the VF, p  is
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Sato, 1995, copyright by the American Geophysical Union.]
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smaller than 1.6 and function A  is exponential-like. This means that the random
inhomogeneity west of the VF is relatively richer in short-wavelength components
compared to that east of the VF. East of the VF, Obara and Sato [1995] estimated
ε2 3 0 3 810 10/ ~. .a ≈ − − km-1  and ε2 2 0 2 810 10≈ − −. .~  assuming that a=10 km. This
estimate of the fractional fluctuation is larger than obtained by analysis of teleseis-
mic P-waves by Aki [1973] and Capon [1974] at Montana LASA, who estimated
ε2 2 8 3 4410 10≈ − −. .~  using a=10 km. The differences may reflect the differences in
tectonic settings. The smaller p value found west of the VF qualitatively agrees
with power-law spectra found under NORSAR [Flatté and Wu, 1988]. Beneath the
back-arc region of the VF, the existence of partially molten mantle diapirs has been
proposed by Tatsumi [1989]. Such diapirs, which are partially liquid inclusions,
might appear as strong short-wavelength components of the inhomogeneity.

In the study of Obara and Sato [1995], the spectral characteristics of the inho-
mogeneity were mainly determined from the frequency dependence of the envelope
broadening. The predicted travel-distance dependence of envelope width calculated
for the p value west of the VF agrees well with the observed distance dependence.
On the other hand, there are few observations of the distance dependence of enve-
lope width and they do not agree with predictions for stations along the Pacific
coast and east of the VF. The large observed envelope broadening on the back-arc
side of the VF means that the randomness may be strong enough to violate the re-
gion of validity of the parabolic approximation, that is, the forward scattering ap-
proximation. The theory developed in Section 8.2 is based on the assumption that a
plane wave was incident on a half-space containing the inhomogeneity whereas we
used observations from an earthquake source. Using a method proposed by Wil-
liamson [1972, 1975] to model radiation from a point source in a 3-D scattering
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medium using a correct geometrical spreading factor, Gusev and Abubakirov
[1995] numerically synthesized seismogram envelopes using Monte Carlo simula-
tions for a wide range of travel distances. The theory outlined in this chapter needs
to be extended to use more realistic point-source models. Additional developments
should include a method to account for full elastic wave scattering including P-S
conversions at wide angles in a 3-D medium with a broad spectrum of inho-
mogeneities.

8.4 SPLIT-STEP FOURIER METHOD FOR MODELING
WAVE PROPAGATION THROUGH AN INHOMOGENEOUS
MEDIUM

The split-step Fourier, or phase-screen, method provides a deterministic ap-
proach for calculating one-way wave propagation in inhomogeneous media. The
method is a marching algorithm, whereby the wavefield is extrapolated along one
dimension across thin parallel layers. It can be shown that the wavefield can be
propagated in a two-step process. In the first step, the wavefield is propagated from
one face of the layer to the next through a constant background medium whose
properties are chosen to be the mean of the properties of the medium within the
layer. In the second step, the phase of the wavefield is corrected for the effects of
the inhomogeneities within the layer. The phase is corrected by collapsing the in-
homogeneities onto a screen and calculating the phase change at each point on the
layer face. The phase factor is computed by integrating the medium properties along
lines normal to the screen. The split-step method provides a discretized version of
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the path integral formalism when back scattering is neglected [Flatté et al., 1979; 
Dashen, 1979]. The method provides a natural approach for modeling wave 
propagation in structures that are both deterministic and stochastic. The applica-
tion of the method to modeling wave propagation in random media is discussed 
by Spivack and Uscinski [1989]. 
 The split-step method for scalar waves has been used to calculate the effect of 
the atmosphere on starlight since the mid-1950s [Ratcliffe, 1956]. It has also been 
used to model sound propagation in the ocean [Flatté et al., 1979; Jensen et al., 
1994]. The method was introduced into seismology by Stoffa et al. [1990], who 
investigated its application as an approach for migration imaging using the scalar 
wave equation. The split-step migration approach introduced by Stoffa et al. 
[1990] can be thought of as a generalization of the phase-shift plus interpolation 
(PSPI) migration approach introduced earlier by Gazdag and Sguazzero [1984]. 
Huang and Wu [1996] and Huang et al. [1999] discussed the relationship between 
the split-step method and the PSPI algorithm when doing migration. 
 We will briefly develop the method for scalar waves propagating through a 
region having velocity fluctuations with constant density. The mathematical de-
velopment is similar to that given in Section 8.1, but we do not use the parabolic 
equation from the start. We introduce the Fourier transform of wavefield with re-
spect to time as 

u x,t( ) =
1

2
u x,( )e i t d       (8.88) 

We use the scalar wave equation for u x,( )  in inhomogeneous media having ve-
locity V x( ) = V0 1 + x( )[ ]  from (8.1): 

+

2

V x( )
2 u x,( ) = 0        (8.89) 

In the case of small fluctuation << 1, we may write the above equation as 

+ k2( )u x,( ) = 2k2 x( )u x,( )         (8.90) 

where k = / V0 . The wavefield having mean propagation in the z direction can 
be written as a 2-D Fourier transform on the transverse plane at z as

u x ,z,( ) =
1

2( )
2 u k ,z,( ) ei k x dk       (8.91) 

where we introduced transverse coordinates x . We suppose that  varies 
smoothly over distances of the order of a wavelength: ak >> 1, where a is the 
characteristic scale of the inhomogeneity. We try to find a solution at z + z
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where we divide the medium into thin slabs perpendicular to the z -axis and ϕ  is a
phase that varies on the transverse plane. This representation assumes that we will
be able to calculate the wavefield at z z+ Δ  from the 2-D Fourier transform of the
wavefield in the transverse plane at z  by using phase function ϕ  and is similar to
the Rytov approximation in Section 8.1.2.

Substituting (8.92) in (8.90), the equation for ϕ  is

i kz∇ − + ∇( ) − ( ) + −( )[ ] =⊥ ⊥
2 2 2 2 1 2 0ϕ ϕ ∂ ϕ ξk (8.93)

Neglecting ∇2ϕ  and the variation with respect to transverse coordinates ∇( )⊥ϕ 2

since ξ  varies smoothly, we obtain

∂ ϕ ξz k k= −( ) − ⊥
2 21 2   (8.94)

Integrating (8.94), we have

ϕ ω ξx k x⊥ ⊥ ⊥ ⊥

+

( ) = − ( )[ ] −∫, , , , , ' 'z z k z k dz
z

z z

Δ
Δ

2 21 2  (8.95)

Substituting (8.95) into (8.92), we get the wavefield at z z+ Δ

  
u z z u z e d

i i k z k dz
z

z z

x k k
k x x

⊥
−∞

∞

−∞

∞

⊥

+ ∫ − ( )[ ]−

⊥+( ) =
( ) ( )∫∫

⊥ ⊥

+

⊥ ⊥

, , , ,
, ' '

Δ
Δ

ω
π

ω
ξ1

2 2

1 22 2
(
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To evaluate (8.96) in an efficient manner, we use the dispersion relation for the

background medium k k kz = − ⊥
2 2  and expand the square root terms in the inte-

gral of (8.95) for k k⊥ <<  to get

ϕ ω ξx k x⊥ ⊥

+
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z

z z

Δ Δ
Δ

  (8.97)

In this case, the term describing the inhomogeneity can be removed from the 2-D
Fourier transform and (8.96) becomes
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This is an approximation for wave propagation through a thin slab that can be nu-
merically calculated using a 2-D FFT. This is a dual-domain (wavenumber-space)
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implementation of the split-step method. The interaction between the wavefield and
the inhomogeneities in the thin layer is accomplished by multiplication of a phase
function with the wavefield in the space domain. The propagation from one thin
slab to the next through the background medium is simply a phase shift in the
wavenumber domain. Thus all the modeling is done by multiplication; Fourier
transforms are used to switch between the wavenumber and space domains. Given
a grid of velocity distribution, the medium is equated to a series of phase screens
with interval Δz ; the wavefield is marched in the forward direction in increments of
Δz . When using the split-step method, the increment Δz  can be variable depending
on the amount of inhomogeneity in the medium. For example, propagation through
regions that are homogeneous can be done with very large values of Δz . This
means that computational expense can be focused on regions of the model where
the greatest inhomogeneity exists.

It should be noted that Claerbout [1985] calls (8.6) a 15o approximation, which
means that the equation provides a good approximation to the wave equation for
waves that are propagating within 15o of a reference direction. Claerbout [1985] dis-
cussed extensions of (8.6) that are also parabolic equations but which have a larger
angle of validity than does (8.6). There are several derivations of the split-step
Fourier method that use different approximations and have slightly different ver-
sions of the propagator equations. The range of validity of three of the methods is
discussed by Thomson and Chapman [1983] and they conclude that the propagator
that we derived has the widest angular range of reliability of the three methods they
discuss. The method derived directly from the parabolic wave equation (8.6), which
is given in Jensen et al. [1994, p. 376], has a narrower range of applicability than
the one we derived. Our derivation is not completely rigorous. Rigorous derivations
are given by Stoffa et al. [1990] and Jensen et al. [1994].

Since the split-step method is an approximate numerical approach for modeling
wave propagation, it is important to understand the limitations of the method. Sta-
bility and accuracy have been discussed in the oceanic acoustics literature [Jensen et
al., 1994] and the seismology literature [Cheng et al., 1996; Huang and Fehler,
1998]. Jensen et al. [1994] show that the method can be applied in a manner in
which the dominant terms in the error relate to ( )Δz 3 but also depend on the varia-
tion in medium properties in the plane perpendicular to the mean propagation direc-
tion. This means that the error can be made smaller by choosing the increment Δz
smaller. The method is unconditionally stable, which means that numerical errors
when doing computations do not grow with increasing propagation distance to
cause the predicted wavefield to blow up [Jensen et al. 1994]. Huang and Fehler
[1998] investigated the accuracy of the method as a function of k k⊥ / , or the
propagation direction relative to the main propagation direction, and the size of the
medium inhomogeneity. They found that when the velocity perturbation in the
x y−  plane is as large as a factor of two, the method is reliable for propagation an-
gles as large as 20o from the main propagation direction. When velocity perturba-
tion is less than 10%, the method is reliable for propagation angles as large as 60o

from the main propagation direction provided that Δz  is chosen to be much smaller
than the wavelength.

Wu et al. [1995] discuss an extension of the split-step method that does not re-
quire the small angle approximation to be computationally efficient. The wide angle



Diffraction and Broadening of Seismogram Envelopes / 267 

method is derived using the Born approximation and is reliable for larger propa-
gation angles than the approach developed here [Huang et al., 1999]. Applying 
the Born approximation within each layer, a solution similar to (8.98) is found: 

u x ,z + z,( ) =
1

2( )
2 u k ,z,( ) ei k x + ikz z dk

ik 2 (x ,z' )dz'
1

2( )
2

z

z + z 1

kz

u k ,z,( ) ei k x + ik z zdk

 (8.99) 

where the first term on the right-hand side is the wavefield after propagation 
through the background medium and the second term corresponds to the scattered 
wavefield. When velocity perturbation is small and propagation is in nearly the z
direction, (8.99) reduces to (8.98). The approach based on the Born approxima-
tion is not guaranteed to be stable in the presence of large velocity contrasts but 
does extend the range of applicability of the method to larger propagation angles. 
Huang et al. [1999] present some examples showing the benefits of the enhanced 
method.
 Liu and Wu [1994] compared the synthetic seismograms using the split-step 
method with seismograms calculated using fourth-order finite difference and ei-
genfunction expansion methods for scalar wave propagation through 2-D media 
containing discrete heterogeneities and random fluctuations. Stoffa et al. [1990] 
tested the method for seismic migration and found that it performed well even in 
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FIGURE 8.20. Waveforms calculated using 2-D finite difference modeling of the wave 
equation and 2-D split-step Fourier (phase screen) method for the slice of the 3-D model 
shown in Figure 2.15. The source is located at the surface of the model at horizontal dis-
tance 6.9 km. Receivers are located at a depth of 3.65 km at horizontal positions indicat-
ed next to the traces. The source is a 20 Hz Ricker wavelet. The finite difference scheme 
is fourth order in space and second order in time. Grid spacing in both calculations was 
6.096 m. The time interval for finite difference and split-step calculations are 0.0005 s and 
0.0004 s, respectively. [Courtesy of L–J. Huang.]
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the presence of velocity contrasts as large as 2.7 to 4.6 km/s and steeply dipping 
interfaces like those shown in Figure 2.15. Figure 8.20 shows synthetic seis-
mograms calculated through the 2-D slice of the 3-D model containing a salt body 
shown in Figure 2.15. The left side shows traces calculated using a fourth-order in 
space finite difference scheme of the 2-D scalar wave equation for a source locat-
ed at the surface of the model at horizontal distance 6.9 km in Figure 2.15. The 
receivers are located near the bottom of the model, at a depth of 3.65 km at the 
horizontal locations indicated next to the traces. The right side of the figure shows 
traces calculated using the split-step Fourier method given in (8.98). Comparing 
the seismograms, we see that the first pulses of the waveforms are similar for the 
two methods. Later portions of the waveforms, which may be dominated by re-
verberations in the high-velocity salt body, are different. The difference is due to 
the limitation of the split-step method to model only forward-scattered energy. 
 Fisk and McCartor [1991] extended the spit-step method to vector elastic 
waves assuming the medium is smooth, which allowed them to write a pair of de-
coupled equations for P- and S-waves. Coupling between P and S was accom-
plished after phase corrections by decomposing the resulting phase-corrected 
wavefield back into P- and S-waves. Fisk and McCartor [1991] and Fisk et al. 
[1992] compared synthetic seismograms calculated by their method for 2-D ran-
dom elastic media with numerical synthesis based on the finite difference method; 
however, their formulation does not contain a complete treatment of conversions 
between P-and S-waves. Wu [1994] formulated one-way elastic wave equations 
for P- and S-wavefields in inhomogeneous media using the Born approximation. 
Introducing the parabolic approximation, Wu [1994] arrives at a complex phase-
screen for elastic waves instead of a regular phase-screen. He presents compari-
sons of the elastic phase-screen method with finite difference and exact solutions 
for simple structures and shows that the method works well for modest velocity 
and density contrasts.
 Wu et al. [1995] extended the split-step method to include the effects of pri-
mary reflections. With this approach, it is now possible to model reflection seis-
mograms recorded at the earth’s surface. Either (8.98) or (8.99) is used to calcu-
late the forward propagating wavefield. Within each layer, the back-scattered 
wavefield due to single scattering from inhomogeneities is calculated using a 
method due to De Wolf [1971]. The forward propagated wavefield interacts at 
multiple depths within each slab. The wavefield scattered within each layer is 
propagated back to the surface using the split-step approach. Comparison of syn-
thetic seismograms calculated using this multiple-forward, single backscattering 
modeling approach with those calculated using finite difference for the 2-D case 
of a buried cylinder with a 10% velocity perturbation by Wu et al. [1995] showed 
that the result obtained using the split-step method is in good agreement with the 
finite difference solution. 
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CHAPTER 9

Summary and Epilogue

Analysis of high-frequency (>1 Hz) regional seismograms using the scattering
approach helps us to obtain a better understanding of the origin of the complexity of
observed waveforms. In addition, the scattering approach provides a stochastic
method to obtain additional information about the character of the earth’s
lithosphere beyond that obtained from deterministic methods. Stochastic
characterization and deterministic imaging of the lithosphere are complementary to
each other. We have introduced a variety of stochastic approaches for modeling
high-frequency seismic wave propagation through the randomly inhomogeneous
structure of the lithosphere developed during the last two decades. We have
emphasized the contribution of the scattering process to the formation of
seismogram envelopes. Here, we summarize the state of the art and discuss
possible future developments.

9.1 SUMMARY OF METHODS AND OBSERVATIONS

Heterogeneity in the Crust

Geological surveys and well-log data show that the structure of the crust is
heterogeneous. The fractional fluctuations of seismic velocity often exceed 10%.
Well-log data show an approximate linear correlation between P- and S-wave
velocities and mass density. We model the crustal inhomogeneity as a stationary
random process in space, which can be statistically characterized using an
appropriate ACF or PSDF. For wavenumbers ranging from 10 1 1− −m to 10 1m− , a
power-law PSDF can be used for the crust to match most well-log data. This
means that the exponential ACF or the von Kármán ACF, which are rich in short-
wavelength components, better explain crustal inhomogeneity than the Gaussian
ACF, which contains a relatively smaller short-wavelength component of
inhomogeneity.
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S-Coda Waves

High-frequency (1–30 Hz) seismograms of local earthquakes contain signals
following the direct S-wave that are known as S-coda waves. Array analysis has
shown that S-coda consists of incoherent S-waves that have been scattered by
distributed random heterogeneities in the lithosphere. Heterogeneities include
variations in elastic coefficients and mass density due to changes in rock
composition or the presence of cracks or fluids in the cracks. S-coda wave
amplitude decreases with increasing lapse time and is independent of epicentral
distance and radiation pattern at long lapse times. The epicentral distance
independence of S-coda amplitude at long lapse times leads to the coda-
normalization method which can be used to reliably estimate the relative strength of
source spectra, the site amplification caused by localized structure in the vicinity of
a receiver site, and seismic amplitude attenuation with travel distance.

The S-coda envelope decay rate is quantified by a geometric spreading term and
a phenomenological exponential decay factor QC

−1 , known as coda attenuation. The

parameter QC
−1  has been measured throughout the world and compared with

seismotectonic setting. The scatter of worldwide measurements is about a factor of
two. The value of QC

−1  is of the order of 10 2−  at 1 Hz and decreases with increasing

frequency to the order of 10 3− at 20 Hz. There have been reports of temporal
changes in coda characteristics, and some of these changes occurred in advance of
earthquakes or volcanic eruptions.

Single Scattering Modeling for S-coda and Seismogram Envelopes

It is difficult to model the entire scattering process using the wave equation.
However, phenomenological methods for modeling the single scattering process
have been developed. They help to build our intuition about the wave propagation
process in inhomogeneous media, where we explicitly suppose the addition of the
power of scattered waves. This model predicts that MS S-coda amplitude decays
with the inverse square of lapse time when there is no intrinsic attenuation. The S-
coda spectrum is a product of the source power spectrum and the total scattering
coefficient g0 that characterizes the S-to-S scattering power per unit volume. The

value of g0 is on the order of 10 2− km−1 for frequencies of 1–30 Hz in the
lithosphere. This corresponds to a mean free path of 100 km and a mean free time
of 25 s for S-wave velocity β 0 =4 km/s.

Single scattering models based on the Born approximation give S-coda
envelope shapes that agree with phenomenological models and with observations
for relatively short lapse times. Single scattering modeling using frequency-
dependent nonisotropic scattering amplitudes calculated using the Born
approximation with travel-time correction for elastic waves that includes the effects
of point shear-dislocation source radiation succeeded in explaining variations of
three-component seismogram envelopes observed at short source–receiver
distances not only for S-coda but also for the P-coda between the direct P- and S-
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phases. This method for calculating synthetic seismogram envelopes was
successfully extended to include reflections on the free surface of the earth.

Multiple Scattering Modeling Based on the Radiative Transfer
Theory

The incoherence of scattered waves in the lithosphere means that we can add the
power of scattered waves to simulate seismogram envelopes. Models based on the
radiative transfer theory have been used to explain the spatiotemporal pattern of the
S-wave energy density. The simplest model is based on the assumption of
spherically symmetric radiation from an earthquake source and uniform
distribution of isotropic scatterers in 3-D space. This model gives predictions
compatible with the observed shapes of S-wave envelopes. The formulation of the
radiative transfer theory allows us to compare the influence of single and multiple
scattering on the distribution of seismic energy density. Inclusion of multiple
scattering increases the energy density at long lapse times so the MS envelope
decays as the −1 5. th power of lapse time, rather than the –2 power as predicted by
the single scattering theory. The slower decay with increasing lapse time is in
agreement with observations made in many regions. Models, including
nonisotropic scattering and/or nonuniform fractal distribution of scatterers, predict a
uniform distribution of coda energy within a volume surrounding the source at long
lapse times, agreeing with observations.

The radiative transfer theory provides a method for distinguishing scattering
attenuation from intrinsic absorption by analyzing the whole S-wave seismogram.
This method is known as the multiple lapse-time window analysis. Reported ratios
of scattering loss to total attenuation, known as seismic albedo, range from 0.3 to
0.8 in the frequency band 1-20 Hz using a model based on isotropic scattering. On
average g0  is estimated to be on the order of 10 2 1− −km .

The radiative transfer theory has been extended to include the effects of
nonspherical radiation from a point shear-dislocation source, nonisotropic
scattering, and conversion scattering between P- and S-waves. Although these
effects have not all been included in one formalism, the inclusion of individual
effects has facilitated investigation of the temporal evolution of the early S-coda,
which is sensitive to the source radiation pattern, and of whole seismogram
envelopes starting from the P-wave onset to late S-coda.

Scattering Attenuation

Recent observations have shown that S-wave attenuation QS
−1 in the lithosphere

is of the order of 10 2− at 1 Hz and decreases with increasing frequency to
approximately 10 3− at 20 Hz. Studies at lower frequencies using surface wave
analysis found that attenuation is of the order of 10 3− at about 0.05 Hz. Thus, it is
expected that QS

−1 has a peak in the 0.5–1 Hz frequency range. Attenuation is
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considered due to a combination of intrinsic absorption and scattering attenuation.
The existence of S-coda suggests that scattering attenuation due to random
inhomogeneity in the lithosphere may be significant from the view point of energy
conservation.

The first-order Born approximation can be used to estimate the amount of
scattering attenuation. To do this, we interpret the ensemble average of the power of
singly scattered waves as the energy lost from the incident waves. The ordinary
statistical averaging procedure leads to the conclusion that scattering attenuation
increases with increasing frequency because it implicitly includes phase changes
caused by travel-time fluctuations due to long-wavelength components of velocity
inhomogeneity when calculating energy lost by scattering from the incident wave-
field. If we modify the procedure by first subtracting the travel-time fluctuations,
we obtain scattering attenuation TSc

SQ−1 at high frequency that is constant or
decreases with increasing frequency, where prefix “TSc” means the scattering
attenuation calculated using travel-time correction. This procedure, known as the
travel-time corrected Born approximation, corresponds to neglecting scattered wave
energy within a cone around the forward direction when estimating the scattering
attenuation.

For a random medium characterized by an exponential ACF with MS fractional
fluctuation ε2 and correlation distance a , the peak value of TSc

SQ−1 predicted by the

travel-time corrected Born approximation is of the order of ε2 at frequency
f a≈ β π0 /  and decreases with the reciprocal of frequency for high frequencies.

The backscattering coefficient for S-to-S-waves gSS
π  is of the order of 1.6 ε2 / a  for

high frequencies. Assuming all attenuation is due to scattering (seismic albedo is 1)
and applying the above theoretical results to S-wave attenuation and S-coda
excitation measurements, we get that the inhomogeneity has parameters ε ≈10%
and a ≈ 2  km. We also note that this scattering model is consistent with the
observed relation Q QP S

− −>1 1 for frequencies higher than 1 Hz. For more precise
analysis, we may introduce the von Kármán ACF, which has an additional
parameter that controls the power of frequency of TSc

SQ−1  for high frequencies. The
Gaussian ACF is not appropriate for explaining the excitation of S-coda waves and
the frequency dependence of S-wave attenuation for frequencies higher than 1 Hz
since it has relatively small short-wavelength components.

Array Observation of Teleseismic P-Waves

Array observation of teleseismic P-waves have been done to investigate the
phase and amplitude fluctuations caused by the random inhomogeneities located
under the array. Recent measurements focus not only on the change in correlation
with transverse distance but also on the incident angle. The correlations of waves
have been modeled using the parabolic approximation for waves with wavelengths
shorter than the correlation distance of the random inhomogeneity. This
approximation includes contributions of forward scattering and diffraction that
strongly affect waves near the direct wave arrival time. Combining measurement
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with theory leads to a larger estimated correlation distance and a smaller MS
fractional fluctuation than obtained from S-coda measurements, which are more
sensitive to short-wavelength components of inhomogeneities. We also note that
there is a contribution of surface waves excited by irregular surface topography in
P-coda.

Peak Arrival Delay and Envelope Broadening of S-Waves

The source duration of small earthquakes is very short compared to the duration
of observed S-wave first arrival packets at distances of 100–300 km. The packet
duration generally increases with increasing travel distance indicating that it is
caused by some propagation effect. Increasing packet duration is called envelope
broadening. In addition, the arrival of the peak amplitude in the first S-arrival packet
often comes well after the S-wave onset. The delay between the arrival time of the
peak amplitude and the S-onset time increases with increasing travel distance.
Observations in Japan show that the frequency dependence of the peak delay and
the S-wave envelope broadening vary with location relative to the volcanic front
associated with the subduction zone. On the fore-arc side, the peak delay and
envelope broadening are small and frequency independent; however, on the back-
arc side, they are larger compared with that in the fore-arc side and become stronger
with increasing frequency.

MS seismogram envelopes have been synthesized for the case where strong
diffraction and multiple forward scattering alter the envelope shape from impulsive
to spindle-like. Stochastic synthesis is done using the Markov approximation for
the parabolic wave equation when the wavelength of the seismic wave is smaller
than the correlation distance of the random media. Envelope width is frequency-
independent for random media described by the Gaussian PSDF, but is frequency-
dependent and has a stronger distance dependence if the randomness is richer in
short-wavelength components than the Gaussian PSDF. When the simulation is
used to model data from Kanto, Japan, the ratio ε2 / a  is estimated to be on the
order of 10 3 0 3 3−( ). — . km−1. The regional differences of the frequency dependence of
the peak-arrival delay and the width of the S-wave envelope are explained as due to
spectral differences in the random inhomogeneity. Comparison with observed data
suggests that the lithosphere beneath the back-arc side of the volcanic front is
relatively richer in short-wavelength components of random inhomogeneities than
the fore-arc side.

Modeling Wave Propagation Depending on the Description of
Heterogeneity

The simplest description of the heterogeneous lithosphere is that it is a locally
isotropic inhomogeneous elastic media with Lamé coefficients that are continuous
functions of coordinates. Born approximation modeling is based on this
description. Full waveform synthesis can be done by an extended version of the
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split-step Fourier method and the finite difference method when medium properties
are smooth. Another description of an inhomogeneous medium is to consider that
it is composed of a distribution of cavities or crack inclusions with distinct
boundaries. These features are efficient scatterers. The boundary integral method is
a powerful method for the synthesis of full waveforms to study coda excitation and
amplitude attenuation with travel distance through distributed cracks and/or cavities.

9.2 FUTURE DEVELOPMENTS

Our continuing objective is to improve our models of the earth and seismic
wave propagation which allow us to learn more about the structure of the earth and
how it works. We would like to formulate an inversion scheme to determine the
spatial distribution of intrinsic attenuation and scattering coefficients in addition to
the deterministic velocity structure based on the conventional tomography method.
Results from such a scheme could provide significant insight into geological
processes that shape the earth and important information for resource exploration.
Our ability to develop better models will depend on future developments and
refinement of mathematics and observations.

Observations and Measurements

Improvements in observation are needed to test the limits of the theories
developed and to provide the basis for improved theories. A significant gap in
observations of S-wave attenuation exists in the frequency band between the
measurements at 0.05 Hz obtained by analysis of surface waves and the
measurements at 1 Hz from body waves. The peak in S-wave attenuation in the
earth proposed by Aki [1980a] to occur at 0.5 Hz falls within this gap.
Measurements of body and surface wave attenuation within this frequency gap are
needed to test the validity of Aki’s conjecture about the shape of the S-wave
attenuation vs. frequency curve. We also note that the number of P-wave
attenuation measurements is still too small to allow us to investigate regional
differences in P-wave attenuation.

Measurements of scattering characteristics in various tectonic regimes will help
to better understand the relationship between scattering and geology. For example,
the relationship between the broadening of S-envelopes and the location of the
volcanic front was reported only for Japan. It will be interesting to classify envelope
characteristics in relation to tectonic setting and examine whether the envelopes
have the same characteristics in different tectonic regions.

There have been a few studies on P-wave envelopes. Broadening of P-wave
envelopes does not appear to be as significant as for S-waves, and P-waves appear
to maintain their original impulsive shape more than S-waves. More observations
of P-wave broadening will help us to better understand the differences in scattering
of the two wave modes and the character of heterogeneity in the earth.

Broad-band observations of regional seismic waves in deep boreholes will help
to clarify the amount of scattering that occurs below the surface weathered layer.
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Array observations and analysis will allow us to identify the composition of coda
waves and to identify localized regions of high scattering intensity.

Observations have shown that coda attenuation QC
−1  is nearly the same order as

direct S-wave attenuation QS
−1 in many regions in the world. It has not been clearly

shown whether this coincidence has some physical background. The uniform
distribution of coda energy density at long lapse times is the conceptual basis of the
conventional coda-normalization method; however, we need more quantitative
measurements of the spatial distribution of coda energy density in relation to the
geology of receiver sites and tectonic settings.

We have used Birch’s law and the similarity of P- and S-wave velocities to
reduce the number of independent random functions describing the earth to
simplify the mathematical modeling. However, these relationships have been
confirmed from only several studies of well-log data. We need to further examine
their correlations with in situ field measurements. Some of the more interesting
cases of scattering may arise when the simple relationships are not valid. For
example, in volcanic regimes, bodies in which the S-wave velocity is nearly zero
may exist due to the presence of molten materials. Examination of scattering in
media with such bodies may help explain some of the observed complexity of
seismograms recorded in volcanic regions and may help to better understand the
structure of volcanoes.

Theoretical Developments

We found that the travel-time corrected Born approximation or the neglect of
forward scattering resulted in theoretical predictions for the frequency dependence
of scattering attenuation that agrees with S-wave attenuation observations; however,
the choice of the lower bound of scattering angle is heuristic. The derivation of
scattering attenuation based on the Born approximation with travel-time correction
is a kind of differential approach, where the energy loss for an infinitesimal path
length is calculated and the effect of diffraction is completely excluded. The
amplitude change should be theoretically studied for long travel distances.

Three-component envelope syntheses based on the single scattering model by
using scattering amplitudes from the Born approximation with travel-time
correction have been done; however, near the direct wave arrival-times, the point-
source assumption and the Fraunhofer zone assumption may not hold. The
predicted envelope time-traces have discontinuities at the direct-wave arrival times.
We need to develop models overcoming these difficulties.

The incorporation of both nonisotropic scattering and nonspherical source
radiation is important since strong forward scattered energy appears immediately
after the direct-wave arrival when the radiation pattern is nonspherical. Models that
include conversion scattering between P- and S-waves are also necessary for
correct interpretation of whole seismograms starting from the direct P-wave until
the end of S-coda. Quantifying the partition of energy density into three
components is important but it has been investigated only using models based on
the single scattering approximation. It will be possible to formulate a multiple
scattering process to model three-component seismogram envelopes by introducing
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S-wave polarization parameters into the radiative transfer theory. We also need to
incorporate conversion between body waves and surface waves at the irregular free
surface or boundaries in the radiative transfer theory.

A complete link between the radiative transfer equation in scattering media and
the wave equation in inhomogeneous media has not been demonstrated yet. The
radiative transfer formulation presented here has assumed that waves are
instantaneously scattered when the incident wave hits a scatterer. However, low-
velocity bodies can immediately scatter waves and trap and radiate waves with a
time lag depending on the frequency of incident waves and the characteristics of the
body. It is necessary to include such resonant scattering in the formulation of the
radiative transfer theory.

The radiative transfer theory predicts that coda attenuation QC
−1  is dominated by

intrinsic absorption since the theory predicts that the MS coda-envelope decays
according to the −1 5. th power of lapse time for a “uniform” distribution of
“isotropic” scatterers and no intrinsic attenuation. Hence, any coda decay rate larger
than t −1 5.  must be due to intrinsic attenuation. Models using the radiative transfer
theory for envelope synthesis need to be investigated for media in which scattering
coefficient and intrinsic attenuation are depth dependent or fractally distributed.
Ultimately, we would like to formulate an inversion scheme to determine the spatial
distribution of intrinsic attenuation and scattering coefficients within the framework
of the radiative transfer theory.

Observed S-wave envelope broadening was analyzed based on the parabolic
approximation, which is valid only for narrow-angle scattering around the forward
direction due to long-wavelength components of velocity inhomogeneity. It might
be necessary to incorporate the contribution of large-angle scattering due to short-
wavelength components of elastic inhomogeneity. Development of a model that
includes wide-angle scattering may help explain the result that the heterogeneity
estimated from coda excitation due to large-angle scattering has a larger MS
fractional velocity fluctuation and smaller correlation distance than that estimated
from forward scattering. Elastic wave theory shows that S-waves are more easily
scattered than P-waves; however, a rigorous development of elastic wave theory for
envelope broadening is necessary as an extension of the split-step Fourier method.

Deterministic approaches provide the most reliable way to study wave
propagation in strongly inhomogeneous media. It is necessary to develop
mathematics used for this purpose that has a wider range of applicability than the
parabolic approximation. The development of fast codes for computing waveforms
is necessary as a complement to the stochastic approaches. Exact methods that
include resonance within scatterers and allow the modeling of media containing a
large number of scattering bodies are needed. The methods should allow study of
wave propagation over long propagation distances. These methods will become
more practical as faster computers containing more memory become available.
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Appendix

Spherical Harmonic Functions and
Wigner 3-j Symbols

We briefly introduce the definition of the spherical harmonic functions. First we
define
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where Pl
m are associated Legendre polynomials and the phase factor il  is after

Landau and Lifshitz [1989]. This definition is different from the usual one;
however, this choice is the most natural from the viewpoint of the theory of the
addition of angular momenta. Define
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The normalized spherical harmonic function is given by

Ylm lm mθ φ θ φ,( ) = ( ) ( )Θ Φ (A.3)

where we note that
Y Yl m

l m
l m,

*
,, ,θ φ θ φ( ) = −( ) ( )−
−1 (A.4)

The normalized spherical harmonic functions with different l or m are orthonormal:

Y Y dl m l m l l m m1 1 2 2 1 2 1 2

* , , ,θ φ θ φ θ φ δ δ( ) ( ) ( ) =∫ Ω  (A.5)

where d d dΩ θ φ θ θ φ, sin( ) = . The addition theorem holds for Legendre
polynomials:
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There is an expansion formula
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where the spherical Bessel function is given by
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We note that j z j zl
l

l−( ) = −( ) ( )1 . From (A.6), the spherical harmonic closure
relation [Arfken and Weber, 1995] gives the delta function for the solid angle as
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where vectors x x= =( , , ) ' ( ' , ' , ' )r rθ φ θ φand are in spherical coordinates. We note
that

δ θ φ θ φ θ φ

θ φ δ θ φ θ φ θ φ θ φ

Ω

Ω

Ω

Ω

, ; ' , ' ' , '

' , ' , ; ' , ' ' , ' ,

( ) ( ) =

( ) ( ) ( ) = ( )
∫

∫
d

f d f

1  and
 (A.10)

for any function f θ φ,( ).
The integral of three spherical harmonic functions is written using the Wigner

3-j symbols [see Landau and Lifshitz, 1989]:
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The above integral vanishes except when m m m' "= +  and l l l l l− ≤ ≤ +" ' " (the
triangular condition) according to the selection rules corresponding to the addition
of angular momenta. Then, l l l+ +' " is even. Wigner 3-j symbols are pure real.
There are published programs for the numerical computation of the Wigner 3-j
symbols [Shriner and Thompson, 1993; Wolfram 1991].
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Glossary of Symbols

a Correlation distance.
a⊥ Transverse correlation distance in a plane perpendicular to the mean

propagation direction.
A Longitudinal integral of R  along the mean propagation direction.
b Intrinsic absorption parameter.
B Radiation pattern of seismic waves due to a point shear-dislocation.
B0 Seismic albedo, the ratio of scattering attenuation to total attenuation.
D Wave parameter characterizing the diffraction effect.
DC Diffusivity.
D DS A, Fractal dimension for the distribution of scatterers or attenuation bodies.
d dσ Ω Differential scattering cross section of a scatterer.
e e e1 2 3, ,( ) Unit vectors in the Cartesian coordinate system.

e e er , ψ , ζ( ) era ,rb
,eθ ,eφ( ) Unit vectors in the spherical coordinate system.

E E E E EM D EF, , , ,1 Energy density, where superscript “1” is for single
scattering, “M” for multiple scattering of the order larger or equal to
two, “D” for the diffusion model, and “EF” for the energy-flux
model.

EI1 2 3, , Integral of energy density used for the MLTW analysis.
f Frequency.
fC Corner frequency.

F FT, Scattering amplitude, where prefix “T” is for that with travel-time
correction.

g gT, Scattering coefficient, where prefix “T” is for that with travel-time
correction.

g gSS
π π, Backscattering coefficient (of S to S scattering).

g0 Total scattering coefficient (of S to S scattering).
gF Turbidity coefficient.
G Green function. Defined in each section.
I Intensity of wavefield.
  
)
I Intensity spectral density.
J Energy-flux density.
k Wavenumber of P-wave (or scalar wave).
k⊥ Wavenumber vector in the transverse plane perpendicular to the mean

propagation direction.
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kM , tM Characteristic scales of multiple scattering.
K Characteristic function for the single isotropic scattering model.
KC Characteristic function for the single isotropic scattering model with

conversion between P- and S-waves.
l Wavenumber of S-wave.
  l Mean free path.
L Extension of the inhomogeneities.
LF Dimension of the fault.
M t( ) Seismic moment time function.
M0 Seismic moment of an earthquake.
ML Local magnitude of an earthquake.
n Number density of point-like scatterers.
n Unit vector normal to a fault.
p, p Slowness and slowness vector.
P Power spectral density function of the fractional fluctuation of wave

propagation velocity.
Pf w Frequency-wavenumber power spectral density in 2-D space.

Q−1 , IQ−1, ScQ−1, BScQ−1, TScQ−1 Attenuation parameter, reciprocal of the quality
factor, where prefix “I” is for intrinsic attenuation and “Sc” for
scattering attenuation. Prefix “BSc” is for scattering attenuation based
on the ordinary Born approximation, and “TSc” for scattering
attenuation based on the travel-time corrected Born approximation.

QP
−1 , QS

−1 Attenuation parameter, where subscript “P” and “S” are for P- and S-
waves, respectively.

QC
−1 Coda attenuation factor.

r, ,ψ ζ( ) ra b, , ,θ φ( ) Spherical coordinates.
r Radial distance or hypocentral distance.
r Normalized radial distance.
R Autocorrelation function of the fractional fluctuation of wave

propagation velocity.
s Unit slip vector of a fault.
Si Power spectral density of the ith component velocity seismogram.
t Normalized lapse time.
Tij Stress tensor.
u Scalar wavefield.
u , ui Vector wavefield.
Tu , T u Travel-time corrected wavefield.
u̇ij Velocity wavefield for source i at receiver j.
V V, 0 Wave propagation velocity. Subscript zero is for the average.
w v, ,φ( ) Prolate spheroidal coordinates.

W W WP S, , Radiated energy from the source. Superscript “P” is for P-wave
and “S” for S-wave.
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) )

W WP S, Spectral density of radiated energy from the source. Superscript “P” is
for P-wave and “S” for S-wave.

x Normalized coordinate vector.
x⊥ Coordinate vector in the transverse plane perpendicular to the mean

propagation direction.
x c c c cz k, , ,ω Center-of-mass coordinates.
x d d d dz k, , , ω Difference coordinates.

X XT
*
**

*
**, , ,ψ ζ ψ ζ( ) ( ) Basic scattering pattern of elastic vector waves, where prefix

“T” is for that with travel-time correction.
α α, 0 P-wave velocity. Subscript zero is for the average.
β β, 0 S-wave velocity. Subscript zero is for the average.
χ Normalized radius in the transverse plane with respect to a⊥ .
δΩ Delta function in a solid angle.
δfi Equivalent body force.
C

ifδ Equivalent body force due to travel-time correction.
δt Travel-time fluctuation due to the long-wavelength component of

velocity fluctuation.
Δ ln A0 Log-amplitude fluctuation (Ξ Δ Δ= +ln A i0 ϕ ).
Δϕ Phase fluctuation ( Ξ Δ Δ= +ln A i0 ϕ ).
ε Root-mean-square of the fractional fluctuation of velocity.
Φ Scattering strength.
γ 0 Ratio of average P-wave velocity to average S-wave velocity.
Γ1 Mutual coherence function.
Γ2 Two-frequency mutual coherence function.
ϕ Phase function.
λ Lamé coefficient.
λ λ λW W

P
W

S, , Wavelength of scalar, P-, and S-waves.
λC Cutoff wavelength (= λ υW C ).
μ Lamé coefficient.
ν Ratio of the density fractional fluctuation to the velocity fractional

fluctuation.
ρ ρ, 0 Mass density. Subscript zero is for the average.
σ σ, 0 Scattering cross section of a scatterer. Subscript zero is for the total

scattering cross section.
τ Normalized distance in the mean propagation direction.
υC Cutoff value for the travel-time correction.
ω Angular frequency.
ξ ξ ξ, ,S L Fractional fluctuation of velocity, where superscript “S” is for the short-

wavelength component and “L” for the long-wavelength component
with respect to cutoff wavelength λC .

Ξ Perturbation term of the Rytov method.
ψ Scattering angle.
ψC Cutoff scattering angle.
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Ψ Radiation pattern of energy from a source.
Ω Solid angle.
Δ⊥ Laplacian in the transverse plane perpendicular to the mean propagation

direction.
∇⊥ Gradient in the transverse plane perpendicular to the mean propagation

direction.
l l l
j j j

1 2 3

1 2 3

⎛
⎝

⎞
⎠ Wigner 3-j symbol.

  L Ensemble average.

  L T Moving average in time.

  L D Moving average in distance.
E Overbar denotes the normalized non-dimensional quantity.
Ê Caret means the Laplace transform in time.
Ẽ Tilde means the Fourier transform in space.
u̇ Over-dot means the partial derivative with respect to time.
  
(
u 2-D Fourier transform of u  in the transverse plane perpendicular to the

mean propagation direction.
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Velocity dispersion 115
Velocity of rocks 8
Velocity seismogram 169
Velocity source spectrum 153
Velocity tomogram 22
Velocity tomography 1, 18
Viscosity 116
Volcanic breccia 12
Volcanic front 80, 257
von Kármán ACF 15, 54, 106, 236
VSP 21

-W-
Wakayama, Japan 31, 33, 62
Wandering effect 247
Wave parameter 234
Well-log 1, 11
Westerly granite 8, 37, 116
Western Nagano earthquake, Japan

64, 65, 114
Whole seismogram envelope 219
Wigner 3-j symbol 214, 278
Wigner distribution 227
WWSSN seismograms 59

-Y-
YT2 well in Kyushu, Japan 12

-Z-
Zero-offset 26


