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Preface

“It came from nowhere, snapping giant ships in two. No one believed the
survivors . . . until now”
—New Scientist magazine cover, June 30, 2001

Rogue waves are the focus of this book. They are among the waves naturally ob-
served by people on the sea surface that represent an inseparable feature of the
Ocean. Rogue waves appear from nowhere, cause danger, and disappear at once.
They may occur on the surface of a relatively calm sea and not reach very high
amplitudes, but still be fatal for ships and crew due to their unexpectedness and
abnormal features. Seamen are known to be unsurpassed authors of exciting and
horrifying stories about the sea and sea waves. This could explain why, despite the
increasing number of documented cases, that sailors’ observations of “walls of wa-
ter” have been considered fictitious for a while.

These stories are now addressed again due to the amount of doubtless evidence
of the existence of the phenomenon, but still without sufficient information to en-
able interested researchers and engineers to completely understand it. The billows
appear suddenly, exceeding the surrounding waves by two times their size and
more, and obtaining many names: abnormal, exceptional, extreme, giant, huge, sud-
den, episodic, freak, monster, rogue, vicious, killer, mad- or rabid-dog waves, cape
rollers, holes in the sea, walls of water, three sisters, etc. Freak monsters, though
living only for seconds, were able to arouse the superstitious fear of the crew and
cause damage to the ship and death to heedless sailors. All these epithets are full of
human fear and frailty.

Serious studies of the phenomenon started about 20–30 years ago and have inten-
sified during the recent decade. The research is being conducted in different fields:
physics (search of physical mechanisms and adequate models of wave enhancement
and statistics), geoscience (determining the regions and weather conditions when
rogue waves are most probable), and ocean and coastal engineering (estimations of
the wave loads on fixed and drifting floating structures). Thus, scientists and en-
gineers specializing in different subject areas are involved in the solution of the
problem. Freak waves annually become the subject of special sessions at the Euro-
pean Geophysical Union Assembly (2001–2008); Ifremer (France) organized work-
shops “Rogue Waves” in Brest (2000, 2004, 2008) ‘Aha Huliko’ (a Hawaiian Winter
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vi Preface

Workshop in 2005) and a workshop held the same year by the International Centre
for Mathematical Sciences (Edinburgh) were also dedicated to this phenomenon.

We start this book with a brief introduction to the problem of freak waves, aiming
at formulating what is understood as rogue or freak waves, what consequences their
existence imply in our life, and why people are so worried about them.

Chapter 1 is devoted to observations and measurements of freak waves. After
some citations of personal descriptions of unexpectedly high waves, we proceed
to speak about available instrumental measurements of rogue waves that can allow
some quantitative analysis. In spite of recent success in developing the measuring
systems, there are difficulties and problems that embarrass the high wave registra-
tion and analysis; they will be also discussed in Chap. 1.

Two approaches to the rogue wave description (deterministic and statistical) are
discussed in Chap. 2, where some definitions and a mathematical toolkit are pro-
vided that are necessary for the following chapters. A brief survey of the physical
mechanisms that have been already suggested as possible explanations of the freak
wave phenomenon completes Chap. 2. They are:

• wave-current interaction
• geometrical (spatial) focusing
• focusing due to dispersion (spatio-temporal focusing)
• focusing due to modulational instability
• soliton collision
• atmosphetic action

This brief survey anticipates the detailed description given in Chaps. 3, 4, 5. We
have chosen to divide the rogue wave occurrence mechanisms into (i) quasilinear
ones (that usually are efficient in different geographical conditions with minor mod-
ifications, Chap. 3), (ii) nonlinear ones in water of infinite and finite depths (Chap. 4)
and (iii) nonlinear ones in shallow water (then the specific wave dispersion and in-
fluence of the bottom may play an important role, Chap. 5). The essential physics
of the processes of wave focusing by different mechanisms is generally well under-
stood but their occurrence in the ocean is poorly documented. That is why we start
Chaps. 3, 4, 5 with theory, modeling, and a description of the physical mechanisms
followed with available testimonies of manifestations of this physics in laboratory
tanks and nature.

In the Conclusion, we emphasize that most of the developed theories are applica-
ble to other physical phenomena starting from ocean waves of different nature (wind
waves, tsunamis, edge and Rossby waves) and ending with nonlinear optics (for in-
stance optical rogue waves in fibers) and astrophysical plasma processes. This is a
great implicit benefit of the freak-wave problem exploration, since rogue waves mo-
tivated significant development of nonlinear wave theories, including integrable sys-
tems and the study of instabilities, higher-order statistics, and rediscovering physical
effects in new applications, etc.

This book is designed for Master and PhD students, as well as researchers and
engineers in the fields of nonlinear waves, fluid mechanics, physical oceanography,
ocean and coastal engineering, and applied mathematics. In Chap. 2, the fundamen-
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tal basis and tools that are needed to understand and analyze the various mecha-
nisms generating the extreme wave events given in Chaps. 3, 4, 5 are presented. For
a deeper knowledge of some specific methods, the reader can refer to the bibliogra-
phy, which is well stocked with references.

Marseille, France Christian Kharif
Nizhny Novgorod, Russia Efim Pelinovsky
Nizhny Novgorod, Russia Alexey Slunyaev
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Introduction

In this section, the matter of the problem and general views are discussed. We high-
light the facts that made people realize that there was a problem, and discuss the
main questions surrounding the phenomenon of rogue waves.

“Our captain, who has 20 years on the job, said he never saw anything like it.”
— Susan Robison, Norwegian Cruise Line spokeswoman, New York Daily News, April 17,
2005

There are a number of well-documented cases of the occurrence of unexpectedly
large waves; some of them are described in Chap. 1, and other descriptions may
be found in references therein. It is well understood that the sea may be dangerous
for sailing. It is also generally recognized that the modern level of engineering is
high and can generally protect people from many disasters. But where does the
problem lie? People are accustomed to thinking that the construction and technical
equipment of modern ships can allow safe sailing everywhere on the ocean. This
confidence might be true if we had a full and realistic comprehension of all the
possible dynamics on the sea surface, but this is not true.

The first vital question arises about the possible maximum wave heights on the
sea surface generated by the wind. The wave height H is defined as the vertical
distance between the wave crest and the deepest trough preceding or following the
crest (see Fig. I.1, and (Massel 1996) for details).

Fig. I.1 A cross section of
a sea surface wave profile
propagating in X direction X

H– H+Hcr

H = max( H+ , H –)

L+L–

C. Kharif et al., Rogue Waves in the Ocean, Advances in Geophysical and Environmental 1
Mechanics and Mathematics, DOI 10.1007/978-3-540-88419-4 1,
c© Springer-Verlag Berlin Heidelberg 2009



2 Introduction

When Captain Dumont d’Urville, a French scientist and naval officer in com-
mand of an expedition in 1826, reported encountering waves up to 30 meters height,
he was openly ridiculed. Three of his colleagues supported his estimate but could
not help him to be believed. Apparently the largest reported wave in the open sea
reached a height of about 34 m (112 ft). The United States Ship (USS) Ramapo in
the North Pacific reported it in 1933 (Draper 1964, Dennis and Wolff 1996). Crew
members standing on the ship’s bridge could measure the height of a wave by lining
up its crest with the horizon and a point on the ship’s mast (making the line of sight
approximately horizontal) while the stern of the ship was at the bottom of a trough
(see Fig. I.2).

Until now, the largest reliable instrumentally measured waves have had heights
of 30 m; they were registered during the “Halloween Storm” in 1991 and Hurri-
cane Luis in 1995. Waves with heights a little bit more than 29 m were measured
under severe, but not exceptional, wind conditions in 2000 by a British oceano-
graphic research vessel near Rockall, west of Scotland (Holliday et al. 2006). Liu
and MacHutchon (2006) report higher waves, but they agree that some of them must
be errors in the gauge, thus making the results suspect.

Nowadays, observations and measurements of high waves from space have be-
come possible. A three-week registration of surface waves from the European satel-
lite ERS-2 revealed regions with high waves (see Fig. I.3) and detected a wave
of 29.8 m height. Bearing in mind that ships are often designed for 10–15 m wave
heights, it becomes obvious that the observed waves are real threats that may cause
damage and even the loss of ships (Faulkner 2001).

High waves are usually generated by storms and hurricanes; and rogue waves
are obviously also much more probable during severe weather (Guedes Soares
et al. 2004). Komar (2007) reports of a substantial increase in typical wave heights
during a season of tropical storms and hurricanes in the North Atlantic. The rate of
increase for one of the buoys used in the study is 5.4 cm per year, which has resulted
in 1.8 m growth for the period of 1975–2005. The most likely explanation for that it
is related to the progressive intensification of the hurricanes themselves.

Most of the casualties (about 60%) are related to operational causes (e.g., fire,
collision, machinery damage), while the remaining 40% are characterized by design
and maintenance causes (i.e., water ingress, hulls breaking into two pieces, and
capsizing). In the case of marine structures (such as oil and gas platforms), the
role of the design is even more important since a platform cannot tack, and meets

line crest up with horizon

bottom of trough

height
of wave

Fig. I.2 Observation of the highest reported wave by the crew members of the United States Ship
“Ramapo” (Dennis and Wolff 1996)
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Fig. I.3 Map showing maximum single wave heights (in meters) derived from three weeks of
ERS-2 SAR data acquired in August-September 1996. Reproduced from (Rosenthal et al. 2003)

a wave “as it is.” Practical designs always involve compromises between safety and
efficiency, and the goal is to account for expected events over the useful lifetime of
a ship or structure. The crucial question that should be answered when estimating
the danger is how often extreme events actually happen.

For example, the present Norwegian Petroleum Directorate’s regulations de-
scribe that loads in the ultimate limit state and the serviceability limit state controls
should be checked with an annual probability of 10−2 (once in 100 years). These
waves may hit the deck structure, but they should not cause damage; the platform
should be capable of full operation after an incident. The waves should not hit areas
where people can be hurt. Imposing restrictions for personnel in certain areas can
meet this last requirement. Loads in the accidental limit state control should meet an
annual probability rate of 10−4 (once in 10,000 years). The total safety of the plat-
form should not be jeopardized, personnel should have the possibility to be safely
evacuated, and no major pollution should occur. Localized damage during a severe
storm does not necessarily mean that a platform was poorly designed. Occasional
damage might be repaired at a lower cost than building and installing a platform
with a higher deck.

The current state of affairs, however, is obviously not acceptable. Casualties hap-
pen too frequently and are too dramatic. Hundreds of vessels sink and hundreds
of people perish annually (see Fig. I.4), although the situation has taken a turn for
the better over the last few years. The list of accidents related to the attacks of
huge waves contains many recent dates. Twenty-two (22) super carriers were lost or
severely damaged between 1969 and 1994 due to the occurrence of sudden rogue
waves; a total of 542 lives were lost as a result (Lawton 2001). About 650 incidents
are counted during the period from 1995 to 1999 due to bad weather, including total
losses of all propelled sea-going merchant ships in the world weighing 100 gross
tons or more (see Fig. I.5). Thirty-six percent (36%) of them foundered, 25% suf-
fered water ingress, 6% incurred evere hull damage, and 8% capsized as intact ships
(Toffoli et al. 2005).
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Fig. I.5 Distribution of shipping accidents from 1995–1999. (Toffoli et al. 2005, reproduced with
permission from Elsevier)
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Offshore platforms are also vulnerable to rogue waves. On 15 February 1982,
a giant wave smashed the windows and flooded the control room in a drilling rig
run by Mobil Oil on the Grand Banks of Newfoundland. Shortly afterwards the
rig capsized and sank, killing all 84 people on board (Lawton 2001). The famous
New Year Wave attacked the Draupner Jacket platform on 1 January 1995, with a
height close to 26 m while the typical surrounding waves were about 11–12 m and
the maximum expected wave height was estimated at about 20 meters (Karunakaran
et al. 1997, Trulsen and Dysthe 1997).

The number of accidents reported by the mass media is growing, and the problem
of huge sea waves has attracted many people’s attention. Striking photos of damage
collected in Fig. I.6 prove that those waves were really abnormal for the ship design
of the time. Recent accidents with large passenger carriers (Queen Elizabeth 2 in
1995, Caledonia Star and Bremen in 2001, and Explorer, Voyager, and Norwegian
Dawn in 2005) demonstrate the potential threat of rogue waves to normal people,
while casualties with a subsequent pollution of large coastal areas (Erika in 1999,
Prestige in 2002) show examples of indirect losses and the importance of safe navi-
gation on a global scale.

So, the importance of the safe use of ocean stationary and drifting structures
is obvious, as well as the message that current theoretical and engineering models
underestimate the occurrence of extreme sea waves.

Fig. I.6 Photos of damage caused by huge waves (from Olagnon (2000))
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Two different types of waves usually characterize the sea surface on a scale of a
few meters to a few hundred meters. They are associated with wind above waves:
wind waves and swells. Whereas the first refers to waves still under the influence
of the wind, the latter refers to waves that have already moved out of the generat-
ing area or are no longer affected by the wind. The relatively frequent occurrence
of freak wave events and the spreading of these accidents throughout the world’s
oceans (see Fig. I.7) allows us to believe that the freak wave phenomenon is related
to the dynamics of typical waves on the sea surface—i.e., generated by the wind and
more or less freely propagating.

The “wave age”1 may be characterized by the distance (fetch) over which the
wind blows over the sea surface. Various wave amplification mechanisms have
been suggested by different authors (see Belcher and Hunt 1993). Due to the grav-
ity force, the surface perturbations split into traveling waves. Qualitatively, the
fully developed waves (with a long fetch, which needs large areas) depend on the
wind speed only. According to dimensional analysis, the wave periods are then ex-
pressed as T ∼ Uw/g, where Uw is the wind speed and g = 9.8 m/s2 is the gravity
acceleration. Thus, the stronger the wind is, the longer the waves will be. The sur-
face waves have periods of several seconds in weak wind, 8–10 s in moderate wind,
and 20–30 s in very strong winds. Free gravity surface waves over the deep ocean
have a phase speed of Cph = gT/(2π) (see details in Chap. 2), and therefore the
wave lengths λ = CphT vary from several meters up to several hundred meters. In
comparison with wind seas, swells generally have longer periods and larger lengths.

Small-amplitude waves are almost sinusoidal, although large-amplitude waves
are not symmetric due to nonlinear bound wave corrections. Because of this effect

Fig. I.7 Global distribution of ship density (intensity of the gray color) and locations of accident
occurrences (hatched). (Monbaliu and Toffoli 2003, reproduced with permission)

1 More exactly, the wave age is defined as the ratio Cph/U10 or Cph/U∗ where Cph is the phase speed
of water wave components at the spectral peak frequency and U10 and U∗ are the wind velocity at
height 10 m above the mean level and friction velocity respectively.
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the crests become sharper, while troughs – smoother. Waves cannot be too high.
Due to nonlinearity they break. In the open sea (when water depth much exceeds
the wavelengths) the strength of nonlinearity is characterized by the wave steepness
s = KH/2, where H is the wave height already introduced, and K = 2π/λ is the
wavenumber. In most cases, a regular plane wave (i.e., a wave that has a permanent
profile in the crosswise direction) comes to the breaking onset when the steepness
has a value of about s≈ 0.4. Thus, a 30 m breaking wave has a length of about 250 m
and a period of about 12 s. These wave estimations look quite realistic.

The breaking phenomenon restricts the wave heights. Young waves are shorter
than old ones. For short-fetch situations, growing waves are inhibited by breaking
before they can grow very high. This view is supported by observations that typical
waves do indeed tend to break in developing seas while smaller-scale waves tend to
break in fully-developed seas. Rather large mean wave steepness is often reported
in areas of relatively low significant wave height.

On the whole, the global wave climate indicates that high-wave activities are
located at the highest/lowest latitudes (Fig. I.3). Ocean regions such as the North
Pacific and the North Atlantic, the North Sea, the Gulf of Alaska, and the Bering
Sea show the most severe sea states. However, the largest significant wave height
does not occur necessarily where the largest wave steepness occurs. High steepness
was reported close to the eastern coast of North America, the southern North Sea,
the Mediterranean Sea, and the eastern coast of Asia, where the significant wave
height was often lower than 3 m (Monbaliu and Toffoli 2003, Toffoli et al. 2005).

Relatively high waves are expected to be recorded during specific incidents. Tof-
foli et al. (2005) found, however, that rather low significant wave heights occurred
during certain ship accidents that were reported as being due to bad weather. Thus,
we are forced to come to the conclusion that wave height is not the only significant
injurious factor that gives waves rogue status.

Indeed, the wave impact upon marine structures may be determined by other
parameters, such as steepness, crest height (Hcr), and horizontal wave asymmetry
(difference in L+ and L−) (see Fig. I.1), etc. Different types of ships may suffer from
different wave parameters and conditions. Toffoli et al. (2005) note, for example,
that fishing vessels have mainly capsized while fishing or loading fish. This is an
important practical question that is not fully answered.

On the other hand, existing measurements and theories do not always allow a
very detailed description of the accidents. Thus, a simplified definition of a freak
wave becomes relevant. In this book, we employ the simple definition that a freak
wave exceeds at least twice the significant wave height:

AI > 2, where AI =
Hf r

Hs
. (I.1)

Here, Hf r is the height of the freak wave, and Hs is the significant wave height,
which is the average wave height among one third of the highest waves in a time
series (usually of length 10–30 min). In that way, the abnormality index (AI) is the
only parameter defining whether the wave is rogue or not.
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An alternative point of view exists that there are rogue waves that consist of
two populations: (i) “classical” extreme waves (that are described by conventional
physics, models and statistics) and (ii) “freak” extreme waves (that need new ap-
proaches and theories) (Haver 2005). This concept is based on probabilistic consid-
erations. In this book, we are more interested in physical mechanisms and statistics
of all kinds of extreme waves, thus we do not make such separation and consider all
terms listed in the Preface (rogue, freak, etc. waves) to be synonyms and applicable
to a wave if it agrees with condition (I.1). Doing a simple statistical analysis of the
Reference Lists of this book, one can easily see that the word “rogue” may be found
there most frequently, “freak” is less frequent, and “extreme” is at the bottom of this
popularity rating. This may support (in part) the title of the book, where the term
“rogue” is used instead of all others.

Hundreds of waves satisfying condition (I.1) have been recorded by now (see
Chap. 1), and several waves with an abnormality index larger than three (AI > 3)
are known. Theoretical predictions allow even higher rates of wave amplification.
This is seemingly confirmed by the results of Liu and MacHutchon (2006); they
hypothesize that “typical” rogue waves achieve amplification in the range of 2 <
AI < 4. Nevertheless, the variety of conditions when the waves were measured do
not allow for rigorous statistical study of these waves—they still remain exceptional
events.

There are a number of questions that arise and need to be answered—some of
them are given here and many are the titles of recent scientific articles:

– Are there different kinds of rogue waves?
– Are rogue waves beyond conventional predictions?
– Are new physics really necessary?
– Freak waves – rare realizations of a typical extreme wave population or typical

realizations of a rare extreme wave population?
– Are extreme waves the largest ever recorded?
– Were freak waves involved in the sinking of [this or that ship]?
– Are rogue waves a problem for structural design?
– Are there particular oceanographic conditions in which freak waves are more

probable?
– Do extreme waves appear in groups (the “Three (nine) Sisters” of mariners’

lore)?
– Can a “wall of water” be spotted enough in advance to allow time for safety

measures?
– Can one identify and track a group within which a rogue wave might suddenly

appear?
– Modeling a “rogue wave” – speculations or realistic possibility?
– What factors limit extreme wave heights?
– Can the Benjamin-Feir instability spawn a rogue wave?
– Rogue waves and wave breaking – how are these phenomena related?
– What effect does the wind produce on the kinematics and dynamics of rogue

waves?
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The purpose of this book is to show the progress that is being made in approach-
ing the answers in the list above as well as other questions, and to consider some new
questions that should be answered in the future. The main attention will be focused
on the physical mechanisms of rogue wave generation brought into correlation with
experiments and natural observations.

List of Notations

AI abnormality index
Cph phase velocity
g acceleration due to gravity
H wave height
Hcr wave crest height
Hf r height of the freak wave
Hs significant wave height
K wavenumber
S wave steepness
T wave period
Uw wind velocity
X coordinate along the wave propagation
λ Wavelength
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Chapter 1
Observation of Rogue Waves

There are a number of personal descriptions of unexpectedly high waves collected
in the literature by now. Some of them will be discussed hereafter. Besides the re-
ports, there also exist some dilettante photos of rogue waves; many of them may be
found on the Internet. Instrumental measurement is a more substantial kind of find-
ing evidence of freak waves. They are made by gauges of different types and may
be used for validating theories and models and for reproducing the events in labora-
tory experiments. The overwhelming majority of the available instrumental records
represent time series of the values of surface elevation (made by buoys or altimeter
gauges). Three-dimensional (3D) records (and especially their sequences) of sur-
face waves made by space or airborne synthetic-aperture radar (SAR) are recent
data containing the most complete information about the waves. The latter measure-
ments are not very well validated at present (retrieving sea surface elevation fields
from “imagettes”). At the same time, personal observations may be useful since they
contain qualitative information about the 3D wave structure and its dynamics. Some
of these descriptions—historical and recent testimonies—are collected in Sect. 1.1.
Section 1.2 is dedicated to the instrumental records of rogue waves: a survey of
available rogue wave records, techniques of wave measurements, and problems of
reliability of the high-wave measuring technique. Section 1.3 classifies the sea states
and shows their relation to rogue wave occurrence.

1.1 Historical Notes and Modern Testimonies

Personalities make history human. Our story is created by accidents. The freak wave
phenomenon could remain marine folklore if there were no crashes that shake peo-
ple’s minds. Notorious casualties attract attention to the existence of abnormally
huge waves, and evidence makes us believe the reports. A long but obviously in-
complete list of accidents starting from the time of Christopher Columbus has been
collected by Liu (2007). Many other descriptions are available in various publi-
cations (Mallory 1974, Torum and Gudmestad 1990, Haver and Andersen 2000,
Lawton 2001, Olagnon and Athanassoulis 2001, Kharif and Pelinovsky 2003) and
references therein. The stories are sometimes very similar, but frequently they show

C. Kharif et al., Rogue Waves in the Ocean, Advances in Geophysical and Environmental 11
Mechanics and Mathematics, DOI 10.1007/978-3-540-88419-4 2,
c© Springer-Verlag Berlin Heidelberg 2009
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distinctive differences and may be useful for the comprehension of the phenomenon.
We represent below some stories describing different kinds of rogue wave accidents.

The most striking cases of rogue waves correspond to strongly localized high
waves.

“Down the ways at Quincy, Mass, last week went the largest cargo vessel ever built in the
U.S., and the largest tanker in the world: the 45,130-ton World Glory, with a capacity of
16.5 million gals – enough to fill 2,062 railroad tank cars. . .”

This is the beginning of the history of the tanker “World Glory,” announced by
a newspaper in 1954 (Time 1954). Its end is not so enthusiastic. On June 13, 1968,
travelling along the South African coast under the Liberian flag, World Glory en-
countered a freak wave, which broke the tanker into two pieces and led to the death
of 22 crew members (Lavrenov 2003) (Fig. 1.1a). It happened in the Indian Ocean,
105 km east of Durban. As a result, about 14 million gallons of oil spilt into the
Ocean.

The tanker Prestige (42,000 gross tons, and about 250 m in length) went down
similarly off the Spanish coast in 2002 (Fig. 1.1b). Estimations of the amount of
spilt oil are different, but they are roughly about 20 million gallons. Some people
connected with the accident think that the damage that led to its sinking might have
been caused by a freak wave. Anyway, it is more or less obvious that the hull was
unable to bear the wave force. The Prestige was built more than 20 years after World
Glory. The vessel met all American Bureau of Shipping Rule structural requirements
and International Association of Classification Societies Rule hull girder strength
requirements. The vessel was properly loaded and had adequate hull strength for
the reported conditions at the time of the casualty (ABS 2003).

The number of accidents that occurred with wavelengths less than half the ship’s
length is small (Toffoli et al. 2005), so we could suppose that the damage in both
cases was probably caused by intense long waves causing unexpected nonuniform
loads on the hulls.

The cruise liner Queen Elizabeth II encountered a rogue wave in the North At-
lantic about 30 m height during a storm in 1995. The ship master referred to a par-
ticular episode where they had been looking at a wall of water from the bridge for
a couple of minutes before it hit the ship well above the waterline: “a great wall of
water – it looked as if we were going into the White Cliffs of Dover.” A similar de-
scription was given by one of the crew members of the Statoil floating rig Veslefrikk
B (it was hit the same year by a wave that resulted in significant damage) (Haver and
Andersen 2000). The first mate of the oil tanker Esso Languedoc described the wall
of water in the photo in Fig. 1.1c (see also Fig. 1.2b): “We were in a storm and the
tanker was running before the sea. This amazing wave came from the aft and broke
over the deck. I didn’t see it until it was alongside the vessel but it was special, much
bigger than the others.” (Lawton 2001).

Freak events represented by several successive very high waves in wave groups
are also well known. A collision of the naval ship Jeanne d’Arc with the Glorious
Three in 1963 was described in (Moreau et al. 2005).
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(a)

(b)

(c)

Fig. 1.1 Accidents with huge waves. (a) Sinking of World Glory tanker in 1968, the photo
is taken from (Liu 2007). (b) Sinking of tanker Prestige in 2002 (Lechuga 2006, Reproduced
with permission). (c) This picture was taken on the oil freighter Esso Languedoc outside the
coast of Durban by P. Lijour, South Africa 1980 (Reproduced from Dysthe et al. 2005). (d) The
map of the incidents off the Southeast coast of Africa, and the scheme of the collision of tanker
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(d)

(e)

Fig. 1.1 (continuned) Taganrogsky Zaliv with a rogue wave (Reproduced from Lavrenov 2003).
(e) A “diving” into a wave boat. The case looks similar to the descriptions of the accident
with the Taganrogsky Zaliv (Reproduced from Heavy Seas 2002). (f) Waves observed in 2006
near Kamchatka (Photo by M. Sokolovsky, http://www.kkclub.ru). (g) Waves and suddeen flood-
ing in Maracas Beach (Trinidad Island, the Antilles) in 2005; (see description in Didenkulova
et al. 2006). (h) A 2-s photo image sequence taken on the Dianna Island (Canada) (see description
in Palmer 2002)
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(f)

(g)

Fig. 1.1 (continued)
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(h)

Fig. 1.1 (continued)

“At about 09:47 a group of large breaking waves was sighted straight ahead, just beyond an
area of relative calm water (4–5 m wave height). The first wave heaved the ship; its height
was estimated about 15 m. During the interval of about 100 meters in-between the first and
the second wave the “Jeanne d’Arc” had time to return approximately to its waterline, but
she was soon heeled over to starboard by the second wave, until the heel angle reached
about 35◦. During clearance of those two waves, the freeboard deck and the quarterdeck
were submerged in turn, the sea covered the catwalks of the first deck, water reaching the
top of the bulkheads at the time of maximum heel. The third wave was cleared in similar
conditions, but with not as large amplitude motions, its height being slightly less than that
of the two first ones.”
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Two unexpectedly large successive waves shattered windows 28 m above the
waterline of the cruise liner Queen Elizabeth in 1943; two other waves capsized
the trawler Kotuku in 2006; and three large waves hit and threw the fishing boat
Starrigavan onto a jetty in 2007 (Lawton 2001, Liu 2007).

Splitting ocean surface waves into groups is a natural process, which will be dis-
cussed later in Chap. 4, and the central individual waves within a group are more
energetic. In the past, seamen of different nationalities mention monstrous wave
groups. It is interesting to note that the number of individual waves that suppos-
edly forms a rogue wave packet is different: three sisters or the ninth billow. Surfers
sometimes wait for the largest, or seventh, wave. Lehner (2005) notes that succes-
sive large single-wave crests or deep troughs can cause severe damage due to their
impact, or may excite the resonant frequencies of the structures.

The Soviet refrigerator tanker Taganrogsky Zaliv was subjected to an abnormal
wave, a hole in the sea, in 1985 (see Fig. 1.1d,e) (Lavrenov 2003).

“Wave height did not exceed 5 m and the length was 40–45 m. The speed of the ship was
diminished to a minimum in order to make a safer control of the ship’s movement. The ship
rode well on the waves. The fore and main deck were not flooded with water. At one o’clock
the front part of the ship suddenly dipped, and the crest of a very large wave appeared close
to the foredeck. It was 5–6 m higher over the foredeck. The wave crest fell down on the
ship. One of the seamen was killed and washed overboard. Nobody was able to foresee the
appearance of such a wave. When the ship went down, riding on the wave, and its frontal
part was stuck into water, nobody felt the wave’s impact. The wave easily rolled over the
foredeck, covering it with more than two meters of water. The length of the wave crest was
not more than 20 m.”

Very similar descriptions are related to accidents with the cruiser Birmingham
in 1944 and some other vessels (Haver and Andersen 2000). They report sighting a
long trough followed by a steep crest, or a “hole” in the sea. There is a viewpoint that
a hole in the sea is more dangerous for a boat than a crest, since it is less noticeable
among the sea waves than huge crests, and the shipmaster cannot change course and
prepare the ship in advance.

The NOAA’s 56-foot research vessel Ballena capsized in an individual rogue
wave south of Point Arguello, California in 2000. The weather was good, with clear
skies and glassy swells (1.5–2 m). At approximately 11:30, the crew observed a
4.5 m swell begining to break about 30 m from the vessel. The wave crested and
broke above the vessel, caught the Ballena broadside, and quickly overturned it
(Kharif and Pelinovsky 2003).

Russian kayakers were lucky to observe and make photos of strange waves 25 km
from Cape Olga, Kronotsky Peninsula, about 1–1.5 km offshore (Fig. 1.1f). They re-
ported that the weather was calm with only very long gently sloping surge waves
coming from the open ocean every 15–20 s. About 10 strange waves were observed
in the same area with irregular lengths. Freak waves arose, propagated, and col-
lapsed during tens of seconds and ran for about 50 m within this time. Wave heights
were about 2–4 m, and typically their length along the front was about 70 m. The
first photo in Fig. 1.1f is quite challenging, although the second one (taken from
another aspect) looks more ordinary.
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These descriptions are in some sense similar to the first kind of observations
(i.e., strongly localized high waves), but the reports emphasize individual waves that
propagate for some distance and are actually not surrounded by other considerable
waves. They seem to be of a solitary wave variety (see Chap. 5) and are singled out
for a particular case.

Extreme coastal wave phenomena similar to the ocean rogue waves have been
noted recently. Typically, such accidents are described as a sudden brief coastal
flooding or as huge waves rushing coastal structures (raised embankment or break-
waters). Two events are given in Fig. 1.1g and h; other descriptions may be found
in Kurkin and Pelinovsky 2004 and Didenkulova et al. 2006. These waves have not
been related with tsunamis; although it is more difficult to ascertain whether they
are not caused by storm surges (this reason may likely cause the waves in Fig. 1.1g).
A very high (25 m) wave splash presented in Fig. 1.1h occurred suddenly and was
absolutely unexpected by the students (who made the photos) after they had spent
about 45 min observing swell waves that followed a severe storm that had happened
one day before.

This is a relative classification (see also Rosenthal 2005) that can be argued but
cannot be finalized until all physical effects are revealed and freak wave impact is
described and estimated. Some wave types are illustrated in Fig. 1.2. Different wave
shapes may require different physical effects and mathematical models of different
complexity to describe them. Some observers report about lifetimes of rogue events
that amount to a few minutes or less.

It was already pointed out that wave height, in addition to its shape and sur-
rounding waves may define the strength of wave impact. Unusual wavelength or
small crest length (like in Fig. 1.2a) may lead to an inadmissible load distribution
that may damage the hull. The most striking examples of rogue waves in the re-
cent literature are unusually asymmetrical with high crests compared to the depth
of their troughs. Presumably enormous huge-wave impacts have been already reg-
istered (Peregrine et al. 2005). Ships usually travel perpendicular to the crests with
low forward speed. A particular traveling direction of a wave group results in com-
plicated wave motion that makes the ship list and makes it difficult to safely over-
pass the waves. Steep waves (like in Fig. 1.2c) may yield dangerous dynamic effects
due to ship motion (slamming), even though the significant wave height is not par-
ticularly large. A breaking rogue wave could potentially cause more damage than a
nonbreaking wave of the same dimension. These points should be taken into account
when studying the wave impact and designing a safe construction.

Due to the relatively large number of registered collisions of ships with abnormal
waves, a statistical analysis of the events was performed by Toffoli et al. (2005) on
the basis of 270 documented accidents selected among a total of 650 that occurred
over about four years and collected by the Lloyd’s Marine Information Service.
Toffoli et al. (2005) emphasized that accidents occurred often in the presence of
crossing seas: wind waves and swell. They claim that any significant correlation be-
tween the main surface wave parameters and ship weight were not found, although
more than 90% of the incidents occurred in water depths of more than 50 m. It is
suggested that different kinds of ships should be subjected to different freak-wave
warning criteria.
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Fig. 1.2 Rogue waves: (a)
pyramidal wave off south
Japan; (b) walls of water;
(c) a very steep breaking
wave crest. Reproduced
from (Faulkner 2001) by
permission of Ifremer, and
Olagnon 2000

(b)

(a)

(c)
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Observations represented in stories and even photos are insufficient for the
weighty study of the rogue wave phenomenon. The suddenness of these waves re-
sults in lack of photographic evidence and sometimes confusing testimonies. Instru-
mental registrations provide data for quantitative analysis and careful research of
physical effects underlining the occurrence of freak waves.

1.2 Instrumental Registrations and Related Problems

The history of sea elevation measurements near shore begins quite a long time ago.
The first tide gauge started its record in 1806 at Brest (France). At first, these records
had to track the tides, which are very important for the normal functioning of ports.
Therefore, the first series were not frequently retrieved, and were not very accurate
due to equipment imperfection. Shorter time scales could be measured later: tsunami
waves, long sea waves. The waves in the open sea have been measured from ships
with acceptable accuracy since the fifties of the XXth century, and regular research
started in the sixties (see Pugh 1987, Rabinovich 1993). Nowadays, the sea-wave
elevation may be measured by deployed recorders of different types, ship-, air- and
spaceborne radars. The equipment is continuously being improved; new techniques
perfect the instrumental observations. People obtain continuous measurements of
wind-induced sea waves with the help of moored buoys and altimeters installed
on platforms; these measurements represent the most useful information regarding
freak-wave events.

1.2.1 Keystones of the Rogue Wave Measurements

A rogue wave is a rare event, and may be recorded only if long-time regular mea-
surements are conducted. That is why the measurements performed from station-
ary offshore platforms and buoys are of utmost interest. At present, the number of
registered freak waves is in the hundreds. Figure 1.3 shows the areas where they
were continuously measured for years. All of them satisfy condition (I.1) intro-
duced previously, although sometimes other extra conditions (such as the thresh-
old wave height that should be exceeded by the wave) defining the freak event are
applied.

A rogue period does not stand out in typical wave periods; such a wave has
a period of about 10 s; the rogue event is often also quite momentary (not longer
than a few minutes). This fact requires rather high frequency of data acquisition (in
contrast to, for instance, tidal or tsunami wave recordings). It is inconsistent with
the long-term character of the measurements, in the sense that the recorded data be-
comes enormous. Sampling with a frequency of 5 Hz represents a reasonably good
resolution of the wave shape. For more than 50 thousand hours of the measurements
reported in Liu and MacHutchon 2006, this results in about 109 single measure-
ments. Usually data is represented by a number of 10–30 min time series. These



1.2 Instrumental Registrations and Related Problems 21

Fig. 1.3 Some instrumental registrations of freak waves (ordered by the number of reported freak
waves). 1) Offshore from Mossel Bay (1563 events, 100 m depth, gas-drilling platform) (Liu and
MacHutchon 2006). 2) The Baltic Sea (414 events, 7–20 m depth, buoys) (Paprota et al. 2003).
3) Campos Basin near Rio de Janeiro (276 events, 1050 m and 1250 m depth, buoys) (Pinho
et al. 2004). 4) Off the eastern coast of Taiwan (175 events, 43 m depth, buoys) (Chien et al. 2002).
5) The North Sea (at least 107 events, 126 m and 85 m depth, platforms) (Stansell 2004, 2005,
Haver and Andersen 2000). 6) Sea of Japan (14 events, 43 m depth, ultrasonic submerged gauges)
(Mori et al. 2002). 7) The Black Sea (3 events, 85 m depth, buoy) (Lopatoukhin et al. 2003,
Divinsky et al. 2004)

measurements may be retrieved with some intervals (say, once an hour) if a certain
condition is satisfied (a storm or high significant wave height) or may be used for
processing other parameters that may be employed for the statistical study (signifi-
cant and maximum wave height, wave period, etc.) and discarded afterwards. This
management decreases the data volume necessary to be stored by the device.

A rogue wave is an extreme wave that needs an accurate and precise method of
measurement. Different ways of detecting the surface elevation height are in use.
They employ the reflection of an optical ray or acoustic signal by the air-sea bound-
ary and acceleration of floatable buoys. Pressure-wave gauges may register long
waves. The first type of difficulty lies in the principle of the definition of the sur-
face elevation. The reflection of sonic or electromagnetic waves may not occur at
the very air-sea boundary due to the presence of foam or bubbles that is typical in
severe conditions. A buoy possesses an intrinsic moment of inertia that distorts the
measurements. Jointly with the low frequency of acquisition and poor calibration,
these problems may make records difficult to use in further research and unreliable.

Forristall (2005) claims that there are well-documented cases in which carefully
calibrated wave recorders on the same platform give very different readings. This
may result, for instance, in device errors or malfunctions, electronic noise, or in-
terference from the structure that supports the wave sensor. Next, an error in one
point of the time series may reduce the crest height to a plausible level or in-
crease it up to an unbelievable value, if the data acquisition is not frequent. Liu and
MacHutchon 2006 report huge waves, exceeding 4–10 times the significant height.
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Some of the registrations may be easily rejected as spikes, but some of them can-
not, since there is no provision as to how high the ratio of AI can be. In the case of
buoy measurements, the actual crest height is usually underestimated (Olagnon and
Magnusson 2004, Bitner-Gregersen and Magnusson 2005). Another problem is in
distinguishing a very large wave from noise, which may be electronic or the result
of interference from the structure that supports the wave sensor. These actual prob-
lems sometimes cast doubt on wave records and may modify results of theoretical
comprehension.

1.2.2 Time-Series with Rogue Wave Occurrence

By now, thousands of measured rogue waves have been reported in the literature
(see Fig. 1.3). They are the results of multiple-year measurements of surface waves.
These registrations are not uninterrupted, done in different areas of the World Ocean
(deep and shallow water, with and without currents), under different conditions
(some registrations were performed only during storms or high significant wave
heights),and by different devices. Some details are given in the figure captions or
can be found in the given references. We do not discuss the measurements by Liu
and MacHutchon (2006) here, since some of them are definitively just spikes.

Figure 1.4a shows a rogue wave captured in the North Sea with a record value
of abnormality index, AI = 3.19, defined as the ratio of extreme wave to significant
wave height. The famous “New Year Wave” measured on the 1st of January 1995 is
shown in Fig. 1.4b. It has a very large height (about 26 m, while the amplification is
more moderate: AI = 2.24). Haver (2005) points out that the height, however, does
not exceed the so-called 100-year height, while the measured crest with height about
Hcr = 18.5 m corresponds to the annual probability 10−4 (once in 10 000 years).

A “hole in the sea” is shown in Fig. 1.4c. Although its height is not very large,
the amplification is exceptional (AI = 2.46). The huge wave of depression seems to
be a less frequent kind of rogue wave. The intense waves are asymmetric so that
the crests are typically larger than the neighbouring troughs (see Chap. 4). This can
explain the prevalence of rogue crests in the amount of rogue events. Also, the time
series are retrieved at one spatial point; if the lifetime of the freak event is larger
than the wave period, a huge single crest should arise somewhere on the front or
back of the wave.

The time series are being retrieved at one point, where the sensor is installed.
When the rogue wave (or the sequence of rogue waves) is well localized in space, it
will pass the registration point fast, and only one or few wave oscillations with huge
amplitude will be recorded. On the other hand, the phase velocity of free waves over
deep water is twice as large as the group velocity. As a result, the time series of a
wave group consists of two times more individual waves than the group’s snapshot.

Only a single huge wave is reported in the majority of registered rogue events.
This should prove strong localization of the wave energy in space in one or a very
small number of individual waves. Nevertheless “rogue groups” are also known; one
example is given in Fig. 1.4d. The rogue group consists of several huge individual
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waves, each of which satisfies the rogue wave condition (I.1). These wave groups
satisfy the nonlinear self-modulation condition (see Chap. 4) and may show different
dynamics in comparison to individual freak waves, and perhaps be the consequence
of another generating mechanism.

The maximum known measured wave height amplification among the data rep-
resented in Fig. 1.3 was achieved by waves measured in the Black Sea (Divinsky
et al. 2004): AI = 3.9 (see Fig. 1.4e). The peak measurement is represented by a sin-
gle point, which makes the record suspicious, but at least two other similar records
exist from this buoy that show other rogue waves with somewhat less (but still large)
heights that exceed significant waves. Waves presented in Fig. 1.4a–d have high res-
olution, and these waves are beyond any doubt.

The brief overview of known rogue wave measurements documents the existence
of individual rogue crests and troughs as well as groups. Are they “pyramidal” waves
or “walls of water?” This question cannot be answered on the basis of the measure-
ments of the surface elevation in one point. The transversal effects are omitted due
to the lack of single-point measurements, although it is well known that geomet-

(a)

Fig. 1.4 Measured freak-wave time series. (a) A huge single crest (the North Sea, platform, 126 m
depth, AI = 3.19, Hf r = 18.04 m) (Stansell 2005, reproduced with permission from Elsevier). (b)
The “New Year Wave” (the North Sea, platform, 85 m depth, AI = 2.24, Hf r = 26 m). The data
is granted by S. Haver. (c) A hole in the sea (the North Sea, platform, 126 m depth, AI = 2.46,
Hf r = 9.3 m) (Stansell 2005, reproduced with permission from Elsevier). (d) A freak group (the
North Sea, platform, 126 m depth, AI = 2.23, Hf r = 13.71 m). (e) A huge single crest (the Black
Sea, buoy, 85 m depth, AI = 3.91, Hf r = 10.32 m)
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rical effects may play a very important role in the process of wave focusing (see
Chap. 3) and significantly enhance these effects. Registrations of the 3D surface
field are requested—as are their sequences—to be able to reconstruct and under-
stand the fully dimensional surface wave dynamics. The promising approach that
now is applied and developed uses synthetic-aperture radar (SAR) measurements.
This technique is not recent, but needs much improvement to be able to resolve wave
shapes with good accuracy (see some criticism in Dysthe et al. 2008).

1.2.3 SAR Registrations of Rogue Waves

Extreme wave events, such as rogue waves, can be detected from satellite imagery.
Satellite images of the sea surface topography—including the New Year Wave on
January 1, 1995—showed several extreme wave events in a 100 km × 100 km
spatial domain. New spatial radar measurements (Lehner 2005, Rosenthal 2005)
have been developed that allow the observation of rogue waves on a global scale.
The spaceborne synthetic aperture radar, which is a high-resolution imaging sys-
tem, provides images covering large areas of the sea surface, of quality sufficient
to extract measurement of water waves. Spaceborne SARs on polar orbiting satel-
lites, at approximately 800 km altitude, scan a swath of 100 km with a resolution
of 20 m× 20 m at an incidence angle of 20–25◦ (for more details see the book by
Komen et al. 1994). The physical phenomenon upon which this system is based is
Bragg scattering—i.e., the resonant interaction of the incident microwaves emitted
by the radar with short t. The backscattered energy is proportional to the spectral
density of the short backscattering Bragg waves that depend on interactions with
the long waves (Wright 1968, Valenzuela 1978, Hasselman et al. 1990). The ampli-
tude (or energy) of the Bragg ocean waves riding on the long waves is modulated.
This modulation, which is measured by SAR, allows (finally) the detection of ocean
gravity waves such as rogue waves. To sum up, the long waves that modulate the
short waves (Bragg waves), or their aspect, with respect to the radar will be imaged.

To obtain the two-dimensional wavenumber spectra of the surface elevation
and individual sea surface topography, it is necessary to invert the radar images.
Lehner (2005) investigated the behavior of single water waves, extreme waves, and
wave groups by inverting SAR images into sea-surface elevations. In Fig. 1.5, there
is a 5 km × 10 km normalized ERS-2 wave mode imagette acquired at 48.45◦ S,
10.33◦ E on August 27, 1996, 22:44 UTC, and the corresponding retrieved sea-
surface elevation field that displays a wave of height close to 30 m.

1.3 Sea States

We have already discussed the evidence of rogue waves as an observer sees them.
They are very rare events local in time (scale of seconds or few minutes) and space
(scale of several wavelengths – hundreds of meters). It is quite difficult to foresee
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Fig. 1.5 A normalized ERS-2 wave mode imagette (a), the retrieved sea-surface elevation field (b),
and the vertical transect of the retrieved ocean wave in range direction (c) as indicated in section
(b) (Reproduced from Lehner 2005)
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phenomena of such small scale—first, due to the difference between the scales of
the forcing processes (winds, atmosphere fronts, storms, currents, and geostrophic
vortices) and the surface waves; and second, due to the variety and complexity of
the physical effects accompanying the wave dynamics. Meteorologists usually work
with average parameters of the sea that represent the sea state. Significant wave
height, peak period, and main wave direction are sufficient to describe sea states
for the most practical purposes. It is a vital problem to manage linking the sea state
characteristics with the degree of danger for navigation and sea use.

Today, this problem seems to be quite far from a solution. Lack of data and com-
plexity of the processes prevent straightforward progress in relating the sea states
and probability of rogue wave occurrence. It is more likely to reveal these depen-
dencies on the basis of simplified models and purified conditions. Researchers fill
up the lack of natural data with numerical simulation. We will consider some theo-
retical aspects in Chap. 2 and the results of investigations with the help of numerical
modeling in Chaps. 4 and 5. Nevertheless, in this section we discuss some recent
achievements in this problem due to natural data processing and analysis of the
databases of the accidents.

Considering the rogue wave problem, it is first important to find the key param-
eters of the sea state out of the more than 100 parameters that could effectively
indicate a high risk of freak waves. Many parameters are defined through the wave
spectrum that will be introduced in Chap. 2. Toffoli et al. (2005) sought a correlation
between ship accidents and different characteristics of sea states, such as significant
wave height, mean wave period, wave steepness, and directional spread, as well as
correlations between these parameters during the accidents. They report that surpris-
ingly rather low sea states occurred during the ship accidents, while the wave pa-
rameters could reach relatively high values. This contradicts frequent conventional
expectations of rogue events during significant storms. More than 50% of the inci-
dents took place in sea states characterized by significant steepness s > 0.1 (where
s = K Hs/2), although this value is not very high. They also note that relatively high
values of the steepness were observed during moderate wave heights. About one
half of the accident happened in crossing seas (when the wind sea and the swell
directions are quite different). The higher probability of meeting a rogue wave in a
crossing sea is evidently confirmed by natural data analysis in Pinho et al. 2004.

In many cases, classical parameters are unable to robustly analyze the danger of
the sea state (for instance, Olagnon and Magnusson 2004, Toffoli et al. 2005) and
their development in time may play an important role in forecasting. On the other
hand, Bitner-Gregersen and Magnusson (2005) report that extreme events appear
at different times in the storm histories—before, at, and after the significant wave
height culmination. Another problem is that some sea-state parameters indicate well
the presence of a rogue wave, but reach typical values just when the rogue signal
disappears (or when it is just removed from the time series of the surface elevation)
(Olagnon and Magnusson 2004); characteristics of this kind cannot play the role of
predictors either.

The fetch that characterizes the wave development is one of the most signifi-
cant parameters of the sea state. Figure 1.3 shows that on a global scale, maximum
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waves usually appear in vast areas. Lehner (2005) reports that the highest waves are
observed when they are focused in a current, or generated in a moving fetch situa-
tion, in which the strongest wind field travels with the group velocity of the waves.
Ship accidents caused by extreme waves happened mainly in crossing seas or under
fast-changing weather conditions. Melville et al. (2005) claim that large waves can
“pop up out of nowhere,” even at small fetches (25 km); they may cause a danger to
smaller vessels. Other wave parameters have been considered as candidates able to
foresee the rogue wave occurrence, as it will be discussed in Chaps. 4 and 5. This
search is still in progress.

Too few data sets including rogue events have been recorded, making it diffi-
cult to develop satisfactory models for the understanding and prediction of these
waves. The investigations briefly collected above prove the complexity and diffi-
culty of this problem. We are still far from being able to foresee a high probability
of a rogue wave event on the basis of meteorological data. New long-term accurate
measurements should be preformed to relate the sea conditions with rogue wave
occurrence probability.

List of Notations

AI abnormality index
Hcr wave crest height
Hf r height of the freak wave
Hs significant wave height
K wavenumber
s wave steepness
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Chapter 2
Deterministic and Statistical Approaches
for Studying Rogue Waves

Depending on the objective in mind, two main approaches can be used for the water
wave description, based on deterministic or statistical methods. Deterministic equa-
tions are very useful and powerful in understanding and describing the underlying
physics of water waves; namely, they may be used in practice to estimate in detail
wave impact upon structures and ships. Statistical equations are usually used to es-
timate typical wave motion and probability of this or that wave situation. When the
sea surface elevation is such a complicated function of space and time, a statisti-
cal description is easier than a detailed description, but still may provide sufficient
information about the waves.

In this chapter, we introduce first the basic equations governing the dynamics of
water waves. The scales of the wavelength considered are long enough to neglect
surface tension. Hence, the waves are called gravity waves since their main restor-
ing force is gravity. Within the framework of water waves, we discuss and justify
the different assumptions used to derive from the most complete system, the Navier-
Stokes equations—a simplified set of equations describing realistic wave dynamics.
In this way, the assumptions of incompressible and perfect fluid and irrotational
motion are introduced successively to derive the simplified model. The simplified
equations fall within the scope of the potential theory. Nevertheless, some of these
assumptions may become questionable—for instance,, in shallow water where bot-
tom friction can be important. Near the bottom a boundary layer of thickness of
O(2ν/Ω) develops, where ν and Ω are the molecular viscosity and the free surface
wave frequency. So, for swells of 10 s, the boundary layer thickness is 0.17 cm with
ν = 0.01 cm2 s−1. The role of molecular viscosity in the formation of rogue waves
can be considered as negligible. For turbulent boundary layers, the turbulent viscos-
ity is much larger than the molecular viscosity ν and bottom friction may influence
rogue wave dynamics. This aspect is discussed in Sect. 4.1.2. In the presence of
breaking waves, the motion cannot be considered as irrotational and the dissipation
of the waves is mainly due to turbulence (and not to molecular viscosity). Sec-
tion 2.3 introduces concepts that will be used in subsequent chapters. Therefore,
we focus attention on various physical mechanisms that contribute to the formation
of extreme water wave events. Despite the complexity of the sea surface, we are
aimed at describing quite simple realistic models that capture the essential features
of rogue-wave phenomena.

C. Kharif et al., Rogue Waves in the Ocean, Advances in Geophysical and Environmental 33
Mechanics and Mathematics, DOI 10.1007/978-3-540-88419-4 3,
c© Springer-Verlag Berlin Heidelberg 2009
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2.1 Deterministic Equations

2.1.1 Mass and Momentum Conservation Equations

An Eulerian description of the fluid motion is adopted. The motion is described by
the velocity field U = (U,V,W )t as a function of time T , horizontal coordinates
(X ,Y ) and vertical coordinate Z. The illustration of the problem geometry is pro-
vided in Fig. 2.1. The unperturbed surface coincides with the plane OXY at Z = 0,
and the horizontal bed is situated at Z = −D. Typically, the waves are supposedly
propagating along the OX direction.

The mass conservation or continuity equation is

∂ρ
∂T

+∇ · (ρU) = 0, (2.1)

or
Dρ
DT

+ρ∇ ·U = 0, (2.2)

where ρ is the water density, ∇· is the divergence operator, and D / DT is the material
derivative given by

D
DT

=
∂
∂T

+(U ·∇) , (2.3)

∇ = (∂/∂X ,∂/∂Y,∂/∂Z)t is the gradient operator and (•)t indicates
transposition.

X

Z

Y

– D

O

g

Fig. 2.1 Configuration of the problem
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The incompressibility condition of water reads Dρ/DT = 0, hence from the con-
tinuity equation we have

∇ ·U = 0. (2.4)

The momentum-conservation equation, based on Newton’s second law, reduces
to the Navier-Stokes equation when considering water as an incompressible Newto-
nian fluid. The vector form of this equation is

ρ
DU
DT

= −∇P+ρF+μΔU (2.5)

where P is the pressure, μ is the dynamic viscosity of the fluid, and Δ is the Lapla-
cian operator Δ = ∇ ·∇. The first and last terms on the Right Hand Side (RHS) of
this equation correspond to pressure forces and viscous forces, respectively, while
F is the body force due to the gravitational acceleration: F = g.

The corresponding X–, Y – and Z– momentum equations are given by

ρ
DU
DT

= − ∂P
∂X

+ρFX +μΔU, (2.6)

ρ
DV
DT

= −∂P
∂Y

+ρFY +μΔV, (2.7)

ρ
DW
DT

= −∂P
∂Z

+ρFZ +μΔW, (2.8)

where FX , FY and FZ are the components of the body forces F experienced by the
fluid. Hence Eq. (2.5) is rewritten as follows:

DU
DT

= − 1
ρ
∇P+g+νΔU, (2.9)

where ν = μ/ρ is the kinematic viscosity.
Equation (2.9) may be written as follows:

∂U
∂T

+
1
2
∇
(
U2)= U×ω− 1

ρ
∇P+g+νΔU, (2.10)

where ω = ∇×U is the vorticity. The operator ∇× is the curl operator. By taking
the curl of Eq. (2.9) and using Eq. (2.4), we obtain the vorticity equation

Dω
DT

= (ω ·∇)U+νΔω. (2.11)

For 3D motions, the nonlinear term on the RHS of Eq. (2.11) is responsible for
the vortex stretching and tilting while the linear term corresponds to the diffusion of
vorticity due to viscosity.

Generally, water is considered as a weakly viscous fluid. In the vicinity of free
surfaces and solid boundaries (the sea bottom), the thickness of the vortical layer is

O(ν 1/2). Hence, it will be assumed that the vortical part of the flow is confined to
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a thin boundary layer of thickness that is small compared to the other scales of the
problem, so viscous effects are dropped from the equations.

We can consider that water waves have been generated from a fluid that was ini-
tially at rest—that is, from an irrotational motion. When the fluid is incompressible
and inviscid, and external forces derive from a potential, the Kelvin-Lagrange the-
orem states that the motion remains irrotational. Hence, |ω| = 0 and the velocity U
derives from a potential φ(X ,Y,Z,T ) such that

U = ∇φ . (2.12)

Under the hypotheses of irrotational motion and inviscid fluid, Eqs. (2.4) and
(2.10) become, respectively

Δφ = 0 (2.13)

and
∂U
∂T

+
1
2
∇
(
U2)= − 1

ρ
∇P+g. (2.14)

Substituting ∇φ for U in Eq. (2.14) gives

∇
(
∂φ
∂T

+
1
2
∇φ ·∇φ +

P
ρ

)
−g = 0 (2.15)

Noting that g = (0,0,−g)t so that g = ∇(−gZ), the previous equation takes the
following form

∇
(
∂φ
∂T

+
1
2
∇φ ·∇φ +

P
ρ

+gZ

)
= 0. (2.16)

Integration with respect to space variables yields the Bernoulli equation

∂φ
∂T

+
1
2
∇φ ·∇φ +

P
ρ

+gZ = C (T ) . (2.17)

The time dependent function C(T ) can be incorporated into the potential φ by
the following transformation

φ → φ +
T∫

0

C (ξ )dξ . (2.18)

Thus, Eq. (2.17) is rewritten as follows:

∂φ
∂T

+
1
2
∇φ ·∇φ +

P
ρ

+gZ = 0. (2.19)

To solve the Laplace equation (2.13), conditions on boundaries are needed.
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2.1.2 Boundary Conditions

The fluid domain that is considered is bounded by two kinds of boundaries: the
interface, which separates the air from the water; and the wetted surface of an im-
penetrable solid (the sea bottom, for instance). The air-sea interface is assumed to
be a free surface whose equation is given by

S (X ,Y,Z,T ) = 0. (2.20)

The kinematic boundary condition states that the normal velocity of the surface
is equal to the normal velocity of the fluid at the surface. The normal velocity of the
surface is

Vn = − 1
|∇S|

∂S
∂T

, (2.21)

and the normal velocity of the fluid is

Un = n ·U. (2.22)

where n = ∇S/|∇S| is the unit vector normal to the surface.
The mathematical expression of the kinematic boundary condition is therefore

Vn = Un. (2.23)

Hence,
∂S
∂T

+U ·∇S = 0, (2.24)

DS
DT

= 0. (2.25)

Equation (2.25) means that a fluid particle located on the free surface will remain
on it.

An alternative form of the surface equation is

S (X ,Y,Z,T ) = η (X ,Y,T )−Z = 0, (2.26)

where η(X ,Y,T ) represents the free surface elevation measured from Z = 0. Thus,
Eq. (2.25) takes the form

∂η
∂T

+U
∂η
∂X

+V
∂η
∂Y

−W = 0 on Z = η (2.27)

or, equivalently

∂η
∂T

+
∂φ
∂X

∂η
∂X

+
∂φ
∂Y

∂η
∂Y

− ∂φ
∂Z

= 0 on Z = η . (2.28)

Equations (2.23), (2.25) and (2.28) correspond to different forms of the kinematic
boundary condition.
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Since η and φ are both unknown on the free surface, a second boundary condi-
tion is needed: the dynamic boundary condition. This condition is derived from the
Bernoulli equation (2.19). When surface tension is neglected, the pressure P in the
fluid on the free surface is equal to the atmospheric pressure Pa. Hence, the Bernoulli
equation (2.19) on the free surface takes the form

∂φ
∂T

+
1
2
∇φ ·∇φ +

Pa

ρ
+gZ = 0 on Z = η . (2.29)

The atmospheric pressure Pa is chosen as reference and we can set Pa equal to
zero without loss of generality. Hence,

∂φ
∂T

+
1
2
∇φ ·∇φ +gZ = 0 on Z = η . (2.30)

For the rigid boundary, we have S(X ,Y,Z) = Z+D(X ,Y ) = 0, thus Z =−D(X ,Y )
is the equation of the sea bottom and Eq. (2.28) takes the form

∂φ
∂X

∂D
∂X

+
∂φ
∂Y

∂D
∂Y

+
∂φ
∂Z

= 0 on Z = −D(X ,Y ) . (2.31)

Although the Laplace equation is a linear partial differential equation, the dif-
ficulty in solving water wave problems arises from the nonlinearity of kinematic
and dynamic boundary conditions. Furthermore, these equations apply on a surface
that is unknown a priori. To summarize, the water wave problem reduces to solve
the system of equations consisting of the Laplace equation (2.13), kinematic bound-
ary condition (2.28), dynamic boundary condition (2.30) and sea bottom condition
(2.31), with initial and boundary values for φ and η .

2.1.3 Linearization: Equations for Small Amplitude Waves

As emphasized in the previous section, we need values of the partial derivatives of
the potential φ on a surface η that is unknown a priori. To solve the water wave
equations, a free surface known a priori will be introduced through the linearization
of the problem, which corresponds to an approximation of the nonlinear problem.

The nonlinearity of Eq. (2.30) is due to the presence of the convective term of
the momentum equation, namely (U ·∇)U. Let us consider the simple example of
a two-dimensional (2D) fluid motion. For waves propagating along the X direction,
we consider the X–momentum equation and thus the corresponding nonlinear term
is U∂U/∂X +V∂U/∂Y. Let us compare the first term to the linear term ∂U/∂T
of the momentum equation. Let A, Tp and λ be the characteristic amplitude, period
and wavelength of waves on the free surface, respectively. During a specific period,
the fluid particles suffer displacements of order A. The corresponding fluid velocity
and horizontal velocity gradient are then approximately A/Tp and A/Tpλ . Hence,
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U
∂U
∂X

= O

(
A2

λT 2
p

)

and
∂U
∂T

= O

(
A
T 2

p

)

.

The linearization condition can, therefore, be written as
∣
∣
∣
∣U

∂U
∂X

∣
∣
∣
∣<<

∣
∣
∣
∣
∂U
∂T

∣
∣
∣
∣→→→ A << λ .

The condition for linearization of the equations is that the amplitude is small
against the wavelength. Using λ = 2π/K, where K is the wavenumber, the previous
equation yields to the condition

ε = AK << 1, (2.32)

where ε is the linearization parameter. Physically, this parameter is the wave steep-
ness.

The water wave equations, which are nonlinear, can be transformed into a se-
quence of linear problems by using a perturbation procedure. Let us assume the
following perturbation expansions in the parameter ε for the unknowns φ and η
(i.e., Mei 1983 or Johnson 1997)

φ (X ,Y,Z,T ) =
∞

∑
n=1

εnφn (X ,Y,Z,T ), (2.33)

η (X ,Y,T ) =
∞

∑
n=1

εnηn (X ,Y,T ). (2.34)

The temporal and spatial derivatives of the velocity potential φ , which occur in
the free surface conditions (2.28) and (2.30), are expanded in the Taylor series about
the still water level Z = 0:

∂φ
∂ r

(X ,Y,Z = η ,T ) =∑ηn

n!
∂ n

∂Zn

(
∂φ
∂ r

)
(X ,Y,Z = 0,T ), (2.35)

where r may represent temporal or spatial variables.
Substituting expansions (2.33), (2.34) and (2.35) into Eqs. (2.13), (2.28), (2.30),

(2.31), and collecting the coefficients of the first power of ε , one finds

Δφ1 = 0,−D < Z < 0, (2.36)

∂η1

∂T
− ∂φ1

∂Z
= 0 on Z = 0, (2.37)
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∂φ1

∂T
+gη1 = 0 on Z = 0, (2.38)

∂φ1

∂X
∂D
∂X

+
∂φ1

∂Y
∂D
∂Y

+
∂φ1

∂Z
= 0 on Z = −D. (2.39)

For small amplitude water waves ε << 1, we can ignore the terms of order O(εn)
with n > 1 in the expansions of (2.33), (2.34). Hence, the velocity potential and free
surface elevation are approximated as

φ (X ,Y,Z,T ) = εφ1, (2.40)

η (X ,Y,T ) = εη1. (2.41)

The corresponding linear system of equations to be solved is

Δφ = 0,−D < Z < 0, (2.42)

∂η
∂T

− ∂φ
∂Z

= 0 on Z = 0, (2.43)

∂φ
∂T

+gη = 0 on Z = 0, (2.44)

∂φ
∂X

∂D
∂X

+
∂φ
∂Y

∂D
∂Y

+
∂φ
∂Z

= 0 on Z = −D. (2.45)

2.1.4 Dispersion Relation

For the sake of simplicity, the bottom elevation, D, is considered to be constant.
Hence, Eq. (2.45) becomes:

∂φ
∂Z

= 0 on Z = −D. (2.46)

We look for a 2D periodic solution of the linear system of Eqs. (2.42), (2.43),
(2.44) and (2.46) that admits the following velocity potential:

φ (X ,Z,T ) = Bcosh [K (Z +D)]sin(KX −ΩT ) , (2.47)

where B is a constant and Ω and K are the cyclic frequency and wave number,
respectively. This form automatically satisfies the Laplace equation (2.42) and the
bottom condition (2.46). Substituting (2.47) into the dynamical condition (2.44),
one obtains

η (X ,T ) =
BΩ
g

cosh(KD)cos(KX −ΩT ) . (2.48)

Let

A =
BΩ
g

cosh(KD) . (2.49)
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Hence,
η (X ,T ) = Acos(KX −ΩT ) , (2.50)

and the potential can be rewritten as follows:

φ (X ,Z,T ) =
Ag
Ω

cosh [K (Z +D)]
cosh(KD)

sin(KX −ΩT ) . (2.51)

The linear dispersion relation is obtained by stating that the velocity potential
(2.51) and the free surface elevation (2.50) correspond to nontrivial solutions satis-
fying the kinematic boundary condition (2.43),

Ω2 = gK tanh(KD) . (2.52)

The frequency Ω is given as a function of K in Fig. 2.2. Equations (2.50) and
(2.51) represent 2D gravity waves of permanent form propagating with a constant
phase velocity on water of uniform depth.

Equation (2.52) links the frequency Ω to the wave number, K. The phase velocity
is given by

Cph =
Ω
K

=
√

g
K

tanh(KD). (2.53)

Since Cph
′(K) �= 0,∀K �= 0, the gravity water waves are dispersive. This is an im-

portant property of water waves, which means that waves of different wave numbers
propagate at different phase velocities. Nevertheless, a stronger condition introduced
by Whitham (1974) to define dispersive waves is ∀K : Ω′′(K) �= 0.
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Fig. 2.2 Water wave dispersion relation curve as normalized frequency versus dimensionless water
depth. The long wave velocity is defined as CLW = (gD)1/2
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Fig. 2.3 Phase (dotted line) and group (solid line) velocity dependencies (Cph and Cgr are normal-
ized by CLW ) versus the dimensionless depth. Note logarithmic scale of the abscissa

The group velocity is defined as

Cgr =
∂Ω
∂K

=
g

2Ω
[
tanh(KD)+KD

(
1− tanh2 KD

)]
. (2.54)

In the shallow water limit KD → 0, the group and phase velocities become equal
and Cph ≈ Cgr → CLW ,CLW = (gD)1/2; this means that the waves become nondis-
persive. The velocities Cph and Cgr are given in Fig. 2.3 as functions of the dimen-
sionless depth KD.

The 3D plane wave solution is given by the following formulas:

η (X,T ) = Acos(K ·X−ΩT ) (2.55)

and

φ (X,Z,T ) =
Ag
Ω

cosh [|K|(Z +D)]
cosh(|K|D)

sin(K ·X−ΩT ) , (2.56)

where K is the wave vector and X = (X ,Y )t . The corresponding linear dispersion
relation is

Ω2 = g |K| tanh(|K|D) . (2.57)

Once the velocity potential φ is known, it is easy to calculate the velocity field
U = ∇φ(X,Z,T ). The velocity components are

U =
AgKX

Ω
cosh [|K|(Z +D)]

cosh(|K|D)
cos(K ·X−ΩT ) , (2.58)
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V =
AgKY

Ω
cosh [|K|(Z +D)]

cosh(|K|D)
cos(K ·X−ΩT ) , (2.59)

W =
Ag |K|
Ω

sinh [|K|(Z +D)]
cosh(|K|D)

sin(K ·X−ΩT ) , (2.60)

where KX and KY are the X– and Y – components of K, respectively. The pressure
P(X; Z; T ) is obtained from the Bernoulli equation (2.19).

For infinite depth D → ∞, the bottom condition becomes

∇φ → 0 as Z →−∞, (2.61)

and the corresponding 2D gravity waves of permanent form propagating with a con-
stant phase velocity are given by Eq. (2.50) and

φ (X ,Z,T ) =
Ag
Ω

exp(KZ)sin(KX −ΩT ) (2.62)

with
Ω2 = gK. (2.63)

2.2 Statistical Description

The second approach to studying waves is statistical. Water waves, of course, obey
physical laws. They all, in principle, may be taken into account in a deterministic
model, and therefore this model will be able (theoretically) to describe wave dynam-
ics. In practice, this approach fails due to incomplete information about the initial
state of the fluid, complexity of the physics, and growing fluctuations (this means
that small perturbations with time may result in very different dynamics). Gener-
ally, the system of equations suffers from sensitive dependence on initial conditions.
This feature is met in chaotic and turbulent systems. We know from our everyday
experience that sea waves behave irregularly and unpredictably in even rather short
time scales, although they show some periodicity. So, the dynamic system Ocean
manifests random wave dynamics. Therefore, at certain sea conditions (significant
wave height, wave age, winds, currents, etc.), different realizations (concerning the
wave elevation – they are functions η(X, T )) of sea waves are equally possible
and may be considered as the object of investigation. The collection of realizations
{η j(X, T )} (integer subscript j counts them) builds an ensemble. In that way, the
sea surface at one moment of time T0 in one point X0 is represented by random
functions numbered by the index j: η j(X0,T0) with some statistical properties. This
approach is referred to as stochastic and is aimed at a statistical description of sea
wave dynamics.
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The ultimate goal here is to describe and foresee the dynamics of certain real-
izations on the basis of the dynamics of averaged statistical characteristics. This
approach is currently the center of attention of both theorists and experts, especially
in the fields of ocean and atmospheric research; it is widely used in ocean enge-
neering. To obtain the time-dependence of statistical properties, one may perform
stochastic simulations—i.e., to use deterministic models to compute a number of
randomly chosen realizations (Monte Carlo simulations). Thus, one takes the posi-
tion that the simulation of a sufficiently large but finite number of realizations repre-
sents the evolution of the whole ensemble in a statistical sense. The other approach
is to compose and study models for direct computation of the evolution of statis-
tical wave parameters. This is aimed at the theories that deal with spectral kinetic
equations.

2.2.1 The Rayleigh Probability

Let us consider the surface displacement η(X, T )—a function of space and time. Its
autocorrelation function is defined as

R(X,T,r,τ) = E [η (X,T ) ·η (X+ r,T + τ)] , (2.64)

where E[·] denotes statistical averaging over the ensemble of realizations η j(X, T ):

E [η (X,T ) ·η (X+ r,T + τ)] = lim
N→∞

1
N

N

∑
j=1

η j (X,T ) ·η j (X+ r,T + τ). (2.65)

In practice, N is finite, but it should be sufficiently large to provide a good esti-
mate of the limit (2.65). Averaging over an ensemble is convenient for reproducible
laboratory experimental conditions, but not the real ocean, where waves do not
repeat themselves. For natural observations, a long time series is split into many
shorter samples—“realizations”—that are used for averaging. This approach needs
the random process to be stationary (i.e., its statistical properties do not depend on
time). If these two ways of averaging result in the same statistics, the process is
called ergodic. Although it is impossible to prove the ergodicity property for water
waves via direct natural experiments, it is commonly invoked for the study of waves
on the sea surface.

The statistical stationarity and statistical homogeneity in space imply that the
autocorrelation function does not depend on X and T : R = R(r, τ).

Averaging (2.64) may be also rewritten in terms of the probability function as

R(r,τ) =
∞∫

−∞

η1η2 f (η1,η2,r,τ)dη1dη2, (2.66)

where f is the two-point probability density function defined as
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f (η1,η2,r,τ) =
∂ 2F (η1,η2,r,τ)

∂η1∂η2
, (2.67)

and the distribution function F measures probability such that η(X, T ) and η(X +
r,T + τ) do not exceed η1 and η2, respectively.

F (η1,η2,r,τ) = P(η (X,T ) ≤ η1 |η (X+ r,T + τ) ≤ η2 ) . (2.68)

Functions F and f do not depend on X and T if the field is both statistically
homogeneous in space and stationary.

The probability distribution function or probability density function defines the
statistical properties of the random field. To simplify the analysis of the statistics,
integral parameters are often used. The nth statistical moment is defined as

μn = E [ηn] =
∞∫

−∞

ηn f (η)dη , (2.69)

where f is the probability density function for η . Due to the normalization of the
probability density function,

μ0 = 1. (2.70)

The centered moments are defined as

μc
n = E [(η−μ)n] =

∞∫

−∞

(η−μ)n f (η)dη , μ ≡ μ1. (2.71)

Only few low-order statistical moments have specific names due to their great
importance in statistics. The first statistical moment μ in this instance is the mean
water level. The variance σ2 is equal to the second central moment

σ2 = μc
2 = E

[
(η−μ)2

]
, (2.72)

and σ is the standard deviation. The skewness γ and kurtosis κ are defined through

γ =
μc

3

σ3 (2.73)

and

κ =
μc

4

σ4 . (2.74)

The skewness is usually used to estimate the vertical asymmetry of the sea sur-
face elevation, whereas the kurtosis corresponds to the peakedness of the distribu-
tion when compared with the normal distribution (see Massel 1996).

The Central Limit Theorem proves that a superposition

η =∑
j
η j (2.75)
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of statistically independent1 variables η j with mean values μ j and variances σ2
j

results in the Gaussian probability density

f (η) =
1√

2πσ
exp

[

− (η−μ)2

2σ2

]

(2.76)

with mean
μ =∑

j
μ j (2.77)

and variance
σ2 =∑

j
σ2

j . (2.78)

For Gaussian statistics, the skewness and kurtosis are γ = 0 and κ = 3, respec-
tively.

Linear superposition of random periodic waves

η (X,T ) =∑
n

An cos(KnX−ΩnT +θn) (2.79)

is a natural representation of sea waves. Here, amplitudes An obey some probability
distribution, and frequencies Ωn and wave vectors Kn are dependent according to
the dispersion relation; the wave phases θn are supposed to be uniformly distributed
on the interval [0, 2π]. In this approximation, the surface elevation is described by
the Gaussian statistics (2.76).

Let us now consider the linear superposition (2.79) of statistically independent
Gaussian processes with variances σ2

n . In the narrow-band assumption, the field may
be represented in the following form

η = |B|cos(KcX−ΩcT +ϕ) (2.80)

where B = |B|exp(iϕ) is a slowly varying function of X and T , and σ2
n is rapidly

decaying when values Kn (or Ωn) are not close to Kc (or Ωc, respectively). In this
limit, the distribution for the linear wave amplitude |B| is described by the Rayleigh
function (Massel 1996)

f (|B|) =
|B|
σ2 exp

(

−|B|2

2σ2

)

. (2.81)

In the limit of small bandwidth, the wave height is twice the envelope, H = 2|B|,
and therefore

f (H) =
H

4σ2 exp

(
− H2

8σ2

)
, (2.82)

1 Two random variables are statistically independent if their joint probability density function may
be factorized: f (x,y) = fx(x) · fy(y).
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and the probability that the wave height exceeds the value H (the exceedance prob-
ability) is

P(H) = 1−F (H) = exp

(
− H2

8σ2

)
. (2.83)

In Chap. 1, we introduced the significant wave height, which is the mean value
of one-third of the highest waves. According to this definition and formula (2.82),
the significant wave height is defined as (Massel 1996)

Hs =
3
4

∞∫

σ
√

8ln3

H2

4σ2 exp

(
− H2

8σ2

)
dH ≈ 4.004σ . (2.84)

Integral (2.84) may be expressed through the error function (see Massel 1996).
Usually a simplified relation is used, Hs = 4σ . Hence, formula (2.83) may be written
in the convenient form

P(H) ≈ exp

(
−2

H2

H2
s

)
(2.85)

that helps to easily estimate the probability of high waves. For instance, a freak
wave (H > 2Hs) should appear once among about 3,000 waves. For a typical sea
wave period of 10 s, this gives the estimation that one should meet a freak wave
every 8–9 h. In a Gaussian sea, a wave exceeding three times the significant height
may occur once in 20 years.

Study of rogue waves in the framework of Gaussian statistics is already a tricky
task. But waves (especially extreme waves) in the real ocean are obviously non-
Gaussian due to various reasons: dissipation including wave breaking, insufficiently
narrow spectrum, and nonlinear effects. Because rogue waves are rare events, and
the sea state is persistently changing, the statistical stationarity condition also breaks
down.

Nonlinear effects contribute to bound corrections to the wave shape as well as
to the interaction between different harmonics, so periodic waves in superposition
(2.79) become correlated. Due to the nonlinearity, waves become asymmetric: the
crests are sharper and higher, while the troughs are flatter and shallower. The ap-
proximate bound nonlinear corrections may be taken into account with the help of
the perturbation technique. In the deep-water case, the second-order small steepness
(KA << 1) approximation gives

η (X ,T ) = Acos(KX −ΩT +θ)+
1
2

KA2 cos [2(KX −ΩT +θ)] . (2.86)

for a regular monochromatic (Stokes) wave.
Assuming that the linear wave amplitude preserves the Rayleigh distribution,

Formula (2.85) can be used to estimate the probability exceedance for wave crests
(ηcr) and troughs (ηtr) by
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P(ηcr > η) = exp

(

− 8
H2

s

(√
1+2Kη−1

)2

K2

)

(2.87)

and

P(ηtr > η) = exp

(

− 8
H2

s

(√
1−2Kη−1

)2

K2

)

. (2.88)

Formulas (2.87) and (2.88) predict that extreme waves have larger crests than
troughs. We should note, however, that representation (2.86) does not lead to a
change of the crest-to-trough wave height at this level of accuracy.

Different types of modified distribution functions, taking into account weak non-
linear bound corrections, were developed in Tayfun (1980), Tung and Huang (1985),
and Mori and Yasuda (2002) and many others (see survey by Prevosto 2001); other
modifications of the Rayleigh distribution are being developed, as are empirical for-
mulas. Apparently, second-order statistical models turn out to be insufficient for
the adequate description of rogue waves (Bitner-Gregersen and Magnusson 2005,
Rosenthal 2005, Petrova et al. 2007). Nonlinear corrections of higher orders should
be taken into account (Creamer et al. 1989, Huang et al. 1983, Zhang et al. 1999);
these corrections may enhance the probability of high waves by ten (Prevosto and
Bouffandeau 2002) or even one hundred (Stansell 2004, Forristall 2005) times!
Since nonlinear properties of surface waves depend on depth, the depth is one more
parameter in the statistical model (see Massel 1996).

The considered theory is applied to one-point observations. Real needs and re-
cent 3D observations require development of a statistical model describing wave
probability over a specific area. Reduction from the point statistics is not trivial for
this purpose (Forristall 2005, Socquet-Juglard et al. 2005), and may be very impor-
tant. Thus, Forristall (2005) estimates that for the air gap under a fixed structure
with a deck 50 m × 50 m, the maximum wave crest is almost 20% higher than the
one expected at a single point.

The sea state is rather changeable; this results in failure of the condition of statis-
tical stationarity. Donelan and Magnusson (2005) and Müller et al. (2005) show how
the probability of high waves grows in a mixed sea constituted by two wave trains.
Baxevani and Rychlik (2006) considered a Gaussian sea evolving in time and also
studied the effects of wave spreading. They report that the neglect of these effects
leads to an underestimation of the high wave probability.

2.2.2 Wave Spectra

The Fourier transform of the autocorrelation function R gives the wave spectrum

Ŝ (K,Ω) =
1

(2π)3

∞∫

−∞

R(r,τ) · exp [i(Kr−Ωτ)]drdτ. (2.89)
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Here, K = (KX ,KY ) is the wave vector and Ω is the frequency. The frequency
spectrum and wave vector spectrum (or two-dimensional wavenumber spectrum or
spatial spectrum) are defined, respectively, by

Ŝ (Ω) =
∞∫

−∞

Ŝ (K,Ω)dK, (2.90)

and

Ŝ (K) =
∞∫

−∞

Ŝ (K,Ω)dΩ. (2.91)

The wavenumber spectrum is defined as

Ŝ (K) =
π∫

−π

KŜ (K)dα, where K = (K cosα,K sinα) , (2.92)

and K = |K| > 0 is the wavenumber. The directional spectrum is

Ŝ (α) =
∞∫

0

dK

∞∫

−∞

dΩKŜ (K,Ω). (2.93)

The frequency and wave vector (wavenumber) spectra can be related to one an-
other; this can be achieved with the help of the dispersion relation. For instance, for
the deep-water case, the dispersion relation is as follows

KdK = 2
Ω3

g2 dΩ, (2.94)

and hence

Ŝ (Ω) =
2Ω3

g2 Ŝ (K) . (2.95)

For a real process—statistically stationary and statistically homogeneous in
space—the correlation function possesses the symmetry property R(−r,−τ) =
R(r,τ). Then the spectrum is real, and Ŝ (−K,−Ω) = Ŝ (K,Ω). That is why only
one half of the spectrum is commonly used in the analysis: Ω > 0 for the frequency
spectrum, and K > 0 for the wavenumber spectrum.

In the first approximation, the wave field may be represented as a linear superpo-
sition of periodic waves (2.79). To see this, let us consider a single cosine wave

η (X,T ) = A0 cos(K0X−Ω0T +θ) , (2.96)

where A0, K0 and Ω0 are defined, but θ is a random value uniformly distributed
within the interval [−π,π]. Then, the corresponding correlation function is
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R(r,τ)

=
π∫

−π

A0 cos(K0X−Ω0T +θ)A0 cos [K0 (X+ r)−Ω0 (T + τ)+θ ]
dθ
2π

=
A2

0

2
cos(K0r−Ω0τ) .

(2.97)

Furthermore, the wave spectrum for a single cosine wave reads

Ŝ (K,Ω) =
1

(2π)3

∞∫

−∞

R(r,τ) · exp [i(Kr−Ωτ)]drdτ

=
A2

0

4
(δ (K+K0)δ (Ω+Ω0)+δ (K−K0)δ (Ω−Ω0))

. (2.98)

Hence, for the linear superposition of periodic waves (2.79), the spectrum has the
form

Ŝ (K,Ω) =∑
n

A2
n

4
(δ (K+Kn)δ (Ω+Ωn)+δ (K−Kn)δ (Ω−Ωn)) . (2.99)

Thus, the wave spectrum is represented by Dirac delta functions and has non-zero
values in the (K, Ω) space only at points corresponding to the waves represented in
the superposition (2.79).

It is well known that the total energy of a linear plane progressive wave (2.96) is
defined as

En = ρg
A2

0

2
. (2.100)

Alternatively, Formula (2.98) gives

En = ρg

∞∫

−∞

Ŝ (K,Ω)dKdΩ. (2.101)

Therefore, the wave spectrum has the meaning of the wave energy distribution in
the space of wave vectors and frequencies; the quantity ρgŜ is called the energetic
spectrum.

The wave amplitudes may be expressed through the relation

A2
n = 2

∫
Ŝ (Kn,Ωn)dKdΩ, (2.102)

where the integration is effective only in closed intervals around ±Kn and ±Ωn.
Relations (2.99) and (2.102) allow us to define the spectrum as the squared absolute
value of the Fourier transform of the process. The relationship between the spec-
trum and the autocorrelation function (2.89) is then called the Wiener-Khintchine
Theorem. The spectrum concept is a powerful tool for investigating time series,
since it displays the distribution of wave energy among frequencies and scales rep-
resented by harmonics. Data processing in the spectral space (such as filtering) may
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be very powerful. Although the wave height, peak period, and main wave direction
are sufficient to describe sea states for most practical purposes, Olagnon and Mag-
nusson (2004) pointed out at the same time that it is likely that no spectral parame-
ter alone can provide useful information on the risk and potentially abnormal wave
events when it is estimated. Thus, this approach needs improvement to be applied
to the needs of rogue wave research.

2.2.2.1 Frequency Spectrum

For most of the numerous measurements of sea waves represented by time series
at one spatial point, only the frequency spectrum may be obtained. Since it is an
even function of frequency, instead of the symmetric function Ŝ (Ω) ,Ω ∈ (∞;∞),
only one part is used in experimental practice (so-called nonsymmetric spectrum):
S(Ω) = 2Ŝ (Ω) ,Ω ∈ [0;∞). The longer the record is, the more statistical material it
provides; on the other hand, sea conditions may change if the realization takes too
long. Usually wave record samples of duration 10–30 min are retrieved for analysis
to fulfill these contradictory requirements. The relationship between the spectrum
and the wave amplitudes persists

An =
√

2S (Ωn)ΔΩ, (2.103)

where ΔΩ is the frequency discretization interval. As an estimator for frequency
spectrum S(Ω), the Fourier transform of the wave field is usually employed in
practice:

S (Ω) ∼= 2 |ηΩ|2 , ηΩ =
1
T

T∫

0

η (t)exp(iΩt)dt. (2.104)

When analyzing the wave spectrum, the spectral moments are frequently used;
they are, in general, defined as

mn =
∞∫

0

ΩnS (Ω)dΩ. (2.105)

Inversing the Fourier transform (2.89), one obtains

R(τ = 0) =
∞∫

−∞

Ŝ (Ω)dΩ =
∞∫

0

S (Ω)dΩ, (2.106)

therefore the zero spectral moment is expressed through the second statistical
moment

m0 = μ2, (2.107)

or for the case of a field with zero mean,

m0 = μc
2 = σ2. (2.108)
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The mean wave frequency and wave period are defined as

Ωp =
m1

m0
, Tp =

2π
Ωp

= 2π
m1

m0
, (2.109)

although other possible ways to define the mean frequency exist.
Central moments

mc
n =

∞∫

0

(Ω−Ωp)
n S (Ω)dΩ (2.110)

are also used. The central moment mc
2 is a measure of the concentration of the spec-

tral wave energy around the frequency Ωp, which characterizes the spectral width
through the dimensionless parameter

δΩ =
1
Ωp

√
mc

2

m0
. (2.111)

The spectral shape displays the distribution of energy between scales and thus
contains information about the physical mechanisms supporting and generating the
waves. Concerning wind-generated waves, the energy growth due to the wind action
is balanced by the wave interactions—which transfer energy between frequencies—
and energy dissipation. Following the hypothesis of similarity for ocean waves, the
energy spectrum should be represented by a function of the form (Massel 1996)

S (Ω) = S
(
Ω,Xf ,T,Uw,g

)
, (2.112)

where Xf is the fetch, T is related to the wave age, and Uw is the wind velocity, or
alternatively,

S (Ω) = S (Ω,g,σ ,Ωp) . (2.113)

The suggested spectral shapes usually have the general form

S (Ω) = C1Ω−p exp
(
−C2Ω−q) . (2.114)

One of the most popular spectrums was suggested by Pierson and Moskowitz
(1964) on the basis of theoretical discoveries and field data analysis:

S (Ω) = αg2Ω−5 exp

(

−B

(
ΩUX

g

)−4
)

= αg2Ω−5 exp

(

−5
4

(
Ω
Ωp

)−4
) , (2.115)

where α = 8.1× 10−3, and B = 0.74. It was proposed for a fully developed sea,
when the wave phase speed is equal to the wind speed. It is controlled by a single
parameter, which is the wind speed.
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The Joint North Sea Wave Project (JONSWAP) Spectrum extends the Pierson-
Moskowitz Formula (2.115) to include fetch-limited seas through inclusion of one
more governing parameter manifesting peakedness, γ

S (Ω) = αg2Ω−5 exp

(

−5
4

(
Ω
Ωp

)−4
)

γδ (2.116)

δ = exp

[

− (Ω−Ωp)
2

2σ2
0Ω2

p

]

where γ = 3.3; σ0 = 0.07, if Ω≤Ωp; and σ0 = 0.09, if Ω > Ωp.

α = 0.076

(
gXf

U2
w

)−0.22

, (2.117)

Ωp = 7π
g

Uw

(
gXf

U2
w

)−0.33

. (2.118)

The JONSWAP Spectrum was built on the basis of an extensive wave measure-
ment in the North Sea. This area is very popular in recent studies, owing to its great
economical importance and large number of instrumental observations. With an ex-
tra free parameter, this shape is a convenient model spectrum. Other spectral shapes
have been suggested and may be found in Massel (1996), but will not be considered
in the present book.

2.2.3 Kinetic Models

So far, only statistically stationary and spatially homogeneous processes have been
considered. This approach does not describe a realistic sea state where the wave
field is evolving and changing from one area to another. The variability of waves
may be computed when local (in time and space) statistics, that are represented by
the wave spectrum, are considered. So, the spectrum function Ŝ depends on slow
variables X and T , and all the wave conditions and statistical wave parameters may
vary slowly in space and time.

Energy conservation results in the energy balance equation if there are no
currents. Generally, it is given by the balance equation for the wave action, N
(Whitham 1974)

dN
dT

= G, (2.119)

where

N =
Ŝ
Ωi

. (2.120)

Value Ωi is the intrinsic frequency (in absence of current) that is related to the
wavenumber through Eq. (2.57),
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Ω2
i = g |K| tanh(|K|D) , (2.121)

while the observed (apparent) frequency in the presence of the current with velocity
Uc is given by

Ω = Ωi +KUc. (2.122)

The term G on the RHS of Eq. (2.119) defines the external action and losses, is
called the collision integral, and takes into account different physical mechanisms:
income of energy from the wind (pressure fluctuations, wave-flow linear and non-
linear interactions); interaction with the atmosphere and sea turbulence; dissipation
due to bottom friction; wave breaking; and spectral nonlinear exchange, etc.

G =∑
n

Gn (2.123)

The wave action is a function of wave vector, apparent frequency, and slow vari-
ables X and T , thus the conservation of volume in space (X, K, Ω) results in

dN
dT

=
∂N
∂T

+
∂N
∂X

dX
dT

+
∂N
∂K

dK
dT

+
∂N
∂Ω

dΩ
dT

= G. (2.124)

The assumption that all changes happen much slower (in time and space) than
the period and length of the waves allows us to use the ray theory. Hence the wave
filed may be represented as

η = A(X,T )exp(iθ) , (2.125)

where θ is the phase. It is natural to define the local wave vector and frequency as

K(X,T ) =
∂θ
∂X

, and Ω(K,X,T ) = −∂θ
∂T

. (2.126)

These relations then give the kinematic conservation equations

∂K
∂T

+∇Ω = 0,
∂KX

∂Y
=

∂KY

∂X
, (2.127)

where K = (KX ,KY ), ∇= (∂/∂X ,∂/∂Y ). The second equation means that the wave
vector field is irrotational. It follows then that

dK
dT

= −∂Ω
∂X

,
dX
dT

=
∂Ω
∂K

, and
dΩ
dT

=
∂Ω
∂T

, (2.128)

which means that the quantity Ω may be understood as the Hamiltonian, while X is
the position and K is the momentum. With the help of relations (2.128), the balance
equation (2.124) transforms into

∂N
∂T

+
∂N
∂X

∂Ω
∂K

− ∂N
∂K

∂Ω
∂X

+
∂N
∂Ω

∂Ω
∂T

= G. (2.129)
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The spectral energy balance equation (2.129) is called the radiative transfer
equation, or the transport equation, or the kinetic equation and is used for fore-
casting spectral changes of sea waves. The first step for describing the evolution
of the wave spectrum was done by Gelci et al. (1956, 1957) who introduced the
concept of the spectral transport equation.

The first term at the Left Hand Side (LHS) of (2.129) expresses the local time
evolution of the spectrum, and the second one represents the evolution of the spec-
trum for the horizontally inhomogeneous wave field and provides the energy trans-
port with the group velocity ∂Ω/∂K. The third term in (2.129) reflects the effects of
refraction and shoaling due to the spatial change of the dispersion relation (because
of variable bathymetry or currents), while the fourth term describes the temporal
evolution of the dispersion relation due to changing conditions.

The basic difficulty in solving Eq. (2.129) is an evaluation of the source func-
tion G. The theory of weak nonlinear interactions for wind-induced waves was
first formulated by Hasselmann (1962, 1968); it involves nine terms in the sum
(2.123). The terms representing the wave-wave interactions are quite bulky and
make Eq. (2.129) an integro-differential type. The nonlinear interaction coefficients
have been obtained through tedious computations for low-order nonlinear interac-
tions (up to five-wave interactions) (see Zakharov 1974, 1999; Krasitskii 1994; and
Davidan et al. 1985; Lavrenov 2003; Janssen 2004; Polnikov 2007). In this applica-
tion, the Hamiltonian approach is very convenient when the theory is expressed
in terms of specially defined canonical variables (Zakharov 1968, 1974, 1999;
Zakharov and Kuznetsov 1997; Polnikov 2007). The kinetic equation may be ob-
tained rigorously starting from the primitive hydrodynamic equations, or from
weakly nonlinear dynamical models such as the Zakharov equations (Zakharov 1974,
1999; Krasitskii 1994). However, the still open question is whether—and, if so, how
much and under which conditions—the numerical evolution of a spectrum evaluated
with the kinetic equation corresponds to the spectrum obtained with the full integra-
tion of the dynamical model starting from the actual surface distribution (Cavaleri
2005).

It has already been pointed out that in addition to the bound corrections to the
wave shapes, the wave nonlinearity results in interactions between Fourier harmon-
ics (that are independent in the linear limit). Due to this interaction, the energy in
the spectral space may focus on one scale (uniform waves), or spread over many
frequencies, and under certain conditions form very steep intensive waves. On the
surface of deep water, the main part of the wave-wave nonlinear interactions in G
is represented by the four-wave interaction. The spectral energy balance equation
was used by Janssen (2003) to find the corrections to the Gaussian statistics of high
sea waves when four-wave interactions are taken into account. The results were
compared against the stochastic Monte Carlo simulations of dynamical models. The
nonlinear effects in wave dynamics causing significant wave enhancement will be
considered further in Chaps. 4 and 5.

Both considered approaches—deterministic and statistical—have strong and
weak points that indicate their successful application for different purposes. In
Sect. 2.2.1, we describe the one-point approach imposed by the instrumental data
that is presently available. Other restrictions are due to the hypotheses employed
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by the approach (such as statistical homogeneity and stationarity). Realistic statis-
tical models are still developing, and they should be verified versus observations.
Some statistical aspects of nonlinear waves over deep, shallow, and coastal waters
are discussed further in Sects. 4.4, 4.7, 5.3, and 5.5.

Unlike field observations and laboratory experiments, which usually give either
temporal data at a few locations in space or spatial data at a few instants, the direct
numerical simulations may provide both temporal and spatial data of a large-scale
wave field. At the same time, the complexity and nonreproducibility of sea wave
dynamics make the phase-resolving, long-time dynamic simulations practically use-
less. Draper in 1964 remarked that it is probably not possible to predict rogue-wave
occurrence at a given time and space, although their probability might be estimated
exceeding the framework of the stationary Gaussian process.

To obtain realistic rogue statistics, wave data collection is probably not the most
adequate approach. Besides the problem of instrumental measurement briefly dis-
cussed in Chap. 1, one will face the following question: is the observed extreme
wave a very rare realization from the typical slightly non-Gaussian sea surface pop-
ulation, or is it a typical realization of a very rare and strongly non-Gaussian sea sur-
face population (Haver and Andersen 2000, Haver 2005)? The ensemble technique
widely used in meteorology is promising. Each simulation is obtained by perturb-
ing the conditions and/or initial sea wave field and letting the system evolve. Given
the spectrum at a certain instant of time and location, one can choose a possible
realization or a number of realizations. This would provide robust statistics of the
sea surface, inclusive of all the nonlinear processes. Rather than acting only on the
phases, one could act on the spectrum, both as amplitude and directions. In addition,
the perturbations could be done not at random, but acting, for example, on specific
groups of components chosen according to the situation (Cavaleri 2005).

2.3 Possible Physical Mechanisms of Rogue Wave Generation

Freak waves have been observed in basins of arbitrary depth (in deep as well as shal-
low water) with or without current and with or without wind. To resume, they may
potentially occur everywhere on the ocean surface under any sea state conditions
(see Chap. 1).

Before briefly presenting the main physical mechanisms leading to huge waves,
let us introduce the critical depth parameter that allows separation between deep
water and shallow water. Wave properties depend crucially on the water depth. This
evident feature follows from the dispersion relation. While very long waves are
not dispersive, dispersion becomes essential for shorter waves (see Figs. 2.2, 2.3).
Furthermore, the dependence of the dispersion on water depth results in different
manifestations of nonlinear wave-wave interactions. In shallow water, three-wave
interactions play a major role, whereas in deep or moderately deep water, the main
contribution to nonlinear wave interactions comes generally from four-wave inter-
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actions. The variety of nonlinear properties of sea waves over finite depths provides
a rich and complex picture of nonlinear instabilities that could spawn rogue waves.

The natural parameter used to define deep water or shallow water conditions is
the dimensionless depth, KD, where K is the wave number and D is the water depth.
Following Fenton (1979), shallow water conditions correspond to KD < π/4, oth-
erwise waves are propagating on finite depth or deep water. For KD > π/4, the
Stokes-like expansion is relevant to calculating accurately nonlinear wave fields,
whereas in shallow water it is the cnoidal-like expansion that prevails. In deep water
and finite depth, the small parameter used in the Stokes expansion is the wave steep-
ness AK (A denotes the wave amplitude), while for shallower water this parameter
becomes A/D. In this book, we use the critical value π/4 of the normalized depth
KD to separate deep water from shallow water. Note that in Chap. 3, the distinc-
tion between deep and shallow water is not used, whereas Chaps. 4 and 5 consider
physical mechanisms that act in deep and shallow seas, respectively.

As it was noted previously, in addition to the dispersive parameter KD, there
exist nonlinear parameters AK and A/D for deep water and shallow water, respec-
tively. The parameter AK was already introduced in Sect. 2.1.3 for linearization of
the equations. Chapter 3 will focus on linear aspects of rogue occurrence, while
Chaps. 4 and 5 will consider nonlinear aspects. The main efforts are focused on the
nonlinear and strongly nonlinear dynamics of the rogue-wave phenomenon based on
recent research, because such waves are more dangerous. We also collect the results
of statistical processing of natural registrations in Sect. 4.7.2; they, in part, support
theoretical trends, although in the present state they are, in fact, often contradictory.

There are various physical mechanisms generating rogue waves on the sea sur-
face. They can be due to geometrical focusing of directionally spread waves, re-
fraction phenomena (presence of variable current or bottom topography), frequency
modulation (dispersive focusing or modulational instability of Benjamin-Feir type),
or soliton interactions that may produce wave energy that focuses in a small area.
It was recently suggested that wave fields resulting from the nonlinear interaction
of two wave systems (crossing seas) could be unstable to modulational instability
and therefore produce rogue-wave occurrence (see Sect. 4.6). In this section, the
different mechanisms are briefly listed and presented, they will be investigated and
discussed deeply in the subsequent chapters. These effects have been previously
reviewed by Kharif and Pelinovsky (2003) and Dysthe et al. (2008).

2.3.1 Wave-Current Interaction

Freak-wave occurrence on currents is a well-understood problem (see Sect. 3.4)
that can explain the formation of rogue waves when wind waves or swells are
propagating against a current. Besides more sophisticated models, the use of ba-
sic equations describing conservation of kinematical and dynamical properties of
water-wave fields can be very convenient in determining the transformation of wa-
ter waves by currents.
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2.3.2 Geometrical or Spatial Focusing

Meanwhile, freak waves are seemingly observed throughout the world’s oceans
without significant currents as well. Underwater topography modifies the wave
propagation. The result is spatial variations of the kinematic and dynamic variables
of the problem that can be solved by the use of ray theory. Hence, rogue wave oc-
currence corresponds to caustics (see Sect. 3.1).

2.3.3 Focusing Due to Dispersion: The Spatio-Temporal Focusing

The spatio-temporal wave focusing due to the dispersive nature of water waves
is a classic mechanism yielding wave-energy concentration in a small area (see
Sect. 3.2). This effect, which can occur at the sea surface, can be reproduced easily
in a laboratory experiment. Interactions with sea currents and wind flows represent
specific features of sea waves. The effect of wind action is taken into account within
the linear approximation in Sect. 3.3.

It is evident that once the wave steepness becomes finite, nonlinearity needs to be
included. Effects of water wave nonlinearity on the above processes are discussed in
Chap. 3 and further in Chaps. 4 and 5. Both weak and strong nonlinear approaches
are presented. The achieved conclusions are verified against available results of lab-
oratory experiments.

2.3.4 Focusing Due to Modulational Instability

This phenomenon is essentially nonlinear. Nonlinear uniform wave trains suffer an
instability known as the Benjamin-Feir instability, which produces growing mod-
ulations of the envelope. These modulations that evolve into short groups of steep
waves correspond to a nonlinear focusing of the wave energy. At the maximum of
modulation, rogue waves can occur followed by the demodulation of the envelope.
Rogue waves resulting from the modulational instability are considered in Chap. 4.

2.3.5 Soliton Collision

Uniform wave trains under modulational instability transform into a system of enve-
lope solitons that may collide to give rise to huge wave events. Instability of quasi-
solitons of large amplitude followed by collapse has been suggested as a proper
scenario of rogue wave occurrence as well. These mechanisms that are working on
finite and infinite water depths are presented in Chap. 4. Rogue waves can also occur
in shallow water due to soliton interaction. The latter aspect is discussed in Chap. 5.
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List of Notations

Cgr group velocity
CLW long wave velocity
Cph phase velocity
D water depth
D / DT material derivative
E[·] statistical averaging
f probability density function
F probability distribution function
g = (0,0,−g)t acceleration vector due to gravity
H wave height
Hs significant wave height
K = (KX ,KY ) wave vector
K wavenumber
Kp mean wavenumber
mn nth spectral moment
mc

n nth central spectral moment
n unit vector normal to the surface
N wave action in the kinetic equation
P pressure
Pa atmosphere pressure
R autocorrelation function
S non-symmetric spectrum
Ŝ wave spectrum
T time
Tp mean wave period
U = (U,V,W )t the velocity field
Uc current velocity
Un normal to the surface velocity
Uw wind velocity
X = (X ,Y )t horizontal plane coordinate
(X ,Y,Z) coordinates
Xf fetch
δΩ spectral width
ε linearization parameter
φ(X ,Y,Z,T ) velocity potential
γ peakedness in the JONSWAP spectrum
γ skewness
η(X ,Y,T ) surface elevation
κ kurtosis
λ wavelength
μ dynamic viscosity
μ ≡ μ1 first statistical moment, the expected value
μn nth statistical moment
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μc
n nth central statistical moment

ν kinematic viscosity
ρ water density
σ standard deviation, σ2 is the variance
ω vorticity
Ω cyclic wave frequency
Ωi intrinsic frequency
Ωp mean wave frequency
∇ gradient operator
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Chapter 3
Quasi-Linear Wave Focusing

The real sea surface may be described as the superposition of many wave packets
propagating in different directions with various speeds. Collisions of such packets
can lead to significant time and space variability of the wave field, including the
amplification of the wave energy in some areas. Various mechanisms can provide
growth of the wave amplitude: geometrical convergence of the wave fronts in shal-
low water and above underwater sills, intersection of wave packets propagating with
different speeds and directions, wave refraction on oceanic currents, etc. Variable
wind and atmospheric pressure above the sea induce nonuniform distribution of the
water-wave field contributing to the process of the freak-wave formation. A descrip-
tion of these mechanisms is given in the following sections within the framework of
the linear theory, demonstrating the main features of the generation of rogue waves,
including their short-lived character and random occurrence.

3.1 Geometrical Focusing of Water Waves

Amplification of water waves due to the effect of geometrical focusing is a well-
known process for waves of any physical nature. Geometrical focusing, as it may
be concluded from the title, is related to spatial variability of wave fronts and/or
medium parameters. Directional sea-wave distribution occurs when the waves come
from different directions: for the open sea, from several stormed areas, and for the
coastal zone, due to the reflection from complicated coastal lines. Alternatively,
wave fronts become curved when propagating over basins with a variable seafloor.
Figure 3.1 illustrates how waves approaching from the open sea undergo deforma-
tion of wave fronts due to bottom topography near the coast; in the end, the fronts
come into alignment with the shoreline. The refracted waves may interfere, provid-
ing wave energy concentration near capes.

A simplified model of geometrical focusing of linear water waves is based on the
ray theory, assuming that the wavelength is smaller than the characteristic length
scales of the bottom variability and curvature radius of the wave fronts. In this case,
the monochromatic progressive plane wave can be described locally as
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Fig. 3.1 Wave fronts change due to obstacles and variable bathymetry (Dysthe et al. 2005)

η(X,T ) = A(X,T )exp[iθ(X,T )]+ c.c., (3.1)

where c.c. denotes complex conjugation, and the wave frequency Ω and wave vector
K are determined through the phase θ

Ω(X,T ) =
∂θ
∂T

, K(X,T ) = −∇θ . (3.2)

Here, the vector X = (X , Y ) is in the horizontal plane (the plane sea surface, see
Fig. 2.1), and K = (KX , KY ) is the wave vector. All the wave parameters (amplitude,
wave frequency, and wave vector) are assumed to be slowly varying functions of
time and space (when compared with characteristic wave period and wave length).
From the definition of the wave frequency and wavenumber (3.2), the following
kinematic equations can be derived (Whitham 1974, Ostrovsky and Potapov 1999).

∂K
∂T

+∇Ω = 0, ∇×K = 0. (3.3)
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System (3.3) is closed and gives the irrotational field of the wave vector K when
adding the dispersion relation (obtained in Chap. 2) for water waves in basins with
slowly varying bathymetry

Ω =
√

gK tan(KD), (3.4)

where K is the modulus of K. Here, we consider an ocean with still water; the case
of oceanic current will be analyzed further in Sect. 3.4.

The wave amplitude can be found from the equation of energy balance, which can
be derived from the Euler equation, assuming smooth variation of wave parameters
(Whitham 1974, Ostrovsky and Potapov 1999)

∂A2

∂T
+∇ · (CgrA

2) = 0, (3.5)

where the group velocity Cgr = ∂Ω/∂K is determined from the dispersion relation
(3.4). This system of Eqs. (3.3, 3.4, 3.5) allows us to find all characteristics of the
wave field if the initial wave parameters are known. In general, they describe the
spatio-temporal evolution of the wave field and will be used in this chapter in appli-
cations of various particular cases of wave evolution.

To emphasize the main effects of geometrical focusing, let us consider waves of
constant frequency in a basin of variable depth. In this case, the kinematic equations
can be given in the following Hamiltonian form (Brekhovskikh 1980, Ostrovsky and
Potapov 1999):

dX
dT

=
∂Ω
∂K

,
dK
dT

= −∂Ω
∂X

. (3.6)

These equations determine the ray pattern on the sea surface. The equation of
energy balance (3.5) is reduced for monochromatic waves to the energy flux conser-
vation along the rays (Brekhovskikh 1980, Ostrovsky and Potapov 1999)

CgrbA2 = const, (3.7)

where b(X ,Y ) is the distance between neighboring rays (the differential ray width)
found after solving ray equation (3.6).

Trivial ray patterns formed in basins of infinite depth (deep water), when the
dispersion relation is Ω = (gK)1/2, do not include depth variation. In this case, the
whole rays are straight lines

Y −Y0 = γ(X −X0), (3.8)

where X0 and Y0 are initial coordinates of the ray and γ is the slope of the ray. In
general, the rays are not parallel lines, and the distance between them can vary, in-
fluencing the wave amplitude. It is evident that the maximum amplification can be
achieved if the whole rays converge in one point (focus)—for instance, the cylin-
drical focusing wave whose amplitude is proportional to R−1/2 according to (3.7)—
since the distance between rays is proportional to the radius, R. Such a focusing is
very often described in textbooks on optics.
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Fig. 3.2 Location of focal
points for various curvatures
of focusing cylindrical waves

wave fronts

focal points

A purely cylindrical focusing wave seems to be an unrealistic model of wind
waves in the open sea, and the geometrical focusing of waves can be only due to a
complicated structure of storm areas, as it is shown in Fig. 3.2. Meanwhile, this very
simplified model can explain rogue wave formation due to geometrical focusing.
Changing conditions of wave generation influences the curvature of the wave front,
and the focus point shifts as a result (see demonstration in Fig. 3.2), or may even
split into spatially distributed focusing areas called caustics, if the wave front is not
cylindrical (Fig. 3.3).

Although in the framework of ray theory the wave amplitude goes to infinity
when two neighboring rays intersect, more accurate theories show that the ampli-
tude is finite in all cases except for a purely cylindrical wave (Brekhovskikh 1980,
Arnold 1990). The wave amplitude in a focus area is fairly small compared to that in
a focus point and can be very nonuniform and variable along the caustics. The wind
variability in storm areas should provide irregular formation of focuses and caustics
at different places. Hence, this mechanism can explain the unpredictable charac-
ter of short-lived, large-amplitude wave (rogue wave) occurrence in constant depth
water due to spatio-temporal variability of the wind flow and atmospheric pressure
above waves. This scenario of rogue-wave generation in the open ocean requires the
existence of focusing wave fronts in storm areas.

Fig. 3.3 Spatially distributed
focal area when the initial
wave front is not cylindrical
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Another situation is realized for waves in shallow water where the bottom vari-
ability plays a significant role. The rays are no longer straight lines, and a lot of
caustic curves and focal points can be formed. Below, we give an analytical example
of ray patterns in shallow water with parallel isobaths, with depth being a function
of one coordinate, D = D(X). In this case, the alongshore component of the wave
vector is constant (KY = const). The wavenumber is found in explicit form from
the shallow-water approximation of the dispersion relation (3.4) as K =Ω/(gD)1/2.
The well-known Snell law for the angle between ray and isobath (the slip angle θ )

sinθ(X)
sinθ0

=

√
D(X)

D0
(3.9)

(index “0” corresponds hereafter to the initial values) follows from ray equa-
tion (3.6). As a result, the ray trajectory is given by

Y (X)−Y0 =
X∫

X0

dξ
√

[D0/D(ξ )]− cos2 θ0
. (3.10)

In the particular case of a parabolic bottom D(X) = D0 · (X/X0)2, the rays are
arcs of a circle

(Y −Y0 −X0 tanθ0)2 +X2 =
(

X0

cosθ0

)2

. (3.11)

The center is located on the shoreline, and the radius depends on the slip angle.
From this simple analytical example, some general properties of rays in basins of
variable depth can be obtained: (i) rays turn towards the shore; (ii) wave reflection
from deep water; (iii) forming of waveguides above underwater ridges; (iv) edge
wave existence on bottom slopes; (v) caustic and focus occurrence. All of them are
often observed in nature and are present partly in Fig. 3.1.

The ray dynamics in basins of variable depth, even if the bottom topography
is regular and simple, can be very complicated (see Dobrokhotov et al. 2006), in-
cluding random behavior. In this case, Hamiltonian methods can be very effective
(Abdullaev and Zaslavsky 1993). As a result, the wave field in real shallow sea con-
tains caustics where the wave field is intensified. Figure 3.4 shows the computed
ray patterns of long waves in the Sea of Japan induced by an isotropic source of a
circlular shape (taken from Choi et al. 2002), demonstrating the random distribution
of focal points in the sea. Formally, caustics here are time independent, although
in reality location of the caustics and focuses becomes random due to wind flow
variability in storm areas. The focal areas in some certain places may appear and
disappear quickly, emphasizing the randomness and short-lived character of rogue
waves.

As pointed out above, the wave amplitude in the framework of ray theory tends
to infinity at caustics, and the adequate theory should be beyond the approxima-
tion of slowly varying wave amplitude. General mathematical ray theory in ho-
mogeneous and inhomogeneous media, including the classification of caustics, is
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Fig. 3.4 Ray patterns of long waves traveling from an isotropic source in the Sea of Japan

well developed (see Arnold 1990, Babic and Buldyrev 1991, Brekhovskikh 1980,
Dobrokhotov and Zhevandrov 2003, Mei 1983). The wave field in the vicinity of
caustics is bounded—in particular, for simplified caustics the amplification factor is
proportional to (KL)1/6, where L is the characteristic scale of the bottom variation.
Its value is not too large, so in the context of rogue waves, only few caustics can
satisfy the amplitude criterion of rogue waves (amplification by a factor two and
more (I.1)). As a result, the statistics of focuses and caustics that can be obtained
from the ray equation (3.6) overestimate the probability of freak wave occurrence
and has to be calculated in the framework of more accurate theories. Until now, this
problem has not been solved.

Thus, the linear theory of the monochromatic water-wave propagation in a basin
of variable depth demonstrates that the bottom variability in shallow seas and coastal
zones, together with the variability of the air flow in storm areas, can be an effective
“generator” of the rogue wave phenomenon. Meanwhile, these effects cannot accu-
rately specify the precise position and time of the rogue-wave occurrence, although
some forecasting on the basis of the weather conditions is potentially possible.

Nonlinearity certainly modifies the process of the geometrical focusing of water
waves. Firstly, nonlinearity generates high harmonics, which satisfies the dispersion
relation, and thus freely propagates with velocities different from that of the basic
wave (free harmonics). This part of wave energy is scattered in space modifying
the amplitude of the freak wave. Secondly, nonlinearity can lead to wave breaking,
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which modifies the wave amplitude at caustics. And thirdly, nonlinearity changes
the speed of propagating waves modifying the location of focal points and wave
amplitude at these points. Nonlinear effects on caustics have been analyzed theoret-
ically for deep water in Peregrine and Smith (1979) and Peregrine (1983) and for
shallow water in Engelbrecht et al. (1988) and Pelinovsky (1982). They showed that
nonlinearity actually cannot completely destroy the process of geometrical focusing
of the wave field, and therefore large-amplitude rogue waves can appear in the ocean
due to this mechanism. Nonlinear study of the freak wave formation will be studied
in Chaps. 4 and 5 in detail.

3.2 Dispersive Enhancement of Wave Trains

The spatial heterogenity of the wave field, which results from geometrical focusing,
is accompanied by nonuniformity of the wave trains represented by the frequency
or spatial spectrum (see Chap. 2). Due to strong dispersion of water waves, each
individual sine wave travels with a frequency-dependent velocity, and may travel
along different directions. The interference pattern of many sine waves with dif-
ferent frequencies can become intricate. At one moment, short waves with small
group velocities are located in front of long waves with large group velocities, but
then after some time the long waves will overtake the shorter waves and a large-
amplitude wave can occur due to the spatio-temporal superposition. Draper (1964)
perhaps first suggested this idea as a possible rogue wave generation mechanism.
Afterwards, the long waves turn out to be in front of the short waves, and the ampli-
tude of the wave train decreases due to the spreading of the wave train. It is obvious
that a significant focusing of the wave energy can occur only if the waves with dif-
ferent lengthscales merge at a fixed location at the same time. Specific locations
of transient wave groups with different length (and time) scales in storm areas can
appear. Let us consider the case of a freshening wind as an example. Due to the res-
onant character of the wave generation by wind, a light wind generates short waves
while an increasing wind generates longer waves. In this way, the dispersive nature
of water waves may cause rogue-wave formation even in the case of unidirectional
waves when they are frequency modulated.

Unidirectional transient wave groups will be analyzed in detail hereafter. To em-
phasize the dispersive focusing of unidirectional water waves, the kinematic equa-
tion (3.3) derived in Sect. 3.1 can be reduced to a single equation describing the
spatio-temporal evolution of the characteristic wave frequency, Ω (Whitham 1974,
Ostrovsky and Potapov 1999):

∂Ω
∂T

+Cgr(Ω)
∂Ω
∂X

= 0. (3.12)

For the sake of simplicity, we assume constant water depth. Multiplying by
∂Cgr/∂Ω Eq. (3.12) transforms into the universal form
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∂Cgr

∂T
+Cgr

∂Cgr

∂X
= 0. (3.13)

This partial differential equation of the first order is equivalent to the system of
ordinary differential equations

dX
dT

= Cgr(Ω),
dCgr

dT
= 0 (3.13a)

describing an evident physical feature, and each spectral wave component propa-
gates with its own group velocity. The solution of the quasi-linear hyperbolic equa-
tion (3.13) or the equivalent system (3.13a) corresponds to a simple (Riemann) wave

Cgr(X ,T ) = C0(ξ ) = C0(X −CgrT ) (3.14)

where C0(ξ ) corresponds to the initial spatial distribution of the wave groups with
different frequencies (and group velocities). The form of such a kinematic wave
transforms continuously with distance (time), as is shown in Fig. 3.5. The slope of
the group velocity curve can be calculated directly from (3.14)

∂Cgr

∂X
=

dC0/dξ
1+T dC0/dξ

. (3.15)

If long waves are located in front of short waves, dC0/dξ > 0, and the slope
∂Cgr/∂X decreases with time, what reflects the increase of distance between long
and short waves. The case dC0/dξ < 0 (or dC0/dX < 0 at T = 0) corresponds to
long waves being placed behind short waves. The process of long waves overtaking
short waves corresponds to the initial increase of the slope of the kinematic wave up
to infinity, followed by a decrease. The first merging of several wave groups with
neighboring slightly different frequencies at the same point (wave focusing) occurs
at time

Tf =
1

max[−dC0/dX ]
. (3.16)

It is obvious that several focusing points are possible for a transient wave group
depending on the frequency distribution. The case corresponding to all wave groups
merging at the same point, Xf , and time, Tf , is described by the self-similar solution
of Eq. (3.13)

coordinate

Cgr

Fig. 3.5 A qualitative picture of a group-velocity wave curve deformation due to disperion
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Fig. 3.6 Deformstion of a
group-velocity curve in case
of a wave train with the linear
frequency modulation

Xf

Cgr Tf

T < Tf T > Tf

Cgr =
X −Xf

T −Tf
, (3.17)

which is illustrated in Fig. 3.6.
The interval of all possible water wave group velocities is from CLW = (gD)1/2

(the fastest, long waves) up to zero (if capillary effects are neglected) (see Fig. 2.3).
According to (3.17) wave energy from spatial domain CLW Tf compresses into a null
area when T = Tf (the concentration point). The required variation of the wave
frequency (or constrained wave number) in the group for maximum (optimal) fo-
cusing can be easily found from Eq. (3.17). In the deep-water limit Cgr = g/(2Ω),
performing such an optimal focusing of a paddle in the deep-water laboratory tank
should generate a wave train with the following frequency variation (it can be easily
obtained from Eq. (3.17) for X = 0):

Ωopt(T ) =
g(Tf −T )

2Xf
. (3.18)

The wave amplitude satisfies the energy balance equation (3.5), of which the
solution in the one-dimensional case is found explicitly to be

A(X ,T ) =
A0(ξ )

√
1+T (dC0/dξ )

, (3.19)

where A0(ξ ) is the initial spatial distribution of wave amplitude. At each focal point,
the wave becomes extreme, having infinite amplitude; near the focal point, the am-
plitude obeys the asymptotic law A ∼ (Tf −T )−1/2.

Noticing that each realization of wind waves always turns into frequency- and
amplitude-modulated wave groups, and that the kinematic approach predicts infi-
nite wave height at caustic points, the probability of freak-wave occurrence should
be very high. In fact, the situation is more complicated and less dramatic when more
accurate theories are employed. The kinematic approach assumes slow variations of
the amplitude and frequency (group velocity) along the wave group, although this
assumption breaks down in the vicinity of focal points (possible limitations of the
wave amplitude due to nonlinear effects and wave breaking will not be discussed
in this section). It is a well-known problem in ray theory as a whole, not only re-
garding water waves. Generalizations of the kinematic approach in the linear theory
can be done by using various expressions of the Fourier integral for the wave field
near the caustics. In a generalized form, it has been expressed through the Maslov
integral representation, described in detail for water waves by Dobrokhotov (1983),
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Lavrenov (2003), Brown (2000, 2001) and Dobrokhotov and Zhevandrov (2003).
In particular, Brown (2001) pointed out the relationship between the focusing of a
unidirectional wave field and “canonical” caustics: fold and longitudinal cusp. We
consider here the simplified form of such a representation for the conditions of op-
timal focusing (3.17), and use the standard form of the direct and inverse Fourier
transformation for the water wave displacement in a hydrodynamic flume,

η(X ,T ) =
+∞∫

−∞

η(Ω)exp [i(ΩT −KX)]dΩ, (3.20)

η(Ω) =
1

2π

+∞∫

−∞

η0(T )exp(−iΩT )dT , (3.21)

where η0(T ) = η(X = 0,T ) is the water displacement generated by the paddle, and
the wave frequency and wavenumber satisfy the dispersion relation (3.4). Hence, the
spatial wave evolution will be considered hereafter for a given boundary condition
η(X = 0,T ). This way is convenient for laboratory experiments.

3.2.1 Exact Solution for the Delta-Function

First of all, the physical problem of rogue wave formation may be reformulated in
mathematical terms as the problem of singularity occurrence from smooth initial
data. Due to invariance of the Fourier integral with respect to changes of signs of
the coordinate, X , and time, T , this problem has a straightforward link to the math-
ematical theorem of smooth solutions of the Cauchy problem for singular initial
data. This is the case for water waves; a singular Dirac delta-function disturbance
(a rogue wave prototype) transforms into a smooth wave field (Green’s function).
The corresponding analytical expressions can be found in the limiting cases of deep
and shallow water. In the general case, the wave field far from the paddle can be
described by the asymptotic solution using the method of stationary phase

η(X ,T ) = Q

√
1

2πX · |d2K/dΩ2| cos(ΩT −KX −π/4) , (3.22)

where the group velocity, Cgr (and also the wave frequency and the wave number)
is defined by the condition of optimal focusing (3.17) for a fixed coordinate, X (far
from the paddle it has a simple form: Cgr = X/T ). The parameter Q in (3.22) defines
the intensity of the delta function.

When the deep-water condition is satisfied, expression (3.22) reduces to

η(X ,T ) = Q

√
g

2πX
cos

[
gT 2

4X
− π

4

]
(3.23)
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and describes a frequency-modulated wave train with an amplitude decreasing with
distance as X−1/2. In the vicinity of the leading wave (K → 0), expressions (3.23)
and (3.22) are not valid (the wavelength becomes comparable to the distance to the
source) and should be replaced by

η(X ,T ) = Q

(
2

XD2

)1/3

Ai

[(
2

XD2

)1/3

(CLW T −X)

]

, (3.24)

derived from (3.20) by using the long-wave approximation of the dispersion relation,

Ω = CLW

(
1− K2D2

6

)
, CLW =

√
gD. (3.25)

Here, Ai(ξ ) is the Airy-function. As a result, the amplitude of the leading wave
decreases as T−1/3, and its period (duration) increases as X1/3.

Thus, the delta-function disturbance transforms into a smooth wave field, and
owing to invariance with respect to coordinate and time, one may say that an initially
smooth wave field in the forms (3.23) and (3.24), with inverted coordinate and time,
evolves into a freak wave of infinite height. These solutions demonstrate what kind
of wave packets can generate a freak wave of delta-like shape in the process of
wave evolution. Bona and Saut (1993) have shown that a singularity (dispersive
blowup) can be achieved in the long-wave approximation from the following initial
continuous function, having a finite energy integral (1/8 < m < 1/4)

η(X = 0,T ) ∝
Ai(t)

(1+ t2)m , (3.26)

where t is a scaled time (see Bona and Saut 1993).

3.2.2 Exact Solution for a Gaussian Wave Train

Strictly speaking, singular solutions of linearized equations are limited by mathe-
matical applications only. Meanwhile, the integral (3.20) has been calculated for
other smooth shapes suggested as potential freak waves. An exact analytical solu-
tion exists for a Gaussian envelope over deep water (Clauss and Bergmann 1986,
Clauss 1999, Magnusson et al. 1999). It has the form

η(X ,T ) =
A0

(1+16Ω4
envX2/g2)1/4

exp

(
− Ω2

env

1+16Ω4
envX2/g2 (T −X/Cgr)2

)

× cos

(
Ω0(T −X/Cph)

1+16Ω4
envX2/g2 +

4Ω4
envXT 2

g(1+16Ω4
envX2/g2)

− 1
2

atan

[
4Ω2

envX
g

])
,

(3.27)

where A0 is the wave train amplitude, and Ωenv and Ω0 are frequencies of the wave
envelope and carrier wave, respectively, at the location of the flume (X = 0). The
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Fig. 3.7 Evolution of the envelope of a Gaussian transient group (3.27). The distance is given in
normalized variables x = XΩ2

env/g. The carrier wave frequency is chosen as Ω0 = 5Ωenv

initial pulse has the shape of a delta function when Ωenv → ∞, and then solution
(3.27) transforms into (3.23). When coordinate and time are inverted (more pre-
cisely, replacing X by (Xf −X) and T by (Tf − T )), the solution (3.27) describes
a wave train focusing with increasing amplitude (for X < Xf ), and then defocus-
ing with decreasing amplitude (for X > Xf ). The evolution of the envelope ampli-
tude is shown in Fig. 3.7. Both processes are readily observed: wave focusing and
defocusing.

A similar solution of the Cauchy problem may be found in the long-wave ap-
proximation for a Gaussian pulse-like initial perturbation with amplitude A0 and
duration Ω−1 (Pelinovsky et al. 2001)

η(X = 0,T ) = A0 exp(−Ω2T 2). (3.28)

The corresponding solution for X > 0 is given by

η(X ,T ) =
A0CLW

Ω 3
√

D2X
2

exp

{
C2

LW

2D2XΩ2

(
CLW T −X − 6C4

LW

77D2XΩ4

)}

×Ai

⎧
⎨

⎩

(
CLW T −X − 9C4

LW

77D2XΩ4

)(
D2X

2

)− 1
3

⎫
⎬

⎭
. (3.29)
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Fig. 3.8 Formation of a rogue
wave of Gaussian shape in
shallow water: before
(x = −100), the focusing
moment (x = 0) and after it
(x = 100). Dimensionless
variables are defined as
t = ΩT −XΩ/CLW ,
x = XD2Ω3/(2C3
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Similar to the case considered above, when inverting the spatial coordinates and
time, the wave packet (3.29) forms a Gaussian pulse (3.28) and then again disperses
according to (3.29). This evolution that provides a huge wave formation from a
dispersive wave packet on shallow water is given in Fig. 3.8.

Exact solutions may be useful for seakeeping tests and freak wave design simu-
lations in ocean engineering. It is evident that in the framework of linear theory it is
easy to reproduce a freak wave of any desired shape: asymmetric crest, hole in the
sea, wave having a steeper forward face preceded by a deep trough (such shape is of-
ten reported in some descriptions of rogue waves—see for instance, Lavrenov 1998,
2003).

It is important to emphasize that the considered mechanism of dispersive focus-
ing is the result of phase coherence of spectral components of wave groups (in-phase
superposition). The occurrence of freak waves in random fields represented as the
superposition of Fourier components with random phases is more realistic. How-
ever, its description is trickier, although easily reproduced within the framework
of the linear theory. Nonlinear effects can modify dispersive focusing due to the
same reasons as discussed at the end of Sect. 3.1 (Johannessen and Swan 1997,
Clauss 1999, Pelinovsky et al. 2000, Kharif et al. 2001, Slunyaev et al. 2002,
Goulitski et al. 2004). The effects of nonlinearity and randomness will be considered
in Chaps. 4 and 5.

Experiments on the focusing of unidirectional transient groups in flumes have
been performed repeatedly during the two last decades (Baldock et al. 1996, Brown
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and Jensen 2001, Clauss 1999, 2002, Contento et al. 2001, Johannessen and Swan
1997, Stansberg 2001, Goulitski et al. 2004, Touboul et al. 2006, Kharif et al. 2008).
In most of them, the transient wave group in deep-water conditions is gener-
ated mechanically by a paddle with frequency varying linearly, following (3.18).
The process of wave focusing and defocusing is very pronounced, as shown in
Fig. 3.9. Effects of nonlinearity and finite depth decrease the amplified wave ampli-
tude predicted by the above considered model solutions. Hence, special correction

Fig. 3.9 Generation of a high-amplitude (3.2 m) rogue wave from a transient group (water depth
4 m). The graphics show surface elevation in meters. (Clauss 2002, reproduced with permission
from Elsevier)
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procedures are applied to provide more optimal conditions for wave focusing in
laboratory or numerical wave tanks (see Clauss 2002, Bonnefoy et al. 2005). As a
result, the generated huge waves can achieve large amplitudes and may even break
(see Fig. 3.9). The amplitude of the rogue wave (3.2 m) is comparable to the water
depth (4 m) in this experiment. The main conclusion that eventually follows from
the multiple experiments, is that the process of the dispersive focusing, simply ex-
plained within the framework of the linear theory, is still valid for nonlinear wave
groups, including large-amplitude groups; the effect of dispersive focusing turns out
to be a robust mechanism.

In the real 3D ocean, both quasi-linear focusing effects (geometrical and disper-
sive) may be important and can act supplementarily. The number of 3D experiments
is very limited because 3D wave tanks are very costly to operate, and a direction-
ally spread wave generation represents a hard task. Meanwhile, experiments by
Johannessen and Swan (2001) have shown that curved wave fronts lead to 3D
breaking waves; and the wave amplification can be very large. The same results
are achieved in numerical simulations with cylindrical transient wave groups in the
framework of 3D fully nonlinear hydrodynamic models (Bateman et al. 2001, 2003;
Brandini and Grilli 2001a,b; Fochesato et al. 2007), see Fig. 3.10. The laboratory
and numerical experiments confirm that nonlinearity modifies the process of wave
focusing, however, without destroying it.

Fig. 3.10 Focusing of a cylindrical transient wave group. Reproduced from Brandini and
Grilli (2001b)
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3.3 Wave Focusing Under the Action of Wind

Geometrical and dispersive focusing mechanisms considered in the previous sec-
tions require spatial and temporal inhomogeneities of the initial distribution of the
wave parameters that are provided by inhomogeneous and unsteady wind flow and
atmospheric pressure in storm areas. Due to large fetch distances, the wind flow
may influence the wave dynamic and kinematic properties. This process was re-
cently studied experimentally in the large wind-wave tank (40 m long, 2.6 m wide,
1 m deep) of IRPHE, Marseille (Touboul et al. 2006, Kharif et al. 2008). For more
details see Sect. 4.5.

A paddle can generate regular or random waves in a frequency range of 0.5–2 Hz.
For optimal focusing (according to (3.18)), the wave frequency is varied linearly
from 1.3 Hz to 0.8 Hz during 10 s; that corresponds to a focusing length of 17 m and
a focusing time of 26 s. Figure 3.11 shows a wave focusing at 20 m when no wind is
blowing over the water waves. The slight difference existing between the theoretical
and experimental values of Xf is due to the nonlinearity of the experimental wave
train. Figure 3.12 describes the wave-focusing mechanism for a wind with speed of
6 m/s. The fetch is defined as the distance between the probes on the trolley and the
end of the upstream beach where air flow meets the water surface (see Sect. 4.5).
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Fig. 3.11 Surface elevation (in cm) at several fetches X , without wind as a function of time



3.3 Wave Focusing Under the Action of Wind 79

0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60

70

80

90

100

T (s)

Fetch 12 

Fetch 14 

Fetch 16 

Fetch 18 

Fetch 20 

Fetch 22 

Fetch 24 

Fetch 26 

Fetch 28 

Fetch 30 

Fig. 3.12 Surface elevation (in cm) at several fetches X , for wind speed Uw = 6m/s, as a function
of time

It is clearly seen that wave focusing looks qualitatively similar to the case with no
wind, except for the presence of noise due to direct generation of small-scale waves.
Discussion of these figures will be further continued in Sect. 4.5.

In this section, a simple theory describing the influence of wind flow on the char-
acteristics of freak waves is presented. A popular model of the wind wave amplifica-
tion has been developed by Miles (1957, 1996). Within the framework of the linear
theory, the wave enhancement is described by the energy-transfer increment

δw =
2β
κ2

ρa

ρw

(
U∗

Cph

)2

, (3.30)

where ρa and ρw are the densities of air and water, respectively, U∗ = (cD)1/2Uw is
the friction velocity, Cph is the phase velocity of the carrier wave, Uw is the wind
velocity, cD = 0.004 is the drag coefficient, κ = 0.4 is the Von Kármán constant, and
β = 2.6. As a result, in the framework of the linear theory, the “forced” solutions
of the hydrodynamic equations can be obtained from the “free” solutions multiplied
by an exponential term. Hence, the amplitude of the wave packet of Gaussian shape
in deep water (3.27) becomes
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A(X ,T ) =
A0

(1+16Ω4
envX2/g2)1/4

× exp

(
δwX − Ω2

env

1+16Ω4
envX2/g2 (T −X/Cgr)2

)
. (3.31)

More details can be found in Touboul et al. (2008).
The amplitude of the envelope (3.31) at a fixed distance X is defined by

Amax(X) = A0

[
1+16Ω4

envX2
f /g2

1+16Ω4
env(X −Xf )2/g2

]1/4

exp(δwX), (3.32)

where Xf is the focusing length. For a relatively weak wind increment (δw <
Ω2

env/g), the variation of the wave amplitude along the tank is not symmetrical (in
comparison to the case with no wind). The extreme value of wave amplitude is in-
creased and achieved at point

Xf ,wind = Xf +
1

4δw

[

1+

√

1− g2δ 2
w

Ω4
env

]

. (3.33)

Figure 3.13 shows the results of comparison of the theory versus fully nonlinear
simulations (Touboul et al. 2008). The case with no wind is given in Fig. 3.13a,
while the dynamics with wind are presented in Fig. 3.13b. Solution (3.33) corre-
sponds to the dashed line in Fig. 3.13b. This relationship explains the tendency of
the experimental results qualitatively. But the value of the Miles increment δw proves
to be too small, so the modification of the linear solution is insignificant to describe
the experiment (see Fig. 3.13b).

The wave steepness value in the vicinity of the focusing point becomes impor-
tant, and one should consider nonlinear effects due to increased steepness. Hence,

(a) (b)

Fig. 3.13 Amplification factor as a function of normalized distance for a transient wave group: (a)
propagated without wind (theoretical linear solution, solid line, and numerical solution, circles);
(b) propagated under wind action with growth rate β = 2.6 (theoretical linear solution without
wind, solid line, theoretical linear solution with wind (3.32), dashed line, circles)
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the fully nonlinear hydrodynamic equations are solved within the framework of the
potential nonlinear theory, as shown in the circles in Fig. 3.13a,b (more details are
given in Touboul et al. (2008). Following Banner and Song (2002), the surface pres-
sure distribution during the experiments is assumed to be of the following form:

P = αρaU∗2 ∂η
∂X

(3.34)

with α = 2β/κ2 and U∗ = 0.2Cph. Strong nonlinearity leads to a shifting of the
focused area and an increase of its width in full agreement with observed data. To
demonstrate how the wind effect can modify the behavior of steep wave groups, the
spatial evolution of the amplification factor A/A0 has been computed without wind
as well (see Fig. 3.13a). In this case, theoretical and numerical solutions are close,
and weak deviations occur during the formation of the steep group. A nonlinear sat-
uration in amplitude and a weak widening in the vicinity of the peak are observed.
When the wind effect is introduced, the behavior of the wave train is strongly mod-
ified. This feature emphasizes the significance of the water wave nonlinearity as
displayed in Fig. 3.13b.

A more careful and detailed analysis of the wind-wave interaction during the
wave focusing emphasized the strong coupling between the wave group and the tur-
bulent boundary layer when the extreme wave event occurs (Touboul et al. 2006,
Kharif et al. 2008). Hence, it has been shown that air-sea fluxes are strongly en-
hanced in the presence of strongly nonlinear wave groups. This strong correlation
between the very steep waves in the group and the wind suggests that the Jeffreys’
sheltering mechanism (1925) could be a suitable model to describe this coupling.
This aspect is further discussed in Sects. 4.3.4 and 4.4.

To conclude, we can claim that wind-wave interaction increases the duration and
intensity of rogue wave events.

3.4 Wave-Current Interaction as a Mechanism of Rogue Waves

One of the first collections of observed rogue wave events has been gathered by
Mallory (1974) for the southwestern Indian Ocean, where the Agulhas current
passes along the South Africa coast (see description given in Sect. 1.1 and Fig. 1.1d).
Thus, the first theoretical models of the freak wave phenomenon considered wave-
current interaction (Peregrine 1976; Basovich and Talanov 1977; Thomas 1981,
1990; Lavrenov 1998, 2003; Shyu and Phillips 1990; White and Fornberg 1998;
Brown 2000, 2001). Noticing that the characteristic scales of oceanic currents are
large compared to wind-wave wavelengths, the ray approach described in Sect. 3.1
may be successfully applied with the dispersion relation for water waves propagat-
ing on currents. Considering the deep-water wave case, the dispersion relation for
waves on a steady current becomes anisotropic for unidirectional wave propagation

Ω = Ωi (K)+K ·Uc (X ,Y ) , Ωi = ±
√

gK, (3.35)
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Fig. 3.14 Dispersion relation for unidirectional wave propagation over a current

Here, Ωi is the intrinsic frequency (when there is no current). Even in the one-
dimensional (1D) case, when the current passes along the OX axis and its speed is a
function of one coordinate X only—Uc = (Uc(X),0)—the wave-current interaction
is not trivial. When the current is opposite to the incident monochromatic waves,
they suffer from the blocking phenomenon at the point X∗, where the group velocity
(in the non-moving system of coordinates) is zero

Cgr =
dΩ
dK

=
1
2

√
g
K

+Uc(X∗) = 0. (3.36)

A wave approaching the blocking point has phase and group velocities of the
same sign. After reflection from the blocking point, the group velocity gets a sign
opposite to that of the phase velocity (see Fig. 3.14). The wave number increases
during wave-current interaction, and an initial long wave transforms into a short
wave. The wave amplitude can be found from the wave action balance equation

∂
∂T

(
A2

Ωi

)
+∇ ·

(
CgrA2

Ωi

)
= 0. (3.37)

This is a generalization of the energy balance equation (3.5) for waves on current
(Bretherton and Garrett 1969, Peregrine 1976). For steady currents, (3.37) results in
the wave action flux-conservation law

CgrbA2/Ωi = const, (3.38)

where b, as previously, is the distance between neighboring rays.
For unidirectional wave propagation, the blocking point characterized by zero

group velocity (3.36) plays the role of a caustic where the wave amplitude formally
tends to infinity. In fact, Eq. (3.37) is not valid in the vicinity of caustics, and a more
accurate asymptotic analysis using the Maslov representation should be applied;
it gives near caustics the following expression for the wave field (Peregrine 1976,
Lavrenov 2003)
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η(X ,T ) ∝ Ai

[(
8∂Uc/∂X
Ωi(K∗)

)1/3

K∗(X −X∗)

]

cos(K∗X −ΩT ) , (3.39)

where K∗ = K(X∗) is the value of the wavenumber at the blocking point calculated
from (3.36), and ∂Uc/∂X is computed at the same point X∗. As a result, the wave
amplitude at the blocking point remains bounded:

A∗
A0

∝
(

Ωi

dUc/dX

)1/6

. (3.40)

This formula is valid for linear waves only; waves of large amplitudes are usu-
ally breaking; see photo in Fig. 3.15 of wave-blocking phenomenon at Indian River
inlet (Delaware, USA) taken from Chawla and Kirby (2002). The wave blocking
on opposite currents has been studied in laboratory tanks (Badulin et al. 1983,
Pokazayev and Rozenberg 1983, Lai et al. 1989, Chawla and Kirby 2002). Fig-
ure 3.16 displays the process of the wave reflection from the blocking point with
wavelength reduction (X < 0) and strong attenuation beyond this point (X > 0).

Transient and irregular wave groups are of special interest in the context of rogue
waves. In both cases, caustics are spatially distributed and various spectral compo-
nents are blocked at different points on the variable opposite current. Obtaining an
analytical solution for transient groups is a difficult task and we give here only one
exact solution that is valid for narrow-banded and weakly nonlinear wave groups in
the vicinity of caustics1 (Chen and Liu 1976).

Fig. 3.15 Wave blocking at Indian River inlet (USA). Reproduced from Chawla and Kirby (2002)
by permission of American Geophysical Union.

1 This is an exact solution of the variable-coefficient nonlinear Schrödinger equation that can be
derived for such a situation.



84 3 Quasi-Linear Wave Focusing

Fig. 3.16 Wave reflection and passing through blocking point in laboratory flume. Reproduced
from Chawla and Kirby (2004)

A(X ,T ) = B sech
[√

2KB(X −V T )
]

(3.41)

× exp
[
i
(√

2K2BX +ΩKBT 2|dUc/dX |/
√

32−ΩT 3|dUc/dX |2/24
)]

.

In (3.41), Ω denotes the mean frequency, while the wavenumber K is defined at
the blocking point by condition (3.36). This group may be, in fact, transformed to an
envelope solution of the nonlinear Schrödinger equation; it preserves the amplitude
and moves with variable speed
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V =
ΩB√

8
− Ω

4K

∣
∣
∣
∣
dUc

dX

∣
∣
∣
∣T. (3.42)

The group moves towards the blocking point, penetrates it, and then is reflected.
Surprisingly, the soliton amplitude B remains constant during the wave propagation
in the inhomogeneous medium due to the balance between dispersive focusing (de-
focusing) and attenuation (amplification) in the zone of nonuniform current. This
solution demonstrates that the result depends on a competition of these two effects,
and therefore the amplitude of the transient group can either be amplified or attenu-
ated at caustics in natural conditions.

When the current is uniform, and the wave maker in the flume generates a
wavetrain with linearly decreasing frequency, caustics are nevertheless spatially dis-
tributed again and do not allow optimal wave-train compression. This result may be
straightforwardly shown from the solution of the kinematic equation (3.12), when
the Doppler effect on a constant current is taken into account (Touboul et al. 2007)

Ω(X ,T ) = Ω0(τ), τ = T − X
Cgr(Ω)+Uc

, (3.43)

with the condition ∂Ω/∂T going to infinity. The focusing point is then spread over
a focusing area, extending from Lmin to Lmax, where

Lmax/min = Xf

(
1+

2UcΩmax/min

g

)2

. (3.44)

Irregular unidirectional wave groups have been studied experimentally and nu-
merically by Chawla and Kirby (2002) and Wu and Yao (2004). Experimental
results confirm that a random wave field does not prevent rogue-wave formation
caused by dispersive focusing. Strong opposite currents inducing partial wave block-
ing significantly elevate the limiting steepness and asymmetry of freak waves.

Reflection of oblique waves by currents was studied analytically by Shyu and
Tung (1999). A more general approach takes into account two horizontal coordi-
nates and realistic profiles of transverse shear currents for complex ray patterns
with the generation of “normal” caustics when the differential width is zero (b = 0),
and specific “current” caustics when Cgr = 0. Lavrenov (1998, 2003) calculated the
ray pattern in the vicinity of the Agulhas current for one rogue wave event, and
showed that it contains focus points where the wave energy concentrates. White and
Fornberg (1998) took into account the weak randomness of the current (about 5%
of the wave speed) and showed that variable currents can lead to very intricate ray
patterns with a large number of focal points (Fig. 3.17). The distribution of the focal
points maps to a universal curve. In the ray approach, each focus corresponds to a
rogue wave, but in reality the number of generated freak waves should be smaller
than the number of foci. The short-lived character of rogue waves on currents can be
provided by the temporal variation of the current and incident wave-front curvature.

The reported calculations demonstrate that currents can lead to the formation of
rogue waves, and may be potentially met in the presence of strong currents such as
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Fig. 3.17 Forming caustics due to wave-current interaction. Reproduced from White and Fornberg
(1998) by permission of Cambridge University Press

the Gulf, the Agulhas, or the Kuroshio currents (Toffoli et al. 2005). The authors of
the papers cited above assume that wave-current interaction is the major mechanism
of the rogue wave phenomenon in deep water. In shallow water, perhaps, the wave-
bottom interaction prevails.

List of Notations

A wave amplitude
b(X ,Y ) distance between neighbouring rays
cD drag coefficient
Cgr group velocity
CLW long wave velocity
Cph phase velocity
D water depth
g acceleration due to gravity
K = (KX ,KY ) wave vector
K wavenumber
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t dimensionless time
T time
Tf focusing time
Uc current velocity
Uw wind velocity
U∗ friction velocity
x dimensionless coordinate
X = (X ,Y ) horizontal plane coordinate
Xf focusing length
X∗ blocking point
δw increment of energy transfer from air
η(X , Y , T ) surface elevation
κ Von Karman constant
θ slip angle
θ wave complex phase
ρa air density
ρw water density
Ω cyclic wave frequency
Ωi intrinsic frequency
∇ gradient operator
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Bonnefoy F, de Reilhac PR, Le Touzé D, Ferrant P (2005) Numerical and physical experiments of

wave focusing in short-crested seas. In: Proc. 14th Aha Huliko‘a Winter Workshop, Honolulu,
Hawaii, 2005

Brandini C, Grilli S (2001a) Modeling of freak wave generation in a 3D-NWT. In: Proc. 11th Int
Offshore and Polar Eng Conf ISOPE , Stavanger, Norway, 2001, pp 124–131

Brandini C, Grilli S (2001b) Three-dimensional wave focusing in fully nonlinear wave models.
http://www.oce.uri.edu/∼grilli/focus waves01.pdf. Accessed 18 May 2008



88 3 Quasi-Linear Wave Focusing

Brekhovskikh LM (1980) Waves in layered media. Academic Press, New York
Bretherton FP, Garrett CJR (1969) Wavetrains in inhomogeneous moving media. Proc Roy Soc

Lond A 302:529–554
Brown MG (2000) The Maslov integral representation of slowly varying dispersive wavetrains in

inhomogeneous moving media. Wave Motion 32:247–266
Brown MG (2001) Space-time surface gravity wave caustics: structurally stable extreme wave

events. Wave Motion 33:117–143
Brown MG, Jensen A (2001) Experiments on focusing unidirectional water waves. J Geophys Res

106(C8):16917–16928
Chawla A, Kirby JT (2002) Monochromatic and random wave breaking at blocking points. J Geo-

phys Res 107(C7):3067. doi:10.1029/2001JC001042
Chen HH, Liu CS (1976) Solitons in nonuniform media. Phys Rev Lett 37:693–697
Choi BH, Pelinovsky E, Riabov I, Hong SJ (2002) Distribution functions of tsunami wave heights.

Nat Hazards 25:1–21
Clauss G (1999) Task-related wave groups for seakeeping tests or simulation of design storm

waves. Appl Ocean Res 21:219–234
Clauss G (2002) Dramas of the sea: episodic waves and their impact on offshore structures. Appl

Ocean Res 24:147–161
Clauss G, Bergmann J (1986) Gaussian wave packets: a new approach to seakeeping tests of ocean

structures. Appl Ocean Res 8:190–206
Contento G, Codiglia R, D’Este F (2001) Nonlinear effects in 2D transient nonbreaking waves in

a closed flume. Appl Ocean Res 23:3–13
Dobrokhotov SYu (1983) Maslov methods in the linearized theory of gravity waves on the surface

of a liquid. Sov Phys Dokl 28:229–231
Dobrokhotov SYu, Zhevandrov PN (2003) Asymptotic expansions and the Maslov canonical oper-

ator in the linear theory of water waves. 1. Main constructions and equations for surface gravity
waves. Russ J Math Phys 10:1–31

Dobrokhotov SYu, Sekerzh-Zenkovich SYa, Tirozzi B, Volkov B (2006) Explicit asymptotics
for tsunami waves in framework of the piston model. Russ J Earth Sci 8:ES4003. doi:
10.2205/2006ES000215

Dysthe KB, Krogstad HE, Socquet-Juglard H, Trulsen K (2005) Freak waves, rogue waves, ex-
treme waves and ocean wave climate. http://www.math.uio.no/∼karstent/waves/ index en.html.
Accessed 14 March 2008

Draper L (1964) ‘Feak’ ocean waves. Oceanus 10:13–15
Engelbrecht JK, Fridman VE, Pelinovski EN (1988) Nonlinear evolution equations. Longman,

London
Fochesato C, Grilli S, Dias F (2007) Numerical modeling of extreme rogue waves generated by

directional energy focusing. Wave Motion 44:395–416
Goulitski K, Shemer L, Kit E (2004) Steep unidirectional waves: experiments and modeling. Izv

VUZ Appl Nonlinear Dynamics 12:122–131
Jeffreys H (1925) On the formation of wave by wind. Proc Roy Soc A 107:189–206
Johannessen TB, Swan C (1997) Nonlinear transient water waves – Pt. 1. A numerical method of

computation with comparisons to 2-D laboratory data. Appl Ocean Res 19:293–308
Kharif C, Giovanangeli JP, Touboul J et al (2008) Influence of wind on extreme wave events:

experimental and numerical approaches. J Fluid Mech 594:209–247
Kharif C, Pelinovsky E, Talipova T, Slunyaev A (2001) Focusing of nonlinear wave groups in deep

water. J Exp Theor Phys Lett 73:170–175
Lai RJ, Long SR, Huang NE (1989) Laboratory studies of wave-current interaction: kinematics of

the strong interaction. J Geophys Res 94:16201–16214
Lavrenov IV (2003) Wind waves in ocean: dynamics and numerical simulations. Springer-Verlag,

Heidelberg
Lavrenov I (1998) The wave energy concentration at the Agulhas current of South Africa. Nat

Hazards 17:117–127



References 89

Magnusson AK, Donelan MA, Drennan WM (1999) On estimating extremes in an evolving wave
field. Coastal Eng 36:147–163

Mallory JK (1974) Abnormal waves on the south-east of South Africa. Inst Hydrog Rev 51:89–129
Mei CC (1983) The applied dynamics of ocean surface waves. Wiley, New York
Miles JW (1957) On the generation of surface waves by shear flow. J Fluid Mech 3:185–204
Miles JW (1996) Surface-wave generation: a viscoelastic model. J Fluid Mech 322:131–145
Ostrovsky L, Potapov A (1999) Modulated waves, theory and applications. John Hopkins Univer-

sity Press, Baltimore
Pelinovsky E, Talipova T, Kharif C (2000) Nonlinear dispersive mechanism of the freak wave

formation in shallow water. Phys D 147:83–94
Pelinovsky E, Talipova T, Kurkin A, Kharif Ch (2001) Nonlinear mechanism of the tsunami wave

generation by atmospheric disturbances. Nat Hazards Earth Sys Sci 1:243–250
Pelinovsky EN (1982) Nonlinear dynamics of tsunami waves. IAP RAS Press, Nizhny Novgorod

(In Russian)
Peregrine DH (1976) Interaction of water waves and currents. Adv Appl Mech 16:9–117
Peregrine DH (1983) Wave jumps and caustics in the propagation of finite-amplitude water waves.

J Fluid Mech 136:435–452
Peregrine DH, Smith R (1979) Nonlinear effects upon waves near caustics. Phil Trans Roy Soc

Lond A292:341–370
Pokazayev KV, Rozenberg AD (1983) Laboratory studies of regular gravity-capillary waves in

currents. Oceanology 23:429–435
Shyu JH, Phillips OM (1990) The blocking of gravity and capillary waves by longer waves and

currents. J Fluid Mech 217:115–141
Shyu JH, Tung CC (1999) Reflection of oblique waves by currents: analytical solutions and their

application to numerical computations. J Fluid Mech 396:143–182
Slunyaev A, Kharif C, Pelinovsky E, Talipova T (2002) Nonlinear wave focusing on water of finite

depth. Phys D 173:77–96
Stansberg CT (2001) Random waves in the laboratory – what is expected for the extremes? In:

Olagnon M, Athanassoulis GA (eds) Rogue Waves 2000, Ifremer, France, 289–301
Thomas GP (1981) Wave-current interactions: an experimental and numerical study: Part I: linear

waves. J Fluid Mech 110:457–474
Thomas GP (1990) Wave-current interactions: an experimental and numerical study: Part II: non-

linear waves. J Fluid Mech 216:505–536
Toffoli A, Lefevre JM, Bitner-Gregersen E, Monbaliu J (2005) Towards the identification of warn-

ing criteria: Analysis of a ship accident database. Appl Ocean Res 27:281–291
Touboul J, Giovanangeli JP, Kharif C, Pelinovsky E (2006) Freak waves under the action of wind:

Experiments and simulations. Eur J Mech B / Fluids 25:662–676
Touboul J, Kharif C, Pelinovsky E, Giovanangeli JP (2008) On the interaction of wind and steep

gravity wave groups using Miles’ and Jeffreys’ mechanisms. Submitted to Nonlinear Processes
in Geophysics

Touboul J, Pelinovsky E, Kharif C (2007) Nonlinear focusing wave groups on current. J Korean
Soc Coastal and Ocean Eng 9:222–227

White BS, Fornberg B (1998) On the chance of freak waves at the sea. J Fluid Mech 255:113–138
Whitham GB (1974) Linear and nonlinear waves. Wiley & Sons, New York London Sydney

Toronto
Wu CH, Yao A (2004) Laboratory measurements of limiting freak waves on currents. J Geophys

Res 109:C12002-1–18



Chapter 4
Rogue Waves in Waters of Infinite
and Finite Depths

The most widely investigated rogue wave events are those due to modulational in-
stability or dispersive focusing mechanisms. So far, the nonlinear terms of the equa-
tions have been neglected, hence in this chapter attention is paid to rogue wave
occurrence when nonlinear effects are taken into account. This chapter—which is
mainly devoted to modeling and simulating the physics of rogue wave events in the
deep sea—addresses finite depth situations to some extent, too.

First, we present the modulational instability of water waves within the frame-
work of the fully nonlinear equations and weakly nonlinear approximate approach
in Sect. 4.1. From a deterministic viewpoint, it is the so-called Benjamin-Feir insta-
bility: a carrier wave is unstable in terms of sideband perturbations provided their
respective wavenumbers are sufficiently close. From a statistical view point it is
known as spectral instability, which is the random version of the Benjamin-Feir
instability: a random narrowband wave train is unstable in terms of sideband pertur-
bations provided the width of the spectrum is sufficiently narrow.

The widely-used nonlinear Schrödinger equation and related approximate theory
for the Benjamin-Feir instability are presented in Sect. 4.2. Generation of rogue
waves due to the nonlinear-dispersive focusing is investigated with the help of the
inverse scattering approach. Breathing exact solutions of this model are described.

Section 4.3 is devoted to the occurrence of rogue waves in the deep sea when
fully nonlinear equations are used. The High Order Spectral Method (HOSM) and
the Boundary Integral Equation Method (BIEM), which are used to simulate nu-
merically rogue waves due to modulational instability and dispersive focusing, are
briefly presented with and without wind forcing. Sections 4.2 and 4.3 are devoted to
deterministic description of the rogue-wave occurrence, while Sect. 4.4 concerns a
statistical description of these giant waves.

Some laboratory experiments on rogue waves are presented in Sect. 4.5 with and
without wind action.

Section 4.6 is aimed at presenting 3D aspects of the freak-wave occurrence.
Instrumental registrations of rogue waves give the possibility to fit elaborate theo-

ries with natural phenomena. Some approaches to understanding the nature of freak
waves are presented in Sect. 4.7.1. They exhibit significant nonlinear (and modu-
lational) effects when rogue waves occur. Results of statistical processing of huge
wave in-situ records are collected in Sect. 4.7.2.
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4.1 The Modulational Instability

The generation of extreme wave events can be simply obtained from the
Benjamin-Feir instability (or modulational instability) of uniformly traveling trains
of Stokes waves in water of infinite and finite depths. Stokes’ wave trains are unsta-
ble in terms of various perturbations. Among these instabilities is the Benjamin-Feir
instability (a long-wave instability). The latter dominates for small values of the
amplitude. Various researchers discovered the existence of modulational instability
of Stokes waves at the same time. Lighthill (1965) provided a geometric condi-
tion for wave instability in deep water. Later, Benjamin and Feir (1967) demon-
strated the result analytically. Using a Hamiltonian approach, Zakharov (1968)
derived the same instability result. Furthermore, in the context of modulated wa-
ter waves, he obtained the famous Nonlinear Schrödinger equation. It would have
been more appropriate to call the modulational instability the BFLZ instability in-
stead of BF instability. Benney and Roskes (1969) extended the study to finite
depth and derived what is now called the Davey-Stewartson system (Davey and
Stewartson 1974). Both Zakharov (1968) and Benney and Roskes (1969), for in-
finite depth and finite depth, respectively, investigated the stability with 3D per-
turbations. Dysthe (1979) pursued the perturbation analysis one step further, to
fourth-order in wave steepness, and found that the wave-induced mean flow signifi-
cantly influences the growth rate of the modulational instability. Later on, Stiassnie
and Shemer (1984) used a powerful approximate equation—the Zakharov equation
free of the narrow band assumption—to investigate the stability of Stokes waves.
Note that the Dysthe equation was derived from the Zakharov equation by Stiassnie
(1984) under the assumption of narrow band wave field. Furthermore, with the
Zakharov equation it is possible to consider perturbations different from modula-
tional type. Later on, numerical computations based on fully nonlinear equations,
allowed researchers to go beyond the modulational instability. The main advantage
is that there is no restriction on the length of perturbations and amplitude of the ba-
sic wave. Longuet-Higgins (1978a,b) investigated 2D instabilities, whereas McLean
et al. (1981) and McLean (1982a,b) considered 3D instabilities of 2D Stokes waves.
More recently, Francius and Kharif (2006) extended the linear stability analysis of
finite-amplitude periodic progressive gravity waves to steeper waves and shallower
water. The method used by McLean to study the stability of Stokes wave trains,
within the framework of the fully nonlinear equations, is presented in Sect. 4.1.1,
followed by a brief presentation of the obtained main results. See the papers by
Kharif and Ramamonjiarisoa (1988) and Dias and Kharif (1999), too.

4.1.1 Within the Framework of the Fully Nonlinear Equations

In this section, a general presentation of surface wave instabilities is given, based on
the fully nonlinear equations (2.13), (2.28), (2.30), and (2.31). More precisely, we
consider the linear stability of a Stokes’ wave train of arbitrary wave steepness.
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Let η = η̄ +η ′ and φ = φ̄ +φ ′ be the perturbed elevation and perturbed velocity
potential, where (η̄ , φ̄) and (η ′,φ ′) correspond to the unperturbed Stokes wave (ba-
sic wave) and infinitesimal perturbative motion (η ′ � η̄ ,φ ′ � φ̄), respectively. Fol-
lowing Longuet-Higgins (1985), the Stokes wave of wavenumber K0 is computed
iteratively. Substituting these decompositions in the boundary conditions linearized
about the unperturbed motion (η̄ , φ̄), and using the following forms with p and q
arbitrary real numbers (see McLean 1982b),

η ′ = e−iσT exp [i(pK0X +qK0Y )]
∞

∑
j=−∞

A je
i jK0X , (4.1)

φ ′ = e−iσT exp [i(pK0X +qK0Y )]
∞

∑
j=−∞

B je
i jK0X

cosh

[√
(p+ j)2 +q2K0 (Z +D)

]

cosh

[√
(p+ j)2 +q2K0D

] ,

(4.2)

yields a complex eigenvalue problem for σ , with eigenvector u = (A j,B j)t

(A− iσB)u = 0, (4.3)

where A and B are complex matrices depending on the wave steepness of the basic
wave and the arbitrary real numbers pK0 and qK0 corresponding to the longitudinal
and transverse wavenumbers of the perturbation, respectively. The physical distur-
bance that corresponds to the real part of expressions (4.1) and (4.2) has periods
2π/pK0 and 2π/qK0 in X- and Y -directions, respectively. The terms corresponding
to the sums in (4.1) and (4.2) have the spatial periodicity of the basic Stokes waves.
Hence, forms (4.1) and (4.2) express that the perturbations feel the presence of the
Stokes waves. Instability corresponds to Im(σ) �= 0. The spectrum is easy to com-
pute when η̄(X ,T ) = 0. In the moving frame with the basic wave, one finds that the
eigenvalues are

σn = −(p+n)
√

gK0 tanh(K0D)±
√

gKn tanh(KnD),

k2
n = (p+n)2 +q2, Kn = K0kn.

(4.4)

The eigenvalues are real, hence the state corresponding to η̄ = 0 is spectrally
stable. As the wave steepness of the Stokes wave increases, the eigenvalues move.
MacKay and Saffman (1986) derived a necessary condition for a Stokes wave to
lose spectral stability corresponding to the collision of eigenvalues of opposite
Krein signature (Krein 1955), or a collision of eigenvalues at zero (see MacKay
and Saffman 1986).

σ±
n1

(p,q) = σ±
n2

(p,q) (4.5)

The instabilities are separated into two classes: class I when the collisions occur
between modes with n = m and n = −m, and class II when the collisions occur
between modes with n = m and n = −m− 1. The corresponding instabilities are
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called class I and class II instabilities. Class I (m) corresponds to (2m + 2)-wave
interactions, whereas class II (m) corresponds to (2m+3)-wave interactions:
Class I (m)

k1 = (m+ p,q), k2 = (m− p,−q),

σ+
m (p,q) = σ−

−m (p,q) , (4.6)

Ω1 +Ω2 = 2mΩ0.

Class II (m)

k1 = (m+ p,q), k2 = (1+m− p,−q),

σ+
m (p,q) = σ−

−m−1 (p,q) , (4.7)

Ω1 +Ω2 = (2m+1)Ω0,

with

Ωn =
√

gKn tanh(KnD), n = 0,1,2,

Kn = K0kn, Kn = K0kn, n = 1,2. (4.8)

The collision of eigenvalues may be interpreted as wave-wave resonant interac-
tions satisfying the following conditions

K1 +K2 = NK0, Ω1 +Ω2 = NΩ0, N ≥ 2, (4.9)

where even values of N(= 2m) correspond to Class I (m), and odd values of N(=
2m+1) correspond to Class II (m), respectively.

Class I (m) instabilities correspond to resonant interactions between the basic
mode K0 = (1,0)K0 counted 2m times and the satellites K1 = (m+ p,q)K0 and K2 =
(m− p,−q)K0, whereas class II (m) instabilities correspond to resonant interactions
between the basic mode K0 = (1,0)K0 counted 2m + 1 times and two satellites
K1 = (m + p,q)K0, K2 = (1 + m− p,−q)K0. For instance, N = 2 corresponds to
quartet resonant interactions, and N = 3 responds to quintet resonant interactions,
etc.

The BF instability belongs to class I instability with m = 1 and corresponds to
small values of the wavenumber p. Class I (m = 1) generalizes the BF instability
and includes modulational instabilities.

In water of infinite depth (K0D → ∞), the 2D (q = 0) modulational instability is
dominant for small to moderate values of the wave steepness, whereas for larger val-
ues, 3D instabilities of class II (m = 1) become dominant. The latter instability may
lead to the formation of horseshoe patterns while modulational instability evolves
into a series of modulation-demodulation cycles (Fermi-Pasta-Ulam recurrence).

In finite depth, McLean (1982b) considered three depths—one greater (K0D = 2)
and two smaller (K0D = 1 and 0.5) than K0D = 1.363, which is a critical depth
(see the next section). He confirmed the stabilization of 2D long-wave perturbations
(p � 1) for K0D < 1.363 as predicted by Whitham (1967). For K0D = 2, he found
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that the dominant instability still belongs to class I (m = 1) when the wave steepness
is small or moderate. Unlike the deep water case, the modulational instability is now
3D (q �= 0). For steeper waves, 3D instabilities of class II (m = 1) crescent-shaped
form become dominant. For K0D = 1, 2D long-wave perturbations (p � 1) of class
I (m = 1) are stable for small wave steepness. However, this class is dominated by
3D unstable perturbations (q �= 0). For steeper waves, it is the crescent-shaped in-
stability of class II (m = 1) that is dominant. The shallowest case (K0D = 0.5) that
McLean considered is most unstable for small wave steepness, to a 2D perturbation
of class I (m = 1) with a wavenumber comparable to K0, in contrast to the familiar
2D long-wave perturbations that are the dominant instabilities in deep water. For
small-amplitude waves, this result was rediscovered by Francius and Kharif (2006)
for K0D < 0.5. Two-dimensional long-wave perturbations are stable at these depths.
For moderate steepness, the dominant instability shifts to the 3D one and is still as-
sociated with class I (m = 1). For sufficiently steep waves, class II (m = 1) dominates
and the most unstable perturbation is three-dimensional.

4.1.2 Within the Framework of the Nonlinear
Schrödinger (NLS) Equation

The evolution equations describing wave propagation over deep or shallow waters
may straightforwardly be derived heuristically (Kharif and Pelinovsky 2006). One
of the common ways to rigorously derive these equations is based on the asymptotic
technique of Engelbrecht et al. (1988). Slowly modulated weakly nonlinear water
waves may thus be described with the help of approximate asymptotic equations
for wave modulations. The Nonlinear Schrödinger (NLS) equation represents the
simplest equation of this kind, first obtained by Zakharov (1968). The detail of its
derivation may be found, for example, in Johnson (1997).

4.1.2.1 The Davey-Stewartson and Nonlinear Schrödinger Equations

Let us consider unidirectional wave propagation on the sea surface of arbitrary con-
stant depth; the geometry of the problem is the same as used in Chap. 2 (see Fig. 2.1).
The system of governing equations is given by the Laplace equation (2.13), bound-
ary conditions on the free surface (2.28) and (2.30), and the sea bottom condition
(2.46).

We will restrict our interest to the narrow-band wave fields (long-wave modula-
tions) so that the solution to the problem may be sought in the form of perturbation
expansions similar to (2.33) and (2.34):

φ (X ,Y,Z,T ) =
∞

∑
n=0

εn+1φn (X ,Y,Z,T ), (4.10)

η (X ,Y,Z,T ) =
∞

∑
n=0

εn+1ηn (X ,Y,Z,T ), (4.11)
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where

φn =
∞

∑
m=−∞

φn,mEm, (4.12)

ηn =
∞

∑
m=−∞

ηn,mEm, (4.13)

Em =
{

1, m = 0
1/2exp [im(K0X −Ω0T )] , m �= 0

.

For the sake of simplicity, we choose the direction of wave propagation along the
OX axis so that the carrier (fundamental) wave has wave vector K0 = (K0,0),K0 > 0,
and cyclic frequency Ω0 > 0; ε is a small parameter that will be specified later. Rela-
tions φn,−m = φ ∗

n,m and ηn,−m = η∗
n,m should be satisfied to provide real values of the

surface displacement and the velocity potential. The asterisk denotes the complex
conjugate.

With the help of Taylor expansion at the still water level (2.35), the boundary
conditions on the sea surface read

ηT +ηX

∞

∑
j=0

η j∂ j
ZφX

j!
+ηY

∞

∑
j=0

η j∂ j
ZφY

j!
−φ

∞

∑
j=0

η j∂ j+1
Z φ
j!

= 0 on Z = 0, (4.14)

∞

∑
j=0

η j∂ j
ZφT

j!
+

1
2

(
∞

∑
j=0

η j∂ j
ZφX

j!

)2

+
1
2

(
∞

∑
j=0

η j∂ j
ZφY

j!

)2

+
1
2

(
∞

∑
j=0

η j∂ j+1
Z φ
j!

)2

+gη = 0 on Z = 0. (4.15)

We introduce slow coordinates X1 and Y1, and multiple slow times T1 and T2 as

∂
∂X

⇒ ∂
∂X0

+ ε
∂

∂X1
, (4.16)

∂
∂Y

⇒ ∂
∂Y0

+ ε
∂
∂Y1

, (4.17)

∂
∂T

⇒ ∂
∂T0

+ ε
∂
∂T1

+ ε2 ∂
∂T2

+ . . . . (4.18)

The main contribution in the series (4.12) and (4.13) corresponds to the first har-
monic (m = ±1), so that we put ϕ0,m = 0 for |m| > 1 and η0,m = 0 for m �= ±1. The
term ϕ0,0 is responsible for the nonlinear induced flow (see Johnson 1997), and is
also a zero-order term. Substituting series (4.16), (4.17), and (4.18) into Eqs. (4.14)
and (4.15), and collecting terms of similar harmonic component (power of E) and
of similar order (power of ε), one comes to a set of equations that may be resolved.

In particular, the Laplace equation (2.13) results in

Lmφn,m +2imK0∂X1φn−1,m +∂ 2
X1
φn−2,m = 0, Lm = ∂ 2

Z −m2K2
0 . (4.19)
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The consecutive order-by-order solution of Eq. (4.19) provides the modal (vertical)
structure of the surface waves. The leading order mode of the 2D carrier wave is
given by (2.47).

Terms with (n = 0, m = 1) give the dispersion relation (2.52) and the relation
between the surface disturbance and the velocity potential:

η0,1 = i
Ω0

g
φ0,1. (4.20)

This relation was also obtained in Chap. 2 (see Eqs. (2.47) and (2.48)). The next
order (n = 1, m = 1) leads to the equation

∂η0,1

∂T1
+Cgr

∂η0,1

∂X1
= 0, (4.21)

where Cgr is the group velocity (2.54), which is given by

Cgr =
∂Ω
∂K

=
g

2Ω0

[
d̃ +K0D

(
1− d̃2)] , d̃ ≡ tanh(K0D) . (4.22)

To obtain the next order evolution equation, the neighboring harmonic compo-
nents should be considered (m = 0,1,2). So, the zeroth and the second harmonics
contribute to the carrier wave at this level of accuracy. These orders, solved jointly,
give the following equations (Johnson 1997):

−i
∂η0,1

∂T2
+β11

∂ 2η0,1

∂X2
1

+β22
∂ 2η0,1

∂Y 2
1

+α11 |η0,1|2η0,1 +α12η0,1
∂φ0,0

∂X1
= 0, (4.23)

s1
∂ 2φ0,0

∂X2
1

+ s2
∂ 2φ0,0

∂Y 2
1

= γ
∂ |η0,1|2

∂X1
. (4.24)

The summation of Eqs. (4.21) and (4.23), supplemented by (4.24), gives the
closed system of equations involving terms of two orders of accuracy:

−i

(
∂A
∂T

+Cgr
∂A
∂X

)
+β11

∂ 2A
∂X2 +β22

∂ 2A
∂Y 2 +α11 |A|2 A+α12A

∂B
∂X

= 0, (4.25)

s1
∂ 2B
∂X2 + s2

∂ 2B
∂Y 2 = Γ

∂ |A|2

∂X
, (4.26)

where A ≡ η0,1 and B ≡ φ0,1. The small parameter ε used for the derivation of the
model, actually defines two small quantities. They are the wave steepness (used
when writing the Taylor expansions (4.14) and (4.15)) and spectral bandwidth (see
(4.16), (4.17), and the series (4.12) and (4.13)). In the present approach, these quan-
tities are supposed to be of the same order of smallness. The field of the surface
displacement and velocity potential are defined according to (4.12), (4.13), and
(4.20) as
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η = Re(Aexp [i(K0X −Ω0T )]) , (4.27)

φ =
g
Ω0

Im(Aexp [i(K0X −Ω0T )]) . (4.28)

The systems (4.25) and (4.26) were found by Benney and Roskes (1969) and
Davey and Stewartson (1974) and are usually referred to as the Davey-Stewartson
system or equation (DS). The two first terms in the LHS of Eq. (4.25) support wave
propagation with linear group velocity. The four first terms in the LHS of Eq. (4.25)
represent the linear dispersive part. Besides the strict asymptotic calculations, the
linear dispersive contribution may easily be obtained heuristically from the disper-
sion relation (2.57) by using a Taylor expansion about the wave vector of the carrier,
K0 = (K0,0)

Ω(K0 +KX ,KY ) ≈ Ω(K0,0)

+KX
∂Ω
∂KX

∣
∣
∣
∣
(K0,0)

+
1
2

K2
X
∂ 2Ω
∂K2

X

∣
∣
∣
∣
(K0,0)

+
1
2

K2
Y
∂ 2Ω
∂K2

Y

∣
∣
∣
∣
(K0,0)

,

(4.29)

where the derivatives give the coefficients of the linear part of Eq. (4.25),

Cgr =
∂Ω
∂K

, β11 = −1
2
∂ 2Ω
∂K2 , β22 = − Cgr

2K0
. (4.30)

The group velocity in (4.30) is given by (4.22). It may be easily seen from Fig. 2.3
that the second derivative of the frequency with respect to the wave number (which
is equal to the derivative Cgr

′(K)) is negative for all depths, and therefore the coef-
ficient β11 is always positive, whereas β22 is negative.

The other coefficients in the DS system (4.25) and (4.26) are

α11 =
g2Ω0

16C4
ph

(
1+9d̃−2 −13

(
1− d̃2)−2d̃4) ,

α12 =
Ω0

2C2
ph

(
2Cph +Cgr

(
1−d2)) , (4.31)

s1 = C2
LW −C2

gr, s2 = C2
LW , Γ = −α12

g2

2Ω0
.

The long-wave speed CLW in (4.31) is defined as

CLW =
√

gD. (4.32)

Coefficients s1, s2, α11, and α12 are always positive.
The nonlinear part in Eq. (4.25) includes the effect of nonlinear induced flow (the

Stokes flow), described by Eq. (4.26). In the deep-water limit, s1 → ∞ and s2 → ∞;
therefore, the contribution of the mean flow velocity potential B vanishes, and (4.25)
and (4.26) become
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−i

(
∂A
∂T

+Cgr
∂A
∂X

)
+

Ω0

8K2
0

∂ 2A
∂X2 − Ω0

4K2
0

∂ 2A
∂Y 2 +

Ω0K2
0

2
|A|2 A = 0, (4.33)

where

Ω0 =
√

gK0, Cgr =
Ω0

2K0
. (4.34)

Eq. (4.33) is the 2D (2D+1) NLS equation valid for the case of deep water (infi-
nite depth).

The DS system (4.25) and (4.26) transforms into one evolution equation describ-
ing waves in the OXZ plane when the transverse dynamic is disregarded. Then,
the DS equation results in the 1D NLS equation (Zakharov 1968, Hasimoto and
Ono 1972), written as follows

− i

(
∂A
∂T

+Cgr
∂A
∂X

)
+β

∂ 2A
∂X2 +α |A|2 A = 0, (4.35)

β = β11, α = α11 +α12
Γ
s1

. (4.36)

Contrary to the deep-water limit, the term of induced flow becomes very impor-
tant in shallow water, although on deep water α > 0, it becomes negative when the
normalized depth of the basin is less than a critical value KD = 1.363. This bifur-
cation value corresponds to a significant change in the nonlinear wave dynamics.
For KD ≈ 1.363, the nonlinear coefficient in Eq. (4.35) turns to zero, and thus, the
nonlinear effects appear at higher levels, and may be taken into account through
a modified asymptotic scheme (see Johnson 1977, Kakutani and Michihiro 1983,
Sedletsky 2003, and Slunyaev 2005).

To conclude this section, we would like to state here two important remarks about
the NLS equation. First, the coefficients in the evolution equations turn out to be
functions of the carrier wave frequency Ω0 (or wavenumber K0). The meaning of
this result is illustrated by the expansion (4.29). When deriving the NLS equation,
the linear dispersion relation Ω(K) is approximated by a parabolic function in the
vicinity of the carrier wavenumber. Hence, to derive the DS system or NLS-like
equation, it is first necessary to define the mean frequency (or wavenumber) of the
waves. Although some regular methods of the mean frequency definition exist—for
instance, via the spectral moments (see Sect. 2.2.2)—the result is not always robust
if the waves are not sufficiently narrow-band. Secondly, the derivation of Eqs. (4.25)
and (4.26) supposes two weak effects: (i) nonlinearity, of which the smallness serves
for expansions (4.10), (4.11) and the expressions of the boundary conditions in the
Taylor expansions (4.14) and (4.15); and (ii) weak modulation (the narrowband ap-
proximation) that is employed when considering different harmonics and introduc-
ing the slow coordinates (4.16), (4.17). In the derived equations, it is assumed that
these effects are of the same order of strength. Otherwise, it is necessary to include
additional terms in the evolution equation (Trulsen 2006).
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4.1.2.2 The Benjamin-Feir Instability

The Benjamin-Feir instability discussed in the previous section can be studied
within the framework of the NLS equation, too. Let us consider the linear stabil-
ity of a plane wave of real constant amplitude A0, frequency Ω, and wavenumber K.
The solution of the NLS equation (4.35) is sought in the following form

A(X ,T ) = A0 (1+a)exp [i(KX −ΩT )] , (4.37)

where a is a complex function of X and T , so that |a| � A0, and A(X ,T ) is the
exact solution of (4.35) when a ≡ 0 (which implies that Ω = CgrK −βK2 +αA2

0).
Then, the wave modulation a may exponentially grow with time when the following
condition is satisfied:

αβ > 0. (4.38)

This classical result can be found in Newell (1981), Johnson (1997), and Dias and
Kharif (1999) and is true when K0D > 1.363. The long perturbations of wavenumber
ΔK satisfying

0 < ΔK < ΔKBF , ΔKBF = A0

√
2α
β

(4.39)

are unstable, while the growth rate is given by

σBF = |ΔK|
√

2αβA2
0 −β 2ΔK2, (4.40)

where σBF ≡ −Im(σ). The subscript “BF” refers to the Benjamin-Feir instability.
The maximum growth rate

σBF max = αA2
0 (4.41)

is achieved for wavenumber

ΔKBF max = A0

√
α
β

. (4.42)

Let us consider a plane wave with carrier wave vector K0 = (K0,0), perturbed
by a disturbance of wave vector ΔK = (ΔKX ,ΔKY ). It is convenient to deal with
the deep-water 2D NLS equation (4.33) (or, similarly, the DS system when the con-
stant water case is considered) along the perturbation direction. Hence, the analysis
is similar to the 1D case and results in formulas (4.38), (4.39), (4.40), (4.41) and
(4.42), where the coefficients should be chosen as

α =
Ω0K2

0

2
, β =

Ω0

8K2
0

ΔK2
X −2ΔK2

Y

ΔK2
X +ΔK2

Y

, (4.43)

and ΔK2
X +ΔK2

Y = ΔK2. Instability occurs for long wave perturbations with wave
vectors lying in an angular domain bounded by angles ± atan(2−1/2) (it is about
± 35◦).
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The analysis for the DS system (4.25) and (4.26) is trickier, but still may be com-
pleted analytically (Slunyaev et al. 2002). The DS system for weak 2D modulation
of type (4.37) may be reduced to the form (4.35) with coefficients

α =

[

α11 +α12
Γ
s1

+α11
s2

s1

(
ΔKY

ΔKX

)2
]

·
[

1+
s2

s1

(
ΔKY

ΔKX

)2
]−1

,

β =

[

β11 +β22

(
ΔKY

ΔKX

)2
]

·
[

1+
(
ΔKY

ΔKX

)2
]−1

, (4.44)

which should be substituted into Eqs. (4.38), (4.39), (4.40), (4.41), and (4.42) to
derive the stability analysis.

The instability diagram depends on the water depth and direction of propaga-
tion of the perturbation with wave vector ΔK = (ΔKX ,ΔKY ), which is defined by
the tangent of ΔKY /ΔKX . The instability diagrams in the (ΔKX ,ΔKY )-plane are
given in Fig. 4.1 for various depths. The value of the growth rate σBF varies from
zero (black) to maximum (white). For K0D < 1.363, the longitudinal perturbations

Fig. 4.1 Instability diagrams in the plane of dimensionless perturbation vectors for a plane wave
with amplitude A0 = 1 within the framework of the Davey-Stewartson system. Four dimensionless
water depths are considered as examples: K0D = 100 (deep water), K0D = 2 (moderately deep
water), K0D = 1.363 (cancellation of the nonlinear term in the evolution equation), and K0D = 1
(finite depth close to shallow water)
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become stable. Only oblique perturbations develop modulational instability. For
K0D < 0.5, the region of instability becomes very narrow, and the instability does
not exist practically.

Formulas (4.38), (4.39), (4.40), (4.41), (4.42), (4.43), and (4.44) are valid for the
weakly nonlinear theory and are based on a narrowband wave-field approximation.
That is why the instability diagram has to be improved by using higher-order models
(Trulsen et al. 2000).

The figure shows stability diagrams for various depths from K0D = 100 (deep
water) to K0D = 1 (finite depth). As it has been already noted, only oblique pertur-
bations suffer from modulational instability when K0D < 1.363. Generally, the in-
stability regions become smaller when improved models are considered (see Trulsen
et al. 2000). The nonlinear stage of BF instability was thoroughly investigated ana-
lytically, numerically, and experimentally (see Dias and Kharif 1999).

The Benjamin-Feir instability is one of several other possible unstable wave
configurations—i.e., weak perturbations of a uniform plane wave. Other wave sys-
tems and structures may be analyzed with respect to stability (nonlinear wave pack-
ets, short-crested and bound waves), as reviewed in papers by Roskes (1976), Dhar
and Das (1991), Shukla et al. (2006), and Onorato et al. (2006a). This analysis is
trickier technically, less evident, and needs further research. Moreover, only the lin-
ear stability analysis was performed, but nonlinear instabilities are possible as well.

The nonlinear coefficient α for unidirectional waves described by (4.35) vanishes
at depth K0D = 1.363 and becomes negative in shallower water; the longitudinal
perturbations become stable. Oblique perturbations remain unstable, although the
areas of instability shrink. This degeneration of the coefficient due to the specific
geometry changes the parity of nonlinear and dispersive terms and requires con-
sideration of higher-order asymptotic expansions, briefly considered just above, to
have explicit nonlinear terms included in the evolution equation. The corresponding
equation was first derived by Johnson (1977). The equation has the form

−i

(
∂A
∂T

+Cgr
∂A
∂X

)
+β

∂ 2A
∂X2 +α |A|2 A− iγ1 |A|2

∂A
∂X

− iγ2A2 ∂A∗

∂X
+α2 |A|4 A = 0,

(4.45)
where γ1 and γ2 relate to the nonlinear-dispersion contribution, and α2 is the non-
linear coefficient of a higher (fifth) order. Considering the plane wave solution with
amplitude A0 and wavenumber K0, the condition of possible BF instability excita-
tion is modified when compared with (4.38) and is

βα +β (K −K0)(γ2 − γ1)+A2
0

(
2βα2 −

1
2
γ2

2

)
> 0. (4.46)

Hence, the instability diagram for this marginal case is affected by the wave am-
plitude and the frequency offset, and qualitatively depends on the combination of
coefficients in (4.46). The coefficients were first obtained by Johnson (1977), later
by Kakutani and Michihiro (1983) and Slunyaev (2005), and partly by Sedletsky
(2003). The complexity of the computation of high-order asymptotic expansions
results in a difference of the coefficients, so that the analysis of the modulational
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instability in the cited papers differs quantitatively, and even sometimes qualita-
tively. Johnson (1977) concludes that the marginal depth when the BF instability dis-
appears is even larger than K0D ≈ 1.363, owing to the nonlinear corrections (the last
summand on the LHS of (4.46)). Results obtained by Kakutani and Michihiro (1983)
and Slunyaev (2005) point at the opposite conclusion: the marginal depth becomes
shallower. Sedletsky (2006) undertook a further theoretical study of modulational
instability within an improved generalized envelope equation theory.

4.1.2.3 The Spectral Instability of Benjamin-Feir Type

In the real sea, the wave field always suffers from random disturbances, which calls
statistical considerations. Alber and Saffman (1978) and Alber (1978) derived an
equation describing the evolution of the wave envelope of a random wave train.
Their analysis started from the DS system, and resulted in a transport equation
(see Chap. 2). Using a more general approximate equation, the Zakharov equation
(Crawford et al. 1980) investigated the evolution of a random inhomogeneous field
of nonlinear deep-water gravity waves. Following Alber and Saffman (1978), they
considered the stability of a narrow-band homogeneous spectrum to inhomogeneous
perturbations in the limiting cases of the 1D and 2D NLS equations. Using a more
realistic spectrum, they obtained results that agree qualitatively with those of Alber
and Saffman—namely, they found that the effect of randomness characterized by
the spectral bandwidth is to reduce the growth rate and the extent of the instability.

Let us stay now within the framework of the deep-water limit of the 1D version of
the NLS equation (4.33). The instability growth rate in the presence of randomness
is given by Alber (1978) by

σBF

Ω0
=

1
8
ΔK
K0

⎡

⎣

√

16(K0Arms)
2 −

(
ΔK
K0

)2

− 2σr

K0

⎤

⎦ , (4.47)

when random waves are distributed according to the Gaussian function and σ2
r is

the variance that characterizes randomness effects. Variable Arms denotes the root
mean-square wave amplitude of the Gaussian random process (if one identifies A0 =
21/2Arms, then in the limit σr → 0 (4.47) coincides with (4.39)). The waves are stable
with respect to the BF instability if

σr

K0
> 2ArmsK0. (4.48)

In general, the effect of increasing randomness is to restrict the instability cri-
terion, to delay the onset of instability, and to reduce the amplification rate of the
modulation. The correlation length scale in the system is defined by σ−1

r , and hence
decorrelation of the waves (small correlation length or large σr) leads to stabilization
of the wavetrain according to the relation
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modulation length
correlation length

∝
σr

ΔKBF max
∝

σrK0

ArmsK0
. (4.49)

In fact, Alber (1978) estimated that the typically measured sea wave parameters
result in stable wave trains, although they are close to the neutral stability condition.

When breaking is neglected, wave damping is usually not taken into account
considering sea wave dynamics. Nevertheless, loss of energy is always observed in
experiments and motivates researchers to argue whether the BF instability is rele-
vant for real waves in the ocean. Generalizations of the NLS equation have been
suggested to take into account the effects of wave dissipation and bottom friction in
a simple way. Dissipative effects can be introduced in the NLS equation through a
linear term with coefficient δdis

−i

(
∂A
∂T

+Cgr
∂A
∂X

)
+β

∂ 2A
∂X2 +α |A|2 A− iδdisA− iδ f ric |A|γ A = 0. (4.50)

Voronovich et al. (2008) considered the effect of bottom friction that brought a
more sophisticated term into the NLS equation (with coefficient δ f ric in (4.50)).

In Eq. (4.50), the parameter δdis ≥ 0 characterizes the effect of linear dissipation.
δ f ric is a complex number manifesting both the stress at the bottom and the phase
lag between the stress and orbital velocity. The power γ is estimated in Voronovich
et al. (2008) as γ ≈ 0.48. At first sight, it seems easier to determine the values of
the parameters δdis, δ f ric, and γ from experimental data rather than from theoretical
developments.

Segur et al. (2005) reported that the plane wave solution becomes linearly and
nonlinearly stable when small dissipation δdis is taken into account. The term of
linear dissipation in Eq. (4.50) may be illuminated after the following change

A(X ,T ) = Q(X ,T )exp(−δdisT ) . (4.51)

Then Eq. (4.50) becomes

−i

(
∂Q
∂T

+Cgr
∂Q
∂X

)
+β

∂ 2Q
∂X2 +αe−2δdisT |Q|2 Q = 0, (4.52)

where we set δ f ric = 0 to restrict our interest to effects of linear dissipation only. The
exponent in (4.52) reduces the nonlinear effect. It is obvious that if the timescale of
the dissipation is much larger than other timescales of the problem, then formu-
las (4.38), (4.39), (4.40), (4.41), and (4.42) are asymptotically valid. The resulting
growth rate of perturbations is

σBF = −δdis + |ΔK|
√

2αβe−2δdisT A2
0 −β 2ΔK2. (4.53)

The study of Segur et al. (2005) confirms that the radical expression in Eq. (4.53)
defines the onset of the modulational instability. The instability is always cancelled
when the time interval becomes sufficiently long. The energy transfer from the
carrier wave to the sidebands is still possible and may be substantial if
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α |A0|2 >> δdis. (4.54)

Nevertheless, the spectral satellites grow for a limited time, and its increase is
halted due to the dissipation.

Considering the case of nonlinear wave damping due to bottom friction only
(δdis = 0), the amplitude of the carrier wave decays in a power-law way in contrast
to Eq. (4.51). The exponential growth rate has a rather complicated form, but the
instability condition is defined by the following expression (one may compare this
expression with the radical in Eq. (4.53))

βΔK2 (2αA2
0 +F1

)
−β 2ΔK4 −F2 > 0, (4.55)

where α and β are given by Eq. (4.44) for the general three-dimensional case; F1

and F2 relate to the action of the bottom stress and are functions of the complex
parameter δ f ric, and wave amplitude A0. The dissipation hampers the development
of instability and shrinks the corresponding instability domain. The longitudinal
perturbations turn out to be the most susceptible to be influenced by bottom friction.
Voronovich et al. (2008) estimate that the longitudinal perturbations become stable
when the nonlinear term in Eq. (4.50) becomes less than the frictional one

α |A0|2−γ <≈
∣
∣δ f ric

∣
∣ . (4.56)

Since the velocity components decay exponentially at large depths (see formu-
las (2.58), (2.59), and (2.60)), the bottom friction produces a significant contribu-
tion only when the dimensionless depth K0D is not large, and becomes unimportant
in the deep-water case. For intermediate depths (K0D ∼ 1.5), realistic estimations
foresee that the modulational growth may be seriously suppressed by the nonlinear
bottom friction or even cancelled at all.

4.2 Rogue Wave Phenomenon within the Framework
of the NLS Equation

In what follows, it is convenient to use the dimensionless form of the NLS equation

iqt +qxx +2 |q|2 q = 0, (4.57)

which results from Eq. (4.35) under the following transformations

t =
1
2
Ω0T, x = 2K0 (X −CgrT ) , q =

1√
2

K0A∗. (4.58)

Eq. (4.57) corresponds to the deep-water case; it is often called the focusing
NLS equation with inherent property that the signs between the nonlinear and the
dispersive terms are same. Condition (4.38) is satisfied by Eq. (4.57), and hence,
modulational instability is possible in this system.
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4.2.1 General Solution of the Cauchy Problem

Equation (4.57) is known to be integrable as it was demonstrated by Zakharov and
Shabat (1972) with the help of the Inverse Scattering Transform (IST) (see Novikov
et al. 1984, Drazin and Johnson 1989). This technique has attributes of the clas-
sic Fourier method (spectrum and eigenfunctions) and allows the determination of
some explicit exact solutions and an analytical description of model cases. Never-
theless, from the viewpoint of computations it is trickier than the Fourier transform.
Two formulations of the IST exist, suggested by Zakharov and Shabat (1972) and
Ablowitz et al. (1974), respectively. We will hereafter follow the latter, usually re-
ferred to as the Ablowitz-Kaup-Newell-Segur (AKNS) scheme.

Following the AKNS approach, the initial value problem associated with the fo-
cusing NLS equation (4.57) is written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂Ψ
∂x

=
(

λ q
−q∗ −λ

)
Ψ,

∂Ψ
∂ t

=
(

a a12

a21 −a

)
Ψ,

(4.59)

where

Ψ =
(
Ψ1

Ψ2

)
,

⎧
⎪⎨

⎪⎩

a = i |q|2 +2iλ 2

a12 = iqx +2iλq

a21 = iq∗x −2iλq∗
.

The eigenvalues λ are independent of time and constitute the spectrum. The
first matrix equation in (4.59) defines the spatial dependence of the eigenfunctions
Ψ(x, t), while the second one defines their time dependence. The solution of the ini-
tial value problem consists of determining the spectrum for the initial perturbation
q(x, t = 0) (the direct scattering transform), and then restoring the wave field on
the basis of the permanent spectrum and known time-dependent eigenfunctions (the
IST).

The spatially localized eigenfunctions correspond to the discrete spectrum, while
the others form the continuous spectrum. The discrete spectrum is responsible for
the existence of solitary waves discovered first for the Korteweg-de Vries equation
by Zabusky and Kruskal (1965) and later found in many important equations and ob-
served in different physical problems. The solitons are localized nonlinear solutions
that interact elastically with other solitons and quasilinear waves, preserving their
energy and shape. Considering the Cauchy problem on the infinite interval with
q → 0 when x → ±∞, any initial perturbation evolves into a set of solitons (they
correspond to the discrete spectrum) and a spreading due to dispersive oscillatory
tail (described by the continuous spectrum). Since the system is conservative, the
spreading waves decay in amplitude over time, so the solitons represent the asymp-
totic solution of the initial value problem for the integrable equation such as the
NLS equation.
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Fig. 4.2 The envelope soliton solution (4.60) with Aes = 1 and Ves = 10. The real part of the
solution is given by the solid line, while the dashed lines show ±|qes|

A solitary wave of the NLS equation is represented by the nonlinear envelope as
follows

qes (x, t) = Aes

exp
[
i
(

xVes
/

2 −
((

Ves
/

2
)2 −A2

es

)
t
)]

cosh(Aes (x−Vest))
, (4.60)

where Aes is the amplitude, and Ves is the speed of the envelope soliton. The envelope
soliton (4.60) is plotted in Fig. 4.2.

The part of the wave field corresponding to the continuous spectrum tends to the
following solution when t → ∞

qtail (x, t) =
Q√

t
exp

[
i

(
x2

4t
+2Q2 ln t +Θ

)]
, (4.61)

where Q and Θ are functions of the ratio x/t (Ablowitz and Segur 1979).
The multisoliton solution may be found analytically, but even the two-soliton

expression (a bi-soliton) has a rather complicated form (see Peregrine 1983,
Akhmediev and Ankiewicz 1997). That is why the numerical solution of the NLS
equation (4.57) is often used as the less laborious way of analysis. The nonlin-
ear combinations of solitons (4.60) with background waves will be discussed in
Sect. 4.2.3.

4.2.2 Nonlinear-Dispersive Formation of a Rogue Wave

The problem, which is at the heart of our attention in this section, is “How can
normal waves evolve into a rogue wave?” Let us draw the reader’s attention to the
fact that the change q → q∗ in the NLS equation (4.57) is equivalent to the time
inversion: t →−t. This property becomes understood from relation (4.20), where the
complex conjugation corresponds to inversion of the velocity, which should result
in time inversion. Due to this symmetry, instead of considering the process of freak
wave generation, the opposite evolution may be investigated. Suppose we know the
rogue wave profile. What are the waves resulting from its disintegration? Hence, the
problem of seeking the wave combinations causing rogue waves is transformed into
an initial value problem for a probable rogue wave shape.

We choose the expected freak wave q(x) having a pulse-like shape. It should be
understood, however, that the NLS equation is valid for weakly modulated wave
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trains, and thus an impulse field q(x) corresponds to a wave group η(X) with carrier
wavenumber K0 on the sea surface.

The initial value problem for the NLS equation (4.57) for some shapes of the
impulse disturbances was studied by Satsuma and Yajima (1974), Burzlaff (1988),
Kaup and Malomed (1995), Desaix et al. (1996), Clarke et al. (2000), and Slun-
yaev (2001). They provide qualitatively and quantitatively similar results. A partic-
ular shape of the expected freak wave

q f r = Ap sech
( x

L

)
, (4.62)

where Ap and L are real positive values, will be considered. The initial value problem
(4.59) for the potential (4.62) was solved by Satsuma and Yajima (1974), and the
discrete eigenvalues are defined by the expression

λnL =
M
π

−n+
1
2
, n = 1,2, ...,Ns, (4.63)

where the number of discrete eigenvalues is given by

Ns =
[

M
π

+
1
2

]
. (4.64)

The bracket [ f ] in (4.64) denotes the integer part of f . The parameter M is the
“mass” of the initial wave shape

M =
∞∫

−∞

∣
∣q f r

∣
∣dx, (4.65)

which is equal to M = πApL for a freak wave having the shape of the sech function
(4.62). Discrete eigenvalues emerge only when the mass exceeds the threshold value
M ≥ Mth where

Mth =
π
2

. (4.66)

Every eigenvalue λ corresponds to an envelope soliton (4.60) with parameters
defined by the relation

λ =
1
2

Aes + i
1
4

Ves. (4.67)

Therefore, the integer number Ns is often called the soliton number.
Actually, besides the sech-like initial pulse, the solution (4.63) and (4.64) is valid

for a variety of real shapes q f r(x) (see Satsuma and Yajima 1974, Burzlaff 1988,
Kaup and Malomed 1995, Desaix et al. 1996, Clarke et al. 2000, and Slunyaev
2001). The number M is a convenient parameter of the Cauchy problem since it
corresponds to the ratio of nonlinearity with respect to dispersion in Eq. (4.57). This
ratio is

q |q|2

qxx
∝ |q|2 L2 ∝ M2 (4.68)

(L is the characteristic length scale) and shows the significance of nonlinear effects
compared with dispersive effects. Note that one envelope soliton has “mass”
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Mes = π, (4.69)

that is twice the threshold value in Eq. (4.66). When the number of discrete eigen-
values Ns is large (and M is large, too) then formula (4.64) with M defined by
Eq. (4.65) agrees with the quantization rule of Bohr and Sommerfeld (Landau and
Lifshitz 1980) for the scattering problem defined by the first equation in (4.59).

Now, two states of the wave evolution may be compared: the expected freak wave
and the result of its evolution over time. When solitons emerge, their amplitudes
satisfy Eq. (4.67). The maximum amplitude of the solitary part of the field is equal
to Amax = 2λ1. Applying the formal definition of a rogue wave (I.1), as Ap/Amax ≥ 2,
one may easily obtain the necessary condition for the freak wave occurrence from
(4.63)

M ≤ 2π
3

≈ 2.1. (4.70)

Condition (4.70) allows the existence of no more than one envelope soliton in
the wave field (see (4.64)), which may give birth to a freak wave. If M < Mth, the
wave field does not contain solitons at all. Thus, solitons are not necessary for the
formation of a freak wave; and what is more important, rogue waves in the form
of very nonlinear (with large M) pulse-like wave packets cannot be formed. An
intensive dispersive tail is most important in this process. Its asymptotic form is
given by (4.61).

4.2.2.1 Case of a Small Mass Parameter

In the limit M → 0, solitons do not appear (actually, when M < π/2,Ns = 0). Hence,
only spreading decaying wave trains may occur as the result of the Cauchy problem.
The problem may be considered in the linear approach as a first approximation. The
linear wave grouping due to dispersion has been considered in Chap. 3. The evo-
lution of the Gaussian pulse in the linear limit is described by the exact solution
(3.27).1 In the deep-water case, the dispersion law results in quadratic wavenumber
modulation, optimal for the dispersive focusing. Other shapes of the expected rogue
waves correspond to other distributions of the energy and phases in the dispersive
train, although the quadratic phase modulation remains optimal and becomes appar-
ent over time. Note that solution (4.61) has quadratic phase modulation if Q and Θ
are taken as constant. In fact, these functions correct the optimal phase modulation,
but such a correction becomes less important if t is large. Formula (3.23), describing
the asymptotic behavior of the wave field stemming from the linear disintegration of
a rogue wave in the form of the delta-function, does not contain these corrections.

In a more complicated case, the expected freak wave profile may be repre-
sented by the Gaussian shape with quadratic phase modulation, specified by the
parameter β ,

q f r = Apexp
[
−
(
x
/

L
)2
]

exp
(
−iβx2) . (4.71)

1 Note that here there is a temporal wave evolution, while in Chap. 3 it is the spatial one.
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Kaup and Malomed (1995) showed that the squared modulation leads to a growth
of the thresholds of the emerging soliton (4.66); the discrete eigenvalues move along
the real axis closer to zero. This result agrees with simple estimations made in
(Slunyaev et al. 2002). Thus, a freak wave, expected as a modulated impulse (4.71),
is the result of an even lower number of solitons (i.e., one or none).

4.2.2.2 Competition of the Self-Modulation and Dispersive Effects

When a wave train has both amplitude and phase modulation, the effects of dis-
persive and nonlinear self-focusing will compete with each other. We illustrate this
case with the help of a numerical simulation of the NLS equation (4.57). The initial
condition is taken in the following form

q(x, t = 0) = A0 (1+ ε cos(x/LBF))exp
(
ix2/L2

disp

)
, (4.72)

where A0 = 0.043, ε = 0.1 (it is a small parameter specifying the strength of the
amplitude modulation), LBF = 28, and Ldisp varies. Length scales LBF and Ldisp are
responsible for the amplitude and wavenumber modulation, respectively. Results of
the numerical simulation of the evolution of the envelope are presented in Fig. 4.3

(a) (b)

Fig. 4.3 Numerical simulations of the wave train with amplitude and phase modulation (4.72)
within the NLS model. (a) The initial profile and the amplified wave envelopes for different values
of the parameter of phase modulation Ldisp. (b) The maxima of the wave field envelope versus
time, corresponding to the cases shown in panel (a)
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for different values of Ldisp. Focusing due to the phase modulation (small Ldisp)
happens rapidly and for short time scales, while modulational growth due to the
Benjamin-Feir instability (large Ldisp) occurs for longer time scales. When the mod-
ulational instability starts, the growth is exponential and then saturates (see Kharif
et al. 2001 and Slunyaev et al. 2002). The dispersive focusing exhibits a power-law
dependence and has a sharp maximum (see Sect. 3.2).

4.2.3 Solitons on a Background and Unstable Modes

In the previous section, the Cauchy problem on infinite intervals with zero condi-
tions at infinity has been considered, and the dispersive quasi-linear waves could
spread and decay. The case of non-zero background waves, as well as the periodic
problem, leads to the nonlinear interaction of the waves of the discrete spectrum
with quasi-linear waves that cannot be neglected.

4.2.3.1 Exact Solutions

The so-called “breather” solutions2 of the NLS equation represent nonlinear inter-
actions of an envelope soliton with a background plane wave. These basic solutions
were first obtained by Kuznetsov (1977), Kawata and Inoue (1978), and Ma (1979),
and completed later in Peregrine (1983), Akhmediev et al. (1985, 1987), Nakamura
and Hirota (1985), Tajiri and Watanabe (1998), Dysthe and Trulsen (1999), Calini
and Schober (2002), and Slunyaev et al. (2002). The simplest case of a breather is
represented by a single eigenvalue of the modified associated scattering problem
when the solution tends to a plane wave at infinity (x →±∞). Except the different
boundary conditions, other details of the approach are similar to the classical one
given by (4.59). From this point of view, a breather may be called a soliton (usually
called Ma soliton) or the superposition of a classical envelope soliton of the NLS
equation with a plane wave. Naturalness and richness of this interpretation will be
demonstrated below. We will use the general form of this solution, obtained directly
from the inverse scattering problem in Slunyaev et al. (2002) and through the Hirota
method in Tajiri and Watanabe (1998). For the dimensionless NLS equation (4.57),
the solution with a single eigenvalue λ is given by

qbr (x, t) = e2it×

× cosμcos(2γ (x− vt)+2iψ)− coshψcosh(2Γ(x−Vbrt)+2iμ)
cosμcos(2γ (x− vt))− coshψcosh(2Γ(x−Vbrt))

, (4.73a)

2 Note that this name for solutions of this kind is not generally accepted. For instance, Akhmediev
and Ankiewicz (1997) refer to the specific collision of two solitons with equal speeds localized at
the same place as a “breather.”
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where

Γ = −sinhψcosμ , γ = coshψsinμ ,

Vbr = −cosh2ψsin2μ
sinhψcosμ

, v =
sinh2ψcos2μ

coshψsinμ
,

λ = cos(μ + iψ) .

(4.73b)

Here, Vbr is the speed of the plane wave perturbation that is traveling as a group.
The speed and parameters v, γ , and Γ are defined through the eigenvalue. Solu-
tion (4.73) is scaled with respect to the amplitude of the surrounding plane wave
(qbr(x, t) → exp(2it) when x →±∞).

While evolving, the perturbations of the plane wave oscillate with the period

Tbr =
π

cos2μ sinh2ψ
(4.74)

and stay within the interval
∣
∣Abr −Apw

∣
∣≤ |qbr| ≤

∣
∣Abr +Apw

∣
∣ , (4.75)

where
Abr = 2coshψ cosμ , Apw = 1 (4.76)

(Apw denotes the amplitude of the plane wave). The following relations between the
breather’s and eigenvalue properties may be straightforwardly found from (4.73):

λ =
Abr

2
− isinμ sinhψ and Vbr = 4 Im (λ )

1+ coth2ψ
2

. (4.77)

Vbr is the breather velocity defined in (4.73b), and Abr plays the role of the breather
amplitude.

Solution (4.73) may look differently, like a pulsating disturbance (Fig. 4.4a) or
like a propagating group of the plane wave perturbations (Fig. 4.4b). It is straight-
forward to see that in the case λ ∈ℜ the solution (4.73) tends to the time-periodic
Ma soliton when λ > 1,

qbr (x, t) = e2it+iϕ0 × cos(ωbrt −2iψ)− coshψcosh(2Γ(x− x0))
cos(ωbrt)− coshψ cosh(2Γ(x− x0))

, (4.78)

where

Γ = −sinhψ, ωbr =
2π
Tbr

, λ = coshψ.

Solution (4.78) does not propagate, since Vbr = 0. When 0 < λ < 1, the solution
(4.73) is reduced to the Akhmediev et al. (1985) solution3

3 Akhmediev et al. (1987) also found a double periodic (in time and space) solution.
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Fig. 4.4 Breather solutions (4.73) of the NLS equation. (a) A traveling Ma soliton-like solution
(λ = 1.2+0.2i). (b) A traveling envelope-like solution (λ = 0.5+0.2i). (c) The time-periodic Ma
soliton (λ = 1.2). (d) The space-periodic Akhmediev solution (λ = 0.8). (e) The rational solution
of Peregrine (λ = 1)

qbr (x, t) = e2it+iϕ0 × cosμcos(2γ (x− x0))− cosh(σt −2iμ)
cosμcos(2γ (x− x0))− cosh(σt)

, (4.79)

where
γ = sinμ , σ = 2sin(2μ) , λ = cosμ .

The solution (4.79) does not propagate; it is space-periodic and breathes once.
The so-called Peregrine (1983) solution is the limit of Eq. (4.73) when λ → 1 is
imposed:
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qbr (x, t) = e2it+iϕ0

(

1− 4(1+4it)

1+4(x− x0)
2 +16t2

)

. (4.80)

Nakamura and Hirota (1985) called this rational solution the explode-decay soli-
tary wave. The examples of the particular solutions (4.78), (4.79), and (4.80) are
shown in Fig. 4.4c–e.

Peregrine (1983) pointed out that the Kuznetsov-Ma soliton tends to a usual en-
velope soliton solution of the NLS equation when its amplitude is much larger than
the plane wave amplitude (Abr � Apw). According to formula (4.75), the behavior
of the general breathing wave (4.73) may evidently be interpreted in some sense as a
linear superposition of a nonlinear envelope with its own amplitude Abr and a plane
wave with amplitude Apw.

Let us now suppose that the soliton has run away from the region of interaction
with the plane wave and is propagating over the zero background (see illustration in
Fig. 4.5). Since the nonlinear spectrum λ is conserved, the breather’s eigenvalue will
be related to the envelope soliton parameters by Eq. (4.67). Comparing Eq. (4.77)
with Eq. (4.67), one may conclude how the collision with a plane wave affects a
soliton: the envelope preserves its amplitude in the interaction, Abr = Aes, but it
accelerates (compare the speeds defined by Eqs. (4.67) and (4.77) for the same
value of λ ). Figure 4.6 illustrates how combinations of envelope and plane wave
parameters result in different kinds of breathing waves. Horizontal curves on the

Fig. 4.5 Numerical simulation of an envelope soliton-plane wave collision. The soliton is orig-
inally located at the zero background and has rightward velocity, while the plane wave solution
(|x| > 75) does not move in the chosen frame of reference. Periodic boundary conditions are em-
ployed. It is readily seen how the soliton climbs up the plane wave and restores its original shape
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Fig. 4.6 The λ -plane of an envelope soliton over background and corresponding solutions. Left
column of images, from top to bottom: the time-periodic Ma solution (λ > 1), the limiting Pere-
grine solution (λ = 1), and the space-periodic Akhmediev solution (λ < 1). Horizontal lines on
the plane denote dimensionless soliton amplitudes, and bent curves show the isovelocity lines

λ -plane show the isoamplitude lines (the amplitude values are given by numbers);
bent curves represent the isovelocity lines (numbers indicate corresponding values
of Vbr). The traveling solution is less influenced by the plane wave when Aes is large
and/or the difference between the speeds of the soliton and the plane wave is large
(Slunyaev 2006).

It follows from formula (4.75) that when an envelope soliton interacts with the
background plane wave, the maximum wave field is just the linear superposition
of the amplitudes of the soliton and the background wave. The maximum wave
amplification that can be achieved in this process (3 times) is obtained with the
Peregrine soliton (4.80) (Fig. 4.4e) that presents a single oscillation of one localized
perturbation of the plane wave. This solution corresponds to the case Aes/Apw = 2.

4.2.3.2 Chaotic Behavior of the Wave Modulations

When several breathing waves interact (they may be called multibreathers) more
complex solutions have been considered (see Calini and Schober 2002). Besides
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the complexity of the analytical description (and comprehension of the dynam-
ics by eye), the case of interacting breathers (“solitonic turbulence;” see Zakharov
et al. 2006a,b) is sensitive with respect to any kind of perturbations. This is due
to the fact that the NLS breathers are homoclinic orbits of the equation—thus,
small perturbations (for example, such as the round-off errors of numerical com-
putations) may result in chaotic behavior of the wave modulations (see Ablowitz
and Herbst 1990, Ablowitz et al. 2000, 2001). The integrable NLS equation pos-
sesses the Fermi-Pasta-Ulam recurrence (Newell 1981), although its approximate
models may lose this property. Therefore, the detailed description of real modula-
tions of sea waves obviously fails, if the cases of many breathers or evolution over
time are considered. The statistical approach given in Sect. 4.4 may turn out to be
more successful, although the soliton and breather conceptions are often very useful
for the understanding of particular wave dynamics.

It is straightforward to show that the Akhmediev solution (4.79) provides an ex-
ponential growth, which is equal to the modulational growth rate (4.40) (here values
α = 2,β = 1,A0 = 1,ΔK = 2γ should be employed). Hence, the breather solutions
indeed describe the development of the Benjamin-Feir instability. The wavenum-
ber corresponding to the maximum growth rate (4.41) results in the length scale
γ = 1/

√
2, hence, μ = π/4. This corresponds to the breather amplitude (4.76)

Abr =
√

2. The amplification factor achieved by solution (4.79) is then obtained
using (4.75) and reads

max(|qbr|)
Apw

=
Abr +Apw

Apw
= 1+

√
2 ≈ 2.4, (4.81)

which is smaller than the result of the Peregrine solution (3 times) but still agrees
with the rogue wave criterion (I.1).

In such a way the breathing solutions are closely linked with the modulational
instability. They are often associated with unstable modes that can be revealed in
the wave field with the help of the IST and then used to describe the modulational
properties of the waves. Osborne et al. (2005) suggested this approach on the basis
of the scattering problem on a periodic domain (long before, the IST was applied
by Osborne and Petti (1994) to analyze shallow water laboratory waves). The un-
stable modes were also studied by Islas and Schober (2005); another way to use the
IST to analyze real sea waves was suggested and developed in papers by Slunyaev
et al. (2005, 2006) and will be considered in Sect. 4.7.1.

When the statistical description is concerned, the effects of nonlinear instabili-
ties do influence the probability distribution functions. These effects are beyond the
bound nonlinear wave corrections and certainly result from the dynamics described
in this section. Some recent results on sea wave probabilistic descriptions that in-
volve nonlinear wave-wave interactions and the bridge to the dynamical aspect will
be discussed further in Sect. 4.4.

To conclude this section, we briefly present some results on chaos and modula-
tional instabilities that go beyond the NLS equation. Solving the Zakharov equa-
tion numerically, Caponi et al. (1982) discovered that owing to the modulational
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instability the Stokes wave train evolves into a chaotic system. They called this
phenomenon confined chaos. Later, Yasuda and Mori (1997) simulated numerically
the long-term evolution of a perturbed Stokes wave by modulational instabilities us-
ing the fully nonlinear equations. They showed that the evolution of the perturbed
Stokes wave trains into Fermi-Pasta-Ulam recurrence or chaos depends on the num-
ber of Fourier modes within the unstable range, the initial steepness of the Stokes
waves and the nonlinear coupling between the fundamental modes and higher har-
monics of the modulation. By means of high-order modeling with sufficiently many
degrees of freedom, they demonstrated that Stokes wave trains evolve into chaotic
systems. The numerical method used by Yasuda and Mori is due to Dommermuth
and Yue (1987) and is presented in the next section.

4.3 Rogue Wave Simulations within the Framework of the Fully
Nonlinear Equations

In the previous section, the dynamics of rogue waves have been investigated within
the framework of weakly nonlinear theories. The validity of these models can be-
come questionable in accurately describing rogue waves that are strongly nonlinear
water waves. The approximate models may be inaccurate when the extreme wave
event is occurring. Hence, to have a more realistic description of this phenomenon,
it is necessary to use the fully nonlinear equations (2.13), (2.28), (2.30), and (2.31)
with initial and boundary values for the potential and elevation. In constant depth
and infinite depth, the bottom condition is given by Eqs. (2.46) and (2.61), re-
spectively. Most of the time, these equations are solved numerically. Different
numerical methods are available for the spatio-temporal evolution of water-wave
groups. Among the many papers devoted to extreme wave events due to modula-
tional instability and dispersive or directional focusing, one can cite the follow-
ing list, which is not exhaustive: Henderson et al. (1999), Bateman et al. (2001),
Clamond and Grue (2002), Touboul et al. (2006), Clamond et al. (2006), Fochesato
et al. (2007), Dyachenko and Zakharov (2005), and Kharif et al. (2008). Among
the different kinds of numerical methods used commonly to simulate unsteady evo-
lution of strongly nonlinear free surface flows due to modulational instability and
dispersive or directional focusing, we present here a High-Order Spectral Method
(HOSM) and a Boundary Integral Equation Method (BIEM).

4.3.1 A High-Order Spectral Method

We consider the case of infinite depth and introduce the following dimensionless
variables into Eqs. (2.13), (2.28), (2.29), and (2.61): x = K0X ,y = K0Y,z = K0Z,ζ =
K0η ,ϕ = φ · (g/K3

0 )−1/2, p = P/(ρg/K0), where K0 is a reference wavenumber.
Hence, the kinematic and dynamic boundary conditions become
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∂ζ
∂ t

+
∂ϕ
∂x

∂ζ
∂x

+
∂ϕ
∂y

∂ζ
∂y

− ∂ϕ
∂ z

= 0 on z = ζ , (4.82)

∂ϕ
∂ t

+
1
2
∇ϕ ·∇ϕ + pa + z = 0 on z = ζ . (4.83)

Following Zakharov (1968), we introduce the velocity potential at the free sur-
face ϕs(x,y,z, t) = ϕ(x,y,z = ζ (x,y, t), t) into Eqs. (4.82) and (4.83)

∂ζ
∂ t

= −∇ϕs ·∇ζ +w
[
1+(∇ζ )2

]
, (4.84)

∂ϕs

∂ t
= −ζ − 1

2
∇ϕs ·∇ϕs +

1
2

w2
[
1+(∇ζ )2

]
− pa, (4.85)

with

w =
∂ϕ
∂ z

(x,y,z = ζ (x,y, t) , t) . (4.86)

The main difficulty is the computation of the vertical velocity at the free surface,
w. Following Dommermuth and Yue (1987), the potential ϕ(x,y,z, t) is written as a
finite perturbation series up to a given order M

ϕ (x,y,z, t) =
M

∑
m=1

ϕ(m) (x,y,z, t). (4.87)

The term ϕ(m) is of O(εm) where ε , a small parameter, is a measure of the wave
steepness. Then, expanding each ϕ(m) evaluated at z = ζ in a Taylor series about
z = 0, we obtain

ϕs (x,y, t) =
M

∑
m=1

M−m

∑
l=0

ζ l

l!
∂ l

∂ zl ϕ
(m) (x,y,z = 0, t). (4.88)

At a given instant of time, ϕs and ζ are known so that from Eq. (4.88), we can
calculate ϕ(m) at each order:

O(1): ϕ(1) (x,y,z = 0, t) = ϕs (x,y, t) , (4.89)

O(m): ϕ(m) (x,y,z = 0, t) = −
m−1

∑
l=1

ζ l

l!
∂ l

∂ zl ϕ
(m−l) (x,y,z = 0, t). m ≥ 2. (4.90)

These boundary conditions, with the Laplace equations Δϕ(m)(x,y,z, t) = 0 to be
solved in the domain occupied by the water, define a series of Dirichlet problems
for ϕ(m).

For 2π-periodic conditions in (x,y) in deep water, ϕ(m) can be written as follows

ϕ(m) (x,y,z, t) =
∞

∑
j=0

∞

∑
l=0

ϕ(m)
jl (t)exp

(
k jlz

)
exp [i( jx+ ly)], (4.91)

where k jl =
√

j2 + l2.
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Note that ϕ(m)(x,y,z, t) automatically satisfies the Laplace equation and the con-
dition lim∇ϕ(m)(x,y,z, t) → 0 as z →−∞.

For constant finite depth d, an alternative decomposition must be used, namely

ϕ(m) (x,y,z, t) =
∞

∑
j=0

∞

∑
l=0

ϕ(m)
jl (t)

cosh
[
k jl (z+d)

]

cosh
(
k jld

) exp [i( jx+ ly)]. (4.92)

Substitution of (4.91) into the set of Eqs. (4.89) and (4.90) gives the modes

ϕ(m)
jl (t). The vertical velocity at the free surface is then

w =
M

∑
m=1

M−m

∑
l=0

ζ l

l!
∂ l+1

∂ zl+1ϕ
(m) (x,y,z = 0, t). (4.93)

Substitution of Eq. (4.93) into the boundary conditions (4.84) and (4.85) yields
the evolution equations for ϕs and ζ .

The numerical method used to solve the evolution equations (4.84) and (4.85)
is similar to that developed by Dommermuth and Yue (1987). Equations (4.84) and
(4.85) are integrated using a pseudo-spectral treatment with N = JL wave modes,
where J = max( j) and L = max(l) and retaining nonlinear terms up to order M.
Once the surface elevation ζ (x,y, t) and the potential at the free surface ϕs(x,y,z, t)
at time t are known, the modal amplitudes may be computed. The spatial derivatives
of ϕ(m), ϕs, ζ , and w are calculated in the spectral space, while nonlinear terms
are evaluated in the physical space at a discrete set of collocation points (x j,yl).
Fast Fourier Transforms (FFTs) are used to link spectral and physical spaces. Equa-
tions. (4.89) and (4.90) are solved in the spectral space. Evolution equations for ϕs

and ζ are integrated in time using a fourth-order Runge-Kutta integrator with con-
stant time step. The calculation accuracy depends on several sources of errors due
to truncation in the number of modes J and L, and order M, aliasing phenomenon,
numerical time integration, etc. Numerical convergence tests can be found in Dom-
mermuth and Yue (1987) and Skandrani et al. (1996).

Another version of HOSM developed by West et al. (1987) can also be used. The
difference between both methods lies in the way we compute w from ϕ(m). West
et al. (1987) assume a power series for w as

w(x,y, t) =
M

∑
m=1

w(m), (4.94)

where

w(m) =
m−1

∑
l=0

ζ l

l!
∂ l+1

∂ zl+1ϕ
(m−l) (x,y,z = 0, t). (4.95)

The treatment of nonlinear terms in the latter method is useful for comparisons
between the truncated fully nonlinear equation and approximate models, such as the
Zakharov equation.



120 4 Rogue Waves in Waters of Infinite and Finite Depths

4.3.2 A Boundary Integral Equation Method

In this section, we describe a 2D numerical wave tank based on a boundary integral
equation method applied to rogue waves due to energy focusing in a small area. The
computational domain is defined as a volume of fluid bounded by a bottom, two
lateral walls, a paddle, and the free surface (Fig. 4.7). The boundary corresponding
to the bottom, lateral walls, and paddle is denoted by ∂ΩSB while the free surface
is denoted by ∂ΩFS. The Laplace equation (2.13) is solved within this domain. The
no-flux condition along the solid boundaries ∂ΩSB is

∂ϕ
∂n

= vSB ·n, (4.96)

where vSB is the velocity of the rigid boundaries set equal to zero on the bottom and
vertical walls and equal to the velocity of the paddle located at the beginning of the
numerical wave tank. The unit normal to the boundaries is n.

On the free surface, ∂ΩFS, the potential ϕ(x,z, t) satisfies the kinematic boundary
condition written in the following form

Dr
Dt

= ∇ϕ, (4.97)

with r = (x,z)t . The dynamic boundary condition (2.29) is rewritten as

Dϕ
Dt

=
1
2
∇ϕ ·∇ϕ−gz− pa. (4.98)

Hence the set of equations to be solved is the Laplace equation Δϕ = 0 in the fluid
domain, Eq. (4.96) on the rigid boundaries and Eqs. (4.97) and (4.98) on the free
surface. These equations are solved numerically using a boundary integral equa-
tion method (BIEM) and a mixed Euler-Lagrange (MEL) time marching scheme.
Green’s second identity transforms the Laplace equation into the following bound-
ary integral equation for ϕ

∫

∂Ω
ϕ (P)

∂G
∂n

(P,Q)d∂Ω −
∫

∂Ω

∂ϕ
∂n

(P)G(P,Q)d∂Ω = α (Q)ϕ (Q) , (4.99)

Fig. 4.7 Sketch of the
computational domain for the
numerical wave tank

∂ΩFS

∂ΩSB

∂ΩSB

∂ΩSB
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where the integration includes both the solid and free surfaces ∂Ω = ∂ΩSB∪∂ΩFS,
G is the 2D free-space Green’s function, P and Q denote two points of the fluid
domain, and n is the outward unit vector normal to the boundary. The angle α(Q) is
defined as follows: α(Q) = 0 or −2π when Q is outside or inside the fluid domain,
respectively, and α(Q) = θ when Q is on the boundary. The angle θ is the inner
angle with respect to the fluid domain at point Q along the boundary.

Eq. (4.99) can be written in a more explicit form.
For the free surface Q ∈ ∂ΩFS:

θϕ−
∫

∂ΩFS

ϕ (P)
∂G
∂n

(P,Q)d∂Ω +
∫

∂ΩSB

∂ϕ
∂n

(P)G(P,Q)d∂Ω

=
∫

∂ΩSB

ϕ (P)
∂G
∂n

(P,Q)d∂Ω −
∫

∂ΩFS

∂ϕ
∂n

(P)G(P,Q)d∂Ω , (4.100)

For the solid boundaries Q ∈ ∂ΩSB:

∫

∂ΩFS

ϕ (P)
∂G
∂n

(P,Q)d∂Ω +
∫

∂ΩSB

∂ϕ
∂n

(P)G(P,Q)d∂Ω

= θϕ +
∫

∂ΩSB

ϕ (P)
∂G
∂n

(P,Q)d∂Ω −
∫

∂ΩFS

∂ϕ
∂n

(P)G(P,Q)d∂Ω . (4.101)

The unknowns are ∂ϕ/∂n on ∂ΩFS and ϕ on ∂ΩSB. The above equations, that
are assumed to be satisfied at a discrete set of points on the boundary of the fluid do-
main, are transformed into a linear system of algebraic equations for a finite number
of unknowns (for more details see the Appendix). Equations (4.97) and (4.98) are
integrated in time using a fourth-order Runge-Kutta integrator.

4.3.3 Numerical Simulation of Rogue Waves Due
to Modulational Instability

Henderson et al. (1999) investigated the time evolution of a 2D almost uniform wave
train with a small growing modulation. They performed numerical experiments—it
was observed that energy focuses into a short group of steep waves, called steep
wave events (SWE). Details about the numerical code used to study water wave
modulations can be found in Dold (1992). It was found that the breather solutions
of the NLS equation fit numerical SWEs rather well. These SWEs are considered to
be rogue waves. Hence, the rogue-wave mechanism due to the Benjamin-Feir insta-
bility is confirmed in fully nonlinear computations. Later, Clamond and Grue (2002)
and Clamond et al. (2006) performed fully nonlinear numerical simulations of
lengthy evolution of a 2D localized long-wave packet. The numerical method used
is a fast converging iterative solution of the Laplace equation. One part of the so-
lution is obtained by FFT, while another part is highly nonlinear and consists of
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integrals with kernels that decay quickly in space (see Clamond and Grue 2001).
The result showed how interacting solitary wave groups that emerge from the long
wave packet can produce rogue wave events (see Sect. 4.3.5). Dyachenko and
Zakharov (2005) and Zakharov et al. (2006b) claimed that rogue wave events are
due to solitonic turbulence emerging from modulational instability of Stokes waves.
This scenario seems similar to that suggested by Clamond and Grue (2002) and
Clamond et al. (2006). Their simulation was based on a numerical method using a
conformal mapping of the fluid domain to the lower half plane. More generally, this
quasi-solitonic turbulence can appear as a result of the instability of narrow spectral
distributions of gravity waves. More details on solitonic turbulence can be found in
Zakharov et al. (2006a).

Until now, studies on rogue waves have not taken into account the action of wind.
Previous works on rogue waves have not considered the direct effect of wind on their
dynamics. It was assumed that they occur independently of wind action, far away
from storm areas where wind wave fields are formed. Kharif et al. (2008) consid-
ered wind above rogue waves, both numerically and experimentally. Two kinds of
mechanisms yielding rogue waves were investigated. In this subsection, we present
numerical experiments showing how a rogue event can arise from the modulational
instability of a Stokes’ wave train with and without wind.

In different situations, several authors have experimentally investigated the in-
fluence of wind on the evolution of mechanically generated gravity-water waves.
Bliven et al. (1986), Li et al. (1987), and Waseda and Tulin (1999) studied the in-
fluence of wind on Benjamin-Feir instability. Contrary to results reported by Bliven
et al. (1986) and Li et al. (1987), Waseda and Tulin (1999) found that wind did not
suppress the sideband instability. Banner and Song (2002) numerically studied the
onset of wave breaking in nonlinear wave groups in the presence of wind forcing.
Here, we investigate how wind forcing modifies unforced extreme wave events due
to modulational instability.

The generation of extreme wave events can be simply obtained from the
Benjamin-Feir instability (or modulational instability) of uniformly traveling trains
of Stokes’ waves in deep water. It is well-known that these trains are subject to
sideband instability producing amplitude and frequency modulations. This instabil-
ity corresponds to a quartet interaction between the fundamental component (the
carrier) K0 = K0(1, 0) counted twice, and two satellites K1 = K0(1 + p,q) and
K2 = K0(1 − p,−q), where pK0 and qK0 are the longitudinal wavenumber and
transversal wavenumber of the modulation, respectively.

As was emphasized in Sect. 4.1.1, the dominant instability of a uniformly-
traveling train of Stokes’ waves in deep water is the 2D modulational instabil-
ity (class I) provided that its steepness is less than s = 0.30. For higher values
of the wave steepness, 3D instabilities (class II) become dominant, phase locked
to the unperturbed wave. First we shall focus on the 2D nonlinear evolution of a
Stokes’ wave train suffering modulational instability without wind action, and then
with wind action. Two series of numerical simulations that can be found in Kharif
et al. (2008) are presented. They correspond to two wave trains of five and nine
waves, respectively.
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4.3.3.1 Rogue Waves without Wind Action

A series of 2D rogue-wave simulations in deep water, obtained when using the nu-
merical method described in Sect. 4.3.1, is presented. The wind effect on the water-
wave dynamics is neglected, hence the atmospheric pressure, pa, is set equal to zero
in Eq. (4.83).

First, we consider the case of wave trains of five waves. The initial condition is a
Stokes wave train of steepness s = 0.11, disturbed by its most unstable perturbation,
which corresponds to p ≈ 1/5. The fundamental wavenumber of the Stokes wave
is chosen so that integer numbers of the sideband perturbation (satellites) can be
fit into the computational domain. For the considered case, the normalized4 dimen-
sionless fundamental wave harmonic of the Stokes’ wave is k0 = 5 and the dominant
side bands are k1 = 4 and k2 = 6 for the subharmonic and superharmonic part of
the perturbation, respectively. The wave parameters have been rescaled so that the
wavelength of the perturbation is equal to 2π . There exist higher harmonics involved
in the interactions, which are not presented here. The normalized amplitude of the
perturbation relative to the Stokes wave amplitude is initially taken to be equal to
10−3. The order of nonlinearity in the HOSM is M = 6; the number of mesh points
is greater than (M + 1)kmax, where kmax is the highest harmonic taken into account
in the simulation. To compute the evolution length of the wave train, the time step
is chosen to be equal to one hundredth of the fundamental period of the basic wave,
T0. In this way, the time step satisfies the Courant-Friedrichs-Levy (CFL) condition.

The time histories of the normalized amplitude of the carrier, lower sideband, and
upper sideband of the most unstable perturbation are plotted in Fig. 4.8a. Another
perturbation that was initially linearly stable becomes unstable in the vicinity of the
maximum of modulation, resulting in the growth of the sidebands k3 = 3 and k4 = 7.
The nonlinear evolution of the 2D wave train exhibits the Fermi-Pasta-Ulam recur-
rence phenomenon. This phenomenon is characterized by a series of modulation-
demodulation cycles in which initially uniform wave trains become modulated and
then demodulated until they are again uniform. Here, one cycle of modulation-
demodulation is reported. At time t ≈ 360T0, the initial condition is more or less
recovered.

At the maximum of modulation t = 260T0, one can observe a temporary fre-
quency (and wavenumber) downshifting since the subharmonic mode k1 = 4 is
dominant. At this stage, a very steep wave occurs in the group as it can be seen
in Fig. 4.9a. Notice that the solid line represents the free surface without wind ef-
fect while the dotted line corresponds to the case with wind effect, which will be
discussed later. Figure 4.9b–d shows the free surface profiles at several instants in
time. The solid lines correspond to the case without wind action. We can emphasize
that no breaking occurs during the numerical simulation. Dold and Peregrine (1986)
have numerically studied the nonlinear evolution of various modulating wave trains
towards breaking or recurrence. For a given number of waves in the wave train,
breaking always occurs above a critical initial steepness, and below, a recurrence

4 Note the wavenumbers in this Section are normalized in a different way than those in Sect. 4.2.
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Fig. 4.8 Time histories of the amplitude of the main spectral modes for an evolving perturbed
Stokes wave with fundamental wave period T0, without wind action. (a) The fundamental mode
k0 = 5 (solid line), subharmonic mode k1 = 4 (dashed line), superharmonic mode k2 = 6 (dotted
line). The initial wave steepness is s = 0.11. The two lowest curves (dot-dot-dashed and dot-dashed
lines) correspond to the modes k3 = 3 and k4 = 7. (b) The fundamental mode k0 = 9 (solid line),
subharmonic modes, k1 = 7 (dashed line) and k3 = 8 (dot-dashed line), and superharmonic modes,
k2 = 11 (dotted line) and k4 = 10 (dot-dot-dashed line). The initial wave steepness is s = 0.13
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Fig. 4.9 Surface wave profiles at t = 260T0 (a), t = 265T0 (b), t = 270T0 (c) and t = 275T0 (d):
without wind (solid lines) and with wind (dotted lines)

towards the initial wave group is observed. This problem was revisited by Banner
and Tian (1998) who, however, did not consider the excitation at the maximum
modulation of the perturbation corresponding to p ≈ 2/5.

A second numerical simulation corresponding to the case of wave trains of
nine waves is now considered. The initial condition is a Stokes wave of steepness
s = 0.13, disturbed by its most unstable perturbation, which corresponds to p≈ 2/9.
The unstable sideband perturbation corresponding to p = 1/9 is introduced, as well.
Hence, we consider the nonlinear evolution of the wave train when two unstable
modulations are now present, whereas in the previous case only one unstable mod-
ulation was introduced. The fundamental wave harmonic of the Stokes wave is now
k0 = 9, and the dominant sidebands are k1 = 7 and k2 = 11 for the subharmonic and
superharmonic parts of the perturbation, respectively, while the satellites k3 = 8 and
k4 = 10 are the sidebands of the unstable perturbation corresponding to p = 1/9.
The time histories of the normalized amplitude of the carrier, lower sideband, and
upper sideband of the two unstable perturbations are plotted in Fig. 4.8b. A kind
of Fermi-Pasta-Ulam recurrence can be observed, which is stopped at t ≈ 500T0 by
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the onset of breaking. Here, the onset of breaking is delayed by the presence of two
unstable perturbations. This result is in agreement with those of Dold and Peregrine
(1986) and Banner and Tian (1998). At t = 192 T0, t = 360 T0, and t = 445 T0,
which correspond to the first, second, and third maxima of modulation, an extreme
wave event occurs as shown in Fig. 4.10a (solid line), Fig. 4.10e,f. The subharmonic
sideband, k1 = 7, is dominant and a temporary frequency downshifting is observed.
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Fig. 4.10 Surface wave profiles at t = 192 T0 (a), t = 195 T0 (b), t = 200 T0 (c), t = 210 T0 (d),
t = 360 T0 (e) and t = 445 T0 (f): without wind (solid lines) and with wind (dotted lines)
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Figure 4.10b–d gives the profiles of the wave train at t = 195 T0, t = 200 T0, and
t = 210 T0, respectively.

Owing to a mode competition between the satellites of the two unstable distur-
bances, it is now the subharmonic sideband, k3 = 8, of the initially less unstable
perturbation that is dominant at the second maximum of modulation.

4.3.3.2 Rogue Waves with Wind Action

Here, we investigate how wind forcing modifies unforced extreme wave events due
to the modulational instability. The questions are: how do the extreme wave events
due to the modulational instability under wind action evolve? How are the amplifi-
cation and time duration of these waves under wind effect modified?

It was shown experimentally (Kharif et al. 2008) that steep wave events occurring
in wave groups are accompanied by air flow separation. The experimental results are
presented in Sect. 4.5. Jeffreys (1925) suggested that the energy transfer from wind
to water waves was due to the form drag associated with the air flow separation
occurring on the leeward side of the crests. The air flow separation produces a pres-
sure asymmetry with respect to the wave crest resulting in a wave growth. However,
this mechanism can be invoked only if the waves are sufficiently steep. For weak
or moderate steepness of the waves, this phenomenon cannot apply and the Jeffreys
sheltering mechanism becomes irrelevant. Hence, a modified sheltering effect has
been suggested by Kharif et al. (2008). Following Jeffreys, the relationship between
the pressure at the interface and the local wave slope is given by

Pa = ρas j
(
Uw −Cph

)2 ∂η
∂X

, (4.102)

where s j is termed the sheltering coefficient, Uw is the wind speed, Cph is the wave
phase velocity, and ρa is the density of the air. Expression (4.102) is applied for only
steep waves—i.e., when the local wave slope ∂η/∂X becomes larger than a given
threshold (∂η/∂X)c, otherwise Pa = 0.

Figure 4.11a,b is similar to Fig. 4.8a,b, respectively, except that now water waves
evolve under wind action. Wind forcing is applied over crests of the group of five
waves of slopes larger than (∂η/∂X)c = 0.405, while for the group of nine waves
it is applied over crests of slopes steeper than 0.5125. These conditions are satisfied
for 256 T0 < t < 270 T0 for the first wave train, and for 187 T0 < t < 200 T0 and
237 T0 < t < 240 T0 for the second—that is, during the maximum of modulation
that corresponds to the formation of the extreme wave event. When the values of
the wind velocity are too high, the numerical simulations fail during the formation
of the extreme wave event, owing to breaking. During the breaking wave process,
the slope of the surface becomes infinite, leading numerically to a spread of energy
into high wavenumbers. This local steepening is characterized by a numerical blow-
up (for methods dealing with an Eulerian description of the flow). To avoid a wave
breaking too early, the wind velocity Uw is fixed close to 1.75 Cph. Owing to the
weak effect of the wind on the kinematics of the crests on which it acts, the phase
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Fig. 4.11 Time histories of the amplitude of the main spectral modes for an evolving perturbed
Stokes wave with fundamental wave period T0, with wind action (Uw = 1.75Cph). (a) The funda-
mental mode k0 = 5 (solid line), subharmonic mode k1 = 4 (dashed line), and superharmonic mode
k2 = 6 (dotted line). The initial wave steepness is s = 0.11. The two lowest curves (dot-dot-dashed
and dot-dashed lines) correspond to the modes k3 = 3 and k4 = 7. (b) The fundamental mode
k0 = 9 (solid line), subharmonic modes, k1 = 7 (dashed line) and k3 = 8 (dot-dashed line), and
superharmonic modes, k2 = 11 (dotted line) and k4 = 10 (dot-dot-dashed line). The initial wave
steepness is s = 0.13
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velocity, Cph, is computed without wind. The effect of the wind significantly reduces
the demodulation cycle and thus sustains extreme wave event.

This feature is clearly shown in Fig. 4.12a,b corresponding to the wave trains of
five and nine waves, respectively. The amplification factor is stronger in the pres-
ence of wind, and the rogue wave criterion is satisfied during a longer period of
time. In the presence of wind forcing, extreme waves evolve into breaking waves at
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Fig. 4.12 Numerical amplification factor as a function of time without wind (solid lines) and with
wind (dotted lines) for Uw = 1.75Cph: (a) for the wave train of five waves, (b) for the wave train of
nine waves
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t ≈ 330 T0 and t ≈ 240 T0 (dotted lines in Fig. 4.12a,b) for wave trains of five and
nine waves, respectively. For the case of a wave train of five waves, Fig. 4.9a–d dis-
play water wave profiles at different instants of time in the vicinity of the maximum
of modulation with and without wind. The solid lines correspond to waves propagat-
ing without wind, whereas the dotted lines represent the wave profiles under wind
action. These figures show that the wind does not modify the phase velocity of the
very steep waves while it increases their height and duration. A similar behavior is
shown in Fig. 4.10a–d corresponding to the group of nine waves.

We can conclude that extreme waves occurring under wind action in both wave
trains present the same features. Furthermore, in the presence of local wind forcing,
extreme waves evolve into breaking waves for initial wave trains of steepness s =
0.11 and s = 0.13 considered here. In another context, Banner and Song (2002)
investigated numerically the onset and strength of breaking for deep water waves
under wind forcing and surface shear. In their study, wind modeling is based on
Miles’ theory, which is different from Jeffreys’ sheltering mechanism used in this
chapter.

4.3.4 Numerical Simulation of Rogue Waves Due to Dispersive
Focusing in the Presence of Wind and Current

As shown in Chap. 3, extreme wave events can be generated by means of dispersive
enhancement of wave trains. This mechanism is based upon the dispersive nature
of water waves. We consider a chirped wave packet with the leading waves having
a higher frequency than trailing waves. For this purpose, the numerical wave tank
described in Sect. 4.3.2 is used to produce an extreme wave event.

Within the framework of infinite depth and linear waves, the frequency imposed
to the wavemaker located at X = 0 is given by formula (3.18), where Xf and Tf are
the coordinates of the point of focus in the (X ,T ) plane. The coordinates of the focus
point read

Tf = ΔT
fmax

fmax − fmin
, (4.103)

Xf =
gΔT
4π

1
fmax − fmin

, (4.104)

where fmax and fmin are the maximum and minimum values of the frequency (note
that the relation between the cyclic frequency Ω and the frequency f is Ω = 2π f )
imposed to the wavemaker during a period of time ΔT .

Within the framework of the linear theory, the focus points are singular points
where the amplitude becomes infinite and behaves as (Tf −T )−1/2 (see (3.19)). As it
was shown by Touboul et al. (2006) and Kharif et al. (2008), when nonlinear effects
are introduced, the rogue wave formation mechanism is not suppressed. In this case,
the amplitude of the extreme wave event is finite. The frequency of the wavemaker
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of the numerical wave tank is varied linearly from fmax = 1.85 Hz to fmin = 0.8 Hz
during ΔT = 23.5 s. The focusing mechanism is investigated with and without wind
as well (Touboul et al. 2006, Kharif et al. 2008). A series of numerical simulations
has been run for two values of the wind velocity: Uw = 0 m/s and Uw = 6 m/s. For
each value of the wind velocity, the amplification factor A of the group between
fetches X and 1 m is defined as follows

A(X ,Uw) =
Hmax (X ,Uw)

Hre f
, (4.105)

similar to the abnormality index. In (4.105), Hmax(X ,Uw) is the maximum height
between two consecutive crests and troughs in the transient group, and the height
Hre f of the quasi uniform wave train generated at the entrance of the tank is mea-
sured at 1 m. Figure 4.13 shows the experimental and computed surface elevation as
a function of time at fetch X = 1 m. The experimental results will be presented in
detail in Sect. 4.5.

Using definition (4.105), Fig. 4.14 describes the spatial evolution of the numer-
ically computed amplification factor. For a value of the threshold wave slope fixed
to be equal to 0.3, a blow-up of the numerical simulation occurs owing to the on-
set of breaking. This threshold value is too low and the transfer of energy from the
wind to the steep waves leads to wave breaking. The threshold value of the slope
beyond which the wind forcing is applied has been increased and is 0.4. This value
corresponds to a wave close to the limiting form for which the modified Jeffreys the-
ory applies. The observed asymmetry between the focusing and defocusing regimes
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Fig. 4.13 Surface elevation as a function of time at fetch X = 1 m: experiments (solid line) and
numerical simulation (dotted line) within the framework of the spatio-temporal focusing
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Fig. 4.14 Numerical amplification factor A(X ,Uw) as a function of the distance X for two values
of the wind velocity within the framework of the spatio-temporal focusing: Uw = 0 (solid line)
and Uw = 6 m/s with the threshold value of the wave slope taken to be equal to 0.4 (dotted line),
Uw = 6 m/s with the threshold value of the wave slope taken to be equal to 0.3 (dashed line)

can be explained as follows. Without wind, the amplitude of the extreme wave is
decreasing during defocusing. In the presence of wind, the modified Jeffreys mech-
anism that is acting locally in time and space amplifies only the highest waves and
hence delays their amplitude decrease during the very beginning of the defocusing
stage. The competition between the dispersive nature of the water waves and the
local transfer of energy from the wind to the extreme wave event leads to a bal-
ance of these effects at the maximum of modulation. This asymmetry results in an
increase in the lifetime of the steep wave event, which increases with the wind ve-
locity. Hence, the duration of the wind effect is relatively too short to increase the
amplification of the extreme wave event significantly. However, a weak increase of
the amplification factor is observed in the presence of wind. The main effect of Jef-
freys’ sheltering mechanism is to sustain the coherence of the short group involving
the steep wave event.

Figure 4.15 shows the numerical amplification factor as a function of the normal-
ized fetch X/Xf , where Xf is the abscissa of the point of focus without wind. The
experimental amplification factor is plotted for comparison as well. We can observe
an excellent agreement between the numerical and experimental results. The numer-
ical and experimental values of the abscissa of the focus point, Xf , and amplification
factor, A, are almost the same.

In the presence of wind of velocity Uw = 6 m/s, Fig. 4.16a demonstrates that the
numerical and experimental amplification factors deviate from one another beyond
the focus point. For a value of the threshold wave slope fixed to be equal to 0.4, the
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Fig. 4.15 Numerical (solid line) and experimental (circles) amplification factor A(X/Xf ,Uw) as
a function of the normalized distance without wind within the framework of the spatio-temporal
focusing

Jeffreys’ sheltering mechanism is not effective enough in the present case, whereas
a reduction of the threshold value to 0.30 produces the onset of breaking at the focus
point.

Wind waves are generally propagating in the presence of a current. Figure 4.16b
corresponds to the spatio-temporal focusing in the presence of wind and current
with a value of the threshold slope taken to be equal to 0.3. The wind velocity is
Uw = 6 m/s and a uniform following current corresponding to 2% of Uw has been
introduced to have the numerical value of the focus point equal to the experimental
value. Generally, the current induced by wind is equal to 3% of the wind velocity.
More information about the introduction of a current in the model can be found in
the paper by Touboul et al. (2007), who considered the formation of rogue waves
from transient wave trains propagating on a current. The laboratory experiments of
Wu and Yao (2004) should also be reviewed. The introduction of the following cur-
rent prevents the onset of breaking. During extreme wave events, the wind-driven
current may play a significant role in the wind-wave interaction. The combined
action of the Jeffreys sheltering mechanism and wind-driven current may sustain
longer extreme wave events. We can see good agreement between the numerical
simulation and the experiment. The steep wave event is propagating over a longer
distance (or period of time) in the numerical simulation as well as experiments.

To summarize, we can claim that within the framework of the spatio-temporal fo-
cusing (or dispersive focusing) both numerical and experimental results are in qual-
itative good agreement even if some quantitative differences have been observed,
namely when the wind-induced current is ignored. Moreover, the importance of a
following current on the evolution of the wave group has been emphasized as well.
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Fig. 4.16 Numerical (solid and dashed lines) and experimental (circles) amplification factor
A(X/Xf ;Uw) as a function of the normalized distance for threshold values of the wave slope equal
to 0.3 (solid line) and 0.4 (dashed line) within the framework of the spatio-temporal focusing: (a)
with wind (Uw = 6 m/s), (b) in the presence of wind (Uw = 6 m/s) and following current

The results of this section have shown that extreme wave events generated by dis-
persive focusing behave similarly to those due to modulational instability in the
presence of wind, as discussed previously. It is found that extreme wave events gen-
erated by two different mechanisms exhibit the same behavior in the presence of
wind.
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4.3.5 Numerical Simulation of Rogue Waves Due
to Envelope-Soliton Collision

As it has been discussed in Sect. 4.2, the nonlinear wave groups, also called enve-
lope quasi-solitons, are often a very convenient model for describing the dynamics
of modulated waves. The Cauchy problem for an initial localized wave packet was
considered by Clamond and Grue (2002) and Clamond et al. (2006). The evolution
of a wave packet with an initial steepness of s = 0.09 and a bell-shaped (sech func-
tion) profile has been computed for more than 3,000 wave periods (see Fig. 4.17).
During this period of time, three large wave events occur. At about 1,200 wave pe-
riods, the wave field consists of three separate solitary wave groups with ordered
heights, the steepest being ahead. Until 3,000 wave periods (and later), the groups
separate slowly, each group traveling with its characteristic speed. Figure 4.18 illus-
trates the difference between the weakly nonlinear models (the NLS and extended
Dysthe equation) and the fully nonlinear simulation based on Clamond & Grue’s
scheme regarding envelope dynamics. The analytical theory of the NLS equation
predicts that any symmetric envelope (with uniform wavenumber within the group)
disintegrates into a finite number of solitons that propagate with the same speed,
the linear group velocity, and a small oscillatory tail. For the initial condition con-
sidered, it predicts the formation of three solitons that are attached to each other.
Furthermore, the corresponding envelope always remains symmetric with respect to
the center of the wave group. These bound solitons describe very mild modulations
of the envelope amplitude (very long period of recurrence).

The NLS equation predicts the rise of three envelope solitons from the considered
initial condition, which is in agreement with the fully nonlinear solution. The shape
of each well-separated solitary wave group fits the analytical NLS envelope solu-
tions pretty well. Hence, the observed wave dynamics can be reasonably explained
as nonlinear interactions between three perturbed NLS solutions. Nevertheless, it
should be noted that the speed of each solitary wave group is not equal to the linear
group velocity, as predicted by the NLS theory.

From a qualitative point of view, a somewhat better agreement is obtained with
the extended Dysthe equation (Dysthe 1979, Trulsen and Dysthe 1996, Trulsen
et al. 2000). This model predicts the early stages of the group splitting (until 300
wave periods) and the characteristic features of the evolution rather well, namely
the separation into solitary wave groups and temporary frequency downshifting.
However, this model fails to predict the lengthy scenario based on fully nonlinear
predictions. Clamond et al. (2006) emphasize that it may be worthwhile to develop
a generalization of Dysthe equations, including higher (quintic) nonlinear terms to
improve the accuracy and increase the time period of validity.

The result of the fully nonlinear simulation is compared with the fitted exact
solution of the NLS equation (the time periodic breather) at the instants of time 155,
156, 157, and 158 wave periods (see Fig. 4.19). This corresponds to the moment of
the first steep wave event shown in Figs. 4.17 and 4.18. It is seen that the analytical
solution captures some features of the solution rather well and may be used as “first
approximation.”



136 4 Rogue Waves in Waters of Infinite and Finite Depths

Fig. 4.17 Dynamics of a wave packet with initial sech-like shape. k0 and T0 denote the carrier
wavenumber and period, respectively (see Clamond et al. 2006)
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Fig. 4.18 Comparison of the envelope dynamics from Fig. 4.17 (solid) with the results provided by
the extended Dysthe equation (dashed) and the NLS equation (dots), k0 and T0 denote the carrier
wave number and period, respectively (see details in Clamond et al. 2006)
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Fig. 4.19 Comparison of the fully nonlinear simulation (solid) and the fitted exact NLS solution
(dash). Elevation (panels on the left) and envelope (panels on the right) of the surface elevation
at t/T0 = 155, 156, 157, 158 versus dimensionless coordinate. K0 and T0 denote the carrier wave
number and period, respectivel. (see details in Clamond et al. 2006)
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Evolution and interaction of strongly nonlinear envelope solitary waves is consid-
ered in Zakharov et al. (2006b). The exact solutions of the NLS equation—namely,
envelope solitons—have been used to initialize the computation. Weakly nonlinear
wave packets behave similarly to the solutions of the NLS equation; they may propa-
gate without deformation and preserve their identity rather well (Fig. 4.20a). Larger

(a)

(b)

(c)

Fig. 4.20 Fully nonlinear evolution of an envelope soliton solutions of the NLS equation. Initial
conditions are given in the left panels, the result is presented in the right panels. (a) Collision of
two envelope solitons, each with steepness 0.085. (b) Evolution of an envelope soliton with steep-
ness 0.1. (c) Evolution of an envelope soliton with initial steepness 0.14 (Zakharov et al. 2006b,
reproduced with permission from Elsevier)
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initial steepness results in modification of the profile of the envelope and radiation
(Fig. 4.20b). The envelope approximation completely fails when the steepness is
about 0.15 (Fig. 4.20c). The initial wave packet undergoes an additional compres-
sion, obviously related to strongly nonlinear effects, leading to the formation of a
very high wave. This effect can be explained when the envelope solutions of a defi-
nite critical amplitude are unstable and can collapse.

4.4 Statistical Approach for Rogue Waves

It was shown by Caponi et al. (1982) and Yasuda and Mori (1997) that modulated
water wave trains may evolve to chaotic states. This feature suggests the use of
statistical and spectral descriptions. In looking at the sea surface, we are struck by
both randomness and regularity of the wave field. Hence, the prediction of wave
parameters of irregular waves may be achieved through a statistical approach.

For 1D propagation, Janssen (2003) studied the influence of the nonlinear four-
wave interactions on the occurrence of large surface waves over deep water, us-
ing the Zakharov equations (Zakharov 1968, Krasitskii 1994) as a basis with both
resonant and non-resonant interactions taken into account. The former interaction
evolves on the characteristic time scale (s4Ω)−1, whereas the latter has a much
shorter characteristic time scale (s2Ω)−1. At the same time, Dysthe et al. (2003)
considered the stability of moderately narrow bell-shaped spectra by numerical sim-
ulation of the Dysthe equation. It was found that, regardless of the initial spectral
bandwidth, the spectra evolve within the characteristic Benjamin-Feir time scale,
(s2Ω)−1, from a symmetric to an asymmetric shape, with a frequency downshifting
of the peak. For 2D propagation, the computations of the latter authors confirm
the K−2/5 (or Ω−4) power law of the spectrum in the inertial range. Using a trun-
cated JONSWAP spectrum as initial conditions, and two kinds of angular distribu-
tions corresponding to short- and long-crested waves, respectively, Socquet-Juglard
et al. (2005) found similar results and reported on the probability of the occurrence
of rogue waves, too. For crest heights less than four times the standard deviation
(very close to the significant wave height Hs), they showed that the distributions of
surface elevation and crest height fit very well with the theoretical second-order dis-
tributions of Tayfun (1980). For larger waves (elevation higher than Hs), this is not
always the case. For long-crested waves with a normalized spectral width ΔΩ/Ω
less than the steepness s, an increase of the extreme wave events during a phase of
spectral change is observed, whereas for short-crested waves, the spectral change
does not seem to have much effect on the distribution of extreme wave events. To
conclude this extreme wave analysis, Socquet-Juglard et al. (2005) found that the
Tayfun distribution is a good approximation, even up to five standard deviations.

The key parameter controlling the importance of the nonlinear wave-wave inter-
actions is the Benjamin–Feir Index (BFI) which is the ratio of the wave steepness to
the spectral bandwidth. We define the BFI following Janssen (2003) as

IBF =
√

2
Kηrms

ΔΩ
/
Ω

= 2
√

2
Kηrms

ΔK
/

K
, (4.106)
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where K and Ω are the mean wavenumber and frequency of the waves, and ΔΩ/Ω
is the spectral bandwidth. One may find other possible definitions of the BFI at the
end of this section (see also Olagnon and Magnusson 2004) for the collection of
the BF indices applied for the wave record analysis. The dispersion in the deep-
water case yields the relation ΔK/K = 2ΔΩ/Ω. The mean values and variances
may be defined through spectral moments (see Sect. 2.2). The root mean-square
surface displacement ηrms is related to the root mean-square amplitude Arms via
Arms = 21/2ηrms. The wave amplitude is assumed to vary slowly compared with the
carrier sinusoidal wave length. Therefore,

IBF =
KArms

ΔΩ
/
Ω

= 2
KArms

ΔK
/

K
. (4.107)

Following Alber (1978), the random wave field is stable when IBF < 1 (here σr

from Eq. (4.48) is equal to ΔΩ). In the opposite case, the BF instability is potentially
possible if condition (4.39) is satisfied.

The BFI provides a convenient indicator for prediction of modulational instabil-
ity. A number of recent research projects were aimed at establishing the relationship
between the BFI and rogue wave-probability occurrence. Stochastic simulations of
random wave fields and laboratory experiments have been performed, where the
spectrum evolution and probability of extreme wave occurrence were compared
against the values of the BFI (Onorato et al. 2001, 2004, 2005, 2006b; Janssen 2003;
Dysthe et al. 2003; Socquet-Juglard et al. 2005). Under the assumptions of weakly
non-Gaussian and narrow-band wave trains, Mori and Janssen (2006b) showed that
the wave height and the maximum wave height probability distribution depend on
the wave variance and kurtosis. The fourth-order statistical moment (kurtosis, κ) is
a convenient parameter for measuring the non-Gaussianity of the wave field. For 1D
propagation, it is found that the probability of occurrence of extreme wave events
increases with kurtosis. The following support of this feature was derived by Mori
and Janssen (2006b)

κ−3 =
π√
3

I2
BF (4.108)

(the Gaussian process corresponds to κ = 3). Hence, the kurtosis and the BFI are de-
pendent parameters, and their growths lead to an increase of rogue wave occurrence.
The relationship between the freak wave occurrence probability observed in numeri-
cal simulations and natural observations was discussed in Mori and Janssen (2006a).

A directional sea was considered in Onorato et al. (2002) within the framework
of the extended Dysthe equation. Nonlinear interactions of codirectional waves lead
both to an increase of the kurtosis and probability of occurrence of extreme waves,
whereas for multidirectional waves the kurtosis is shown to oscillate around κ ≈ 3,
indicating that the probability density function for the wave amplitudes is approxi-
mately Gaussian.

Let us consider a slightly perturbed plane wave with amplitude A, mean wave-
number K, and long perturbation wavenumber defined by ΔK. According to the
instability condition (4.39) for deep-water waves, the plane wave may be unstable if
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2
√

2
KA

ΔK
/

K
=
√

2
KA

ΔΩ
/
Ω

> 1. (4.109)

From a formal point of view, in terms of the BFI (4.107), this condition trans-
forms into √

2IBF > 1. (4.110)

The wave modulations split the carrier into groups. The number of individual
waves within such a group may be naturally defined as

nx =
K
ΔK

, and nt =
Ω
ΔΩ

, (4.111)

where nx and nt are the numbers of individual waves observed in a snapshot and
measured in one point time series, respectively. On deep water, they satisfy the con-
dition nt = 2nx. Hence, definition (4.107) results in the dimensionless estimation

IBF = s̄nt , (4.112)

where s̄ denotes the averaged steepness, s̄ ≡ KArms.
Taking into account the normalization (4.58), the “mass” integral (4.65) for one

wave envelope may be written in the form

M ≈ π2
√

2KAnx = π
√

2IBF , (4.113)

where the length of the envelope is estimated as 2π/ΔK. Hence, the soliton number
(4.64) for a smooth pulse-like initial condition for the NLS equation is equal to

Ns =
[√

2IBF +
1
2

]
. (4.114)

Relations (4.113) and (4.114) link the statistically defined BF index and the dy-
namical parameters of M and Ns. They are, roughly speaking, proportional to each
other, when the 1D version of the NLS equation (4.33) is considered,

nonlinearity
dispersion

∝
ΩK2A2

2
· 8K2

Ω(ΔK)2 = I2
BF . (4.115)

In this sense, the BFI is an analogue to the Ursell number, which is well known
for shallow-water waves (see Chap. 5). Table 4.1 collects some important values of
these parameters. It is seen that for different applications, the choice of different
parameters may be convenient. When dealing with deterministic waves, it is more
pertinent to use the quantity

√
2IBF (see Osborne et al. 2005, Slunyaev 2006).

In Onorato et al. (2001), Janssen (2003), Mori and Janssen (2006b), Gramstad
and Trulsen (2007), and Tanaka (2007), it is shown through numerical experiments
that the growth of the BFI index indeed qualitatively changes the statistical prop-
erties of the wave fields, but the change is not so abrupt and the threshold value of
the index is not so obvious. The requirement of robust definition of this parameter
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Table 4.1 Key values of parameters characterizing the nonlinear effects versus dispersion

Threshold Parameter

BFI, IBF M/π Ns

Rise of envelope solitons from a pulse-like packet ≥ 1
/√

8 ≈ 0.35 ≥ 1
/

2 ≥ 1

Onset of the plane wave modulational instability
instability

≥ 1
/√

2 ≈ 0.71 ≥ 1 ≥ 1

One isolated envelope soliton 1
/√

2 ≈ 0.71 1 1

Cancellation of the BF instability instability due to
randomness

< 1

on the basis of real natural measurements, where noise perturbations always exist,
opens a new problem (Olagnon and Magnusson 2004, 2005). See the discussion in
Sect. 4.7.2.

4.5 Laboratory Experiments of Dispersive Wave Trains
with and without Wind

Within the framework of dispersive focusing, Sect. 4.3.4 refers to experimental re-
sults conducted in the large wind-wave tank of IRPHE at Marseille, Luminy (see
Fig. 4.21). The facility consists of a closed loop wind tunnel positioned above a
water tank 40 m long, 1 m deep, and 2.6 m wide. The wind tunnel above the water
flow is 40 m long, 3.2 m wide, and 1.6 m high. The blower can produce wind ve-
locities up to 14 m/s, and a computer-controlled wavemaker submerged under the
upstream beach can generate regular or random waves in a frequency range from
0.5 Hz to 2 Hz. Particular attention has been paid to simulating a pure logarithmic
mean wind-velocity profile with constant shear layer over the water surface. A trol-
ley installed in the test section allows probes to be located at different fetches all
along the facility. The fetch is defined as the distance between the probes on the
trolley and the end of the upstream beach where air flow meets the water surface.
The water surface elevation is measured by using capacitive wave gauges: one is lo-
cated at a fixed fetch 1 m from the upstream beach, and the others are installed on a
trolley to measure the water surface elevation at different fetches from the upstream

Fig. 4.21 A schematic description of the Large Air-Sea Interactions Facility, IRPHE
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beach. The longitudinal and vertical air flow velocity fluctuations have been mea-
sured by means of an x-hot wire anemometer.

As in Sect. 4.3.4, extreme wave events are generated by means of a dispersive
focusing mechanism with and without wind. The same initial wave train is generated
and propagated without wind first, and under wind action for various values of the
wind velocity afterwards. When the wind blows, the focusing wave train is generated
once the wind waves have developed. For each value of the mean wind velocity Uw,
the water surface elevation is measured at 1 m fetch and at different fetches between
3 m and 35 m. The wavemaker is driven by an analog electronic signal to produce
this signal linearly varying with time from 1.3 Hz to 0.8 Hz in 10 s, with almost
constant amplitude of the displacement. The wavemaker is totally submerged to
avoid any perturbation of the air flow that could be induced by its displacement.

Figure 4.22 shows two time series of the probe located at 1 m fetch, recorded with
no wind, and under a wind speed of Uw = 6 m/s. The probe record, corresponding
to a wind velocity equal to 0 m/s, is artificially increased by 10 cm for more clarity
of the figure. We see that the two signals are very similar. Some weak differences in
amplitude are observed locally. Nevertheless, it is seen that no significant variations
are observed, and the experiment is considered to be repeatable in the presence of
wind.

More details on experiments conducted in the large wind-wave tank of IRPHE,
can be found in Kharif et al. (2008). These results were anticipated in Sect. 3.3.
Figure 3.11 presents the time series of the water surface elevation at different fetches
for Uw = 0 m/s. For the sake of clarity, as it has been done for Fig. 4.22, the probe
records given here are recursively increased by 10 cm. As predicted by the linear
theory of free deep water waves (no wind), dispersion makes short waves propagate
more slowly than long waves, and as a result, the waves focus at a given position
in the wave tank leading to the occurrence of a large amplitude wave. Downstream
from the point of focus, the amplitude of the group decreases rapidly (defocusing).

Fig. 4.22 Surface elevation
(in cm) at fetch X = 1 m
for wind speeds Uw = 0 and
Uw = 6 m/s (note that for
Uw = 0 m/s, the origin of the
elevation corresponds to the
value 10 cm)
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Figure 3.12 shows the same time series of the water surface elevation, at several
values of the fetch X , and for a wind speed Uw = 6 m/s. The wave groups, mechan-
ically generated by the wavemaker, are identical to those used in the experiments
without wind (see Fig. 4.22). Some differences appear in the time-space evolution
of the focusing wave train. One can observe that the group of the extreme wave
event is sustained longer.

Figure 4.23 gives the amplification factor as a function of the distance from the
upstream beach for several values of the wind velocity, equal to 0 m/s, 4 m/s and
6 m/s. We can see that the effect of the wind is twofold: (i) it weakly increases
the amplification factor; and (ii) it shifts the focus point downstream. Moreover,
contrary to the case without wind, an asymmetry appears between focusing and
defocusing stages. The slope of the curves corresponding to defocusing is modified.
Note that before the focus point, the wind has no effect on the amplification factor.
One can observe that the rogue wave criterion (I.1) is satisfied for a longer period of
time. It is also interesting to emphasize that the rogue wave criterion is satisfied for
a longer distance, while the wind velocity increases.

The numerical results obtained in Sect. 4.3.4 are confirmed by the experiments, at
least qualitatively. A detailed physical analysis of wind-wave coupling over focusing
groups may be found in Kharif et al. (2008).

Through experimentation, Baldock et al. (1996) investigated the spatio-temporal
focusing of a large number of water waves at one point in space and time to pro-
duce a large transient wave group. The experiments were conducted in a 20 m long
and 0.3 m wide wave flume. The facility has a maximum working depth of 0.7 m.
The waves are generated by a flat bottom-hinged paddle located at one end of the
wave flume. The period of the generated waves can vary from 0.4 s to 2.0 s. A to-
tal of six surface-piercing wave gauges were used to measure the surface elevation
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Fig. 4.23 Evolution of the amplification factor A(X ,Uw) as a function of the distance for several
values of the wind speed
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at fixed spatial locations. Baldock et al. (1996) adopted the approach developed by
Rapp and Melville (1990) to create an extreme wave within the laboratory flume.
They used a linear solution to determine the appropriate phasing of the various wave
components. Owing to nonlinear wave-wave interactions present in the experiments,
the theoretical and experimental focal points and focus times are different. To sim-
plify the experimental procedure, they imposed that the focus point be located at
a fixed distance down-stream of the paddle and the focusing time be set to zero.
Measurements of the water surface elevation were compared with both linear wave
theory and a second-order solution derived by Longuet-Higgins and Stewart (1960).
The experimental results showed that the focusing wave mechanism produces the
occurrence of an extreme wave event whose nonlinearity increases with the wave
amplitude and reduces with increasing bandwidth. A comparison of the first- and
second-order solutions shows that the wave-wave interactions generate a steeper en-
velope, in which the central wave crest is higher and narrower, whereas the adjacent
wave troughs are broader and less deep. The authors suggested that the formation of
a focused wave group involves a significant transfer of energy into both higher and
lower harmonics.

Within the framework of 2D wave fields, Grue and Jensen (2006) reported ve-
locity and acceleration fields in six very large wave events realized in a series of
wave tank experiments. The wave slope is in the range 0.40–0.46 and exceeds the
previously mentioned laboratory study of large waves (Baldock et al. 1996) by a
factor of about 50%. Focusing water waves were produced in a 24.6 m long wave
tank in the Hydrodynamic Laboratory at the University of Oslo. The tank width is
0.5 m and the water depth 0.72 m. The velocities and the material acceleration fields
of the waves are obtained by employing an extended Particle Image Velocity (PIV)
system (see Jensen et al. 2001). The velocity vector has a magnitude comparable to
the wave speed in the strongest case, and is manifested in the jet that develops at the
front face of the breaking waves. The nonbreaking waves present a maximal hori-
zontal acceleration up to about 0.70 g in the front face of the wave at vertical level
about halfway to the crest. The overturning events present horizontal accelerations
up to 1.1 g and vertical accelerations up to 1.5 g in the front face of the wave, at the
base below the overturning jet.

Onorato et al. (2006b) conducted a series of experiments in a long water-wave
flume at Marintek in Trondheim (Norway). The length of the tank is 270 m, its
width is 10.5 m, and its depth is 10 m for the first 85 m, then 5 m for the rest of the
flume. A horizontally double-hinged flap type wavemaker located at one end of the
tank was used to generate the long-crested waves, whereas an absorbing beach is
located at the end opposite from the wavemaker. Several probes were used along
the tank to measure the wave surface elevation. Three experiments corresponding to
three different JONSWAP spectra with different values of the Phillips parameter α
and the peakedness γ (see (2.116)) were conducted. The main goal of these exper-
iments was to give experimental support to the results of theoretical and numerical
studies developed previously. According to these studies, it was suggested that the
modulational instability was responsible for the occurrence of extreme wave events.
The modulational instability or the Benjamin-Feir instability that was obtained for
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uniform wave trains within the framework of deterministic approaches is assumed to
work in random wave fields, too. Onorato et al. (2006b) showed that for long-crested
water waves and large values of the Benjamin-Feir index, the second-order theory
is not relevant to describe the tails of the probability density function of wave crests
and wave heights. They showed that the probability of finding an extreme wave
was underestimated by more than one order of magnitude if second order theory
is considered, and found that the deviation was due to the modulational instability
mechanism occurring for large BFI.

4.6 Three-Dimensional Rogue Waves

Until now, we have mainly paid attention to 2D aspect of the rogue wave formation.
In this section, 3D aspects are discussed.

Rogue waves in the form of “walls of water” (see Fig. 1.2b) may potentially be
described within the framework of 2D models (i.e., unidirectional wave propaga-
tion). At the same time, transversal effects are known to be important—for exam-
ple, the NLS envelope soliton is transversally unstable. The localized “pyramidal”
waves, like those in Fig. 1.2a,c, undoubtedly require consideration of the transverse
wave direction. The geometrical focusing phenomenon may result from spreading
waves. It is a linear mechanism of wave-energy focusing that was considered in
Sect. 3.1. This primitive mechanism may be quite important in the real ocean, since
papers report about higher probability of rogue wave occurrence in mixed seas.

Dispersive focusing is still efficient in 3D situations; and this kind of wave com-
pression may be further enhanced by geometrical focusing (see Slunyaev et al. 2002).
This results in more rapid and significant wave growth compared to the 2D case. If
the dispersive wave train is far from the modulational instability threshold, the dis-
persive focusing prevails similarly to the linear case. The presence of random wave
components may hide the deterministic process of rogue wave generation, but does
not prevent the quasi-linear wave focusing as shown in Fig. 4.24. The rogue wave
appears “from nowhere” and disappears at once.

Realistic fully nonlinear 3D simulations of directional wave focusing were con-
ducted by Fochesato et al. (2007) (see Fig. 4.25). They found that the vertical 2D
longitudinal cross section through an extreme wave crest looks quite similar to the
characteristic shape frequently observed for rogue waves in the ocean: a tall and
steep doubly asymmetric wave crest occurs in between two shallower troughs. The
3D wave generation yields a curved wave front before focusing occurs. A shallow
circular trough forms in front of the focused wave (“hole in the sea”), followed by
a deeper trough with a crescent shape. For a small time prior to breaking, the 3D
shape of the focused wave appears to be almost pyramidal. By contrast, during the
focusing phase, as well as the development of overturning, the transverse shape of
the wave through the crest tends to have a more rounded shape. The problem of
reproducing the desired 3D wave shapes in tanks was investigated by Bonnefoy
et al. (2005).
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(a) (b)

(c)

Fig. 4.24 Three-dimensional dispersive focusing of a wave train with modulated wavenumber in
the presence of strong random wave components: (a) initial wave envelope, (b) moment of focus-
ing, (c) record of maximum envelope amplitude versus time. Simulation within the framework of
the NLS equation (see details in Pelinovsky et al. 2003)

Fig. 4.25 Snapshots of 3D free surface evolution computed by Fochesato et al. (2007). The focused
wave is starting to overturn in panel (d) (Reproduced with permission from Elsevier)

Johannessen and Swan (2001) extended the experimental investigation of Baldock
et al. (1996) in 3D wave fields. They considered a laboratory study in which a large
number of water waves of varying frequency and propagating in different directions,
were focused at one point in space and time to generate a large wave event. Exper-
iments were conducted in a basin located at Edinburg University. This facility has
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a plan area of 24 m × 11 m and supports a constant working depth of 1.2 m. The
water waves are generated by 75 numerically controlled wave paddles located along
one of the longer sides of the wave tank. At the opposite end of the basin, a set of
passive absorbers dissipates the incident wave energy. Different directional distri-
butions are applied to the frequency spectra of the surface elevation. Johannessen
and Swan (2001) showed that the directionality may have a profound impact effect
upon the nonlinearity of a large wave event. When the sum of the wave amplitudes
generated at the wave paddles is kept constant, an increase in the directional spread
of the wave field results in lower maximum crest elevations. Conversely, when the
generated wave amplitudes are increased until the onset of wave breaking, an in-
crease in the directional spread allows larger extreme waves to evolve. The authors
suggested that these results are due to the redistribution of the wave energy within
the frequency domain. They emphasized the rapid widening of the free-wave regime
in the vicinity of an extreme wave event, too.

In 2D (XZ) geometries, the modulational instability is strongly associated with
the solitary solutions of the NLS equation (breathers or homoclinic orbits). These
objects are conserved during the evolution due to the integrability property of
the NLS equation. The 3D version of the NLS equation, as well as the Davey-
Stewartson system5 are nonintegrable. Therefore, the wave dynamics are more com-
plicated for comprehension. For instance, the wave field, growing due to geometric
or dispersive grouping but initially stable with respect to modulational instability,
may then pass the threshold of nonlinear self-focusing and continue further enhanc-
ing due to nonlinearity. The Benjamin-Feir instability diagram (Fig. 4.1) provides
a rich variety of unstable growing wave packets. Some shapes of 3D rogue waves
spawned by modulational instability have been presented in the papers by Osborne
et al. (2000) and Slunyaev et al. (2002), respectively. As an example, the 3D rogue
wave given in Fig. 4.26d is more than seven times amplified with respect to the ini-
tial weakly modulated waves. The quasi 2D modulational instability (Fig. 4.26a,b)
is followed by the strictly 3D modulational dynamics (Fig. 4.26c,d), which results
in the formation of a huge wave isolated in both longitudinal and transversal direc-
tions. It is readily seen from Fig. 4.26e that the 3D rogue wave growth (t ≈ 4.1) is
more sudden and significant than the 2D dynamics (t ≈ 3).

In water of infinite depth, it is well known that the 2D modulational instability
is dominant for small to moderate initial steepness and evolves into a recurrence
phenomenon (the Fermi-Pasta-Ulam recurrence) for small initial wave steepness
(see Sect. 4.1.1). Another kind of disturbance suffered from 3D instabilities (see
McLean 1982a,b) exists and becomes dominant for larger values of the steepness.
This instability may lead to the formation of horseshoe patterns evolving into 3D
spilling breakers. These three-dimensional patterns take the form of crescent-shaped
perturbations riding on the basic waves. Three-dimensional horseshoe patterns were
observed in experiments of Su et al. (1982) and Su (1982), Melville (1982), Kusuba
and Mitsuyasu (1986, in presence of wind), and others.

5 The DS system becomes integrable only in the shallow-water limit. In this case it does not show
modulational instability.
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(a)

(c) (d)

(e)

(b)

Fig. 4.26 Evolution of a weakly amplitude modulated plane wave within the framework of the
NLS equation (see details in Slunyaev et al. 2002). Four snapshots of the envelope evolution (a–d)
and the record of the maximum envelope amplitude versus time (e)

Generally, the two kinds of instability, namely the modulational instability and
the crescent patterns that belong to class I and class II, respectively, coexist in
the wave field. Depending on parameters such as the wave steepness of the initial
Stokes wave and water depth, one can expect a competition to occur between the
two classes of instability. Figure 4.27 illustrates the critical steepness together with
the distinction between class I and class II dominances at the same depths. In the
finite depth case, class II dominates in a large range of steepness and recurrence is
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Fig. 4.27 Threshold
steepnesses between class I
and class II predominances
and between class II
recurrence and breaking:
(a) the infinite depth case,
(b) the finite depth case
K0D = 1
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possible within this range. Note that for shallow water cases and relatively moderate
steepness, instability of a plane Stokes wave is dominated by class II (Francius and
Kharif 2006).

Numerical simulations by Fructus et al. (2005) and Kristiansen et al. (2005),
taking into account both class I and class II instabilities, showed that for moder-
ately steep waves (s > 0.12), their nonlinear coupling (involving the fundamental of
the Stokes wave) results in breaking of the wave when in the initial condition only
the modulational instability was considered. Furthermore, the breaking can occur
for s = 0.10 when the initial unstable perturbation corresponds to the phase-locked
crescent-shaped patterns. At the maximum amplitude of this instability, the modula-
tional instability is excited followed by the breaking of the wave. For steeper waves,
the strength of class II instability alone is sufficient to trigger the breaking of the
wave. The nonlinear dynamics of the most unstable class II perturbation leads to
breaking when s > 0.17 (see Fig. 4.27a).

Annenkov and Badulin (2001) selected the specific component peculiar to five-
wave interactions in the frequency spectrum of the 20 min New Year Wave record.
This component corresponds to class II instabilities phase-locked to the dominant
component of the spectrum. In order to have a better understanding of the role of
this kind of resonance in the formation of rogue waves, the authors performed nu-
merical simulations of the Zakharov equation, which takes into account the mod-
ulational (which is a four-wave interaction) and five-wave interactions. Annenkov
and Badulin (2001) showed that the cooperative effects of these interactions might
be responsible for the occurrence of rogue waves and emphasize the role of oblique
waves in this process.

Ruban (2007) investigated a weakly 3D evolution of modulationaly unstable
wave patterns by means of fully nonlinear simulation and observed “zigzag pat-
terns” with extreme waves in their turns formed during instability development.
Recurrent dynamics of 3D wave patterns over deep and finite depth were simulated
in recent papers (Kristiansen et al. 2005, Fructus et al. 2005) and are shown in
Figs. 4.28 and 4.29, respectively. In the real sea, the hydrodynamic instability ap-
pears at the center of the crescent patterns when the wave steepness is above a
threshold value.
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Fig. 4.28 Temporal evolution of the surface elevation during a recurrence cycle, fully nonlinear
simulation of Kristiansen et al. (2005). The infinite depth case (Reproduced with permission from
American Institute of Physics)

Recent findings of Gramstad and Trulsen (2007) by means of numerical simu-
lation of the extended Dysthe equation show a conspicuous qualitative difference
between the extreme wave dynamics in long- and short-crested seas. The paper re-
ports about weak deviation of extreme waves from the Gaussian statistics when short
crest lengths are concerned. On the other hand, the long crest wave statistics of freak
waves is strongly non-Gaussian, and the Benjamin-Feir instability seems responsi-
ble for rogue wave formation. These results qualitatively agree with the predictions
of Onorato et al. (2002, with extended Dysthe equations), Shukla et al. (2006, with
coupled NLS equations) and Gibson et al. (2007) but appear to be conflicting with
the studies of unstable crested waves by Onorato et al. (2006a, with coupled NLS
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Fig. 4.29 Temporal evolution of the surface elevation during a recurrence cycle, fully nonlinear
simulation of Kristiansen et al. (2005). The finite depth case K0D = 1

equations), fully nonlinear simulations of Ducrozet et al. (2007), and some natural
observations (Pinho et al. 2004, Scott et al. 2005).

Although the real ocean is not homogeneous nor stationary, it was suggested
by Haver (2005) and Gibson et al. (2007) that in seas of short-crested waves, some
long-crested sub areas may exist in principle, which provides conditions for the high
probability of the rogue wave occurrence.

Using the data collected from 1995 to 1999 by Lloyd’s Marine Information Ser-
vice, Toffoli et al. (2004) showed that a large percentage of ship accidents due to bad
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Fig. 4.30 Pyramidal waves observed by Kimmoun et al. (1999) in a laboratory tank

weather conditions occurred in crossing sea states. Crossing sea sates are character-
ized by two dominant spectral peaks, and may be due to the interaction between
a swell and a wind-wave sea coming from a different direction. This feature was
also observed in the New Year Wave record. Onorato et al. (2006a) considered
a weakly nonlinear model that describes the interaction of two-wave systems in
deep water with two different directions of propagation. Under the assumption of
narrow-band wave fields, they derived two coupled NLS equations from the Za-
kharov equation. As a main result, they showed that given a single unstable plane
wave, the introduction of a second plane wave traveling in a different direction can
increase the instability growth rates and enlarge the instability region. From their
simple model, they suggested that the modulational instability could explain the
formation of rogue wave events in crossing sea states. For more details concerning
the stability of short-crested gravity waves due to the nonlinear interaction between
two plane waves propagating in two different directions, see the papers by Ioualalen
and Kharif (1994) and Badulin et al. (1995). These numerical and theoretical inves-
tigations on short-crested waves were followed by an experimental study conducted
by Kimmoun et al. (1999) who observed pyramidal waves (see Fig. 4.30).

4.7 In Situ Rogue Waves

A great deal of theoretical investigations aimed at solving the rogue-wave phe-
nomenon has been undertaken. Although some of the suggested physical mecha-
nisms explain the occurrence of rogue waves rather well, the natural mechanisms
that spawn rogue waves observed in the real ocean still need investigation. Instru-
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mental measurements are the best source of getting information about real sea wave
dynamics. The state-of-art in instrumental registrations is discussed in Sect. 1.2.
Many registrations correspond to the case of deep or moderately deep water, but still
are made in very different conditions throughout long periods of time. This makes
direct statistical analysis quite hard or impossible. Some recent results of these sta-
tistical studies are given in Sect. 4.7.2. Section 4.7.1 is devoted to the analysis of the
instrumental records themselves, trying to find out most possible information from
“traces” of rogue waves.

4.7.1 Nonlinear Analysis of Measured Rogue Wave Time Series

4.7.1.1 Local Parameters

Local wave parameters may be used to reveal peculiar properties of measured rogue
waves within the field of usual oceanic waves. To do this, shorter overlapping time
intervals are extracted from the record. This procedure is known as Gabor or “win-
dowing” transform. To reduce possible spurious effects due to the discontinuity of
the time series at the boundaries, the Hanning data mask may be applied (Massel
1996). Examples of some local parameter estimations are given in Figs. 4.31 and
4.32 for two time series measured at the North Alwyn platform in the North Sea
(see details in Slunyaev et al. 2005, Slunyaev 2006). The platform conditions corre-
spond to sufficiently deep water (KD > 3.6), therefore we will restrict ourselves to
the infinite depth approximation.

The mean frequency Ω is obtained as the spectral moment (2.109), Ωp. The un-
favorable result of considering a shorter time series gives a worse accuracy in sta-
tistical estimations and in particular the spectrum and all spectral parameters. The
carrier frequency curves are given in Figs. 4.31 and 4.32 on panels A and B (the
solid white line on the background of the Fourier time-frequency spectra) for two
different durations of the sampling window Twin. One can observe some variations
during the 20-min record, which become more evident if expressed in terms of group
velocity Cgr (see Figs. 4.31D and 4.32D). The group velocity is obtained through the
linear dispersion relation, since the measurement is available in only one point. The
deviation of the group velocities observed in these cases is about 50%; it leads to the
energy exchange between the individual waves. This may provide the wave growth
or decrease and represents the simplest case of dispersive focusing. For a simple
analysis of this process, the kinematic theory (3.13) may be used accompanied by
the energy balance equation (3.5) (see Chap. 3):

∂Cgr

∂T
+Cgr

∂Cgr

∂X
= 0,

∂η2

∂T
+

∂
∂X

(
Cgrη2)= 0 (4.116)

where η(X ,T ) is the surface elevation.
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Fig. 4.31 Wave record made at the North Alwyn platform on November 18th, 1997 at 01:10.
(A) Time-Frequency Fourier spectrum built for the sampling window of 117 s duration (about 10
wave periods); solid line shows the local mean frequency Ω, dashed lines bound the domain of
Benjamin-Feir instability Ω±ΔΩBF . B) The same as on panel A, but for the sampling window of
36 s duration (3 wave periods). C) Measured time series of the surface displacement (in meters).
Symbols denote the determined amplitudes of solitary waves with permanent normalizing (circles)
and flexible normalizing (crosses). D) Local group velocities (in m/s) defined for the sampling
window of 117 s (solid line) and 36 s (dashes). Symbols denote the determined velocities of solitary
waves: permanent normalizing (circles) and flexible normalizing (crosses). E) Growth rates σBFmax

(solid) and σdis (dashed) (in s−1) defined with the sampling window of 36 s
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Fig. 4.32 Wave record made at North Alwyn platform on November 19th 1997 at 20:11. The
legend is same as in Fig. 4.31
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Then the total derivative of the energy quantity is given by:

dη2

dT
= 2σdisη2, where σdis =

1
2Cgr

∂Cgr

∂T
. (4.117)

Parameter σdis expresses the exponential growth rate due to dispersive wave con-
vergence. Waves grow when σdis > 0 and decay for σdis < 0. The dispersive growth
rates computed for the time series are given in Figs. 4.31 and 4.32 (panel E, dashed
lines).

4.7.1.2 Application of the IST Approach

The simple nonlinear theory is based on the NLS equation (4.35) under the extra
assumption of unidirectional wave propagation. The spatial version of the dimen-
sionless NLS equation has the form

iqx +qtt +2q |q|2 = 0, (4.118)

where

t = Ω0T −2K0X , x = K0X , q =
1√
2

K0A∗, (4.119)

and A ≡ η01 is the complex envelope amplitude (see Eqs. (4.11), (4.13)). The spec-
tral areas that are unstable with respect to long perturbations of the uniform Stokes
waves may be estimated as the domain (Ω− ΔΩBF ,Ω+ ΔΩBF ), where ΔΩBF is
defined with the help of the instability criterion (4.39) and deep-water dispersion
relation as

2
ΔΩBF

Ω
=

ΔKBF

K
< 2

√
2Kη . (4.120)

The unstable frequency domain Ω0 ±ΔΩBF is bounded by the dashed lines in
Figs. 4.31 and 4.32 (panels A, B). The initial stage of the modulational growth is
described by the exponential law with a maximum growth rate given by formula
(4.41), which is, in the deep-water case,

σBFmax =
1
2
ΩK2η2. (4.121)

The two growth rates σdis and σBFmax (see Figs. 4.31 and 4.32, panels E) are
used for rough estimates of the time scales of dispersive and nonlinear wave focus-
ing effects. It is seen from the figures that dispersion typically works faster, while
estimated modulational growth should take more than 500 s.

The nonlinearity of individual waves is characterized by the steepness, although
the strength of self-focusing is characterized by another nonlinear parameter, which
is the soliton number or the BFI (see Sects. 4.2 and 4.4). The “dynamical” definition
of BFI (4.112) includes the number of individual waves observed in the wave group
nt . The number of waves within a packet is actually a convenient dimensionless
parameter, and is often used for estimations.
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Since the modulational instability occurrence is related to the homoclinic or-
bits, “unstable modes,” or envelope solitons (see Sect. 4.2), a more accurate way to
estimate the features of the modulational instability may be suggested by employ-
ing the concept of the envelope soliton. The envelope soliton of the NLS equation
may be considered as the first approximation for oceanic solitary wave groups. Re-
sults reported in Sect. 4.3.5 concerning the steep NLS soliton-like envelopes, justify
the adequacy of the quasi-soliton concept even in strongly nonlinear cases. For the
equation in the form (4.118), the envelope soliton solution (4.60) is rewritten as

qes (x, t) = Aes

exp

(
i(t − t0)

2Ves
− ix

(
1

4V 2
es
−A2

es

)
+ iθ0

)

cosh
Aes

Ves
(x− x0 −Ves (t − t0))

, (4.122)

where the parameters t0 and θ0 are explicitly introduced, which are the time shift at
position x = 0, and the initial phase. In Eq. (4.122), Aes and Ves are a dimensionless
amplitude and velocity of the envelope soliton, respectively. The physical parame-
ters, the amplitude of the wave packet Awp, and its velocity Vwp are expressed as

Awp =
√

2
K0

Aes, Vwp =
Ω0

K0
(
2+V−1

es
) . (4.123)

The applicability of the NLS theory (spectral narrowness) requires the quantity
|V−1

es | being small.
When envelope solitons interact with other waves, the dynamics of the wave

field may become complex. The possibility of detecting hidden solitons in time se-
ries may provide an effective tool in understanding and predicting nonlinear wave
dynamics. This can be done with the help of the Inverse Scattering Technique (see
Sect. 4.2.1). The spectrum of the scattering problem is time independent, and its
discrete part corresponds to envelope solitons. Let us consider the scattering prob-
lem (4.59) for the infinite line; then the soliton parameters are simply related to the
spectrum as follows

Aes = 2 Reλ and V−1
es = 4 Imλ (4.124)

instead of (4.67). The complete solution of the inverse scattering problem for func-
tion q(x = 0, t)—i.e. determination of t0 and θ0—requires knowledge of the eigen-
modes. The parameter t0, which defines the position of the envelope soliton in the
time series, may be well localized if short overlapping extracts from the time series
are considered (employing the windowing transform). Thus, the direct scattering
problem is solved in a sliding sampling window of length twin that identifies the po-
sition t0 of solitons. If wave groups of large amplitude are of interest, the window
twin is bounded owing to the conservation of the mass parameter Mes (4.69) for the
envelope solitons (i.e., steep solitons are narrow).

It is necessary to define the carrier wave frequency when considering the NLS
equation (4.118). Panels A in Figs. 4.31 and 4.32 show its variation. Therefore,
to follow the variation of the frequency, a short window should be used. On the
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other hand, it is more difficult to obtain a reliable estimate of this value within a
short window, preserving only few wave periods. The number of envelope solitons
is governed by the mass parameter, as Eq. (4.64). In the case of the spatial version
of the NLS equation (4.118), the following estimate may be done

Ns ∝ K0Ω0 ∝ Ω3
0, (4.125)

where the deep-water dispersion relation is used. Therefore, accurate determination
of the carrier wave frequency may be crucial for this method.

The soliton amplitudes that have been obtained with the help of this approach
are plotted as circles and crosses on panel C of Figs. 4.31 and 4.32. The corre-
sponding soliton velocities are given on panel D. The mean frequency is defined via
two methods. First, it is defined as the spectral moment Ωp (2.109) of the whole
20-min record (“permanent normalization”), and second, as the spectral moment
of each short extract (“flexible normalization”). These cases correspond to circles
and crosses in the figures. It is evidently seen that sometimes the results are rather
different. After having a look at the curves of the group velocity (panel D), it be-
comes clear that a soliton vanishes if the mean group velocity increases. The effect
of non-uniformity on modulated wave packets was considered by Duin (1999) with
the same qualitative conclusion: the BF instability is depressed when the local group
velocity increases and is intensified when Cgr becomes smaller.

Only the first (steeper) solitons defined in extracts are shown in the figures. Other
solitons are usually much smaller and assumed not to be very trustworthy. Although
the found solitons can often be seen by eye, they interact nonlinearly with other
waves, and in other conditions may be hidden by the surrounding waves.

The idea to seek solitons in a time series was, evidently, first realized by Osborne
and Petti (1994) for the shallow-water case, when the waves were described within
the framework of the Korteweg-de Vries equation. Recently, a similar technique has
been used for the study of freak waves over deep water within the NLS approach
(Osborne et al. 2005, Islas and Schober 2005, Schober and Calini 2008). In contrast
to the previous description, they suggest the use of periodic domains and the deter-
mination of the eigenmodes (full reconstruction of unstable modes). This makes the
approach more difficult when employing the theta-functions, whereas applying the
infinite line scattering problem formulation admits the description of wave groups
with the help of breathing solutions considered in Sect. 4.2.3.

To estimate the contribution of the solitary part in the observed freak waves, let
us assume a rogue wave is the result of the interaction of an envelope soliton with
a plane wave. Then the “solitary part” is defined as Awp/A f r, where Awp is the de-
tected amplitude of the soliton (4.123), and A f r is the Hilbert envelope amplitude
including the freak wave obtained directly from the time series. The contribution of
the background waves is estimated as Hs/(2A f r). According to the analysis provided
in Sect. 4.2.3, these contributions linearly supplement each other as Eq. (4.75). They
are represented by the solid and hatched areas in Fig. 4.33, respectively. Eleven ana-
lyzed rogue waves measured at oil platforms in the North Sea are used in the figure.
The rest (the empty areas) estimates the effects that are not taken into account. It
may be noticed that the first two contributions (the solitary part and the significant
background) may often completely explain the registered wave amplitude; this obvi-
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Fig. 4.33 “Solitary parts” As (solid) and Hs/2 (hatched) of the freak wave amplitudes for 10
records from the North Alwyn platform and the New Year Wave

ously proves the important role of the nonlinear modulation effect in the freak-wave
occurrence.

The application of the IST method to the analysis of water wave groups may be
improved by use of the Creamer et al. (1989) transform that takes into account the
nonlinear bound corrections that are not described by the NLS envelope equation.
Higher-order integrable (or nearly integrable) versions of the envelope equation may
be employed to describe more accurately the envelope solitary solutions (Schober
and Calini 2008).

In the present analysis, we have employed the window Fourier transform to deter-
mine the wave frequency. Wavelets provide an alternative improved way to estimate
the mean wave scale. They have been used by various authors: among them we cite
Mori et al. (2002), Chien et al. (2002), Paprota et al. (2003), Scott et al. (2005).
These studies present different occurrences of rogue waves in wavelet planes. Chien
et al. (2002) distinguish freak waves generated by wind waves (unimodal spectrum
with strong grouping phenomenon) and bimodal waves caused by interaction of two
wave systems (say, wind waves and swell). There also exist a large amount of multi-
modal waves that have many energetic areas in the wavelet spectrum. Although the
wavelet analysis may catch the transient change of wave parameters better than the
Fourier transform, the wavelet spectra are more difficult to interpret. The shapes of
the prototype functions (“mother wavelets”) are often very similar (or identical) to
the NLS envelope soliton, hence the application of the IST analysis in combination
with the exact theory may prove to be very efficient.

The three-dimensionality of rogue waves can help to identify their origin, as is
discussed in Sect. 4.6. Although the development of air-, ship- and satellite-borne
SAR measurements and the associated methods of analysis are very promising (see
Rosenthal 2005), until now there have been very few results concerning 3D observa-
tions. It needs further improvement and justification to enable regular measurements
and analysis (see Dysthe et al. 2008).
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4.7.2 Statistics from Registrations of Natural Rogue Waves

Most available long-run instrumental registrations are made over relatively deep-
water areas (see Fig. 1.3). Although the number of measured rogue waves is in
the hundreds, these waves are measured under very different conditions and obvi-
ously do not satisfy the stationary random process requirement. That is why the
results of their statistical analysis are often dubious. This doubt is indirectly con-
firmed by conflicting conclusions of different investigations about the probabil-
ity of highest waves registered by gauges. Rogue waves are found to occur much
more frequently than is foreseen by the Rayleigh distribution function in studies
(Mori 2004, Pinho et al. 2004, Stansell 2004, Liu and MacHutchon 2006). This dis-
tribution, however, fits natural data reported quite well in Mori et al. (2002). The
freak wave phenomenon is rarer than it follows from the Rayleigh distribution func-
tion according to Chien et al. 2002, Paprota et al. 2003, both for relatively shallow
water). Stansell (2004) has undertaken a careful analysis of the records from the
viewpoint of statistical stationarity, and reported on about 300 times more frequent
occurrence of the highest measured wave (AI = 3.19) than it could be expected
from the Reyleigh statistics. Similar estimates may be found in the paper by Mori
and Janssen (2006a). Although some theoretical relations are suggested by the au-
thors to describe the results, the general disagreement between the results about
the rogue-wave probability obviously makes the conclusions about the quantitative
rogue-wave probability estimation premature. Thus, the present database of rogue
waves cannot answer the question about the true probability of rogue waves. The
more or less accepted opinion about the statistical description of observed extreme
waves is as follows: the high-order statistical models in general are able to describe
many huge waves, although a population exists of “true rogue waves” that do not
satisfy the classical statistical description.

It has already been discussed that the scientific community tries to fill in the
lack of in situ data by numerical data obtained from computational runs. To do this,
it is necessary to ensure that the dynamics described by the computer models are
similar to real ocean dynamics. The main result achieved through the numerical
simulations of irregular surface waves consists of an increase of the rogue wave
probability when the Benjamin-Feir index grows. Hence, this parameter has been
considered as a possible good indicator of high probability of freak-wave occur-
rence. Therefore, the first question that should be answered is: does the probability
of extreme sea-waves exhibit a dependence on the BFI? The answer is actually not
straightforward. The BFI seems to be a promising parameter for evaluating the dan-
ger of extreme sea waves. As it was demonstrated by numerical simulation, a strong
correlation exists between high wave probability and BFI. Nevertheless, its prac-
tical use seems to be still not fully operational. The BFI is a complex parameter,
roughly speaking, reflecting the typical wave height (or corresponding dimension-
less parameter, “steepness”) and spectral bandwidth (or number of waves in a group,
which is the inverse value) (see Sect. 4.4). Surprisingly, it is found that the probabil-
ity of occurrence of freak waves is only weakly dependent on the significant wave
height, significant wave steepness, and spectral bandwidth (Stansell 2004, Olagnon
and Prevosto 2005, Olagnon and Prevosto 2005). Furthermore, Melville et al. (2005)
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remark that the threshold in the abnormality index, AI, does not correspond to equiv-
alent thresholds in either the skewness or excess kurtosis.

In order to confirm the adequacy of a selected parameter to be used in warnings
of risk occurrence, it is necessary to ensure that it is sensitive to the presence of
rogue waves, and that it can be robustly computed. Olagnon and Magnusson (2004,
2005) note that the BF indices (defined in Olagnon and Magnusson 2004 in different
ways) and the peakedness factor of the JONSWAP spectrum exhibit particularly
poor robustness. High natural variability of the BF index might be a consequence of
the difficulty to obtain stable estimators when considering short in situ records.

The investigation of the robustness of some popular statistical parameters (wave
height, crest height, period, steepness, kurtosis, BFI, parameters of the spectral
shape) performed by Olagnon and Magnusson (2004) reports that only the kurtosis
exhibits a sufficient correlation with normalized crest height to allow considering
it as a parameter to be monitored. However, the kurtosis is directly influenced by
the presence of extreme waves. We should emphasize here that from the theoretical
point of view the kurtosis and the BFI are related through Eq. (4.108).

From a practical viewpoint, a parameter must vary on a characteristic time scale
significantly larger than the wave period. Otherwise, the variation of the parame-
ter will merely be a detector of the rogue wave and cannot be used for forecasting.
Olagnon and Prevosto (2005) report that the change of the kurtosis value registered
at the instant of a high wave occurrence can be satisfactorily explained by the high
wave alone, and that no further relationship can be found at larger time scales. If the
maximum wave is removed from the kurtosis computation, and kurtosis is estimated
from the remaining of the record, no further correlation between the kurtosis and the
maximum wave height can be seen. Therefore, Olagnon and Prevosto (2005) con-
clude that the Benjamin-Feir instability is very local and is not reflected by statistics
at the time scale of a sea state. The deviations that they could observe for some spec-
tral parameters close to occurrences of extreme waves were well within the natural
range of variability. They could not identify any special feature on the time-histories
of the BFI that might have some chance of being related to rogue wave occurrence.

A possible explanation of the discrepancy between numerical studies and natural
observations may be due to the typically unidirectional wave propagation (long-
crested waves) studied in the majority of the numerical computations, while the
natural sea waves are essentially short-crested. The evidence of two qualitatively
different sea wave regimes (long- and short-crested) that result in very different
statistics is formulated in recent papers (Haver 2005, Gramstad and Trulsen 2007,
Dysthe et al. 2008) (see Sect. 4.6), and is becoming supported by theoretical studies
and numerical simulations as well. These studies will obviously guide the focus of
future research.

List of Notations

A amplification factor
A wave amplitude
Abr amplitude of the breather
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Aes amplitude of the envelope soliton
Apw amplitude of the plane wave
Awp dimensional amplitude of the wave packet
AI abnormality index
Cgr group velocity
CLW long wave velocity
Cph phase velocity
d dimensionless water depth
d̃ depth parameter
D water depth
D/DT material derivative
g acceleration due to gravity
H wave height
Hs significant wave height
IBF Benjamin-Feir index
k = (p,q) dimensionless wave vector
K = (KX ,KY ) wave vector
K wavenumber
M mass integral
M order of perturbation series in the HOSM approach
n unit vector normal to the boundary
nt , nx number of individual wave in the time series or wave snapshot
Ns soliton number
p dimensionless pressure
pa dimensionless atmosphere pressure
P pressure
Pa atmosphere pressure
q(x, t) dimensionless envelope amplitude in the NLS equation
s wave steepness
t dimensionless time
T time
Tbr period of the breather
Tf focusing time
Uw wind velocity
Vbr velocity of the breather
Ves velocity of the envelope soliton
Vwp dimensional velocity of the wave packet
(x, y, z) dimensionless coordinates
(X , Y , Z) coordinates
Xf focusing length
φ (X , Y , Z, T ) velocity potential
η(X , Y , T ) surface elevation
ϕ(x, y, z, t) dimensionless velocity potential
κ kurtosis
λ eigenvalue of the associated scattering problem
ρa atmosphere density
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σ growth rate
σ standard deviation, σ2 is the variance
Ω cyclic wave frequency
Ωp mean wave frequency
ζ (x, y, t) dimensionless surface displacement
∂ΩFS free surface
∂ΩSB solid boundaries
∇ gradient operator

List of Acronyms

BF Benjamin-Feir
BFI Benjamin-Feir Index
BIEM Boundary Integral Equation Method
DS Davey-Stewartson system
HOSM High Order Spectral Method
NLS Nonlinear Schrödinger equation
SWE Steep Wave Event
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Chapter 5
Shallow-Water Rogue Waves

When the sea becomes shallow, the water flow induced by surface waves is almost
uniform with depth. Thus, properties of shallow water waves are radically different
from those in deep water: the wave dispersion is weak, and waves now “feel” the
seafloor. Nonlinearity leads to strong correlation between spectral components sup-
porting existence of various wave shapes such as solitons, cnoidal waves, and undu-
lar bores. The interaction of water waves with variable bathymetry and coastal lines
modifies the wave regime in shallow water and influences rogue wave formation.
This chapter is devoted to the description of theoretical models of shallow-water
freak waves.

5.1 Nonlinear Models of Shallow-Water Waves

The basic 3D hydrodynamic models are effective for studying wave processes in
relatively small basins due to limited computer resources. This is why various depth-
averaged models (2D) are popular to describe wind wave processes in the coastal
zone of seas and oceans, and sometimes for transoceanic propagation of large-scale
waves (such as a tsunami). A straightforward way to derive nonlinear dispersive
models of shallow-water waves is to use the Euler equation written for potential
flow

U = ∇φ , W = ∂φ/∂Z. (5.1)

All vector operations hereafter act in the horizontal plane, so that ∇ = (∂/∂X ,
∂/∂Y )t ,Δ = ∇ ·∇ and U = (U,V ) (see geometry in Fig 2.1). Then, the Laplace
equation (2.13) has the form

Δφ +
∂ 2φ
∂Z2 = 0, (5.2)

with the boundary condition (2.31) at the uneven bottom, Z = −D(X ,Y ),

∂φ/∂Z +∇φ ·∇D = 0, (5.3)

and kinematic and dynamic conditions on the free surface, Z = η(X ,Y,T ) (see
Chap. 2),
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∂φ
∂Z

=
dη
dT

=
∂η
∂T

+∇φ ·∇η on Z = η , (5.4)

∂φ
∂T

+
1
2

(
∂φ
∂Z

)2

+gη = 0 on Z = η . (5.5)

Since potential flow is governed by a harmonic function, it can be differentiated
with respect to all its arguments and expanded as a Taylor series with respect to the
vertical coordinate centered at Z = −D,

φ(X ,Y,Z,T ) =
∞

∑
n=0

qn(X ,Y,T )(Z +D)n. (5.6)

Substitution of Eq. (5.6) into the Laplace equation (5.2) yields the recurrence
correlations for the unknown functions qn,

(n+2)(n+1)qn+2 +Δqn +2(n+1)∇qn+1∇D

+(n+1)qn+1ΔD+(n+2)(n+1)qn+2(∇D)2 = 0, (5.7)

so that only two of them (namely, q0 and q1) are independent. Specifically, q2 is
given by

q2 = −Δq0 +2∇q1∇D+q1ΔD
2[1+(∇D)2]

. (5.8)

By substituting series (5.6) into the boundary condition on the bottom (5.3) and
using Eq. (5.7), we may deduce the following relation between q1 and q0

q1 = − ∇q0∇D
[1+(∇D)2]

. (5.9)

Thus, the series (5.6) is completely determined by only one function, q0(X ,Y,T ).
Boundary conditions on the free surface (5.4) and (5.5) provide equations for η and
∇q0. The physical meaning of ∇q0 is the bottom velocity (for a flat floor). When the
depth-averaged velocity

u(X ,Y,T ) =
1

D+η

η∫

−D

∇φ(X ,Y,Z,T )dZ (5.10)

is chosen as the “physical” horizontal velocity, then the value of ∇q0 can be calcu-
lated from (5.6) approximately as

∇q0 = u+
D+η

2
uΔD+(D+η)(∇D∇)u+(∇D)2u+

(D+η)2

6
Δu+ . . . , (5.11)

where the iteration procedure employs a small parameter D/λ , where λ is the
wavelength characterizing the “shallowness” of long-water waves. After substitu-
tion of series (5.11), Eqs. (5.4) and (5.5) result in equations for the fully nonlinear
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weakly dispersive theory (see details in Green and Naghdi 1976, and Zheleznyak
and Pelinovsky 1985)

∂η
∂T

+∇ · [(D+η)u] = 0, (5.12)

∂u
∂T

+(u∇)u+g∇η = F, (5.13)

where F characterizes weak dispersion

F =
1

D+η
∇
[
(D+η)3

3
R+

(D+η)2

2
Q

]
−∇D

[
D+η

2
R+Q

]
, (5.14)

R =
∂
∂T

∇ ·u+(u∇)∇ ·u− (∇ ·u)2, Q =
∂u
∂T

∇D+(u∇)(u∇D). (5.15)

In fact, we may choose the particle velocity at any depth as a physical vari-
able, and recalculate ∇q0 from (5.6); this leads to other forms of nonlinear disper-
sive equations for long waves (Wei et al. 1995, Madsen and Schaffer 1998, Agnon
et al. 1999, Chen et al. 2000, Kim et al. 2003, Madsen et al. 2002, 2003). For most
of them, the obtained linear dispersion relation has a Padé-polynomial form like
(Madsen et al. 2003)

Ω2

gDK2 =
1+K2D2/6+K4D4/120
1+K2D2/2+K4D4/24

, (5.16)

which is a very good approximation of the exact dispersion relation (2.52) in a
relatively wide range of water depths KD (until depth of order KD ≈ 10). Therefore,
models of this type might be called fully nonlinear and dispersive systems of long
waves (Boussinesq-like systems).

For the case of weakly nonlinear and weakly dispersive waves, all the Boussi-
nesq-like models reduce to the Peregrine system (Peregrine 1967, 1972)

∂η
∂T

+∇ · [(D+η)u] = 0,

∂u
∂T

+(u∇)u+g∇η =
D
2

∂
∂T

[
∇(∇ · (uD))− D

3
∇(∇ ·u)

]
. (5.17)

If the wave propagates mostly in one direction, and the bottom slope is small
enough to neglect the wave reflection, the Peregrine system can be reduced to the
famous Korteweg-de Vries and Kadomtsev-Petviashvili equations. At first, system
(5.17) can be re-written in the form of a nonlinear wave equation for the water
surface elevation, η ,

∂ 2η
∂T 2 −∇ ·

[
C2∇η

]
= Π{η ,u} := −∇ ·

[
∂ (ηu)
∂T

+DF−D(u∇)u
]
, (5.18)
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where C is the long-wave speed, C2 = gD. The function ∏ specifies nonlinear and
dispersive terms that are weak. Let us introduce a new temporal variable

s = τ(X ,Y )−T, (5.19)

where the function τ will be determined later. With these new variables, Eq. (5.18)
reads

[
1−C2(∇τ)2] ∂ 2η

∂ s2 − ∂
∂ s

[
2C2∇τ∇η +η∇ ·

(
C2∇τ

)]
−∇ · (C2∇η) = Π. (5.20)

When curvatures of the wave front and bottom slope are small (this assumption
is normal for the ray theory), the elevation is a fast function of s and a slow function
of spatial coordinates. Due to this, the last term on the LHS of Eq. (5.20) may be
neglected. Owing to the weakness of nonlinearity and dispersion on the RHS of
(5.20), a linear relation of long waves

u = g∇τη (5.21)

can be applied as follows from Eq. (5.17). As a result, Eq. (5.20) splits into a system
of two equations for τ and η (see Engelbrecht et al. 1988 and Dingemans 1996)

(∇τ)2 = C−2(X ,Y ) = (gD)−1, (5.22)

∂
∂ s

[
2C2∇τ∇η +ηC2Δτ +η∇τ∇C2]+Π{η} = 0, (5.23)

The first Eq. (5.22) is the famous eikonal equation of the ray theory for long waves,
allowing the determination of ray paths and wave fronts. This equation may be
rewritten in the Hamiltonian form (3.6) (see Chap. 3 and discussion in Sect. 3.1).
In the context of rogue waves, it determines the random location of caustics, where
the wave field exhibits high amplitudes. The second Eq. (5.23), once integrated,
results in

2C2∇τ∇η +η(C2Δτ +∇τ∇C2)+
3η
D

∂η
∂ s

+
D
3g

∂ 3η
∂ s3 = 0. (5.24)

Noting that ∇τ∇η = C−1 ∂η/∂ l and calculating Δτ = b−1d(b/C)/dl, where l
is a coordinate along the ray and b is a distance between neighboring rays, then
Eq. (5.24) gives the following equation (see Pelinovsky 1982, Dingemans 1996)

C
∂η
∂ l

+
3η
2D

∂η
∂ s

+
D
6g

∂ 3η
∂ s3 +

Cη
4Db2

d(Db2)
dl

= 0. (5.25)

This equation stands for the energy flux conservation (3.7) used previously for
monochromatic waves in the linear approximation. Equation (5.25) governs the evo-
lution of weakly nonlinear and weakly dispersive waves in a basin with variable
depth. The first time, it was derived by Ostrovsky and Pelinovsky (1975). In basins
of constant depth (5.25), it reduces to the Korteweg-de Vries equation
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C
∂η
∂X

+
3η
2D

∂η
∂ s

+
D
6g

∂ 3η
∂ s3 = 0, s =

X
C
−T, (5.26)

∂η
∂T

+
3Cη
2D

∂η
∂X ′ +

CD2

6
∂ 3η

∂ (X ′)3 = 0, X ′ = X −CT, (5.27)

and describes the evolution of an initial spatial disturbance. The Korteweg-de Vries
equation is an etalon equation in the theory of nonlinear waves; it can be solved
exactly with the help of the Inverse Scattering Technique (IST) (Novikov et al. 1984,
Drazin and Johnson 1989).

When the wave field is directional with significant variation in the transversal
direction, then the last term on the LHS of Eq. (5.20) can not be neglected and
should be replaced by ∂ (C2∂η/∂Y )/∂Y , where Y is the transverse coordinate. This
term does not allow integration of Eq. (5.23), and the modified evolution equation
is now of fourth order, instead of the third order as is Eq. (5.25). In particular, for
basins of constant depth, it becomes

∂
∂X ′

[
∂η
∂T

+
3Cη
2D

∂η
∂X ′ +

CD2

6
∂ 3η

∂ (X ′)3

]
+

C
2
∂ 2η
∂Y 2 = 0, X ′ = X −CT. (5.28)

This equation is the famous Kadomtsev–Petviashvili equation that is also com-
pletely integrable (Novikov et al. 1984, Drazin and Johnson 1989).

These evolution equations for shallow water waves will be used in the next sec-
tions to study the freak-wave phenomenon.

5.2 Nonlinear-Dispersive Focusing of Unidirectional
Shallow-Water Wave Fields

Unidirectional shallow water waves are known to be stable with respect to long
perturbations. An initial wave field represented by weakly modulated wave trains
evolves in time with some change of the shape of the trains, but the waves remain
uniform, and their amplitudes do not vary significantly (Kit et al. 2000). Therefore,
the modulational instability mechanism that is important for deep water cannot pro-
vide wave energy exchange and focusing within a wave group in shallow water.
Dispersion, however, still may spawn rogue waves, although the shallow water dis-
persion law is different from that of deep water. The Korteweg-de Vries (KdV) equa-
tion (5.27), derived in the previous section, is a basic weakly dispersive and weakly
nonlinear model. This equation was the first that exhibited exact soliton solutions
(Zabusky and Kruskal 1965), and the associated Cauchy problem was integrated by
using IST (Gardner et al. 1967). The soliton solution is a steady-state solution of
Eq. (5.27)

η(X ,T ) = Hsech2

[√
3H
4D

X −V T
D

]

, V = C

[
1+

H
2D

]
, (5.29)
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corresponding to a moving solitary crest on the free surface that was first observed
by Scott Russel in a narrow channel in 1844. The soliton length is formally infinite,
but physically it is naturally determined at the level of elevation 0.5:

λs = 2D

√
4D
3H

ln(1+
√

2) ∼= 2D

√
D
H

. (5.30)

For instance, a soliton of 1 m height has a length of about 60 km in water of
1 km depth. Solitons are generated from a wide class of initial disturbances that
vanish at infinity. Its upper number may be estimated by the formula (Drazin and
Johnson 1989)

Ns ≤ 1+
3

4D3

∞∫

−∞

|X |(1+ sgn(η))η (X)dX . (5.31)

The qualitative character of nonstationary processes of nonlinear wave dynamics
within the framework of the Korteweg-de Vries equation can be clarified from the
nondimensional form of Eq. (5.27)

∂ζ
∂ t

+ζ
∂ζ
∂x

+
1

9Ur
∂ 3ζ
∂x3 = 0, (5.32)

where the dimensionless variables ζ = η/A0, x = X/λ0, and t = (3CA0T )/(2λ0D)
are normalized by the amplitude A0 and length λ0 of the initial disturbance, respec-
tively. Here, Ur is the Ursell parameter

Ur =
A0λ 2

0

D3 . (5.33)

The physical meaning of the Ursell parameter is evident: it characterizes the ratio
of nonlinearity to dispersion. When the Ursell parameter is small, the nonlinearity
can be neglected and the wave is a linear dispersive wave. Alternatively, if the Ursell
parameter is large, dispersion can be neglected, and the wave evolves as a nonlinear
nondispersive wave forming a steep front. For a soliton solution, Ur = 4, and this
value is marginal, separating nonlinear nondispersive and linear dispersive regimes.
This approach and exact solutions will be used in this section to investigate the effect
of nonlinear-dispersive focusing.

To study rogue wave generation, it is convenient to invert the time variable in
the evolution equation, as similarly done in Chaps. 3 and 4. To do this, the spatial
coordinate, X , in the KdV equation should be replaced by −X . Hence, an initial
value problem for an expected rogue wave may be considered to draw some infer-
ences about wave fields that could form a freak wave (when time is reversed back to
its normal run). Vanishing at infinity (X →±∞), boundary conditions result in the
simplest analytical analysis of the Cauchy problem.

In particular, solutions for an initial wave in the form of a delta-function (singular
initial data) can be obtained analytically (Drazin and Johnson 1989). According
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to the exact solution, a positive1 delta-function evolves into a solitary wave (one
soliton) and oscillating dispersive tail. The generated soliton is

η =
3Q2

4D3 sech2
[

3Q
4D3

(
X −C

(
1+

3Q2

8D4

)
T

)]
, (5.34)

where Q is the delta-function intensity. The soliton moves with a larger speed and
therefore is in front of the wave train; other waves are distributed in space according
to the dispersion of the wave velocity. The soliton conserves its shape and energy,
while the dispersive tail is spreading in space and thus vanishes. Therefore, the
solitary part of the solution is the asymptotic solution of a Cauchy problem for
the KdV equation. When the delta function is negative, only a dispersive tail may
occur.

Bearing in mind that time may be reversed, this solution actually shows that
a delta-function wave may be formed from weak-amplitude waves with or with-
out a soliton. The KdV model does not limit the amplitude of possible abnormal
waves; the wave-focusing mechanism due to dispersion is applicable in the non-
linear case as well, but the wave field structure is more complicated and includes
amplitude-frequency modulated wave packets and solitons. This process was inves-
tigated in detail by Pelinovsky et al. (2000) and Kharif et al. (2000), and is shown
in Fig. 5.1 (in the system of coordinates moving with speed C). The value of max-
imum wave amplitude in the domain increases rapidly and then decreases rapidly
again (Fig. 5.2); this explains the short-lived character of rogue waves. Neverthe-
less, it should be emphasized that the Korteweg-de Vries model is a weakly non-
linear model, and use of singular initial conditions (like delta functions) may be
nonphysical. Smoothed bell-like initial conditions with characteristic amplitude, A0,
and length, λ0, may be considered as well. Negative initial disturbances result in a
dispersive tail only; therefore, this process is qualitatively similar to the linear limit
(see Sect. 3.2). In this case, the rogue wave is a deep hole on the sea surface (see
Fig. 5.3). Positive initial pulse (a crest) may transform into solitons; their number
and amplitudes depend on the Ursell parameter (5.33).

When the Ursell parameter is large, the amplitudes of generated solitons are com-
parable with the amplitude of the initial disturbance (in the limiting case Ur >> 1,
the amplitude of the leading soliton is two times larger than the initial pulse). There-
fore, an initial pulse (that is supposed to be an expected rogue wave) cannot be con-
sidered a model of a freak wave, since condition (I.1) for the wave field amplitude
amplification is not satisfied.

In the case of a small Ursell parameter, only one soliton is formed with a small
amplitude (proportional to Ur). The initial pulse may now be much larger than the
wave field at large time, since the soliton amplitude is small, and the dispersive train
vanishes. When time is inversed, the evolution may represent a likely process of a
rogue wave generation (see Fig. 5.1), while the pulse-like wave may be considered
as a freak wave.

1 This sign depends on the sign of the nonlinear coefficient in the Korteweg-de Vries equation,
which is positive for surface water waves.
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Fig. 5.1 Freak wave formation in shallow water. Numbers denote moments of time (scaled)
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Fig. 5.2 Maximum wave amplitude versus time in the process of the freak wave formation given
in Fig. 5.1

It is noteworthy to say that solitons do not play a crucial role in this freak wave
generation scenario. The huge wave is mainly due to the frequency-modulated dis-
persive wave train.

The nonlinear-dispersive mechanism of freak wave formation is relatively robust;
weak variation of the wave field parameters modifies the shape and amplitude of the
freak wave, but is unable to prevent its occurrence. Specific numerical simulations
have been performed in Pelinovsky et al. (2000) and Talipova et al. (2008) to
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Fig. 5.3 Generation of a deep hole in shallow water

highlight this property. A wave packet generated from a positive narrow pulse (as
shown in Fig. 5.1) is inverted in space, X →−X , and then several individual waves
are canceled. This wave field is used to start the numerical simulation of the KdV
equation. The simulation would result in the initially imposed positive impulse if the
wave field has not been cut. If the soliton is deleted from the dispersed wave field
(Fig. 5.4a), its focusing results in a freak wave with a large crest and following deep
trough (a sign-variable wave; see Fig. 5.4b). If the first negative wave in the train
shown in Fig. 5.4a is cut in addition to the soliton wave (Fig. 5.4c), the generated
huge wave represents an almost positive pulse (a crest) with no deep neighboring
troughs (Fig. 5.4d). The heights of computed abnormal waves in both cases satisfy
the amplitude amplification criterion for rogue waves (I.1). Many natural observa-
tions support the existence of sign-variable rogue waves (see Chap. 1).

Similar analyses have been performed with a “solitonless” wave train, resulting
from a negative pulse disturbance (see Fig. 5.3). If the leading negative oscillation
is deleted (see Figs. 5.3a. and 5.5a), the huge wave is represented by several intense
waves (Fig. 5.5b) that could be related to the observation of the “three sisters” also
presented in Chap. 1.

Besides smooth solutions, singular exact solutions of the Korteweg-de Vries
equation may be found (Matveev 2002). Similar to the soliton solutions, they pre-
serve their identity, manifesting elastic collision with other waves. The positon so-
lution is given as an example, although other solutions exist (negaton, singularities,
a rational solution; see Matveev 2002)

η
D

= −128p2 sinΘ(sinΘ− pΨcosΘ)
(sin2Θ−2pΨ)2 , (5.35)

where

Θ =
√

6p
D

(
X − (1−4p2)CT

)
, Ψ =

√
6

D

(
X − (1−12p2)CT

)
.
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Fig. 5.4 “Non-optimal” focusing of the wave train in shallow water: initial conditions (a, c) and
resulting waves (b, d)

Fig. 5.5 Non-optimal generation of an abnormal wave from the wave train with negative “mass”
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The parameter of this solution is p. A positon solution as a function of X has a
second-order pole and, therefore, has an infinite energy; the tails of the oscillatory
solution. Such solutions cannot be realized physically. They show, moreover, a ten-
dency of smooth solutions of the KdV equation, close to waves with very high peaks.

The solution of the associated scattering problem with periodic boundary con-
ditions is, in fact, much trickier to implement, since it operates with special theta
functions. The detailed analysis of periodic solutions of the KdV equation is given
in a series of papers by Osborne and coauthors (see, for instance, Osborne 1995,
Osborne et al. 1998). The solution of the KdV equation is represented by a linear
superposition of nonlinear oscillatory modes (multiple quasi-cnoidal waves) in the
associated spectral problem. The freak wave in this approach is the superposition of
these modes with suitable phases.

A statistical analysis of shallow-water rogue-wave characteristics has been con-
ducted by Pelinovsky and Sergeeva (2006) with the help of direct numerical simu-
lation of the KdV equation, with periodic boundary and random initial conditions;
these results will be discussed in the next section. We would like to emphasize that
a superposition of random and weak frequency modulated deterministic compo-
nents still can efficiently spawn rogue waves, as it is shown in Fig. 5.6 (taken from
Pelinovsky et al. 2000). So, freak waves in shallow water may be generated from a
wide class of wave fields with the help of the nonlinear dispersive focusing.
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Fig. 5.6 Freak wave formation from the combination of a random field and frequency modulated
wave train. Numbers denote moments of time (scaled)
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5.3 Numerical Modeling of Irregular Wave Fields
in Shallow Water (KdV Framework)

In the previous section, it has been shown, with the help of exact and numerical solu-
tions of the KdV equation, how nonlinear-dispersive wave focusing may efficiently
generate rogue waves. The KdV equation is integrable with the help of the IST, and
this property supports the existence of solitons. When the wave field vanishes as
coordinates tend to infinity, solitons are known to represent long-time asymptotic
wave behavior, since quasilinear waves decay but solitons remain unchanged.

As shown above in the framework of the KdV equation, the nonlinear disper-
sive focusing of the wave trains is the major mechanism of freak wave occurrence.
The random wave field is characterized by the modulation of the amplitude and fre-
quency of waves. Therefore, the focusing mechanism should “work” in a random
field. Meanwhile, the KdV equation is fully integrable, demonstrating an important
role of the solitons in nonlinear wave dynamics. For initial disturbances vanishing
at infinity, the solitons correspond to the final stage of the wave field evolution, and
these results are well known. When the initial disturbance corresponds to the sine
periodic wave, its evolution leads to soliton formation and its disappearance (recur-
rence phenomenon), as has been shown by Zabusky and Kruskal (1965).

Later, this process was investigated for different values of nonlinearity/dispersion
ratio (the Ursell parameter given by (5.33)) and large times (see Salupere et al. 2002,
2003a,b and references therein). Actually, an initial sine state is not fully recon-
structed at large time, and soliton ensembles play an important role in the long-time
behavior of a nonlinear wave field, especially for large values of the Ursell param-
eter. The dynamics of the soliton ensembles, even for this simple initial sine condi-
tion, are very complicated and perhaps may be interpreted as solitonic turbulence,
which can be considered as a combination of “rarefied solitonic gas” and the residue
of oscillating quasilinear waves (Salupere et al. 1996).

Zakharov (1971) used the inverse scattering method to show that paired collisions
occurring between solitons, and the interaction with a nonsoliton field, could not
change the amplitude of the soliton. As a result, the total soliton velocity distribution
function does not depend on time. In real situations of wind waves, the values of the
Ursell parameters are not too large and the dispersive trains contribute significantly
to the statistical wave characteristics.

Meanwhile, physically observed wave characteristics (spectra, amplitude, and
height distributions) will change. The nonlinear energy exchange between different
spectral components even for initial narrow-band wave fields is significant: a wave
packet may split into several groups with different carrier wave numbers, and the
wave profile becomes asymmetrical (Kit et al. 2000, Grimshaw et al. 2001, Groesen
and Westhuis 2002). A wave realization, represented by multicnoidal waves and
solitons, varies in space and time more significantly and its behavior is irregular
(quasi-chaotic). Moreover, when an initial spectrum has two peaks, such a state
is unstable (Zakharov 1971, Onorato et al. 2005), and therefore the wave dynam-
ics should be complicated. As a result, the statistical moments and the distribution
functions of the wave field change in time; its spatial spectrum also varies. Under
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the assumption of random initial conditions, the properties of such wave fields may
be studied with the help of the random functions theory. In fact, we know only one
mathematical paper (Murray 1978) where the soliton generation from irregular data
is studied, but random wave characteristics have not been considered.

The direct numerical simulation of the KdV equation with periodic boundary
conditions is applied in Pelinovsky and Sergeeva (2006) to study the statistical
characteristics of wave fields and probability distributions of freak waves. In these
simulations, the dimensionless form of the KdV equation (5.32) is used where nor-
malization with significant wave amplitude (for random wave field the significant
wave amplitude, As, is equal to 2σ, where σ2 is the variance (2.72)), and carrier
wave number K0 (for random wave field it is the spectral peak wave number) are
employed.

The numerical integration of the KdV equation (5.32) with periodic boundary
conditions: ζ (0, t) = ζ (L, t) is based on a pseudospectral method (Fornberg 1998).
A zero-mean random wave field is described by a Fourier series containing 256
harmonics

ζ (x,0) =
256

∑
j=1

√
2S(k j)Δk cos(k jx+ϕ j), (5.36)

where S(k) is the initial nonsymmetric spectrum, k j = jΔk, Δk is the sampling
wavenumber, varying from 0.03 to 0.023, and the phase ϕ j is a random variable,
uniformly distributed in the interval [0, 2π]. The length of the initial realization is
L = 2π/Δk. The initial spectrum is assumed to have a Gaussian shape of amplitude
Q, and width δ :

S(k) = Qexp

(
− (k−1)2

2δ 2

)
. (5.37)

The parameter Q is chosen so that
∞∫

0
2S (k)dk =σ2

0 = 1/4(σ2
0 is the dimensionless

variance). The spectral width parameter δ and the Ursell parameter both determine
the dynamics of the nonlinear wave field. The sizes of the spectral domain (256 har-
monics) and the characteristic spectrum widths are chosen to provide the spectrum
decay when k is large. The initial spectra with a cut-off spectrum tail are presented
in Fig. 5.7.

In numerical experiments by Pelinovsky and Sergeeva (2006), the Ursell param-
eter varies from 0.07 to 0.95, and the spectrum width varies from 0.27 to 0.18.
Here, only the case δ = 0.27 will be presented in detail. The statistical characteris-
tics are computed for each time step and are averaged over 500 ensembles, which
corresponds to a total wave record of about 15,000 individual waves to provide suf-
ficient statistics. The computation is performed for relatively large time evolution,
compared with the characteristic time scale of nonlinear effects (till t = 100) and
includes about 1,000 wave periods depending on the initial conditions. This simu-
lation time is sufficient for the manifestation of nonlinear and dispersive effects and
to reach equilibrium conditions.

The evolution of a wave record is displayed in Fig. 5.8 for different instants
of time. It is obviously seen that the wave profile becomes asymmetric, so that the
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Fig. 5.7 Initial spectra for different widths δ

Fig. 5.8 Wave profiles at different instants of time (Ur = 0.73)

crests are sharp while the troughs are gentle. It is interesting to analyze the trajectory
patterns (Fig. 5.9) presented in the time-space plane. This figure evidently shows
solitons’ traces for different initial conditions. The number of visible solitons, even
for Ur = 0.95, is about 5; this means that solitons do not contribute significantly to
the total random field. Under conditions of strong nonlinearity, the propagation gives
rise to a maximum value of peak amplitude in most realizations (Fig. 5.10a). The
key role of nonlinear effects in the formation of large wave amplitudes in this model
becomes evident, as shown in Fig. 5.10b. This figure represents the distribution
functions of the largest amplitudes, found for the case of numerical simulations
and compared with the case of a linear propagation (when the nonlinear term in the
KdV equation is canceled). Nonlinearity makes high amplitude wave occurrence
more frequent.
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Fig. 5.9 Time-space plane of
wave propagation for various
Ur. Color gradations show the
wave intensity. (a) The linear
limit Ur = 0; (b) Ur = 0.95

Fig. 5.10 Maximum of wave amplitudes in different realizations (a) and distribution of maximum
crest amplitudes (b)
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The first two statistical moments—the mean level and the variance—are integrals
of the KdV equation, so that they remain unchanged during the process of wave
evolution. The next two statistical moments define the skewness γ and kurtosis

∼κ = κ−3, (5.38)

where γ and κ are defined by Eqs. (2.73) and (2.74) (see Chap. 2).
As known, the skewness is a statistical measure of the vertical asymmetry of the

wave field. If the value of the skewness increases (positive), the crests are sharper,
while the troughs are flatter. The kurtosis represents the degree of peakedness in
the distribution and defines the contribution of large amplitude waves in the whole
distribution. For a random Gaussian process, κ = 3, corresponding to

∼κ = 0. When
∼κ is positive, the contribution of large waves is more significant. The computed evo-
lution of statistical moments shows a stationary state existence and a transition to
this state. The transition period is about 10-20 characteristic time scale of nonlin-
earity. During this process, both moments of the wave field tend to almost constant
values (Fig. 5.11). Figure 5.12 displays the values of γ and

∼κ , corresponding to this
stationary mode.

For all conditions, the skewness is positive, and it means that the positive waves
(crests) have larger amplitudes than the negative waves (troughs). The asymptotic
value of skewness increases with an increase of the Ursell parameter; and therefore
elevation (positive) waves are more visible in the nonlinear wave field than the de-
pression (negative) waves. This conclusion corresponds to the known expressions
for the classical cnoidal waves (sharp crest and flat trough).

The kurtosis tends to a negative asymptotic value for Ur < 0.6; therefore, the
probability of large amplitude (freak) wave occurrence should be less than is pre-
dicted for Gaussian processes. For strong nonlinearity, the kurtosis asymptotic value
exceeds zero, which indicates a high probability of large wave occurrence. Onorato

Fig. 5.11 Temporal evolution of statistical moments for different Ursell parameters
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Fig. 5.12 Asymptotic value
of the spectral moments as
functions of the Ursell
parameter Ur

et al. (2001) and Tanaka (2001) showed by means of numerical experiments that
for nonlinear random waves over deep water, the kurtosis

∼κ oscillates around some
positive mean value. Janssen (2003) reports a positive fourth moment, calculated in
the weak turbulence theory for deep-water waves that grow while the wave ampli-
tude increases. Thus, the behavior of the fourth moment is qualitatively similar for
strongly nonlinear waves in deep and shallow waters.

As expected due to nonlinearity, the spectrum evolves, widens, and tends to a sta-
tionary state (Fig. 5.13). This state, depending on the Ursell parameter, corresponds
to the asymmetric wave shape; some energy is transferred to the low frequencies
(spectrum downshift phenomenon). For large Ursell values, the spectral density is
distributed almost uniformly at small k. The flatness of the spectrum is wider for
Ur = 0.95 when the wave field is more energetic and nonlinear effects are more
significant. The tendency to the flatness of the spectrum (Rayleigh-Jeans spectrum)
is known for the statistical equilibrium with no sources and sinks.

Fig. 5.13 Temporal evolution of spectra S(k) for various Ur: (a) Ur = 0.2, (b) Ur = 0.95
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It is important to mention that the spectrum downshifts into the low-frequency
range even for an initial spectrum taken in a symmetric Gaussian form. For com-
parison, the downshift of the initial symmetric spectrum for deep-water waves
is possible only in the extended version of the nonlinear Schrödinger equation,
like the Dysthe equation, which includes an asymmetry of the wave field (Dysthe
et al. 2003). The shallow water model based on the KdV equation is initially asym-
metric due to the quadratic nonlinearity, and the asymmetry of the wave group is im-
mediately obtained in the process of the wave evolution (Kit et al. 2000, Grimshaw
et al. 2001, Groesen and Westhuis 2002). As already noticed, the spectrum becomes
asymmetric with weak shifting in the short-wave range. For larger dimensionless
wavenumbers k(0.1 < k < 0.2), the spectrum may be approximated by the power
law asymptotics k−α , where the slope of the spectrum, α , decreases with an increase
of the Ur parameter (from α = 3.7 for Ur = 0.5 till α = 2 for Ur = 0.95).

The distribution of the wave crest amplitudes, calculated as a maximum between
two zero-crossings, is presented in Fig. 5.14. For Ur < 0.3, the probability of small
amplitudes (A < 1.2) exceeds the Rayleigh distribution, which is the theoretical ap-
proximation of a linear narrow-band Gaussian process (see Chap. 2); meanwhile, in
the range of high amplitudes (A > 1.5), the distribution lays below the theoretical
curve. For the more energetic wave field (Ur > 0.3), the asymptotic distribution ex-
ceeds the Rayleigh distribution, and the probability of the highest crest occurrence
increases. In a qualitative sense, the shape of the amplitude distribution function
does not contradict the behavior of the skewness and kurtosis (Fig. 5.12). The first
one shows that positive waves have larger amplitudes than negative waves, whereas
the second one indicates a significant contribution of the small waves in the whole
distribution. Finally, these results allow us to estimate the probability of the rogue-
wave occurrence (its amplitude exceeds twice the significant amplitude; see (I.1)).
Freak waves should appear more frequently when the wave field is strongly nonlin-
ear (high values of the Ursell parameter).

The same results are obtained when using experimental spectra of shallow-water
waves in the coastal zone of the North Sea and in Lake Georgia in Australia

Fig. 5.14 Asymptotic crest
amplitude distribution for
different Ur numbers. Solid
line corresponds to the
Rayleigh distribution
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(Kokorina and Pelinovsky 2005). The computed results confirm that the irregular
nonlinear wave field does not satisfy the Gaussian statistics, and its statistical char-
acteristics depend on the Ursell parameter, which represents the “ratio” of nonlinear
to dispersive effects.

In this way, it is demonstrated that the nonlinear shallow water-wave field be-
comes asymmetric with sharp crests and flat troughs, which leads to a positive third
statistical moment. The skewness grows monotonously with the increase of the Ur
number. The behavior of the 4th statistical moment (kurtosis

∼κ) is nonmonotonic.
It is negative when Ur < 0.8, which indicates a significant contribution of small
amplitude waves to the total distribution. When the initial disturbance is more non-
linear, then the kurtosis exceeds the zero level, at which it increases with a growth
of Ur. For small Ur numbers, close to zero, the probability distribution function
slightly deviates from the theoretical Rayleigh distribution. For Ur > 0.3, the com-
puted curve lies above the theoretical distribution, which means a higher probability
of large wave formation—namely freak-wave occurrence. An important result is the
existence of a steady state for statistical characteristics: statistical moments (skew-
ness and kurtosis), distribution functions, and spectral density. The computations
demonstrate that both the statistical moments and distribution functions evolve until
some bound level is reached. The analysis of a random wave-spectrum evolution
shows the same effect. The initially symmetric power spectrum with a Gaussian
shape broadens with time, and energy is transferred down the spectrum. For a pe-
riod of time approximately equal to 20 of a characteristic time scale of nonlinearity,
the spectrum relaxes to some stationary state with energy concentration in the low
frequency range, as has been already noticed. The parameters of the equation—in
particular the Ur parameter—influence the width of the steady spectrum. For strong
nonlinearity, the established stable spectrum is wider, and the energy is distributed
almost uniformly in the range of long waves.

5.4 Three-Dimensional Rogue Waves in Shallow Water

When two horizontal coordinates are considered, rogue waves can appear owing to
(i) the focusing of transient wave groups, and (ii) spatial (geometric) focusing of
water waves. Nonlinear models of spatially inhomogeneous wave fields are com-
plex even in basins of constant depth. They have been used to model freak-wave
occurrence in 3D transient trains. Qualitatively, nonlinear processes support linear
mechanisms of huge wave formation (see references in Sect. 3.2).

To clarify new, essentially nonlinear effects occurring in spatial inhomogeneous
wave fields, let us first consider the interaction of two oblique propagating solitary
waves. Basic equations for weakly nonlinear and weakly dispersive water waves
were discussed in Sect. 5.1. It is convenient here to rederive such equations for
the “equivalent” potential, q (it corresponds to the dimensional first term in the se-
ries (5.6), q1) and dimensionless water displacement, ζ (Miles 1977a,b, Pelinovsky
1996)
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ζ = −∂q
∂ t
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∂ t3 , (5.39)
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]

+
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3
∂ 4q
∂ t4 , (5.40)

where coordinates are normalized with the wave length, λ , time, with the wave pe-
riod, displacement, and with the wave amplitude, A. As a result, two parameters—
α = A/D and β = (D/λ )2—characterize the weak nonlinearity and dispersion, re-
spectively. When two solitons propagate in different directions, it is convenient to
make a change of coordinates as follows:

ξ1 = ycosΨ1 + xsinΨ1 − t, ξ2 = ycosΨ2 + xsinΨ2 − t, τ = αt. (5.41)

In these new variables, Eqs. (5.39) and (5.40) become

ζ = (∂1 +∂2 −α∂τ)q−α
[
(∂1q)2 +(∂2q)2

2
+(1−2θ)∂1q∂2q

]
− β

2
(∂1 +∂2)2q,

(5.42)

α(∂1 +∂2)
{

2∂τq+
[

3
2
(∂1q)2 +

3
2
(∂2q)2 +(3−4θ)∂1q∂2q

]}

+
β (∂1 +∂2)3q

3
−4θ∂1∂2q = 0, (5.43)

where θ = sin2[(Ψ1 −Ψ2)/2] corresponds to the difference in the soliton propaga-
tion directions; ∂1 and ∂2 denote derivation with respect to coordinate ξ1 and ξ2,
respectively. In particular, the case Ψ1 = 90◦ and Ψ2 = −90◦ corresponds to the
counter propagation of solitary waves. The solution of Eq. (5.43), to the first order
of the nonlinear parameter (assuming α ∼ β ), can be sought as

q = F1(ξ1,τ)+F2(ξ2,τ)+αF12(ξ1,ξ2,τ). (5.44)

Here, ∂F1,2/∂ξ1,2 (it is proportional to the water displacement in the linear theory
of long waves) are the “non-interacting” solitons described by the unidirectional
KdV equation

2α
∂F1,2

∂τ
+

3α
2

(
∂F1,2

∂ξ1,2

)2

+
β
3
∂ 3F1,2

∂ξ 3
1,2

= 0. (5.45)

After substitution of Eq. (5.44) in Eq. (5.43), and taking into account Eq. (5.45),
the first nonlinear correction to the potential is expressed by

F12(ξ1,ξ2,τ) =
3−4θ

4θ

(
∂
∂ξ1

+
∂
∂ξ2

)
F1(ξ1,τ)F2(ξ2,τ). (5.46)

As a result, the series (5.44) can be written with the same accuracy as Miles
(1977a,b)

q = F1(ξ1 +ρ2,τ)+F2(ξ2 +ρ1,τ), (5.47)
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where

ρ1,2 = α
((

3
4θ

−1

)
F1,2(ξ1,2,τ)

)
. (5.48)

Similarly, the water displacement at the first order of nonlinearity is given by

ζ = N1(ξ1 +ρ2,τ)+N2(ξ2 +ρ1,τ)+αIN1N2, (5.49)

Ni =
(

∂
∂ξi

− β
3

∂ 3

∂ξ 3
i

)
Fi +

α
4

(
∂Fi

∂ξi

)2

, I =
3

2θ
−3+2θ . (5.50)

The result of the interaction of two solitons depends on the angle between the
soliton directions (expressed by the parameter θ ). The coefficient of the interaction
is I = 0.5 for solitons propagating toward each other (Ψ1 −Ψ2 = 180◦), then it
weakly decreases (down to 0.464) when Ψ1−Ψ2 decreases to 138◦, and then grows
to infinity when the waves copropagate.

The breakdown of the perturbation technique for waves propagating in almost
the same directions is evident from the mathematical point of view, because the
two new coordinates, ξ1 and ξ2, are not independent in this case. From a physical
point of view, almost parallel propagation of two solitons leads to strong interaction
between them, and each soliton changes the trajectory of the propagation of the
other soliton. In the vicinity of the almost parallel wave propagation, the solution
should be obtained directly from the nonlinear evolution equations: the Kadomtsev-
Petviashvili equation if the waves propagate almost parallel, or the KdV equation if
the waves propagate in one direction.

The Kadomtsev-Petviashvili equation was derived in Sect. 5.1 and is reproduced
here in dimensionless form

∂
∂x

(
∂ζ
∂ t

+6ζ
∂ζ
∂x

+
∂ 3ζ
∂x3

)
= −3

∂ 2ζ
∂y2 , (5.51)

where ζ = 3η/2D, x = X/D, y =Y/D and t =CT/6D. The Kadomtsev-Petviashvili
equation is also integrable (Drazin and Johnson 1989) and therefore exact solutions
can be used to study the soliton interaction. It is convenient to use the Hirota trans-
formation

ζ = 2
∂ 2

∂x2 lnΓ(x,y, t), (5.52)

to reduce Eq. (5.51) to bilinear form

Γ
(

∂ 2Γ
∂ t∂x

+
∂ 4Γ
∂x4 +3

∂ 2Γ
∂y2

)
− ∂Γ

∂ t
∂Γ
∂x

−3

(
∂Γ
∂y

)2

−4
∂Γ
∂x

∂ 3Γ
∂x3 +3

(
∂ 2Γ
∂x2

)2

= 0.

(5.53)
The plane soliton of the Kadomtsev-Petviashvili equation

ζ =
k2

2
sech2 (kξ/2) , ξ = k(x− py−Vt), V = k2 +3p2 (5.54)

in the framework of Eq. (5.53) is expressed in the simple form
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Γ = 1+ exp(ξ ). (5.55)

Here, p determines the slope of the soliton trajectory in space. Similarly, the
two-soliton solution of Eq. (5.53) can be written explicitly (Satsuma 1976):

Γ = 1+ exp(ξ1)+ exp(ξ2)+ r2 exp(ξ1 +ξ2), (5.56)

ξi = ki(x− piy−Vit), r2 =
(k1 + k2)2 +(p1 + p2)2

(k1 − k2)2 − (p1 + p2)2 .

Solitons are separated in space except the area of interaction around the moving
point:

x∗ =
V1 p2 −V2 p1

p2 − p1
t, y∗ =

V1 −V2

p2 − p1
t. (5.57)

The shapes of the large-amplitude waves occurring in the process of the two-
soliton interaction for various angles between soliton fronts are given in Fig. 5.15
from the paper by Peterson et al. (2003). The wave amplitude depends strongly on
the angle between the soliton fronts. Similar combinations of nonlinearly interacting
waves may be often observed in nature near the coast (see Fig. 5.16).

To show the main features of the oblique interaction of solitons and calculate pos-
sible parameters of the enhanced wave, let us consider two solitons with the same
amplitudes (k1 = k2) traveling symmetrically with respect to the Ox axis (p1 =−p2).
As often used in wave physics, such an interaction is equivalent to the wave reflec-
tion at the wall located at y = 0. Then the condition p1 = −p2 has the meaning of

Fig. 5.15 Large-amplitude waves occurring in the process of soliton interaction. Reproduced from
(Peterson et al. 2003) by permission of European Geosciences Union
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Fig. 5.16 Crescent nonlinear wave trains near the shore. A growing breaking wave is readily
observed (Courtesy of I.I. Didenkulova)

the well-known Snell law (the reflection angle is equal to the incident angle). Such
a situation with oblique soliton reflection is very often reproduced in laboratories
(Melville 1980, Funakoshi 1980, Mase et al. 2002). In this case, the solitons propa-
gate with the same speed (V1 = V2) and the pattern of wave interaction is stationary,
while the interacting area moves along the Ox axis with constant speed. Under these
conditions, the wave field is expressed as

ζ (x,y, t) = 2k2 1+ r cosh[k(x−Vt)]cosh(kpy)
{cosh[k(x−Vt)]+ r cosh(kpy)}2 , r =

√

1−
(

k
p

)2

. (5.58)

The water displacement on the wall (y = 0) can be found from Eq. (5.58); and in
dimensional variables it reads

Hw

H0
=

4

1+

√

1− 3H0

D tan2Θ

, (5.59)

where H0 is the height of the incident soliton, and Θ is the angle between the soliton
front and the Oy axis (see sketch in Fig. 5.17a).

Y

X

a b

Fig. 5.17 Soliton reflection from a wall: quasi-linear reflection (a) and Mach stem formation (b)
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At Θ ∼ π/2 (normal approach of the wave to the wall or, alternatively, counter
soliton propagation), the wave height is increased almost twice and the same result
can be obtained from the perturbation analysis (5.49). At small angles (tan2Θ ∼
3H0/D), when the soliton propagates almost along the wall, the wave amplification
near the wall can reach the value of four, and this is the result of joint action of
nonlinear and diffraction effects that are of the same order of magnitude. But when
the angle is very small (k > p), the solution (5.58) becomes complex and cannot
describe the physical wave field. This means that wave fields at small angles are
not stationary, and the interaction area should “take off” from the wall. In fact, this
can be achieved from (5.58). When the solitons propagate toward each other with
almost parallel wave crests, the incident and reflected solitons are well-separated
everywhere in space (Fig. 5.17a). When p → k, the induced soliton appears near the
wall and propagates along the wall (Fig. 5.17b). The amplitude of this wave (5.59)
and its speed (5.57) are different from those of a Korteweg-de Vries soliton, and
it can be called a “virtual” soliton (Onkuma and Wadati 1983). Only under special
conditions can this wave become a true soliton and propagate along the wall (the
so-called Mach stem). Let us assume that the parameters of the incident (i) and
reflected (r) solitons are related as

ki + kr = pi + pr. (5.60)

Thus, r = 0 and the two-soliton solution (5.56) is

Γ = 1+ exp(ξi)+ exp(ξr). (5.61)

The wave (the Mach stem) propagates along the wall (y = 0) if

ki pi = kr pr, (5.62)

which is the Snell law for wave reflection. Parameters of the reflected soliton may
be found explicitly from Eq. (5.60) to Eq. (5.62)

kr = pi, pr = ki > pi, (5.63)

and soliton speeds are not equal: Vr < Vi. It confirms that the process of wave re-
flection is not stationary and can be interpreted as a resonant interaction of three
solitons: incident, reflected, and the Mach stem. The wave height at the wall can be
found in Eq. (5.61), and in dimensional form it reads

Hw

H0
=
[

1+
tanΘ

(3H0/D)2

]2

. (5.64)

Formulas (5.59) and (5.64) describe the nonmonotonic character of the wave
amplification. Its maximum (four) is achieved when the angle between waves is
of the same order as the nonlinear parameter A/D. Formation of the Mach stem



5.4 Three-Dimensional Rogue Waves in Shallow Water 197

Fig. 5.18 Formation of the Mach stem in almost collinear soliton interaction. Reproduced from
Porubov et al. (2005) with permission from Elsevier

was studied numerically by Porubov et al. (2005); Fig. 5.18 illustrates this process
in the general case. The wave steepness in the process of two-soliton interactions
can be enhanced to a value eight times that of the initial steepness (Soomere and
Engelbrecht 2005).

It is important to note that two-soliton interaction leads to the formation of a
rogue wave with an infinite lifetime. Specific numerical simulations of the Cauchy
problem for the Kadomtsev-Petviashvili equation performed in Porubov et al. (2005)
show that the result of the interaction of initially separated solitons depends strongly
on the curvature of the initial fronts, and the maximum amplification in the interact-
ing area can be very large. In fact, a combination of two different effects takes place
in this case: nonlinear interaction of solitons and geometrical focusing. The same
effect may be observed at random wave incidence (Mase et al. 2002). Figure 5.19
shows the effect of the Mach stem formation in a laboratory tank.

So, comparison with unidirectional wave-field dynamics in shallow water shows
that soliton interactions play a significant role in localized rogue wave formation.
Toffoli et al. (2006) performed detailed calculations of the statistical properties
of shallow water waves in crossing seas within the framework of the Kadomtsev-
Petviashvili equation. Numerical simulations indicate that the interaction of two
noncollinear wave trains generates steep and high amplitude peaks, thus enhancing
the deviation of the surface elevation from the Gaussian statistics. These peaks yield
a modification of the upper tail of the probability density function for surface ele-
vation, which significantly deviates from the distribution of wave elevation in the
unimodal condition. The coexistence of two spectral peaks, therefore, enhances the
nonlinearity of the wave field, which results in an increase of the skewness and kur-
tosis. Whereas this enhancement is negligible for nearly collinear waves, the skew-
ness and kurtosis reach high values when the two spectral peaks have well-separated
directions.
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Fig. 5.19 Formation of Mach stem (see arrows) near the vertical wall at random wave incidence.
Reproduced from (Mase et al. 2002) with permission from Elsevier

5.5 Anomalous High Waves on a Beach

The rogue wave phenomenon is usually discussed in terms of waves in seas and
oceans far from the shores. Such unusual waves are observed also in the coastal
zone and on coastlines. Excellent photos of freak waves on rocky coasts are given
in Chap. 1 (Fig. 1.1h), when a freak wave reached height of 25 m approximately
4 sec after it became visible near the coast of Vancouver Island, Canada. Other freak
waves attacked the breakwater in Kalk Bay (South Africa) on April 21, 1996 and
August 26, 2005. In both events, the freak wave washed off the breakwater peo-
ple, some of whom were injured. The freak waves induced panic at Maracas Beach
(Trinidad Island, Lesser Antilles) on October 16, 2005, when a series of towering
waves, many more than 25 feet high (height of 8 m), flooded the beach, forcing
sea-bathers, venders, and lifeguards to run for their lives (see Fig. 1.1g).

The wave field in coastal zones contains strong coherent components and may
be represented as the nonlinear superposition of solitary (solitons), cnoidal, and
breaking waves (undular and smooth bores). Their interaction can generate narrow
“spots” of large-amplitude freak waves. The bottom topography plays a significant
role in spatial (geometric) interference of waves, resulting in the formation of ran-
dom focusing and caustic points, where the wave field is amplified. The effect of
water wave amplification in the coastal zone is well known. It means that probabil-
ity of large-amplitude waves should increase in the coastal zone. In this section, we
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will investigate the probability of freak waves on the background of high-amplitude
coastal waves (tails of the probability distribution function).

5.5.1 Waves at Vertical Walls

First, one of the typical nonlinear effects in the coastal zone will be considered
and analyzed when the wave propagates close to vertical walls (rocks, breakwaters,
other vertical structures) and may suffer reflection. A simplified geometry of the
coastal zone is shown in Fig. 5.20. The wave approaches the vertical wall located
at X = 0 from the left. For the sake of simplicity, the incident wave is represented
as a single crest, but later we will consider the incident wave as a continuous func-
tion, describing random crests and troughs. The basic equations for water waves in
shallow water are

∂η
∂T

+
∂
∂X

[(D+η)u] = 0,
∂u
∂T

+u
∂u
∂X

+g
∂η
∂X

= 0, (5.65)

where u(X ,T ) is the depth-averaged horizontal velocity of the water flow (see
Eq. (5.10)) and η(X ,T ) is the vertical displacement of the sea level.

The boundary condition on the vertical wall corresponds to the total reflection of
the wave energy and no penetration of fluid through the wall is considered:

u(X = 0,T ) = 0. (5.66)

Another condition that concerns the approach of the incident wave to the wall
from the left will be discussed. To solve Eq. (5.65), it is convenient to introduce the
Riemann invariants

I± = u±2
[√

g(D+η)−
√

gD
]
, (5.67)

and rewrite system (5.65) in the following form

∂ I±
∂T

+C±
∂ I±
∂X

= 0, (5.68)

η (X, T )

η w(T )

D

X0

Fig. 5.20 Definition sketch of the considered geometry
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where the characteristic speeds are

C± = ±
√

gD+
3
4

I± +
1
4

I∓. (5.69)

According to Eq. (5.68) each invariant remains constant along the characteristic
curves

dI±
dT

= 0 along
dX
dT

= C±. (5.70)

Note that the characteristic speeds depend on both invariants, and nonlinearity
bends the characteristics in the vicinity of the wall area where the incident and
reflected waves interact. When taking into account conservation of the Riemann in-
variants, the effect of wave interaction yields phase corrections of the travel times
of different parts of the wave profile. As a result, the water displacement at the ver-
tical wall ηw(T ) = η(X = 0,T ) depends on the incident wave in a very complicated
manner, and cannot be found in an explicit form. Nevertheless, the relation between
values of the wave in the incident field and in the near-wall water oscillations can be
derived explicitly. Outside the interaction near-wall area, the incident and reflected
waves propagate independently. The incident wave is characterized by

I− = 0, u = 2
[√

g(D+η)−
√

gD
]
, I+ = 4

[√
g(D+η)−

√
gD
]
. (5.71)

Due to the boundary condition (5.66), the incident invariant at the wall is

I+ = 2
[√

g(D+ηw)−
√

gD
]
. (5.72)

From the conservation of I+ along the characteristic curves it follows that

ηw(T )
D

= 4

[

1+
η(T − τ)

D
−
√

1+
η(T − τ)

D

]

. (5.73)

So, the water level on the wall can be expressed through the water displace-
ment of the incident wave. Unfortunately, this method cannot predict the time-lag,
τ , which is generally an unknown functional of the wave field in the interaction zone.
This is why expression (5.73) cannot be straightforwardly applied for calculations
of the water level oscillations near the vertical wall, even when all the characteristics
of the incident wave are known. However, a practical formula can be derived from
(5.73)—it is the relation between the extreme values of the wave field

R
D

= 4

[

1+
A
D
−
√

1+
A
D

]

, (5.74)

where A is the positive or negative amplitude (crest or trough height) of the incident
wave, and R is the amplitude of water level oscillations on the wall. This relation is
plotted in Fig. 5.21 (solid line).
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Fig. 5.21 Amplitude of water
oscillations at the wall (R)
versus the incident wave
amplitude (A) according to the
linear (dashed) and nonlinear
(solid) theories
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The linear limit gives the following relation between the wave characteristics,
R = 2A. This curve is plotted by dashed line in Fig. 5.21 for comparison. As can be
seen, the nonlinearity increases the crest height and decreases the trough height at
the wall. In fact, the weak increase of the wave height, when the positive wave (crest)
comes near the wall, was analyzed earlier by Mirchina and Pelinovsky (1984) and
Pelinovsky and Mazova (1992). A more interesting case occurs when the negative
wave (trough) comes near the wall. The nonlinear effects become stronger when
the total depth tends to zero. The algebraic solution (5.74) exists only if the trough
amplitude is less than 3D/4; in other words, if the total depth under the trough is
greater than D/4.

The process of the wave interaction with a vertical wall has been considered for
a pulse-like shape of a certain polarity, but this restriction is actually unnecessary.
The expression (5.74) can be obtained for an arbitrary function η(T ), finite or con-
tinuous in time, if its shape is sufficiently smooth. The conditions of application of
the derived relation between the amplitude of the water oscillations at the wall and
the incident wave amplitude are discussed in Pelinovsky et al. (2008). It is shown
that the analytical expression (5.74) is valid at least for smooth incident waves if the
crest amplitude is less than 3D and the trough amplitude is less than 5D/9. These
criteria are obtained from the shallow-water theory, which does not include wave
dispersion. Within the framework of the nonlinear-dispersive theory, the height of
steady-state waves (cnoidal or solitary waves) is limited as H = 2A < 0.78D. Ac-
cording to many laboratory data, where the role of dispersion is important, the wave
height is bounded by 0.55D (see Massel 1996b). Further, we will use the closed
criterion for the normalized significant wave height/depth, Hs/D < 0.5÷0.7.

The approach applied above is valid for any incident wave that is regular, as well
as irregular, due to the wave separation along characteristics. In the latter case, it
can be used to analyze distribution functions of the wave field and its spectrum.
Unfortunately, it cannot predict the time-lag between the incident wave and water
oscillations at the wall, and therefore the function ηw(τ) is not fully determined
within the framework of the nonlinear theory. The process is not Gaussian due to
nonlinearity, and all the moments cannot be calculated, including the significant
height of water oscillations at the wall. On the other hand, the relationship between
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random wave amplitudes of the incident wave and water oscillations at the wall
(see Eq. (5.74)) is explicit and does not include the time-lag. Hence, as soon as
the distribution function of the wave amplitude of the incident wave field is known,
expression (5.74) can be used to obtain the distribution function of the amplitude
of the water oscillations at the wall. The noninertial (“instant”) transformation of
random processes is described in various books (see Massel 1996a). The exceedance
probability function of the water oscillation amplitude at the wall can be determined
as follows

PR(R) = PA(A)|A(R) , (5.75)

where A(R) is the inverse function obtained from Eq. (5.74), which is known ex-
plicitly as

A
D

=
R

4D
+

1
2

[√

1+
R
D
−1

]

. (5.76)

For detailed calculations, the exceedance probability function of the incident
wave should be specified. Below, the Rayleigh distribution for wave heights is used
(indices of distribution functions will be omitted in the following formulas)

P(H) = exp

(
− H2

8σ2

)
≈ exp

(
−2H2

H2
s

)
, (5.77)

where the significant wave height, Hs ≈ 4σ, and σ2, is the variance of the initial
Gaussian field (see formula (2.84) from Chap. 2). In fact, the wave field in shallow
water (as well as in deep water) is not Gaussian (see Sect. 5.3), but for the sake of
simplicity we will use the assumption of a narrow-band Gaussian process result-
ing in the Rayleigh distribution for wave heights. For a quasi-monochromatic wave
H = 2A, the amplitude distribution has the same form as Eq. (5.77). As a result,
the exceedance probability functions of the positive (crest) and negative (trough)
amplitudes of water oscillations at the vertical wall can be determined explicitly

P(R+) = exp

{

− 2
A2

s

[
R+

4
+

1
2

(√
D+R+ −D

)]2
}

, (5.78)

P(R−) = exp

{

− 2
A2

s

[
R−
4

− 1
2

(√
D−R−−D

)]2
}

, (5.79)

where both amplitudes (heights of the crests and troughs) have positive values. For
the convenience of graphic representation of the distribution functions, the ampli-
tudes of the water oscillations at the wall will hereafter be normalized by Hs = 2As,
taking into account that the wave amplitude on the wall is within the framework of
the linear theory twice the amplitude of the incident wave. In this case, any deviation
from the Rayleigh distribution characterizes nonlinear effects, and the main param-
eter here is ε = Hs/D, which is the natural nonlinear parameter of the shallow-water
theory.
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Fig. 5.22 Exceedance proba-
bility function of crest heights
of water oscillations at the
wall. Numbers on curves de-
note values of ε = Hs/D with
increment of ε = 0.1
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Figure 5.22 displays the exceedance probability function of the crest heights of
the water oscillations at the wall for different values of the parameter ε , from 0
(linear case) to 0.7 (large-amplitude waves). As it is expected, weak and moderate
water oscillations have almost the same Rayleigh distribution as the incident wave,
but their crest heights are twice the incident wave amplitudes (this factor is included
in the normalization). For extreme waves, including freak waves (their amplitude
exceeds twice and more the significant wave height), the probability of the large
crests is increased with an increase of the ratio of the significant wave height to
water depth. This means that anomalous high crests should occur in the coastal
zone more often than in the open sea, and this effect is related to the nonlinear
mechanism of wave transformation in the coastal zone. Such waves may overflow
through breakwaters and flood the coasts, causing the accidents described in the
literature.

In this way, statistical characteristics of trough amplitudes and wave heights are
calculated in Pelinovsky et al. (2008). The probability of occurrence of the deepest
troughs near the wall is less than the Rayleigh prediction, and therefore freak waves
should often have the shape of crests rather than of troughs. Concerning wave height,
it can be concluded that nonlinearity decreases the probability of the highest waves
compared with the Rayleigh distribution. It means that the probability of meeting
unusual high waves for ships and boats near rocks and breakwaters is less than in the
open sea, but the shallow water waves may be significantly steeper due to shoaling
effects.

5.5.2 Wave Run-up on a Plane Beach

A similar approach can be applied for the process of long wave run-up on a plane
beach, defined by the bottom profile function D(X) =−αX (Fig. 5.23). In this case,
the nonlinear shallow-water equations (5.65) can be solved with the use of Riemann
invariants

I± = u±2
√

g(D+η)+αT (5.80)
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Fig. 5.23 Definition sketch
for the wave runup problem

D(X )
Xα

and the Legendre (hodograph) transformation (Carrier and Greenspan 1958). As a
result, the long wave run-up process is described by the linear wave equation

∂ 2Φ
∂λ 2 − ∂ 2Φ

∂σ2 − 1
σ
∂Φ
∂σ

= 0, (5.81)

and all the physical variables can be expressed through the function Φ(λ ,σ):

η =
1

2g

(
∂Φ
∂λ

−u2
)

, u =
1
σ
∂Φ
∂σ

, (5.82)

T =
1
αg

(
λ − 1

σ
∂Φ
∂σ

)
, X =

1
2αg

(
∂Φ
∂λ

−u2 − σ2

2

)
. (5.83)

The physical meaning of the variable σ is the total water depth, and σ = 0
corresponds to the moving shoreline. Various calculations of the wave field and
run-up characteristics using the Carrier-Greenspan transformation can be found in
Spielfogel (1976), Pedersen and Gjevik (1983), Synolakis (1987), Pelinovsky and
Mazova (1992), Tadepalli and Synolakis (1994), Carrier et al. (2003), Tinti and
Tonini (2005), Kânoulu and Synolakis (2006), Didenkulova et al. (2006, 2007), and
Didenkulova and Pelinovsky (2008).

A surprising result, which follows from the linear equation (5.81), is that the ex-
treme run-up characteristics (run-up and run-down amplitudes, run-up velocities)
can be calculated in the framework of the linear shallow-water theory when the in-
cident wave propagates to the beach from the open sea. Particularly, the run-up am-
plitude of incident sine wave with amplitude A and frequency Ω given on depth D is

R
A

=
(
π2Ω2D

gα2

)1/4

. (5.84)

Moreover, the water oscillations on shore are not sinusoidal (see Fig. 5.24). In
the figure, cases of various initial amplitudes are shown, expressed through the pa-
rameter Br = RΩ2/gα2 (condition Br = 1 corresponds to wave breaking on shore).

Formulae (5.81), (5.82), (5.83) and (5.84) can be applied to describe the run-up of
regular as well as irregular long waves. Due to the implicit character of the Carrier-
Greenspan transformation, it is a tricky task to calculate wave characteristics and
wave statistics. However, the linear approach may be applied for calculations of the
extreme run-up characteristics. Extremes of the Fourier series
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Fig. 5.24 Velocity (a) and vertical displacement (b) of the moving shoreline

η(T,X = 0) =
(

16π2Ω2D
gα2

)1/4 ∞

∑
n=1

√
nAn sin

[
nΩ(T − τ)+

π
4

]
, (5.85)

should be obtained for this purpose (Didenkulova et al. 2007, Didenkulova and
Pelinovsky 2008). In Eq. (5.85), An denotes the spectral amplitudes, Ω is the ba-
sic frequency of the incident wave, and τ is the travel time to the coast.

It should be emphasized that series (5.85) can be used when calculating positive
and negative run-up amplitudes, but not the moments and distribution functions of
the water displacement onshore. Detailed calculations of the distribution functions
of the run-up amplitudes are given in(Sergeeva and Didenkulova (2005). For the
narrow-band incident wave field, the distribution functions of the run-up character-
istics are described by the Rayleigh distribution, as is expected owing to the linearity
of the expressions for extreme characteristics. When the spectrum of the incident
wave is wider, the distribution functions differ from the Rayleigh law; the mean
value of the run-up amplitude changes as well.

The wave field in shallow water involves many coherent wave components. A
way to represent such a field as a random set of solitary waves is very popular (see
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Brocchini and Gentile 2001). The run-up of a solitary wave on a plane beach is well
studied (Synolakis 1987), and the run-up amplitude, R, can be expressed through
the soliton amplitude, A, as

R
D

= 2.8312
1√
α

(
A
D

)5/4

. (5.86)

In fact, this formula can be derived from Eq. (5.85) by taking into account the
relation between the soliton amplitude and the duration. When the wave field con-
tains random separated solitons, the runup of each individual soliton represents an
independent random process and the distribution function of run-up amplitude can
be found analytically when the distribution function of the soliton amplitudes is
known. Assuming for the sake of simplicity that the Rayleigh distribution for the
soliton amplitude, and using (5.86), the exceedance probability of run-up ampli-
tude is

P(R) = exp

[

−0.378α4/5 (R/D)8/5

(A/D)2

]

. (5.87)

The tail of the distribution (5.87) decays slower than that of the Rayleigh distri-
bution. Therefore, the probability of large wave occurrence on coasts is high. More
detailed computations of statistical run-up characteristics of the wave field repre-
sented by a soliton ensemble are performed in Brocchini and Gentile (2001).

So, the wave run-up on a vertical wall or plane beach leads to an increase of the
probability of large-amplitude waves. Thus, a way to reduce possible rogue wave
damage should be to include proper coastal protection.

List of Notations

A wave amplitude
As significant wave amplitude
b(X ,Y ) distance between neighbouring rays
C long-wave speed
D water depth
g acceleration due to gravity
H wave height
Hs significant wave height
I± Riemann invariants
k dimensionless wavenumber
K wavenumber
l coordinate along the ray
Ns soliton number
P probability distribution function
R runup amplitude
s temporal variable
S non-symmetric wave spectrum
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t dimensionless time
T time
u(X , Y , T ) depth-averaged velocity
U = (U,V ) fluid velocity in the horizontal plane
Ur Ursell parameter
V velocity of the soliton
(x, y) dimensionless coordinates in the horizontal plane
(X , Y , Z) coordinates
W vertical fluid velocity
ε nonlinear parameter
φ(X ,Y,Z,T ) velocity potential
γ skewness
η(X ,Y,T ) surface elevation
κ kurtosis
∼κ normalized kurtosis
λ wavelength
σ depth variable in the hodograph transformation
σ standard deviation, σ2 is the variance
Ω cyclic wave frequency
ζ (x,y, t) dimensionless surface displacement
∇ gradient operator in the horizontal plane
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Chapter 6
Conclusion

In this book, we have collected some of the most reliable in-situ observations of
rogue waves by people, and instrumental registrations of abnormal waves during
long-term wave recordings. Until now, the observations have been sufficient to prove
the existence of this extreme wave phenomenon, and to show some of its most pro-
nouncing features, such as the sudden huge wave growth that often could not be
foreseen by the usual experience of navigating. Additionally, the existing natural
observations do not allow us to create a definite theory of these waves.

Different physical mechanisms have been suggested as possible explanations of
this phenomenon. These mechanisms are presented and described in the book in
detail. They are based on different kinds of wave focusing—namely, spatial and
spatio-temporal wave focusing due to inhomogeneities existing in basins and water
wave dispersion, nonlinear wave dynamics, and nonlinear instabilities. The occur-
rence of rogue waves due to the influence of current and wind action has been con-
sidered as well. While simplified mathematical models may help us to qualitatively
understand the main physical effects, they become questionable when huge waves
occur because of strong nonlinear effects. Hence, the use of the exact equations
is inevitable in correctly describing the dynamics of this strongly nonlinear event.
The use of fully nonlinear models is now relevant in studying extreme wave events
thanks to both the recent improvement of numerical methods, and the development
of computer performance.

Some physical effects, resulting in strong wave enhancement, may be relatively
easily reproduced in the laboratory. We described various laboratory experiments
on rogue waves due to dispersive wave focusing, with and without wind and cur-
rent influences. These results are compared with theoretical achievements and fully
nonlinear numerical simulations. Other mechanisms (such as nonlinear wave insta-
bilities and directional effects) could be reproduced in the laboratory with much
more effort. Therefore, there are not many, and the majority of experiments are
performed in numerical wave tanks. Use of efficient numerical codes also looks
promising when investigating statistics of high waves.

In spite of doubtless progress in the understanding, description, and forecasting
of steep waves, many questions still remain. The improvement of existing theo-
ries turned out to be insufficiently supported by natural observations. This lack of
data makes it difficult to check the validity of the developed theories, and to create
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statistical models based on in-situ data. One of the main challenges is to find which
of the statistical parameters are the most relevant to define the occurrence probabil-
ity of freak waves correctly. For instance, it is well accepted that kurtosis is a good
indicator of rogue wave generation in 2D sea states, while it is far from a good in-
dicator for the case of 3D water waves. To answer this problem, it is necessary to
go beyond approximate equations even if approximate models may give satisfactory
results for specific conditions. Hence, the need for fast numeric codes based on the
exact equations for investigating statistical features of extreme wave events in 3D
geometries becomes urgent.

Direct observation of extreme water waves from satellites should be very useful,
even though this task is not completely resolved yet. From a theoretical viewpoint,
it should be interesting to couple hydrodynamic and electromagnetic codes to de-
termine which signature a rogue wave leaves in the backscattered electromagnetic
signal by the sea surface.

On the other hand, the interest created by rogue waves in the ocean has stimu-
lated investigations of “rogue waves” in other situations. First, let us mention other
kinds of rogue waves in geophysics. In Chap. 1, coastal freak waves were discussed.
Although these waves have attributes similar to rogue waves in the open sea—i.e.,
size and sudden appearance—they obviously require different theoretical models
and may result from different physical mechanisms. The effects of dispersive focus-
ing can arise in tsunami-wave fields of seismic or volcanic origin, when multiple
shocks or explosions occur (Mirchina and Pelinovsky 2001). Trapped edge waves
were supposed responsible for freak coastal events in Kurkin and Pelinovsky (2002).
Trapped waves may undergo dispersive and modulational focusing (described in
Chaps. 3 and 4). Anomalously high internal waves in the stratified sea, and planetary
Rossby waves, may potentially happen due to dispersion and modulational instabil-
ity as well (Kurkin and Pelinovsky 2004). Furthermore, since the Korteweg-de Vries
(KdV) equation and the nonlinear Schrödinger equation are universal equations that
apply to many other physical fields, similar mechanisms resulting in rogue waves
are expected to occur in these fields. We mention the experimental and numerical
investigations in nonlinear optics, where optical rogue waves can occur in fibers
(Solli et al. 2007, Yeom and Eggleton 2007). Huge waves have been shown to occur
in plasmas as well (Ruderman et al. 2008). These nonlinear physical processes are
similar to those generating rogue waves from modulational instability.
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Appendix A
Discretisation of the Boundary Integral
Equation for the Potential

In this appendix, we show how Eqs. (4.100) and (4.101) may be transformed into a
linear system of algebraic equations.

The boundaries ∂ΩFS and ∂ΩSB are discretized into NF and NB panels, s j, re-
spectively. Hence, the discretized version of Eqs. (4.100) and (4.101) is given by the
following system

θiϕi−
NF

∑
j=1

∫

s j

ϕ j
∂G
∂n

(i, j)ds+
NB

∑
j=1

∫

s j

∂ϕ j

∂n
G(i, j)ds

=
NF

∑
j=1

∫

s j

∂ϕ j

∂n
G(i, j)ds+

NB

∑
j=1

∫

s j

ϕ j
∂G
∂n

(i, j)ds, (A.1)

where 1 < i < NF +1 corresponds to point i of the free surface, and

NF

∑
j=1

∫

s j

ϕ j
∂G
∂n

(i, j)ds+
NB

∑
j=1

∫

s j

∂ϕ j

∂n
G(i, j)ds

= θiϕi +
NF

∑
j=1

∫

s j

∂ϕ j

∂n
G(i, j)ds−

NB

∑
j=1

∫

s j

ϕ j
∂G
∂n

(i, j)ds, (A.2)

where 1 < i < NB +1 corresponds to point i of the solid boundary.
For a 2D motion, the Green function is written as follows,

G(P,Q) = ln
(∣∣
∣
−→
PQ

∣
∣
∣
)

. (A.3)

It is interesting to note that this function introduces only the distance separating
the points P and Q. Hence, by introducing the local coordinates of the panels (ξ ,
ϑ ), this function can be rewritten as follows:

G(P,Q) = ln
(√

ξ 2 +ϑ 2
)

. (A.4)
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Hence, the normal derivative can be obtained:

∂G
∂n

(P,Q) =
ϑ

ξ 2 +ϑ 2 . (A.5)

When assuming a linear variation of ϕ and ∂ϕ/∂n along the panels, Eq. (A.1)
becomes

θiϕi−
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∑
j=1
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ϕ j+1

I4 −ξ jI2
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(A.6)

and Eq. (A.2)
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(A.7)

where ψ corresponds to the normal derivative of the potential, ψ = ∂ϕ/∂n, and
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Korteweg – de Vries equation, KdV, 106, 160,

175–179, 181, 183–186, 196, 212
Kurtosis, 45, 46, 141, 163, 188–191, 197, 212

Lifetime of steep wave event, 18, 22, 132, 197
Long-crested waves, 140, 146, 147, 153, 163

Mach stem, 195–198
Miles’ wave amplification mechanism, 79, 80,

130
Mixed sea conditions, 48, 147
Modulational (Benjamin–Feir), 143
Modulational (Benjamin–Feir) instability, vi,

57, 58, 91, 92, 94, 95, 100, 102–105,
111, 116, 117, 121, 122, 127, 134, 141,
146, 147, 149–151, 154, 158–160, 177,
212

Nonlinear parameter, 39, 57, 97, 108, 118, 140,
142, 143, 160, 178, 192, 196, 202, 203

Nonlinear Schrödinger equation, NLS, 92, 95,
99, 100, 103–108, 110, 111, 113, 114,
116, 121, 135, 137–139, 142, 147–150,
152, 154, 158–161

Padé approximation, 175
Peakedness, 45, 53, 146, 163, 188
Peregrine system, 175
Pierson-Moskowitz spectrum, 53
Probability exceedance, 47, 202, 203, 206

215
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Pyramidal waves, 19, 23, 147, 154

Ray theory, 63, 66, 67, 71, 81, 85, 176
Rayleigh distribution, 46–48, 162, 190, 191,

202, 203, 205, 206
Rayleigh–Jeans distribution, 189
Recurrence phenomenon, 94, 116, 117, 123,

125, 135, 149–153, 184
Riemann wave, 70, 199
Rogue waves in other physics, vi, 212

Short-crested waves, 102, 140, 152–154, 163
Significant wave height, definition, 7
Skewness, 45, 46, 163, 188, 190, 191, 197
Solitary waves, vi, 18, 57, 58, 85, 106–116,

135, 139, 142, 143, 147, 158–161,
177–179, 181, 184, 185, 192–197, 206

Solitonic turbulence, 116, 122, 184
Spectral instability, 91, 103
Spectral moments, definition, 51
Statistical moments, definition, 45

Stokes waves, 47, 57, 92, 93, 117, 122–125,
128, 150, 151, 158

Synthetic Aperture Radar (SAR), 3, 11, 26,
161

Unstable modes, 116, 159, 160
Ursell parameter, 142, 178, 179, 184, 185,

188–191

Variance, 45, 46, 103, 141, 185, 188, 202

Walls of water, v, 8, 19, 23, 147
Wave action balance equation, 82
Wave age, 6, 43, 52
Wave height, definition, 1
Wave steepness, definition, 7

Zakharov equation, 55, 92, 103, 116, 119, 140,
151, 154

Zheleznyak and Pelinovsky equation, 175
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