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About This Book

If you want to learn the most fundamental things about plasma astrophysics
with the least amount of time – and who doesn’t? – this text is for you. This
book is addressed to young people, mainly to students, without a background
in plasma physics; it grew from the lectures given many times in the Faculty of
General and Applied Physics at the Moscow Institute of Physics and Technics
(the well known ‘fiz-tekh’) since 1977. A similar full-year course was also
offered to the students of the Astronomical Division of the Faculty of Physics
at the Moscow State University over the years after 1990. A considerable
amount of new material, related to modern astrophysics, has been added to
the lectures. So the contents of the book can hardly be presented during a
one-year lecture course, without additional seminars.

In fact, just the seminars with the topics ‘how to make a cake’ were
especially pleasant for the author and useful for students. In part, the text
of the book retains the imprint of the seminar form, implying a more lively
dialogue with the reader and more visual representation of individual notions
and statements. At the same time, the author’s desire was that these digres-
sions from the academic language of the monograph will not harm the rigour
of presentation of this textbook’s subject – the physical and mathematical
introduction to plasma astrophysics.

There is no unique simple model of a plasma, which encompasses all situ-
ations in space. We have to familiarize ourselves with many different models
applied to different situations. We need clear guidelines when a model works
and when it does not work. Hence the best strategy is to develop an intu-
ition about plasma physics, but how to develop it?

The idea of the book is not typical for the majority of textbooks on plasma
astrophysics. Its idea is

the consecutive consideration of physical principles, starting from
the most general ones, and of simplifying assumptions which give
us a simpler description of plasma under cosmic conditions.

Thus I would recommend the students to read the book straight through
each chapter to see the central line of the plasma astrophysics, its classic
fundamentals. In so doing, the boundaries of the domain of applicability
of the approximation at hand will be outlined from the viewpoint of physics

xiii
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rather than of many possible astronomical applications. After that, as an aid
to detailed understanding, please return with pencil and paper to work out
the missing steps (if any) in the formal mathematics.

On the basis of such an approach the student interested in modern astro-
physics, its current practice, will find the answers to two key questions:

(1) what approximation is the best one (the simplest but sufficient) for
description of a phenomenon in astrophysical plasma;

(2) how to build an adequate model for the phenomenon, for example, a
solar flare or a flare in the corona of an accretion disk.

Practice is really important for the theory of astrophysical plasma. Related
exercises (problems and answers supplemented to each chapter) to improve
skill do not thwart the theory but serve to better understanding of plasma
astrophysics.

As for the applications, preference evidently is given to physical processes
in the solar plasma. Why? – Much attention to solar plasma physics is con-
ditioned by the possibility of the all-round observational test of theoretical
models. This statement primarily relates to the processes in the solar atmo-
sphere. For instance, flares on the Sun, in contrast to those on other stars as
well as a lot of other analogous phenomena in the Universe, can be seen in
their development, i.e. we can obtain a sequence of images during the flare’s
evolution, not only in the optical and radio ranges but also in the ultraviolet,
soft and hard X-ray, gamma-ray ranges.

This book is mainly intended for students who have mastered a course of
general physics and have some initial knowledge of theoretical physics. For
beginning students, who may not know in which subfields of astrophysics they
wish to specialize,

it is better to cover a lot of fundamental theories thoroughly than
to dig deeply into any particular astrophysical subject or object,

even a very interesting one, for example black holes. Astronomers and astro-
physicists of the future will need tools that allow them to explore in many
different directions. Moreover astronomy of the future will be, more than
hitherto, precise science similar to mathematics and physics.

The beginning graduate students are usually confronted with a confusing
amount of work on plasma astrophysics published in a widely dispersed scien-
tific literature. Knowing this difficulty, the author has tried as far as possible
to represent the material in a self-contained form which does not require the
reading of additional literature. However there is an extensive bibliography in
the end of the book, allowing one to find the original works. In many cases,
particularly where a paper in Russian is involved, the author has aimed to
give the full bibliographic description of the work, including its title, etc.

Furthermore the book contains recommendations as to an introductory
(unavoidable) reading needed to refresh the memory about a particular fact,
as well as to additional (further) reading to refine one’s understanding of the
subject. Separate remarks of an historical character are included in many
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places. It is sometimes simpler to explain the interrelation of discoveries by
representing the subject in its development. It is the author’s opinion that
the outstanding discoveries in plasma astrophysics are by no means governed
by chance. With the same thought in mind, the author gives preference to
original papers on a topic under consideration; it happens in science, as in
art, that an original is better than nice-looking modernizations. Anyway,

knowledge of the history of science and especially of natural science
is of great significance for its understanding and development.

The majority of the book’s chapters begin from an ‘elementary account’
and illustrative simple examples but finish with the most modern results of
scientific importance. New problems determine the most interesting perspec-
tives of plasma astrophysics as a new developing science. The author hopes,
in this context, that professionals in the field of plasma astrophysics and ad-
jacent sciences will enjoy reading this book too. Open issues are the focus of
our attention in many places where they are. In this way, perspectives of
the plasma astrophysics with its many applications will be also of interest
for readers. The book can be used as a textbook but has higher potential of
modern scientific monograph.

The first volume of the book is unique in covering the basic principles
and main practical tools required for understanding and work in plasma as-
trophysics. The second volume ”Plasma Astrophysics. 2. Reconnection and
Flares” (referred in the text as vol. 2) represents the basic physics of the
magnetic reconnection phenomenon and the flares of electromagnetic origin
in space plasmas in the solar system, relativistic objects, accretion disks, their
coronae.
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Plasma Astrophysics
History and Neighbours

Plasma astrophysics studies electromagnetic processes and phenomena in
space, mainly the role of forces of an electromagnetic nature in the dynamics
of cosmic matter. Two factors are specific to the latter: its gaseous state
and high conductivity. Such a combination is unlikely to be found under
natural conditions on Earth; the matter is either a non-conducting gas (the
case of gas dynamics or hydrodynamics) or a liquid or a solid conductor. By
contrast, plasma is the main state of cosmic matter. It is precisely
the poor knowledge of cosmic phenomena and cosmic plasma properties that
explains the retarded development of plasma astrophysics. It has been distin-
guished as an independent branch of physics in the pioneering works of Alfvén
(see Alfvén, 1950).

Soon after that, the problem of thermonuclear reactions initiated a great
advance in plasma research (Simon, 1959; Glasstone and Loveberg, 1960;
Leontovich, 1960). This branch has been developing rather independently,
although being partly ‘fed’ by astrophysical ideas. They contributed to the
growth of plasma physics, for example, the idea of stelarators. Presently, the
reverse influence of laboratory plasma physics on astrophysics is also impor-
tant.

From the physical viewpoint,

plasma astrophysics is a part of plasma theory related in the first
place to the dynamics of a low-resistivity plasma in space.

However it is this part that is the most poorly studied one under laboratory
conditions. During the 1930s, scientists began to realize that the Sun and
other stars are powered by nuclear fusion and they began to think of re-
creating the process in the laboratory. The ideas of astro- and geophysics
dominate here, as before. At present time, they mainly come from many
space experiments and fine astronomical ground-based observations. From
this viewpoint, plasma astrophysics belongs to experimental science.

Electric currents and, therefore, magnetic fields are easily generated in the
astrophysical plasma owing to its low resistivity. The energy of magnetic fields

1



2 Plasma Astrophysics

is accumulated in plasma, and the sudden release of this energy – an original
electrodynamical ‘burst’ or ‘explosion’ – takes place under definite but quite
general conditions. It is accompanied by fast directed plasma ejections (jets),
powerful flows of heat and radiation and impulsive acceleration of particles to
high energies.

This phenomenon is quite a widespread one. It can be observed in flares
on the Sun and other stars, in the Earth’s magnetosphere as magnetic storms
and substorms, in coronae of accretion disks of cosmic X-ray sources, in nuclei
of active galaxies and quasars. The second volume of this book is devouted to
the physics of magnetic reconnection and flares generated by reconnection in
plasma in the solar system, single and double stars, relativistic objects, and
other astrophysical objects.

The subject of the first volume of present book is the systematic descrip-
tion of the most important topics of plasma astrophysics. However the aim
of the book is not the strict substantiation of the main principals and basic
equations of plasma physics; this can be found in many wonderful monographs
(Klimontovich, 1986; Schram, 1991; Liboff, 2003). There are also many nice
textbooks (Goldston and Rutherford, 1995; Choudhuri, 1998; Parks, 2004) to
learn general plasma physics without or with some astrophysical applications.

The primary aim of the book in your hands is rather the solution of a
much more modest but still important problem, namely to help the students
of astrophysics to understand the interrelation and limits of applicability of
different approximations which are used in plasma astrophysics. If, on his/her
way, the reader will continously try, following the author, to reproduce all
mathematical transformation, he/she finally will soon find the pleasant feeling
of real knowledge of the subject and the real desire for constructive work in
plasma astrophysics.

The book will help the young reader to master the modern methods of
plasma astrophysics and will teach the application of these methods while
solving concrete problems in the physics of the Sun and many other astronom-
ical objects. A good working knowledge of plasma astrophysics is essential for
the modern astrophysicist.



Chapter 1

Particles and Fields: Exact
Self-Consistent Description

There exist two different ways to describe exactly the behaviour of a
system of charged particles in electromagnetic and gravitational fields.
The first description, the Newton set of motion equations, is conve-
nient for a small number of interacting particles. For systems of large
numbers of particles, it is more advantageous to deal with the single
Liouville equation for an exact distribution function.

1.1 Interacting particles and Liouville’s theo-
rem

1.1.1 Continuity in phase space

Let us consider a system of N interacting particle. Without much justification
(which will be given in Chapter 2), let us introduce the distribution function

f = f(r,v, t) (1.1)

for particles as follows. We consider the six-dimensional (6D) space called
phase space X = { r,v} . The number of particles present in a small volume
dX = d 3r d 3v at a point X (see Figure 1.1) at a moment of time t is defined
to be

dN(X, t) = f(X, t) dX. (1.2)

Accordingly, the total number of the particles at this moment is

N(t) =
∫

f(X, t) dX ≡
∫ ∫

f(r,v, t) d 3r d 3v . (1.3)

3
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v

r0

X

d X

d

d
3

3

v

r

X

Figure 1.1: The 6D phase space X.
A small volume dX at a point X.

If, for definiteness, we use the Cartesian coordinates, then

X = { x, y, z, vx, vy, vz }

is a point of the phase space (Figure 1.2) and

Ẋ = { vx, vy, vz, v̇x, v̇y, v̇z } (1.4)

is the velocity of this point in the phase space.
Let us suppose the coordinates and velocities of the particles are changing

continuously – ‘from point to point’. This corresponds to a continuous motion
of the particles in phase space and can be expressed by the continuity equation:

∂f

∂t
+ divX (Ẋf) = 0

(1.5)

or
∂f

∂t
+ divr (vf) + divv (v̇f) = 0 .

Equation (1.5) expresses the conservation law for the particles, since the in-
tegration of (1.5) over a volume U enclosed by the surface S in Figure 1.2
gives

∂

∂t

∫
U

f dX +
∫
U

divX (Ẋf) dX =

by virtue of definition (1.2) and the Ostrogradskii-Gauss theorem

=
∂

∂t
N(t)

∣∣∣∣
U

+
∫
S

(Ẋf) dS =
∂

∂t
N(t)

∣∣∣∣
U

+
∫
S

J · dS = 0 . (1.6)

Here a surface element dS, normal to the boundary S, is oriented towards
its outside, so that imports are counted as negative (e.g., Smirnov, 1965,
Section 126). J = Ẋf is the particle flux density in phase space. Thus
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Figure 1.2: The 6D phase
space X. The volume U is en-
closed by the surface S.

v

r0

X X

S

U
dS

. J

a change of the particle number in a given phase space volume U is
defined by the particle flux through the boundary surface S only.

The reason is clear. There are no sources or sinks for the particles inside the
volume. Otherwise the source and sink terms must be added to the right-hand
side of Equation (1.5).

1.1.2 The character of particle interactions

Let us rewrite Equation (1.5) in another form in order to understand the
meaning of divergent terms. The first of them is

divr (vf) = f divr v + (v · ∇r) f = 0 + (v · ∇r) f ,

since r and v are independent variables in phase space X. The second diver-
gent term is

divv (v̇f) = f divv v̇ + v̇ · ∇v f .

So far no assumption has been made as to the character of particle in-
teractions. It is worth doing here. Let us restrict our consideration to the
interactions with

divv v̇ = 0 ,
(1.7)

then Equation (1.5) can be rewritten in the equivalent form:

∂f

∂t
+ v · ∇r f +

F
m

· ∇v f = 0

or
∂f

∂t
+ Ẋ ∇X f = 0 , (1.8)
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where

Ẋ =
{

vx, vy, vz,
Fx

m
,

Fy

m
,

Fz

m

}
.

Having written that, we ‘trace’ the particle phase trajectories. Thus Liou-
ville’s theorem is found to have the following formulation:

∂f

∂t
+ v · ∇r f +

F
m

· ∇v f = 0 . (1.9)

Liouville’s theorem: The distribution function remains constant on
the particle phase trajectories if condition (1.7) is satisfied.

We shall call Equation (1.9) the Liouville equation. Let us define also the
Liouville operator

D

Dt
≡ ∂

∂t
+ Ẋ

∂

∂X
≡ ∂

∂t
+ v · ∇r +

F
m

· ∇v . (1.10)

This operator is just the total time derivative following a particle motion in
the phase space X. By using definition (1.10), we rewrite Liouville’s theorem
as follows:

Df

Dt
= 0 .

(1.11)

v

r0

J

v

r0

Jr

v

Jr

Jv

v

FdX dX

(a) (b)

Figure 1.3: Action of the two different terms of the Liouville operator in the
6D phase space X.

What factors lead to the changes in the distribution function?
Let dX be a small volume in the phase space X. The second term in

Equation (1.9), v ·∇r f , means that the particles go into and out of the phase
volume element considered, because their velocities are not zero (Figure 1.3a).
So this term describes a simple kinematic effect. The third term, (F/m)·∇v f ,
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means that the particles escape from the phase volume element dX or come
into this element due to their acceleration or deceleration under the influence
of forces (Figure 1.3b).

Some important properties of the Liouville equation are considered in Ex-
ercises 1.1–1.4.

1.1.3 The Lorentz force, gravity

Let us recall that the forces have to satisfy condition (1.7). We rewrite it as
follows:

∂ v̇α

∂ vα
=

1
m

∂Fα

∂ vα
= 0

or
∂Fα

∂ vα
= 0 , α = 1, 2, 3 . (1.12)

In other words,

the component Fα of the force vector F does not depend upon the
velocity component vα.

This is a sufficient condition.
The classical Lorentz force

Fα = e

[
Eα +

1
c

(v × B )α

]
(1.13)

obviously has that property. The gravitational force in the classical approxi-
mation is entirely independent of velocity.

Other forces may be considered, depending on the situation, for example
the forces resulting from the emission and/or absorption of radiation by astro-
physical plasma, which is electromagnetic in nature, though maybe quantum.
These forces when they are important should be considered with account
of their relative significance, conservative or dissipative character, and other
physical properties taken.

1.1.4 Collisional friction in plasma

As a contrary example we consider the friction force (cf. formula (8.66) for
the collisional drag force in plasma):

F = − k v , (1.14)

where the constant k > 0. In this case the right-hand side of Liouville’s
equation is not zero:

−f divv v̇ = −f divv
F
m

=
3k

m
f ,
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v

r0

F Figure 1.4: Particle density
increase in phase space as a
result of the action of the
friction force F.

because
∂ vα

∂ vα
= δαα = 3 .

Instead of Liouville’s equation we have

Df

Dt
=

3k

m
f > 0 . (1.15)

The distribution function (that is the particle density) does not remain con-
stant on particle trajectories but increases as the time elapses. Along the
phase trajectories, it increases exponentially:

f(t, r,v) ∼ f(0, r,v) exp
(

3k

m
t

)
. (1.16)

The physical sense of this phenomenon is obvious. As the particles are decel-
erated by the friction force, they move down in Figure 1.4. By so doing, they
are concentrated in the constantly diminishing region of phase space situated
in the vicinity of the axis v = 0.

There is a viewpoint that the Liouville theorem is valid for the forces
that do not disperse particle velocities (Shkarofsky et al., 1966, Chapter 2).
Why? It is usually implied that particle collisions enlarge such a dispersion:
divv v̇ > 0. So

Df

Dt
=
(

∂f

∂t

)
c

= −f divv v̇ < 0 . (1.17)

In this case the right-hand side of Equation (1.17) is called the collisional
integral (see Sections 2.1 and 2.2). In contrast to the right-hand side of (1.15),
that of Equation (1.17) is usually negative.

The above example of the friction force is instructive in that it shows how
the forces that are diminishing the velocity dispersion (divv v̇ < 0) lead to
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the violation of Liouville’s theorem; in other words, how they lead to a change
of the distribution function along the particle trajectories. For the validity of
Liouville’s theorem only the condition (1.7) is important; in the velocity space,
the divergence of the forces has to equal zero. The sign of this divergence is
unimportant.

1.1.5 The exact distribution function

Let us consider another property of the Liouville theorem. We introduce the
N -particle distribution function of the form

f̂(t, r,v) =
N∑

i=1

δ (r − ri(t)) δ (v − vi(t)) . (1.18)

We shall call such a distribution function the exact one. It is illustrated by
schematic Figure 1.5.

X

f

<

Figure 1.5: The one-dimensional analogy of the exact distribution function.

Let us substitute this expression for the distribution function in Equa-
tion (1.9). The resulting three terms are

∂f̂

∂t
=
∑

i

(−1) δ ′
α (r − ri(t)) ṙ i

α δ (v − vi(t)) +

+
∑

i

(−1) δ (r − ri(t)) δ ′
α (v − vi(t)) v̇ i

α , (1.19)

v · ∇r f̂ ≡ vα
∂f̂

∂rα
=
∑

i

vα δ ′
α (r − ri(t)) δ (v − vi(t)) , (1.20)

F
m

· ∇v f̂ ≡ Fα

m

∂f̂

∂vα
=
∑

i

Fα

mi
δ (r − ri(t)) δ ′

α (v − vi(t)) . (1.21)

Here the index α = 1, 2, 3 or (x, y, z). The prime denotes the derivative with
respect to the argument of a function; for the delta function, see definition
of the derivative in Vladimirov (1971). The overdot denotes differentiation
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with respect to time t. Summation over the repeated index α (contraction) is
implied:

δ ′
α ṙ i

α = δ ′
x ṙ i

x + δ ′
y ṙ i

y + δ ′
z ṙ i

z .

The sum of terms (1.19)–(1.21) equals zero. Let us rewrite it as follows

0 =
∑

i

(
−ṙ i

α + v i
α

)
δ ′
α (r − ri(t)) δ (v − vi(t)) +

+
∑

i

(
−v̇ i

α +
Fα

mi

)
δ (r − ri(t)) δ ′

α (v − vi(t)) .

This can occur just then that all the coefficients of different combinations of
delta functions with their derivatives equal zero as well. Therefore we find

d r i
α

dt
= v i

α(t) ,
d v i

α

dt
=

1
mi

Fα (ri(t),vi(t)) . (1.22)

Thus

the Liouville equation for an exact distribution function is equivalent
to the Newton set of equations for a particle motion, both describing
a purely dynamic behaviour of the particles.

It is natural since this distribution function is exact. No statistical averaging
has been done so far. It is for this reason that both descriptions – namely,
the Newton set and the Liouville theorem for the exact distribution function
– are dynamic (as well as reversible, of course) and equivalent. Statistics will
appear in the next Chapter when, instead of the exact description of a system,
we begin to use some mean characteristics such as temperature, density etc.
This is the statistical description that is valid for systems containing a large
number of particles.

We have shown that finding a solution of the Liouville equation for an
exact distribution function

Df̂

Dt
= 0

(1.23)

is the same as the integration of the motion equations. Therefore

for systems of a large number of interacting particles, it is much
more advantageous to deal with the single Liouville equation for
the exact distribution function which describes the entire system.

Recommended Reading: Landau and Lifshitz, Mechanics (1976), Chap-
ters 2 and 7; Landau and Lifshitz, Statistical Physics (1959b), Chapter 1,
§ 1–3.
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1.2 Charged particles in the electromagnetic
field

1.2.1 General formulation of the problem

Let us start from recalling basic physics notations and establishing a common
basis. Maxwell’s equations for the electric field E and magnetic field B are
well known to have the form (see Landau and Lifshitz, Classical Theory of
Field , 1975, Chapter 4, § 26):

curl B =
4π

c
j +

1
c

∂ E
∂t

, (1.24)

curl E = −1
c

∂ B
∂t

, (1.25)

div B = 0 , (1.26)

div E = 4πρ q . (1.27)

The fields are completely determined by electric charges and electric currents.
Note that, in general, Maxwell’s equations imply the continuity equation for
electric charge (see Exercise 1.5) as well as the conservation law for electro-
magnetic field energy (Exercise 1.6).

Figure 1.6: A system
of N charged particles.

e1

0

ei

ri(t)
vi(t)

e
N�

�

�

�

���������� ����
�

�

�

�

Let there be N particles with charges e1, e2, . . . ei, . . . e
N

, coordinates
ri(t) and velocities vi(t), see Figure 1.6. By definition, the electric charge
density

ρ q (r, t) =
N∑

i=1

ei δ (r − ri(t)) (1.28)

and the density of electric current

j (r, t) =
N∑

i=1

ei vi(t) δ (r − ri(t)) . (1.29)

The delta function of the vector-argument is defined as usually:

δ (r − ri(t)) =
3∏

α=1

δα = δ
(
rx − r i

x(t)
)

δ
(
ry − r i

y(t)
)

δ
(
rz − r i

z(t)
)
. (1.30)
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The coordinates and velocities of particles can be found by integrating the
equations of motion – the Newton equations:

ṙi ≡ d ri

dt
= vi(t) , (1.31)

v̇i ≡ dvi

dt
=

1
mi

ei

[
E (ri(t)) +

1
c

vi × B (ri(t))
]

. (1.32)

Let us count the number of unknown quantities: the vectors B, E, ri, and
vi. We obtain: 3+3+3N +3N = 6 (N +1). The number of equations is equal
to 8 + 6N = 6 (N + 1) + 2. Therefore two equations seem to be unnecessary.
Why is this so?

1.2.2 The continuity equation for electric charge

Let us make sure that the definitions (1.28) and (1.29) conform to the con-
servation law for electric charge. Differentiating (1.28) with respect to time
gives (see Exercise 1.7)

∂ρ q

∂t
= −

∑
i

ei δ ′
α ṙ i

α . (1.33)

Here the index α = 1, 2, 3. The prime denotes the derivative with respect
to the argument of the delta function, see Vladimirov (1971). The overdot
denotes differentiation with respect to time t.

For the electric current density (1.29) we have the divergence

div j =
∂

∂rα
jα =

∑
i

ei v i
α δ ′

α . (1.34)

Comparing formula (1.33) with (1.34) we see that

∂ρ q

∂t
+ div j = 0 .

(1.35)

Therefore the definitions for ρ q and j conform to the continuity Equa-
tion (1.35).

As we shall see it in Exercise 1.5, conservation of electric charge follows
also directly from the Maxwell Equations (1.24) and (1.27). The difference is
that above we have not used Equation (1.27).

1.2.3 Initial equations and initial conditions

Operating with the divergence on Equation (1.24) and using the continuity
Equation (1.35), we obtain

0 =
4π

c

(
−∂ρ q

∂t

)
+

1
c

∂

∂t
div E .
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Thus, by postulating the definitions (1.28) and (1.29), by virtue of the con-
tinuity Equation (1.35) and without using the Maxwell Equation (1.27), we
find that

∂

∂t
( div E − 4πρ q ) = 0 . (1.36)

Hence Equation (1.27) will be valid at any moment of time, provided it is true
at the initial moment.

Let us operate with the divergence on Equation (1.25):

∂

∂t
div B = 0 . (1.37)

We come to the conclusion that the Equations (1.26) and (1.27) play the role
of initial conditions for the time-dependent equations

∂

∂t
B = − c curl E (1.38)

and
∂

∂t
E = + c curl B − 4π j . (1.39)

Equation (1.26) implies the absence of magnetic charges or, which is the same,
the solenoidal character of the magnetic field.

Thus, in order to describe the gas consisting of N charged particles, we
consider the time-dependent problem of N bodies with a given interaction
law.

The electromagnetic part of the interaction is described by Max-
well’s equations, the time-independent scalar equations playing the
role of initial conditions for the time-dependent problem.

Therefore the set consisting of eight Maxwell’s equations and 6N Newton’s
equations is neither over- nor underdetermined. It is closed with respect to
the time-dependent problem, i.e. it consists of 6 (N+1) equations for 6 (N+1)
variables, once the initial and boundary conditions are given.

1.2.4 Astrophysical plasma applications

The set of equations described above can be treated analytically in just three
cases:

1. N = 1 , the motion of a charged particle in a given electromagnetic
field, for example, drift motions and the so-called adiabatic invariants,
wave-particle interaction and the problem of particle acceleration in as-
trophysical plasma; e.g., Chapters 7 and 18.

2. N = 2 , Coulomb collisions of two charged particles. This is important
for the kinetic description of physical processes, for example, the kinetic
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effects under propagation of accelerated particles in plasma, collisional
heating of plasma by a beam of fast electrons or/and ions, see Chapters
4 and 8.

3. N → ∞ , a very large number of particles. This case is the frequently
considered one in plasma astrophysics, because it allows us to introduce
macroscopic descriptions of plasma, the widely-used magnetohydrody-
namic (MHD) approximation; Chapters 9, and 12.

Numerical integration of Equations (1.24)–(1.32) in the case of large but
finite N , like N ≈ 3 × 106, is possible by using powerful modern computers.
Such computations called ‘particle simulations’ have proved to be increasingly
useful for understanding properties of astrophysical plasma. One important
example of a simulation is magnetic reconnection in a collisionless plasma
(Horiuchi and Sato, 1994; Cai and Lee, 1997). This process often leads to fast
energy conversion from field energy to particle energy, flares in astrophysical
plasma (see vol. 2).

Note also that the set of equations described above can be generalized to
include consideration of neutral particles. This is necessary, for instance, in
the study of the generalized Ohm’s law (Chapter 9) which can be applied in
the investigation of physical processes in weakly-ionized plasmas, for example
in the solar photosphere and prominences.

Dusty and self-gravitational plasmas in space are interesting in view of
the diverse and often surprising facts about planetary rings and comet envi-
ronments, interstellar dark space (Bliokh et al., 1995; Kikuchi, 2001). Two
effects are often of basic importance, gravitational and electric, since charged
or polarized dust grains involved in such environments are much heavier than
electrons and ions. So a variety of electric rather than magnetic phenom-
ena are taking place predominantly; and gravitational forces acting on dust
particles can become appreciable.

1.3 Gravitational systems

Gravity plays a central role in the dynamics of many astrophysical systems
– from stars to the Universe as a whole (Lahav et al., 1996; Rose, 1998;
Bertin, 1999; Dadhich and Kembhavi, 2000). It is important for many astro-
physical applications that a gravitational force (as well as an electromagnetic
force) acts on the particles:

mi v̇i = −mi ∇φ . (1.40)

Here the gravitational potential

φ(t, r) = −
N∑

n=1

Gmn

| rn(t) − r | , n �= i , (1.41)
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G is the gravitational constant. We shall return to this subject many times,
for example, while studying the virial theorem in MHD (Chapter 19). This
theorem is widely used in astrophysics.

At first sight, it may seem that a gravitational system, like stars in a
galaxy, will be easier to study than a plasma, because there is gravitational
charge (i.e. mass) of only one sign compared to the electric charges of two
opposite signs. However the reality is the other way round. Though the
potential (1.41) of the gravitational interaction looks similar to the Coulomb
potential of charged particles (see formula (8.1)),

physical properties of gravitational systems differ so much from
properties of astrophysical plasma.

We shall see this fundamental difference, for example, in Section 3.3 and
many times in what follows. A deep unifying theme which underlies many
astrophysical results is that self-gravity is incompatible with thermodynamic
equilibrium (see Section 9.6).

1.4 Practice: Exercises and Answers

Exercise 1.1 [ Section 1.1.2 ] Show that any distribution function that is a
function of the constants of the motion – the invariants of motion – satisfies
Liouville’s equation (1.11).

Answer. A general solution of the equations of motion (1.22) depends on
2N constants Ci where i = 1, 2, ... 2N . If we assume that the distribution
function is a function of these constants of the motion

f = f ( C1, ... Ci, ... C2N ) , (1.42)

we can rewrite the left-hand side of Equation (1.11) as

Df

Dt
=

2N∑
i=1

(
DCi

Dt

)(
∂f

∂Ci

)
. (1.43)

Because Ci are constants of the motion, DCi/Dt = 0. Therefore the right-
hand side of Equation (1.43) is also zero, and the distribution function (1.42)
satisfies the Liouville equation. This is the so-called Jeans theorem. It will be
used, for example, in the theory of wave-particle interaction in astrophysical
plasma (Section 7.1).

Exercise 1.2 [ Section 1.1.2 ] Rewrite the Liouville theorem by using the
Hamilton equations instead of the Newton equations.

Answer. Rewrite the Newton set of the motion Equations (1.22) in the
Hamilton form (see Landau and Lifshitz, Mechanics, 1976, Chapter 7, § 40):

q̇α =
∂H

∂Pα
, Ṗα = − ∂H

∂qα
(α = 1, 2, 3) , (1.44)
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where H(P, q) is the Hamiltonian of the system under consideration, qα and
Pα are the generalized coordinates and momemta, respectively.

Let us substitute the variables r and v in the Liouville equation (1.9) by
the generalized variables q and P. By doing so and using Equations (1.44),
we obtain the following form of the Liouville equation

∂f

∂t
+ ∇P H · ∇q f − ∇q H · ∇P f = 0 . (1.45)

Because of symmetry of the last equation, it is convenient here to use the
Poisson brackets (see Landau and Lifshitz, Mechanics, 1976, Chapter 7, § 42).
Recall that the Poisson brackets for arbitrary quantities A and B are defined
to be

[ A , B ] =
3∑

α=1

(
∂A

∂qα

∂B

∂Pα
− ∂A

∂Pα

∂B

∂qα

)
. (1.46)

Appling definition (1.46) to Equation (1.45), we find the final form of the
Liouville theorem

∂f

∂t
+ [ f , H ] = 0 .

(1.47)

Q.e.d. Note that for a system in equilibrium

[ f , H ] = 0 . (1.48)

Exercise 1.3 [ Section 1.1.2 ] Discuss what to do with the Liouville theorem,
if it is impossible to disregard quantum indeterminacy and assume that the
classical description of a system is justified. Consider the case of dense fluids
inside stars, for example, white dwarfs.

Comment. Inside a white dwarf star the temperature T ∼ 105 K, but the
density is very high: n ∼ 1028 −1030 cm−3 (e.g., de Martino et al., 2003). The
electrons cannot be regarded as classical particles. We have to consider them
as a quantum system with a Fermi-Dirac distribution (see § 57 in Landau and
Lifshitz, Statistical Physics, 1959b; Kittel, 1995).

Exercise 1.4 [ Section 1.1.2 ] Recall the Liouville theorem in a course of
mechanics – the phase volume is independent of t, i.e. it is the invariant of
motion (e.g., Landau and Lifshitz, Mechanics, 1976, Chapter 7, § 46). Show
that this formulation is equivalent to Equation (1.11).

Exercise 1.5 [ Section 1.2.1 ] Show that Maxwell’s equations imply the con-
tinuity equation for the electric charge.

Answer. Operating with the divergence on Equation (1.24), we have

0 =
4π

c
div j +

1
c

∂

∂t
div E .
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Substituting (1.27) in this equation gives us the continuity equation for the
electric charge

∂

∂t
ρ q + div j = 0 . (1.49)

Thus Maxwell’s equations conform to the charge continuity equation.

Exercise 1.6 [ Section 1.2.1 ] Starting from Maxwell’s equation, derive the
energy conservation law for an electromagnetic field.

Answer. Let us multiply Equation (1.24) by the electric field vector E
and add it to Equation (1.25) multiplied by the magnetic field vector B. The
result is

1
c
E

∂ E
∂t

+
1
c
B

∂ B
∂t

= −4π

c
j E − (B curl E − E curl B ) .

By using the known formula from vector analysis

div [a × b ] = b curl a − a curl b ,

we rewrite the last equation as follows

1
2c

∂

∂t

(
E2 + B2) = −4π

c
j E − div [E × B ]

or

∂

∂t
W = −j E − div G .

(1.50)

Here

W =
E2 + B2

8π
(1.51)

is the energy of electromagnetic field in a unit volume of space;

G =
c

4π
[E × B ] (1.52)

is the flux of electromagnetic field energy through a unit surface in space, i.e.
the energy flux density for electromagnetic field. This is called the Poynting
vector.

The first term on the right-hand side of Equation (1.50) is the power of
work done by the electric field on all the charged particles in the unit volume
of space. In the simplest approximation

evE =
d

dt
E , (1.53)

where E is the particle kinetic energy (see Equation (5.6)). Hence instead of
Equation (1.50) we write the following form of the energy conservation law:

∂

∂t

(
E2 + B2

8π
+

ρv2

2

)
+ div

( c

4π
[E × B ]

)
= 0 . (1.54)



18 Chapter 1. Particles and Fields

Compare this simple approach to the energy conservation law for charged par-
ticles and an electromagnetic field with the more general situation considered
in Section 12.1.3.

Exercise 1.7 [ Section 1.2.2 ] Clarify the meaning of the right-hand side of
Equation (1.33).

Answer. Substitute definition (1.30) of the delta-function in defini-
tion (1.28) of the electric charge density and differentiate the result over time t:

∂ρ q

∂t
=

N∑
i=1

ei

3∑
α=1

⎡⎣ ∂

∂ (rα − r i
α(t))

3∏
β=1

δ
(
rβ − r i

β(t)
)⎤⎦ ∂

∂t

(
rα − r i

α(t)
)

=

= −
N∑

i=1

ei

3∑
α=1

⎡⎣ ∂

∂ (rα − r i
α(t))

3∏
β=1

δ
(
rβ − r i

β(t)
)⎤⎦ dr i

α(t)
dt

. (1.55)

This is the right-hand side of Equation (1.33).



Chapter 2

Statistical Description of
Interacting Particle
Systems

In a system which consists of many interacting particles, the statistical
mechanism of ‘mixing’ in phase space works and makes the system’s
behaviour on average more simple.

2.1 The averaging of Liouville’s equation

2.1.1 Averaging over phase space

As was shown in the first Chapter, the exact state of a system consisting of
N interacting particles can be given by the exact distribution function (see
definition (1.18)) in six-dimensional (6D) phase space X = { r,v}. This is
defined as the sum of δ-functions in N points of phase space:

f̂(r,v, t) =
N∑

i=1

δ (r − ri(t)) δ (v − vi(t)) . (2.1)

Instead of the equations of motion, we use Liouville’s equation to describe the
change of the system state (Section 1.1.5):

∂f̂

∂t
+ v · ∇r f̂ +

F
m

· ∇v f̂ = 0 . (2.2)

Once the exact initial state of all the particles is known, it can be repre-
sented by N points in the phase space X (Figure 2.1). The motion of these

19
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v

r

X

1

2

N

Figure 2.1: Particle trajectories in the 6D phase space X.

points is described by Liouville’s equation (1.9) or by the 6N equations of
motion (1.22).

In fact we usually know only some average characteristics of the system’s
state, such as the temperature, density, etc. Moreover the behaviour of each
single particle is in general of no interest. For this reason, instead of the
exact distribution function (2.1), let us introduce the distribution function
averaged over a small volume ∆X of phase space, i.e. over a small interval of
coordinates ∆r and velocities ∆v centered at the point (r,v), at a moment
of time t:

〈 f̂(r,v, t) 〉X =
1

∆X

∫
∆X

f̂(X, t) dX =

=
1

∆r∆v

∫
∆r∆v

f̂(r,v, t) d 3r d 3v . (2.3)

Here d 3r = dx dy dz and d 3v = dvx dvy dvz, if use is made of Cartesian
coordinates.

To put the same in another way, the mean number of particles present at
a moment of time t in the element of phase volume ∆X is

〈 f̂(r,v, t) 〉X · ∆X =
∫

∆X

f̂(r,v, t) dX .

The total number N of particles in the system is the integral over the whole
phase space X.

Obviously the distribution function averaged over phase volume differs
from the exact one as shown in Figure 2.2.
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(a)

(b)

Figure 2.2: The one-dimensional analogy of the distribution function aver-
aging over phase space X: (a) the exact distribution function (2.1), (b) the
averaged function (2.3).

2.1.2 Two statistical postulates

Let us average the same exact distribution function (2.1) over a small time
interval ∆t centred at a moment of time t:

〈 f̂(r,v, t) 〉t =
1

∆t

∫
∆t

f̂(r,v, t) dt . (2.4)

Here ∆t is small in comparison with the characteristic time of the system’s
evolution:

∆t 
 τ ev . (2.5)

We assume that the following two statistical postulates concerning systems
containing a large number of particles are applicable to the system considered.

The first postulate. The mean values 〈 f̂ 〉
X

and 〈 f̂ 〉t exist for suffi-
ciently small ∆X and ∆t and are independent of the averaging scales ∆X
and ∆t.

Clearly the first postulate implies that the number of particles should be
large. For a small number of particles the mean value depends upon the aver-
aging scale: if, for instance, N = 1 then the exact distribution function (2.1)
is simply a δ-function, and the average over the variable X is 〈 f̂ 〉

X
= 1/∆X.

For illustration, the case (∆X)1 > ∆X is shown in Figure 2.3.
The second postulate is

〈 f̂(X, t) 〉X = 〈 f̂(X, t) 〉t = f(X, t) . (2.6)
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Figure 2.3: Averaging of the
exact distribution function f̂
which is equal to a δ-function.
∆X is a small volume of
phase space X.

In other words, the averaging of the distribution function over phase space is
equivalent to the averaging over time.

While speaking of the small ∆X and ∆t, we assume that they are not
too small: ∆X must contain a reasonably large number of particles while ∆t
must be large in comparison with the duration of drastic changes of the exact
distribution function, such as the duration of the particle Coulomb collisions:

∆t � τc . (2.7)

It is in this case that the statistical mechanism of particle ‘mixing’ in phase
space is at work and

the averaging of the exact distribution function over the time ∆t is
equivalent to the averaging over the phase volume ∆X.

2.1.3 A statistical mechanism of mixing in phase space

Let us understand qualitatively how the mixing mechanism works in phase
space. We start from the dynamical description of the N -particle system in
6N -dimensional phase space in which

Γ = { ri, vi } , i = 1, 2, . . . N,

a point is determined (t = 0 in Figure 2.4) by the initial conditions of all the
particles. The motion of this point, that is the dynamical evolution of the
system, can be described by Liouville’s equation or equations of motion. The
point moves along a complicated dynamical trajectory because the interactions
in a many-particle system are extremely intricate and complicated.

The dynamical trajectory has a remarkable property which we shall il-
lustrate by the following example. Imagine a glass vessel containing a gas
consisting of a large number N of particles (molecules or charged particles).
The state of this gas at any moment of time is depicted by a single point in
the phase space Γ.
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t = 0

∆

Γ

Γ

Figure 2.4: The dynamical trajectory of a system of N particles in the 6N -
dimensional phase space Γ.

Let us imagine another vessel which is identical to the first one, with one
exception, being that at any moment of time the gas state in the second
vessel is different from that in the first one. These states are depicted by two
different points in the space Γ. For example, at t = 0, they are points 1 and
2 in Figure 2.5.

v

ri

i

t = 0

∆

Γ

Γ

1

2

Figure 2.5: The trajectories of two systems never cross each other.

With the passage of time, the gas states in both vessels change, whereas
the two points in the space Γ draw two different dynamical trajectories (Fig-
ure 2.5). These trajectories do not intersect. If they had intersected at just
one point, then the state of the first gas, determined by 6N numbers (ri,vi),
would have coincided with the state of the second gas. These numbers could
have been taken as the initial conditions which, in turn, would have uniquely
determined the motion. The two trajectories would have merged into one.
For the same reason the trajectory of a system cannot intersect itself. Thus
we come to the conclusion that
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only one dynamical trajectory of a many particle system passes
through each point of the phase space Γ.

Since the trajectories differ in initial conditions, we can introduce an infi-
nite ensemble of systems (glass vessels) corresponding to the different initial
conditions. In a finite time the ensemble of dynamical trajectories will closely
fill the phase space Γ, without intersections. By averaging over the ensemble
we can answer the question of what the probability is that, at a moment of
time t, the system will be found in an element ∆Γ = ∆ri ∆vi of the phase
space Γ:

dw = 〈 f̂(ri,vi) 〉Γ d Γ. (2.8)

Here 〈 f̂(ri,vi) 〉Γ is a function of all the coordinates and velocities. It plays
the role of the probability distribution density in the phase space Γ and is
called the statistical distribution function or simply the distribution function.
It is obtained by way of statistical averaging over the ensemble and evidently
corresponds to definition (2.3).

∗ ∗ ∗

It is rather obvious that the same probability density can be obtained in an-
other way – through the averaging over time. The dynamical trajectory of
a system, given a sufficient time ∆t, will closely cover phase space. There
will be no self-intersections; but since the trajectory is very intricate it will
repeatedly pass through the phase space element ∆Γ. Let (∆t) Γ be the time
during which the system locates in ∆Γ. For a sufficiently large ∆t, which is
formally restricted by the characteristic time of slow evolution of the system
as a whole, the ratio (∆t)Γ/∆t tends to the limit

lim
∆t→∞

( ∆t )Γ

∆t
=

dw

d Γ
= 〈 f̂(ri,vi, t) 〉t . (2.9)

By virtue of the role of the probability density, it is clear that

the statistical averaging over the ensemble (2.8) is equivalent to the
averaging over time (2.9) as well as to the definition (2.4).

2.1.4 The derivation of a general kinetic equation

Now we have everything what we need to average the exact Liouville Equa-
tion (2.2). Since the equation contains the derivatives with respect to time t
and phase-space coordinates (r,v) the procedure of averaging over the interval
∆X ∆t is defined as follows:

f(X, t) =
1

∆X ∆t

∫
∆X

∫
∆t

f̂(X, t) dX dt . (2.10)
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Averaging the first term of the Liouville equation gives

1
∆X ∆t

∫
∆X

∫
∆t

∂f̂

∂t
dX dt =

1
∆t

∫
∆t

∂

∂t

⎡⎣ 1
∆X

∫
∆X

f̂ dX

⎤⎦ dt =

=
1

∆t

∫
∆t

∂

∂t
f dt =

∂f

∂t
. (2.11)

In the last equality the use is made of the fact that, by virtue of the second
postulate of statistics (2.6), the averaging of the smooth averaged function
does not change it.

Let us average the second term in Equation (2.2):

1
∆X ∆t

∫
∆X

∫
∆t

vα
∂f̂

∂rα
dX dt =

1
∆X

∫
∆X

vα
∂

∂rα

⎡⎣ 1
∆t

∫
∆t

f̂ dt

⎤⎦ dX =

=
1

∆X

∫
∆X

vα
∂

∂rα
f dX = vα

∂f

∂rα
. (2.12)

Here the index α = 1, 2, 3.
In order to average the term containing the force F, let us represent it as a

sum of a mean force 〈F 〉 and the force due to the difference of the real force
field from the mean (smooth) one:

F = 〈F 〉 + F ′. (2.13)

Substituting definition (2.13) in the third term in Equation (2.2) and averaging
this term, we have

1
∆X ∆t

∫
∆X

∫
∆t

Fα

m

∂f̂

∂vα
dX dt =

=
〈Fα 〉

m

1
∆X

∫
∆X

∂

∂vα

⎡⎣ 1
∆t

∫
∆t

f̂ dt

⎤⎦ dX +
1

∆X ∆t

∫
∆X

∫
∆t

F ′
α

m

∂f̂

∂vα
dX dt =

=
〈Fα 〉

m

∂f

∂vα
+

1
∆X ∆t

∫
∆X

∫
∆t

F ′
α

m

∂f̂

∂vα
dX dt . (2.14)

Gathering all three terms together, we write the averaged Liouville equation
in the form

∂f

∂t
+ v · ∇r f +

〈F 〉
m

· ∇v f =

(
∂f̂

∂t

)
c

,

(2.15)
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where (
∂f̂

∂t

)
c

= − 1
∆X ∆t

∫
∆X

∫
∆t

F ′
α

m

∂f̂

∂vα
dX dt .

(2.16)

Equation (2.15) and its right-hand side (2.16) are called the kinetic equation
and the collisional integral (cf. definition (1.17)), respectively.

Therefore we have found the most general form of the kinetic equation
with a collisional integral, which is nice but cannot be directly used in plasma
astrophysics, without making some additional simplifying assumptions. The
main assumption, the binary character of collisions, will be taken into account
in the next Section, see also Section 3.3.

2.2 A collisional integral and correlation func-
tions

2.2.1 Binary interactions

We shall distinguish different kinds of particles, for example, electrons and
protons, because their behaviours differ. Let f̂k (r,v, t) be the exact distribu-
tion function (2.1) of particles of the kind k, i.e.

f̂k (r,v, t) =
Nk∑
i=1

δ (r − rki(t)) δ (v − vki(t)) , (2.17)

the index i denoting the ith particle of kind k, Nk being the number of particles
of kind k. The Liouville Equation (2.2) for the particles of kind k takes a view

∂f̂k

∂t
+ v · ∇r f̂k +

F̂k

mk
· ∇v f̂k = 0 , (2.18)

mk is the mass of a particle of kind k.
The force acting on a particle of kind k at a point (r,v) of the phase

space X at a moment of time t, F̂k,α (r,v, t), is the sum of forces acting on
this particle from all other particles:

F̂ k,α (r,v, t) =
∑

l

Nl∑
i=1

F̂
(i)
kl,α (r,v, rli(t),vli(t)) . (2.19)

So the total force F̂k,α (r,v, t) depends upon the instant positions and veloci-
ties (generally with the time delay taken into account) of all the particles and
can be written with the help of the exact distribution function as follows:

F̂ k,α (r,v, t) =
∑

l

∫
X1

F̂ kl,α (X, X1) f̂l (X1, t) dX1 . (2.20)
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Here

f̂l (X, t) =
Nl∑
i=1

δ (X − Xli(t))

is the exact distribution function of particles of kind l, the variable of inte-
gration is designated as X1 = { r1,v1 } and dX1 = d 3r1 d 3v1.

Formula (2.20) takes into account that the forces considered are binary
ones, i.e. they can be represented as a sum of interactions between two par-
ticles.

Making use of the representation (2.20), let us average the force term in
the Liouville equation (2.2), as this has been done in (2.14). We have

1
∆X ∆t

∫
∆X

∫
∆t

1
mk

F̂ k,α (r,v, t)
∂f̂k

∂vα
dX dt =

=
1

∆X ∆t

∫
∆X

∫
∆t

∑
l

∫
X1

1
mk

F̂ kl,α (X, X1) f̂l (X1, t)
∂

∂vα
f̂k (X, t) dX dX1 dt =

=
1

∆X

∫
∆X

∑
l

∫
X1

1
mk

F̂ kl,α (X, X1) ×

× ∂

∂vα

⎡⎣ 1
∆t

∫
∆t

f̂k (X, t) f̂l (X1, t) dt

⎤⎦ dX dX1 . (2.21)

Here we have taken into account that the exact distribution function f̂l (X1, t)
is independent of the velocity v, which is a part of the variable X = { r, v }
related to the particles of the kind k, and that the interaction law F̂kl,α (X, X1)
is explicitly independent of time t.

Formula (2.21) contains the pair products of exact distribution functions
of different particle kinds, as is natural for the case of binary interactions.

2.2.2 Binary correlation

Let us represent the exact distribution function f̂k as

f̂k (X, t) = fk (X, t) + ϕ̂k (X, t) , (2.22)

where fk (X, t) is the statistically averaged distribution function, ϕ̂k (X, t) is
the deviation of the exact distribution function from the averaged one. In
general the deviation is not small, of course. It is obvious that, according to
definition (2.22),

ϕ̂k (X, t) = f̂k (X, t) − fk (X, t) ;

hence
〈 ϕ̂k (X, t) 〉 = 0 . (2.23)
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Let us consider the integrals of pair products, appearing in the averaged
force term (2.21). In view of definition (2.22), they can be rewritten as

1
∆t

∫
∆t

f̂k (X, t) f̂l (X1, t) dt = fk (X, t) fl (X1, t) + fkl (X, X1, t) , (2.24)

where

fkl (X, X1, t) =
1

∆t

∫
∆t

ϕ̂k (X, t) ϕ̂l (X1, t) dt . (2.25)

The function fkl is referred to as the correlation function or, more exactly,
the binary correlation function.

The physical meaning of the correlation function is clear from (2.24). The
left-hand side of Equation (2.24) means the probability to find a particle of
kind k at a point X of the phase space at a moment of time t under condition
that a particle of kind l places at a point X1 at the same time. In the
right-hand side of (2.24) the distribution function fk (X, t) characterizes the
probability that a particle of kind k stays at a point X at a moment of time t.
The function fl (X1, t) plays the analogous role for the particles of kind l.

If the particles of kind k did not interact with those of kind l, then
their distributions would be independent, i.e. probability densities
would simply multiply:

〈 f̂k (X, t) f̂l (X1, t) 〉 = fk (X, t) fl (X1, t) . (2.26)

So in the right-hand side of Equation (2.24) there should be

fkl (X, X1, t) = 0 . (2.27)

In other words there would be no correlation in the particle distribution.
With the proviso that the parameter characterizing the binary interaction,

namely Coulomb collision considered below,

ζ i ≈ e2

〈 l 〉

/〈
mv2

2

〉
, (2.28)

is small under conditions in a wide range, the correlation function must be
relatively small :

if the interaction is weak, the second term in the right-hand side
of (2.24) must be small in comparison with the first one.

We shall come back to the discussion of this property in Section 3.1. This
fundamental property allows us to construct a theory of plasma in many cases
of astrophysical interest.
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2.2.3 The collisional integral and binary correlation

Now let us substitute (2.24) in formula (2.21) for the averaged force term:

1
∆X ∆t

∫
∆X

∫
∆t

1
mk

F̂ k,α (X, t)
∂f̂k

∂vα
dX dt =

=
1

∆X

∫
∆X

∑
l

∫
X1

1
mk

F̂ kl,α (X, X1)
∂

∂vα
[ fk (X, t) fl (X1, t) +

+ fkl (X, X1, t) ] dX dX1 =

since fk (X, t) is a smooth fuction, its derivative over vα can be brought out
of the averaging procedure:

=
[

∂

∂vα
fk (X, t)

]⎧⎨⎩ 1
∆X

∫
∆X

∑
l

∫
X1

1
mk

F̂ kl,α (X, X1) fl (X1, t) dX dX1

⎫⎬⎭+

+
1

∆X

∫
∆X

∑
l

∫
X1

1
mk

F̂ kl,α (X, X1)
∂

∂vα
fkl (X, X1, t) dX dX1 =

=
1

mk
F k,α (X, t)

∂fk (X, t)
∂vα

+

+
∑

l

∫
X1

1
mk

F kl,α (X, X1)
∂fkl (X, X1, t)

∂vα
dX1 . (2.29)

Here we have taken into account that the averaging of smooth functions does
not change them, and the following definition of the averaged force is used:

F k,α (X, t) =
1

∆X

∫
∆X

∑
l

∫
X1

F̂ kl,α (X, X1) fl (X1, t) dX dX1 =

=
∑

l

∫
X1

F kl,α (X, X1) fl (X1, t) dX1 . (2.30)

This definition coincides with the previous definition (2.14) of the average
force, since

all the deviations of the real force F̂k from the mean (smooth)
force Fk are taken care of in the deviations ϕ̂k and ϕ̂l of the real
distribution functions f̂k and f̂l from their mean values fk and fl.
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Thus the collisional integral can be represented in the form(
∂f̂k

∂t

)
c

= −
∑

l

∫
X1

1
mk

F kl,α (X, X1)
∂fkl (X, X1, t)

∂vα
dX1 . (2.31)

Moreover, if in the last term of (2.29) the binary interactions can be repre-
sented by smooth functions of the type ekel (| rk − rl |)−2 with account of the
Debye shielding (Sections 3.2 and 8.2), then formally the velocity dependence
may be neglected.

Let us recall an important particular case considered in Section 1.1. For
the Lorentz force (1.13) as well as for the gravitational one (1.41), the condi-
tion (1.7) is satisfied. Let us require that in formula (2.31)

∂

∂vα
F kl,α (X, X1) = 0 . (2.32)

In fact this condition was tacitly assumed from the early beginning, from
Equation (2.2). Anyway, in the case (2.32), we obtain from formula (2.31) the
following expession(

∂f̂k

∂t

)
c

= − ∂

∂vα

∑
l

∫
X1

1
mk

F kl,α (X, X1) fkl (X, X1, t) dX1 . (2.33)

Hence the collisional integral, at least, for the Coulomb and gravity forces can
be written in the divergent form in the velocity space v :

(
∂f̂k

∂t

)
c

= − ∂

∂vα
J k,α ,

(2.34)

where the flux of particles of kind k in the velocity space (cf. Figure 1.3b) is

J k,α (X, t) =
∑

l

∫
X1

1
mk

F kl,α (X, X1) fkl (X, X1, t) dX1 . (2.35)

Therefore we arrive to conclusion that the averaged Liouville equation or
the kinetic equation for particles of kind k

∂fk (X, t)
∂t

+ vα
∂fk (X, t)

∂rα
+

F k,α (X, t)
mk

∂fk (X, t)
∂vα

=

= − ∂

∂vα

∑
l

∫
X1

1
mk

F kl,α (X, X1) fkl (X, X1, t) dX1 (2.36)

contains the unknown function fkl. Hence the kinetic equation (2.36) for
distribution function fk is not closed. We have to find the equation for the
correlation function fkl . This will be done in the next Section.
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2.3 Equations for correlation functions

To derive the equations for correlation functions (in the first place for the
function of pair correlations fkl), it is not necessary to introduce any new
postulates or develop new formalisms. All the necessary equations and aver-
aging procedures are at hand.

Looking at definition (2.25), we see that we need an equation which will
describe the deviation of distribution function from its mean value, i.e. the
function ϕ̂k = f̂k − fk. In order to derive such equation, we simply have
to subtract the averaged representation (2.36) from the exact Liouville equa-
tion (2.2). The result is

∂ ϕ̂k (X, t)
∂t

+ vα
∂ ϕ̂k (X, t)

∂rα
+

F̂ k,α

mk

∂f̂k

∂vα
− F k,α

mk

∂fk

∂vα
=

=
∂

∂vα

∑
l

∫
X1

1
mk

F kl,α (X, X1) fkl (X, X1) dX1 . (2.37)

Here
F̂ k,α (X, t) =

∑
l

∫
X1

F kl,α (X, X1) f̂l (X1, t) dX1 (2.38)

is the exact force (2.20) acting on a particle of the kind k at the point X of
phase space, and

F k,α (X, t) =
∑

l

∫
X1

F kl,α (X, X1) fl (X1, t) dX1 (2.39)

is the statistically averaged force (2.30).
Thus the difference between the exact force and the averaged one is

F̂ k,α − F k,α =
∑

l

∫
X1

F kl,α (X, X1) ϕ̂l (X1, t) dX1 . (2.40)

We substitute it in Equation (2.37) where the difference of force terms can be
rewritten as follows:

F̂ k,α

mk

∂f̂k

∂vα
− F k,α

mk

∂fk

∂vα
=

F̂ k,α − F k,α

mk

∂fk

∂vα
+

F̂ k,α

mk

∂ ϕ̂k

∂vα
.

The result of the substitution is

F̂ k,α

mk

∂f̂k

∂vα
− F k,α

mk

∂fk

∂vα
=

=
∑

l

∫
X1

1
mk

F kl,α (X, X1) ϕ̂l (X1, t) dX1
∂fk

∂vα
+

F k,α

mk

∂ ϕ̂k

∂vα
+

+
∑

l

∫
X1

1
mk

F kl,α (X, X1) ϕ̂l (X1, t) dX1
∂ ϕ̂k

∂vα
. (2.41)
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On substituting (2.41) in Equation (2.37) we have the equation for the
deviation ϕ̂k of the exact distribution function f̂k from its mean value fk:

∂ ϕ̂k (X, t)
∂t

+ vα
∂ ϕ̂k (X, t)

∂rα
+ . . . = 0 . (2.42)

Considering that we have to derive the equation for the pair correlation func-
tion

fkl (X1, X2, t) = 〈 ϕ̂k (X1, t) ϕ̂l (X2, t) 〉 ,

let us take two equations:
one for ϕ̂k (X1, t)

∂ ϕ̂k (X1, t)
∂t

+ v1,α
∂ ϕ̂k (X1, t)

∂ r1,α
+

F k,α

mk

∂ ϕ̂k (X1, t)
∂ v1,α

+ . . . = 0 (2.43)

and another for ϕ̂l (X2, t)

∂ ϕ̂l (X2, t)
∂t

+ v2,α
∂ ϕ̂l (X2, t)

∂ r2,α
+

F l,α

ml

∂ ϕ̂l (X2, t)
∂ v2,α

+ . . . = 0 . (2.44)

Now we add the equations resulting from (2.43) multiplied by ϕ̂l and (2.44)
multiplied by ϕ̂k. We obtain

ϕ̂l
∂ ϕ̂k

∂t
+ ϕ̂k

∂ ϕ̂l

∂t
+ v1,α

∂ ϕ̂k

∂ r1,α
ϕ̂l + v2,α

∂ ϕ̂l

∂ r2,α
ϕ̂k + . . . = 0

or
∂ (ϕ̂k ϕ̂l)

∂t
+ v1,α

∂ (ϕ̂k ϕ̂l)
∂ r1,α

+ v2,α
∂ (ϕ̂k ϕ̂l)

∂ r2,α
+ . . . = 0 . (2.45)

On averaging Equation (2.45) we finally have the equation for the pair corre-
lation function in the following form:

∂fkl (X1, X2, t)
∂t

+ v1,α
∂fkl (X1, X2, t)

∂ r1,α
+ v2,α

∂fkl (X1, X2, t)
∂ r2,α

+

+
F k,α (X1, t)

mk

∂fkl (X1, X2, t)
∂ v1,α

+
F l,α (X2, t)

ml

∂fkl (X1, X2, t)
∂ v2,α

+

+
∂fk (X1, t)

∂ v1,α

∑
n

∫
X3

1
mk

F kn,α (X1, X3) fnl (X3, X2, t) dX3 +

+
∂fl (X2, t)

∂ v2,α

∑
n

∫
X3

1
ml

F ln,α (X2, X3) fnk (X3, X1, t) dX3 =

= − ∂

∂ v1,α

∑
n

∫
X3

1
mk

F kn,α (X1, X3) fkln (X1, X2, X3, t) dX3 −

− ∂

∂ v2,α

∑
n

∫
X3

1
ml

F ln,α (X2, X3) fkln (X1, X2, X3, t) dX3 . (2.46)
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Here

fkln (X1, X2, X3, t) =
1

∆t

∫
∆t

ϕ̂k (X1, t) ϕ̂l (X2, t) ϕ̂n (X3, t) dt (2.47)

is the function of triple correlations (see also Exercise 2.1).
Thus Equation (2.46) for the pair correlation function contains the un-

known function of triple correlations. In general,

the chain of equations for correlation functions can be shown to
be unclosed : the equation for the correlation function of sth order
contains the function of the order (s + 1).

2.4 Practice: Exercises and Answers

Exercise 2.1 [ Section 2.3 ] By analogy with formula (2.24), show that

〈 f̂k (X1, t) f̂l (X2, t) f̂n (X3, t) 〉 = (2.48)

= fk (X1, t) fl (X2, t) fn (X3, t) +

+ fk (X1, t) fln (X2, X3, t) + fl (X2, t) fkn (X1, X3, t) +

+ fn (X3, t) fkl (X1, X2, t) + fkln (X1, X2, X3, t) .

Exercise 2.2 Discuss a similarity and difference between the kinetic theory
presented in this Chapter and the famous BBGKY hierarchy theory devel-
oped by Bogoliubov (1946), Born and Green (1949), Kirkwood (1946), and
Yvon (1935).

Hint. Show that essential to both derivations is the weak-coupling as-
sumption, according to which

grazing encounters, involving small fractional energy and momen-
tum exchange between colliding particles, dominate the evolution
of the velocity distribution function.

The weak-coupling assumption provides justification of the widely appreci-
ated practice which leads to a very significant simplification of the original
collisional integral; for more detail see Klimontovich (1975, 1986).



Chapter 3

Weakly-Coupled Systems
with Binary Collisions

In a system which consists of many interacting particles, the weak-
coupling assumption allows us to introduce a well controlled approxi-
mation to consider the chain of the equations for correlation functions.
This leads to a very significant simplification of the original collisional
integral to describe collisional relaxation and transport in astrophysi-
cal plasma but not in self-gravitating systems.

3.1 Approximations for binary collisions

3.1.1 The small parameter of kinetic theory

The infinite chain of equations for the distribution function and correlation
functions does not contain more information in itself than the initial Liouville
equation for the exact distribution function. Actually, the statistical mixing
of trajectories in phase space with subsequent statistical smoothing over the
physically infinitesimal volume allows to lose ‘useless information’ – the infor-
mation about the exact motion of particles. Just for this reason, description
of the system’s behaviour becomes irreversible.

The value of the chain is also that the chain allows a direct introduction
of new physical assumptions which make it possible to break the chain off
at some term (Figure 3.1) and to estimate the resulting error. We call this
procedure a well controlled approximation.

There is no universal way of breaking the chain off. It is intimately related,
in particular, to the physical state of a plasma. Different states (as well
as different aims) require different approximations. In general, the physical
state of a plasma can be characterized, at least partially, by the ratio of
the mean energy of two particle interaction to their mean kinetic

35
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LT KE

fk fk fkl

< >
X

fkln

...BC

Figure 3.1: How to break the infinite chain of the equations for correlation
functions? LT is the Liouville theorem (1.11) or Equation (2.18) for an exact
distribution function f̂k. KE and BC are the kinetic Equation (2.36) for fk

and Equation (2.46) for the binary correlation function f kl.

energy (parameter (2.28)). If the last one can be reasonably characterized
by some temperature T (Section 9.1), then this ratio

ζ i ≈ e2

〈 l 〉 (kBT )−1
. (3.1)

As a mean distance between the particles we take 〈 l 〉 ≈ n−1/3. Hence the
ratio

ζ i =
e2

n−1/3 (kBT )−1 =
e2

kB

× n1/3

T
(3.2)

is termed the interaction parameter . It is small for a sufficiently hot and
rarefied plasma.

In many astrophysical plasmas, for example in the solar corona (see Exer-
cise 3.2), the interaction parameter is really very small. So the thermal kinetic
energy of plasma particles is much larger than their interaction energy. The
particles are almost free or moving on definite trajectories in the external
fields if the later are present.

We shall call this case the approximation of weak Coulomb interaction.
An existence of the small parameter allows us to have a complete description
of this interaction by using the perturbation procedure. Moreover such a
description is the simplest and the most exact one.

While constructing the kinetic theory, it is natural to use the perturbation
theory with respect to the small parameter ζ i. This means that

the distribution function fk must be taken to be of order unity,
the pair correlation function fkl of order ζ i, the triple correlation
function fkln of order ζ 2

i , etc.

We shall see in what follows that this principle has a deep physical sense in
kinetic theory. Such plasmas are said to be ‘weakly coupled’.

An opposite case, when the interaction parameter takes values larger than
unity, is very dense, relatively cold plasmas, for example in the interiors of
white dwarf stars (Exercise 3.3). These plasmas are ‘strongly coupled’.
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3.1.2 The Vlasov kinetic equation

In the zeroth order with respect to the small parameter ζ i, we obtain the
Vlasov equation with the self-consistent electromagnetic field (Vlasov, 1938,
1945):

∂fk (X, t)
∂t

+ vα
∂fk (X, t)

∂rα
+

+
ek

mk

(
E +

1
c

v × B
)

α

∂fk (X, t)
∂vα

= 0 . (3.3)

Here E and B are the electric and magnetic fields obeying Maxwell’s equa-
tions:

curl E = −1
c

∂ B
∂t

, div E = 4π ( ρ 0 + ρ q ) ,

(3.4)

curl B =
1
c

∂ E
∂t

+
4π

c
( j 0 + j q ) , div B = 0 .

ρ 0 and j 0 are the densities of external charges and currents; they describe the
external fields, for example, the uniform magnetic field B0. ρ q and j q are the
charge and current densities due to the plasma particles themselves:

ρ q (r, t) =
∑

k

ek

∫
v

fk (r,v, t) d 3v , (3.5)

j q (r, t) =
∑

k

ek

∫
v

v fk (r,v, t) d 3v . (3.6)

So, if we are considering processes which occur on a time scale much shorter
than the time scale of collisions,

τ ev 
 τc , (3.7)

we may use a description which includes the electric and magnetic fields aris-
ing from the plasma charge density and current density, but neglects the
microfields responsible for binary collisions. This means that F ′ = 0
in formula (2.13), therefore the collisional integral (2.16) is also equal to zero.

The Vlasov kinetic Equation (3.3) together with the definitions (3.5) and
(3.6), and with Maxwell’s Equations (3.4) serve as a classic basis for the
theory of oscillations and waves in a plasma (e.g., Silin, 1971; Schmidt, 1979;
Benz, 2002) with the small parameter ζ i and small correlational effects of
higher orders. The Vlasov equation is also a proper basis for kinetic theory
of wave-particle interactions in astrophysical plasma (Chapter 7) and shock
waves in collisionless plasma (Section 16.4). The Vlasov equation was strongly
criticized by Ginzburg et al. (1946).
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One of the natural limitations of the Vlasov equation is that it will not
make a plasma relax to a Maxwellian distribution (Section 9.5), since we effec-
tively neglect collisions by neglecting the binary correlation function. Vlasov
was the first to recognize that

the electromagnetic interaction among plasma particles is qualita-
tively different from the interaction in an ordinary gas.

3.1.3 The Landau collisional integral

Using the perturbation theory with respect to the small interaction parame-
ter ζ i in the first order, and, therefore, neglecting the close Coulomb collisions
(this will be justified in Section 8.1.5), we can find the kinetic equation with
the collisional integral given by Landau (1937)(

∂f̂k

∂t

)
c

= − ∂

∂vα
J k,α , (3.8)

where the flux of particles of kind k in the velocity space (cf. formula (2.35))
is

J k,α =
πe 2

k ln Λ
mk

∑
l

e 2
l

∫
vl

{
fk

∂fl

ml ∂ v l,β
− fl

∂fk

mk ∂ v k,β

}
×

× (u2 δαβ − uαuβ)
u3 d 3vl . (3.9)

Here u = v − vl is the relative velocity, d 3vl corresponds to the integra-
tion over the whole velocity space of ‘field’ particles l. ln Λ is the Coulomb
logarithm which takes into account divergence of the Coulomb-collision cross-
section (see Section 8.1.5). The full kinetic Equation (2.15) with the Landau
collisional integral is a nonlinear integro-differential equation for the distribu-
tion function fk (r,v, t) of particles of the kind k.

The date of publication of the Landau (1937) paper may be considered as
the date of birth of the kinetic theory of collisional fully-ionized plasma. The
theory of collisionless plasma begins with the classical paper of Vlasov (1938).
In fact, these two approaches correspond to different limiting cases.

The Landau integral takes into account the part of the particle
interaction which determines dissipation while the Vlasov equation
allows for the average field, and is thus reversible.

For example, in the Vlasov theory the question of the role of collisions in
the neighbourhood of resonances remains open. The famous paper by Lan-
dau (1946) was devoted to this problem. Landau used the reversible Vlasov
equation as the basis to study the dynamics of a small perturbation of the
Maxwell distribution function, f (1)(r,v, t). In order to solve the linearized
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Vlasov equation (Section 7.1.1), he made use of the Laplace transformation,
and defined the rule to avoid a pole in the divergent integral (see Section 7.1.2)
by the replacement ω → ω + i 0.

This technique for avoiding singularities may be formally replaced by a
different procedure. Namely it is possible to add a small dissipative term
−νf (1)(r,v, t) to the linearized Vlasov equation. In this way, the Fourier
transform of the kinetic equation involves the complex frequency ω = ω′ +i ν,
leading with ν → 0 to the same expression for the Landau damping . Note,
however, that

the Landau damping is not by randomizing collisions but by a trans-
fer of wave field energy into oscillations of resonant particles

(see Section 7.1.2).
Thus there are two different approaches to the description of plasma os-

cillation damping. The first is based on mathematical regularization of the
Cauchy integral divergence. In this approach the physical nature of the damp-
ing seems to be not considered since the initial equation remains reversible.
However the Landau method is really a beautiful example of complex analysis
leading to an important new physical result.

The second approach reduces the reversible Vlasov equation to an irre-
versible one. Although the dissipation is assumed to be negligibly small, one
cannot take the limit ν → 0 directly in the master equations: this can be done
only in the final formulae. This second method of introducing the collisional
damping is more natural. It shows that

even very rare collisions play the principal role in the physics of
collisionless plasma.

It is this approach that has been adopted in Klimontovich (1986). A more
comprehensive solution of this principal question, however, can only be ob-
tained on the basis of the dissipative kinetic equation.

The example of the Landau resonance and Landau damping demonstrates
that some fundamental problems still remain unsolved in the kinetic the-
ory of plasma. They arise from inconsistent descriptions of the transition
from the reversible equations of the mechanics of charge particles and fields
to the irreversible equations for statistically averaged distribution functions
(Klimontovich, 1998).

In the first approximation with respect to the small interaction parame-
ter ζ i we find the Maxwellian distribution function and the effect of Debye
shielding. This is the subject of the Section 3.2.

3.1.4 The Fokker-Planck equation

The smallness of the interaction parameter ζ i signifies that, in the Landau
collisional integral, the sufficiently distant Coulomb collisions are taken care
of as the interactions with a small momentum and energy transfer (see
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Section 8.1). For this reason, it comes as no surprise that the Landau inte-
gral can be considered as a particular case of a different approach which is
the Fokker-Planck equation (Fokker, 1914; Planck, 1917). The latter gener-
ally describes systems of many particles that move under action of stochastic
forces producing small changes in particle velocities (for a review see Chan-
drasekhar, 1943a).

Let us consider a distribution function independent of space so that
f = f(v, t). The Fokker-Planck equation describes the distribution func-
tion evolution due to nonstop overlapping weak collisions resulting in
particle diffusion in velocity space:(

∂f̂

∂t

)
c

= − ∂

∂vα
[ aαf ] +

∂2

∂vα ∂vβ
[ bαβ f ] . (3.10)

The Fokker-Planck equation formally coincides with the diffusion-type
equation (which is irreversible of course) for some admixture with concentra-
tion f , for example Brownian particles (or test particles) in a gas, on which
stochastic forces are exerted by the molecules of the gas. The coefficient bαβ

plays the role of the diffusion coefficient and is equal to

bαβ =
1
2

(δvαβ) av , (3.11)

i.e. is expressed in terms of the averaged velocity changes in elementary acts
– collisions:

(δvαβ) av = 〈 δvα δvβ 〉 . (3.12)

The other coefficient is

aα = (δvα) av = 〈 δvα 〉 . (3.13)

It is known as the Fokker-Planck coefficient of dynamic friction. For example,
a Brownian particle moving with velocity v through the gas experiences a
drag opposing the motion (see Figure 1.4).

In order to find the mean values appearing in the Fokker-Planck equa-
tion, we have to make clear the physical and mathematical sense of expres-
sions (3.12) and (3.13), see Exercise 3.4.

The mean values of velocity changes are in fact statistically averaged
and determined by the forces acting between a test particle and
scatterers (field particles or waves).

Because of this, these averaged quantities have to be expressed by the colli-
sional integral with the corresponding cross-sections (Exercises 3.5 and 3.6).
The ‘standard’ derivation of the Fokker-Planck equation from the Boltzmann
integral, with discussion of its particular features, can be found for example
in Shoub (1987); however see Section 11.5 in Balescu (1975).
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For electrons and ions in a plasma, such calculations can be made and
give us the Landau integral; see Section 11.8 in Balescu (1975). The kinetic
equation found in this way will allow us to study the Coulomb interaction of
accelerated particle beams with astrophysical plasma (Chapter 4). The first
term in the Fokker-Planck equation is a friction which slows down the parti-
cles of the beam and move them toward the zero velocity in the velocity space
(Figure 3.2), the second term represents the three-dimensional diffusion of
the beam particles in the velocity space.

v

f

0 ||

( )v || t = 0

t >0

Figure 3.2: A beam of fast particles
in plasma can generate the Langmuir
waves due to the bump-on tail insta-
bility which will be shown in Chap-
ter 7. Here we illustrate only the sim-
plest effects of Coulomb collisions,
that will be considered in Chapter 4.

During the motion of a beam of accelerated particles in a plasma a reverse
current of thermal electrons is generated, which tends to compensate the
electric current of accelerated particles – the direct current.

The electric field driving the reverse current makes a great impact
on the particle beam kinetics.

That is why, in order to solve the problem of accelerated particle propagation
in, for example, the solar atmosphere, we inevitably have to apply a com-
bined approach, which takes into account both the electric field influence on
the accelerated particles (as in the Vlasov equation) and their scattering from
the thermal particles of a plasma (as in the Landau equation; see Section 4.5).

The Landau collisional integral is effectively used in many problems of
plasma astrophysics. It permits a considerable simplification of the calcula-
tions of many quantities determined by collisions of charged particles, such
as the viscosity coefficient, thermal conductivity, electric conductivity, etc.
(Section 9.5).

The Landau collisional integral does not take into account the close colli-
sions since they are responsible for large exchange of the particle momentum
(see Section 8.1). So the interaction parameter is not small, and the pertur-
bation theory is not applicable (Exercise 3.6). The close Coulomb collisions of
charged particles can play an important role in collective plasma phenomena
(Klimontovich, 1986).
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3.2 Correlation function and Debye shielding

We are going to understand the most fundamental property of the binary
correlation function. With this aim in mind, we shall solve the second equation
in the chain illustrated by Figure 3.1. To solve this equation we have to know
two functions: the distribution function fk from the first link in the chain and
the triple correlation function fkln from the third link.

3.2.1 The Maxwellian distribution function

Let us consider the stationary (∂/∂t = 0) solution to the equations for corre-
lation functions, assuming the interaction parameter ζ i to be small and using
the method of successive approximations in the following form. First,
we set fkl = 0 in the averaged Liouville equation (2.36) for the distribution
function fk, then we assume that the triple correlation function fkln is zero
in Equation (2.46) for the correlation function fkl etc.

The plasma is supposed to be stationary, uniform and in the thermody-
namic equilibrium state, i.e. the particle velocity distribution is assumed to
be a Maxwellian function

fk (X) = fk (v2) = ck exp
(

− mk v2

2kBTk

)
. (3.14)

The constant ck is determined by the normalizing condition and equals

ck = nk

(
mk

2π kBTk

)3/2

.

It is obvious that the Maxwellian function (3.14) satisfies the kinetic equa-
tion (2.36) under assumption made above if the average force is equal to zero:

F k,α(X, t) = F k,α(X) = 0 . (3.15)

Since we will need the same assumption in the next Section, we shall justify
it there.

3.2.2 The averaged force and electric neutrality

To a first approximation, i.e. with account of fkl �= 0, the distribution func-
tion is also uniform with respect to its space variables. Let us substitute
the Maxwellian distribution function (3.14) in the pair-correlation function
Equation (2.46), neglecting all the interactions except the Coulomb ones. For
the latter, in circumstances where the averaged distribution functions for the
components are uniform, we obtain the following expression for the averaged
force (2.30):

F k,α (X1) =
∑

l

∫
X2

F kl,α (X1, X2) fl (X2) dX2 =
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since plasma is uniform, fl does not depend of r2

=
∑

l

∫
r2

F kl,α (r1, r2) d 3r2 ·
∫
v2

fl (v2) d 3v2 =

= −
∫
r2

∑
l

∂

∂r1,α

(
ek el

| r1 − r2 |

)
d 3r2 · nl =

= −
∫
r2

∂

∂r1,α

(
ek

| r1 − r2 |

)
d 3r2 ·

∑
l

nl el . (3.16)

Therefore
F k,α = 0 , (3.17)

if the plasma is assumed to be electrically neutral :

∑
l

nl el = 0 ,

(3.18)

or quasi-neutral (see Section 8.2).
Balanced charges of ions and electrons determine the name plasma

according Langmuir (1928). So the average force (2.30) is equal to zero in
the electrically neutral plasma but is not equal to zero in a system of charged
particles of the same charge sign: positive or negative, it does not matter.
Such a system tends to expand.

There is no neutrality in gravitational systems. The large-scale gravi-
tational field makes an overall thermodynamic equilibrium impossible (Sec-
tion 9.6). Moreover, on the contrary to plasma, they tend to contract and
collapse.

3.2.3 Pair correlations and the Debye radius

As a first approximation, on putting the triple correlation function fkln = 0,
we obtain from Equation (2.46), in view of condition (3.17), the following
equation for the binary or pair correlation function fkl:

v1,α
∂fkl

∂r1,α
+ v2,α

∂fkl

∂r2,α
=

= −
∑

n

∫
X3

{
1

mk
F kn,α (X1, X3) fnl (X3, X2)

∂fk

∂v 1,α
+

+
1

ml
F ln,α (X2, X3) fnk (X3, X1)

∂fl

∂v 2,α

}
dX3 . (3.19)
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Let us consider the particles of two kinds – electrons and ions, assuming the
ions to be motionless and homogeneously distributed. Then the ions do not
take part in any kinetic processes; hence ϕ̂ i ≡ 0 for ions and the correlation
functions associated with ϕ̂ i equal zero as well:

f ii = 0 , fei = 0 etc. (3.20)

Among the pair correlation functions, only one has a non-zero magnitude

fee (X1, X2) = f (X1, X2) . (3.21)

Taking into account (3.20), (3.21), and (3.14), rewrite Equation (3.19) as
follows

v1
∂f

∂ r1
+ v2

∂f

∂ r2
=

=
1

kBT

∫
X3

[v1 · F (X1, X3) f (X3, X2) fe (v1) +

+ v2 · F (X2, X3) f (X1, X3) fe (v2) ] dX3 . (3.22)

Since v1 and v2 are arbitrary and refer to the same kind of particles (elec-
trons), Equation (3.22) takes the form

∂f

∂ r1
=

1
kBT

∫
X3

F (X1, X3) f (X3, X2) fe (v1) dX3 . (3.23)

Taking into account the character of Coulomb force in the same approxi-
mation as in formula (3.17) and assuming the correlation to exist only between
the positions of the particles in space (rather than between velocities), let us
integrate both sides of Equation (3.23) over d 3v1 d 3v2. The result is

∂g (r1, r2)
∂ r1

= − ne2

kBT

∫
r3

∇r1

1
| r1 − r3 | g (r2, r3) d 3r3 . (3.24)

Here the function

g (r1, r2) =
∫
v1

∫
v2

f (X1, X2) d 3v1 d 3v2 . (3.25)

We integrate Equation (3.24) over r1 and designate the function

g (r1, r2) = g (r 2
12) ,

where r12 = | r1 − r2 |. So we obtain the equation

g (r 2
12) = − ne2

kBT

∫
r3

g (r 2
23)

r13
d 3r3 .
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Its solution is

g (r) =
c 0

r
exp

(
− r

rD

)
, (3.26)

where

rD =
(

kBT

4πne2

)1/2

(3.27)

is the Debye radius. It will be defined in just this way (see formula (8.33))
for the case when the shielding is due to the particles of one kind – due to
electrons. A more general formula for the Debye radius will be derived in
Section 8.2.

The constant of integration

c 0 = − 1
4π r 2

D
n

(3.28)

(see Exercise 3.8). Substituting (3.28) in solution (3.26) gives the sought-after
pair correlation function, i.e. the velocity-integrated correlation function

g (r) = − 1
4π r 2

D
n

1
r

exp
(

− r

rD

)
= − e2

kBT

1
r

exp
(

− r

rD

)
. (3.29)

Formula (3.29) shows that

the Debye radius is a characteristic length scale of pair correlations
in a fully-ionized equilibrium plasma:

g (r) ∼ 1
r

exp
(

− r

rD

)
.

(3.30)

This result proves to be fair in the context of Section 8.2 where the De-
bye shielding will be considered in another approach. Comparison of for-
mula (3.30) with (8.32) shows that, as one might have anticipated,

the binary correlation function reproduces the shape of the actual
potential of interaction, i.e. the shielded Coulomb potential.

It is known that cosmic plasma can exhibit collective phenomena arising
out of mutual interactions of many charged particles. Since the Debye radius
rD is a characteristic length scale of pair correlations, the number n r3

D
gives

us a measure of the number of particles which can interact simultaneously.
The inverse of this number is the so-called plasma parameter

ζ p =
(
n r 3

D

)−1
. (3.31)
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This is a small quantity as well as it can be expressed in terms of the small
interaction parameter ζ i (Exercise 3.1). The fact that ζ p 
 1 implies a large
number of plasma particles in a volume enclosed by the sphere of
the Debye radius. In many astrophysical applications the plasma parame-
ter (3.31) is really small (e.g., Exercise 3.2). So the collective phenomena can
be really important in cosmic plasma.

3.3 Gravitational systems

There is a fundamental difference between plasma and the gravitational sys-
tems with potential (1.41), for example, the stars in a galaxy. This difference
lies in the nature of the gravitational force: there is no shielding to vitiate
this long-range 1/r2 force. The collisional integral formally equals infinity
because the binary correlation function g(r) ∼ 1/r.

The conventional wisdom of such system dynamics (see Binney and
Tremaine, 1987) asserts that the structure and evolution of a collection of
N self-gravitating point masses can be described by the collisionless kinetic
equation, the gravitational analog of the Vlasov equation (Exercises 3.9 and
16.7). On the basis of what we have seen above,

the collisionless appoach in gravitational systems, i.e. the entire
neglect of particle pair correlations, constitutes an uncontrolled
approximation.

Unlike the case of plasma, we cannot derive the next order correction to
the collisionless kinetic equation in the context of a systematic perturbation
expansion.

Physically, this is manifested by the fact that the 1/r potential yields
an infinite cross-section, so that, when evaluating the effects of collisions in
the usual way (Section 8.1.5) for an infinite homogeneous system, we en-
counter logarithmic divergences in the limit of large impact parameter (for-
mula (8.18)), see however Exercise 3.9. We may hope to circumvent this
difficulty, the problematic Coulomb logarithm of gravitational dynamics, by
first identifying the bulk mean field force 〈F 〉 in definition (2.13), acting at
any given point in space and then treating fluctuations F ′ away from the mean
field force. This splitting into a mean field plus fluctuations can be introduced
formally (Kandrup, 1998) and allows one to write down the collisional integral
of the type (2.16). However, this is difficult to implement concretely because
of the apparent absence of a clean separation of time scales.

For the N -body problem with N � 1 we might expect that these fluctua-
tions are small, so that their effects do in fact constitute a small perturbation.
So it is assumed that, on long time scales, one must allow for discreteness
effects, described by the Fokker-Plank equation (3.10) or the kinetic equation
with the Landau collisional integral (3.8); see Exercise 3.10.

Given that theoretical analyses have as yet proven inconclusive, one might
instead seek resource to numerical experiments. This, however, is also difficult
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for gravitational systems not characterized by a high degree of symmetry.
There is in fact only one concrete setting where detailed computations have
been done, namely the toy model of one-dimensional gravity.

In summary, even though a mean gravitational field theory based on
the Vlasov equation may seem well motivated physically, there is as yet no
rigorous proof of its validity and, in particular, no rigorous estimate as to the
time scale on which it might be expected to fail.

Hydrodynamic description of gravitational systems has a difficulty of the
same origin. The gravitational attraction cannot be screened (Section 9.6).

3.4 Comments on numerical simulations

At present, astrophysical plasma processes are typically investigated in well
developed and distinct approaches. One approach, described by the Vlasov
equation, is the collisionless limit used when collective effects dominate. In
cases where the plasma dynamics is determined by collisional processes in ex-
ternal fields and where the self-consistent fields can be neglected, the Fokker-
Planck approach is used. At the same time, it is known that

both collective kinetic effects and Coulomb collisions can play an
essential role in a great variety of astrophysical phenomena

starting from the most simple one – propagation of fast particles in plasma
(Chapter 4). Besides, as was mentioned in Section 3.1.3, collisions play the
principal role in the physics of collisionless plasma. Taking collisions
into account may lead not only to quantitative but also qualitative changes
in the plasma behaviour, even if the collision frequency ν is much less than
the electron plasma frequency.

It is known that, even in the collisionless limit, the kinetic equation is still
too difficult for numerical simulations, and the ‘macroparticle’ methods are the
most widely used algorithms. In these methods, instead of direct numerical
solution of the kinetic equation, a set of ordinary differential equations for
every macroparticle is solved. These equations are the characteristics of the
Vlasov equation.

In the case of a collisional plasma, the position of a macroparticle satisfies
the usual equation of the collisionless case

ṙ ≡ d r
dt

= v(t) , (3.32)

but the momentum equation is modified owing to the Coulomb collisions.
They are described by the Fokker-Planck operator (3.10) which introduces
a friction (the coefficient aα) and diffusion (the coefficient bαβ) in velocity
space. Thus it is necessary to find the effective collisional force Fc which acts
on the macroparticles:

v̇ ≡ dv
dt

=
1
m

(FL + Fc) . (3.33)
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The collisional force can be introduced phenomenologically (see Jones et
al., 1996) but a more mathematically correct approach can be constructed
using the stochastic equivalence of the Fokker-Planck and Langevin equations
(see Cadjan and Ivanov, 1999). So stochastic differential equations can
be regarded as an alternative to the description of astrophysical plasma in
terms of distribution function.

The Langevin approach allows one to overcome some difficulties
related to the Fokker-Planck equation and to simulate actual plasma
processes, taking account of both collective effects and Coulomb
collisions.

Generally, if we want to construct an effective method for the simulation
of complex nonlinear processes in astrophysical plasma, we have to satisfy the
following obvious but conflicting conditions.

First, the method should be adequate for the task in hand. For a number
of problems the application of simplified models of the collisional integral
can provide a correct description and ensure good accuracy. The constructed
model should describe collisional effects with the desired accuracy.

Second, the method should be computationally efficient. The algorithm
should not be extremely time-consuming. In practice, some compromise be-
tween accuracy and complexity of the method should be achieved. Otherwise,
we restrict ourselves either to a relatively simple setup of the problem or to a
too-rough description of the phenomena.

A ‘recipe’: the choice of a particular collisional model (or a model of the
collisional integral) is determined by the importance and particular features
of the collisional processes in a given astrophysical problem.

3.5 Practice: Exercises and Answers

Exercise 3.1 [ Section 3.1.1 ] Show that the interaction parameter

ζ i =
1
4π

ζ 2/3
p , (3.34)

if the Debye radius is given by formula (3.27). Discuss the difference between
ζ i and ζ p.

Exercise 3.2 [ Section 3.1.1 ] How many particles are inside the Debye sphere
in the solar corona?

Answer. From formula (8.31) for the Debye radius in two-component
equilibrium plasma (see also formula (8.77) in Exercise 8.3) it follows that for
electron-proton plasma with T ≈ 2 × 106 K and n ≈ 2 × 108 cm−3 the Debye
radius

rD =
(

kT

8π e2 n

)1/2

≈ 4.9
(

T

n

)1/2

≈ 0.5 cm . (3.35)
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The number of particles inside the Debye sphere

ND = n
4
3

πr3
D

∼ 108. (3.36)

Hence the typical value of plasma parameter (3.31) in the corona is really
small: ζ p ∼ 10−8. The interaction parameter (3.2) is also small: ζ i ∼ 10−6

(see formula (3.34)).

Exercise 3.3 [ Section 3.1.1 ] Estimate the interaction parameter (3.2) in the
interior of white dwarf stars (de Martino et al., 2003; see also Exercise 1.3).

Comment. It may seem at first sight that the mutual interactions be-
tween electrons would be very important inside a white dwarf star. However,
in a system of fermions with most states filled up to the Fermi energy,

collisions among nearby electrons are suppressed due to the fact
that the electrons may not have free state available for occupation
after the collision

(see Kittel, 1995). Hence electrons inside a white dwarf star are often ap-
proximated as a perfect gas made up of non-interacting fermions (see § 57 in
Landau and Lifshitz, Statistical Physics, 1959b). For this reason, some results
of plasma astrophysics are applicable to the electron gas inside white dwarfs.

Exercise 3.4 [ Section 3.1.4 ] Let w = w (v, δv) be the probability that a
test particle changes its velocity v to v + δv in the time interval δt. The
velocity distribution at the time t can be written as

f(v, t) =
∫

f(v − δv, t − δt) w (v − δv, δv) d 3δv . (3.37)

Bearing in mind that the interaction parameter (3.1) is small and, therefore,
| δv | 
 |v |, expand the product fw under the integral into a Taylor series.

Take the first three terms in the series and show that, in formulae (3.13)
and (3.12), the average velocity change per time interval δt:

〈 δvα 〉 =
∫

δvα w d 3δv , (3.38)

〈 δvα δvβ 〉 =
∫

δvα δvβ w d 3δv . (3.39)

Show that the Fokker-Planck equation (3.10) follows from the Taylor series
expansion of the function f(v, t) given by formula (3.37).

Exercise 3.5 [ Section 3.1.4 ] Express the collisional integral in terms of the
differential cross-sections of interaction between particles (Smirnov, 1981).

Discussion. Boltzmann (1872) considered a delute neutral gas. Since the
particles in a neutral gas do not have long-range interactions like the charged
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particles in a plasma, they are assumed to interact only when they collide,
i.e. when the separation between two particles is not much larger than 2a,
where a is the ‘radius of a particle’. A particle moves freely in a straight line
between two collisions.

In a binary collision, let vk and vl be the velocities of particles k and l
before the collision, v ′

k and v ′
l be the velocities of the same particles after the

collision. There are two types of collisions: (a) one that increases the density
of the particles at a given point of phase space by bringing in particles from
other phase space locations, (b) the other that reduces the density of particles
by taking particles away from this point to other phase space locations; these
are the collisions vk + vl → v ′

k + v ′
l .

By using notations taken into account that k and l can be different kinds
of particles, we write the Boltzmann collisional integral in the form (cf. Boltz-
mann, 1956): (

∂f̂k

∂t

)
c

=
∑

l

∫
vl

∫
Ω

( f ′
k f ′

l − fk fl ) vkl dσkl d
3vl . (3.40)

Here vkl = vk − vl is the relative velocity, d 3vl corresponds to the integra-
tion over the whole velocity space of ‘field’ particles l. fk = fk (t, r,vk) is
the distribution function of particles of the kind k, f ′

k = fk (t, r,v ′
k). The

product f ′
k f ′

l corresponds to the collisions v ′
k + v ′

l → vk + vl which inhance
the particle density.

The precollision velocities vk and vl are related to the postcollision ve-
locities v ′

k and v ′
l through the conservation laws of momentum and energy.

These relations give us four scalar equations. However we need six equations
to find two vectors v ′

k and v ′
l .

A fifth condition comes from the fact the vectors v ′
k and v ′

l will have to lie
in the plane of the vectors vk and vl. This follows from the momentum con-
servation law and means that collisions are coplanar if the force of interaction
between two particles is radial.

We need one more condition. We do not expect, of course, that the out-
come of a collision is independent of the nature of interaction. If the impact
parameter of the collision is given, we can calculate the defection produced by
the collision from the interaction potential. The case of the Coulomb potential
is considered in Chapter 8.

Since we are interested here in a statistical treatment, it is enough for us
to know the probability of deflection in different direction or a differential
scattering cross-section

dσkl =
dσkl (vkl, χ)

d Ω
d Ω , (3.41)

where d Ω = 2π sin χ dχ is a solid angle. If the particles are modelled as
hard spheres undergoing two-body elastic collisions, the differential scattering
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cross-section is a function of the scattering angle χ alone. The Boltzmann gas
model can be used for low-density neutral particles as well as for interactions
of charged particles with neutral particles.

In plasma astrophysics, the Rutherford formula (8.8) is used to character-
ize the Coulomb collisions of charged particles. A general case is considered,
for example, in Kogan (1967), Silin (1971), Lifshitz and Pitaevskii (1981).

Exercise 3.6 [ Section 3.1.4 ] Show that the Fokker-Planck collisional model
can be derived from the Boltzmann collisional integral (3.40) under the as-
sumption that the change in the velocity of a particle due to a collision is
rather small.

Exercise 3.7 [ Section 3.1.4 ] The Landau collisional integral is generally
thought to approximate the Boltzmann integral (3.40) for the 1/r potentials
to ‘dominant order’, i.e. to within terms of order 1/lnΛ, where lnΛ is the
Coulomb logarithm (see formula (8.23)). However this is not the whole truth.
Show that the Landau integral approximates the Boltzmann integral to the
dominant order only in parts of the velocity space.

Hint. This can be established by carring the Taylor series expansion of
the Boltzmann integral to the fourth order. The first term in the series will
be the familiar Landau-type collisional integral. The conclusion, drawn from
the higher-order terms (Shoub, 1987), is that the large-angle scattering pro-
cesses can play a more significant role in the evolution of the distribution
function than currently believed. The normally ‘nondominant’ part of the
diffusion tensor can make a contribution to the collisional term that decays
more slowly with increasing velocity than do terms that are retained. In gen-
eral, the approximations made are not uniformly valid in the velocity space,
if the particle distribution functions are not sufficiently close to equilibrium
distributions (Cercignani, 1969).

Exercise 3.8 [ Section 3.2.3 ] Find the constant of integration c 0 in for-
mula (3.26).

Answer. Let us solve the Poisson equation for the potential ϕ (more
justification will be given in Section 8.2):

∆ϕ = − 4π en

{
1 −

[
1 +

c 0

r
exp

(
− r

rD

)]}
=

= n
4πe c 0

r
exp

(
− r

rD

)
. (3.42)

Here it is taken into account that∫
v1

∫
v2

〈 f̂k (X1) f̂l (X2) 〉 d 3v1 d 3v2 = nk (r1) nl (r2) + gkl (r1, r2) .
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The general solution of Equation (3.42) in the spherically symmetric case, i.e.
the solution of equation

1
r

d 2

dr2 (rϕ) =
4πe c 0

r
exp

(
− r

rD

)
n ,

is of the form

ϕ (r) = n
4πe r 2

D
c 0

r
exp

(
− r

rD

)
+ c 1 +

c 2

r
.

Since, as r → 0, the potential ϕ takes the form (−e)/r, c 1 = c 2 = 0, and the
only non-zero constant is

c 0 = − 1
4π r 2

D
n

. (3.43)

Q.e.d.

Exercise 3.9 [ Section 3.3 ] Following Section 3.1.2, write and discuss the
gravitational analog of the Vlasov equation.

Answer. The basic assumption underlying the Vlasov equation is that
the gravitational N -body system can be described probabilistically in terms
of a statistically smooth distribution function f (X, t). The Vlasov equation
manifests the idea that this function will stream freely in the self-consistent
gravitational potential φ (r, t) (cf. (1.41)) associated with f (X, t), so that

∂f (X, t)
∂t

+ vα
∂f (X, t)

∂rα
− ∂φ

∂rα

∂f (X, t)
∂vα

= 0 . (3.44)

Here
∆φ = − 4π Gρ (r, t) (3.45)

and
ρ (r, t) =

∫
f (r,v, t) d 3v . (3.46)

Note that, in the context of the mean field theory, a distribution of particles
over their masses has no effect.

Applying for example to the system of stars in a galaxy, Equation (3.44)
implies that the net gravitational force acting on a star is determined by the
large-scale structure of the galaxy rather than by whether the star happens to
lie close to some other star. The force on any star does not vary rapidly, and
each star is supposed to accelerate smoothly through the force field generated
by the galaxy as a whole.

In fact, encounters between stars may cause the acceleration v̇ to differ
from the smoothed gravitational force −∇φ and therefore invalidate Equa-
tion (3.44). Gravitational encounters are not screened, they can be
thought of as leading to an additional collisional term on the right side of the
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equation – a collisional integral. However very little is known mathematically
about such possibility as we can see in Section 3.3.

Exercise 3.10 [ Section 3.3 ] Following Section 3.1.3, discuss a gravitational
analog of the Landau integral in the following form (e.g., Lancellotti and
Kiessling, 2001):(

∂f̂

∂t

)
c

= σ
∂

∂ v

∫
v ′

∂2 |v − v ′ |
∂ v ∂ v ′ ·

(
∂

∂ v
− ∂

∂ v ′

)
[ f(r, v, t) f(r, v ′, t) ] d 3v ′ .

(3.47)
Here σ is a constant determined by the effective collision rate.



Chapter 4

Propagation of Fast
Particles in Plasma

Among a variety of kinetic phenomena related to fast particles in as-
trophysical plasma, the simplest effect is Coulomb collisions under
propagation of the particles in a plasma. An important role of the
reverse-current electric field in this situation is demonstrated.

4.1 Derivation of the basic kinetic equation

4.1.1 Basic approximations

Among a rich variety of kinetic phenomena related to accelerated fast electrons
and ions in astrophysical plasma (Kivelson and Russell, 1995) let us consider
the simplest effect – Coulomb collisions under propagation of fast particle
beams in a fully-ionized thermal plasma. We shall assume that there
exists some external (background) magnetic field B0 which determines a way
of fast particle propagation and which can be locally considered as a uniform
one.

Electric and magnetic fields, E and B, related to a beam of fast particles
will be discussed in Section 4.5. Heating of plasma will be considered, for
example, in Section 8.3. So, untill this will be necessary,

accelerated particles will be considered as ‘test’ particles that do
not influence the background plasma and magnetic field B0.

Let f = f (t, r, v) be an unknown distribution function of test particles.
In what follows, q = Ze and m = Amp are electric charge and mass of a test
particle, respectively.

We restrict a problem by consideration of fast but non-relativistic particles
interacting with background plasma which consists of thermal electrons (m1 =

55
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me and e1 = −e) and thermal protons (m2 = mp and e2 = +e). Both
components of a plasma are in thermodynamic equilibrium. Using the kinetic
equation with the Landau collisional integral (3.8) we obtain

∂f

∂t
+ vα

∂f

∂rα
+

q

m

{
Eα +

1
c

[v × (B + B0) ]α

}
∂f

∂vα
= − ∂

∂vα
Jα , (4.1)

with E = 0 and B = 0,

Jα =
πq 2 ln Λ

m

2∑
l=1

e 2
l

∫
vl

{
f

∂fl

ml ∂ v l,β
− fl

∂f

m ∂ v β

}
×

× (u2 δαβ − uαuβ)
u3 d 3vl . (4.2)

Here u = v − vl is the relative velocity, d 3vl corresponds to the integration
over the whole velocity space of the plasma particles l = 1, 2. They are
distributed by the Maxwellian function (3.14):

fe (v) = ne

(
me

2π kBTe

)3/2

exp
(

− me v2

2kBTe

)
(4.3)

and

fp (v) = np

(
mp

2π kBTp

)3/2

exp
(

− mp v2

2kBTp

)
. (4.4)

For the sake of simplicity we assume Te = Tp = T (see, however, Sec-
tion 8.3.2) as well as ne = np = n. Also for the sake of simplicity we shall
consider the stationary situation (∂/∂t = 0).

Moreover we shall assume that the distribution function f depends on one
spatial variable – the coordinate z measured along the field B0, on the value
of velocity v and the angle θ between the velocity vector v and the axis z.
Therefore

f = f (z, v, θ) . (4.5)

In this case of the axial symmetry, the term containing the Lorentz force,
related to the external field B0, in Equation (4.1) is equal to zero because the
vector v × B0 is perpendicular to the plane (v, B0) but the vector ∂f/∂v is
placed in this plane.

Under ussumptions made above, Equation (4.1) takes the following form:

v cos θ
∂f

∂z
= − 1

v2

∂

∂v

(
v2Jv

)
− 1

v

1
sin θ

∂

∂θ
( sin θ Jθ) . (4.6)

The distribution function f is not an isotropic one. So the angular compo-
nent Jθ of the particle flux is not equal to zero.
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4.1.2 Dimensionless kinetic equation in energy space

Let us introduce the dimensionless non-relativistic energy of the fast particles

x =
mv2

2kBT

(me

m

)
(4.7)

and the dimensionless column depth along the magnetic field

ζ = ξ/ξ̃ . (4.8)

Here

ξ =

z∫
0

n(z) dz , cm−2, (4.9)

is the dimensional column depth passed by the fast particles along the z axis;
the unit of its measurement is

ξ̃ =
k2

B
T 2

πe2q2 ln Λ

(
m

me

)2

, cm−2. (4.10)

Equation (4.6) in the dimensionless variables (4.7) and (4.8) takes the
following form (Somov, 1982):

√
x cos θ

∂f

∂ζ
=

1√
x

∂

∂x

{√
x Dγ(x)

[
∂f

∂x
+
(

m

me

)
f

]}
+ Dθ(x) ∆θf. (4.11)

Here

Dγ(x) =
[

erf (
√

x)√
x

− 2√
π

exp (−x)
]

+

+
(

me

mp

)1/2
[

erf (
√

X )√
X

− 2√
π

exp (−X )

]
(4.12)

with
X =

mp

me
x

and

erf (w) =
2√
π

w∫
0

exp (−t2) dt ,

which is the error function. The diffusion coefficient over the angle θ

Dθ(x) =
1

8x2

{[
erf (

√
x)√

x
(2x − 1) +

2√
π

exp (−x)
]

+

+
(

me

mp

)1/2
[

erf (
√

X )√
X

(2X − 1) +
2√
π

exp (−X )

]}
, (4.13)
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and

∆θ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
is the θ-dependent part of the Laplace operator.

To point out the similarity of the equation obtained with the Fokker-Planck
equation (3.10), let us rewrite Equation (4.11) as follows:

√
x cos θ

∂f

∂ζ
= − ∂

∂x
[ F (x)f ] +

∂2

∂x2 [ D(x)f ] + Dθ(x) ∆θf. (4.14)

Here the first coefficient

F (x) =
dDγ

dx
−
(

m

me
+

1
2x

)
Dγ(x) (4.15)

characterized the regular losses of energy when accelerated particles pass
through the plasma. The second coefficient

D(x) = Dγ(x) (4.16)

describes the energy diffusion. The third coefficient Dθ(x) corresponds to the
fast particle diffusion over the angle θ.

Kudriavtsev (1958) derived the time-dependent equation which has the
right-hand side similar to the one in our Equation (4.11) but for the isotropic
distribution function f = f(t, x) for fast ions in a thermal plasma. By using
the Laplace transformation, Kudriavtsev solved the problem of maxweliza-
tion of fast ions that initially had the mono-energetic distribution f(0, x) ∼
δ(x − x0). The same problem has been solved numerically by MacDonald et
al. (1957). (Note that in formula (8) by Kudriavtsev for the ‘radial’ compo-
nent jv of the fast ion flow in the velocity space, the factor

√
π must be in

the nominator but not in the denominator.) Both solutions (analytical and
numerical) show, of course, that the higher the ion energy, the longer the
maxwellization process.

In the particular case when all the particles are the same (m = me =
mp), the right-hand side of Equation (4.11) can be found, for example, by
using the formulae for the Fokker-Planck coefficients (3.13) and (3.11) from
Balesku (1963).

4.2 A kinetic equation at high speeds

Bearing in mind particles accelerated to high speeds in astrophysical plasma,
let us consider some approximations and some solutions of the kinetic Equa-
tion (4.11) that correspond to these approximations. First of all, we shall
assume that the dimensionless energy (4.7) of the fast particles

x � 1 . (4.17)
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This means that speeds of the particles are much higher than the mean thermal
velocity of plasma electrons (8.15). However, for the sake of simplicity, we
restrict the problem by consideration of the fast but non-relativistic particles.

Under condition (4.17), we obtain from (4.12) and (4.13) the following
simple formulae for the coefficients in the kinetic Equation (4.11):

Dγ(x) =
1√
x

(
1 +

me

mp

)
, (4.18)

Dθ(x) =
1

2x
√

x
. (4.19)

It is not taken into account here yet that me 
 mp. The first term on
the right-hand side of formula for Dγ (see the unit inside the brackets) is a
contribution of collisions with the thermal electrons of a plasma, the second
term (see the ratio me/mp) comes from collisions with the thermal protons.
However the electrons and protons give equal contributions to the angular
diffusion coefficient Dθ. This is important to see when we derive formula
(4.19) from (4.13).

Under the same assumption, the Fokker-Planck type equation (4.14) has
the following coefficients:

D(x) =
1√
x

(
1 +

me

mp

)
, (4.20)

F (x) = − m

me

1√
x

(
1 +

me

m

1
x

)
, (4.21)

and the same coefficient of angular diffusion Dθ(x) of course.
Formulae (4.18) and (4.20) demonstrate that

energy diffusion due to collisions with thermal electrons is faster in
mp/me times than that due to collisions with thermal protons.

However the angular diffusion rate is equally determined by both electrons
and protons in a plasma.

The second term on the right-hand side of the formula for F (x) describes
the regular losses of fast particle energy by collisions with thermal protons of
plasma. Since x � 1 and m ≥ me, this term is always smaller than the first
one. Taking into account that me 
 mp we also neglect the second term in
formula for D(x). Hence, in approximation under consideration,

F (x) = − m

me

1√
x

, D(x) =
1√
x

, Dθ(x) =
1

2x
√

x
. (4.22)

Let us estimate a relative role of the first and second terms on the right-
hand side of Equation (4.14). Dividing the former by the last with account of
(4.22) taken gives the ratio

xF (x)
D(x)

=
m

me
x , (4.23)
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which is always much greater than unity. So, for fast particles with speeds
much greater than the thermal velocity of plasma electrons,

the regular losses of energy due to Coulomb collisions always domi-
nate the energy diffusion.

However the energy diffusion may appear significant near the lower energy
boundary E1 of the fast particle spectrum if E1 ≈ kBT . This seems to be the
case of electron acceleration in high-temperature turbulent-current layers in
solar flares (see vol. 2, Sections 6.3 and 7.1). This simply means that, near
the lower energy E1 ≈ 10 keV, the initial assumption (4.17) becomes invalid.
Instead of (4.17), x → 1; so we have to solve exactly Equation (4.11).

Let us compare the first and third terms on the right-hand side of Equa-
tion (4.14). Dividing the former by the last with account of (4.22) taken gives
the ratio

F (x)
xDθ(x)

= 2
m

me
. (4.24)

For fast protons and heavier ions, we can neglect angular scattering in com-
parison with the regular losses of energy.

Formula (4.24) shows, however, that

for fast electons, it is impossible to neglect the angular diffusion in
comparison with the regular losses of energy.

Since the case of fast electrons will be considered later on in more detail, let us
rewrite the non-relativistic kinetic equation in the high-speed approximation
as follows:

cos θ
∂f

∂ζ
=

1
x

∂f

∂x
+

1
2x2 ∆θf.

(4.25)

Recall that the energy diffusion is neglected in (4.25) according to (4.23).

4.3 The classical thick-target model

We have just seen that, in the fast electron kinetic Equation (4.25), it is not
reasonable to neglect the angular diffusion. Let us, however, consider the
well-known and widely-used model of a thick target . From Equation (4.25),
by neglecting the angular diffusion, we obtain the following equation

cos θ
∂f

∂ζ
=

1
x

∂f

∂x
. (4.26)

With a new variable y = ζ/µ, where µ = cos θ, this equation becomes espe-
cially simple:

1
x

∂f

∂x
− ∂f

∂y
= 0 . (4.27)
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General solution of this equation can be written as

f(x, y) = F
(

x2

2
+ y

)
, (4.28)

where F is an arbitrary function of its argument. Recall that µ = const,
because we have neglected the angular diffusion; so the fast electrons move
along straight lines θ = const without any scattering.

Let us consider the initial (y = 0) energy distribution of fast electrons –
the injection spectrum – as a power law:

f(x, 0) = c0 x−γ0 Θ(x − x1) Θ(x2 − x) p0(µ) . (4.29)

Here Θ(x) is the teta-function; p0(µ) is the angular distribution of fast elec-
trons, for example, for a beam of electrons injected parallel to the z axis

p0(µ) =
1

(1 − µ2)1/2 δ (µ − 1) . (4.30)

According to (4.28) the general solution of the kinetic equation for the fast
electrons at the column depth y has the following form:

f(x, y) = c0 2−γ0/2
(

x2

2
+ y

)−γ0/2

Θ(x − x ′
1) Θ(x ′

2 − x) p0(µ) , (4.31)

where
x ′

1,2 = Re
(
x 2

1,2 − 2y
)1/2

.

Let us consider the normalization condition for the distribution function,
first, in the dimensional variables z, v, and θ (see definition (4.5)). If nb(z)
is the density of electrons in the beam at distance z from the injection
plane z = 0, then

nb(z) =

∞∫
0

π∫
0

f (z, v, θ) v2dv 2π sin θ dθ, cm−3. (4.32)

It is taken into account here that we consider the case of a beam with the
axial symmetry in velocity space.

Now we rewrite the same normalization condition in the dimensionless
variable ζ, x, and µ:

nb(ζ) = π

(
2kBT

me

)3/2 ∞∫
0

1∫
−1

f (ζ, x, µ)
√

x dx dµ , cm−3. (4.33)

For initial energy distribution (4.29) and initial angular distribution (4.30),
formula (4.33) gives

nb(0) = π

(
2kBT

me

)3/2

c0

x2∫
x1

x−γ0+1/2 dx ≡
x2∫

x1

N(0, x) dx , cm−3. (4.34)
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Here

N(0, x) = π

(
2kBT

me

)3/2

c0 x−γ0+1/2 Θ(x − x1) Θ(x2 − x) (4.35)

is the differential spectrum of the fast electron density at the boundary ζ = 0
where they are injected.

Let E be the kinetic energy of a fast electron measured in keV. Then we
rewrite (4.35) as

N(0, E) = K E−(γ+1/2) Θ(E − E1) Θ(E2 − E) , cm−3 keV−1, (4.36)

where the coefficient

K = π

(
2kBT

me

)3/2

c0

(
kBT

keV

)γ+1/2

, cm−3 keV γ−1/2 , (4.37)

and the spectral index
γ = γ0 − 1 . (4.38)

Hence the injection spectrum of fast electrons is determined by parame-
ters (4.37) and (4.38).

Substituting c0 and γ0 from (4.37) and (4.38) in (4.31) allows us to obtain
the differential spectrum of the number density of fast electrons passed the
coulomn depth ξ measured in cm−2 (see definition (4.9)):

N(ξ, E) = K
(
E2 + E 2

0
)−(γ+1/2)/2 × (4.39)

× Θ (E − E ′
1) Θ (E ′

2 − E) , cm−3 keV−1.

Here
E0 = (2a0ξ)

1/2 (4.40)

is the minimal energy of electrons that can pass the depth ξ, the ‘constant’
a0 (a slow function of energy E) originates from the Coulomb logarithm and
equals

a0 = 2πe4 ln Λ ≈ (4.41)

≈ 1.3 × 10−19 ×
[

ln
(

E
mc2

)
− 1

2
lnn + 38.7

]
, keV2 cm2.

In formula (4.39)
E ′
1,2(ξ) =

(
E 2
1,2 − E 2

0 (ξ)
)1/2

(4.42)

are the new boundaries of energetic spectrum, when the fast electrons have
passed the column depth ξ.

Solution (4.39) shows that

the regular losses of energy due to Coulomb collisions shift the spec-
trum of fast electrons to lower energies and make it harder
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ξ = 0

ε ε ε ε ε
1 1 2 2

//

ξ > 0N

Figure 4.1: An injection spectrum (ξ = 0) and the spectrum of fast electrons
that have passed the column depth ξ.

as illustrated by schematic Figure 4.1. Both effects follow from the fact that,
in Equation (4.26), we have taken into account only the regular losses of
energy (4.22). For non-relativistic electrons F (x) = −1/

√
x.

In the solar system, the Sun is the most energetic particle accelerator,
producing electrons of up to tens of MeV and ions of up tens of Gev. The
accelerated 20-100 keV electrons appear to contain a significant part of the
total energy of a large solar flare (Lin and Hudson, 1971; Syrovatskii and
Shmeleva, 1972), indicating that the particle acceleration and energy release
processes are intimately linked. Flare accelerated electrons colliding with the
ambient solar atmosphere produce the bremsstrahlung hard X-ray (HXR)
emission.

Syrovatskii and Shmeleva (1972) used the solution (4.39) to calculate the
HXR bremsstrahlung which arises during inelastic collisions of accelerated
electrons with thermal ions in the solar atmosphere during flares (e.g., Strong
et al., 1999). Brown (1971), in the same approximation but using a different
method, has found a similar formula for HXR intensity but with the different
numerical coefficient by factor π in Section 5 (see formulae (14) and (15)).
Anyway, since that time,

the simplest thick-target model is widely accepted as a likely mecha-
nism and an appropriate mathematical tool to explain and describe
the HXR emission observed during flares

on the Sun and other stars or generally in cosmic plasma (see, however, Sec-
tions 4.4 and 4.5). In the classical formulation of the thick-target model,
beams of accelerated electrons stream along the magnetic field lines and loose
their energy by Coulomb collisions in denser layers of the solar atmosphere,
mainly in the chromosphere.
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4.4 The role of angular diffusion

4.4.1 An approximate account of scattering

As we have seen in Section 4.2, for fast electrons, we cannot neglect the
angular scattering in comparison with the regular losses of energy in kinetic
Equation (4.14). Hence, in the classical thich-target model, we have to take
the angular scattering into account at least approximately.

If, for example, the beam of fast electrons penetrates a plane parallel the
stratified plasma such as the solar chromosphere, the scattering of an aver-
age beam of electrons may conveniently be described by the Chandrasekhar-
Spitzer formulae (8.51) and (8.52) in terms of a coordinate z normal to the
atmospheric strata and directed into the plasma. Then the mean electron
energy E may be expressed as a function of z while the scattering is measured
in terms of the angle θ(z) which the mean electron velocity v makes with the
z axis at that point. So

v ‖ ≡ vz = vµ , where µ = cos θ. (4.43)

The dimensional column depth passed by electrons along the z axis is

ξ =

z∫
0

n(z) dz , cm−2. (4.44)

In terms of ξ, the Chandrasekhar-Spitzer formulae (8.51) and (8.52) are:

dE
dξ

= −a0

E
v

vz
(4.45)

and
dvz

dξ
= −3

2
a0

E2 v , (4.46)

where a0 = 2πe4 ln Λ (see definition (4.41)). Thus we have an ordinary dif-
ferential equation

3
2

1
E

dE
dξ

=
1
vz

dvz

dξ

with solution (
E
E0

)3/2

=
vz

vz0
, (4.47)

where the suffix 0 refers to values at ξ = 0. Since vz/µ = v and v2/v2
0 = E/E0,

we find that
vz

vz0
=

µ

µ0

(
E
E0

)1/2

.
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Therefore it follows from (4.47) that

µ

µ0
=

E
E0

.

(4.48)

This nice formula (Brown, 1972) shows that on average when an electron has
suffered a 60◦ deflection its energy has been reduced by 50 %.

Resubstituting (4.48) in (4.45) and (4.46) gives the solutions for µ and E :

µ

µ0
=

E
E0

=
(

1 − 3 a0ξ

µ0 E 2
0

)1/3

. (4.49)

For small depth ξ
µ

µ0
=

E
E0

≈ 1 − a0

µ0 E 2
0

ξ . (4.50)

Let us compare these results with the general solution (4.28) obtained
without account taken of scattering in the classical thick-target model.

4.4.2 The thick-target model

According to (4.28)
x2

2
+ y =

x 2
0

2
, (4.51)

where x0 is an initial energy of an electron. Hence

x

x 2
0

= (1 − 2y)1/2
, (4.52)

where y = ζ/µ and µ = const = µ0. Therefore for electrons with initial
energy E0 solution (4.28) gives us:

E
E0

=
(

1 − 2a0

µ0 E 2
0

ξ

)1/2

. (4.53)

If

ξ 
 ξ0 =
E 2
0

2a0
,

then
E
E0

≈ 1 − a0

µ0 E 2
0

ξ . (4.54)

Formula (4.54) coincides with (4.50). The fast electrons in the thick-target
model have the same behaviour at small depth ξ as that one predicted by the
approximate Chandrasekhar-Spitzer formulae.
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However, with increase of the column depth ξ, the approximate for-
mula (4.49) predicts much faster losses of energy in comparison with the
classical thick-target model which does not take collisional scattering into
account.

In Figure 4.2, the dashed straight line (a) corresponds to the asymptotic
formula (4.50) which is valid for small column depth ξ. Moreover here µ0 = 0,
so

E
E0

≈ 1 − 1
2

ξ

ξ0
. (4.55)

The solid curve (b) represents the classical thick-target model; it takes
only the collisional losses of energy into account. With µ0 = 0, formula (4.53)
is

E
E0

=
(

1 − ξ

ξ0

)1/2

. (4.56)

An approximate scattering model described above is presented by the curve (c)
which corresponds to formula (4.49) with µ0 = 0, so

E
E0

=
(

1 − 3
2

ξ

ξ0

)1/3

. (4.57)

ε

ξ

ε

ξ

0

0

1

0 1

a

b
c

Figure 4.2: The mean energy E of fast electrons that have passed the column
depth ξ (from Somov, 1982).

Figure 4.2 shows that
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the collisional scattering and energy losses become very great in
comparison with the classical thick-target model if the column
depth ξ is not very small.

Brown (1972) used the approximate formula (4.49) to develop an approx-
imate thick-target model in which accelerated electrons penetrate downward
into the solar chromosphere during a flare. Here the electron distribution is
greatly modified by collisions – not only by energy losses but also by scat-
tering. Directivity and polarization of the hard X-ray bremsstrahlung
emission have been calculated in such oversimplified thick-target model in
which the guiding field B0 is vertical. The model predicted that the degree
of polarization should rise from zero to around 30 % near the solar limb.

Unfortunately the accuracy of the model decreases when the collisional
scattering and energy losses become not small. The reason is that the mean
rates (4.45) and (4.46) represent well the modification of the electron velocity
distribution only at small depth ξ. A more accurate formulation of the kinetic
problem will be given in the next Section with account taken of the collisional
scattering and one more mechanism of the electron beam anisotropization.
Generally, it seems true that the total absorption of the accelerated electrons
in a thick target might result in negligible directivity and polarization of the
hard X-ray emission.

4.5 The reverse-current electric-field effect

4.5.1 The necessity for a beam-neutralizing current

We assume that some external magnetic field B0 channels a fast particle prop-
agation and can be locally considered as uniform. The electric and magnetic
fields E and B related to a beam of fast electrons are superposed on this
field. In this way, the beam will be considered as a real electric current J
which influences the background plasma and magnetic field B0. In order not
to obscure the essential physical points related to the electromagnetic field of
the beam, we shall neglect all other processes like the radiative and hydro-
dynamic response of the background plasma to a fast heating by the electron
beam (Section 8.3.2).

In the classical thick-target model for hard X-ray bremsstrahlung emission
during solar flares, if the fast electrons are supposed to have about the parallel
velocities, then the number of injected beam particles per unit time has to
be very large – in the order of >∼ 1036 electrons s−1 above 25 keV during
the impulsive phase of a flare (Hoyng et al., 1976). Given the large electron
fluxes implied by the hard X-ray observations, various authors realized that
the beam electric current must be enormous – J >∼ 1017 Ampere.

This would imply the magnetic field of the beam B >∼ 105 G. So the
magnetic energy contents of the coronal volume should be more than six or-
ders of magnitude larger than the pre-flare contents for an average coronal
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field B0 ≈ 100 G. Such situation is not likely to occur because the electron
beams are thought to be created by conversion of the magnetic energy avail-
able in the corona into kinetic energy.

Apart from this energy problem there is another difficulty related to beams
of ∼ 1036 electrons s−1; they create an enormous charge displacement. For a
typical coronal volume of 1028 cm3 and an electron density 109 cm−3, the total
number of electrons is 1037. A stream of 1036 electrons s−1 would evacuate
all the electrons out of the volume in about 10 s. As a result an enormous
charge difference between the corona and the chromosphere would be build
up.

In reality the above mentioned problems will not occur, because the beam
propagates in a background well-conducting plasma. The charge displace-
ment by the beam will quickly create an electric field E 1 which causes the
plasma electrons to redistribute in such a way as to neutralize the local charge
built:

div E 1 = 4πρ q . (4.58)

Because this electric field is caused by charge separation, it is frequently re-
ferred to as an electrostatic field.

The second effect is related to the inductive properties of a plasma. In a
plasma the magnetic field will not vary considerably on a timescale shorter
than the magnetic diffusion time. For beams with radii comparable to the
radii of coronal flaring loops this scale is much longer than the duration of
the impulsive phase. When the current varies in magnitude, immediately an
inductive electric field E 2 will be created. It drives a current j 2 of plasma
electrons in such a way to prevent magnetic field variations on a time scale
shorter than the magnetic diffusion time. As a result the magnetic field will
not vary much during the impulsive phase:

curl B ≈ const ≈ 0 ≈ 4π

c
j 2 +

1
c

∂

∂t
E 2 . (4.59)

So the electrostatic effect allows the plasma to ‘absorb’ the excess charge
imposed by the beam of fast electrons; and the inductive effect prevents the
magnetic field from changing faster than the allowed diffusion time.

Both the electrostatic and the inductive electric field will effectively
result in an electron plasma current which is in opposite direction
of the beam current J.

This electron plasma current is commonly referred to as the reverse or return
current Jrc.

Van den Oord (1990) has analyzed the electrostatic and inductive response
of a plasma to a prescribed electron beam. By using the Maxwell equations
together with the time-dependent Ohm’s law (Section 11.2) and with the
equation of motion for the plasma electrons in the hydrodynamic approxima-
tion (Section 9.4), he has shown that the non-linear terms are responsible for
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a coupling between the electrostatic (irrotational) and inductive (solenoidal)
vector fields generated by the beam in a plasma. In order to obtain analytical
solutions, van den Oord has decoupled the electrostatic and inductive fields,
by ignoring the non-linear terms in the equation of motion, and has found
solutions for a mono-energetic blunt beam.

An application of the model in conditions of the solar corona leads to the
following results. Charge neutralization is accompanied by plasma oscillations
(see formula (8.35)), that are present behind the beam front, and occurs on a
time-scale of a few electron-ion collision times. This is also the time scale on
which the plasma waves damp out. The net current in the system quickly be-
comes too low and therefore also the resulting magnetic field strength remains
low (B 
 B0).

Although the electric field near the beam front is locally strong, the oscilla-
tory character prevents strong acceleration of the plasma electrons. According
to the van den Oord model, all the beam energy is used initially to accelerate
the plasma electrons from rest and later on to drive the reverse current against
collisional losses. In what follows, we shall use these results and shall formu-
late an opposite problem in the kinetic approximation. We shall not consider
the beam as prescribed. On the contrary, we shall consider an influence of
the electric field, which drives the reverse current, on the distribution
function of fast electrons in the thick-target plasma.

4.5.2 Formulation of a realistic kinetic problem

The direct electric current carried by the fast electrons is equal to

jdc(z) = e

∫
v

f(v, θ, z) v cos θ d 3v . (4.60)

We shall consider this current to be fully balanced by the reverse current of
the thermal electrons in the ambient plasma,

jdc(z) = jrc(z) ≡ j(z) . (4.61)

This means that here we do not consider a very fast process of the reverse
current generation. The time-dependent process of current neutralization,
with account of both electrostatic and inductive effects taken (Section 4.5.1),
has been investigated in linear approximation by van den Oord (1990). Instead
of that we shall construct a self-consistent approach for solving the pure kinetic
problem with a steady electric field E = E(z) which drives the reverse current.

So, using Ohm’s law, we determine the reverse-current electric field to be
equal to

E(z) =
j(z)
σ

. (4.62)

Here σ is conductivity of the plasma; we can assume that the conductivity
is determined by, for example, Coulomb collisions (Section 11.1). This is the
case of a cold dense astrophysical plasma.
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On the other hand, the plasma turbulence effects are also important, for
example, in the heat conductive front between the high-temperature source
of energy and cold plasma of the thick-target. Anyway, even though we ex-
pect the wave-particle interactions to have some effects on the fast electrons
(Chapter 7), it is unlikely that such effects can change significantly the dis-
tribution function of fast electrons with energies far exceeding the energies of
the particles in a background cold plasma.

What is really important is the reverse-current electric field, it results
in an essential change of the fast electron behaviour in the plasma. That
is why, to solve the thick-target problem, we develop a combined approach
which takes into account the electric field (4.62) as in the Vlasov equation and
Coulomb collisions as in the Landau equation. So the distribution function
for the fast electrons in the target is described by the following equation
(Diakonov and Somov, 1988):

v cos θ
∂f

∂z
− eE(z)

me
cos θ

∂f

∂v
− eE(z)

mev
sin2 θ

∂f

∂ cos θ
=
(

∂f

∂t

)
c
. (4.63)

Here the second and the third terms are the expression of the term

ee

me
E (r)

∂f

∂v

in the dimensional variables v and θ. On the right-hand side of Equation (4.63)(
∂f

∂t

)
c

=
1
v2

∂

∂v

[
v2 ν(v)

(
kBTe

me

∂f

∂v
+ vf

)]
+

+ ν(v)
∂

∂ cos θ

(
sin2 θ

∂f

∂ cos θ

)
(4.64)

is the linearized collisional integral; ν(v) is the collisional rate for fast electrons
in the cold plasma.

To set the mathematical problem in the simplest form (see Figure 4.3),
we assume that ‘superhot’ (Te,0 = T0

>∼ 108 K) and ‘cold’ (Te,1 = T1 ∼
104 −106 K 
 T0) plasmas occupy the two half-spaces separated by the plane
turbulent front (z = 0). The superhot region represents the source of energy,
for example, the high-temperature reconnecting current layer (RCL) in a solar
flare. Let

fs = fs(v, θ) (4.65)

be the electron distribution function in the source. fs is, for example, the
Maxwellian function for the case of thermal electron runaway (Diakonov and
Somov, 1988) or a superposition of thermal and nonthermal functions in the
general case. To study the effect of the reverse-current electric field in the
classical thick-target model, Litvinenko and Somov (1991b) considered only
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Figure 4.3: The fast electron propagation in a thick-target cold plasma. TF
is the turbulent front between the superhot source of fast electrons and the
cold plasma.

accelerated electrons with an energetic power-law spectrum. Anyway, the
function fs is normalized to the electron number density n0 in the source:∫

fs(v, θ) d 3v = n0 . (4.66)

Because the electron runaway in a turbulent plasma (Gurevich and Zhiv-
lyuk, 1966) is similar to the ordinary collisional runaway effect (Section 8.4.3),
the electrons with velocities

ve > vcr , (4.67)

where vcr is some critical velocity, can freely penetrate through the turbulent
front into the cold plasma. Electrons with lower velocities remain trapped in
the source. In this Section, we are going to consider the distribution function
for the fast electrons escaping into the cold plasma and propagating there.
The boundary condition for the forward-flying (the suffix ff) fast electrons
may be taken as

f
ff

(v, θ, 0) = fs(v, θ) Θ(v − vcr) , 0 ≤ θ ≤ π/2 , (4.68)

where Θ is the theta-function.
The distribution function for the back-flying electrons is determined from

the solution of Equation (4.63) everywhere, including the boundary z = 0.
Therefore the problem has been formulated. Note the obvious but important
thing; Equation (4.63) contains two unknown functions: the fast electron
distribution function f(v, θ, z) and the electric field E(z). So the kinetic
Equation (4.63) must be solved together with Equations (4.60)–(4.62). This
is the complete set of equations to be solved self-consistently.
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4.5.3 Dimensionless parameters of the problem

In the dimensionless variables (4.7), (4.8) and µ = cos θ, Equation (4.63) takes
the form

µx2 ∂f

∂ζ
− 2εµx2 ∂f

∂x
− εx (1 − µ2)

∂f

∂ µ
= x

∂f

∂x
+ τx

∂2f

∂x2 +
1
2

∆µf. (4.69)

Here the dimensionless electron energy

x =
mev

2

2kBT0
(4.70)

is normalized with the temperature T0 of the superhot plasma; for exam-
ple, T0 = Te,cl ≈ 100 MK is an effective electron temperature of the high-
temperature (super-hot) turbulent-current layer (see vol. 2, Section 6.3) The
ratio of the cold-to-superhot plasma temperature

τ =
T1

T0
≈ 10−4, (4.71)

if we consider as example the injection of fast electrons into the solar chro-
mosphere. The dimensionless column depth ζ (see definition (4.8)) equals the
dimensional column depth passed by fast electrons

ξ =

z∫
0

n(z) dz , cm−2, (4.72)

divided by the unit of its measurement

ξ̃ =
k2

B
T 2

0

πe4 ln Λ
, cm−2. (4.73)

The dimensionless electric field

ε =
E

ED,1

2
τ

, (4.74)

where

ED,1 =
4πe3 ln Λ

kB

n1

T1
(4.75)

is the Dreicer field in the cold plasma of the target (cf. definition (8.70)).
The parameter ε can be found from the self-consistent solution of the com-

plete set of equations and the boundary conditions as desribed in Section 4.5.2.
The parameter ε is not small in a general case and, in particular, in the so-
lar flare problem ε ≈ 2 − 20 (see Figure 4 in Diakonov and Somov, 1988).
Therefore, from (4.74)

E = ε
τ

2
ED,1 ≈

(
10−4 − 10−3)ED,1 , (4.76)
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so Ohm’s law (4.62) is well applicable in this case.
Let us set the specific form of the boundary distribution function (4.68).

The processes of electron acceleration in astrophysical plasma and their heat-
ing are always closely related. However, for the sake of contrast of them to
each other, we consider separately two different functions.

(a) We shall suppose that the electron distribution in the superhot plasma
is near to the Maxwellian one. So the distribution function

fs(x, µ) = n0 c0 exp (−x) h(µ) , µ ≥ 0 , (4.77)

with the constant

c0 =
(

me

2πkBT0

)3/2

.

(b) For accelerated electrons we shall use the power-law spectum as the
boundary distribution function for the forward-flying electrons

fff (x, µ) = fs(x, µ) Θ(µ − 1) = n0 c0 x−γ h(µ) , µ ≥ 0 , (4.78)

with another normalization constant c0. In principle, the function h(µ) is
indefinite but should satisfy some additional conditions; at least the func-
tion h(µ) should be maximally smooth (Diakonov and Somov, 1988).

4.5.4 Coulomb losses of energy

4.5.4 (a) Electric current in the thick target

In Equation (4.69), the term τx (∂2f/∂x2) describes the energy diffusion. As
we know from Section 4.2, for fast electrons with velocities much greater than
the thermal velocity of plasma electrons, the regular losses of energy due to
collisions always dominate the energy diffusion. So we neglect this term in
comparison with the term x (∂f/∂x).

However, as we also know from Section 4.2, we cannot neglect the term
with the µ-dependent part ∆µf of the differential operator Laplacian ∆. This
term is responsible for the angular diffusion of electrons and is not small in
comparison to the regular losses term x (∂f/∂x).

Therefore we can ignore only the term with small parameter τ in Equa-
tion (4.69). After that we have

µx2 ∂f

∂ζ
= 2ε µx2 ∂f

∂x
+εx (1−µ2)

∂f

∂ µ
+x

∂f

∂x
+

1
2

∂

∂µ

[(
1 − µ2) ∂f

∂µ

]
. (4.79)

By using this equation, we would like to obtain the equation which determines
the behaviour of the direct electric current carried by fast electrons in the
target. It follows from definition (4.60) that

jdc(ζ) = 2πe

(
2kBT0

me

)2 ∞∫
0

+1∫
−1

f(x, µ, ζ) xµ dx dµ . (4.80)
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So we have to divide Equation (4.79) by x and to integrate it as in for-
mula (4.80).

All terms on the right-hand side of Equation (4.79), except one, give zero
contributions. The only term x (∂f/∂x), describing the regular energy losses
due to Coulomb collisions, determines the changes of electric current

j(ζ) = jdc(ζ) = jrc(ζ) (4.81)

along the coulomn depth ζ into the target. It gives the right-hand side of the
equation:

dj

dζ
= − cj

+1∫
−1

f(x, µ, ζ) dµ (4.82)

with constant

cj = πe

(
2kBT0

me

)2

. (4.83)

The physical meaning of Equation (4.82) is that

fast electrons lose their energy and mix with thermal particles of
the ambient cold plasma due to Coulomb collisions.

Thus the self-consistent reverse-current problem demands to consider the
term x (∂f/∂x), describing the Coulomb energy losses.

4.5.4 (b) 2D versus 1D models for the thick target

Equation (4.82) shows that the electric current j(ζ) decreases along the
coulomn depth ζ into the target because of the ‘falling out’ of ‘completely’
stopped (x = 0) electrons from the distribution function owing to collisional
losses of energy. From the electric current continuity equation it follows that
a current change is possible only when there are electron ‘sources’ and/or
‘sinks’ in the thick target.

In the energy region where Equation (4.69) is valid (x � τ), the colli-
sional friction force (Section 8.4.1) is inversely proportional to x. For this
reason, the electrons with low energies quickly slow down to energies of the
order of τ and thus mix with the thermal electrons in the ambient plasma.
Since in Equation (4.79) formally τ = 0, the ‘falling out’ takes place under
x = 0 according to formula (4.82).

The models under consideration in this Chapter, except the classical thick-
target model in Section 4.3, are two-dimensional (2D) in the velocity space
(see definition (4.5)). This fact has an important consequence.

Some electrons after injection into the thick target make a curve
trajectory and cross the boundary in the reverse direction without
significant losses of energy.
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These electrons come back to the source (the place of acceleration) without
being stopped in the target; they determine the boundary distribution func-
tion for back-flying electrons and constitute a significant part (possibly the
bulk) of all injected electrons.

Such a process is impossible in one-dimensional (1D) models, like the clas-
sical thick-target model, because an electron cannot change the initial direc-
tion to the opposite one without being stopped to zeroth velocity and acceler-
ated by the reverse-current electric field from the zeroth velocity in the reverse
direction. So collisional losses of energy are involved twice in the 1D dynamics
of all fast electrons stopped in the target. In general, the 1D kinetic models
taking Coulomb collisions into account are non-physical approximations.

The other group of injected electrons considered in 2D models is composed
of the fast electrons which, after moving in the target under electrostatic and
friction forces, do not come back in the particle source. With suitable values
of energy x and angle θ, they lose a lot of their initial energy and stop their
motion in the target not far from the boundary. There seem to be small
amounts of such particles. They determine the electric current change. Thus
the current j(ζ) and, hence, the electric field E(ζ) can change slowly near the
boundary.

Among the particles that determine the current, we may choose a small
subgroup of fast electrons which penetrate to such a depth into the target
where the electric field is very small (ε 
 1) and further on they are moving
affected only by collisions. Even for this small subgroup the 2D models are
certainly more realistic in comparison with the 1D models which do not take
into account the collisional scattering (Section 4.4).

4.5.5 New physical results

Usually to solve the 2D (in velocity space) kinetic equation one develops a
complicated numerical method. Diakonov and Somov (1988) have developed a
new technique to obtain an approximate analytical solution of Equation (4.63)
taking the Coulomb collisions and the reverse-current field into account. They
have applied this technique to the case of thermal runaway electrons in solar
flares. It appears that the reverse-current electric field leads to a significant
reduction of the convective heat flux carried by fast electrons escaping
from the high-temperature plasma to the cold one.

It is not justified to exclude the reverse-current electric-field effects
in studies of convective heat transport by fast thermal electrons in
astrophysical plasma, for example, in solar flares.

Litvinenko and Somov (1991b) have used the same technique to study
the behaviour of the electrons accelerated inside a reconnecting current layer
(RCL) in the solar atmosphere during flares. They have shown that the
reverse-current electric field results in an essential change of the fast electron
behaviour in the thick target.
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The reverse-current electric field leads to a quicker decrease of the
distribution function with the column depth in comparison with the
classical thick-target model.

It is worth mentioning here that both models (thermal and non-thermal) lead
to practically the same value of the field near the boundary, ε0, and this value
is large: ε0 � 1. So the effects of the reverse-current field are not small.

The distribution function appears to be an almost isotropic one. The
main part of the injected electrons returns into the source. As a result, the
hard X-ray polarization appears much smaller than in the collisional thick-
target model without taking account of the reverse current. In calculations
by Litvinenko and Somov (1991b), the maximum polarization was found to
be of about 4 % only. So a major conclusion of this section is that

in order to have a more precise insight into the problem of electron
acceleration in solar flares, we inevitably have to take into account
the reverse-current electric-field effects.

They make the accelerated electron distribution to be almost isotropic and
leads to a significant decrease of expected hard X-ray bremsstrahlung polar-
ization (Somov and Tindo, 1978).

4.5.6 To the future models

After all said above, it is rather surprising to conclude that the most of the
above mentioned 2D models, which have been developed after the classical
thick-target model (Section 4.3), are however not used to obtain a more re-
alistic quantitative informaton on fast electrons in solar flares. The simplest
classical thick-target model is still very popular. Up to now we do not have
a realistic time-dependent self-consistent thick-target model (which must be
simple enough to be easily used) to interpret and analyze the hard X-ray
emission so frequently detected in space.

Future models will incorporate such fine effects like a nonuniform initial
ionization of chromospheric plasma in the thick-target (Brown et al., 1998a;
2003), the time-of-flight effect (Aschwanden et al., 1998; Brown et al., 1998b;
Aschwanden, 2002), with account taken of the effect of the reverse-current
electric field as an effect of primary importance. Otherwise the accuracy of
a model is lower that the accuracy of modern hard X-ray data obtained by
RHESSI (Lin et al., 2002; 2003).

∗ ∗ ∗

Now let us clarify our plans. Before transition to the hydrodynamic descrip-
tion that is valid for systems containing a large number of colliding particles,
we have to study two particular but interesting cases.

First, N = 1, a particle in a given force field. This simplest approximation
gives us clear approach to several fundamental issues of collisionless plasma.
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In particular, it is necessary to outline the basis of kinetic theory for wave-
particle interactions in astrophysical plasma (Chapter 7).

Second, N = 2, binary collisions of particles with the Coulomb potential
of interaction. They are typical for collisional plasma. We have to know the
Coulomb collisions well to justify the hydrodynamic description of astrophys-
ical plasma (Chapter 9).

In the next Chapter we start from the former.

4.6 Practice: Exercises and Answers

Exercise 4.1. [ Section 4.3 ] How deep can the accelerated electrons with
the initial energy E0 ≈ 10 keV penetrate from the solar corona into the chro-
mosphere?

Answer. From formula (4.40) we find the simplest estimation for the
column depth

ξ =
E 2
0

2a0
, cm−2. (4.84)

Substituting E0 ≈ 10 keV and n ≈ 1012 cm−3 in formula (4.41) gives a0 ≈
3×10−18 keV2 cm2. With this value a0 we find ξ ≈ 1019 cm−2. At such depth
in the chromosphere, the density of the plasma n ≈ 1012 cm−3 indeed.

Accelerated electrons with energies E > 10 keV penetrate deeper and
contribute significantly to impulsive heating of the optical part of a solar flare
(see a temperature enhancement at ξ ≈ 1020 cm−2 in Figure 8.4).

Exercise 4.2. [ Section 4.5 ] How strong is the reverse-current electric field
in the chromosphere during a solar flare?

Answer. According to (4.76), the electric field

E = ε
τ

2
ED,1 ≈

(
10−4 − 10−3)ED,1 . (4.85)

In the chromosphere (Exercise 8.4), the Dreicer field E
D

> 0.1 V cm−1. So,
under injection of accelerated electrons into the chromosphere during the im-
pulsive phase of a flare, the reverse-current field E > 10−5 − 10−4 V cm−1.
With the length scale l ∼ 103 km, this electric field gives rise to a poten-
tial φ ≈ E l ∼ 1 − 10 keV.

Exercise 4.3. [ Section 4.5.4 ] Discuss expected properties of a solution of
Equation (4.79) without the collisional energy losses term x (∂f/∂x).



Chapter 5

Motion of a Charged
Particle in Given Fields

Astrophysical plasma is often an extremely tenuous gas of charged par-
ticles, without net charge on average. If there are very few encounters
between particles, we need only to consider the responses of a particle
to the force fields in which it moves. The simplest situation, a single
particle in given fields, allows us to understand the drift motions of
different origin and electric currents in such collisionless plasma.

5.1 A particle in constant homogeneous fields

5.1.1 Relativistic equation of motion

In order to study the motion of a charged particle, let us consider the following
basic equation:

dp
dt

= eE +
e

c
v × B + mg . (5.1)

In relativistic mechanics (see Landau and Lifshitz, Classical Theory of Field ,
1975, Chapter 2, § 9) the particle momentum and energy are

p =
mv√

1 − v2/c2
and E =

mc2√
1 − v2/c2

, (5.2)

respectively. By using the Lorentz factor

γL =
1√

1 − v2/c2
, (5.3)

we rewrite formulae (5.2) as

p = γLmv and E = γLmc2. (5.4)

79
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Hence
p =

E
c2 v . (5.5)

By taking the scalar product of Equation (5.1) with the velocity vector v
we obtain

dE
dt

= F · v , (5.6)

where
F = eE + mg

is a non-magnetic force. The particle kinetic energy change during the time dt
is dE = v · dp. Therefore, according to Equation (5.6), the work on a
particle is done by the non-magnetic force only. In what follows we
shall remember that magnetic fields are ‘lazy’ and do not work.

Let us consider the particle motion in constant homogeneous fields.

5.1.2 Constant non-magnetic forces

Now let a non-magnetic force be parallel to the y axis, F = F ey , and let the
initial momentum of the particle be parallel to the x axis, p0 = p0 ex .

y

x0

F

y

x0

0 0p
e

Figure 5.1: The trajectory
of particle motion under the
action of a constant non-
magnetic force.

Then we integrate Equation (5.1) to find that the particle moves along the
catenary shown in Figure 5.1:

y − y0 =
E0

F

{
cosh

[
F

p0c
(x − x0)

]
− 1

}
. (5.7)

Here E0 is an initial energy of the particle.
Formula (5.7) in the non-relativistic limit is that of a parabola:

y − y0 =
F

2mv 2
0

(x − x0)2 .
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5.1.3 Constant homogeneous magnetic fields

Let the non-magnetic force F = 0. The magnetic force in a constant and
homogeneous field results in particle motions. Let us show that. From Equa-
tion (5.1) we have

dp
dt

=
e

c
v × B . (5.8)

We known by virtue of (5.6) that the particle kinetic energy E = const.
Therefore |v | = const, and from Equation (5.8)

v̇ = ωB v × n . (5.9)

Here the overdot denotes the derivative with respect to time t, n is the unit
vector along the field B = B n , and the constant

ωB =
ecB

E (5.10)

is the gyrofrequency or cyclotron frequency. We use sometimes, in what fol-
lows, the name Larmor frequency. The last is a slightly confusing terminology
in view of the fact that there is the frequency of the Larmor precession (see
§ 45 in Landau and Lifshitz, Classical Theory of Field , 1975), ωL , which turns
out to be half of the gyrofrequency ωB .

In the non-relativistic limit, the gyrofrequency

ωB =
eB

mc
.

(5.11)

By integrating Equation (5.9) we find the linear differential equation

ṙ = ωB r × n + C , (5.12)

where vector C = const.
By taking the scalar product of Equation (5.12) with the unit vector n we

have
n · ṙ = C ‖ ≡ v ‖ (t = 0) .

The constant C⊥ can be removed from consideration by an appropriate choice
of the moving reference system. C⊥ = 0 in the reference system where F = 0
(Section 5.1.4), and this choice is consistent with the initial Equation (5.8).
Therefore

ṙ⊥ = ωB r⊥ × n . (5.13)

The vector r⊥ is changing with the velocity v⊥ which is perpendicular to r⊥
itself. Hence the change of vector r⊥ is a rotation with the constant frequency
ω = ωB n . Thus we have

v⊥ = ωB r⊥ = const = v⊥(0) ,
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and

r⊥ =
v⊥(0)
ωB

=
E v⊥(0)

ecB
=

c p⊥
eB

,

since it follows from formula (5.5) that

E v⊥ = c2p⊥ .

We have obtained the expression for the gyroradius or the Larmor radius

rL =
c p⊥
eB

.

(5.14)

The term ‘rigidity’ is introduced in cosmic physics:

R =
cp
e

. (5.15)

The rigidity of a particle is measured in Volts:

[ R ] =
[ cp ]
[ e ]

=
eV
e

= V.

Rigidity is usually used together with the term ‘pitch-angle’

θ =
(
v̂0,B

)
. (5.16)

From (5.14) and (5.15) it follows that the particle’s gyroradius or Larmor
radius is

rL =
R⊥
B

. (5.17)

That is why

the particles with the same rigidity and pitch-angle move along the
same trajectories in a magnetic field.

This fact is used in the physics of the magnetospheres of the Earth and other
planets, as well as in general physics of “cosmic rays” (Ginzburg and Sy-
rovatskii, 1964; Schlickeiser, 2002).

The cosmic rays, high-energy (from 109 eV to somewhat above 1020 eV)
particles of cosmological origin, were discovered almost a century ago but they
are one of the very few means available to an Earth-based observer to study
astrophysical or cosmological phenomena. The knowledge of their incoming
direction and their energy spectrum are the bits and pieces of a complex
puzzle which can give us information on the mechanism that produced them
at the origin, unfortunately distorted by many effects they undergo during
their journey over huge distances.
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5.1.4 Non-magnetic force in a magnetic field

Let us consider the case when a non-magnetic force F is perpendicular to the
homogeneous magnetic field B (see Figure 5.2). For the sake of simplicity, we
shall consider the non-relativistic equation of motion:

m v̇ = F +
e

c
v × B . (5.18)

y

x0

F

y

x0

0

0p

vd

B

x0

F

y

vd

B

(a)

(b)

1

2

3

Figure 5.2: The trajectory of motion a positively charged particle in a uniform
magnetic field under the action of a non-magnetic force. Slow (a) and fast (b)
drifts.

Let us try to find the solution of this equation in the form

v = vd + u . (5.19)

Here vd is some constant velocity, so that substituting (5.19) in Equa-
tion (5.18) gives

m u̇ + 0 =
e

c
u × B + F +

e

c
vd × B .

We choose vd in such a way that the two last terms vanish:

F +
e

c
vd × B = 0 .
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This is the case if the following expression is chosen:

vd =
c

e

F × B
B 2 .

(5.20)

Actually, by using the known vector identity

a × (b × c) = b (a · c) − c (a · b) ,

we infer
e

c
vd × B = n (n · F) − F = −F ,

since F⊥n = B/B. So formula (5.20) is correct.
Thus if a non-magnetic force F is perpendicular to the field B, the particle

motion is a sum of the drift with the velocity (5.20) called drift velocity , which
is perpendicular to both F and B, and the spiral motion round the magnetic
field lines – the gyromotion:

m u̇ =
e

c
u × B . (5.21)

Depending on a relative speed of these two motions, we distinguish slow (vd <
u) and fast (vd > u) drifts, see (a) and (b) in Figure 5.2.

To understand the motion, let us think first about how the particle would
move if only the magnetic field were present. It would gyrate in a circle, and
the direction of motion around the circle would depend on the sign of the
particle’s charge. The radius of the circle, rL , would vary with the particle’s
mass and would therefore much larger for an ion than for an electron if their
velocities were the same (see formula 5.14).

The non-magnetic force F accelerates the particle during part of each orbit
(see 1 → 2 in Figure 5.2a) and decelerates it during the remaining part of the
orbit (see 2 → 3 in Figure 5.2a). The result is that the orbit is a distorted
circle with a larger-than-average radius of curvature during half of the orbit
and a smaller-than-average radius of curvature during the remaining half of
the orbit. A net displacement is perpendicular to the force F and the magnetic
field B.

5.1.5 Electric and gravitational drifts

As we have seen above, in collisionless plasma, any force F, that is capable
of accelerating or decelerating particles as they gyrate about the magnetic
field B, will result in a drift perpendicular to both the field and the force.

(a) If F = eE , then the drift is called electric drift, its velocity

vd = c
E × B

B 2 (5.22)
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E

vd

B vd

p

e

+

-

1

Figure 5.3: Electric drift. The kinetic energy E of a positively charged parti-
cle p+ is a maximum at the upper point 1, hence the curvature radius r

L
of

the trajectory is a maximum at this point.

being independent of the particle charge and mass (Figure 5.3).
Since the drift velocity depends upon neither the charge nor the mass of

the particle,

the electric drift generates the motion of collisionless plasma as a
whole with the velocity v = vd relative to a magnetic field.

Being involved in the electric drift, the collisionless plasma tends: (a) to
flow similar to a fluid, and (b) to be ‘squeezed out’ from direct action of the
electric field E applied in a direction which is perpendicular to the magnetic
field B. Formula (5.22) says that the drift velocity is perpendicular to both
the electric and magnetic fields. This is sometimes referred to as an ‘E-cross-B
drift’, but its magnitude is inversely proportional to the magnitude of B.

We should not forget that formula (5.22) was obtained in the non-
relativistic limit. In fact, formula (5.22) would formally result in vd ≥ c
for E ≥ B.

g
vd

B

vd

p

e

+

-

+

-

j

Figure 5.4: Gravitational drift. Initiation of an electric current by the action
of the gravity force in a collisionless plasma with magnetic field.
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(b) For the gravitational force F = mg formula (5.20) gives the drift
velocity

vd =
mc

e

g × B
B 2 . (5.23)

The gravitational drift velocity is seen to depend upon the particle mass and
charge. Positively charged particles drift in the direction coinciding with that
of the product g × B, while negatively charged particles drift in the opposite
direction as shown in Figure 5.4. Therefore

a gravitational field is capable of generating an electric current in a
magnetized collisionless plasma.

5.2 Weakly inhomogeneous slowly changing fields

5.2.1 Small parameters in the motion equation

Let us take the non-relativistic Equation (5.18) for the motion of a charged
particle and rewrite it as follows:

m

e
( r̈ − g ) = E +

1
c

ṙ × B . (5.24)

On making this expression non-dimensional

r∗ =
r
L

, t∗ =
t

τ
, v∗ =

v
v0

, g∗ =
g
g

, B∗ =
B
B0

, E∗ =
E
E0

,

we have the following equation

m

e

L

τ2

(
r̈∗ − gτ2

L
g∗
)

= E0 E∗ +
L

cτ
B0 ṙ∗ × B∗ .

Normalize this equation with respect to the last term (the Lorentz force)
by dividing the equation by LB0/cτ :

m

e

c

B0

1
τ

( r̈∗ − αg g∗) =
E0

B0

cτ

L
E∗ + ṙ∗ × B∗ .

Introduce the dimensionless parameter

αB =
m

e

c

B0

1
τ

.

Two situations are conceivable.
(a) Spatially homogeneous magnetic and electric fields are slowly changing

in time. The characteristic time τ = 1/ω, where ω is a characteristic field
change frequency. Therefore the dimensionless parameter αB is equal to

αB =
ω

ωB

. (a)
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(b) For the fields that are constant in time but weakly inhomogeneous,
the characteristic time is to be defined as τ = L/v0, L and v0 being the char-
acteristic values of the field dimensions and the particle velocity, respectively.
In this case

αB =
rL

L
. (b)

Generally, a superposition of these two cases takes place. The field is called
weakly inhomogeneous slowly changing field, if

αB ≈ ω

ωB

≈ rL

L

 1 .

(5.25)

The second parameter of the problem,

αE =
E0

B0

cτ

L
,

characterizes the relative role of the electric field. We assume αE = 1, because,
if this parameter is small, this can be taken into account in the final result.

The third dimensionless parameter αg = gτ2/L is not important for our
consideration in this Section; so we put αg = 1.

Thus we have
αB ( r̈∗ − g∗) = E∗ + ṙ∗ × B∗ , (5.26)

the equation formally coinciding with the initial dimensional one. That is why
it is possible to work with Equation (5.24), using as a small parameter the
dimensional quantity m/e. This method is rather unusual but quite justified
and widely used in plasma physics. The corresponding expansion in the Taylor
series is termed the expansion in powers of m/e. We find such a solution of
Equation (5.24).

5.2.2 Expansion in powers of m/e

Now let us represent the solution of Equation (5.24) as a sum of two terms,

r (t) = R (t) + rL(t) . (5.27)

The first term R (t) describes the motion of the guiding center of the Lar-
mor circle, the second term rL (t) corresponds to the rotational motion or
gyromotion of the particle. The case of an electron e− is shown in Figure 5.5.

Recall that for the constant homogeneous magnetic field (see (5.14))

rL =
c p⊥
eB

=
m

e

c v⊥
B

,
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n
B

rR

r
r

e

L

L

0

B

.

- Figure 5.5: The Larmor motion of a
negatively charged particle (an elec-
tron) in a weakly inhomogeneous
slowly changing field.

i.e., the Larmor radius is proportional to the parameter m/e. It is natural
to suppose that the dependence is the same for the weakly inhomogeneous
slowly changing field, i.e.

| rL | ∼ m

e
.

For example, if the magnetic field does not change in time and does not change
much within the gyroradius, then the particle moves through a nearly uniform
magnetic field while making a circular round. However the non-uniformities
make the guiding center move in a way different from a simple translatory
motion. We are going to find the equation describing the guiding center
motion.

Let us substitute (5.27) in Equation (5.24) and expand the fields g, E, and
B in the Taylor series about the point r = R:

g (r) = g (R) + (rL · ∇) g (R) + . . . ,

E (r) = E (R) + (rL · ∇)E (R) + . . . , (5.28)
B (r) = B (R) + (rL · ∇)B (R) + . . . .

From Equation (5.24) we have

r̈ = g +
(m

e

)−1
[
E (r) +

1
c

ṙ × B (r)
]

.

Hence the basic equation contains the small parameter m/e to the power (-1).
By substituting (5.27) and (5.28) in this equation we obtain

R̈ + r̈L = g (R) + (rL · ∇)g (R) +

+
(m

e

)−1
{E (R) + (rL · ∇)E (R) } + (5.29)

+
(m

e

)−1
{

1
c

(
Ṙ + ṙL

)
× [B (R) + (rL · ∇)B (R) ]

}
+ . . . .
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Note that we have to think carefully about smallness of different terms in
Equation (5.29). For example, the magnitude of ṙL is not small:

| ṙL | ∼ | rL |
τ

∼ rL ωB ∼ αB α−1
B

∼ 1 .

The particle velocity is not small, although the Larmor radius is
small. That is the physical reason for the term(m

e

)−1 1
c

[ ṙL × (rL · ∇) B (R) ]

having zero order with respect to the small parameter m/e.
The acceleration term r̈L is not small either:

| r̈L | ∼ | rL |
τ2 ∼ rL ω 2

B
∼ α−1

B
∼
(m

e

)−1
.

In the expansion (5.29) let us retain only the terms with the order of
smallness less than one, that is

R̈︸︷︷︸
(0)

= − r̈L︸ ︷︷ ︸
(−1)

+g (R)︸ ︷︷ ︸
(0)

+
(m

e

)−1
[
E (R) +

1
c

Ṙ × B (R)
]

︸ ︷︷ ︸
(−1)

+

+
(m

e

)−1
( rL · ∇ )E (R)︸ ︷︷ ︸

(0)

+
(m

e

)−1 1
c

Ṙ × [ ( rL · ∇ )B (R) ]︸ ︷︷ ︸
(0)

+

+
(m

e

)−1 1
c

ṙL × [ ( rL · ∇ )B (R) ]︸ ︷︷ ︸
(0)

+ O
(m

e

)
. (5.30)

Here the orders of smallness of the corresponding terms are given in brackets
under the braces.

5.2.3 The averaging over gyromotion

In order to obtain the equation for guiding center motion let us average Equa-
tion (5.30) over a small period of the Larmor rotation,

TB =
2π

ωB

.

Since 〈 rL 〉 = 〈 ṙL 〉 = 〈 r̈L 〉 = 0 , we infer the following equation

R̈ = g (R) +
e

m

[
E (R) +

1
c

Ṙ × B (R)
]

+ O
(m

e

)
+

+
e

mc
〈 ṙL × [ ( rL · ∇ )B (R) ] 〉 . (5.31)
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Let us consider the last term which also has to be averaged. Here we may
put

ṙL = ωB rL × n .

On rearrangement (see Exercise 5.9), we obtain

e

mc
〈 ṙL × [ ( rL · ∇ )B (R) ] 〉 = − M

m
∇B . (5.32)

Here
M =

1
c

e ωB

2π

(
πr2

L

)
=

1
c

JS (5.33)

is the magnetic moment of a particle on the Larmor orbit (Figure 5.6). The
case of electron e− is shown here.

B

r
r

e

L
L

.

M

J

S
-

Figure 5.6: The motion of a negatively charged particle on the Larmor orbit
and its magnetic moment. The moment is antiparallel to the magnetic field.

We interpret −e (ωB/2π) as the current +J associated with the gyrating
electron. That is why we call M a dipole magnetic moment as the name
usually refers to a property of a current loop defined as the current J flowing
through the loop times the area S of the loop (see Sivukhin, 1952). Hence it
is clear from (5.33) that M is the magnetic moment of the gyrating particle.

So a single gyrating charge generates a magnetic dipole. Note that, for
any charge of a particle, positive or negative,

the direction of the dipole magnetic moment is opposite to the di-
rection of the magnetic field.

Therefore the diamagnetic effect has to occur.
Substituting the non-relativistic formula ωB = eB/mc in (5.33) gives

M =
1
2π

e2

mc2 B πr2
L

. (5.34)

Therefore
the magnetic moment is proportional to the magnetic field flux
through the surface covering the particle’s Larmor orbit.

It is also obvious from (5.32) that we can use the following formula for the
force acting on the magnetic moment:

F = − M ∇B .
(5.35)
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z
F

e
R

BC Figure 5.7: The diamagnetic
force acts on the guiding center
moving along the symmetry axis
of a magnetic mirror configura-
tion.

Let the field strength increase along the field direction. For the sake of
simplicity, we consider a magnetic configuration symmetric around the central
field line as shown in Figure 5.7. The strength of the magnetic field increases
when the guiding center (not a particle) of a particle moves along the central
line in the direction of the axis z. The force (5.35) is exerted along the field
and away from the direction of increase of the field. As a consequence,
the parallel component of the guiding center velocity Ṙ decreases to zero at
some maximum strength of the magnetic field and then changes sign. We say
that the particle experiences a mirror force, and we shall call the place where
it turns around a magnetic mirror . Note that a charged particle moving along
the symmetry axis z is unaffected by magnetic force of course.

Finally, from Equation (5.31), we obtain the equation of the guiding center
motion:

R̈ = g (R) +
e

m

[
E (R) +

1
c

Ṙ × B (R)
]

− M
m

∇B (R) + O
(m

e

)
. (5.36)

The guiding center calculations involve considerably less amount of nu-
merical work and produce trajectories in good agreement with detailed cal-
culations if the non-uniformities of the magnetic and other fields are really
small over the region through which the particle is making the circular motion.
Moreover

the guiding center theory helps us to develope an intuition about
the motions of charged particles in magnetic field.

And this intuition turns out to be useful in solving many practical problems
of plasma astrophysics, for example, in physics of the Earth magnetosphere.

5.2.4 Spiral motion of the guiding center

Even without regarding the terms O(m/e), Equation (5.36) is more difficult
in comparison with (5.24). The term g (R), the term with electric field E (R),
and the two last terms in Equation (5.36) apart, it is seen that

R̈ =
e

mc
Ṙ × B . (5.37)

Therefore the guiding center spirals, as does the particle (cf. Equation (5.8)).
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By analogy with formula (5.14), the guiding center spiral radius can be
found

R⊥ =
mcṘ⊥

eB
. (5.38)

So it is a small quantity of order

R⊥
rL

=
Ṙ⊥
v⊥

∼ rL

L

as compared with the particle Larmor radius (5.14).
The radius of the guiding center spiral is of the order of m/e as

compared with the particle Larmor radius. Consequently, this spiral has a
higher order with respect to the small parameter m/e and can be neglected
in the approximation under study.

5.2.5 Gradient and inertial drifts

Let us neglect the term O(m/e) in Equation (5.36) and take the vector product
of Equation (5.36) with the unit vector n = B/B:

R̈ × n = g × n +
e

m
E × n +

eB

mc
( Ṙ × n ) × n +

M
m

n × ∇B .

From this we find the drift velocity across the magnetic field

Ṙ⊥ ≡ n × ( Ṙ × n ) = c
E × n

B
+

mc

eB
g × n+

+
Mc

eB
n × ∇B − mc

eB
R̈ × n . (5.39)

The first term on the right-hand side of Equation (5.39) corresponds to
the electric drift (5.22), the second one presents the gravitational drift (5.23).
The third term is new for us in this Chapter; it describes the gradient drift
arising due to the magnetic field inhomogeneity. The gradient drift velocity

vd =
Mc

eB
n × ∇B .

(5.40)

The same formula follows of course from (5.20) after substituting in it the
formula (5.35) for the force acting on the magnetic moment M in the weakly
inhomogeneous field.

So, if a particle gyrates in a magnetic field whose strength changes from
one side of its gyration orbit to the other, the instantaneous radius of the
curvature of the orbit will become alternately smaller and larger. Averaged
over several gyrations,
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the particle drifts in a direction perpendicular to both the magnetic
field and the direction in which the strength of the field changes.

The fourth term on the right-hand side of (5.39) corresponds to the inertial
drift:

vd = − mc

eB
R̈ × n .

(5.41)

Let us consider it in some detail. For calculating the inertial drift veloc-
ity (5.41), we have to know the guiding center acceleration R̈. It will suffice
for the calculation of R̈ to consider Equation (5.39) in the zeroth order, since
the last term of (5.39) contains the small parameter m/e. In this order with
respect to m/e, we have

Ṙ⊥ = c
E × n

B
.

Hence the guiding center acceleration

R̈ =
d

dt
Ṙ =

d

dt
( Ṙ ‖ + Ṙ⊥) =

d

dt

(
v ‖ n + c

E × n
B

)
. (5.42)

Because this aspect of particle motion is important in accounting for the
special properties of a collisionless cosmic plasma, it is good to understand it
not only mathematically but also in an intuitive manner.

5.2.5 (a) The centrifugal drift

At first, we consider the particular case assuming the electric field E = 0
in formula (5.42), the magnetic field B being time-independent but weakly
inhomogeneous. Under these conditions

R̈ =
d

dt
( v ‖ n ) = n

dv ‖
dt

+ v ‖
dn
dt

.

The first term on the right-hand side does not contribute to the drift velocity
since n × n = 0. Rewrite the second term as follows:

v ‖
dn
dt

= v ‖

(
∂ n
∂t

+ v ‖ (n · ∇)n
)

. (5.43)

In this formula, the first term on the right equals zero for the time-independent
field. The second one is equal to

v 2
‖ (n · ∇)n = −v 2

‖

(
ec

Rc

)
. (5.44)

Here Rc is a radius of curvature for the field line at a given point R. At this
point the unit vector ec is directed from the curvature center 0c as shown in
Figure 5.8.
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Figure 5.8: The frame of reference
for derivation of the formula for the
inertial drift in weakly inhomoge-
neous magnetic field.

Thus the dependence of the inertial drift velocity on the curvature of the
weakly inhomogeneous magnetic field is found

Ṙ⊥
∣∣
c =

1
Rc ωB

v 2
‖ ec × n . (5.45)

This is the drift of a particle under action of the centrifugal force

Fc =
mv 2

‖
Rc

ec . (5.46)

In formula (5.45), the centrifugal force produced by motion of a particle
along the magnetic field appears explicitly. Therefore the centrifugal drift
velocity can be seen to be a special case of the expression (5.20) obtained for
drift produced by an arbitrary non-magnetic force F.

5.2.5 (b) The curvature-dependent drift

Let us come back to the gradient drift and consider a time-independent
weakly-inhomogeneous magnetic field. Its gradient

∇B =
1

2B
∇ (B · B ) =

1
B

[ (B · ∇ )B + B × curlB ] .

In a current-free region curlB = 0 , and hence

∇B =
1
B

(B · ∇ )B = (n · ∇)B = (n · ∇) B n = B (n · ∇)n+

+n (n · ∇B ) = −B

(
ec

Rc

)
+ n (n · ∇B ) .
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The last term does not contribute to the gradient drift velocity (5.40). The
contribution of the first term to the drift velocity is

Ṙ⊥ =
Mc

eB
n ×

(
(−B)

ec

Rc

)
= − M

eRc
n × ec =

M
eRc

ec × n . (5.47)

Here, according to definition (5.33) and formula (5.14), the magnetic moment

M =
1
c

JS =
e ωB r2

L

2c
=

e v 2
⊥

2c ωB

. (5.48)

On substituting formula (5.48) into (5.47) we see that the gradient drift
in a time-independent weakly-inhomogeneous magnetic field has a structure
analogous to the centrifugal drift (5.45):

Ṙ⊥
∣∣
gr =

1
Rc ωB

1
2

v 2
⊥ ec × n . (5.49)

Therefore we can add the curvature-dependent part of the gradient drift (5.49)
to the centrifugal drift (5.45):

Ṙ⊥ =
1

Rc ωB

(
v 2

‖ +
1
2

v 2
⊥

)
ec × n . (5.50)

This formula unites the two drifts that depend on the field line
curvature of a weakly inhomogeneous magnetic field.

In a curved magnetic field, the gradient drift is present in combination with
the centrifugal drift.

5.2.5 (c) The curvature-independent gradient drift

It is worth considering the part of the gradient drift, that is independent of
the field line curvature. Let the field lines be straight (Rc → ∞), their density
increasing unidirectionally as shown in Figure 5.9. The field strength B2 at
a point 2 is greater than that one at a point 1. So, according to (5.17), the
Larmor radius

rL

∣∣
2 < rL

∣∣
1 .

The particle moves in the manner indicated in Figure 5.9.
For comparison purposes, it is worth remembering another illustration.

This is related to, on the contrary, the non-magnetic force F (Section 5.1.4).
Under action of the force, the particle velocity at a point 1 in Figure 5.10, v1,
is greater than at a point 2. Hence the Larmor radius rL = cp⊥/eB is greater
at a point 1 than at a point 2 as well.

In other words, when the particle is at the point 2 at the top of its trajec-
tory, the force F and the Lorentz force (e/c)v × B both act in the downward
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Figure 5.9: The simplest interpretation of the gradient drift. A gradient in
the field strength, ∇B , in the direction perpendicular to B will produce a
drift motion of ions and electrons.
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Figure 5.10: The physical nature of the drift under the action of a non-
magnetic force F which is perpendicular to the uniform magnetic field B.

direction in Figure 5.10. This enhanced normal acceleration makes the tra-
jectory more sharply bent than it would have been in the absence of the force
F. On the other hand, when the particle is at the bottom point 1, the Lorentz
force is diluted by F, thereby causing the trajectory to be less sharply bent.
As a result, there is a drift of the guiding center in a direction perpendicular
to both B and F.

Figures 5.9 and 5.10 also demonstrate the validity of formula (5.35).
The drifts with velocity which depends on the particle charge and mass,

like the gradient drift, can give rise to a current by making the electrons
and ions drift in opposite directions. Such drifts can also be important for
the problem of element abundances or element fractionation (see the second
volume of this book).

Recommended Reading: Sivukhin (1965), Morozov and Solov’ev (1966b)
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5.3 Practice: Exercises and Answers

Exercise 5.1 [ Section 5.1 ] Evaluate the gyrofrequency for thermal electrons
and protons in the solar corona above a sunspot.

Answer. At typical temperature in the corona, T ≈ 2 × 106 K, from the
non-relativistic formula (5.11), it follows that: the electron gyrofrequency

ω (e)
B

= 1.76 × 107 B (G) , rad s−1 ; (5.51)

the proton gyrofrequency

ω (p)
B

= 9.58 × 103 B (G) , rad s−1 . (5.52)

The gyrofrequency of electrons is mp / me ≈ 1.84×103 times larger than that
one of protons. Just above a sunspot the field strength can be as high as
B ≈ 3000 G. Here ω (e)

B
≈ 5 × 1010 rad s−1. The emission of thermal electrons

at this height in the corona can be observed at wavelength λ ≈ 4 cm.

Exercise 5.2 [ Section 5.1 ] Under conditions of the corona (Exercise 5.1),
evaluate the mean thermal velocity and the Larmor radius of thermal electrons
and protons.

Answer. The thermal velocity of particles with mass mi and tempera-
ture T i is

VTi =
(

3kB T i

mi

)1/2

. (5.53)

Respectively, for electrons and protons:

VTe = 6.74 × 105
√

Te (K) , cm s−1 , (5.54)

and
VTp = 1.57 × 104

√
Tp (K) , cm s−1 . (5.55)

At the coronal temperature VTe ≈ 9.5×103 km s−1 ∼ 109 cm s−1 and VTp ≈
220 km s−1.

From (5.14) we find the following formulae for the Larmor radius:

r (e)
L

=
VTe

ω
(e)
B

= 3.83 × 10−2

√
Te (K)

B (G)
, cm , (5.56)

and

r (p)
L

=
VTp

ω
(p)
B

= 1.64

√
Tp (K)

B (G)
, cm . (5.57)

At T ≈ 2 × 106 K and B = 3000 G we find r(e)
L

≈ 0.2 mm and r(p)
L

≈ 1 cm.

Exercise 5.3. [ Section 5.1 ] During solar flares electrons are accelerated to
energies higher than 20–30 keV. These electrons produce the bremsstrahlung
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emission. The lower boundary of the spectrum of accelerated electrons is not
known because the thermal X-ray emission of the high-temperature (super-
hot) plasma masks the lower boundary of the non-thermal X-ray spectrum.
Assuming that the lower energy of accelerated electrons K ≈ 30 keV, find
their velocity and the Larmor radius in the corona.

Answer. The kinetic energy of a particle

K = E − mc2, (5.58)

where E is the total energy (5.2), mc2 = 511 keV for an electron. Since
K /mc2 
 1, formula (5.58) can be used in the non-relativistic limit: K =
mv2/2. From here the velocity of a 30 keV electron v ≈ 1010 cm s−1 ≈ 0.3 c.

The Larmor radius of a non-relativistic electron according to (5.14)

r (e)
L

= 5.69 × 10−8 v⊥ (cm s−1)
B (G)

. (5.59)

For a 30 keV electron
r (e)
L

≈ 5.6 × 102 1
B (G)

. (5.60)

Above a sunspot with B ≈ 3000 G the Larmor radius r (e)
L

≈ 2 mm. Inside
a coronal magnetic trap with a field B ≈ 100 G the electrons with kinetic
energy K ≈ 30 keV have the Larmor radius r (e)

L
≈ 6 cm.

Exercise 5.4 [ Section 5.1 ] Under conditions of the previous Exercise esti-
mate the Larmor radius of a proton moving with the same velocity as a 30 keV
electron.

Answer. For a non-relativistic proton it follows from formula (5.14) that

r (p)
L

= 1.04 × 10−4 v⊥ (cm s−1)
B (G)

, cm . (5.61)

Above a sunspot a proton with velocity ≈ 0.3 c has the Larmor radius ≈ 3 m.
Inside a coronal trap with magnetic field ≈ 100 G the Larmor radius ≈ 104 cm.
So

non-relativistic protons (and other ions) can be well trapped in coro-
nal magnetic traps including collapsing ones

(see vol. 2, Chapter 7). This is important for the problem of ion acceleration
in solar flares.

Exercise 5.5 [ Section 5.1 ] The stronger magnetic field, the smaller is the
Larmor radius rL of an electron. Find the condition when rL is so small as
the de Broglie wavelength of the electron

λB =
h

mev
= 1.22 × 10−7 1√

K(eV)
. (5.62)
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Here h is Planck’s constant, K is the kinetic energy (5.58) of the electron. If
K = 1 eV, the de Broglie wavelength λB ≈ 10−7 cm ≈ 10 Angström.

Answer. In the non-relativistic limit, the electron with kinetic energy K
has the Larmor radius

rL = 3.37

√
K (eV)

B (G)
, cm . (5.63)

When the energy of the electron is 1 eV and the field has a strength of 1 G,
the Larmor radius rL ≈ 3 cm. However for a field of 3 × 107 G, the Larmor
radius is diminished to the de Broglie wavelength ≈ 10−7 cm. So for white
dwarfs which have B > 107 G, and especially for neutron stars, we have to
take into account

the quantization effect of the magnetic field: the Larmor radius is
no longer arbitrary but can take only certain definite values.

We call a magnetic field the superstrong one, if rL < λB . Substituting (5.63)
and (5.62) into this condition, we rewrite it as follows

B > 3 × 107 K (eV) , G . (5.64)

In superstrong fields the classic theory of particle motion, developed above, is
no longer valid and certain quantum effects appear.

The energy difference between the levels of a non-relativistic electron in a
superstrong field is

δE
B

≈ eB

mc

h

2π
∼ 10−8 B , eV . (5.65)

On the other hand, the difference between energy levels in an atom, for ex-
ample a hydrogen atom, is of about 10 eV; this is comparable with δE

B
in a

superstrong field B > 108 − 109 G. In ordinary conditions B is not so large
and does not affect the internal structure of atoms.

Inside and near neutron stars B > 1011 − 1012 G. In such fields a lot of
abnormal phenomena come into existence due to the profound influence of the
external field on the interior of atoms. For example, the electron orbits around
nuclei become very oblate. Two heavy atoms, e.g. iron atoms, combine into a
molecule (Fe2) and, moreover, these molecules form polymolecular substances,
which are constituents of the hard surface of neutron stars (Ruderman, 1971;
Rose, 1998).

Exceedingly superstrong (ultrastrong) fields, >∼ 1014 G, are suggested in
the so-called magnetars, the highly-magnetized, newly-born neutron stars (see
Section 19.1.3).

Exercise 5.6 [ Section 5.1 ] Is it justified to neglect the radiation reaction
in the motion Equation (5.8) while considering the gyromotion of electrons in
astrophysical plasmas?
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Answer. In the non-relativistic limit v2 
 c2 , the total energy radiated
per unit time by a charge e moving with acceleration r̈ can be calculated
in the dipolar approximation (see Landau and Lifshitz, Classical Theory of
Field , 1975, Chapter 9, § 67):

I =
2

3c3 d̈ 2 . (5.66)

Here d = e r and d̈ = e r̈.
In a uniform magnetic field B, an electron moves in a helical trajectory. For

the transversal motion in the Larmor orbit r = rL , the total power radiated
by the electron

I =
2

3c3 e2 r 2
L

ω 4
B

=
2e2

3c3 v2 ω 2
B

. (5.67)

Here v = ωB rL is the velocity of the electron in the Larmor orbit.
Let us estimate the strength of the magnetic field such that an electron

with kinetic energy K = mv2/2 would radiate an appreciable amount of energy
during one period of gyration, τB = 2π/ωB . Consider a ratio

γr =
τB

τr
=

1
K

dK
dt

2π

ωB

. (5.68)

Substituting (5.67) in (5.68) gives

γr =
8π

3
e3

(mc2)2
B ≈ 1.4 × 10−15 B (G) . (5.69)

Therefore, while considering the gyromotion of non-relativistic electrons
in cosmic plasmas, the radiation reaction could be important in the motion
Equation (5.8) only in ultrastrong magnetic fields with

B >∼
3
8π

(mc2)2

e3 ≈ 7 × 1014 G . (5.70)

However other physical processes already dominate under such conditions; see
discussion in Exercise 5.5.

Recall that formula (5.67) is not valid for a relativistic electron moving in
the Larmor orbit; see next Exercise.

Exercise 5.7 [ Section 5.1 ] For a relativistic electron moving in the Larmor
orbit with a speed v = βc, the total power of radiation is given by formula
(see Landau and Lifshitz, Classical Theory of Field , 1975, Chapter 9, § 74):

I =
2

3c3

e4

m2

β2

1 − β2 B 2 . (5.71)

Therefore, in contrast to the non-relativistic formula (5.67), I → ∞ when
β → 1. Find the rate of energy loss for such an electron.
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Answer. According to (5.4), for a relativistic particle

E2 = (pc)2 + (mc2)2 . (5.72)

By using this expression we rewrite formula (5.71) as follows

dE
dt

= −I =
2e4B2

3m4c7

(
(mc2)2 − E2) . (5.73)

From here we find

E
mc2 = cth

(
2e4B2

3m3c5 t + const
)

. (5.74)

With an increase of time t, the particle’s energy monotonuouly decreases to
the value E = mc2 with the characteristic time

τr =
3m3c5

2e4B2 . (5.75)

Comparing between this time and 2π ω−1
B

gives us the characteristic value
of magnetic field

B =
3m2c4

4π e3

(
1 − β2)1/2

. (5.76)

We see that B → 0 when β → 1. So, for relativistic electrons, there is no
need in strong magnetic fields to radiate efficiently unless they become non-
relativistic particles (see Exercise 5.6). This means that

for relativistic electrons, the radiative losses of energy can be im-
portant even in relatively weak magnetic fields.

That is why the synchrotron radiation is very widespread in astrophysical
conditions (e.g., Ginzburg and Syrovatskii, 1965). It was the first radio-
astronomical radiation mechanism which had been successfully used by classi-
cal astrophysics to interpret the continuum spectrum of the Crab nebula. The
synchrotron mechanism of radio emission works in any source which contains
relativistic electrons in a magnetic field: in the solar corona during flares, in
the Jovian magnetosphere, interstellar medium, supernova remnants etc.

Exercise 5.8 [ Section 5.2.3 ] Consider an actual force acting on a particle
gyrating around the central field line in the magnetic mirror configuration
shown in Figure 5.7.

Answer. Let us use the cylindrical coordinates (r, z, ϕ) with the axis z
along the central field line as shown in Figure 5.7. In the weakly inhomoge-
neous magnetic field, the predominant component is Bz but there is a small
component Br which produces the z component of the Lorentz force:

Fz = − q

c
vϕBr . (5.77)
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Here the ϕ-component is the gyromotion velocity v⊥; for a negatively (pos-
itively) charged particle, it is directed in the positive (negative) ϕ-direction
(see Figure 5.6).

The component Bz of the magnetic field can be found from condition
div B = 0 as follows:

Br = − 1
2

r
∂Bz

∂z
. (5.78)

Substituting (5.78) into (5.77) gives

Fz = − M ∂Bz

∂z
, (5.79)

where M is the magnetic moment (5.33) of the gyrating particle.

Exercise 5.9 [ Section 5.2.3 ] Derive formula (5.32) for the last term in the
averaged Equation (5.31).

Answer. We have to write down the following expression explicitly

( rL × n ) × [ ( rL · ∇ )B (R) ]

and then to average it. It is a matter to do that, once we make use of the
following tensor identities:

(a × b)α = eαβγ aβ bγ .

Here eαβγ is the unit antisymmetric tensor, and

eαβγ eµνγ = δαµ δβν − δαν δβµ .

On rearrangement, we average the last term in Equation (5.31) to obtain

e

mc
〈 ṙL × [ ( rL · ∇ )B (R) ] 〉 = − M

m
∇B , (5.80)

where
M =

1
c

e ωB

2π

(
πr2

L

)
=

1
c

JS (5.81)

is the magnetic moment of a particle on the Larmor orbit.



Chapter 6

Adiabatic Invariants in
Astrophysical Plasma

Adiabatic invariants are useful to understand many interesting proper-
ties of collisionless plasma in cosmic magnetic fields: trapping and ac-
celeration of charged particles in collapsing magnetic traps, the Fermi
acceleration, “cosmic rays” origin.

6.1 General definitions

As is known from mechanics (see Landau and Lifshitz, Mechanics, 1976, Chap-
ter 7, § 49), the so-called adiabatic invariants remain constant under changing
conditions of motion, if these changes are slow. Recall that the system exe-
cuting a finite one-dimensional motion is assumed to be characterized by a
parameter λ that is slowly – adiabatically – changing with time:

λ / λ̇ � T . (6.1)

Here T is a characteristic time for the system (e.g., a particle in given fields)
motion.

More precisely, if the parameter λ did not change, the system would be
closed and would execute a strictly periodic motion with the period T like a
simple pendulum in gravitational field. In this case the energy of the system,
E , would be invariant.

Under the slowly changing parameter λ, if Ė ∼ λ̇, then the integral

I =
∮

P dq , (6.2)

rather than the energy E , is conserved. Here P and q are the generalized
momentum and coordinate, respectively. The integral is taken along the tra-

103
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jectory of motion under given E and λ. The integral I is referred to as the
adiabatic invariant.

6.2 Two main invariants

6.2.1 Motion in the Larmor plane

The motion of a charged particle in slowly changing weakly inhomogeneous
fields has been considered in the previous section. Several types of periodic
motion can be found. In particular, the particle’s motion in the plane per-
pendicular to the magnetic field – the Larmor motion – is periodic. Let P be
the generalized momentum. According to definition (6.2) for such a motion
the adiabatic invariants are the integrals

I1 =
∮

P 1 dq 1 = const and I2 =
∮

P 2 dq 2 = const ,

taken over a period of the motion of coordinates q 1 and q 2 in the plane of the
Larmor orbit.

It is convenient to combine these integrals, that is simply to add them
together:

I =
∮

P⊥ · dq = const . (6.3)

(This is the same, of course, as q = rLφ in definition (6.2) with 0 ≤ φ ≤ 2π.)
Here

P⊥ = p⊥ +
e

c
A

is the generalized momentum (see Landau and Lifshitz, Classical Theory of
Field , 1975, Chapter 3, § 16) projection onto the plane mentioned above. In
this plane q = rL . The vector potential A is perpendicular to the vector B
since B = curlA, and p is the ordinary kinetic momentum of a particle.

Now perform the integration in formula (6.3)

I =
∮

P⊥ · d rL =
∮

p⊥ · d rL +
e

c

∮
A · d rL =

= 2πrL p⊥ − e

c

∫
S

curlA · dS =

by virtue of the Stokes theorem

= 2πrL p⊥ − e

c

∫
S

B · dS = 2πrL p⊥ − e

c
B πr2

L
. (6.4)

Substituting rL = c p⊥/eB (cf. formula (5.17)) into (6.4) gives

I =
πc

e

p 2
⊥
B

= const .
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Thus we come to the conclusion that the conserving quantity is

p 2
⊥
B

= const .

(6.5)

This quantity is called the first or transversal adiabatic invariant.
According to definition (5.33), the particle magnetic moment for the Lar-

mor orbit is

M =
1
c

JS =
p 2

⊥
2mB

=
K⊥
B

. (6.6)

Here use is made of the non-relativistic formula for the Larmor frequency (5.11)
and the non-relativistic kinetic energy of the particle transversal motion is
designated as

K⊥ =
p 2

⊥
2m

.

When (6.5) is compared with (6.6), it is apparent that the particle magnetic
moment is conserved in the non-relativistic approximation.

In the relativistic limit the particle magnetic moment (6.6) does not remain
constant; however, the first adiabatic invariant can be interpreted to represent
the magnetic field flux through the surface covering the particle Larmor orbit,

Φ = B πr2
L

=
πc2

e2

p 2
⊥
B

= const . (6.7)

This also follows directly from (6.4), when we substitute the relativistic for-
mula

p⊥ = rL

eB

c
(6.8)

into the first term on the right-hand side of formula (6.4). We obtain

I =
e

c

(
B πr2

L

)
=

e

c
Φ . (6.9)

Therefore

in the relativistic case, the magnetic field flux Φ through the sur-
face S covering the particle Larmor orbit is conserved.

6.2.2 Magnetic mirrors and traps

Let us imagine the time-independent magnetic field, the field lines forming
the convergent flux. As a rule, the field takes such a form in the vicinity of
its sources, for instance, a sunspot S in the photosphere Ph in Figure 6.1.

The particle transversal momentum is

p⊥ = p sin θ , (6.10)
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p

p

p
||

⊥
θ

B

e

SPh

M1

Figure 6.1: A converging flux
of field lines forms a magnetic
‘mirror’. At the point M1, the
parallel component of momen-
tum reverses under action of
the diamagnetic force (5.35).

it being known that p = const, since by virtue of (5.6) we have E = const.
Substituting (6.10) into (6.5) gives

sin2 θ

B
= const =

sin2 θ0

B0

or
sin2 θ =

B

B0
sin2 θ0 . (6.11)

This formula shows that, for the increasing B, a point M1 must appear in
which sin2 θ1 = 1. The corresponding value of the field is equal to

B1 = B0 / sin2 θ0 . (6.12)

At this point the particle ‘reflection’ takes place:

p ‖ = p cos θ1 = 0 .

The regions of convergent field lines are frequently referred to as magnetic
‘mirrors’.

So, if there is a field-aligned gradient of the magnetic-field strength, the
component of velocity parallel to the field decreases as the particle moves into
a region of increasing field magnitude, although the total velocity is conserved.
Eventually, under action of the diamagnetic force (5.35), the parallel velocity
reverses (see the point M1 in Figure 6.1). Such reflections constitute the
principle of a magnetic trap. For example, magnetic fields create traps for
fast particles in the solar atmosphere as shown in Figure 6.2. The particles
are injected into the coronal magnetic tubes called flaring loops, during a
flare. Let us suppose that this injection occurs at the loop apex.

Let us also suppose that, having hit the chromosphere Ch, the particles
‘die’ because of collisions. The particles do not return to the coronal part of



6.2. Two Main Invariants 107

Figure 6.2: A coronal
magnetic tube as a trap
for particles accelerated
in a solar flare. θ < θ0
is the loss cone. Mo-
tion between the mirror
points M1 and M2 is
called bounce motion.

N S

Ch

θ
0

0

M M1 2

B 0

the trap, their energy being transferred to the chromospheric plasma, leading
to its heating. Such particles are termed precipitating ones. Their pitch-angles
have to be less than θ0:

θ < θ0 (6.13)

with

θ0 = arcsin
√

B0 / B1 (6.14)

in accordance with (6.12). Here B0 is the magnetic field at the trap apex, B1
is the field at the upper chromosphere level at the mirror points M1 and M2
as shown in Figure 6.2. The quantity B1 / B0 is called the cork ratio.

The angle region (6.13) is termed the loss cone. The particles with the
initial momenta inside the loss cone precipitate from the trap. By contrast,
the particles with θ > θ0 at the loop apex experience reflection and do not
reach the chromosphere. Such particles are termed trapped ones.

An interesting situation arises if the diffusion of the trapped particles into
the loss cone is slower than their precipitation from the trap into the chro-
mosphere. Then the distribution function becomes anisotropic, since the loss
cone is ‘eaten away’, and non-equilibrium. The situation is quite analogous to
the case of the distribution function formation with the positive derivative in
some velocity region, like the bump-on-tail distribution (Figure 7.2). As a re-
sult, some kinetic instabilities (e.g., Silin, 1971; Schram, 1991; Shu, 1992) can
be excited which lead to such plasma processes as wave excitation, anomalous
particle transfer owing to the particles scattering off the waves, and anomalous
diffusion into the loss cone (see also Chapter 7).
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6.2.3 Bounce motion

Let us consider another example of a particle motion in a magnetic trap,
namely that of a motion between two magnetic corks, the transversal drift
being small during the period of longitudinal motion. In other words, the
conditions of periodic longitudinal motion are changing adiabatically slowly.
Then the second adiabatic invariant, referred to as the longitudinal one, is
conserved:

I =
∮

P‖ dl = p

∮ √
1 − sin2 θ dl = p

∮ √
1 − B

B1
dl . (6.15)

Here account is taken of the facts that the vector A is perpendicular to the
vector B and p = |p | = const since E = const; the formula (6.11) for the first
adiabatic invariant is used in the last equality.

L
l

B

B

0

1

v e

Figure 6.3: An idealized model of a long trap with a short moving cork. Unless
a charged particle has its velocity vector very close to the axis of the trap, it
is reflected back and forth between the mirrors, thereby remaining trapped.

Let us apply formula (6.15) to the case of a long trap with short corks:
l 
 L in Figure 6.3. The longitudinal invariant for such a trap is

I =
∮

p ‖ dl ≈ 2 p ‖ L = const .

Therefore the second adiabatic invariant is associated with the cyclical bounce
motion between two mirrors or corks and is equal to

p ‖ L = const .

(6.16)

Let us suppose now that the distance between the corks is changing, that
is the trap length L = L(t). Then from (6.16) it follows that

p ‖ (t) = p ‖ (0)
L(0)
L(t)

. (6.17)



6.2. Two Main Invariants 109

It is evident from (6.17) that (a) increasing the distance between the corks
decreases the longitudinal momentum and, consequently, the particle energy,
and (b) particle acceleration takes place in the trap if two magnetic corks are
approaching each other as is shown by vector v in Figure 6.3.

The former case can describe the so-called ‘adiabatic cooling’ of accelerated
particles, for example, in a magnetic trap which is captured by the solar wind
and is expanding into interplanetary space. The latter case is more interesting.
It corresponds to the Fermi mechanism considered in the next Section.

6.2.4 The Fermi acceleration

The famous theory of Fermi (1949) discussed the so-called interstellar ‘clouds’
that carry magnetic fields and could reflect charged particles. The same role
could be played for instance by magnetic inhomogeneities in the solar wind
or interplanetary medium. Fermi visualized that charged particles can be
accelerated by being repeatedly hit by the moving magnetic clouds.

The energy of a particle, E , will increase or decrease according to whether
a cloud (an inhomogeneity of magnetic field) that causes the reflection moves
toward the particle (head-on collision) or away from it (overtaken collision).
The particle gains energy in a head-on collision but there can be also ‘trailing’
collisions in which energy is lost. It was shown by Fermi (1949, 1954) that

on the average, the energy increases because the head-on collisions
are more probable than the overtaking collisions

(see a non-relativistic treatment of the problem in Exercise 6.1). Through
this stochastic mechanism

the energy of the particle increases at a rate that, for relativistic
particles, is proportional to their energy

(Exercise 6.2):
dE
dt

∝ E . (6.18)

That is why such a mechanism is often called the first-order (in energy E)
Fermi acceleration. The higher the energy E , the faster acceleration.
This is the most important feature of the Fermi mechanism. However we shall
call it the stochastic Fermi acceleration to avoid a slightly confusing terminol-
ogy in view of the fact that there is another parameter (a relative velocity of
magnetic clouds) which characterizes the coefficient of proportionality in the
problem under consideration (see Exercise 6.2).

From formula (6.18) follows that the energy E increases exponentially with
time:

E(t) = E0 exp
t

ta
, (6.19)

where E0 is the initial energy, ta is the acceleration time scale.
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Large-scale MHD turbulence is generally considered as a source of
magnetic inhomogeneities accelerating particles in astrophysical plasma. Ac-
celeration of particles by MHD turbulence has long been recognized as a pos-
sible mechanism for solar and galactic cosmic rays (Davis, 1956).

Though the Fermi acceleration has been popular, it appears to be neither
efficient nor selective. A mirror reflects particles on a nonselective basis:
thermal particles may be reflected as well as suprathermal ones. Therefore
one is faced with the conclusion (Eichler, 1979) that most of the energy in
the MHD turbulence goes into bulk heating of the plasma rather than
the selective acceleration of only a minority of particles. We shall come back
to this question in Chapter 7.

If we somehow arrange that only head-on collisions take place, then the ac-
celeration process will be much more efficient. We should call the acceleration
resulting from such a situation the regular Fermi acceleration. More often,
however, this mechanism is called the first-order (in the small parameter vm/c,
where vm is the velocity of the moving magnetic clouds; see Exercise 6.1). The
simplest example of this type mechanism is a pair of converging shock waves
(Wentzel, 1964). In this case, there is no deceleration by trailing collisions
(see formula (6.22) in Exercise 6.1) that reduce the net efficiency to the sec-
ond order in the parameter vm/c (Exercise 6.2).

One of several well-known examples of this type of the Fermi acceleration
is the impulsive (with high rate of energy gain) acceleration between two ap-
proaching shocks Sup in the model of a flaring loop as shown in Figure 6.4.
To explain the hard X-ray and gamma-ray time profiles in solar flares, Bai et
al. (1983) assumed that pre-accelerated electrons penetrate into the flare loop
and heat the upper chromosphere to high-temperatures rapidly. As a conse-
quence of the fast expansion of a high-temperature plasma into the corona –
the process of chromospheric ‘evaporation’, two shock waves Sup move upward
from both footpoints.

Energetic particles are to be reflected only by colliding with the shock
fronts. In such a way, the regular Fermi acceleration of particles between
two shocks was suggested as a mechanism for the second-step acceleration of
protons and electrons in flares. A similar example of the regular Fermi-type
acceleration also related to a collapsing (L(t) → 0) magnetic trap in solar
flares is considered in vol. 2, Chapter 7.

The cosmic rays (see Section 5.1.3) were assumed to be accelerated by
crossing shock fronts generated in explosive phenomena such as supernovae.
However a very simple dimensional argument shows the kind of difficulties
encountered even by the most violent phenomena in the Universe.

The more energetic are the particles, the larger are their Larmor
radius and/or the higher are the magnetic fields B necessary to
confine them within the limits of a cosmic accelerator.

The size of a accelerator R must be larger than the Larmor radius of a particle.
The product BR large enough to suit the 1020 eV energy range exists in no
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Figure 6.4: The flare-heated chromospheric plasma P rapidly expands into
the corona. Particle acceleration of the first order Fermi type may occur in a
magnetic loop between two converging shock waves Sup.

known standard astrophysical object.

6.3 The flux invariant

Let us consider the axisymmetric trap which is modelled on, for example,
the Earth’s magnetic field. Three types of the particle’s motion are shown in
Figure 6.5.

First, on the time scales of Larmor period, the particle spirals about a
field line. Second, since there is a field-aligned gradient of the field strength,
the particle oscillates between two mirrors M1 and M2. Third, if the guiding
center does not lie on the trap’s symmetry axis then the radial gradient
of field (cf. Figure 5.9) causes the drift around this axis. This drift (for-
mula (5.40)) is superimposed on the particle’s oscillatory of rotation.

As the particle bounces between the mirrors and also drifts from one field
line to another one, it traces some magnetic surface Sd. The latter is called
the drift shell . Let Ts be the period of particle motion on this surface.

If the magnetic field B = B (t) is changing so slowly that B / Ḃ � Ts ,
then a third adiabatic invariant, referred to as a flux one, is conserved:

Φ =
∫
S

B · dS = const . (6.20)
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Figure 6.5: Particle drift in a trap, due to the radial gradient of field.

Thus the first adiabatic invariant implies conservation of the magnetic flux
through the Larmor orbit, B πr2

L
, whereas

the flux invariant implies conservation of the magnetic flux through
the closed orbit of guiding center motion,

that is the flux through the shaded surface S in Figure 6.5.

6.4 Approximation accuracy. Exact solutions

Adiabatic invariants have been obtained in the approximation of weakly inho-
mogeneous slowly changing magnetic fields. The invariants are approximate
integrals of motion, widely used in plasma astrophysics. However we should
not forget two important facts. First, the adiabatic theory has a limited,
though exponential , accuracy. Second, this theory has a limited, though wide,
area of applicability. The second vo;ume of this book will be devoted to the
effect of magnetic reconnection and will present a situation when the adiabatic
theory a priory does not apply.

Exact solutions to the equations of charged particle motion usually require
numerical integration. The motion in the field of a magnetic dipole is a
simple case that, nevertheless, is of practical significance. The reason for that
is the possibility to approximate the Earth’s magnetic field at moderately
large distances by the dipole field. It was Störmer (1955) who contributed
significantly to the solution of this problem.

Two types of trajectories are considered.
(a) The ones coming from infinity and returning there. These have been

calculated in order to find out whether a particle can reach a given point
along a given direction. An answer to this question is important for cosmic
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ray theories. For each point on the Earth and for each direction the so-
called ‘threshold rigidity’ has been calculated. If a rigidity is greater than the
threshold one, then the particle can reach the point. The vertical threshold
rigidity is the most universally used one. This characterizes particle arrival in
the direction of the smallest column depth of the Earth atmosphere.

(b) The orbits of trapped particles. Two radiation belts of the Earth,
the inner and the outer, have been shown to exist. The mechanisms which
generate trapped particles are not yet fully understood. They are presumably
related to geomagnetic storms (Tverskoy, 1969; Walt, 1994).

Both gradient drift and curvature drift cause the positive particles in the
radiation belt to drift westward in the Earth dipole magnetic field. Thus the
radiation belt forms a ring of westward current circulating the Earth. This
current tends to decrease the strength of the basic northward magnetic field
observed at low latitudes on the Earth surface. There is a simple theoretical
relationship between the depression of the magnetic field at the surface of the
Earth and the total energy in the trapped particles. This relation allows us to
use the observed change of the magnetic field as an indication of the amount
of the energy in ring-current particles.

Recommended Reading: Northrop (1963), Kivelson and Russell (1995).

6.5 Practice: Exercises and Answers

Exercise 6.1 [ Section 6.2.4 ] Show that a non-relativistic particle on average
gains energy in collisions with moving magnetic clouds.

Answer. Let us consider the simplest model of one-dimensional motions
of clouds: half of the clouds are moving in one direction and the other half
moving in the opposite direction with the same velocity vm. Let a particle of
initial velocity V0 undergo a head-on collision. The initial velocity seen from
the rest frame of the cloud is V0 + vm. If the collision is elastic, the particle
bounces back in the opposite direction with the same magnitude of velocity
V0 + vm in this rest frame. In the observer’s frame, the reflected velocity
appears to be V0 + 2vm. Hence the gain of kinetic energy K according to the
observer equals

δK+ =
1
2

m (V0 + 2vm)2 − 1
2

mV 2
0 = 2m vm (V0 + vm) . (6.21)

Similarly, the energy loss in a trailing collision

δK− = − 2m vm (V0 − vm) . (6.22)

The probability of head-on collisions is proportional to the relative velocity
V0+vm, whereas the probability of trailing collisions is proportional to V0−vm.
Therefore the average gain of kinetic energy is equal to

δKav = δK+
V0 + vm

2vm
+ δK−

V0 − vm

2vm
= 4m v2

m . (6.23)
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So a particle is accelerated.

Exercise 6.2 [ Section 6.2.4 ] Prove the Fermi formula (6.18) for a relativistic
particle.

Answer. Make the same procedure as that one in Exercise 6.1 by using
the corresponding expressions in special relativity to see that the average
energy gain

δEav = 4
(vm

c

)2
E . (6.24)

Formula (6.24) obviously reduces to (6.23) in the non-relativistic limit on
putting E = mc 2.

So the average energy gain is proportional to the energy. Therefore the en-
ergy of a relativistic particle suffering repeated collisions with moving nagnetic
clouds increases according to formula

dE
dt

= α
F

E , (6.25)

where α
F

is a constant. Q.e.d.
Note also that the average energy gain (6.24) is propotional to the dimen-

sionless parameter (vm/c)2. Since actual clouds are moving at non-relativistic
velocities, this parameter should be a very small number. Hence the accelera-
tion process is quite inefficient. Because of this quadratic dependence on vm,
this process is referred as the second-order Fermi acceleration.

If only head-on collisions take place, then the acceleration is much more
efficient. It follows from formula (6.21) that, for V0 � vm, the energy gain will
depend linearly on vm. So the acceleration resulting from such conditions is
called the first-order Fermi acceleration. Such conditions are well possible, for
example, in collapsing magnetic traps created by the magnetic reconnection
process in solar flares (see vol. 2, Chapter 7).

Powerful shock waves in a plasma with magnetic field (like the solar wind)
may well provide sites for the first-order Fermi acceleration. Magnetic inho-
mogeneities are expected on both sides of the shock front. It is possible that
a charged particle is trapped near the front and repeatedly reflected from
magnetic inhomogeneities on both sides. Such collisions may lead to more ef-
ficient acceleration (see Chapter 18) compared to original Fermi’s acceleration
by moving interstellar clouds.



Chapter 7

Wave-Particle Interaction
in Astrophysical Plasma

The growth or damping of the waves, the emission of radiation, the
scattering and acceleration of particles – all these phenomena may
result from wave-particle interaction, a process in which a wave ex-
changes energy with the particles in astrophysical plasma.

7.1 The basis of kinetic theory

7.1.1 The linearized Vlasov equation

In this Chapter we shall only outline the physics and main methods used to
describe the wave-particle interaction in collisionless astrophysical plasmas as
well as in Maxwellian plasmas where fast particles interact with electromag-
netic waves. In the simplest – linear – approach, the idea is in the following.

We assume the unperturbed plasma to be uniform and characterized by
the distribution functions f

(0)
k of its components k: electrons and ions. The

unperturbed plasma is also assumed to be steady. So

f
(0)

k = f
(0)

k (v) . (7.1)

Let B (0) be the unperturbed uniform magnetic field inside the plasma.
We further assume that the only zero-order force is the Lorentz force with
E (0) = 0.

The dynamics of individual particles is determined by the first-order forces
related to the wave electric field E (1) and wave magnetic field B (1). To
describe these particles we shall use the perturbation function f

(1)
k , which

is linear in E (1) and B (1). Under the assumptions made, we see that the
Vlasov equation (Section 3.1.2) can be a proper basis for the kinetic theory

115
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of wave-particle interaction. For this reason we shall realize the following
procedure.

(a) We linearize the Vlasov equation (3.3) together with the Maxwell
equations (3.4) for the self-consistent wave field. Equation (3.3) becomes

∂f
(1)

k (X, t)
∂t

+ vα
∂f

(1)
k (X, t)
∂rα

+

+
ek

mk

(
1
c

v × B (0)
)

α

∂f
(1)

k (X, t)
∂vα

=

− ek

mk

(
E (1) +

1
c

v × B (1)
)

α

∂f
(0)

k (v)
∂vα

. (7.2)

The left-hand side of the linear Equation (7.2) is the Liouville opera-
tor (1.10) acting on the first-order distribution function for particles
following unperturbed trajectories in phase space X = { r,v} :

D

Dt
f

(1)
k = −

F
(1)

k,α

mk

∂f
(0)

k

∂vα
. (7.3)

This fact (together with the linear Lorentz force in the right-hand side of
(7.3) and the linearized Maxwell equations) can be used to find the general
solution of the problem. We are not going to do this here (see Exercise 7.1).
Instead, we shall make several simplifying assumptions to demonstrate the
most important features of kinetic theory on the basis of Equation (7.3).

(b) Let us consider a small harmonic perturbation varying as

f
(1)

k (t, r,v) = f̃k (v) exp [−i (ωt − k · r)] . (7.4)

Substituting the plane wave expression (7.4) with a similar presentation of
the perturbed electromagnetic field in Equation (7.2) gives us the following
linear equation:

i (ω − k · v) f̃k (v) − ek

mk

(
1
c

v × B (0)
)

α

∂f̃k (v)
∂vα

=

=
ek

mk

[
Ẽ
(

1 − k · v
ω

)
+ k

(
v · Ẽ

ω

)]
α

∂f
(0)

k (v)
∂vα

. (7.5)

Here the Faraday law (1.25) has been used to substitute for the wave magnetic
field.

(c) We shall assume that the waves propagate parallel to the ambient
field B (0) which defines the z axis of a Cartesian system. From Section 5.1 it
follows that in a uniform magnetic field there exist two constants of a parti-
cle’s motion: the parallel velocity v‖ and the magnitude of the perpendicular
velocity

v⊥ = |v⊥ | =
(
v 2

x + v 2
y

)1/2
.
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Hence the unperturbed distribution function

f
(0)

k = f
(0)

k

(
v‖, v⊥

)
, (7.6)

as required by Jeans’s theorem (Exercise 1.1). Therefore in what follows
we can consider two cases of resonance, corresponding two variables in the
distribution function (7.6).

7.1.2 The Landau resonance and Landau damping

Let us consider the so-called electrostatic waves which have only a parallel
electric field E (1) = E ‖ under the assumption of parallel propagation:

k × B (0) = 0 . (7.7)

In this case the linearized Vlasov Equation (7.5) reduces to

i
(
ω − k‖ v‖

)
f̃k − ek

mk

(
1
c

v × B (0)
)

α

∂f̃k

∂vα
=

ek

mk
Ẽ‖

∂f
(0)

k

∂vα
. (7.8)

Now let us find the perturbation of charge density according to defini-
tion (3.5):

ρ q (1) (r, t) =
∑

k

ek

∫
v

f
(1)

k (r,v, t) d 3v . (7.9)

Hence the amplitude

ρ̃ q =
∑

k

ek

∫
v

f̃k (v) d 3v . (7.10)

When we calculate the charge density by using Equation (7.8), the second
term on the left-hand side of this equation vanishes on integration over per-
pendicular velocity.

Therefore, for parallel propagating electrostatic waves, the harmonic per-
turbation of charge density is given by

ρ̃ q = − i Ẽ‖
∑

k

e 2
k

mk

∫
v‖

1(
ω − k‖ v‖

) ∂f
(0)

k

∂v‖
d v‖ . (7.11)

Formula (7.11) shows that there is a resonance which occurs when

ω − k‖ v‖ = 0
(7.12)

or when the particle velocity equals the parallel phase velocity of the wave,
ω/k‖ . This is the Landau resonance.

A physical picture of Landau resonance is simple.
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When the resonance condition (7.12) is satisfied the particle ‘sees’
the electric field of the wave as a static electric field in the particle’s
rest system

(see Exercise 7.3).
Particles in resonance moving slightly faster than the wave will lose energy,

while those moving slightly slower will gain energy. Since the Maxwellian
distribution is decreasing with velocity,

in a Maxwellian plasma, near the Landau resonance, there are more
particles at lower velocities than at higher velocities. That is why
the plasma gains energy at the expense of the wave.

v

f

0 k ||||ω

( )v ||
(0)

v

f

0 k ||||ω

( )v ||

(a) (b)

Figure 7.1: The Landau damping. (a) The initial distribution function of
thermal electrons with some narrow region centered at the resonance with the
wave. (b) The distribution function after an evolution due to interaction of
the electrons with the wave.

This effect, illustrated by Figure 7.1 (see also Exercise 7.6), is called the
Landau damping (Landau, 1946) or collisionless damping. Normally we think
of damping as a dissipative process and hence expect it to be present only in
systems where collisions can convert a part of the wave energy into thermal
energy. At first sight, damping in a collisionless system seems mystifying since
we ask the question where could the energy have gone. For a negative slope
of the distribution function at the phase velocity ω/k, there are more particle
which are accelerated than which are decelerated. For this reason the wave
puts a net amount of energy in the particles so that there is a loss of wave
energy. Therefore the Landau damping is not by randomizing collisions but
by a transfer of wave field energy into oscillations of resonant particles.

Landau damping is often the dominant damping mechanism for waves,
such as ion-acoustic waves and Langmuir waves, in thermal plasma without a
magnetic field.

The absorption of longitudinal waves in plasma in the thermal equi-
librium is often determined by collisionless damping
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(e.g., Zheleznyakov, 1996).
On the other hand, if a distribution function has more particles at higher

velocities than at lower velocities in some region of phase space as shown in
Figure 7.2, this distribution will be unstable to waves that are in resonance
with the particles. This is the known ‘bump-on-tail’ instability. Due to this
type of instability, a beam of fast electrons (with velocities much higher than
the thermal speed of electrons in the plasma) causes Langmuir waves to grow.
Langmuir waves generated through the bump-on-tail instability play an es-
sential role, for example, in solar radio bursts.

v

f

0 k ||||ω

( )v ||

(0)

Figure 7.2: The bump-on-tail distri-
bution function with the resonance
condition in the region of a positive
slope.

There are many examples in plasma astrophysics in which one species
(e.g., electrons) moves relative to another. Solar flares produce a significant
flux of fast electrons moving through the plasma in interplanetary space. Fast
electrons move away from a planetary shock through the solar wind. Aurorae
are produced by fast electrons moving along Earth’s magnetic-field lines. If
we consider a stream of plasma with an average velocity impinding on another
plasma at rest, we have just the same situation. The system has an instability
such that

the kinetic energy of the relative motion between the plasma steams
is fed into a plasma wave of the appropriate phase velocity.

So all the two-stream instabilities have, in fact, the same origin.
The above derivation emphasizes the close relation of the Landau damping

with the Cherenkov effect (see Exercises 7.2–5). It has been definitely
pointed out by Ginzburg and Zheleznyakov (1958) that

the Landau damping and the Cherenkov absorption of plasma
waves, the inverse Cherenkov effect, are the same phenomenon

initially described in two different ways.
The discussion hitherto has focused on the linear Landau damping, i.e.

the behaviour of a small perturbation which satisfies the linearized Vlasov
equation. However this picture can be extended to finite amplitude pertur-
bations (Kadomtsev, 1976, Chapter 4). In the context of plasma astrophysics,
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this means considering nonlinear Landau damping, which generalized the lin-
ear theory by incorporating the possibility of mode-mode couplings that allow
energy transfer between different modes.

In fact, the linear theory illuminates only a narrow window out of the
wealth of all effects related to wave-particle interactions. Mathematically, the
linear theory uses a well-developed algorithm. Few analytical methods
are known to treat the much wider field of nonlinear effects, and most of
these methods rely on approximations and lowest-order perturbation theory.
The theory of weak wave-particle interaction or weak turbulence as well as
the quasi-linear theory for different types of waves are still today the most
important parts in astrophysical applications (e.g., Treumann and Baumjo-
hann, 1997; Benz, 2002).

7.1.3 Gyroresonance

As for the Landau resonance, we shall use the linear Equation (7.5) as a
basis, assuming that a wave is propagating parallel to the ambient field B (0).
However, this time, we shall further assume that the wave electric field E (1)

and hence the wave magnetic field B (1) are perpendicular to the ambient
magnetic field.

Under the assumption of a harmonic perturbation (7.4) we shall make use
of the so-called polarized coordinates:

Ẽ l =
Ẽx + iẼy√

2
, Ẽ r =

Ẽx − iẼy√
2

. (7.13)

Subscripts l and r correspond to the waves with left- and right-hand circular
polarizations, respectively.

By definition, the wave is right-hand circular polarized if Ẽx leads Ẽy by
a quarter of a wave period. If, for such a wave, we multiply Equation (7.5)
by velocity

vr =
vx − i vy√

2
(7.14)

and integrate over velocity space, making use of (7.6) and the fact that the
unperturbed distriburion function f (0) is a symmetric function of v⊥, we find
the equation which determines (see definition (3.6)) the current density in the
harmonic perturbation:

j̃ q
r = − i

∑
k

e 2
k

m k
Ẽ r × (7.15)

×
∫
v

1(
ω − k‖ v‖ − s ω

(k)
B

) [(
1 −

k‖ v‖
ω

)
∂f

(0)
k

∂v⊥
+

k‖ v⊥
ω

∂f
(0)

k

∂v‖

]
v⊥ d 3v .
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Here ω (k)
B

is the Larmor frequency of a particle of a kind k, the integer s can
be positive or negative. The resonance condition in formula (7.15) for current
density is the gyroresonance:

ω − k‖v‖ − s ω (k)
B

= 0 .

(7.16)

We see that a gyroresonant interaction occurs when the Doppler-shifted wave
frequency

ωD = ω − k‖ v‖ , (7.17)

as observed by a particle moving with the parallel velocity v‖, is an integer
multiple s of the Larmor frequency in the guiding center frame, i.e.

ωD = s ω (k)
B

. (7.18)

Depending upon the initial relative phase of the wave and particle,
the particle will corotate with either an accelerating or decelerating
electric field over a significant portion of its Larmor motion,

resulting in an appreciable gain or loss of energy, respectively.
If the particle and transversal electric field rotate in the same sense, the

integer s > 0, whereas an opposite sense of rotation requires s < 0. However
the strongest interaction usually occurs when the Doppler-shifted frequency
exactly matches the particle Larmor frequency.

The gyroresonance is important for generating waves such as the wistler
mode, which is polarized predominantly perpendicular to the ambient field.

For a wave to grow from gyroresonance, there should be a net de-
crease in particle energy as the particle diffuses down the phase-
space density gradient defined by the numerator in formula (7.15),

i.e. by the expression enclosed in large square brackets under the integral in
formula (7.15).

For the parallel propagation of a wave in plasma, the Landau resonance
is associated with parallel electric fields. For perpendicular electric fields,
particles and fields can be in gyroresonance. It is clear that the Landau
resonance diffuses particles parallel to the ambient magnetic field, whereas
gyroresonance causes diffusion in the pitch angle. This can be seen
in the wave frame, i.e. the frame in which the parallel phase velocity of the
wave is zero. If we transform the expression enclosed in large square brackets
in formula (7.15) to the wave frame, we find that in this frame the gradient
in velocity space is gradient with respect to pitch angle θ. Hence

the main effect of gyroresonance is to cause particles to change pitch
angle in the wave frame.
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This is contrasted with the Landau resonance, where the diffusion is in the
parallel velocity v‖ due to the term ∂f (0)/∂ v‖ and therefore mainly in energy,
rather than pitch angle.

As such, then the Landau-resonant instabilities are often driven by bump-
on-tail distributions of particles, whereas gyroresonant instabilities are driven
by pitch-angle anisotropy. Thus the gyroresonance-type instabilities can ap-
pear as soon as a ‘tail’ or beam is formed in the direction parallel to the
background field B (0). They excite waves that scatter the particles back to a
nearly isotropic state.

7.2 Stochastic acceleration of particles by waves

7.2.1 The principles of particle acceleration by waves

In Section 7.1 we considered the resonant interaction between particles and
one wave propagating parallel to the uniform magnetic field B (0) in a uniform
plasma without an external electric field: E (0) = 0. The dynamics of indi-
vidual particles was determined by the first-order forces related to the wave
electric field E (1) and wave magnetic field B (1). We described behavior of
these particles by the linearized Vlasov equation (7.2) for the perturbation
function f

(1)
k , which is linear in E (1) and B (1).

Under simplifing assumptions made, we saw that, in addition to the Lan-
dau resonance (7.12):

ωD = 0 , (7.19)

other resonances (7.16) arise in wave-particle interaction. These are the gy-
roresonances which occur when the Doppler-shifted frequency

ωD = ω − k‖ v‖ (7.20)

(as observed by a particle moving with parallel velocity v‖) is some integer
multiple s of the particle Larmor frequency s ω (k)

B
:

ωD = s ω (k)
B

.

(7.21)

If a wave is, in general, oblique, its electric field has components transver-
sal and parallel to B (0), whereas if the wave is parallel, its electric field is
transversal. Since the transversal field typically consists of left- and right-
hand polarized components, the integer s may be either positive or negative.
Anyway

the energy gain is severely limited due to the particle losing reso-
nance with the wave.
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Large gains of energy are possible, in principle, if a spectrum of waves is
present. In this case, the resonant interaction of a particle with one wave
can result in an energy change that brings this particle into resonance with a
neighboring wave, which then changes the energy so as to allow the particle
to resonate with another wave, and so on. Such an energy change can be
diffusive, but over long time scales there is a net gain of energy, resulting in
stochastic acceleration.

A traditional problem of the process under discussion is the so-called in-
jection energy. The problem arises since for many waves in plasma their
phase velocity along the ambient magnetic field, ω/k‖ , is much greater than
the mean thermal velocity of particles. Let us re-write the gyroresonance
condition (7.21) as

γL

(
ω

k‖
− v‖

)
=

s ω (k)
B

k‖
. (7.22)

Here the relativistic Lorentz factor γL has been taken into account (see Exer-
cise 7.3). Consider two opposite cases.

(a) For low thermal velocities we can neglect v‖ in Equation (7.22) and
see that, in order to resonate with a thermal particle, the waves must have
very high frequencies ω ≈ ω (k)

B
or very small k‖.

For the case of thermal electrons and protons in the solar corona, their
Larmor frequencies are very high (Exercise 5.1). If we try to choose a minimal
value of k‖ , we are strongly restricted by a maximal value of wavelenghts,
which must be certainly smaller than the maximal size of an acceleration
region. These difficulties naturally lead to much doubt about the viability of
stochastic acceleration and to a search for preacceleration mechanisms.

(b) On the other hand, high energy particles need, according to the reso-
nance condition (7.22), waves with very low frequencies: ω 
 ω (k)

B
. Therefore

a very broad-band spectrum of waves (extending from ≈ ω (k)
B

to very
low frequencies) is necessary to accelerate particles from thermal to
relativistic energies.

In principle, the so-called wave cascading from low to high frequencies can
be a way of producing the necessary broad-band spectrum. The idea comes
from the Kolmogorov theory of hydrodynamic turbulence (Kolmogorov, 1941).
Here the evolution of turbulence can be described by the Kolmogorov-
style dimensional analysis or by a diffusion of energy in wavenumber
space. The last idea was subsequently introduced to MHD by Zhou and
Matthaeus (1990). They presented a general transfer equation for the wave
spectral density. In Section 7.2.2, we shall discuss briefly both approaches and
their applications; see also Goldreich and Sridhar (1997).

The stochastic acceleration of particles by waves is essentially the resonant
form of Fermi acceleration (see Section 6.2 (c)). An important feature of
stochastic acceleration is an isotropization process because
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the pitch-angle scattering increases the volume of wave phase space
that can be sampled by the resonant particles (7.22).

In general, if isotropization exists and keeps the distribution isotropic dur-
ing an acceleration time, it increases the acceleration efficiency. For example,
Alfvén (1949) considered the betatron acceleration in an uniform magnetic
field B (0)(t) which changes periodically in time and has local nonuniformi-
ties B (1) characterized by significant variations at distances smaller than the
Larmor radius of accelerated particles.

When a particle passes through such nonuniformities its motion becomes
random, with the momenta tending to be uniformly distributed between the
three degrees of freedom. For this reason, when the field B (0)(t) contracts, a
fraction of the energy acquired due to betatron acceleration is transferred to
the parallel component of the particle motion. As a consequence, the decrease
in the energy of the transverse motion with decreasing magnetic field is smaller
than its increase in the growth time. Thus the particle acquires an additional
energy on completion of the full cycle. Therefore the total particle energy can
systematically increase even if the fluctuating magnetic field does not grow.
This phenomenon is known as the Alfvén pumping .

Tverskoi (1967, 1968) showed that in a turbulent cosmic plasma, the Fermi
acceleration related to the reflection from long strong waves is efficient only
in the presence of fast particle scattering by short waves whose length is
comparable to the particle Larmor radius.

7.2.2 The Kolmogorov theory of turbulence

In general terms, a hydrodynamic flow tends to become turbulent if the ra-
tio of inertial to viscous terms in the equation of motion, as described by
the Reynolds number (see Chapter 12), is sufficiently large. In order not
to obscure the essential physical point made in this section, we assume that
a turbulence is isotropic and homogeneous. So we define a one-dimensional
spectral density W (k), which is the wave energy density per unit volume in
the wave vector space k.

First, we remind the Kolmogorov (1941) treatment of stationary turbu-
lence of incompressible fluid. The steady state assumption implies that the
energy flux F through a sphere of radius k is independent of time. In the in-
ertial range of wave numbers, for which supply and dissipation of energy are
neglected, the flux F is also independent of the wave vector k. If P denotes the
total rate of energy dissipation at the short wave (k = kmax) edge of the iner-
tial range, which equals the rate of energy supply at the long wave (k = kmin)
edge, then F = P and dF/dk = 0 in the inertial range in Figure 7.3.

Kolmogorov’s theory adopts the hypothesis that with the above assump-
tions the flux F through a sphere of radius k in the inertial range depends
only upon the energy in that sphere and upon the wave number. Thus by
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Figure 7.3: The energy per unit
wave number in Kolmogorov’s tur-
bulence is plotted as a function of
wavenumber in the inertial range B
between the source A at small k and
the sink C at large k.

dimensional analysis we arrive at

F = P ∼ W 3/2 k5/2. (7.23)

From here it follows that the one-dimensional spectral density

W (k) = Ck P 2/3 k−5/3 .

(7.24)

This is the famous Kolmogorov spectrum for the fluid isotropic turbulence,
involving the Kolmogorov constant Ck.

The turbulent velocity field in fluid can be thought of as being made of
many eddies of different sizes. The input energy is usually fed into the system
in a way to produce the largest eddies. Kolmogorov had realized that these
large eddies can feed energy to the smaller eddies and these in turn feed the
still smaller eddies, resulting in a cascade of energy from the larger eddies to
the smaller ones.

If we anticipate the viscosity ν (see Section 12.2.2) to be not important
for this process, we neglect dissipation of energy. However we cannot have
eddies of indefinitely small size. For sufficiently small eddies of size lmin and
velocity vmin, the Reynolds number is of order unity, i.e.

lmin vmin ∼ ν . (7.25)

So the energy in these small eddies is dissipated by viscosity.
Let the energy be fed into the turbulence at some rate P per unit mass

per unit time at the larges eddies of size lmax and velocity vmax, for which the
Reynolds number

Re =
lmax vmax

ν
� 1 . (7.26)

Then this energy cascades to smaller and smaller eddies untill it reaches the
smallest eddies satisfying condition (7.25).
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The intermediate eddies merely transmit the energy to the smaller eddies.
Let characterize these intermediate eddies only by their size l and velocity v.
Since they are able to transmit the energy at the required rate P, Kolmogorov
postulated that it must be possible to express P in terms of l and v. On
dimensional grounds, there is only one way of writing P in terms of l and v:

P ∼ v3

l
. (7.27)

From here
v ∼ ( Pl )1/3 . (7.28)

So

the velocity associated with the turbulent eddies of a particular size
is proportional to the cube root of this size.

This result is known as the Kolmogorov scaling law. The scaling law (7.28)
expresses the same thing as (7.24). This is shown in Exercise 7.10.

The Kolmogorov scaling law (7.28) was verified by doing experiments on
a turbulent fluid with a sufficiently large inertial range. In laboratory it is
very difficult to reach high enough Reynolds numbers to produce a sufficiently
broad inertial range. One of the first confirmations of it was reported by Grant
et al. (1962) by conducting experiments in a tidal channel between Vancouver
Island and mainland Canada (see also Stewart and Grant, 1969).

The Kolmogorov power spectrum (7.24) is observed in the turbulent
boundary layer on the ground and in some other turbulent flows in astro-
physical plasma (for example, in the solar wind), in spite of the fact that, in
all these cases, the original assumptions of incompressibility and isotropy are
not fulfilled.

7.2.3 MHD turbulent cascading

The Kolmogorov concept of independence of widely separated wave num-
bers in the inertial range of fluid turbulence was modified for the MHD case
by Iroshnikov (1963) and Kraichnan (1965). When the magnetic energy in
subinertial wave numbers exceeds the total energy in the inertial range, the
predicted inertial range spectrum is proportional to k−3/2, instead of k−5/3.
Note that the Kolmogorov spectrum is steeper than the Kraichnan spectrum
(5/3 > 3/2).

Leith (1967) introduced a diffusion approximation for spectral transfer of
energy in isotropic hydrodynamic turbulence. This approach may be viewed
as an alternative to the straight-forward dimensional analysis discussed above.
However it is a natural extension since this approach approximates the spec-
tral transfer as a local process in wave number space, i.e. in accordance with
the spirit of the Kolmogorov hypotheses that the total energy is conserved
with respect to couplings between waves. Therefore
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just diffusion is a physically appealing framework for the simplest
model to describe this kind of local conservative transfer.

If some waves, propagating parallel to the uniform field B(0), are injected at
the longest wavelength λ = λmax and if a Kolmogorov-like nonlinear cascade
transfers the wave energy to smaller scales, then the diffusion equation in wave
number space

∂W

∂t
=

∂

∂k‖

(
D‖‖

∂W

∂k‖

)
− γ (k‖) W + S (7.29)

can describe injection, cascading, and damping of the waves. Here D‖‖ is a dif-
fusion coefficient that depends on W and can be determined for Kolmogorov-
type cascading. γ (k‖) is the damping rate usually due to particle acceleration
in high-temperature low-density astrophysical plasma. The wave energy is
dissipated by accelerating particles in smallest scales λ ∼ λmin.

The source term S in Equation (7.29) is proportional to the injection
rate Q of the wave energy. A mechanism by which the waves are generated
is typically unknown but easily postulated. For example, MHD waves can be
formed by a large-scale restructuring of the magnetic field in astrophysical
plasma, which presumably occurs in nonstationary phenomena with flare-like
energy releases due to magnetic reconnection.

In summary, the wave cascading and particle acceleration are described by
one wave-diffusion equation, in which the damping depends on the accelerating
particle spectra, and by diffusion equations (one for each kind k of particles:
electrons, protons and other ions) for accelerating particles. The system is
therefore highly coupled and generally nonlinear or quasilinear in the case of
small-amplitude waves.

7.3 The relativistic electron-positron plasma

According to present views, in a number of astrophysical objects there
is a relativistic plasma that mainly consists of electrons and positrons.
Among these objects are pulsar magnetospheres (Ruderman and Suther-
land, 1975; Michel, 1991), accretion disks in close binary systems (Takahara
and Kusunose, 1985; Rose, 1998), relativistic jets from active galactic nuclei
(Begelman et al., 1984; Peacock, 1999), and magnetospheres of rotating black
holes in active galactic nuclei (Hirotani and Okamoto, 1998).

Because of synchrotron losses, the relativistic collisionless plasma in a
strong magnetic field should be strongly anisotropic: its particle momenta
should have a virtually one-dimensional distribution distended along the field.
The transversal (with respect to the field) momentum of a particle is small
compared with the longitudinal momentum. In accordance with Ruderman
and Sutherland (1975), such a particle distribution is formed near the pulsar
surface under the action of a strong longitudinal electric field and synchrotron
radiation. What equations can be used as starting ones for a description of
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the electron-positron plasma? – The answer depends upon a property of the
plasma, which we would like to describe.

It is known that the anisotropy can result in various types of instabili-
ties, for example, the fire-hose instability of the relativistic electron-positron
plasma (Mikhailovskii, 1979). Behaviour of Alfvén waves in the isotropic and
anisotropic plasmas can be essentially different (Mikhailovskii et al., 1985).

We suppose that the anisotropic relativistic approach of a type of the CGL
approximation (Section 11.5) can be used to consider the problem of Alfvén
waves of finite amplitude. However the dispersion effects are important for
such waves and are not taken into account in the CGL approximation. The
problem can be analysed on the basis of the standard kinetic approach with use
of the Vlasov equation (Section 3.1.2). As we saw above, such a procedure
is sufficiently effective in the case of linear problems but is complicated in
study of nonlinear processes when one must deal with parts of the distribution
function square and cubic to the wave amplitude.

More effective kinetic approaches are demonstrated in Mikhailovskii et
al. (1985). One of them is based on expansion in the series of the inverse
power of the background magnetic field (Section 5.2) and allowance for the
cyclotron effects as a small corrections. Using this approach, Mikhailovskii et
al. consider the nonlinear Alfvén waves both in the case of an almost one-
dimensional momentum particle distribution (the case of a pulsar plasma) and
in the case of an isotropic plasma. The later case is interesting, in particular,
for the reason that it has been also analysed by means of the MHD equations
(Section 20.1.4). Two types of Alfvén solitons (the moving-wave type and
the nonlinear wave-packet type) can exist in relativistic collisionless electron-
positron plasma.

Magnetic reconnection in a collisionless relativistic electron-positron plasma
is considered as a mechanism of electron and lepton acceleration in large-scale
extragalactic jets, pulsar outflows like the Crab Nebular and core regions
of active galactic nuclei (AGN) as the respectiv jet origin (see Larrabee et
al., 2003; Jaroschek et al., 2004).

Recommended Reading: Lifshitz and Pitaevskii, Physical Kinetics (1981)
Chapters 3 and 6.

7.4 Practice: Exercises and Answers

Exercise 7.1 [ Section 7.1.1 ] Write the general solution of the linear Equa-
tion (7.2).

Answer. Since the left-hand side of (7.2) is the time derivative (more
exactly, the Liouville operator (1.10) acting on the first-order distribution
function for particles following unperturbed trajectories), the solution of (7.2)
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is formally the integral over time

f
(1)

k (r,v, t) = − ek

mk

t∫
−∞

(
E (1) +

1
c
v × B (1)

)
α

∂f
(0)

k (r,v, τ)
∂vα

dτ. (7.30)

Here the integration follows an unperturbed-particle trajectory to the point
(r,v) in phase space X.

In principle, substitution of (7.30) into the Poisson law for electrostatic
waves gives a perturbation of electric charge density (3.5). Similarly, one can
determine a perturbation of current density (3.6) by substitution of (7.30)
into the Ampére law in the case of electromagnetic waves. In practice, solv-
ing (7.30) is fairly complicated.

Exercise 7.2 [ Section 7.1.2 ] Show that, for a particle with velocity v in a
plasma without magnetic field, the resonance condition correspondes to:

ω − k · v = 0 . (7.31)

This is usually called the Cherenkov condition.

Exercise 7.3 [ Sections 7.1.2, 7.2.1 ] Consider a wave that has frequency ω
and wave vector k in the laboratory frame. Show that in the rest frame of
the particle the frequency of the wave is

ω0 = γL (ω − k · v) , (7.32)

where

γL =
(

1 − v2

c2

)−1/2

(7.33)

is the Lorentz factor of the particle. Therefore the Cherenkov resonance con-
dition (7.31) corresponds to ω0 = 0, which means that the fields appear static
in the rest frame of the particle.

Answer. Apply the Lorentz transformation to the four-vector {k, i ω/c }
(see Landau and Lifshitz, Classical Theory of Field , 1975, Chapter 6, § 48).

Exercise 7.4 [ Section 7.1.2 ] In a transparent medium with a refraction
index n, greater than unity, the Cherenkov condition (7.31) can be satisfied
for fast particles with

β =
v

c
≥ 1

n
. (7.34)

Let χ be the angle between the particle’s velocity v and the wave vector k
of appearing emission which is called Cherenkov emission (Cherenkov, 1934,
1937).

As we know, a charged particle must move non-uniformly to radiate in
vacuum. As an example we may recall the formula (5.66) for dipole emission.
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In a medium, however, condition (7.34) allows the uniformly moving paricle
to radiate.

Show that Cherenkov emission is confined to the surface of a cone with
the cone half-angle (as shown in Figure 7.4)

χ = arccos
1
n

. (7.35)

k

v

χ
e

Figure 7.4: The wave-vector cone
of the Cherenkov emission.

Radiation with wave vectors along the conic surface (7.35) is generated as a
result of the Cherenkov emission. Discuss an analogy between the Cherenkov
emission pattern and the bow wave of a ship or a supersonic aircraft.

Exercise 7.5 [ Section 7.1.2 ] Consider the one-dimensional motion of an
electron in the electric field of a Langmuir wave of a small but finite amplitude.

Answer. Let the electric field potential of the wave be of the form

ϕ = ϕ 0 cos
(
ω

(e)
pl t − kx

)
. (7.36)

In the reference frame moving with the wave (see Section 10.2.2), the field is
static:

ϕ = ϕ 0 cos kx . (7.37)

This potential is shown in Figure 7.5a.
For an electron having a small velocity near x = 0, we have the following

equation of motion:

me ẍ = e
∂ϕ

∂x
= −eϕ 0 k sin kx ≈ −eϕ 0 k2 x . (7.38)

So such a trapped electron is oscillating with frequency

ω
(e)
tr = k

(
eϕ 0

me

)1/2

. (7.39)

This is illustrated by particle trajectories in the two-dimensional phase space
(Figure 7.5b).
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Figure 7.5: (a) The the electric field potential in a Langmuir wave of a small
but finite amplitude. (b) The phase trajectories of an electron in the wave.

The potential energy −eϕ of the trapped electron has maximum at the
minimum of the potential ϕ, at points M which determine the separatrix S.

Exercise 7.6 [ Section 7.1.2 ] Consider the Landau resonance for electrons in
a Maxwellian plasma. It is clear that electrons moving much slower or much
faster than the wave tend to see the electric field that averages to zero. So we
have to consider only the particles in some small part of velocity space close
to the phase velocity as shown in Figure 7.1.

Since the slope of the initial distribution function is negative, there
are more electrons at lower velocity than at higher velocity near the reso-
nance (7.12). Estimate a difference.

Exercise 7.7 [ Section 7.1.2 ] Show that the Landau damping prevents
plasma waves from escaping the region where ω = ω

(e)
pl (see definition (8.78))

into rarefied plasma, for example, from the solar corona to interplanetary
medium (see Zheleznyakov, 1996).

Hint. Consider the dispersion equation for electromagnetic waves in a
homogeneous equilibrium plasma without a magnetic field.

Exercise 7.8 [ Section 7.1.2 ] In the fire-hose instability, the driving force
is the beam pressure parallel to the magnetic field. Show that this pressure
increases the amplitude of an electromagnetic transverse wave in a way anal-
ogous to that of a water flowing through a hose.

Hint. Consider low-frequency transverse waves in a homogeneous equilib-
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rium plasma with a magnetic field. Such waves are called the kinetic Alfven
waves. They extend to frequencies higher than that are valid for MHD. Let a
beam of protons or electrons travel parallel to the magnetic field. An analysis
of linear disturbances similar to the MHD waves will introduce an additional
term into the dispersion equation of the Alfven wave. Note that an instability
occurs for beams of protons or electrons. Consider the threshold condition in
both cases.

Exercise 7.9 [ Section 7.1.3 ] Show that fast ions can generate whistler-mode
waves when the resonant particles are traveling faster than the wave. Show
that, in this case, the effect of Doppler shift is to change the sense of rotation
of the wave electric field in the resonant-particle frame from right-handed to
left-handed.

Exercise 7.10 [ Section 7.2.2 ] Show that the Kolmogorov spectrum formula
(7.24) follows from the Kolmogorov scaling law (7.28).

Answer. The kinetic energy density associated with some wavenumber k
is W (k) dk, which can be roughly written as

W (k) k ∼ v2 . (7.40)

Substituting for v from formula (7.28) with l ∼ 1/k, we have

W (k) k ∼ P2/3 k−2/3 . (7.41)

From here the Kolmogorov spectrum (7.24) readily follows.



Chapter 8

Coulomb Collisions in
Astrophysical Plasma

Binary collisions of particles with the Coulomb potential of interaction
are typical for physics of collisional plasmas in space and especially for
gravitational systems. Coulomb collisions of fast particles with plasma
particles determine momentum and energy losses of fast particles, the
relaxation processes in astrophysical plasma.

8.1 Close and distant collisions

8.1.1 The collision parameters

Binary interactions of particles, described by the Coulomb potential

ϕ(r) =
e

r
, (8.1)

have been studied in mechanics (see Landau and Lifshitz, Mechanics, 1976,
Chapter 4, § 19). Considering binary interactions as collisions, we are inter-
ested only in their final result, the duration of the interaction and the actual
form of particle trajectories being neglected. Thus in the centre-of-mass sys-
tem, each particle is deflected through an angle χ defined by the relation

tan
χ

2
=

e1e2

mv2 l
(8.2)

or
l (χ) =

e1e2

mv2 cot
χ

2
. (8.3)

Here
m =

m1m2

m1 + m2
(8.4)

133
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is the reduced mass, v is the relative particle velocity at infinity, l is the
‘impact parameter ’. The last is the closest distance of the particle’s approach,
were it not for their interaction as shown in Figure 8.1.

m

m
2

1

l

χ

v

ld
dσ

Figure 8.1: The trajectory of a light particle with mass m1 near a heavy
particle with mass m2.

For particles deflected through a right angle

l
(π

2

)
≡ l⊥ =

e1e2

mv2 , (8.5)

so the initial formula (8.2) is conveniently rewritten as

tan
χ

2
=

l⊥
l

.

(8.6)

The collisions are called close if

π/2 ≤ χ ≤ π , i.e. 0 ≤ l ≤ l⊥ . (8.7)

Correspondingly, for distant collisions l > l⊥ and 0 ≤ χ < π/2. Both cases
are shown in Figure 8.2.

8.1.2 The Rutherford formula

The average characteristics of the Coulomb collisions are obtained with the
aid of the formula for the differential cross-section. It is called the Rutherford
formula and is derived from (8.3) as follows:

dσ = 2π l(χ) dl = 2π l(χ)
∣∣∣∣ dl

dχ

∣∣∣∣ dχ =

=
πe 2

1 e 2
2

m2v4

cos (χ/2)
sin3(χ/2)

dχ =
( e1e2

2mv2

)2 d Ω
sin4(χ/2)

. (8.8)



8.1. Close and Distant Collisions 135

m

m
2

1 p

p
⊥

| |

χ
p

1

p
1

p
2

(a)

p

p
⊥

| |

χ

p
1

p
1

p
2

(b)

p
2

p
2

Figure 8.2: Close (a) and distant (b) collisions of particles in the momentum
space in the centre-of-mass system.

Here the modulus bars indicate the absolute value of the derivative dl/dχ
because it has a negative sign: with increase of the impact parameter l, the
scattering angle χ decreases; the solid angle d Ω = 2π sin χ dχ.

By integrating (8.8) over the back hemisphere (8.7), we find the total
cross-section of close collisions

σcl =
πe 2

1 e 2
2

m2v4 = πl 2
⊥ . (8.9)

This formula follows directly from definition (8.5), of course, without inte-
grating the differential cross-section (8.8).

8.1.3 The test particle concept

By analogy with the usual gas, the concept of a ‘test’ particle is introduced
to analyse the collisions in plasma. For instance the frequency of test particle
(m1, e1) collisions with ‘field’ particles (m2, e2) is introduced:

νcl = n2 v1 σcl =
πe 2

1 e 2
2 n2

m 2
1 v 3

1
. (8.10)

Here, for simplicity’s sake, it is assumed that m2 � m1 ≈ m (see for-
mula (8.4)) and v2 
 v1. So this is, for example, the case of an electron
colliding with ‘cold’ ions.

The length of mean free path λ of a test particle in a gas consisting of field
particles is, by definition, the distance along which the particle suffers one
collision,

λ = v1 ν−1 . (8.11)

From (8.10) and (8.11) it follows for close collisions that

λcl =
1

n2 σcl
. (8.12)
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Hence the time between two consecutive collisions is

τcl =
λcl

v1
=

m 2
1 v 3

1

πe 2
1 e 2

2 n2
∼ v 3

1

n2
, (8.13)

or the frequency of close collisions

νcl =
1
τcl

=
πe 2

1 e 2
2 n2

m 2
1 v 3

1
∼ n2

v 3
1

, (8.14)

which is the same as formula (8.10) of course.

8.1.4 Particles in a magnetic trap

Formulae (8.10) and (8.13) are frequently used in order to find out what
approximation we have to use to consider the astrophysical plasma. For ex-
ample, if the length of mean free path λ of the test particles inside a magnetic
trap (Section 6.2) is greater than the trap’s size, then such particles can be
considered in the collisionless approximation. Here charge separation may be
found to be essential, as well as the electric field resulting from it (Alfvén and
Fälthammar, 1963; Persson, 1963).

While the magnetic mirror is the primary trapping mechanism, the
electrostatic potential also traps electrons

with energies low to overcome the electrostatic potential.
In the solar atmosphere, the electrostatic potential produced, in solar-flare

magnetic traps, has an energy equivalent of the average energy of accelerated
electrons. The number and energy fluxes of the electrons that escape from the
trap can be reduced by as much as ∼ 50 or more depending on the magnetic
mirror ratio of the flare loop and the ratio of the ion and electron anisotropy
factors (Spicer and Emslie, 1988).

Some other effects due to non-collisional particles in the so-called collapsing
magnetic traps are mentioned in Section 6.2; they will be considered in Sec-
tion 18.3 and vol. 2, Chapter 7. For example, the electric potential mentioned
above increases the efficiency of confinement and acceleration of electrons in
solar flares (Kovalev and Somov, 2002).

On the other hand, if the length of the mean free path of the test particles
is much less than the trap’s size, the collisions play an important role. As
a rule they maxwellise the plasma (the gas of test particles), making it an
equilibrium one. In such a plasma the notion of temperature is meaningful, as
we shall see in Chapter 9. For example, while considering thermal electrons
(having the density ne and the temperature Te) in the trap, an electron with
the mean thermal velocity (see definition (5.53))

VTe =
√

3kBTe

me
(8.15)
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should be taken as the test particle. Then we obtain the known ‘T to the 3/2
power’ law for the time of the Coulomb collisions (8.13):

τ ∼ T
3/2

e

ne
.

(8.16)

The hotter the astrophysical plasma is, the more non-collisional is
it with respect to some physical phenomenon or another.

The characteristic time τ of the Coulomb collisions has to be compared
with the characteristic times of other physical processes: the time of particle
motion between magnetic corks in the trap, the period of the Larmor rotation,
the time of heating or cooling, etc.

8.1.5 The role of distant collisions

Because for small angles χ the differential cross-section (8.8) is

dσ ∼ dχ

χ3 , (8.17)

the total cross-section diverges.

Such divergence of the collisional cross-section always occurs, once
the interaction potential has no restricting factor,

or, to put the same in another way, if the interaction forces do not break off at
some distance, as in the case of hard balls. This fact is of fundamental impor-
tance, for example, in stellar dynamics (Jeans, 1929; Chandrasekhar, 1943a)
or, more exactly, in any astrophysical system governed by gravitational force
(say a gravitational system), see Sections 3.3 and 9.6.

Although each distant collision causes only a small deflection of the test
particle trajectory, they are present in such large numbers that their total
action upon the particle is greater or much greater than that of relatively rare
close collisions. Let us convince ourselves that this is true.

Each collision causes a small change in momentum perpendicular to the
initial direction of the particle’s motion:

δp⊥ = p sin χ = m1v1
2 tan (χ/2)

1 + tan2(χ/2)
=

2 m1v1 (l⊥/l)
1 + (l⊥/l)2

= 2m1v1
x

1 + x2 .

Here x = l⊥/l, and 0 ≤ x ≤ 1.
Since distant collisions occur chaotically, we are usually interested in the

mean rate of change in the quantity p 2
⊥:

d

dt
p 2

⊥ =

χ=0∫
χ=π/2

(δp⊥)2 n2 v1 dσ =
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= 8π n2 m 2
1 v 3

1 l 2
⊥

0∫
1

dx

(1 + x2)2 x
∼ lnx

∣∣∣∣ 0
1

. (8.18)

The integral diverges logarithmically on the upper limit. Let us
restrict it to some maximal value of the impact parameter

Λ = lmax/l⊥ . (8.19)

Then the integral is approximately equal to

d

dt
p 2

⊥ = 8π n2 m 2
1 v 3

1 l 2
⊥ ln Λ = πe 2

1 e 2
2

n2

v1
8 ln Λ . (8.20)

The factor ln Λ is referred to as the Coulomb logarithm.
Introduce the characteristic time τ⊥ during which the perpendicular com-

ponent of the momentum acquires a value equal to the initial momen-
tum m1v1:

τ⊥ = (m1v1)
2
(

d

dt
p 2

⊥

)−1

=
m 2

1 v 3
1

πe 2
1 e 2

2 n2 (8 ln Λ)
. (8.21)

In other words, the mean resulting deflection becomes comparable with the
quantity π/2 in a time τ⊥. Recall that this deflection through a large angle
is a result of many distant collisions.

The effective frequency of distant collisions that corresponds to the time τ⊥
is

ν⊥ =
1
τ⊥

=
πe 2

1 e 2
2 n2

m 2
1 v 3

1
8 ln Λ , (8.22)

which is 8 ln Λ larger than the close collisions frequency (8.14):

ν⊥ = 8 ln Λ · νcl .
(8.23)

The factor 8 ln Λ is usually much greater than unity; its typical value is >∼ 102

under physical definition of ln Λ given in Section 8.2.

The influence of the close Coulomb collisions on kinetic processes in
astrophysical plasma is, as a rule, negligibly small in comparison to
the action of distant collisions.

For example, the distant collisions determine an evolution of the distribution
function of fast electrons injected into the thermal plasma in the solar atmo-
sphere diring solar flares. However this does not mean that the close
collisions do never play any role in plasma astrophysics. Just in the
same example, the close collisions of fast electrons with thermal ions create
hard X-ray bremsstrahlung emission in the range 10–100 keV, because the
close collisions are responsible for large exchange of the particle momentum.
For typical flare parameters (hν ≈ 20 keV, ln Λ ≈ 20) the efficiency of the
bremsstrahlung process is ∼ 3 × 10−6 (Brown, 1971; Korchak, 1971).
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8.2 Debye shielding and plasma oscillations

8.2.1 Simple illustrations of the shielding effect

While considering the distant collisions, we have removed the divergence of
the integral (8.18) which describes the mean rate of change of the test particle
transversal momentum, purely formally – by artificially restricting the radius
of action of the Coulomb forces at some maximal distance lmax. Meanwhile
this maximal distance may be chosen quite justifiably, based on the following
reasoning. In a plasma,

each charged particle attracts oppositely charged particles and, at
the same time, repels the particles of the same charge.

As a consequence, the oppositely charged particles tend to gather around the
particle, thus weakening its Coulomb field. As a result of such ‘shielding’ the
action of the field extends over a distance no greater than some quantity rD

called Debye radius.
The concept of Debye shielding has a clear meaning. Let us assume that a

plasma contains an immovable charge which then creates the electrostatic field
in its vicinity. As a final result of shielding interactions mentioned above, some
equilibrium distribution of two components : positive and negative plasma
particles is established in this field. Its electrostatic potential ϕ is related to
the densities of ions ni and electrons ne via the Poisson equation

∆ϕ = −4πe (Zni − ne) , (8.24)

where Ze is the ion charge.
In the thermodynamic equilibrium state the ion and electron densities in

the electrostatic field with potential ϕ (r) are to be distributed according to
Boltzmann’s law

ni = n 0
i exp

(
− Zeϕ

kBT i

)
, ne = n 0

e exp
(

eϕ

kBTe

)
. (8.25)

The constant coefficients are set equal to the mean densities n 0
i and n 0

e of
plasma particles, since ϕ → 0 far from the particle considered.

Supposing that the Coulomb interaction is so weak that

Zeϕ 
 kBT i and eϕ 
 kBTe , (8.26)

or restricting our consideration to the approximate solutions applicable at
large distances from the shielded charge, we expand both exponents (8.25) in
a series and substitute in Equation (8.24). We obtain the following equation:

1
r2

d

dr

(
r2 dϕ

dr

)
= − 4πe

[
Zn 0

i

(
1 − Zeϕ

kBT i

)
− n 0

e

(
1 +

eϕ

kBTe

)]
=
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= 4πe

[(
n 0

e − Zn 0
i
)

+
e

kB

((
Zn 0

i
) Z

T i
+
(
n 0

e
) 1

Te

)
ϕ

]
. (8.27)

As usual the actual plasma is quasi-neutral on average (see the next Sec-
tion); instead of this let us assume here (like in Sections 3.2.2 and 3.2.3) that
the plasma is ideally neutral :

Zn 0
i = n 0

e . (8.28)

Thus we have an equation

1
r2

d

dr

(
r2 dϕ

dr

)
=

4πe2n 0
e

kB

(
Z

T i
+

1
Te

)
ϕ =

ϕ

r2
D

. (8.29)

On the right-hand side of Equation (8.29) we have two terms for a two-
component plasma. We divide them by ϕ, then

1
r 2
D

=
1

r
(i) 2
D

+
1

r
(e) 2
D

=
4πe2n 0

e

kBTe

(
1 + Z

Te

T i

)
. (8.30)

Therefore

rD =
(

kB

4πe2n 0
e

TeT i

ZTe + T i

)1/2

(8.31)

is known as the Debye radius, being first derived by Debye and Hückel (1923)
in the theory of electrolytes.

The solution of Equation (8.27) corresponding to the charge e situated at
the origin of the coordinates is the potential

ϕ =
e

r
exp

(
− r

rD

)
.

(8.32)

At distances greater than rD , the electrostatic interaction is exponentially
small.

The Debye length is an effective range for collisions, the potential be-
tween charged particles being the shielded Coulomb potential (8.32)
rather than the Coulomb one (8.1) which would apply in a vacuum.

That is why:
(a) the binary correlation function (3.30) reproduces the shape of the

shielded Coulomb potential (8.32),
(b) the Debye radius rD is substituted in the Coulomb logarithm (8.20)

in place of lmax.
A formula that is simpler than (8.31) is frequently used for the Debye

radius, namely

r(e)
D

=
(

kBT

4πe2ne

)1/2

. (8.33)
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This variant of the formula for the Debye radius implies that the shielding
is due to just the particles of one sign, more exactly, electrons, i.e. in the
formulae (8.25) we have T i = 0 (the approximation of cold ions) and Te = T
(see Exercise 9.3). This is the electron Debye radius. The corresponding
formula for the Coulomb logarithm is

ln Λ = ln
3

2e3

(
k3

B
T 3

πne

)1/2

. (8.34)

Its values typical of the solar atmosphere are around 20 (Exercise 8.1).
Formula (8.33) shows that the electron Debye radius increases with an

increase of temperature, since electrons with higher kinetic energy can with-
stand the attraction of the positive ion charge Ze up to larger distances. It
decreases with an increase of density n0, since a larger number of electrons
and ions can be accommodated in shorter distances to screen the electric field
of charge Ze.

8.2.2 Charge neutrality and oscillations in plasma

The Debye shielding length is fundamental to the nature of a plasma. That
is why this important characteristic appears again and again in plasma astro-
physics, starting from the binary correlation function (3.30).

The first point to note is that a plasma maintains approximate charge
neutrality (Sections 11.5.2 and 3.2.2). The reason for this is simply that any
significant imbalance of positive and negative charge could only be maintained
by a huge electric field. The movement of electrons to neutralize a charge
inhomogeneity would be followed by an oscillatory motion (e.g., Alfvén and
Fälthammar, 1963, Chapter 4).

This brings us to a second characteristic of plasmas called the plasma
frequency or, more exactly, the electron plasma frequency:

ω
(e)
pl =

(
4πe2ne

me

)1/2

.

(8.35)

A charge density disturbance oscillates with this frequency (see Sec-
tion 10.2.1). These oscillations are called Langmuir waves or plasma waves.
Therefore, under most circumstances,

plasma cannot sustain electric fields for lengths in excess of the
Debye radius or times in excess of a plasma period T

(e)
pl = 2π/ω

(e)
pl .

However one cannot talk of plasma oscillations unless a large number of
thermal particles are involved in the motion. It is the Debye shielding length
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which determines the spatial range of the field set up by the charge inequality:

rD =
1√
3

VTe

ω
(e)
pl

. (8.36)

Here VTe is the mean thermal velocity of electrons. Therefore the Debye
length

rD ≈ VTe

ω
(e)
pl

.

(8.37)

So a fully-ionized plasma in the termodynamic equilibrium is a quasi-neutral
medium. The space and time scales of charge separation in such plasma are
the Debye radius and the inverse plasma frequency. Therefore the plasma
oscillations are a typical example of collective phenomena (Section 3.2.3).

The Coulomb collisions, of course, damp the amplitude of the plasma
oscillations with the rate which is proportional to the frequency νei of electron-
ion collisions (see Exercise 10.3).

8.3 Collisional relaxations in cosmic plasma

8.3.1 Some exact solutions

It was shown in Section 8.1 that, as a result of the Coulomb collisions, a
particle deflects through an angle comparable with π/2 in a characteristic time
given by formula (8.21). More exact calculations of the Coulomb collisions
times, that take into account the thermal motion of field particles, have been
carried out by Spitzer (1940) and Chandrasekhar (1943). These calculations
are cumbersome, so we give only their final results.

Let us consider the electron component of a plasma. Suppose that the test
particles likewise are electrons moving with mean thermal velocity. Then the
exact calculation gives instead of the formula (8.21) the time

τee =
m 2

e (3kBTe/me)3/2

πe 4
e ne (8 ln Λ)

· 1
0.714

. (8.38)

This is called the time of mutual electron collisions or simply the electron
collisional time. Comparison of formula (8.38) with (8.21) shows that the
difference (the last factor in (8.38)) is not large. So the consideration of
binary collisions in the approximation used in Section 8.1 is accurate enough,
at least for astrophysical applications.

The analogous time of mutual collisions for ions, having mass mi, charge ei,
temperature T i and density ni, is equal to

τ ii =
m 2

i (3kBT i/mi)3/2

πe 4
i ni (8 ln Λ)

· 1
0.714

. (8.39)
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If a plasma is quasi-neutral: ei ni ≈ −ee ne = en, where ei = −Zee, and if
Te ≈ T i, then the ratio

τ ii

τee
≈
(

mi

me

)1/2 1
Z3 .

(8.40)

Coulomb collisions between thermal ions occur much more rarely
than those between thermal electrons.

However it is not the time of collisions between ions τ ii – the ion collisional
time, but rather the time of electron-ion collisions that is the greatest. This
characterizes, in particular, the process of temperature equalizing between the
electron and ion components in a plasma. The rate of temperature equalizing
can be determined from the equation

d Te

dt
=

T i − Te

τei (E)
, (8.41)

where τei (E) is the time of equilibrium establishment between the electron and
ion plasma components. It characterizes the rate of exchange of energy E be-
tween the components and equals (Spitzer, 1940, 1962; see also Sivukhin, 1966,
§ 9 and § 17; cf. formulae (42.5) in Lifshitz and Pitaevskii, 1981, § 42)

τei (E) =
memi [ 3kB (Te/me + T i/mi) ] 3/2

e 2
e e 2

i (6π)1/2 (8 ln Λ)
. (8.42)

For comparison with formula (8.40) let us put Ti = Te. Then

τei (E) = 0.517
e 2
i

e 2
e

(
mi

me

)1/2

τ ii . (8.43)

Thus the time of energy exchange between electrons and ions is much greater
than the time of mutual ion collisions.

In a plasma consisting of electrons and protons with equal temperatures
we have

τep(E) ≈ 22 τ pp ≈ 950 τee . (8.44)

The energy exchange between electron and ion components occurs
so slowly that for each component a distribution may be set up
which is close to Maxwellian with the proper temperature.

That is the reason why we often deal with a two-temperature plasma. More-
over the so-called adiabatic model for two-temperature plasma (Section 8.3.3)
is often used in astrophysics.
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8.3.2 Two-temperature plasma in solar flares

8.3.2 (a) Impulsive heating by accelerated electrons

Let us illustrate the situation, discussed above, by two examples from the
physics of flares. The first is the impulsive heating of the solar atmosphere
by a powerful beam of accelerated electrons. The beam impinges on the
chromosphere from the coronal part of a flare along the magnetic field tubes.
The maximal energy flux is Fmax

>∼ 1011 erg cm−2 s−1. The time profile with
the maximum at t <∼ 5 s of the energy flux at the upper boundary of the
chromosphere has been used for numerical solution of the two-temperature
dissipative hydrodynamic equations (Chapter 2 in Somov, 1992).

Yohkoh observations, made using three of the instruments on board – the
Hard X-ray Telescope (HXT), the Soft X-ray Telescope (SXT), and the Bragg
Crystal Spectrometer (BCS) – show that the nonthermal electron energy flux
can be even larger, for example, in the flare of 16 December 1991 (see Figure 6a
in McDonald et al., 1999), the maximal energy flux is

Fmax ≈ 2.5 × 1029 erg s−1/ 2 × 1017 cm2 ∼ 1012 erg cm−2 s−1.

Weak beams do not produce a significant response of the chromosphere (see
Figure 6b in McDonald et al., 1999), of course, just hard X-ray bremsstrahlung.

In the chromosphere, beam electrons lose their energy by mainly Coulomb
collisions.

The fastest process is the primary one, namely that of energy trans-
fer from the beam electrons to the thermal electrons

of chromospheric plasma (Figure 8.3).
As a result, plasma electrons are rapidly heated to high temperatures: in a

matter of seconds the electron temperature reaches values of the order of ten
million degrees. At the same time, the ion temperature lags considerably, by
one order of magnitude, behind the electron temperature (Figure 8.4). Here
the Lagrange variable

ξ = −
z∫

zmax

n(z) dz + ξmin , cm−2 , (8.45)

z is the height above the photosphere, zmax corresponds to the transition layer
between the chromosphere and corona before an impulsive heating. Therefore
ξ is the column depth – the number of atoms and ions in a column (of the unit
cross-section) measured down into the chromosphere from its upper boundary,
the transition layer.

The column depth ξmin = nclr is the number of ions inside a flaring loop
which is the coronal part of a reconnected magnetic-field-line tube (see vol. 2,
Section 3.2.1); lr is the length of the reconnected field line, nc is the plasma
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Figure 8.3: A scheme of the energy exchange in the two-temperature model
of hydrodynamic response of the solar atmosphere to impulsive heating by an
electron beam.

density inside the tube above the transition layer between the chromosphere
and corona before an impulsive heating. Let us assume, for simplicity, that

ξmin 
 ξ1 =
E 2
1

2a1
, cm−2 . (8.46)

Here ξ1 is the column thickness that the accelerated electrons with the minimal
energy E1 measured in keV can pass in a plasma before they stop (see formula
(4.40)). The assumption (8.46) means that we neglect the energy losses of
the electrons in the coronal part of the loop. In this way, we consider direct
impulsive heating of the chromosphere by an electron beam. Accelerated
electrons penetrate into the chromosphere to significant depth; for this reason
a significant fraction of the beam energy is lost as radiation in optical and
EUV lines. The column depth of evaporated plasma ξ ≈ 2 × 1019 cm−2 but
its temperature does not exceed Tmax ≈ 107 K.

The difference between the electron and ion temperatures is essen-
tial, at first, for the dynamics of high-temperature plasma
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Figure 8.4: The distribution of
the electron and ion tempera-
tures over the column depth of a
plasma ξ into the chromosphere.

which absorbs the main part (≥ 90 %) of the beam energy flux. Let us imagine
that only the electrons are heated, while the ion heating can be neglected. In
this case the electron temperature is twice as large as it would be in the case
of equal heating of the electrons and ions,

( Te ) 1 � 2 ( Te ) 2 .

The rate of high-temperature plasma cooling is mainly determined by heat
fluxes into colder plasma. These can be evaluated by the formula for the
classical heat flux

Fc = −κe ∇Te (8.47)

under conditions when this formula is applicable, of course (see Somov et
al., 1981). Here κe = κ0 T

5/2
e is the classical heat conductivity due to the

Coulomb collisions of plasma electrons. From formula (8.47) we see that the
heat flux is proportional to T

7/2
e . Therefore the real heat flux

Fc ( Te ) 1 � 27/2 Fc ( Te ) 2 (8.48)

can be an order of magnitude (27/2 ∼ 10) larger than the flux calculated in
one-temperature ( Te = T i ) models. Because of this, the one-temperature
models are much less dynamic than one would expect.

The effect becomes even more important if the accelerated electrons heat
a preliminary (before a flare) evaporated ‘hot’ plasma. This formally means
that, in formula (8.45), the column depth ξmin = nclr is not small in compari-
son with ξ1. So we have to take into account the direct impulsive heating of the
plasma inside the coronal part of the flaring loop. Such process (Duijveman
et al., 1983; MacNeice et al., 1984) can very efficiently produce a ‘superhot’
plasma which has an electron temperature Te much higher than the maximal
temperature in the case of chromospheric heating considered above.
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8.3.2 (b) Heating by high-temperature current layers

The difference between the electron and ion temperatures is known to be
critical for a wide variety of kinetic effects, in particular for the generation
of some turbulence (for example, ion-acoustic or ion-cyclotron) in the impul-
sively heated plasma. The turbulence, in its turn, has a great impact on the
efficiency of heating and particle acceleration in a plasma.

The second example, when the electron component of a plasma has a tem-
perature that is considerably different from the ion temperature, is supplied by
the high-temperature turbulent-current layers (Somov, 1981 and 1986; Somov
and Titov, 1983) in the regions of reconnection. Since the layer thickness 2a
is small in comparison with its width 2b (see vol. 2, Figure 6.1), the plasma
inflow quickly enters the region of the Joule dissipation of reconnecting mag-
netic field components. Here the impulsively fast heating of the electrons
and ions takes place, resulting in considerably different tempera-
tures. The conditions in a reconnecting current layer (RCL) in the solar
corona, especially, in flares (vol. 2, Section 6.3) are such that

the Coulomb exchange of energy between the impulsively heated
electrons and ions inside the RCL can be entirely neglected.

One of distinctive features of fast reconnection in RCLs, proposed as the
primary energy source in solar flares, is the presence of fast plasma outflows,
or jets, whose velocities are nearly equal to the Alfvén velocity, see defini-
tion (15.30). Outflows can give origin to plasma velocity distributions with
equal and opposite components along the x axis in Figure 8.5 and, as a con-
sequence, along the line-of-sight (l.o.s.) to an observer. Therefore, in this
way, they can create a symmetric supra-thermal broadening in the soft
X-ray and EUV lines observed during solar flares. The broadening mainly
depends on the electron and ion temperatures inside the RCL (Antonucci and
Somov, 1992).
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Figure 8.5: High-temperature plasma velocities near a reconnecting current
layer.

A comparison of the supra-thermal profiles of the Fe XXV emission lines
observed at flare onset with the predictions of the high-temperature turbulent-
current layer model suggests that the observed supra-thermal broadenings are
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consistent with the presence in the flare region of several small-scale or one
(a few) curved large-scale RCLs (Antonucci et al., 1996).

The energy release by reconnection has been invoked to explain both large-
scale events, such as solar flares and coronal mass ejections (CMEs), and
small-scale phenomena, such as the coronal and chromospheric microflares
that probably heat the corona (vol. 2, Section 12.4) and accelerate the solar
wind. Ultraviolet observations of the so-called explosive events in the solar
chromosphere by SUMER (the Solar Ultraviolet Measurements of Emitted
Radiation instrument) on the spacecraft SOHO (the Solar and Heliospheric
Observatory) reveal the presence of bi-directional plasma jets ejected from
small sites above the solar surface (Innes et al., 1997; cf. Antonucci and So-
mov, 1992). The structure of these jets evolves in the manner predicted by the-
oretical models of reconnection (see Figure 1 in Somov and Syrovatskii, 1976a),
thereby leading strong support to the view that reconnection is the fundamen-
tal process for accelerating plasma on the Sun.

8.3.3 An adiabatic model for two-temperature plasma

As we saw in Section 8.3.1, equilibrium in an electron-proton plasma is
achieved in three stages. First, the electrons reach a Maxwellian distribu-
tion with temperature Te on a time τee. Then, on a longer time,

τpp ≈ (mp/me)1/2 τee ,

the protons reach a Maxwellian distribution with temperature Tp. Finally,
the two temperatures equalize on the longest time of order

τep ∼ (mp/me) τee .

Let us suppose that a two-temperature plasma is created by a strong
shock wave in an electron-proton plasma. The shock primarily heats
ions because the kinetic energy of a particle is proportional to the particle
mass. In the postshock region, the protons reach thermal equilibrium on a
time τpp after they are heated through the shock (Zel’dovich and Raizer, 1966,
2002). Within this time the proton temperature is significantly higher than
the electron one. Subsequently the protons share their thermal energy with
the electrons through Coulomb collisions.

In astrophysical plasma, sometimes, a difference between electron
and ion temperatures can be observed at huge linear scales.

For example, the so-called X-ray clusters, or clusters of galaxies, with the X-
ray temperatures (4 − 10) × 107 K show noticeable differences between their
electron and ion temperatures at radii greater than 2 Mpc.

The clusters of galaxies are the largest objects in the Universe, contain-
ing galaxies and dark matter, collisionless particles and a diffuse gas compo-
nent. The last one is called the intracluster medium and has a temperature
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of about 108 K, thus emitting hard X-rays (HXR) mainly through the ther-
mal bremsstrahlung of the electrons. In the outer parts of the clusters, the
free-free cooling time is much longer than the Hubble time. So we neglect
radiative cooling in such plasma which is supposed to be heated by the shock
in the accretion flow (see Takizawa, 1998).

If we could also neglect heat conduction (for example, by assuming that the
thermal conductivity of the intracluster medium is strongly reduced by a tem-
perature gradient-driven kinetic instability, see Hattori and Umetsu, 2000),
then the electrons would be considered as an adiabatic gas. It would be very
convenient to calculate the electron and ion temperature profiles by using the
adiabatic model of a two-temperature plasma by Fox and Loeb (1997). This
is also the case if tangled magnetic fields, for example of turbulent origin, can
suppress heat conduction in high-temperature plasma. So we assume that
there exists

a chaotic magnetic field that is sufficiently strong to suppress heat
conduction in high-temperature astrophysical plasma, yet small
enough to have negligible dynamical and dissipative effects including
Joule heating.

These conditions seem to be approximatelly satiesfied in cluster environments;
for more detail see Fox and Loeb (1997).

The general case of a strong shock in a fully ionized plasma with heat
conduction is complicated by the fact that the electron thermal speed exceeds
the shock speed, allowing the electrons to preheat the plasma ahead of the
shock (Zel’dovich and Raizer, 1966). Usually heat conduction determines
internal scales of the problem being in competition with the thermal
instability driven by radiative cooling (Field, 1965; see also Somov and Sy-
rovatskii, 1976a). Radiation emitted by the high-temperature plasma behind
the shock also may heat a preshock region. Fast particles, escaping from the
high-tempertature plasma (see Section 8.4.3), may contribute the preshock
heating too. So we have to be very careful when we apply the adiabatic
model of two-temperature plasma to astrophysical conditions.

If come back to HXR tails observed in the X-ray spectra of some clus-
ters, one suggestion is that all or part of this emission might be nonthermal
bremsstrahlung from suprathermal electrons with energies of ∼ 10− 100 keV.
This nonthermal electrons would form a population in excess of the normal
thermal gas, which is the bulk of the intracluster medium. The most natural
explanation of this suprathermal population would be that they are particles
currently being accelerated to high energies by turbulence in the intraclus-
ter medium. Sarazin and Kempner (2000) have calculated models for the
nonthermal HXR bremsstrahlung in the clasters of galaxies.

The high-Mach-number shocks in young supernova remnants (SNRs)
do not produce electron-ion temperature equilibration either. The heating
process in these collisionless shocks is not well understood, but the Coulomb
collisions times are too long to provide the required heating. Presumably the
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plasma collective processes should be responsible for the heating; see discus-
sion and references in Section 16.4. This raises the question of whether the
heating process leads to temperature equilibration or not. It appears that
the observed electron temperature (Te ∼ 1 keV) remains very low compared
to the observed ion temperature (T i ∼ 500 keV for ions O VII) behind the
shock.

8.3.4 Two-temperature accretion flows

Magnetized accretion disks have become the most convincing physical para-
digm to explain a low emission from the central engines of active galactic
nuclei (AGN) and X-ray binary sources (see also Section 13.2). The observed
radiation comes from the energy dissipation required to maintain steady ac-
cretion of plasma on to the central object. In the standard model of the
optically-thin accreation disk, the heat energy released by viscous dissipation
is radiated almost immediatelly by the accreating plasma. So

the net luminosity must be equal to (≈ one-half) the gravitational
energy released as the mass falls onto the central object.

In a few of binary stellar systems, the mass of the primary star has been
measured and found to be consistent with the mass of a neutron star, ∼
1.4 M	. In several other systems, however, the mass of the primary is found
to be greater than 3 M	, which makes these stars too massive to be neutron
stars. These are considered as black hole candidates.

Although neutron stars and black holes have been distinguished on the
basis of their masses, the real physical distinction between the two is that
black holes must have a horizon (a surface through which the matter and
energy fall in but from which nothing escapes) while neutron stars are normal
stars with surfaces. This basic difference provides an opportunity to test the
reality of black holes (see Narayan et al., 1997).

Two-temperature advection-dominated accretion flows (ADAFs) have re-
ceived much attention in an effort to explain low-luminosity stellar and galac-
tic accreting sources (Blackman, 1999; Wiita, 1999; Manmoto, 2000). Here
the ions are assumed to receive the energy dissipated by the steady accretion
without having enough time to transfer their energy to the cooler
electrons before falling on to the central object.

While the electrons can almost always radiate efficiently, the protons will
not, as long as Coulomb processes are the only thing that share energy between
electrons and protons. So some or most of the dissipated energy is advected
(Section 13.2.3), not radiated, as it would have been if the electrons received
all of the dissipated energy. In the ADAF model, the heat generated via
viscosity is advected inward rather than radiated away locally like a standard
accretion disk (Novikov and Torn, 1973; Shakura and Sunyaev, 1973).

When the central object is a black hole, the advected energy is lost
forever rather than reradiated as it would be for a neutron star.
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Precisely such observed differences between corresponding X-ray binary sys-
tems have been purported to provide evidence for black hole horizons (Narayan
et al., 1997; see also Chakrabarti, 1999); see, however, discussion of the ADAF
model in Section 9.3.3.

8.4 Dynamic friction in astrophysical plasma

8.4.1 The collisional drag force and energy losses

8.4.1 (a) Chandrasekhar-Spitzer’s formulae

As in Sections 8.1 and 8.3, we use the concept of a test particle to illustrate
the effects of the collisional drag force in astrophysical plasma. A test particle
of mass m1 and charge e1 is incident with velocity v in a gas containing field
particles of mass m2, charge e2 and density n2. In what follows, v ‖ will be
the component of the test particle velocity parallel to the original direction of
its motion.

First, for the sake of simplicity, let us consider the field particles at rest . As
in Section 8.1.5, integration over all possible values of the impact parameter
up to the upper cut-off at l = lmax yields the following formulae describing
the mean rates of energy losses and of scattering for the incident particle
(Spitzer, 1962):

dE
dt

= −2πe 2
1 e 2

2 ln Λ
E

m1

m2
n2 v (8.49)

and
d

dt
v ‖ = −πe 2

1 e 2
2 ln Λ
E2

(
1 +

m1

m2

)
n2 v2 . (8.50)

Here E is the energy of the incident particle (see definition (5.2)).
If we consider a beam of accelerated electrons in astrophysical ionized

plasma, the most important are interactions with electrons and protons. So

dE
dt

= −2πe4 ln Λ
E

(
1 +

me

mp

)
ne v (8.51)

and
d

dt
v ‖ = −πe4 ln Λ

E2

(
3 +

me

mp

)
ne v2 . (8.52)

Thus

both ambient electrons and protons produce scattering (8.52) of
the incident electrons but only ambient electrons contribute
significantly to the energy losses;

the contribution of protons in the rate of energy losses (8.51) is proportional
to the small ratio me/mp. This is consistent, of course, with what we have
concluded in Section 4.2 for fast particles propagating in thermal plasma.
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We neglect collective effects due to interaction of the plasma and the elec-
tron beam as a whole without any justification here. It must be emphasized
also at this point that formulae (8.51) and (8.52) describe the mean rates of
change of E and v ‖ for the electrons of an incident beam but neglect the dis-
persions about these means. The accuracy of such procedure decreases as the
scattering and energy losses become not small. These ristrictions have been
discussed in Section 4.4. Now we recall that we have neglected the proper
motions of the plasma particles. Let us take them into account.

8.4.1 (b) Energy losses in plasma

The most general non-relativistic formula for Coulomb losses in the many-
component thermal plasma is given, for example, in Trubnikov (1965), Sivu-
khin (1966) and can be expressed as follows:

P ≡ dE
dt

=
∑

k

(
dE
dt

)
k

= −
∑

k

4πe4 ln Λ
mk

Z2Z 2
k nk

vk
Pk

(
v

vk
,
mk

M

)
. (8.53)

Here Zk, mk, nk and vk are the charge, mass, density and thermal velocity of
the plasma particles of the kind k; they have a temperature Tk. Z, M = Amp
and v are the charge, mass and velocity of the incident particles; their kinetic
energy E = Mv2/2. Contrary to definition (8.15) of the mean thermal velocity,
in formula (8.53) the thermal velocity is equal to the most probable velocity
of thermal particles (Sivukhin, 1966):

vk =
(

2kBTk

mk

)1/2

. (8.54)

It is convenient to determine the dimensionless variable

xk =
v

vk
=
(

mk

M

E
kBTk

)1/2

(8.55)

and to rewrite the dimensionless function Pk as follows

Pk

(
xk,

mk

M

)
=

1
xk

erf (xk) −
(
1 +

mk

M

) 2√
π

exp
(
−x 2

k

)
. (8.56)

Here

erf (xk) =
2√
π

xk∫
0

exp
(
−t 2) dt (8.57)

is the probability integral.
Let us consider the low-energy limit. Note that

Pk

(
xk,

mk

M

)
≈ 2√

π

[
−mk

M
+

2
3

(
1 +

mk

M

)
x 2

k

]
if xk 
 1 . (8.58)
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Hence the dimensionless function

Pk

(
0,

mk

M

)
= − 2√

π

mk

M
< 0 (8.59)

and, according to formula (8.53), the energy losses rate

Pk ≡
(

dE
dt

)
k

=
8
√

πe4 ln Λ
M

Z2Z 2
k nk

vk
> 0 . (8.60)

This means that a test particle with zeroth (or very small) velocity takes
energy from the field particles having the temperature Tk. The hot field
particles heat a cold test particle.

Consider an opposite limiting case. If xk � 1, then, being positive, the
function

Pk

(
xk,

mk

M

)
∼ 1

xk
→ 0 when xk � 1 . (8.61)

So the higher the energy of a test particle, the smaller are the Coulomb losses.
The maximum of the dimensionless function Pk is reached at xk, max ≈

1.52, see schematical Figure 8.6.

0
max x

P P

k

k,k

xk,

max

P
k,min

Figure 8.6: The Coulomb losses (with the sign minus in formula (8.53)) of
energy of a test particle as a function of its velocity measured in the most
probable velocity of the field thermal particles of the kind k.

Astrophysical plasma consists of many components. To obtain the total
losses it is necessary to sum over all of them in formula (8.53). However
two components – electrons and protons – give the largest contribution. In a
plasma consisting of electrons and protons with ne = np = n and temperatures
Te and Tp we have (Korchak, 1980):

P = −cE
Z2

A

n ln Λ√
kBTe

[
Pe

(
xe,

me

M

)
+
(

meTe

mpTp

)1/2

Pp

(
xp,

mp

M

)]
, (8.62)
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where the constant cE ≈ 1.6 × 10−23.
The location of both maxima of the function (8.62) is determined by con-

ditions:
x1 = xp ≈ 1.52 and x2 = xe ≈ 1.52 . (8.63)

As follows from formula (8.62), the ratio of losses in the maxima

Pmax, p

Pmax, e
=
(

me

mp

Te

Tp

)1/2

≈ 1
43

(
Te

Tp

)1/2

. (8.64)

The maximum of the electron Coulomb losses is the main energy
threshold of the particle acceleration from low energies.

The proton barrier is considerably lower than the electron one.
The energy loss contribution of the proton component of astrophysical

plasma does not seem to be important. This is not always true, however.
First of all, formula (8.64) shows that the Coulomb losses on thermal protons
increase with the growth of the ratio Te/Tp. This may be an important
case if particles of low energies are accelerated in super-hot turbulent-current
layers (SHTCLs, see vol. 2, Section 6.3). The second argument comes from a
consideration of very low energies of accelerated particles. In this region, the
efficiency of acceleration is low for the majority of accelerating mechanisms.
However, just in this region of low energies,

the Coulomb losses can strongly influence the nuclear composition
and the charge-state of accelerated particles in astrophysical plasma

(Korchak, 1980; see also Holman, 1995; Bodmer and Bochsler, 2000; Bykov
et al., 2000).

When particular acceleration mechanisms in a astrophysical plasma are
considered, the role of Coulomb collisions often reduces to the energy losses of
the accelerated particles and, in particular, to the presence of the loss barrier
at low velocities. As a result, Coulomb collisions decrease the efficiency of
any acceleration mechanism. Contrary to this statement, we shall see that
in many cases Coulomb collisions can play a much less trivial and not so
passive role (e.g., vol. 2, Section 12.3.1). This makes plasma astrophysics
more interesting.

8.4.1 (c) Dynamic friction in plasma

The collisional drag force Ff acts on a test particle (mass M , charge Ze) mov-
ing through the many-component plasma with the Maxwellian distribution of
field particles:

M
d

dt
v ‖ = −Ff = −

∑
k

Fk

(
v ‖
)
. (8.65)

Here the velocity component v ‖ is parallel to the vector of the initial velocity
of an incident test particle.
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For a test particle with a velocity v much below the thermal velocity (8.54)
of the field particles with the mass mk, temperature Tk, and number den-
sity nk,

Ff ≈
∑

k

4πe4 ln Λ
kB

Z2Z 2
k nk

Tk

(
1 +

mk

M

) 2
3
√

π

v ‖
vk

∼ v ‖ . (8.66)

Therefore at small velocities the collisional drag force is proportional to the
component v ‖ (cf. formula (1.14)).

When the test particle velocity exceeds the thermal velocity of the field
particles, the drag force decreases with v ‖ as follows:

Ff =
∑

k

Fk ≈
∑

k

2πe4 ln Λ
kB

Z2Z 2
k nk

Tk

(
1 +

mk

M

)(v ‖
vk

)−2

∼ v−2
‖ . (8.67)
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Figure 8.7: The collisional drag force Fk (with the sign minus in formula
(8.65)) on a test particle as a function of its velocity v ‖ measured in the most
probable velocity vk of the field particles of the kind k.

The general formula for collisional drag force is given, for example, in
Sivukhin (1966) and is illustrated by schematical Figure 8.7; here the dimen-
sionless variable x ‖ k = v ‖/vk. The drag force vanishes when x ‖ k = 0; it
linearly increases with increasing x ‖ k, becoming a maximum when

x ‖ k = x ‖ k, max ≈ 0.97, (8.68)

and then falls off, approaching zero asymptotically as x ‖ k → ∞. This be-
haviour of the drag force has important consequences discussed below.

8.4.2 Electric runaway

It has been assumed above that the plasma is characterized by the Maxwellian
distribution and that there are no external fields. Let us now assume that a
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uniform electric field E is switched on at some instant of time, the velocity
distribution being assumed to be Maxwellian at this time. At least, at the
beginning of the process when the velocity distribution has not yet changed
appreciably, the time variation of the test-particle momentum Mv due to
Coulomb collisions with plasma particles will still be given by formulae (8.66)
and (8.67) supplemented by the electric force ZeE in Equation (8.65).

Thus, considering the component v ‖ as a component of the test-particle
velocity v which is parallel to the electric field E, we rewrite Equation (8.65)
as follows:

M
d

dt
v ‖ = −Ff + ZeE = −

∑
k

Fk + ZeE . (8.69)

If the test-particle velocity is not small in comparison with the thermal veloc-
ity vk, then the collisional drag force on a test particle falls off with increasing
velocity v, according to formula (8.67), while the electric force is velocity
independent. Therefore

for all particles with high enough velocities the electric force exceeds
the collisional drag force, and the particles are able to run away from
the thermal distribution.

Equating the electric and collisional drag forces allows us to see the crit-
ical velocity vcr above which runaway will occur for a given electric field
strength E, see point B in Figure 8.7. Runaway in astrophysical plasma can
occur as long as there is a component of the electric field along the magnetic
field. Before the acceleration of the heavy ions becomes significant, the accel-
eration of the light electrons gives rise to the electron runaway effect which
was first predicted by Giovanelli (1949). He has shown that

• as the electric field applied to a highly ionized gas is increased, the cur-
rent, which is initially limited by elastic collisions between electrons and
positive ions, increases rapidly as the field strength reaches a critical
value;

• this is due to a reduction in the cross-section of positive ions for scat-
tering of electrons with increasing electron velocity.

In a strong electric field (or in a plasma of sufficiently low density and
high temperature) all the electrons are accelerated by the field, i.e. become
the runaway electrons. The Dreicer field (Dreicer, 1959):

EDr =
4πe3 ln Λ

kB

ne

Te
(8.70)

approximately correspondes to the electric field strength for which vcr = ve.
Here ve is the most probable velocity of thermal electrons (8.54).

In a weak field only very fast electrons will run away, i.e. those veloc-
ity v ‖ � vcr. The velocity vcr depends in an essential manner on the magni-
tude of electric field. In a weak field, the velocity vcr is naturally much larger
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than the thermal velocity of electrons in the plasma. Therefore the number
of runaway electrons should be very small if their distribution would remain
maxwellian for velocities v ‖ <∼ vcr. This is not true however.

In order to determine the flux of runaway electrons we must know the way
in which the density of electrons having a velocity v ‖ ∼ vcr varies under action
of the runaway effect. This means that we must know the velocity distribution
for the electrons for v ‖ ∼ vcr. To consider this problem self-consistently it is
necessary to solve the kinetic equation taking both collisions and the electric
field into account (Section 4.5). It appears that Coulomb collisions creat a
power-law tail distribution between a region of thermal velocities and the
region where v ‖ ≈ vcr with a constant flux of electrons directed from low
to high velocities. By so doing, Coulomb collisions increase the flux of
runaway electrons (Gurevich, 1961).

To have an idea of the magnitude of the Dreicer field (see Exercise 8.4),
let us substitute the definition of the Debye radius (8.31) in formula (8.70)
and assume that Te = Tp = T and ne = np = n. We find

EDr =
e

r 2
D

ln Λ
2

∼ e

r 2
D

.

(8.71)

So the Dreicer field is approximatelly equal to the electric field of a positive
charge at a distance slightly smaller than the Debye radius.

8.4.3 Thermal runaway in astrophysical plasma

Let us consider a plasma with a non-uniform distribution of electron temper-
ature Te. Let l

T
be the characteristic length of the temperature profile and λe

be the mean free path of thermal electrons. For the classical heat conductivity
to be applicable, it is necessary to satisfy a condition (Section 9.5):

λe 
 l
T

≡ Te

| ∇Te | . (8.72)

The mean free path of a particle increases with its velocity. This can be seen
from formula (8.13) which gives us the mean free path

λ = τv1 ∼ v4
1 . (8.73)

That is why

a number of fast electrons can penetrate from a hot plasma into cold
one even if the gradient of temperature is very small.

In such a way, the hot plasma can lose some part of its thermal energy
transferred by fast thermal escaping electrons. In addition to the usual heat
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flux (8.47), which is determined locally by the Coulomb collisions of plasma
electrons, there appears a non-local energy flux carried by the fast electrons
practically without collisions. A classical diffusive heat transfer and a con-
vective one, determined by thermal runaway electrons, are always present in
plasma.

It is interesting for astrophysical applications that, at not too small tem-
perature gradients, the convective transfer of thermal energy can play a prin-
cipal role. Gurevich and Istomin (1979) have examined the case of a small
temperature gradient. By using a perturbation analysis for the high-speed
kinetic equation (Section 4.2), they have shown that the fast growth of the
mean free path with increasing velocity gives an abrupt growth of the number
of fast electrons in the cold plasma.

The opposite case of a large temperature gradient in the narrow tran-
sition layer between a high-temperature plasma and a cold one was investi-
gated by many authors with applications to the problem of energy transfer in
the solar atmosphere. For example, Shoub (1983) has solved numerically the
boundary-value problem for the Fokker-Planck equation in the model of the
transition layer between the corona and the chromosphere in quiet conditions.
An excess of fast electrons has been found in the low transion layer region.
As for solar flares, the prevailing view is that

the high-temperature plasma can lose energy efficiently by the con-
vective heat transfer by the thermal runaway electrons

(see Somov, 1992).
In both cases, however, it is important to take into account that the fast

runaway electrons, similar to any beam of fast particles, generate the
electric field which drives the reverse current of thermal electrons.
Diakonov and Somov (1988) have found an analytical solution to the self-
consistent kinetic problem on the beam of escaping thermal electrons and its
associated reverse current (Section 4.5). They have shown that the reverse-
current electric field in solar flares leads to a significant reduction of the con-
vective heat flux carried by fast electrons escaping from the high-temperature
plasma to the cold one.

Recommended Reading: Sivukhin (1966), Somov (1992).

8.5 Practice: Exercises and Answers

Exercise 8.1 [ Section 8.1 ] For an electron, which moves in the solar corona
with a mean thermal velocity (Exercise 5.2), evaluate the characteristic time
of close and distant collisions with thermal protons.
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Answer. Characteristic time of close electron-proton collisions follows
from formula (8.13) and is equal to

τcl, ep =
m 2

e

πe4

V 3
Te

np
≈ 4.96 × 10−18 V 3

Te

np
, s . (8.74)

At typical temperatures of electrons in the corona Te ≈ 2×106 K, their thermal
velocity (5.54) VTe ≈ 9.5 × 108 cm s−1. Substituting this value in (8.74) and
assuming np ≈ ne ≈ 2 × 108 cm−3, we find that τcl, ep ≈ 22 s.

According to (8.21) the characteristic time of distant collisions is 8 ln Λ
shorter than the close collision time (8.74). Hence, first, we have to find the
value of the Coulomb logarithm (8.34):

ln Λ = ln

[(
3k 3/2

B

2π1/2 e3

)(
T 3

e

ne

)1/2
]

≈ ln

[
1.25 × 104

(
T 3

e

ne

)1/2
]

. (8.75)

At typical coronal temperature and density, formula (8.75) gives

ln Λ ≈ 22 .

With this value of ln Λ formula (8.21) gives

τ⊥, ep =
m 2

e

πe4

1
8 ln Λ

V 3
Te

np
≈ 2.87 × 10−20 V 3

Te

np
, s . (8.76)

In the solar corona τ⊥, ep ≈ 0.1 s. Therefore the distant collisions of thermal
electrons with thermal protons in the corona are really much more frequent
in comparison with close collisions.

Exercise 8.2 [ Section 8.2 ] Evaluate the Debye radius and the plasma fre-
quency in the solar corona.

Answer. From (8.31) it follows that for electron-proton plasma with
Te = Tp = T and ne = np = n the Debye radius

rD =
(

kBT

8πe2 n

)1/2

≈ 4.9
(

T

n

)1/2

, cm . (8.77)

Under conditions in the solar corona rD ≈ 0.5 cm.
The electron plasma frequency (8.35)

ω
(e)
pl =

(
4πe2 ne

me

)1/2

≈ 5.64 × 104 √
ne , rad s−1 , (8.78)

or
ν

(e)
pl = ω

(e)
pl /2π ≈ 104 √

ne , Hz . (8.79)

In the solar corona ω
(e)
pl ∼ 109 rad s−1.
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Exercise 8.3 [ Section 8.3 ] Under conditions of Exercise 8.1 evaluate the
exact (determined by formulae (8.38) and (8.39)) collisional times between
thermal electrons and between thermal protons, respectively. Compare these
times with the characteristic time of energy exchange between electrons and
protons in the coronal plasma.

Answer. By substituting ln Λ in (8.38), we have the following expression
for the thermal electron collisional time

τee =
m 2

e

0.714 e4 8π ln Λ
V 3

Te

ne
≈ 4.04 × 10−20 V 3

Te

ne
, s . (8.80)

In the solar corona τee ≈ 0.2 s. For thermal protons formula (8.39) gives

τpp =
m 2

p

0.714 e4 8π ln Λ
V 3

Tp

np
≈ 1.36 × 10−13 V 3

Tp

np
, s . (8.81)

Assuming T p = Te and np = ne , we find the proton collisional time in the
solar corona τpp ≈ 7 s; this is in a good agreement with formula (8.40), of
course.

Let us find the time of energy exchange between electrons and protons.
By using formula (8.44), we have

τep(E) ≈ 22 τpp ≈ 164 s . (8.82)

So the energy exchange between electron and proton components in the coro-
nal plasma is the slowest process determined by Coulomb collisions.

Exercise 8.4 [ Section 8.4 ] Evaluate and compare Dreicer’s electric fields in
the solar corona and in the chromosphere.

Answer. From (8.70) it follows that

EDr =
4πe3 ln Λ

kB

ne

Te
≈ 7.54 × 10−8 ne (cm−3)

Te (K)
, V cm−1. (8.83)

Here it was taken ln Λ ≈ 21.6 according to Exercise 8.1.
At typical temperature and number density of electrons in the solar corona

Te ≈ 2 × 106 K and ne ≈ 2 × 108 cm−3, we find that the Dreicer electric field
EDr ≈ 7 × 10−6 V cm−1 ∼ 10−5 V cm−1. The same value follows, of course,
from formula (8.71) with rD ≈ 0.5 cm (see Exercise 8.3).

In the solar chromosphere ne > 2× 1010 cm−3 and Te < 104 K. According
to formula (8.83), the Dreicer electric field EDr > 0.1 V cm−1 in the chromo-
sphere is, at least, 104 times stronger than the coronal one.

Exercise 8.5. Define the dynamic friction by gravitational force as momen-
tum loss by a massive moving object, for example a star in a galaxy, due to its
gravitational interaction with its own gravitationally induced wake. Discuss
two possibilities: (a) the background medium consists of collisionless matter
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(other stars in the galaxy), (b) the medium is entirely gaseous (e.g., Os-
triker, 1999). The first case, the gravitational drag in collisionless systems
(Chandrasekhar, 1943b), has widespread theoretical application in modern
astrophysics.

Hint. At first, let us qualitatively understand why a friction force should
arise in a collisionless gravitational system. Suppose a star has moved from a
point A to a point B as shown in Figure 8.8.

F

A B
v.

Figure 8.8: An illustration of the origin of dynamic friction in a collisionless
gravitational system.

While passing from A to B, the star attracted the surrounding stars to-
wards itself. Hence the number density of stars around AB should be slightly
larger than that ahead of B. Therefore the star at the point B experiences
a net gravitational attraction in the backward direction, i.e. in the direction
opposite to the direction of the star velocity vector v.

The variety of consequences of the gravitational drag force in collisionless
astronomical systems includes the mass segregation in star clusters, sinking
satellites in dark matter galaxy halo, orbital decay of binary supermassive
black holes after galaxy mergers, etc. (Binney and Tremain, 1987).

Exercise 8.6. Discuss why the rate of escape of stars from a galactic claster,
evaluated ignoring dynamic friction, is too rapid to be compatible with a
life for the cluster (Chandrasekhar, 1943c). Show that the escape rate is
drastically reduced when dynamic friction is allowed for.



Chapter 9

Macroscopic Description of
Astrophysical Plasma

In this Chapter we are not concerned with individual particles but we
will treat individual kinds of particles as continuous media interacting
between themselves and with an electromagnetic field. This approach
gives us the multi-fluid models of plasma, which are useful to consider
many properties of astrophysical plasma.

9.1 Summary of microscopic description

The averaged Liouville equation or kinetic equation gives us a microscopic
(though averaged in a statistical sense) description of the plasma state’s evo-
lution. Let us consider the way of transition to a less comprehensive macro-
scopic description of a plasma. We start from the kinetic equation for particles
of kind k, in the form derived in Section 2.2:

∂fk (X, t)
∂t

+ vα
∂fk (X, t)

∂rα
+

F k,α (X, t)
mk

∂fk (X, t)
∂vα

=

(
∂f̂k

∂t

)
c

. (9.1)

Here the statistically averaged force is

F k,α (X, t) =
∑

l

∫
X1

F kl,α (X, X1) fl (X1, t) dX1 (9.2)

and the collisional integral(
∂f̂k

∂t

)
c

= − ∂

∂vα
J k,α (X, t) , (9.3)
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where the flux of particles of kind k

J k,α (X, t) =
∑

l

∫
X1

1
mk

F kl,α (X, X1) f kl (X, X1, t) dX1 (9.4)

in the six-dimensional phase space X = { r,v}.

9.2 Transition to macroscopic description

Before turning our attention to the deduction of equations for the macroscopic
quantities or macroscopic transfer equations, let us define the following mo-
ments of the distribution function.

(a) The zeroth moment (without multiplying the distribution func-
tion fk by the velocity) ∫

v

fk (r,v, t) d 3v = nk(r, t) (9.5)

is obviously the number of particles of kind k in a unit volume, i.e. the number
density of particles of kind k. It is related to the mass density in a natural
way:

ρk(r, t) = mk nk(r, t) .

The plasma mass density is accordingly

ρ (r, t) =
∑

k

ρk(r, t) =
∑

k

mk nk(r, t) . (9.6)

(b) The first moment of the distribution function, i.e. the integral of
the product of the velocity to the first power and the distribution function fk,∫

v

vα fk(r,v, t) d 3v = nk uk,α (9.7)

is the product of the number density of particles of kind k by their mean
velocity

uk,α(r, t) =
1
nk

∫
v

vα fk(r,v, t) d 3v . (9.8)

Consequently, the mean momentum of particles of kind k in a unit volume is
expressed in terms of the first moment of the distribution function as follows

mk nk uk,α = mk

∫
v

vα fk(r,v, t) d 3v . (9.9)
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(c) The second moment of the distribution function is defined to be

Π (k)
αβ (r, t) = mk

∫
v

vαvβ fk (r,v, t) d 3v = mknk uk,αuk,β + p
(k)
αβ . (9.10)

Here we have introduced
v ′

α = vα − uk,α

which is the deviation of the particle velocity from its mean value

uk,α = 〈 vk,α 〉v

in the sense of the definition (9.8), so that 〈 v ′
α 〉 = 0; and

p
(k)
αβ = mk

∫
v

v ′
αv ′

β fk (r,v, t) d 3v , (9.11)

is termed the pressure tensor .
Π (k)

αβ is the tensor of momentum flux density for particles of kind k. Its

component Π (k)
αβ is the αth component of the momentum transported by the

particles of kind k, in a unit time, across the unit area perpendicular to the
axis rβ .

Once we know the distribution function fk (r,v, t), which contains all the
statistically averaged information on the system of the particles of kind k at
the microscopic level, we can derive all macroscopic quantities related to these
particles. So, higher moments of the distribution function will be introduced
as needed.

9.3 Macroscopic transfer equations

Note that the deduction of macroscopic equations is nothing but just the
derivation of the equations for the distribution function moments.

9.3.1 Equation for the zeroth moment

Let us calculate the zeroth moment of the kinetic Equation (9.1):∫
v

∂fk

∂t
d 3v +

∫
v

vα
∂fk

∂rα
d 3v +

∫
v

Fk,α

mk

∂fk

∂vα
d 3v =

∫
v

(
∂f̂k

∂t

)
c

d 3v . (9.12)

We interchange the order of integration over velocities and the differentiation
with respect to time t in the first term and with respect to coordinates rα in
the second one. Under the second integral

vα
∂fk

∂rα
=

∂

∂rα
(vαfk) − fk

∂vα

∂rα
=

∂

∂rα
(vαfk) − 0 ,
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since r and v are independent variables in phase space X.
Taking into account that the distribution function quickly approaches zero

as v → ∞, the integral of the third term is taken by parts and is equal to zero
(Exercise 9.1).

Finally, the integral of the right-hand side of (9.12) describes the change
in the number of particles of kind k in a unit volume, in a unit time, as a
result of collisions with particles of other kinds. If the processes of transfor-
mation, during which the particle kind can be changed (such as ionization,
recombination, charge exchange, dissociation etc., see Exercise 9.2), are not
allowed for, then the last integral is zero as well:∫

v

(
∂f̂k

∂t

)
c

d 3v = 0 . (9.13)

Thus, by integration of (9.12), the following equation is found to result
from (9.1)

∂nk

∂t
+

∂

∂rα
nk uk,α = 0 .

(9.14)

This is the usual continuity equation expressing the conservation of particles
of kind k or (that is the same, of course) conservation of their mass:

∂ρk

∂t
+

∂

∂rα
ρk uk,α = 0 . (9.15)

Here
ρk(r, t) = mk nk(r, t)

is the mass density of particles of kind k.
Equation (9.14) for the zeroth moment nk depends on the unknown first

moment uk,α. This is illustrated by Figure 9.1.

9.3.2 The momentum conservation law

Now let us calculate the first moment of the kinetic Equation (9.1) multiplied
by the mass mk:

mk

∫
v

∂fk

∂t
vα d 3v + mk

∫
v

vαvβ
∂fk

∂rβ
d 3v +

∫
v

vαFk,β
∂fk

∂vβ
d 3v =

= mk

∫
v

vα

(
∂f̂k

∂t

)
c

d 3v . (9.16)
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Figure 9.1: From the microscopic to the macroscopic view of a plasma. LT
is the Liouville theorem (1.11) for an exact distribution function f̂k. KE and
BC are the kinetic Equation (2.36) and the equation for the binary correla-
tion function. m0 is the equation for the zeroth moment of the distribution
function fk, the number density nk of the particles of kind k. This equation
is unclosed.

With allowance made for the definitions (9.7) and (9.10), we obtain the mo-
mentum conservation law

∂

∂t
(mknk uk,α) +

∂

∂rβ

(
mknk uk,αuk,β + p

(k)
αβ

)
−

− 〈F k,α(r, t) 〉v = 〈F
(c)
k,α (r, t) 〉v . (9.17)

Here p
(k)
αβ is the pressure tensor (9.11).

The mean force acting on the particles of kind k in a unit volume (the
mean force per unit volume) is (see Exercise 9.3):

〈F k,α (r, t) 〉v =
∫
v

F k,α (r,v, t) fk (r,v, t) d 3v . (9.18)

This should not be confused with the statistical mean force acting on a single
particle (see definition (9.2)). The statistically averaged force (9.2) is under
the integral in formula (9.18).

In the particular case of the Lorentz force, we rewrite the mean force per
unit volume as follows:

〈F k,α (r, t) 〉v = nkek

[
Eα +

1
c

(uk × B )α

]
or

〈F k,α (r, t) 〉v = ρ q
k Eα +

1
c

( j q
k × B )

α
.

(9.19)
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Here ρ q
k and j q

k are the mean densities of electric charge and current, produced
by the particles of kind k. However note that

the mean electromagnetic force couples all the charged components
of cosmic plasma together

because the electric and magnetic fields, E and B, act on all charged compo-
nents and, at the same time, all charged components contribute to the electric
and magnetic fields according to Maxwell’s equations.

The right-hand side of Equation (9.17) contains the mean force resulting
from collisions, i.e. the mean collisional force (see Exercise 9.4):

〈F
(c)
k,α (r, t) 〉v = mk

∫
v

vα

(
∂f̂k

∂t

)
c

d 3v . (9.20)

Substituting (9.3) in definition (9.20) gives us the following formula

〈F
(c)
k,α (r, t) 〉v = −mk

∫
v

vα
∂

∂vβ
J k,β d 3v . (9.21)

Let us integrate (9.21) by parts. For this purpose, at first, we find the deriva-
tive

∂

∂vβ
(vα J k,β) = J k,β

∂vα

∂vβ
+ vα

∂

∂vβ
J k,β .

From this it follows that

vα
∂

∂vβ
J k,β = −J k,β δαβ +

∂

∂vβ
(vα J k,β) =

= −J k,α +
∂

∂vβ
(vα J k,β) . (9.22)

On substituting (9.22) and (9.4) in (9.20) and integrating, we obtain the most
general formula for the mean collisional force

〈F
(c)
k,α (r, t) 〉v = mk

∫
v

J k,α (r,v, t) d 3v = (9.23)

=
∑
l 
=k

∫
v

∫
v1

∫
r1

F kl,α (r,v, r1,v1) fkl (r,v, r1,v1, t) d 3r1 d 3v1 d 3v .

Note that

for the particles of the same kind, the elastic collisions cannot change
the total particle momentum per unit volume.
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That is why l �= k in the sum (9.23).
Formula (9.23) contains the unknown binary correlation function fkl. The

last should be found from the correlation function Equation (2.46) indicated
as the second link BC in Figure 9.1. Thus the equation for the first moment
of the distribution function is as much unclosed as the initial kinetic Equa-
tion (9.1), which is the first equation of the chain for correlation functions
(see KE in Figure 9.1).

If there are several kinds of particles, and if each of them is in the state of
thermodynamic equilibrium, then the mean collisional force can convention-
ally be expressed in terms of the mean momentum loss during the collisions
of a particle of kind k with the particles of other kinds:

〈F
(c)
k,α (r, t) 〉v = −

∑
l 
=k

mknk (uk,α − ul,α)
τkl

.

(9.24)

Here τ−1
kl = ν kl is the mean frequency of collisions between the particles of

kinds k and l. This force is zero, once the particles of all kinds have identical
velocities. The mean collisional force, as well as the mean electromagnetic
force, tends to make astrophysical plasma be a single hydrodynamic medium
(see Section 12.1).

If ul,α < uk,α then the mean collisional force is negative:

the fastly moving particles of kind k slow down by dint of collisions
with the slowly moving particles of other kinds.

Formula (9.24) has the status of a good approximation in plasma astrophysics.

9.3.3 The energy conservation law

The second moment (9.10) of a distribution function fk is the tensor of mo-
mentum flux density Π (k)

αβ . In general, in order to find an equation for this
tensor, we should multiply the kinetic Equation (9.1) by the factor mk vαvβ

and integrate over velocity space v. In this way, we could arrive to a matrix
equation in partial derivatives. If we take the trace of this equation we could
obtain the partial differential scalar equation for energy density of the par-
ticles under consideration (e.g., Shkarofsky et al., 1966; § 9.2). This is the
correct self-consistent way which is the basis of the moment method. For our
aims, a more simple direct procedure is sufficient and correct.

In order to derive the energy conservation law , we multiply Equation (9.1)
by the particle’s kinetic energy mkv 2

α/2 and integrate over velocities, taking
into account that

vα = uk,α + v ′
α

and
v 2

α = u 2
k,α + (v ′

α)2 + 2uk,α v ′
α .
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A straightforward integration yields

∂

∂t

(
ρku 2

k

2
+ ρk εk

)
+

∂

∂rα

[
ρkuk,α

(
u 2

k

2
+ εk

)
+ p

(k)
αβ uk,β + q k,α

]
=

= ρ q
k (E · uk) +

(
F (c)

k · uk

)
+ Q

(c)
k (r, t) . (9.25)

Here

mk εk(r, t) =
1
nk

∫
v

mk (v ′
α)2

2
fk (r,v, t) d 3v =

=
mk

2nk

∫
v

(v ′
α)2 fk (r,v, t) d 3v (9.26)

is the mean kinetic energy of chaotic (non-directed) motion per single particle
of kind k. Thus the first term on the left-hand side of Equation (9.25) rep-
resents the time derivative of the energy of the particles of kink k in a unit
volume, which is the sum of kinetic energy of a regular motion with the mean
velocity uk and the so-called internal energy.

The pressure tensor can be written as

p
(k)
αβ = pk δαβ + π

(k)
αβ . (9.27)

Thus, on rearrangement, we obtain the following general equation

∂

∂t

(
ρku 2

k

2
+ ρk εk

)
+

∂

∂rα

[
ρkuk,α

(
u 2

k

2
+ wk

)
+ π

(k)
αβ uk,β + q k,α

]
=

= ρ q
k (E · uk) +

(
F (c)

k · uk

)
+ Q

(c)
k (r, t) . (9.28)

Here
wk = εk +

pk

ρk
(9.29)

is the heat function per unit mass. Therefore the second term on the left-hand
side contains the energy flux

ρkuk,α

(
u 2

k

2
+ wk

)
,

which can be called the ‘advective’ flux of kinetic energy.
Let us mention the well known astrophysical application of this term. The

advective cooling of ions heated by viscosity might dominate the cooling by the
electron-ion collisions, for example, in a low-density high-temperature plasma
flow near a rotating black hole. In such an advection-dominated accretion flow
(ADAF), the heat generated via viscosity is transferred inward rather than
radiated away locally like in a standard accretion disk model (see Sections 8.3.4
and 13.2).
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On the other hand, discussing the ADAF model as a solution for the im-
portant astrophysical problem should be treated with reasonable cautions.
Looking at Equations (9.25) for electrons and ions separately, we see how
many assumptions have to be made to arrive to the ADAF approximation.
For example, this is not realistic to assume that plasma electrons are heated
only due to Coulomb collisions with ions and, for this reason, the electrons are
much cooler than the ions. The suggestions underlying the ADAF approxi-
mation ignore several physical effects including reconnection and dissipation
of magnetic fields (regular and random) in astrophysical plasma. This makes
a physical basis of the model very uncertain.

∗ ∗ ∗

In order to clarify the physical meaning of the definitions given above, let
us, for a while, come back to the general principles of plasma physics. If the
particles of the kth kind are in the thermodynamic equilibrium state, then fk

is the Maxwellian function with the temperature Tk:

f
(0)

k (r,v) = nk(r)
[

mk

2π kBTk(r)

]3/2

exp

{
− mk |v − uk(r) |2

2 kBTk(r)

}
, (9.30)

see Section 9.5. In this case, according to formula (9.26), the mean kinetic
energy of chaotic motion per single particle of kind k

mk εk =
3
2

kBTk . (9.31)

The pressure tensor (9.11) is isotropic:

p
(k)
αβ = pk δαβ , (9.32)

where
pk = nk kBTk (9.33)

is the gas pressure of the particles of kind k. This is also the equation of state
for the ideal gas. Thus we have found that the pressure tensor is diagonal.
This implies the absence of viscosity for the ideal gas, as we shall see below.

The heat function per unit mass or, more exactly, the specific enthalpy is

wk = εk +
pk

ρk
=

5
2

kBTk

mk
. (9.34)

This is a particular case of the thermodynamic equilibrium state; it will be
discussed in Section 9.5.

∗ ∗ ∗

In general, we do not expect that the system of the particles of kind k has
reached thermodynamic equilibrium. Nevertheless we use the mean kinetic en-
ergy (9.26) to define the effective temperature Tk according to definition (9.31).
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Such a kinetic temperature is just a measure for the spread of the particle
distribution in velocity space. The kinetic temperatures of different compo-
nents in astrophysical plasma may differ from each other. Moreover, in an
anisotropic plasma, the kinetic temperatures parallel and perpendicular to
the magnetic field are different.

Without supposing thermodynamic equilibrium, in an anisotropic plasma,
the part associated with the deviation of the distribution function from the
isotropic one (which does not need to be a Maxwellian function in general) is
distinguished in the pressure tensor:

p
(k)
αβ − pk δαβ = π

(k)
αβ . (9.35)

Here π
(k)
αβ is called the viscous stress tensor . So the term π

(k)
αβ uk,β in the

energy-conservation Equation (9.25) represents the flux of energy released by
the viscous force in the particles of kind k.

The vector

q k,α =
∫
v

mk (v ′)2

2
v ′

α fk (r,v, t) d 3v (9.36)

is the heat flux density due to the particles of kind k in a system of coordinates,
in which the gas of these particles is immovable at a given point of space.
Formula (9.36) shows that a third order term appears in the second order
moment of the kinetic equation.

The right-hand side of the energy conservation law (9.25) contains the
following three terms:

(a) The first term

ρ q
k (E · uk) = nkek Eα uk,α (9.37)

is the work done by the Lorentz force (without the magnetic field, of course)
in unit time on unit volume.

(b) The second term(
F (c)

k · uk

)
= uk,α

∫
v

mk v ′
α

(
∂f̂k

∂t

)
c

d 3v (9.38)

is the work done by the collisional force of friction of the particles of kind k
with all other particles in unit time on unit volume. This means that

the work of friction force results from the mean momentum change
of particles of kind k (moving with the mean velocity uk) owing to
collisions with all other particles.

(c) The last term

Q
(c)
k (r, t) =

∫
v

mk (v ′)2

2

(
∂f̂k

∂t

)
c

d 3v (9.39)
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is the rate of thermal energy release (heating or cooling) in a gas of the
particles of kind k due to collisions with other particles. Recall that the
collisional integral depends on the binary correlation function fkl.

9.4 General properties of transfer equations

9.4.1 Divergent and hydrodynamic forms

Equations (9.14), (9.17), and (9.25) are referred to as the equations of particle,
momentum and energy transfer , respectively; and the approximation in which
they have been obtained is called the model of mutually penetrating charged
gases. These gases are not assumed to be in the thermodynamic equilibrium.
However the definition of the temperature (9.31) may be generally considered
as formally coinciding with the corresponding definition pertaining to the gas
of particles of kind k in thermodynamic equilibrium.

The equations of mass, momentum and energy transfer are written in the
‘divergent’ form. This essentially states the conservation laws and turns out
to be convenient in numerical work, to constract the conservative schemes for
computations. Sometimes, other forms are more convenient. For instance,
the equation of momentum transfer or simply the equation of motion (9.17)
can be brought into the frequently used form (with the aid of the continuity
Equation (9.14) to remove the derivative ∂ρk/∂t):

ρk

(
∂ uk,α

∂t
+ uk,β

∂ uk,α

∂rβ

)
= − ∂

∂rβ
p

(k)
αβ +

+ 〈F k,α (r, t) 〉v + 〈F
(c)
k,α (r, t) 〉v . (9.40)

The so-called substantial derivative appears on the left-hand side of this
equation:

d (k)

dt
=

∂

∂t
+ uk,β

∂

∂rβ
=

∂

∂t
+ uk · ∇r .

(9.41)

This substantial or advective derivative – the total time derivative following a
fluid element of kind k – is typical of hydrodynamic-type equations, to which
the equation of motion (9.40) belongs. The total time derivative with respect
to the mean velocity uk of the particles of kind k is different for each kind k.
In Chapter 12 on the one-fluid MHD theory, we shall introduce the substantial
derivative with respect to the average velocity of the plasma as a whole.

For the case of the Lorentz force (9.19), the equation of motion of the
particles of kind k can be rewritten as follows:

ρk
d (k) uk,α

dt
= − ∂

∂rβ
p

(k)
αβ + ρ q

k Eα +
1
c

( j q
k × B )

α
+



174 Chapter 9. Macroscopic Description of Plasma

+ 〈F
(c)
k,α (r, t) 〉v , (9.42)

where the last term is the mean collisional force (9.20) or, more specifically,
(9.24).

9.4.2 Status of conservation laws

As we saw in Section 9.3, when we treat a plasma as several continuous media
(the mutually penetrating charged gases), for each of them,

the main three average properties (density, velocity, and a quantity
like temperature or pressure) are governed by the basic conserva-
tion laws for mass, momentum, and energy in the media.

These conservation equations are useful, of course, except they contain
more unknowns than the number of equations. The transfer equations for
local macroscopic quantities are as much unclosed as the initial kinetic Equa-
tion (9.1) which is the first equation of the chain for correlation functions (see
KE in Figure 9.2). For example, formula (9.23) for the mean collisional force
contains the unknown binary correlation function fkl. The last should be
found from the correlation function Equation (2.46) indicated as the second
link BC in Figure 9.2. The terms (9.38) and (9.39) in the energy conservation
Equation (9.25) also depend on the unknown binary correlation function fkl.

LT KE

fk fk fkl< >
X

< >
v

n

u

n

ε

k

k

k

fkln

...BC

m0 :

m1 :

m2 :

...

...

fkl

fkl

Figure 9.2: LT is the Liouville
theorem for an exact distribution
function. KE and BC are the ki-
netic equation and the equation
for the binary correlation func-
tion. m0, m1 etc. are the chain
of the equation for the moments
of the distribution function fk.

It is also important that the transfer equations are unclosed in ‘orthogonal’
direction: the Equation (9.14) for the zeroth moment (see m0 in Figure 9.2),
density nk, depends on the unknown first moment, the mean velocity uk, and
so on. This process of generating equations for the higher moments could
be extended indefinitely depending solely on how many primary variables
(nk, uk, εk, ...) one is prepared to introduce. However, if at any level the
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distribution function is known, or can be approximated to, in terms of the
primary variables for which the equations have already been generated, then
this set of equation should be closed. We will come back to this critical point
in the next Section.

Three basic conservation laws for mass, momentum, and energy in
the components of astrophysical plasma represent the main transfer
equations that are the first three links in the chain of the equations
for the distribution function moments.

It certainly would not be possible to arrive to this fundamental conclusion
and would be difficult to derive the conservation laws in the form of the
transfer Equations (9.14), (9.17), and (9.25) in the way which is typical for
the majority of textbooks: from simple specific knowledges to more general
ones. Such generalization means that we could go from well-known things to
more complicated ones, for example, from the Newton equation of motion of
a particle to the ordinary hydrodynamic equation of fluid motion. Though
this way makes a text easier to read, it does not give the reader complete
knowledge of a subject. That is why we selected the opposite way: from
general to specific knowledges.

The consecutive consideration of physical principles, starting from the
most general ones, and of simplifying assumptions, which give us a simpler
description of plasma under astrophysical conditions, allows us to find the
answers to two key questions:

(1) what approximation is the best one (the simplest but sufficient) for
description of a phenomenon in astrophysical plasma;

(2) how to build an adequate model for the phenomenon, for example, a
solar flare or a flare in the corona of an accretion disk.

From a mathematical point of view, an elegant treatment of particle trans-
fer in plasma can be based on the use of non-canonical conjugate variables
(for example, r and p are not canonically conjugate for a system of par-
ticles moving under the Lorentz force) and the associated Lie algebra (see
Balescu, 1988).

9.5 Equation of state and transfer coefficients

The transfer equations for a plasma component k would be closed with respect
to the three unknown terms ρk, uk, and εk, if it were possible to express the
other unknown quantities pk, π

(k)
αβ , q

(k)
α , etc. in terms of these three variables,

or the variables ρk, uk and the formally defined temperature Tk. For this
purpose, we have to know the equation of state and the so-called transfer
coefficients. How can we find them?

Formally, we should write equations for higher (than second) moments of
the distribution function. However these equations will not be closed either.
How shall we proceed?
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According to the general principles of statistical physics,

any distribution function tends, by virtue of collisions, to assume
the Maxwellian form.

In this case the equation of state is that of the ideal gas.
The Maxwellian distribution is the kinetic equation solution for a sta-

tionary homogeneous plasma in the absence of any mean force in the thermal
equilibrium state, i.e. for a plasma in thermodynamic equilibrium. Then
spatial gradients and derivatives with respect to time are zero. In fact they
are always nonzero. For this reason, the assumption of full thermodynamic
equilibrium is replaced with the local thermodynamic equilibrium (LTE). Mo-
rover

if the gradients and derivatives are small , then the real distribution
function differs little from the local Maxwellian one, the difference
being proportional to the small gradients or derivatives.

Thus if we are interested in the processes occurring in a time t, which is
much greater than the characteristic collision time τ , and at a distance L,
which is much larger than the particle mean free path λ,

t � τ , L � λ , (9.43)

then the particle distribution function fk(r,v, t) can be thought of as a sum
of the local Maxwellian distribution

f
(0)

k (r,v, t) = nk(r, t)
[

mk

2π kBTk(r, t)

]3/2

×

× exp

{
− mk |v − uk(r, t) |2

2 kBTk(r, t)

}
(9.44)

and some small additional term f
(1)

k (r,v, t). Therefore

fk(r,v, t) = f
(0)

k (r,v, t) + f
(1)

k (r,v, t) ,
∣∣∣ f (1)

k

∣∣∣ < f
(0)

k . (9.45)

According to (9.44), the function f
(0)

k depends on t and r through nk(r, t),
Tk(r, t) and uk(r, t). Therefore we have derivatives ∂f

(0)
k /∂t and ∂f

(0)
k /∂rα.

Now we substitute (9.44) in the kinetic Equation (9.1) and linearly ap-
proximate the collisional integral (9.3) by using one or another of the models
introduced in Chapter 3; alternatively, see Exercise 9.5 as a specific exam-
ple. Then we seek the additional term f

(1)
k in the linear approximation with

respect to the factors disturbing the Maxwellian distribution, such as gradi-
ents of physical parameters, electric fields etc. The quantities q

(k)
α , π

(k)
αβ etc.,

which in their turn are proportional to the same factors, can be expressed in
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terms of f
(1)

k . The proportionality coefficients are the sought-after transfer
coefficients.

For example, in the case of the heat flux qα, both the additional term f
(1)

k

and the flux qα are chosen to be proportional to the temperature gradient.
Thus, in a fully ionized plasma in the limit of a vanishing magnetic field, we
find the heat flux in the electron component of plasma:

qe = −κe ∇Te , (9.46)

where

κe ≈ 1.84 × 10−5

lnΛ
T 5/2

e (9.47)

is the coefficient of electron thermal conductivity (Spitzer, 1962).
In the presence of strong magnetic field, all the transport coefficients be-

come highly anisotropic. Since the Maxwellian function (9.44) and its deriva-
tives are uniquely determined by the parameters nk, uk, and Tk, the transfer
coefficients are expressed in terms of the same quantities and magnetic field B,
of course.

This procedure makes it possible to close the set of transfer equa-
tions for astrophysical plasma

under the conditions (9.43). The first step is to calculate the departure f
(1)

k

from the Maxwellian distribution function by using some method of handling
collisions. Several models have been suggested on different grounds to account
for collisions in plasma (Shkarofsky et al., 1966; Krall and Trivelpiece, 1973).

The first three moment equations have been extensively used in astro-
physics, for example, in the investigations of the solar wind. They have led
to a significant understanding of phenomena such as escape, acceleration, and
cooling. However, as more detailed solar wind observations become available,
it appeared that the simplified, collisionally dominated models are not ade-
quate for most of the interplanetary range and for most of the times, i.e. most
physical states of the solar wind.

A higher order, closed set of equations for the six moments have been
derived for multi-fluid, moderately non-Maxwellian plasma of the solar wind
(Cuperman and Dryer, 1985). On the basis of these equations, for example,
the generalized expression for heat flux relates the flux to the temperature
gradients, relative streaming velocity, thermal anisotropies, temperature dif-
ferences of the components.

Recommended Reading: Braginskii (1965), Hollweg (1986).

9.6 Gravitational systems

There is a big difference between astrophysical plasmas and astrophysical
gravitational systems (Section 3.3). The gravitational attraction cannot be
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screened. A large-scale gravitational field always exists over a system. This
follows from the formula (3.17) which shows that the averaged gravitational
force cannot be equal to zero because the neutrality condition (3.18) cannot
be satisfied if all the particles have the same charge sign.

The large-scale gravitational field makes an overall thermodynamic
equilibrium impossible. On the contrary, the electric force in a plasma is
screened beyond the Debye radius and does not come in the way of the plasma
having a proper thermodynamic equilibrium. Therefore, as one might have
anticipated,

those results of plasma astrophysics which explicitly depend upon
the plasma being in thermodynamic equilibrium do not hold for
gravitational systems.

For gravitational systems, like the stars in a galaxy, we may hope that
the final distribution function reflects something about the initial conditions
rather than just reflecting the relaxation mechanism. The random motions
of the stars may be not only non-Maxwellian but even direction dependent
within the system. So galaxies may be providing us with clues on how they
were formed (Palmer, 1994; Bertin, 1999; Peacock, 1999).

If we assume that the stars form a collisionless system (see, however, Sec-
tion 3.3), they do not exert pressure. Such a pressureless gravitating system is
unstable (Jean’s instability). Presumably a real galaxy should possess some-
thing akin to pressure to withstand the collapsing action of its gravity. This
‘pressure’ is associated with the random motion of stars. So the role of sound
speed is assumed to be played by the root mean speed of the stars.

Another justification for treating a galaxy in the hydrodynamic approxi-
mation is that we consider processes on a spatial scale which is large enough
to contain a large number of stars – one of the two requirements of the con-
tinuum mechanics. Anyway, several aspects of the structure of a galaxy can
be understood by assuming that it is made up of a continuum medium. More
often than not,

hydrodynamics provides a first level description of an astrophysical
phenomenon governed predominantly by the gravitational force.

Magnetic fields are usually included later on in order to address additional
issues. For example, the early stages of star formation during which an inter-
stellar cloud of low density collapses under the action of its own gravity can
be modeled in the hydrodynamic approximation. However, when we want to
explain the difference between the angular momentum of the cloud and that
of the born star, we have to include the effect of a magnetic field.

9.7 Practice: Exercises and Answers

Exercise 9.1 [ Section 9.3 ] Show that the third integral in Equation (9.12)
equals zero.
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Answer. Let us find the derivative

∂

∂vα

(
Fk,α

mk
fk

)
=

Fk,α

mk

∂fk

∂vα
+

fk

mk

∂Fk,α

∂vα
=

Fk,α

mk

∂fk

∂vα
.

The condition (1.7) has been used on the right-hand side as the condition

∂Fk,α

∂vα
= 0 . (9.48)

Hence ∫
v

Fk,α

mk

∂fk

∂vα
d 3v =

Fk

mk
fk(r,v, t)

∣∣∣∣v→+∞

v→−∞
= 0 ,

if the distribution function fk quickly approaches zero as v → ∞; q.e.d.

Exercise 9.2 [ Section 9.3 ] Write the continuity equation with account of
ionization and recombination.

Answer. The continuity equation including the source/sink terms related
to ionization/recombination or charge exchange reads

∂nk

∂t
+

∂

∂rα
nk uk,α =

∑
l

( γ lk nl − γ kl nk ) . (9.49)

Here nk denotes the particle density of species k, either neutral or ionized.
The right-hand side of the equation is the change of nk due to collisions. The
coefficients γ kl and γ lk denote the rate of transformation of species k into
species l and vice versa. These rates must obey the relation∑

k

∑
l

( γ lk nl − γ kl nk ) = 0 , (9.50)

which ensures the total particle number density conservation.

Exercise 9.3 [ Section 9.3 ] Consider the third integral in the first moment
Equation (9.16).

Answer. Let us find the derivative

∂

∂vβ
(vαFk,β fk) = vαFk,β

∂fk

∂vβ
+ vα

∂Fk,β

∂vβ
fk + Fk,β fk

∂vα

∂vβ
=

= vαFk,β
∂fk

∂vβ
+ 0 + Fk,β fk δαβ . (9.51)

The condition (1.7) has been used on the right-hand side as the condition

∂Fk,β

∂vβ
= 0 . (9.52)
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It follows from (9.51) that

vαFk,β
∂fk

∂vβ
=

∂

∂vβ
(vαFk,β fk) − Fk,α fk .

Thus ∫
v

vαFk,β
∂fk

∂vβ
d 3v = vαFk fk

∣∣∣∣v→+∞

v→−∞
−
∫
v

Fk,α fk d 3v . (9.53)

The first term on the right-hand side equals zero, if the distribution function fk

quickly approaches zero as v → ∞. Therefore, for the mean force acting on
the particles of kind k in a unit volume, formula (9.18) has finally arrived.

Exercise 9.4 [ Section 9.3 ] Find a condition under which the mean collisional
force (9.20) is determined only by random motions of the particles of kind k.

Answer. In definition (9.20), let us take into account that

vα = uk,α + v ′
α.

Thus we obtain

〈F
(c)
k,α (r, t) 〉v = mkuk,α

∫
v

(
∂f̂k

∂t

)
c

d 3v + mk

∫
v

v ′
α

(
∂f̂k

∂t

)
c

d 3v . (9.54)

The first integral on the right-hand side equals zero if condition (9.13) is
satisfied. The remaining part

〈F
(c)
k,α (r, t) 〉v = mk

∫
v

v ′
α

(
∂f̂k

∂t

)
c

d 3v . (9.55)

Thus the average transfer of momentum from the particles of kind k to the
particles of other kinds is solely due to the random motions of the particles of
kind k if the processes of transformation, during which the particle kind can
be changed, are not allowed for.

Exercise 9.5 [ Section 9.5 ] Let us approximate the collisional integral (9.3)
by the following simple form (Bhatnagar et al., 1954):(

∂f̂k

∂t

)
c

= − fk(r,v, t) − f
(0)

k (r,v, t)
τc

, (9.56)

where an arbitrary distribution function fk(r,v, t) relaxes to the Maxwellian
distribution function f

(0)
k (r,v, t), as discussed in Section 9.5, in a collisional

time τc. Discuss why this simple approximation illuminates much of the basic
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physics of transport phenomena in a relatively less-painful way for neutral
gases but is not very reliable for plasmas, especially in the presence of magnetic
fields.

Comment. The departure of the distribution function from the pure
Maxwellian one, the function

f
(1)

k (r,v, t) = fk(r,v, t) − f
(0)

k (r,v, t) (9.57)

satisfies the following equation:

∂fk

∂t
+ vα

∂fk

∂rα
+

F k,α

mk

∂fk

∂vα
= − f

(1)
k

τc
, (9.58)

which is called the BGK (Bhatnagar, Gross and Krook) equation.
If a gradient in space, ∂/∂rα, gives rise to the departure from the

Maxwellian distribution, then in order to have a rough estimate of the ef-
fect, we may balance the second term on the left-hand side of Equation (9.58)
with its right-hand side:

| vα | f
(0)

k

L
≈

∣∣∣ f (1)
k

∣∣∣
τc

. (9.59)

Here | vα | is the typical velocity of the particles of kind k, L is the typ-
ical length scale over which properties of the system change appreciably.
From (9.59) it follows that ∣∣∣ f (1)

k

∣∣∣
f

(0)
k

≈ λc

L
. (9.60)

Thus the departure from the Maxwellian distribution will be small if the mean
free path λc is small compared to the typical length scale. This is consistent
with the second condition of (9.43).



Chapter 10

Multi-Fluid Models of
Astrophysical Plasma

The multi-fluid models of plasma in electric and magnetic fields allow
us to consider many important properties of astrophysical plasma, in
particular the Langmuir and electromagnetic waves, as well as many
other interesting applications.

10.1 Multi-fluid models in astrophysics

The transfer Equations (9.14), (9.17), and (9.25) give us the hydrodynamic-
type description of multi-component astrophysical plasma in electric and mag-
netic fields. The problem is that, if we would like to solve the equations for
one of the plasma components, we could not escape solving the transfer equa-
tions for all of the components since they depend on each other and on the
electric and magnetic fields. For this reason, we should minimize the number
of plasma components under consideration.

The ‘two-fluid’ hydrodynamic-type equations are often used to describe
the flow of the electrons and protons of a fully-ionized astrophysical plasma
under the action of an electric and magnetic fields. Such treatment yields,
for example, the generalized Ohm’s law in astrophysical plasma (Chapter 11)
as well as a dynamical friction force which maximizes when the relative drift
velocity is equal to the sum of the most probable random speeds of the elec-
trons and ions. For relative drift velocities in excess of this value, the friction
force decreases rapidly. The electron and ion currents flowing parallel to the
existing magnetic fields increase steadily in time, i.e. runaway (Dreicer, 1959;
see also Section 8.4).

The ‘multi-fluid’ models are useful, for example, to explore properties of
the solar wind (e.g., Bodmer and Bochsler, 2000). The electrons, protons,

183
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and alpha particles in the solar wind constitute the main three components,
while the less abundant elements and isotopes are treated as test species. To
model the main gases, we have to study solutions for the conservation-law
equations of the three components. The behaviour of minor ions depends in
a complicated manner on their mass and on their charge, structured by the
interplay of acceleration, gravity, pressure gradient, electromagnetic fields,
Coulomb friction force, and thermal diffusion. Such models allow one to
explore the efficiency of isotope fractionation processes in the solar corona.

10.2 Langmuir waves

Because a plasma consists of at least two components (electrons and ions),
the number of possible waves is larger than in a normal fluid or gas, where
sound or acoustic waves are the only possible waves. In this Section we shall
discuss the simplest waves in plasma, whose properties can be deduced from
the hydrodynamic-type equations for two mutually penetrating charged gases
(Section 9.4).

Although astrophysical plasma is almost always magnetized, we can quite
often neglect the magnetic field in discussing small-amplitude plasma waves;
the condition will become clear later. The reduced complexity of the governing
equations can be further simplified by approximations.

10.2.1 Langmuir waves in a cold plasma

Let us assume that the ions do not move at all (they are infinitely massive)
and they are uniformly distributed in space. So the ions have a fixed number
density n0. This is a cold ion approximation.

Let us also neglect all magnetic fields. We shall assume that any variations
of electron density ne, electron velocity ue, and related electric field E occur
only in one dimension – the x axis. Then we are left with a set of three
equations:

(a) the continuity equation (9.14) for electrons

∂ ne

∂t
+

∂

∂x
neue = 0 , (10.1)

(b) the motion equation (9.40)

mene

(
∂ ue

∂t
+ ue

∂ ue

∂x

)
= − ∂ pe

∂x
− eneEx , (10.2)

(c) the electric field equation

∂Ex

∂x
= 4πe (n0 − ne) . (10.3)
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In general, we cannot solve these nonlinear equations exactly, except for
very special cases. One of them is trivial:

ne = n0 , ue = 0 , pe = const , Ex = 0 . (10.4)

This solution corresponds to a stationary electron gas of uniform density.
Let us linearize Equations (10.1)–(10.3) with respect to the state (10.4).

This yields the following set of linear equations:

∂ n1

∂t
+ n0

∂ u1

∂x
= 0 , (10.5)

men0
∂ u1

∂t
= − ∂ p1

∂x
− eneE1 , (10.6)

∂ E1

∂x
= 4πe n1 . (10.7)

Let us consider the special case of cold electrons:

pe = 0 . (10.8)

Now we eliminate u1 and E1 from the set of equation by taking the time
derivative of Equation (10.5) to obtain the oscillator equation

∂2n1

∂t2
+
(

4πe2n0

me

)
n1 = 0 . (10.9)

If we displace some electrons to produce an initial perturbation, we create
a positive-charge density at the position where they started. This positive-
charge perturbation attracts the electrons, which will tend to move back to
their original position, but will overshoot it. They come back again, overshoot
it, and so on. Without any damping, the energy put into the plasma to create
the perturbation will remain in the plasma. So the oscillation will continue
forever with the frequency

ω
(e)
pl = ±

(
4πe2ne

me

)1/2

(10.10)

called the electron plasma frequency .
Therefore, in a two-component cold plasma, there exist the oscillations

of charge density – Langmuir waves which frequency is independent of the
wave vector k; so the group velocity, Vgr = dω/dk, is zero. Thus

in a cold plasma, Langmuir waves are spatially localized oscillations
of electric charge density which do not propagate at all.

Note that there is no equivalent to these oscillations in gasdynamics or
gravitational dynamics, for which there is no charge separation and related
electric-type force.
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10.2.2 Langmuir waves in a warm plasma

What happens with behaviour of a Langmuir wave, if the electron temperature
is not equal to zero? – Let us drop the assumption (10.8) of zero pressure in
the linear equations (10.5)–(10.7). We then must include the perturbation of
electron pressure

∂ p1

∂x
= n0kB

∂ T1

∂x
+ kBT0

∂ n1

∂x
(10.11)

in Equation (10.6).
Now we must relate n1 to T1 and vice versa. For example, we could

argue that for long-wavelength waves the compression is the one-dimensional
(N = 1) adiabatic process with the index γ = (N + 2)/N = 3. In this case,
the perturbation of electron pressure becomes

∂ p1

∂x
= 3kBT0

∂ n1

∂x
. (10.12)

Naturally we expect now an initial perturbation to propagate through the
plasma as a wave. Thus a plane-wave solution of the form

f1(x, t) = f̃1 exp [−i (ωt − kx) ] (10.13)

should satisfy the linear differential equations. The quantities with tildes are
the complex amplitudes. They obey three linear algebraic equations:

−iω ñ1 + i k n0 ũ1 = 0 ,

−iω men0 ũ1 + i k 3kBT0 ñ1 + en0 Ẽ1 = 0 ,

i k Ẽ1 + 4πe ñ1 = 0 .

To have a nontrivial solution, the determinant must be zero. Its solution is

ω = ±ω
(e)
pl

(
1 + 3 r2

D
k2)1/2

,

(10.14)

where
rD =

1√
3

VTe

ω
(e)
pl

, (10.15)

is the electron Debye radius; VTe is the mean thermal velocity (8.15) of elec-
trons in a plasma.

The dispersion equation (10.14) can be also derived from the Vlasov equa-
tion, of course (see formula (49) in Vlasov, 1938). It is similar to the well-
known relation for the propagation of transverse electromagnetic waves in a
vacuum, except that the role of the light velocity c is here played by the
thermal velocity VTe. This dispersion relation is shown in Figure 10.1.

Therefore the frequency ω of Langmuir waves in a plasma with warm
electrons depends on the wave vector k which is parallel to the x-axis. So
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D

ω

ω
pl
(e)

Figure 10.1: A dispersion diagram (solid curves) for Langmuir waves in a
warm plasma. The ions do not move at all. Dashed straight lines are drawn
for Langmuir waves in a cold plasma.

the group velocity, ∂ ω/∂k, of Langmuir waves in a warm plasma
without magnetic field is not equal to zero.

They oscillate at the electron plasma frequency ω
(e)
pl and propagate in a warm

plasma. It follows from (10.14) and (10.15) that the group velocity is

Vgr =
∂ ω

∂ k
= V 2

Te
k

ω
=

3kBT

me

k

ω
. (10.16)

Therefore the plasma waves are propagating as long as the electron tempera-
ture is non-zero. Moreover, due to the small mass of the electrons, the group
velocity (10.16) is always relatively large.

10.2.3 Ion effects in Langmuir waves

Let us show that, when the ions are allowed to move, ion contributions are
important only for slow variations or low-frequency waves because the ions
cannot react quickly enough.

We are still dealing with linear waves which involve only the first-order
electric field E(1) directed along the wave vector k which is parallel to the x-
axis. Linearizing the continuity equations for electrons and ions, the motion
equations for electrons and ions, as well as the electric field equation, let us
assume that the electrons and ions both obey the adiabatic Equation (10.12).
Then we again use the wave solution (10.13) to reduce the linearized differ-
ential equations to algebraic ones and to obtain the determinant. Because
mi/me � 1, we neglect the term me ω2 in this determinant as compared with
the term mi ω

2. By so doing, we obtain the relation

ω2 = k2
(

γi kBTi

mi
+

γe kBTe

mi

1
1 + γe k2r2

D

)
. (10.17)

This dispersion relation is shown in Figure 10.2.
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k = V/ ia
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b

Figure 10.2: A dispersion diagram for ion-acoustic waves (part a) and for ion
plasma waves (part b) in a warm plasma without magnetic field.

In the limit of small krD

ω2 = k2
(

γi kBTi

mi
+

γe kBTe

mi

)
= k2V 2

ia . (10.18)

This is the so-called ion-acoustic waves. They are shown by a curve part (a)
in Figure 10.2. The group velocity of the wave is independent of k:

Vgr =
∂ ω

∂ k
= Via =

(
γi kBTi + γe kBTe

mi

)1/2

. (10.19)

An opposite limit is obtained for cold ions. If ion temperature Ti → 0, then
krD � 1, i.e., short wavelengths are under consideration. In this case, shown
by the curve part (b) in Figure 10.2, the cold ions oscillate with a frequency

ω
(i)
pl = ±

(
4πe2ne

mi

)1/2

(10.20)

called the ion plasma frequency .
Ion-acoustic waves are observed in many cases. They were registred, for

example, by the spacecraft Voyager 1 in the upstream side of the Jovian bow
shock. Ion-acoustic waves presumably play an important role in solar flares,
for example, in super-hot turbulent-current layers (see vol. 2, Section 6.3).

10.3 Electromagnetic waves in plasma

In this Section we still assume that the unperturbed plasma has no magnetic
field: B (0) = 0. However we shall discuss waves that carry not only an electric
field E (1) but also a magnetic field B (1).

Let us consider transversal waves, so that k · E (1) = 0 and k · B (1) = 0.
The last equality is imposed by Equation (1.26) and is always true. We do
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not need Equation (1.27) in this case either. We shall neglect the ion motion,
which is justified for high-frequency waves. So the remaining equations in
their linearized form are

∂ u (1)
e

∂t
= −∇p (1)

e − en (0)
e E (1) , (10.21)

∂n
(1)
e

∂t
+ n (0)

e div u (1)
e = 0 , (10.22)

curl B (1) =
4π

c
j (1) +

1
c

∂ E (1)

∂t
, (10.23)

curl E (1) = −1
c

∂ B (1)

∂t
, (10.24)

j (1) = en (0)
e u (1)

e . (10.25)

The Lorentz force does not appear in the electron-motion Equation (10.21)
because it is of the second-order small value proportional to u (1)

e × B (1).
Furthermore vectors E (1) and u (1)

e are perpendicular to the wave vector k,
and thus n

(1)
e = 0 and p

(1)
e = 0. After assuming the exponential plane-wave

form (10.13) and using usual algebra, we find the dispersion equation for
electromagnetic waves:

ω2 = ω
(e) 2
pl + k2c2 . (10.26)

Here c is the speed of light in a vacuum. This dispersion relation is shown in
Figure 10.3.

k

ω

ω
pl
(e)

ω

0

k = c/
Figure 10.3: The dispersion diagram for
electromagnetic waves in a cold plasma
without magnetic field. For large values
of k (short wavelengths), the group ve-
locity (the slope of the solid curve) and
phase velocity approach the speed of the
light (dashed line). For small values of
k (long wavelengths), the group velocity
goes to zero.

If the wave frequency ω is much larger the electron plasma frequency ω
(e)
pl ,

the wave becomes a free-space light wave with ω = kc.
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If ω → ω
(e)
pl , a wave would decay in space and not propagate. In this case,

the index of refraction

nr =
c

Vph
=

ck

ω
=

(
1 −

ω
(e) 2
pl

ω2

)1/2

(10.27)

goes to zero. If ω < ω
(e)
pl , the refraction index becomes imaginary.

Moving through astrophysical plasma of changing ω
(e)
pl , a wave is reflected

when ω = ω
(e)
pl and, therefore, nr = 0. This allows one to measure remotely

the plasma density, for example, in the Earth ionosphere.
Another application is in ionospheric heating. At the height where ω

(e)
pl is

equal to the wave frequency, the group velocity

Vgr =
∂ ω

∂ k
=

kc2

ω
= nrc (10.28)

also goes to zero.

The wave amplitude becames large there because its flux of energy
cannot propagate.

The large electric field of the wave can accelerate electrons and drive currents
in the ionospheric plasma. In this way, the wave can heat and modify the
plasma. If the power from a transmitter on the ground emitting a radiation
at a frequency ω is large enough, the heating is quite significant.

10.4 What do we miss?

We have considered two basic types of waves in a two-fluid plasma. The
Langmuir wave or plasma wave (as well as the ion plasma wave) does not
have a wave magnetic field. The electromagnetic wave does have a magnetic
field but can propagate only if its frequency is above the plasma frequency. We
should see that, when there is a stationary magnetic field in the plasma, the
wave properties become more complex and more interesting (e.g., Stix, 1992;
Zheleznyakov, 1996).

In particular, we could find that the electromagnetic wave with its fre-
quency below the plasma frequency can propagate through a magnetized
plasma. For low-frequency waves this effect will be demonstrated in the mag-
netohydrodynamic (MHD) approximation in Chapter 15. What else has been
lost in the above consideration?

The advantage of the hydrodynamic approach used in this Section to study
the basic properties of waves in a two-fluid plasma is the relative simplicity.
The hydrodynamic-type equations have three spatial dimensions and time,
rather than the seven-dimensional phase space of the Vlasov kinetic theory
(Section 3.1.2).
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The obvious disadvantage is that some subtle fine effects, such as Landau
damping (Section 7.1.2) which is caused by a resonance with particles moving
at the phase velocity of a wave, cannot be obtained from the hydrodynamic-
type equations. We have to use a kinetic treatment to specify how a distribu-
tion of particles responds to a wave. In this case we use the Vlasov equation
to specify how the distribution functions of electrons and ions are affected by
the wave fields (e.g., Chapter 7).

To calculate the collisional damping of plasma waves simply, the simplest
hydrodynamic model is useful (Exercise 10.3).

The hydrodynamic-type models work only when a finite number of the low-
order moments are sufficient to provide all the essential information about the
system.

If the distribution function has some unusual features, then a few
low-order moments may not carry all the necassary information,

and we may lose important physics by restricting ourselves to the quasi-
hydrodynamic description of cosmic plasma.

10.5 Practice: Exercises and Answers

Exercise 10.1. Show that in the solar corona a dynamic viscosity coefficient
can be given by a simple formula (Hollweg, 1986):

η ≈ 10−16 T 5/2
p , g cm−1 s−1 , (10.29)

where Tp is the proton temperature, and the Coulomb logarithm has been
taken to be 22. So, with Tp ≈ 2×106 K, the viscosity coefficient in the corona

η ∼ 1 g cm−1 s−1.

Why does the viscosity grow with the proton temperature? Why is it so large
and does it grow with temperature so quickly?

Hint. Consider a fully-ionized hydrogen plasma in a magnetic field. Let
τ pp represent the typical Coulomb collisional time (8.39) for thermal protons.
Let ω (p)

B
denote the proton cyclotron frequency (5.52).

Write the viscous stress tensor (9.35) for the protons. This tensor involves
five coefficients of viscosity, denoted η 0, η 1, ... η 4 by Braginskii (1965). Show
that the coefficient η 0 is by far the largest one (10.29). The coefficients η 3

and η 4 are smaller by factors ∼
(
ω (p)

B
τpp
)−1

, while η 1 and η 2 are smaller

than η 0 by factors ∼
(
ω (p)

B
τpp
)−2

. Thus the parts of the viscous stress tensor
involving the off-diagonal terms can often be neglected. The part involving
η 0 can be dynamically and thermodynamically important.

Exercise 10.2. Discuss a famous puzzle of plasma astrophysics. Solar flares
generate electron beams that move through the solar corona and the inter-
planetary space at velocities ∼ 0.3 c (see Exercise 5.3). These fast beams
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should lose their energy quickly to plasma waves. In fact, they do generate
waves called solar type III radio bursts. However the solar fast electrons are
still seen far beyond the orbit of the Earth. Why?

Hint. The link between the electron beams and the waves observed in
space near the Earth or even on the ground is a little more complex than it
seems. It involves the transformation of the electrostatic plasma oscillations
with frequency near ω

(e)
pl into electromagnetic waves at the same frequency.

In any realistic situation, the electrons in the beam are not cold but have a
thermal spread. They cause a plasma wave to grow. But as the electric field
in the wave grows, the electrons are heated.

The spreading and slowing of the beam in the velocity space cannot be
described by fluid equations. This process is often referred to as quasi-linear
diffusion. We can expect that the electron beam has slowed and spread in
the velocity space to such a degree that waves do not grow anymore. A stable
situation can occur, and a warm electron beam can propagate through the
plasma without lossing energy.

Exercise 10.3. Show that Coulomb collisions damp the Langmuir plasma
waves with the rate

Im ω = −2 νei . (10.30)

Hint. Following formula (9.24), add to the right-hand side of the electron
motion Equation (10.2) the collisional friction term

+ mene νei (ui,α − ue,α) .
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The Generalized Ohm’s
Law in Plasma

The multi-fluid models of the astrophysical plasma in magnetic field
allow us to derive the generalized Ohm’s law and to consider important
physical approximations as well as many interesting applications.

11.1 The classic Ohm’s law

The classic Ohm’s law, j = σE, relates the current j to the electric field E in a
conductor in rest. The coefficient σ is electric conductivity. As we know, the
electric field in plasma determines the electron and ion acceleration, rather
than their velocity. That is why, generally, such a simple relation as the classic
Ohm’s law does not exist. Moreover, while considering astrophysical plasmas,
it is necessary to take into account the presence of a magnetic field and the
motion of a plasma as a whole, and as a medium consisting of several moving
components.

Recall the way of deriving the usual classic Ohm’s law in plasma without
magnetic field. The electric current is determined by the relative motion of
electrons and ions. Considering the processes in which all quantities vary
only slightly in a time between the electron-ion collisions, electron inertia can
be neglected. An equilibrium is set up between the electric field action and
electrons-on-ions friction (see point A in Figure 8.7). Let us assume that the
ions do not move. Then the condition for this equilibrium with respect to the
electron gas

0 = −eneEα + mene νei ( 0 − ue,α)

results in Ohm’s law

jα = −eneue,α =
e2ne

meνei
Eα = σEα , (11.1)

193
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where

σ =
e2ne

meνei
(11.2)

is the electric conductivity .
In order to deduce the generalized Ohm’s law for the plasma with mag-

netic field, we have to consider at least two equations of motion – for the elec-
tron and ion components. A crude theory of conductivity in a fully-ionized
plasma can be given in terms of a two-fluid approximation. The more general
case, with the motion of neutrals taken into account, has been considered
by Schlüter (1951), Alfvén and Fälthammar (1963); see also different appli-
cations of the generalized Ohm’s law in the three-component astrophysical
plasma (Schabansky, 1971; Kunkel, 1984; Hénoux and Somov, 1991 and 1997;
Murata, 1991).

11.2 Derivation of basic equations

Let us write the momentum-transfer Equations (9.17) for the electrons and
ions, taking proper account of the Lorentz force (9.19) and the friction
force (9.24). We have two following equations:

me
∂

∂t
(ne ue,α) = −

∂ Π (e)
αβ

∂rβ
− ene

[
E +

1
c

(ue × B )
]

α

+

+ mene νei (ui,α − ue,α) , (11.3)

mi
∂

∂t
(ni ui,α) = −

∂ Π (i)
αβ

∂rβ
+ Zi eni

[
E +

1
c

(ui × B )
]

α

+

+ meni νei (ue,α − ui,α) . (11.4)

The last term in (11.3) represents the mean momentum transferred, because
of collisions (formula (9.24)), from ions to electrons. It is equal, with opposite
sign, to the last term in (11.4). It is assumed that there are just two kinds
of particles, their total momentum remaining constant under the action of
elastic collisions.

Suppose that the ions are protons (Zi = 1) and electrical neutrality is
observed:

ni = ne = n .

Let us multiply Equation (11.3) by −e/me and add it to Equation (11.4)
multiplied by e/mi. The result is

∂

∂t
[ en (ui,α − ue,α) ] =

[
e

mi
F i,α − e

me
F e,α

]
+

+ e2n

(
1

me
+

1
mi

)
Eα +

e2n

c

[(
u e

me
× B

)
α

+
(

u i

mi
× B

)
α

]
−
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− νei en

[
(ui,α − ue,α) +

me

mi
(ui,α − ue,α)

]
. (11.5)

Here

F e,α = −
∂ Π (e)

αβ

∂rβ
and F i,α =

∂ Π (i)
αβ

∂rβ
. (11.6)

Let us introduce the velocity of the centre-of-mass system

u =
mi u i + me u e

mi + me
. (11.7)

Since mi � me,
u = u i +

me

mi
u e ≈ u i . (11.8)

On treating Equation (11.5), we neglect the small terms of the order of the
ratio me/mi. On rearrangement, we obtain the equation for the current

j = en (u i − u e) (11.9)

in the system of coordinates (11.8). This equation is

∂ j ′

∂t
=

e2n

me

[
E +

1
c

(u × B )
]

− e

mec
( j ′ × B ) −

− νei j ′ +
e

mi
Fi − e

me
Fe . (11.10)

The prime designates the electric current in the system of moving plasma, i.e.
in the rest-frame of the plasma. Let Eu denote the electric field in this frame
of reference, i.e.

Eu = E +
1
c
u × B . (11.11)

Now we divide Equation (11.10) by νei and represent it in the form

j ′ =
e2n

meνei
Eu −

ω (e)
B

νei
j ′ × n − 1

νei

∂ j ′

∂t
+

1
νei

(
e

mi
Fi − e

me
Fe

)
, (11.12)

where n = B/B and ω (e)
B

= eB/mc is the electron gyro-frequency.
Thus we have derived a differential equation for the current j ′.
The third and the fourth terms on the right do not depend of magnetic

field. Let us replace them by some effective electric field such that

σEeff = − 1
νei

∂ j ′

∂t
+

e

νei

(
1
mi

Fi − 1
me

Fe

)
, (11.13)

where

σ =
e2n

me νei
(11.14)
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is the plasma conductivity in the absence of magnetic field. Combine the
fields (11.11) and (11.13),

E ′ = Eu + Eeff ,

in order to rewrite (11.12) in the form

j ′ = σE ′ −
ω (e)

B

νei
j ′ × n . (11.15)

We will consider (11.15) as an algebraic equation in j ′, neglecting the ∂ j ′/∂t
dependence of the field (11.13). Note, however, that

the term ∂ j ′/∂t is by no means small in the problem of the particle
acceleration by a strong electric field in astrophysical plasma.

Collisionless reconnection is an example in which particle inertia (usually
combined with anomalous resistivity, see vol. 2, Section 6.3) of the current
replaces classical resistivity in allowing fast reconnection to occur (e.g., Drake
and Kleva, 1991; Horiuchi and Sato, 1994).

11.3 The general solution

Let us find the solution to (11.15) as a sum of three currents

j ′ = σ‖ E ′
‖ + σ⊥ E ′

⊥ + σH n × E ′
⊥ .

(11.16)

Substituting formula (11.16) in Equation (11.15) gives

σ ‖ = σ =
e2n

meνei
, (11.17)

σ⊥ = σ
1

1 +
(
ω

(e)
B τei

)2 , τei =
1
νei

; (11.18)

σH = σ⊥
(
ω (e)

B
τei

)
= σ

ω (e)
B

τei

1 +
(
ω

(e)
B τei

)2 . (11.19)

Formula (11.16) is called the generalized Ohm’s law. It shows that the
presence of a magnetic field in a plasma not only changes the magnitude of
the conductivity, but the form of Ohm’s law as well: generally, the electric
field and the resulting current are not parallel, since σ⊥ �= σ ‖. Therefore the
electric conductivity of a plasma in a magnetic field is anisotropic. Moreover
the current component j ′

H
which is perpendicular to both the magnetic and

electric fields, appears in the plasma. This component is the so-called Hall
current (Figure 11.1).



11.4. Conductivity of Magnetized Plasma 197

Figure 11.1: The generalized Ohm’s law
in a magnetized plasma: the direct (j ′

‖
and j ′

⊥) and Hall’s (j ′
H
) currents in a

plasma with electric (E ′) and magnetic
(B) fields.
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11.4 The conductivity of magnetized plasma

11.4.1 Two limiting cases

The magnetic-field influence on the conductivity σ⊥ of the ‘direct’ current j ′
⊥

across the magnetic field B and on the Hall-current conductivity σH is deter-
mined by the parameter ω (e)

B
τei which is the turning angle of an electron on

the Larmor circle in the intercollisional time. Let us consider two limiting
cases.

(a) Let the turning angle be small: )

ω (e)
B

τei 
 1 . (11.20)

Obviously this inequality corresponds to the weak magnetic field or dense cool
plasma, so that the electric current is scarcely affected by the magnetic field:

σ⊥ ≈ σ ‖ = σ ,
σH

σ
≈ ω (e)

B
τei 
 1 . (11.21)

Thus in a frame of reference associated with the plasma, the usual Ohm’s law
with isotropic conductivity holds.

(b) The opposite case, when the electrons spiral freely between rare
collisions:

ω (e)
B

τei � 1 , (11.22)

corresponds to the strong magnetic field and hot rarefied plasma. This plasma
is termed the magnetized one. It is frequently encountered under astrophysical
conditions. In this case

σ ‖ = σ , σ⊥ ≈ σ
(
ω (e)

B
τei

)−2
, σH ≈ σ

(
ω (e)

B
τei

)−1
, (11.23)

or
σ‖ ≈

(
ω (e)

B
τei

)
σH ≈

(
ω (e)

B
τei

)2
σ⊥ . (11.24)
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Hence in the magnetized plasma, for example in the solar corona (see
Exercises 11.1 and 11.2),

σ‖ � σH � σ⊥ .

(11.25)

In other words, the impact of the magnetic field on the direct current is
especially strong for the component resulting from the electric field E ′

⊥. The
current in the E ′

⊥ direction is considerably weaker than it would be in the
absence of a magnetic field. Why is this so?

11.4.2 The physical interpretation

The physical mechanism of the perpendicular current j ′
⊥ is illustrated by Fig-

ure 11.2.
The primary effect of the electric field E ′

⊥ in the presence of the
magnetic field B is not the current in the direction E ′

⊥, but rather
the electric drift in the direction perpendicular to both B and E ′

⊥.

The electric drift velocity (5.22) is independent of the particle’s mass and
charge. The electric drift of electrons and ions generates the motion of the
plasma as a whole with the velocity v = vd. This would be the case if there
were no collisions at all (Figure 5.3).

E

vd

B vd

p

e

+

- 1

2
3

⊥

⊥j

u e⊥

Figure 11.2: Initiation of the current in the direction of the perpendicular
field E ′

⊥ as the result of rare collisions (1, 2, 3, ...) against a background of
the electric drift. Only collisions of electrons are shown.

Collisions, even infrequent ones, result in a disturbance of the particle’s
Larmor motion, leading to a displacement of the ions (not shown in Fig-
ure 11.2) along E ′

⊥, and the electrons in the opposite direction as shown in



11.5. Currents and Charges in Plasma 199

Figure 11.2. The small electric current j ′
⊥ (a factor of ω (e)

B
τei smaller than the

drift one) appears in the direction E ′
⊥.

To ensure the current across the magnetic field, the so-called Hall electric
field is necessary, that is the electric field component perpendicular to both
the current j ′

⊥ and the field B (Braginskii, 1965; Sivukhin, 1996, Chapter 7,
§ 98). This is the secondary effect but it is not small in a strong magnetic
field.

The Hall electric field balances the Lorentz force acting on the car-
riers of the perpendicular electric current in plasma due to the pres-
ence of a magnetic field,

i.e. the force
F ( j ′

⊥) =
en

c
u i⊥ × B − en

c
u e⊥ × B =

=
1
c

en (u i⊥ − u e⊥) × B (11.26)

Hence the magnitude of the Hall electric field is

E ′
H

=
1

enc
j ′
⊥ × B . (11.27)

The Hall electric field in plasma is frequently set up automatically, as a
consequence of small charge separation within the limits of quasi-neutrality.
In this case the ‘external’ field, which has to be applied to the plasma, is
determined by the expressions

E ′
‖ = j ′

‖ /σ‖ and E ′
⊥ = j ′

⊥ /σ⊥ . (11.28)

We shall not discuss here the dissipation process under the conditions
of anisotropic conductivity. In general, the symmetric highest component
of the conductivity tensor can play the most important role (see Landau
et al., 1984, Chapter 3) in this process of fundamental significance for the
flare energy release problem. In the particular case of a fully-ionized plasma,
the tendency for a particle to spiral round the magnetic field lines insures
the great reduction in the transversal conductivity (11.18). However, since
the dissipation of the energy of the electric current into Joule heat is due
solely to collisions between particles, the reduced conductivity does not lead
to increased dissipation (Exercise 11.3).

On the other hand, the Hall electric field and Hall electric current can
significantly modify conditions of magnetic reconnection (e.g., Bhattachar-
jee, 2004).

11.5 Currents and charges in plasma

11.5.1 Collisional and collisionless plasmas

Let us point out another property of the generalized Ohm’s law in astrophys-
ical plasma. Under laboratory conditions, as a rule, one cannot neglect the
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gradient forces (11.6). On the contrary, these forces usually play no part in
astrophysical plasma. We shall ignore them. This simplification may be not
well justified however in such important applications as reconnecting current
layers (RCLs), shock waves and other discontinuities.

Moreover let us also restrict our consideration to very slow (say hydrody-
namic) motions of plasma. These motions are supposed to be so slow that
the following three conditions are fulfilled.

First, it is supposed that

ω =
1
τ


 νei or νei τ � 1 , (11.29)

where τ is a characteristic time of the plasma motions. Thus

departures of actual distribution functions for electrons and ions
from the Maxwellian distribution are small.

This allows us to handle the transport phenomena in linear approximation.
Moreover, if a single-fluid model is to make physical sence, the electrons

and ions could have comparable temperatures, ideally, the same tempera-
ture T which is the temperature of the plasma as a whole:

Te = Tp = T .

Second, we neglect the electron inertia in comparison with that of the ions
and make use of (11.8). This condition is usually written in the form

ω 
 ω (i)
B

=
eB

mic
. (11.30)

Thus

the plasma motions have to be so slow that their frequency is smaller
than the lowest gyro-frequency of the particles.

Recall that the gyro-frequency of ions ω (i)
B


 ω (e)
B

.
The third condition

νei � ω (e)
B

or ω (e)
B

τei 
 1 . (11.31)

Hence the hydrodynamic approximation can be used, the conductivity σ being
isotropic. The generalized Ohm’s law assumes the following form which is
specific to magnetohydrodynamics (MHD):

j ′ = σ

(
E +

1
c
u × B

)
. (11.32)

The MHD approximation is the subject of the next chapter. Numerous ap-
plications of MHD to various phenomena in astrophysical plasma will be con-
sidered in many places in the remainder of the book.
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In the opposite case (11.22), when the parameter ω (e)
B

τei is large, charged
particles revolve around magnetic field lines, and a typical particle may spend
a considerable time in a region of a size of the order of the gyroradius (5.14).
Hence, if the length scale of the plasma is much larger than the gyroradius,
we may expect the hydrodynamic-type models to work.

It appears that, even when the parameter ω (e)
B

τei tends to infinity (like
in the solar corona, see Exercise 11.2) and collisions are negligible, the quasi-
hydrodynamic description of plasma, the Chew-Goldberger-Low (CGL) ap-
proximation (Chew et al., 1956) is possible (especially if the actual electric
field E in a collisionless plasma is perpendicular to a sufficiently strong mag-
netic field B) and quite useful. This is because

the strong magnetic field makes the plasma, even a non-collisional
one, more ‘interconnected’, so to speak, more hydrodynamic in the
directions perpendicular to the magnetic field.

That allows one to write down a well-justified set of two-dimensional MHD
equations for the collisionless plasma in a magnetic field (see Volkov, 1966,
Equations (42)–(45)). As for the motion of collisionless particles along the
magnetic field, some important kinetic features and physical restrictions still
are significant (Klimontovich and Silin, 1961; Shkarofsky et al., 1969, Chap-
ter 10). Chew et al. (1956) emphasized that “a strictly hydrodynamic ap-
proach to the problem is appropriate only when some special circumstance
suppresses the effects of pressure transport along the magnetic lines”.

There is ample experimental evidence that strong magnetic fields do make
astrophysical plasmas behave like hydrodynamic charged fluids. This does not
mean, of course, that there are no pure kinetic phenomena in such plasmas.
There are many of them indeed.

11.5.2 Volume charge and quasi-neutrality

One more remark concerning the generalized Ohm’s law is important for the
following. While deriving the law in Section 11.2, the exact charge neutrality
of plasma or the exact electric neutrality was assumed:

Zini = ne = n , (11.33)

i.e. the absolute absence of the volume charge in plasma: ρ q = 0 . The same
assumption was also used in Sections 8.2 and 3.2. However there is no need
for such a strong restriction. It is sufficient to require quasi-neutrality , i.e.
the numbers of ions (with account of their charge taken) and electrons per
unit volume are very nearly equal:

Zini − ne

ne

 1 . (11.34)

So
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the volume charge density has to be small in comparison to the
plasma density.

Once the volume charge density

ρ q �= 0 , (11.35)

yet another term must be taken into account in the generalized Ohm’s law:

j q
u = ρ q u . (11.36)

This is the so-called convective current. It is caused by the volume charge
transfer and must be added to the conductive current (11.16).

The volume charge, the associated electric force ρ q E and the convective
current ρ q u are of great importance in electrodynamics of relativistic objects
such as black holes (Novikov and Frolov, 1989) and pulsars (Michel, 1991).
Charge-separated plasmas originate in magnetospheres of rotating black
holes, for example, a super-massive black hole in active galactic nuclei. The
shortage of charge leads to the emergence of a strong electric field along
the magnetic field lines. The parallel electric field accelerates migratory
electrons and/or positrons to ultrarelativistic energies (e.g., Hirotani and
Okamoto, 1998).

Charge density oscillations in a plasma, the Langmuir waves, are consid-
ered in Section 10.2.

∗ ∗ ∗

The volume charge density can be evaluated in the following manner. On the
one hand, from Maxwell’s equation divE = 4πρ q we estimate

ρ q ≈ E

4πL
. (11.37)

On the other hand, the non-relativistic equation of plasma motion yields

eneE ≈ p

L
≈ nekBT

L
,

so that
E ≈ kBT

eL
. (11.38)

On substituting (11.38) in (11.37), we find the following estimate

ρ q

ene
≈ kBT

eL

1
4πL

1
ene

=
1
L2

(
kBT

4πe2 ne

)
or

ρ q

ene
≈

r 2
D

L2 .

(11.39)
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Since the usual concept of plasma implies that the Debye radius

rD 
 L , (11.40)

the volume charge density is small in comparison with the plasma density.
When we consider phenomena with a length scale L much larger than the

Debye radius rD and a time scale τ much larger than the inverse the plasma
frequency, the charge separation in the plasma can be neglected.

11.6 Practice: Exercises and Answers

Exercise 11.1 [ Section 11.4 ] Evaluate the characteristic value of the parallel
conductivity (11.17) in the solar corona.

Answer. It follows from formula (11.17) that

σ ‖ =
e2n

me
τei = 2.53 × 108 n τei ∼ 1016 − 1017 , s−1 , (11.41)

if we take τep ∼ 0.2 − 2.0 s (Exercise 8.1).

Exercise 11.2 [ Section 11.4 ] Estimate the parameter ω (e)
B

τei in the solar
corona above a sunspot.

Answer. Just above a large sunspot the field strength can be as high as
B ≈ 3000 G . Here the electron Larmor frequency ω (e)

B
≈ 5 × 1010 rad s−1

(Exercise 5.1). Characteristic time of close electron-proton collisions τep(cl) ≈
22 s (see Exercise 8.1). Therefore ω (e)

B
τei(cl) ∼ 1012 rad � 1.

Distant collisions are much more frequent (Exercise 8.1). However, even
with τep ≈ 0.1 s, we obtain

ω (e)
B

τei ∼ 1010 rad � 1 .

So, for anisoptropic conductivity in the corona, the approximate formu-
lae (11.23) can be well used.

Exercise 11.3 [ Section 11.4.2 ] Consider the generalized Ohm’s law in the
case when the electric field is perpendicular to the magnetic field B = B n.
So

j ′ = σ⊥ E ′
⊥ + σH n × E ′

⊥ , (11.42)

where

σ⊥ = σ
1

1 +
(
ω

(e)
B τei

)2 and σH = σ
ω (e)

B
τei

1 +
(
ω

(e)
B τei

)2 . (11.43)

This indicates that the current j ′
⊥ in the direction of E ′

⊥ is reduced in the
ratio

1/

(
1 +

(
ω (e)

B
τei

)2)
≈
(
ω (e)

B
τei

)−2
, if ω (e)

B
τei � 1 ,
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by the magnetic field. In addition, the other current
(
ω (e)

B
τei
)2

times as large
flows in the direction perpendicular to both B and E ′

⊥; this is the Hall cur-
rent j ′

H
.

Show that the reduction in the ‘perpendicular’ conductivity (Figure 11.1)
does not increase the rate of dissipation of current energy (see Cowling, 1976,
§ 6.2).



Chapter 12

Single-Fluid Models for
Astrophysical Plasma

Single-fluid models are the simplest but sufficient approximation to
describe many large-scale low-frequency phenomena in astrophysical
plasma: regular and turbulent dynamo, plasma motions driven by
strong magnetic fields, accreation disks, and relativistic jets.

12.1 Derivation of the single-fluid equations

12.1.1 The continuity equation

In order to consider cosmic plasma as a single hydrodynamic medium, we have
to sum each of the three transfer equations over all kinds of particles. Let us
start from the continuity Equation (9.14). With allowance for the definition
of the plasma mass density (9.6), we have

∂ρ

∂t
+ div

(∑
k

ρkuk

)
= 0 . (12.1)

The mean velocities of motion for all kinds of particles are supposed to be
equal to the plasma hydrodynamic velocity:

u1 (r, t) = u2 (r, t) = · · · = u (r, t) , (12.2)

as a result of action of the mean collisional force (9.24). However this is not
a general case.

In general, the mean velocities are not the same, but a frame of reference
can be chosen in which

ρu =
∑

k

ρkuk . (12.3)

205
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Then from (12.1) and (12.3) we obtain the usual continuity equation

∂ρ

∂t
+ div ρu = 0 .

(12.4)

12.1.2 The momentum conservation law in plasma

In much the same way as in previous Section, we handle the momentum
transfer Equation (9.42). On summing over all kinds of particles, we obtain
the following equation:

ρ
d uα

dt
= − ∂

∂rβ
pαβ + ρ q Eα +

1
c

( j × B )α +
∑

k

〈F
(c)
k,α (r, t) 〉v . (12.5)

Here the volume charge density in plasma is

ρ q =
∑

k

nkek =
1
4π

div E , (12.6)

and the electric current density is

j =
∑

k

nkek uk =
c

4π
curl B − 1

4π

∂E
∂t

. (12.7)

The electric and magnetic fields, E and B, involved in this description are av-
eraged fields associated with the total electric charge density ρ q and the total
current density j. They satiesfy the macroscopic Maxwell equations. In cos-
mic plasma, the magnetic permeability and the electric permittivity can almost
always be replaced by their vacuum values. For this reason, the macroscopic
Maxwell equations have the same structure as Equations (1.27) and (1.24)
that have been used on the right-hand side of formulae (12.6) and (12.7).

Since elastic collisions do not change the total momentum, we have∑
k

〈F
(c)
k,α (r, t) 〉v = 0 . (12.8)

On substituting (12.6)–(12.8) in Equation (12.5), the latter can be rear-
ranged to give the momentum conservation law for plasma

ρ
d uα

dt
= − ∂

∂rβ
pαβ + Fα(E,B) .

(12.9)
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Here the electromagnetic force is written in terms of the electric and magnetic
field vectors:

Fα(E,B) = − ∂

∂t

(E × B )α

4πc
− ∂

∂rβ
Mαβ . (12.10)

The tensor

Mαβ =
1
4π

[
−EαEβ − BαBβ +

1
2

δαβ (E2 + B2)
]

(12.11)

is called the Maxwellian tensor of stresses.
The divergent form of the momentum conservation law is

∂

∂t

[
ρ uα +

(E × B )α

4πc

]
+

∂

∂rβ
( Παβ + Mαβ ) = 0 .

(12.12)

The operator ∂/∂t acts on two terms that correspond to momentum density:
ρu is the momentum of the motion of the plasma as a whole in a unit vol-
ume, E × B/4πc is the momentum density of the electromagnetic field. The
divergency operator ∂/∂rα acts on

Παβ = pαβ + ρ uαuβ (12.13)

which is the momentum flux density tensor

Παβ =
∑

k

Π (k)
αβ , (12.14)

see definition (9.10). Therefore the pressure tensor

pαβ = p δαβ + παβ , (12.15)

where
p =

∑
k

pk (12.16)

is the total plasma pressure, the sum of partial pressures, and

παβ =
∑

k

π
(k)
αβ (12.17)

is the viscous stress tensor (see definition (9.35)), which allows for the trans-
port of momentum from one layer of the plasma flow to the other layers so
that relative motions inside the plasma are damped out. If we accept con-
dition (12.2) then the random velocities are now defined with respect to the
macroscopic velocity u of the plasma as a whole.

The momentum conservation law in the form (12.9) or (12.12) is applied
for a wide range of conditions in cosmic plasmas like fluid relativistic flows,
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for example, astrophysical jets (Section 13.3). The assumption that the astro-
physical plasma behaves as a continuum medium, which is essential if these
forms of the momentum conservation law are to be applied, is excellent in the
cases in which we are often interested:

the Debye length and the particle Larmor radii are much smaller
than the plasma flow scales.

On the other hand, going from the multi-fluid description to a single-fluid
model is a seriuos damage because we loose an information not only on the
small-scale dynamics of the electrons and ions but also on the high-frequency
processes in plasma.

The single-fluid equations describe the low-frequency large-scale be-
haviour of plasma in astrophysical conditions.

12.1.3 The energy conservation law

In a similar manner as above, the energy conservation law is derived. We
sum the general Equation (9.25) over k and then substitute in the resulting
equation the total electric charge density (12.6) and the total electric current
density (12.7) expressed in terms of the electric field E and magnetic field B.
On rearrangement, the following divergent form of the energy conservation
law (cf. the simplified Equation (1.54) for electromagnetic field energy and
kinetic energy of charged particles) is obtained:

∂

∂t

(
ρu2

2
+ ρ ε +

E2 + B2

8π

)
+

+
∂

∂rα

[
ρ uα

(
u2

2
+ w

)
+

c

4π
(E × B )α + παβ uβ + qα

]
=

=
(
uαF (c)

α

)
ff

. (12.18)

On the left-hand side of this equation, an additional term has appeared: the
operatop ∂/∂t acts on the energy density of the electromagnetic field

W =
E2 + B2

8π
. (12.19)

The divergency operator ∂/∂rα acts on the Pointing vector , the electromag-
netic energy flux through a unit surface in space:

G =
c

4π
[E × B ] . (12.20)

The right-hand side of Equation (12.18) contains the total work of friction
forces (9.38) in unit time on unit volume(

uαF (c)
α

)
ff

=
∑

k

(
F

(c)
k,α uk,α

)
=
∑

k

uk,α

∫
v

mk v ′
α

(
∂fk

∂t

)
c

d 3v . (12.21)
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This work related to the relative motion of the plasma components is not zero.
By contrast, the total heat release under elastic collisions between particles

of different kinds (see definition (9.39)) is∑
k

Q
(c)
k (r, t) =

∑
k

∫
v

mk (v ′)2

2

(
∂fk

∂t

)
c

d 3v = 0 . (12.22)

Elastic collisions in a plasma conserve both the total momentum
(see Equation (12.8)) and the total energy (see Equation (12.22)).

If we accept condition (12.2) then, with account of formula (9.24), the
collisional heating (12.21) by friction force is also equal to zero. In this limit,
there is not any term which contains the collisional integral. Collisions have
done a good job.

Note, in conclusion, that we do not have any equations for the anisotropic
part of the pressure tensor, which is the viscous stress tensor παβ , and for the
flux qα of heat due to random motions of particles. This is not unexpected, of
course, but inherent at the method of the moments as discussed in Section 9.4.
We have to find these transfer coefficients by using the procedure described
in Section 9.5.

12.2 Basic assumptions and the MHD equa-
tions

12.2.1 Old and new simplifying assumptions

As we saw in Chapter 9, the set of transfer equations for local macroscopic
quantities determines the behaviour of different kinds of particles, such as elec-
trons and ions in astrophysical plasma, once two main conditions are complied
with:

(a) many collisions occur in a characteristic time τ of the process or phe-
nomenon under consideration:

τ � τc , (12.23)

(b) the particle’s path between two collisions – the particle’s free path – is
significantly smaller than the distance L, over which macroscopic quantities
change considerably:

L � λc . (12.24)

Here τc and λc are the collisional time and the collisional mean free path,
respectively. Once these conditions are satisfied, we can close the set of hy-
drodynamic transfer equations, as has been discussed in Section 9.5.

While considering the generalized Ohm’s law in Chapter 11, three other as-
sumptions have been made, that are complementary to the restriction (12.23)
on the characteristic time τ of the process.
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The first condition can be written in the form

τ � τei = ν−1
ei , (12.25)

where τei is the electron-ion collisional time, the longest collisional relaxation
time. Thus departures from the Maxwellian distribution are small. Moreover
the electrons and ions should have comparable temperatures, ideally, the same
temperature T being the temperature of the plasma as a whole.

Second, we neglect the electron inertia in comparison with that of the ions.
This condition is usually written as

τ �
(
ω (i)

B

)−1
, where ω (i)

B
=

eB

mic
. (12.26)

Thus the plasma motions have to be so slow that their frequency ω = 1/τ
is smaller than the lowest gyro-frequency of the particles. Recall that the
gyro-frequency of ions ω (i)

B

 ω (e)

B
.

The third condition,
ω (e)

B
τei 
 1 , (12.27)

is necessary to write down Ohm’s law in the form

j = σ

(
E +

1
c
v × B

)
+ ρ q v . (12.28)

Here v is the macroscopic velocity of plasma considered as a continuous
medium, E and B are the electric and magnetic fields in the ‘laboratory’
system of coordinates, where we measure the velocity v. Accordingly,

Ev = E +
1
c
v × B (12.29)

is the electric field in a frame of reference related to the plasma. The isotropic
conductivity is (formula (11.14)):

σ =
e2n

me νei
. (12.30)

Complementary to the restriction (12.24) on the characteristic length L of
the phenomenon, we have to add the condition

L � rD , (12.31)

where rD is the Debye radius. Then the volume charge density ρ q is small in
comparison with the plasma density ρ.

Under the conditions listed above, we use the general hydrodynamic-type
equations which are the conservation laws for mass (12.4), momentum (12.5)
and energy (12.18).
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These equations have a much wider area of applicability than the
equations of ordinary magnetohydrodynamics derived below.

The latter will be much simpler than the equations derived in Section 12.1.
Therefore new additional simplifying assumptions are necessary. Let us
introduce them. There are two.

∗ ∗ ∗

First assumption: the plasma conductivity σ is assumed to be large, the
electromagnetic processes being not very fast. Then, in Maxwell’s equa-
tion (1.24)

curlB =
4π

c
j +

1
c

∂E
∂t

,

we ignore the displacement current in comparison to the conductive one. The
corresponding condition is found by evaluating the currents as follows

1
c

E

τ

 4π

c
j or ωE 
 4πσE .

Thus we suppose that

ω 
 4πσ .
(12.32)

In the same order with reference to the small parameter ω/σ (or, more
exactly, ω/4πσ), we can neglect the convective current (see formula (11.36)
and its discussion in Section 11.5.2) in comparison with the conductive current
in Ohm’s law (12.28). Actually,

ρ q v ≈ v div E
1
4π

≈ L

τ

E

L

1
4π

≈ ω

4π
E 
 σE ,

once the condition (12.32) is satisfied.
The conductivity of astrophysical plasma, which is often treated in the

MHD approximation, is very high (e.g., Exercise 11.1). This is the reason
why condition (12.32) is satisfied up to frequencies close to optical ones.

Neglecting the displacement current and the convective current,
Maxwell’s equations and Ohm’s law result in the following relations:

j =
c

4π
curlB , (12.33)

E = − 1
c
v × B +

c

4πσ
curlB , (12.34)

ρ q = − 1
4πc

div (v × B ) , (12.35)

div B = 0 , (12.36)
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∂B
∂t

= curl (v × B ) +
c2

4πσ
∆B . (12.37)

Once two vectors, B and v, are given, the current density j, the elec-
tric field E, and the volume charge density ρ q are completely determined by
formulae (12.33)—(12.35). Thus

the problem is reduced to finding the interaction of the magnetic
field B and the hydrodynamic velocity field v.

As a consequence, the approach under discussion has come to be known as
magnetohydrodynamics (Alfvén, 1950; Syrovatskii, 1957).

The corresponding equation of plasma motion is obtained by substitution
of formulae (12.33)–(12.35) in the equation of momentum transfer (12.5).
With due regard for the manner in which viscous forces are usually written
in hydrodynamics, we have

ρ
dv
dt

= −∇p + ρ q E − 1
4π

B × curlB+

+ η ∆v +
(
ζ +

η

3

)
∇ div v . (12.38)

Here η is the first viscosity coefficient, ζ is the second viscosity coefficient (see
Landau and Lifshitz, Fluid Mechanics, 1959a, Chapter 2, § 15). Formulae for
these coefficients as well as for the viscous forces should be derived from the
moment equation for the pressure tensor, which we were not inclined to write
down in Section 9.3 being busy in the way to the energy conservation law.

∗ ∗ ∗

A second additional simplifying assumption has to be introduced now.
Treating Equation (12.38), the electric force ρ q E can be ignored in compari-
son to the magnetic one if

v2 
 c2 , (12.39)

that is in the non-relativistic approximation. To make certain that this is
true, evaluate the electric force using (12.35) and (12.34):

ρ q E ≈ 1
4πc

vB

L

vB

c
≈ B2

4π

1
L

v2

c2 , (12.40)

the magnetic force being proportional to

1
4π

|B × curlB | ≈ B2

4π

1
L

. (12.41)

Comparing (12.40) with (12.41), we see that the electric force is a factor of
v2/c2 short of the magnetic one.
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In a great number of astrophysical applications of MHD, the plasma ve-
locities fall far short of the speed of light. The Sun is a good case in point.
Here the largest velocities observed, for example, in coronal transients and
coronal mass ejections (CMEs) do not exceed several thousands of km/s, i.e.
<∼ 108 cm/s. Under these conditions, we neglect the electric force acting
upon the volume charge in comparison with the magnetic force.

However the relativistic objects such as accretion disks near black holes
(see Chapter 7 in Novikov and Frolov, 1989), and pulsar magnetospheres are
at the other extreme (Michel, 1991; Rose, 1998). The electric force acting on
the volume charge plays a crucial role in the electrodynamics of relativistic
objects.

12.2.2 Non-relativistic magnetohydrodynamics

With the assumptions made above, the considerable simplifications have been
obtained; and now we write the following set of equations of non-relativistic
MHD:

∂

∂t
ρ vα = − ∂

∂rβ
Π ∗

αβ , (12.42)

∂B
∂t

= curl (v × B ) + νm ∆B , (12.43)

div B = 0 , (12.44)

∂ρ

∂t
+ div ρv = 0 , (12.45)

∂

∂t

(
ρv2

2
+ ρε +

B2

8π

)
= − div G , (12.46)

p = p (ρ, T ) . (12.47)

In contrast to Equation (12.12), the momentum of electromagnetic field
does not appear on the left-hand side of the non-relativistic Equation (12.42).
It is negligibly small in comparison to the plasma stream momentum ρ vα.
This fact is a consequence of neglecting the displacement current in Maxwell’s
equations.

On the right-hand side of Equation (12.42), the asterisk refers to the total
(unlike (12.13)) momentum flux density tensor Π ∗

αβ , which is equal to

Π ∗
αβ = p δαβ + ρ vαvβ +

1
4π

(
B2

2
δαβ − BαBβ

)
− σv

αβ . (12.48)

In Equation (12.43)

νm =
c2

4πσ
(12.49)

is the magnetic diffusivity (or magnetic viscosity). It plays the same role
in Equation (12.43) as the kinematic viscosity ν = η/ρ in the equation of
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plasma motion (12.42). The vector G is defined as the energy flux density
(cf. Equation (12.18))

Gα = ρ vα

(
v2

2
+ w

)
+

1
4π

[B × (v × B ) ]α −

− νm

4π
(B × curlB )α − σv

αβ vβ − κ ∇α T, (12.50)

where the specific enthalpy is

w = ε +
p

ρ
(12.51)

(see definition (9.34)).
The Poynting vector appearing as a part in expression (12.50) is rewritten

using formula (12.34):

GP =
c

4π
E × B =

1
4π

B × (v × B ) − νm

4π
B × curl B . (12.52)

As usually in electrodynamics, the flux of electromagnetic energy disappeares
when electric field E is parallel to magnetic field B.

The energy flux density due to friction processes is written as the contrac-
tion of the velocity vector v and the viscous stress tensor

σv
αβ = η

(
∂vα

∂rβ
+

∂vβ

∂rα
− 2

3
δαβ

∂vγ

∂rγ

)
+ ζ δαβ

∂vγ

∂rγ
(12.53)

(see Landau and Lifshitz, Fluid Mechanics, 1959a, Chapter 2, § 15). How
should we find formula (12.53) and formulae for coefficients η and ζ? – In
order to find an equation for the second moment (9.10), we should multiply
the kinetic Equation (9.1) by the factor mk vαvβ and integrate over velocity
space v. In this way, we could derive the equations for the anisotropic part of
the pressure tensor and for the flux of heat due to random motions of particles
(Shkarofsky et al., 1966; § 9.2). We restrict ourself just by recalling the
expressions for the viscous stress tensor (12.53) and heat flux density −κ∇T ,
where κ is the plasma thermal conductivity.

∗ ∗ ∗

The equation of state (12.47) can be rewritten in other thermodynamic
variables. In order to do this, we have to make use of Equations (12.42)–
(12.45) and the thermodynamic identities

dε = T ds +
p

ρ2 dρ and dw = T ds +
1
ρ

dp .

Here s is the entropy per unit mass.
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At the same time, it is convenient to transform the energy conservation
law (12.46) from the divergent form to the hydrodynamic one containing the
substantial derivative (9.41). On rearrangement, Equation (12.46) results in
the heat transfer equation

ρ T
ds

dt
=

νm

4π
(curl B)2 + σv

αβ

∂vα

∂rβ
+ div κ∇T . (12.54)

It shows that
the heat abundance change dQ = ρ T ds in a moving element of unit
volume is a sum of the Joule and viscous heating and conductive
heat redistribution to neighbour elements.

The momentum conservation law (12.42) can be also recast into the equa-
tion of plasma motion in the hydrodynamic form:

dv
dt

= − ∇p

ρ
− 1

4πρ
B × curlB +

η

ρ
∆v +

1
ρ

(
ζ +

η

3

)
∇ div v . (12.55)

Once again, we see that the momentum of electromagnetic field does not
appear in the non-relativistic equation of plasma motion.

12.2.3 Relativistic magnetohydrodynamics

Relativistic MHD models are of considerable interest in several areas of as-
trophysics. The theory of gravitational collapse and models of supernova
explosions are based on relativistic hydrodynamic models for a star. In most
models a key feature is the occurrence of a relativistic shock, for example, to
expel the bulk of the star. The effects of deviations from spherical symmetry
due to an initial angular momentum and magnetic field require the use of
relativistic MHD models.

In the theories of galaxy formation, relativistic fluid models have been
used, for example, in order to describe the evolution of perturbations of
the baryon and radiation components of the cosmic medium. Theories of
relativistic stars are also based on relativistic fluid model (Zel’dovich and
Novikov, 1978; Rose, 1998).

When the medium interacts electromagnetically and is highly conducting,
the simplest description is in terms of relativistic MHD. From the mathema-
tical viewpoint, the relativistic MHD was mainly treated in the framework of
general relativity . This means that the MHD equations were studied in con-
junction with Einstein’s equations. Lichnerowicz (1967) has made a thorough
and deep investigation of the initial value problem. Gravitohydromagnetics
describes one of the most fascinating phenomena in the outer space (e.g.,
Punsly, 2001).

In many applications, however, one neglects the gravitational field gener-
ated by the conducting medium in comparison with the background gravita-
tional field as well as in many cases one simply uses special relativity . Math-
ematically this amounts to taking into account only the conservation laws
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for matter and the electromagnetic field, neglecting Einstein’s equa-
tions. Such relativistic MHD theory is much simpler than the full general
relativistic theory. So more detailed results can be obtained (Anile, 1989;
Novikov and Frolov, 1989; Koide et al., 1999).

12.3 Magnetic flux conservation. Ideal MHD

12.3.1 Integral and differential forms of the law

Equations (12.45), (12.42), and (12.46) are the conservation laws for mass,
momentum, and energy, respectively. Let us show that, with the proviso that
νm = 0, Equation (12.43) is the magnetic flux conservation law.

Let us consider the derivative of the vector B flux through a surface S
moving with the plasma (Figure 12.1).

B
S

S
L

d

v

v

x
y

z

Figure 12.1: The magnetic field B flux through the surface S moving with a
plasma with velocity v.

According to the known formula of vector analysis (see Smirnov, 1965),
we have

d

dt

∫
S

B · dS =
∫
S

(
∂ B
∂t

+ v div B + curl (B × v )
)

· dS . (12.56)

By virtue of Equation (12.44), formula (12.56) is rewritten as follows

d

dt

∫
S

B · dS =
∫
S

(
∂ B
∂t

− curl (v × B )
)

· dS ,
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or, making use of Equation (12.43),

d

dt

∫
S

B · dS = νm

∫
S

∆B · dS .

(12.57)

Thus, if we cannot neglect magnetic diffusivity νm, then

the change rate of magnetic flux through a surface moving together
with a conducting plasma is proportional to the magnetic diffusivity
of the plasma.

The right-hand side of formula (12.57) can be rewritten with the help of
the Stokes theorem:

d

dt

∫
S

B · dS = − νm

∮
L

curl B · d l . (12.58)

Here L is the ‘liquid’ contour bounding the surface S. We have also used here
that

∆B = − curl curl B .

By using Equation (12.33) we have

d

dt

∫
S

B · dS = − c

σ

∮
L

j · d l .

(12.59)

The change rate of flux through a surface connected with the moving plasma
is proportional to the electric resistivity σ−1 of the plasma.

Equation (12.59) is equivalent to the differential Equation (12.43) and
presents an integral form of the magnetic flux conservation law.

The magnetic flux through any surface moving with the plasma is
conserved, once the electric resistivity σ−1 can be ignored.

Let us clarify the conditions when it is possible to neglect electric resistivity
of plasma. The relative role of the dissipation processes in the differential
Equation (12.43) can be evaluated by proceeding as follows. In a spirit similar
to that of Section 5.2, we pass on to the dimensionless variables

r∗ =
r
L

, t∗ =
t

τ
, v∗ =

v
v

, B∗ =
B
B0

. (12.60)

On substituting definition (12.60) into Equation (12.43) we obtain

B0

τ

∂ B∗

∂t∗
=

vB0

L
curl∗ (v∗ × B∗ ) + νm

B0

L2 ∆∗ B∗ .
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Now we normalize this equation with respect to its left-hand side, i.e.

∂ B∗

∂t∗
=

vτ

L
curl∗ (v∗ × B∗ ) +

νmτ

L2 ∆∗ B∗ . (12.61)

The dimensionless Equation (12.61) contains two dimensionless parame-
ters. The first one,

δ =
vτ

L
,

will be discussed in the next Section. Here, for simplicity, we assume δ = 1.
The second parameter,

Rem =
L2

νm τ
=

vL

νm
,

(12.62)

is termed the magnetic Reynolds number, by analogy with the hydrodynamic
Reynolds number Re = vL/ν. This parameter characterizes the ratio of the
first term on the right-hand side of (12.61) to the second one. Omitting the
asterisk, we write Equation (12.61) in the dimensionless form

∂ B
∂t

= curl (v × B ) +
1

Rem
∆B . (12.63)

The larger the magnetic Reynolds number, the smaller the role
played by magnetic diffusivity.

So the magnetic Reynolds number is the dimensionless measure of the
relative importance of resistivity. If Rem � 1, we neglect the plasma resis-
tivity and associated Joule heating and magnetic field dissipation, just as one
neglects viscosity effects under large Reynolds numbers in ordinary hydrody-
namics.

In laboratory experiments, for example in devices for studying the pro-
cesses of current layer formation and rupture during magnetic reconnection
(e.g., Altyntsev et al., 1977; Bogdanov et al., 1986, 2000), because of a small
value L2, the magnetic Reynolds number is usually not large: Rem ∼ 1 − 3.
In this case the electric resistivity has a dominant role, and Joule dissipation
is important.

12.3.2 The equations of ideal MHD

Under astrophysical conditions, owing to the low resistivity and the enor-
mously large length scales usually considered, the magnetic Reynolds number
is also very large: Rem > 1010 (for example, in the solar corona; see Exer-
cise 12.1). Therefore, in a great number of problems of plasma astrophysics,
it is sufficient to consider a medium with infinite conductivity :

Rem � 1 . (12.64)
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Furthermore the usual Reynolds number can be large as well (see, however,
Exercise 12.2):

Re � 1 . (12.65)

Let us also assume the heat exchange to be of minor importance. This
assumption is not universally true either. Sometimes the thermal conduc-
tivity (due to thermal electrons or radiation) is so effective that the plasma
behaviour must be considered as isothermal, rather than adiabatic. However,
conventionally,

while treating the ‘ideal medium’, all dissipative transfer coefficients
as well as the thermal conductivity are set equal to zero

in the non-relativistic MHD equations (12.42)–(12.49):

νm = 0 , η = ζ = 0 , κ = 0 .
(12.66)

The complete set of the MHD equations for the ideal medium has two dif-
ferent (but equivalent) forms. The first one (with the energy Equation 12.54)
is the form of transfer equations:

∂v
∂t

+ (v · ∇)v = −∇p

ρ
− 1

4πρ
B × curl B ,

∂ B
∂t

= curl (v × B) , div B = 0 , (12.67)

∂ρ

∂t
+ div ρv = 0 ,

∂s

∂t
+ (v · ∇) s = 0 , p = p (ρ, s) .

The other form of ideal MHD equations is the divergent form which also
corresponds to the conservation laws for energy, momentum, mass and mag-
netic flux:

∂

∂t

(
ρv2

2
+ ρε +

B2

8π

)
= − div G , (12.68)

∂

∂t
ρ vα = − ∂

∂rβ
Π ∗

αβ , (12.69)

∂ρ

∂t
= − div ρv , (12.70)

∂ B
∂t

= curl (v × B ) , (12.71)

div B = 0 , (12.72)

p = p (ρ, s) . (12.73)
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Here the energy flux density and the momentum flux density tensor are, re-
spectively, equal to (cf. (12.50) and (12.48))

G = ρv
(

v2

2
+ w

)
+

1
4π

(
B2 v − (B · v)B

)
, (12.74)

Π ∗
αβ = p δαβ + ρ vαvβ +

1
4π

(
B2

2
δαβ − BαBβ

)
. (12.75)

The magnetic flux conservation law (12.71) written in the integral
form

d

dt

∫
S

B · dS = 0 , (12.76)

where the integral is taken over an arbitrary surface moving with the plasma,
is quite characteristic of ideal MHD. It allows us to clearly represent the
magnetic field as a set of field lines attached to the medium, as if they were
‘frozen into’ it. For this reason, Equation (12.71) is frequently referred to as
the ‘freezing-in’ equation.

The freezing-in property converts the notion of magnetic field line from
the purely geometric to the material sphere.

In the ideally conducting medium, the field lines move together with
the plasma. The medium displacement conserves not only the mag-
netic flux but each of the field lines as well.

To convince ourselves that this is the case, we have to imagine a thin tube
of magnetic field lines. There is no magnetic flux through any part of the
surface formed by the collection of the boundary field lines that intersect the
closed curve L. Let this flux tube evolve in time. Because of flux conservation,
the plasma elements that are initially on the same magnetic flux tube must
remain on the magnetic flux tube.

In ideal MHD flows, magnetic field lines inside the thin flux tube accom-
pany the plasma. They are therefore materialized and are unbreakable because
the flux tube links the same ‘fluid particles’ or the same ‘fluid elements’. As
a result its topology cannot change. Fluid particles which are not initially
on a common field line cannot become linked by one later on. This general
topological constraint restricts the ideal MHD motions, forbidding a lot of
motions that would otherwise appear.

Conversely, the constraint that the thin flux tube follows the fluid particle
motion, whatever its complexity, may create situations where the magnetic
field structure becomes itself very complex (see vol. 2, Chapter 12).

In general, the field intensity B is a local quantity. However the magnetic
field lines (even in vacuum) are integral characteristics of the field. Their
analysis becomes more complicated. Nonetheless, a large number of actual
fields have been studied because the general features of the morphology – an
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investigation of non-local structures – of magnetic fields are fairly important
in plasma astrophysics.

The geometry of the field lines appears in different ways in the equilibrium
criteria for astrophysical plasma. For example, much depends on whether the
field lines are concave or convex, on the value of the gradient of the so-called
specific volume of magnetic flux tubes (Chapter 19), on the presence of X-type
points (Section 14.3) as well as on a number of other topological characteristics,
e.g. magnetic helicity (see vol. 2, Chapter 12).

12.4 Practice: Exercises and Answers

Exercise 12.1 [ Section 12.3.2 ] Estimate the magnetic diffusivity and the
magnetic Reynolds number under typical conditions in the solar corona.

Answer. Let us take characteristic values of the parallel conductivity as
they were estimated in Exercise 11.1:

σ ‖ = σ ∼ 1016 − 1017 s−1 .

Substituting these values in formula (12.49) we obtain

νm =
c2

4πσ
≈ 7.2 × 1019 1

σ
∼ 103 − 104 cm2 s−1. (12.77)

According to definition (12.62) the magnetic Reynolds number

Rem =
vL

νm
∼ 1011 − 1012 , (12.78)

if the characteristic values of length and velocity, L ∼ 104 km ∼ 109 cm
and v ∼ 10 km s−1 ∼ 106 cm s−1, are taken for the corona. Thus the ideal
MHD approximation can be well used to consider, for example, magnetic field
diffusion in coronal linear scales.

Exercise 12.2 [ Section 12.3.2 ] Show that

in the solar corona, viscosity of plasma can be a much more impor-
tant dissipative mechanism than its electric resistivity.

Answer. By using the formula (10.29) for viscosity, let us estimate the
value of kinematic viscosity in the solar corona:

ν =
η

ρ
≈ 3 × 1015 cm2 s−1. (12.79)

Here Tp ≈ 2 × 106 K and np ≈ ne ≈ 2 × 108 cm−3 have been taken as the
typical proton temperature and density.



222 Chapter 12. Single-Fluid Models

If the characteristic values of length and velocity, L ∼ 109 cm and v ∼
106 cm s−1, are taken (see Exercise 12.1), then the hydrodynamic Reynolds
number

Re =
vL

ν
∼ 0.3 . (12.80)

The smallness of this number demonstrates the potential importance of viscos-
ity in the solar corona. A comparison between (12.80) and (12.78) shows that
Rem � Re. Clearly, the viscous effects can dominate the effects of electric
resistivity in coronal plasma.



Chapter 13

Magnetohydrodynamics in
Astrophysics

Magnetohydrodynamics (MHD) is the simplest but sufficient approx-
imation to describe many large-scale low-frequency phenomena in as-
trophysical plasma: regular and turbulent dynamo, plasma motions
driven by strong magnetic fields, accreation disks, and relativistic jets.

13.1 The main approximations in ideal MHD

13.1.1 Dimensionless equations

The equations of MHD, even the ideal MHD, constitute a set of nonlinear dif-
ferential equations in partial derivatives. The order of the set is rather high,
while its structure is complicated. To formulate a problem in the context of
MHD, we have to know the initial and boundary conditions admissible by this
set of equations. To do this, in turn, we have to know the type of these equa-
tions, in the sense adopted in mathematical physics (see Vladimirov, 1971).

To formulate a problem, one usually uses one or another approximation,
which makes it possible to isolate the main effect – the essence of the phe-
nomenon. For instance, if the magnetic Reynolds number is small, then the
plasma moves comparatively easily with respect to the magnetic field. This
is the case in MHD generators and other laboratory and technical devices
(Sutton and Sherman, 1965, § 1.3; Shercliff, 1965, § 6.5).

The opposite approximation is that of large magnetic Reynolds numbers,
when magnetic field ‘freezing in’ takes place in the plasma (see Section 12.3.2).
Obviously, the transversal (with respect to the magnetic field) plasma flows
are implied. For any flow along the field, Equation (12.71) holds. This ap-
proximation is quite characteristic of the astrophysical plasma dynamics.

223
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How can we isolate the main effect in a physical phenomenon and correctly
formulate the problem? – From the above examples concerning the magnetic
Reynolds number, the following rule suggests itself:

take the dimensional parameters characterizing the phenomenon at
hand, combine them into dimensionless combinations and then, on
calculating their numerical values, make use of the corresponding
approximation in the set of dimensionless equations.

Such an approach is effective in hydrodynamics (Sedov, 1973, Vol. 1).
Let us start with the set of the ideal MHD Equations (12.67):

∂v
∂t

+ (v · ∇)v = −∇p

ρ
− 1

4πρ
B × curl B , (13.1)

∂ B
∂t

= curl (v × B) , (13.2)

∂ρ

∂t
+ div ρv = 0 , (13.3)

∂s

∂t
+ (v · ∇) s = 0 , (13.4)

div B = 0 , (13.5)

p = p (ρ, s) . (13.6)

Let the quantities L, τ, v, ρ0, p0, s0, and B0 be the characteristic values of
length, time, velocity, density, pressure, entropy and field strength, respec-
tively. Rewrite Equations (13.1)–(13.6) in the dimensionless variables

r∗ =
r
L

, t∗ =
t

τ
, . . . B∗ =

B
B0

.

Omitting the asterisk, we obtain the equations in dimensionless variables (So-
mov and Syrovatskii, 1976b):

ε2
{

1
δ

∂v
∂t

+ (v · ∇)v
}

= − γ2 ∇p

ρ
− 1

ρ
B × curl B , (13.7)

∂ B
∂t

= δ curl (v × B) , (13.8)

∂ρ

∂t
+ δ div ρv = 0 , (13.9)

∂s

∂t
+ δ (v · ∇) s = 0 , (13.10)

div B = 0 , (13.11)

p = p (ρ, s) . (13.12)
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Here

δ =
vτ

L
, ε2 =

v2

V 2
A

, γ2 =
p0

ρ0V 2
A

(13.13)

are three dimensionless parameters characterizing the problem;

VA =
B0√
4πρ0

(13.14)

is the characteristic value of the Alfvén speed (see Exercise 13.1).
If the gravitational force were taken into account in (13.1), Equation (13.7)

would contain another dimensionless parameter, gL/V 2
A

, where g is the grav-
itational acceleration. The analysis of these parameters allows us to gain an
understanding of the approximations which are possible in the ideal MHD.

13.1.2 Weak magnetic fields in astrophysical plasma

We begin with the assumption that

ε2 � 1 and γ2 � 1 . (13.15)

As is seen from Equation (13.7), in the zero-order approximation relative to
the small parameters ε−2 and γ−2, we neglect the magnetic force as com-
pared to the inertia force and the gas pressure gradient. In subsequent ap-
proximations, the magnetic effects are treated as a small correction to the
hydrodynamic ones.

A lot of problems of plasma astrophysics are solved in this approxima-
tion, termed the weak magnetic field approximation. Among the simplest of
them are the ones concerning the weak field’s influence on hydrostatic equi-
librium. An example is the problem of the influence of poloidal and toroidal
magnetic fields on the equilibrium of a self-gravitating plasma ball (a star,
the magnetoid of quasar’s kernel etc., see examples in Section 19.1.3).

Some other problems are in fact analogous to the previously mentioned
ones. They are called kinematic problems, since

they treat the influence of a given plasma flow on the magnetic field;
the reverse influence is considered to be negligible.

Such problems are reduced to finding the magnetic field distribution resulting
from the known velocity field. An example is the problem of magnetic field
amplification and support by stationary plasma flows (magnetic dynamo) or
turbulent amplification. The simplest example is the problem of magnetic field
amplification by plasma differential rotation (Elsasser, 1956; Moffat, 1978;
Parker, 1979; Rüdiger and von Rekowski, 1998).

A leading candidate to explain the origin of large-scale magnetic fields in
astrophysical plasma is the mean-field turbulent magnetic dynamo theory
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(Moffat, 1978; Parker, 1979; Zel’dovich et al., 1983). The theory appeals to a
combination of helical turbulence (leading to the so-called α effect), differential
rotation (the Ω effect) and turbulent diffusion to exponentiate an initial seed
mean magnetic field. The total magnetic field is split into a mean component
and a fluctuating component, and the rate of growth of the mean field is
sought.

The mean field grows on a length scale much larger than the outer scale of
the turbulent velocity, with a growth time much larger than the eddy turnover
time at the outer scale. A combination of kinetic and magnetic helicities
provides a statistical correlation of small-scale loops favorable to exponential
growth. Turbulent diffusion is needed to redistribute the amplified mean field
rapidly to ensure a net mean flux gain inside the system of interest (a star
or galaxy). Rapid growth of the fluctuating field necessarily accompanies the
mean-field dynamo. Its impact upon the growth of the mean field, and the
impact of the mean field itself on its own growth are controversial and depends
crucially on the boundary conditions (e.g., Blackman and Field, 2000).

13.1.3 Strong magnetic fields in plasma

The opposite approximation – that of the strong magnetic field – has been
less well studied. It reflects the specificity of MHD to a greater extent than
the weak field approximation. The strong field approximation is valid when
the magnetic force

Fm = − 1
4π

B × curl B (13.16)

dominates all the others (inertia force, gas pressure gradient, etc.). Within
the framework of Equation (13.7), the magnetic field is referred to as a strong
one if in some region under consideration

ε2 
 1 and γ2 
 1 , (13.17)

i.e. if the magnetic energy density greatly exceeds that of the kinetic and
thermal energies:

B 2
0

8π
� ρ0v

2

2
and

B 2
0

8π
� 2n0kBT0 .

From Equation (13.7) it follows that, in the zeroth order with respect to
the small parameters (13.17), the magnetic field is force-free, i.e. it obeys the
equation

B × curl B = 0 . (13.18)

This conclusion is quite natural:

if the magnetic force dominates all the others, then the magnetic
field must balance itself in the region under consideration.
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Condition (13.18) obviously means that electric currents flow parallel to
magnetic field lines. If, in addition, electric currents are absent in some region
(in the zeroth approximation relative to the small parameters ε2 and γ2), then
the strong field is simply potential in this region:

curl B = 0 , B = ∇Ψ , ∆Ψ = 0 . (13.19)

In principle, the magnetic field can be force-free or even potential for another
reason: due to the equilibrium of non-magnetic forces. However this does not
happen frequently.

Let us consider the first order in the small parameters (13.17). If they are
not equally significant, there are two possibilities.

(a) We suppose, at first, that

ε2 
 γ2 
 1 . (13.20)

Then we neglect the inertia force in Equation (13.7) as compared to the gas
pressure gradient. Decomposing the magnetic force into a magnetic tension
force and a magnetic pressure gradient force (see Exercises 13.2 and 13.3),

Fm = − 1
4π

B × curl B =
1
4π

(B · ∇)B − ∇ B2

8π
, (13.21)

we obtain the following dimensionless equation:

(B · ∇)B = ∇
(

B2

2
+ γ2p

)
. (13.22)

Owing to the presence of the gas pressure gradient, the magnetic field differs
from the force-free one at any moment of time:

the magnetic tension force (B · ∇)B/4π must balance not only the
magnetic pressure gradient but that of the gas pressure as well.

Obviously the effect is proportional to the small parameter γ2.
This approximation can be naturally called the magnetostatic one since

v = 0. It effectively works in regions of a strong magnetic field where the gas
pressure gradients are large, for example, in coronal loops and reconnecting
current layers (RCLs) in the solar corona (Exercise 13.4).

(b) The inertia force also causes the magnetic field to deviate from the
force-free one:

ε2
{

1
δ

∂v
∂t

+ (v · ∇)v
}

= − 1
ρ

B × curl B . (13.23)

Here we ignored (in the first order) the gas pressure gradient as compared
with the inertia force. Thus it is not the relation (13.20) between the small
parameters (13.17), but rather its converse, that should be obeyed, i.e.

γ2 
 ε2 
 1 . (13.24)
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The problems on plasma flows in a strong magnetic field are of considerable
interest in plasma astrophysics. To solve them, inequalities (13.24) can be
assumed to hold. Then we can use (13.23) as the MHD equation of motion.
The approximation corresponding inequalities (13.24) is naturally termed the
approximation of strong field and cold plasma.

The main applications of the strong-field-cold-plasma approximation are
concerned with the solar atmosphere (see vol. 2, Chapters 2 and 6) and the
Earth’s magnetosphere. Both astrophysical objects are well studied from the
observational viewpoint. So we can proceed with confidence from qualitative
interpretation to the construction of quantitative models. The presence of a
sufficiently strong magnetic field and a comparatively rarefied plasma is com-
mon for both phenomena. This justifies the applicability of the approximation
at hand.

A sufficiently strong magnetic field easily moves a comparatively
rarefied plasma in many non-stationary phenomena in space.

Analogous conditions are reproduced under laboratory modelling of these phe-
nomena (e.g., Hoshino et al., 2001). Some other astrophysical applications of
the strong-field-cold-plasma approximation will be discussed in the following
two Sections.

∗ ∗ ∗
In closing, let us consider the dimensionless parameter δ = vτ/L. As is seen
from Equation (13.23), it characterizes the relative role of the local ∂/∂t and
transport (v · ∇) terms in the substantial derivative d/dt.

If δ � 1 then, in the zeroth approximation relative to the small parameter
δ−1, the plasma flow can be considered to be stationary

ε2 (v · ∇)v = − 1
ρ

B × curl B . (13.25)

If δ 
 1, i.e. plasma displacement is small during the magnetic field
change, then the transport term (v · ∇) can be ignored in the substantial
derivative and the equation of motion in the strong-field-cold-plasma approx-
imation takes the form

ε2 ∂v
∂t

= − 1
ρ

B × curl B , (13.26)

other equations becoming linear. This case corresponds to small plasma dis-
placements from the equilibrial state, i.e. small perturbations. (If need be,
the right-hand side of Equation (13.26) can be linearized in the usual way.)

Generally the parameter δ ≈ 1 and the set of MHD equations in the
approximation of strong field and cold plasma for ideal medium assumes the
following dimensionless form:

ε2 dv
dt

= − 1
ρ

B × curl B , (13.27)
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∂ B
∂t

= curl (v × B ) , (13.28)

∂ρ

∂t
+ div ρv = 0 . (13.29)

In the next Chapter we shall consider some continuous plasma flows in a
strong magnetic field, which are described by Equations (13.27)–(13.29).

13.2 Accretion disks of stars

13.2.1 Angular momentum transfer in binary stars

Magnetic fields were discussed as a possible means of angular transport in
the development of accretion disk theory in the early seventies (Shakura and
Sunyaev, 1973; Novikov and Thorne, 1973). Interest in the role of magnetic
fields in binary stars steadily increased after the discovery of the nature of AM
Herculis. It appeared that the optical counterpart of the soft X-ray source has
linear and circular polarization in the V and I spectral bands, of a strength
an order of magnitude larger than previously observed in any object. This
suggested the presence of a very strong field, with B ∼ 108 G, assuming the
fundamental cyclotron frequency to be observed.

Similar systems were soon discovered. Evidence for strong magnetic fields
was subsequently found in the X-ray binary pulsars and the intermediate polar
binaries, both believed to include accretion disks. A magnetically channelled
wind from the main sequence star has been invoked to explain the higher
rates of mass transfer observed in binaries above the period gap, and in an
explanation of the gap. The winds from accretion disks have been suggested
as contributing to the inflow by removing angular momentum.

Magnetohydrodynamics in binary stars is now an area of central im-
portance in stellar astrophysics (Campbell, 1997; Rose, 1998). Magnetic fields
are believed to play a role even in apparently non-magnetic binaries. They
provide the most viable means, through the so-called shear-type instabilities,
of generating the MHD turbulence in an accretion disk necessary to drive the
plasma inflow via the resulting magnetic and viscous stresses.

The fundamental problem is the role of magnetic fields in redistributing
angular momentum in binary stars. The disk is fed by the plasma stream
originated in the L1 region (Figure 13.1) of the secondary star. In a steady
state,

plasma is transported through the disk at the rate it is supplied by
the stream and the angular momentum will be advected outwards.

Angular momentum avdection requires coupling between rings of rotating
plasma; the ordinary hydrodynamic viscosity is too weak to provide this.
Hence some form of anomalous viscosity must be invoked to explain the
plasma flow through the disk.
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D
SS

L1

St

Figure 13.1: The standard model of a binary system viewed down the rota-
tional pole. The tidally and rotationally distorted secondary star SS loses
plasma from the unstable L1 point. The resulting plasma stream St feeds an
accretion disk D, centred on the primary star.

The key point is the recognition that a simple linear instability, which
we refer to here as the standard magnetorotational instability (Hawley et
al., 1995), generates MHD turbulence. This turbulence transports angular mo-
mentum outward through the disk, allowing accretion to proceed. Although
turbulence seems like a natural and straightforward transport mechanism, it
turns out that the magnetic fields are essential. Purely hydrodynamic tur-
bulence is not self-sustaining and does not produce sustained outward trans-
port of angular momentum (see Hawley and Balbus, 1999). MHD turbulence
greatly enhances angular momentum transport associated with the so-called
α-disks (Balbus and Papaloizou, 1999).

It is most probable that the accretion disks have turbulent motions gen-
erated by the shear instabilities. The turbulence and strong radial shear lead
to the generation and maintenance of a large scale magnetic field.

Viscous and magnetic stresses cause radial advection of the angular
momentum via the azimutal forces.

Provided these forces oppose the large-scale azimutal motion, plasma will spi-
ral in through the disk as angular momentum flows outwards. Presumably,
the approximation of a weak field (Section 13.1.2) can be used inside the
disk to model these effects. Most models to date involve a vertically aver-
aged structure. The future aim is to find 3D solutions which self-consistently
incorporate the magnetic shear instabilities and vertical structure.

The stellar spin dynamics and stability are also important, of course.
For example, in spin evolution calculations, a compact white draft, or neutron
star, is usually treated as a rigid body. This is valid provided the dynamic
time-scale for adjustments in the stellar structure is short compared to the
spin evolution time scale. In general, however, a strongly-magnetic primary
star may experience significant distortions from spherical symmetry due to
non-radial internal magnetic forces. This fact can be demonstrated by the
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tensor virial theorem in MHD (Section 19.1.3).

13.2.2 Magnetic accretion in cataclysmic variables

Cataclysmic variables (CVs) are interacting binary systems composed of a
white dwarf (primary star) and a late-type, main-sequence companion (sec-
ondary star). The secondary star fills its Roche lobe, and plasma is trans-
ferred to the compact object through the inner Lagrangian point. The way
this plasma falls towards the primary depends on the intensity of a magnetic
field of the white dwarf.

If the magnetic field is weak, the mass transfer occurs through an optically
thick accretion disk. Such CVs are classified as non-magnetic ones.

The strong magnetic field (B >∼ 107 G) may entirely dominate the geome-
try of the accretion flow. The magnetic field is strong enough to synchronize
the white dwarf rotation (spin) with the orbital period. Synchronization oc-
curs when the magnetic torque between primary and secondary overcomes
the accretion torque, and no disk is formed. Instead, the field channels accre-
tion towards its polar regions. Such synchronous systems are known as AM
Herculis binaries or polars.

The intermediate (B ∼ 2−8×106 G) magnetic field primary stars harbor
magnetically truncated accretion disks which can extend until magnetic pres-
sure begins to dominate. A shock should appear when the plasma streams
against the white dwarf’s magnetosphere. The shock should occur close to
the corotation radius (the distance from the primary at which the Keplerian
and white dwarf angular velocities match), inside and above the disk plane.
Presumably the plasma is finally accreted onto the magnetic poles of the
white dwarf. The asynchronous systems are known as DQ Herculis binaries
or Intermediate Polars (IPs).

General properties of plasma flows driven by a strong magnetic field will
be discussed in Chapter 14.

The accretion geometry strongly influences the emission properties at all
wavelengths and its variability. The knowledge of the behaviour in all energy
domains can allow one to locate the different accreting regions (Bianchini et
al., 1995). Reid et al. (2001) discovered the first magnetic white dwarf of
the spectral type DZ, which shows lines of heavy elements like Ca, Mg, Na,
and Fe. The cool white dwarf LHS 2534 offers the first empirical data in an
astrophysical setting of the Zeeman effect on neutral Na, Mg, and both ionized
and neutral Ca. The Na I splittings result in a mean surface field strength
estimate of 1.92× 106 G. In fact, there are direct laboratory measurements of
the Na I D lines that overlap this field strength.

13.2.3 Accretion disks near black holes

In interacting binary stars there is an abundance of evidence for the presence
of accretion disks: (a) double-peaked emission lines are observed; (b) eclipses
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of an extended light source centered on the primary occur, and (c) in some
cases eclipses of the secondary star by the disk are also detected. The case for
the presence of accretion disks in active galactic nuclei is less clear. Nonethe-
less the disk-fed accreation onto a super-massive black hole is the commonly
accepted model for these astronomical objects. In fact, active galactic nu-
clei also exhibit the classical double-peaked, broad emission lines which are
considered to be characteristic for a rotating disk.

As the plasma accretes in the gravitational field of the central mass, mag-
netic field lines are convected inwards, amplified and finally deposited on the
horizon of the black hole (Section 8.3.4). As long as a magnetic field is
confined by the disk, a differential rotation causes the field to wrap up tightly
(see Section 20.1.5), becoming highly sheared and predominantly azimuthal
in orientation. A dynamo in the disk may be responsible for the maintenance
and amplification of the magnetic field.

In the standard model of an accreation disk (Shakura and Sunyaev, 1973;
Novikov and Thorne, 1973), the gravitational energy is locally radiated from
the optically thin disk, and the plasma keeps its Keplerian rotation. However
the expected power far exceeds the observed luminosity.

There are two possible explanations for the low luminosities of nearby black
holes: (a) the accretion occurs at extremely low rates, or (b) the accretion
occurs at low radiative efficiency. Advection has come to be thought of as
an important process and results in a structure different from the standard
model. The advection process physically means that

the energy generated via viscous dissipation is restored as entropy
of the accreting plasma flow rather than being radiated.

The advection effect can be important if the radiation efficiency decreases
under these circumstances (Section 8.3.4). An optically thin advection-
dominated accretion flow (ADAF) seems to be a hydrodynamic model that can
reproduce the observed hard spectra of black hole systems such as active galac-
tic nuclei (AGN) and Galactic black hole candidates (e.g., Manmoto, 2000).

This situation is perhaps best illustrated by the case of nearby ellipti-
cal galaxy nuclei (Di Matteo et al., 2000). Assuming that the accretion oc-
curs primarily from the hot, quasi-spherical interstellar medium (ISM), the
Bondi (1952) theory can be used to estimate the accreation rates onto the
supermassive black holes. Such estimates, however, require accurate mea-
surements of both the density and the temperature of the ISM at the Bondi
accreation radius, i.e., the radius at which the gravitational force of the black
hole begins to dominate the dynamics of the hot plasma.

In order to determine unambiguously whether or not the low luminosities
of nearby black holes are due to a low radiative efficiency in the accreting
plasma, it is also necessary to measure the nuclear power. When combined
with the estimated accretion rates, this gives us a direct measurement of the
radiative efficiency η r.
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Thanks to its high spatial resolution and sensitivity, the Chandra X-ray
Observatory is able, for the first time, to detect nuclear X-ray point sources in
nearby galaxies and provide us with direct measurements of their luminosities.
Chandra also allows us to measure the central temperatures and densities of
the ISM close to accretion radii of the central black holes and therefore to
determine the Bondi accretion rates in these systems to much greater accuracy
than before.

Di Matteo et al. (2001) explored the implications of Chandra observa-
tions of the giant elliptical galaxy NGC 6166. They show that, if the central
black hole of ∼ 109 M	 is fed at the estimated Bondi rate, the inferred ef-
ficiency η r

<∼ 10−5. At the given accretion rate, ADAF models can explain
the observed nuclear luminosity. However the presence of fast outflows in
the accretion flow is also consistent with the present constraints. The power
output from the jets in NGC 6166 is also important to the energetics of the
system.

13.2.4 Flares in accretion disk coronae

Following the launch of several X-ray satellites, astrophysicists have tried to
observe and analyze the violent variations of high energy flux from black
hole candidates (e.g., Negoro et al., 1995; see also review in Di Matteo et
al., 1999). So far, similar solar and astrophysical statistical studies have been
done almost independently of each other. Ueno (1998) first compared X-ray
light curves from the solar corona and from the accretion disk in Cyg X-1, a
famous black hole candidate. He analyzed also the power spectral densities,
the peak interval distributions (the interval of time between two consecutive
flares), and the peak intensity distributions.

It has appeared that there are many relationships between flares in the
solar corona and ‘X-ray shots’ in accretion disks. (Of course, there are many
differences and unexplained features.) For example, the peak interval distri-
bution of Cyg X-1 shows that the occurrence frequency of large X-ray shots
is reduced. A second large shot does not occur soon after a previous large
shot. This suggests the existence of energy-accumulation structures, such as
magnetic fields in solar flares.

It is likely that accretion disks have a corona which interacts with a mag-
netic field generated inside a disk. Galeev et al. (1979) suggested that the
corona is confined in strong magnetic loops which have buoyantly emerged
from the disk. Buoyancy constitutes a mechanism able to channel a part of
the energy released in the accretion process directly into the corona outside
the disk.

Magnetic reconnection of buoyant fields in the lower density surface
regions may supply the energy source for a hot corona.

On the other hand, the coronal magnetic field can penetrate the disk and is
stressed by its motions. The existence of a disk corona with a strong field



234 Chapter 13. MHD in Astrophysics

(Section 13.1.3) raises the possibility of a wind flow similar to the solar wind.
In principle, this would result in angular momentum transport away from the
disk, which could have some influence on the inflow. Another feature related
to the accretion disk corona is the possibility of a flare energy release similar
to solar flares (see vol. 2, Section 8.3).

When a plasma in the disk corona is optically thin and has a dominant
magnetic pressure, the circumstances are likely to be similar to the solar
corona. Therefore

it is possible to imagine some similarity between the mechanisms of
solar flares and X-ray shots in accretion disks.

Besides the effect of heating the the disk corona, reconnection is able to
accelerate particles to high energies (Lesch and Pohl, 1992; Bednarek and
Protheroe, 1999). Some geometrical and physical properties of the flares in
accretion disk coronae can be inferred almost directly from soft- and hard
X-ray observations of Galactic black hole candidates (Beloborodov, 1999; Di
Matteo et al., 1999).

13.3 Astrophysical jets

13.3.1 Jets near black holes

Jet-like phenomena, including relativistic jets (Begelman et al., 1984; Birkin-
shaw, 1997), are observed on a wide range of scales in accretion disk systems.
Active galactic nuclei (AGN) show extremely energetic outflows extending
even to scales beyond the outer edge of a galaxy in the form of strongly colli-
mated radio jets. The luminosities of the radio jets give an appreciable frac-
tion of the luminosity of the underlying central object. There is substantial
evidence that magnetic forces are involved in the driving mechanism
and that the magnetic fields also provide the collimation of relativistic flows
(see also Section 20.1.3). So numerucal simulations must incorporate rela-
tivistic MHD in a four-dimensional space-time (Nishikawa et al., 1999; Koide
et al., 1999).

Rotating black holes are thought to be the prime-mover behind the
activity detected in centers of galaxies. The gravitational field of rotating
black holes is more complex than that of non-rotating ones. In addition
to the ordinary gravitational force, mg, the rotation generates the so-called
gravitomagnetic force which is just an analogy of the Lorentz force. In fact,
the full weak-gravity (far from the hole) low-velocity (replacing the relativistic
unified space-time with an equivalent Galilean ‘absolute-space-plus-universal-
time’) coordinate acceleration of uncharged particle (Macdonald et al., 1986;
see also Chapter 4 in Novikov and Frolov, 1989)

d2r
dt2

= g +
dr
dt

× Hgr (13.30)
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looks like the Lorentz force with the electric field E replaced by g, the mag-
netic field B replaced by the vector Hgr = curl Agr, and the electric charge e
replaced by the particle mass m. These analogies lie behind the use of the
words ‘gravitoelectric’ and ‘gravitomagnetic’ to describe the gravitational ac-
celeration field g and to describe the ‘shift function’ Agr and its derivatives
(Exercise 13.6).

The analogy with electromagnetism remains strong so long as all velocities
are small compared with that of light and gravity is weak enough to be linear.
Thus, far from the horizon, the gravitational acceleration

g = −M

r2 er (13.31)

is the radial Newtonian acceleration and the gravitomagnetic field

Hgr = 2
J − 3 (J · er) er

r3 (13.32)

is a dipole field with the role of dipole moment played by the hole’s angular
momentum

J =
∫

( r × ρmv) dV . (13.33)

A physical manifestation of the gravitomagnetic field (13.32) is the pre-
cession that is induced in gyroscopes far from the hole. The electromagnetic
analogy suggests that not only should the gravitomagnetic field exert a torque
on a gyroscope outside a black hole, it should also exert a force. The grav-
itomagnetic force drives an accretion disk into the hole’s equatorial
plane and holds it there indefinitely regardless of how the disk’s angular
momentum may change (Figure 13.2).

Consequently, at radii where the bulk of the disk’s gravitational energy
is released and where the hole-disk interactions are strong, there is only one
geometrically preferred direction along which a jet might emerge: the normal
to the disk plane, which coincides with the rotation axis of the black hole. In
some cases the jet might be produced by winds off the disk, in other cases
by electrodynamic acceleration of the disk, and in others by currents in the
hole’s magnetosphere (see Begelman et al., 1984). However whatever the
mechanism, the jet presumably is locked to the hole’s rotation axis.

The black hole acts as a gyroscope to keep the jet aligned. The
fact that it is very difficult to torque a black hole accounts for the constancy
of the observed jet directions over length scales as great as millions of light
years and thus over time scales of millions of years or longer.

A black hole by itself is powerless to produce the observed jets. It does
so only with the aid of surrounding plasma and magnetic fields. A super-
massive hole in a galactic nucleus can acquire surrounding matter either by
gravitationally pulling interstellar gas into its vicinity, or by tidally disrupting
passing stars and smearing their matter out around itself. In either case the



236 Chapter 13. MHD in Astrophysics

H

J

gr

D

jet

V

Figure 13.2: An accretion disk D around a rotating black hole is driven into
the hole’s equatorial plane at small radii by a combination of gravitomagnetic
forces (action of the gravitomagnetic field Hgr on orbiting plasma) and viscous
forces.

gas is likely to have so much angular momentum that, instead of being swal-
lowed directly and radially into the hole, it forms an orbiting disk around the
hole. The orientation of the disk at large radii is determined by the direction
of the angular momentum of the recently acquired gas, see an external part
of the accretion disk in Figure 13.2.

In the highly-conducting medium, the gravitomagnetic force couples with
electromagnetic fields over Maxwell’s equations. This effect has interesting
consequences for the magnetic fields advected from the interstellar matter
towards the black hole (Camenzind, 1990). It leads to a gravitomagnetic
dynamo which amplifies any seed field near a rotating compact object. This
process builds up the dipolar magnetic structures which may be behind the
bipolar outflows seen as relativistic jets (for comparison with a non-relativistic
process see Section 14.4).

Magnetic fields also influence the accretion towards the rotating black
hole. For rapidly rotating holes, the accreation can carry negative angular
momentum inwards, spinning down the black hole.

13.3.2 Relativistic jets from disk coronae

Relativistic jets are produced perpendicular to the accretion disk plane (see
Figure 13.2) around a super-massive black hole in the central part of an AGN.
The shock of the jets on intergalactic media, at a distance of several hundreds
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of kpc from the central engine, is considered as being able to accelerate parti-
cles up to the highest energies, say 1020 eV for cosmic rays. This hypothesis
need, however, to be completed by some further and necessary ingradients
since such powerful galaxies are rare objects.

Subramanian et al. (1999) consider the possibility that the relativistic jets
observed in many active galactic nuclei may be powered by the Fermi acceler-
ation of protons in a tenuous corona above a two-temperature accretion disk
(Section 8.3.4). The acceleration arises, in this scenario, as a consequence of
the shearing motion of the magnetic field lines in the corona, that are anchored
in the underlying Keplerian disk. The protons in the corona have a power-law
distribution because the density there is too low for proton-proton collisions
(formula (8.39)) to thermalize the energy supplied via Fermi acceleration.

The same mechanism also operates in the disk itself. However there the
density is high enough for thermalization to occur and consequently the disk
protons have the Maxwellian distribution. Particle acceleration in the corona
leads to the development of a pressure-driven wind that passes through a crit-
ical point and subsequently transforms into a relativistic jet at large distances
from the black hole.

13.4 Practice: Exercises and Answers

Exercise 13.1 [ Section 13.1.1 ] Evaluate the characteristic value of Alfvén
speed in the solar corona above a large sunspot.

Answer. From definition (13.14) we find the following formula for Alfvén
speed

VA ≈ 2.18 × 1011 B√
n

, cm s−1 . (13.34)

In this formula, in the coefficient, we have neglected a small contribution of
the ions that are heavier than protons into the plasma density ρ. Another
thing is much more important however.

Above a sunspot the field strength can be as high as B ≈ 3000 G. Plasma
density in the low corona n ≈ 2 × 108 cm−3 . For these values formula (13.34)
gives unacceptably high values of the Alfvén speed: VA ≈ 5×1010 cm s−1 > c.
This means that

in a strong magnetic field and low density plasma, the Alfvén waves
propagate with velocities approaching the light speed c.

So formula (13.34) has to be corrected by a relativistic factor which takes this
fact into account.

Alfvén (1950) pointed out that the ‘magnetohydrodynamic waves’ are just
an extreme case of electromagnetic waves (Section 15.2.2 and Exercise 15.3).
Alfvén has shown that the transition between electromagnetic and Alfvén
waves can be surveyed by the help of the following formula for the speed of
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propagation along the magnetic field:

V rel
A

=
B√
4πρ

1√
1 + B2/4πρc2

, (13.35)

which agrees with (13.14) when B2 
 4πρc2. Therefore the relativistic Alfvén
wave speed is always smaller than the light speed:

V rel
A

=
c√

1 + 4πρc2/B2
≤ c . (13.36)

For values of the magnetic field and plasma density mentioned above, this
formula gives V rel

A
≈ 2 × 1010 cm s−1 < c.

Formula (13.36) shows that, in low desity cosmic plasmas, the Alfvén speed
can easily approach the light speed c.

Exercise 13.2 [ Section 13.1.3 ] Discuss properties of the Lorentz force (13.16)
in terms of the Maxwellian stress tensor (12.11).

Answer. In non-relativistic MHD, the Maxwellian stress tensor has only
magnetic field components (see formula (12.48))

Mαβ =
1
4π

(
B2

2
δαβ − BαBβ

)
. (13.37)

Let us write down these components in the reference system which has the
z coordinate in the direction of the magnetic field at a given point. In its
neighbourhood, formula (13.37) implies

Mαβ =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
B2/8π 0 0

0 B2/8π 0

0 0 −B2/8π

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
. (13.38)

According to definition (13.37) the zz component of the tensor has two parts:

Mzz =
B2

8π
− B2

4π
. (13.39)

The first part, B2/8π, combines with the Mxx and Myy components to give
an isotropic pressure. The remaining part, −B2/4π, corresponds to excess
‘negative pressure’ or tension in the z direction. Thus

a magnetic field has a tension along the field lines in addition to
having the isotropic pressure, B2/8π.

The second term on the right-hand side of the Maxwellian stress tensor (13.37)
describes the magnetic tension along field lines. Recall that the diagonal
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components of the pressure tensor (12.15), in exactly the same way, correspond
to isotropic gas pressure and the off-diagonal components to viscous shear.

Exercise 13.3 [ Section 13.1.3 ] Show that the magnetic tension force is di-
rected to the local centre of curvature.

Answer. The Lorentz force is

Fm = − 1
4π

B × curl B =
1
4π

(B · ∇)B − ∇ B2

8π
. (13.40)

Here (B · ∇) is the directional derivative along a magnetic field line. Hence
we can use formulae that are similar to (5.43) and (5.44) to rewrite the first
term on the right-hand side of (13.40) as follows

1
4π

(B · ∇)B = −B2

4π

ec

Rc
+

∂

∂l

B2

8π
n . (13.41)

Here n = B/B is the unit vector along the magnetic field, l is the distance
along the field line, Rc is a radius of curvature for the field line at a given
point R. At this point the unit vector ec is directed from the curvature
center 0c as shown in Figure 5.8.

Let us decompose the second term on the right-hand side of (13.40) as

−∇ B2

8π
= −∇⊥

B2

8π
− ∂

∂l

B2

8π
n , (13.42)

where the operator ∇⊥ operates in the planes normal to the magnetic field
lines.

Now we combine formulae (13.41) and (13.42) to write the Lorentz force
as

Fm = −∇⊥
B2

8π
− B2

4π

ec

Rc
.

(13.43)

The first term in the Lorentz force is the magnetic pressure force which is
isotropic in the planes normal to the magnetic field lines. It is directed from
high magnetic pressure (strong magnetic field) to low magnetic pressure (low
field strength) in the same way as the gas pressure. Therefore

the magnetic pressure force acts when the strength of the magnetic
field is not a constant in space.

The second term on the right-hand side of (13.43), the magnetic tension
force, is directed to the local center of curvature (see point 0c is Figure 5.8).
It is inversely proportional to the curvature radius Rc. Thus the more a field
line is curved, the stronger the tension force is.
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The magnetic tension force behaves in an identical way as the ten-
sion force in an elastic string.

It is present for magnetic fields with curved field lines and tendes to make
curved field lines straight, for example, in an Alfvén wave (see Figure 15.1).

The sum of both terms, the Lorentz force, has no component along the
magnetic field. We already knew this since the vector product B × curl B is
perpendicular to the vector B.

Exercise 13.4 [ Section 13.1.1 ] For the conditions in the low corona, used in
Exercise 13.1, estimate the parameter γ2.

Answer. Substitute p0 = 2n0kBT0 in definition (13.13):

γ2 =
n0kBT0

B 2
0 /8π

≈ 3.47 × 10−15 n0T0

B 2
0

. (13.44)

Let us take as the characteristic values of temperature T0 ≈ 2 × 106 K and
magnetic field B0 ≈ 3000 G. For these values formula (13.44) gives the di-
mensionless parameter γ2 ∼ 10−7. Hence, in the solar corona above sunspots,
the conditions (13.24) of a strong field can be satisfied well for a wide range
of plasma parameters.

Exercise 13.5 [ Section 12.3.2 ] By using general formula (12.74) for the
energy flux in ideal MHD, find the magnetic energy influx into a reconnecting
current layer (RCL).

Answer. Let us consider a current layer as a neutral one (Figure 8.5).
In this simplest approximation, near the layer, the magnetic field B ⊥ v.
Therefore in formula (12.74) the scalar product B · v = 0 and the energy flux
density

G = ρv
(

v2

2
+ w

)
+

B2

4π
v . (13.45)

If the approximation of a strong field is satisfied, the last term in (13.45) is
dominating, and we find the magnetic energy flux density or the Poynting
vector (cf. general definition (12.52)) directed into the current layer

GP =
B2

4π
v . (13.46)

For a quarter of the current layer assumed to be symmetrical and for a unit
length along the current, the total flux of magnetic energy

E in
mag =

B 2
0

4π
v0b . (13.47)

Here b is half-width of the layer (see vol. 2, Figure 6.1), B0 is the field strength
on the inflow sides of the current layer, v0 is the inflow velocity.
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Exercise 13.6 [ Section 13.3 ] Consider a weakly gravitating, slowly rotating
body such as the Earth or the Sun, with all nonlinear gravitational effects
neglected. Compute the gravitational force and gravitomagnetic force (as
in Section 13.3.1) from the linearized Einstein equations (see Landau and
Lifshitz, Classical Theory of Field , 1975, Chapter 10, § 100). Show that,
for a time-independent body, these equations are identical to the Maxwell
equations (1.24)–(1.27):

curlg = 0 , div g = − 4π Gρm , (13.48)

curl Hgr = − 16π Gρmv , div Hgr = 0 . (13.49)

Here the differences are: (a) two minus signs due to gravity being attractive
rather than repulsive, (b) the factor 4 in the curlHgr equation, (c) the presence
of the gravitational constant G, (d) the replacement of charge density ρ q by
mass density ρm, and (e) the replacement of electric current density j by the
density of mass flow ρmv with v the velocity of the mass.



Chapter 14

Plasma Flows in a Strong
Magnetic Field

A sufficiently strong magnetic field easily moves a comparatively ra-
rified plasma in many non-stationary phenomena in space, for example
in solar flares and coronal mass ejections which strongly influence the
interplanetary and terrestrial space.

14.1 The general formulation of the problem

As was shown in Section 13.1.3, the set of MHD equations for an ideal medium
in the approximation of strong field and cold plasma is characterized only by
the small parameter ε2 = v2/V 2

A
:

ε2 dv
dt

= − 1
ρ

B × curl B , (14.1)

∂ B
∂t

= curl (v × B) , (14.2)

∂ρ

∂t
+ div ρv = 0 . (14.3)

Let us try to find the solution to this set as a power series in the parameter ε2,
i.e. representing all the unknown quantities in the form

f(r, t) = f (0)(r, t) + ε2f (1)(r, t) + . . . . (14.4)

Then we try to find the solution in three consequent steps.
(a) To zeroth order with respect to ε2, the magnetic field is determined

by the equation
B (0) × curl B (0) = 0 . (14.5)

243
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This must be supplemented with a boundary condition, which generally de-
pends on time:

B (0) (r, t)
∣∣

S
= f 1 (r, t) . (14.6)

Here S is the boundary of the region G, in the interior of which the force-free-
field Equation (14.5) applies.

The strong force-free magnetic field, changing in time according to
the boundary condition (14.6), sets the plasma in motion.

(b) The kinematics of this motion is uniquely determined by two con-
ditions. The first one follows from the equation of motion and signifies the
orthogonality of acceleration to the magnetic field lines

B (0) · dv (0)

dt
= 0 . (14.7)

This equation is obtained by taking the scalar product of Equation (14.1) and
the vector B(0).

The second condition is a consequence of the freezing-in Equation (14.2)

∂ B (0)

∂t
= curl

(
v(0) × B (0)

)
. (14.8)

Equations (14.7) and (14.8) determine the velocity field v(0)(r, t), if the initial
condition inside the region G is given:

v (0)
‖ (r, 0)

∣∣
G

= f 2 (r) . (14.9)

Here v(0)
‖ is the velocity component along the field lines. The velocity com-

ponent across the field lines is uniquely defined, once the field B (0) (r, t) is
known, by the freezing-in Equation (14.8) at any moment, including the initial
one.

(c) Since we know the velocity field v(0)(r, t), the continuity equation

∂ρ (0)

∂t
+ div ρ (0)v(0) = 0 (14.10)

allows us to find the plasma density distribution ρ (0)(r, t), if we know its
initial distribution

ρ (0)(r, 0)
∣∣

G
= f3 (r) . (14.11)

Therefore Equations (14.5), (14.7) and (14.8), together with the continuity
equation (14.10), completely determine the unknown zero-order quantities
B (0) (r, t), v(0)(r, t) and ρ (0)(r, t), once the boundary condition (14.6) at the
boundary S is given, and the initial conditions (14.9) and (14.11) inside the
region G are given (Somov and Syrovatskii, 1976b).
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At any moment of time, the field B (0) (r, t) is found from Equation (14.5)
and the boundary condition (14.6). Thereupon the velocity v(0)(r, t) is de-
termined from Equations (14.7) and (14.8) and the initial condition (14.9).
Finally the continuity Equation (14.10) and the initial condition (14.11) give
the plasma density distribution ρ (0) (r, t).

From here on we restrict our attention to the consideration of the zeroth
order relative to the parameter ε2, neglecting the magnetic field deviation from
a force-free state. However the consecutive application of the expansion (14.4)
to the set of Equations (14.1)–(14.3) allows us to obtain a closed set of
equations for determination of MHD quantities in any order relative to
the small parameter ε2.

An important point, however, is that, during the solution of the problem
in the zeroth order relative to ε2, regions can appear, where the gas pressure
gradient cannot be ignored. Here effects proportional to the small parame-
ter γ2 must be taken into account (Section 13.1.3). This fact usually imposes a
limitation on the applicability of the strong-field-cold-plasma approximation.

The question of the existence of general solutions to the MHD equations in
this approximation will be considered in Section 14.3, using two-dimensional
problems as an example.

14.2 The formalism of two-dimensional prob-
lems

While being relatively simple from the mathematical viewpoint, two-dimen-
sional MHD problems allow us to gain some knowledge concerning the flows
of plasma with the frozen-in strong magnetic field. Moreover the two-
dimensional problems are sometimes a close approximation of the real three-
dimensional flows and can be used to compare the theory with experiments
and observations, both qualitatively and quantitatively.

There are two types of problems (Somov, 1994a) treating the plane
flows of plasma, i.e. the flows with the velocity field of the form

v = { vx(x, y, t), vy(x, y, t), 0 } . (14.12)

All the quantities are dependent on the variables x, y and t.

14.2.1 The first type of problems

The first type incorporates the problems with a magnetic field which is ev-
erywhere parallel to the z axis of a Cartesian system of coordinates:

B = { 0, 0, B (x, y, t) } . (14.13)

Thus the corresponding electric current is parallel to the (x, y) plane:

j = { jx(x, y, t), jy(x, y, t), 0 } . (14.14)
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As an example of a problem of the first type, let us consider the effect of a
longitudinal magnetic field in a reconnecting current layer (RCL). Under real
conditions, reconnection does not occur at the zeroth lines, but rather at the
‘limiting lines’ of the magnetic field or ‘separators’ (see vol. 2, Section 3.2).
The latter differ from the zeroth lines only in that the separators contain the
longitudinal component of the field as shown in Figure 14.1.

B

B ||

y

x

Figure 14.1: Structure of the
magnetic field near a separator.
A longitudinal field B ‖ parallel
to the z axis is superimposed on
the two-dimensional hyperbolic
field in the plane (x, y).

With the appearance of the longitudinal field, the force balance in the RCL
that is formed at the separator is changed. The field and plasma pressure
outside the layer must balance not only the gas pressure but also that of the
longitudinal field inside the layer (Figure 14.2)

B ‖ =
{

0, 0, B ‖ (x, y, t)
}

. (14.15)

This effect is well known in the so-called theta-pinch. In axially symmetric
geometry, in cylindrical coordinates r, θ, z, an azimuthal current density jθ

crossed with an axial field Bz can support a radial pressure gradient.
If the longitudinal field accumulated in the layer during reconnection, the

field pressure B 2
‖/8π would considerably limit the layer compression as well

as the reconnection rate. However the solution of the problem of the first type
with respect to B ‖ (see vol. 2, Section 6.2.2) shows that another effect is of
importance in the real plasma with finite conductivity.

The effect, in essence, is this: the longitudinal field compression in
the RCL produces a gradient of this field and a corresponding electric current
circulating in the transversal (relative to the main current jz in the layer)
plane (x, y). This current circulation is of the type (14.14); it is represented
schematically in Figure 14.2.

The circulating current plays just the same role as the jθ-current in the
theta-pinch, a one-dimensional equilibrium in a cylindric geometry with an
axial field Bz(r). Ohmic dissipation of the circulating current under
conditions of finite conductivity leads to longitudinal field diffusion outwards
from the layer, thus limiting the longitudinal field accumulation in the RCL.
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B

B || jj x
y x

y

Figure 14.2: A model of a reconnecting current layer with a longitudinal
component of a magnetic field B ‖.

14.2.2 The second type of MHD problems

14.2.2 (a) Magnetic field and its vector potential

From this point on we shall be mainly interested in two-dimensional problems
of the second type. They treat the plane plasma flows (14.12) associated with
the plane magnetic field

B = { Bx(x, y, t), By(x, y, t), 0 } . (14.16)

The electric currents corresponding to this field are parallel to the z axis

j = { 0, 0, j (x, y, t) } . (14.17)

The vector-potential A of such a field has as its only non-zero component:

A = { 0, 0, A (x, y, t) } .

The magnetic field B is defined by the z-component of the vector-potential:

B =
{

∂A

∂y
, − ∂A

∂x
, 0
}

. (14.18)

The scalar function A (x, y, t) is often termed the vector potential . This
function is quite useful, owing to its properties.

Property 1. Substitute (14.18) in the differential equations describing
the magnetic field lines

dx

Bx
=

dy

By
=

dz

Bz
. (14.19)

Equations (14.19) imply parallelism of the vector d l = {dx, dy, dz} to the
vector B = {Bx, By, Bz}. In the case under study Bz = 0, dz = 0, and

dx

∂A/∂y
= − dy

∂A/∂x
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or
∂A

∂x
dx +

∂A

∂y
dy = 0 .

On integrating the last, we come to the conclusion that the relation

A (x, y, t) = const for t = const
(14.20)

is the equation for a family of magnetic field lines in the plane z = const at
the moment t.

Property 2. Let L be some curve in the plane (x, y) and d l an arc
element along the curve in Figure 14.3.

2

1 BL

d l

d S Figure 14.3: The curve L connects
the points 1 and 2 situated in dif-
ferent field lines.

Let us calculate the magnetic flux d Φ through the arc element d l. By
definition,

d Φ = B · dS = B · (ez × d l ) = B ·

∣∣∣∣∣∣∣∣∣∣
ex ey ez

0 0 1

dx dy 0

∣∣∣∣∣∣∣∣∣∣
=

= B · { (−dy) ex + dx ey } = −Bx dy + By dx . (14.21)

On substituting definition (14.18) in formula (14.21) we find that

d Φ = −∂A

∂y
dy − ∂A

∂x
dx = − dA . (14.22)

On integrating (14.22) along the curve L from point 1 to point 2 we obtain
the magnetic flux

Φ = A2 − A1 . (14.23)

Thus the fixed value of the vector potential A is not only the field line ‘tag’
determined by formula (14.20);

the difference of values of the vector potential A on two field lines
is equal to the magnetic flux between them.
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From this, in particular, the following simple rule holds: we have to plot
the magnetic field lines corresponding to equidistant values of A.

Property 3. Let us substitute definition (14.18) in the freezing-in Equa-
tion (14.2). We obtain the following general equation

curl
dA
dt

= 0 . (14.24)

Disregarding a gradient of an arbitrary function, which can be eliminated by
a gauge transformation, and considering the second type of MHD problems,
we have

dA

dt
≡ ∂A

∂t
+ (v · ∇)A = 0 . (14.25)

This equation means that, in the plane (x, y), the lines

A (x, y, t) = const (14.26)

are Lagrangian lines, i.e. they move together with the plasma. According
to (14.20) they are composed of the field lines, hence Equation (14.25) ex-
presses the magnetic field freezing in plasma.

Thus (formally it follows from (14.25) on passing to the Lagrangian vari-
ables) we have one of the integrals of motion

A (x, y, t) = A (x0, y0, 0) ≡ A0

(14.27)

at an arbitrary t. Here x0, y0 are the coordinates of some ‘fluid particle’ at
the initial moment of time; x, y are the coordinates of the same particle at
a moment of time t or (by virtue of (14.27)) the coordinates of any other
particle situated on the same field line A0 at the moment t.

Property 4. Equation of motion (14.1) rewritten in terms of the vector
potential A(x, y, t) is of the form

ε2 dv
dt

= −1
ρ

∆A ∇A . (14.28)

In the zeroth order relative to ε2, outside the zeroth points (where ∇A = 0)
and the magnetic field sources (where ∆A �= 0) we have:

∆A = 0 .
(14.29)

So the vector potential is a harmonic function of variables x and y. Hence,
while considering the (x, y) plane as a complex plane z = x+iy, it is convenient
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to relate an analytic function F to the vector potential A in the region under
consideration:

F (z, t) = A (x, y, t) + iA+(x, y, t) . (14.30)

Here A+(x, y, t) is a conjugate harmonic function connected with A (x, y, t)
by the Cauchy-Riemann condition

A+(x, y, t) =
∫ (

− ∂A

∂y
dx +

∂A

∂x
dy

)
+ A+(t) =

= −
∫

B · d l + A+(t) , (14.31)

where A+(t) is a quantity independent of the coordinates x and y (see
Lavrent’ev and Shabat, 1973, § 2).

The function F (z, t) is termed the complex potential . The magnetic field
vector, according to (14.18) and (14.30), is:

B = Bx + iBy = − i
(

dF

dz

)∗
, (14.32)

the asterisk denoting the complex conjugation. After the introduction of the
complex potential, we can widely apply the methods of the complex vari-
able function theory, in particular the method of conform mapping , to de-
termine the magnetic field in zeroth order in the small parameter ε2 (e.g.,
Exercise 14.4).

This has been done successfully many times in order to determine the
structure of the magnetic field: in vicinity of reconnecting current layer (RCL;
Syrovatskii, 1971), in solar coronal streamers (Somov and Syrovatskii, 1972b)
and the field of the Earth’s magnetosphere (Oberz, 1973), the accretion disk
magnetosphere (see vol. 2, Section 8.3). Markovskii and Somov (1989) sug-
gested a generalization of the Syrovatskii model by attaching four shock MHD
waves at the endpoints of the RCL. Under some simplifying assumptions, such
model reduces exactly to the Riemann-Hilbert problem solved by Bezrodnykh
and Vlasov (2002) in an analytical form on the basis of the Christoffel-Schwarz
integral.

14.2.2 (b) Motion of the plasma and its density

In the strong field approximation, the plasma motion kinematics due to
changes in a potential field is uniquely determined by two conditions:

(i) the freezing-in condition (14.25) or its solution (14.27) and
(ii) the acceleration orthogonality with respect to the field lines

dv(0)

dt
× ∇A(0) = 0 (14.33)
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(cf. Equation (14.7)). A point to be noted is that Equation (14.33) is a result
of eliminating the unknown ∆A(1), which has a first order in ε2, from two
components of the vector equation

dv(0)

dt
= − 1

ρ (0) ∆A(1) ∇A(0) . (14.34)

Once the kinematic part of the problem is solved, the trajectories of fluid
particles are known:

x = x (x0 , y0 , t) , y = y (x0 , y0 , t) . (14.35)

In this case the continuity Equation (14.3) solution presents no problem. In
fact, the fluid particle density change on moving along the found trajectory
is determined by the continuity Equation (14.3), rewritten in the Lagrangian
form, and is equal to

ρ (x, y, t)
ρ0 (x0, y0)

=
dU0

dU
=

D(x0, y0)
D(x, y)

. (14.36)

Here dU0 is the initial volume of a particle, dU is the volume of the same
particle at a moment of time t;

D(x0, y0)
D(x, y)

=
∂x0

∂x

∂y0

∂y
− ∂x0

∂y

∂y0

∂x
(14.37)

is the Jacobian of the transformation that is inverse to the transforma-
tion (14.35) of coordinates at a fixed value of time t.

The two-dimentional equations of the strong-field-cold-plasma approxima-
tion (Somov and Syrovatskii, 1976b) in the problem of the second type are
relatively simple but rather useful for applications to space plasmas. In par-
ticular, they enable us to study the fast plasma flows in the solar atmosphere
(Syrovatskii and Somov, 1980) and to understand some aspects of the recon-
nection process.

In spite of their numerous applications, the list of exact solutions to
them is rather poor. Still, we can enrich it significantly,

relying on many astrophysical objects, for example in the accretion disk coro-
nae (see vol. 2, Section 8.3), and some mathematical ideas.

Titov and Priest (1993) have shown that the equations of zeroth order can
be reduced to a set of Cauchy-Riemann and ordinary differential equations, by
using a conformal system of coordinates in which the positions of particles are
fixed by magnitudes of two conjugate functions. These are the flux function
and the potential of magnetic field. The set obtained has a special class of so-
lutions. First, in such flows the conjugate potential is frozen into the moving
medium as well as the vector potential A(x, y, t). Second, each flow is realized
as a contiuous sequence of conformal mappings. A linear diffusion-like equa-
tion describes such flows. The equation was solved analytically for examples
describing the magnetic collapse (cf. vol. 2, Chapter 2) in the neighbourhood
of the X-point.
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14.3 On the existence of continuous flows

Thus, in the strong-field-cold-plasma approximation, the MHD equations for
a plane two-dimensional flow of ideally conducting plasma (for second-type
problems) are reduced, in the zeroth order in the small parameter ε2, to the
following set of equations:

∆ A = 0 , (14.38)

dv
dt

× ∇A = 0 , (14.39)

dA

dt
= 0 , (14.40)

∂ρ

∂t
+ div ρv = 0 . (14.41)

Seemingly, the solution of this set is completely defined inside some re-
gion G (Figure 14.4) on the plane (x, y), once the boundary condition is given

x

y

v
v

||

⊥

B

G

S

Figure 14.4: The boundary and initial conditions for the second-type MHD
problems.

at the boundary S
A (x, y, t)

∣∣
S

= f1 (x, y, t) (14.42)

together with the initial conditions inside the region G

v‖ (x, y, 0)
∣∣

G
= f2 (x, y) , (14.43)

ρ (x, y, 0)
∣∣

G
= f3 (x, y) . (14.44)

Here v ‖ is the velocity component along field lines. Once the potential
A (x, y, t) is known, the transversal velocity component is uniquely determined
by the freezing-in Equation (14.40) and is equal, at any moment including the
initial one, to

v⊥(x, y, t) = (v · ∇A)
∇A

| ∇A |2 = −∂A

∂t

∇A

| ∇A |2 . (14.45)
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From Equation (14.38) and boundary condition (14.42) we find the vector
potential A (x, y, t) at any moment of time. Next, from Equations (14.39)
and (14.40) and the initial condition (14.43), the velocity v (x, y, t) is deter-
mined; the density ρ (x, y, t) is found from the continuity Equation (14.41)
and the initial density distribution (14.44). The next Section is devoted to
the consideration of an example which may have interesting applications.

14.4 Flows in a time-dependent dipole field

14.4.1 Plane magnetic dipole fields

Two straight parallel currents, equal in magnitude but opposite in direction,
engender the magnetic field which far enough from the currents can be de-
scribed by a complex potential

F (z) =
im
z

, m = m e iψ (14.46)

and is called the plane dipole field. The quantity m = 2Il/c has the meaning
of the dipole moment , I is the current magnitude, l is the distance between
the currents. Formula (14.46) corresponds to the plane dipole situated at the
origin of coordinates in the plane (x, y) and directed at an angle of ψ to the
x axis. The currents are parallel to the z axis of the Cartesian system of
coordinates.

Let us consider the plasma flow caused by the change with time of the
strong magnetic field of the plane dipole. Let ψ = π/2 and m = m(t),
m(0) = m0.

(a) Let us find the first integral of motion. According to (14.30) and
(14.46), the complex potential

F (z, t) =
i m(t) e iπ/2

x + i y
=

−m(t) x + im(t) y

x2 + y2 . (14.47)

So, according to (14.20), the field lines constitute a family of circles

A (x, y, t) = − m(t) x

x2 + y2 = const for t = const . (14.48)

They have centres on the axis x and the common point x = 0, y = 0 in
Figure 14.5.

Therefore the freezing-in condition (14.27) results in a first integral of
motion

m x

x2 + y2 =
m0 x0

x 2
0 + y 2

0
. (14.49)

Here x0, y0 are the coordinates of some fluid particle at the initial moment
of time t = 0 ; Lagrangian variables x and y are the coordinates of the same
particle at a moment t.
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m

x

y

Figure 14.5: The field lines of a plane magnetic dipole.

(b) The second integral is easily found in the limit of small changes of the
dipole moment m (t) and respectively small plasma displacements. Assuming
the parameter δ = vτ/L to be small, Equation (13.26), which is linear in
velocity , takes the place of (14.33). The integration over time (with zero
initial values for the velocity) allows us to reduce Equation (13.26) to the
form

∂x

∂t
= K(x, y, t)

∂A

∂x
,

∂y

∂t
= K(x, y, t)

∂A

∂y
. (14.50)

Here K(x, y, t) is some function of coordinates and time. Eliminating it from
two Equations (14.50), we arrive at

∂y

∂x
=

∂A

∂y

/
∂A

∂x
. (14.51)

Thus, in the approximation of small displacements, not only the acceleration
but also the plasma displacements are normal to the field lines.

On substituting (14.48) in (14.51), we obtain an ordinary differential equa-
tion. Its integral

y

x2 + y2 = const

describes a family of circles, orthogonal to the field lines, and presents
fluid particle trajectories. In particular, the trajectory of a particle, situated
at a point (x0, y0) at the initial moment of time t = 0, is an arc of the circle

y

x2 + y2 =
y0

x 2
0 + y 2

0
(14.52)

from the point (x0, y0) to the point (x, y) on the field line (14.49) as shown in
Figure 14.6.

Thus the integrals of motion (14.49) and (14.52) completely determine the
plasma flow in terms of the Lagrangian coordinates

x = x (x0, y0, t) , y = y (x0, y0, t) . (14.53)
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Figure 14.6: A trajectory of a fluid
particle driven by a changing mag-
netic field of a plane dipole.

m

x

y

y

yx,

x
0

0

t = 0

0

This flow has a simple form: the particles are connected with the magnetic
field lines and move together with them in a transversal direction. Such simple
kinematics is a result of considering small plasma displacements (from the
state having zero initial velocity) under the action of the force perpendicular
to the field lines.

The plasma density change is defined by Equation (14.36). On calculat-
ing the Jacobian for the transformation implicitly given by formulae (14.49)
and (14.52), we obtain (for the case of a homogeneous initial density distri-
bution ρ0) the formula

ρ (x, y, t)
ρ0

=
(

m

m0

)
m 4

0

(m2x2 + m 2
0 y2)4

{[
m2x4 + m 2

0 y4+

+x2y2 (3m2 − m 2
0
) ]2 −

[
2x2y2 (m 2

0 − m2)]2} . (14.54)

In particular, on the dipole axis (x = 0)

ρ (0, y, t)
ρ0

=
m

m0
,

(14.55)

whereas in the ‘equatorial plane’ (y = 0)

ρ (x, 0, t)
ρ0

=
(m0

m

)3
. (14.56)

With increasing dipole moment m, the plasma density on the dipole
axis grows proportionally to the moment,

whereas that at the equatorial plane falls in inverse proportion to the third
power of the moment. The opposite process takes place as the moment de-
creases.

The result pertains to the case of small changes in the dipole moment
and can demonstrate just the tendency of plasma behaviour in the strong
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magnetic field of a plane dipole. The exception is formula (14.55). It applies
to any changes of the dipole moment. The reason is in the following. In the
approximation of a strong field and cold plasma, the acceleration of plasma
is perpendicular to the field lines and is zero at the dipole axis. Hence, if the
plasma is motionless at the initial moment, arbitrary changes of the dipole
moment do not cause a plasma motion on the dipole axis (v = 0). Plasma
displacements in the vicinity of the dipole axis always remain small (δ 
 1)
and the solution obtained applies.

In the general case of arbitrarily large dipole moment changes,

the inertial effects resulting in plasma flows along the magnetic field
lines are of considerable importance

(Somov and Syrovatskii, 1972a). In this case, the solution of the problem
requires the integration of Equation (14.33) or (14.34) together with the
freezing-in Equation (14.25).

One can obtain exact analytical solutions for a linearly changing magnetic
moment using the ‘frozen-in coordinates’ technique (Gorbachev and Kel’ner,
1988). These coordinates can be quite useful while solving nonstationary
MHD problems. One introduces a set which is doubly Lagrangian: in the pa-
rameter s1 along a stream line (along the velocity field v) and in the parameter
s2 along a magnetic field line.

14.4.2 Axisymmetric dipole fields in plasma

Two-dimensional axisymmetric MHD problems can be better suited to as-
trophysical applications of the second-type problem considered. The MHD
equations are written, using the approximation of a strong field and cold
plasma, in spherical coordinates with due regard for axial symmetry. The
role of the vector potential is fulfilled by the so-called stream function

Φ (r, θ, t) = r sin θ Aϕ(r, θ, t) . (14.57)

Here Aϕ is the only non-zero ϕ-component of the vector-potential A.
In terms of the stream functions, the equations take the form

dv
dt

= ε−2K(r, θ, t) ∇Φ ,
d Φ
dt

= 0 ,
dρ

dt
= −ρ div v , (14.58)

where

K(r, θ, t) =
jϕ(r, θ, t)
ρ r sin θ

(14.59)

(Somov and Syrovatskii, 1976b). The equations formally coincide with the
corresponding Equations (14.28), (14.25) and (14.3) describing the plane flows
in terms of the vector potential.
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As a zeroth approximation in the small parameter ε2, we may take, for
example, the dipole field. In this case the stream function is of the form

Φ(0) (r, θ, t) = m(t)
sin2 θ

r
, (14.60)

where m(t) is a time-varying moment.
Let us imagine a homogeneous magnetized ball of radius R(t) with the

frozen field Bint(t). The dipole moment of such a ball (a star or its envelope)
is

m(t) =
1
2

Bint(t) R3(t) =
1
2π

(
B0 πR 2

0
)
R(t) , (14.61)

where B0 and R0 are the values of Bint(t) and R(t) at the initial moment of
time t = 0. The second equality takes account of the magnetic field freezing-in
as conservation of the flux Bint(t) R 2(t) through the ball. Formula (14.61)
shows that the dipole moment of the ball is thereby proportional to its ra-
dius R(t).

The solution to the problem (Somov and Syrovatskii, 1972a) shows that
as the dipole moment grows (when the ball expands)

the magnetic field rakes the plasma up to the dipole axis, compresses
it and simultaneously accelerates it along the field lines.

A distinguishing characteristic of the solution is that the density at the axis
grows in proportion to the dipole moment, just as in the two-dimensional
plane case (formula (14.55)).

Envelopes of nova and supernova stars present a wide variety of different
shapes. We can hardly find the ideally round envelopes, even among the ones
of regular shape. It is more common to find either flattened or stretched
envelopes. As a rule, their surface brightness is maximal at the ends of the
main axes of an oval image. This phenomenon can sometimes be interpreted
as a gaseous ring observed almost from an edge. However, if there is no
luminous belt between the brightness maxima, which would be characteristic
of the ring, then the remaining possibility is that single gaseous compressions
– condensations – exist in the envelope.

At the early stages of the expansion during the explosion of a nova, the
condensations reach such brightness that they give the impression that the
nova ‘bifurcates’. Consider one of the models in which a magnetic field plays a
decisive role. Suppose that the star’s magnetic field was a dipole one before the
explosion. At the moment of the explosion a massive envelope with the frozen-
in field separated from the star and began to expand. According to (14.61),
the expansion results in the growth of the dipole moment. According to the
solution of the problem considered above, the field will rake the interstellar
plasma surrounding the envelope, as well as external layers of the envelope,
up in the direction of the dipole axis.

The process of polar condensate formation can be conventionally divided
into two stages (Somov and Syrovatskii, 1976b, Chapter 2). At the first one,
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the interstellar plasma is raked up by the magnetic field into the polar regions,
a corresponding growth in density and pressure at the dipole axis taking place.
At the second stage, the increased pressure hinders the growth of the density at
the axis, thus stopping compression, but the plasma raking-up still continues.
At the same time, the gas pressure gradient, arising ahead of the envelope,
gives rise to the motion along the axis. As a result, by the time the magnetic
force action stops, all the plasma is raked up into two compact condensates.

The plasma raking-up by the strong magnetic field seems to be capable
of explaining some types of chromospheric ejections on the Sun (Somov and
Syrovatskii, 1976b, Chapter 2, § 4).

If a magnetized ball compresses, plasma flows from the poles to the equa-
torial plane, thus forming a dense disk or ring. This case is the old problem
of cosmic electrodynamics concerning the compression of a gravitating plasma
cloud with the frozen-in field. The process of magnetic raking-up of plasma
into dense disks or rings can effectively work in the atmospheres of collapsing
stars.

14.5 Practice: Exercises and Answers

Exercise 14.1. Consider the properties of the vector-potential A which is
determined in terms of two scalar functions α and β:

A = α∇β + ∇ψ . (14.62)

Here ψ is an arbitrary scalar function.
Answer. Formula (14.62) permits B to be written as

B = curl A = ∇α × ∇β , (14.63)

where the last step follows from the fact that the curl of a gradient vanishes.
This representation of B provides another way to obtain information about

the magnetic field in three-dimensional problems. According to (14.63)

B · ∇α = 0 and B · ∇β = 0 . (14.64)

Thus ∇α and ∇β are perpendicular to the vector B, and functions α and β
are constant along B. The surfaces α = const and β = const are orthogonal
to their gradients and targent to B. Hence

a magnetic field line can be conveniently defined in terms of a pair
of values: α and β.

A particular set of α and β labels a field line.
The functions α and β are referred to as Euler potentials or Clebsch vari-

ables. Depending on a problem to be examined, one form may have an advan-
tage over another. The variables α and β, while in general not easily obtained,
are available for some axisymmetric geometries.
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Another advantage of these variables appears in the study of field line
motions in the context of the ideal MHD theory (Section 5.7 in Parks, 2004).
Since the time evolution of the magnetic field is governed by the induction
Equation (14.2), the functions α (r, t) and β (r, t) satisfy the equations:

∂α

∂t
+ (v · ∇) α = 0 and

∂β

∂t
+ (v · ∇) β = 0 . (14.65)

That is, the functions α (r, t) and β (r, t) take constant values for a point that
moves with the plasma.

Exercise 14.2. Evaluate the typical value of the dipole moment for a neutron
star.

Answer. Typical neutron stars have B ∼ 1012 G. With the star ra-
dius R ∼ 10 km, it follows from formula (14.61) that m ∼ 1030 G cm3. Some
of neutron stars, related to the so-called ‘Soft Gamma-ray Repeaters’ (SGRs),
are the spinning super-magnetized neutron stars created by supernova explo-
sions. The rotation of such stars called magnetars is slowing down so rapidly
that a superstrong field of the unprecedented strength, B ∼ 1015 G, could pro-
vide so fast braking (see Section 19.1.3). For a magnetar the dipole moment
m ∼ 1033 G cm3.

Exercise 14.3. Show that, prior to the onset of a solar flare, the magnetic
energy density in the corona is of about three orders of magnitude greater
than any of the other types. So the flares occur in a plasma environment well
dominated by the magnetic field.

Hint. Take the coronal field of about 100 Gauss, and the coronal plasma
velocity of order of 1 km s−1.

Exercise 14.4. By using the method of conform mapping, determine the
shape of a magnetic cavity created by a plane dipole inside a perfectly con-
ducting uniform plasma with a gas pressure p0. Determine the magnetic field
inside the cavity.

Answer. The conditions to be satisfied along the boundary S of the
magnetic cavity G are equality of magnetic and gas pressure,

B2

8π
S

= p0 = const , (14.66)

and tangency of the magnetic field,

B · n
S

= 0 . (14.67)

Condition (14.67) means that

Re F (z) = A (x, y) = const , (14.68)
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where a complex potential F (z) is an analytic function (14.30) within the
region G in the complex plane z except at the point z = 0 of the dipole.

Let us assume that a conform transformation w = w(z) maps the region G
onto the circle |w | ≤ 1 in an auxiliary complex plane w = u + iv so that the
point z = 0 goes into the centre of the circle without rotation of the dipole as
shown in Figure 14.7.
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Figure 14.7: The field lines of a plane dipole m inside: (a) the unit circle in
the plane w, (b) the cavity in a plasma of constant pressure.

The boundary |w | = 1 is the field line S ′ of the solution in the plane w,
which we easily construct:

F (w) =
(

w − 1
w

)
. (14.69)

Note that we have used only the boundary condition (14.67).
The other boundary condition (14.66) will allow us to find an unknown

conform transformation w = w(z). With account of definition (14.32) taken,
condition (14.66) gives us the following relation∣∣∣∣ dz

dw

∣∣∣∣ 2 =
1

8π p0

∣∣∣∣ dF

dw

∣∣∣∣ 2 . (14.70)

At the boundary |w | = 1, this condition reduces to an ordinary differential
equation relative to the real part, x = x(u), of an unknown function z = z(w):(

dx

du

)2

= M2u4 , where M2 =
1
2π

. (14.71)

By integrating this equation we find

x = ±M
u3

3
+ c1 = ± M

3
cos3 ϕ + c1 , (14.72)
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here ϕ is an argument of the complex number w, and c1 is a constant of
integration.

Since we know the real part x = x(ϕ) on the circle boundary, we find
the complex function z = z(w) in the entire region |w | ≤ 1, for example, by
expanding the function x = x(ϕ) in the Fourier series

x(ϕ) = c1 +
M

4
cos ϕ +

M

12
cos 3ϕ . (14.73)

So, inside the circle, the power series has only three terms:

x(r, ϕ) = c1 +
M

4
r cos ϕ +

M

12
r3 cos 3ϕ , (14.74)

y(r, ϕ) = c2 +
M

4
r sin ϕ +

M

12
r3 sin 3ϕ . (14.75)

Moreover c1 = c2 = 0 because z(0) = 0. Therefore

z(w) =
M

4

(
w +

w3

3

)
. (14.76)

The conform mapping (14.76) and the potential (14.69) determine the
general solution of the problem, the complex potential (Oreshina and So-
mov, 1999):

F (z) = B0L
2/3 K4 − 3L2/3K2 + L4/3

K
(
K2 − L2/3

) . (14.77)

Here B0 = p
1/2
0 is the unit of magnetic field strength, the function

K(z) =
(
6
√

2π · z +
√

L2 + 72π · z2
)1/3

, (14.78)

and L = m1/3p
−1/6
0 is the unit of length; it shows that, when the dipole

moment m increases, the size of the magnetic cavity also increases. This is
consistent with what we discussed in Section 14.4.

The field lines corresponding solution (14.77) are shown in Figure 14.7b.
Therefore, in addition to the shape of the boundary (Cole and Huth, 1959), we
have found an analytic solution for the magnetic field inside the static dipole
cavity. This solution can be used in the zero-order approximation, described in
Section 14.1, to analyse properties of plasma flows near collapsing or exploding
astrophysical objects with strong magnetic fields.

Exercise 14.5. To estimate characteristic values of the large-scale magnetic
field in the corona of an accretion disk (see vol. 2, Section 8.3.1), we have
to find the structure of the field inside an open magnetosphere created by a
dipole field of a star and a regular field generated by the disk.

Consider a simplified two-dimensional problem, demonstrated by Fig-
ure 14.8, on the shape of a magnetic cavity and the shape of the accretion
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Figure 14.8: A two-dimensional model of the star magnetosphere with an
accretion disk; Γl and Γr are the cross sections of the disk. The plane z
corresponds to the complex variable z = x + iy. Su and Sd together with
Γl and Γr constitute the boundary of the singly connected domain G in the
plane z.

disk under assumption that this cavity, i.e. the magnetosphere, is surrounded
by a perfectly conducting uniform plasma with a gas pressure p0. Discuss a
way to solve the problem by using the method of conform mapping (see vol. 2,
Section 8.3.2).



Chapter 15

MHD Waves in
Astrophysical Plasma

There are four different modes of magnetohydrodynamic waves in an
ideal plasma with magnetic field. They can create turbulence, nonlin-
early cascade in a wide range of wavenumbers, accelerate particles and
produce a lot of interesting effects under astrophysical conditions.

15.1 The dispersion equation in ideal MHD

Small disturbances in a conducting medium with a magnetic field propagate
as waves, their properties being different from those of the usual sound waves
in a gas or electromagnetic waves in a vacuum. First, the conducting medium
with a magnetic field has a characteristic anisotropy: the wave propagation
velocity depends upon the direction of propagation relative to the magnetic
field. Second, as a result of the interplay of electromagnetic and hydrody-
namic phenomena, the waves in MHD are generally neither longitudinal nor
transversal.

The study of the behaviour of small-amplitude waves, apart from being
interesting in itself, has a direct bearing on the analysis of large-amplitude
waves, in particular shock waves and other discontinuous flows in MHD.

Initially we shall study the possible types of small-amplitude waves, re-
stricting ourselves to the ideal MHD Equations (12.67). Let us suppose a
plasma in the initial stationary state is subjected to a small perturbation, so
that velocity v0, magnetic field B0, density ρ0, pressure p0 and entropy s0
acquire some small deviations v ′, B ′, ρ ′, p ′ and s ′:

v = v0 + v ′ , B = B0 + B ′ ,
ρ = ρ0 + ρ ′ , p = p0 + p ′ , s = s0 + s ′ . (15.1)

263
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The initial state is assumed to be a uniform flow of an homogeneous medium
in a constant magnetic field:

v0 = const , B0 = const ,
ρ0 = const , p0 = const , s0 = const .

(15.2)

Needless to say, the latter simplification can be ignored, i.e. we may study
waves in inhomogeneous media, the coefficients in linearized equations being
dependent upon the coordinates. For the sake of simplicity we restrict our
consideration to the case (15.2).

It is convenient to introduce the following designations:

u =
B0√
4πρ0

, u ′ =
B ′

√
4πρ0

. (15.3)

Let us linearize the initial set of MHD equations for an ideal medium. We
substitute definitions (15.1)–(15.3) in the set of Equations (12.67), neglecting
the products of small quantities. Hereafter the subscript ‘0’ for undisturbed
quantities will be omitted. We shall get the following set of linear differential
equations for the primed quantities characterizing small perturbations:

∂ u ′ / ∂t + (v · ∇)u ′ = (u · ∇)v ′ − u div v ′ , div u ′ = 0 ,

∂ v ′ / ∂t + (v · ∇)v ′ = − ρ−1 ∇ ( p ′ + ρu · u ′ ) + (u · ∇)u ′ ,
∂ρ ′ / ∂t + (v · ∇) ρ ′ = − ρ div v ′ , (15.4)
∂s ′ / ∂t + (v · ∇) s ′ = 0 , p ′ = (∂p / ∂ρ)s ρ ′ + (∂p / ∂s)ρ s ′ .

The latter equation is the linearized equation of state. We rewrite it as follows:

p ′ = V 2
s ρ ′ + b s ′. (15.5)

Here
Vs = (∂p / ∂ρ) 1/2

s (15.6)

is the velocity of sound in a medium without a magnetic field (Exercise 15.1),
the coefficient b = (∂p/∂s)ρ .

By virtue of (15.2), the set of Equations (15.4) is that of linear differential
equations with constant coefficients . That is why we may seek a solution in
the form of a superposition of plane waves with a dependence on coordinates
and time of the type

f ′(r, t) ∼ exp [ i (k · r − ωt) ] , (15.7)

where ω is the wave frequency and k is the wave vector. An arbitrary distur-
bance can be expanded into such waves by means of a Fourier transform. As
this takes place, the set of Equations (15.4) is reduced to the following set of
linear algebraic equations:

(ω − k · v)u ′ + (k · u)v ′ − u (k · v ′) = 0 , k · u ′ = 0 ,
(ω − k · v)v ′ + (k · u)u ′ − ρ−1 ( p ′ + ρu · u ′ )k = 0 ,
(ω − k · v) ρ ′ − ρ (k · v ′) = 0 ,
(ω − k · v) s ′ = 0 , p ′ − V 2

s ρ ′ − b s ′ = 0 .

(15.8)
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The quantities k and ω appearing in this set are assumed to be known from
the initial conditions. The unknown terms are the primed ones. With respect
to these the set of Equations (15.8) is closed, linear and homogeneous (the
right-hand sides equal zero). For this set to have nontrivial solutions, its
determinant must be equal to zero.

The determinant can be conveniently calculated in a frame of reference
with one of the axes along the wave vector k. In addition, it is convenient to
use the frequency

ω0 = ω − k · v , (15.9)

i.e. the frequency in a frame of reference moving with the plasma.
Setting the determinant equal to zero, we get the following equation

ω 2
0
[
ω 2

0 − (k · u)2
]
×

×
[
ω 4

0 − k2 (V 2
s + u2)ω 2

0 + k2V 2
s (k · u)2

]
= 0 . (15.10)

This equation is called the dispersion equation. It defines four values of ω 2
0 .

Since they differ in absolute magnitude, four different modes of waves are
defined, each of them having its own velocity of propagation with respect to
the plasma

Vph =
ω0

k
. (15.11)

Clearly this is the phase velocity of the wave. It should be distinguished from
the group velocity

Vgr =
dω0

dk
. (15.12)

Let us consider the properties of the waves defined by the dispersion Equa-
tion (15.10) in greater detail.

15.2 Small-amplitude waves in ideal MHD

15.2.1 Entropy waves

The first root of the dispersion Equation (15.10)

ω0 = ω − k · v = 0 (15.13)

corresponds to the small perturbation which is immobile with respect to the
medium:

Vph = 0 . (15.14)

If the medium is moving, the disturbance is carried with it.
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Substituting (15.13) in (15.8), we obtain the following equations:

(k · u)v ′ − u (k · v ′) = 0 , (15.15)
k · u ′ = 0 , (15.16)
(k · u)u ′ − ρ−1 ( p ′ + ρu · u ′ )k = 0 , (15.17)
k · v ′ = 0 , (15.18)
p ′ − V 2

s ρ′ − b s ′ = 0 . (15.19)

Let us make use of (15.18) in (15.15). Then we take the scalar product of
Equation (15.17) with the vector k and make allowance for (15.16). We write

(k · u)v ′ = 0 , (15.20)
k · u ′ = 0 , (15.21)
p ′ + ρu · u ′ = 0 , (15.22)
k · v ′ = 0 , (15.23)
p ′ − V 2

s ρ ′ − b s ′ = 0 . (15.24)

Substitution of (15.22) in (15.17) gives us the following set of equations:

(k · u)u ′ = 0 , (k · u)v ′ = 0 , (15.25)
p ′ + ρu · u ′ = 0 , p ′ − V 2

s ρ ′ − b s ′ = 0 . (15.26)

Since generally k · u �= 0, the velocity, magnetic field and gas pressure are
undisturbed in the wave under discussion:

v ′ = 0 , u ′ = 0 , p ′ = 0 . (15.27)

The only disturbed quantities are the density and entropy related by
the condition

ρ ′ = − b

V 2
s

s ′ .

(15.28)

This is the reason why these disturbances are called the entropy waves. They
are well known in hydrodynamics (Exercise 15.2). The meaning of an entropy
wave is that regions containing hotter but more rarefied plasma can exist in
a plasma flow.

The entropy waves are only arbitrarily termed waves, since their velocity
of propagation with respect to the medium is zero. Nevertheless the entropy
waves must be taken into account together with the real waves in such cases
as the study of shock waves behaviour under small perturbations. Blokhint-
sev (1945) has considered the passage of small perturbations through a shock
in ordinary hydrodynamics. He came to the conclusion that

the entropy wave must be taken into account in order to match the
linearized solutions at the shock front
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(see Exercise 17.1). In MHD, the entropy waves are importnant in the problem
of evolutionarity of the MHD discontinuities (Chapter 17) and reconnecting
current layers (see vol. 2, Chapter 10). The entropy waves can be princi-
pally essential in astrophysical plasma where plasma motions are not slow,
for example in helioseismology of the chromosphere and corona.

15.2.2 Alfvén waves

The second root of the dispersion Equation (15.10),

ω 2
0 = (k · u)2 or ω0 = ± k · u , (15.29)

corresponds to waves with the phase velocity

VA = ± B√
4πρ

cos θ .

(15.30)

Here θ is the angle between the direction of wave propagation k/k and the
ambient field vector B0 (Figure 15.1). In formula (15.30) the value B = | B0 |
and ρ = ρ0. These are the Alfvén waves.

By substituting (15.29) in the algebraic Equations (15.8) we check that
the thermodynamic characteristics of the medium remain unchanged

ρ ′ = 0 , p ′ = 0 , s ′ = 0 , (15.31)

while the perturbations of the velocity and magnetic field are subject to the
conditions

v ′ = ∓u ′ , u · u ′ = 0 , k · u ′ = 0 . (15.32)

Thus the Alfvén waves are the displacements of plasma together with the
magnetic field frozen into it. They are transversal with respect to both the
field direction and the wave vector as shown in Figure 15.1.

The Alfvén waves have no analogue in hydrodynamics. They are specific to
MHD and were called the magnetohydrodynamic waves. This term emphasized
that they do not change the density of a medium. The fact that the Alfvén
waves are transversal signifies that

a conducting plasma in a magnetic field has a characteristic elastic-
ity resembling that of stretched strings under tension.

The magnetic tension force is one of the characteristics of MHD (see Exercise
13.3). According to (15.32), the perturbed quantities are related by an energy
equipartition:

1
2

ρ (v ′ )2 =
1
8π

(B ′ )2 . (15.33)

Let us note also that
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Figure 15.1: The transversal displacements of plasma and magnetic field in
the Alfvén wave.

the energy of Alfvén waves, much like the energy of oscillations in
a stretched string, propagates along the field lines only.

Unlike the phase velocity, the group velocity of the Alfvén waves (15.12)

Vgr = ± B√
4πρ

(15.34)

is directed strictly along the magnetic field; here B = B0 of course.
In low density astrophysical plasmas with a strong field, like the solar

corona, the Alfvén speed VA can approach the light speed c (Exercise 15.3).
The discovery of Alfvén waves was a major stage in the development of plasma
astrophysics (Alfvén, 1950).

15.2.3 Magnetoacoustic waves

The dispersion Equation (15.10) has two other branches – two types of waves
defined by a bi-square equation

ω 4
0 − k2 (u2 + V 2

s

)
ω 2

0 + k2 V 2
s (k · u)2 = 0 . (15.35)

Its solutions are two values of ω0, which differ in absolute magnitude, corre-
sponding to two different waves with the phase velocities V+ and V− which
are equal to

V 2
± =

1
2

[
u2 + V 2

s ±
√

(u2 + V 2
s )2 − 4u2V 2

s cos2 θ

]
. (15.36)

These waves are called the fast (+) and the slow (−) magnetoacoustic waves,
respectively (van de Hulst, 1951). The point is that the entropy of the medium,
as follows from Equations (15.8) under condition (15.35), does not change in
such waves

s′ = 0 , (15.37)
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as is also the case in an usual sound wave. Perturbations of the other quantities
can be expressed in terms of the density perturbation

p ′ = V 2
s ρ ′ , (15.38)

v ′ = − ω0

ρ k2

(
k2(k · u)u − ω 2

0 k
ω 2

0 − (k · u)2

)
ρ ′ , (15.39)

u ′ =
ω 2

0

ρ k2

(
k2 u − (k · u)k
ω 2

0 − (k · u)2

)
ρ ′ . (15.40)

Formulae (15.39) and (15.40) show that the magnetoacoustic waves are
neither longitudinal nor transversal. Perturbations of the velocity and mag-
netic field intensity, v ′ and u ′, as differentiated from the Alfvén wave, lie in
the (k,B0) plane in Figure 15.1. They have components both in the direction
of the wave propagation k/k and in the perpendicular direction. That is why
the magnetoacoustic waves generally have a linearly polarized electric field E ′

normal to both B0 and k.
The perturbation of magnetic pressure B2/8π may be written in the form

(see definition (15.3))

p ′
m = ρu · u ′ =

(
V 2

±
V 2

s

− 1
)

p ′ . (15.41)

Therefore for the fast wave, by virtue of that V 2
+ > V 2

s , the perturbation of
magnetic pressure p ′

m is of the same sign as that of gas pressure p ′.

The magnetic pressure and the gas pressure are added in the fast
magnetoacoustic wave. The wave propagates faster, since the effec-
tive elasticity of the plasma is greater.

A different situation arises with the slow magnetoacoustic wave. In this case
V 2

− < V 2
s and p ′

m is opposite in sign to p ′. Magnetic and gas pressure de-
viations partially compensate each other. That is why such a slow wave
propagates slowly.

15.2.4 The phase velocity diagram

The dependence of the wave velocities on the angle θ between the undisturbed
field B0 and the wave vector k is clearly demonstrated in a polar diagram –
the phase velocity diagram. In Figure 15.2, the radius-vector length from
the origin of the coordinates to a curve is proportional to the corresponding
phase velocity (15.11). The horizontal axis corresponds to the direction of the
undisturbed magnetic field.

As the angle θ → 0, the fast magnetoacoustic wave V+ transforms to the
usual sound one Vs if

Vs > VA ‖ =
B√
4πρ

≡ uA (15.42)
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Figure 15.2: The phase velocities of MHD waves versus the angle θ for the
two cases: (a) uA < Vs and (b) uA > Vs.

in Figure 15.2a or to the Alfvén wave if Vs < uA in Figure 15.2b.
For the angle θ → π/2, the propagation velocities of the Alfvén and slow

waves approach zero. As this takes place, both waves convert to the weak
tangential discontinuity in which disturbances of velocity and magnetic field
are parallel to the front plane. As θ → π/2, the fast magnetoacoustic wave
velocity tends to

V⊥ =
√

V 2
A ‖ + V 2

s =
√

u2
A

+ V 2
s . (15.43)

In the strong field limit (V 2
A ‖ � V 2

s ) the diagram for the fast magnetoacoustic
wave becomes practically isotropic as shown in Figure 15.3.

V

V
V

A

-

+

V⊥

Vs Au

θ

0

Figure 15.3: The phase velocity di-
agram for a plasma with a strong
magnetic field.

Such a wave may be called the ‘magnetic sound’ wave since its phase
velocity V+ ≈ VA ‖ ≡ uA is almost independent of the angle θ.
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Generally the sound speed is the minimum velocity of disturbance
propagation in ordinary hydrodynamics. By contrast, there is no
minimum velocity in magnetohydrodynamics.

This property is of fundamental importance for what follows in Chap-
ters 16 and 17 – in study of the principal questions related to discontinuous
flows of astrophysical plasma. The first of these questions is what kinds of
discontinuities can really exist?

MHD waves produce a lot of effects in astrophysical plasma. The fast
magnetoacoustic wave turbulence can presumably accelerate electrons in solar
flares (see vol. 2, Section 12.3.1). The heavy ions observed in interplanetary
space after impulsive flares can result from stochastic acceleration by the
cascading Alfvén wave turbulence (vol. 2, Section 12.3.2).

15.3 Dissipative waves in MHD

15.3.1 Small damping of Alfvén waves

We shall start by treating a plane Alfvén wave propagating along a uniform
field B0; so the angle θ = 0 in Figure 15.1. Perturbations of the magnetic
field and the velocity are small and parallel to the z axis:

B ′ = { 0, 0, b (t, y) } , v ′ = { 0, 0, v (t, y) } . (15.44)

In general, the damping effects for such a wave are determined by viscosity and
conductivity. Let us consider, first, only the uniform finite conductivity σ. In
this case we obtain the extended equation of the wave type with a dissipative
term:

∂2h

∂t2
= u2

A

∂2h

∂y2 + νm
∂3h

∂2y ∂t
. (15.45)

Here uA = VA ‖ and νm is the magnetic diffusivity (12.49). In the case of
infinite conductivity Equation (15.45) is reduced to the wave equation and
represents an Alfvén wave with velocity uA .

Let us suppose that the conductivity is finite. We suppose further that
the small perturbations are functions of t and y only:

b (t, y) = b0 exp ( i ωt + αy) , v (t, y) = v0 exp ( i ωt + αy) . (15.46)

Here ω, α, b0, and v0 are constants, all of which except ω may be complex
numbers. Substituting (15.46) in (15.45) gives us the dispersion equation:

ω2 +
(
u2

A
+ i νm ω

)
α2 = 0 (15.47)

or

α = ± i
ω

uA

(
1 + i

νm ω

u2
A

)−1/2

. (15.48)
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For small damping

α = ±
(

i
ω

uA

+
νm ω2

2u3
A

)
. (15.49)

The distance y0 in which the amplitude of the wave is reduced to 1/e is
the inverse value of the real part of α. Thus we have

y0 =
2u3

A

νm ω2 =
8πσu3

A

ω2c2 =
2σuA

πc2 λ2, (15.50)

where λ = 2πuA/ω is the wave length. The short waves suffer more
damping than do the long waves.

Since we treat the dissipative effects as small, the expression (15.50) is
valid if λ 
 y0. Thus we write

b (t, y) = b0 exp
(

− y

y0

)
exp

[
i ω
(

t − y

uA

)]
, (15.51)

v (t, y) = v0 exp
(

− y

y0

)
exp

[
i ω
(

t − y

uA

)]
(15.52)

with

v0 = uA

b0

B0

(
1 − i

νm ω

2u2
A

)
. (15.53)

The imaginary part indicates the phase shift of the velocity v in relation to
the magnetic perturbation field b. Therefore

v (t, y) = uA

b0

B0
exp

(
− y

y0

)
exp

{
i
[

ω

(
t − y

uA

)
− ϕ

]}
, (15.54)

where

ϕ =
νm ω

2u2
A

=
ω c2

8πσu2
A

=
ω c2ρ

2σB 2
0

. (15.55)

So the existence of Alfvén waves requires an external field B0 enclosed between
two limits.

The magnetic field should be strong enough to make the damping
effects small but yet weak enough to keep the Alfvén speed well
below the velocity of light,

because otherwise the wave becomes an ordinary electromagnetic wave (see
Exercise 13.1). In optical and radio frequencies it is not possible to satisfy
both conditions. However longer periods often observed in cosmic plasma
leave a wide range between both limits so that Alfvén waves may easily exist.

One of favourable sites for excitation of MHD waves is the solar atmo-
sphere. The chromosphere and corona are highly inhomogeneous media sup-
porting a variety of filamentary structures in the form of arches and loops.
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The foot points of these structures are anchored in the poles of the photo-
spheric magnetic fields. They undergo a continuous twisting and turning due
to convective motions in the subphotospheric layers. This twisting and turning
excite MHD waves. The waves then dissipate and heat the corona (see vol. 2,
Section 12.5). Presumably this energy is enough to explain coronal heating,
but the unambiguous detection of the MHD waves heating the corona is still
awaited.

15.3.2 Slightly damped MHD waves

The damping effects due to a finite conductivity σ and due to a kinematic
viscosity ν = η/ρ (Section 12.2.2) can be included in a general treatment
of MHD waves of small amplitudes (van de Hulst, 1951). Well developed
waves are the waves that travel at least a few wave lengths before they lose a
considerable fraction of their energy if the two dimensionless parameters

p ν =
ω ν

c2 and p ν m =
ω νm

c2 , (15.56)

that characterize two dissipative processes, are much smaller than the two
small dimensionless parameters

p s =
V 2

s

c2 and pA =
u2

A

c2 , (15.57)

that characterize the propagation speeds of undamped waves.
Let us postulate the form

X ≡ c2/ V 2
ph = X0 (1 − i q) (15.58)

for a general solution of the linearized equations of dissipative MHD. Here

X0 = c2/ V 2
ph,0 (15.59)

represents any solution for an undamped wave.
We shall not review all special cases here but shall mention only one,

the same case as in previous Section. For Alfvén wave we find the following
solution

X = Xm ≡ c2/u2
A
, q = (p ν + p ν m) Xm . (15.60)

This shows that, if dissipative effects are small,

the relative importance of resistivity and viscosity as damping
effects in Alfvén wave is independent of frequency ω.

The damping length, i.e., the distance ld, in which the amplitude of a wave
decreases by a factor 1/e, and the damping time τd, in which this distance is
covered by the wave, can be found:

ld =
1
kq

=
uA

q ω
=

u3
A

ω2 (ν + νm)
, (15.61)
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τd =
ld
uA

=
1

q ω
=

u2
A

ω2 (ν + νm)
. (15.62)

So the high frequency waves have a short damping length and time.
The magnetoacoustic waves (Section 15.2.3), being compressional, have

an additional contribution to their damping rate from compressibility of the
plasma. If dissipative effects are not small, they result in additional waves
propagating in a homogeneous medium (see Section 17.3).

15.4 Practice: Exercises and Answers

Exercise 15.1. Evaluate the sound speed in the solar corona.
Answer. For an ideal gas with constant specific heats cp and cv, the

sound speed (15.6) is

Vs =
(

γg
p

ρ

)1/2

, (15.63)

where γg = cp/cv. Let us consider the coronal plasma as a ‘monatomic gas’
(γg = 5/3) of electrons and protons with Te = Tp = T ≈ 2 × 106 K and
ne = ne = n. So p = 2nkBT and ρ = nmp. Hence

Vs =
(

10
3

kB

mp

)1/2

s

√
T = 1.66 × 104

√
T (K) , cm s−1 . (15.64)

In the solar corona Vs ≈ 230 km s−1.

Exercise 15.2. Consider entropy waves in ordinary hydrodynamics.
Answer. Let us take the linear algebraic Equations (15.25) and (15.26).

In the absence of a magnetic field we put u = 0 and u ′ = 0. It follows from
(15.25) that the perturbation of the velocity v ′ can be an arbitrary value
except the gas pressure must be undisturbed. This follows from (15.26) and
means that, instead of (15.27), we write

v ′ �= 0 , p ′ = 0 . (15.65)

Perturbations of the density and entropy remain to be related by condi-
tion (15.28). So the velocity perturbation is independent of the entropy per-
turbation and, according to (15.13) and (15.23), satisfies the equation

k · v ′ =
ω

v
v ′

x + kyv ′
y = 0 . (15.66)

This is in the reference frame in which v = vx.
Note that for such velocity perturbation (see Landau and Lifshitz, Fluid

Mechanics, 1959a, Chapter 9):

curl v ′ �= 0 . (15.67)

That is why the wave is called the entropy-vortex wave.
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In the presence of a magnetic field in plasma, it is impossible to
create a vortex without a perturbation of the magnetic field.

For this reason, in a MHD entropy wave, the only disturbed quantities are
the entropy and the density (see Equation (15.28)).

Exercise 15.3. Show that the inclusion of the displacement current modifies
the dispersion relation for the Alfvén waves (15.29) to the following equation

ω 2
0 =

(k · u)2

1 + u2/c2 or ω0 = ± k · u√
1 + u2/c2

. (15.68)

So the phase velocity of the relativistic Alfvén waves

VA = ± B√
4πρ

cos θ
1√

1 + B2/4πρc2
, (15.69)

which coinsides with the Alfvén formula (13.35).

Exercise 15.4. Discuss the following situation. A star of the mass M moves
along a uniform magnetic field B 0 at a constant velocity v 0 which exceeds
the phase velocity of a fast magnetoacoustic wave (Dokuchaev, 1964).

Hint. The moving star emits magnetoacoustic waves by the Cherenkov
radiation (see Exercises 7.2–7.5).



Chapter 16

Discontinuous Flows in a
MHD Medium

The phenomena related to shock waves and other dicontinuous flows
in astrophysical plasma are so numerous that the study of MHD dis-
continuities on their own is of independent interest for space science.

16.1 Discontinuity surfaces in hydrodynamics

16.1.1 The origin of shocks in ordinary hydrodynamics

First of all, let us recall the way the shock waves are formed in ordinary
hydrodynamic media without a magnetic field. Imagine a piston moving into
a tube occupied by a gas. Let the piston velocity increase from zero by small
jumps δv. As soon as the piston starts moving, it begins to rake the gas up
and compress it. The front edge of the compression region thereby travels
down the undisturbed gas inside the tube with the velocity of sound

Vs =
(

∂p

∂ρ

)1/2

s

. (16.1)

Each following impulse of compression δρ will propagate in a denser medium
and hence with greater velocity. Actually, the derivative of the sound speed
with respect to density

∂Vs

∂ρ
=

1
2

(
∂2p

∂ρ2

)
s

(
∂p

∂ρ

)−1/2

s

≈ √
γg (γg − 1) ρ (γg−3)/2 > 0 ,

since for all real substances γg > 1 in the adiabatic process p ∼ ρ γg . There-
fore δVs > 0.

277
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Figure 16.1: The behaviour of small perturbations in front of a piston.

As a consequence of this fact, successive compression impulses will catch
up with each other as shown in Figure 16.1a. As a result, the compression
region front steepens (Figure 16.1b). The gradients of the gas parameters
become so large that the description of the gas as a hydrodynamic medium
(Section 12.2) is no longer valid. The density, pressure and velocity of the gas
change abruptly over a distance comparable to a particle’s mean free path λ.

The physical processes inside such a jump, called a shock wave, are de-
termined by the kinetic phenomena in the gas. As far as the hydrodynamic
approximation is concerned,

the surface, at which the continuity of the hydrodynamic parameters
of a medium is violated, represents some discontinuity surface – a
discontinuous solution of the hydrodynamic equations.

It stands to reason that some definite boundary conditions must hold at the
discontinuity surface. What are they?

16.1.2 Boundary conditions and classification

Let us choose a frame of reference connected with a discontinuity surface.
The frame is supposed to move with a constant velocity with respect to the
medium. Generally, if the gas flow is non-stationary in the vicinity of the
discontinuity, we could consider the discontinuity surface over a small period
of time, so that the changes of velocity and other hydrodynamic quantities in
time could be neglected.

In order to formulate the boundary conditions, let us consider an element
of the discontinuity surface. Let the axis x be directed normally to it. The
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flux of mass through such a surface element must conserve:

ρ1 vx1 = ρ2 vx2 . (16.2)

Here the indices 1 and 2 refer to the two sides of the discontinuity surface.
In this chapter, the difference in a quantity across the discontinuity surface

will be designated by curly brackets, e.g.

{ ρ vx } = ρ1 vx1 − ρ2 vx2 .

Then Equation (16.2) is rewritten as

{ ρ vx } = 0 . (16.3)

The energy flux must also be continuous at the discontinuity surface.
For a hydrodynamic medium without a magnetic field (cf. (12.74)) we obtain
the following condition for the energy flux conservation:{

ρ vx

(
v2

2
+ w

)}
= 0 . (16.4)

Here w is the specific enthalpy (9.34).
The momentum flux must be also continuous (cf. (12.75)):

Παβ = p δαβ + ρ vαvβ , α = x .

The continuity of the x-component of the momentum flux means that{
p + ρ v 2

x

}
= 0 ,

while the continuity of y- and z-components gives the two conditions

{ ρ vxvy } = 0 , { ρ vxvz } = 0 .

Taking care of condition (16.3), let us rewrite the full set of boundary
conditions at the discontinuity surface as follows:

{ ρ vx } = 0 , ρ vx {vτ } = 0 ,

ρ vx

{
v2

2
+ w

}
= 0 ,

{
p + ρ v 2

x

}
= 0 . (16.5)

Here the index τ identifies the tangential components of the velocity.
Obviously the set of Equations (16.5) falls into two mutually exclusive

groups, depending on whether the matter flux across the discontinuity surface
is zero or not. Consider these groups.

(a) If
vx = 0
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then the gas pressure is also continuous at the discontinuity surface,

{ p } = 0 , (16.6)

while the tangential velocity component vτ as well as the density may expe-
rience an arbitrary jump:

{ vτ } �= 0 , { ρ } �= 0 ,

{
v2

2
+ w

}
�= 0 .

Such discontinuities are called tangential (see Landau and Lifshitz, Fluid Me-
chanics, 1959a, Chapter 9, § 84).

(b) By contrast, if
vx �= 0

then

{ ρ vx } = 0 , { vτ } = 0 ,
{

p + ρ v 2
x

}
= 0 ,

{
v2

2
+ w

}
= 0 . (16.7)

Discontinuities of this type are termed shock waves. Their properties are also
well known in hydrodynamics (Landau and Lifshitz, Fluid Mechanics, 1959a,
Chapter 9, § 84).

Therefore

the equations of ideal hydrodynamics in the conservation law form
allow just two mutually exclusive types of discontinuities to exist:
the shock wave and the tangential discontinuity.

16.1.3 Dissipative processes and entropy

The equations of ideal hydrodynamics, as a specific case (B = 0) of the ideal
MHD Equations (12.68)–(12.73), do not take into account either viscosity or
thermal conductivity:

η = ζ = 0 , κ = 0 . (16.8)

For this reason the ideal hydrodynamics equations describe three conservation
laws: conservation of mass, momentum, and entropy. The last one,

∂s

∂t
+ (v · ∇) s = 0 , (16.9)

is the specific form of the energy conservation law (see Equation (12.54))
under assumption that the process under consideration is adiabatic. In Sec-
tion 16.1.2 to obtain the boundary conditions at the discontinuity surface we
used conservation of mass, momentum, and energy, but not entropy.
The entropy increases across a shock (Exercise 16.6).

The increase in entropy indicates that irreversible dissipative processes
(which can be traced to the presence of viscosity and heat conduction in a
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medium) occur in the shock wave. The model which does not take into account
these processes (Section 16.1.2) admits the existence of discontinuities but is
not capable of describing the continuous transition from the initial to the
final state. The ideal hydrodynamics cannot describe either the mechanism
of shock compression or the structure of the very thin but finite layer where
the plasma undergoes a transition from the initial to the final state.

The entropy increase across the shock is entirely independent of the
dissipative mechanism and is defined exclusively by the conservation
laws of mass, momentum, and energy

(see Exercise 16.6). Only the thickness of the discontinuity depends upon the
rate of the irreversible heating of the plasma compressed by the shock. The
following analogy in everyday life is interesting. A glass of hot water will
invariably cool from a given temperature (the initial state) to a room tem-
perature (the final state), independently of the mechanism of heat exchange
with the surrounding air; the mechanism determines only the rate of cooling.

Recommended Reading: Zel’dovich and Raizer, Physics of Shock Waves
and High-Temperature Hydrodynamic Phenomena, 1966, 2002, v. 1, Chap-
ter 2.

16.2 Magnetohydrodynamic discontinuities

16.2.1 Boundary conditions at a discontinuity surface

Much like ordinary hydrodynamics, the equations of MHD for an ideal medium
(Section 12.3) allow discontinuous solutions. De Hoffmann and Teller (1950)
were the first to consider shock waves in MHD, based on the relativistic energy-
momentum tensor for an ideal medium and the electromagnetic field.

Syrovatskii (1953) has given a more general formulation of the problem
of the possible types of discontinuity surfaces in a conducting medium with
a magnetic field. He has formulated a closed set of equations of ideal MHD
and, using this, the boundary conditions at the discontinuity were written.
We shall briefly reproduce the derivation of the boundary conditions.

We start from the equations of ideal MHD (12.68)–(12.73). Rewrite them
(the Equation of state (12.73) is omitted for brevity) as follows:

div B = 0 ,
∂B
∂t

= curl (v × B ) ,
∂ρ

∂t
= − div ρv , (16.10)

∂

∂t

(
ρ v2

2
+ ρ ε +

B2

8π

)
= − div G ,

∂

∂t
(ρ vα) = − ∂

∂rβ
Π ∗

αβ .

In a frame of reference moving with the discontinuity surface, all the conditions
are stationary (∂/∂t = 0). Hence

div B = 0 , (16.11)
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curl (v × B ) = 0 , (16.12)

div ρv = 0 , div G = 0 ,
∂

∂rβ
Π ∗

αβ = 0 . (16.13)

Four of these conditions have the divergent form and are therefore reduced
in the integral form to the conservation of fluxes of vectors appearing at the
divergence. Thus the following quantities must conserve at the discontinuity:
the perpendicular (to the surface S) component of the magnetic field vec-
tor Bn, the mass flux ρ vn, the energy flux Gn, and the momentum flux Π∗

αn.

The exception is condition (16.12). It is written as the curl of v×B. Inte-
gration of (16.12) over the area enclosed by the contour shown in Figure 16.2
gives, by virtue of the Stokes theorem,∫

S

curl (v × B ) · dS =
∮
L

(v × B ) · d l = 0 .

Thus condition (16.12) demonstrates the continuity of the tangential compo-
nent of the vector (v × B )τ , i.e. the electric field Eτ in the discontinuity
surface S.

S
L

1 2

n

τ

Figure 16.2: The contour L for the
derivation of the boundary condition on
electric field tangential component.

As in the previous section, the jump of a quantity on crossing the discon-
tinuity surface is designated by curly brackets. The full system of boundary
conditions at the surface is written as follows:

{ Bn } = 0 , (16.14)

{ (v × B )τ } = 0 , (16.15)

{ ρ vn } = 0 , (16.16)

{ Gn } = 0 , (16.17)

{ Π ∗
αn } = 0 . (16.18)

The physical meaning of the boundary conditions obtained is obvious. The
first two are the usual electrodynamic continuity conditions for the normal
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component of the magnetic field and the tangential component of the electric
field. The last three equations represent the continuity of fluxes of mass,
energy and momentum, respectively.

As distinct from that in ordinary hydrodynamics (see Equations (16.5)),

the set of the MHD boundary conditions does not fall into mutually
exclusive groups of equations.

This means that, with a few exceptions, any discontinuity, once accepted by
these equations, can, generally speaking, transform to any other discontinuity
under continuous change of the conditions of the motion (Syrovatskii, 1956).

Hence the classification of discontinuities in MHD seems to be a matter
of convention. Any classification is based on the external properties of the
flow near the surface, such as the absence or presence of normal components
of the velocity vn and magnetic field Bn, continuity or jump in density. The
classification given below is due to Syrovatskii (1953). It is quite convenient
for investigating MHD discontinuities.

Before turning our attention to the discussion of the classification men-
tioned above, let us rewrite the boundary conditions obtained, using (12.74)
and (12.75) for the densities of the energy and momentum fluxes and substi-
tuting (16.14) in (16.15) and (16.16) in (16.18). We get

{ Bn } = 0 , (16.19)

{ vnBτ} = Bn {vτ} , (16.20)

{ ρ vn } = 0 , (16.21){
ρ vn

(
v2

2
+ w

)
+

1
4π

(
B2vn − (v · B ) Bn

)}
= 0 , (16.22){

p + ρ v2
n +

B2

8π

}
= 0 , (16.23)

ρ vn {vτ} =
Bn

4π
{Bτ} . (16.24)

For later use, we write down the boundary conditions in the Cartesian frame
of reference, the x axis being perpendicular to the discontinuity surface:

{ Bx} = 0 , (16.25)

{ vxBy − vyBx} = 0 , (16.26)

{ vxBz − vzBx} = 0 , (16.27)

{ ρ vx} = 0 , (16.28){
ρ vx

(
v2

2
+ w

)
+

1
4π

(
B2vx − (v · B ) Bx

)}
= 0 , (16.29)
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{
p + ρ v2

x +
B2

8π

}
= 0 , (16.30){

ρ vxvy − 1
4π

BxBy

}
= 0 , (16.31){

ρ vxvz − 1
4π

BxBz

}
= 0 . (16.32)

The set consists of eight boundary conditions. For B = 0 it converts to the
set of four Equations (16.5).

Let us consider the classification of discontinuity surfaces in MHD, which
stems from the boundary conditions (16.19)–(16.24).

16.2.2 Discontinuities without plasma flows across them

Let us suppose the plasma flow through the discontinuity surface is absent

vn = 0 . (16.33)

The discontinuity type depends on whether the magnetic field penetrates
through the surface or not. Consider both possibilities.

(a) If the perpendicular component of the magnetic field

Bn �= 0 , (16.34)

then the set of Equations (16.19)–(16.24) becomes

{ Bn} = 0 , Bn {vτ} = 0 , Bn {Bτ} = 0 ,{
p +

B2

8π

}
= 0 , { ρ } �= 0 . (16.35)

The velocity, magnetic field strength and (by virtue of the fourth equation)
gas pressure are continuous at the surface. The density jump does not have
to be zero; otherwise, all values change continuously.

The discontinuity type considered is called the contact discontinuity and
constitutes just a boundary between two media, which moves together
with them. It is schematically depicted in Figure 16.3a.

(b) On the other hand, if
Bn = 0 (16.36)

then the velocity and magnetic field are parallel to the discontinuity surface
(plane x = 0). In this case all the boundary conditions (16.19)–(16.24) are
satisfied identically, with the exception of one. The remaining equation is{

p +
B2

8π

}
= 0 .
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(a)

0 x

v1 v2 = v1

B1

B2 = B1

(b)

0 x

B1

v1 v2 �= v1

B2 �= B1

� �

��������������

�

�

�

�

Figure 16.3: Discontinuity surfaces without a plasma flow across them:
(a) contact discontinuity, (b) tangential discontinuity.

In other words, the velocity and magnetic field are parallel to the discontinuity
surface and may experience arbitrary jumps in magnitude and direction, the
only requirement being that the total pressure, that is the sum of the usual
gas pressure and the magnetic one, remains continuous at the discontinuity
surface:

p∗ = p +
B2

8π
. (16.37)

Such a discontinuity is called a tangential discontinuity (Figure 16.3b). As
treated in MHD, it has a remarkable property. The tangential discontinuity in
ordinary hydrodynamics is always unstable (Syrovatskii, 1954; see also Landau
and Lifshitz, Fluid Mechanics, Third Edition, Chapter 9, § 84, Problem 1).
The velocity jump engenders vortices, thus resulting in a turbulence near the
discontinuity. Another situation occurs in MHD.

Syrovatskii (1953) has shown that the magnetic field exerts a stabilizing
influence on the tangential discontinuity. In particular, if the density ρ0 and
magnetic field B0 are continuous, the only discontinuous quantity being the
tangential velocity component, v2 − v1 = v0 �= 0, then the condition for the
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tangential discontinuity stability is especially simple:

B 2
0

8π
≥ 1

4
ρ0v

2
0

2
.

(16.38)

To put it another way, such a discontinuity (Figure 16.4a) becomes stable with
respect to small perturbations (of the general rather than a particular type)
once the magnetic energy density reaches one quarter of the kinetic energy
density.

(a) (b)

B v

v = 0

0

B 0

0

Figure 16.4: (a) The simplest type of the MHD tangential discontinuities.
(b) Formation of a turbulent vortex gives rise to the magnetic field growth.

The general conclusion concerning the influence of the magnetic field on
the stability of hydrodynamic motions of a conducting fluid is as follows:

the magnetic field can only increase the stability of a given velocity
distribution as compared to the stability of the same distribution in
the absence of a magnetic field.

The point is that any flow instability and turbulence give rise, in view of the
freezing-in of the field, to an increase of the magnetic energy (Figure 16.4b),
which is always disadvantageous from the standpoint of the energetic principle
of stability.

16.2.3 Perpendicular shock wave

Now let
vn �= 0 and Bn = 0 , (16.39)

i.e. a flow through the discontinuity surface is present whereas the magnetic
field does not penetrate through the surface. Under these conditions, the
following two statements result from Equations (16.19)–(16.24).
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(a) From (16.24) the continuity of the tangential velocity component fol-
lows:

{vτ} = 0 . (16.40)

This makes it possible to transform to such a frame of reference in which the
tangential velocity component is absent on either side of the discontinuity:
vτ1 = vτ2 = 0.

(b) The tangential electric field continuity (16.20) results in

{ vn Bτ} = 0 . (16.41)

If the frame of reference is rotated with respect to the x axis in such a way
that Bz = 0 on one side of the surface, then the same is true on the other side
(for clarity see (16.27)). Thus a frame of reference exists in which, in view of
(a),

v = ( vn, 0, 0 ) = ( v, 0, 0 )

and in addition, by virtue of (b),

B = ( 0, Bτ , 0 ) = ( 0, B, 0 ) .

In this frame of reference, the other boundary conditions take the form:

{ ρ v } = 0 , (16.42)

{ B/ρ } = 0 , (16.43){
ρ v2 + p +

B2

8π

}
= 0 , (16.44){

v2

2
+ w +

B2

4πρ

}
= 0 . (16.45)

Such a discontinuity is called the perpendicular shock wave, since it con-
stitutes the compression shock (see (16.7)) propagating perpendicular to the
magnetic field as shown Figure 16.5.

Condition (16.43) reflects the fact of the field ‘freezing-in’ into the plasma.
The role of pressure in such a wave is played by the total pressure

p∗ = p +
B2

8π
, (16.46)

whereas the role of the specific enthalpy is fulfilled by

w∗ = w +
B2

4πρ
. (16.47)

Therefore the role of the internal energy density is played by the total internal
energy

ε∗ = w∗ − p∗

ρ
= ε +

B2

8πρ
(16.48)



288 Chapter 16. Discontinuous MHD Flows

x0

ρ 2

ρ 1

v 1 v 2

B 1 B 2

� �

� � � � � �

Figure 16.5: The character of
the plasma motion and magnetic
field compression (B2 > B1) in
the perpendicular shock wave.

(cf. corresponding terms in Equations (12.68) and (12.69)).
For B = 0, the perpendicular shock degenerates to the usual compression

shock wave (Equations (16.7)).
For B �= 0, the propagation velocity of the perpendicular shock depends

on the magnetic field strength.

A magnetic field decreases the compressibility of plasma while in-
creasing its elasticity.

This is seen from (16.46) and the freezing-in condition (16.43). Accordingly,
the magnetic field increases the shock wave propagation velocity.

If the intensity of a perpendicular shock is diminished, it converts to a
fast magnetoacoustic wave propagating across the magnetic field (θ = π/2 in
Figure 15.2) with the speed (15.43), i.e.

V⊥ =
√

V 2
s + V 2

A
. (16.49)

16.2.4 Oblique shock waves

The types of discontinuity surfaces treated above are the limiting cases of a
more general discontinuity type for which

vn �= 0 and Bn �= 0 . (16.50)

16.2.4 (a) The de Hoffmann-Teller frame of reference

In investigating the discontinuities (16.50), a frame of reference would be
convenient in which v1 and B1 are parallel to each other. Such a frame does
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exist. It moves with respect to the laboratory one with the velocity

U = v1 − vx1

Bx1
B1

parallel to the discontinuity surface. Actually, in this frame

v1 (U) = v1 − U =
vx1

Bx1
B1

and hence
v1 × B1 = 0 . (16.51)

Then condition (16.20) in its coordinate form (16.26)–(16.27) can be used to
obtain two equations valid to the right of the discontinuity, i.e. downstream
of the shock:

vx2By2 − vy2Bx2 = 0 , vx2Bz2 − vz2Bx2 = 0 .

On rewriting these conditions as

vx2

vy2
=

Bx2

By2
and

vx2

vz2
=

Bx2

Bz2
,

we ensure that the magnetic field is parallel to the velocity field (in the chosen
reference frame) to the right of the discontinuity. In such frame of reference,
called the de Hoffmann-Teller frame (de Hoffmann and Teller, 1950), the elec-
tric field does not appear according to (16.51).

This fact does not mean, of course, that the local cross-shock electric fields
do not appear inside the shock transition layer, i.e. inside the discontinuity.
The quasi-static electric and magnetic fields may determine the dynamics of
particles in the shock front especially if Coulomb collisions play only a minor
role. In collisionless shock waves, this dynamics depend on the particular
mechanism of the energy redistribution among the perpendicular (with respect
to the local magnetic field) and parallel degrees of freedom (see Section 16.4).

16.2.4 (b) Two types of shock waves

Thus v is parallel to B on either side of the discontinuity. As a consequence, of
the eight boundary conditions initially considered (see (16.25)–(16.32)), there
remain six equations:

{ Bx } = 0 , (16.52)

{ ρ vx } = 0 , (16.53){
v2

2
+ w

}
= 0 , (16.54){

p + ρ v2
x +

B2

8π

}
= 0 , (16.55)
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ρ vxvy − BxBy

4π

}
= 0 , (16.56){

ρ vxvz − BxBz

4π

}
= 0 . (16.57)

Let us take account of the parallelism of v and B in the chosen reference
frame:

v1 = q1B1 , v2 = q2B2 , (16.58)

where q1 and q2 are some proportionality coefficients. On substituting (16.58)
in (16.52)–(16.57) we obtain the following three conditions from (16.53),
(16.56), and (16.57):

{ ρ q } = 0 , (16.59){(
1 − 1

4πρ q2

)
vy

}
= 0 , (16.60){(

1 − 1
4πρ q2

)
vz

}
= 0 . (16.61)

These equations admit two essentially different discontinuity types,
depending on whether the density of the plasma is continuous or
experiences a jump.

First we consider the discontinuity accompanied by a density jump:

{ ρ } �= 0 . (16.62)

Discontinuities of this type are called oblique shock waves.
Rotate the reference frame with respect to the x axis in such a way that

vz1 = 0 .

Then from (16.61) the following equation follows:(
1 − 1

4πρ2 q 2
2

)
vz2 = 0 . (16.63)

This suggests two possibilities: either
(Case I )

vz2 = 0 , (16.64)

i.e. the motion is planar (the velocity and magnetic field are in the plane
(x, y) on either side of the discontinuity), or

(Case II )

vz2 �= 0 but q 2
2 =

1
4πρ2

. (16.65)

Note that in the latter case
q 2
1 �= 1

4πρ1
(16.66)
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since concurrently valid equations

q 2
2 =

1
4πρ2

and q 2
1 =

1
4πρ1

would imply that

ρ2q2 =
1

4πq2
and ρ1q1 =

1
4πq1

,

thus obviously contradicting (16.59) and (16.62). Therefore condition (16.66)
must be valid.

Let us consider both cases indicated above.

16.2.4 (c) Fast and slow shock waves

Let us consider first the Case I . On the strength of (16.64), the boundary
conditions (16.52)–(16.57) take the form

{ Bx } = 0 , { ρ vx } = 0 ,

{
v2

2
+ w

}
= 0 ,

{
p + ρ v 2

x +
B 2

y

8π

}
= 0 ,

{
ρ vxvy − 1

4π
BxBy

}
= 0 . (16.67)

The compression oblique shock wave interacts with the magnetic field in an
intricate way. The relationship between the parameters determining the state
of a plasma before and after the wave passage is the topic of a large body of re-
search (see reviews: Syrovatskii, 1957; Polovin, 1961; monographs: Anderson,
1963, Chapter 5; Priest, 1982, Chapter 5).

Boundary conditions (16.67) can be rewritten in such a way as to represent
the Rankine-Hugoniot relation (see Exercises 16.2 and 16.3 for an ordinary
shock wave) for shocks in MHD (see Landau et al., 1984, Chapter 8). Moreover
the Zemplen theorem on the increase of density and pressure in a shock
wave can be proved in MHD (Iordanskii, 1958; Liubarskii and Polovin, 1958;
Polovin and Liubarskii, 1958; see also Zank, 1991). The fast and the slow
oblique shock waves are distinguished.
In the fast shock wave, the magnetic field increases across the shock and is
bent towards the shock front surface x = 0 (Figure 16.6). So the magnetic
pressure increases as well as the gas pressure:

δpm > 0 , δp > 0 . (16.68)

In other words, and this seems to be a natural behaviour,

compression of the plasma in a fast MHD shock wave is accompanied
by compression of the magnetic field.
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Figure 16.6: The magnetic field
change (B2 > B1), velocity field
and plasma density at the front
of the fast shock wave.

In the limiting case of small intensity, the fast shock converts to the fast
magnetoacoustic wave (see (16.46)). The speed of the fast shock wave with
respect to the medium equals vx1. It is greater than or equal to the speed of
the fast magnetoacoustic wave:

vx1 ≥ V+ . (16.69)

No small perturbation running in front of the shock can exist upstream of the
fast shock wave.
In the slow shock wave, the magnetic field decreases across the shock and is
bent towards the shock normal (Figure 16.7). Therefore

δpm < 0 , δp > 0 . (16.70)

Compression of the plasma is accompanied by a decrease of the
magnetic field strength in the slow MHD shock wave.

As the amplitude decreases, the slow shock wave will transform to the slow
magnetoacoustic wave. The speed of the slow shock propagation is

V− ≤ vx1 ≤ VA . (16.71)

In the particular case
By = 0 (16.72)

the set of boundary conditions (16.67) results in the set (16.5). This means
that the oblique shock wave converts to the parallel (longitudinal) shock wave
propagating along the magnetic field, mutual interaction being absent.
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Figure 16.7: The magnetic field
change (B2 < B1), velocity field
and plasma density at the front
of the slow shock wave.
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The set of boundary conditions (16.52)–(16.57) formally admits four other
types of discontinuous solutions (Section 17.4.2), apart from those indicated
above. These are the so called intermediate or transalfvénic shock waves (e.g.,
Shercliff, 1965, Chapter 7).

The peculiarity of these discontinuous solutions is that they have
no counterpart among the small amplitude waves or simple waves.

This is the reason why the intermediate and transalfvénic shock waves are
not included in the classification of discontinuities under consideration. What
is more important is that the intermediate and transalfvénic shock waves are
non-evolutionary (see Section 17.1).

The Case II shall be considered in the next Section.

16.2.5 Peculiar shock waves

We return to the consideration of the particular case (16.65) and (16.66):

vz2 �= 0 , q 2
1 �= 1

4πρ1
, q 2

2 =
1

4πρ2
. (16.73)

On the strength of (16.60) and (16.61), the following conditions must be sat-
isfied at such a discontinuity:(

1 − 1
4πρ1q 2

1

)
vy1 = 0 ,

(
1 − 1

4πρ1q 2
1

)
vz1 = 0 .

Because the expression in the parentheses is not zero, we get

vy1 = vz1 = 0 , (16.74)
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i.e. in front of such a discontinuity the tangential velocity component vτ1
is absent. The tangential field component Bτ1 is also zero in front of the
discontinuity, i.e. the motion follows the pattern seen in the parallel shock
wave. However arbitrary tangential components of the velocity and magnetic
field are permissible downstream of the shock, the only condition being that

v2 =
B2√
4πρ2

. (16.75)

Such a discontinuity is called the switch-on shock. The character of motion
of this wave is shown in Figure 16.8.

Figure 16.8: A switch-on
wave: Bτ1 = 0, but Bτ2 �= 0.
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The switch-on shock exists in the interval

1 <
v 2

x1

V 2
Ax1

<
4 v 2

x1

v 2
x1 + V 2

s1

(e.g., Liberman, 1978).
Assuming the tangential magnetic field component to be zero to the rear

of the peculiar shock wave,
Bτ2 = 0 , (16.76)

the fluid velocity in front of the discontinuity is the Alfvén one:

v1 =
B1√
4πρ1

. (16.77)

Such a peculiar shock wave is called the switch-off shock (Figure 16.9).

16.2.6 The Alfvén discontinuity

Returning to the general set of Equations (16.52)–(16.57), consider the dis-
continuity at which the density is constant:

{ ρ } = 0 . (16.78)
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Figure 16.9: A switch-off
wave: Bτ2 = 0 but Bτ1 �= 0.
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On substituting this condition in (16.53), we see that the normal component
of the velocity is continuous at the discontinuity:

{ vx } = 0 .

Furthermore, in view of Equation (16.59), the quantity q does not change at
the discontinuity:

{ q } = 0 .

Hence the quantity (
1 − 1

4πρ q2

)
is also continuous and may be factored out in Equations (16.60) and (16.61).
Rewrite them as follows: (

1 − 1
4πρ q2

)
{vτ } = 0 . (16.79)

If the expression in the parentheses is not zero then the tangential velocity
component is continuous and all other quantities are easily checked to be
continuous solutions. So, to consider the discontinuous solutions, we put

q = ± 1√
4πρ

.

Thus the velocity vector is connected with the magnetic field strength through
the relations

v1 = ± B1√
4πρ

, v2 = ± B2√
4πρ

. (16.80)

The following relations also hold at the discontinuity surface

{ p } = 0 ,
{
B2

τ

}
= 0 . (16.81)
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Therefore the normal components and the absolute values of the tangential
components of the magnetic field and velocity as well as all thermodynamical
parameters conserve at the discontinuity. For given values of B1 and v1,
possible values of B2 and v2 lie on a conical surface, the cone angle being equal
to that between the normal to the discontinuity surface and the vector B1
(Figure 16.10). A discontinuity of this type is called Alfvén or rotational .

B
v

B
v2

2
1

1

θ

θ

0 x

y

z

Figure 16.10: An Alfvén or rotational discontinuity.

Its peculiarity is reflected in the second name. On passing the discontinuity
surface, a medium can acquire a directionally arbitrary tangential momentum,
so that the flow is not generally planar.

The speed of the discontinuity propagation relative to the plasma

vx1 = ∓ Bx1√
4πρ

. (16.82)

In the limiting case of small intensity, the Alfvén or rotational discontinuity
converts to the Alfvén wave (see (15.29)).

16.3 Transitions between discontinuities

As was shown by Syrovatskii (1956), continuous transitions occur between
discontinuous MHD solutions of different types. This statement is easily ver-
ified on passing from the discontinuities (Section 16.2) to the limit of small-
amplitude waves (Section 15.1). In this limit the fast and slow magnetoa-
coustic waves correspond to the oblique shocks, whereas the Alfvén wave
corresponds to the Alfvén or rotational discontinuity.

The phase velocity diagrams for the small-amplitude waves are shown in
Figure 15.2. Reasoning from it, the following scheme of continuous transi-
tions between discontinuous solutions in ideal MHD can be suggested (Fig-
ure 16.11).

Let us recall that θ is the angle between the wave vector k and the mag-
netic field direction B0/B0, i.e. axis x in Figure 15.2. If θ → π/2 then the fast
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Figure 16.11: A scheme of the continuous transitions between discontinuous
solutions in MHD, following from comparison of the properties of the discon-
tinuities and small-amplitude waves on the phase velocity diagram.

magnetoacoustic wave (V+) converts to the perpendicular wave propagating
across the field with the velocity V⊥ (15.43). In the limit of large-amplitude
waves this corresponds to the transition from the fast shock (S+) to the per-
pendicular one (S⊥).

As θ → 0, the fast magnetoacoustic wave (V+) converts to the usual sound
one (Vs) if Vs > VA or to the Alfvén wave (VA) if VA > Vs. Therefore the fast
shock (S+) must convert, when θ → 0, either to the longitudinal shock (S‖)
if Vs1 > VA1 or to the Alfvén discontinuity (A) if VA1 > Vs1.

In much the same way, we conclude, reasoning from Figure 15.2, that the
slow shock (S−) converts either to the longitudinal shock (S‖) for Vs1 < VA1
or to the Alfvén discontinuity (A) for Vs1 > VA1 . This transition takes place
as θ → 0. For θ → π/2, both the slow shock wave (S−) and Alfvén discontinu-
ity (A) transform to the tangential discontinuity (T ) as demonstrated by the
fact that the corresponding phase velocities of the slow magnetoacoustic (V−)
and Alfvén (VA) waves tend to zero for θ → π/2.

∗ ∗ ∗

How are such transitions realized? – They are effected through some
discontinuities which may be called transitional since they conform to bound-
ary conditions for both types of discontinuities and may be classified as either



298 Chapter 16. Discontinuous MHD Flows

of the two. The existence of transitional discontinuities means that the dis-
continuity of one type can convert to the discontinuity of another type under
a continuous change of parameters (Syrovatskii, 1956).

The absence of transitional discontinuities in MHD, manifested as the ab-
sence of transitions between small-amplitude waves in the phase velocity dia-
gram (Figure 15.2), signifies the impossibility similar to that one in ordinary
hydrodynamics because there exists a minimal velocity of shock propagation
– the sound velocity Vs. That is why small perturbations in hydrodynamics
cannot convert the shock wave (S) into the tangential discontinuity (T ).

For the same reason the continuous transition between fast (S+) and
slow (S−) shocks is impossible in MHD. This is shown in Figure 16.11 by
the doubly crossed arrow. The fast shock (S+) cannot continuously convert
to the perpendicular one (S⊥). These and other restrictions on continuous
transitions between discontinuities in MHD will be explained in Chapter 17
from the viewpoint of evolutionarity conditions.

The classical theory of the MHD discontinous flows is of great utility in
analysing the results of numerical calculations, for example time dependent
numerical solutions of the dissipative MHD equations, in order to determine
whether the numerical solutions are physically correct (e.g., Falle and Komis-
sarov, 2001).

16.4 Shock waves in collisionless plasma

In ordinary collision-dominated gases or plasmas the density rise across a
shock wave occurs in a distance of the order of a few collision mean free
paths. The velocity distributions on both sides of the front are constrained
by collisions to be Maxwellian and, if there is more than one kind of particles
(for example, ions and electrons), the temperature of the various constituents
of the plasma reach equality. Moreover, as we saw in Sections 16.1 and 16.2,
the conditions (density, pressure, and flow velocity) on one side of the front are
rigidly determined in terms of those on the other side by requirement that the
flux of mass, momentum, and energy through the front be conserved. For weak
shocks the front structure itself can be determined relatively simple, by taking
into account collisional transfer coefficients representing viscosity, resistivity,
and so on (Sirotina and Syrovatskii, 1960; Zel’dovich and Raizer, 1966, 2002;
see also Section 17.4).

In a collisionless plasma the mechanisms by which the plasma state is
changed by the passage of the shock front are more complex. Energy and
momentum can be transferred from the plasma flow into electric and magnetic
field oscillations for example by some kinetic instabilities. The energy of
these collective motions must be taken into account when conservation laws
are applied to relate the pre-shock state to the post-shock state. The ions
and electrons are affected differently by instabilities. So there is no reason
for their temperatures to remain equal. Since kinetic instabilities are seldom



16.5. Practice: Exercises and Answers 299

isotropic, it is unlikely that the temperatures will remain isotropic. These
anisotropies further change the jump conditions.

The change in state derives from the collective interactions between parti-
cles and electric and magnetic fields. In general these fields are of two types.
They can be: (a) constant in time, more exactly, quasi-static fields pro-
duced by charge separation, currents (e.g., Gedalin and Griv, 1999), or (b)
fluctuating in time, produced by kinetic instabilities. The first situation
is usually termed laminar, the second one turbulent. The fields often are
turbulent. So the scattering of particles by turbulence can play the role of
dissipation in the collisionless shock structure. This turbulence can be either a
small-scale one generated by plasma instabilities inside a laminar shock front,
or a large-scale turbulence associated with the dominant mode of the shock
interaction itself (see Tidman and Krall, 1971).

Since we are discussing the kinetic processes which occur on a time scale
much shorter than the time scale of Coulomb collisions, we may efficiently
use the Vlasov equation (3.3) or the fluid-type descriptions derived from it
(Chew et al., 1956; Klimontovich and Silin, 1961; Volkov, 1966) to study the
properties of shock waves in collisionless plasma.

The high Much number collisionless shocks are well observed in some as-
trophysical objects, for example in young supernova remnants (SNRs). It has
been suspected for many years that such shocks do not produce the electron-
ion temperature equilibration. A clear hint for nonequilibration is the low
electron temperature in young SNRs, which in no object seems to exceed
5 keV, whereas a typical shock velocity of 4000 km s−1 should give rise to a
mean plasma temperature of about 20 keV. X-ray observations usually allow
only the electron temperature to be determined.

The reflective grating spectrometer on board XMM-Newton allowed a
direct measurement of an oxygen (O VII) temperature Ti ≈ 500 keV in
SN 1006 (Vink et al., 2003). Combined with the observed electron tem-
perature Te ∼ 1.5 keV, this measurement confirms, with a high statistical
confidence, that shock heating process resulted in only a small degree (∼3 %)
of electron-ion equilibration at the shock front and that the subsequent equi-
libration process is slow.

16.5 Practice: Exercises and Answers

Exercise 16.1. Relate the flow variables ρ, v, and p at the surface of an
ordinary shock wave (Section 16.1.2).

Answer. From formula (16.7) with vτ = 0 and vx = v, we find

ρ1 v1 = ρ2 v2 , (16.83)

p1 + ρ1 v 2
1 = p2 + ρ2 v 2

2 , (16.84)

v 2
1

2
+ w1 =

v 2
2

2
+ w2 . (16.85)
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Here
w = ε +

p

ρ
(16.86)

is the specific enthalpy; the thermodynamic relationship for the specific inter-
nal energy ε(p, ρ) is assumed to be known.

Exercise 16.2. Assuming that the value of a parameter describing the
strength of the shock in Exercise 16.1 is known (for example, the relative
velocity δv = v1 − v2 which playes the role of the ‘piston’ velocity), find the
general relationships that follow from the conservation laws (16.83)–(16.85).

Answer. Instead of the density let us introduce the specific volume U =
1/ρ. From (16.83) we obtain

U2

U1
=

v2

v1
. (16.87)

Eliminating the velocities v1 and v2 from Equations (16.84) and (16.85), we
find

v 2
1 = U 2

1
p2 − p1

U1 − U2
, (16.88)

v 2
2 = U 2

2
p2 − p1

U1 − U2
. (16.89)

The velocity of the compressed plasma with respect to the undisturbed one

δv = v1 − v2 = [(p2 − p1)(U1 − U2)]
1/2

. (16.90)

Substituting (16.88) and (16.89) in the energy equation (16.85), we obtain

δw = w2 − w1 =
1
2

(p2 − p1)(U1 + U2) . (16.91)

This is the most general form of the Rankine-Hugoniot relation.

Exercise 16.3. Consider the Rankine-Hugoniot relation for an ideal gas.
Answer. For an ideal gas with constant specific heats cp and cv, the

specific enthalpy
w (p, U) = cp T =

γg

γg − 1
p U , (16.92)

where γg = cp/cv is the specific heat ratio.
If we substitute (16.92) in (16.91), we obtain the Rankine-Hugoniot rela-

tion in the explicit form

p2

p1
=

(γg + 1)U1 − (γg − 1) U2

(γg + 1)U2 − (γg − 1) U1
. (16.93)

From here, the density ratio

r =
ρ2

ρ1
=

U1

U2
=

(γg + 1) p2 + (γg − 1) p1

(γg − 1) p2 + (γg + 1) p1
. (16.94)
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It is evident from (16.94) that the density ratio across a very strong shock,
where the pressure p2 behind the wave front is much higher than the initial
pressure p1, does not increase infinitely with increasing strength p2/p1,
but approaches a certain finite value. This limiting density ratio is a fuction
of the specific heat ratio γg only, and is equal to

r∞ =
ρ2

ρ1
=

γg + 1
γg − 1

. (16.95)

For a monatomic gas with γg = 5/3 the limiting compression ratio r∞ = 4.

p

p

U U1 2

1

2

U1 r

Figure 16.12: The Rankine-Hugoniot
curve.

A curve on the diagram (p, U) passing through the initial state (p1, U1)
according to (16.93) is called the Rankine-Hugoniot curve; it is shown in
Figure 16.12.

Exercise 16.4. What is the value of the limiting density ratio r in relativistic
shock waves?

Answer. Note that Equation (16.83) is valid only for nonrelativistic
flows. In relativistic shock waves, the Lorentz factor (5.3) for the upstream
and downstream flows must be included, and we have (de Hoffmann and
Teller, 1950):

γL,1 ρ1 v1 = γL,2 ρ2 v2 . (16.96)

The density ratio
r =

ρ2

ρ1
=

v1

v2

γL,1

γL,2

. (16.97)

In highly relativistic shock waves, the ratio v1/v2 remains finite,
while the density ratio r → ∞.

This is important fact for particle acceleration by shock waves (see Chap-
ter 18).
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Exercise 16.5. Write the density ratio r as a function of the upstream Mach
number.

Answer. Let us use the definition of the sound speed (16.1) in an ideal
gas with constant specific heats

Vs =
(

γg
p

ρ

)1/2

= (γg p U)1/2
. (16.98)

The upstream Mach number (to the second power)

M 2
1 =

v 2
1

V 2
s1

=
U1

γg p1

p2 − p1

V1 − V2
. (16.99)

Here the solution (16.88) has been taken into account.
Substituting (16.99) in (16.94) gives us the compression ratio as a function

of the upstream Mach number

r =
(γg + 1)M 2

1

(γg − 1) M 2
1 + 2

. (16.100)

When M1 → ∞, the density ratio

r → (γg + 1)/(γg − 1)

of course. This is the limiting case of a strong but nonrelativistic shock wave.
When M1 → 1, which is the limiting case of a weak shock wave, the

density ratio r → 1 too. By using formula (16.93), we see that the pressures
on both sides of a weak shock wave are close to each other: p1 ≈ p2 and
(p2 − p1)/p1 
 1. Thus a weak shock wave is practically the same as an
acoustic compression wave.

For M1 < 1 we could formally have an expansion shock wave with r < 1
and p2 < p1. However it can be shown (see the next Exercise) that such a
transition would involve a decrease of entropy rather than an increase. So
such transitions are ruled out by the second law of thermodynamics.

Exercise 16.6. Show that the entropy jump of a gas compressed by a shock
increases with the strength of the shock wave but is entirely independent of
the dissipative mechanism.

Answer. To within an arbitrary constant the entropy of an ideal gas with
constant specific heats is given by formula (see Landau and Lifshitz, Statistical
Physics, 1959b, Chapter 4):

S = cv ln pUγg . (16.101)

The difference between the entropy on each side of the shock front, as derived
from (16.94), is

S2 − S1 = cv ln
{(

p2

p1

)[
(γg − 1)(p2/p1) + (γg + 1)
(γg + 1)(p2/p1) + (γg − 1)

]γg
}

. (16.102)
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In the limiting case of a weak wave (p2 ≈ p1) the expression in braces is
close to unity. Therefore S2 ≈ S1 and S2 > S1 if p2 > p1.

As the strength of the wave increases, that is, as the ratio p2/p1 increases
beyond unity, the expression in braces increases monotonically and approaches
infinity as p2/p1 → ∞. Thus the entropy jump is positive and does increase
with the strength of the shock wave.

The increase in entropy indicates that irreversible dissipative pro-
cesses occur in the shock front.

This can be traced to the presence of viscosity and heat conduction in the gas
or plasma (see the discussion in Section 16.1.3).

Exercise 16.7. Consider a collisionless gravitational system described by the
gravitational analog of the Vlasov equation (Exercise 3.9). Explain qualita-
tively why the Vlasov equation (3.44) does not predict the existence of a shock
wave. In other words, unlike the case of gas or plasma, an evolution governed
by the set of Equations (3.44)–(3.46) never leads to caustics or shocks.

Hint. By analogy with the discussion of the shock origin in ordinary
hydrodynamics (Section 16.1.1), it is necessary to show that

given sufficiently smooth initial data, the distribution function of a
collisionless gravitational system will never diverge.

So the gravitational analog of the Vlasov equation manifests the so-called
‘global existance’ (Pfaffelmoser, 1992).



Chapter 17

Evolutionarity of MHD
Discontinuities

A discontinuity cannot exist in astrophysical plasma with magnetic
field if small perturbations disintegrate it into other discontinuities or
transform it to a more general nonsteady flow.

17.1 Conditions for evolutionarity

17.1.1 The physical meaning and definition

Of concern to us is the issue of the stability of MHD discontinuities with re-
spect to their decomposition into more than one discontinuity. To answer this
question small perturbations must be imposed on the discontinuity surface.
If they do not instantaneously lead to large changes of the discontinuity, then
the discontinuity is termed evolutionary .

Obviously the property of evolutionarity does not coincide with stability
in the ordinary sense. The usual instability means exponential (eγt, γ > 0)
growth of the disturbance, it remains small for some time (t ≤ γ−1). The
discontinuity gradually evolves. By contrast,

a disturbance instantaneously becomes large in a non-evolutiona-
ry discontinuity.

By way of illustration, the decomposition of a density jump ρ (x) is shown in
Figure 17.1. The disturbance δρ is not small, though it occupies an interval δx
which is small for small t, when the two discontinuities have not become widely
separated.

The problem of disintegration of discontinuities has a long history. Kot-
chine (1926) considered the disintegration of an arbitrary discontinuity into

305
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Figure 17.1: Disintegration of a density jump into two successive jumps.

a set of other discontinuities and rarefaction waves in the frame of hydrody-
namics. Bethe (1942) studied the disintegration of a shock wave. The mathe-
matical idea of evolutionarity was expressed for the first time in the context of
the study of discontinuities in hydrodynamics (Courant and Friedrichs, 1985;
see also Gel’fand, 1959).

With respect to evolutionary discontinuities, the usual problem of
linear stability can be formulated,

i.e. we find solutions to the linearized equations giving rise to small amplitudes
which grow or decay in time.

The evolutionarity criterion may be obtained by counting the number of
equations supplied by linearized boundary conditions at the discontinuity sur-
face, and the number of independent parameters determining an arbitrary,
initially small disturbance of the discontinuity. If the numbers are equal, then
the boundary conditions uniquely define further development – evolution – of
the disturbance which remains small for small t > 0. Such a discontinuity
is evolutionary . By contrast, if the number of parameters is greater or less
than the number of independent equations, then the problem of a small per-
turbation of the discontinuity has an infinitely large number of solutions or
no solutions at all. Thus

the initial assumption of the smallness of the disturbance for small t
is incorrect, hence the discontinuity is non-evolutionary .

Such a discontinuity cannot exist as a stationary configuration because a small
perturbation leads to a finite variation of the initial flow. This variation is the
disintegration of the discontinuity into other discontinuities that move away
from the place of their formation (Figure 17.1), or a transition to a more
general nonsteady flow.
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Let us count the number of equations which must be satisfied by an ar-
bitrary small perturbation at the discontinuity. Let us take as the initial
conditions the set of eight boundary conditions (16.25)–(16.32). It is to be
linearized.

We consider perturbations of the discontinuity, which generate plane waves
propagating along the x axis. Then the quantity Bx remains constant on
either side of the discontinuity, and condition (16.25) (both exact and lin-
earized) is satisfied identically. Hence, on either side of the discontinuity,
seven quantities are perturbed: three velocity components (vx, vy, vz), two
field components (By, Bz), density ρ and pressure p. Small perturbations of
these quantities,

δvx , δvy , δvz , δBy , δBz , δρ , δp,

on either side of the discontinuity surface are characterized by the coordinate
and time dependence

δf (t, x) ∼ exp [ i (kx − ωt) ]

typical of the plane wave.
If the number of waves leaving the discontinuity is equal to the number of

boundary conditions, then the problem of small perturbations has only one
solution and the discontinuity is evolutionary. This form of evolutionarity
conditions has been obtained for the first time by Lax (1957, 1973). The
small perturbations must obey the linearized boundary conditions, i.e. linear
algebraic equations following from (16.26)–(16.32). In addition to the seven
quantities mentioned above, the velocity of propagation of the discontinuity
surface is disturbed. It acquires a small increment δux relative to the chosen
frame of reference in which the undisturbed discontinuity is at rest.

17.1.2 Linearized boundary conditions

Let us write down the linearized boundary conditions in a reference frame
rotated with respect to the x axis in such a way that the undisturbed val-
ues Bz = 0 and vz = 0. Thus we restrict our consideration to those discon-
tinuity surfaces in which the undisturbed fields B1, B2 and the velocities v1,
v2 lie in the plane (x, y).

From the boundary conditions (16.25)–(16.32) we find a set of linear equa-
tions which falls into two groups describing different perturbations:

(a) Alfvén perturbations (δvz, δBz){
ρ vx δvz − 1

4π
Bx δBz

}
= 0 , (17.1)

{ vx δBz − Bx δvz } = 0 ; (17.2)
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(b) magnetoacoustic and entropy perturbations (δvx, δvy, δBy, δρ, δp)

{ ρ (δvx − δux) + vx δρ } = 0 , (17.3){
ρ vx δvy + vy [ ρ (δvx − δux) + vx δρ ] − 1

4π
Bx δBy

}
= 0 , (17.4){

δp + v 2
x δρ + 2ρ vx (δvx − δux) +

1
4π

By δBy

}
= 0 , (17.5)

{ Bx δvy − By (δvx − δux) − vx δBy } = 0 , (17.6)

{ ρ vx [ vx (δvx − δux) + vy δvy + δw ] +

+

(
v 2

x + v 2
y

2
+ w

)
[ ρ (δvx − δux) + vx δρ ] +

+
By

4π
[ By (δvx − δux) + vx δBy − Bx δvy ] +

+
1
4π

(vxBy − vyBx) δBy

}
= 0 . (17.7)

Condition (17.3) allows us to express the disturbance of the propagation ve-
locity of the discontinuity surface δux in terms of perturbations of ρ and vx:

δux { ρ } = { ρ δvx + vx δρ } . (17.8)

On substituting (17.8) in (17.4)–(17.7) there remain four independent equa-
tions in the second group of boundary conditions, since the disturbance of the
velocity of the discontinuity surface δux can be eliminated from the set.

Therefore the MHD boundary conditions for perturbations of the discon-
tinuity, which generate waves propagating perpendicular to the discontinuity
surface, fall into two isolated groups. As this takes place,

the conditions of evolutionarity (the number of waves leaving the
MHD discontinuity is equal to the number of independent linearized
boundary conditions) must hold not only for the variables in total
but also for each isolated group

(Syrovatskii, 1959). The number of Alfvén waves leaving the discontinuity
must be two, whereas there must be four magnetoacoustic and entropy waves.
This make the evolutionary requirement more stringent.

Whether or not a discontinuity is evolutionary is clearly a purely kinematic
problem. We have to count the number of small-amplitude waves leaving the
discontinuity on either side. Concerning the boundary conditions the following
comment should be made. As distinct from the unperturbed MHD equations,
the perturbed ones are not stationary. Therefore the arguments used to derive
Equations (16.19)–(16.24) from (16.10) are not always valid.
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To derive boundary conditions at a disturbed discontinuity we have to
transform to the reference frame connected with the surface. For example,
for a perturbation (see Exercise 17.2)

ξ x(y, t) = ξ 0 exp [ i (ky y − ω t)] ,

where ξx is a displacement of the surface, this is equivalent to the following
substitution in the linearized MHD equations

∂

∂t
δ → − i ω

(
δ − ξ 0

∂

∂y

)
,

∂

∂y
δ → i ky

(
δ − ξ 0

∂

∂y

)
,

where − i ω ξ 0 = δux is the amplitude of the time derivative of ξ. Consider,
for example, the linearized continuity equation which after the integration
over the discontinuity thickness takes the form

i

+a∫
−a

(ω − kyvy) δρ dx − i ky

+a∫
−a

ρ δvy dx =

= { vx δρ + ρ [ δvx + i (ω − kyvy) ξ 0 ] } . (17.9)

If the integrals on the left-hand side of Equation (17.9) are equal to zero
in the limit a → 0 then, for ky = 0, formula (17.9) transforms to (17.3).
However this possibility is based on the supposition that δρ and δvy inside
the discontinuity do not increase in the limit a → 0. We shall see in vol. 2,
Chapter 10 that this supposition is not valid at least for more complicated,
two-dimensional, configurations such as a reconnecting current layer.

17.1.3 The number of small-amplitude waves

If the discontinuity is immovable with respect to the plasma (no flow across
the discontinuity), then on either side of the surface there exist three waves
leaving it as shown in Figure 17.2:

−V+x1 , −VAx1 , −V−x1 , V−x2 , VAx2 , V+x2 . (17.10)

Let the discontinuity move with a velocity vx1 relative to the plasma (Fig-
ure 17.3). The positive direction of the axis x is chosen to coincide with the
direction of the plasma motion at the discontinuity surface. The index ‘1’
refers to the region in front of the surface (x < 0) whereas the index ‘2’
refers to the region behind the discontinuity (x > 0), i.e. downstream of the
flow. Then there exist fourteen different phase velocities of propagation of
small-amplitude waves:

vx1 ± V+x1 , vx1 ± VAx1 , vx1 ± V−x1 , vx1 ,

vx2 ± V−x2 , vx2 ± VAx2 , vx2 ± V+x2 , vx2 .
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Figure 17.2: Six small-amplitude waves leaving an immovable discontinuity
surface (x = 0) being perturbed.

Waves leaving the discontinuity have negative phase velocities in the region 1
and positive phase velocities in the region 2.

In the region 1, four velocities, corresponding to the waves moving toward
the discontinuity surface, can be immediately discarded:

vx1 + V+x1 , vx1 + VAx1 , vx1 + V−x1 , vx1 .

The remaining three waves (7 − 4) can leave the discontinuity or propagate
toward it, depending on the plasma flow velocity towards the discontinuity vx1.

In the region 2, four waves always have positive phase velocities:

vx2 + V+x2 , vx2 + VAx2 , vx2 + V−x2 , vx2 . (17.11)

These waves leave the discontinuity. Other waves will be converging or di-
verging, depending on relations between the quantities

vx2 , V+x2 , VAx2 , V−x2 .

Let
0 < vx1 < V−x1 . (17.12)

Then there are three waves leaving the discontinuity in the region 1:

vx1 − V−x1 , vx1 − VAx1 , vx1 − V−x1 .

If
0 < vx2 < V−x2 , (17.13)

then four waves (17.11) propagate downstream of the discontinuity since the
waves

vx2 − V−x2 , vx2 − VAx2 , vx2 − V+x2
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Figure 17.3: Small-amplitude waves in a plasma moving through the MHD
discontinuity.

converge to the discontinuity.
We shall write down the number of diverging waves to the left (in front

of) and to the right (behind) the discontinuity as their sum (e.g. 3 + 4 = 7
in the case considered) in the corresponding rectangle in the plane (vx1, vx2)
presented in Figure 17.4. This rectangle is the lower left one. In the rectangle
situated to the right of this one, two rather than three waves are diverging in
the region 1:

vx1 − VAx1 , vx1 − V+x1 .

The wave vx1 − V−x1 is carried by the flow to the discontinuity since

V−x1 < vx1 < VAx1 .
(17.14)

Thus we write 2 + 4 = 6 in this rectangle. The whole table is filled up in a
similar manner.

17.1.4 Domains of evolutionarity

If one considers the total number of boundary conditions (six), without al-
lowance being made for their falling into two groups, then just three rectangles
in Figure 17.4 should be inspected for possible evolutionarity. The boundaries
of these rectangles are shown by solid lines.

However, as indicated above, the equality of the total number of indepen-
dent boundary conditions to the number of diverging waves is insufficient for
the existence and uniqueness of the solutions in the class of small perturba-
tions (Syrovatskii, 1959). Take into account that
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3 + 4 = 7

3 + 5 = 8

3 + 6 = 9

3 + 7 = 10

2 + 4 = 6

2 + 5 = 7

2 + 6 = 8

2 + 7 = 9
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1 + 5 = 6

1 + 6 = 7

1 + 7 = 8

0 + 4 = 4

0 + 5 = 5

0 + 6 = 6

0 + 7 = 7

0 V−x1 VAx1 V+x1 vx1

V−x2

VAx2

V+x2

vx2

Figure 17.4: The number of small-amplitude waves leaving a discontinuity
surface.

the linearized boundary conditions fall into two groups, and hence
the number of Alfvén waves must equal two and that of diverging
magnetoacoustic and entropy waves must equal four.

Then one of the three rectangles becomes the point A in Figure 17.5.
The figure shows that there exist two domains of evolutionarity of shock

waves:
(a) fast shock waves (S+) for which

vx1 > V+x1 , VAx2 < vx2 < V+x2 , (17.15)

(b) slow shock waves (S−) for which

V−x1 < vx1 < VAx1 , vx2 < V−x2 . (17.16)

Recall that our treatment of the Alfvén discontinuity was not quite sat-
isfactory. It was treated as a flow in the plane (x, y). Generally this is not
the case (Figure 16.10). The result of the above analysis is also not quite
satisfactory: the evolutionarity of the Alfvén discontinuity, as well as the
switch-on and switch-off shocks, is more complicated. While investigating the
evolutionarity of these discontinuities, dissipative effects must be allowed for
(Section 17.3).

Although dissipative waves quickly damp as they propagate away from
the discontinuity surface, they play an important role in the system of small-
amplitude waves leaving the discontinuity. Thus only one solution exists for
the switch-off shock, i.e. it is evolutionary. By contrast,

the switch-on shock wave, as well as the Alfvén or rotational dis-
continuity, are non-evolutionary
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0 V−x1 VAx1 V+x1 vx1

V−x2

VAx2

V+x2

vx2

Figure 17.5: The evolutionarity domains for the fast (S+) and slow (S−)
shocks and the Alfvén discontinuity.

in the linear approximation.
Roikhvarger and Syrovatskii (1974) have shown that attention to dissipa-

tion in the dispersion equation for magnetoacoustic and entropy waves leads
to the appearance of dissipative waves and, as a consequence, to the non-
evolutionarity of tangential and contact discontinuities (Section 17.3).

Recall that in an ideal medium the disintegration of a discontinuity is in-
stantaneous in the sense that the secondary discontinuities become separated
in the beginning of the disintegration process (Figure 17.1). In a dissipative
medium the spatial profiles of the MHD discontinuities are continuous. Nev-
ertheless the principal result remains the same. The steady flow is rearranged
toward a nonsteady state, and after a large enough period of time the disin-
tegration manifests itself (Section 17.4).

17.2 Consequences of evolutionarity conditions

17.2.1 The order of wave propagation

Some interesting inferences concerning the order of shock propagation result
from the evolutionarity conditions (17.15) and (17.16).

If a shock wave follows another one of the same type (fast or slow), the
back shock will catch up with the front one (Akhiezer et al., 1959). Let us
consider, as an example, two slow shock waves, S A

− and S B
− , propagating in

the direction of the x axis as shown in Figure 17.6.
In a reference frame connected with the front of the first shock S A

− , we
get, by virtue of the evolutionary condition (17.16),

V A
−x1 < v A

x1 < V A
Ax1 , v A

x2 < V A
−x2 . (17.17)
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Figure 17.6: Plasma flow velocities relative to: (a) shock wave fronts, (b) the
plasma between the shock waves.

In a reference frame connected with the front of the second shock S B
− , analo-

gous conditions hold:

V B
−x1 < v B

x1 < V B
Ax1 , v B

x2 < V B
−x2 . (17.18)

Since the velocities of slow magnetoacoustic waves of small amplitude V A
−x2

and V B
−x1 refer to the same region (between the shocks), they are equal

V A
−x2 = V B

−x1 . (17.19)

Substituting (17.19) in the second part of (17.17) and in the first part of
(17.18) gives the inequality

v A
x2 < v B

x1 . (17.20)

Hence, relative to the plasma between the shocks (Figure 17.6b), the shock S B
−

catches up with the shock S A
− , which was to be proved.

As for different types of waves, the following inferences can be drawn: the
Alfvén discontinuity will catch up with the slow shock, whereas the fast shock
will catch up with all possible types of discontinuities. If shock waves are
generated by a single source (for example, a flare in the solar atmosphere),



17.3. Dissipative Effects in Evolutionarity 315

then no more than three shocks can move in the same direction: the fast shock
is followed by the Alfvén discontinuity, the slow shock being to the rear of the
Alfvén discontinuity.

17.2.2 Continuous transitions between discontinuities

Reasoning from the polar diagram for phase velocities of small-amplitude
waves, in Section 16.3 we have treated the possibility of continuous transi-
tions between different types of discontinuous solutions in MHD. However the
evolutionarity conditions have not been taken into account. They are known
to impose limitations on possible continuous transitions between the discon-
tinuities under changes of external parameters (magnetic field, flow velocity,
etc.).

Continuous transition is impossible between the fast and slow shock waves.
This stems from the fact that the evolutionarity domains for fast (S+) and
slow (S−) shocks have no common points (Figure 17.5). Similarly, the lines
of phase velocities V+ and V− in polar diagrams (Figures 15.2 and 15.3) are
out of contact. That was the basis for banning transitions between the fast
and slow shocks in Figure 16.11.

The fast shock (S+) cannot continuously convert to the tangential disconti-
nuity (T ) since that would go against the evolutionarity condition vx1 > VAx1.
The same ban stems from the consideration of the phase velocity diagram
(Section 16.3). The perpendicular shock (S⊥) is the limiting case of the fast
shock. That is why the continuous transition of the perpendicular shock to
the tangential discontinuity is forbidden, as shown in Figure 16.11.

As was indicated in the previous section, the issue of evolutionarity of the
Alfvén discontinuity has no satisfactory solution in the framework of ideal
MHD. The established viewpoint is that the continuous transition of shock
waves (S− and S+) to the Alfvén discontinuity (A) is impossible, as is pre-
dicted by the phase velocity diagram with θ → 0. Transitions between the
Alfvén (A) and tangential (T ) discontinuities, between the tangential discon-
tinuity and the slow shock (S−), between the tangential and contact (C) dis-
continuities are assumed to be possible. These discontinuities convert to the
tangential discontinuity in the limiting case Bx → 0 (Polovin, 1961; Akhiezer
et al., 1975).

We shall consider the evolutionarity conditions and their consequences
for reconnecting current layers (RCLs) as a MHD discontinuity in vol. 2,
Chapter 10.

17.3 Dissipative effects in evolutionarity

Roikhvarger and Syrovatskii (1974) have taken into account the effect of dis-
sipation on the peculiar shocks. In this case the dispersion relation of the
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Alfvén waves has the form:

k2 V 2
Ax −

(
ω − kvx − ik2 νm

) (
ω − kvx − ik2 ν

)
= 0 . (17.21)

Here k is directed along the x axis, νm is the magnetic diffusivity, and ν = η/ρ
is the kinematic viscosity. After expansion of the solutions of this equation in
powers of a small ω (the conditions under which ω is small will be discussed
below) the expression for k reads as follows:
(a) for vx = VAx

kd = ±
√

ω

νm + ν
(1 − i) , (17.22)

k A =
ω

2vx
− i

(νm + ν) ω 2

16 v 3
x

, (17.23)

k∗ = −
ω
(
ν 2

m + ν 2
)

vx (νm + ν)2
+ i

vx (νm + ν)
νm ν

; (17.24)

(b) for vx �= VAx

k A =
ω

vx ± VAx
− i

(νm + ν) ω 2

2 (vx ± VAx)3
, (17.25)

k∗ = − ω [ (νm − ν)2 vx ± (νm + ν) K ]
4 V 2

Ax νm ν + v 2
x (νm − ν)2 ± vx (νm + ν) K

+

+ i
vx (νm + ν) ± K

2 νm ν
, (17.26)

where

K =
[

v 2
x (νm − ν)2 + 4V 2

Ax νm ν

]2
.

Thus

the dissipative effects result in additional small-amplitude waves
propagating in a homogeneous MHD medium.

The width of an MHD shock (at least of small amplitude) is proportional,
in order of magnitude, to the dissipative transport coefficients and inversally
proportional to the shock intensity (Sirotina and Syrovatskii, 1960). The in-
tensity is determined by the difference vx−VAx on the side of the discontinuity
on which it is not zero. Since the switch-off shock, as a slow one, has a finite
intensity, and the switch-on shock exists in the interval (see Section 16.2.5)

1 <
v 2

x1

V 2
Ax1

<
4v 2

x1

v 2
x1 + V 2

s1
,

the width of the peculiar shock can be estimated as

l ∼ νm + ν

| vx − VAx | (17.27)
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Figure 17.7: The direction of the wave propagation in the case of a switch-on
shock (a) and a switch-off shock (b).

(Roikhvarger and Syrovatskii, 1974). It is just this distance within which the
perturbations k∗ from (17.24) and (17.26) damp considerably.

Therefore outside the shock front these waves are absent, and their ampli-
tudes do not enter into the boundary conditions which relate perturbations
outside the shock front.

The situation is different for the remaining perturbations, in particular,
for the purely dissipative waves kd from (17.22). For small enough ω their
wave numbers are much larger than the thickness l of the shock. This is true
under the condition

ω 
 (vx − VAx)2

νm + ν
, (17.28)

which coinsides with that used to derive (17.22)–(17.26). Since the character-
istic length scale of such perturbations is much larger than the shock thick-
ness l , their amplitudes satisfy the boundary conditions at the discontinuity
surface (17.1) and (17.2) obtained for an ideal medium.

The classification of dissipative perturbations on incoming and outgoing
waves should be made according to the sign of the imaginary part of the wave
vector, because in a stable medium such waves damp in the direction of the
propagation (Section 15.3). Consequently, there are two outgoing perturba-
tions leaving the peculiar shock, one of them being the dissipative wave. Much
like the case of non-peculiar shocks, both waves propagate downstream away
from the (fast) switch-on shock, while there is one outgoing wave on each side
of the (slow) switch-off shock (Figure 17.7).

With the precision adopted when deriving (17.22)–(17.26), the perturba-
tions δvz and δBz in the dissipative wave k∗ from (17.22) are related by the
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formula

δv d
z =

(
1 ± νm − ν

vx

√
i ω

2 (νm + ν)

)
δB d

z√
4πρ

. (17.29)

From here and, (17.1) and (17.2), it follows that if an Alfvén wave is incident
onto the switch-off shock from upstream or downstream then the amplitude
of the dissipative wave equals respectively

δB d
z1 = − 2 vx1

νm − ν

√
2 (νm + ν)

i ω
δB ↓

z1 , (17.30)

or

δB d
z1 = − 2 vx1

νm − ν

√
2 (νm + ν)

i ω
δB ↑

z2 . (17.31)

The amplitude δB ↓
z2 of the travelling (non-dissipative) wave equals zero in

the first case and −δB ↑
z2 in the second case. Thus only one solution exists

for the switch-off shock. Consequently, the switch-off shock is evolutionary.
On the contrary, the switch-on shock is non-evolutionary. Indeed, Equa-

tions (17.1) and (17.2), with regard for the relation at the switch-on shock

vx1 vx2 = V 2
Ax1 and

ρ 2

ρ 1
=

v 2
x1

V 2
Ax1

, (17.32)

can be rewritten as

vx1

(
δvz2 − δBz2√

4πρ

)
= vx1 δvz1 − VAx1

δBz1√
4πρ

, (17.33)

VAx1

(
δvz2 − δBz2√

4πρ

)
= VAx1 δvz1 − vx1

δBz1√
4πρ

. (17.34)

The set of Equations (17.33) and (17.34) is incompatible with a non-zero
amplitude of the incident wave, i.e. when δvz1 and δBz1 are not equal to
zero. Note that if the incident wave is absent, this set has an infinite number
of solutions. Hence the switch-on shock is non-evolutionary.

Finally it should be mentioned that the additional dissipative waves appear
only for vx = VAx. This means that

the dissipative effects do not alter the evolutionarity conditions for
non-peculiar (fast and slow) MHD shock waves.

At the same time the Alfvén discontinuity becomes non-evolutionary with
respect to dissipative Alfvén waves. This is consistent with the fact that in
the presence of dissipation it cannot have a stationary thickness and smooths
out with time (see Landau et al., 1984).

It was also pointed out by Roikhvarger and Syrovatskii (1974) that the
inclusion of dissipation into the dispersion relation for magnetoacoustic and
entropy waves results in the appearence of dissipative waves, and, as a conse-
quence, in non-evolutionarity of tangential, contact, and weak discontinuities
(discontinuities of the derivatives of the MHD properties).
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17.4 Discontinuity structure and evolutionar-
ity

17.4.1 Perpendicular shock waves

It is natural to assume that

the stationary problem of the structure of an evolutionary MHD
discontinuity has a unique solution, while for the non-evolutionary
one this problem does not have a solution.

To illustrate this assumption let us obtain the structure of the perpendicular
shock. With this aim the one-dimensional dissipative MHD equations should
be integrated over x. After that the conservation laws of mass, momentum,
and energy, and Maxwell equations take the form (see Polovin and Demut-
skii, 1990):

ρ v = J , (17.35)

Jv + p +
B 2

8 π
− µ

dv

dx
= S , (17.36)

J

[
v 2

2
+

p

ρ (γg − 1)

]
+ p v +

vB 2

4π
− µv

dv

dz
− νm

4π
B

dB

dx
= Q , (17.37)

vB − νm
dB

dx
= c E . (17.38)

Here the thermal conductivity of the medium is assumed to be zero. J , S,
and Q are constants of integration, γg is the adiabatic index, µ = (4/3) η + ζ ,
and ζ is a bulk viscosity (the indexes x and y at the quantities vx and By are
omitted).

From (17.35)–(17.38) we obtain the set of ordinary differential equations
which describes the structure of the perpendicular shock:

µ
dv

dx
= f (v, B) , (17.39)

νm
dB

dx
= g (v, B) , (17.40)

where

f (v, B) =
γg + 1

2
Jv − γg

(
S − B 2

2π

)
+

γg − 1
v

(
Q − cE B

4π

)
, (17.41)

g (v, B) = vB − cE . (17.42)

The curves f (v, B) = 0 and g (v, B) = 0 on the plane (v, B) are shown
schematically in Figure 17.8. At the points 1 and 2 of intersection of these
curves the derivatives dv/dx and dB/dx equal zero simultaneously.
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Figure 17.8: The structure of the
perpendicular shock (bold arrow)
connecting the states 1 and 2.

The points (B 1 , v 1) and (B 2 , v 2) correspond to the states ahead of the
shock (x → −∞) and behind the shock (x → +∞). These are stationary
points of the set of differential Equations (17.39) and (17.40). The structure
of the shock

v = v (x) , B = B (x) (17.43)

is a solution to the set (17.39), (17.40) which leaves the initial point 1 and
enters into the final point 2.

To consider the behaviour of the integral curves in the vicinity of the sta-
tionary points 1 and 2 (Figure 17.8) the quantities J , S, and Q should be ex-
pressed in termes of the MHD properties vi and Bi ahead of the shock (i = 1)
and behind the shock (i = 2). Then, by virtue of the fact that the deriva-
tives dv/dx and dB/dx tend to zero for x → ± ∞, Equations (17.35)–(17.37)
yield

J = ρi vi , (17.44)

S = Jvi + pi +
B 2

i

8π
, (17.45)

Q = J

(
v 2

i

2
+

γg

γg − 1
pi

ρi

)
+

viB
2
i

4π
, (17.46)

where i = 1, 2.
Let us now represent the quantities B and v in the form

B = Bi + δBi , v = vi + δvi , (17.47)

with δ being a small perturbation. Substituting this together with (17.44)–
(17.46) in (17.41) and (17.42), and expanding the result in powers of δBi and
δvi , we find to the first order

µ
d δvi

dx
=

ρi

vi

(
v 2

i − V 2
s i

)
δvi +

Bi

4π
δBi , (17.48)

νm
d δB i

dx
= Bi δvi + vi δBi . (17.49)
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As is known (e.g., Fedoryuk, 1985), a stationary point δvi = 0, δBi = 0 of
the set of autonomous differential equations

d δvi

dx
= a 11 δvi + a 12 δBi , (17.50)

d δBi

dx
= a 21 δvi + a 22 δBi (17.51)

is a saddle if the roots of characteristic equation

(a 11 − λ) (a 22 − λ) − a 12 a 21 = 0 (17.52)

are real numbers and have opposite signs, i.e. if

(a 11 − a 22)2 + 4a 12 a 21 > 0 , a 11 a 22 − a 12 a 21 < 0 . (17.53)

In this case only two integral curves enter the stationary point δvi = 0, δBi = 0
from the opposite directions (Figure 17.9a). And in the orthogonal way only
two curves leave the stationary point.

v

B

v

B

(a) (b)

Figure 17.9: Stationary points of the set of autonomous differential equations.
(a) Saddle. (b) Unstable node.

In the case when the roots of characteristic Equation (17.52) are real num-
bers and have the same sign, i.e. if

(a 11 − a 22)2 + 4a 12 a 21 > 0 , a 11 a 22 − a 12 a 21 > 0 , (17.54)

then the stationary point is a node. If in addition

a 11 + a 22 > 0 (17.55)

then the node is unstable, and all the integral curves leave the stationary
point (Figure 17.9b).
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In a perpendicular MHD shock

a 11 a 22 − a 12 a 21 =
ρi

(
v 2

i − V 2
⊥i

)
µ νm

, (17.56)

as follows from Equations (17.48) and (17.49). Here

V⊥ =
√

V 2
A ‖ + V 2

s =
√

u2
A

+ V 2
s . (17.57)

(Section 15.2.4). So the second inequality (17.54) is always valid. As for the
quantity a 11 + a 22 , it equals

a 11 + a 22 =
ρi

(
v 2

i − V 2
s i

)
µ vi

+
vi

νm
. (17.58)

It follows from (17.56) and (17.58) that in the case of the perpendicular
shock the stationary points of (17.48), (17.49) can be only of two types: either
a saddle or an unstable node (recall that v i is assumed to be positive).

Let us consider at first the case when

v 1 > V⊥1 , v 2 < V⊥2 . (17.59)

Then point 2 is a saddle, while point 1 is an unstable node. The only integral
curve enters into point 2 in Figure 17.8 from the side of larger values of v.
If the quantities v and B vary along this curve in the opposite direction, i.e.
upstream of the shock, then they will inevitably reach the values (v 1, B 1),
i.e. point 1, because all integral curves leave point 1 (unstable node in the
case under consideration). This curve describes a unique structure of the
perpendicular shock. The inequalities (17.59) coincide with the conditions of
evolutionarity of the perpendicular shock (see (17.15)), because V+ = V⊥ for
perpendicular propagation. Therefore

the conditions that the perpendicular shock wave has the unique
structure coincide with the conditions of its evolutionarity.

Now we consider the structure of a non-evolutionary perpendicular shock
wave. If

v 2 > V⊥2 , (17.60)

then point 2 is an unstable node. Neither integral curve enters this point, i.e.
the problem of structure of the shock does not have a solution.

If
v 1 < V⊥1 , v 2 < V⊥2 , (17.61)

then both stationary points 1 and 2 are saddles. In this case one of two
integral curves, leaving point 1, may coinside with one of two curves entering
point 2. However this takes place only for the definite exclusive values of
the parameters ahead of the shock front. An infinitesimal perturbation of
the state upstream of the shock destroys its structure. In other words, the
integral curve cannot connect the states 1 and 2 in a general case.
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17.4.2 Discontinuities with penetrating magnetic field

Let us turn to the discontinuity type for which

vx �= 0 and Bx �= 0 (17.62)

(Sections 16.2.4 and 16.2.5). Consider at first the discontinuity accompanied
by a density jump:

{ ρ } �= 0 . (17.63)

(oblique shock waves). In this case the boundary conditions (16.67) can be
rewritten in such a way as to represent the Rankine-Hugoniot relation for
shock waves in MHD. Germain (1960) has shown that the boundary conditions
allow four states (see also Shercliff, 1965):

I : vx > V+ ,

II : V+ > vx > VAx , (17.64)
III : VAx > vx > V− ,

IV : V− > vx .

The states are arranged in order of increasing entropy. The second law of
thermodynamics requires that a shock transition is possible only from a lower
state of entropy to an upper one. There are thus six transitions shown in
Figure 17.10.

III → IV

I → II

I → III

I → IVII → IV

II → III

0 V−x1 VAx1 V+x1 vx1

V−x2

VAx2

V+x2

vx2

A
•

Figure 17.10: Transitions with increasing entropy. Evolutionarity domains
(bold rectangles) for the fast (I → II) and slow (III → IV) shock waves.

The evolutionarity of an oblique shock wave is related to its structure
in the following way (Germain, 1960; Kulikovskii and Lyubimov, 1961; An-
derson, 1963). The evolutionary fast and slow shocks always have a
unique structure. The shock transition II → III has a unique structure only
for the definite relationship between the dissipative transport coefficients. If
these coefficients fall into the certain intervals, the I → III and II → IV shocks
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may have a unique structure, while the I → IV transition may be connected
by an infinite number of integral curves.

Besides, as shown by Liberman (1978) with the help of the method dis-
cussed in Section 17.4.1, the switch-on shock, which is not evolutionary with
respect to dissipative waves, has a unique structure. The possible reason is
that the peculiarity of the switch-on and switch-off shocks is related to the
absence of B τ on one side of the discontinuity surface. The small asymmetry,
that is assumed when studying the stationary points, removes the degenera-
tion, and thus makes the shock evolutionary.

17.5 Practice: Exercises and Answers

Exercise 17.1. Show that an ordinary shock wave is evalutionary.
Answer. From (16.7) it follows that there exist three boundary conditions

at the surface of a shock wave in ordinary hydrodynamics:

{ ρ vx } = 0 ,
{

p + ρ v 2
x

}
= 0 ,

{
v2

2
+ w

}
= 0 . (17.65)

The boundary condition
{ vτ } = 0 (17.66)

makes it possible to transform to such a frame of reference in which the
tangential velocity component is absent on either side of the discontinuity:
vτ1 = vτ2 = 0. So we obtain three linearized conditions for small perturba-
tions. Since the disturbance of the velocity of the shock front surface δux can
be eliminated from the set of boundary conditions, there remain two indepen-
dent equations in the set.

Figure 17.11: Small-amplitude
waves in a plasma moving through
a shock wave without a magnetic
field.

x0

ρ 2

ρ 1

vx2 vx2 + Vs2
� �

Let us count the number of outgoing small-amplitude waves. There are
no such waves upstream the shock because of the condition

vx1 > Vs1 = 0 , (17.67)
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where Vs1 is the upstream sound velocity. At the downstream side of the
shock there are two waves: the sound wave propagating with velocity vx2+Vs2
and the entropy-vortex wave (Exercise 15.2) propagating with velocity vx2 as
shown in Figure 17.11. Therefore the number of waves leaving the shock is
equal to the number of independent linearized boundary conditions; q.e.d.

Exercise 17.2. Since an ordinary shock wave is evolutionary, consider the
linear problem of its stability in the ordinary sense of small perturbations.

Answer. Suppose that the surface of a shock is perturbed in the following
way:

ξ = ξ 0 exp [ i (k y y − ω t)] , (17.68)

where ξ is a displacement of the surface. The shock front thus becomes cor-
rugated. The corrugation causes a perturbation of the flow. An arbitrary
hydrodynamic perturbation is represented as a sum of the entropy-vortex
wave and the sound wave. Since the flow is stationary and homogeneous in
the y direction, all perturbations have the same frequency ω and tangential
component of the wave vector ky.

Since the flow velocity ahead of the shock v1 > Vs1, only the downstream
flow is perturbed. The usual condition of compatibility of the linear equation
set is that the determinant of the coefficients at unknown quantities is zero,
which yields the dispersion equation

ωv2

v1

(
k 2

y +
ω 2

v 2
2

)
−
(

ω 2

v1v2
+ k 2

x

)
(ω − kyv2)

[
1 + J2

(
∂U2

∂p2

)
RH

]
= 0 . (17.69)

Here U = 1/ρ is a specific volume, J = ρ1v1 = ρ2v2. The subscript RH means
that the derivative is taken along the Rankine–Hugoniot curve.

The shock front as a discontinuity is unstable if

Im ω > 0 , Im kx > 0 . (17.70)

The second condition (17.70) means that the perturbation is excited by the
shock itself, but not by some external source. As shown by D’yakov (1954),
Equation (17.69) has solution which satisfies the condition (17.70), when

J2
(

∂U2

∂p 2

)
RH

< −1 (17.71)

or

J2
(

∂U2

∂p 2

)
RH

> 1 + 2
v2

Vs2
. (17.72)

If the parameters of the flow fall into the interval (17.71) or (17.72) then the
small perturbation of the shock grows exponentially with time. This is the
so-called corrugational instability of shock waves in ordinary hydrodynamics.
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Along with this there is a possibility that Equation (17.69) has solutions
with real ω and k x which correspond to non-damping waves outgoing from
the discontinuity (D’yakov, 1954). In this case

the shock spontaneously radiates sound and entropy-vortex waves,
with the energy being supplied from the whole moving medium.

Apparently this instability is the reason of the flow inhomogeneities observed,
for example, in laboratory experiments when a strong shock propagates in a
gas (see Markovskii and Somov, 1996).

Exercise 17.3. Show that an ordinary tangential discontinuity introduced
in Section 16.1.2 is non-evalutionary.

Answer. From (16.6) it follows that there exists only one boundary con-
dition at the surface of a tangential discontinuity in ordinary hydrodynamics.
However two sound waves can propagate from the discontinuity at its both
sides. Therefore the number of small-amplitude waves is greater than the
number of linearized boundary equations.



Chapter 18

Particle Acceleration by
Shock Waves

Sir Charles Darwin (1949) presumably thought that shock waves are
responsible for accelerating cosmic rays. Nowadays shocks are widely
recognized as a key to understanding high-energy particle acceleration
in a variety of astrophysical environments.

18.1 Two basic mechanisms

Astrophysical plasma, being tenuous, differs from laboratory plasma in many
ways. One of them is the following. In most environments where accelerated
paricles are observed, typical sound speeds are considerably less than easily
obtainable bulk flow velocities, and shock waves are expected to develop. In
fact, shocks are associated with most energetic particle populations seen in
space.

In the heliosphere, collisionless shocks are directly observable with space-
crafts and they have been well studied. In every case where direct observations
have been made, shocks are seen to accelerate particles, often to power-law
distributions. Investigations of heliospheric shocks, along with a great deal of
theoretical work, also show that collective field-particle interactions control
the shock dissipation and structure. The physics of shock dissipation and
particle acceleration seem to be intimately related.

In this Chapter, we introduce only the most important aspects of the shock
acceleration theory including two fundamental mechanisms of particle accel-
eration by a shock wave. Analytical models and numerical simulations (Jones
and Ellison, 1991; Blandford, 1994; Giacalone and Ellison, 2000; Parks, 2004)
illustrate the possible high efficiency of diffusive and drift accelerations to
high energies.

327
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18.2 Shock diffusive acceleration

18.2.1 The canonical model of diffusive mechanism

Axford et al. (1977) and Krymskii (1977) considered the idealized problem
of the particle acceleration by a shock wave of plane geometry propagating
in a medium containing small-scale inhomogeneities of a magnetic field which
scatter fast particles. The origin of these scatterers will be discussed later on.
This may be, for example, the case of parallel or nearly parallel MHD shocks.
In shocks of this kind (see case (16.72)) the avarage magnetic field plays
essentially no role since it is homogeneous, while fluctuations in the avarage
field play a secondary role producing particle scattering. Assuming this, we
consider a shock wave as an ordinary hydrodynamic shock with scatterers.

If the medium is homogeneous, and if the propagation of the shock is
stationary, then the front of the shock separates the two half-spaces: x < 0
and x > 0, and the velocity of the medium is given by the following formula:

v(x) =
{

v1 for x < 0 ,
v2 = r−1v1 for x > 0 .

(18.1)

Here
r =

ρ2

ρ1
=

v1

v2
(18.2)

is the compression ratio. It follows from formula (16.94) that, in a very strong
(but nonrelativistic) shock wave, the ratio

r → r∞ =
γg + 1
γg − 1

and
v2 =

v1

r∞
=

γg − 1
γg + 1

v1 . (18.3)

The adiabatic index γg is considered constant on both sides of the shock
front x = 0.

Following Axford et al. (1977) and Krymskii (1977), let us assume that
the distribution function in space and the scalar momentum of the acceler-
ated particles, f(r, p), is isotropic (see generalization in Gieseler et al., 1999;
Ruffolo, 1999). This means that f(r, p) is the same in all reference frames
to first order in the small parameter v/vp, where vp and p are the individual
particle velocity and momentum measured in the local plasma frame.

As long as scattering is strong enough to insure the isotropy assumption,
the kinetic Equation (2.15) describing the transport of particles with vp � v
in space and velocity can be written in the form of a diffusion-convection
equation (see Krymskii (1977) and references therein):

∂f

∂t
= ∇r (D ∇r f) − ∇r (fv) +

1
3

∂ (fp)
∂p

div v . (18.4)
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Here D = D(r, p) is the coefficient of diffusion of fast particles.
For our problem under consideration, with one-dimensional geometry, we

have in the stationary case

∂

∂x

[
vf(x, p) − D(x, p)

∂ f(x, p)
∂x

]
=

1
3

∂v

∂x

∂

∂p
[ pf(x, p) ] . (18.5)

Let us integrate Equation (18.5) over x from x = −∞ to x = +∞. By
employing the boundary conditions

f(x = −∞, p) = f1(p) and f(x = +∞, p) = f2(p) , (18.6)

where f2(p) is an unknown spectrum of accelerated particles, we obtain the
following differential equation in p

v2f2(p) − v1f1(p) − 0 + 0 =
1
3

(v2 − v1)
d

dp
[ pf2(p) ] . (18.7)

Using the definition of the compression ratio (18.2), we obtain an ordinary
differential equation for the downstream distribution function f2(p) in the
form

p
d

dp
f2(p) +

r + 2
r − 1

f2(p) =
3r

r − 1
f1(p) ; (18.8)

recall that r > 1.
The general solution of this equation is

f2(p) =
3

r − 1
p−γp

p∫
p0

f1(p′) (p′)−γp dp′ + c1 p−γp . (18.9)

Here

γp =
r + 2
r − 1

(18.10)

plays the role of the spectral index of the accelerated particles, c1 is an ar-
bitrary constant of integration which multiplies the homogenious term, the
distribution function f1(p) is the far upstream spectrum of ambient parti-
cles that are accelerated by the shock, and p0 is large enough so that the
assumption vp � v holds.

So the solution of the diffusion-convection equation does show that a pla-
nar shock, propagating through a region in which fast particles are diffusing,
produces a superthermal population of particles with the power-law momen-
tum distribution

f2(p) ∼ p−γp . (18.11)

The property which gave the diffusive acceleration process a wide appeal
is the fact that, with the simplest assumptions made above,
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the spectral index (18.10) of the accelerated particles depends only
on the compression ratio r of the shock wave.

Most astrophysical shocks, since they are strong, have compression ratios
constrained to a rather narrow range of values near r∞ = 4 assuming γg = 5/3.
For a shock with Mach number M (see Exercise 16.5) greater than 3 say, as
we see in Figure 18.1, the compression ratio 3 < r < 4 and the spectral index
2 < γp < 2.5.

4

3

2

1

0
1 10 10

5
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Figure 18.1: The compression ratio r and spectral index γp versus the Mach
number M .

A spectral index of γp ≈ 2 is characteristic of energy particle spectra ob-
served in a wide range of astrophysical environments (Jones and Ellison, 1991;
Blandford, 1994). For example, γp ≈ 2 closely fits the inferred source spec-
trum of Galactic cosmic rays for high energies below approximately 1015 eV
(e.g., Gombosi, 1999). In the cosmic rays observed at Earth, the spectrum of
cosmic-ray ions is an unbroken power law from 109 to 1015 eV. The supernova
shocks are one of the few mechanisms known to be capable of providing ade-
quate energy to supply the pool of Galactic cosmic rays. Supernova remnants
(SNRs) have long been suspected as the primary site of Galactic cosmic-ray
acceleration.

The earliest evidence of non-thermal X-ray emission in a SNR came from
featureless observed spectra interpreted as the extrapolation of a radio syn-
chrotron spectrum. However early data were poor and the models were sim-
plistic. New observations and theoretical results (Dyer et al., 2001) indicate
that joint thermal and non-thermal fitting, using sophisticated models, will
be required for analysis of most supernova-remnant X-ray data in the future
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to answer two questions: (a) Do SNRs accelerate ions? (b) Are they capable
of accelerating particles to energies of 1015 eV?

In the solar wind the shock-associated low-energy-proton events seem
to be well studied. The most intensive of them have a power-low energy
spectrum, suggesting that protons are accelerated by the diffusive-shock ac-
celeration mechanism (e.g., Rodriguez-Pacheco et al., 1998). Nevertheless the
correlation between the spectral exponent γ with the solar wind velocity com-
pression ratio is found to be linear. This result differs from that presented
above. The discrepancy of the spectral-exponent dependence on the shock-
wave parameters could lie on the event selection criterion or on the account
of nonlinear effects (Section 18.2.3) or on another mechanism of acceleration.

18.2.2 Some properties of diffusive mechanism

As we saw above, the spectral index γp of energetic particles produced by
diffusive shock acceleration does not depend on the diffusion coefficient D.
However the diffusion coefficient D, together with the characteristic flow ve-
locity v ∼ v1, determines the overall length scale of the acceleration region

l
D

∼ D(p)/v (18.12)

and acceleration time
t

D
∼ D(p)/v2 . (18.13)

The first-order Fermi or diffusive shock acceleration is a statistical process in
which particles undergo spatial diffusion and are accelerated as they scatter
back and forth across the shock, thereby being compressed between scattering
centers fixed in the converging upstream and downstream flows.

Particle energies are derived just from the relative motion, the con-
verging flow with velocity v1 − v2, between scatterers (waves) on
either side of a shock front.

This is a main advantage of the diffusive mechanism. Its disadvantage is that
particles can achieve very high energies by diffusion acceleration, but

since particles spend most of their time random walking in the up-
stream or downstream plasma, the acceleration time can become
excessively large

compared with, for example, the shock’s life time.
Another disadvantage in applying it to some astrophysical phenomena,

for example solar flares, consists of the lack of actual knowledge about the
assumed scattering waves. However diffusion determines only the length
scale (18.12) and characteristic time (18.13) of the acceleration process. In
this context, let us recall once more (Section 16.1.3) the following analogy
from everyday life. A glass of hot water with a temperature T1 will invariably
cool to a given room temperature T2, independently of the mechanism of heat
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exchange with the surrounding medium, while the mechanism determines only
the time of cooling.

In the presence of a magnetic field in plasma, the diffusive acceleration
requires that the particles are able to traverse the shock front in both direc-
tions either along the field or by scattering across the field, in order that they
may couple to the shock compression by pitch-angle scattering both upstream
and downstream of the shock. At quasi-parallel shocks this condition on par-
ticle mobility is easily met. For sufficiently fast shocks, downstream shock-
heated particles can be kinematically able to return to the shock along the
downstream magnetic field to initiate the process of diffusive shock accelera-
tion. At quasi-perpendicular shocks (Section 18.3.2), however, this condition
is stringent. Although the diffusive mechanism is rapid since particles are
confined closer to the shock front, there is a high threshold speed, signif-
icantly exceeding v1, in order that diffusive acceleration can occur (Webb et
al., 1995).

18.2.3 Nonlinear effects in diffusive acceleration

The test particle (i.e., linear) model demonstrated above yields the most im-
portant result: the power law (18.11) with the spectral index (18.10) is the
natural product of the diffusive acceleration in shock waves. The equally im-
portant question of the actual efficiency of the process can only be adequately
addressed to a fully nonlinear (and more complex) theory. Using observations
of the Earth bow shock and interplanetary observations, numerical modeling
of different shocks shows that the inherent efficiency of shock acceleration
implies that

the hydrodynamic feedback effects between the accelerated particles
and the shock structure are important

and therefore essential to any complete description of the process. This has
turned out to be a formidable task because of the wide range of spatial and
energy scales that must be self-consistently included in numerical simulations.

On the one hand, the plasma microprocesses of the shock dissipation con-
trol injection from the thermal population. On the other hand, the highest
energy particles (extending to 1014 − 1015 eV in the case of galactic cosmic
rays) with extremely long diffusion lengths (18.12) are dynamically significant
in strong shock waves and feed back on the shock structure. Ranges of inter-
acting scales of many orders of magnitudes must be described self-consistently
(for review see Parks, 2004).

18.3 Shock drift acceleration

The principal process whereby a particle gains energy upon crossing a shock
wave with a magnetic field may be the so-called shock drift acceleration (Hud-
son, 1965). The drift mechanism, in contrast to the diffusive one, neglects
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any shock-front associated turbulence. So many not-well-justified assump-
tions concerning the physics of scatterers have not to be made in applying the
drift acceleration model to an astrophysical phenomenon.

If the fast particle Larmor radius

rL =
c p⊥
eB

� lf , (18.14)

where lf is the front thickness, we can replace the shock by a simple dis-
continuity (the shock surface) and can approximate the particle motion as
scatter-free on both sides of the shock. Let us begin by considering an in-
teraction of individual particles with such a discontinuity. We shall consider
very fast particles:

vp � v1 > v2 . (18.15)

These assumptions are basic for further considerations that we start from the
simplest case – a perpendicular shock (Section 16.2.3).

18.3.1 Perpendicular shock waves

As shown in Figure 16.5, the magnetic fields B1 and B2 are parallel to the
shock front x = 0; and plasma moves perpendicularly to the front. According
to (16.41), there exists an identical electric field on both sides of the shock:

E = −1
c
v1 × B1 = −1

c
v2 × B2 . (18.16)

The fast particles rotate on the magnetic field lines and move together with
the field lines with the plasma speed across the front as shown in Figure 18.2.
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Figure 18.2: The Larmor ring moves together with the plasma and the mag-
netic field across the perpendicular shock front.
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Nothing will happen before the Larmor ring touches the front; a particle
simply drifts to the front. For what follows it is important that the particle
will make many rotations (Figure 18.3) during the motion of the Larmor ring
across the front because of the condition (18.15). A ‘single encounter’ consists
of many individual penetrations by the particle through the shock surface as
the particle follows its nearly helical trajectory. Because of the difference
between the Larmor radius ahead of and behind the front, a drift parallel to
the front will appear, accompanying the drift across the front.
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Figure 18.3: The trajectory of a negatively charged particle (an electron)
multiply crossing the perpendicular shock front.

During each rotation, the electric field E accelerates a particle on the
upstream side (x < 0) of the shock and decelerates it on the downstream side
(x > 0). However the work of the field E on a larger circle exceeds the work
on the smaller circle:

δA1 = + eE × AC > − δA2 = eE × BC , (18.17)

since the length AC is larger than the length AB. Therefore, during each ro-
tation, the particle is slightly accelerated. How much energy does the particle
take during the motion of its Larmor ring across the shock front?

Since we consider the shock as a discontinuity, the adiabatic approximation
is formally not suitable. However it appears that the transversal invariant
(Section 6.2) conserves:

p 2
⊥
B

= const (18.18)

(Hudson, 1965; Alekseyev and Kropotkin, 1970). From (18.18) it follows that

p 2
⊥2 = p 2

⊥1 × B2

B1
.
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Therefore the transversal kinetic energy of a nonrelativistic particle

K⊥2

K⊥1
=

p 2
⊥2

p 2
⊥1

∝ B2

B1
= r . (18.19)

An increase of transversal energy (18.19) is relatively small when
the Larmor ring of a particle crosses the front only once.

Multiple interactions of a particle with the shock is a necessary condition for
a considerable increase of energy.

Drift acceleration typically involves several shock crossings and results
from a net displacement δz of an ion (electron) guiding center parallel (anti-
parallel) to the convection electric field E. The energy gain is proportional
to this displacement, which in general depends upon the plasma and shock
parameters, the particle species and velocity, and the intensity of possible
electromagnetic fluctuations in the vicinity of the shock as well as within the
shock front itself. It is popular to discuss the displacement δz as the conse-
quence of a gradient drift (see formula (5.14) in Jones and Ellison, 1991). Such
a treatment is not reasonable when we consider the shock as a discontinuity;
so formally ∇B → ∞. A wondeful thing is that the adiabatic approximation
is not applicable for such a situation but the first adiabatic invariant (18.18)
conserves.

18.3.2 Quasi-perpendicular shock waves

18.3.2 (a) Classical model of acceleration

The basic aspects of drift acceleration of fast particles by an almost perpen-
dicular shock wave, as a discontinuity, emerge from a simple model which is
valid for a certain range of incident pitch angles and which allows us to de-
rive analytical expressions for the reflection and transmission coefficients, the
energy and the angular distributions (Toptyghin, 1980; Decker, 1983).

By definition, in a quasi-perpendicular shock, the angle Ψ1 (Figure 18.4)
between the shock normal n and the upstream magnetic field vector B1 is
greater than about 80◦. Hence the field lines form small angles α1 and α2
with the shock front plane x = 0. Under this condition, as well as for the
perpendicular shock case considered above, the first adiabatic invariant
is conserved (Hudson, 1965; see also Section 4 in Wentzel, 1964). This
enables analytical calculations of the energy increase on the front of a quasi-
perpendicular shock as well as the reflection and transmission of fast particles
(Sarris and Van Allen, 1974).

Since the particles conserve the first adiabatic invariant (Section 6.2.1), all
particles with pitch angles

θ > θ0 (18.20)

will be reflected. To find the critical pitch angle θ0, consider two frames of
reference: S and S ′.
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Figure 18.4: A quasi-perpendicular shock wave in the frame of reference S
where v1 ‖ n.

In the frame of reference S, where the shock front is in the plane (y, z)
and the shock normal n is along the x axis, there is an electric field

E = −1
c
v1 × B1 = −1

c
v2 × B2 . (18.21)

In the frame of reference S ′, where B1 ‖ v1 and B2 ‖ v2 (Section 16.2.4), there
is no electric field. The system S ′ moves along the y axis (perpendicular
to the vector E) with velocity

vy = c
E × Bn

B 2
n

, (18.22)

where Bn is the normal component of the magnetic field. Since E ′ = 0, there
is no change in the energy of a fast particle after reflection from the front:
δE ′ = 0.

We shall assume that Bn is very small but vy < c. Using the relativistic
Lorentz transformation for the energy-momentum 4D-vector with condition
δE ′ = 0, we obtain the relative energy increment of the reflected fast particles
(see Exercise 18.1):

δK
K ≈ 4v 2

1

v 2
p

[
vp cos θ

v1
+ tg Ψ1

]
tg Ψ1 . (18.23)

Here K = mv 2
p /2 is the kinetic energy of a particle in the shock wave frame

of reference S, vp is the particle velocity in the same frame, and θ is the pitch
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angle also in the frame S. The connection between θ ′ and θ is given by

cos θ ′ =
vp cos θ + v1 tg Ψ1[

v 2
p + (v1 tg Ψ1)2 + 2vp (v1 tg Ψ1) cos θ

]1/2 . (18.24)

In the S ′ frame of reference, where the electric field is zero, the first adiabatic
invariant can be written as (see definition (6.11)):

sin2 θ ′

B
= const . (18.25)

So the critical pitch angle θ ′
0 satisfies equation

sin2 θ ′
0 =

B1

B2
. (18.26)

This allows us to calculate the critical pitch angle θ0 in the shock-front
frame S. For example, if a non-relativistic proton has an initial energy K =
0.3 MeV and if a shock wave has an upstream velocity v1 = 150 km/s, the
ratio B1/B2 = 1/3, and the angle Ψ1 = 88◦ and 89◦, then we find, corre-
spondingly, θ0 = 55◦ and 77◦. As the angle Ψ1 increases toward 90◦, most of
the particles are really transmitted into the downstream side. At Ψ1 = 90◦,
which is the perpendicular shock case, there are no reflecting particles.

Formula (18.23) shows that

the relative increment of kinetic energy of a fast particle increases
when the angle Ψ1 increases toward 90◦.

The model under consideration predicts high field-aligned anisotropies for
a large Ψ1 because of conservation of first adiabatic invariant and the large
energy gains.

It is widely believed that the slow thermal particles inside the shock
front can also be considered as adiabatic, at least, in thick collisionless
shocks: the electron magnetic moment is conserved throughout the shock
and v2

⊥/B = const (Feldman et al., 1982). In very thin collisionless shock
(with a large cross-shock potential) the adiabaticity may break down, so that
electrons become demagnetized. It means that the magnetic moment is no
longer conserved, and a more substantial part of the energy may be transferred
into the perpendicular degree of freedom (Balikhin et al., 1993; Gedalin and
Griv, 1999).

18.3.2 (b) Some astrophysical applications

Observations of interplanetary shocks (e.g., Balogh and Erdös, 1991) show
that the intensive acceleration of protons occurs when the upstream magnetic
field is almost parallel to the shock front. Energetic particles entering the
shock front stay with it, crossing it many times and being accelerated by the
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electric field of the front. After the direction of the interplanetary magnetic
field changes again away from the parallel to the front, the intensive acceler-
ation ceases.

Owing to interplanetary magnetic field fluctuations the upstream field vec-
tor B1, if it is found to be parallel to the shock front, stays as such for only a
short time (a few minutes, in general). This time is enough for the low-energy
protons (Kp < 1 MeV) to be accelerated to about 2–3 times their original
energy but not enough for the high-energy protons (Kp < 10 MeV) to be
noticeably affected by the shock wave.

Single scatter-free shock drift interactions at quasi-perpendicular shocks
can accelerate particles to at most a few times the shock compression ratio.
Weak scattering during single drift interactions can increase this upper limit
for a small fraction of an incident particle distribution, but the energy spectra
will be still rather steep. One anticipates large energy gains and flatter spectra
that extend to high energies if some particles can return to the shock for many
drift interactions.
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Figure 18.5: A collapsing magnetic trap on the upstream side of a quasi-
perpendicular shock wave.

This is suggestive of the classical case of a collapsing magnetic trap
(Section 6.2), and is the basis of the model of proton trapping and accel-
eration due to multiple drift interactions along magnetic loops that convect
through a planar quasi-perpendicular shock (Wentzel, 1963, 1964; Gisler and
Lemons, 1990). Figure 18.5 represents a quasi-perpendicular shock, with a
small perturbation of the magnetic field superimposed on the unshocked ho-
mogeneous field B1. The heavy line displays a particular field line which
intersects the shock front plane x = 0 two times, forming a magnetic loop in
the upstream region.
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Upstream particles bounce back and forth along a loop and gain
parallel energy at each reflection until they fall within the loss cone
and transmit downstream.

Simple analytic models and detailed numerical study have shown that the
collapse of the trap by the convection of the loop field lines through the
shock is accompanied by a considerable increase of the accelerated proton
flux, which may be responsible for the ‘shock spike’ events observed near fast
mode interplanetary shock waves (Decker, 1993; Erdös and Balogh, 1994).

In general, if the magnetic field contains fluctuations with wavelengths
that are considerably larger than the gyroradii of the fast particles, a fraction
of particles is accelerated by a quasi-perpendicular shock to energy well above
the thermal energy (Giacalone and Ellison, 2000).

18.3.3 Oblique shock waves

If values of the angle α between the magnetic field and the shock front plane
are arbitrary, then the phase-averaged coefficients of reflection and transmis-
sion are complicated and can be found, in principle, by numerical calculations.
When

v1

vp
≤ α1 ≤ π

2
(18.27)

and the pitch angle θ is arbitrary, the order of magnitude of the energy increase

δK ≈ p v1

α1

 K = E − mc2 (18.28)

is small in comparison with the initial kinetic energy. In a general case, the
increase of particle energy is small when the Larmor ring of a particle crosses
the front once. Multiple interactions of a particle with the shock front is the
necessary condition for a considerable increase of energy.

One possibility for multiple interactions of a particle with the shock is a
strong MHD turbulence. More exactly, it is assumed that in a sufficiently
large region of space there exists an ensemble of MHD shocks which interact
successively with the particles. The investigation of particle acceleration by a
random shock wave ensemble is of certain interest in astrophysical applications
but the conditions of such an acceleration mechanism are not totally clear yet.

Another possibity is the propagation of one shock in a turbulent medium
or of an oblique collisionless shock when magnetic turbulence exists in the
regions upstream and downstream of the shock (Decker and Vlahos, 1986).
It is important, however, that the particle acceleration near the shock front
in a turbulent medium, i.e. the diffusive mechanism (Section 18.2) will take
place in the absence of a regular electric field. No terms should be added
to the basic diffusion-convection equation (18.4) to take account of the drift
mechanism in an oblique shock. The process is already included in the energy
change which is proportional to the divv term. This, of course, assumes that
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there is sufficient scattering and that other assumptions used in deriving the
diffusion-convection equations are also valid. That is not trivial.

The interesting possibility discussed in Section 18.3.2 is a combination of
a magnetic trap with an oblique shock wave. In vol. 2, Section 7.3, this idea
is applied to the particle acceleration in solar flares.

18.4 Practice: Exercises and Answers

Exercise 18.1. Derive formula (18.23) in Section 18.3.2.
Answer. According to the geometry shown in Figure 18.4, the frame of

reference S ′ moves with respect to the shock wave frame of reference S with
velocity (18.22):

vy = − cE

Bn
ey . (18.29)

In the frame S ′ there is no electric field; therefore there is no change in the
energy of a particle reflecting at the shock front, that is δE ′ = 0, where E ′

is the energy of the particle in S ′. Let us transform this condition back to
S by using the Lorentz transformation of the energy-momentum 4D-vector
(Landau and Lifshitz, Classical Theory of Field , 1975, Chapter 2, § 9):

px = p ′
x, py = γL

(
p ′

y +
vy

c2 E ′
)

, pz = p ′
z,

E = γL

(
E ′ + vy p ′

y

)
. (18.30)

Since δE ′ = 0, it follows from (18.30) that

δE = γLvy δp ′
y. (18.31)

The change in the y component of momentum of the reflected particle in the
frame of reference S ′ is

δ p ′
y = −2p ′

y = 2γL

(
py − vy

c2 E ey

)
. (18.32)

Note that vectors py and vy point in opposite directions. Substituting (18.32)
into (18.31) gives us

δE =
2vy

1 − v 2
y /c2

[
py +

vy

c2

(
K + mc2)] , (18.33)

where K = mv 2
p /2 is kinetic energy of a particle. Assuming K 
 mc 2 and

using (18.29), we obtain

δE = δK =
2E

B 2
n − E 2

( vp,y

c
Bn + E

)
mc2, (18.34)

where vp,y is the y component of the particle velocity.
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According to (18.21) the electric field

E =
1
c

v1By1 , (18.35)

where By1 is the y component of the vector B1. So we rewrite formula (18.34)
as follows

δK = 2mv 2
1

(vp,y/v1)(Bn/By1) + 1
(Bn/By1)2 − (v1/c)2

. (18.36)

The condition vy < c can equivalently be written as

Bn

By1
>

v1

c
or tg Ψ1 <

v1

c
. (18.37)

If we further assume that
Bn

By1
� v1

c
, (18.38)

we obtain from (18.36) the following formula

δK = 2mv 2
1

(
vp cos θ

v1
tg Ψ1 + tg2 Ψ1

)
, (18.39)

where θ is the pitch angle in the shock-front frame of reference S. Divid-
ing (18.39) by K, we obtain formula (18.23).



Chapter 19

Plasma Equilibrium in
Magnetic Field

The concept of equilibrium is fundamental to any discussion of the
energy contained in an astrophysical object or phenomenon. The MHD
non-equilibrium is often related to the onset of dynamic phenomena
in astrophysical plasma.

19.1 The virial theorem in MHD

19.1.1 A brief pre-history

An integral equality relating different kinds of energy (kinetic, thermal, grav-
itational, etc.) of some region with a volume V and a surface S, is commonly
referred to as the virial theorem. It has been proved for mechanical systems
for the first time by Clausius (1870). The derivation of the virial theorem for
a mechanical system executing a motion in some finite region of space, veloci-
ties also being finite, can be found, for example, in Landau and Lifshitz (1976,
Mechanics, Chapter 2, § 10). Its relativistic form is presented in Landau and
Lifshitz (1975, Classical Theory of Field , Chapter 4, § 34).

The generalization of the virial theorem to include the magnetic energy in
the context of MHD was achieved by Chandrasekhar and Fermi (1953) when
addressing the question of the gravitational stability of infinitely conductive
masses of cosmic dimensions in the presense of a magnetic field. Although
“most students of physics will recognize the name of the virial theorem, few
can state it correctly and even fewer appreciate its power” (Collins, 1978).

343
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19.1.2 Deduction of the scalar virial theorem

The virial theorem is deduced from the momentum conservation law (see
the ideal MHD motion Equation (12.69) or Equation (13.1)) rather than the
energy conservation law. We have

ρ
dvα

dt
≡ ρ

(
∂vα

∂t
+ vβ

∂vα

∂rβ

)
= − ∂p

∂rα
− ∂Mαβ

∂rβ
− ρ

∂φ

∂rα
. (19.1)

Here

Mαβ =
1
4π

(
B2

2
δαβ − BαBβ

)
(19.2)

is the Maxwellian stress tensor. So we consider an ideal MHD plasma dis-
tributed within a limited region V of space. The gravitational potential at a
point r is

φ (r) = −G

∫
ρ (r ′)

| r − r ′ | d 3r ′, (19.3)

where G is the gravitational constant (Appendix 3), d 3r ′ = dx ′ dy ′ dz ′.
The partial differential Equations (19.1) are often very difficult to solve.

Moreover, in astrophysics, we may have such incomplete knowledge of a sys-
tem that it may not be worthwhile to work out an elaborate solution. In many
situations, it is possible to make important conclusions if we know some global
relationships among the different forms of energy in the system.

Let us multiply the plasma motion Equation (19.1) by rα and integrate
it over the volume V . We observe in passing that multiplication of (19.1) by
rγ rather than rα would result, on integrating, in the tensor virial theorem
and not in the scalar one (Chandrasekhar, 1981; see also Strittmatter, 1966;
Choudhuri, 1998).

First let us integrate the left-hand side of Equation (19.1) multiplied by rα.
We get ∫

ρ rα
dvα

dt
dV =

∫
rα

d 2rα

dt 2 ρ dV =
∫

rα
d 2rα

dt 2 dm . (19.4)

Here we have passed from the integration over volume to integration over
mass: dm = ρ dV . We rearrange formula (19.4) as follows

rα
d 2rα

dt 2 =
d

dt

(
rα

drα

dt

)
−
(

drα

dt

)2

=

=
d

dt

(
1
2

dr 2
α

dt

)
−
(

drα

dt

)2

=
1
2

d 2

dt 2 r 2
α − v 2

α .

On substituting this into (19.4), we obtain∫
ρ rα

dvα

dt
dV =

1
2

d 2

dt 2

∫
r2 dm −

∫
v2 dm =

1
2

d 2I

dt 2 − 2T. (19.5)
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Here
I =

∫
r 2 dm (19.6)

is the moment of inertia in the reference frame related to the mass center of
the system. When the system expands, its moment of inertia I increases.

T =
∫

v2

2
dm (19.7)

is kinetic energy or (to be more specific) the kinetic energy of macroscopic
motions inside the system.

Let us multiply the first term on the right-hand side of Equation (19.1)
by rα and integrate it over volume:

−
∫
V

rα
∂p

∂rα
dV = −

∮
S

p rα dSα + 3
∫
V

p dV, (19.8)

since
∂

∂rα
( prα) = rα

∂p

∂rα
+ p

∂rα

∂rα
= rα

∂p

∂rα
+ 3p .

The Gauss theorem was used to integrate the divergence over the volume in
formula (19.8).

If Uth is the thermal energy of the plasma, γg is the ratio of specific heats
at constant pressure and at constant volume, then∫

V

p dV = (γg − 1) Uth . (19.9)

Therefore

−
∫
V

rα
∂p

∂rα
dV = −

∮
S

p ( r · dS ) + 3 (γg − 1) Uth . (19.10)

Similarly we calculate the integral

−
∫
V

rα
∂Mαβ

∂rβ
dV = −

∫
S

Mαβ rα dSβ +
∫
V

Mαβ δαβ dV (19.11)

since
∂

∂rβ
(rα Mαβ) = rα

∂Mαβ

∂rβ
+ Mαβ δαβ .

On rearranging, we find from (19.11) and (19.2)

−
∫
V

rα
∂Mαβ

∂rβ
dV = M −

∫
S

[
B2

8π
(r · dS) − 1

4π
(B · r) (B · dS)

]
, (19.12)
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where

M =
∫
V

B2

8π
dV (19.13)

is the magnetic energy of the system.
The third term on the right-hand side of Equation (19.1) gives

−
∫
V

rα
∂φ

∂rα
ρ dV =

∫
V

ρ rα
∂

∂rα

∫
V ′

Gρ (r ′)
| r − r ′ | dV ′ dV =

= G

∫
V

∫
V ′

ρ ρ ′ rα
∂

∂rα

1√(
rβ − r ′

β

)2
dV dV ′. (19.14)

We rewrite the expression as follows. Let the distance R =

√(
rβ − r ′

β

)2
.

Then

rα
∂

∂rα

1
R

=
1
2

(
rα

∂

∂rα

1
R

+ r ′
α

∂

∂r ′
α

1
R

)
= − 1

R

and

−
∫
V

rα
∂φ

∂rα
ρ dV = Ω , (19.15)

where

Ω = − G

2

∫
V

∫
V ′

ρ ρ ′

R
dV dV ′, (19.16)

is the gravitational energy of the system. Obviously, the energy is negative.
Combining (19.5), (19.10), (19.12), and (19.15) into a single equation, we

finally obtain

1
2

d2I

dt 2 = 2T + 3 (γg − 1) Uth + M + Ω −
∮
S

p ( r · dS )−

−
∮
S

[
B2

8π
( r · dS ) − 1

4π
(B · r ) (B · dS )

]
. (19.17)

Formula (19.17) is called the virial theorem. It has repeatedly been used
in astrophysics when ‘discussing the question of the stability’ of equilibrium
systems of various types. More exactly, this integral force balance relation
is nothing more than a necessary condition for equilibrium. So it may
be well used as a non-existance theorem for the equilibrium problem to find
circumstances when non-equilibrium may occur.
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19.1.3 Some astrophysical applications

The positive terms on the right-hand side of Equation (19.17) lead to an
increase in the moment of inertia I of an astrophysical system under consid-
eration. It is no wonder that the kinetic energy T or the thermal energy Uth

tends to expand the system. The effect of magnetic field is more subtle. The
magnetic field has tension along field lines and magnetic pressure. So we
expect the overall average effect to be expansive. On the other hand, a nega-
tive term on the right-hand side, which is the gravitational energy Ω, tries to
make the system more compact. Gravity is the only force which introduces a
confining tendency in the system.

By way of illustration, let us consider some consequences of the virial the-
orem for the case of a steady system, i.e. when gravity balances the expansive
forces so that

d2I

dt 2 = 0 . (19.18)

Moreover let the kinetic energy of macroscopic motions be equal to zero

T = 0 , (19.19)

i.e. the system is in static equilibrium. Both assumptions must be justified
carefully, if they are applied to astrophysical plasma.

Let us suppose also that the system is finite and the surface S, over which
the integration in (19.10) and (19.12) is performed, can be moved sufficiently
far away (formally speaking, to infinity), so that∮

S

p ( r · dS ) = 0 (19.20)

and ∮
S

[
B2

8π
( r · dS ) − 1

4π
(B · r ) (B · dS )

]
= 0 . (19.21)

Then from the virial theorem (19.17) it follows that

3 (γg − 1) Uth + M + Ω = 0 . (19.22)

Introduce the ‘total’ (without what has been neglected) energy of the system

E = Uth + M + Ω . (19.23)

Eliminating the thermal energy Uth from Equations (19.22) and (19.23), the
total energy is expressed as follows

E = − (3γg − 4)
3 (γg − 1)

( | Ω | − M ) .

(19.24)
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In a sense, the equilibrium is stable if E < 0, i.e.

(3γg − 4)
3 (γg − 1)

( | Ω | − M ) > 0 , (19.25)

which is equivalent, once γg > 4/3, to

| Ω | > M . (19.26)

It is self-evident that inequality (19.26) is just a necessary condition for the
dynamical global stability of a system. The condition is by no means sufficient.
It can be used to show a non-existence of equilibrium of the system.

Let us consider two particular cases of astrophysical interest.
(a) If M = 0 then the system can be stable only for γg > 4/3. This

condition is easy to understand. The pressure inside the system under adia-
batic compression (p ∼ ρ γg ) must grow faster than the gravitational pressure
pg ∼ ρ 4/3. It is in this case that the system, for instance a star, can be
sufficiently resilient to resist the gravitational collapse. That is why a star
consisting of a monatomic gas (with γg = 5/3) can be dynamically stable.

(b) Let M > 0. Generally, the necessary condition for stability (19.25)
can be, in principle, violated. What this means is that the field diminishes the
stability of a star. Given a sufficiently strong field, gravitational attraction
forces cannot balance the magnetic repulsion of the constituents of the system.
However, such a situation is difficult to conceive.

In actuality, gravitational compression cannot result in M > | Ω | since,
given the freezing-in condition and isotropic compression, pmag ∼ ρ 4/3 in
common with pg ∼ ρ 4/3. It is also impossible to obtain M > | Ω | by dint
of magnetic field amplification owing to differential rotation, since | Ω | >
2T in a gravitationally bound system. On the other hand, the energy of a
magnetic field generated by differential rotation must remain less than the
kinetic energy T of the rotation motion, i.e. M < T . Hence M < | Ω |.

At most, the condition M ∼ |Ω | can be realized. This situation is proba-
bly realized in stars of the cold giant type with a large radius. Perhaps such
stars are at the limit of stability, which reveals itself as non-steady behaviour.

Condition (19.26) allows us to evaluate the upper limit of the mean in-
tensity of a magnetic field inside a star or other equilibrium configuration.
Substitute the gravitational energy of a uniform ball,

Ω = −3
5

GM2

R
, (19.27)

in (19.26). The result is (Syrovatskii, 1957)

B < Bcr = 2 × 108
(

M

M	

)(
R

R	

)−2

. (19.28)

For the Sun, magnetic field B must be less than 2 × 108 Gauss. For the most
magnetic stars of the spectral class A, which are observed to have fields ∼ 104
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Gauss, the condition B < 3 × 107 Gauss must hold. Hence these magnetic
stars called the Ap stars, because they possess some peculiar properties (e.g.,
Hubrig et al., 2000), still are very far from the stability limit. As is seen from
the Syrovatskii condition (19.28), the cold giants with large radii could be
closer to such a limit.

Given a uniform field inside a star, on approaching the limit established
by (19.28), the form of the star increasingly deviates from a sphere:

the magnetic field resists gravitational compression of a collapsing
star in the direction perpendicular to the field, whereas the plasma
may freely flow along the field lines.

As a result, the equilibrium configuration is represented by a rotation ellipsoid
compressed in the field direction. The virial theorem can be written (e.g.,
Nakano, 1998) for an axisymmetric oblate magnetic cloud of mass M and
semimajor axes a⊥ and a‖, respectively, embedded in a medium of pressure ps.
This is typical for the problem of star formation in magnetic clouds.

The action of a magnetic field is analogous to rotation (Strittmatter, 1966).
Furthermore, both the strong field and fast rotation are typical of pul-
sars, especially of the magnetars (see Exercise 14.2). So both these factors
determine the real flattening of a neutron star. The flattening can be cal-
culated using the tensor virial theorem. Note, however, that for a neutron
star with M ∼ M	 and R ∼ 10 km the critical magnetic field (19.28) is still
unprecedentelly high: Bcr ∼ 1018 G. We call such fields ultrastrong .

Magnetars, or ‘magnetically powered neutron stars’, could form via a
magnetic dynamo action in hot, nascent neutron stars if they are born spinning
rapidly enough. Magnetism may be strong enough within these stars to evolve
diffusively, driving internal heat dissipation that would keep the neutron stars
hot and X-ray bright. Above a field strength of ∼ 1014 G, the evolving field
inevitably induces stresses in the solid crust. Observations (e.g., Feroci et
al., 2001) indicate that giant flares, involved a relativistic outflow of pairs and
hard gamma rays, can plausibly be triggered by a large fracture in the crust
of a neutron star with a field exceeding 1014 G. So the observed giant flares
are presumably due to local magnetic instabilities in magnetars.

On the other hand, numerical studies (Bocquet et al., 1995) have confirmed
that neutron stars with the ultrastrong internal magnetic fields are globally
stable up to the order of 1018 G. They also have found that, for such values,
the maximum mass of neutron stars increases by 13–29 % relative to the
maximum mass of non-magnetized neutron stars.

If ultrastrong fields exist in the interior of neutron stars, such fields will
primarily affect the behavior of the residual charged particle. Moreover, con-
tributions from the anomalous magnetic moment of the particles in a magnetic
field should also be significant (Broderic et al., 2000). In particular, in a ul-
trastrong field, complete spin polarization of the neutrons occurs as a result of
the interaction of the neutron magnetic moment with the magnetic field. The
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presence of a sufficiently strong field changes the ratio of protons to neutrons
as well as the neutron drip density (Suh and Mathews, 2001).

The virial theorem is sometimes applied in solar physics, for example,
while studying active regions (Section 19.5). It allows us to evaluate the
energy of equilibrium electric currents and show that the energy can be large
enough to explain the flaring activity (Litvinenko and Somov, 1991a); see also
discussion of the problem of the global MHD equilibria and filament eruptions
in the solar corona (Litvinenko and Somov, 2001).

19.2 Force-free fields and Shafranov’s theorem

19.2.1 The simplest examples of force-free fields

A particular case of equilibrium configurations of astrophysical plasma in a
magnetic field is the force-free field , i.e. the field which does not require
external forces. As was noted in Section 13.1, force-free fields naturally occur
when the magnetic force dominates all the others, and hence the magnetic
field must balance itself

B × curl B = 0 . (19.29)

Let us consider several examples of such equilibrium configurations.

19.2.1 (a) The Syrovatskii force-free field

Let the magnetic field vector be situated in the plane parallel to the plane (x, y),
but depend only on z

B = { Bx(z), By(z), 0 } . (19.30)

Substitute (19.30) in Equation (19.29):

curl B =
{

− ∂By

∂z
,

∂Bx

∂z
, 0
}

, (19.31)

B × curl B =
{

0 , 0 , Bx
∂Bx

∂z
+ By

∂By

∂z

}
= 0 . (19.32)

The resulting equation is

∂

∂z

(
B 2

x + B 2
y

)
= 0 , (19.33)

with the solution
B 2 = B 2

x + B 2
y = const . (19.34)

This is the simplest example of a force-free field. The magnitude of the
field vector is independent of z. A one-dimensional force-free field of this type
may be considered to be a local approximation of an arbitrary force-free field
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in a region of the magnetic ‘shear’ in the solar atmosphere. As a particular
example, suitable for formal analysis, one may adopt the force-free field of the
type

B = { B0 cos kz , B0 sin kz , 0 } (19.35)

(Bobrova and Syrovatskii, 1979). The field lines, and hence the electric cur-
rent, lie in the plane (x, y). The direction of the lines rotates with increasing z.

19.2.1 (b) The Lundquist force-free field

The magnetic field of a direct current flowing along the z axis tends to com-
press the plasma to the axis, owing to the tension of the field lines (see Sec-
tion 13.1.3). By contrast,

a bundle of parallel field lines tends to expand by the action of the
magnetic pressure gradient.

Given the superposition of these fields for a certain relationship between them,
the total magnetic force can be zero. Field lines for such a force-free field have
the shape of spirals shown in Figure 19.1.

Figure 19.1: A helical magnetic field in
the form of a spiral of constant slope on
a cylindrical surface r⊥ = const.

x
y

z r⊥

The corresponding axially symmetric solution to Equation (19.29) in cylin-
drical coordinates r⊥, φ, z is of the form (Lundquist, 1951):

Bz = A J0 (α r⊥) , Bφ = A J1 (α r⊥) , Br = 0 . (19.36)

Here J0 and J1 are the Bessel functions, A and α are constants.
A distinguishing feature of the field is that B2 ∼ r−1

⊥ for large r⊥ since
Bessel functions Jn ∼ r

−1/2
⊥ as r⊥ → ∞ (n = 0, 1). The magnetic energy

M =
∫

B2

8π
dV ∼ r−1

⊥ r2
⊥ ∼ r⊥ (19.37)

diverges for large r⊥. Such a divergence of magnetic energy is known to
be typical of force-free fields and will be explained below.
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19.2.2 The energy of a force-free field

Let us retain only magnetic terms in the virial theorem; we have

M −
∮
S

[
B2

8π
( r · dS ) − 1

4π
(B · r ) (B · dS )

]
= 0 . (19.38)

Provided the electric currents occupy a finite region, the value of the magnetic
field is proportional to r−3 (or higher degrees of r−1). Once the surface
of integration S is expanded to infinity, the surface integral tends to zero.
Equality (19.38) becomes impossible.

Therefore any finite magnetic field cannot contain itself. There must be
external forces to balance the outwardly directed pressure due to the total
magnetic energy M.

The same statement may be formulated as follows. The force-free field
cannot be created in the whole space. This is the so-called Shafra-
nov theorem (Shafranov, 1966). While stresses may be eliminated in a given
region V , they cannot be canceled everywhere. In general

a force-free configuration requires the forces needed to balance the
outward pressure of the magnetic field to be reduced in magnitude
by spreading them out over the bounding surface S.

In this way, the virial theorem sets limits on the space volume V that can be
force-free.

The Shafranov theorem is the counterpart of the known Irnshow theorem
(see Sivukhin, 1996, Chapter 1, § 9) concerning the equilibrium configuration
of a system of electric charges. Such a configuration also can be stable only
in the case that some external forces, other than the electric ones, act in the
system.

In fact, Shafranov (1966) has proved a stronger statement than the above
theorem on the force-free field. He has taken into account not only the terms
corresponding to the magnetic force in (19.17) but the gas pressure as well:∫

V

(
3p +

B2

8π

)
dV =

=
∮
S

[(
p +

B2

8π

)
( r · dS ) − 1

4π
(B · r ) (B · dS )

]
. (19.39)

If the plasma occupies some finite volume V , the pressure outside of this
volume being zero, and if electric currents occupy a finite region, then the
surface integral tends to zero, once the surface of integration, S, is expanded
to infinity. On the other hand, the expression under the integral sign on the
left-hand side is always positive. Hence the integral is positive. Thus the
equality (19.39) turns out to be impossible. Therefore
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any finite equilibrium configuration of a plasma with a magnetic
field can exist only in the presence of external forces which, apart
from the gas pressure, serve to fix the electric currents.

In a laboratory, fixed current conductors must be present. In this case the
right-hand side of (19.39) is reduced to the integral over the surface of the
conductors.

Under astrophysical conditions, the role of the external force is frequently
played by the gravitational force or by an external magnetic field having its
sources outside the volume under investigation. However these sources must
be kept and driven by non-magnetic forces.

A typical example of such a situation is the magnetic field of an active
region on the Sun. This is the sum of the proper field created by currents
flowing inside the active region, and the external field with the sources situated
(and fixed) below the photosphere (Litvinenko and Somov, 1991a). In this
case the formula for the magnetic energy of the equilibrium system contains
a term due to the interaction of internal currents (in particular current sheets
in the regions of reconnection) with the external magnetic field.

19.3 Properties of equilibrium configurations

19.3.1 Magnetic surfaces

Let us consider the case of magnetostatic equilibrium

−∇p +
1
4π

curl B × B − ρ ∇φ = 0 . (19.40)

The gravitational force is supposed to be negligible

ρ ∇φ = 0 , (19.41)

On dropping the third term in Equation (19.40) and taking the scalar product
with vector B we obtain

B · ∇p = 0 ,
(19.42)

i.e. magnetic field lines in an equilibrium configuration are situated on the
surface p = const. Therefore

in order to contain a plasma by the magnetic field, the field lines
are forbidden to leave the volume occupied by the plasma.

There is a common viewpoint that, by virtue of the condition

div B = 0 , (19.43)
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Figure 19.2: (a) A line current J1 and a ring current J2. (b) The field lines
of the total field B 1 + B 2 form a toroidal surface S.

field lines may either close or go to infinity. However the other variant is
possible, when a field line fills up an entire surface – magnetic surface.

Let us consider the field of two electric currents – a line current J1 flow-
ing along the vertical z axis (Figure 19.2a) and a plane current ring J2 (see
Tamm, 1989, Chapter 4, § 53). If there were only the current J1, the field
lines of this current B 1 would constitute circumferences centred at the z axis.
The field lines B 2 of the ring current J2 lie in meridional planes. The total
field B = B 1 + B 2 forms a helical line on a toroidal surface S. The course of
this spiral depends on the ratio B1/B2. Once this is a rational number, the
spiral will close. However, in general, it does not close but continuously fills
up the entire toroidal surface S (Figure 19.2b).

By virtue of condition (19.42), the plasma pressure at such a surface (called
the magnetic one) is constant. Such a magnetic field can serve as a trap for
the plasma. This fact constitutes the basis for constructing laboratory devices
for plasma containment in stellarators, suggested by Spitzer.

Take the scalar product of Equation (19.40), without the gravitational
force, with the electric current vector

j =
c

4π
curl B . (19.44)

The result is

j · ∇p = 0
(19.45)

which, in combination with (19.42), signifies that, in an equilibrium configu-
ration, the electric current flows on magnetic surfaces (Figure 19.2b).

In general, magnetic fields do not form magnetic surfaces. Such surfaces
arise in magnetohydrostatic equilibria and for some highly symmetric field
configurations. In the case of the latter, Equations (14.19) for the magnetic
field lines admit an exact integral which is the equation for the magnetic
surface.



19.3. Equilibrium MHD Configurations 355

19.3.2 The specific volume of a magnetic tube

Let us consider two closed magnetic surfaces: p = const and p + dp = const.
Construct a system of noncrossing partitions between them (Figure 19.3). Let
d l 1 be the line element directed normally to the surface p = const:

d l 1 =
∇p

| ∇p | 2 dp . (19.46)

The vectors d l 2 and d l 3 are directed along the two independent contours l2
and l3 which may be drawn on a toroidal surface: for example the curve l2
is directed along a large circle of the toroid while l3 lies along the small one.
The surface element of this partition is

dS 3 = d l 1 × d l 2 . (19.47)
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Figure 19.3: The calculation of the electric current between two magnetic
surfaces.

The total current dJ3 flowing through the partition situated on the con-
tour l2 is

dJ3 =
∮
l 2

j · (d l 1 × d l 2) . (19.48)

According to Equation (19.45), the total current flowing through the system
of noncrossing partitions between the two magnetic surfaces is constant. In
other words, dJ3 is independent of the choice of the integration contour. We
are concerned with the physical consequences of this fact.

In order to find the expression for the current density j in an equilibrium
configuration, take the vector product of Equation (19.40) with the magnetic
field B. The result is

B × ∇p =
1
c

B × ( j × B ) ,

which, on applying the formula for a double vector product to the right-hand
side, becomes

cB × ∇p = jB 2 − B ( j × B ) .
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Thus we have
j = c

B × ∇p

B 2 + f B , (19.49)

where f = f(r) is an arbitrary function. If need be, it can be found from the
condition div j = 0.

Substitute (19.49) in the integral (19.48). The last takes the following
form (see Exercise 19.4):

dJ3 = − c dp

∮
l 2

B · d l 2

B 2 +
∮
l 2

f(r)B · (d l 1 × d l 2) . (19.50)

Provided the contour l2 coincides with a closed field line, the vector

d l 2 =
B
B

dl ,

and, therefore, the second term on the right-hand side of Formula (19.50)
vanishes.

Once a magnetic field line closes on making one circuit of the toroid, the
expression

dJn = −c dp

∮
dl

B
(19.51)

defines the total current flowing between neighbouring magnetic surfaces nor-
mal (the subscript n) to the field line. Since the magnitude of this current is
independent of the choice of contour, for each field line on a magnetic surface
the integral

U =
∮

dl

B
(19.52)

is constant. The condition of constancy of U can be generalized to include the
surface with unclosed field lines (Shafranov, 1966). Thus (Kadomtsev, 1966),

under the condition of magnetostatic equilibrium, the magnetic sur-
face consists of the field lines with the same value of U .

Let us introduce the notion of the specific volume of a magnetic tube
(Rosenbluth and Longmire, 1957) or simply the specific magnetic volume as
the ratio of its geometric volume dV to the magnetic flux d Φ through the
tube. If dSn is the cross-sectional surface of the tube, its geometric volume is

dV =
∮

dSn dl

whereas the magnetic flux
d Φ = B dSn .
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On the basis of the magnetic flux constancy inside the tube of field lines, i.e.
d Φ = const, we deduce that

d V

d Φ
=
∮

dSn

B dSn
dl =

∮
dl

B
= U. (19.53)

The stability of an equilibrium MHD configuration can be judged by the
condition (19.52). This property will be discussed in the next Section.

19.3.3 The flute or convective instability

Much like any gas with a finite temperature, the plasma in a magnetic field
tends to expand. However, given a high conductivity, it cannot move inde-
pendently of the magnetic field. The plasma moves together with the field
lines in such a way that it travels to a region of the field characterized by a
greater specific volume.

In order for an equilibrium configuration to be stable with respect to a
given perturbation type – deformation of a tube of magnetic field lines – the
following condition is necessary (Rosenbluth and Longmire, 1957):

δU = δ

∮
dl

B
< 0 . (19.54)

To put it another way,

the magnetostatic equilibrium is stable once the given type of de-
formation does not facilitate the plasma spreading,

i.e. increasing its specific volume.
As an example, let us consider the plasma in the magnetic field of a linear

current J :
Bϕ =

2J

cr
, (19.55)

here r, z, ϕ are cylindrical coordinates. In such a field there exists an equi-
librium plasma configuration in the form of an infinite hollow cylinder C as
shown in Figure 19.4a.

Let us calculate the specific volume for such a configuration. The geometric
volume of the tube of field lines is

d V = 2πr dr dz ,

whereas the magnetic flux

d Φ = Bϕ dr dz =
2J

cr
dr dz .

Hence the specific volume

U =
d V

d Φ
=

πc

J
r2. (19.56)
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Figure 19.4: (a) An equilibrium plasma configuration. (b) Unstable pertur-
bations of the outer boundary.

It is seen from (19.56) that the specific volume grows with the radius. In
particular, for small perturbations δr of the external surface S of the plasma
cylinder C

δU =
2πc

J
r δr > 0

once δr > 0. It is sufficient to have a small perturbation of the external
boundary of the plasma to obtain ring flutes which will rapidly grow towards
the wall W of the chamber as shown in Figure 19.4b.

19.3.4 Stability of an equilibrium configuration

The problems of plasma equilibrium and stability are of great value
for plasma astrophysics as a whole (Zel’dovich and Novikov, 1971; Chan-
drasekhar, 1981), and especially for solar physics (Parker, 1979; Priest, 1982).

The Sun seems to maintain stability of solar prominences and coro-
nal loops with great ease

(Tandberg-Hanssen, 1995; Acton, 1996) in contrast to the immense difficulty
of containing plasmas in a laboratory.

Therefore, sometimes, we need to explain how an equilibrium can remain
stable for a very long time. This is, for example, the case of reconnecting
current layers (RCLs) in the solar atmosphere and the geomagnetic tail (see
vol. 2, Sections 8.2 and 11.6.3). At other times, we want to understand

why magnetic structures on the Sun suddenly become unstable and
produce dynamic events
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of great beauty such as eruptive prominences and solar flares, coronal tran-
sients, and coronal mass ejections (CMEs).

The methods employed to investigate the stability of an equilibrium MHD
system are natural generalizations of those for studying a particle in one-
dimensional motion. One approach is to seek normal mode solutions as we
did it in Chapter 15.

An alternative approach for tackling stability is to consider the change in
potential energy due to a displacement from equilibrium. The main property
of a stable equilibrium is that it is at the minimum of the potential energy. So
any perturbations around the equilibrium ought to increase the total potential
energy. Hence, in order to determine if an equilibrium is stable, one finds
out if all types of perturbations increase the potential energy of the system
(Bernstein et al., 1958).

Recommended Reading: Morozov and Solov’ev (1966a), Kadomtsev (1960,
1966), Shu (1992).

19.4 The Archimedean force in MHD

19.4.1 A general formulation of the problem

Now we return to the equation of magnetostatic equilibrium (19.40). Let us
rewrite it as follows:

∇p = ρg + f , (19.57)

where
f =

1
c

j × B (19.58)

is the Lorentz force, g = −g ez is the gravity acceleration.
We begin by considering an incompressible conducting fluid situated in a

uniform magnetic field B 0 and electric field E 0 as illustrated by Figure 19.5.
Provided the current j 0 flowing in the fluid is uniform, the Lorentz force
created is uniform as well:

f 0 =
1
c

j 0 × B 0 . (19.59)

By virtue of Equation (19.57), the Lorentz force makes the fluid
heavier or lighter. In both cases the uniform volume force is potential and,
much like the gravity force, will be balanced by an additional pressure gradient
appearing in the fluid. As will be shown later, that allows the creation of a
regulated expulsion force (Figure 19.5) analogous to the Archimedean force
in ordinary hydrodynamics.

A body plunged into the fluid is acted upon by the force

F =
∫
V

( ρ1 g + f 1) dV +
∮
S

p 0 n dS . (19.60)
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Figure 19.5: Formulation of
the problem concerning the
Archimedean force in mag-
netohydrodynamics (see So-
mov, 1994b).

Here ρ1 is the density of the submerged body, which is generally not equal to
that of the fluid ρ0;

f 1 =
1
c

j 1 × B 0 (19.61)

is the volume Lorentz force, j 1 is the current inside the body, n is the inward
normal to the surface S, and p 0 is the pressure on the body from the fluid,
resulted from (19.57):

∇p 0 = ρ0 g + f 0 . (19.62)

19.4.2 A simplified consideration of the effect

If the current j 0 was uniform, the right-hand side of Equation (19.62) would
be a uniform force, and formula (19.60) could be rewritten as

F =
∫
V

( ρ1 g + f 1 ) dV −
∫
V

∇p 0 dV (19.63)

or

F =
∫
V

( ρ1 − ρ0)g dV +
1
c

∫
V

( j 1 − j 0 ) × B 0 dV.

(19.64)

The first term in (19.64) corresponds to the usual Archimedean force in
hydrodynamics. It equals zero once ρ1 = ρ0. When ρ1 > ρ0, the direction
of this force coinsides with the gravitational acceleration g. The second term
describes the magnetic expulsion force. It vanishes once j 1 = j 0 , i.e. σ1 = σ0.
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The second term in formula (19.64) shows that the magnetic expulsion
force, different from the known Parker’s magnetic buoyancy force (see Chap-
ter 8 in Parker, 1979) by its origin, appears provided σ1 �= σ0. This fact
has been used to construct, for example, MHD devices for the separation of
mechanical mixtures. In what follows we shall call the second term in (19.64)
the magnetic σ-dependent force:

Fσ =
1
c

∫
V

(σ1 − σ0) E 0 × B 0 dV. (19.65)

j

F

0
j

0

σ Fσ(a) (b)

Figure 19.6: Opposite orientation of the σ-dependent force in two opposite
cases: (a) σ1 > σ0 and (b) σ1 < σ0. Appearence of a non-uniform distribution
of electric current is shown.

Note, however, that the simplest formula (19.64) is of purely illustrative
value since the electric field and current density are not uniform in
the presence of a body with conductivity σ1 which is not equal to that
of the fluid σ0 (Figure 19.6). In this case, the appearing σ-dependent force
is generally not potential. Hence it cannot be balanced by potential forces.
That is the reason why

the magnetic σ-dependent force generates MHD vortex flows of the
conducting fluid.

The general analysis of the corresponding MHD problem was made by Andres
et al. (1963). The stationary solutions for a ball and a cylinder were obtained
by Syrovatskii and Chesalin (1963) for the specific case when both the mag-
netic and usual Reynolds numbers are small; similar stationary solutions for
a cylinder see also in Marty and Alemany (1983), Gerbeth et al. (1990). The
character of the MHD vortex flows and the forces acting on submerged bodies
will be analyzed in Sections 20.3 and 20.4.

19.5 MHD equilibrium in the solar atmosphere

The magnetic configuration in an active region in the solar atmosphere is, in
general, very complex and modelling of dynamical processes in these regions
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requires a high degree of idealization. First, as regards the most powerful
and fascinating of these processes, the two-ribbon flare, the typical preflare
magnetic field distribution seems to conform to a certain standard picture: a
magnetic arcade including a more or less pronounced plage filament, promi-
nence. Second, instead of dynamics, models deal with a static or steady-state
equilibrium in order to understand the causes of a flare or another transient
activity in the solar atmosphere as a result of some instability or lack of equi-
librium.

So it is assumed that initially the configuration of prominence and overly-
ing arcade is in equilibrium but later the eruption takes place.

Either the MHD equilibrium of solar plasma has become unstable
or the equilibrium has been lost.

One limiting possibility is that the magnetic field around the prominence
evolves into an unstable or non-equilibrium configuration and then drives the
overlying magnetic arcade. However observations imply that this is unlikely.
An alternative is that the overlying arcade evolves until it is no longer in
stable equilibrium and then its eruption stimulates the prominence to erupt
by removing stabilising field lines. Presumably this is the case of a coronal
loop transient and coronal mass ejection (CME).

The idealized models used in theoretical and numerical studies of this prob-
lem usually consider two-dimensional force-free arcade configurations with
foot points anchored in the photosphere which are energized, for example, by
photospheric shear flows in the direction along the arcade (see Biskamp and
Welter, 1989). Some other models take into account the gas pressure gradient
and the gravitational force (Webb, 1986).

However it is important to investigate more general circumstances when
equilibrium and non-equilibrium may occur. The electromagnetic expulsion
force – a MHD analogue of the usual Archimedean force – plays an important
part in the dynamics of coronal plasma with a non-uniform distribution of
temperature and, hence, electric conductivity. More exactly, the condensa-
tion mode of the radiatively-driven thermal instability in an active region may
result in the formation of cold dense loops or filaments surrounded by hot rar-
ified plasma (see Somov, 1992). The effect results from the great difference of
electric conductivities outside and inside the filaments. The force can generate
vortex flows (see Section 20.4) inside and in the vicinity of the filaments as
well as initiate the non-equilibrium responsible for transient activities: flares,
CMEs etc.

The virial theorem confirms this possibility and clarifies the role of pre-
flare reconnecting current sheets in MHD equilibrium and non-equilibrium of
an active region. Correct use of the virial theorem confirms the applicability
of reconnection in current sheets for explaining the energetics of flares (Litvi-
nenko and Somov, 1991a, 2001) and other non-steady phenomena in the solar
atmosphere.
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19.6 Practice: Exercises and Answers

Exercise 19.1. Show that, apart from the trivial case of a potential field,
the magnetic fields for which

curl B = αB (19.66)

will be force-free. In the most general case, α will be spatially dependent.
Answer. Just substitute formula (19.66) in Equation (19.29).

Exercise 19.2. Show that the force-free fields with α = const represent the
state of minimal magnetic energy in a closed system (Woltjer, 1958).

Hint. First, assume perfect conductivity and rewrite the freezing-in equa-
tion (12.71) by using B = curl A as follows

∂ A
∂t

= v × (∇ × A) . (19.67)

Here A is the vector potential. Using Equation (19.67), show that

H =
∫
V

A · (∇ × A) dV = const

(19.68)

for all A which are constant on the boundary S of the region V . The integral H
is called the global magnetic helicity of the closed system under consideration
(for more detail see vol. 2, Section 12.1.1).

Second, examine the stationary values of the magnetic energy

M =
∫
V

B2

8π
dV =

∫
V

1
8π

(curlA)2 dV. (19.69)

Introduce a Lagrangian multiplier α/8π and obtain the following condition
for stationary values

δ

∫
V

[
(curlA)2 − αA · curlA

]
dV = 0 . (19.70)

Performing the variation, Equation (19.66) follows with α = const. Such fields
are called linear force-free fields.

Exercise 19.3. The highly-conductive plasma in the solar corona can support
an electric field E ‖ if E ‖ 
 EDr where EDr is the Dreicer field (8.70). In
the corona EDr ≈ 7×10−6 V cm−1 (Exercise 8.4). Evaluate the characteristic
values of the magnetic field B and the velocity v of plasma motions in the
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corona which allow us to consider an equilibrium of moving plasma in the
corona as a force-free one.

Answer. Let us evaluate an electric field as the electric field related to a
motion of magnetic field lines in the corona

E ‖ ≈ E ≈ 1
c

vB ≈ 10−8 v (cm s−1) B (G) , V cm−1 . (19.71)

From the condition that this field must be much smaller than the Dreicer field
we find that

v (cm s−1) B (G) 
 108 EDr ≈ 7 × 102 . (19.72)

So, with the magnetic field in the corona B ∼ 100 G, the plasma motion
velocity must be very small: v 
 10 cm s−1. Hence, if the electric fields that
are parallel to the magnetic field lines have the same order of magnitude as
the perpendicular electric fields, the solar corona hardly can remain force-free
with ordinary collisional conductivity because of the motion of magnetic field
lines. The electric runaway effects (Section 8.4.2) can become important even
at very slow motions of the field lines in the corona. The minimum current
corona (see vol. 2, Sections 3.3.1 and 3.4.3) seems to be a more realistic
approximation everywhere except the strongly-twisted magnetic-flux tubes.

Exercise 19.4. Derive formula (19.50) in Section 19.3.2 for the total electric
current flowing through the system of noncrossing partitions between two
magnetic surfaces.

Answer. Substitute the electric current density (19.49) in the inte-
gral (19.48):

j · (d l 1 × d l 2) =
c

B 2 (B × ∇p ) · (d l 1 × d l 2) + f B · (d l 1 × d l 2) . (19.73)

Let us rearrange the first item, using the well-known Lagrange identity in
vector analysis:

(a × b) · (c × d) = (a · c) (b · d) − (b · c) (a · d) .

We get

(B × ∇p ) · (d l 1 × d l 2) = (B · d l 1) (∇p · d l 2) − (B · d l 2) (∇p · d l 1) .

By virtue of (19.42) and (19.46),

(B · d l 1) = (B · ∇p )
dp

| ∇p | 2 = 0 , (∇p · d l 1) = dp .

Hence
(B × ∇p) · (d l 1 × d l 2) = − (B · d l 2) dp . (19.74)
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Substitute (19.74) in (19.73):

j · (d l 1 × d l 2) = − c
dp

B 2 (B · d l 2) + f(r)B · (d l 1 × d l 2) .

Thus the expression (19.48) for current dJ3 takes the form

dJ3 = − c dp

∮
l 2

B · d l 2

B 2 +
∮
l 2

f(r)B · (d l 1 × d l 2) , (19.75)

q.e.d.



Chapter 20

Stationary Flows in a
Magnetic Field

There exist two different sorts of stationary MHD flows depending
on whether or not a plasma can be considered as ideal or non-ideal
medium. Both cases have interesting applications in modern astro-
physics.

20.1 Ideal plasma flows

Stationary motions of an ideal conducting medium in a magnetic field are
subject to the following set of MHD equations (cf. (12.67)):

(v · ∇)v = −1
ρ

∇
(

p +
B2

8π

)
+

1
4πρ

(B · ∇)B , (20.1)

curl (v × B) = 0 , (20.2)

div ρv = 0 , (20.3)

div B = 0 , (20.4)

(v · ∇) s = 0 , (20.5)

p = p (ρ, s) . (20.6)

The induction Equation (20.2) is satisfied identically, provided the motion
of the medium occurs along the magnetic field lines, i.e.

v ‖B .

(20.7)

367
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20.1.1 Incompressible medium

In the case of an incompressible fluid (ρ = const) Equations (20.1)–(20.6)
have the general solution (Syrovatskii, 1956, 1957):

v = ± B√
4πρ

, (20.8)

∇
(

p +
B2

8π

)
= 0 . (20.9)

Here B is an arbitrary magnetic field: the form of the field lines is unimpor-
tant, once condition (20.4) holds. A conducting fluid flows parallel or anti-
parallel to the magnetic field. We shall learn more about such equilibrium
flows later on.

It follows from (20.8) that

ρv2

2
=

B2

8π
, (20.10)

while Equation (20.9) gives

p +
B2

8π
= const . (20.11)

For the considered class of plasma motions along the field lines, the equiparti-
tion of energy between that of the magnetic field and the kinetic energy of the
medium takes place, whereas the sum of the gas pressure and the magnetic
pressure is everywhere constant.

The existence of the indicated solution means that

an arbitrary magnetic field and an ideal incompressible medium
in motion are in equilibrium, provided the motion of the medium
occurs with the Alfvén speed along magnetic field lines.

Stationary flows of this type can be continuous in the whole space as well as
discontinuous at some surfaces. For example, the solution (20.10) and (20.11)
can be realized as a stream or non-relativistic jet of an arbitrary form, flowing
in an immovable medium without a magnetic field.

Note that the tangential discontinuity at the boundary of such a jet is
stable, since, by virtue of (20.10), the condition (16.38) by Syrovatskii is valid:

B2

8π
>

1
4

ρv2

2
. (20.12)

Such stable stationary jets of an incompressible fluid can close in rings and
loops of an arbitrary type.
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20.1.2 Compressible medium

In a compressible plasma (ρ �= const) the solution (20.8) is still possible, once
the density of the plasma does not change along the field lines:

B · ∇ρ = 0 . (20.13)

Obviously, this condition is necessary, but not sufficient. On substituting the
solution (20.8) in Equation (20.3), we get

div ρv = ± 1√
4π

[
1

√
ρ

div B − 1
2

ρ−3/2 B · ∇ρ

]
= 0

by virtue of (20.4) and (20.13). Thus the condition (20.13) is enough for
Equation (20.3) to be satisfied identically. However, to ensure the fulfilment
of condition (20.9), we must require constancy of the gas and the magnetic
pressure or the absolute value of the magnetic field intensity. The latter means
that each magnetic flux tube must have a constant cross-section. Hence, by
virtue of (20.8), the flow velocity along the tube will be constant as well.

ω

v

v

(a) (b)

v

Figure 20.1: Rotational (a) and helical (b) stationary flows of a compressible
plasma.

Therefore stationary flows corresponding to the solutions (20.8) and (20.9),
which are flows with a constant velocity in magnetic tubes of a constant cross-
section, are possible in a compressible medium. An example of such a flow
is the plasma rotation in a ring tube (Figure 20.1a). We can envisage spiral
motions of the plasma, belonging to the same type of stationary solutions in
MHD (Figure 20.1b). This may be, for example, the case of an astrophysical
jet when plasma presumably moves along a spiral trajectory.

20.1.3 Astrophysical collimated streams (jets)

Powerful extragalactic radio sources comprise two extended regions contain-
ing magnetic field and synchrotron-emitting relativistic electrons, each linked
by a jet to a central compact radio source located in the nucleus of the asso-
ciated active galaxy (Begelman et al., 1984). These jets are well collimated
streams of plasma that emerge from the nucleus in opposite directions,
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along which flow mass, momentum, energy, and magnetic flux. The oscilla-
tions of jets about their mean directions are observed. The origin of the jet
is crucial to understanding all active nuclei (Section 13.3).

The microquasars recently discovered in our Galaxy offer a unique oppor-
tunity for a deep insight into the physical processes in relativistic jets observed
in different source populations (e.g., Mirabel and Rodriguez, 1998; Atoyan and
Aharonian, 1999). Microquasars are stellar-mass black holes in our Galaxy
that mimic, on a small scale, many of the phenomena seen in quasars. Their
discovery opens the way to study the connection between the accretion of
plasma onto the black holes and the origin of the relativistic jets observed in
remote quasars (Section 13.3).

In spite of the vast differences in luminosity and the sizes of microquasars
in our Galaxy and those in active galaxies both phenomena are believed to
be powered by gravitational energy released during the accretion of plasmas
onto black holes. Since the accreting plasmas have non-zero angular momen-
tum, they form accreation disks orbiting around black holes. If the accreting
plasmas have non-zero poloidal magnetic field, the magnetic flux accumulates
in the inner region of the disk to form a global poloidal field penetrating the
disk. Such poloidal fields could also be generated by dynamo action inside
the accreation disk.

In either case, poloidal fields are twisted by the rotating disk toward the
azimuthal direction. Moreover this process extracts angular momentum from
the disk, enabling efficient accreation of disk plasmas onto black holes. In
addition, magnetic twist generated during this process accelerates plasmas in
the surface layer of the disk toward the polar direction by the Lorentz force to
form bi-directional relativistic jets which are also collimated by the magnetic
force (Lovelace, 1976).

20.1.4 MHD waves of arbitrary amplitude

Let us return to the case of an incompressible medium. Consider a steady
flow of the type (20.8) and (20.9) in the magnetic field shown in Figure 20.2.

Figure 20.2: A MHD wave
of arbitrary amplitude.
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v
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0

0
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In the region 1, transformed to the frame of reference, the wave front of an
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arbitrary amplitude h = h (x) runs against the immovable plasma in the
uniform magnetic field B 0 , the front velocity being the Alfvén one:

v0 =
B 0√
4πρ

. (20.14)

On the strength of condition (20.11), in such a wave

p +
(B 0 + h)2

8π
= p0 +

B 2
0

8π
= const , (20.15)

i.e. the gas pressure is balanced everywhere by the magnetic pressure.

The non-compensated magnetic tension, (B ·∇)B/4π, provides the
wave motion of arbitrary amplitude

(cf. Section 15.2.2). In this sense, the MHD waves are analogous to elastic
waves in a string. MHD waves of an arbitrary amplitude were found for the
first time by Alfvén (1950) as non-stationary solutions of the MHD equations
for an incompressible medium (see also Alfvén, 1981).

The Alfvén or rotational discontinuity considered in Section 16.2 is a par-
ticular case of the solutions (20.8) and (20.9), corresponding to a discontinuous
velocity profile. Behaviour of Alfvén waves in the isotropic and anisotropic
astrophysical plasmas can be essentially different (see Section 7.3).

20.1.5 Differential rotation and isorotation

Now we consider another exact solution to the stationary equations of ideal
MHD. Let us suppose that an equilibrium configuration (for example, a
star) rigidly rotates about the symmetry axis of the cylindrically symmet-
ric (∂/∂ϕ = 0) magnetic field. The angular velocity ω is a constant vector.
Then

v = r × ω = { 0, 0, vϕ} , (20.16)

where
vϕ = ω r .

The induction Equation (20.2) is satisfied identically in this case.
Now we relax the assumption that ω is a constant. Consider the case of

the so-called differential rotation. Let the vector ω be everywhere parallel to
the z axis, i.e. the symmetry axis of the field B, but the quantity |ω | = ω be
dependent on the coordinates r and z, where r is the cylindrical radius:

ω = ω (r, z) .

Hence
vϕ = ω (r, z) r . (20.17)
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Substitution of (20.17) in the induction Equation (20.2), with allowance being
made for ∂/∂ϕ = 0 and (20.4), gives

curl (v × B) = eϕ r (B · ∇ω) = 0 .

Therefore

B · ∇ω = 0 ,
(20.18)

i.e. the magnetic field lines are situated at ω = const surfaces. When treated
in astrophysics, this case is called isorotation.

As a consequence of cylindrical symmetry, the ω = const surfaces are those
of rotation, hence isorotation does not change the magnetic field.

On the other hand, if the condition for isorotation (20.18) is not valid,
differential rotation twists the field lines, for example as shown in Fig-
ure 20.3, creating a toroidal field Bϕ. The magnetic field is amplified.

Rigid rotation and isorotation are widely discussed, when applied to stellar
physics, because

rotation is an inherent property of the majority of the stars having
strong magnetic fields

(Schrijver and Zwaan, 1999). What is the actual motion of the plasma in the
interior of stars?

ω ω

(a) (b)

B

Figure 20.3: Differential rotation creates the toroidal (Bϕ) component of a
magnetic field inside a star.

Suppose there is no tangential stress at the surface of a star. The rigid
rotation must be gradually established owing to viscosity in the star. However
the observed motion of the Sun, as a well studied example, is by no means
rigid: the equator rotates faster than the poles. This effect cannot
be explained by surface rotation. Deep layers of the Sun and fast-rotating
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solar-type stars participate in complex motions: differential rotation, convec-
tion, and meridional circulation (see Rüdiger and von Rekowski, 1998). Such
motions ensure mixing of deep solar layers down to the solar core. The cir-
cumstantial evidence for this comes from observations of the solar neutrino
flux as well as helioseismological data. The latter show, in particular, that the
solar core rotates faster than the surface. The results of the SOHO he-
lioseismology enable us to know the structure of the solar internal differential
rotation (Schou et al., 1998).
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ω
r

ω
r

ω
r
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Pole

Equator

CZT

RI

Figure 20.4: Schematic summary
of a radial gradient in rotation
that have been inferred from he-
lioseismic measurements.

Roughly speaking, in the convective zone (see CZ in Figure 20.4) the
angular velocity ω is independent of radius r. The radiative interior (RI)
appears to rotate almost uniformly, and is separated from the differentially
rotating convective zone by a thin shear layer called the tachocline (shown by
T in Figure 20.4). The last is, in fact, too thin to be convincingly resolved by
the SOHO data.

Pole

Equator

CZ
T

RI

Figure 20.5: Schematic of the flow of
angular momentum in the convective
zone, tachocline, and photosphere, that
may be responsible for the rotation gra-
dients summarized in previous Figure.

Numerical simulations are still rather far from producing a radius-indepen-
dent differential rotation in the convective zone. A qualitative perspective,
which probably will define a context for progress in the future, invoke the
concepts of angular momentum balance and transport, and angular momen-
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tum cycles in the Sun. With this perspective, it is possible to consider all
the angular velocity domains in the outer part of the Sun in a unified way
(Gilman, 2000). Figure 20.5 illustrates how angular momentum could be con-
tinually cycling in the convective zone and adjacent layers.

If we accept that some process dominates in the cycle by transporting an-
gular momentum from high latitudes to low in the bulk of the convective zone,
then everything else follows. All that is required is that some of this momen-
tum ‘leak’ into the tachocline below and the granulation and supergranulation
layers above. Then, to complete the cycle, there is transport of angular mo-
mentum back toward the pole in both layers. There the momentum reenters
the bulk of the convective zone to be recycled again.

Recommended Reading: Elsasser (1956), Parker (1979), Moreau (1990).

20.2 Flows at small magnetic Reynolds num-
bers

While investigating MHD flows in a laboratory, the finite conductivity being
significant, one has to account for the magnetic field dissipation. Furthermore
one has to take account of the fact that the freezing-in condition breaks down
owing to the smallness of the magnetic Reynolds number (12.62):

Rem =
vL

νm

 1 . (20.19)

The analogous situation takes place, for example, in deep layers of the so-
lar atmosphere near the temperature minimum. The conductivity is small
here, since the number of neutral atoms is relatively large (e.g., Hénoux and
Somov, 1987, 1991).

Stationary flows are possible in the case of finite conductivity. However
they differ greatly from the ideal medium flows considered in the previous
Section. The difference manifests itself in the fact that, given dissipative
processes, steady flows are realized only under action of some external force,
a pressure gradient, for instance. A second difference is that the plasma of
finite conductivity can flow across the field lines.

20.2.1 Stationary flows inside a duct

We shall examine a flow which has been well studied for reasons of practical
importance. Let us consider the steady flow of a viscous conducting fluid
along a duct with a transversal magnetic field. Let the x axis of the Cartesian
system (Figure 20.6) be chosen in the flow direction, the external uniform
field B0 coinciding with the z axis:

v = { v(z), 0, 0 } , B0 = { 0, 0, B0 } . (20.20)
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Figure 20.6: Formulation of the problem on the finite conductivity plasma
flow in a duct.

Let the width of the duct be 2l.
We start from the set of Equations (12.42)–(12.47) for a steady flow of an

incompressible medium:
ρ = const . (20.21)

Consider two equations:

curl (v × B ) + νm ∆B = 0 , (20.22)

(v · ∇ )v = − ∇p

ρ
− B × curl B

4πρ
+ ν ∆v . (20.23)

The pressure gradient ∂p/∂x along the x axis, which is independent of x, is
assumed to be the cause of the motion. Supposing the flow to be relatively
slow, neglect the term on the left-hand side of Equation (20.23).

Let b = b (z) be the magnetic field component along the velocity. In the
coordinate form, Equations (20.22) and (20.23) are reduced to the following
three equations:

B0
∂v

∂z
+ νm

∂2b

∂z2 = 0 , (20.24)

ρ ν
∂2v

∂z2 +
B0

4π

∂b

∂z
− ∂p

∂x
= 0 , (20.25)

∂

∂z

(
p +

b2

8π

)
= 0 . (20.26)

Differentiating Equation (20.26) with respect to x gives

∂2p

∂x ∂z
= 0 . (20.27)
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Differentiating (20.25) with respect to z, with care taken of (20.27), gives

ρ ν
∂3v

∂z3 +
B0

4π

∂2b

∂z2 = 0 . (20.28)

Eliminate ∂2b/∂z2 between Equations (20.24) and (20.28). The result is

d3v

dz3 − B2
0

4πρ ννm

dv

dz
= 0 . (20.29)

This equation is completed by the boundary conditions on the duct walls

v (l) = v (−l) = 0 . (20.30)

The corresponding solution is of the form

v(z) = v0
cosh Ha − cosh (Ha z/l )

cosh Ha − 1
. (20.31)

Here v0 = v (0) is the flow velocity at the centre of the duct, the dimensionless
parameter characterizing the flow is

Ha =
l B0√

4πρ ννm
.

(20.32)

It is called the Hartmann number , the flow (20.31) being the Hartmann flow.
As Ha → 0 , formula (20.31) converts to the usual parabolic velocity profile
which is typical of viscous flows in a duct without a magnetic field:

v(z) = v0

(
1 − z2

l2

)
. (20.33)

The influence of a transversal magnetic field shows itself as the appearance
of an additional drag to the plasma flow and the change of the velocity
profile which becomes flatter in the central part of the duct (Figure 20.7).

In the limit Ha → ∞, the Hartmann formula (20.31) gives

v(z) = v0

{
1 − exp

[
−Ha

(
1 − z

l

)]}
. (20.34)

Such a velocity profile is flat, v(z) ≈ v0, the exception being a thin layer near
the walls, the boundary layer of the thickness l/Ha.

20.2.2 The MHD generator or pump

What factors determine the value of velocity v0 at the center of the duct? To
find them let us calculate the electric current density in the duct

jy =
c

4π

∂b

∂z
=

c

4π

(
4π

B0

∂p

∂x
− ρ ν

4π

B0

∂2v

∂z2

)
=
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Figure 20.7: Usual parabolic
(Ha = 0) and Hartmann pro-
files of the viscous flow veloc-
ity in a duct with a transverse
magnetic field.

=
c

B0

(
∂p

∂x
− ρ ν

∂2v

∂z2

)
. (20.35)

Here the use is made of formula (20.25) to find the derivative ∂b/∂z. Let us
substitute in (20.35) an expression for velocity of the type (20.31), i.e.

v(z) = A

(
cosh Ha − cosh

Ha z

l

)
. (20.36)

We get the following equation

jyB0

c
=

∂p

∂x
− ρ νA

(
Ha
l

)2

cosh
Ha z

l
. (20.37)

Let us integrate Equation (20.37) over z from −l to +l. The result is

IB0

c
= 2l

∂p

∂x
− A 2ρ ν

(
Ha
l

)
sinh Ha , (20.38)

where

I =

l∫
−l

jy dz (20.39)

is the total current per unit length of the duct. We shall assume that there
is an electrical circuit for this current to flow outside the duct. The opposite
case is considered in Landau and Lifshitz, Fluid Mechanics, 1959a, Chapter 8,
§ 67.

Finally it follows from Equation (20.38) that the sought-after coefficient
in formula (20.36) is

A =
∂p/∂x − (1/2lc) IB0

(ρ ν/l 2) Ha sinh Ha
.

(20.40)
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Thus

the velocity of the plasma flow in the duct is proportional to the gas
pressure gradient and the magnetic Lorentz force.

This is why two different operational regimes are possible for the duct.
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Figure 20.8: Utilization
of the MHD duct as
the generator of the cur-
rent I; R is an external
load.

If the flow in the duct is realized under the action of an external pressure
gradient, the duct operates as the MHD generator shown in Figure 20.8. The
same principle explains the action of flowmeters (for more detail see Shercliff,
1965, § 6.5; Sutton and Sherman, 1965, § 10.2) which are important, for
example, in controling the flow of the metallic heat conductor in reactors.

The second operating mode of the duct occurs when an external elec-
tromagnetic force (instead of a passive load R in Figure 20.8) creates the
electric current I between the walls of the duct. Interaction of the current
with the external magnetic field B0 gives rise to the Lorentz force that makes
the plasma move along the duct, i.e. in the direction of the x axis. Hence
the duct operates as the MHD pump, and this is also used in some technical
applications.

20.2.3 Weakly-ionized plasma in astrophysics

Under astrophysical conditions, both operating modes of the MHD duct are
realized, once the plasma resistivity is high due, for instance, to its low temper-
ature. In the solar atmosphere, in the minimum temperature region, neutral
atoms move in the directions of convective flows and collide with ions, thus
setting them in motion. At the same time, electrons remain ‘frozen’ in the
magnetic field. This effect (termed the photospheric dynamo) can generate
electric currents and amplify the magnetic field in the photosphere and the
low chromosphere (see vol. 2, Section 12.4).
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A violent outflow of high-velocity weakly-ionized plasma is one of the first
manifestations of the formation of a new stars (Bachiller, 1996; Bontemps
et al., 1996). Such outflows emerge bipolarly from the young object and
involve amounts of energy similar to those involved in accretion processes. The
youngest proto-stellar low-mass objects known to date (the class 0 protostars)
present a particularly efficient outflow activity, indicating that outflow and
infall motions happen simultaneously and are closely linked since the very
first stages of the star formation processes.

The idea of a new star forming from relatively simple hydrodynamic infall
of weakly-ionized plasma is giving place to a picture in which magnetic fields
play a crucial role and stars are born through the formation of complex en-
gines of accreation/ejection. It seems inevitable that future theories of star
formation will have to take into account, together with the structure of the
protostar and its surrounding accretion disk, the processes related to multi-
fluid hydrodynamics of weakly-ionized plasma. These are the effects
similar to the photospheric dynamo and magnetic reconnection in weakly-
ionized plasma (vol. 2, Section 12.3).

Recommended Reading: Sutton and Sherman (1965), Ramos and Wino-
wich (1986).

20.3 The σ-dependent force and vortex flows

20.3.1 Simplifications and problem formulation

As was shown in Section 19.4, a body plunged into a conducting fluid with
magnetic and electric fields is acted upon by an expulsion force or, more
exactly, by the magnetic σ-dependent force. As this takes place, the electric
field E and current density j are non-uniform, and the volume Lorentz force
inside the fluid is non-potential. The force generates vortex flows of the
fluid in the vicinity of the body.

(a) Let us consider the stationary problem for an incompressible fluid
having uniform constant viscosity ν and magnetic diffusivity νm (Syrovatskii
and Chesalin, 1963; Marty and Alemany, 1983; Gerbeth et al., 1990). Let, at
first, both the usual and magnetic Reynolds numbers be small:

Re =
vL

ν

 1 , (20.41)

Rem =
vL

νm

 1 . (20.42)

The freezing-in condition (12.63) can be rewritten in the form

∆B + Rem curl (v × B ) = 0 , (20.43)
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where, in view of (20.42), Rem is a small parameter. In a zeroth approximation
in this parameter, the magnetic field is potential:

∆B = 0 .

Moreover the magnetic field will be assumed to be uniform, in accordance with
the formulation of the problem discussed in Section 19.4. Strictly speaking,
the assumption of a uniform magnetic field implies the inequality

B � 4π

c
Lj . (20.44)

Its applicability will be discussed later on, in connection with the simplified
form of Ohm’s law to be used while solving the problem.

(b) Assuming the stationary flows occurring in the fluid to be slow, the
inertial force (proportional to v2) will be ignored in the equation of motion
(20.23) as compared to the other forces: pressure gradient, Lorentz force,
viscous force. The term describing the gravity force will be dropped, since
its effect has already been studied in Section 19.4. Finally, on multiplying the
equation

0 = − ∇p

ρ
− B × curl B

4πρ
+ ν ∆v

by the fluid density ρ = ρ0, it is rewritten in the form

η ∆v = ∇p − f . (20.45)

Here η = ρ0 ν is the dynamic viscosity coefficient, and

f =
1
c

j × B 0 (20.46)

is the Lorentz force in the same approximation.
Recall that, in view of the assumed incompressibility of the fluid, the

velocity field obeys the equation

div v = 0 . (20.47)

(c) The electric field E is assumed to be uniform at infinity

E → E 0 , r → ∞ . (20.48)

Given the conductivities of the fluid σ0 and of the submerged body σ1, we
can find the current j in the whole space using the following conditions:

div j = 0 , (20.49)

j = σE , (20.50)

curl E = 0 . (20.51)
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The current (σ/c)v×B has been ignored in Ohm’s law (20.50). This may
be done, once the velocity of engendered vortex flows is much less than the
drift velocity, i.e. once the inequality

v 
 vd = c
E

B
(20.52)

holds. Note that substituting (20.44) in (20.52) results in the inequality

vL

(c2/4πσ)

 1 , (20.53)

which coincides with the initial assumption (20.42).

20.3.2 The solution for a spherical ball

Let us solve the problem for a ball of radius a. We choose the Cartesian
frame of reference, in which the direction of the x axis is parallel to E 0, and
the origin of coordinates coincides with the center of the ball as shown in
Figure 20.9.

By virtue of Ohm’s law (20.50), the electric current at infinity

j 0 = σ0 E 0 (20.54)

is also parallel to the x axis.
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Figure 20.9: An uniform conducting ball of radius a, submerged in a conduct-
ing fluid with electric and magnetic fields.

It follows from Equation (20.51) that the current can be represented in
the form

j = ∇ψ . (20.55)

Here a scalar function ψ, in view of Equation (20.49), satisfies the Laplace
equation

∆ψ = 0 . (20.56)

Let us try to find the solution to the problem in the form of uniform and
dipole components:

ψ = j 0 · r + c0 j 0 · ∇ 1
r

, r ≥ a , (20.57)
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and
ψ = j 1 · r , r < a . (20.58)

Here c0 is an unknown constant, j 1 = { j1, 0, 0 } is an unknown current
density inside the ball. Both unknowns are to be found from the matching
conditions at the surface of the ball:

{ jr } = 0 and {Eτ } = 0 .

These conditions can be rewritten as follows

j · r
r

=
j 1 · r

r
at r = a , (20.59)

and
j τ

σ0
=

j τ1

σ1
at r = a . (20.60)

On substituting (20.57) and (20.58) in (20.59) and (20.60), the constants c0
and j1 are found. The result is

ψ =
[

1 + β
(a

r

)3 ]
j 0 · r for r ≥ a , (20.61)

and
ψ = (1 − 2β) j 0 · r for r < a . (20.62)

Here the constant

β =
σ0 − σ1

2σ0 + σ1
. (20.63)

Specifically, inside the ball

j 1 = (1 − 2β) j 0 , (20.64)

and j 1 = j 0 , once σ1 = σ0 .

20.3.3 Forces and flows near a spherical ball

Knowing the current in the whole space, we can find the Lorentz force (20.46)

f =
1
c

∇ψ × B 0 = curl
ψ B 0

c
. (20.65)

In the case at hand,

the volume Lorentz force has a rotational character and hence gen-
erates vortex flows in the conducting fluid.
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Let us operate with curl curl on Equation (20.45). Using the known vector
identity

curl curl a = ∇ (∇a) − ∆a

and taking account of relations (20.49)–(20.51), a biharmonic equation for the
velocity field is obtained

∆∆v = 0 . (20.66)

Operating with divergence on (20.45) and taking account of (20.49)–
(20.51), we get

∆ p = 0 . (20.67)

Equations (20.66) and (20.67) are to be solved together with Equa-
tions (20.45) and (20.47). For bodies with spherical or cylindrical symmetry,
it is convenient to make use of the identity

r · ∆q = ∆ (q · r) , (20.68)

where q is any vector satisfying the condition divq = 0. Then from Equa-
tion (20.66) subject to the condition (20.47) we find

∆∆ (vr r) = 0 . (20.69)

The boundary conditions are taken to be

v
∣∣

S
= 0 , v

∣∣
∞ = 0 . (20.70)

Here S is the surface of the submerged body which is assumed to be a ball of
radius a (cf. Figure 20.7). At its surface r = a = const, Equation (20.47) and
the first of conditions (20.70) give

∂vr

∂r

∣∣∣∣
S

= 0 . (20.71)

The solution of Equation (20.69), satisfying the boundary condition (20.71)
and the second of conditions (20.70), is clearly seen to be

vr ≡ 0 . (20.72)

Thus

in the case of a spherical ball, the flow lines of a conducting incom-
pressible fluid are situated at r = const surfaces.

Next an equation for the pressure is found using Equation (20.45) and
taking into account that, by virtue of (20.68),

r · ∆v = ∆ (vrr) = 0 .
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The resulting equation is
∂p

∂r
= fr . (20.73)

The function fr occuring on the right-hand side is the radial component of
the above mentioned Lorentz force (20.65).

Once the plasma pressure has been found by integrating Equations (20.73)
and (20.67), the velocity is determined from Equation (20.45) with the known
right-hand side.

Choose the Cartesian frame of reference in which

B 0 = { B 0x, 0, B 0z } ,

B 0x = B ‖ and B 0z = B⊥ being the magnetic field components parallel
and perpendicular to j 0, respectively (see Figure 20.9). The current in the
conducting fluid (cf. formula (20.61)) is

j = ∇ψ , ψ = j0 x + j0
β a3x

r3 , (20.74)

the current inside the ball being defined by formula (20.64). The pressure in
the fluid

p =
1
c

j0B⊥ y

(
βa3

2r3 − 1
)

+ const . (20.75)

It is convenient to rewrite the velocity distribution in spherical coordinates

v = { vr, vθ, vϕ } (20.76)

(cf. Syrovatskii and Chesalin, 1963):

vr = 0 ,

vθ =
βj0a

2

4cη

a

r

(
1 − a2

r2

)(
−B⊥ cos θ sin ϕ + B ‖ sin θ sin 2ϕ

)
,

vϕ =
βj0a

2

4cη

a

r

(
1 − a2

r2

)(
B⊥ cos 2θ cos ϕ + B ‖ sin 2θ cos2 ϕ

)
.

This velocity field pattern is shown in Figure 20.10.
The force acting on the body is defined to be (cf. formula (19.60))

F =
1
c

∫
V

j × B 0 dV +
∮
S

pn dS −
∮
S

σ ′
n dS , (20.77)

where n is the inward normal to the sphere;

σ ′
n = (σ ′

αβ nβ)n , (20.78)

σ ′
αβ being the viscous stress tensor, see definition (12.53).

On substituting the velocity distribution (20.76) in the viscous force for-
mula (20.78) and integrating (20.77) over the surface S of the ball,
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Figure 20.10: Vortex flows near the
conducting ball submerged in a con-
ducting fluid with electric and mag-
netic fields.
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the sum of the viscous forces is concluded to be zero. The moment
of the viscous forces acting on the ball is also zero.

The remaining force determined by (20.77) is directed along the y axis and is
equal to

F =
4πa3

3
j0B⊥

c

{
− (1 − 2β) +

(
1 − β

2

)}
. (20.79)

The constant β is defined by formula (20.63):

β =
σ0 − σ1

2σ0 + σ1
.

The first term in the curly brackets corresponds to the force j 1 × B 0 /c
which immediately acts on the current j 1 inside the ball. Note that

1 − 2β =
3σ1

2σ0 + σ1
> 0 ,

in agreement with the direction of the vector product j 1 × B 0 or j 0 × B 0
(Figure 20.9). Moreover, provided σ1 = 0, the term (1 − 2β) = 0 as it should
be the case for a non-conducting ball, since there is no current inside it.

The second term in the curly brackets of formula (20.79) expresses the
sum of the forces of the pressure on the surface of the ball. The coefficient

1 − β

2
=

3 (σ0 + σ1)
2 (2σ0 + σ1)

> 0 ,

signifying that

the actual σ-dependent force is always somewhat less than the force
owing to the interaction of the current j 1 and the magnetic field B 0 .
Moreover the total force can be opposite in sign.
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In the particular case σ1 = 0, when the current j1 = 0

1 − β

2
=

3
4

.

Hence F > 0 . The non-conducting ball is expelled in the direction opposite
to that of the vector product j 0 × B 0 (Figure 20.11).

x

E

j

0

0
σ

σ
0

1

z
B ||

B⊥
f

F

0

= 0

Figure 20.11: The expulsion force F acting on the non-conducting ball sub-
merged in a conducting fluid with electric and magnetic fields.

The above properties of the magnetic σ-dependent force are used in tech-
nical MHD. They constitute the principle of action for magnetic separators
which are intended for dividing mechanical mixtures having different conduc-
tivities.

Having the physical sense of the two terms determining the magnetic σ-
dependent force (20.79), let us combine them in the following descriptive
formula:

F = − f 0 V × 3
2

β .

(20.80)

Here V = 4πa3/3 is the volume of the ball, f 0 = j 0 × B 0 /c is the Lorentz
force in the conducting fluid with uniform magnetic B 0 and electric E 0 fields
(cf. (19.59)), the coefficient β being determined by formula (20.63).

20.4 Large magnetic Reynolds numbers

In the previous section we have considered the solution to the MHD problem
concerning the magnetic σ-dependent force in the limit of small (usual and
magnetic) Reynolds numbers. Leenov and Kolin (1954) were the first to obtain
similar solutions in connection with the problem of electromagnetophoresis.

As a rule the opposite limiting case is applicable for astrophysical use. In
this case, the problem of the magnetic σ-dependent force is difficult and can
hardly be solved completely, especially given

Re 
 1 , Rem � 1 . (20.81)
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A situation of this kind occurs, for example, in solar prominences (Sec-
tion 20.4.2). In what follows we will show (Litvinenko and Somov, 1994;
Somov, 1994b) that an expression for the magnetic σ-dependent force can be
found for large magnetic Reynolds numbers, without rigorous calculations of
the characteristics of the plasma flow near a body.

20.4.1 The general formula for the σ-dependent force

The equations of stationary MHD for flows of an incompressible fluid with
density ρ0 and dynamic viscosity η = ρ0ν are of the form:

ρ (v · ∇)v = −∇ p +
1
c

j × B + η ∆v ,

curl (v × B) + νm ∆B = 0 , (20.82)

curl B =
4π

c
j , div v = 0 , div B = 0 .

Let us find the σ-dependent force density f on the basis of similarity con-
siderations. The given set of equations implies that five quantities are the
determining parameters of the problem: ν, νm, a, ρ0, and f 0 . By way of
example, velocity v0 depends on these parameters. Hence v0 rather than
ρ0 may be treated as a determining parameter. The standard procedure of
dimensional analysis, described by Bridgman (1931), gives us the formula

f = − f 0 Φ (Re, Rem) . (20.83)

In the limit Rem = 0 it reproduces (in a slightly different notation) the
result presented in the theoretical part of the paper by Andres et al. (1963).
Experimental data, which are stated in the same paper for Re < 102, al-
low one to conclude that, with an accuracy which is completely sufficient for
astrophysical applications,

Φ (Re, Rem) ≈ Φ1(Rem) , (20.84)

where Φ1(0) ≈ 1.
Generally, the behaviour of the magnetic field lines near the body for

Rem �= 0 can become nonregular and intricate, as a consequence of the electric
current redistribution and vortex flow generation. For example, if Rem <
1, then the value of the nonregular field component δB ≈ Rem B0. The
effective magnitude of the field and the magnetic σ-dependent force decrease
as compared to the case Rem = 0.

The form of the decreasing function Φ1 for Rem � 1 can be determined
as follows. Far from the body, at infinity, the electromagnetic energy flux is
equal to

G 0 =
c

4π
E 0 × B 0 . (20.85)
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In close proximity to the body, the magnitude of the Poynting vector must
diminish once the disordered behaviour of lines of force is assumed. The
difference (G0 − G) is equal to the power of engendered vortex flows, hence
generally we get

fa3 v0 ≤ G0 a2. (20.86)

The equality (20.86) is achieved in the limit Rem → ∞. Here the characteristic
velocity v0 is determined from the equation of motion in the set (20.82):

v0 = fa2/η for Re 
 1 , (20.87)
v0 = (fa/ρ0)1/2 for Re � 1 . (20.88)

When Rem → ∞, relations (20.84)–(20.88) allow us to obtain the sought-after
function appearing in formula (20.83):

Φ (Re, Rem) =
{

1 for Rem < 1 ,
Re−1

m for Rem > 1 .
(20.89)

The case Rem < 1 was treated by Leenov and Kolin (1954).
Strictly speaking, we could take also into account the dependence of the

function Φ on the usual Reynolds number Re. We could obtain

Φ (Re, Rem) =
1

Rem
Φ2 (Re) , (20.90)

where the function Φ2 (Re) is practically constant.
Note that formula (20.90) can be interpreted as a manifestation of an

incomplete self-similarity of the function Φ relative to the similarity parame-
ter Rem (Barenblatt, 1979). The point is that, from the viewpoint of a ‘naive’
analysis, the function Φ does not depend on a dimensionless parameter whose
magnitude is much greater (or less) than unity. This statement is true only
if there exists a final non-zero limit of the function Φ as the parameter at
hand tends to infinity (or zero). However, in general, this is not the case, as
is clearly demonstrated by (20.90). In fact, Φ → 0 when Rem → ∞. At the
same time the function Φ is a power-law one in Rem; that allows us to write
down an expression for the force density f in a self-similar form. As this takes
place, the exact form of dimensionless combinations cannot be determined
from the formal dimensional analysis alone.

Therefore an order-of magnitude expression is obtained for the density of
the magnetic σ-dependent force acting on a body submerged into a conducting
fluid or plasma (Litvinenko and Somov, 1994; Somov, 1994b):

f = − c

4πv0 a
E 0 × B 0 . (20.91)

The expression (20.91) is valid in the limit of large magnetic Reynolds num-
bers. For a body with a non-zero conductivity σ1, the electric current flowing
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inside the body must be taken care of in formula (20.91). The corresponding
treatment was presented in Section 20.3.

The physical sense of formula (20.91) is obvious. Comparison of (20.91)
with formula (19.59) for the σ-dependent force, which then holds a uniform
current flow in the plasma, shows that for Rem → ∞ (σ → ∞) the plasma in
the vicinity of the body possesses, as it were, an effective conductivity

σef ≈ c2

v0a
.

(20.92)

This finite conductivity of a plasma is a result of the electromagnetic
energy losses to generation of macroscopic vortex flows.

This mechanism of conductivity of a plasma is different from the usual micro-
scopic one, in which energy losses result from Coulomb collisions of current-
carrying electrons with thermal electrons and ions of the plasma. It is no
accident that an expression for conductivity, which is equivalent to (20.92),
has emerged in quite another problem – while calculating the electrical resis-
tivity of necks in Z-pinches appearing in a highly conductive plasma (Chernov
and Yan’kov, 1982).

Note in this context that the σ-dependent force, as well as the character-
istic velocity of the plasma flow, depends in a non-linear way on the quan-
tity E0B0. Using (20.88), (20.88) and (20.91), we see that

f ∼

⎧⎨⎩ (E0B0)1/2 , Re 
 1 ,

(E0B0)2/3 , Re � 1 .
(20.93)

Litvinenko and Somov (1994) have supposed that

the magnetic σ-dependent force may play an important part in the
dynamics of astrophysical plasma with a non-uniform distribution
of temperature and, hence, electric conductivity.

It is this force that can generate large-scale vortex flows of plasma in space.
This possibility is illustrated in the next Section.

20.4.2 The σ-dependent force in solar prominences

The solar corona is a natural ‘plasma physics laboratory’ where formula
(20.91), which is applicable at large magnetic Reynolds numbers, can be
tested. Recall several of its characteristics: low density ρ0 ≈ 10−16 g cm−3,
high temperature T0 ≈ 106 K, dynamic viscosity η ≈ 1 g cm−1 s−1, magnetic
field B0 ≈ 10 − 100 G, electric field E0 ≈ 10−5 CGSE units.

On the other hand, according to observational data (Tandberg-Hanssen,
1995), prominences consist of numerous fine threads – cold dense formations
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having a transversal scale a ≈ 107 cm and temperature T1 ≈ 104 K. Hence
the ratio

σ1/σ0 ≈ 10−3 
 1 ,

as applied to prominences in the corona. In the vicinity of the threads, as
well as near a prominence as a whole, rather fast plasma flows are actually
observed.

According to the model under discussion, these flows can be generated by
the vortex component of the magnetic σ-dependent force. For Re 
 1, their
maximum velocity, as follows from relations (20.88) and (20.91), is determined
by the expression

v0 ≈
(

cE0B0a

4πη

)1/2

≈ 10 − 30 km s−1, (20.94)

that, generally speaking, corresponds to the characteristic values of observed
velocities. However the spatial resolution of modern optical, EUV and soft
X-ray observations is smaller than is necessary for the model to be confirmed
or refuted. Let us consider another possibility.

The symmetric distribution of velocities on the line-of-sight projection
(i.e., in the direction towards the observer) is a distinguishing feature of the
model since it predicts the presence of a large number of vortex flows
of plasma inside the prominence. Such a distribution can be observed as a
symmetric broadening of spectral lines, which it will be necessary to study if
one wishes to study the effect quantitatevly. A similar observational effect can
be related to the existence of reconnecting current layers in the same region
(Antonucci and Somov, 1992; Antonucci et al., 1996).

The gravity force acting on the prominences is supposed to be balanced
by the σ-dependent expulsion. The equilibrium condition makes it possible
to evaluate the characteristic value of the plasma density related to the fine
threads forming the prominence

( ρ1 − ρ0) g	 ≈ f . (20.95)

Here the specific gravity of the Sun g	 ≈ 3 × 104 cm s−2. Formulae (20.91),
(20.92), and (20.95) result in

ρ1 ≈
(

cE0B0 η

4π g2	a3

)1/2

≈ 3 × 10−13 g cm−3, (20.96)

in accordance with observational data.
Even faster flows with characteristic velocities 102−103 km s−1 in so-called

eruptive prominences are probably a consequence of the fact that the coronal
fields E 0 and B 0 can change (in magnitude or direction) during the course of
evolution. As this takes place, the equilibrium described by equation (20.95)
can be violated.
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Observations with high spectral resolution in EUV and soft X-ray ranges
are necessary to study the effect of the magnetic force stimulated by the
presence of plasma regions with considerably different conductivity in the
solar atmosphere.

20.5 Practice: Exercises and Answers

Exercise 20.1. Discuss a possible behavior of electrically conducting spheres
in an insulating bounded fluid placed in a vertical traveling magnetic field.

Hint. The spheres move in response to the induced electromagnetic forces,
the motion being influenced by gravity, viscous drag, vessel boundary reac-
tion, and collisions. The range of possible behaviors, stable, unstable, and
chaotic, is very wide. The term ‘electromagnetic billiards’ seems appropriate
to describe this phenomenon (Bolcato et al., 1993).



Appendix 1. Notation

Latin alphabet

Symbol Description Introduced
in Section
(Formula)

a current layer half-thickness 8.3
A vector potential of a magnetic field 6.2
b half-width of a reconnecting current layer (RCL) 8.3
b perturbation of a magnetic field 20.2.1
B magnetic field 1.2
Bτ tangential magnetic field 16.2
e, ea electric charge 1.2
ec unit vector from the curvature centre 5.2
E energy of a particle 5.1
E electric field 1.2
Eu electric field in the plasma rest-frame 11.1
fk averaged distribution function for particles of kind k 1.1
fkl binary correlation function 2.2
fkln triple correlation function 2.3
f̂k exact distribution function for particles of kind k 2.2
F complex potential 14.2
F,Fk force 1.1
〈Fk 〉v mean force per unit volume 9.1
Fkl force density in the phase space 2.2
F ′ fluctuating force 2.1
g velocity-integrated correlation function 3.2

393



394 Appendix 1

G gravitational constant 1.2
G energy flux density (1.52)
h magnetic field at a wave front 20.1
Ha Hartmann number 20.2
j electric current density 1.2
j ′ current density in the plasma rest-frame 11.1
j q
k current density due to particles of kind k 9.1
jk particle flux density in the phase space 3.1
J electric current 19.3
k friction coefficient 1.1
k wave vector 15.1
K kinetic energy of a particle (5.58)
m magnetic dipole moment 14.4
m, ma particle mass 1.2
M mass of star 19.1
M magnetic moment of a particle 5.2

magnetic energy of a system 19.1
n, nk number density 8.1
n unit vector along a magnetic field 5.1
Nk number of particles of kind k 1.1
p k gas pressure of particles of kind k 9.1
pm magnetic pressure 15.1
pαβ pressure tensor 9.1
p particle momentum 5.1
P generalized momentum 6.2
q generalized coordinate 6.2
q heat flux density 12.1
q k heat flux density due to particles of kind k 9.1
Qk rate of energy release in a gas of particles of kind k 9.1
rD Debye radius 8.2
rL Larmor radius 5.1
ra coordinates of ath particle 1.2
R radius of star 14.4
R⊥ guiding centre spiral radius 5.2
R rigidity of a particle 5.1
R guiding centre vector 5.2
Re Reynolds number 12.3
Rem magnetic Reynolds number 12.3
s entropy per unit mass 12.2
T temperature 12.2

kinetic energy of a macroscopic motion 19.1
TB period of the Larmor rotation 5.2
Tαβ Maxwellian stress tensor 12.1
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u relative velocity 5.1
velocity of the centre-of-mass system 11.1

ue mean electron velocity 11.1
ui mean ion velocity 11.1
uk mean velocity of particles of kind k 9.1
U interaction potential 8.1

volume of a fluid particle 14.2
specific volume of a magnetic tube 19.3

Uth thermal energy 19.1
U velocity of the moving reference frame 16.2

shock speed 17.1
v macroscopic velocity of a plasma 12.2
v,va particle velocity 1.2
vd drift velocity 5.1
vn normal component of the velocity 16.2
vx velocity orthogonal to a discontinuity surface 16.1
v ′ deviation of particle velocity from its mean value 9.1
vτ tangential velocity 16.1
v ‖ velocity component along the magnetic field lines 5.1
v⊥ transversal velocity 5.1
VA Alfvén speed 13.1
Vgr group velocity of a wave 15.1
Vph phase velocity of a wave 15.1
Vs sound speed velocity 15.1
VTe mean thermal velocity of electons (5.54)
VTi mean thermal velocity of ions (5.53)
VTp mean thermal velocity of protons (5.55)
V± speed of a fast (slow) magnetoacoustic wave 15.1
w probability density 2.1
w, wk heat function per unit mass 9.1
W energy density of an electromagnetic field (1.51)
X phase space 1.1
Z ion charge number 8.2
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Greek alphabet

Symbol Description Introduced
in Section
(Formula)

αB parameter of the magnetic field inhomogeneity 5.2
αE parameter of the electric field inhomogeneity 5.2
β coefficient in an expulsion force 20.3
γ dimensionless parameter of ideal MHD 13.1
γg ratio of specific heats 16.1
Γ 6N -dimensional phase space 2.1
δ dimensionless parameter of ideal MHD 12.3
ε mean kinetic energy of a chaotic motion 12.1

dimensionless parameter of ideal MHD 13.1
ζ second viscosity coefficient 12.2
ζ i interaction parameter 3.1
ζ p plasma parameter 3.1
η first viscosity coefficient (dynamic viscosity) 12.2
θ pitch-angle 5.1

angle between a wave vector and the magnetic field 15.1
κe classical electron conductivity 8.3
λ mean free path 8.1
ln Λ Coulomb logarithm 8.1
ν collisional frequency 8.1
ν kinematic viscosity 12.2
νei electron-ion mean collisional frequency 11.1
νkl mean collisional frequency 9.1
νm magnetic diffusivity 12.2
ξ column depth 8.3
π

(k)
αβ viscous stress tensor 9.1

Π∗
αβ total momentum flux density tensor 12.2

ρ plasma mass density 9.1
ρk mass density for particles of kind k 9.1
ρ q electric charge density 1.2
ρ q

k charge density due to particles of kind k 9.1
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ρ rotational motion vector 5.2
σ isotropic electric conductivity 11.1
σH Hall conductivity 11.1
σ ‖ conductivity parallel to the magnetic field 11.1
σ⊥ conductivity perpendicular to the magnetic field 11.1
σv

αβ viscous stress tensor 12.2
τ characteristic time scale 5.2
τee electron collisional time 8.3
τei electron-ion collisional time 8.3
τii ion collisional time 8.3
φ gravitational potential 1.2
ϕ electrostatic potential 8.2
ϕ angle in the spherical frame 14.4
φ, ϕ angle in the cylindrical frame 19.2
ϕ̂k deviation of the exact distribution function

from an averaged distribution function 2.2
Φ magnetic flux 14.2

stream function 14.4
χ deflection angle 8.1
ψ angle to the x axis 14.4

potential of an electric current 20.3
Ψ potential of a current-free magnetic field 13.1
ω wave frequency 15.1
ω0 wave frequency in a moving frame of reference 15.1
ωB cyclotron or Larmor frequency 5.1
ωpl electron plasma frequency 8.2
Ω gravitational energy 19.1
ω vector of angular velocity 20.1
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Useful Expressions

Source formulae

Larmor frequency of a non-relativistic electron (5.11), (5.51)

ω (e)
B

=
eB

mec
≈ 1.76 × 107 B (G) , rad s−1 .

Larmor frequency of a non-relativistic proton (5.52)

ω (p)
B

≈ 9.58 × 103 B (G) , rad s−1 .

Larmor radius of a non-relativistic electron (5.14), (5.59)

r (e)
L

=
c p⊥
eB

≈ 5.69 × 10−8 v (cm s−1)
B (G)

, cm .

Larmor radius of a non-relativistic proton (5.14), (5.61)

r (p)
L

≈ 1.04 × 10−4 v (cm s−1)
B (G)

, cm .

Mean thermal velocity of electrons (5.54)

VTe =
(

3kB T e

me

)1/2

≈ 6.74 × 105
√

Te (K) , cm s−1 .

Mean thermal velocity of protons (5.55)

VTp ≈ 1.57 × 104
√

Tp (K) , cm s−1 .

Larmor radius of non-relativistic thermal electrons (5.56)

r (e)
L

=
VTe

ω
(e)
B

≈ 3.83 × 10−2

√
Te (K)

B (G)
, cm .
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Larmor radius of non-relativistic thermal protons (5.57)

r (p)
L

=
VTp

ω
(p)
B

≈ 1.64

√
Tp (K)

B (G)
, cm .

Drift velocity (5.20)

vd =
c

e

F × B
B 2 .

Magnetic moment of a particle on the Larmor orbit (6.6)

M =
1
c

JS =
e ωB r 2

L

2c
=

p 2
⊥

2mB
=

E⊥
B

.

Debye radius (Te = T , T i = 0 or Te � Ti) (8.33)

rD =
(

kBT

4π ne2

)1/2

.

Debye radius in electron-proton thermal plasma (Te = Tp = T ) (8.77)

rD =
(

kBT

8π e2 n

)1/2

≈ 4.9
(

T

n

)1/2

, cm .

Coulomb logarithm (8.75)

ln Λ = ln

[(
3k 3/2

B

2π1/2 e3

)(
T 3

e

ne

)1/2
]

≈ ln

[
1.25 × 104

(
T 3

e

ne

)1/2
]

.

Electron plasma frequency (8.78)

ω
(e)
pl =

(
4π e2 ne

me

)1/2

≈ 5.64 × 104 √
ne , rad s−1 .

Thermal electron collisional time (8.80)

τee =
m 2

e

0.714 e4 8π ln Λ
V 3

Te

ne
≈ 4.04 × 10−20 V 3

Te

ne
, s .

Thermal proton collisional time (8.81)

τpp =
m 2

p

0.714 e4 8π ln Λ
V 3

Tp

np
≈ 1.36 × 10−13 V 3

Tp

np
, s .

Electron-ion collision (energy exchange) time Section 8.3

τei (E) =
memi [ 3kB (Te/me + T i/mi) ]3/2

e 2
e e 2

i (6π)1/2 8 ln Λ
.
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Time of energy exchange between electrons and protons (8.44)

τep (E) ≈ 22 τpp ≈ 950 τee .

Dreicer field (8.83)

EDr =
4πe3 ln Λ

kB

ne

Te
≈ 6.54 × 10−8 ne

Te
, V cm−1 .

Conductivity of magnetized plasma Section 11.3

σ ‖ = σ =
e2n

me
τei ≈ 2.53 × 108 n (cm−3) τei (s) , s−1 ,

σ⊥ = σ
1

1 +
(
ω

(e)
B τei

)2 , σH = σ
ω(e)

B
τei

1 +
(
ω

(e)
B τei

)2 .

Magnetic diffusivity (or viscosity) (12.49)

νm =
c2

4πσ
≈ 7.2 × 1019 1

σ
, cm2 s−1 .

Magnetic Reynolds number (12.62)

Rem =
L2

νm τ
=

vL

νm

Alfvén speed (13.14), (13.34)

VA =
B√
4πρ

≈ 2.18 × 1011 B√
n

, cm s−1 .

Sound speed in electron-proton plasma (16.98)

Vs =
(

γg
p

ρ

)1/2

≈ 1.66 × 104
√

T (K) , cm s−1 .

Electric field in magnetized plasma (19.71)

E ≈ 1
c

vB ≈ 10−8 v (cm s−1) B (G) , V cm−1 .
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Fundamental physical constants

Speed of light c 2.998 × 1010 cm s−1

Electron charge e 4.802 × 10−10 CGSE
Electron mass me 9.109 × 10−28 g
Proton mass mp 1.673 × 10−24 g
Boltzmann constant kB 1.381 × 10−16 erg K−1

Gravitational constant G 6.673 × 10−8 dyne cm2 g−2

Planck’s constant h 6.625 × 10−27 erg s

Some useful constants and units

Ampere (current) A 3 × 109 CGSE
Angström (length) A 10−8 cm
Electron Volt (energy) eV 1.602 × 10−12 erg

eV 11605 K
Gauss (magnetic induction) G 3 × 1010 CGSE
Henry (inductance) H 1.111 × 10−12 s2 cm−1

Ionization potential of
hydrogen 13.60 eV

Joule (energy) J 107 erg
Maxwell (magnetic flux) M 3 × 1010 CGSE
Ohm (resistance) Ω 1.111 × 10−12 s cm−1

Tesla (magnetic induction) 104 Gauss
Volt (potential) V 3.333 × 10−3 CGSE
Watt (power) W 107 erg s−1

Weber (magnetic flux) Wb 108 Maxwell

Some astrophysical constants

Astronomical unit AU 1.496 × 1013 cm
Mass of the Sun M	 1.989 × 1033 g
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Mass of the Earth ME 5.98 × 1027 g
Solar radius R	 6.960 × 1010 cm
Solar surface gravity g	 2.740 × 104 cm s−2

Solar luminosity L	 3.827 × 1033 erg s−1

Mass loss rate Ṁ	 1012 g s−1

Rotation period of the Sun T	 26 days (at equator)
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Reconnection and Flares
Introduction

Magnetic fields are easily generated in astrophysical plasma owing to its
high conductivity. Magnetic fields, having strengths of order few 10−6 G,
correlated on several kiloparsec scales are seen in spiral galaxies. Their
origin could be due to amplification of a small seed field by a turbulent
galactic dynamo. In several galaxies, like the famous M51, magnetic fields
are well correlated (or anti-correlated) with the optical spiral arms. These
are the weakest large-scale fields observed in cosmic space. The strongest
magnets in space are presumably the so-called magnetars, the highly mag-
netized (with the strength of the field of about 1015 G) young neutron stars
formed in the supernova explosions.

The energy of magnetic fields is accumulated in astrophysical plasma,
and the sudden release of this energy – an original electrodynamical ‘burst’
or ‘explosion’ – takes place under definite but quite general conditions (Per-
att, 1992; Sturrock, 1994; Kivelson and Russell, 1995; Rose, 1998; Priest
and Forbes, 2000; Somov, 2000; Kundt, 2001). Such a ‘flare’ in astro-
physical plasma is accompanied by fast directed ejections (jets) of plasma,
powerful flows of heat and hard electromagnetic radiation as well as by
impulsive acceleration of charged particles to high energies.

This phenomenon is quite a widespread one. It can be observed in flares
on the Sun and other stars (Haisch et al., 1991), in the Earth’s magneto-
sphere as magnetic storms and substorms (Nishida and Nagayama, 1973;
Tsurutani et al., 1997; Kokubun and Kamide, 1998; Nagai et al., 1998;
Nishida et al., 1998), in coronae of accretion disks of cosmic X-ray sources
(Galeev et al., 1979; Somov et al., 2003a), in nuclei of active galaxies and
quasars (Ozernoy and Somov, 1971; Begelman et al., 1984). However this
process, while being typical of astrophysical plasma, can be directly and
fully studied on the Sun.

The Sun is the only star that can be imaged with spatial resolution

1



2 Reconnection and Flares

high enough to reveal its key (fine as well as large-scale) structures and
their dynamic behaviours. This simple fact makes the Sun one of the most
important objectives in astronomy. The solar atmosphere can be regarded
as a natural ‘laboratory’ of astrophysical plasmas in which we can study
the physical processes involved in cosmic electrodynamical explosions.

We observe how magnetic fields are generated (strictly speaking, how
they come to the surface of the Sun, called the photosphere). We ob-
serve the development of solar flares (e.g., Strong et al., 1999) and other
non-stationary large-scale phenomena, such as a gigantic arcade formation,
coronal transients, coronal mass ejections into the interplanetary medium
(see Crooker et al., 1997), by means of ground observatories (in radio and
optical wavelength ranges) and spaceships (practically in the whole electro-
magnetic spectrum). For example, on board the Yohkoh satellite, (Ogawara
et al., 1991; Acton et al., 1992) two telescopes working in soft and hard X-
ray bands (Tsuneta et al., 1991; Kosugi et al., 1991) allowed us to study the
creation and development of non-steady processes in the solar atmosphere
(Ichimoto et al., 1992; Tsuneta et al., 1992; Tsuneta, 1993), acceleration of
electrons in flares.

The LASCO experiment on board the Solar and Heliospheric Observa-
tory , SOHO (Domingo et al., 1995) makes observations of such events in
the solar corona out to 30 solar radii. Moreover SOHO is equipped with
an instrument, the full disk magnetograph MDI (Scherrer et al., 1995), for
observing the surface magnetic fields of the Sun. Following SOHO , the
satellite Transition Region and Coronal Explorer (TRACE ) was launched
to obtain high spatial resolution X-ray images (see Golub et al., 1999).
With the solar maximum of 2000, we had an unprecedented opportunity
to use the three satellites for coordinated observations and study of solar
flares.

The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI )
was launched in 2002 and observes solar hard X-rays and gamma-rays from
3 keV to 17 MeV with spatial resolution as high as 2.3 arc sec (Lin et
al., 2002; 2003). Imaging of gamma-ray lines, produced by nuclear colli-
sions of energetic ions with the solar atmosphere, provides direct informa-
tion of the spatial properties of the ion acceleration in solar flares (Hurford
et al., 2003). RHESSI observations allow us to investigate physical proper-
ties of solar flares in many details (e.g., Fletcher and Hudson, 2002; Krucker
et al., 2003).

The link between the solar flares observed and topology of the magnetic
field in active regions, in which these flares occured, was investigated by
Gorbachev and Somov (1989, 1990). They developed the first model of
an actual flare, the flare on 1980, November 5, and have shown that the
all large-scale characteristic features of this flare can be explained by the
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presence of a current layer formed on the so-called separator which is the
intersection of the separatrix surfaces. In particular, the flare ribbons in
the chromosphere as well as the ‘intersecting’ soft X-ray loops in the corona
are the consequences of a topological structure of a magnetic field near the
separator.

An increasing number of investigations clearly relates the location of a
‘chromospheric flare’ – the flare’s manifestation in the solar chromosphere
– with the topological magnetic features of active regions (Mandrini et al.,
1991 and 1993; Démoulin et al., 1993; Bagalá et al., 1995; Longcope and
Silva, 1998). In all these works it is confirmed that the solar flares can be
considered as a result of the interaction of large-scale magnetic structures;
the authors derived the location of the separatrices – surfaces that separate
cells of different field line connectivities – and of the separator .

These studies strongly support the concept of magnetic reconnection
in solar flares (Giovanelli, 1946; Dungey, 1958; Sweet, 1958). Solar observa-
tions with the Hard X-ray Telescope (HXT) and the Soft X-ray Telescope
(SXT) on board the Yohkoh satellite clearly showed that

the magnetic reconnection process is common to impulsive (com-
pact) and gradual (large scale) solar flares

(Masuda et al., 1994, 1995). However, in the interpretation of the Yohkoh
data, the basic physics of magnetic reconnection in the solar atmosphere
remained uncertain (see Kosugi and Somov, 1998). Significant parts of the
book in your hands are devoted to the physics of the reconnection process,
a fundamental feature of astrophysical and laboratory plasmas.

Solar flares and coronal mass ejections (CMEs) strongly influence the
interplanetary and terrestrial space by virtue of shock waves, hard electro-
magnetic radiation and accelerated particles (Kivelson and Russell, 1995;
Miroshnichenko, 2001). That is why the problem of ‘weather and climate’
prediction in the near space becomes more and more important. The term
‘near space’ refers to the space that is within the reach of orbiting stations,
both manned and automated. The number of satellites (meteorological,
geophysical, navigational ones) with electronic systems sensitive to the ion-
izing radiation of solar flares is steadily growing.

It has been established that adverse conditions in the space environment
can cause disruption of satellite operations, communications, and electric
power distribution grids, thereby leading to broad socioeconomic losses
(Wright, 1997). Space weather (e.g., Hanslmeier, 2002) is of growing
importance to the scientific community and refers to conditions at a par-
ticular place and time on the Sun and in the solar wind, magnetosphere,
ionosphere, and thermosphere that can influence the performance and relia-
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bility of spaceborne and ground-based technological systems and can affect
human life or health.

It is no mere chance that solar flares and coronal mass ejections are
of interest to physicians, biologists and climatologists. Flares influence
not only geospace – the terrestrial magnetosphere, ionosphere and upper
atmosphere (Hargreaves, 1992; Horwitz et al., 1998; de Jager, 2005) but
also the biosphere and the atmosphere of the Earth. They are therefore not
only of pure scientific importance; they also have an applied or practical
relevance.

The latter aspect is, however, certainly beyond the scope of this text, the
second volume of the book “Plasma Astrophysics”, lectures given the stu-
dents of the Astronomical Division of the Faculty of Physics at the Moscow
State University in spring semesters over the years after 2000. The subject
of the present book “Plasma Astrophysics. 2. Reconnection and Flares”
is the basic physics of the magnetic reconnection phenomenon and the re-
connection related flares in astrophysical plasmas. The first volume of the
book, “Plasma Astrophysics. I. Fundamentals and Practice” (referred in
the text as vol. 1), is unique in covering the main principles and practical
tools required for understanding and work in modern plasma astrophysics.

Acknowledgements

The author is grateful to his young colleagues Sergei I. Bezrodnykh, Sergei
A. Bogachev, Sergei V. Diakonov, Irina A. Kovalenko, Yuri E. Litvinenko,
Sergei A. Markovskii, Elena Yu. Merenkova, Anna V. Oreshina, Inna V.
Oreshina, Alexandr I. Podgornii, Yuri I. Skrynnikov, Andrei R. Spektor,
Vyacheslav S. Titov, Alexandr I. Verneta, and Vladimir I. Vlasov for the
pleasure of working together, for generous help and valuable remarks. He is
also happy to acknowledge helpful discussions with many of his colleagues
and friends in the world.

Moscow, 2006 Boris V. Somov



Chapter 1

Magnetic Reconnection

Magnetic reconnection is a fundamental feature of astrophysical and
laboratory plasmas, which takes place under definite but quit general
conditions and creates a sudden release of magnetic energy, an original
electrodynamical explosion or flare. Surprisingly, the simplest approx-
imation – a single particle in given force fields – gives us clear approach
to several facets of reconnection and particle acceleration.

1.1 What is magnetic reconnection?

1.1.1 Neutral points of a magnetic field

The so-called zeroth or neutral points, lines and surfaces of magnetic field,
which are the regions where magnetic field equals zero:

B = 0 , (1.1)

are considered to be important for plasma astrophysics since Giovanelli (1946).
They are of interest for the following reasons. First, plasma behaviour is
quite specific in the vicinity of such regions (Dungey, 1958). Second, they
predetermine a large number of astrophysical phenomena. We shall be pri-
marily concerned with non-stationary phenomena in the solar atmosphere
(such as flares, coronal transients, coronal mass ejections), accompanied by
particle acceleration to high energies. Analogous phenomena take place on
other stars, in planetary magnetospheres, and pulsars.

Neutral points of magnetic field most commonly appear in places of
the interaction of magnetic fluxes.

5



6 Chapter 1. Magnetic Reconnection

The simplest way to recognize this is to consider the emerging flux in the
solar atmosphere.

ChPh

X

S n s N

Figure 1.1: The emergence of a new magnetic flux (n, s) from under the
photosphere Ph inside an active region whose magnetic field is determined
by the sources S and N .

Figure 1.1 shows the sources N and S corresponding to the active re-
gion’s magnetic field. The sources n and s play the role of a new flux
emerging from under the photosphere Ph. The chromosphere is shown
by the dashed line Ch. We consider an arrangement of the sources along a
straight line, although the treatment can well be generalized (Section 3.2.1)
to consider arbitrary configurations of the four sources in the photosphere.

Figure 1.2: A hyperbolic zeroth
point (line along the axis z) of a
potential magnetic field.

y

x

B

Obviously a point can be found above the emerging flux, where oppo-
sitely directed but equal in magnitude magnetic fields ‘meet’. Here the
total field, that is the sum of the old and the new ones, is zero. Let us



1.1. Reconnection in Vacuum and Plasma 7

denote this point by X, bearing in mind that the field in its vicinity has
the hyperbolic structure shown in Figure 1.2.

In order to convince oneself that this is the case, we can consider the
magnetic field in the simplest approach which is the potential approxi-
mation (see vol. 1, Section 13.1.3). This will be done, for example, in
Section 1.1.4. However, at first, we shall recall and illustrate the basic defi-
nitions related to the magnetic reconnection process in simplest situations.

1.1.2 Reconnection in vacuum

The X-type points constitute the most important topological peculiarity
of a magnetic field. They are the places where redistribution of magnetic
fluxes occurs, which changes the connectivity of field lines. Let us illustrate
such a process by the simplest example of two parallel electric currents I of
equal magnitude I in vacuum as shown in Figure 1.3.

l

lδ

2

(a) (b)

A

A

x

y

I

I
1

2

A1

X

Figure 1.3: The potential field of two parallel currents I: (a) the initial
state, 2l is a distance between the currents; (b) the final state after they
have been drawn nearer by a driven displacement δl.

The magnetic field of these currents forms three different fluxes in the
plane (x, y). Two of them belong to the upper and the lower currents,
respectively, and are situated inside the separatrix field line A1 which forms
the eight-like curve with a zeroth X-point. The third flux situated outside
this curve belongs to both currents and is situated outside the separatrix.

If the currents are displaced in the direction of each other, then the
following redistribution of a magnetic flux will take place. The current’s
proper fluxes will diminish by the quantity δA (shown by two shadowed
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rings in Figure 1.3a), while their common flux will increase by the same
quantity (shown by the shadowed area in Figure 1.3b), So the field line A2
will be the separatrix of the final state.

This process is realized as follows. Two field lines approach the X-point,
merge there, forming a separatrix, and then they reconnect forming a field
line which encloses both currents. Such a process is termed reconnection of
field lines or magnetic reconnection. A2 is the last reconnected field line.

Magnetic reconnection is of fundamental importance for the nature of
many non-stationary phenomena in astrophysical plasma. We shall discuss
the physics of this process more fully in Chapters 2 to 14. Suffice it to
note that reconnection is inevitably associated with electric field
generation. This field is the inductive one, since

E = −1
c

∂A
∂t

, (1.2)

where A is the vector potential of magnetic field,

B = curlA . (1.3)

In the above example the electric field is directed along the z axis. It is
clear that, if δt is the characteristic time of the reconnection process shown
in Figure 1.3, then according to (1.2)

E ≈ 1
c

δA

δt
≈ 1

c

A2 − A1

δt
; (1.4)

the last equality is justified in vol. 1, Section 14.2.
Reconnection in vacuum is a real physical process: magnetic

field lines move to the X-type neutral point and reconnect in it as well as

the electric field is induced and can accelerate a charged particle or
particles in the vicinity of the neutral point.

In this sense, a collisionless reconnection – the physical process in a high-
temperature rarefied plasma such as the solar corona, geomagnetic tail,
fusion plasmas, and so on – is simpler for understanding than reconnection
in a highly-conducting collisional space plasma.

1.1.3 Reconnection in plasma

Let us try to predict plasma behaviour near the X-point as reconnection
proceeds on the basis of our knowledge about the motion of a charged
particle in given magnetic and electric fields.



1.1. Reconnection in Vacuum and Plasma 9

The first obvious fact is that, given the non-zero electric field E, the
plasma begins to drift in the magnetic field B, in a way shown in Figure 1.4a.
The electric drift velocity

vd = c
E × B

B 2 (1.5)

is shown in four points. The magnetic field is considered as a uniform field
in the vicinity of these points.

The second fact consists of the inapplicability of the adiabatic drift
approximation near the zeroth point, since the Larmor radius

rL =
c p⊥
eB

(1.6)

increases indefinitely as B → 0. We have to solve the exact equations of
motion. This will be done later on. However we see at once that in this
region an electric current J can flow along the z axis. The proper magnetic
field of the current changes the initial field topology, so that there will be
two symmetric zeroth points X1 and X2 on the x axis in Figure 1.4b instead
of one X-point.

The same arguments concerning drift flows and X-point bifurcation are
applicable to the new X-points. We easily guess that the result of the
interaction of line currents with the external hyperbolic field is a current
layer in the region of reconnection. The reconnecting current layer
(RCL) is shown by thick solid straight line in Figure 1.4c. Note that the
direction of the electric current can change at the external edges of the layer.
Here the currents can flow in the opposite direction (the reverse currents)
with respect to the main current (the direct current) in the central part.

RCLs are, in general, at least two-dimensional and two-scale formations.
The former means that one-dimensional models are in principle inadequate
for describing the RCL: both plasma inflow in the direction perpendicular to
the layer and plasma outflow along the layer, along the x axis in Figure 1.5,
have to be taken into account.

The existence of two scales implies that usually (for a sufficiently strong
field and high conductivity like in the solar corona) the RCL width 2b is
much greater than its thickness 2a. This is essential since

the wider the reconnecting current layer, the larger the magnetic
energy which is accumulated

in the region of reconnecting fluxes interaction. On the other hand, a small
thickness is responsible for the high rate of accumulated energy dissipa-
tion, as well as for the possibility of non-stationary processes (for instance,
tearing instability) in the RCL. It is generally believed, on a very serious
basis (see Chapter 3), that the solar flares and similar phenomena in space
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v

E

B

d

E

E

v
d

B

B

v
d

v

E

dJX X1 2

(a)

(b)

E vd(c)

RCL

Figure 1.4: (a) Plasma flows owing to the electric drift in the vicinity of
a zeroth point. (b) The appearance of secondary X-points – bifurcation
of the initial zeroth line, given the current J flowing along it. (c) A thin
reconnecting current layer (RCL).
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2b

2a

EB

v0

0 y

x

Figure 1.5: The simplest model of a RCL – the neutral layer.

plasma result from the fast conversion of the excess magnetic energy into
heat and bulk plasma motions and kinetic energy of accelerated particles.

1.1.4 Three stages in the reconnection process

Now we come back to the example of magnetic reconnection considered in
Section 1.1.2. Let the parallel electric currents I move to each other with
velocity 2u as shown in Figure 1.3. Let us describe the electric field induced
in the space between the currents.

The magnetic field of two parallel currents is expressed with the aid of
the vector-potential A having only the z component:

A = { 0, 0, A (x, y, t) } . (1.7)

The magnetic field B is defined by the z-component of the vector-potential:

B = curl A =
{

∂A

∂y
, − ∂A

∂x
, 0
}

. (1.8)

The scalar function A (x, y, t) is termed the vector potential . In the case
under consideration

A (x, y, t) =
I

c

{
ln
[
x2 + (y − l(t))2

]
+ ln

[
x2 + (y + l(t))2

]}
. (1.9)

For a sake of simplicity, near the zeroth line of the magnetic field, sit-
uated on the z axis, formula (1.9) may be expanded in a Teylor series,
the zeroth order and square terms of the expansion being sufficient for our
purposes:

A (x, y, t) = A (0, 0, t) +
2I

c
(x2 − y2) . (1.10)
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Here

A (0, 0, t) =
4I

c
ln l(t) = A (t) (1.11)

is the time-dependent part of the vector potential.
From formula (1.11) the electric field induced along the zeroth line and

in its vicinity can be found

E = −1
c

∂A
∂t

= −4I

c

1
l

dl

dt
ez , (1.12)

where the half-distance between currents l = l − ut with u = |u |. Hence

E =
4I

c

1
l

u ez . (1.13)

Therefore

the electric field induced between two parallel currents, that move
to each other, is anti-parallel to these electric currents and induces
the current layer in plasma

as shown in Figure 1.6.

lδ

(a) (b)

A1

A1

(c)

A
2CL

x

y

Figure 1.6: Three states of magnetic field: (a) the initial state; (b) the
pre-reconnection state with a ‘non-reconnecting’ current layer CL; (c) the
final state after reconnection.

So two parallel currents are displaced from the initial state (a) in Fig-
ure 1.6 to the final state (c) in plasma, which is the same as the state (b)
in Figure 1.3. However, contrary to the case of reconnection in vacuum,
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in astrophysical plasma of low resistivity we have to add an intermediate
state. We call it the pre-reconnection state.

At this state, coming between the initial and final one, the electric
currents have been displaced to the final positions, but the magnetic field
lines have not started to reconnect yet, if the plasma conductivity can be
considered as infinite. The current layer along the X-type neutral line
protects the interacting fluxes from reconnection. The energy of
this interaction called the free magnetic energy is just the energy of the
magnetic field of the current layer.

Because of the finite conductivity, magnetic reconnection proceeds
slowly (or rapidly) depending on how high (or low) the conductivity of
plasma is. Anyway, the final state (c) after reconnection is the same as the
state (b) in Figure 1.3 with the line A2 as the separatrix of the final state or
the last reconnected line. The following analogy in everyday life is appro-
priate to the process under discussion. A glass of hot water will invariably
cool from a given temperature (the initial state) to a room temperature (the
final state), independently of the mechanism of heat conductivity, i.e. the
heat exchange with the surrounding air; the mechanism determines only
the rate of cooling.

1.2 Acceleration in current layers, why and
how?

1.2.1 The origin of particle acceleration

The formation and properties of current layers will be considered in Chap-
ters 2 to 14 in different approximations. However one property which is
important from the standpoint of astrophysical applications can be under-
stood just now by considering the motion of a charged particle in given
magnetic and electric fields. This property is particle acceleration.

In accordance with Figure 1.5, let the magnetic field B be directed along
the x axis, changing the sign at y = 0 (the current layer plane). That is
why the y = 0 plane is called the neutral surface (or neutral plane) and
the model under consideration is called the neutral current layer. Cer-
tainly this simplest model is not well justified from physical point of view
but mathematically convenient. Moreover, even being a strong idealiza-
tion, the model allows us to understand why particles are accelerated in a
reconnecting current layer.

The electric field E is directed along the z axis, to the right in Figure 1.7,
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being constant and homogeneous. Thus

B = { − hy, 0, 0 } , E = { 0, 0, E } , (1.14)

where h and E are constants. We assume that the magnetic field changes
its value gradually inside the current layer with a gradient h = | ∇B |.

B

B

p
+

∆

B

B

∆
p
+

B

B

∆
B

∆

B

BE
E

BE

y

x z

Figure 1.7: The drift motions of a positively charged particle near the
neutral plane y = 0. The electric field E induces a particle drift towards
the neutral plane from both above and below. The case of the slow gradient
drift is shown high above the plane and for a particle crossing the plane.

Let us consider the particle motion in such crossed fields.
At sufficiently large distances from the neutral plane y = 0, the motion

is a sum of electric and gradient drifts (see Appendix 3). The electric drift
makes a particle move to the neutral plane from both sides of this plane.
So the electric drift creates some confinement of a particle near the neutral
plane.

The gradient drift drives a positively charged particle (an ion) along the
negative direction of the z axis, to the left in Figure 1.7, i.e. in the direction
opposite to the electric field E. Hence the energy of an ion decreases. A
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negatively charged particle (an electron) moves in opposite direction to the
ion’s drift, i.e. along the electric field; so its energy also decreases due to
the gradient drift.

B

B

∆

p
+

y

x

z
p
+

(a) (b) (c)

vd vd

ψ
0

ψ

Figure 1.8: The serpentine-type orbits of a positively charged particle cross-
ing the neutral plane y = 0.

Particles that cross the neutral plane have more complex orbits. An ion
can drift to the left, as shown in Figure 1.8a, or to the right, as shown in
Figure 1.8c, depending on the angle at which it crosses the neutral plane.
There is only one angle ψ 0 for which the ion moves in a figure-eight pattern
(Figure 1.8b) and has no net motion. It stays (in the absence of electric field
along the plane, of course). Any ion that crosses the plane with a velocity
vector closer to the normal than the ion which stays still, will drift to the
right (Cowley, 1986). Such ions moving along the electric field increase
their energy. Hence an acceleration of particles crossing the neutral plane
is possible.

Therefore the electric field induces the particle drift toward the neutral
plane. On reaching the neutral plane, the particles become unmagnetized,
since the magnetic field is zero there, and are accelerated in the electric
field: ions to the right along the electric field and electrons to the left.

1.2.2 Acceleration in a neutral current layer

As we have seen above, on the basis of the gradient drift consideration,
one might think that the neutral current layer is perhaps not the best
place for a particle acceleration. However this is not true. First, in an
isotropic velocity distribution, this must be a majority of the particles,
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resulting in a net rightward current, along the electric field, as required
for acceleration. Second, as the particle approaches the neutral plane, the
Larmor radius rL = R⊥ /B increases indefinitely. Hence the drift formalism
is not applicable here. We have to solve the exact equation of particle
motion. In the non-relativistic case, it is of the form

m v̇ = eE +
e

c
v × B . (1.15)

With the electric and magnetic fields given by (1.14) we have the following
three equations in the coordinates x, y, and z:

ẍ = 0 , ÿ = − eh

mc
y ż , z̈ =

e

m

(
E +

h

c
y ẏ

)
.

Let us rewrite these equations as follows:

ẍ = 0 , ÿ +
eh

mc
ż y = 0 , z̈ =

eE

m
+

eh

mc
y ẏ . (1.16)

The last equation is integrated to give

ż =
eE

m
t +

eh

2mc
y2 + const . (1.17)

The motion along the y axis is finite. This is a result of the above analysis of
the character of motion in the drift approximation which applies when the
particle is far enough from the neutral plane y = 0. That is the reason why,
for large t (the ratio y2/t → 0), the first term on the right of Equation (1.17)
plays a leading role. So we put asymptotically

ż =
eE

m
t .

(1.18)

As we shall see below, (1.18) is the main formula which desribes the effect
of acceleration by the electric field inside the neutral layer.

After substituting (1.18) into the second equation of (1.16) we obtain

ÿ +
e2hE

m2c
t y = 0 .

Introducing the designation

e2hE

m2c
= a2 ,
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we have

ÿ + ω2(t) y = 0 ,

(1.19)

where ω2(t) = a2t.
Let us try to find the solution of Equation (1.19) in the form

y (t) = f(t) cos ϕ(t) , (1.20)

where f(t) is a slowly changing function of the time t. Substituting (1.20)
in Equation (1.19) results in

f̈ cos ϕ − 2ḟ ϕ̇ sin ϕ − f ϕ̈ sin ϕ − f (ϕ̇)2 cos ϕ + a2t f cos ϕ = 0 .

Since f is a slow function, the first term, containing the second deriva-
tive of f with respect to time, can be ignored. The remaining terms are
regrouped in the following way:

f
[
−(ϕ̇)2 + a2t

]
cos ϕ −

(
2ḟ ϕ̇ + f ϕ̈

)
sin ϕ = 0 .

By the orthogonality of the functions sinϕ and cosϕ, we have a set of two
independent equations:

(ϕ̇)2 = a2 t , (1.21)

2ḟ ϕ̇ + f ϕ̈ = 0 . (1.22)

The first equation is integrated, resulting in

ϕ =
2
3

a t3/2 + ϕ0 , (1.23)

where ϕ0 is a constant. Substitute this solution in Equation (1.22):

ḟ

f
= −1

2
ϕ̈

ϕ̇
= −1

4
t−1 .

From this it follows that
f = C t−1/4 , (1.24)

where C is a constant of integration.
On substituting (1.23) and (1.24) in (1.20), we obtain the sought-after

description of the particle trajectory in a current layer:

y (t) = C t−1/4 cos
(

2
3

a t3/2 + ϕ0

)
, (1.25)

z (t) =
eE

m

t2

2
+ z0 . (1.26)
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Eliminate the variable t between formulae (1.25) and (1.26). We have

y (z) = C

[
2m

eE
(z − z0)

]−1/8

cos

{
2
3

a

[
2m

eE
(z − z0)

]3/4

+ ϕ0

}
. (1.27)

The amplitude of this function

Ay ∼ z−1/8 ∼ t−1/4 (1.28)

slowly decreases as z increases.
Let us find the ‘period’ of the function (1.27): ϕ ∼ z3/4, hence δϕ ∼

z−1/4 δz. If δ � 2π, then
δz
∣∣
2π

∼ z1/4 . (1.29)

Thus the period of the function (1.27) is enhanced as shown in Figure 1.9.

B

B

p+

E
y

x z

A y

Figure 1.9: The trajectory of a particle accelerated by the electric field E
in the neighbourhood of the neutral plane inside a neutral current layer.

Note that the transversal velocity

ẏ ∼ t−1/4 ϕ̇ ∼ t1/4 (1.30)

grows with time, but slower than the velocity component parallel to the
electric field. From the main formula (1.18) it follows that

ż ∼ t . (1.31)

As a result, the particle is predominantly accelerated in the electric field
direction along the current layer.
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An exact analytical solution to Equation (1.19) can be expressed as a
linear combination of Bessel functions (Speiser, 1965). It has the same
properties as (it asymptotically coincides with) the approximate solution.
Equation (1.19) corresponds to the equation of a linear oscillator, with the
spring constant becoming larger with time. In the neutral current layer,
the magnetic force returns the particle to the neutral plane: the larger the
force, the higher the particle velocity.

The electric field provides particle acceleration along the reconnect-
ing current layer. This is the main effect.

Needless to say, the picture of acceleration in real current layers is more
complicated and interesting. In particular, acceleration efficiency depends
strongly upon the small transversal component of the magnetic field which
penetrates into the reconnecting current layer (RCL) and makes the accel-
erated particles be ejected from the layer (Speiser, 1965). This effect, as
well as the role of the longitudinal (along the z axis) component of a mag-
netic field inside the current layer, will be considered in Chapters 9 and 11.
Magnetical non-neutrality of the current layer is of great significance for
acceleration of electrons, for example, in the solar atmosphere.

In fact, real current layers are non-neutral not only in the sense of
the magnetic field. They are also electrically non-neutral; they have an
additional electric field directed towards the layer plane from both sides.
This electric field is necessary for ion acceleration and will be considered in
Chapter 9.

1.3 Practice: Exercises and Answers

Exercise 1.1. [ Section 1.1.2 ] Consider the Lorentz force acting between
two parallel electric currents in vacuum.

Answer. One of the currents, for example the upper current I in the
place y = l in Figure 1.3, generates the magnetic field

B =
I

2π R
eϕ . (1.32)

This field circulates around the upper current as shown in Figure 1.10. In
the place of the second current, the magnetic field is

B = − I

π l
ex . (1.33)

The Lorentz force acting on the second current, on its unit length, is
equal to

F = I × B =
I2

π l
ey . (1.34)
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Therefore two parallel currents attract each other.

l2

(a)

I

x

y

z

I

B

F

(b)

I

x

y

z

I

u

u

E

R

Figure 1.10: Two parallel currents: (a) 2l is a distance between the currents;
(b) the currents are drawn nearer with velocity u and induce the electric
field E.

Exercise 1.2. [ Section 1.1.2 ] Under conditions of the previous problem
discuss how the energy of interaction between two parallel currents depends
on the distance between them.

Answer. According to formula (1.34), the force between the interacting
current is proportional to 1/l. Hence the energy of interaction is propor-
tional to ln l with the sign (-) for the parallel currents but with the sign
(+) for the anti-parallel electric currents.

Exercise 1.3. [ Section 1.1.2 ] Show that the electric field (1.13) between
two parallel electric currents is proportional to the rate of reconnection of
magnetic field lines.

Hint The term A(t), defined by formula (1.11), represents the recon-
nected magnetic flux as a function of time.

Exercise 1.4. [ Section 1.1.2 ] What happens if we move the parallel cur-
rents in opposite directions?



Chapter 2

Reconnection in a Strong
Magnetic Field

When two oppositely directed magnetic fields are pressed together,
the conductive plasma is squeezed out from between them, causing
the field gradient to steepen until a reconnecting current layer (RCL)
appears and becomes so thin that the resistive dissipation determines
the magnetic reconnection rate. In this Chapter, the basic magne-
tohydrodynamic properties of such a process are considered in the
approximation of a strong magnetic field.

2.1 Small perturbations near a neutral line

2.1.1 Historical comments

The notion of reconnection of magnetic field lines, magnetic reconnection,
came into existence in the context of the interpretation of solar flare obser-
vations. The review of early works in the field is contained, for example in
the eminent paper by Sweet (1969). From the viewpoint of reconnection,
points and lines where the magnetic field is zero are peculiari-
ties. This special feature, which is of a topological nature, has already
been mentioned in Section 1.1 (see Figure 1.2).

Giovanelli (1947) pointed out that a highly concentrated electric current
appears readily at an X-type zeroth point in a highly conducting plasma.
This is true and important. Dungey (1958) put forward the idea that

21
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unusual electrodynamic properties of a plasma emerge in the vicinity
of a neutral (or zeroth) point of type X.

Since there was no clear view of the physical essence of reconnection, the
notion has been accepted uncritically. It was assumed, for instance, that
the mere existence of a zeroth point inevitably leads to spontaneous com-
pression of a magneto-plasma configuration and rapid dissipation of the
magnetic field, i.e. a flare (Dungey, 1958; Severny, 1962).

However, as was shown by Syrovatskii (1962), given magnetostatic equi-
librium near a zeroth point, the plasma is stable with respect to spontaneous
compression. The situation changes once the plasma near the zeroth
point is subject to an outside action due to an electric field as
shown in Figure 1.4 or due to a MHD wave which is created, for instance,
by changes of the magnetic field sources at the photosphere (Figure 1.1).

This action gives rise to an original cumulative effect (Syrovatskii, 1966a).
We attempted to understand this fundamental property at the qualitative
level in Section 1.1. Let us illustrate it by the example of the behaviour
of small MHD perturbations near the zeroth line. Bearing the solar flare
case in mind, we consider the reconnection process in the approximation of
a strong magnetic field at first.

2.1.2 Reconnection in a strong magnetic field

Let us start from the set of the ideal MHD equations:

∂v
∂t

+ (v · ∇)v = −∇p

ρ
− 1

4πρ
B × curl B , (2.1)

∂ B
∂t

= curl (v × B) , (2.2)

∂ρ

∂t
+ div ρv = 0 , (2.3)

∂s

∂t
+ (v · ∇) s = 0 , (2.4)

div B = 0 , (2.5)

p = p (ρ, s) . (2.6)

Here v is the macroscopic velocity of plasma considered as a continuous
medium, s is the entropy per unit mass, other notations are also conven-
tional.



2.1. Small MHD Perturbations 23

We shall consider a two-dimensional (2D) problem of the second type.
The problems of this type treat the plane plasma flows with the velocity
field of the form

v = { vx(x, y, t), vy(x, y, t), 0 } (2.7)

associated with the plane magnetic field

B = { Bx(x, y, t), By(x, y, t), 0 } . (2.8)

The electric currents corresponding to this field are parallel to the z axis

j = { 0, 0, j (x, y, t) } . (2.9)

The vector-potential A of such a field has as its only non-zero component:

A = { 0, 0, A (x, y, t) } .

The magnetic field B is defined by the z-component of the vector-potential:

B = curl A =
{

∂A

∂y
, − ∂A

∂x
, 0
}

. (2.10)

The scalar function A (x, y, t) is termed the vector potential . This func-
tion is quite useful, owing to its properties (for more detail see vol. 1,
Section 14.2.2).

In the strong-field-cold-plasma approximation, the MHD equations for
a plane two-dimensional flow of ideally conducting plasma (for second-type
problems) are reduced, in the zeroth order in the small parameter (vol. 1,
Section 13.1.1)

ε2 =
v2

V 2
A

, (2.11)

to the following set of equations (see vol. 1, Section 14.3):

∆ A = 0 , (2.12)

dv
dt

× ∇A = 0 , (2.13)

dA

dt
= 0 , (2.14)

∂ρ

∂t
+ div ρv = 0 . (2.15)

A solution of this set is completely defined inside some region G on the
plane (x, y), once the boundary condition is given at the boundary S

A (x, y, t)
∣∣

S
= f1 (x, y, t) (2.16)
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together with the initial conditions inside the region G

v‖ (x, y, 0)
∣∣

G
= f2 (x, y) , (2.17)

ρ (x, y, 0)
∣∣

G
= f3 (x, y) . (2.18)

Here v ‖ is the velocity component along field lines. Once the potential
A (x, y, t) is known, the transversal velocity component is uniquely deter-
mined by the freezing-in Equation (2.14) and is equal, at any moment
including the initial one, to

v⊥(x, y, t) = (v · ∇A)
∇A

| ∇A |2 = −∂A

∂t

∇A

| ∇A |2 . (2.19)

From Equation (2.12) and boundary condition (2.16) we find the vector po-
tential A (x, y, t) at any moment of time. Next, from Equations (2.13) and
(2.14) and the initial condition (2.17), the velocity v (x, y, t) is determined;
the density ρ (x, y, t) is found from the continuity Equation (2.15) and the
initial density distribution (2.18).

However such a procedure is not always possible (see Somov and Sy-
rovatskii, 1972). This means that continuous solutions to the Equations
(2.12)–(2.15) do not necessarily exist. Let the boundary and initial con-
ditions be given. The vector potential A (x, y, t) is uniquely determined
by Equation (2.12) and the boundary condition (2.16). The latter can be
chosen in such a way that the field B will contain zeroth points:

B =
{

∂A

∂y
, − ∂A

∂x
, 0
}

= 0 . (2.20)

Among them, there can exist ones in which the electric field is distinct from
zero

E = −1
c

∂A
∂t

�= 0 . (2.21)

Such points contradict the freezing-in Equation (2.14). We will call them
the peculiar points.

The freezing-in condition allows continuous deformation of the
strong magnetic field and the corresponding continuous motion of
plasma everywhere except at peculiar zeroth points,

i.e. the lines parallel to the z axis of the Cartesian system of coordinates,
where the magnetic field is zero while the electric field is nonzero.

Note that simultaneous vanishing of both fields is quite unlikely. This
is the reason why the peculiar points occur rather frequently. They will
receive much attention in what follows because they represent the places
where a reconnecting current layer (RCL) is formed as will be shown below.
Here we only stress that
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if there is not a zeroth point inside the region G at the initial time,
it does not mean that such a point will never appear there.

An initial field can even be an homogeneous one (Parker, 1972). Following
the continuous evolution of the boundary condition (2.16), a zeroth point
may appear on the boundary S and, if the electric field at this point does
not equal zero, it will create a magnetic field discontinuity which prevents a
change of magnetic field topology in the approximation of an ideal plasma.
This discontinuity is a neutral layer of infinitesimal thickness. In a plasma
of finite conductivity, the RCL of finite thickness is formed at a peculiar
zeroth point.

The creation of a current layer at the zeroth point which appears on the
boundary S was used in the model of coronal streamers driven by the solar
wind (Somov and Syrovatskii, 1972). Just the same occurs in the model for
interacting magnetic fluxes, compressed by a converging motion of magnetic
footpoints in the photosphere (Low, 1987; Low and Wolfson, 1988).

Another case is an appearance of a couple of neutral points inside the
region G. Anyway, and in all cases,

the interaction of magnetic fluxes in the peculiar point changes the
field topology and creates the reconnecting current layer.

This kind of MHD discontinuous flows is of great importance for plasma
astrophysics.

Let two equal currents I flow parallel to the axis z on lines x = 0, y = ± l
as shown in Figure 1.3. The magnetic field of these currents is expressed
with the aid of the vector-potential A0 having only the z component:

A0 = { 0, 0, A0 (x, y) } ,

where

A0 (x, y) =
I

c

{
ln
[
x2 + (y − l)2

]
+ ln

[
x2 + (y + l)2

]}
. (2.22)

Near the zeroth line situated on the z axis, formula (2.22) may be expanded
in a Teylor series, the square terms of the expansion being sufficient for our
purposes:

A0 (x, y) =
2I

c
(x2 − y2)

or

A0 (x, y) =
h0

2
(x2 − y2) . (2.23)
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Here h0 = 4I/c is the magnetic field gradient in the vicinity of the zeroth
line. The gradient of the field is an important characteristic of a reconnec-
tion region. In fact,

B0 = curlA0 =
{

∂A0

∂y
, −∂A0

∂x
, 0
}

= { − h0y , −h0x , 0 } . (2.24)

The field lines of the hyperbolic field (2.24) are shown in Figure 1.2.
Let us assume the field B0 to be sufficiently strong, so that the Alfvén

speed VA should be much greater than that of sound Vs everywhere, the
exception being a small region near the zeroth line. On the strength of
formula (2.24),

V 2
A

=
h 2

0 r2

4πρ0
,

where r = (x2 + y2)1/2 is the radius in the cylindrical frame of reference,
i.e. in the plane (x, y). Hence the condition

V 2
A

� V 2
s

can be rewritten in the form:

r � rs . (2.25)

Here

rs =
(

4π n0kBT0

h 2
0

)1/2

, (2.26)

n0 and T0 being the number density and temperature of the plasma at the
initial stage of the process, kB is Boltzmann’s constant.

Let l = 1 in formula (2.22). Then the assumed condition (2.25), together
with the condition for applicability of the approximate expression (2.23) for
the potential A0, means that the domain of admissible values is

rs 
 r 
 1 . (2.27)

We shall consider the MHD processes in this domain, related to magnetic
reconnection at the X-type zeroth point.

2.1.3 A linearized problem in ideal MHD

Of concern to us are small perturbations in the region (2.27) relative to the
initial equilibrium state

v0 = 0 , ρ0 = const , p0 = const , ∆A0 = 0 .
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Let us consider plane flows of a plasma with a frozen magnetic field in
the plane (x, y):

v = { vx(x, y, t), vy(x, y, t), 0 } , B = B0 + b ,

the small perturbation of magnetic field being

b = { bx(x, y, t), by(x, y, t), 0 } .

Thus, from the mathematical standpoint (see vol. 1, Section 14.2.2), the
problem at hand belongs to the two-dimensional problems of the second
type.

For small perturbations v, p, ρ, and A (instead of b), the linearized
equations of ideal MHD can be written in the form

∂A

∂t
= −v · ∇A0 ,

∂ v
∂t

= − ∇p

ρ0
− 1

4πρ0
∇A0 ∆A , (2.28)

∂ρ

∂t
= − ρ0 div v .

The gas pressure gradient in the region (2.27) can be ignored. If we did
not ignore the term ∇p, the set of Equations (2.28), on differentiating with
respect to t, could be transformed to give us

∂2A

∂t2
=

(∇A0)2

4πρ0
∆A +

V 2
s

ρ0
∇A0 · ∇ρ ,

∂2v
∂t2

=
∇A0

4πρ0
∆ (v · ∇A0) + V 2

s ∇ div v , (2.29)

∂2ρ

∂t2
=

1
4π

∇A0 · ∇ ∆A + V 2
s ∆ρ .

So perturbations in the region (2.27) are seen (see the underlined terms in
the first equation) to propagate with the local Alfvén velocity VA :

V 2
A0

= V 2
A0

(r) =
(∇A0 (r))2

4πρ0
, (2.30)

the result being accurate to small corrections of the order of V 2
s /V 2

A0
. This

is the case of astrophysical plasma with a strong magnetic field; see the
mostly isotropic wave V+ in vol. 1, Figure 15.3.
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The displacement of the plasma under the action of the perturbation,
ξ, is convenient to introduce instead of the velocity perturbation v:

v =
∂ξ

∂t
. (2.31)

Dropping the terms depending on the pressure gradient, the initial set of
Equations (2.29) is recast as follows (Syrovatskii, 1966b):

∂2A

∂t2
= V 2

A0
(r) ∆A , (2.32)

∂2ξ

∂t2
=

V 2
A0

(r)√
4πρ0

∆ ( ξ · ∇A0) , (2.33)

ρ = − ρ0 div ξ , (2.34)

A = − ( ξ · ∇ ) A0 . (2.35)

Rewrite Equation (2.32) in the cylindrical frame of reference

∂2A

∂t2
=

h 2
0

4πρ0

[
r

∂

∂r

(
r

∂A

∂r

)
+

∂2A

∂ϕ 2

]
.

On substituting x = ln r, this equation is reduced to the usual wave equa-
tion in the variables (x, ϕ)

∂2A

∂t2
= V 2

a

(
∂2A

∂x2 +
∂2A

∂ϕ 2

)
, (2.36)

where
Va = h0/

√
4πρ0

is a constant playing the role of the wave velocity.

2.1.4 Converging waves and the cumulative effect

Let us consider an initial perturbation of the potential, which is independent
of the cylindrical-frame angle ϕ:

A (r, ϕ, 0) = Φ (r) ,

where Φ (r) is an arbitrary function of r. In this case the general solution
of Equation (2.36) is

A (r, t) = Φ ( ln r + Va t) . (2.37)
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The sign +, which we have chosen, by Va t corresponds to the converging
cylindrical wave, its velocity being

V (r) =
dr

dt
= − r Va = −VA0(r) ,

i.e. the wave propagates with the Alfvén velocity (see definition (2.30)).
The following properties of the wave are of interest.

(a) The magnetic field intensity in such a wave is

Br =
1
r

∂A

∂ϕ
= 0 , Bϕ = −∂A

∂r
= −Φ

r
.

As the wave approaches the zeroth line, the field intensity grows

B (r) = B (R) × R

r
.

Here B (R) is the field intensity in the wave when its front is at a distance R
from the zeroth line.

(b) The magnetic field gradient increases as well

∂B

∂r
(r) =

∂B

∂r
(R) ×

(
R

r

)2

.

Thus

as the cylindrical wave converges to zero it gives rise to a cumulative
effect in regard to the magnetic field and its gradient.

(c) The character of the plasma displacement ξ in such a wave can be
judged from the motion Equation (2.33). It contains the scalar product
ξ · ∇A0. Hence the displacements directed along the field lines are absent
in the wave under consideration. The perpendicular displacements

ξ = − A

(∇A0)2
∇A0 , (2.38)

whence, in view of (2.37), it follows that | ξ | ∼ r−1. So

the quantity of the displacement also grows, as the wave approaches
the zeroth line of the magnetic field.

(d) As for the change in plasma density, we find from Equation (2.34),
using formulae (2.38) and (2.37), that

ρ = − ρ0 div ξ ∼ 1
r2 cos 2ϕ . (2.39)
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The plasma density increases in a pair of opposite quadrants while de-
creasing in the other pair (Figure 2.1). The first pair of quadrants
(−π/4 ≤ ϕ ≤ π/4 and 3π/4 ≤ ϕ ≤ 5π/4 ) corresponds to the regions where
the plasma flows are convergent. In the second pair (π/4 < ϕ < 3π/4
and 5π/4 < ϕ < 7π/4 ) of quadrants, the trajectories of the fluid particles
diverge, resulting in a decrease of the plasma density.

Therefore, even in a linear approximation,

small perturbations grow in the vicinity of the magnetic field zeroth
line. As this takes place, regions appear in which the field and its
gradients increase, whereas the plasma density decreases.

E

V

V

B

V

X
Figure 2.1: Plasma flows and the
density change in small perpurba-
tions in the vicinity of a hyperbolic
zeroth point X. Shadow shows two
regions of converging flows; here the
plasma density increases.

The so-called linear-reconnection theory takes into account the dissipa-
tive processes in the linear approximation (see Sections 13.1 and 13.2.3).

2.2 Large perturbations near the neutral line

Let us relax the assumption concerning the smallness of the perturbations
in the vicinity of a zeroth line. Then, instead of linearized MHD equations,
we shall deal with the exact set of two-dimensional equations in the approx-
imation of the strong field and the cold plasma, taken in a zeroth order with
respect to the small parameter ε2 = v2/V 2

A
, i.e. Equations (2.12)–(2.15):

∆A = 0 , (2.40)

dv
dt

× ∇A = 0 , (2.41)
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dA

dt
= 0 , (2.42)

∂ρ

∂t
+ div ρv = 0 . (2.43)

Here it is implied that the region in the vicinity of the zeroth line is to be
restricted by the condition (2.25).

2.2.1 Magnetic field line deformations

As was shown in vol. 1, Section 14.2.2, Equations (2.42) and (2.43) are
integrated on passing to Lagrangian coordinates

r (r0, t) = r0 + ξ (r0, t) . (2.44)

Here r0 is the coordinate of a fluid particle before displacement, i.e. at the
initial moment, r is its coordinate at a moment of time t, ξ(r0, t) is the
displacement vector (cf. definition (2.31)). Let us rewrite Equation (2.44)
as the inverse transformation

r0 (r, t) = r − ξ (r, t) .

Then the continuity Equation (2.43) can be written in its Lagrangian form:

ρ (r, t) = ρ0 (r − ξ (r, t))
D (r − ξ(r, t))

D (r)
, (2.45)

where D (r0)/D (r) is the Jacobian transformation from r0 coordinates to r
coordinates.

The integral of the freezing-in Equation (2.42) is

A (r, t) = A0 (r − ξ (r, t)) , (2.46)

where A0 (r0) is an initial value of the vector-potential.
Had the displacement ξ (r, t) been known, formulae (2.46) and (2.45)

would have allowed us to uniquely determine the field line deformation
and plasma density change in the vicinity of the zeroth line, given the
displacement of the currents I. However, to find ξ(r, t) generally, we must
simultaneously solve Equations (2.40) and (2.41), i.e. the set of equations

∆A = 0 , (2.47)

∂2ξ

∂t2
× ∇A = 0 . (2.48)
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As a rule, to integrate Equation (2.48), we must have recourse to numerical
methods (Somov and Syrovatskii, 1976b). Let us try to circumvent the
difficulty.

Let us suppose the displacement of the currents occurs sufficiently fast
as compared with the speed of sound but sufficiently slow as compared with
the Alfvén speed. With these assumptions, the boundary conditions of the
problem (see (2.16)) change slowly in comparison with the speed of fast
magnetoacoustic waves, which allows us to consider the field as being
in equilibrium at each stage of the process (see Equation (2.47)).

The latter assumption actually means that the total displacement ξ can
be held to be a sum of successive small perturbations δξ of the type (2.38),
each of them transferring the system to a close equilibrial state. Since
the small displacement δξ is directed across the magnetic field lines, the
total displacement ξ is also orthogonal to the picture of field lines. To put
it another way, the lines of the plasma flow constitute a family of curves
orthogonal to the magnetic field lines, i.e. the family of hyperbolae

x y = x0 y0 . (2.49)

A numerical solution of the problem (Somov and Syrovatskii, 1976b) shows
that such a flow is actually realized for comparably small t or sufficiently
far from the zeroth line.

Let us make use of the freezing-in Equation (2.46) to find another
equation relating the coordinates of a fluid particle (x, y) with their ini-
tial values (x0, y0). In view of the formula (2.22) for the initial vector-
potential A0 (x, y), the magnetic field potential of displaced currents is

A (x, y) =
h0

4
{

ln
[
x2 + (y − 1 + δ)2

]
+ ln

[
x2 + (y + 1 − δ)2

]}
. (2.50)

Relative to formula (2.22), I/c = h0/4, l = 1, and δl = δ.
Near the zeroth line, with the accuracy of the terms of order δ, we find

A (x, y) =
h0

2
(
x2 − y2 − 2δ

)
. (2.51)

Substitution of (2.51) in (2.46) gives

y2 − x2 + 2δ = y 2
0 − x 2

0 . (2.52)

Equations (2.49) and (2.52) allow us to express the initial coordinates
of a fluid particle (x0, y0) in terms of its coordinates (x, y) at the moment
of time t (Syrovatskii, 1966a):

x 2
0 =

1
2

{[(
x2 − y2 − 2δ

)2
+ 4x2y2

]1/2
+
(
x2 − y2 − 2δ

)}
,
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(2.53)

y 2
0 =

1
2

{[(
x2 − y2 − 2δ

)2
+ 4x2y2

]1/2
−
(
x2 − y2 − 2δ

)}
.

The displacements determined by these expressions are such that the field
lines which crossed the y axis at points 0,

√
δ,

√
2δ, would take the place of

the field lines which crossed the x axis at points
√

2δ,
√

δ, 0, respectively
(see Figure 2.2 in the region r � rs).

2δ

δ

δ 2δ

δ

y

x

rs2

Figure 2.2: The deformation of the magnetic field lines in the neighbour-
hood of a zeroth line.

The plasma displacements and frozen-in field line deformations obtained
pertain only to the region r � rs. The approximation of a strong field and
a cold plasma is inapplicable outside this region, i.e. r ≤ rs. It must
also be considered that a region of strong plasma compression can arise
in the course of the displacement. The conditions for applicability of the
strong-field-cold-plasma approximation can be broken down in such regions,
thus making it necessary to solve a more general problem. In particular,
field deformations can be distinctly different here, owing to strong electric
currents flowing in these regions. They will be discussed in the next Section.

The main effect demonstrated above is the deformation of the field lines
which is schematically shown as two long dashed areas along the x axis.
Here

a current layer formation is confirmed by the presence of oppositely
directed magnetic field lines

near the origin of the coordinates in Figure 2.3. The current inside the
current layer is parallel to the z axis, i.e. parallel to the electric field E
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related to the magnetic field line motion (cf. Figure 1.4). However, at the
edges of the layer, the currents are sometimes opposite in direction (the
so-called reverse currents) to the one inside the main current layer which is
formed at the zeroth line as shown above.

2.2.2 Plasma density variations

Let us find the density distribution (2.45) by calculating the Jacobian of
the reverse transformation of the Lagrangian variables, with the aid of the
formulae (2.53). Assuming an homogeneous initial distribution of plasma,
we have

ρ (x, y)
ρ0

=
x2 + y2[

(x2 + y2)2 + 4δ (y2 − x2) + 4δ2
]1/2 . (2.54)

The formula obtained shows that in the region

x2 < y2 + δ (2.55)

the displacement of the currents leads to plasma rarefaction. As this takes
place, the largest rarefaction occurs for small r (r2 
 δ):

ρ (x, y)
ρ0

∼ r2

2δ
. (2.56)

By contrast, in the region x2 > y2 +δ the plasma is compressed, its density
tending to infinity at the points (Figure 2.3):

y = 0 , x = ±
√

2δ . (2.57)

The approximation of a strong field and a cold plasma is inapplicable in
the vicinity of these points, and the actual deformation of the field lines
can differ significantly from that found above.

Figure 2.3 illustrates a characteristic distribution of plasma near a cur-
rent layer (−

√
δ ≤ x ≤

√
δ), dissipation of magnetic field being neglected.

The regions of strong plasma compression near the points (2.57) are shown
by the shadowed regions C1 and C2 outside of the layer.

2.3 Dynamic dissipation of magnetic field

2.3.1 Conditions of appearance

In the region between the points (2.57), where the plasma density formally
tends to infinity, the character of the displacements can be determined
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δ

δ

y

x
2a

C C
1 2

Figure 2.3: The plasma distribution near a forming current layer. 2a is the
thickness of the current layer.

by using the freezing-in condition for the magnetic field lines and taking
into account that, as was mentioned in the previous section, plasma spread
along the field lines during the rapid displacement of the currents may
be neglected. Under these assumptions, the magnetic field deformation
is of the form shown in Figures 2.2 and 2.3. Definition of the current
displacement δ is given in formula (2.50).

It is important for the following discussion that the whole magnetic flux
which crossed the axis y in the region

0 < y <
√

2δ ,

namely
Φ = A0 (0,

√
2δ) − A0 (0, 0) = h0 δ , (2.58)

is now confined to the strip y ≤ rs. The thickness of this strip rs ≈ a
in Figure 2.3. The field lines of this flux ‘spread’ along the x axis in the
negative direction. The same flux of field lines, but oppositely directed, is
situated along the x axis in the lower half-plane.

Therefore, in the region

|x | ≤
√

δ , | y | ≤ rs ,

the magnetic field lines of opposite directions are compressed to form a
thin reconnecting current layer (RCL). The region of the magnetic field
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compression is shown in Figures 2.2 and 2.3 as the long dashed area along
the x axis. The magnetic field gradient in this region is evaluated as

h ≈ B

rs
≈ Φ

r 2
s

≈ h0

r 2
s

δ . (2.59)

The field gradient h in the region of the magnetic compression is δ/r 2
s times

its initial value h0. In other words,

the magnetic field gradient inside the current layer is proportional
to the value of the external currents displacement δ,

with the proportionality coefficient, by virtue of definition (2.26), being
larger, the smaller is the gas pressure as compared with the magnetic one
in the reconnecting plasma.

At the same time, according to (2.56) the plasma density in the re-
gion r2 < δ decreases by a factor of r2/2δ. This conclusion applies for
r � rs and is of a qualitative character. Nonetheless it is of fundamental
importance that we can make an order-of-magnitude evaluation of the ra-
tio of the field gradient to the plasma concentration in the region of the
magnetic compression (r ≈ rs)

h

n
≈ h0

n0

δ2

r 4
s

. (2.60)

Recall that in the MHD approximation we usually neglect the displace-
ment current (1/c) ∂E/∂t as compared with the conductive one

j = neu .

Here e is the charge on a particle, u is the current velocity, i.e. the velocity
of current carriers. Subject to this condition, we may use the ‘truncated’
Maxwell equation

curl B =
4π

c
j , (2.61)

whence, on setting | curl B | ≈ h, the following estimate is obtained

h

n
≈ 4πe

(u

c

)
.

Since the particle velocity u cannot exceed the speed of light c,
the current density is limited by the value j = nec and the ratio

h

n
< 4πe . (2.62)
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On the other hand, from (2.60) this ratio is determined by the value of
the displacement δ and by the parameters rs and h0/n0. Once the condi-
tion (2.62) breaks down, by virtue of (2.60), i.e.

h0

n0

δ2

r 4
s

≥ 4πe , (2.63)

the displacement current (1/c) ∂E/∂t must be accounted for in Equa-
tion (2.61). It means that, under condition (2.63),

a strong electric field of an inductive nature arises in the region
where magnetic fluxes interact.

A quantitative description of the physical processes in the region involved
is difficult and is the subject of the theory of reconnection in current layers.
The qualitative effects are as follows.

2.3.2 The physical meaning of dynamic dissipation

The appearance of the inductive electric field, independent of the plasma
motion, signifies the violation of the freezing-in condition. Thus the motion
of the field lines relative to the plasma, which is necessary for their recon-
nection in the region of interaction of the magnetic fluxes, is allowed. The
important aspect of the situation under discussion is that these processes
are independent of Joule dissipation and can take place in a collisionless
plasma. This is the reason why this phenomenon may be termed dynamic
dissipation (Syrovatskii, 1966a) or, in fact, collisionless reconnection (see
Section 2.4.3).

An essential peculiarity of the dynamic dissipation of a magnetic field is
that the inductive electric field is directed along the main current j in the
reconnection region. Hence the electric field does positive work on charged
particles, thus increasing their energy. It is this process that provides the
transformation of the magnetic energy into the kinetic one, i.e. dynamic
dissipation.

As opposed to Joule dissipation, there is no direct proportionality of
the current density j to the electric field intensity E in the case of dynamic
dissipation. Given the condition (2.63),

the current density is saturated at the value j ≈ nec, the field energy
going to increase the total energy of a particle,

E =
mc2√

1 − v2/c2
, (2.64)
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i.e. the acceleration by the electric field. Thus, under the conditions consid-
ered, the field energy converts directly to that of the accelerated particles.

Acceleration occurs along zeroth lines (parallel to the z axis) which are
formed in the current layer region. Recall that the particle motion along a
neutral plane (see Section 1.2) is stable: the magnetic field returns deviating
particles to the neutral plane, as is clear from immediate consideration of
the Lorentz force (e/c)v × B. More realistic analysis of the acceleration
problem will be given in Chapter 9.

The condition (2.63) is, in fact, extreme. This implies the regular accel-
eration of particles to relativistic energies. In fact, acceleration may take
place under much more modest conditions, when the dynamic dissipation
of a magnetic field is, in essence, related to the known phenomenon of the
electric runaway of particles (primarily electrons; see vol. 1, Section 8.4.2).
The condition which in this case replaces the extreme condition (2.63) was
derived by Syrovatskii (1966b).

Needless to say, relativistic energies are not always reached in the ac-
celeration process. Some instabilities are, as a rule, excited in the plasma-
beam system in the acceleration region. As this takes place, particle scat-
tering and acceleration with the created wave turbulence must be accounted
for. However it is important that the general inference as to the possibility
of particle acceleration by an electric field in the magnetic recon-
nection region (i.e. dynamic dissipation of the magnetic field) remains
valid, in particular, when applied to the solar flare problem (see Section 3.1,
Chapters 6 and 9).

2.4 Nonstationary analytical models of RCL

2.4.1 Self-similar 2D MHD solutions

In connection with the 2D problem of the equilibrium state of a plasma near
the X-type zeroth point of magnetic field, Chapman and Kendall (1963) had
obtained the exact particular solution of the ideal MHD equations for an
incompressible fluid. This self-similar analytical solution has a perfectly
defined character. A fixed mass of a plasma near the zeroth point receives
energy from the outside in the form of an electromagnetic-field energy flux.
Finally, a cumulative effect is developed and arbitrarily large energy densi-
ties are attained. The solution demonstrates the tendency to form a current
layer near the zeroth point.

Imshennik and Syrovatskii (1967) had found a self-similar solution for
an ideal compressible fluid. Let us also start from the set of the ideal
MHD Equations (2.1)–(2.6). Consider the 2D MHD problem of the second
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type (see vol. 1, Section 14.2.2). Substitute definition (2.10) of the vector
potential A in the first three equations, we have the following set:

ρ
dv
dt

= −∇p − 1
4π

∆A ∇A , (2.65)

curl
dA
dt

= 0 , (2.66)

dρ

dt
+ ρ div v = 0 . (2.67)

We assume that the pressure p is a function of the density ρ only. This
condition is satisfied by any politropic equation of state. Moreover, as
it was shown by Imshennik and Syrovatskii, for the class of solutions of
interest to us, the plasma density ρ depends only on time. Hence, by
virtue of the foregoing assumption, the pressure p depends only on time
too. Therefore the pressure gradient ∇p in Equation (2.65) vanishes. So
we have equations:

ρ
dv
dt

= − 1
4π

∆A ∇A , (2.68)

curl
dA

dt
= 0 , (2.69)

dρ

dt
+ ρ div v = 0 . (2.70)

Let us seek a solution of the set of Equations (2.68)–(2.70) under the
following initial conditions.

(a) The plasma density is constant:

ρ (x, y, 0) = ρ0 , (2.71)

(b) The magnetic field is a hyperbolic one (cf. formula (2.23) where
put h0/2 = a0):

A (x, y, 0) = a0
(
x2 − y2) , (2.72)

(c) The initial velocity depends linearly on the coordinates, so that
there is no flow of plasma across the coordinate axes:

vx (x, y, 0) = Ux , vy (x, y, 0) = V y . (2.73)

Thus the initial conditions are defined by the four independent quan-
tities ρ0, a0, U, and V . We can construct from them three independent
combinations with the dimension of time:

tx =
1
U

, ty =
1
V

, t0 =
(πρ0)1/2

| a0 | (2.74)
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and not even one combination with the dimension of length. We introduce
new variables with dimensions equal to a certain power of the length:

τ =
t

t0
, ux = t0vx , uy = t0vy , a =

A

a0
, g =

ρ

ρ0
. (2.75)

In terms of these variables, Equations (2.68)–(2.70) take the form

∂

∂x

da

dτ
= 0 ,

∂

∂y

da

dτ
= 0 , (2.76)

g
dux

dτ
= −1

4
∂a

∂x
∆a , g

duy

dτ
= −1

4
∂a

∂y
∆a , (2.77)

dg

dτ
+
(

∂ux

∂x
+

∂uy

∂y

)
g = 0 . (2.78)

The initial conditions (2.71)–(2.73) then become

g (x, y, 0) = 1 , a (x, y, 0) = x2 − y2,

ux(x, y, 0) = εxx , uy(x, y, 0) = εyy , (2.79)

where

εx = U
(πρ0)1/2

| a0 | , εy = V
(πρ0)1/2

| a0 | . (2.80)

Thus the problem is completely determined by the two dimensionless
parameters (2.80) which are similar to the parameter ε in (2.11). As to the
choice of the unit of length, Equations (2.76)–(2.78) impose no limitations
whatever. So the length unit can be chosen arbitrarily; and both the coor-
dinates x and y, together with all the variables in definition (2.75), can be
chosen dimensionless.

Therefore we consider the problem as a self-similar one, more exactly,
as the self-similar problem of the first type (Zel’dovich and Raizer, 1966,
2002, Chapter 12). It means that the set of equations in partial derivatives,
(2.76)–(2.78), can be reduced to the set of ordinary differential equations.
Let us do it. Substitute in Equations (2.76)–(2.78) the following solution:

a (x, y, τ) = ax(τ) x2 − ay(τ) y2, (2.81)

g (x, y, τ) = g (τ) , (2.82)

ux(x, y, τ) = fx(τ) x , uy(x, y, τ) = fy(τ) y . (2.83)

We obtain the following set of five ordinary differential equations for the
five unknown functions ax(τ), ay(τ), g (τ), fx(τ) and fy(τ):

ȧx + 2axfx = 0 , ȧy + 2ayfy = 0 ,
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ġ + (fx + fy) g = 0 , (2.84)(
ḟx + f2

x

)
g = ax (ay − ax) ,

(
ḟy + f2

y

)
g = ay (ax − ay) .

The dot denotes differentiation with respect to the dimensionless time τ .
The initial conditions (2.79) give us the following initial conditions:

ax(0) = 1 , ay(0) = 1 , g(0) = 1 ,

fx(0) = εx , fy(0) = εy . (2.85)

Let us eliminate the functions fx and fy from the first two and last
equations of the set (2.84). As a result we get the equation

ȧx

ax
+

ȧy

ay
− 2

ġ

g
= 0 . (2.86)

From this, assuming that the functions ax, ay and g are not equal to zero
and using the initial conditions (2.85), we obtain an integral of the set of
ordinary Equations (2.84):

g = (axay)1/2
. (2.87)

Since the initial values of these three functions are positive, the subsequent
results will pertain to a time interval τ for which these quantities remain
positive.

2.4.2 Magnetic collapse at the zeroth point

To illustrate the behaviour of the solutions (2.81)–(2.83), it is convenient
to introduce two functions ζx(τ) and ζy(τ) such that

ax =
1
ζ 2
x

, ay =
1
ζ 2
y

. (2.88)

Without loss of generality, we assume that these new functions are positive.
From the first two equations of the set (2.84) and from the integral (2.87)

we obtain formulae for the other three unknown functions:

fx =
ζ̇x

ζx
, fy =

ζ̇y

ζy
, g =

1
ζx ζy

. (2.89)

The set of five equations (2.84) then reduces to two second-order differential
equations for ζx(τ) and ζy(τ):

ζ̈x = −ζy

(
1
ζ 2
x

− 1
ζ 2
y

)
, ζ̈y = ζx

(
1
ζ 2
x

− 1
ζ 2
y

)
, (2.90)
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with the initial conditions

ζx(0) = 1 , ζy(0) = 1 ,

ζ̇x(0) = εx , ζ̇y(0) = εy . (2.91)

For definiteness, let εx > εy. Then a solution of the problem has a
singular point which is reached after a finite time τ0. When τ → τ0 the
quantity ζx tends to a finite value ζx(τ0), and ζy(τ) → 0. So we retain in
Equations (2.90) only the principal terms:

ζ̈x =
1
ζy

, ζ̈y = − ζx

ζ 2
y

. (2.92)

In the region τ < τ0 of interest to us, the solution of these equation is

ζx(τ) = ζx(τ0) + ... ,

ζy(τ) =
(

9
2

ζx(τ0)
)1/3

(τ0 − τ)2/3 + ... . (2.93)

Here the terms of higher order of smallness in (τ0 − τ) have been omitted.
Returning to the variables (2.88) and (2.89), we obtain the asymptopic

behaviour of the unknown functions near the singularity as τ → τ0:

ax → ax(τ0) , ay →
(

2
9

)2/3

(ax(τ0))
1/3 1

(τ0 − τ)4/3 ,

fx → εx(τ0) , fy → − 2
3(τ0 − τ)

, (2.94)

g →
(

2
9

)1/3

(ax(τ0))
2/3 1

(τ0 − τ)2/3 .

Here the quantities τ0, ax(τ0), and εx(τ0) depend on the initial condi-
tions (2.79) and can be determined by numerical integrating (Imshennik
and Syrovatskii, 1967) the complete set of Equations (2.76)–(2.78).

Let us consider the fraction of the plasma that is located within a circle
of radius equal to unity (Figure 2.4) at the initial instant τ = 0. The
corresponding Lagrange line is the circle

ax(0) x2 + ay(0) y2 = 1 .

Therefore at any subsequent instant of time this plasma will be located
inside the ellipse

ax(τ) x2 + ay(τ) y2 =
x2

ζ 2
x (τ)

+
y2

ζ 2
y (τ)

= 1 , (2.95)
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Figure 2.4: Magnetic collapse in the vicinity of a hyperbolic zeroth point.

where ζx(τ) and ζy(τ) introduced above have the simple meaning of semi-
axes of this deforming ellipse.

As follows from the obtained solution, the semi-axis whose direction
corresponds to a smaller initial velocity vanishes at the instant τ0. At the
same time, the second semi-axis remains different from zero and bounded.
Thus any initial circle is transformed at the instant τ0 into a segment of
the x axis with the ends x = ± ζx(τ0) as shown in Figure 2.4.

Let us consider the behaviour of the magnetic field (see definitions (2.72)
and (2.81)):

B = h0 { −ay(τ) y, −ax(τ) x, 0 } , (2.96)

where h0 = 2a0 is the gradient of the initial field near the zeroth point. In
the limit as τ → τ0 the field is equal to

B = h0

{
∓ 1

ζy(τ)
, − x

ζx(τ)
, 0
}

, (2.97)

where the minus and plus signs correspond to the regions y > 0 and y < 0
respectively. Therefore, when τ → τ0, the magnetic field is always tangent
to the x axis segment into which the ellipse (2.95) degenerates, increases in
magnitude without limit, and experiences a discontinuity on the x axis:

Bx(y = +0) − Bx(y = −0) = − 2h0

ζy(τ)
→ ∞ . (2.98)

The appearance of the discontinuity in the magnetic field corresponds
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to an unbounded increase in the density of the electric current:

jz =
c

4π
( curlB )z = − c

4π
∆A . (2.99)

Substituting (2.81) and (2.88) into (2.99), we calculate the current density

jz(τ) =
ch0

4π

(
1

ζ 2
y (τ)

− 1
ζ 2
x (τ)

)
. (2.100)

From this and from the solution (2.93) it follows that when τ → τ0 the
current density increases like

jz(τ) ∼ 1

(τ0 − τ)4/3 . (2.101)

So, when τ → τ0 a kind of magnetic collapse occurs. The x component
of the magnetic field and the z component of the current density become
infinite. The magnetic field is tangential to the x axis everywhere and
changes its sign when passing the plane y = 0. Therefore

the magnetic collapse results in the generation of a neutral current
layer after a finite amount of time.

As we mentioned above, a similar solution for imcompressible plasma
was obtained by Chapman and Kendall (1963). In that solution the quanti-
ties ζx and ζy depend exponentially on time τ . Thus the magnetic collapse
in an incompressible fluid requires an infinite amount of time.

In general, it is difficult to determine the exact conditions under which
the derived plasma motion can occur. The most difficult question is that of
the realization of the assumed initial linear distribution of velocity (2.73).
In practice, such a distribution could be realized as a small perturbation
of an stationary initial state. One might therefore assume, as was done by
Chapman and Kendall, that the entire process has the same character as
an ordinary instability. However Imshennik and Syrovatskii showed that

the plasma flow under consideration – magnetic collapse – is caused
by external forces and has a cumulative nature

(as we saw in Section 2.1.4). Syrovatskii (1968) showed that the self-similar
solutions obtained in both Chapman and Kendall (1963) and Imshennik and
Syrovatskii (1967) can be set in correspondence with exact boundary condi-
tions that have a physical meaning. These conditions are a particular case
of the conditions considered in Sections 2.1 and 2.2. They correspond to a
change of the potential of the external currents producing the hyperbolic
field in accordance with a fully defined law (Syrovatskii, 1968).
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2.4.3 From collisional to collisionless reconnection

An essential circumstance in magnetic collapse is that the current den-
sity (2.101) increases more rapidly than the plasma density and accordingly
the particle density

n(τ) ∼ g(τ) ∼ 1

(τ0 − τ)2/3 . (2.102)

The specific (per one particle) current density is

jz

n
=

ch0

4π n0

(
ζx

ζy
− ζy

ζx

)
, (2.103)

where n0 is the initial plasma density. In the limit as τ → τ0

jz

n
=

ch0

4π n0

(
2

9 ax(τ0)

)1/3( 1
τ0 − τ

)2/3

. (2.104)

So the ratio jz/n tends to infinity when τ → τ0 within the frame of the
solution desribed above. Of course, the solution has no physical meaning
near the singularity where a number of quantities increase infinitely.

When a sufficiently high current density is attained, new effects
arise, not accounted from by MHD.

Here they are. First, when the current density

jz ≥ σEDr , (2.105)

where EDr is the Dreicer field, an intense electric runaway of electrons begins
and causes current instabilities inside the reconnecting current layer. This
process leads to a decrease in an effective conductivity of the plasma inside
the current layer (Section 6.3), but still does not impose essential limitations
on the applicability of MHD to the description of the macroscopic plasma
flows.

If, however,
jz � σEDr , (2.106)

direct acceleration of the particles by the strong electric field can set in.
This is the case of dynamic dissipation of the magnetic field, for exam-
ple, in solar flares (see the estimations in Section 6.1.1). The particle inertia
(usually combined with anomalous resistivity due to wave-particle interac-
tions) replaces the classical resistivity in allowing the magnetic reconnection
to occur very quickly and practically without any Coulomb collisions.
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Fast collisionless reconnection seems to be often observed in a high-
temperature, rarefied cosmic plasma in the presence of a strong magnetic
field, for example, in solar flares. At a first sight, to describe the collisionless
reconnection process, one may try to use an ordinary resistive MHD with
a generalized Ohm’s law (see vol. 1, Chapter 11) by simply including the
electron inertia:

Ez = σ −1
ef jz +

4π(
ω

(e)
pl

)2
d

dt
jz . (2.107)

Here σef is an anomalous conductivity originated from the wave-particle
interaction or the stochasticity of the particle orbits.

The problem will appear soon, however, in such an over-simplified ap-
proach because inside actual reconnecting current layers the magnetic field
is not equal to zero. This internal (transversal and longitudinal) magnetic
field has a strong influence on the particle acceleration by the strong electric
field Ez related to the fast collisionless reconnection. This problem will be
discussed in Chapter 9.



Chapter 3

Evidence of Reconnection
in Solar Flares

The physics of flares on the Sun now becomes ‘an étalon’ for contem-
porary astrophysics, in particular for gamma and X-ray astronomy. In
contrast to flares on other stars and to many analogous phenomena in
the Universe, solar flares are accessible to a broad variety of observa-
tional methods to see and investigate the magnetic reconnection pro-
cess in high-temperature strongly-magnetized plasma of the corona as
well as in low-temperature weakly-ionized plasma in the photosphere.

3.1 The role of magnetic fields

3.1.1 Basic questions

Understanding solar flares has been a major goal of astrophysics since fre-
quent observations of solar flares became available in the 1920s. Early
studies showed that flares were preferentially associated with strong com-
plicated magnetic fields. Estimates of the energy required to power large
flares, together with their association with magnetic fields, led to the con-
clusion that flares must be electromagnetic in origin. Step by step it bacame
more and more clear that a flare is the result of the reconnection of magnetic
field lines in the corona.

However there were and still exist three objections to the hypothesis
that the energy of a solar flare can be stored in the form of a magnetic field
of one or several reconnecting current layers (RCLs).

47
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(1) First, it is claimed that measurements of photospheric magnetic
fields do not demonstrate an unambiguous relation between flares and the
changes of the magnetic fields. More exactly, the changes in question are
those that occur immediately before a flare to creat it. These changes were
supposed to be the cause but not the consequence of the flare.

(2) The second objection is related to the time of dissipation of the
magnetic field in a volume that would contain the energy necessary for the
flare. If this time is estimated in a usual way as the diffusion time in a
solar plasma of a finite conductivity, then it is too long compared with the
observed duration of the flare.

(3) The third objection is the most crucial one: the observers have
never seen real RCLs in solar flares.

For more than four decades, starting from Severny (1964), solar ob-
servers have been studying flare-related changes in photospheric magnetic
fields, which would provide crucial information as to how an active region
stores and releases its energy (see also Lin et al., 1993; Wang, 1999). How-
ever the role of photospheric fields is still far from being fully understood
and is an area of ongoing research (e.g., Liu et al., 2005; Sudol and Har-
vey, 2005; Wang et al., 2005). What are the answers on the reconnection
theory to the objections mentioned above?

3.1.2 Concept of magnetic reconnection

According to contemporary views, the principal flare process is contingent
on the accumulation of the free magnetic energy in the corona and chromo-
sphere. At least, this is one of basic concepts (see Chapter 14). By ‘free’ we
mean the surplus energy above that of a potential magnetic field
having the same sources (sunspots, background fields) in the photosphere.
In other words, the free energy is related to the electric currents in the
solar atmosphere above the photosphere. The flare correspondes to rapid
changes of these currents. So we distinguish between two processes: (1)
the slow accumulation of flare energy and (2) its fast release, a flare.

Let us see these distinctions in the following classical example – the
evolution of the quadrupole configuration of sunspots shown in the two-
dimensional (2D) Figure 3.1. Four sunspots of pairwise opposite polarity
are shown: N and S represent a bipolar group of sunspots in an active
region, n and s model a new emerging flux. All four sunspots are placed
along the axis x placed in the photospheric plane Ph at the bottom of the
chromosphere Ch.

As in Figure 1.6, three consequent states of the potential field are
shown. In Figure 3.1a the field line A1 is the separatrix line of the initial
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Figure 3.1: The classical 2D cartoon of magnetic reconnection in a solar
flare. Three states of the potential field: (a) the initial state, (b) the pre-
reconnection state, (c) the final state after reconnection.
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state (a), this field line will reconnect first; X is the neutral point (line
along the z axis) of the potential field at the initial state, here the RCL is
created at the state (b). The magnetic field line A2 is the separatrix of the
final state (c) or the last reconnected field line. Therefore δA = A2 − A1 is
the reconnected magnetic flux.

In Figure 3.1b three solid arrows under the photosphere show an emer-
gence of the new magnetic flux (the sunspots n and s); the sunspots have
been emerged, but the field lines do not start to reconnect.

In general, the redistribution of fluxes appears as a result of the slow
motions and changes of magnetic field sources in the photosphere.
These changes can be either the emergence of a new flux tube from below the
photosphere (Figure 3.1) or many other flows of photospheric plasma,
in particular the shear flows – inhomogeneous horizontal flows along the
neutral line of the photospheric magnetic field. For this reason,

an actual reconnection of magnetic fields in the solar atmosphere is
always a three-dimensional process

(see next Section). Sometimes the 2D problems still give a simple illus-
tration of an effect, for example, the formation and dissipation of the
RCL at the X point under action of the photospheric shear (Kusano and
Nishikawa, 1996; Karpen et al., 1998), see also Sections 14.3 and 14.4. The
term ‘2.5-dimensional’ frequently refers to such 2D MHD problems (in two
spatial variables x and y) to point out the presence of the longitudinal
field Bz related to the shear flow.

3.1.3 Some results of observations

Let us come back to the first objection (1) in Section 3.1.1 to the recon-
nection theory of solar flares. According to the theory, the free magnetic
energy is related to the electric current J inside the RCL. The flare cor-
responds to rapid changes of this current. It is clear, however, that the
magnetic flux through the photospheric plane Ph (Figure 3.1) can change
only little over the whole area of a flare during this process, except in some
particular places, for example, between close sunspots N and s.

It means that sunspots and other magnetic features in the photosphere
are weakly affected by the occurrence of a flare because the plasma in
the photosphere is almost 109 times denser than the plasma in the corona
where the flare originates. Therefore it is difficult (but still possible) for
disturbances in the tenuous corona and upper chromosphere to affect the
extremely massive plasma in the photosphere. Only small MHD perturba-
tions penetrate into the photosphere.
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The same is true in particular for the vertical component of the magnetic
field, which is usually measured. Therefore

in the first approximation, the photospheric magnetic field changes
a little during the solar flare over its whole area.

As a consequence, it is not surprising that after a flare the large-scale struc-
ture in the corona can remain free of noticeable changes, because it is de-
termined essentially by the potential part of the magnetic field above the
photospheric sources. More exactly, even being disrupted, the large-scale
structure will come to the potential field configuration corresponding to
the post-flare position of the photospheric sources (see discussion in Sec-
tion 14.5.1).

On the other hand, in the Bastille day flare on 2000 July 14 (see Chap-
ters 4 and 5) as well as in some other large solar flares, it was possible to
detect the real changes in the sunspot structure just after a flare. The outer
penumber fields became more vertical due to magnetic reconnection in the
corona (Liu et al., 2005; Wang et al., 2005). One can easily imagine such
changes by considering, for example, Figure 3.1 between sunspots N and s.

Sudol and Harvey (2005) have used the Global Oscillation Network
Group (GONG) magnetograms to characterize the changes in the photo-
spheric vertical component of magnetic field during 15 large solar flares.
An abrupt, significant, and persistent change in the magnetic field occured
in at least one location within the flaring active region during each event
after its start. Among several possible interpretations for these observa-
tions, Sudoh and Harvey favour one in which the magnetic field changes
result from the penumber field relaxing upward by reconnecting magnetic
field above the photoshere. This interpretation is very similar to than one
given by Liu et al. (2005) and Wang et al. (2005).

As for the second objection (2) to the hypothesis of accumulation of
energy in the form of magnetic field of slowly-reconnecting current layers
in the solar atmosphere, the rapid dissipation of the field necessary for the
flare is naturally explained by the theory of current layers presented in what
follows, especially in Chapters 6 and 7).

3.2 Three-dimensional reconnection in flares

3.2.1 Topological model of an active region

Gorbachev and Somov (1989, 1990) have developed a three-dimensional
model for a potential field in the active region AR 2776 with an extended
flare of 1980 November 5. Before discussing the flare, let us consider, at



52 Chapter 3. Evedince of Reconnection in Solar Flares

e

e

e
e

N
S

s

n

X

X

1

2

Q

Ph

S
S

1

2

N

X

S

Figure 3.2: The model for the magnetic field of four sunspots of pairwise
opposite polarity. The sunspots N and S in the photospheric plane Ph.
The separatrices S1 and S2 cross at the separator X1XX2 above the plane Q
of the effective magnetic ‘charges’ eN , eS , etc.

first, the general properties of this model called topological . Four magnetic
field sources – the magnetic ‘charges’ eN and eS , en and es, located in the
plane Q under the photosphere Ph (Figure 3.2) – are used to reproduce
the main features of the observed field in the photosphere related to the
four most important sunspots: N, S, n and s. As a consequence, the model
reproduces only the large-scale features of the actual field in the corona
related to these sunspots.

The features are two magnetic surfaces, the boundary surfaces called
the separatrices S1 and S2 (Figure 3.2), that divide the whole space above
the under-photospheric plane Q into four regions and, correspondingly, the
whole field into four magnetic fluxes having different linkages. The field
lines are grouped into four regions according to their termini. The separa-
trices of the potential magnetic field are formed from field lines beginning
or ending at magnetic zeroth points X1 and X2 rather than the magnetic
charges, of course. The field lines originating at the point X1 form a sepa-
ratrix surface S1 (for more detail see Gorbachev et al., 1988).

There is a topologically singular field line X1XX2 lying at the intersec-
tion of the two separatrices, it belongs to all four fluxes that interact at
this line – the 3D magnetic separator . So the separator separates the
interacting magnetic fluxes by the separatrices (see also Sweet, 1969,
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Lau, 1993).
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Figure 3.3: The same model for the magnetic field. The field lines located
at the separatrices and connected to the separator due to the reconnection
process at the point X, the vector B ‖ is the longitudinal component of a
magnetic field.

The potential field model does not include any currents and so cannot
model the energy stored in the fields and released in the flares. Therefore
here we introduce some currents and energetics to a flare model. The
linkage of real field lines connected to the separator is shown in Figure 3.3.
This Figure does not mean, of course, that we assume the existance of
real magnetic charges under the photosphere as well as the real X-type
zeroth points X1 and X2 in the plane Q which does not exist either. We
only assume that above the photospheric plane the large-scale magnetic
field can be described in terms of such a model. We also assume that
the actual conditions for reconnection are better at some point X of the
separator rather than at its other points. If the magnetic sources move
or/and change, the field also changes.

It is across the separator that the magnetic fluxes are redistributed
and reconnected so that the magnetic field could remain potential,
if there were no plasma.

In the presence of the solar plasma of low resistivity, the separator plays
the same role as the hyperbolic neutral line of magnetic field, familiar from
2D MHD problems (see Syrovatskii, 1966a; Sweet, 1969; Brushlinskii et
al., 1980; Biskamp, 1986 and 1997). In particular, as soon as the separator
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Figure 3.4: The current layer RCL with a total current J at the separator.

appears, the electric field E 0 induced by the varying magnetic field pro-
duces an electric current J along the separator. The current interacts with
the potential magnetic field in such a way (Section 1.1.3) that the current
assumes the shape of a thin wide current layer (see RCL in Figure 3.4).

In the high-conductivity plasma the current layer hinders the redis-
tribution of the magnetic fluxes.

This results in an energy being stored in the form of magnetic energy of a
current layer – the free magnetic energy.

Therefore the model assumes that the slowly-reconnecting current layer
appears at the separator (Syrovatskii, 1981; Gorbachev and Somov, 1989;
Longcope and Cowley, 1996) in a pre-flare stage. If for some reason (see
Somov, 1992) the reconnection process becomes fast, then the free mag-
netic energy is rapidly converted into kinetic energy of particles. This is a
flare. The rapidly-reconnecting current layer, being in a high-temperature
turbulent-current state (Section 6.3), provides the flare energy fluxes along
the reconnected field lines.

∗ ∗ ∗

It is important for what follows in Chapters 9, 11, and 14 that

actual 3D reconnection at the separator proceeds in the presence of
an increasing (or decreasing) longitudinal magnetic field B ‖

(Figure 3.3), which is parallel to the electric current J inside the RCL
(Figure 3.4). What factors do determine the increase (or decrease) of the
longitudinal field? – The first of them is the global field configuration, i.e.
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the relative position of the magnetic field sources in an active region. It
determines the position of the separator and the value of the longitudinal
field at the separator and in its vicinity. This field is not uniform, of course,
near the separator.

The second factor is the evolution of the global magnetic configuration,
more exactly, the electric field E 0 related to the evolution and responsible
for driven reconnection at the separator. The direction of reconnection –
with an increase (or decrease) of the longitudinal magnetic field – depends
on the sign of the electric field projection on the separator, i.e. on the
sign of the scalar product (E 0 · B ‖ ). In general, this sign can be plus or
minus with equal probabilities, if there are no preferential configurations of
the global field or no preferential directions of the active region evolution.
This statement as well as the whole model must be examined by future
observations and their analysis.

3.2.2 Topological portrait of an active region

Because the topological model uses a minimal number of magnetic sources
– four, which is necessary to describe the minimal number of interacting
magnetic fluxes – two, we call it the quadrupole-type model. This label is
not an exact definition (because in general eN �= − eS and en �= − es) but
it is convenient for people who know well the exact-quadrupole model by
Sweet (1969). In fact, the difference – the presence of another separator in
the model by Gorbachev and Somov – is not small and can be significant for
actual active regions on the Sun. The second separator may be important
to give accelerated particles a way to escape out of an active region in
interplanetary space.

Figure 3.5 shows the topologically important magnetic-field lines in the
plane (x′, y′) which is the plane Q of the effective sources e1, e2, e3, and e4.
They reproduce the large-scale features of the observed magnetic field in
the photosphere related to the four largest sunspots in the active region AR
2776 where the extended 1B/M4 flare of 1980 November 5 was observed by
the SMM satellite. Positions and magnitudes of the sources are adjusted
to fit the main topological features of the magnetogram (see Figures 1 and
3 in Gorbachev and Somov, 1989).

The field lines shown in Figure 3.5 play the role of separatrices (cf.
Figure 3.2) and show the presence of two separators in the active region.
Two zeroth points X1 and X2 are located in the vicinity of the magnetic
sources and are connected by the first separator shown by its projection,
the thin dasched line L1. Near this separator, the field and its gradient are
strong and determine the flare activity of the region. Another separator
starts from the zeroth point X3 far away from the magnetic sources and
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Figure 3.5: The topological portrait of the active region AR 2776 where
the solar flare of 1980 November 5 occurred.

goes much higher above the active region. The second separator can be
responsible for flares in weaker magnetic fields and smaller gradients high
in the corona.

Let us suppose that a part of the flare energy is initially released in some
compact region E near the apex of the main separator X1X2. Then energy
fluxes FE will propagate along the field lines connecting the energy source
with the photosphere. Projections of the energy source E on the photo-
spheric plane Ph along the field lines are shown as two ‘flare ribbons’ FR1
and FR2 in Figure 3.6. Therefore we identify flare brightenings, in the
hydrogen Hα line as well as in EUV and hard X-rays, with the ribbons
located at the intersection of the separatrices with the chromosphere which
is placed slightly above the photospheric plane (x, y).

The characteristic saddle structure of the field in the vicinity of the
reconnecting point X at the separator (cf. vol. 1, Figure 14.1) leads to a
spatial redistribution of the energy flux FE of heat and accelerated parti-
cles. This flux is efficiently split apart in such a way that it creates the
observed long-narrow Hα ribbons in the chromosphere (see FR1 and FR2
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Figure 3.6: The flare ribbons
at both sides of the photo-
spheric neutral line NL in the
flare of 1980 November 5.

in Figure 3.7).
For the first time, the model by Gorbachev and Somov (1989, 1990)

had reproduced the observed features of the M4/1B flare of 1980 Novem-
ber 5. In particular, the model predicts the simultaneous flaring of the two
chromospheric ribbons. Moreover it predicts that a concentration of the
field lines that bring energy into the ribbons in the chromosphere is higher
at the edges of the ribbons, i.e. at relatively compact regions indicated as
A, B, and C. Here the Hα brightenings must be especially bright. This
prediction of the model is consistent with observations of Hα ‘kernels’ in
this flare.

3.2.3 Features of the flare topological model

The topological model also predicts another signature of flares. Since in
the Hα kernels the flare energy fluxes are more concentrated, the impul-
sive heating of the chromosphere must create a fast expansion of high-
temperature plasma upwards into the corona (see Somov, 1992). This ef-
fect is known as the chromospheric ‘evaporation’ observed in the EUV and
soft X-ray (SXR) emission of solar flares. Evaporation lights up the SXR
coronal loops in flares.

Moreover the topological model shows that the two flare ribbons as well
as the four of their edges with Hα kernels are magnetically connected to
the common region of energy release at the separator (see E in Figure 3.7).
Note that Figure 3.7 demonstrates only the field lines connected to one of
the ribbons. Through the same region all four Hα kernels are magnetically
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Figure 3.7: A picture of potential field lines crossing the region of primary
energy release E , which is situated at the apex of the main separator (bold-
face dashed curve). The flare ribbons are formed where these field lines
cross the photosphere (plane z = 0).

connected to one another. Therefore the SXR loops look like they are
crossing or touching each other somewhere in the region of energy release
as shown in Figure 3.8 from Somov et al. (2001, 2002b).

So the quadrupole-type model predicts that the reconnecting magnetic
fluxes are distributed in the corona in such a way that the two SXR loops
may look like that they interact with each other. That is why the
SXR observations demonstrating such structures are usually considered as
direct evidence in favour of the model of two interacting loops (Sakai and
de Jager, 1996). The difference, however, exists in the primary source of
energy. High concentrations of electric currents and twisted magnetic fields
are created inside the interacting loops by some under-photospheric mecha-
nism. If these currents are mostly parallel they attract each other giving an
energy to a flare (Gold and Hoyle, 1960). On the contrary, according to the
topological model, the flare energy comes from an interaction of magnetic
fluxes that can be mostly potential.

Note that the S-shaped structures, when they are observed in SXRs
(e.g., Figure 2 in Pevtsov et al., 1996) or in hydrogen Hα-line, are usu-
ally interpreted in favour of non-potential fields. In general, the shapes of
coronal loops are signature of the helicity (Section 12.1) of their magnetic
fields. The S-shaped loops match flux tubes of positive helicity, and inverse
S-shaped loops match flux tubes of negative helicity (Pevtsov et al., 1996).
As we see in Figure 3.8, the S-shaped structure CEB connecting the bright
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Figure 3.8: Field lines that connect the Hα kernels A, B, C, and D. Chro-
mospheric evaporation creates a picture of the crossing SXR loops predicted
by the topological model for a flare in an active region with the quadrupole-
type configuration of magnetic sources in the photosphere.

points C and B results from the computations of the potential field in the
frame of the topological model.

Not surprisingly, the potential field produced by four sources may be
even more complicated and may look as a strongly non-potential field.
Severely kinked Ω-type loops, sometimes connecting two active regions,
might be understood in terms of a simple topological model, see Figure 8
in Pevtsov and Longcope (1998).

In the active region AR 2776 where the flare of 1980 November 5 was
observed, Den and Somov (1989) had found a considerable shear of a
potential field above the photospheric neutral line near the region of the
brightest flare loop AB. Many authors concluded that an initial energy of
flares is stored in magnetic fields with large shear. However, such flares
presumably were not the case of potential field having a minimum energy.
This means that the presence of magnetic shear is not a sufficient condition
for generation of a large flare in an active region.

The topological model by Gorbachev and Somov postulated a global
topology for an active region consisting of four fluxes. Reconnection be-
tween, for example, the upper and lower fluxes transfers a part of the
magnetic flux to the two side systems. Antiochos (1998) addresses the
following question: ‘What is the minimum complexity needed in the mag-
netic field of an active region so that a similar process can occur in a fully
three-dimensional geometry?’ He starts with a highly sheared field near the
photospheric neutral line held down by an overlying unsheared field. Anti-



60 Chapter 3. Evedince of Reconnection in Solar Flares

ochos concludes that a real active region can have much more complexity
than very simple configurations. We expect that

the topology of four-flux systems meeting along a coronal separator
is the basic topology underlying eruptive activity of the Sun.

It is unlikely that more than four fluxes would share a common boundary,
a separator. This four-flux topology is precisely what is needed for a flare
to occur.

On the other hand, magnetic configurations with more separators would
have more opportunity to reconnect and would thus more likely to produce
flares. Such complicated configuration would presumably produce many
small flares to release a large excess of magnetic energy in an active region
rather than one large flare.

It is also clear that, in order to accomplish different aims of topological
modeling, different methods have to be used. In general, it is not a simple
task to implement one or another topological model for a time series of
vector magnetograms, paying particular attention to distinguishing real
evolution of the photospheric magnetic fluxes from changes due to variations
in atmospheric seeing, as well as uncorrelated noise. Barnes et al. (2005)
investigated the reliability of one of such methods and have estimated the
uncertainties in its results.

3.2.4 The S-like morphology and eruptive activity

The appearance of separators in the solar atmosphere was initially at-
tributed to the emergence of a new magnetic flux from the photosphere
in the region where a magnetic flux already exists as illustrated by Fig-
ure 3.1. In fact, the presence of separators must be viewed as a much more
general phenomenon. Figure 3.9a taken from Somov (1985) exhibits the
simplest model of the uniform distribution of the vertical component Bz

of the magnetic field in the photosphere. The neutral line NL divides the
region of the field source along the y axis. In accordance with the fact that
it is often visible in solar magnetograms, this region is deformed by photo-
spheric flows with velocity v in such a way that the neutral line gradually
acquires the S-shape as shown in Figure 3.9b.

At first glance it seems that the magnetic field with such simple sources
cannot in principle have any topological peculiarities. However this is not
so. Beginning with some critical bending of the neutral line, the field cal-
culated in the potential approximation contains a separator as shown in
Figure 3.10 (Somov, 1985, 1986). In this figure, the separator X is located
above the photospheric NL like a rainbow above a river which makes a
bend. The separator is nearly parallel to the NL in its central part. The
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Figure 3.9: Model distribution of the vertical component of the magnetic
field in the photosphere. A vortex flow distorts the photospheric neutral
line so that it takes the shape of a letter S.

potential field lines just above the NL are orthogonal to it. This is impor-
tant to make the simplest 2D models.

By using the topological model, Gorbachev and Somov (1988) demon-
strated the appearance and growth of the separator as a result of photo-
spheric vortex flows in the locality of the photospheric neutral line. They
showed that the vortex flows or any other photospheric magnetic field
changes, creating the S-shape of the neutral line, produce a special topo-
logical structure in the field above the photosphere. The peculiarity of this
structure is the separator.

The topological ‘rainbow reconnection’ model explains some reliably
established properties of two-ribbon flares.

First,

the rainbow reconnection model reveals a connection of large solar
flares with the S-shaped bend of photospheric neutral line.

It shows that the neutral line bend must be greater than some critical value.
Then it leads to appearance of the separator above the photosphere. So that
a necessary condition for magnetic reconnection in the solar atmosphere is
satiesfied.

Second, the model explains the bipolar picture of a flare: its devel-
opment simultaneously in regions of different photospheric magnetic field
polarities. Moreover it naturally explains the arrangement and shape of the
flare ribbons in the chromosphere, the structure observed in X-ray bands
like two intersecting loops, and the early appearance of bright flare kernels
on the flare ribbon ends.
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Figure 3.10: The ‘rainbow reconnection’ model: the separator X above the
S-shaped bend of the photospheric neutral line NL. The inset in the upper
right-hand corner shows the structure of the magnetic field near the top of
the separator.

As viewed in SXRs, the coronal part of active regions consists of discrete
bright loops. These loops often collectively form sinuous S shapes similar
to that one which we saw in Section 3.2.3 (see also Acton et al., 1992). This
shape has been named ‘sigmoidal’ by Rust and Kumar (1996) who studied
the characteristic of such brightenings in SXRs and found that they are
typically evolve from a bright, sharp-edges sigmoidal features into either an
arcade of loops or a diffuse cloud. We can expect that such transient arcades
of loops (loop prominence systems) and long-duration events (LDEs) are
related to coronal mass ejections (CMEs).

Using the Yohkoh SXR images, Hudson et al. (1998) considered the
implications of this scenario in the context of ‘halo’ CMEs. These may
correspond to events near the solar disk center. Incorporating data from
the SOHO Large Angle Spectroscopic Coronagraph (LASCO), this survey
found the ‘sigmoid-to-arcade’ development a common feature of active re-
gions associated with the onset of a halo CME.

Canfield et al. (1999), Glover et al. (2000) performed a similar study in-
corporating a much wider range of data and observations over an increased
range in wavelength. A high proportion of active regions were reviewed
with the intention of clarifying which SXR features possess the highest
probability of eruption. The results suggest a strong relationship between
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an overall S-like morphology and the potential of an active region to erupt.
We assume that

the S-like SXR morphology results from the reconnection process
in a high-temperature current layer located at the separator of a
quadrupole-type magnetic field of an active region

as was illustrated in Figure 3.8. Since a pre-event sigmoid disappears leav-
ing a SXR arcade and two ‘transient coronal holes’ (Sterling and Hud-
son, 1997), opening a closed configuration (see Syrovatskii and Somov, 1980;
Syrovatskii, 1982) seems to be an important element of the CME onset,
which drives reconnection at the separator.

3.3 A current layer as the source of energy

3.3.1 Pre-flare accumulation of energy

Potential field has no free energy. Given common and obvious assumptions,
the free energy in the quadrupole-type model described above is simply the
magnetic energy of the total electric current J in the reconnecting current
layer (RCL) in the solar atmosphere (Figure 3.4):

Ef =
1

2c2 LJ2. (3.1)

Here

L ≈ 2l ln
2l

b
(3.2)

is the self-inductance of the current layer, l is the distance taken along the
separator from the zeroth point X1 to the point X2 in Figure 3.3, and b is
the half-width of the layer.

Since we know the physical properties of a pre-flare current layer (see
Section 6.1.2), we estimate the total current inside the layer as well as its
free magnetic energy (Syrovatskii, 1976b, 1981), the energy of a flare.

If we did not know the properties of the pre-flare reconnection process,
we should have considered as an open question the following one. Why can
the considerable excess energy be accumulated in the coronal magnetic field
during the pre-flare stage without contradicting the natural tendency that
lower energy states are more favourable? – We should look for an answer to
this question, for example, in a bifurcation structure of force-free fields in
the corona (e.g., Kusano and Nishikawa, 1996). However we may continue
our consideration of the pre-flare stage as the creation and existence of the
slowly-reconnecting current layer. In this way, we see that
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slowly-reconnecting current layers in the solar atmosphere can store
the magnetic energy Ef necessary for flares.

Moreover in a quasi-stationary case (e.g., in the pre-flare state) their out-
put can account for the energetics of the whole active region (Somov and
Syrovatskii, 1977; Den and Somov, 1989). We may call such a state the
minimum current corona.

Note that from (3.1) a simple formula follows for the total current J
necessary for a solar flare to release the energy Ef :

J = c

(
2Ef

L

)1/2

≈ (1 − 6) × 1011 Ampere . (3.3)

In this estimate the length l is set equal to the characteristic size of a large
active region, l ≈ 1010 cm, and the flare energy to Ef ≈ (1 − 3) × 1032 erg.
The result agrees with the estimates of the total electric current based on
measurements of the magnetic field components in the photospheric plane
(Moreton and Severny, 1968).

The vector magnetographs determine the transversal field at lower at-
mospheric levels; the curl of this field yields the vertical current density
(Gopasyuk, 1990; Zhang, 1995; Wang et al., 1996). Distributions of the
intensity of the vertical current inferred from the horizontal magnetic field
evolve only gradually and demonstrate two possibilities. One is the emer-
gence of a new electric current from the sub-photosphere. The other is the
rearrangement of the current systems in the solar atmosphere.

3.3.2 Flare energy release

The reconnecting current layers in the pre-flare state can suffer many insta-
bilities: thermal instability caused by radiative energy losses (Field, 1965),
resistive instability caused by temperature dependence of plasma conduc-
tivity, two-steam instabilities of various types, structural instability (Chap-
ter 10), tearing instability (Chapter 11) etc. It is assumed that, as a result
of one of these instabilities, the magnetic energy of the RCL is rapidly
released and a flare starts. For example, a flare occurs when the current
carried on a separator exceeds some threshold.

At present there are several open questions related to these instabilities:
what is the relative importance of each of them, which of them can develop
first, and whether an external action upon the current layer is necessary or
whether the layer gradually evolves towards an unstable equilibrium or a
non-equilibrium state by itself. Some attempts to answer these questions
using relatively simple models will be demonstrated in what follows. In gen-
eral, however, answers to these questions depend on the internal structure
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of the RCL. In its turn this structure depends on the initial and boundary
conditions, and on the current layer evolution during previous stages.

Therefore the investigation of RCL dynamics is important for cosmic
plasma physics. This investigation must include the formation stage, the
pre-flare evolution, and the rapid realignment (rupture of the current layer)
with transition to a new state characterized by high temperatures and high
resistivity (Chapter 6).

In the process of solving this problem many numerical (Brushlinskii
et al., 1980; Antiochos et al., 1996) and laboratory (Altyntsev et al., 1977;
Stenzel and Gekelman, 1984; Bogdanov et al., 1986, 2000) experiments have
been performed. The hydrodynamic stage of the rise and evolution of pre-
flare current layers has been studied in detail. Experiments have shown that
a thin, extended current layer can be formed, even in laboratory conditions.
To some approximation it has been possible to study the structures of the
magnetic field inside the layer and in the ambient plasma, to find the current
distribution, the electron density and other plasma parameters.

The laboratory experiments have demonstrated the possibility of a
substantial accumulation of free magnetic energy and the explosive
disruption of the thin wide reconnecting current layer.

The cause of such disruption, which is accompanied by fast reconnection,
may be a local resistivity increase related to the development of plasma
turbulence.

Future experiments will probably, more than hitherto, concentrate on
the study of the conditions for current layer disruption, of nonlinear in-
teractions in the fast reconnection region, and of particle acceleration (see
Chapter 9). This would help us to solve the most difficult problem in the
reconnection theory and, in particular, give us information necessary to in-
vestigate experimentally the characteristics of current layers as the source
of flare energy during the impulsive phase.

The disruptive stage of the evolution cannot be described in hydrody-
namic terms only: it requires a kinetic description in the disruption region.
The impulsive electric field induced there efficiently accelerates charged
particles (Somov and Syrovatskii, 1975). During this process, plasma tur-
bulence is generated. Its intensity depends on the fast particle flux and
governs plasma resistivity, reconnection rate, and, as a consequence, the
electric field intensity. There is thus a nonlinear feedback. Of course, to
solve such a self-consistent problem is not easy. We shall, however, bear
two limiting cases in mind.

First, low-energy particles interact effectively with the plasma, and most
of their energy is rapidly lost by heating the plasma to very high tempera-
tures, the so-called ‘super-hot’ plasma. Second, in the high-energy region, a
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part of the accelerated particles enters into the electric runaway regime (see
vol. 1, Section 8.4.2). i.e. it virtually ceases to interact with the plasma.

3.3.3 The RCL as a part of an electric circuit

We have not discussed yet another problem of the theory of reconnecting
current layers as a source of energy for solar flares. This problem has been
nicely called global electrodynamic coupling (Spicer, 1982; Kan et al., 1983)
and it essentially consists in the question about the role of inductance and
resistance in an equivalent electric circuit one of whose components is a cur-
rent layer in the solar atmosphere. In its simplest form (Baum et al., 1978),
the corresponding task can be illustrated by the elementary equation

L
d

dt
J(t) + J(t)R0 = V (t) . (3.4)

Here V = V (t) is the external electromotive force (emf) due to variations of
photospheric magnetic fields, or simply the potential difference between the
points X1 and X2 at the ends of the separator in Figure 3.2. The unknown
quantity V depends on the strength of the photospheric sources and in the
simplest approach it is treated as a given function of time.

Let us assume that at the initial moment t = 0, the current J(0) along
the separator was zero. At this point the external emf V (0) was completely
used up by acting against the self-induction emf:

L
dJ

dt
+ 0 = V (0) . (3.5)

So the current J(t) will appear.
As soon as a nonzero current J(t) appears, the voltage drop on the

total separator resistance R0 , according to Equation (3.4), makes the rate
of current increase dJ/dt in the circuit smaller, which amounts to decreasing
the rate of magnetic energy accumulation prior to a flare. The final steady
current Js depends on the resistance R0 and the external emf V:

Js =
V

R0

. (3.6)

The characteristic time of the process is proportinal to the self-inductance L:

τa =
L

R0

. (3.7)

Note that L ∼ l and R0 ∼ σ−1l. Therefore τa ∼ σ does not depend of the
length scale l.
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The maximum accumulated energy (3.1) is also proportional to the in-
ductance L of the equivalent circuit comprising the separator current layer:

Ef =
1

2c2

LV 2

R 2
0

. (3.8)

It is important that the free magnetic energy Ef and the energy accumula-
tion time τa depend also on the total resistance R0 . In the pre-flare state,
the RCL with low Coulomb resistivity has low resistance. For this reason,
the accumulated energy can be sufficiently large. The accumulation time
is long enough: τa ∼ 3 × 104 s (Syrovatskii, 1976b).

Schrijver et al. (2005) compared TRACE EUV images of 95 active re-
gions and potential-field source-surface extrapolations based on SOHO MDI
magnetograms. It appears that the electric currents associated with coro-
nal nonpotentiality have a characteristic timescale τobs ∼ 10 − 30 hr. Thus
the flare-energy accumulation time τa ∼ τobs.

TRACE observations of an emerging active region in the vicinity of an
existing active region have been used by Longcope et al. (2005) in order
to quantify magnetic reconnection between two active regions. Compari-
son of the observed EUV loops with the magnetic field lines computed in
a topological model (for more detail see Section 3.4.4) revealed that the
interconnecting EUV loops are consistent with those produced by recon-
nection at a separator overlying the volume between the active regions.
The net energy released is consistent with the amount that could be stored
magnetically during the 24 hr delay between emergence and reconnection.

From what we have seen it is evident that

to release the accumulated energy in a time τf ≈ 102 − 103 s cor-
responding to the solar flare duration, the total current layer resis-
tance must be increased by 2 to 3 orders of magnitude.

Such an effect can be well the result of the appearance of plasma turbulence
(Section 6.3). An alternative possibility (see Chapter 14) is an appearance
of one or many local current disruptions which have large enough resistance,
electric double layers.

Earlier the possibility of formation of the double layers was, for some
reason, treated as being alternative or even more in conflict with the concept
of reconnection. However, after the laboratory experiment by Stenzel and
Gekelman (1984), it became clear that double layers may form inside the
RCL. The hypothesis of the formation of electric double layers inside the
separator-related RCL can prove useful for the explanation of the extremely
rapid energy release observed sometimes during solar flares. However, the
concept of collisionless reconnection seems to be a more natural and more
realistic alternative.
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Figure 3.11: The Syrovatsky model
of a solar flare. n and s represent
a bipolar source of a new emerg-
ing flux in the chromosphere Ch.
The uniform field B0 models a large-
scale magnetic field in the corona.
RCL is a reconnecting current layer
between the interacting magnetic
fluxes.

3.4 Reconnection in action

3.4.1 Solar flares of the Syrovatsky type

Much of the activity in the solar corona is related to the emergence of mag-
netic flux from the solar interior. Flux emergence episodes are continually
injecting magnetic fields into the solar atmosphere over a wide range of
length- and timescales, from small magnetic elements on a granular size all
the way up to the emergence of large active regions.

Emerging active regions interact with preexisting magnetic systems by
establishing magnetic links to them, well visible in image series taken by the
TRACE satellite. They also cause the ejection of fast, high-temperature
flows often seen, for example, with the soft X-ray telescope (SXT) on board
the Yohkoh satellite.

Observed changes of connectivity and high-temperature jet emission
clearly point to reconnection of magnetic field lines

as being effective whenever an upcoming and a preexisting magnetic flux
system meet in the corona in spite of the low resistivity of the coronal
plasma.

It is essential to understand how the magnetic field emerged from the
solar interior interacts with the overlying coronal field. The simplest two-
dimensional (2D) model suggested by Syrovatsky (1972) had provided a
first glimpse at the physics of a solar flare as a result of emergence of a
bipolar magnetic region from under the photosphere into a model corona
containing a large-scale uniform horizontal magnetic field (Figure 3.11).

A horisontal reconnecting current layer (RCL) was assumed to be
formed at the interface between the rising magnetic flux and the ambient
coronal field which is antiparallel to the topmost field lines of the upcoming
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magnetic flux. The field lines of the initial coronal field reconnect to those
of the rising flux, so that the corona and the photosphere become mag-
netically connected. This process is repeatedly observed in modern space
missions like SOHO and TRACE .

Syrovatsky (1972) estimated the magnetic energy which can be accu-
mulated by the RCL before a solar flare as well as the characteristic time
and other basic parameters of the 2D reconnection process in the flare.
However, even in the simplest configuration, the accumulation and release
of magnetic energy are highly time dependent, have an intrinsically com-
plex three-dimensional geometry, and contain a wide range of length- and
timescales. Hence numerical simulations are necessary to provide better
physical insight.

The three-dimentional (3D) time-dependent resistive MHD equations
have been integrated numerically by Archontis et al. (2005) in order to
model the process of reconnection between an emerging bipolar region and
a preexisting horizontal uniform field in the corona. In the initial stages
of contact of the two systems, the magnetic configuration across a forming
current layer is similar to the classical X-point type, with mutually antipar-
allel field lines on both sides of the current layer being joined and ejected
sideways.

The RCL is formed with the shape of a narrow arch distributed all
around a rising ‘dome’ of the massive emergence from the photosphere of
magnetic flux and plasma. The numerical experiment shows the struc-
ture and evolution of the RCL. It changes from a structure resembling the
simple tangential discontinuity to another structure resembling the simple
rotational discontinuity. Most of the original subphotospheric flux becomes
connected to the coronal field lines.

The ejection of plasma from the RCL gives rise to high-speed and high-
temperature jets. The acceleration mechanism for those jets is akin to that
found in previous 2D models, but the geometry of the jets bears a clear
3D imprint, having a curved-layer appearance with a sharp interface to the
overlying coronal field system. Temperatures and velocities of the jets in
the numerical experiment are commensurate with those observed by the
Yohkoh SXT.

3.4.2 Sakao-type flares

Sakao et al. (1998) studied the spatial evolution of 14 impulsive flares that
clearly show the typical double-source structure (Figure 3.12) at the peak
of the M2 band (33-53 keV) emission in the hard X-ray (HXR) images
obtained by the Hard X-ray Telescope (HXT) onboard Yohkoh. The dis-
tance l between the sources has been analyzed as a function of time. As
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a result, two subclasses of flares – more impulsive (MI) and less impulsive
(LI) – have been discovered. We assume that in both subclasses, the three-
dimensional reconnection process occurs in the corona at the separator with
a longitudinal field.
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Figure 3.12: Typical HXR structure of a selected impulsive flare is shown
in the right top corner: Pa and Pb are the footpoint sources, l is a distance
between them. Ia and Ib are the HXR flux from the footpoint sources as a
function of time, τ is a total duration of the impulsive phase.

The difference between the LI and MI flares presumably appears because
in the LI flares the reconnection process accompanies an increase of the
longitudinal field at the separator (Somov et al., 1998). In contrast, in
the MI flares the reconnection proceeds with a decrease of the longitudinal
field. Hence the reconnection rate is higher in the MI flares.

To illustrate that the observed variations of the footpoint separation
depend on the longitudinal field B ‖, this field is shown near the separator X
in Figure 3.13. The arrows v0 and v1 indicate the reconnection velocity
pattern (the inflows and outflows) during the impulsive phase of a flare.

Two reconnecting field lines f1 and f2 arrive at the separator X and
pass through it, the second one after the first. They bring different values of
the longitudinal field B ‖. If the second field line f2 arrives with a stronger
longitudinal field than the first one, i.e. B ‖ 2 > B ‖ 1, then the length of the
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Figure 3.13: An apparent motion of the HXR footpoints during the fast
reconnection: (a) the footpoint separation rapidly increases in the LI flares,
(b) a decreasing footpoint separation in the MI flares.

line f2 after reconnection is obviously larger than the length of the line f1
as shown in Figure 3.13a.

Figure 3.13a also shows positions of the footpoints in the chromospheric
plane for the same field lines. The footpoints Pa and P b, being impulsively
heated by accelerated particles, became bright in HXR earlier than the
footpoints P ′

a and P ′
b. Figure 3.13a demonstrates that, if the longitudinal

field becomes stronger at the separator, then the footpoint separation will
increase during the fast reconnection. If, on the contrary, the line f2 brings
a weaker longitudinal field, i.e. B ‖ 2 < B ‖ 1, then the distance between
footpoints rapidly becomes shorter as shown in Figure 3.13b.

The topological model makes intelligible the observed decrease (in-
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crease) of the separation between the HXR sources in the MI (LI) flares
(Somov and Merenkova, 1999). Let us consider two configurations (a) and
(b) in Figure 3.14 for the four magnetic sources in the source plane Q. To
a different extent they differ from the ideal configuration when all the four
sources are placed along the symmetry axis x. The longitudinal magnetic
field at the separator is equal to zero in the ideal symmetrical case.
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Figure 3.14: Two configurations of magnetic sources in the plane Q.

In general, the pre-reconnection state differs from the ideal configura-
tion, of course. So the longitudinal field already exists at the separator.
This field always presents under condition of actual 3D reconnection in the
solar atmosphere, and it will increase (or decrease) depending on the direc-
tion of evolution of the magnetic field in an active region. For example, the
configuration evolves from the less-ideal initial state (a) to a more-ideal one
(b) as shown in Figure 3.14. Under this direction of evolution, indicated by
vector v in Figure 3.14, the reconnection process decreases the longitudinal
field at the separator.

Following Gorbachev and Somov (1988, 1990), let us suppose that a
part of the flare energy is initially released in some compact region E near
the apex of the separator. Then the energy fluxes will propagate along the
field lines connecting the energy source with the photosphere. Projections
of the energy source E on the photospheric plane Ph along the field lines are
shown as the two ‘flare ribbons’ FR in Figure 3.15. Therefore we identify
flare brightenings, in the hydrogen Hα line etc., with the ribbons located at
the intersection of the separatrices with the chromosphere which is placed
slightly above the photospheric plane.

As in the model of the 1B/M4 flare of 1980 November 5, shown in
Figure 3.8, the saddle structure of the field near the separator splits the
flux of heat and accelerated particles in such a way that it creates the long-
narrow Hα ribbons in the chromosphere (FR in Figure 3.15). Moreover the
model predicts that a concentration of the field lines that bring energy into
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Figure 3.15: The long-narrow Hα ribbons FR and Hα kernels Pa and Pb

projected in the photospheric plane Q both sides of the photospheric neutral
line NL.

the flare ribbons in the chromosphere is higher at the edges of the ribbons,
i.e. at relatively compact regions shown by dark points Pa and Pb. Here the
Hα brightenings must be especially bright. This prediction of the model is
consistent with observations of Hα kernels in a flare.

Figure 3.15 shows that the foot-point separation, which is the distance d
between the points Pa and Pb, decreases if the magnetic configuration
evolves from the state (a) to state (b), id. when the longitudinal mag-
netic field decreases during the reconnection process at the separator. So
the reconnection rate is higher in the MI flares of the Sakao type. In con-
trast, in the LI flares the magnetic configuration evolves from (b) to (a).
This means that the reconnection proceeds with an increase of the longitu-
dinal field, more slowly, and with an increase of the foot-point separation.
Therefore we may conclude that

if the evolution of the sunspot configuration goes to a more ideal
state with a smaller displacement from the symmetry axies, then
the MI flares should occur.

This statement must, however, be examined by future observations and
their analysis.

3.4.3 New topological models

When the photospheric magnetic field of active regions was extrapolated
into the corona, it was found in many cases (e.g., Aulanier et al., 2000;
Bentley et al., 2000) that the large-scale magnetic field of active regions
was close to being potential indeed. The basic ingradients for reconnection
to occur were present. Moreover the observed photospheric field evolution is
expected to drive reconnection and to produce flares in such active regions.
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After Gorbachev and Somov (1988, 1989, 1990), a series of similar in-
vestigations have sought observational evidence for reconnection in flares
(Mandrini et al., 1991, 1993; Mandrini and Machado, 1993; Démoulin et
al., 1993; Bagalá et al., 1995; Longcope, 1996; Antiochos, 1998; Longcope
and Silva, 1998). The results of these investigations were summarized as
follows. Flare brightenings are located at the intersection of the separatrices
with the chromosphere and are magnetically connected to one another as
well as to a common region close to the separator (cf. Figure 3.8). In par-
ticular, Longcope (1996), Longcope and Silva (1998) demonstrated clearly
how

motions of the photospheric sources (magnetic charges) lead to the
build-up of ‘ribbon-like’ current layers parallel to the separator

or two separators (Section 3.2.2), as it is in the case of the solar flare on 7
January 1992.

The magnitude of the current J at the separator (see formula (3.2)) is
related through the self-inductance L to the magnetic flux change which
would have occured in a potential field in the corona (Syrovatskii, 1966a,
1981). By calculating approximate self-inductances of the separator, the
topological model, called now the minimum current corona, provides an
estimate of the current and the associated free energy from a given dis-
placement of the magnetic sources.

The model developed by Longcope and Silva (1998) applies a topological
approach to the magnetic field configuration for 7 January 1992. A new
bipole (∼ 1021 Mx) emerges amidst a pre-existing active region flux. This
emergence gives rise to two current layers along the separators separating
the distinct, new and old, magnetic flux systems. Sudden reconnection
across the separators transfers ∼ 1020 Mx of flux from the bipole into the
surrounding flux. The locations of current layers in the model correspond
with observed soft X-ray loops. In addition the footpoints and apexes of the
current layers correspond with observed sources of microwave and hard X-
ray emission. The magnitude of the magnetic energy stored by the current
layers compares favourably to the inferred energy content of accelerated
electrons.

The occurrence of flares in a quadrupolal magnetic configuration is a well
studied topic. Ranns et al. (2000) present multi-wavelength observations
of two homologous flares observed by SOHO and Yohkoh. The preflare
conditions are reformed after the first flare by emerging flux. With the
continual advancements in image resolution, at all wavelengths, we will
learn progressively more about the reconnection process in flares.
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3.4.4 Reconnection between active regions

An active region is generally assumed to be produced by the buoyant emer-
gence of one or more magnetic flux tubes from below the photosphere. Un-
der this assumption, any coronal field interconnecting two distinct regions
must have been produced through magnetic reconnection after emergence.
Thus the coronal loops connecting between two active regions offer some of
the most compelling evidence of large-scale reconnection in the solar corona
(Sheeley et al., 1975; Pevtsov, 2000).

The TRACE high-cadence observations in the 171 A passband show nu-
merous loops interconnecting two active regions and thereby provide a good
opportunity to quantify magnetic reconnection. Longcope et al. (2005) have
analyzed data from the period 2001 August 10–11, during which active re-
gion 9574 emerged in the vicinity of existing active region 9570. They have
identified each extreme-ultaviolet (EUV) loop connecting the emerging po-
larity to a nearby existing active region over the 41 hr perion beginning at
emergence onset.

The topology of the coronal field was modeled as a potential field an-
chored in 36 point sources (i.e., the topological model similar to that one
introduced in Section 3.2 but with many magnetic charges) representing
each of the magnetic field concentrations. Geometrical resemblance of the
identified EUV loops to post-reconnection (see Figure 3.1c) field lines from
the topological model of the active region pair implicates separator recon-
nection in their production. More exactly, comparison of the observed EUV
loops with computed field lines reveals that the interconnecting loops are
consistent with those produced by reconnection at a separator overlying
the volume between the active regions.

The computed field included a domain of magnetic flux interconnecting
one specific charge from the emerging region to another charge of oppo-
site polarity in the pre-existing region. The magnetic flux in this domain
increases steadily, in contrast to the EUV loop observations showing that
during the first 24 hr of emergence, reconnection between the active regions
proceeded slowly.

The lack of reconnection caused magnetic stress to accumulate as cur-
rent layer along the separator (see Figure 19 in Longcope et al., 2005).
When the accumulated current had reached J ≈ 1.2×1011 A, a brief recon-
nection process was triggered, leading to the transfer of ≈ 1021 Mx across
the separator current layer. The stressed field had accumulated at least
≈ 1.4 × 1031 ergs, which was then released by the reconnection. According
to interpretation given by Longcope et al. (2005), only a small fraction of
this energy was dissipated directly at the separator. The released energy
was converted instead into small-scale fluctuations such as a turbulence of
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Alfvén waves etc.
The reconnection rate was relatively small for the first ∼ 24 hr of emer-

gence and then rapidly increased to a peak as high as 1017 Mx s−1 (109 V).
Thus the most intense period of reconnection occured after a 1 day de-
lay. The net energy released, and ultimately dissipated, is consistent with
the amount that could be stored magnetically during this delay between
emergence and reconnection.



Chapter 4

The Bastille Day 2000
Flare

The famous ‘Bastille day 2000’ flare was well observed by several
space- and ground-based observatories and stidied extensively by
many researchers. The modern observations in multiple wavelengths
demonstrate, in fact, that the Bastille day flare has the same behav-
ior as many large solar flares. In this Chapter, the flare is studied
from observational and topological points of view in terms of three-
dimentional magnetic reconnection.

4.1 Main observational properties

4.1.1 General characteristics of the flare

On 14 July 2000 near 10:10 UT, a large solar flare with the X-ray impor-
tance of X5.7 launched near disk center in the active region NOAA 9077.
The event comprised a 3B flare as revealed by bright emission throughout
the electromagnetic spectrum, the eruption of a giant twisted filament, an
extended Earth-directed CME, and a large enhancement of accelerated par-
ticle flux in interplanetary space. This well-observed flare was called the
‘Bastille day 2000’ flare.

The Yohkoh satellite (Ogawara et al., 1991; Acton et al., 1992) ob-
served an early phase (∼10:11 - 10:13 UT) and some of the impulsive phase
(from ∼10:19 UT) of this famous flare classified as a long duration event
(LDE). The Soft X-ray Telescope (SXT; Tsuneta et al., 1991) observed a
large arcade. The width and length of the arcade were ∼30 000 km and

77



78 Chapter 4. Bastille Day 2000 Flare

∼120 000 km, respectively. The Hard X-ray Telescope (HXT; Kosugi et
al., 1991) clearly showed a two-ribbon structure in the energy ranges 33−53
and 53− 93 keV. This structure corresponds to a series of footpoints of the
SXR arcade (Figure 4.1).

Figure 4.1: Yohkoh and TRACE observations of the Bastille day flare. The
right panel shows HXR (53-93 keV) sources aligned along the flare ribbons,
which lie at the feet of the arcade loops in the center of the left panels.

Solar flares often exhibit a two-ribbon structure in the chromosphere,
observed for example in Hα (Svestka, 1976; Zirin, 1988; Strong et al., 1999),
and this pattern becomes especially pronounced for LDEs of the type often
associated with CMEs. In the Bastille day flare, the two ribbons were well
seen in Hα and Hβ (Yan et al., 2001; Liu and Zhang, 2001). Fletcher and
Hudson (2001) describe the morphology of the EUV ribbons of this flare,
as seen in SOHO , TRACE , and Yohkoh data. The two-ribbon structure,
however, had never before been observed so clearly in HXR as presented in
Masuda et al. (2001).

Masuda et al. analyzed the motions of bright HXR kernels (compact
intense sources) in the two ribbons of the Bastille day flare during the
first and second bursts (S1 and S2) of emission in the HXT bands M1,
M2, and H; they cover the energy range of 23-33, 33-53, and 53-93 keV,
respectively. Even without an overlay of the HXR images of the flare on the
photospheric magnetograms, Masuda et al. speculated that “these bright
kernels are footpoints of newly reconnected loops” and that “lower loops,
reconnecting early, are highly sheared; the higher loops, reconnecting later,
are less sheared”.
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This key supposition well supports the idea of three-dimensional recon-
nection in the corona at a separator with a longitudinal magnetic field. Be-
ing introduced to explain the so-called Sakao-type impulsive flares (Sakao
et al., 1998), which have double footpoint sources observed in HXR (see
Figure 3.12), the idea consists in the following. It is easy to imagine that
two reconnecting field lines f1 and f2 pass through the separator, the sec-
ond after the first; see Figure 3.13. If the first line f1 has the stronger
longitudinal field than the second one, then the length of the line f2 in the
corona after reconnection becomes shorter than the length of the line f1.
Therefore the distance between bright HXR footpoints in the chromosphere
also becomes shorter as shown in Figure 3.13b.

In general, such a scenario (Section 3.4) is consistent with the observed
motions of the HXR kernels in the Bastille day flare. However, to make a
judgement about it we need to investigate possible relationships between
the HXR kernels (their appearance positions and further dynamics) and
the photospheric magnetic field (its structure and evolution).

With the aim of finding such relations, let us adopt the following proce-
dure. First, we overlay the HXR images of the flare on the full-disk magne-
tograms by the Michelson Doppler Imager (MDI; Scherrer et al., 1995)
on board the Solar and Heliospheric Observatory (SOHO ; Domingo et
al., 1995). Second, we overlay the obtained results of the first step on
the vector magnetograms of high quality (Liu and Zhang, 2001; Zhang et
al., 2001) obtained with the Solar Magnetic Field Telescope (SMFT) at
Huairou Solar Observing Station (HSOS).

The coalignment of the HXT images with the MDI and SMFT data
allows us (Somov et al., 2002a): (a) to identify the most important MDI
sunspots with the SMFT spots, whose properties, morphology and evolu-
tion have been carefully studied; and (b) to examine the relationships be-
tween the HXR kernel behavior during the impulsive phase of the Bastille
day flare and the large-scale displacements of the most impotant sunspots
during the two days before the flare, based on precise measurements of the
proper motions (Liu and Zhang, 2001). The most important findings will
be described below; their interpretation will be given in Chapter 5.

4.1.2 Overlay HXR images on magnetograms

Since we wish to study the relationship between the HXR kernels and the
underlying magnetic field, we must accurately coalign the Yohkoh data with
simultaneous magnetic field data, first of all, the magnetograms from the
MDI instrument on the SOHO . In principle, such coalignment is possible
using the pointing information of the two instruments. In practice, how-
ever, there are always quantified and unquantified errors in the pointing of
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different satellites and even different instruments on the same satellite.
Concerning the Bastille day flare, as observed by SOHO and TRACE ,

Fletcher and Hudson (2001) have determined the coalignment of data from
the two instruments via cross-correlation of an image made in the white-
light channel of TRACE and the MDI continuum image of the active region
NOAA 9077. This has allowed the authors to locate the EUV ribbon posi-
tions on the photospheric magnetic field. Then the HXT and MDI images
have been coaligned. When this has been done, the strongest HXR M2
sources occur at the same locations as the strongest EUV sources. This
result is reasonable from the physical point of view (see Chapter 2 in So-
mov, 1992).

Figure 4.2: The HXR source contours (blue curves) at the HXR maximum
of the Bastille day flare overlaid on the MDI magnetogram. The green
curve PNL represents the photospheric neutral line. SNL is the simplified
neutral line.

Figure 4.2 shows the HXR source image synthesized during the peak of
the flare at 10:27:00 - 10:27:20 UT; the blue contours are at 25, 50, 75 and
90 % of the maximum HXR intensity. The sources are superimposed by
Fletcher and Hudson (2001) on the MDI magnetic field. The magnetogram
is taken at 11:12 UT. White indicates positive line-of-sight field, and black
negative; the contours are at ± 100, 500 and 1000 G. The broken straight
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line SNL indicates the so-called “simplified neutral line” of the photospheric
magnetic field, as introduced by Masuda et al. (2001). This effective line
does not coincide with an actual photospheric neutral line PNL (or the
polarity inversion line) but it is used to describe dynamic behavior of the
HXR sources during the flare. The physical meaning of the SNL will be
given in Section 5.1 where we discuss a model of the flare.

We have added to this overlay the notations of some sunspots in the
field according to Liu and Zhang (2001). They describe the spots on the
photospheric magnetograms obtained with the SMFT by the polarities with
“P” and “F” representing the preceding (positive) and following (negative)
magnetic polarities respectively. There is a good spatial correspondence
between the spots as seen in the MDI magnetogram and the spots in the
gound-based magnetogram obtained with the SMFT on July 14 at 08:43:19
UT. This allows us to identify the MDI spots with corresponding spots
in the SMFT magnetograms. In this way, we use the sunspot notations
taken from Figure 8 in Liu and Zhang (2001) and from Figure 3 in Liu and
Zhang (2002). For example, the “triangular” negative spot F6 in the MDI
magnetogram at 11:12 UT in Figure 4.2 is the same spot F6 in the SMFT
magnetogram at 08:43:19 UT shown in Figure 4.3.

Figure 4.3: The HXR source positions in the beginning of the first HXR
spike S1 (yellow contours) and near its end (blue contours).

The underlying magnetic field in Figure 4.3 is the SMFT vector mag-
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netogram at 08:43:19 UT on July 14, taken from Figire 8d in Liu and
Zhang (2001). The contour levels of the line-of-sight field are 160, 424, 677
and 1071 G. White contours represent positive polarity and black represent
negative. The bars are transverse components with their length propor-
tional to intensity. P1 and P2 are the most important positive sunspots.

To overlay the HXT data on the SMFT magnetogram we have used the
pointing information for the same satellite and the same instrument, HXT.
This procedure gave us the relative position of the HXR images taken in
the same energy band during the different HXR spikes: S2 and S1, that
is with a small difference in time. Since we already have the coalignment
of the HXT data during the spike S2 at 10:27 UT and the magnetogram
shown in Figure 4.2, we simply find the HXR source positions during the
spike S1 at 10:19 - 10:24 UT according to Masuda et al. (2001) on the
SMFT magnetogram.

The two overlays in Figure 4.3 are the HXT H-band images during the
first HXR spike S1 in its rising and decay phases. The contour levels are
70.7, 50.0, 35.4, 25.0, 17.7, 12.5 and 8.8 % of the peak intensity for each
of two images. The first one, shown by yellow contours, is reconstructed in
the beginning of the spike S1 at 10:19:37 - 10:20:27 UT. The second, shown
by blue contours, is synthesized just after a peak (at about 10:22 UT) of
the spike, at 10:22:17 - 10:22:45 UT. In this way, Figure 4.3 allows us to
study the evolution of the HXR sources during the first spike.

4.1.3 Questions of interpretaion

Several comments should be made here. First, as mentioned before, the
two-ribbon structure is really well seen during the first spike. Two ribbons
are most clearly observed in the rising phase and the decay phase of S1.
Moreover the bright compact kernels in HXR are observed along the ribbons
separated by the simplified magnetic neutral line SNL which is almost ex-
actly aligned in the E-W direction in Figures 4.3 and 4.1. The appearance
of the HXR kernels is not a surprisingly unexpectable result. The chro-
mospheric Hα-ribbons typically demonstrate several bright patches, called
kernels. However the intensity dynamical range of the Yohkoh HXT was
not high enough to observe the HXR ribbons in many flares as a typical
phenomenon.

Second, if the whole structure, the HXR ribbons and kernels together
with the ridge of the huge arcade as it seen in Figures 2 and 5 in Masuda et
al. (2001), is illuminated by fast electrons, then they seem to be accelerated
(or, at least, trapped) in a large-scale system of magnetic loops. If we
accept the standard two-dimensional MHD model of the two-ribbon flares,
which was well known as successful in interpretation of the Yohkoh SXT
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observations (Forbes and Acton, 1996; Tsuneta, 1996; Tsuneta et al., 1997),
then this result seems to be consistent with the hypothesis of a large-scale
reconnection process in the corona, involved in the flare energy release.
Moreover, because of a large scale and large energetics of the system of
interacting magnetic fluxes, the reconnected parts of magnetic fluxes should
be also large. This is clear even if we do not know the exact links of the
magnetic field lines before and after reconnection. Therefore the problem of
identification and measurement of the reconnected fluxes becomes essential
(Fletcher and Hudson, 2001).

Third, the brightest HXR kernels do not coincide with the regions of
highest line-of-sight field strength, with umbrae of sunspots. The question
where the HXR kernels appear and disappear requires a special investi-
gation. Since the HXR kernels are produced as a result of direct bom-
bardment by powerful beams of fast electrons, nonthermal and presumably
quasi-thermal, we expect the fast hydrodynamic and radiative response of
the transition zone and chromosphere to an impulsive heating by these
electrons and secondary XUV emission as discussed in Chapter 2 in So-
mov (1992).

4.1.4 Motion of the HXR kernels

To see the strongest sources of HXR during the first spike S1, we show
in Figure 4.4 only the contours with levels 70.7, 50.0, 35.4 and 25.0 % of
the peak intensity. For this reason, the lower HXR background disappears.
However, two HXR ribbons are still well distinguished as two chains of the
HXR kernels on either side of the SNL. We shall consider the apparent
displacements of the brightest sources.

The most intense kernel K2 in the southern ribbon reappears to the
east. However this displacement is much slower in comparison with that of
the brightest kernel K1 in the northern ribbon. The displacement of the
kernel K1 is shown by the large green arrow. The source K1 moves to the
north, that is outward from the simplified neutral line SNL, and to a larger
extent it moves to the east, parallel to the SNL. An exact description of the
motion of the centroid of the most intensive HXR source in the northern
and southern ribbons is presented in Figure 4 in Masuda et al. (2001).
However, what is important for the following discussion is shown above in
our Figure 4.4.

We shall show that the observed displacement of the brightest HXR
kernel K1 during the first spike S1 can be related to the magnetic field
evolution before the Bastille day flare. It was reasonable to assume that
some relationships between the kernel motion and magnetic field structure
and evolution do exist (Somov et al., 1998). However it has not been known
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Figure 4.4: The position and motion of the strongest HXR sources K1 and
K2 relative to the SMFT magnetogram on 14 July.

how these relations manifest themselves in actual flares or at least in the
models which are more realistic than the ideal ‘standard model’ of the two-
ribbon flare (see discussion in Fletcher and Hudson, 2001).

4.1.5 Magnetic field evolution

The active region (AR) NOAA 9077 had one of the most complex magnetic
field structures; it was in a typical βγδ class (Liu and Zhang, 2001, 2002).
It produced nearly 130 flares, including 3 flares of the X-class, the largest
of those being the X5.7 flare on July 14. The next one in terms of X-ray
importance was the X1.9 flare on July 12. We assume that after this very
large flare the AR had a minimum of magnetic energy and that two days
were necessary for the AR to accumulate an energy sufficient for the Bastille
day flare.

The motions of the sunspots cause the footpoints of magnetic fluxes to
move and interact between themselves in the chromosphere and corona. In
the absence of reconnection this process increases the non-potential part of
the magnetic energy, the excess available for the next flare or flares. When
the original (say on July 12) magnetic configuration is deformed, magnetic
gradients and stresses (including the magnetic shear) become enhanced.
Moreover, slowly reconnecting current layers (RCL) are created at the sur-
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faces that divide different magnetic flux systems, and fast reconnection
would be able to release the free magnetic energy as a flare (Sections 3.1
and 3.3).

Liu and Zhang (2001, 2002) have described the morphology of AR 9077,
the proper motions of many spots, and the evolution of the magnetic fields.
They have found many interesting peculiarities of the sunspot motions, in-
cluding a suggested trigger of the fv2, lare etc. However we shall restrict
ourselve to large scales related to the HXR structure of the Bastille day
flare. Let us compare two magnetograms from a time sequence of magne-
tograms presented in Figure 8 in Liu and Zhang (2001). We overlay the
magnetogram on July 12 in the top panel in our Figure 4.4 on the magne-
togram on July 14 in the bottom panel in the same Figure. We see that
the largest positive spot P1 rapidly moves southwest as shown by the large
red arrow. Other big umbrae seem more stable or, at least, do not move so
quickly as P1. This is well seen from comparison with the displacement of
the second positive spot P2 shown by the small red arrow.

Detail descriptions of the proper motions with precise measurements
and results are given by Liu and Zhang (2001, 2002). For example, a small
part P5 (shown in our Figure 4.4) of the umbra P1 moved away from the
east end of P1 on July 12, but P5 still followed P1 on July 13 and 14. P1
became smaller but tiny satellite spots formed around it. Figure 5 in Liu
and Zhang (2001) shows a variety of spot proper motion velocities. The
small spots P5, A1, B2 and B3 were short-lived relative to spot P1 but all
of them moved in the same direction as one group.

So the southwest motion of the large spot P1 together with its group 1
is certainly one of the dominant motions in the AR. The other motions
and changes of the magnetic field are presented in Liu and Zhang (2001)
but they are presumably more important for the second spike S2 and many
other manifestations of the Bastille day flare. In this Chapter, we shall
discuss only the first spike S1. More exactly, we shall consider its position
and dynamics with relation to the spot P1 displacement shown above.

4.1.6 The HXR kernels and field evolution

The observed displacement of the brightest kernel K1 during the first
spike S1 (as shown by the large green arrow in Figure 4.4) is directed
nearly anti-parallel to the displacement of the strongest positive spot P1
during the two days between two largest flares. An interpretation of this
fact will be given in the next Section. First, let us consider the fact in more
detail, as shown in Figure 4.5.

As in Figure 4.4, the HXR kernel is shown with four contour levels:
70.7, 50.0, 35.4 and 25.0 % of the peak intensity. In the rising phase of
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Figure 4.5: H-band images of the brightest kernel K1 in the rise and decay
of the first HXR spike S1 overlaid on the SMFT magnetogram on July 14.

the spike, the kernel K1 appears in front of the moving spot P1, in its
vicinity but not in the umbra. The brightest part of the kernel, indicated
as the yellow ‘point’ C in the beginning of the green arrow, locates in a
region of weak line-of-sight field: between the contour of the 160 G and
the actual photospheric neutral line (the red curve PNL in Figure 4.5).
This is consistent with observations of several flares at Hα by a fast CCD
camera system installed at Big Bear Solar Observatory (BBSO). Wang
and Qiu (2002) compared the initial brightening of flare kernels at Hα-
1.3 A with photospheric magnetograms and found that initial brightenings
avoided the regions of a strong line-of-sight magnetic field. The observed Hα
flare morphology and evolution suggest that that emission near a magnetic
neutral line may come from footpoints of flare loops of small height, where
the first accelerated electrons precipitate.

Figure 4.5 also shows that, later on,

the centroid of the most intense HXR source moves ahead, mostly
anti-parallel to the spot P1 displacement arrow,

but avoids the strongest field area. In the decay phase of the spike, the cen-
troid arrives at the end of the green arrow in the vicinity of the spot P5 but
still remains outside of the line-of-sight field level 1071 G. One of the possi-
ble reasons of such behavior may be in the magnetic-mirror interpretation
(Somov and Kosugi, 1997). Further investigation is necessary to under-
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stand the actual conditions of propagation, trapping, and precipitation of
accelerated electrons from the corona into the chromosphere.

However the main problem in the flare physics still remains the primary
release of energy. This is the transformation of the excess magnetic energy
into kinetic and thermal energy of particles. Such transformation can be
done by the reconnection process which occurs at the separator (one or
several) with a longitudinal magnetic field. On the basis of the simultaneous
multiwavelength observations, we are interested to understand how such a
mechanism can work in the Bastille day flare.

4.2 Simplified topological model

4.2.1 Photospheric field model. Topological portrait

Following Section 3.2.1, we model the photospheric field by using several
magnetic “charges” qi located in a horizontal plane Q beneath the pho-
tosphere. For example, in order to study the large-scale structure and
dynamics of the 3B/X5.7 flare on 14 July 2000, we replace the five most
important regions, in which the magnetic field of a single polarity is con-
centrated in the SOHO MDI magnetogram (Figure 4.6a), by two sources
of northern polarity (n1 and n2) and three of southern polarity (s1, s2, and
s3) as shown in Figure 4.6b. One characteristic feature of the observed and
model magnetograms is the ω-shaped structure of the photospheric neutral
line NL, shown by the thick curve.

Figure 4.6b also shows contours of the vertical component Bz of the
field in the photospheric plane Ph, z = 0, calculated in the potential field
approximation. Bz = 0 at the calculated neutral line NL. The magnetic
charges are located in the source plane Q at z = −0.1.

Figure 4.7 represents the same magnetic charges in the source plane Q
and the structure of the magnetic field in this plane. The arrows show the
directions of the magnetic-field vectors in Q. The points X1, X2, X3, and
X4 are the zero-field points (or neutral points), where B = 0. They are
important topological features of the field. The magnetic-field separatrix
lines (separatrices), shown by solid curves, pass through these points and
the magnetic charges. Thus the separatices separate the magnetic fluxes
connecting different magnetic charges. At the same time, they are the bases
of the separatric surfaces in the half-space above the plane Q. Therefore
Figure 4.7 contains all the information about the topology of the large-scale
field of the active region. So we refer to this figure as the topological portrait
of the active region.
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Figure 4.6: (a) The SOHO MDI magnetogram of the active region
NOAA 9077 on July 14, 2000. The most important large-scale sources
of the photospheric magnetic field are indicated as n1, n2, s1, s2, and s3.
NL is the photospheric neutral line. (b) The model magnetogram of the
same active region.

4.2.2 Coronal field model. Separators

Figure 4.8 demonstrates the three-dimentional structure of magnetic field
above the plane of topological portrait. The field lines are shown at different
separatrix surfaces that have the forms of “domes” of various size, with their
basis being located on separatrix lines in the plane Q.

The separatrix surfaces intersect along the field lines connecting the
neutral points. Each of these critical lines belongs simultaneously to four
magnetic fluxes with different connectivity; thus it is called separator . Dur-
ing the flare, there is a redistribution of magnetic fluxes - magnetic recon-
nection at the separators. For example, one of the separators connects the
points X1 and X2 (see Figure 4.9). Here, at the separator (X1X2), re-
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Figure 4.7: Topological portrait of the active region NOAA 9077 on July 14,
2000. The magnetic field directions are shown in the source plane Q at the
height z = −0.1 beneath the photospheric plane Ph. The solid curves with
arrows are the separatrices that separate the magnetic fluxes connecting
different magnetic sources.

connection occurs during the first stage S1 in the impulsive phase of the
Bastille-day flare.

4.2.3 Chromospheric ribbons and kernels

Reconnection at the separators transforms the accumulated magnetic en-
ergy of coronal currents into the thermal and kinetic energy of plasma and
accelerated particles. Propagating along the field lines and reaching the
chromosphere, these energy fluxes give rise to a complex hydrodynamic
and radiative response (see vol. 1, Section 8.3.2). Secondary processes in
the chromospheric plasma result in the basic flare behavior observed in the
optical, UV, EUV, soft and hard X-rays.

Following Gorbachev and Somov (1990), let us assume that the most
powerful release of energy and particle acceleration take place near the
tops of the two separators. We calculate the magnetic-field lines passing
through such sources of energy until their intersection with the photospheric
plane Ph. These field lines form narrow flare ribbons in the chromosphere.

It is natural that different parts of the complex active region NOAA 9077
were important during different stages of the large Bastille-day flare in
progress. In fact, the two pairs of field sources (n1, n2) and (s1, s2) played
the main role during the first stage S1 of the impulsive phase of the flare
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Figure 4.8: The magnetic-field lines forming the separatrix surfaces that
are the domes bounding the magnetic fluxes of different pairs of sources.

as illustrated by Figure 4.9, while the large-scale structure of the flare
during the second stage S2 was mainly determined by the pairs (n1, n2)
and (s2, s3). In other words, the region of the most powerful release of
energy and acceleration of electrons was initially located in the western
part of the active region without any influence of the spot s3, then moves
to the eastern part, closer to s3. This is clearly visible in the hard and
soft X-ray Yohkoh images and the TRACE EUV images (Aschwanden and
Alexander, 2001; Fletcher and Hudson, 2001; Masuda et al., 2001).

X1

X2

X3

s3

s1

Figure 4.9: The magnetic-field lines in the vicinity of the separator (the
solid dark curve) connecting the neutral points X1 and X2.

We assume that, during the second stage S2, the spot s1 has not its
primary influence anymore. Instead, the sources (n1, n2) and (s2, s3) are
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efficiently involved in the flare in a way similar to that one shown in Fig-
ure 4.9. Figure 4.10a, presents similar calculations for chromospheric rib-
bons during the stages S1 and S2. The calculated ribbons are shown by
the dashed curves. The ribbon between sources s1 and s2 corresponds to
the first stage, and the ribbon between sources s2 and s3 to the second.
However two calculated ribbons are located between the field sources n1
and n2. The lower ribbon corresponds to the stage S1, and the upper one
to the second stage.
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Figure 4.10: (a) Calculated chromospheric ribbons are shown by the dashed
curves. (b) TRACE image of the Balstille-day flare at 171 A.

Figure 4.10b presents a TRACE image of the flare at 171 Å obtained
during the second stage S2. The eastern part (the left site of the image)
of the flare is somewhat brighter that the western part. A chromospheric
ribbon is clearly visible between the field sources s2 and s3. Bright kernels
at the ends of the ribbon are also visible. The observed ribbons are arc-
shaped and are in a reasonable agreement with the locations and shapes of
the calculated ribbons. However the calculated ribbons are not reproducing
some portions of the observed ribbons. This is especially clear when we
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consider the calculated ribbons in the northern polarity. Two small parallel
ribbons between the sources n1 and n2 are given by the model while the
TRACE observations show one very elongated ribbon.

This discrepancy presumably has the following origins. First, in order
to illustrate the effect of a primary energy source at a separator, we have
taken a small circle encompassing the separator near its top in a plane
perpendicular to the separator. Such a simplistic approach seems to be
good for relatively simple active regions with one dominating separator
(see Section 3.2.2), which is not the case of the active region NOAA 9077.
It is no easy task to investigate how the rate of magnetic reconnection
(and the related dissipation rate) is distributed along the separators in the
active region with a complex topology. Second, the topological model based
on the potential field approximation completely neglects the nonpotential
components of magnetic field in the active region. This approximation is
not justified in places where strong electric cirrents flow (see Section 5.1).
And finally, we use only five charges while the observed photospheric field
is much more complex.

In principle, one could try to achieve a better agreement between the
observed chromospheric ribbons and the calculated ones, for example, by
introducing an additional magnetic charge n3 in the most eastern part of the
active region (see the spot p3 in Figures 1, 3 and 7 in Liu and Zhang, 2001).
This would allow to reproduce the eastern wing of the northern chromo-
spheric ribbon between sources n2 and n3. One could add more charges qi or
replace them with more precise distributions of the magnetic-field sources,
thereby increasing the number of separators. However, in this way, the
model becomes too complicated.

Moreover there is another principal restriction. The real magnetic field
and real velocity field in the photosphere always contain at least two compo-
nents: regular, large-scale and chaotic, small-scale. The topological model
should take into account only the first component, with the aim of de-
scribing the global reconnection mechanism behind a large flare. The small
number of the charges in the model under consideration, five, allows us to
reproduce only the most important large-scale features of the SOHO MDI
magnetogram and keeps the model being simple and clear.

Using the nonpotential, for example, force-free methods to extrapolate
the surface field would also be likely to improve the agreement between the
topological model and the observations. The most logical next approxima-
tion would be to take into account the current layers along the separators.
The magnetic field containing the current layer is in force-free equilibrium.
An expression can be found for the net current induced in the layer in
response to displacement of the photospheric sources (Longcope and Cow-
ley, 1996; Longcope, 1996).
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4.2.4 Reconnected magnetic flux. Electric field

As we made it above, the topology of the active region was defined by
partitioning of the observed photospheric field into a set of discrete sources
and determining which pairs were interlinked by coronal field lines. The
level of topological activity then can be quantified through the transfer of
magnetic flux between domains of differing field line connectivity.

The magnetic fields in the active region NOAA 9077 were observed dur-
ing several days before and after the Bastille-day flare (Liu and Zhang, 2001;
Zhang, 2002). There were many flares in this active region over this period.
The largest one (X5.7) was on July 14 and the next largest in the magnitude
(X1.9) was on July 12. It was suggested by Somov et al. (2002a) that the
magnetic energy of the active region reached its minimum after this flare
and that the energy necessary for the Bastille-day flare was accumulated
over the following two days (July 12-14).

We have made the model of the photospheric and coronal magnetic
fields in the active region NOAA 9077 on July 12 just in the same way
as presented above for July 14. It appears that the topological portrait
of the active region and the structure of its coronal field did not change
significantly during two days. For example, in the western part of the
active region on July 12, there was also the separator (X1X2) connecting
in the corona the neutral points X1 and X2 in the plane Q of five magnetic
sources. We have calculated the magnetic flux beneath this separator and
above the source plane Q, Ψ12 on July 12 and Ψ14 on July 14. The difference
of these fluxes is δΨ = Ψ14 − Ψ12 ∼ 6 × 1021 Mx.

What is the physical meaning of δΨ? – If there were a vacuum without
plasma above the plane Q, then the flux δΨ would reconnect at the separa-
tor (X1X2) over the two day evolution of the photospheric field sources, and
the magnetic field would remain potential without any excess of magnetic
energy. In the low-resistivity plasma, changes in the photospheric sources
induce an electric current at the separator in the corona. This current in
the coronal plasma forms a current layer which will prevent the reconnec-
tion of the flux δΨ. Thus, the energy will be accumulated in the magnetic
field of the current layer.

There are several important questions related to this scenario.
First, why reconnection cannot destroy the current layer during the

long pre-flare state? In principle, the current layer in this state can suffer
many instabilities: thermal instability due to the radiative energy losses,
resistive overheating instability caused by the temperature dependence of
plasma conductivity, two-stream instabilities of various types, tearing in-
stability, structural instability etc. Fortunately, many of these instabilities
can be well stabilized or have a high threshold in many cases of interest.
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For example, the tearing instability is an integral part of magnetic recon-
nection. The theory of resistive MHD instabilities developed for the case of
the neutral current layers predicts very low threshold (Furth et al., 1963).
However laboratory and numerical experiments, as well as some astrophys-
ical observations, show that the reconnecting current layers can be stable
for a long time because the tearing mode is suppressed by a small transver-
sal magnetic field, i.e., by a small component of magnetic field which is
perpendicular to the current layer (see Section 11.4).

The second question is why reconnection is sufficiently slow to permit
the current layer build-up during the slow evolution before flaring and fast
enough during the flare? In the pre-flare state, the current layer with the
classical Coulomb conductivity has very low resistance R0. For this reason,
the characteristic time of the energy accumulation process at the separator
in the corona, τa = L/R0 (with the self-inductance L which is proportional
to the separator length ls), can be long enough (say 3 × 104 s) in order to
accumulate the sufficiently large energy for a large flare (see discussion in
Section 3.3.3).

It is assumed that, as a result of one of the instabilities mentioned above,
the magnetic energy related to the current layer is rapidly released and a
flare starts. It is clear that, in order to release the accumulated energy in
a time τf ∼ 102 − 103 s, the total resistance of the current layer must be
increased by 2 or 3 orders of magnitude. Such an effect can be well the
result of the appearance of plasma turbulence or local current disruptions
that have large enough resistance, electric double layers.

Note that the highly-concentrated currents are necessary to generate
plasma turbulence or double layers. This fact justifies the pre-flare storage
of magnetic energy in current layers rather than distributed currents in the
full volume. The smoothly-distributed currents can be easily generated in a
plasma of low resistivity but they dissipate too slowly. On the contrary, the
current density inside the pre-flare current layers usually grows with time
and reaches one or another limit. For example, wave exitation begins and
wave-particle interaction becomes efficient to produce high resistance, or
the collisionless dynamic dissipation allows the fast process of collisionless
reconnection (Section 6.3.1).

The energy released during the first stage S1 of the Bastille-day flare
was estimated to be εf ∼ (1− 3)× 1031 erg (e.g., Aschwanden and Alexan-
der, 2001). If this energy was accumulated as the magnetic energy of
the current layer at the separator, then it corresponds to the total cur-
rent Jf ∼ (1 − 2) × 1011 Ampere along the separator in the corona (Somov
et al., 2002a). This value does not contradict to the high level of non-
potentiality of the active region NOAA 9077, which was estimated from
measurements of the three components of the photospheric magnetic field
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(see Figure 5 in Deng et al., 2001). More exactly, the estimated total verti-
cal current in the photosphere, Jz ∼ (1 − 2) × 1013 Ampere, is significantly
larger than the coronal current Jf at the separator. Note, however, that
the nonpotential components of the field in this active region are presum-
ably (see Section 5.1) related to the following currents: (a) the pre-flare
slowly-reconnecting current layers which are highly-concentrated currents
flowing along the separators, (b) the smoothly distributed currents which
are responsible for magnetic tension generated by the photospheric shear
flows, (c) the concentrated currents at the separatrices, also generated by
the shear flows.

Anyway, the flare energy εf is much smaller than the energy of potential
field, which we calculated by using the topological model: εar ∼ (3 − 6) ×
1033 erg on July 12 and εar ∼ (1−2)×1034 erg on July 14. We see that the
potential field really dominates the global energetics of the active region
and, therefore, determines the large-scale structure of its magnetic field.
However, in smaller scales, especially in the vicinity of the main neutral
line of the photospheric magnetic field, the energy of nonpotential field has
to be taken into account in modeling of the Bastille-day flare (Deng et
al., 2001; Tian et al., 2002; Zhang, 2002). A two-step reconnection scenario
for the flare energy process was suggested by Wang and Shi (1993). The
first step takes place in the photosphere and manifests as flux cancellation
observed in the photospheric magnetograms. The second-step reconnection
is explosive in nature and directly responsible for the coronal energy release
in flares.

The most rapid reconnection of the flux δΨ in the corona occurs during
the impulsive phase of the Bastille-day flare. Taking the duration of the
first impulsive stage of electron acceleration (during the burst S1 of the
hard X-rays with energies exceeding 33 keV) to be δt ∼ 3 min (Masuda et
al. 2001), we estimate the electric field

E = −1
c

∂A
∂t

. (4.1)

Here A is the vector potential, i.e. B = curlA, c is the speed of light. The
magnetic flux Ψ is written as a function of A as follows:

Ψ =
∮
L

A d l , (4.2)

where L is the closed contour: the separator plus the line connecting its feet,
the neutral points in the source plane Q. First, we have calculated directly
the magnetic flux beneath the separator and above the plane Q, Ψ12 on July
12 and Ψ14 on July 14. We just integrated the flux of magnetic field across
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a surface bounded by the contour L. Second, in order to be sure in the
final results, we also made numerical integration over a “separator loop” as
defined by Longcope (1996): (a) from one neutral point along the separator
above the plane Q and parallel to the magnetic field B at the separator to
another neutral point and then (b) back from the second neutral point to
the first one along the separator below the plane Q and anti-parallel to the
magnetic field B. In this way, we have found the magnetic fluxes on July
12 and 14, and we have estimated the value of electric field E ∼ 30 V/cm.
This value does not contradict to the electric-field estimates obtained for
impulsive flares using the theory of reconnecting SHTCL (Chapter 6.3).

The reconnected magnetic flux can be also estimated in another way.
Since the energy fluxes from the separator reconnection region result in
the formation of chromospheric ribbons, these ribbons correspond to newly
reconnected field lines. In a two-dimensional MHD model for a two-ribbon
flare with a vertical current layer (the standard model, see Forbes and Ac-
ton, 1996), the ascending region of reconnection gives rise to chromosphertic
ribbons moving in opposite directions from the photospheric neutral lines.
In general, a ribbon’s motion with respect to the photospheric neutral line
can be used to estimate the reconnected magnetic flux.

In the Bastille-day flare, Fletcher & Hudson (2001) analyzed the mo-
tions of the northern and southern EUV ribbons observed by TRACE at
the maximum of the HXR burst S2. They estimated the value of the
reconnected flux as the total magnetic flux traversed by the ribbons in
the north and the south in the eastern part of the active region. Dur-
ing the time interval from 10:26:15 UT to 10:28:58 UT, which is a part
of the stage S2, δΨ ≈ −(14.5 ± 0.5) × 1020 Mx for the southern ribbon
and δΨ ≈ (8.6 ± 1.4) × 1020 Mx for the northern ribbon with the inclu-
sion of the mixed-polarity fields to the north from the photospheric neutral
line. It is not clear whether the ribbons are actually passing through this
region or just suddenly form. Anyway, the magnetic flux reconnected dur-
ing the stage S2 and estimated by Fletcher & Hudson at the level of the
photosphere is of the same order of magnitude as the magnetic flux which
we have found for the stage S1 and which is the flux reconnected at the
separator (X1X2) in the corona.

4.2.5 Discussion of topological model

The use of the topological model requires that the relevant magnetic po-
larities are well taken into account. So, at least, they should be spatially
well resolved. It is also obvious that the topological model can be relevant
for large flares, since it neglects fine temporal behavior and small-scale pro-
cesses. The model is relatively simple if it concentrates on general evolution
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of the global structure of large flares. The topological model for large-scale
magnetic fields remains simple and clear for such a complex active region as
the NOAA 9077 (the βγδ configuration, according to Liu and Zhang, 2001),
which gave rise to the Bastille-day flare. At the same time, the topological
model explains the main features of this well-studied flare.

First, the simplified topological model approximately predicts the loca-
tion of the flare energy source in the corona and, with a reasonable accuracy,
reproduces the locations and shapes of chromospheric ribbons and bright
kernels on the ribbons. More accurate models should be constructed, with
account of nonpotential components of magnetic field in the active region,
in order to reach a better agreement between the model and observations.

Second, the topological model explains the observed large-scale dynam-
ics of the Bastille-day flare as the result of fast reconnection in the re-
connecting current layers at separators. It allows us to estimate roughly
the reconnection rate and the strength of the large-scale electric fields that
presumably accelerate charged particles along the separators. All these
effects can be carefully investigated in many flares by using the Ramaty
High Energy Solar Spectroscopic Imager (RHESSI) high-resolution HXR
and gamma- imaging data (Krucker et al., 2003; Lin et al., 2003).

In order to interpret the temporal and spectral evolution and spatial
distribution of HXRs in flares, a two-step acceleration was proposed by So-
mov and Kosugi (1997) with the second-step acceleration via the collapsing
magnetic-field lines. The Yohkoh HXT observations of the Bastille-day
flare (Masuda et al., 2001) clearly show that, with increasing energy, the
HXR emitting region gradually changes from a large diffuse source, which
is located presumably above the ridge of soft X-ray arcade, to a two-ribbon
structure at the loop footpoints. This result suggests that electrons are
in fact accelerated in the large system of the coronal loops, not merely in
a particular one. This seems to be consistent with the RHESSI observa-
tions of large coronal HXR sources; see, for example, the X4.8 flare of 2002
July 23 (see Figure 2 in Lin et al., 2003).

Efficient trapping and continuous acceleration also produce the large
flux and time lags of microwaves that are likely emitted by electrons with
higher energies, several hundred keV (Kosugi et al., 1988). Somov et al.
(2005c) believe that the lose-cone instabilities (Benz, 2002) of trapped
mildly-relativistic electrons in the system of many collapsing field lines
(each line with its proper time-dependent lose cone) can provide exitation
of radio-waves with a very wide continuum spectrum as observed.

Qiu et al. (2004) presented a comprehensive study of the X5.6 flare on
2001 April 6. Evolution of HXRs and microwaves during the gradual phase
in this flare exhibits a separation motion between two footpoints, which
reflects the progressive reconnection. The gradual HXRs have a harder
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and hardening spectrum compared with the impulsive component. The
gradual component is also a microwave-rich event lagging the HXRs by
tens of seconds. The authors propose that the collapsing-trap effect is a
viable mechanism that continuously accelerates electrons in a low-density
trap before they precipitate into the footpoints (see Section 7.3).



Chapter 5

Electric Currents Related
to Reconnection

The topological model of a flare, with a reasonable accuracy, predicts
the location of a flare energy source in the corona. In order to clarify
an origin of this energy, we have to consider the non-potential part
of magnetic field in an active region. In this Chapter, we discuss the
main electric currents related to magnetic reconnection in a large solar
flare. More specificaly, we continue a study of the Bastille day 2000
flare which topological model was considered in a previous Chapter

5.1 Magnetic reconnection in the corona

5.1.1 Plane reconnection model as a starting point

The two-dimensional (2D) reconnection models for solar flares, including
the standard model, are definitely an over-simplification that cannot explain
all features of actual flares. However they have to be considered to find a
missing element of the flare modeling and to demonstrate how this element
should be introduced into the flare interpretation. Moreover some features
and predictions of the 2D models still have to be studied and clarified.

5.1.1 (a) Pre-flare evolution and energy accumulation

As in Section 3.4.2, we shall consider a three-component reconnection in
two dimensions, at first. With this simplification, which will be discussed
in Section 5.2.3, the separator is a straight line X in the corona as shown

99
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in Figure 5.1a by dashed vectors X above the photospheric plane Ph. In
the case of the Bastille day 2000 flare, this configuration of magnetic field
corresponds to a central part of the two-dimensional cartoon picture with
two magnetic dipoles (Wang et al., 2005).

To clarify notation, we start here from the classical example of ‘recon-
nection in the plane’, in the plane (x, z). A 2D model means, as usual, that
all the unknown functions do not depend of the coordinate y. In addition
we assume here that there is no the magnetic field component By which is
perpendicular to the plane (x, z).

In this case illustrated by Figure 5.1a, the straight line NL is the neu-
tral line in the photospheric plane (x, y). Above this plane, six magnetic
surfaces are shown to discuss the reconnection model. In the scheme, that
is usual and sufficient to describe the plane reconnection (e.g., Figure 3.1),
we do not introduce the magnetic surfaces because we simply consider
reconnection of magnetic field lines just in one plane, the reconnection
plane (x, z), that is y = 0. And we ‘remember’ that, in all other planes
with y �= 0 , we have the same process. This is not necessarily true in
general and never true in reality, in three-dimensional configurations of the
magnetic fields in solar active regions.

So it is instructive to introduce the magnetic surfaces even in the sim-
plest situation considered here. The magnetic surface 1 in Figure 5.1a
consists of the field lines which are similar to the line f1 starting at the
point a with coordinates x = xa, y = 0, z = 0. The surface 2 consists of
the field lines similar to f2. For the sake of simplicity, we consider here
a symmetrical case with the symmetry plane x = 0 for the magnetic sur-
faces. Hence the field lines f ′

1 , f ′
2 etc have the vertical component Bz of

the opposite sign with respect to the similar field lines on the opposite side
of NL. Morover we have put By = 0 to see the ordinary 2D magnetic field
configuration in the simplest approach to the reconnection problem.

Among the magnetic surfaces shown in Figure, two are topologically
important: separatrices S1 and S2 cross at the separator straight line X
which is parallel to NL. The separator separates the interacting magnetic
fluxes by the separatrices. In addition, it is across the separator that the
interacting fluxes are redistributed (more exactly, reconnected) so that the
magnetic field would tend to keep a minimum energy, to remain potential,
if there were no plasma.

Let Figure 5.1a describe an ‘initial state’ of the magnetic configuration
in evolution. Starting from this state, let us introduce the converging flow
of the photospheric footpoints (for example, two magnetic dipoles join as
proposed by Wang et al., 2005). This converging flow is illustrated by Fig-
ure 5.1b by the displacement vector δx related to the photospheric velocity
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Figure 5.1: (a) An initial state of magnetic field. The separatrices S1 and
S2 cross at the separator X. (b) The converging flows in the photosphere
induce a reconnecting current layer (RCL) in the corona.
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component v⊥
δx = v⊥ × τ , (5.1)

where τ is the duration of a pre-reconnection stage in the active region
evolution. Some part of the magnetic fluxes, δA, would reconnect across
the separator X. Here A is the y-component of the vector potential A
defined by relation B = curlA.

In a plasma of low resistivity, like coronal plasma, the separator plays
the same role as the hyperbolic neutral line (Section 3.2.1). The slowly-
reconnecting current layer (see RCL in Figure 5.1b) is developing and grow-
ing (we may call this process a ‘pile-up regime’) to hinder the redistribution
of interacting magnetic fluxes. This results in an excess energy being stored
in the form of magnetic energy of a RCL. If J is the total electric current
in the RCL, b is the half-width of the current layer, then the surplus energy
above that of a potential magnetic field, having the same sources in the
photosphere (see Section 3.3), is equal to

Ef =
1

2c2 × LJ2 . (5.2)

Here
L ≈ 2l ln

2l

b
(5.3)

is the self-inductance of the RCL, l being its length along the separator.
In the case of the Bastille day 2000 flare, the length of the SXR arcade

was ∼120 000 km. So l ∼ 1010 cm. With a typical RCL width b ∼ 109 cm
(see Section 7.1), we have ln (2l/b) ≈ 3 and

Ef ≈ 3
c2 × l J2 ∼ J2

3 × 1010 (5.4)

or
Ef ∼ 3 × 108 J(Ampere) 2, erg . (5.5)

Hence the total current J ∼ 3×1011 −1012 Ampere is necessary for a large
flare, like the Bastille day flare, to release the energy

Ef ∼ 3 × 1031 − 3 × 1032 erg .

These estimates do not contradict to the estimates of the electric cur-
rent based on measurements of the magnetic field components in the pho-
tosphere in the active region NOAA 9077 (Deng et al., 2001; Zhang, 2002).
More exactly, a level of magnetic non-potentiality in AR NOAA 9077
seemed to be even higher before 14 July than that after the Bastille day
flare and that predicted by formula (5.5). This presumably means that
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some part of free energy is accumulated in surplus to the magnetic energy
of the current layer, as an additional energy related to the photospheric
shear and photospheric reconnection (Sections 5.2 and 5.3).

On the other hand, during the Bastille day flare, the total integrated
thermal energy was <∼ 3×1031 erg (Aschwanden and Alexander, 2001) which
is smaller than the total energy of the flare predicted by formula (5.5). This
means that significant part of the flare energy goes to the kinetic energy
of the fast plasma motions (i.e. CME) and accelerated particles (Share et
al., 2001).

5.1.1 (b) Flare energy release

What could be expected as a result of fast reconnection in the RCL dur-
ing a flare? – Figure 5.2 illustrates such expectations. Being in a high-
temperature turbulent-current state (Section 6.3) the rapidly-reconnecting
current layer provides the powerful fluxes of the flare energy along the
reconnected field lines. These fluxes, when they arrive in the upper chro-
mosphere, create very impulsive heating of the chromospheric plasma to
high temperatures. Fast electrons (accelerated and super-hot) lose their
energy by Coulomb collisions with the thermal electrons of the chromo-
spheric plasma. This creates a quick hydrodynamic and radiative response
of the chromosphere (see vol. 1, Section 8.3.2) observed in SXR, EUV, and
optical emission. Inelastic collisions of the fast electrons with thermal pro-
tons and other ions generate the HXR bremsstrahlung radiation. For this
reason, the footpoints of the reconnected field lines also become bright in
HXR.

We adopt the hypothesis that the EUV and HXR flare ribbons observed
by TRACE and Yohkoh in the Bastille day flare map out the chromospheric
footpoints of magnetic field lines newly linked by reconnection in the corona
(Fletcher and Hudson, 2001; Masuda et al., 2001). So the bright kernels
in the flare ribbons allow us to find the places in the corona where the
magnetic reconnection process has the highest rate and produces the most
powerful fluxes of energy.

Since the magnetic field lines f1 and f ′
1 reconnect first, they create the

first reconnected line f1f
′
1 and the first pair of the chromospheric bright

footpoints Pa and P b related to this line as shown in Figure 5.2. In fact,
two field lines being reconnected create two other field lines of different
magnetic linkage. In Figure 5.2, there are two field lines f1f

′
1 : one goes

down, the second moves up. In order not to obscure the simplest situation,
we do not discuss in this Section the upward-moving field lines. Depending
on conditions, they have complicated structure and behaviour in the upper
corona and interplanetary space.
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Figure 5.2: Apparent motion of footpoints during the fast reconnection
process. The footpoint separation increases with time.

The field lines f2 and f ′
2 will reconnect later on, for example at the

end of the first HXR spike S1 described in Section 4.1. So they will create
a new pair of footpoints P ′

a and P ′
b in different locations. Obviously the

distance between the footpoints of the reconnected field lines will become
larger. This is the well-known prediction of the standard model of two-
ribbon flares, which is also the well-observed effect of the increasing distance
between flare ribbons (Svestka, 1976; Zirin, 1988).

Wang et al. (2005) compared two TRACE images of the active region
NOAA AR 9077 before and after the Bastille day flare on 2000 July 14.
They marked the magnetic field line connections based on the TRACE flux
loop structures. Figure 8 in Wang et al. (2005) clearly shows that, before
the flare, magnetic fields connect outward in the outer border of the active
region. After the flare, connectivity is most obvious between fields inside
the active region and close to the photospheric neutral line. Naturally,
the simple 2D model does not allow the authors to identify the two far
footpoints with where the preflare fields were connected.

From the physical point of view, the predicted and observed displace-
ment δx ′, as illustrated in Figure 5.2, represents the effect of fast relaxation
of the non-potential component of the magnetic field related to the RCL
which has been generated by the photospheric converging motion. Note
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that, in general,
δx ′ �= δx . (5.6)

In the simplest example under consideration, the reason is obvious. Let the
field lines f1 and f ′

1 coincide with the separatrices S1 and S2 of the initial
state shown in Figure 5.1a. Then δx represents a photospheric displace-
ment of the initial separatrices. For this reason, the first pair of the bright
footpoints Pa and P b shows us the real displacement of the footpoints of
the initial separatrices. This is important for interpretation of the flare
onset, the beginning of the first HXR spike S1.

On the other hand, the apparent footpoint displacement δx ′ is directed
to the new positions of the bright kernels P ′

a and P ′
b. These are related

to the footpoints of the separatrices in a final state of the magnetic field
after reconnection. And the final state, in general, does not coincide with
the initial one for many reasons. The main one is that presumably the
magnetic field changes during a flare (Anwar et al., 1993, Kosovichev and
Zharkova, 2001). It is natural to assume that

δx ′ <∼ δx (5.7)

since dissipation of the electric currents in solar flares is presumably never
complete.

Therefore the plane reconnection model with a vertical RCL, considered
here, predicts that the flare bright kernels, as they are seen in EUV, HXR
or Hα, should separate in opposite directions from the photospheric neutral
line, if the photospheric magnetic fields converge to this line before a flare.
Note that the plane-reconnection models of solar flares with a new emerging
flux and with a horizontal RCL (Syrovatskii, 1972) predict a decreasing
footpoint separation (see Section 3.4.1).

From the observational point of view, however, actual solar flares are
not so simple. Initially, on the basis of Yohkoh SXT observations, the flares
with the so-called ‘cusped arcade’ (e.g., the well-known 21 February 1992
flare) were often considered as a clear evidence in favour of the standard 2D
MHD model; see Shibata et al. (1995), Tsuneta (1996) and references there.
In a deeper examination of the SXT data, Uchida et al. (1998), Morita
et al., (2001) noted that there are some essential features inexplicable by
the standard model. Morita et al. showed that the magnetic structure
responsible for these flares, including the homologous flares, turned out to
be a structure with 3D quadruple-type magnetic fields (Section 3.2.1).

5.1.2 Three-component reconnection

In the above we neglected the component of the magnetic field parallel to
the separator in order to discuss the classical example of 2D reconnection.



106 Chapter 5. Electric Currents

However, under actual conditions in the solar atmosphere, reconnection
always occurs in the presence of a longitudinal component. Moreover the
longitudinal component of magnetic field in the vicinity of a separator has
several important physical consequences for the reconnection process in
solar flares (Section 6.2.2). Only those of them will be discussed below that
are important for understanding the apparent motions of chromospheric
ribbons and bright kernels during a large two-ribbon flare.

As in the previous example, illustrated by Figures 5.1 and 5.2, we as-
sume that all the geometrical properties of the magnetic field are uniform
in the y-direction. Now we allow the y-components of the unknown vector
functions, for example the magnetic field vector B. So the problem under
consideration still remains a two-dimensional one, at least in the initial and
pre-reconnection stages, until we shall make new assumption that some-
thing depends on the coordinate y. For example, we shall assume in the
following Sections that the conditions for field dissipation depend on y. In
this case, the problem becomes essentially three-dimensional when dissi-
pation acts quickly at a certain region determined by a given value of y.
Before we make such an assumption, the problem remains two-dimensional
because there is no need and no reason to assume that the longitudinal (par-
allel to the separator X) magnetic field component B ‖ = B y is uniform
in the plane, i.e. in variables (x, z). On the contrary, Somov et al. (1998)
assumed that each field line arrives to the separator with its own value of
B ‖. The only restriction up to now is that the component B ‖ does not
depend on y.

Near the separator X the longitudinal component B ‖ naturally dom-
inates because the orthogonal (perpendicular to the separator) field B⊥
vanishes at the separator. For this obvious reason, the field lines passing
very close to the separator become elongated in the y-direction; the separa-
tor by itself is a unique field line. This and other properties of the separator
are well known since the classical work by Gorbachev et al. (1988); they
will not be discussed here except one of them which is essential. The re-
connection process in the RCL at the separator will just conserve the flux
of the longitudinal component B‖ (Section 6.2.2).

In other words, at the separator, the orthogonal components (i.e. the
magnetic field B⊥) are reconnected. Therefore the orthogonal components
of the magnetic field actively participate in the connectivity change, but
the longitudinal one does not. Hence the longitudinal component plays a
relatively passive role in the topological aspect of the process but it influ-
ences the physical properties of the RCL, in particular the reconnection rate
(see Section 6.2.2). The only exception constitutes a neutral point of the
magnetic field, which can appear on the separator above the photospheric
plane. Gorbachev et al. (1988) showed that even very small changes in the
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configuration of the magnetic field sources can lead to a rapid migration of
such a neutral point along the separator and to a topological trigger of a
solar flare.

So, in general, a three-component reconnection, i.e. the reconnection
process inside a RCL which has three components of magnetic field, at the
separator can proceed with an increase (or decrease) of the longitudinal
component of magnetic field and, as a consequence, with an increase (or
decrease) of the length of the reconnected field lines. According to Somov
et al. (1998), in the more impulsive (MI) flares, the reconnection process
proceeds with a decrease of the longitudinal component and hence with a
decrease of the footpoint separation. The physical origin of this kind of
flare is discussed in the next Section.

5.2 Photospheric shear and coronal recon-
nection

5.2.1 Accumulation of magnetic energy

Figure 5.3 demonstrates the action of a specified photospheric velocity field
on different field lines f1, f2 etc placed at different magnetic surfaces 1, 2
etc. As in the previous Section, a converging flow is present in opposite sides
of the neutral line NL in the photosphere Ph and creates the RCL along
the separator X in the corona as shown in Figure 5.3b. In addition, now a
shear flow is superposed on the converging flow in the photosphere. So the
separatrices S1 and S2 are involved in the large-scale shear flow together
with nearby surfaces 1, 2 and 1′, 2 ′. When a field line, for example the
line f1, moves in direction to NL, it becomes longer along the NL under
action of the shear flow.

Figure 5.3b shows the field lines which were initially in the plane (x, z)
as indicated in Figure 5.3a. Under action of the shear flow, these lines
move out of the plane (x, z), except for an upper corona boundary, which
is assumed, for the sake of simplicity of illustration, to be unaffected by the
photospheric shear.

We assume again that reconnection is too slow to be important yet. We
call this stage of the magnetic field evolution the ‘pre-reconnection state’.
At this stage, coming between the initial and final one, the magnetic field
sources in the photosphere have been displaced to their final pre-flare posi-
tions, but the magnetic field lines have not started to reconnect yet because
the plasma conductivity still can be considered as infinite. Therefore the
RCL prevents the interacting fluxes from reconnection. The energy of this
interaction is just the energy of the magnetic field of the current layer, as
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Figure 5.3: (a) The initial configuration of the magnetic field is the same
as in Figure 5.1. (b) The converging photospheric flow creates the RCL
at the separator X. In addition, the shear flow with velocity v ‖ in the
photosphere makes the field lines longer, thus increasing the energy in the
magnetic field.



5.2 Photospheric Shear 109

in Section 1.1.4.
Photospheric shear flows add to the energy of the pre-reconnection state

an additional energy. This is the energy of magnetic tension generated by
the shear because of the ‘freezing-in’ property of the solar plasma. The
flow works on the field-plasma system, making the field lines longer. This
is always true, even if there are not a separator. In addition, if the pre-flare
magnetic-field configuration contains the separator, and

if the bases of the field separatrices are involved in the large-scale
photospheric shear flows, then the shear flows induce current lay-
ers extending along the separatrices, with the concentrated current
flowing parallel to the orthogonal field B⊥

(see Sections 14.3 and 14.4). The origin of this current lies in the disconti-
nuity of the longitudinal component B‖ on the separatrices, created by the
photospheric shear flows in the presence of the separator in the corona. Dis-
sipation of the current during a flare leads to a decrease of the discontinuity.
We call such a process the ‘shear relaxation’.

From a mathematical point of view, if the magnetic force dominates
all the others, the potential or force-free field is a solution of the MHD
equations for an ideal medium in the approximation of a strong field (see
vol. 1, Section 13.3.1). Such a field, changing in time according to the
boundary conditions in the photosphere, sets the chromospheric and coronal
plasma in motion. The field remains mainly potential but accumulates non-
potential components related to electric currents: (a) slowly-reconnecting
current layers which are highly-concentrated currents, flowing parallel to
the separator, (b) the smoothly distributed currents which are responsible
for magnetic tension generated by the photospheric shear flows, (c) the
concentrated currents at the separatrices, generated by the shear flows too.

As for the fast reconnection process which tends to release these ex-
cesses of magnetic energy during a flare, the main difference is that now a
longitudinal magnetic field is present inside and outside the RCL. Hence we
shall have a three-component reconnection as mentioned in Section 5.1.2.

5.2.2 Flare energy release and CMEs

The fast reconnection stage of a flare, that is the flare impulsive phase,
is illustrated by Figure 5.4. As in the case of plane reconnection demon-
strated by Figure 5.2, in Figure 5.4b only two pairs of the reconnected field
lines are shown. How were they selected among the continuum of the field
lines at each magnetic surface before reconnection, as they are shown in
Figure 5.4a?
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Note that Figure 5.4a differs from Figure 5.3b in one important respect.
These figures show the same magnetic surfaces but different field lines. An
additional assumption used here is that the physical conditions along the
y-direction are not uniform any longer. More exactly it is assumed that the
fastest reconnection place is located in vicinity of the point y = 0 in the
RCL at the separator. For this reason, those field lines are selected which
have the nearest distance to the RCL under condition y = 0. So just these
field lines will reconnect first and quickly.

Usually, in three-dimensional topological models, the place of fast recon-
nection is chosen at the top of the separator. This is assumed, for example,
in the model for the well-studied flare of 1980 November 5 (Sections 3.2.2
and 3.2.3). In this Section we shall not consider the upward-moving re-
connected field lines in detail. They are just indicated in Figure 5.4b by
a velocity vector U. As a consequence of the three-component reconnec-
tion at the separator, the upward-moving lines may take a twisted-flux-tube
shape, which may correspond to a central helical part of a CME (see Hirose
et al., 2001). This seems to be consistent with observations of a rapid halo-
type CME generated by the Bastille day flare (Klein et al., 2001, Manoharan
et al., 2001, Zhang et al., 2001).

In general, the upward disconnection pictured in Figure 5.4b plays a
central role in observed expansion of arcade loops into the upper corona and
interplanetary space by creating helical fields which may still be partially
connected to the Sun (Gosling et al., 1995; Crooker et al., 2002). It is
now commonly used to interpret white-light signatures of CMEs. On the
other hand, the low-lying SXR-arcade events associated with CMEs are
interpreted as the consequent brightening of the newly formed arcade (see
Figure 2 in Crooker et al., 2002). In terms of the model under consideration,
the reconnected field lines below the separator shrink to form magnetic
arcade loops. This part is discussed below.

5.2.3 Flare and HXR footpoints

The quickest release of energy at the top of the separator creates, at first,
the pair of the chromospheric bright points Pa and P b related to the first
reconnected line f1f

′
1 . Later on the field lines f2 and f ′

2 , being reconnected
at the point y = 0 in the RCL, create the field line f2f

′
2 with the pair of the

bright footpoints P ′
a and P ′

b. Figure 5.4a shows only two pairs of the field
lines that reconnect in the plane y = 0. Being reconnected, they create two
pairs of the bright footpoints shown in Figure 5.4b.

The apparent displacement of the footpoints, from Pa to P ′
a and from P b

to P ′
b, now consists of two parts: δx ′ and δy ′. The first one has the same

meaning as in the classical 2D reconnection process (Section 5.1.1). The
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Figure 5.4: (a) A pre-reconnection state of the magnetic field in an active
region with the converging and shear flows in the photosphere. The field
lines are shown which are nearest to the fastest reconnection place (y = 0)
in the RCL. (b) Rapidly decreasing footpoint separation during the ‘more
impulsive’ Sakao-type flares.
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second apparent displacement δy ′ equals a distance along the y axis between
footpoints of the reconnected field lines f1f

′
1 and f2f

′
2 . This value is related

to an increase of the length of the field lines on two different magnetic
surfaces, generated by the photospheric shear flow along these surfaces.
Therefore the displacement δy ′ during a flare (or a part of its energy release
as the first HXR spike S1 in the Bastille day flare) represents the effect of
relaxation of the non-potential component of the magnetic field related to
the photospheric shear flow.

In fact, the ‘rainbow reconnection’ model (Section 3.2.4) or the topolog-
ical model with photospheric vortex flows (Gorbachev and Somov, 1988),
which is mainly the same, predicts the existence of the converging and shear
flows in the central region under the top of the separator.
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Figure 5.5: (a) A photospheric vortex flow distorts the neutral line NL.
(b) A schematic decomposition of the velocity field v into the components
parallel and perpendicular to the neutral line.

Figure 5.5 illustrates a character of the photospheric velocity field which
deforms the neutral line NL. The vortex-type flow generates two compo-
nents of the velocity field: parallel to NL and directed to NL. The velocity
components v‖ and v⊥ are parallel and perpendicular to the photospheric
neutral line NL. The first component of the velocity field provides a shear
of magnetic field lines above the photospheric neutral line. The second one
tends to compress the photospheric plasma near the NL and in such a way
it can drive magnetic reconnection in the corona and in the photosphere
(Section 5.3).

To demonstrate the basic physics in the simplest way, we considered
only a central region C in the vicinity of the S-shaped neutral line NL
in Figure 5.3b. Here we put the y-direction along the NL; the separator
is nearly parallel to NL as was shown in Figure 5.1. In actual flares this
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‘central part’ can be long enough to be considered in this way. The Bastille-
day flare seems to be a good example of such flares because of its extremely
regular appearance as a beautifully ‘cylindrical arcade’ in EUV and SXR
(Figure 4.1), which extends more than 1010 cm.

In the region C, the converging flow generates the RCL in the corona
above the photospheric neutral line. The shear flow creates the longer
magnetic loops which must be reconnected by the RCL. Such loops, being
reconnected first, provide the bright footpoints, flare kernels, with a large
footpoint separation. Later on, the bright footpoints with shorter separa-
tion appear. In this way, the more impulsive (MI) Sakao-type flares (see
definitions and properties of two sub-classes, more impulsive (MI) and less
impulsive (LI) flares, in Section 3.4.2) with a decreasing footpoint sepa-
ration can appear in active regions. This is consistent with the model by
Somov et al. (1998).

Why does the footpoint separation increase in the LI flares? – This
may be the case when the velocity of the photospheric shear flow decreases
near NL. Hence the second field line f2 arrives to the separator with a
stronger longitudinal field than the first, i.e. B‖2 > B‖1. This can make
the reconnection process slower, because the longitudinal field makes the
solar plasma less compressible, and the flare less impulsive. However the
longitudinal field does not have an overwhelming effect on the parameters
of the current layer and the reconnection rate (Section 6.2.2). This might
be especially true if the compression of the plasma inside the current layer
is not high since its temperature is very high.

What seems to be more efficient is the following. In the LI flares, after
reconnection, the reconnected field line f2 will be longer than the line f1
as illustrated by Figure 3.13a. (It means that reconnection proceeds in
the direction of a stronger shear in the LI flares.) So the energy of a
longitudinal component of magnetic field becomes larger after reconnection
of the shear-related currents (Section 14.4). On the contrary, in the MI
flares, the reconnection process tends to decrease both excesses of energy:
(a) the magnetic energy which comes from the converging flows in the
photosphere, i.e. the magnetic energy of RCL, and (b) the energy taken
by coronal magnetic fields from the photospheric shear flows. Presumably
this circumstance makes the MI flares more impulsive.

We have proposed above that, before the large two-ribbon flares with
observed decrease of footpoint separation,

the separatrices are involved in a large-scale shear photospheric flow
in the presence of an RCL generated by a converging flow.

This seems to be consistent with conclusion by Schrijver et al. (2005)
that shear flows do not by themselves drive enhanced flaring or coronal
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nonpotentiality. These properties related to coronal free energy require
appropriately complex and dynamic flux emergence within the preceding
∼ 10 − 30 hr. The magnetic and velocity field distributions in the pho-
tosphere, more complicated than the simple shear, are necessary to create
large solar flares.

For example, Hénoux and Somov (1987) considered an active complex
with four magnetic sources of interchanging polarities in the photosphere
and vortex-type flows in the photosphere around each source. Two systems
of large-scale coronal currents are distributed inside two different magnetic
cells. These currents are interacting and reconnecting at the separator
together with reconnecting magnetic-field lines (see Section 14.2.1). Such
a process may play a significant role in the dynamics of large solar flares
because of a topological interruption of the electric currents.

Even the scenario with the converging and shear flows considered above
(Somov et al., 2002a) is still incomplete unless it does not take into account
the presence and eruption of a long twisted filament along the photospheric
neutral line before the flare (Liu and Zhang, 2001; Yan et al., 2001; Zhang et
al., 2001). Bearing this morphological fact in mind, we are going to consider
some physical processes in the close vicinity of the polarity reversal line NL
in the photosphere.

5.3 Shear flows and photospheric reconnec-
tion

Let us return to Figure 5.3 and consider only the nearest vicinity of the
photospheric neutral line NL. So, on the one hand, the separatrices are
outside of the region under consideration but, on the contrary, the effects
related directly with NL become dominant. In the case of the Bastille day
flare, the typical distance between the separatrices is ∼ 3 × 109 cm. The
width of the region which we are going to consider <∼ 3 × 108 cm.

The converging flow toward the polarity reversal line can cause the
opposite-polarity magnetic fields to collide in the photosphere and subse-
quently drive magnetic reconnection there. Converging flows in the pho-
tosphere have been reported from many observations (see Martin, 1998;
Kosovichev and Zharkova, 2001). Morover the flux cancellation - defined
by the mutual disappearance of positive magnetic flux and negative one -
has been frequently observed in association with the formation of a quiet
pre-flare filament prominence (Martin et al., 1985, Martin, 1986; Chae et
al., 2001; Zhang et al., 2001).

Figure 5.6 illustrates the possibility of a photospheric reconnection pro-
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Figure 5.6: (a) The converging and shear flows in the photosphere act
on the magnetic field lines near the neutral line NL. (b) Photospheric
reconnection and filament formation.

cess in the presence of the photospheric shear flow. We assume that the
initial magnetic field is mainly a potential one sufficiently high above the
photosphere, so that the field lines pass above the photospheric neutral
line NL more or less at right angles. However, due to a shear flow, the
footpoints on either side of the NL are displaced along it in opposite direc-
tions. This process produces a non-potential magnetic structure, shown in
Figure 5.6a, in which the projections of the field lines onto the photospheric
plane Ph are more closely aligned with the NL. A motion toward the NL
brings the footpoints closer together and further enhances the magnetic
shear. Moreover the converging flow makes the opposite-polarity magnetic
fluxes interact and subsequently drives their reconnection in the photo-
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sphere, shown in Figure 5.6b.
The reconnection changes the topology of the field lines arriving at the

neutral line NL. They become disconnected from the photospheric plane
inside the prominence body. Since the reconnection conserves the flux of the
longitudinal magnetic field generated by the shear flow, the photospheric
reconnection leads to the formation of helical field lines which are capable,
in principle, of supporting the prominence plasma (van Ballegooijen and
Martens, 1989).

Filament eruptions in active regions are sometimes an integral part of
the phenomena associated with a large two-ribbon flare. Let us assume
that, at the beginning of a flare, the prominence erupts and disrupts the
magnetic field configuration shown in Figure 5.6b. In this case, because
of fast energy transport along the field lines, the first field line f1 will be
energized first and will creates the bright footpoints Pa and P b as shown
in Figure 5.4b. More exactly, the upward-directed reconnection outflow
produces a long low loop with the footpoints Pa and P b. However the
downward-directed reconnection outflow creates a short loop (cf. Figure 1
in van Ballegooijen and Martens, 1989), which submerges, remaining under
the photospheric RCL. Next the field line f2 will become bright and will
create the bright footpoints P ′

a and P ′
b.

Hence a general tendency in the kernel behaviour should be similar
to that one as for the coronal collisenless reconnection, but such kinetic
phenomena as acceleration of charged particles, their trapping and precip-
itation are questionable because of high density and low ionization of the
photospheric plasma. An essential aspect of photospheric reconnection is
that the atoms have no trouble flowing accross the magnetic field lines, the
ions are not entirely constrained to follow the field lines as this should be
in ordinary MHD.

The remarkable thing about photospheric reconnection is predicted by
the model (Litvinenko and Somov, 1994b): reconnection effectively occurs
only near the temperature minimum. Here the resistivity is especially high,
and an RCL forms where reconnection proceeds at a rate imposed by the
horizontal converging flows of the photospheric plasma. Magnetic energy
is transformed into the thermal and kinetic energy of the resulting vertical
motions as shown in the central part of Figure 5.6b. The upward flux of
matter through the photospheric RCL into corona is capable of supplying
1017 g of cold weakly-ionized plasma in a time of 105 s. This is amply
sufficient for the formation of a huge filament prominence.

However, in the pre-flare stage, when the height h of such a filament
is presumably comparable with its width, so h <∼ 109 cm, see Figure 2 in
Liu and Zhang (2001) or Figure 1 in Zhang et al. (2001), the gravitational
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energy of the filament

Egrav = mgh <∼ 1017 g × 3 × 104 cm s−2 × 109 cm ∼ 3 × 1030 erg (5.8)

is large but still much smaller than the total energy of a large two-ribbon
flare Efl ∼ (1 − 3) × 1032 erg. Moreover this mass requires an additional
energy to accelerate it outwards, as typically observed. Therefore the flare
energy has to be accumulated in other forms to push plasma upward (see
Litvinenko and Somov, 1994a, 2001).

In the Bastille day flare, the observations of TRACE in 171 and 195 A
together with the synchronous ground-based Hβ observations at HSOS
showed that the filament rupture at some point at 09:48 UT activated
the south-west part of the active region. At 10:10 UT a surge erupted,
and a two-ribbon flare started to develop rapidly along the photospheric
neutral line (Liu and Zhang, 2001). For this reason, we believe that the
photospheric reconnection and filament eruption played a triggering role in
this flare.

5.4 Motions of the HXR footpoints in flares

5.4.1 The footpoint motions in some flares

It is well known that the standard model of a flare (see Kopp and Pneu-
man, 1976; Forbes and Acton, 1996) predicts an increasing separation mo-
tion of the footpoint (FP) sources as new field lines reconnect at higher
and higher altitudes. First results of RHESSI observations (Fletcher and
Hudson, 2002; Krucker et al., 2003) confirm regular but more complex FP
motions than the standard model predicts. Krucker et al. (2003) studied the
HXR source motions in the 2002 July 23 flare. Above 30 keV, at least three
sources were observed during the impulsive phase. One FP source moved
along the photospheric neutral line (NL) at a speed of about 50 km/s.

Asai et al. (2003) examined the fine structure inside Hα-ribbons during
the X2.3 flare on 2001 April 10. They identified the conjugate Hα-kernels
in both ribbons and found that the pairs of the kernels were related to
the FPs of the postflare loops seen in the TRACE 171 Å images. As
the flare progresses, the loops and pairs of Hα kernels moved from the
strongly-sheared to the less-sheared configuration. For the X5.7 two-ribbon
“Bastille-day” flare on 2000 July 14, the motions of bright HXR kernels from
strong-to-weak sheared structure were also observed in the HXR ribbons
(Masuda et al., 2001; Somov et al., 2002a). This fact is consistent with the
FP motions predicted by the Somov et al. (1998) model for the MI flares.
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Somov et al. (2002a) suggested that, during two days before the Bastille-
day flare, the bases of magnetic separatrices were slowly moved by the
large-scale photospheric flows of two types. First, the shear flows, which
are parallel to the NL, increase the length of field lines in the corona and
produce an excess of energy related to magnetic shear. Second, the converg-
ing flows, i.e. the flows directed to the NL, create preflare current layers in
the corona and provide an excess of energy as a magnetic energy of these
layers. During the flare, both excesses of energy are quickly released. Thus,
the structure of magnetic field (its topology) and its slow evolution during
the days before a flare determine the nature of the flare, more exactly the
way of magnetic energy accumulation in an active region and energy release
during the flare.

5.4.2 Statistics of the footpoint motions

From 1991 September to 2001 December, the Yohkoh Hard X-Ray Tele-
scope (HXT) observed about 2000 flares in an energy range above 30 keV.
According to the results of analysis of 28 flares, Sakao (1994) inferred that a
double source structure (Figure 3.12) is the most frequent type in an energy
range above 30 keV. Sakao et al. (1998) studied the spatial evolution of 14
flares around the peaking time of the M2-band (33–53 keV) emission. For
all the flares selected, the separation between the sources was analyzed as a
function of time. In 7 flares, the FPs moved from each other (the separation
velocity vsep > 0). The rest of the flares showed decreasing FP separation
(vsep < 0) or did not show either increasing or decreasing separation of the
FPs (vsep ∼ 0).

These two types of the FP motions were related to the two subclasses
of impulsive flares (Sakao et al., 1998). The flares with vsep > 0 are less
impulsive (LI): they have a longer duration in the impulsive phase. The
flares with a decreasing FP separation are more impulsive (MI). However
the electron acceleration proceeds with the same high efficiency in the both
subclasses of flares; that seemed to be a little bit strange.

Somov et al. (2005a) selected 72 flares according to the following criteria:
(a) the integral photon count of HXRs in the M2-band is greater than
1000 counts per subcollimator, (b) an active region is within 45 ◦ of the
center of the solar disk.

The important result is that about 80 % of the sources studied have
V > 3 σ. Here the average velocity V and the velocity dispersion σ were
determined by a linear regression for each of the 198 intense sources that
are presumably the chromospheric footpoints (FPs) of flare loops. This fact
strongly suggests that: (a) the moving sources are usually observed rather
than stationary ones, and (b) the regular motion of HXR sources during
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the impulsive phase of flares is rather a general rule than an exception.
In order to reveal the observable types of the FP motions, a significant

part of the HXT images (for 43 of 72 flares) were overlayed on the SOHO
MDI photospheric magnetograms. To relate the source motions to magnetic
fields, the fields were characterized by a photospheric neutral line (NL) or a
smoothed , simplified neutral line (SNL; Gorbachev and Somov, 1989). By
so doing, the following types of FP motions relative to the SNL can be
conditionally distinguished.

5.4.3 The FP motions orthogonal to the SNL

In the type I, the HXR sources move mainly away and nearly perpendicular
to the SNL. A fraction of such flares appears to be very small: only 2 out of
43 flares. One of them, the M7.1 flare on 1998 September 23 at 06:56 UT,
is shown in Figure 5.7.

Figure 5.7: Position and motion of the HXR sources in the flare on 1998
September 23. The field of view is 100 ′′ × 83 ′′. The beginnings of arrows
correspond to the time 06:56:09 UT, the ends are at 07:08:54 UT. The
straight semi-transparent line represents the simplified neutral line (SNL).

The maximal value of velocity in this flare, V ≈ 20 km s−1, does not
contradict to the typical velocities of the Hα-ribbon separation in solar
flares (e.g., Svestka, 1976). However, even in this flare, the question appears
how to draw a simplified NL. Presumably the flare does not represent a
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clear example of the type I flares. The second flare, the X1.0 flare on 2001
November 4 at 16:09 UT, is not free from the same question either. The
simple (arithmetical) mean value of the HXR source motion velocity equals
15 km s−1 in two flares of the type I.

In general, the direction of HXR source motions in a flare depends
mainly on the magnetic field configuration. During a flare, reconnection
provides powerful fluxes of energy along the reconnected field lines. As the
flare progresses, the FPs of newly reconnected lines move away from the NL
with a velocity which is proportional to the rate of reconnection. This is the
well-known prediction of the standard model, explaining the effect of the
increasing separation between flare ribbons. However we see that actual
flares are usually not so simple as the standard model predicts. Under
actual conditions in the solar atmosphere, reconnection always occurs in
a more complicated configuration of field: at least, in the presence of the
field component which is parallel to the SNL. As a consequence, the other
types of FP motions dominate in flares.

5.4.4 The FP motions along the SNL

In many flares, the apparent displacements of FPs are directed mainly along
the SNL. There are two types of such motions: the FP sources move in anti-
parallel directions (type II) or they move in the same direction (type III).

5.4.4 (a) The type II of FP motions

The type II motions were found in 11 out of the 43 flares. Figure 5.8
shows the M4.4 flare on 2000 October 29 at 01:46 UT as a clear example
of the type II. In this flare, the maximal value of the FP motion velocity,
V ≈ 65 km s−1, is significantly larger than that for the flare Hα ribbons.
This implies that the FPs mainly move along the ribbons, i.e. along the
SNL, similar to the 2000 July 14 flare.

Note that, in general, it may be not simple to distinguish a flare with an
increasing FP separation from a flare with a decreasing separation. Both
kinds of separations can be present in the same flare of the type II. In the
onset of a flare, the HXR sources move one to another and the distance
between them decreases. Then they pass through a ‘critical point’. At
this moment, the line connecting the sources is nearly perpendicular to the
SNL. After that moment, the sources move one from other with increasing
separation between them. All these stages are seen in Figure 5.8. Such
a motion pattern seems to be close to that one predicted by the rainbow
reconnection model (a sheared vortex flow in the photosphere) assumed by
Somov et al. (2002a) for the Bastille day flare.
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Figure 5.8: Position and motion of the HXR sources in the flare on 1998
September 23. The field of view is 100 ′′ × 83 ′′. The beginnings of arrows
correspond to the time 06:56:09 UT, the ends are at 07:08:54 UT. The
straight semi-transparent line represents the simplified neutral line (SNL).

Note also that, in some flares (e.g., the flare on 1991 November 15 at
22:37 UT), the separation between the FP sources does not increase mono-
tonically but rather shows repeated episodes of small increase and small
decrease, while the overall separation increasing. Recall that our simple
code makes such deviations smooth and provides only the average velocity,
V ≈ 58 km s−1. Thus it is not possible to give a physical classification of
flares by dividing them into two wide categories (with converging or di-
verging FP motions) without considering how these motions are orientated
relative to the SNL.

As for the physical interpretation of the type II motions, the antiparallel
motions of the HXR sources presumably represent the effect of relaxation of
the non-potential shear component of magnetic field (Somov et al., 2003b).
In contrast to the standard model, such configurations accumulate a suffi-
cient amount of energy for a large flare in the form of magnetic energy of a
sheared field.

How are such sheared 3D structures formed? – Large-scale photospheric
flows of vortex type play a leading role in this process. They deform the SNL
in such way that it acquires the shape of the letter S, as shown in Figure 5.5,
proved that such distortion of the NL leads to the separator appearance
in the corona above the NL (see Figure 3.10). Developing this idea, we
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assume that a causal connection exists between the type I and type II
flares and the S-shaped bend of the SNL. The vortex flow generates two
components of the velocity. The first one is directed to the NL and tends
to compress the photospheric plasma near the NL. In such a way, it can
drive magnetic reconnection in the corona and photosphere (Section 5.1).
The second component is parallel to the NL and provides a shear of coronal
magnetic-field lines above the photospheric NL (Section 5.2).

5.4.4 (b) The type III of FP motions

Contrary to the type II, in the type III flares, the HXR sources move along
the SNL in the same direction as shown in Figure 5.9.

Figure 5.9: The type III motions of the HXR sources in the X1.2 flare on
2000 June 7 at 15:44:06 – 15:46:46 UT. The field of view is 80 ′′ × 66 ′′.

We can see here the X1.2 flare on 2000 June 7 at 15:44 UT, in which
both FP sources move with velocity of about 60 km s−1 parallel to the SNL.
This fact suggests that an acceleration region in the corona also moves in
the same direction during the flare. In terms of the rainbow reconnection
model, it means that the fastest reconnection place located at the separator
moves along the separator. This pattern of motions was found in 13 flares.

In addition, there were 8 flares in which the motions away from the SNL
were mixed with the other type motions. For example, in the X2.0 flare
on 2001 April 12 at 10:15 UT, shown in Figure 5.10, the projections of the
motion vectors on the SNL are not small. This flare represents a super-
position of the types I and II. The maximal value of velocity is not large:
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Figure 5.10: The motions of HXR sources representing a combination of
the type I and type II in the X2.0 flare on 2001 April 12 at 10:15:34 –
10:20:19 UT. The field of view is 50 ′′ × 48 ′′.

V ≈ 21 km s−1. In the absence of information about the photospheric
magnetic field, this flare would be classified as a typical LI flare.

5.4.5 Discussion of statistical results

Following the rainbow reconnection model of a two-ribbon flare, we consider
the HXR source motions during the impulsive phase of a flare as the chro-
mospheric signature of the progressive reconnection in the corona. Since
the FPs of newly reconnected field lines move from those of previously re-
connected lines, the places of electron precipitation into the chromosphere
change their position during the flare. In order to study the relationship
between the direction of motions and the configuration of magnetic field in
an active region, we have coaligned the HXT images in 43 flares with MDI
magnetograms. In this way, we have inferred that there are three main
types of the FP motions (Somov et al., 2005a; for more detail and better
statistics see Bogachev et al., 2005).

The type I represents the motions of FP sources away from and nearly
perpendicular to the SNL, predicted by the standard model of a flare. How-
ever only less than 5 % of flares show this pattern of motions. The standard
model is a strong oversimplification that cannot explain even the main fea-
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tures of actual flares. The evolution of the HXR emitting sources is so
complex that it is hardly explained with a simplified model such as the
standard model.

In the type II flares, the HXR sources on the both sides of the SNL move
along the SNL in the opposite directions. Such motions were found in 26 %
of the flares. This type of motions indicates that the reconnected field lines
are highly sheared and the shear angle changes as the flare evolves.

We assume that, before a flare, the shear flows in the photosphere add
to the energy of the pre-flare state of an active region an additional energy.
It is the energy of magnetic tension generated by the shear because of the
freezing-in property of the solar plasma. The photospheric flows work on
the field-plasma system, making the field lines longer. This is always true,
even if there are neither a separator nor separatrices of the magnetic field
above the photosphere. In such a case, the electric currents responsible
for tension are smoothly distributed in a coronal volume above a region of
photospheric shear.

If the pre-flare configuration of magnetic field contains separatrices, then
the shear flows induce the layers of concentrated currents extending along
the separatrices. The origin of these currents lies in the discontinuity of
magnetic field on the separatrices (see Section 14.3.3). During a flare, re-
connection and dissipation of the concentrated current leads to a decrease of
the discontinuity. We call such a process the ‘shear relaxation’ (e.g., Somov
et al. 2003b). At the same time, the observed evolution from “sheared-” to
“less-sheared-” and “relaxed-” HXR pairs also demonstrates the evolution
of the flare and post-flare loops.

The simple mean value of the FP source velocity in the type II flares is
of about 35-40 km s−1 is significantly larger than the mean velocity in the
type I flares, ≈15 km s−1. Statistics is not sufficiently high to say whether
or not the HXR sources are distributed over velocities by the Gaussian law
however the maximum of distribution is well located near the mean velocity.
The difference which we have found between numbers of flares of the type I
and type II means that the highly-sheared magnetic structures are much
more favorable for flare production than simple 2D configurations without
the shear flows in the photosphere.

The type III is similar to the type II except the HXR sources move in the
same direction along the SNL. This happens in about 30 % of flares. The
parallel motions of the FPs is presumably the chromospheric signature of
a ‘horizontal’ displacement of the particle acceleration region in the corona
during a flare. The simple mean velocity is also of about 35-40 km s−1. The
Hα observations by Wang et al. (2003) indicate that an electric field in the
corona is not uniform along the RCL at the separator. The peak point of
the electric field (related to a region of the most powerful energy release
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and particle acceleration) can change its position during the flare, moving
along the separator. Corollary, all three HXR sources (the loop-top source
and two FP sources) move in the same direction along the SNL.

We have not found any flare in that both HXR sources move towards
the SNL. Thus all the other motion patterns could be described in the first
approximation as a combination of these three basic types. In fact, 19 %
of flares show the FP motions away from the SNL mixed with other two
type motions. Only about 20 % of flares seem to be more complicated
in the motion scale under consideration. This is not surprizing since we
know that large and well resolved flares involve multiple loops with complex
structure. For such flares, the loop top and associated FP sources are not
readily identified and separated.

A dominant part (≈ 80 %) of the 43 flares shows a clear or mixed pattern
of the HXR source motions, leading us to the idea that the types I to III are
really the three fundamental components of the FP motions. This seems
to be reasonable because of the following three relationships. The type I
represents the reconnection in the corona. The type II motion indicates the
shear relaxations. And the type III is presumably related with a motion of
the fastest reconnection place along the arcade, along the separator.

What are the reasons of the apparent prevalence of one or two compo-
nents over the other in different flares? We hope to find an explanation in
different topological and physical conditions, we expect that this will help
reveal the underlying physics. We have studied the relationship between
the HXR sources in a flare and the configuration of magnetic field in an
active region. However, it is clear that not only the structure of magnetic
field (more exactly, its topology) but also its slow evolution before a flare
determines the nature of the flare, at least the way of magnetic energy accu-
mulation in an active region and energy release during the flare. Therefore,
in a future research, we have to analyze not only distribution of photo-
spheric magnetic fields (in order to reconstruct topology of coronal fields)
but also their evolution during sufficiently long time before a flare.

5.5 Open issues and some conclusions

On the basis of what we saw above, we assume that the Bastille day 2000
flare energy was accumulated in the following forms.

(a) Magnetic energy of the slowly-reconnecting current layer (RCL) at
the separator in the corona. This excess energy in the amount sufficient
to produce a large two-ribbon flare, like the Bastille day flare, can be ac-
cumulated in the pre-flare active region and can be quickly transformed
into observed forms of the flare energy if the RCL becomes a super-hot
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turbulent-current layer (SHTCL, see Section 6.3).
(b) The magnetic energy of the current layers at the separatices and

the distributed currents generated in the pre-flare active region by the pho-
tospheric shear flows, seems to be sufficiently high to influence the main
reconnection process at the separator in the Bastille day flare. In general,
the energy of a large-scale (>∼ 109 cm) sheared component of magnetic field
participates in energetics of the main reconnection process in the corona
presumably with a positive (negative) contribution in more (less) impulsive
Sakao-type flares.

(c) In the vicinity of the photospheric neutral line, some part of energy
is also accumulated as the energy of the sheared magnetic field and twisted
filament. It is not clear, however, if we could consider this to be a part
of the pre-flare configuration in the force-free approximation which would
be the simplest model for a magnetic field configuration to compute and
analyze its surplus energy. But the non-magnetic forces, including the gas
pressure gradient in a high-β (high-density and high-temperature) plasma,
the inertia-type (proportional to ∂v/∂t + (v · ∇)v) term, in particular the
centrifugal force (Shibasaki, 2001), can make the non-force-free part locally
significant in the pre-flare structure of an active region. Unfortunately we
do not know the value of the related energy excess either observationally
or theoretically.

The non-force-free component participates in the flare development pro-
cess, but we do not know from observations whether it playes the primary
role in a flare triggering or it is initiated somehow by reconnection at the
separator (e.g., Uchida et al., 1998). For example, Antiochos et al. (1999),
Aulanier et al. (2000) proposed that reconnection in the corona, above a
sheared neutral line, removes a magnetic flux that tends to hold down the
sheared low-lying field and thereby allows the sheared field to erupt ex-
plosively outward. Yohkoh, SOHO and TRACE data do not seem to be
capable of providing the necessary information to make a choice between
these two possibilities. We hope this problem will be well investigated with
the coming Solar-B mission (see Section 14.6).

Reconnection at two levels (in the corona and in the photosphere) plays
different roles in solar flares. Photospheric reconnection seems to be mainly
responsible for supply of a cold dense plasma upward, into pre-flare filament
prominences. Wang and Shi (1993) suggested however that the photo-
spheric reconnection transports the magnetic energy and complexity into
the rather large-scale structure higher in the corona. According to Deng
et al. (2001), the effect of photospheric reconnection was manifested by the
change of non-potentiality at least nine hours before the Bastille day flare.
The energy was gradually input into the higher solar levels. Therefore the
slow magnetic reconnection in the photosphere, observed as magnetic flux
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cancellation, seems to play a key role in the energy build-up process.
Two level reconnection in solar flares has been modeled by Kusano (2005)

by numerical integration of the 3D dissipative MHD equations, in those the
pressure gradient force and the density variation are neglected. The simu-
lation is initiated by adding a small 3D perturbation to a quasi-static 2D
equilibrium, in which the magnetic shear is reversed near the magnetic neu-
tral line in the photosphere. This initial state is given by the solution of
the linear force-free field equation.

The simulation results indicate that magnetic reconnection driven by
the resistive tearing mode instability (see Chapter 11) growing on the mag-
netic shear inversion layer (cf. Figure 5.6) can cause the spontaneous for-
mation of sigmoidal structure. The reconnection of the tearing instability
works to eliminate the reversed-shear magnetic field in the lower corona.
Furthermore, it is also numerically demonstrated that the formation of the
sigmoids can be followed by the explosive energy liberation, if the sigmoids
contain sufficient magnetic flux.

Coronal reconnection, being slow before a flare, allows to accumulate
a sufficient amount of magnetic energy. During a flare, the fast reconnec-
tion process in the corona, converts this excess of energy into kinetic and
thermal energies of fast particles and super-hot plasma. As for the physical
mechanism of the Bastille day flare, we assume that it is the collisionless
three-component reconnection at the separator in the corona (Somov et
al., 1998, 2002a).

More specifically, we assume that before the large-scale two-ribbon flares
with an observed significant decrease of the footpoint separation, like the
Bastille day flare, two conditions are satisfied. First, the separatrices are
involved in the large-scale shear photospheric flow, which can be traced by
proper motions of main sunspots. The second condition is the presence of an
RCL generated by large-scale converging motion of the same spots. These
two conditions seem to be sufficient ones for an active region to produce a
huge two-ribbon flare similar to the Bastille day flare. Other realizations of
large solar flares are possible, of course, but this one seems to be the most
favourable situation. At least, in addition to the flare HXR ribbons and
kernels, it explains formation of the twisted filament prominences along the
photospheric neutral line before and after the Bastille day flare.



Chapter 6

Models of Reconnecting
Current Layers

Reconnection in cosmic plasma serves as a highly efficient engine to
convert magnetic energy into thermal and kinetic energies of plasma
flows and accelerated particles. Stationary models of the reconnection
in current layers are considered in this Chapter. Properties of a sta-
tionary current layer strongly depends on a state of plasma turbulence
inside it.

6.1 Magnetically neutral current layers

6.1.1 The simplest MHD model

Let us consider two consequent approximations used to study the reconnec-
tion process in current layers. The first of them was the neutral current layer
model (Sweet, 1969; Parker, 1979; Syrovatskii, 1981). This was initially the
simplest two-dimensional (2D) configuration of steady reconnection. Two
oppositely directed magnetic fields are pushed together into the neutral
layer as shown in Figure 6.1. The uniform field B0 immediately outside the
layer is frozen into the uniform plasma inflow with a velocity v0 perpen-
dicular to the field. The plasma flows out of the neutral layer through its
edges with a large velocity v1 perpendicular to the velocity v0.

The strength of the magnetic field, B0, on the inflow sides of the neutral
layer can be found out, for example, from the analytical solution of the
problem for the vertical current layer in the solar corona above a dipole
source of the field in the photosphere (Somov and Syrovatskii, 1972). This
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Figure 6.1: A schematic drawing of the field lines undergoing reconnection
across the neutral current layer according to Sweet-Parker model.

would be just the case of the so-called ‘standard model’ for a two-ribbon
flare (see Tsuneta, 1996, and references there). The strength of the electric
field, E0, near the current layer can be estimated for a given value of the
velocity v0 for the coronal plasma inflow into the reconnecting current layer
(RCL) and for a given value of the magnetic field B0.

By definition, there is no magnetic field inside the neutral layer; that
is why it is called a neutral or, more exactly, a magnetically neutral RCL.
This oversimpified approximation seems to be good, however, only for a
low-temperature RCL, for example, for cold dense pre-flare current layers
because heat conduction does not play any role in the energy balance for
such RCL (Section 6.1.2). Although it is a strong idealization, the approx-
imation of a neutral layer is still useful for several reasons.

First, the neutral layer approximation demonstrates the existence of
two linear scales corresponding to two different physical processes. (a) The
layer half-thickness

a ≈ νm

v0
(6.1)

is the dissipative scale responsible for the rate of reconnection; here νm =
c2 (4πσ)−1 is the magnetic diffusivity. (b) The layer width 2b is responsible
for the accumulation of magnetic energy (Syrovatskii, 1976a). The wider
the reconnecting layer, the larger is the energy accumulated in the region
of the reconnecting magnetic fluxes interaction.

Second, the neutral layer approximation indicates that very efficient
acceleration of particles can work in the RCL (Section 1.2). Let us take
as the low limits for the magnetic field B0 ≈ 50 G and for the inflow
velocity v0 ≈ 20 km s−1. These values are smaller than those estimated
from the Yokhoh SXT and HXT observations of the well studied impulsive
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flare on 1992 January 13 – the magnetic field strengh in the supposed
Petschek-type (Exercise 10.1) upstream plasma 50 G and the inflow speed
range 40-140 km s−1, respectively (Tsuneta et al., 1997). So the lower limit
for the electric field can be estimated as

E0 =
1
c

v0B0 ≈ 1 V cm−1 . (6.2)

This field is much stronger than the Dreicer’s field – the electric field
strength for which the critical runaway speed is equal to the electron ther-
mal velocity (see Appendix 3):

EDr =
4πe3

kB

(ln Λ)
n

T
≈ 10−4 V cm−1 . (6.3)

Here we have assumed that the density and temperature of the plasma
near the RCL n0 ≈ 4 × 108 cm−3 and T0 ≈ 3 × 106 K . In fact, near the
RCL in solar flares, the magnetic field B0 can be as high as 100–300 G.
So the electric field E0 can be even stronger by one order of magnitude
(Somov, 1981).

Since E0 � EDr , we neglect collisional energy losses (Dreicer, 1959,
Gurevich, 1961) as well as wave-particle interaction of fast particles (Gure-
vich and Zhivlyuk, 1966). So

the neutral layer model predicts very impulsive acceleration of
charged particles by the direct strong electric field E0.

This advantage of the RCL will be discussed in Chapter 9 with account of
the fact that real reconnecting layers are always magnetically non-neutral:
they always have an internal magnetic field. The influence of this three-
component field inside the RCL on the particle acceleration is considered
in Chapter 9. The main disadvantage of the neutral layer model is that it
does not explain the high power of the energy release in solar flares. The
reason will be explained in Section 6.2 by using a less idealized model of
the RCL.

6.1.2 The current layer by Syrovatskii

To establish relations between the parameters of a neutral layer in com-
pressible plasma let us use the equations of continuity and momentum.
Under conditions of the strong magnetic field (see vol. 1, Section 13.1.3)
these equations are rewritten as the following order-of-magnitude relations:

n0v0 b = nsv1 a , (6.4)
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B 2
0

8π
= 2nskBT, (6.5)

2nskBT =
1
2

Mnsv
2
1 . (6.6)

Here n0 and ns is plasma density outside and inside the layer, respectively.
T is temperature of the plasma inside the layer.

It follows from Equations (6.5) and (6.6) that the velocity of outflow
from the current layer

v1 = VA,S =
B0√

4πMns

.

(6.7)

Note that the value of the magnetic field is taken outside the layer, for
plasma density it is taken inside the neutral layer. So the outflow veloc-
ity (6.7) differs from the Alfvén speed outside the layer

VA,0 =
B0√

4πMn0
. (6.8)

The downstream flow velocity v1 of a compressed plasma is not
equal to the upstream Alfvén speed outside the layer VA,0 .

The inflow velocity equals the velocity of the plasma drift to the neutral
layer

v0 = Vd = c
E0

B0
. (6.9)

Hence we have to add an equation which relates the electric field E0 with
the current layer parameters. From the Maxwell equation for curlB and
Ohm’s law, we find

cB0

4πa
= σE0 . (6.10)

Here σ = σ0 T 3/2 is the Coulomb conductivity.
Following Syrovatskii (1976b), from Equations (6.4)–(6.6) and (6.10)

the layer half-thickness a, its half-width b, and the plasma density inside
the layer ns can be expressed in terms of three ‘external’ (assumed known)
parameters n0, h0 = B0/b, E0 and the unknown equilibrium temperature T
of the plasma inside the current layer:

a = b
c

4πσ0

(
h0

E0

)
1

T 3/2 , (6.11)
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b = 4π

(
kBσ 2

0 M

4π2

)1/6(
n0E

2
0

h4
0

)1/3

T 2/3 , (6.12)

ns =
(

πσ 2
0 M

4k 2
B

)1/3(
n0E

2
0

h0

)2/3

T 1/3 . (6.13)

To determine the temperature T let us add the energy equation in the
following form:

B 2
0

4π
Vd b = L (T ) n2

s ab . (6.14)

It is assumed here that the temperature of the neutral layer is not high; so
the energy transfer from the layer by plasma outflow and by heat conduction
play a secondary role. The principal factors are the influx of magnetic
energy into the current layer and radiative cooling. The radiative loss
function L (T ) can be taken, for example, from Cox and Tucker (1969).
More justifications for simple Equation (6.14) follow from the more detailed
numerical model by Oreshina and Somov (1998); see also a comparison
between different models in Somov and Oreshina (2000).

Substituting the solution (6.11)–(6.13) in Equation (6.14) we obtain
the following equation for the temperature of the plasma inside the current
layer:

T = σ
2/5
0

(
πM

4k 2
B

)4/5

Γ4/5
S

L6/5(T ) . (6.15)

Here

ΓS =
n 2

0 E0

h 2
0

(6.16)

is the dimensional parameter which characterizes the reconnection condi-
tions. Therefore the values n0, h0, and E0 must be specified in advance.
The other quantities can be determined from the solution (Exercise 6.1).

Figure 6.2 shows a solution of Equation (6.15) with two unstable
branches indicated by dashed curves. On these branches a small deviation
of the temperature from equilibrium will cause the deviation to increase
with time. It means that the thermal instability of the current layer occurs.

The first appearance of the thermal instability, at T ≈ 2 × 104 K, is
caused by emission in the Lα line of hydrogen. It can hardly be considered
significant since the function L(T ) was taken from Cox and Tucker (1969)
without allowance for the absorption of radiation, which may be important
for the hydrogen lines in the solar atmosphere. On the contrary, the second
break, at

T ≈ 8 × 104 K , ΓS ≈ 3.8 × 1026 , (6.17)
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Figure 6.2: The equilibrium tempera-
ture of a neutral current layer as a
function of Syrovatskii’s parameter ΓS .
Two unstable branches are dashed.

will necessarily occur because of the maximum in the radiative cooling
function L(T ). Near this maximum, in the region where L(T ) ∝ Tα with
α < 1, the condensation mode of the thermal instability (Field, 1965) occurs
(see also Somov and Syrovatskii, 1976a and 1982).

Syrovatskii (1976b) assumed that the temperature T of a cold dense
current layer in the solar atmosphere gradually increases in the pre-flare
stage until the critical values (6.17) are reached. Then the current layer
can no longer stay in equilibrium; the radiative losses cannot balance the
Joule heating, and the temperature of the layer rapidly rises. This leads to
a flare. In this way, Syrovatskii suggested to identify the thermal instability
of a cold dense current layer with the onset of the eruptive phase of a solar
flare.

Whether such a thermal trigger for solar flares occurs or not is unclear
yet (Somov and Syrovatskii, 1982). It is clear only that heating of the
reconnecting current layer (RCL) leads to the powerful heat-conductive
cooling of the plasma electron component. This effect is important for
energy balance of a ‘super-hot’ (T >∼ 3 × 107 K) turbulent-current layer
(SHTCL) discussed in Section 6.3.

6.1.3 Simple scaling laws

In order to determine the parameters of a stationary driven reconnection
configuration, the stationary resistive MHD equations must be solved for
given boundary conditions. Unfortunately it appears that the problem is
too complicated to permit analytical solutions without severe approxima-
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tions. The severest of them are called the scaling ‘laws’.
Let us come back to the Sweet-Parker model of reconnection in

incompressible plasma. The order-of-magnitude relations introduced above
become simpler:

v0 b = v1 a , (6.18)

v0 =
νm

a
, (6.19)

v1 = VA,0 . (6.20)

These equations follow from (6.4)–(6.13) and give us the ratio of the inflow
(upstream) velocity of the incompressible plasma to the upstream Alfvén
speed:

v0

VA,0

=
(

νm

VA,0b

)1/2

. (6.21)

The left-hand side of the relation (6.21) is called the Alfvén-Mach number
MA and is conventionally used as a dimensionless measure of the reconnec-
tion rate. The right-hand side is simply related to the magnetic Reynolds
number (see Appendix 3), more exactly

Rem(VA,0 , b) =
VA,0b

νm
≡ NL . (6.22)

Here NL is called the Lundquist number. Therefore the Sweet-Parker re-
connection rate

MA = N−1/2
L

.

(6.23)

Order-of-magnitude relations similar to (6.23) are often called scaling
‘laws’. They certainly do not have a status of any law but are useful since
they simply characterize the scaling properties of stationary reconnecting
configurations as a proper dimensionless parameter.

Since in formula (6.22) the linear scale L is taken to be equal to the large
half-width b of the Sweet-Parker neutral layer, the Lundquist number (6.23)
is rather a global parameter of the reconnection problem. In the most cases
of practical interest the Lundquist number is too large, typically 1014−1015

in the solar corona (Exercise 6.1), such that the Sweet-Parker rate would
lead to reconnection times many orders of magnitude longer than observed
in flares. This means that

slowly-reconnecting current layers can exist in the solar corona for
a long time.
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In general, scaling relations are useful to summarize and classify dif-
ferent regimes and configurations of reconnection as they are observed, for
example, in numerical simulations (see Chapter 6 in Biskamp, 1997; Hori-
uchi and Sato, 1994).

6.2 Magnetically non-neutral RCL

Magnetic neutrality of the RCL, as assumed in the previous Section, means
that there is no penetration of magnetic field lines through the layer (the
transversal field B⊥ = 0) as well as no longitudinal magnetic field parallel
to the electric current inside the RCL (the longitudinal field B ‖ = 0). In
general, both assumptions are incorrect (see Somov, 1992). The first of
them is the most important for what follows in this Chapter.

6.2.1 Transversal magnetic fields

As it reconnects, every field line penetrates through the current layer as
shown in Figure 6.3. So the reconnecting layer is magnetically non-neutral
by definition because of physical meaning of the reconnection process. In
many real cases (for example, the magnetospheric tail or interplanetary
sectorial current layers) a small transversal component of the magnetic
field is well observed. This is also the case of laboratory and numerical
experiments (Hesse et al., 1996; Ono et al., 1996; Horiuchi and Sato, 1997;
Horiuchi et al., 2001).
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Figure 6.3: A magnetically non-neutral reconnecting layer: the electric cur-
rent distribution is schematically shown by the shadow, the dotted bound-
ary indicates the field lines going through the current layer.
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We characterize the penetration of the magnetic field into the current
layer by the parameter ξ⊥ = B⊥/B0 which is the relative value of the
transversal component B⊥. As distinguished from the neutral-layer ap-
proximation, we assume that ξ⊥ �= 0 and satisfies the inequality

a/b 
 ξ⊥ 
 1 . (6.24)

What are the consequences of such a penetration?
The penetration of even a very small transversal field into the high-

temperature layer essentially increases the outflows of energy and mass from
the layer along the field lines. The effective cross-section for the outflows
of energy and mass is proportional to the outflow scale

aout ≈ ξ⊥b � a . (6.25)

Hence, corresponding to three different physical processes, the magnetically
non-neutral current layer is characterized by three different linear
scales: 2a is a small dissipative thickness of the layer, 2b is the scale
responsible for the energy accumulation process, and 2aout is the linear
scale which determines the outflow of energy and mass along the field lines
into the surrounding plasma.

As we shall see in Section 6.3, even a very small (like ξ⊥ ≈ 10−3)
transversal field B⊥ significantly increases the plasma outflows as
well as the heat-conductive cooling of the non-neutral super-hot turbulent-
current layer (SHTCL). As a result, its energy output is much larger than
that of the neutral SHTCL. (In the neutral-layer approximation aout =
a.) The last reason will enable us to consider the SHTCL with a small
transversal component of the magnetic field as the source of energy in flares.

6.2.2 The longitudinal magnetic field

As we saw in Section 3.1, the reconnection process under the actual condi-
tions in the solar atmosphere is released at the separator which differs from
the X-type neutral line in that the separator has a longitudinal field B ‖ .
In this context, it is necessary to understand the physical effects that are
created by the longitudinal field inside the RCL and its vicinity.

It is intuitively clear that the longitudinal field at the separator decreases
the reconnection rate

v0 = c
E 0 × (B 0 + B ‖ 0 )

B 2
0 + B 2

‖ 0
= c

E 0 × B 0

B 2
0

[
1 + (B ‖ 0/B 0) 2

] . (6.26)

Here B 0 and B‖ 0 are the strengths of the reconnecting component and of
the longitudinal component of the magnetic field on the inflow side of the
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layer, respectively; they are not free parameters, they have to be determined
from a self-consistent solution of the problem on the RCL properties.

The appearance of the longitudinal field changes, first of all, the balance
of forces across the layer. The pressures of the plasma and the magnetic
field outside the RCL should balance not only the plasma pressure but also
the magnetic pressure of the longitudinal field inside it:

2n0kBT0 +
B 2

0

8π
+

B 2
‖ 0

8π
= 2nskBT +

B 2
‖ s

8π
. (6.27)

Here n0 and ns are the plasma densities outside and inside the current
layer. T0 is the temperature of inflowing plasma outside the layer, T is the
temperature of plasma inside the layer. In the right-hand side of Equa-
tion (6.30) B ‖ s is the strength of the longitudinal field inside the current
layer.

If the longitudinal field could be effectively accumulated inside the cur-
rent layer, its pressure would impose strong limitations on the layer com-
pression and, hence, on the rate of reconnection. In terms of the ideal
MHD approximation, the longitudinal field must increase proportionally to
the plasma density ns inside the layer because the field is frozen in the
plasma:

B ‖ s = B ‖ 0
ns

n0
. (6.28)

On the contrary, in a real finite-conductivity plasma, the increase of the
longitudinal field is accompanied by dissipative effects. As soon as the
longitudinal field inside the layer becomes stronger than outside the layer,
a gradient of the longitudinal field B ‖ will appear and give rise to an
electric current. In turn, the dissipation of this current produced by the
field compression affects the B ‖ field value. Thus the compression of the
longitudinal field seems to facilitate its dissipation. In reality, however, this
problem proves to be more delicate; see Somov and Titov (1985a, 1985b),
Somov (1992).

The essence of the effect is that any compression of the longitudinal
field B ‖ within a current layer does create a gradient of the longitudinal
field, ∇B ‖ . By so doing, compression generates an associated electric cur-
rent J⊥ which circulates in the transversal (relative to the main current J
in the layer) plane. The ohmic dissipation of the current J⊥, circulating
around the layer, gives rise to an outward diffusion of the longitudinal field
from the current layer and to the Joule heating of the plasma. It is of
importance that the total flux of the longitudinal field is conserved,
while

the Joule heating due to the B ‖ field compression is produced by
the dissipation of the reconnecting magnetic field B 0.
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This effect is certainly valid for collisionless reconnection in the RCL.
On the one hand, the magnetic field compression decreases the veloc-

ity v0 of plasma inflows. On the other hand, due to the large magnetic
diffusion in the small scale of the current layer thickness 2b, the longitu-
dinal field B ‖ does not have an overwhelming effect on the parameters of
the current layer and the reconnection rate. For this reason, we regard as
likely that

the longitudinal field B ‖ at the separator changes the reconnection
rate in the current layer not too strongly.

This can be especially true if the compression of the plasma inside the
RCL, ns/n0, is not high, for example, in super-hot turbulent-current layers
(SHTCL) of solar flares. Therefore, in the first approximation, we neglect
the longitudinal magnetic field in the next Section.

6.3 Basic physics of the SHTCL

6.3.1 A general formulation of the problem

Coulomb collisions do not play any role in the SHTCL. So the plasma
inside the SHTCL has to be considered as essentially collisionless (So-
mov, 1992). The concept of an anomalous resistivity, which originates from
wave-particle interactions, is then useful to describe the fast conversion
from field energy to particle energy. Some of the general properties of
such a collisionless reconnection can be examined in a frame of a self-
consistent model which makes it possible to estimate the main parameters
of the SHTCL. Basing on the mass, momentum and energy conservation
laws, we write the following relations (valid for a quarter of the current
layer and a unit length along the electric current):

n0v0 b = nsv1 aout, (6.29)

2n0kBT0 +
B 2

0

8π
= nskBT

(
1 +

1
θ

)
, (6.30)

nskBT

(
1 +

1
θ

)
=

1
2

Mnsv
2
1 + 2n0kBT0 , (6.31)

χef E in
mag + E in

th,e = E out
th,e + C an

‖ , (6.32)

(1 − χef) E in
mag + E in

th,i = E out
th,i + K out

i . (6.33)

Here n0 and ns are the plasma densities outside and inside the current layer.
T0 is the temperature of inflowing plasma outside the layer, T = Te is an
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effective electron temperature (the mean kinetic energy of chaotic motion
per single electron) inside the SHTCL, the ratio θ = Te/Ti, Ti is an effective
temperature of ions.

v0 = Vd = c
E0

B0
(6.34)

is the velocity of the plasma drift to the current layer, and

v1 = VA,S =
B0√

4πMns

(6.35)

is the velocity of the plasma outflow from the layer. Compare this approx-
imate formula with (6.7).

The continuity Equation (6.29) as well as the energy Equations (6.32)
and (6.33) are of integral form for a quarter of the current layer assumed
to be symmetrical and for a unit length along the electric current.

The left-hand sides of the energy equations for electrons (6.32) and ions
(6.33) contain the magnetic energy flux (see vol. 1, formula (12.74))

E in
mag =

B 2
0

4π
v0 b , (6.36)

which coincides with the direct heating of the ions and electrons due to their
interactions with waves. A relative fraction χef of the heating is consumed
by electrons, while the remaining fraction (1 − χef) goes to the ions.

The electron and ion temperatures of the plasma inflowing to the layer
are the same. Hence, the fluxes of the electron and ion thermal energies
are also the same:

E in
th,e = E in

th,i =
5
2

n0kBT0 · v0b . (6.37)

Because of the difference between the effective temperatures of electrons
and ions in the outflowing plasma, the electron and ion thermal energy
outflows also differ:

E out
th,e =

5
2

nskBT · v1a
out , E out

th,i =
5
2

nskB

T

θ
· v1a

out . (6.38)

The ion kinetic energy flux from the layer

K out
i =

1
2

Mnsv
2
1 · v1a

out (6.39)

is important in the energy balance (6.33). As to the electron kinetic en-
ergy, it is negligible and disregarded in (6.32). However, electrons play the
dominant role in the heat conductive cooling of the SHTCL:

C an
‖ = fM(θ)

ns(kBT )3/2

M1/2 aout. (6.40)
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Here

fM(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

(
M
m

)1/2
at 1 ≤ θ ≤ 8.1 ,

(
M
m

)1/2
θ 3/2

[ (
1 + 3

θ

)1/2 − 1
θ1/2

]
×

× exp
[
− 2 (θ+3)

5

]
+
(
1 + 3

θ

)1/2 for θ > 8.1
or θ < 1 .

(6.41)

is the Manheimer function which allows us to consider the anomalous
magnetic-field-aligned thermal flux depending on the the effective temper-
ature ratio θ.

Under the coronal conditions derived from the Yohkoh data, especially
in flares, contributions to the energy balance are not made either by the en-
ergy exchange between the electrons and the ions due to collisions, the ther-
mal flux across the magnetic field, and the energy losses for radiation. The
magnetic-field-aligned thermal flux becomes anomalous and plays the dom-
inant role in the cooling of electron component inside the layer. All these
properties are typical for collisionless ‘super-hot’ (Te

>∼ 30 MK) plasma.
Under the same conditions, the effective anomalous conductivity σef in

the Ohm’s law
cB0

4πa
= σefE0 , (6.42)

as well as the relative fraction χef of the direct heating consumed by elec-
trons, are determined by the wave-particle interaction inside the SHTCL
and depend on the type of plasma turbulence and its regime (Ch. 3 in
Somov, 1992). For example, if the resistivity was caused by Coulomb col-
lisions, it would depend on the electron temperature only. However, when
the plasma is in a collisionless turbulent state, the electrons carring the
current and the ions interact with the field fluctuations in the waves, which
changes the resistivity and other transport coefficients of the plasma in a
way that depends on the type of waves that grow.

6.3.2 Problem in the strong field approximation

Let the conditions of a strong magnetic field (see vol. 1, Section 13.1.3) be
satisfied. Then, the set of Equations (6.29)–(6.33) takes the following form:

n0Vd = nsVA,S ξ⊥, (6.43)

B 2
0

8π
= nskBT

(
1 +

1
θ

)
, (6.44)
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nskBT

(
1 +

1
θ

)
=

1
2

MnsV
2

A,S
, (6.45)

χef
B 2

0

4π
Vd =

5
2

nskBT · VA,S
ξ⊥ + fM(θ)

ns (kBT )3/2

M1/2 ξ⊥ , (6.46)

(1 − χef)
B 2

0

4π
Vd =

(
5
2

nskB

T

θ
+

1
2

MnsV
2

A,S

)
VA,S ξ⊥ . (6.47)

In Ohm’s law (6.42) it is convenient to replace the effective conductivity
σef by effective resistivity η ef :

cB0

4πa
=

E0

η ef
. (6.48)

In general, the partial contributions to the effective resistivity may be
made simultaneously by several processes of electron scattering by different
sorts of waves, so that the resistivity proves to be merely a sum of the
contributions:

η ef =
∑

k

η k . (6.49)

The relative share of the electron heating χef is also presented as a sum of
the respective shares χk of the feasible processes taken, of course, with the
weight factors η k/η ef which defines the relative contribution from one or
another process to the total heating of electrons inside the SHTCL:

χef =
∑

k

η k

η ef
χk . (6.50)

In usual practice (e.g., Somov, 1992), the sums (6.49) and (6.50) consist of
no more than two terms, either of which corresponds to one of the turbulent
types or states. Note also that more detailed numerical results (Somov and
Oreshina, 2000) confirm validity of the assumptions made above.

6.3.3 Basic local parameters of the SHTCL

We shall assume that the magnetic field gradient h0 locally characterizes
the potential field in the vicinity of the separator or X-type neutral line. It
means that we consider a less specific configuration of reconnecting mag-
netic fluxes in comparison with the 2D MHD ‘standard model’ mentioned
in Section 6.1.1. We shall also assume that, at distances larger than the
current layer width 2b, the magnetic field structure becomes, as it should
be, the same as the structure of the potential field of ‘external sources’,
for example, of sunspots in the solar photosphere. So the gradient h0 is
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the local parameter which ‘remembers’ the global structure of the potential
field.

Under the assumptions made, the field B0 on the inflow sides of the
current layer may be estimated as

B0 = h0b . (6.51)

The second local parameter of the reconnection region is the inflow ve-
locity v0 or, alternatively, the electric field E0 determined by formula (6.2).
We shall use E0 in what follows.

In the approximation of a strong magnetic field, the pressure p0 (or tem-
perature T0) of inflowing plasma is negligible, but its density n0 certainly
has to be prescribed as a local parameter of the reconnection region. In
fact, as we shall see below, all characteristics of the SHTCL depend on n0.

The dimensionless parameter ξ⊥ could be, in principle, obtained as a
result of the solution of the more self-consistent problem on the current
layer structure (Section 3.4 in Somov, 1992). However in order to keep the
problem under consideration as simple as possible, here we shall consider
the small (see Inequalities (6.24)) parameter ξ⊥ as the specified one.

Summarizing the formulation of the problem, we see that the set of
Equations (6.43)–(6.48) becomes closed if the particular expressions (6.49)
and (6.50) are added to this set. This allows us to find the following pa-
rameters of the SHTCL: a, b, ns, T, and θ.

6.3.4 The general solution of the problem

The input set of Equations (6.43)–(6.47) exibits a remarkable property
which facilitates the solution of the problem as a whole. The property
consists of the fact that the first three Equations (6.43)–(6.45) allow us to
transform the last two Equations (6.46) and (6.47) into a simpler form:

2 χef
ns

n0
=

2.5
1 + θ−1 +

fM(θ)√
2 (1 + θ−1)3/2

, (6.52)

2 (1 − χef)
ns

n0
= 1 +

2.5
1 + θ

. (6.53)

From these two Equations we find the plasma compression and the relative
share of the total heating of the electrons in the current layer:

ns

n0
= N(θ) = 1.75 +

fM(θ)√
8 (1 + θ−1)3/2

, (6.54)

χef = fχ(θ) = 1 − 3.5 + θ

2N(θ) (1 + θ)
. (6.55)
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Now we use Equations (6.43)–(6.45) together with (6.48) to find the
general solution of the problem, which determines the following parameters
of the SHTCL: the layer half-thickness

a =
c m1/2

e (2π)1/2

[(
1 + θ−1

N(θ)

)1/2 1
Uk (θ)

]
× 1

n
1/2
0

, (6.56)

its half-width

b = (2c)1/2 (πM)1/4
[

1
N(θ)

]1/4

× n
1/4
0

1
h0

(
E0

ξ⊥

)1/2

, (6.57)

the effective temperature of electrons

T =
cM1/2

4kBπ1/2

[
1

(1 + θ−1) N3/2(θ)

]
× 1

n
1/2
0

(
E0

ξ⊥

)
, (6.58)

the effective anomalous resistivity

η ef =
2 m1/2 π1/4

e c1/2M1/4

[
(1 + θ−1)1/2

N1/4(θ) Uk (θ)

]
× 1

n
3/4
0

(ξ⊥E0)
1/2

. (6.59)

Thus to complete the solving this problem, we have to find a form of the
function Uk (θ) which depends on the regime of the plasma turbulence. This
will be done in Section 6.3.5.

In addition, from definitions (6.51), (6.34), (6.35), and (6.36), by using
the obtained solutions (6.56)–(6.59), we have the following formulae: the
magnetic field near the current layer

B0 = (2c)1/2 (πM)1/4
[

1
N(θ)

]1/4

× n
1/4
0

(
E0

ξ⊥

)1/2

, (6.60)

the reconnection inflow velocity

v0 =
c1/2

21/2 π1/4M1/4 [ N(θ) ]1/4 × 1

n
1/4
0

(ξ⊥E0)1/2 , (6.61)

the outflow velocity

v1 =
c1/2

21/2 π1/4M1/4

[
1

N(θ)

]3/4

× 1

n
1/4
0

(
E0

ξ⊥

)1/2

, (6.62)

the power of energy release per unit length along the current layer length lj

Ps

lj
=

B 2
0

4π
v0 4b =

2c2M1/2

π1/2

[
1

N(θ)

]1/2

× n
1/2
0

1
h0

(
E 2

0

ξ⊥

)
, (6.63)
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the rate of high-temperature plasma production by the SHTCL per unit
length along the current layer length lj

Ṅ

lj
= nsv1 4aout = n0v0 4b = 4c × n0

1
h0

E0 . (6.64)

Formula (6.64) demonstrates a high level of self-consistency for the
SHTCL model under consideration. It shows that the total flux of plasma
through the reconnecting current layer depends only on the plasma den-
sity n0 on the inflow sides of the layer, the driving electric field E0, and the
gradient h0 of potential magnetic field in the vicinity of the X-type neu-
tral point. It is remarkable that other parameters, like the dimensionless
parameter ξ⊥, as well as the assumptions on the plasma turbulence inside
the SHTCL, discussed in the next Section, do not influence the total flux
of plasma passing through the current layer.

6.3.5 Plasma turbulence inside the SHTCL

In the case of the marginal regime (e.g., Duijveman et al., 1981), the electron
current velocity

u =
E0

ensη ef
(6.65)

coincides with the critical velocity uk of the k-type wave excitation. Hence,
in formulae (6.56) and (6.59), the unknown function

Uk (θ) = U mar
k (θ) =

uk

VTe

. (6.66)

For example, the ion-cyclotron instability becomes enhanced when the elec-
tron current velocity u is not lower than the critical value uic of the ion-
cyclotron (ic) waves. In the marginal regime of the ion-cyclotron instability

U mar
ic (θ) =

uic

VTe

. (6.67)

As long as the ion-cyclotron waves are not saturated, the electron current
velocity u remains approximately equal to uic and thus it is possible to
calculate the effective resistivity η ef from Equation (6.65).

In the saturated turbulence regime, U k (θ) must be replaced by cer-
tain functions U sat

ic (θ) and U sat
ia (θ) for the ion-cyclotron and ion-acoustic

turbulence, respectively (see Section 3.3 in Somov, 1992).
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6.3.6 Formulae for the basic parameters of the SHTCL

So we rewrite the general solution (6.56)–(6.59) as follows: the SHTCL
half-thickness

a = 7.5 × 105 fa(θ) × 1

n
1/2
0

, cm ; (6.68)

the half-width of the layer

b = 3.7 × 10−1 fb(θ) × n
1/4
0

1
h0

(
E0

ξ⊥

)1/2

, cm ; (6.69)

the effective temperature of electrons

T = 4.0 × 1013 f
T
(θ) × 1

n
1/2
0

(
E0

ξ⊥

)
, K ; (6.70)

the effective anomalous resistivity

η ef = 8.5 × 10−4 fη(θ) × 1

n
3/4
0

(ξ⊥E0)
1/2

, s . (6.71)

Here we write separatelly the functions which are determined by the plasma
turbulence inside the current layer:

fa(θ) =
(

1 + θ−1

N(θ)

)1/2 1
Uk (θ)

≈ 2.9 , (6.72)

fb(θ) =
1

N1/4(θ)
≈ 6.8 × 10−1 , (6.73)

f
T
(θ) =

1
(1 + θ−1) N3/2(θ)

≈ 8.2 × 10−2 , (6.74)

fη(θ) =
(1 + θ−1)1/2

N1/4(θ) Uk (θ)
≈ 4.3 . (6.75)

Bearing in mind the discussion of solar flares in Section 7.1, we calculate
the right-hand sides of functions (6.72)–(6.75) in the marginal regime of the
ion-acoustic turbulence:

θ ≈ 6.5 , N ≈ 4.8 , Uk = U mar
ia ≈ 0.17 ,

see Section 3.3 in Somov (1992).
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The magnetic field on the inflow sides of the current layer can be found
from formula (6.60):

B0 = 3.7 × 10−1 fb(θ) × n
1/4
0

(
E0

ξ⊥

)1/2

, G . (6.76)

From (6.61) it follows that the reconnection inflow velocity

v0 = 8.1 × 105 N1/4(θ) × 1

n
1/4
0

(ξ⊥E0)
1/2

, km s−1 . (6.77)

From (6.62) and (6.63) we obtain the outflow velocity

v1 = 8.1 × 105 N−3/4(θ) × 1

n
1/4
0

(
E0

ξ⊥

)1/2

, km s−1 , (6.78)

and the power of energy release per unit length along the current layer
length lj

Ps

lj
= 6.0 × 108 N−1/2(θ) × n

1/2
0

1
h0

(
E 2

0

ξ⊥

)
, erg s−1 cm−1 . (6.79)

The rate of super-hot plasma production by the SHTCL is found from (6.64):

Ṅ

lj
= 1.2 × 1011 × n0

1
h0

E0 , s−1 cm−1 . (6.80)

The applicability scope of the SHTCL model has been considered in So-
mov (1992) with account of the ion-acoustic and ion-cyclotron instabilities
in marginal and saturated regimes. It follows from this consideration that
the best agreement between the average quantities predicted by the model
and those observed in solar flares can be achieved in the marginal regime of
ion-acoustic turbulence. A small parameter of the model, ξ⊥, is really small;
on average ξ⊥ ≤ 3 × 10−3. With this value taken into account, we finally
have the following approximate formulae: the current-layer half-thickness

a = 2.2 × 106 × 1

n
1/2
0

, cm ; (6.81)

the half-width of the current layer

b = 4.6 × n
1/4
0

1
h0

E
1/2
0 , cm ; (6.82)
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the effective temperature of electrons

T = 1.1 × 1015 × 1

n
1/2
0

E0 , K ; (6.83)

the effective anomalous resistivity

η ef = 2.0 × 10−4 × 1

n
3/4
0

E
1/2
0 , s ; (6.84)

the magnetic field on the inflow sides of the current layer

B0 = 4.6 × n
1/4
0 E

1/2
0 , G ; (6.85)

the reconnection inflow velocity

v0 = 6.6 × 104 × 1

n
1/4
0

E
1/2
0 , km s−1 ; (6.86)

the outflow velocity of super-hot plasma

v1 = 4.6 × 106 × 1

n
1/4
0

E
1/2
0 , km s−1 ; (6.87)

the power of energy release per unit length along the current layer length lj

Ps

lj
= 2.0 × 1011 × n

1/2
0

1
h0

E 2
0 , erg s−1 cm−1 ; (6.88)

and the rate of high-temperature plasma production by the SHTCL

Ṅ

lj
= 1.2 × 1011 × n0

1
h0

E0 , s−1 cm−1 . (6.89)

Formulae (6.81)–(6.89) depend on three principal parameters of
the reconnection region: the gradient of the magnetic field h0 in the
vicinity of separator, the value of the inductive electric field E0 and the
plasma density n0. For applications to the solar flares in the next Chapter.

We also introduce the heating time th which is the time for a given
magnetic-field line to be connected to the SHTCL. In other words, during
the time th, the thermal flux from the SHTCL along the field line heats the
high-temperature plasma flowing out of the current layer along this field
line. Let us take by definition

th =
2b

v1
= 4(πM)1/2 [ N(θ) ]1/2 × n

1/2
0

1
h0

=

= 2.0 × 10−11 × n
1/2
0

1
h0

, s . (6.90)

In all these formulae all the quantities, except the temperature, are mea-
sured in CGS units; the temperature is given in degrees Kelvin.
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6.4 Open issues of reconnection in flares

The existing models of magnetic reconnection in the solar atmosphere can
be classified in two wide groups: global and local ones (Figure 6.4).

Reconnection models

Global Local

Advantages

Disadvantages

Direct comparison with 
global structures and 
dynamics observed by 
Yohkoh, SOHO, TRACE, 
RHESSI ...

Plasma physics of
reconnection and
acceleration of
electrons and ions

No internal 
consistency

No incorporation 
in global models

Figure 6.4: Models of magnetic reconnection in the solar atmosphere.

The global models are used to describe actual active regions or even com-
plexes of activity on the Sun in different approximations and with different
accuracies (Somov, 1985, 1986; Gorbachev and Somov, 1989, 1990; De-
moulin et al., 1993; Bagalá et al., 1995; Tsuneta, 1996; Tsuneta et al., 1997;
Antiochos, 1998; Longcope and Silva, 1998; Aschwanden et al., 1999; So-
mov, 2000; Morita et al., 2001; Somov et al., 2002a). We make no attempt
to review all these models, stationary or non-stationary, 3D or 2D, but just
remark that

the main advantage of the global models for magnetic reconnection
in solar flares is a direct comparison between the results of compu-
tation and the observed large-scale patterns.

For example, the ‘rainbow reconnection’ model (Section 3.2.4) is used to
reproduce the main features of the observed magnetic and velocity fields
in the photosphere related to the large-scale photospheric vortex flows. As
a consequence, the model reproduces, in the potential approximation, the
large-scale features of the actual field in the corona, related to these flows
before a flare.
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The advantage of the local models is that they take kinetic effects into
account and allow us to develop the basic physics of the magnetic recon-
nection process in solar flares. In general, many analytical, numerical, and
combined models of reconnection exist in different approximations and with
different levels of self-consistency (e.g., Biskamp, 1994; Somov, 2000). It
becomes more and more obvious that collisionless reconnection in a ‘super-
hot’ rarefied plasma is an important process in considering active phenom-
ena like solar flares. This process was introduced by Syrovatskii (1966a,
1966b) as a dynamic dissipation of magnetic field in a reconnecting current
layer (RCL) and leads to fast conversion from field energy to particle en-
ergy, as well as a topological change of the magnetic field (e.g., Horiuchi
and Sato, 1997; Horiuchi et al., 2001).

General properties and parameters of the collisionless reconnection can
be examined in a frame of local models based on the mass, momentum,
and energy conservation laws. As discussed in this Chapter, a particular
feature of the models is that electrons and ions are heated by wave-particle
interactions in a different way; contributions to the energy balance are not
made by energy exchange between electrons and ions. The magnetic-field-
aligned thermal flux becomes anomalous and plays the role in the cooling
of the electrons in the super-hot turbulent-current layer (SHTCL). These
properties are typical for collisionless plasmas under the coronal conditions
derived from the Yohkoh data. Unfortunately, the local models, like the
SHTCL, are not incorporated yet in the global 3D consideration of the
reconnection process in the corona. Only a few first steps have been made
in this direction (e.g., Somov and Kosugi, 1997; Somov et al., 1998).

Future models should join ‘global’ and ‘local’ properties of the mag-
netic reconnection process under solar coronal conditions. For example,
chains of plasma instabilities, including kinetic instabilities, can be impor-
tant for our understanding of the types and regimes of plasma turbulence
inside the collisionless current layer. In particular it is necessary to evalu-
ate anomalous resistivity and selective heating of particles in the SHTCL.
Heat conduction is also anomalous in the high-temperature plasma of solar
flares. Self-consistent solutions of the reconnection problem will allow us
to explain the energy release in flares, including the open question of the
mechanism or combination of mechanisms which explains the observed ac-
celeration of electrons and ions to high energy (see Chapter 9). One can be
tempted to use, however, the MHD approximation to describe the energy
release in solar flares, since this approximation may give a global picture of
plasma motions.

To understand the 3D structure of actual reconnection in flares is one
of the most urgent problems. Actual flares are 3D dynamic phenomenon of
electromagnetic origin in a highly-conducting plasma with a strong mag-
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netic field. The Sakao-type flares (Section 3.4.2) are a clear example which
shows that 3D models of flares should be involved in treatment of Yohkoh
data. It does not seem possible to explain these flares in the framework of
2D MHD models.

Yohkoh observations with HXT, SXT, and BCS had offered us the means
to check whether phenomena predicted by solar flare models of a definite
type (such as the 2D MHD standard model or the quadrupole-type model
described in Section 3.2) actually occur. There are apparent successes of
the standard model, for example, in the morphology of flares with cusp
geometries. However some puzzling discrepancies also exist, and further
development of more realistic 3D models is required.

6.5 Practice: Exercises and Answers

Exercise 6.1. Evaluate the characteristic value of the global Lundquist
number (6.22) for a current layer with the classical Coulomb conductivity
in the solar corona before an impulsive flare. Compare a predicted recon-
nection rate with the real one.

Answer. First, let us formally apply the Sweet-Parker scaling prop-
erty (6.23) to the Syrovatskii current layer (see Section 6.1.2). Consider
the main parameters of the neutral layer at the limit of thermal stabil-
ity (6.17). The values n0 ≈ 5 × 108 cm−3, h0 ≈ 5 × 10−7 Gauss cm−1, and
E0 ≈ 1.2×10−1 V cm−1 have been specified in advance. The other quanti-
ties have been determined from the Syrovatskii solution. For example, the
half-width of the current layer b ≈ 7 × 108 cm, the magnetic field near the
layer B0 = h0b ≈ 340 Gauss, the plasma density inside the neutral layer
ns ≈ 2 × 1014 cm−3.

The upstream Alfvén speed (6.8):

VA,0 = 2.18 × 1011 B0√
n0

≈ 3 × 109 cm s−1 ≈ 0.1 c . (6.91)

Here c is the light speed.
The global Lundquist number (6.22):

NL =
VA,0b

νm
≈ 2.3 × (1014 − 1015) .

Therefore the Sweet-Parker reconnection rate (6.23) predicted for the Sy-
rovatskii neutral layer is extremely low:

MA = N−1/2
L

≈ (2.1 − 6.7) × 10−8 .
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Let us compare this rate with the one which directly corresponds to the
Syrovatskii model. According to formula (6.9) the inflow velocity

v0 = Vd = c
E0

B0
≈ 3.5 × 104 cm s−1 = 0.35 km s−1 .

Hence an actual reconnection rate in the Syrovatskii neutral layer

MA,S =
v0

VA,0

≈ 1.1 × 10−5 � MA .

Obviously a difference in the reconnection rate is related to the compressibi-
lity of the plasma in the Syrovatskii model. With account the plasma com-
pressibility inside the reconnecting current layer, the actual reconnection
rate

MA,S =
v0

VA,0

=
(

ns

n0

)1/2

N−1/2
L

.

(6.92)

In the frame of Syrovatskii’s model for the neutral layer(
ns

n0

)1/2

> 102.

So the astrophysical plasma compressibility is really very important factor
in the magnetic reconnection theory.



Chapter 7

Reconnection and
Collapsing Traps in Solar
Flares

The super-hot turbulent-current layer (SHTCL) model fits well for
solar flares with different properties: impulsive and gradual, compact
and large-scale, thermal and non-thermal. Reconnection in SHTCLs
creates collapsing magnetic traps. In this Chapter, we discuss the pos-
sibility that coronal HXR emission is generated as bremsstrahlung of
the fast electrons accelerated in the collapsing traps due to joint action
of the Fermi-type first-order mechanism and betatron acceleration.

7.1 SHTCL in solar flares

7.1.1 Why are flares so different but similar?

Even if one considers the flares driven by reconnection in the SHTCL with
the same kind of plasma turbulence, then one can see from the solution
described above that very different physical processes will dominate in a
flare depending on physical conditions. The advantage which this analytical
solution gives us is that we can estimate the most important parameters
which determine the physical difference in solar flares.

153
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7.1.1 (a) Magnetic reconnection rate in SHTCL

Let us consider, first, the reconnection inflow velocity v0 of plasma in the
vicinity of the SHTCL. According to formula (6.86), v0 does not depend on
the magnetic-field gradient h0. For given values of the plasma density n0
and the electric field E0, the inflow velocity is shown in Figure 7.1. On aver-
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Figure 7.1: The reconnection inflow velocity v0 in the vicinity of the SHTCL
as a function of the plasma density n0 and the electric field E0.

age, the characteristic value of the reconnection velocity is v0 ∼ 10 km s−1.
So the reconnection inflow velocity during the ‘main’ or ‘hot’ phase of

solar flares is much higher than that one in the pre-flare state (cf. Exer-
cise 6.1).

Second, if the characteristic value of the upstream Alfvén speed in the
undisturbed solar corona VA,0 ≈ 3 × 104 km s−1 (see (6.91)), then the pa-
rameter ε ≈ 3 × 10−4. Hence the parameter ε2 ≈ 10−7 is really very small.
Therefore the approximation of a strong magnetic field (see vol. 1, Sec-
tion 13.1.3) is well applicable to the SHTCL in solar flares. Except, the
parameter γ2 is small but not so small as ε2:

γ2 ≈ V 2
s

V 2
A,0

∼ 10−4 � ε2 ∼ 10−7 .

So the condition (13.20) in vol. 1 would be well satisfied in the undisturbed
corona near the SHTCL.
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This means that, in a first approximation, the parameter γ2 is more
important than the ε2 (see vol. 1, Equation (13.22)). Hence we cannot
neglect the gas-pressure-gradient effects in the vicinity of the SHTCL.

We have to take into account a compression of the plasma by a
magnetic field near the SHTCL.

That is why we use in the SHTCL model the plasma density n0 ∼ 109 −
1011 cm−3 which is different from the plasma density in the undisturbed
corona. In other words, the thin SHTCL, being in equilibrium considered
here, is presumably embedded into a thicker plasma layer.

7.1.1 (b) Magnetic-field gradient effects

Let us distinguish impulsive and gradual flares in the following way. If the
difference in the time scale of a flare tf would be mainly determined by
the difference in its linear size lf , then the impulsive flares should have
the stronger gradient h0 near the separator of the potential field in an
active region (see Section 3.2.1). By thinking so, we would believe that the
impulsive flares are the compact flares in strong magnetic fields,
for example, flares in the low corona not far from sunspots. On the contrary,
the gradual or long-duration flares may occur in a large-scale region placed
high in the corona at a significant distance above the strong sunspots.

For definiteness, let us put lf ≈ 3 × 109 cm as a typical value at an
imaginary boundary between compact (impulsive) and large-scale (long-
duration or gradual) flares. In that case, the typical value of the field
gradient hf = Bf/lf , where Bf is a typical value of the external (with
respect to the reconnecting current layer) magnetic field in the photosphere.
Since in sunspots Bf ≈ 103 G, we take

hf =
Bf

lf
≈ 3 × 10−7 G cm−1 (7.1)

as a boundary value of the field gradient. Therefore, by our conventional
definition, which is not always true, in impulsive flares h0 > hf but in
gradual flares h0 < hf .

Note that the half-thickness a of the current layer, its temperature T
and effective anomalous resistivity ηef , the magnetic field B0 on the in-
flow sides of the current layer, the inflow and outflow velocities v0 and v1
do not depend on the gradient h0. This remarkable feature follows from
formulae (6.81), (6.83)–(6.87), respectively. Perhaps, that is why

there still exists some similarity between solar flares, in spite of the
great difference in their observed scales and shapes.
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On the contrary, the current-layer half-width b and, as a consequence,
the power of energy release per unit length along the current Ps/lj and
the rate of high-temperature plasma production by the SHTCL Ṅ/lj are
inverse proportional to the field gradient h0, see formulae (6.82), (6.88) and
(6.89). The plasma production rate is proportional to the electric field E0,
which is typical for driven reconnection.

7.1.1 (c) The role of the plasma density

Also conventionally, we shall distinguish thermal and non-thermal flares.
Plasma heating is an unavoidable phenomenon in all flares. The relative
role of the thermal part of a flare certainly depends on collisional relaxation
processes mainly in the secondary (Somov, 1992) transformations of the
flare energy. It is natural to assume that

the plasma density n0 determines the importance of collisions in
flares: the higher the density, the faster is the thermalization.

The thermal flares, having the high plasma density, have to produce very
efficient heating but inefficient acceleration. The opposite seems to be true
for the non-thermal flares.

The solutions (6.56)–(6.63) show that all parameters of the SHTCL de-
pend on the density n0. Generally, this dependence is not strong (n1/2

0 , n
1/4
o

etc.), but the difference in density can be large. This is important for what
follows. For example, Figure 7.2 shows the effective temperature of elec-
trons (6.83) as a function of the plasma density n0 and electric field E0.

As we see, temperatures greater than 108 K can be easily
reached in flares. Moreover the effective temperature of electrons does
not depend on the field gradient h0. So the SHTCL may well exist in both
impulsive and gradual flares.

In the conditions of the ‘main’ or ‘hot’ phase of solar flares the char-
acteristic parameters of such collisionless current layers, computed in the
frame of the model described above (see also Table 3.3.3 in Somov, 1992),
are the followings.

(a) The effective electron temperature inside the current layer Te ≈
100 − 200 MK, the temperature ratio θ = Te/Tp ≈ 6.5 . The plasma
compression ns/n0 ≈ 4.8 is not high.

(b) The effective dissipative thickness of the current layer 2a ≈ 20 cm is
very small but its width 2b ≈ (1 − 2) × 109 cm is large, for this reason the
linear scale (6.25) for the outflows of energy and mass 2aout ≈ (3−6)×106

cm is not small. This scale should be considered as actual thickness of the
SHTCL.
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Figure 7.2: The effective temperature of electrons inside the SHTCL as a
function of the plasma density n0 and the driving electric field E0.

(c) The anomalously high resistivity η ≈ (3−10)×10−13 s is induced by
the ion-acoustic turbulence in a marginal regime inside the SHTCL. Under
this condition, the energy release power per unit layer length lj (along the
direction of current inside the layer) is Ps/lj ≈ (1 − 7) × 1019 erg (s cm)−1,
if the plasma inflow velocity v0 ≈ 10 − 30 km s−1. Hence, if the current
layer length lj ≈ 3 × 109 cm, then the power of energy release

Ps ≈ 3 × 1028 − 2 × 1029 erg s−1 .

The outflow velocity equals v1 ≈ 1400 − 1800 km s−1.

7.1.2 Super-hot plasma production

How much super-hot plasma is generated by the SHTCL? – According
to formula (6.89), for the impulsive flares with the field gradient h0 ≈
5 × 10−7 G cm−1, the rate of high-temperature plasma production by the
SHTCL (per unit length along the current layer length lj) is

Ṅ/lj ≈ 2 × 1017 n0 E0 , s−1 cm−1.

If we take the maximum value of the electric field E0 ≈ 10 V cm−1 and
plasma density n0 ≈ 109 − 1010 cm−3 , then we estimate the rate of plasma
production as Ṅ/lj ≈ 1025 − 1026 s−1 cm−1.
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Let us take the characteristic length lj ∼ lf ≈ 3 × 109 cm and the
characteristic value of the impulsive phase duration τ ≈ 30 s. Then the
amount of super-hot plasma produced by the SHTCL can be estimated as

N =
Ṅ

lj
× lj τ ≈

(
1036 − 1037) particles . (7.2)

This amount of high-temperature (super-hot) particles seems to be
comparable with the total number of accelerated electrons

having energies larger than ≈ 10 keV during the impulsive phase of a typical
flare. So, in principle, the SHTCL can produce an observable amount of
the super-hot plasma (Section 7.3) and pre-accelerated particles: protons
and other ions.

Let us estimate the emission measure of the super-hot plasma. The
2D distributions of temperature and pressure, that follow from the Yohkoh
SXT and HXT observations (Tsuneta et al., 1997), do not allow us to
estimate the volume Vsh occupied by super-hot plasma. So we have to
start from a rather arbitrary assumption frequently used in this situation
as a first approximation. If this plasma would be distributed uniformly over
the large volume of a flare Vf = l 3

f , then the emission measure should be

EMmin =
N2

l 3
f

≈ 3 ×
(
1043 − 1045) cm−3 . (7.3)

This is not the case. The emission measure can be much higher because the
super-hot plasma is concentrated in a much smaller volume, more exactly,
in a compact source above the soft X-ray (SXR) loops (see Figures 7.8 and
7.9). So the value (7.3) is only a lower limit to the emission measure of
the super-hot plasma in real flares. A reasonable value of the volume filling
factor Vsh/Vf , which we may assume, is of about 3 × 10−4 − 10−3. That
is why the super-hot plasma was observed in flares by the HXT on board
Yohkoh.

∗ ∗ ∗

Before Yohkoh, a little indirect evidence of the super-hot plasma was
known. First, the high-resolution (≈ 1 keV) spectral measurements (Lin et
al., 1981) from 13 to 300 keV of a flare on June 27, 1980 have shown, at
energies below ≈ 35 keV, an extremely steep spectrum which fits to that
from the Maxwellian distribution with an electron temperature Te ≈ 34 MK
and an emission measure EM ≈ 3 × 1048 cm−3. Second, statistical proper-
ties of a large number of solar flares detected with the Hard X-Ray Burst
Spectrometer (HXRBS) on the satellite Solar Maximum Mission (SMM )



7.1. SHTCL in Solar Flares 159

allowed to confirm the existence of super-hot thermal flares (Type A) with
temperatures 30-40 MK (Dennis, 1985, 1988).

Third, the 2D distributions of electron temperature and emission mea-
sure of the ‘hot’ (say 10 ≤ Te ≤ 30 MK) and super-hot plasma (Den and
Somov, 1989) were calculated for the 1B/M4 flare on November 5, 1980
on the basis of data obtained with the Hard X-ray Imaging Spectrometer
(HXIS) on board SMM . It was shown that

the large and small SXR ‘interacting loops’ do not coincide with
the location of super-hot plasma in a long structure (≈ 1 arc min)
during the long after-impulsive phase of the flare.

The emission measure of the super-hot plasma in this flare was of about
EM ∼ 1047 cm−3. In two maxima, the electron temperature reaches enor-
mous values, Te ≈ 50-60 MK, determined with accuracy better than 20 %.

Hard X-ray imaging telescopes on Hinotori observed a super-hot plasma
of 30-35 MK with an emission measure of the order of 1049cm−3 (Tsuneta
et al., 1984, Tanaka, 1987). The same super-hot plasma was detected by
the Bragg-type spectrometer (Tanaka, 1987).

Fast flows of the hot plasma can produce a symmetrical broadening of
the optically thin SXR lines observed during solar flares. This broadening
is larger than the thermal one. A comparison of the observed profiles of the
Fe XXV emission lines with the predictions of the SHTCL model suggests
that the presence in the flare region of several small-scale or one (or a few)
large-scale curved SHTCL (Antonucci et al., 1996).

∗ ∗ ∗

The Yohkoh data obtained simultaneously with the HXT, SXT, and
BCS offered an opportunity for a detailed analysis which is necessary to
distinguish the super-hot plasma components of different origins in different
classes of flares as well as at different phases of the flare development.

Fast outflows of super-hot plasma create complicated dynamics of
plasma in an external (relative to the current layer) region (see Sec-
tion 7.3.2). If the distance between the SHTCL and the magnetic obstacle
is not large, then the outflow becomes wider but does not relax in the coro-
nal plasma before reaching the obstacle. Moreover, if the plasma velocity
still exceeds the local fast-magnetoacoustic-wave velocity, a fast MHD shock
wave appears ahead the obstacle (see Figure 7.6).

If, on the contrary, the distance is large, the outflow of super-hot plasma
relaxes gradually with (or even without) a collisinal shock depending on
the height and the conditions in an active region where a flare occurs (e.g.,
Tsuneta, 1996). For example, collisional relaxations can be fast just near
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the SHTCL if the plasma density is relatively high but its temperature
inside the reconnecting current layer is relatively low.

We do not discuss in this Chapter an existance of slow or fast MHD
shocks (or other MHD discontinuities) which may be attached to external
edges of the collisionless SHTCL. It will be reasonable to discuss such struc-
tures as a part of the current layer evolutionarity problem in Chapter 10,
see also Exercise 10.1.

7.1.3 On the particle acceleration in a SHTCL

The collisionless transformation of the magnetic energy into kinetic energy
of particles inside the non-steady 2D reconnecting current layer (RCL) was
introduced by Syrovatskii (1966a) as a dynamic dissipation. An essential
peculiarity of the dynamic dissipation is that

the inductive electric field E0 is directed along the current in the
RCL; this field does positive work on charged particles, thus increas-
ing their energy.

Naturally, some instabilities are excited in the plasma-beam system in the
RCL. Wave-particle interactions transform a part of this work into direct
heating of ions and electrons.

Three-component collisionless reconnection (Ono et al., 1996; Horiuchi
and Sato, 1997) includes several natural complications. For example, large
ion viscosity possibly contributes to the thermalization process of the ion
kinetic energy. However the general inference as to the possibility of par-
ticle acceleration and heating inside the collisionless RCL (i.e. dynamic
dissipation of the magnetic field) remains valid and is used in the SHTCL
model. This allows us to consider the SHTCL as the primary source of flare
energy and, at least, the first-step acceleration mechanism.

7.2 Coronal HXR sources in flares

7.2.1 General properties and observational problems

An unexpected feature of solar flares is the presence of a HXR source located
in the corona (Figure 7.3). Such emission interpreted as the bremsstrahlung
of fast electrons was not predicted by theory because of very low density
of coronal plasma. Space observations before the Yohkoh satellite had not
sufficient sensitivity to observe these relatively faint emissions.

At first, a coronal source of HXRs was detected in the impulsive flare
which occurred at the limb on 1992 January 13 and is well known as Ma-
suda’s flare (Masuda et al., 1994). The source was observed in the HXT
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Figure 7.3: A coronal HXR
source in a flare: the non-
thermal (N) and quasi-thermal
(T ) components of the HXR
emission above a flare loop FL.
A and B are the chromospheric
HXR footpoints.

energy bands M1 (23-33 keV) and M2 (33-53 keV) and had a relatively
hard spectrum with index γ ∼ 4. It was located above a SXR flare loop.
Another source was observed in the L-band (14-23 keV), had a very soft
spectrum, and looked similar to the SXR loop. This quasi-thermal emission
of a ‘superhot’ (with electron temperature Te

>∼ 30 MK) plasma started in
the impulsive phase and became dominant in the gradual phase of the flare.
In some flares, non-thermal sources seemed to be too weak and only such
quasi-thermal component was observed during almost the whole flare pe-
riod. For example, in the flare of 1992 February 6, the HXR spectrum was
fitted by the thermal spectrum with Te ∼ 40 MK (Kosugi et al., 1994).

Masuda’s analysis was extended by Petrosian et al. (2002). Of 18 X-ray-
bright limb flares analyzed, 15 showed detectable loop top (LT) emission.
The absence of LT emission in the remaining cases was most likely due to the
finite dynamic range of the HXT. The coronal LT emission is presumably
a common feature of all flares. This is one of the important properties
of flares, which has to be investigated by using high resolution data of
the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI )
satellite (Lin et al., 2002).

Different types of coronal HXR sources may exist simultaneously even
in a single flare (Masuda, 2002). Some sources slowly move upward during
a flare. For example, in the flare of 1992 October 4, a clear upward motion
was observed in the impulsive phase as shown in Figure 2 in Masuda et
al. (1998). The flare had a multiple spikes in the HXR time profile. The
position of the footpoints (FPs) changed at the time of each spike. This
observation suggests that the energy release process proceeds not only in
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a vertical direction, like reconnection in the ‘standard’ model, but also in
horizontally-different places.

The number of impulsive flares, in which the presence of the above-the-
loop-top (ALT) source was well confirmed, was small. Mainly, these were
three flares: 1992 January 13, 1993 February 17, 1994 January 16. Their
L-band images had been synthesized by Sato et al. (1999). However, these
flares did not look intense enough for an analysis of motion of the coronal
source.

Due to the work in recalibrating the HXT and improvement of the
software, it became possible to study the coronal source in long-duration
events (LDEs). The size of LDEs is generally larger than that of impulsive
flares. In a typical LDE, the extended HXR source lies above or slightly
overlapping the SXR loops (Sato, 1997; Masuda et al., 1998). The source
observed in the L-band has two components – thermal and non-thermal.
The source is maintained for a much longer time than the compact sources
in impulsive flares. The shape of the HXR source is indicative of a high-
temperature cusp region tracing an arcade of loops (Sato, 1997).

In the X1.2 flare on 1998 April 23, coronal HXR sources showed complex
structure unlike any previously observed (Sato, 2001). Dominant thermal
and nonthermal sources did not come from the same loop-top region. Non-
thermal sources included two sources in the low corona (∼ 3 × 103 km)
and an extended source in the high corona (∼ 5 × 104 km). The low and
high coronal sources had common features such as a hard spectrum and a
related evolution of spatial structures. The high coronal source showed a
delayed peak. These observations suggest that energetic phenomena occur
in the low corona at first, and energized electrons are then injected into a
high coronal region (Sato, 2001).

7.2.2 Upward motion of coronal HXR sources

Harra-Murnion et al. (1998) analyzed two LDEs observed by Yohkoh. They
concluded that the SXR loops were located below the HXR emission of
the ALT source. For the LDE of 1992 November 2, the ALT source rose
with a velocity of ≈ 3 km/s. For the 28 June 1992 event, it was not
possible to follow the HXR images for a long time due to the poor count
statistics. So the ascent velocity was not estimated. The improved L-band
images synthesized with the revised MEM for three LDEs, including the
1992 November 2 event, have been published (see Figure 13 in Sato et
al., 1999) but the ascent velocity was not estimated.

The RHESSI mission provides high-resolution imaging from soft X-rays
to γ-rays and allows the HXR source motions to be studied in detail. For
example, the HXR observations of the 2002 July 23 flare show FP emissions
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originating from the chromospheric ribbons of a magnetic arcade and a
coronal (LT or ALT) source moving with a velocity of ∼ 50 km/s (Krucker
et al., 2003; Lin et al., 2003). Some part of this velocity is presumably
directed upward, another part along the ribbons. LT and FP sources are
also seen in the limb X28 flare on November 4, 2003. The limb flare on
2002 April 15, demonstrates that, after the HXR peak, the coronal HXR
source moved upward at velocity ∼ 300 km/s, presumably indicating a
fast upward outflow from reconnecting current layer (RCL) or its upward
expansion (Sui and Holman, 2003).

Sui et al. (2004) studied the RHESSI imagies of three homologous flares
that occurred between April 14 and 16, 2002. The flares share the following
common features: (a) The higher energy loops are at higher altitude than
those of lower energy loops, indicating the hotter loops are above the cooler
ones. (b) Around the start of the HXR impulsive phase, the altitude of the
looptop centroid decreases with time. (c) Then the altitude increases with
time with velocities up to 40 km/s. (d) A separate coronal source appears
above the flare loop around the start time and stays stationary for a few
minutes. (e) The looptop centroid moves along a direction which is either
away from or toward the coronal source above the loop.

These features are presumably associated with the formation and de-
velopment of a RCL between the looptop and the coronal source. Physical
parameters of such RCL seem to be consistent with the model of super-hot
turbulent-current layer (SHTCL). Moreover Sui et al. (2004) found a cor-
relation between the loop growth rate and the HXR (25-50 keV) flux of the
flare. The faster the reconnection site moves up, the faster the reconnec-
tion rate. More energetic electrons are produced and, therefore, more HXR
emission is observed.

Different parts of the flare ‘mechanism’ in the corona can be seen in
HXR emission, depending on conditions. These parts are the reconnection
downflows in a cusp area, the reconnection site itself and with its vicin-
ity, the reconnection upflows with or without ‘plasmoid’. They certainly
have different physical properties and demonstrate different observational
signatures of the flare mechanism, that should be studied in detail. We
start such a study from the simplest situation, a slow upward motion of the
coronal HXR source above the SXR loop in a limb flare.

7.2.3 Data on average upward velocity

Somov et al. (2005b) have searched through the Yohkoh HXT/SXT Flare
Catalogues (Sato et al., 2003) for appropriate limb flares using Masuda’s two
criteria: (a) The heliocentric longitude of an active region must be greater
than 80 ◦. This ensures maximum angular separation between the LT and
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FP sources. (b) The peak count rate in the M2-band must be greater than
10 counts per second per subcollimator (counts s−1 SC−1). Thus at least
one image can be formed at energies 33-53 keV, where thermal contribution
is expected to be lower.

Masuda (1994) found 11 such limb flares before 1993 September. After
1993 September up to 1998 August, Petrosian et al. (2002) found additional
8 flares. Thus there were 19 flares from 1991 October through 1998 August
that satisfy these conditions. Only 15 of these flares show detectable LT
emission. We (in this Section Somov et al., 2005b) have added some limb
flares after 1998 August, that met Masuda’s criteria. However, for the study
of the upward motion of a coronal HXR source, we selected from this set
only 6 flares that have a relatively simple structure: a compact LT source
moving upward during sufficiently long time.

Some flares have complex behavior and structure with multiple LT and
FP sources (see Aschwanden et al., 1999; Petrosian et al., 2002). The
coronal sources may appear and disappear, change direction of motion, or
combine with another source as a flare evolves (e.g., the limb flare of 1993
February 17 at 10:35 UT); this can lead to erroneous interpretations if the
spatial and time resolution is not sufficiently high. After all removings, we
limited our analysis to the 6 flares. For 5 of these flares V > 3 σ, where
the average velocity V and the velocity dispersion σ were determined by a
linear regression. Two of them are presented below.

1991 December 02.— The M3.6 flare at approximately 04:53 UT with
the location coordinates N16◦ E87◦ occurred in the active region 6952,
which just started to appear from the East limb (Figure 7.4).

Two upper panels show the HXT images in the M2 band (33–53 keV) in-
tegrated from 04:52:48.2 UT to 04:53:22.7 UT (left) and from 04:53:47.7 UT
to 04:54:09.2 UT (right). The eight contour levels are 12 %, 24 %, 36 %,
48 %, 60 %, 70 %, 82 % and 98 % of the peak intensity for each panel. The ar-
rows show the direction of the HXR source motions. The lower panel shows
the height of the upper source centroid as a function of time. The dashed
straight line represents the averaged upward motion derived by the method
of least squares to estimate the average upward velocity. The dashed thin
curve is the HXR emission coming from the selected coronal source area as
a function of time.

Presumably, a low part of the flare was partially occulted by the solar
limb and, for this reason, it did not show significant chromospheric emis-
sion in the M2-band (33-53 keV) at first. Alternatively, the chromospheric
emission in the beginning of the flare was weak indeed. The HXT images
show two sources (Figure 7.4) associated with a compact flaring SXR loop.
One of them that appears high above the limb was probably an LT source.
It was observed rather inside the SXT loop than above it (see Petrosian
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Figure 7.4: The HXR sources and their motions during the 1991 December 2
flare. Upper panels: HXT images in two different times. Lower panel :
Height of the upper source as a function of time. The dashed straight line
shows the averaged upward motion. The dashed thin curve is the HXR
emission coming from the upper coronal source.
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et al., 2002). The other fainter source lay at lower altitudes and could be
either an LT or an FP source. This source also shifted its position but we
were not able to investigate its motion with sufficient accuracy.

In contrast to the Masuda flare, the coronal HXR source here was bright
and long lived (see the dashed thin curve which shows the HXR emission
coming from the coronal source area as a function of time). During the
initial phase, the average height of the source did not change significantly.
The motion seems to be downward in the beginning of the flare like the
LT centroid motion in the homologous flares observed by RHESSI (Sui
et al., 2004). The height of the LT source begun to increase only after
04:53:20–04:53:30 UT. We tried to make the downward part of a motion
track. However an accuracy was not sufficient to study this part. It is
enough only to estimate the average velocity during the HXR flare. The
average upward velocity of the LT source is ≈ 23±7 km/s. The lower (FP)
source showed the most strong emission at the time when the LT source
rose.

1992 January 13.— Masuda’s flare started at approximately 17:27 UT,
it was one the most famous events and had been studied extensively. The
flare occurred close to the west limb of the Sun. In Figure 7.5 we see three
bright sources here, one LT-source and the other two at the footprints. The
coronal HXR source located well above the apex of the SXR loop. So this
is an ALT source. Its emission was weaker than the FP emission. From
17:28:03 to 17:28:07 UT the LT source disappeared, then arose again for
several seconds and faded away completely. Its displacement was about 2 ′′.
The corresponding upward velocity is ≈ 16 ± 2 km/s.

Slow ascending motions of sources can be seen in several flares. However,
only in five flares, it was possible to estimate the velocity of the upward
motion with values between 10 and 30 km/s. These results do not mean, of
course, that the HXR source moves monotonically upward. We simply cal-
culated just the average upward velocity expected in view of the standard
model of flares. On the other hand, the motion seems to be downward, for
example, in the beginning of the flare shown in Figure 7.4. The accuracy
of the Yohkoh HXT data was not sufficiently high to investigate this ac-
tual effect discovered by RHESSI (Sui and Holman, 2003). Therefore, the
motion of the coronal HXR sources in flares should be studied statistically
better by using the RHESSI high-resolution imaging data.
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Figure 7.5: The same as Figure 7.4 for the 1992 January 13 flare, Masuda’s
flare.
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7.3 The collapsing trap effect in solar flares

7.3.1 Fast electrons in coronal HXR sources

Fletcher (1995) proposed that the coronal HXR sources as well as the FP
sources are nonthermal in origin and are generated by the same population
of electrons, with enhanced emission near the top of loops due to initially
high pitch-angle distribution of accelerated electrons orbiting the magnetic
field near their site of injection before being scattered into the lose-cone.
Hudson and Ryan (1995) argued that the impulsive part of the coronal
source cannot be thermal, because the thermalization timescale for the
superhot plasma with the inferred temperature and density is longer than
the observed timescale of variations of emission.

According to Kosugi (1996), the trapped fast electrons create the coro-
nal ALT source of HXR. Meanwhile, the electrons precipitating from the
trap generate the thick-target bremsstrahlung in the chromosphere, ob-
served as the FP sources of HXR near the feet of a flare loop. The collapsing
trap model, where mirroring particles become energized by the first-order
Fermi-type acceleration mechanism in the cusp region between the superhot
turbulent-current layer (SHTCL) and the fast oblique collisionless shock
(FOCS) front, explains several observed properties of the coronal HXR
source (Somov and Kosugi, 1997). One of the questions in the context of
this Section is whether or not the observed upward motion of the coro-
nal HXR source in limb flares can be related to the upward motion of the
FOCS. An answer to this question depends on two factors: (a) physical
properties of the FOCS, and (b) physical and geometrical properties of a
magnetic obstacle (MO), the region of strong magnetic field, which stops
the fast downflow of superhot plasma and which is observed in SXR as a
coronal loop or an arcade of loops.

7.3.2 Fast plasma outflows and shocks

Reconnection serves as a highly efficient engine to convert magnetic energy
into thermal and kinetic energies of plasma flows and accelerated parti-
cles (Section 3.1). The collisionless reconnection theory (more exactly, the
model of a super-hot turbulent-current layer (SHTCL, Section 6.3) un-
der the coronal conditions derived from the Yohkoh data) shows that the
SHTCL can be considered as the source of flare energy and, at least, the
first-step mechanism in a two-step acceleration of electrons and ions to high
energies (Somov and Kosugi, 1997).

Fast outflows of super-hot collisionless plasma create complicated dy-
namics in an external (relative to the SHTCL) region; this dynamics should
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be a topic of special research. From the physical point of view, it is difficult
to find a proper approximation which takes into account both collisionless
and collisional effects. From the mathematical point of view, it is not simple
to construct a self-consistent model of the collapsing trap even in a simple
kinematic 2D MHD approximation (Giuliani at al., 2005).

It is clear, however, that the interaction of the fast flow of super-hot
plasma with an external plasma and magnetic field strongly depends on
the initial and boundary conditions, especially on the relative position of
the outflow source (the SHTCL) and the magnetic ‘obstacle’ – the region
of the strong external field. Near the boundary of this region the energy
density of the outflow becomes equal to the energy density of the field which
tries to stop the flow. In Figure 7.6 the magnetic obstacle is shown as a
shadowed loop placed schematically above two sunspots N and S in the
photosphere Ph.
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Figure 7.6: A SHTCL as the
source of the super-hot plasma
outflow with velocity v1. Mag-
netic obstacle (MO) is the SXR
loop shown by shadow. v2 is the
postshock velocity, v3 is the ve-
locity of expansion of the com-
pressed plasma along the field
lines toward the feet of the loop.

Something similar was observed by the SXT on the Yohkoh during the
limb flare in 1999 January 20. Images from the SXT show the formation of
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a large arcade of loops as well as high-speed flows in the region immediately
above the flare loops (McKenzie and Hudson, 1999). Downward-traveling
dark voids appear in the SXR images. They presumably represent the
cross-section of flux tubes; their downward motion would be interpretable
as shrinkage of the field lines due to magnetic tension. Some of the voids
slow down and stop as they approach the top of the arcade.

The coronal imaging instruments on SOHO study fast (> 1000 km/s)
coronal mass ejections (CMEs) which may be responsible for accelerat-
ing some of the energetic particles very high in the corona. The LASCO
coronagraphs identify motion of plasma in both directions along a radius
vector. Simnett (2000) has suggested that such bi-directional flows seen by
LASCO are evidence for reconnection in coronal streamers (Somov, 1991).
Therefore the SOHO observations have identified the sites of reconnecting
magnetic fields in the high corona.
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Figure 7.7: A magnetic trap between the SHTCL and the shock front;
an accelerated particle moves with velocity vp1 along the field lines. Big
arrows F show heat fluxes, directed along the field lines.

Let us assume that the distance l1 between the source of a fast outflow
(an edge of the HTTCS) and the stagnation point 2 at the obstacle is not too
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large (Figure 7.7). This means that the outflow becomes wider but does not
relax in the coronal plasma before reaching the obstacle. Moreover, if the
flow velocity still exceeds the local fast magnetoacoustic wave velocity, a fast
MHD shock appears ahead the obstacle, which is similar to the terrestrial
bow shock ahead the magnetosphere.

By analogy with the ordinary hydrodynamics of supersonic flows, we
assume that the shock front reproduces the shape of the obstacle smoothly
and on a larger scale (Figure 7.7), more exactly, the shape of the upper
part of the obstacle facing the incoming flow. This is true if the incoming
flow is uniform or quasi-uniform. Generally, the incoming flow may signifi-
cantly differ from a quasi-uniform one. Hence the shock may have a more
complicated shape. This is, however, not crucial to the effect of the col-
lapsing magnetic trap discussed below. For simplicity, in Figure 7.7, all the
field lines ejected by the SHTCL penetrate through the shock. Therefore
all super-hot plasma and all particles pre-accelerated by the SHTCL, being
frozen into the reconnected field lines, interact with the shock.

For what follows the most important point is that, with respect to the
particles pre-accelerated and to superhot particles energized by the SHTCL,
the shock should be considered as a fast oblique collisionless shock (FOCS).

7.3.3 Particle acceleration in collapsing trap

Being frozen into super-hot plasma, the reconnected field lines move out of
the SHTCL and form magnetic loops at the height l1 above the magnetic
obstacle. The top of each loop moves with a high velocity v1 ≈ 1400 −
2000 km s−1. The local fast magnetoacoustic wave speed ≈ 1000 km s−1.
Therefore a fast shock may appear between the SHTCL and the obstacle.
Let us assume that both feet of a loop penetrate through the shock front
ahead the obstacle.

Depending on the velocity and pitch-angle, some of the particles pre-
accelerated by the SHTCL may pass directly through the magnetic field
jump related to the shock. Others may either be simply reflected by the
shock or interact with it in a more complicated way.

For the particles reflected by the shock the magnetic loop represents
a trap whose length decreases from the initial length L0 ≈ 2l1 to zero
(collapses) with the velocity vm ≈ 2v1. Therefore the lifetime of each
magnetic field line – of each collapsing trap – is equal to

t1 ≈ l1/v1 ∼ 10 s , (7.4)

if l1 ≈ 104 km and v1 ≈ 103 km s−1 are taken as the characteristic values
for the length and velocity.
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During the trap lifetime t1 the reflected fast particles move between two
magnetic corks – the reflecting points where the field line crosses the shock
front. Since these corks (or magnetic mirrors) move to each other with the
velocity vm, the particles trapped inside the trap are ‘heated’ quickly by
the first-order Fermi-type mechanism.

For the electrons pre-accelerated by the SHTCL we estimate the charac-
teristic value of the velocity as Ve,1 ≈ 1010 cm s−1. Hence the characteristic
time between two subsequent reflections of a particle is estimated as

τ1 ≈ 2l1/Ve,1 ∼ 0.1 s . (7.5)

Since τ1 
 t1, the conditions of the periodic longitudinal motions change
adiabatically slowly (see vol. 1, Section 6.1). Then the longitudinal adia-
batic invariant is conserved (vol. 1, Section 6.2):

I =
∮

p ‖ dl ≈ p ‖(t) · 4 l(t) = const . (7.6)

Here p ‖ = p cos θ is the particle longitudinal momentum, θ is its pitch
angle. From (7.6) it follows that

p ‖(t) = p ‖(0)
l1

l(t)
≈ p ‖(0)

1
1 − (t/t1)

. (7.7)

When the magnetic trap collapses, the longitudinal momentum of a
particle grows infinitely within the finite lifetime t1.

Neglecting an unknown change of the transversal momentum, we see that
the particle kinetic energy of longitudinal motion increases within the time
scale t1:

K ‖(t) =
1

2m
p 2

‖ = K ‖(0)
1

[1 − (t/t1)]2
. (7.8)

That is why we can assume, for example, that just the trap lifetime t1 is
responsible for the observed few-second delay in the higher energies of the
hard X-ray (HXR) and gamma-ray emission (Bai et al., 1983).

The main objection usually raised against Fermi acceleration is that
the Fermi mechanism is ‘neither efficient nor selective’. A magnetic mirror
reflects particles on a non-selective basis: thermal particles may be reflected
as well as supra-thermal ones. Hence most of the primary energy – the
kinetic energy of the fast flow of super-hot plasma – goes into bulk heating
of the plasma rather than the selective acceleration of only a small minority
of the fast particles. This ‘disadvantage’ appears to be the main advantage
of the Fermi mechanism when applied to solar flares in the frame of the
collapsing trap model (Somov and Kosugi, 1997).
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First, the collapsing trap heats and compresses the super-hot plasma.
Thus it becomes visible in HXR emission. Second, the same mechanism
lifts some electrons from a quasi-thermal distribution and accelerates them
to higher energies; even better, it can further accelerate the electrons pre-
accelerated by the SHTCL. The trap of the accelerated electrons is seen as
the non-thermal component of the coronal HXR source in flares. Third,

being non-selective, the collapsing magnetic trap can accelerate not
only electrons but also protons and other ions to high energies.

This is a big problem for many other acceleration mechanisms.
Super-hot plasma trapped inside the collapsing loops certainly also con-

tributes to the HXR and radio emission above the SXR loop. The total coro-
nal HXR emission consists of two parts: non-thermal and quasi-thermal.
The model predicts, however, a significant difference between them. Being
more collisional, the super-hot plasma is less confined inside the trap. For
this reason the non-thermal emission dominates at higher energies and oc-
cupies a more compact ‘vertical’ (Figure 7.8) HXR source in comparison
with more extended ‘horizontal’ distribution of a quasi-thermal emission
at lower energies. This seems to be consistent with the Yohkoh results
(Tsuneta et al., 1997).
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Figure 7.8: The non-thermal (N)
and quasi-thermal (T ) compo-
nents of the coronal HXR emis-
sion and their apparent motion.
A and B are the chromospheric
footpoints.

Electron acceleration in the collapsing trap seems to be consistent with
the results of the wavelet analysis of the solar flare HXR (Aschwanden
et al., 1998). This analysis yields a dynamic decomposion of the power at
different timescales τ . The lifetime t1 may correspond to the dominant peak
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time τpeak detected in the wavelet scalegrams. The collapsing trap scenario
is also consistent with the observed correlations, because the acceleration
time is proportional to the spatial size of the collapsing trap (τmin ∼ l1).

7.3.4 The upward motion of coronal HXR sources

Further development required for the collapsing trap model is a quantitative
consideration of the upward motion of the coronal X-ray sources predicted
by the model (Somov et al., 1999). It is clear that the super-hot plasma
heated and compressed inside the trap will unavoidably relax in the down-
stream flow behind the shock. This relaxation is strongly influenced by
thermal conductive cooling, hydrodynamic expansion as well as by radia-
tive energy losses. The dynamics of relaxation may not be simple and will
depend on the initial and boundary conditions.

The behaviour of the magnetic field behind the shock seems to be more
determined – the incoming field lines simply accumulate between the ob-
stacle and the shock. Hence the shock must move upward together with
the HXR source in the upstream side (Figure 7.8) and the SXR source in
the downstream side.

In the adiabatic approximation, the postshock pressure reach extremely
high values. As a result, the shock is accelerated to speeds of order 1000
km/s. This value exceeds by two orders of magnitude the upward speed of
the coronal HXR source observed in flares, which usually does not exceed
10–20 km/s.

Postshock energy losses considerably change shock parameters. Bo-
gachev et al., (1998) have considered three mechanisms of energy losses
from the shock-compressed super-hot plasma: anomalous heat conduction,
hydrodynamic expansion, and radiation. According to estimates, timescales
of the first two processes do not exceed a few seconds, whereas radiative
losses are much slower and can be initially neglected.

A fast removal of heat from the postshock super-hot plasma and its
expansion lead to a considerable decrease of the temperature and, as a
consequence, of the gas pressure. As a result, the shock speed v2 noticeably
decreases. For large flow speeds v1, the shock speed v2 is proportional to
the Alfvén speed upstream, i.e. directly proportional to the field B1, frozen
into the plasma, and inversely proportional to the square root of electron
number density n1. In particular, if we adopt n1 ≈ 2 × 109 cm−3 and
B1 ≈ 0.5 G, then the shock is moving at a speed of order 10 km/s, which
coincides with the observed upward speed. Of course, this combination of
n1 and B1 is not unique; we give it here just as the most plausible one on
the basis of the Yohkoh observations.

However, if we assume higher densities of the flow, we have to assume
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Figure 7.9: The two level structure of the SXR and Hα loops in the solar
corona, created as a result of an instability of the magnetic obstacle. NL is
the photospheric neutral line, B represents the magnetic field lines in the
corona.

stronger fields frozen into super-hot plasma. This is acceptable. On the
other hand, the shock speed only very weakly depends on the temperature
and on the upstream speed. For this reason, a considerable uncertainty
in these quantities (especially in the latter one) practically does not affect
the results. Moreover, taking into account that the magnetic obstacle is
not ideal (Somov et al., 1999) and hence some of plasma with the frozen-in
field can ‘filter through’ it (Figure 7.9) with speeds v4 ≈ v2, allows us to
obtain better agreement of the upward shock speed v2 with observations
for stronger magnetic fields in the corona above the shock.

To conclude, a fast MHD or collisionless shock wave with heat-conduction
cooling of the postshock plasma may play an important role in the dynam-
ics of a coronal source of HXR during a solar flare. The upward speed of
the shock is determined by two processes: accumulation of magnetic flux
behind the shock and ‘filtering’ of cold dense filaments (toghether with the
frozen-in field) through the magnetic obstacle. This scenario agrees with
the observed hierarchy of hot (SXR) and cool (Hα) loops. For a more
detailed comparison of the observed distributions of temperature and emis-
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sion measure of the source, a more accurate model is required: it must take
into account the actual structure of interaction of the super-Alfvén flow of
super-hot magnetized plasma with a magnetic obstacle.

7.3.5 Trap without a shock wave

If, on the contrary to the assumption made above, the distance l1 between
the SHTCL and the stagnation point is large enough, then the fast flow
of ‘super-hot’ plasma relaxes gradually with (or without) collisional shock
depending on the height of the reconnection site and other conditions in an
active region where the flare occurs. F or example, collisional relaxation
can be very fast near the SHTCL if the plasma density is relatively high
but the temperature inside the RCL is relatively low.

Let us consider the configuration of a magnetic trap with field lines
rapidly moving down but without any shock (Figure 7.10). The strongly de-
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Figure 7.10: Trap without a
shock. A SHTCL provides the
plasma outflow. The stretched
field lines are carried away
from the SHTCL by recon-
nection outflow and relax to
a lower energy state. Since
the magnetic field strength in-
creases with decreasing coro-
nal height, particles can be
trapped within this configura-
tion.

creasing length of the field lines leads to a decrease of the distance between
the mirror points and a consequent Fermi-type acceletation of charged par-
ticles, while the general increase of the magnetic field strength gives rise to
the betatron acceleration. Both effects are considered in Section 7.4 in the
adiabatic approximation by using two adiabatic invariants. For the sake of
simplicity, let us consider the first effect as a starting point.
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In this case, instead of formula (7.7), we have for the collapsing trap
without a shock wave another simple formula:

p ‖(t) ≈ p ‖(0)
(l1 + l2)

l2 + (l1 − v1t)

⇒ p ‖(0)
(l1 + l2)

l2
, when t → t1 . (7.9)

So the trap does not collapse.
If the height l2 of the magnetic obstacle is not small, the adiabatic

heating of fast particles inside the trap is less efficient than in the collapsing
trap with the shock. The small height l2 is probably the case of the so-called
‘shrinkage’ of X-ray loops, as observed by the Yohkoh SXT (e.g. McKenzie
and Hudson, 1999). Such situation is expected when magnetic reconnection
takes place high in the corona, far from photospheric magnetic-field sources,
as follows, for example, from the SOHO observations made with LASCO
(e.g. Wang and Sheeley, 2002; see also discussion in Section 7.3.2).

7.4 Acceleration mechanisms in traps

7.4.1 Fast and slow reconnection

Collapsing magnetic traps are formed by the process of collisionless recon-
nection in the solar atmosphere. Figure 7.11 illustrates two possibilities.
Fast (Figure 7.11a) and slow (Figure 7.11b) modes of reconnection are
sketchy shown in the corona above the magnetic obstacle, the region of a
strong magnetic field, which is observed in SXRs as a flare loop (shaded).

In the first case, let us assume that both feet of a reconnected field
loop path through the shock front (SW in Figure 7.11a) ahead the ob-
stacle. Depending on the velocity and pitch-angle, some of the particles
preaccelerated by the SHTCL may penetrate through the magnetic-field
jump related to the shock or may be reflected. For the particles reflected
by the shock, the magnetic loop represents a trap whose length L(t), the
distance between two mirroring points at the shock front, measured along
a magnetic-field line, decreases from its initial value L(0) ≈ 2L0 to zero
(the top of the loop goes through the shock front) with the velocity ≈ 2v1.
Therefore, the lifetime of each collapsing trap t1 ≈ L0/v1.

In the case of slow reconnection, there is no a shock wave, and the trap
length L(t) is the distance between two mirroring points (M1 and M2 in
Figure 7.11b), measured along a reconnected magnetic-field line. In both
cases, the electrons and ions are captured in a trap whose length decreases.
So the particles gain energy from the increase in parallel momentum.
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Figure 7.11: Plasma flows related to a super-hot turbulent-current layer
(SHTCL): the inflows with a relatively low velocity v0, the downward out-
flow with a super-Alfvén velocity v1. (a) SW is the shock wave above the
magnetic obstacle. v2 is the postshock velocity, v‖ is the velocity of spread-
ing of the compressed plasma along the field lines toward the feet of the
loop. (b) The supra-arcade downflow and collapsing trap without a shock.
M1 and M2 are the mirroring points where the field becomes sufficiently
strong to reflect fast particles above the chromosphere (Ch).

Note that the opposite effect – a decrease in parallel momentum and the
related adiabatic cooling – should occur for particles trapped between two
slow shocks in the Petschek-type MHD reconnection model (see Tsuneta
and Naito (1998), Figure 1) because the length of the trap (the distance
between the two slow shocks in the reconnection downflow) increases with
time. However, Tsuneta and Naito considered acceleration by a fast termi-
nation shock; more exactly, they assumed that nonthermal electrons in solar
flares can be efficiently accelerated at the fast shock (see the same Figure)
by the first-order Fermi-type process if the diffusion length is sufficiently
small. The opposite limiting case will be assumed in what follows.

Thus, in the first approximation, we shall neglect collisions of particles
ahead of the shock wave (Figure 7.11a) or in the trap without a shock
(Figure 7.11b). In both cases, the particle acceleration can be demonstrated
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Figure 7.12: Two main effects in a collapsing trap. (a) Magnetic mirrors
move toward each other with velocity vm. (b) Compression of the trap
with velocity vt.

in a simple model – a long trap with short mirrors (Figure 7.12). The
decreasing length L(t) of the trap is much larger than the length lm of
the mirrors; the magnetic field B = B1 is uniform inside the trap but
grows from B1 to B2 in the mirrors. The quantity B2/B1 is called the
mirror ratio; the larger this ratio, the higher the particle confinement in
the trap. The validity conditions for the model are discussed by Somov
and Bogachev (2003).

7.4.2 The first-order Fermi-type acceleration

We consider the traps for those the length scale and timescale are both much
larger than the gyroradius and gyroperiod of an accelerated particle. Due
to strong separation of length and timescales, the magnetic field inside the
trap can be considered as uniform and constant (for more detail see Somov
and Bogachev, 2003). If so, then the longitudinal momentum of a particle



180 Chapter 7. Reconnection and Collapsing Traps

increases with a decreasing length L(t), in the adiabatic approximation, as

p ‖(l) =
p ‖ 0

l
. (7.10)

Here l = L(t)/L(0) is the dimensionless length of the trap. The transverse
momentum is constant inside the trap,

p ⊥ = p ⊥ 0 , (7.11)

because the first adiabatic invariant is conserved:

p 2
⊥

B
= const . (7.12)

Thus the kinetic energy of the particle increases as

K(l) =
p 2

‖ + p 2
⊥

2 m
=

1
2 m

(
p 2

‖ 0

l 2 + p 2
⊥ 0

)
. (7.13)

The time of particle escape from the trap, l = les, depends on the initial
pitch-angle θ0 of the particle and is determined by the condition

tg θ0 =
p ⊥ 0

p ‖ 0

≤ 1
R les

, (7.14)

where

R =
(

B 2

B 1
− 1
)1/2

. (7.15)

The kinetic energy of the particle at the time of its escape is

Kes =
p 2

⊥ 0

2 m

(
R2 + 1

)
=

p 2
⊥ 0

2 m

B 2

B 1
. (7.16)

One can try to obtain the same canonical result by using more complicated
approaches. For example, Giuliani et al. (2005) numerically solved the drift
equations of motion (see vol. 1, Section 5.2). However it is worthwhile to
explore first the simple analytical approach presented in this Chapter to
investigate the particle energization processes in collapsing magnetic traps
in more detail before starting to use more sophisticated methods and large-
scale simulations.

7.4.3 The betatron acceleration in a collapsing trap

If the thickness of the trap also decreases with its decreasing length, then
the strength of the field B1 inside the trap increases as a function of l, say
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Figure 7.13: The betatron effect in a collapsing magnetic trap. As the trap
is compressed with velocity vt, the loss cone becomes larger. A particle
escapes from the trap earlier with an additional energy due to betatron
acceleration.

B 1(l). In this case, according to (7.12), the transverse momentum increases
simultaneously with the longitudinal momentum (7.10):

p ⊥(l) = p ⊥ 0

(
B 1(l)
B 1

)1/2

. (7.17)

Here B 1 = B 1(1) is the initial (at l = 1) value of magnetic field inside the
trap.

The kinetic energy of a particle

K(l) =
1

2 m

(
p 2

‖ 0

l 2 + p 2
⊥ 0

B 1(l)
B 1

)
(7.18)

increases faster than that in the absence of trap contraction, see (7.13).
Therefore it is natural to assume that the acceleration efficiency in a col-
lapsing trap also increases.

However, as the trap is compressed, the loss cone becomes larger (Fig-
ure 7.13),

θes(l) = arcsin
(

B 1(l)
B 2

)1/2

. (7.19)

Consequently, the particle escapes from the trap earlier.
On the other hand, the momentum of the particle at the time of its

escape satisfies the condition

p ‖(l) = R(l) p ⊥(l) , (7.20)
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where

R(l) =
(

B 2

B 1(l)
− 1
)1/2

. (7.21)

Hence, using (7.17), we determine the energy of the particle at the time of
its escape from the trap

Kes =
p ⊥(l) 2

2 m

(
R(l) 2 + 1

)
=

p 2
⊥ 0

2 m

B 1(l)
B 1

B 2

B 1(l)
=

p 2
⊥ 0

2 m

B 2

B 1
. (7.22)

The kinetic energy (7.22), that the particle gains in a collapsing trap with
compression, is equal to the energy (7.16) in a collapsing trap without
compression, i.e. without the betatron effect.

Thus the compression of a collapsing trap (as well as its expansion or
the transverse oscillations) does not affect the final energy that the particle
acquires during its acceleration.

The faster gain in energy is exactly offset by the earlier escape of
the particle from the trap

(Somov and Bogachev, 2003).
The acceleration efficiency, which is defined as the ratio of the final

(l = lls) and initial (l = 1) energies, i.e.

Kes

K(1)
=

p 2
⊥ 0

p 2
⊥ 0 + p 2

‖ 0

B 2

B 1
=
(

p ⊥ 0

p 0

)2
B 2

B 1
, (7.23)

depends only on the initial mirror ratio B 2/B 1 and the initial particle
momentum or, to be more precise, on the ratio p ⊥ 0/p 0. The acceleration
efficiency (7.23) does not depend on the compression of collapsing trap and
the pattern of decrease in the trap length either.

It is important that

the acceleration time in a collapsing trap with compression can be
much shorter than that in a collapsing trap without compression.

For example, if the cross-section area S(l) of the trap decreases proportion-
ally to its length l:

S(l) = S(1) l , (7.24)

then the magnetic field inside the trap

B 1(l) = B 1(1) / l , (7.25)

and the effective parameter

R(l) =
(

R2 − 1 − l

l

)1/2

, (7.26)
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where R is define by formula (7.15). At the critical length

lcr =
1

1 + R2 , (7.27)

the magnetic field inside the trap becomes equal the field in the mirrors,
and the magnetic reflection ceases to work. If, for certainty, B 2/B 1 = 4,
then lcr = 1/4. So contraction of the collapsing trap does not change the
energy of the escaping particles but this energy is reached at an earlier
stage of the magnetic collapse when the trap length is finite. In this sense,
the betatron effect increases the actual efficiency of the main process – the
particle acceleration on the converging magnetic mirrors.

7.4.4 The betatron acceleration in a shockless trap

If we ignore the betatron effect in a shockless collapsing trap, show in
Figure 7.11b, then the longitudinal momentum of a particle is defined by
the formula (instead of (7.10))

p ‖(t) ≈ p ‖(0)
(l1 + l2)

l2 + (l1 − v1t)
⇒ p ‖(0)

(l1 + l2)
l2

, when t → t1 . (7.28)

The particle acceleration on the magnetic mirrors stops at the time t1 =
l1/v1 at a finite longitudinal momentum that corresponds to a residual
length (l2 in Figure 7.11b) of the trap.

Given the betatron acceleration due to compression of the trap, the par-
ticle acquires the same energy (7.16) by this time or earlier if the residual
length of the trap is comparable to a critical length lcr determined by a
compression law (see Somov and Bogachev, 2003). Thus the acceleration
in shockless collapsing traps with a residual length becomes more plausible.
The possible observational manifestations of such traps in the X-ray and
optical radiation are discussed by Somov and Bogachev (2003). The most
sensitive tool to study behaviour of the electron acceleration in the collaps-
ing trap is radio radiation. We assume that wave-particle interactions are
important and that two kinds of interactions should be considered in the
collapsing trap model.

The first one is resonant scattering of the trapped electrons, including
the loss-cone instabilities and related kinetic processes (e.g., Benz (2002),
Chapter 8). Resonant scattering is most likely to enhance the rate of pre-
cipitation of the electrons with energy higher that hundred keV, generating
microwave bursts. The lose-cone instabilities of trapped mildly-relativistic
electrons (with account taken of the fact that there exist many collaps-
ing field lines at the same time, each line with its proper time-dependent
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loss cone) would provide exitation of waves with a very wide continuum
spectrum. In a flare with a slowly-moving upward coronal HXR source,
an ensemble of the collapsing field lines with accelerated electrons would
presumably be observed as a slowly moving type IV burst with a very high
brightness temperatures and with a possibly significant time delay relative
to the chromospheric footpoint emission.

The second kind of wave-particle interactions in the collapsing trap-
plus-precipitation model is the streaming instabilities (including the current
instabilities related to a return current) associated with the precipitating
electrons.

7.5 Final remarks

In order to interpret the temporal and spectral evolution and spatial dis-
tribution of HXRs in flares, a two-step acceleration was proposed by So-
mov and Kosugi (1997) with the second-step acceleration via the collapsing
magnetic-field lines. The Yohkoh HXT observations of the Bastille-day
flare (Masuda et al., 2001) clearly show that, with increasing energy, the
HXR emitting region gradually changes from a large diffuse source, which
is located presumably above the ridge of soft X-ray arcade, to a two-ribbon
structure at the loop footpoints. This result suggests that electrons are
in fact accelerated in the large system of the coronal loops, not merely in
a particular one. This seems to be consistent with the RHESSI observa-
tions of large coronal HXR sources; see, for example, the X4.8 flare of 2002
July 23 (see Figure 3 in Lin et al., 2003).

Efficient trapping and continuous acceleration also produce the large
flux and time lags of microwaves that are likely emitted by electrons with
higher energies, several hundred keV (Kosugi et al., 1988). We believe
that the lose-cone instabilities (Benz, 2002) of trapped mildly-relativistic
electrons in the system of many collapsing field lines (each line with its
proper time-dependent lose cone) can provide exitation of radio-wave with
a very wide continuum spectrum.

Qiu et al. (2004) presented a comprehensive study of the X5.6 flare on
2001 April 6. Evolution of HXRs and microwaves during the gradual phase
in this flare exhibits a separation motion between two footpoints, which
reflects the progressive reconnection. The gradual HXRs have a harder
and hardening spectrum compared with the impulsive component. The
gradual component is also a microwave-rich event lagging the HXRs by
tens of seconds. The authors propose that the collapsing-trap effect is a
viable mechanism that continuously accelerates electrons in a low-density
trap before they precipitate into the footpoints.
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Imaging radio obsevations (e.g., Li and Gan, 2005) should provide an-
other way to investigate properties of collapsing magnetic traps. It is not
simple, however, to understand the observed phenomena relative to the
results foreseen by theory. With the incessant progress of magnetic recon-
nection, the loop system newly formed after reconnection will grow up,
while every specific loop will shrink. Just because of such a global growth
of flare loops, it is rather difficult to observe the downward motion of newly
formed loops. The observations of radio loops by Nobeyama Radiohelio-
graph (NoRH) are not sufficient to resolve specific loops. What is observed
is the whole region, i.e., the entire loop or the loop top above it. Anyway,
combined microwave and HXR imaging observations are essential in the
future.

7.6 Practice: Exercises and Answers

Exercise 7.1. Consider the velocity and magnetic fields in the vicinity of
the shock front locally at two points. One of them is point 1 related to the
stagnation point 2 at the surface of the magnetic obstacle in Figure 7.7.
The other is point 3 located somewhere far from point 1.

Answer. Near point 3 the reconnection outflow with velocity v1 crosses
the shock front and continues to move downwards relative to the front with
a small perpendicular component v2⊥ and a large velocity component v2‖,
which is parallel to the surface of the front (see Figure 7.14a). In the
presence of the obstacle MO, the first component is compensated by a slow
upward motion of the shock with velocity v sw

2 = −v2⊥.
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Figure 7.14: The velocity and magnetic fields in the vicinity of: (a) an
arbitrary point 3 and (b) point 1 related to the stagnation point 2 at the
magnetic obstacle MO.

Near point 1 the flow crosses the front and diverges in such a way that
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the velocity v2 = 0 at the stagnation point 2. So the plasma mainly flows
out of the vicinity of this point (Figure 7.14a). On the contrary, new
field lines arrive through the shock but, being unidirectional, they cannot
disappear there. They are accumulated between the front and the magnetic
‘wall’. Magnetic field B2 increases. Thus we expect the upward motion of
the shock with some velocity v sw

2 .

Exercise 7.2. Derive an Equation which relates the parameters of the
plasma and magnetic field upstream and downstream the shock in the vicin-
ity of point 1 in Figure 7.14b.

Answer. Let us write the MHD continuity Equations for the fluxes of
mass, momentum, and energy across the shock front. Considering a pure-
hydrogen plasma, we write its pressure and density in terms of the electron
number density n and temperature T :

p = 2nkBT, ρ = mpn, (7.29)

mp is the proton mass, kB is the Boltzmann constant; we also assume that
Te = Tp = T . With (7.29), the conservation laws become:

n1 (v1 + v2) = n2 v2, (7.30)

2n1kBT1 + mpn1 (v1 + v2)
2 +

B 2
1

8π
=

= 2n2kBT2 + mpn2v
2
2 +

B 2
2

8π
, (7.31)

γ

γ − 1
2kBT1

mp
+

(v1 + v2)
2

2
+

B 2
1

4πmpn1
=

=
γ

γ − 1
2kBT2

mp
+

v 2
2

2
+

B 2
2

4πmpn2
. (7.32)

Freezing of the field into the plasma is described by the Equation

B1

n1
=

B2

n2
. (7.33)

Here v1 is the speed of the outflow from the RCL in the immovable reference
frame, connected with the ‘immovable’ obstacle. We neglect the slow proper
motion of the obstacle because the SXR loops move upwards much slower
than the coronal HXR source. In Equations (7.30)–(7.32) velocity v2 ≡ vsw

2
is directed upward and represents the velocity of the shock with respect to
the obstacle. Hence, v1+v2 is the velocity of the plasma inflow to the shock;
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n1 and n2, T1 and T2, B1 and B2 are electron number density, temperature,
and magnetic field upstream and downstream the shock, γ is the adiabatic
exponent.

Equations (7.30)–(7.33) yield a relationship, allowing us to determine
the front velocity v2 from the known onflow parameters n1, T1, B1, and v1:

2v 3
2 + (3 − γ) v 2

2 v1 − (γ − 1) v2v
2
1 −

− (2 − γ) V 2
A

v1 − 2
(
V 2

A
+ V 2

s

)
v2 = 0. (7.34)

Here VA and Vs are the Alfvén and sound speeds in the upstream plasma.

Exercise 7.3. The shock-heated plasma inevitably loses energy because of
fast heat-conduction cooling. Fast expansion of the compressed super-hot
plasma along the field lines also reduces its temperature and pressure. Both
cooling mechanisms play an important role in the energy balance, leading
to a fast decrease of the postshock temperature. Radiative cooling of the
plasma becomes dominating later, at lower temperatures: T2 < 107 K.
Suppose a rapid fall of the temperature T2, which must inevitably result in
a fast decrease of the gas pressure to values negligible in comparison with
the high postshock magnetic pressure:

2n2kBT2 
 B 2
2

8π
. (7.35)

Consider properties of such a shock with fast cooling.
Answer. Condition (7.35) allows us to simplify Equation (7.31):

2n1kBT1 + mpn1 (v1 + v2)
2 +

B 2
1

8π
= mpn2v

2
2 +

B 2
2

8π
. (7.36)

Moreover Equation (7.32) is no more necessary. From (7.36), (7.30) and
(7.33) there follows an Equation for the shock speed:

1
γ

V 2
s v 2

2 + v 3
2 v1 + v 2

2 v 2
1 − V 2

A
v2v1 − 1

2
V 2

A
v 2
1 = 0. (7.37)

The shock speed v2 as a function of the super-hot flow speed and its temper-
ature is shown in Figure 7.15. The dependence of v2 on the temperature T1
as well as on the upstream speed v1 is so weak that in wide ranges of these
parameters we see practically the same values of v2, 10 < v2 < 20 km/s.

So the fast shock with fast cooling slowly moves upwards. Morover such
shock can provide a significant compression of a magnetic field necessary
for particle trapping and acceleration (Somov et al., 1999).
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Figure 7.15: Shock speed v2 versus the speed of the onflowing stream v1 of
the super-hot plasma and its temperature T1.

Exercise 7.4. Conditions of the second invariant conservation are well
satisfied for electrons trapped in collapsing traps of solar flares (Somov
and Kosugi, 1997). For ions, however, the acceleration has a more discrete
character than for electrons (Somov et al., 2002c). Find how the number
of collisions suffered by a trapped ion does depend on the current length of
a collapsing trap.

Answer. Each reflection of an ion on a moving mirror leads to an
increase of the parallel velocity δV = 2vm. After n reflections the parallel
velocity of the ion becomes equal to

Vn = V0 + 2nvm or Vn = Vn−1 + 2vm . (7.38)

After the reflection number n the ion moves from one mirror with veloc-
ity (7.38) to another mirror moving in an opposite direction with veloc-
ity vm. If Ln is the length of the trap at the time of the reflection n, then
the time δtn between consequent reflections can be found from the simple
kinematic condition

Ln − vm δtn = Vn δtn . (7.39)

Hence the time of flight of the ion between the reflection n and the reflection
n + 1

δtn =
Ln

Vn + vm
. (7.40)

During this time, the length of the trap decreases on 2vm δtn. Thus the
length of the trap at the time of the reflection n is

Ln − Ln+1 = 2vm δtn. (7.41)

Let us assume that fast ions are injected into the trap in its center at
the time t0 = 0. Then, before the first reflection at the time δt0, each ion
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passes the distance L0/2 − vm δt0 = V0 δt0. From this condition

δt0 =
L0

2 (V0 + vm)
. (7.42)

Substituting (7.42) in formula (7.41) with n = 0 gives us the first decrease
of the trap length

L0 − L1 = 2vm δt0 = vm
L0

V0 + vm
. (7.43)

Thus
L1 = L0 − vm

L0

V0 + vm
= L0

V0

V0 + vm
. (7.44)

Acting similarly for any reflection number n we find a general formula which
relates the trap length Ln with n:

Ln = L0
V0

V0 + vm

V0 + vm

V0 + 2nvm − vm
= L0

V0

V0 − vm + 2nvm
. (7.45)

From here, the number of reflections as a function of the descrete lengths Ln

is equal to

n =
L0V0 + Ln (vm − V0)

2vmLn
. (7.46)

For arbitrary value of the trap length L and for any number n, we introduce
the step-function

n = N
(

L0V0 + L (vm − V0)
2vmL

)
, (7.47)

where N (x) = 0, 1, 2, etc. is the integer part of the argument x.
As the trap becomes shorter and shorter, the trapped particle is accel-

erated, and the number of accelerations per second increases.

Exercise 7.5. How does kinetic energy of a trapped ion increase in a
collapsing trap?

Answer. Substituting (7.47) in formula (7.38) gives us a relationship
between the ion velocity V and the trap length L:

V (L) = V0 + 2vm N
(

L0V0 + L (vm − V0)
2vmL

)
. (7.48)

By using the dimensionless parameter l(t) = L(t)/L0, we rewrite (7.48) as
follows

V (l) = V0 + 2vm N
(

V0 (1 − l) + lvm

2vml

)
. (7.49)
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Since for a nonrelativistic ion, the momentum p = m iV, the parallel mo-
mentum variation as a function of l is given by

p ‖ i(l) = m i V ‖ i(l) = p ‖ i 0 + 2m i vm N
(

p ‖ i 0 (1 − l) + m i vm l

2m i vm l

)
, (7.50)

instead of formula (7.7). Here, as above, N is the step function of its
argument or simply the number of mirroring reflections of a given particle.
The parallel motion energy of an ion is growing as

K ‖ i(l) =
m i

2
V ‖ i(l) 2 = (7.51)

=
m i

2

[(
2K ‖ i 0

m i

)1/2

+ 2 vm N
(

(1 − l)
√

2 K ‖ i 0/m i + vm l

2 vm l

)] 2
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Figure 7.16: Kinetic energy of electrons and protons in a collapsing mag-
netic trap as a function of its length.
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For comparison, we show in Figure 7.16 the kinetic energy of a pro-
ton (solid steps) and of an electron (the dashed curve) as a function of l.
Initially, the energy steps for the proton are not frequent but follow the
second invariant curve of the electron. Later on, when the kinetic energy of
the electron becomes close to m ec

2, its energy grows more slowly than the
one of the proton. For example, a proton with an initial energy K0 ≈ k

B
T ,

where T ≈ 108 K is a typical temperature for a high-temperature turbulent-
current layer (see Sections 6.3 and 7.1), has a kinetic energy twice higher
than the one of an electron at l ≈ 0.1 with the same initial energy. At
the same time, reflections of the proton on magnetic mirrors become more
frequent, and the second adiabatic invariant is conserved. So, conservation
of the second invariant is not a bad approximation for trapped protons.

After a number of bounces the ion’s pitch angle becomes less than the
loss cone pitch angle, and it passes through the mirror, never to return. An
accelerated particle escapes from a trap as soon as

p ‖ ≥ R p ⊥ , where R =
(

B2

B1
− 1
)1/2

. (7.52)

As soon as the increase of its parallel momemtum under the acceleration
process is high enough to satisfy this condition, a particle escapes from the
trap. Every particle is able to escape the collapsing magnetic trap before
the length of the trap shrinks to zero.



Chapter 8

Solar-type Flares in
Laboratory and Space

The super-hot turbulent-current layer (SHTCL) theory offers an
attractive opportunity for laboratory and astrophysical applications
of the magnetic reconnection.

8.1 Solar flares in laboratory

New data on the mechanism of magnetic energy transformation into kinetic
and thermal energies of a super-hot plasma at the Sun require new models
of reconnection under conditions of anomalous resistivity, which are similar
to that ones investigated in toroidal devices performed to study turbulent
heating of a collisionless plasma.

8.1.1 Turbulent heating in toroidal devices

The electric resistivity of plasma is the important macroscopic parameter
that can be assessed relatively straightforwardly in laboratory experiments.
In order to clarify the basic physical mechanisms behind the anomalous
resistivity, much effort has been spent. Many experiments were done to
investigate the feasibility of using turbulent heating as a means of injecting a
large power into toroidal devices: stellarators and tokamaks. Much progress
has been made in understanding the anomalous resistivity and concurrent
plasma heating by current-driven turbulence (CDT), the turbulence driven
by a current parallel to a magnetic field (for a review see de Kluiver et
al., 1991). In general,

193
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the electric conductivity σ exhibits an anomalous reduction when
the electric field E exceeds a threshold.

The electric conductivities observed in the toroidal devices are highly
anomalous, and scales with the electric field as

σ

σcl
≈ 0.1

EDr

E
. (8.1)

Here σcl = σ0 T 3/2 is the classical conductivity, σ0 ≈ 1.44 × 108/ ln Λ, ln Λ
is the Coulomb logarithm; the Dreicer’s field (see Appendix 3)

EDr ≈ 6.4 × 10−10 n

T
ln Λ , V . (8.2)
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Figure 8.1: Normalized conductivity σ/σcl versus the normalized electric
field E/EDr in various toroidal devices (de Kluiver et al., 1991).
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The scaling law (8.1) is valid in the range of electric fields

10−2 ≤ E/EDr ≤ 105 .

The corresponding ratio σ/σcl varies from 10 to 10−6. Almost all known
nonlinear process (from quasilinear to strong turbulence) are likely to be
involved in the experiments. However all data points from considerably
different devices fall in a narrow band indicated in Figure 8.1.

Formulae (8.1) and (8.2) give us

σ ≈ 3.0 × 10−5 T 1/2 n

E
, s−1 . (8.3)

So, instead of using complicated methods to find the anomalous conductiv-
ity in different regimes of CDT, as it was done in Section 6.3, we can apply
the simple empirical formula (8.3).

8.1.2 Current-driven turbulence in current layers

Let us assume that the electron temperature exceeds significantly the ion
one in the super-hot turbulent-current layer (SHTCL):

Te � Ti , T = Te .

In the reconnecting current layer (RCL), magnetic field lines inflow together
with plasma at a small velocity v, reconnect inside the layer and then
outflow at a large velocity V . It follows from the set of Equations (6.43)–
(6.48) that:

n0 v b = n V ξ b , (8.4)

B 2
0

8π
= n kBT , n kBT =

1
2

M nV 2 , (8.5)

c B0

4π a
= σ E0 , (8.6)

E in
mag = E out

th + K out + C‖ . (8.7)

In the continuity Equation (8.4), v = c E0/B0 is the plasma drift velocity
into the layer. It follows from Equations (8.5) that the velocity of the
plasma outflow is

V =
B0√

4π Mn
. (8.8)

The magnetic field near the RCL is estimated as (6.51).
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The energy equation (8.7) includes the magnetic enthalpy flux into the
layer

E in
mag =

B 2
0

4π
v b , (8.9)

which coincides with the Joule heating of the RCL (j2 /σ) a b. The thermal
enthalpy flux from the layer along the magnetic field lines is

E out
th =

(
5
2

ne kBTe +
5
2

ni kBTi

)
V ξ b ≈ 5

2
nkBT × V ξ b , (8.10)

where allowance is made for ni = ne ≡ n and Ti 
 Te = T . The kinetic
energy flux of the plasma outflowing from the layer is

K out =
(

1
2

Mn V 2 +
1
2

mn V 2
)

V ξ b ≈ 1
2

Mn V 2 × V ξ b , (8.11)

since the ion mass M exceeds significantly the electron mass m.
The heat flux along the field lines can be taken as (6.40). Therefore,

in general, the new models presented below are similar to the simple ‘test
models’ of a SHTCL, described in Chapter 3 in Somov (1992), or, more
exactly to an ‘one-temperature model’ (Somov and Titov, 1983; see also
Somov, 1981). We remind that the heat flux in the test model was consid-
ered as saturated at 1 ≤ θ ≤ 8.1; this only approximately satisfies inequality
Te � Ti . We shall keep in the next Section the same value of the flux

C‖ =
n (kB T )3/2

4 m1/2 ξ b , (8.12)

in order to demonstrate clearly the effect of formula (8.3) for estimating
the turbulent conductivity:

σ = σ1
T 1/2 n

E0
, s−1 , where σ1 ≈ 2.98 × 10−5 . (8.13)

Later on, the anomalous value of the heat flux will be adopted which corre-
sponds to θ � 1. So a better agreement will be reached between the initial
assumptions and designed functions; moreover the question will be solved
on a sensitivity of the SHTCL model to the heat flux value.

Equation (8.7) does not include the thermal enthalpy flux into the RCL

E in
th = (5n0 kBT0) v b 
 E out

th , (8.14)

as long as the coronal plasma temperature T0 
 T , and the kinetic energy
flux of the plasma flowing into the layer

K in =
(

1
2

Mn0 v2 +
1
2

mn0 v2
)

v b 
 K out, (8.15)
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as v2 
 V 2 in the strong field approximation. We neglect also the magnetic
enthalpy flux from the current layer

E out
mag =

B 2
y

4π
V ξ b 
 E in

mag , (8.16)

since B 2
y 
 B 2

0 . Moreover, as is shown in the test model, the following
factors do not influence the energy balance of the SHTCL under the corona
conditions: the energy exchange between electrons and ions due to Coulomb
collisions, the heat flux across a magnetic field, and the energy losses due
to radiation.

8.1.3 Parameters of a current layer with CDT

Let us find the unknown values a, b, n, and V from Equations (8.4)–(8.6)
considering the temperature T as an unknown parameter. We obtain the
following formulae:

a = 21/6 π−1/3 k5/6
B

M−1/6 c2/3 σ−1
1

[
n

−1/3
0 E

−1/3
0 ξ1/3

]
T 1/3 , (8.17)

b = 25/6 π1/3 k1/6
B

M1/6 c1/3
[
n

1/3
0 E

1/3
0 h−1

0 ξ−1/3
]

T 1/6 , (8.18)

n = 2−4/3 π−1/3 k−2/3
B

M1/3 c2/3
[
n

2/3
0 E

2/3
0 ξ−2/3

]
T−2/3 , (8.19)

V = 21/2 k1/2
B

M−1/2 T 1/2 . (8.20)

Now from Equation (8.7), we derive the temperature as a function of
the parameters n0, h0, E0, and ξ. On this purpose, let us rewrite (8.7):

B 2
0

4π
v b =

1
2
(
Mn V 2 + 5n kBT

)
V ξ b +

n (kB T )3/2

4 m1/2 ξ b . (8.21)

Transform the terms on the right-hand side:

1
2
(
Mn V 2 + 5n kBT

)
V ξ b =

7
4

n0

n

B 2
0

4π
v b , (8.22)

n (kBT )3/2

4 m1/2 ξ b =
1
8

(
M

2 m

)1/2
n0

n

B 2
0

4π
v b . (8.23)

Substituting (8.22) and (8.23) in Equation (8.21) yields

n

n0
=

7
4

+
1
8

(
M

2 m

)1/2

≈ 5.54 . (8.24)



198 Chapter 8. Flares in Laboratory and Space

From this, with allowance for formula (8.19), we find the temperature

T =
2[

7 +
√

M/8m
]3/2 π−1/2 k−1

B
M1/2 c

[
n

−1/2
0 E0 ξ−1

]
. (8.25)

Thus formulae (8.24), (8.25), (8.17), (8.18), and (8.20) determine the
current layer characteristics n, T , a, b, and V via the external parame-
ters n0, E0, h0, and the dimensionless parameter ξ. Apart from the SHTCL
parameters mentioned above, the energy release power per unit of the layer
length has been calculated:

P

l
=

B 2
0

4π
v 4b =

1
π

c E0 h0 b2 . (8.26)

Comparison of the parameters estimated in the framework of the well
studied test models with the results of the new models, shows the previous
and new results differ only slightly. This indicates an agreement between
two different approaches to the estimation of anomalous conductivity: the
theoretical one used in the test models, and the empirical one described by
de Kluiver et al. (1991). For example, with the electric field E0 ≈ 0.1 −
6.9 V/cm the test model predicts the conductivity σ ≈ 3×1012−6×1011 s−1,
which is the well suitable range for solar flares and CMEs (Somov, 1992).
For the same electric field, the new model yields σ ≈ 2×1013 −6×1011 s−1.

8.1.4 The SHTCL with anomalous heat conduction

Let now the electric conductivity be determined by formula (8.13) and heat
conduction flux by

C‖ =
n (kBT )3/2

M1/2 ξ b . (8.27)

Here it is taken into account that f
M

(θ) = 1 at θ � 1, see formulae (6.40)
and (6.41). Equation (8.7) in this case has the following form:

B 2
0

4π
v b =

1
2
(
Mn V 2 + 5n kBT

)
V ξ b +

n (kBT )3/2

M1/2 ξ b . (8.28)

Solving procedure of the set of Equations (8.4)–(8.6) and (8.28) is similar
to that one developed earlier. From Equation (8.28) we obtain the ratio

n

n0
=

7
4

+ 2−3/2 ≈ 2.1 . (8.29)
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From here, taking into account (8.19), the RCL temperature is found:

T =
1

4
[
(7/4) + 2−3/2

]3/2 π−1/2 k−1
B

M1/2 c
[
n

−1/2
0 E0 ξ−1

]
. (8.30)

So, in the framework of the new models of a SHTCL with the anomalous
heat conduction, the values describing the RCL (n, T , a, b, and V ) are
determined by formulae (8.29), (8.30), (8.17), (8.18), and (8.20). Their
estimations, obtained for the same initial data as in the test models, show
that a replacement of the saturated heat flux by the anomalous one leads to
decreasing C‖ by a factor of 2–3. This slightly influences the results. The
RCL becomes hotter and more rarefied, its thickness and width somewhat
increase. A factor of changes does not exceed 4. Therefore a choice of
the turbulent heat flux (saturated or anomalous) model generally is not a
crutial point when a rough comparison is made of the local models of a
RCL. However

the choice of the heat transport regime in a super-hot plasma may
be of importance for interpreting HXRs of solar flares

(Somov and Kosugi, 1997; Somov et al., 1998).
The energy release power per unit of length of the layer, depending on

conditions, varies over a wide range: from ∼ 1015 to ∼ 1019 erg/(cm s),
i.e. for the SHTCL with characteristic length L ∼ 1010 cm, the power is
high as 1029 erg/s which is sufficient to account for the most powerful flares
and CMEs (Somov, 1992). So

the collisionless 3D reconnection in the solar active phenomena
seems to be similar to the reconnection observed in laboratory, in
the toroidal devices: tokamaks and stellarators.

Classically, most electrons are expected to run away in strong electric
fields. However the experiments in the toroidal devices, most of which
have been made in well magnetized plasmas, indicate that effective braking
mechanisms exist to retard runaway electrons. In this way, a sufficiently
strong electric field creates the state of the CDT. This state is macroscopi-
cally characterized by a large decrease of conductivity σ from the classical
value σcl.

With the anomalous decrease of conductivity, Joule dissipation is en-
hanced by a factor σcl/σ and leads to rapid plasma heating to extremaly
high temperatures. Yohkoh observations of super-hot plasma in solar flares
presumably indicate that the anomalous conductivity and accompanying
turbulent heating are macroscopic manifestations of the CDT in the place
of collisionless reconnection (the SHTCL) as well as in the surrounding
coronal plasmas heated by anomalous heat fluxes.
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8.2 Magnetospheric Physics Problems

8.2.1 Reconnection in the Earth Magnetosphere

The coupling between the solar wind and the magnetosphere is mediated
and controlled by the magnetic field in the solar wind through the process
of magnetic reconnection as illustrated by Figure 8.2 according to Dungey
(1961).

(a)

(b)

SW
IMF

SW

Figure 8.2: Schematic of the process of reconnection in the magnetosphere.
(a) No reconnection and no energy flow into the magnetosphere. Energy
flow is indicated by solid arrows. (b) Reconnection opens the magneto-
sphere and allows entry of plasma, momentum, and energy. Magnetospheric
convection is indicated by the open arrows.

Reconnection occurs on the dayside if an interplanetary magnetic field
(IMF ) is directed southwardly. Reconnection turns closed field lines of
the Earth into open field lines: one end is connected to the Earth and the
other in the solar wind (SW in Figure 8.2). The reconnected field lines
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take part in the antisunward motion of the solar wind and get dragged to
the nightside. Here they enhance the tail lobes. Hence reconnection must
again occur on the nightside, and the new closed field lines must return
to the dayside. Therefore, reconnection gives rise to convection of plasma
through the magnetosphere.

3D magnetospheric configurations that represent pressure balance across
the magnetopause were found for a variety of actual conditions (e.g.,
Sotirelis and Meng, 1999) allowing for the cross-tail current. Many dif-
ferent configurations were presented for general reference. The magneto-
spheric magnetic pressure was calculated by using the current systems of
the model by Tsyganenko (1996) together with self-consistently calculated
magnetopause shapes and currents.

8.2.2 MHD simulations of space weather

As we discussed in Introduction, solar flares and coronal mass ejections
(CMEs) strongly influence interplanetary and terrestrial space by virtue of
shock waves, hard electromagnetic radiation and accelerated particles (e.g.,
Kivelson and Russell, 1995). That is why space weather is of growing
importance to the scientific community and refers to conditions at a par-
ticular place and time on the Sun and in the solar wind, magnetosphere,
ionosphere, and thermosphere that can influence the performance and relia-
bility of spaceborne and ground-based technological systems and can affect
human life or health (Wright, 1997; Hanslmeier, 2002; de Jager, 2005).
These influences have prompted efforts to enhance our understanding of
space weather and develop effective tools for space weather prediction.

Global MHD simulations have been used for a long time to model the
global magnetospheric configuration and to investigate the response of the
magnetosphere-ionosphere system to changing solar wind conditions (see
review by Lyon, 2000). Variations in the solar wind can lead to disruptions
of space- and ground-based systems caused by enhanced electric currents
flowing into the ionosphere and increased radiation in the near-Earth envi-
ronment.

A focus of many MHD investigations was the study of magnetospheric
‘events’. In addition to this study, there have been several applications of
MHD models to the study of coronal and solar wind plasma flows. For
example, the ideal MHD approximation was efficiently used by Groth et
al. (2000) to simulate the initiation, structure, and evolution of a CME and
its interaction with the magnetosphere-ionosphere system.

Groth et al. have developed a new parallel adaptive mesh refinement
(AMR) finite-volume scheme to predict the ideal MHD flows in a com-
plete fully three-dimensional space weather event. So the simulation spans
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the initiation of the solar wind disturbance at the surface to its interac-
tion with the Earth’s magnetosphere-ionosphere system. Starting with
generation of a CME at the Sun, the simulation follows the evolution of
the solar wind disturbance as it evolves into a magnetic cloud and travels
through interplanetary space and subsequently interacts with the terrestrial
magnetosphere-ionosphere system.

8.3 Flares in accretion disk coronae

In this Section we discuss the possibility of applying the theory of mag-
netic reconnection in solar flares to astrophysical phenomena accompanied
by fast plasma ejection, powerful fluxes of heat and radiation, impulsive
acceleration of electrons and ions to high energies. We use the well-tested
models of the SHTCL to evaluate an ability to release a free magnetic en-
ergy in the accretion disk coronae of compact stars, for example, neutron
stars.

8.3.1 Introductory comments

The accretion disks presumably have a corona which interacts with a mag-
netic field generated inside a disk. Drawing on developments in solar flare
physics, Galeev et al. (1979) suggested that the corona is heated in mag-
netic loops which have buoyantly emerged from the disk. Reconnection of
buoyant fields in the lower density surface regions may supply the energy
source for a hot corona. Another feature related to the disk corona is the
possibility of a flare energy release similar to solar flares. They are ac-
companied by fast directed plasma ejections (jets), coronal mass ejections
(CMEs) into interplanetary space, powerful fluxes of hard electromagnetic
radiation.

If a plasma in the disk corona is optically thin and has a dominant
magnetic pressure, the circumstances are likely to be similar to the solar
corona. Therefore it is also possible to imagine some similarity between
solar flares and the X-ray flares in the accretion disk coronae. Besides the
effect of heating the the disk corona, reconnection is able to accelerate elec-
trons and protons to relativistic energies (Lesch and Pohl, 1992; Bednarek
and Protheroe, 1999). Starting from well-tested models for magnetic recon-
nection in the solar corona during flares, we examine whether the magnetic
reconnection may explain the hard X-ray emission of stars.
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8.3.2 Models of the star magnetosphere

8.3.2 (a) Global and local magnetic fields

Let us assume that the magnetic fields in the magnetosphere of a star
(for example, the pulsar magnetosphere) with an accretion disk consist of
two components of different origin. The first, regular large-scale magnetic
component is related to the proper magnetic field of a star and large-scale
electric currents flowing in the accretion disk as a whole. This component is
similar to the large-scale quasi-stationary magnetic field in the solar corona,
including the coronal streamers, or in the Earth magnetosphere, including
the magnetotail.

The second component represents the chaotic magnetic fields generated
by the differential rotation and turbulence in the accretion disk. The MHD
turbulence inside the disk gives rise to the dynamo mechanism with a wide
spectrum of scales for magnetic fields emerging at the disk’s surfaces into
its corona. These fields, interacting between themselves and with the large-
scale regular field of the magnetosphere, create flares of different scales in
the corona of the disk. We believe that they heat the corona and accelerate
particles to very high energy via magnetic reconnection in myriads of large
and small flares similar to solar flares.

By analogy with the solar corona or the Earth magnetosphere, we shall
assume that, in the magnetosphere of a compact star, the magnetic-field
energy density greatly exceeds that of the thermal, kinetic and gravitational
energy of the accreting plasma:

B 2

8π
� 2nkBT ,

B 2

8π
� ρv2

2
, and

B 2

8π
� ρ g . (8.31)

So the magnetic field can be considered in the strong field approximation.
This means, in fact, that the magnetic field is mainly potential in the
magnetosphere everywhere outside the field sources: a star, an accretion
disk, and the magnetospheric boundaries. At least, the magnetic field is
potential in a large scale, in which the field determines the global structure
of the magnetosphere. This 3D structure is illustrated by Figure 8.3 (Somov
et al., 2003a).

Here m is a magnetic dipole moment of a star which rotates with an
angular velocity Ω. The velocity of plasma flow inside the accretion disk D
is shown by vectors V. The large-scale regular magnetic field B is presented
by two pairs of field lines separated by the accretion disk. Such structure
seems to be well supported by results of the fully three-dimensional MHD
simulations (see Romanova et al., 2004, Figure 4). Su and Sd are the up-
per and bottom boundary surfaces of the magnetosphere. Cu is a cusp at
the upper boundary. The outer surfaces Su and Sd play the role of the
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B

Figure 8.3: A three-dimensional picture of the star magnetosphere. The
field lines B show the transition from the dipolar field of a rotating mag-
netized star to the tail-like field above and below an accretion disk D. The
solid curves with arrows V represent the velocity field of the differentially
rotating flows inside the disk.

magnetopause; their location and configuration are determined primarily
by the condition of pressure equilibrium. The interaction between the mag-
netosphere and the surrounding plasma makes the outer boundaries highly
asymmetric.

8.3.2 (b) An auxiliary two-dimensional problem

To estimate characteristic values of the large-scale magnetic field and its
gradient in the corona of an accretion disk, we have to find the structure
of the field inside the magnetosphere created by a dipole field of a star
and a regular field generated by the disk. Let us consider a simplified two-
dimensional problem on the shape of a magnetic cavity and the shape of
the accretion disk under assumption that this cavity, i.e. the magneto-
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sphere, is surrounded by a perfectly conducting uniform plasma with a gas
pressure p0.

Two conditions have to be satisfied at the boundary surface S which
consists of two surfaces: the upper one Su and the bottom Sd (compare
Figures 8.3 and 8.4). These conditions are the equality of magnetic and gas

B

m

x

y
S Cu

u

S d

Cd

ψ

Γ

Γ

z

G

2 R 1

l

r

Figure 8.4: A two-dimensional model of the star magnetosphere. Γl and Γr

are the cross sections of the accretion disk D by the plane determined by
two vectors: the dipole moment m of the star and its angular velocity Ω in
Figure 8.3. An auxiliary plane z corresponds to the complex variable z =
x+iy. R1 is the inner radius of the disk. Su and Sd together with Γl and Γr

constitute the boundary of the singly connected domain G in the plane z.

pressure,

B2

8π
S

= p0 = const , (8.32)

and tangency of the magnetic field along the boundary S,

B · n
S

= 0 . (8.33)
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Condition (8.33) means that, along the boundary S,

Re F (z) = A (x, y) = const . (8.34)

Here a complex potential F (z) is an analytic function

F (z, t) = A (x, y, t) + iA+(x, y, t) , (8.35)

within the domain G in the complex plane z except at the point z = 0 of
the dipole and the current layers Γl and Γr related to the accretion disk.
A+(x, y, t) is a conjugate harmonic function connected with A (x, y, t) by
the Cauchy-Riemann condition

A+(x, y, t) =
∫ (

− ∂A

∂y
dx +

∂A

∂x
dy

)
+ A+(t) , (8.36)

where A+(t) is a quantity independent of the coordinates x and y.
The magnetic field vector, according to definition B = curlA, is:

B = Bx + iBy = − i
(

dF

dz

)∗
, (8.37)

the asterisk denoting the complex conjugation. After introducing the com-
plex potential, we apply the methods of the complex variable function the-
ory, in particular the method of conform mapping , to determine the mag-
netic field. This has been done, for example, to determine the structure of
the magnetic field in solar coronal streamers (Somov and Syrovatskii, 1972).

By analogy with the solar coronal streamers or with the Earth mag-
netotail, we assume that the large-scale regular magnetic field reverses its
direction from one side of the accretion disk to the other:

B
Γ+

= −B
Γ−

. (8.38)

So, with respect to the large-scale field of the global magnetosphere, the
accretion disk electric current is considered, for simplicity, as the large-scale
neutral current layer Γ.

We also assume that a conform transformation w = w(z) maps the
domain G shown in Figure 8.4 onto the circle |w| ≤ 1 in an auxiliary
complex plane w = u + iv so that the point z = 0 goes into the centre of
the circle without rotation of the magnetic dipole as shown in Figure 8.5.

Then the complex potential inside the circle has the following form:

F (w) = i Q

(
ln

w − eiα

w eiα − 1
+ ln

w − ei(π−α)

−w ei(π−α) + 1

)
+ i e−iψ w +

i eiψ

w
. (8.39)
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Figure 8.5: A solution of the two-dimensional problem inside the unit circle
in the complex plane w = u + iv. The domain G in the plane z shown in
Figure 8.4 is mapped onto the unit circle.

Here Q is a ‘magnetic charge’, the value which is proportional to the flux
of the ‘open’ field lines, that go from a star to infinity. An angle α is a free
parameter of the problem, which determines the type of a selected solution
(for more mathematical details see Somov et al., 2003a).

8.3.3 Power of energy release in the disk coronae

Let us consider some consequences of the solution of the auxiliary two-
dimensional problem. For parameters m ≈ 1030 G cm3 , ψ = π/4 , p0 ≈
1.4 × 106 dynes cm−2, we obtain that the inner radius R1 of the accretion
disk (Figure 8.4) is about 4×108 cm. The half-size of the magnetosphere is
about 6×108 cm. These values seem to be in agreement with those inferred
for the 4U 1907+09 neutron star and similar objects (Mukerjee et al., 2001).
At a distance of 5 × 108 cm from the star, the magnetic-field strength is
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(1−2)×104 G while the magnetic-field gradient is h0 ∼ 10−6−10−2 G cm−1.
From the solution of the problem on the SHTCL parameters (see Sec-

tion 8.1.3) we find the power released per one current layer. For ex-
ample, for the input parameters n0 ≈ 1013 cm−3, h0 ≈ 10−2 G cm−1,
E0 ≈ 103 CGSE units, and ξ ≈ 0.1 (Somov et al., 2003a), we obtain
b ≈ 5 × 106 cm and the power released per layer length

P1

l
=

B 2
0

4π
v 4b =

1
π

c E0 h0 b2 ≈ 3 × 1024 erg s−1 cm−1. (8.40)

Let us assume that the SHTCL length l has the same order of magnitude
as its width 2b. Then the power released by a single SHTCL is P1. We
assume that new layers are continually forming in the disk corona as a result
of permanently emerging new magnetic loops. Let us consider an inner part
of the ring-shaped accretion disk. Let the inner radius be R1 ∼ 4 × 108 cm
while the outer radius is R2 ∼ 8×108 cm. Its area is thus Sr = π(R 2

2 −R 2
1 ),

while the area of a single RCL is S1 = l ×2b. Thus, in the inner part of the
accretion disk, a number N ∼ 2Sr/S1 of current layers exist simultaneously.
The total energy release per second is

P ∼ N P1 =
2 Sr

S1
× P1 =

2 π
(
R 2

2 − R 2
1
)

l 2b
× c

π
E0 h0 b2 l =

=
(
R 2

2 − R 2
1
)

c E0 h0 b ∼ 7 × 1035 erg s−1. (8.41)

This estimate (which should be, in fact, considered as a lower limit, accord-
ing to Somov et al., 2003) does not contradict to the total power released
by some neutron stars such as Aql X-1, SLX1732-304, 4U0614+09, 4U1915-
05, SAX J1808.4-3658 (Barret et al., 2000). So the magnetic reconnection
in accretion disk coronae is a powerful mechanism which may explain the
observed X-ray emission from neutron stars.

Disk accretion to a rotating star with an inclined dipole magnetic field
has been studied by three-dimensional MHD simulations (Romanova et
al., 2004). It was shown that the hot spots arise on the stellar surface
because of the impact on the surface of magnetically channeled accretion
streams. The results are of interest for understanding the variability of
classical T Tauri stars, millisecond pulsars, and cataclysmic variables.

8.4 The giant flares

The so-called giant flares are produced via annihilation of magnetic fields of
a highly magnetized neutron star, a magnetar . This annihilation deposits
energy in the form of photons and pairs near the surface of the neutron star.
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The pair-radiation plasma evolves as an accelerating fireball , resulting in a
thermal radiation burst carring the bulk of the initial energy with roughly
the original temperature and a fraction of energy in the form of relativistic
pairs. The thermal spectrum of giant flares and their temperatures support
this scenario.

On 2004 December 27, a giant flare from SGR (soft gamma-ray) 1806-20
was the most powerful flare of gamma rays ever measured on Earth (for a
review see Nakar et al., 2005). Its energy of 3 × 1046 erg was released at a
distance of 15 kpc during about 0.2 s. The spectrum of the flare is consistent
with that of a cooling blackbody spectrum with an average temperature of
175 ± 25 keV. Like other giant flares, this flare was followed by a pulsed
softer X-ray emission that lasted more than 380 s. Radio afterglow was
detected from Very Large Array (VLA) observations. After 1 week the
radio source was extended to a size of (0.6 − 0.9) × 1016 cm. Therefore a
significant amount of energy was emitted in the form of a relativistic ejecta
around the same time that the gamma-ray flare was emitted.



Chapter 9

Particle Acceleration in
Current Layers

The inductive electric field is directed along the current inside a colli-
sionless reconnecting current layer (RCL). This strong field does posi-
tive work on charged particles, thus increasing their energy impulsively,
for example, in solar flares of flares in the accretion disk coronae of
compact astrophysical objects.

9.1 Magnetically non-neutral RCLs

9.1.1 An introduction in the problem

Magnetic reconnection determines many phenomena in astrophysical plas-
ma (for a review of pioneering works see Sweet, 1969; Syrovatskii, 1981,
1982). The theory of reconnection in a super-hot turbulent-current layer
(SHTCL, see Section 6.3) explains the total amount of energy accumulated
before solar flares, the power of energy released during flares and some
other parameters of flares (Section 7.1). In particular, it has been shown
(Litvinenko and Somov, 1991) that acceleration by the electric field and
scattering of particles by ion-acoustic turbulence in an SHTCL lead to the
appearance of about 1035 − 1036 electrons with a power-law spectrum and
with energies of the order of tens of keV. Future development of the the-
ory should result in models for the total number of accelerated particles,
their maximum energy and the rate of particle acceleration (Bai and Stur-
rock, 1989; Somov, 1992; Hudson and Ryan, 1995; Miroshnichenko, 2001).

211
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In this Section we return to the question of the maximum energy of
particles accelerated in a RCL, which has been formulated in Section 1.2.
Three points are important here.

(a) The problem of particle motion in a magnetic field which changes
the sign of its direction and in the electric field related to reconnection has
been considered many times. Speiser (1965) found particle trajectories near
the neutral plane where the magnetic field is zero. The physical meaning
of the Speiser solution is in the following. Formally speaking,

a charged particle can spend an infinite time near such a neutral
plane and can take an infinite energy from the electric field.

However, under real conditions in astrophysical plasma, the probability of
such a situation is small; usually the magnetic field in the ‘reconnecting
plane’, i.e. the current layer, has non-zero transversal and longitudinal
components. Therefore actual current layers are magnetically non-neutral
RCLs. This is of importance for their energetics (Chapter 6), stability
(Chapter 11), and for the mechanism of acceleration that will be considered
in the present Chapter.

(b) Speiser (1965) showed also that

even a small transversal field changes the particle motion in such a
way that the particle leaves the RCL after a finite time,

the particle energy being finite. In what follows we show that this time is
small and the energy is not sufficient in the context of solar flares.

(c) Can we increase the time spent by the particle inside the RCL? –
In the following it will be shown that (Somov and Litvinenko, 1993)

the longitudinal field increases the acceleration time and, in this
way, strongly increases the efficiency of particle acceleration

thus allowing us to explain the first step of acceleration of electrons in solar
flares. An iterative method will be presented which gives an approximate
general solution of the problem.

9.1.2 Dimensionless parameters and equations

Let us consider a reconnecting current layer placed in the (x, z) plane in
Figure 9.1. More exactly, this is a right-hand-side part of the magnetically
non-neutral RCL as shown in Figure 6.3. The electric field E and current
density j are parallel to the z axis; so the associated magnetic field compo-
nents are parallel to the x axis and change their sign in the plane y = 0.
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B ||

E

B⊥ x
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Figure 9.1: The projection of field lines inside the RCL to the plane (x, y);
B‖ is the longitudinal magnetic field. E is the inductive electric field related
to magnetic reconnection.

Therefore we prescribe the electric and magnetic fields inside the current
layer as follows:

E = { 0, 0, E0 } , B =
{

− y/a , ξ⊥, ξ ‖
}

B0 . (9.1)

The non-relativistic equation of motion for a particle with mass m and
charge q = Ze is

m
∂ v
∂t

= q

(
E +

1
c
v × B

)
. (9.2)

Let us take the half-thickness a of the layer as a unit of length and the in-
verse gyro-frequency ω−1

B
= mc/qB0 as a unit of time. Then Equation (9.2)

can be rewritten in the dimensionless form:

∂2x

∂t2
= ξ ‖

∂y

∂t
− ξ⊥

∂z

∂t
, (9.3)

∂2y

∂t2
= − ξ ‖

∂x

∂t
− y

∂z

∂t
, (9.4)

∂2z

∂t2
= ε + ξ⊥

∂x

∂t
+ y

∂y

∂t
. (9.5)

Here the dimensionless electric field

ε =
mc2E0

aqB 2
0

. (9.6)

The influence of plasma turbulence on particle motions is ignored in
(9.2). This is justified provided the time spent by a particle inside the RCL
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is less than the inverse frequency of the wave-particle interactions ν (v). For
the typical case, like the ion-acoustic turbulence,

ν (v) = ν eff

(√
kBT/m

v

)3
, (9.7)

T being the temperature in the layer. For typical parameters of SHTCL
(Chapter 6), the effective collision frequency can be estimated as

ν eff ≈ ξ⊥ ωB ≈ 106 s−1 .

Hence the turbulence can be ignored for suprathermal particles, once the
time spent by a particle inside the SHTCL does not exceed

τ eff = (ξ⊥ ωB)−1 ≈ 10−6 s .

On integrating Equations (9.3) and (9.5) and substituting in (9.4), the
set of Equations (9.3)–(9.5) becomes

∂x

∂t
= ξ ‖ y − ξ⊥z + c1 , (9.8)

∂2y

∂t2
+ ξ 2

‖ y = −
(

ε t + ξ⊥ x +
1
2

y2 + c2

)
y +

+ ξ ‖ ( ξ⊥z − c1) , (9.9)

∂z

∂t
= ε t + ξ⊥ x +

1
2

y2 + c2 . (9.10)

Let x0, y0, and z0 be the initial coordinates of the particle. Its initial
velocity is assumed to be negligible. In this case the constants of integration
are as follows:

c1 = −ξ ‖ y0 + ξ⊥z0 , c2 = −ξ⊥x0 − 1
2

y 2
0 . (9.11)

So, in principle, the problem can be solved.

9.1.3 An iterative solution of the problem

The simple-looking set of ordinary differential Equations (9.3)–(9.5) for the
single particle motion inside the RCL is still complex, because the equations
are not linear in the variables. As surprising as it may seem, we cannot
solve these equations exactly, except for very special cases or with some
simplifications.
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Until the particle leaves the layer, the value of y (t) is small, since the
layer is supposed to be thin. The behaviour of the functions x (t) and
z (t) does not depend strongly on the exact form of the solution y (t). For
this reason the Equations (9.8) and (9.10) can be solved by the following
iterative procedure. First, we prescribe some function

y (t) = y(0)(t) .

Second, using this function, we calculate x(0)(t) and z(0)(t) from Equa-
tions (9.8) and (9.10). Third, we use these functions to find a small correc-
tion y(1)(t) from Equation (9.9).

In zeroth approximation Equation (9.9) takes the simplest form

∂2y(0)

∂t2
+ ξ 2

‖
(
y(0) − y0

)
= 0 , (9.12)

whence y(0) = y0 = const. Now, from Equations (9.8) and (9.10), we find
the zeroth order functions:

x(0)(t) = x0 + (sin ξ⊥t − ξ⊥t) ε/ ξ 2
⊥ ,

(9.13)
z(0)(t) = z0 + (1 − cos ξ⊥t) ε/ ξ 2

⊥ .

In this approximation the projection of the particle’s trajectory on the
plane (x, z) is a cycloid curve whose shape does not depend on the longi-
tudinal field Bz = ξ ‖ B0. Physically, formulae (9.13) describe the particle
drift in the perpendicular fields By = ξ⊥B0 and Ez = E0 (see Appendix 3),
the influence of the Bz component being neglected.

Now let us write an equation which will allow us to find a correction to
y(0)(t). Making use of (9.9) and (9.13), we obtain

∂2y

∂t2
+
(

ξ 2
‖ + ε

sin ξ⊥t

ξ⊥

)
y = ξ 2

‖ y(0) + (1 − cos ξ⊥t) ε
ξ ‖
ξ⊥

. (9.14)

So the character of the particle motion is determined by two dimensionless
parameters: ξ ‖ and ξ⊥. Depending on them, two cases can be considered.

9.1.3 (a) No longitudinal field

The case ξ ‖ = 0 means that there is no longitudinal magnetic field inside
the RCL. Equation (9.14) becomes

∂2y

∂t2
+
(

ε
sin ξ⊥t

ξ⊥

)
y = 0 . (9.15)
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This is the equation of a one-dimensional oscillator with a time-dependent
frequency. From (9.15), together with (9.13), Speiser’s results follow. In
particular, a particle can remain inside the layer only for the time

τ =
π

ξ⊥
. (9.16)

When t > τ , the particle quickly moves out of the layer, since the frequency
formally becomes an imaginary value. At this instant,

∂x (τ)
∂t

= − 2ε

ξ⊥
,

∂z (τ)
∂t

= 0 . (9.17)

Note that in the case of a neutral layer ξ⊥ = 0 and the particle accel-
eration along the z axis is not restricted. According to (9.16), τ → ∞; the
non-relativistic kinetic energy increases as K ∼ z ∼ τ2, while the oscillation
amplitude decreases as Ay ∼ τ−1/4 (formula (1.28)).

If ξ⊥ �= 0 and the electric field is small enough,

ε <
1
2

ξ 3
⊥ , (9.18)

then small oscillations near the plane y = 0 are stable, and particles are
not pushed out of the layer. However, in the SHTCL model pertaining to
solar flare conditions (Section 7.1), ξ⊥ ∼ 10−3 and ε ∼ 10−5. Therefore
the inequality (9.18) cannot be satisfied and particles go out of the RCL
without being accelerated.

9.1.3 (b) Stabilization by the longitudinal field

The case ξ ‖ �= 0, the RCL with a longitudinal field. Equation (9.14) de-
scribes an oscillator the frequency of which changes with time and which
is also subject to the action of an external periodic force. Hence the oscil-
lating system represented by Equation (9.14) is not closed and may have
resonance increases of y = y (t). This corresponds to the particle going out
of the layer.

It is important, however, that the particle’s motion can become stable
provided ξ ‖ is large enough. Here we assume that the domains of stability
exist for sufficiently large values of the longitudinal magnetic field. The
simple argument is that, if the longitudinal field is strong enough, then the
particles tend to follow the orbits mostly parallel to the direction of the
longitudinal field, which is also parallel the the electric field. Such particles
stay within the RCL and they are accelerated by the electric field.
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In this case a particle remains in the vicinity of the layer plane, y = 0.
For the resonance effects to be absent, the oscillation frequency must always
be real:

ξ 2
‖ >

ε

ξ⊥
. (9.19)

Once the inequality (9.19) is valid, some particles do not leave the RCL
due to unstable trajectories. Were it not for the turbulence, these parti-
cles would simply drift along the RCL, gaining energy. The ion-acoustic
turbulence in SHTCL (cf. formula (9.7)) makes the particle motion more
complex.

9.1.4 The maximum energy of an accelerated particle

In general, the kinetic energy gain of escaping particles is a function of the
physical parameters of the RCL and of the initial conditions that determine
the orbits of particles. An issue of great concern is, however, what is the
maximum energy to which a particle can be accelerated by the RCL?

For the case of a strong longitudinal magnetic field, the maximum ve-
locity can be evaluated as

vmax ≈ ξ ‖ . (9.20)

Here a unit of velocity (Section 9.1.2) is

V1 = a ωL =
aqB0

mc
. (9.21)

Therefore the longitudinal field qualitatively changes the character of par-
ticle motion inside the layer. As an example, let us consider electron accel-
eration in SHTCL during solar flares.

The SHTCL model allows us to express the characteristics of a current
layer through the external parameters of a reconnection region: the concen-
tration of plasma n0 outside the layer, the electric field E0, the magnetic
field gradient h0 and the relative value ξ⊥ of a transversal magnetic field
(Chapter 6). In the case ξ ‖ = 0 (no longitudinal field), i.e. (9.17), the
maximum electron energy is given by

Emax = 2mc2
(

E0

ξ⊥B0

)2

(9.22)

or, using the SHTCL model,

Emax (keV) ≈ 5 × 10−9 T (K) . (9.23)

Formula (9.23) shows that acceleration in the RCL without a longitudinal
field is not efficient: for the temperature inside the layer T ≈ 108 K, the
maximum energy of accelerated electrons is only 0.5 keV.
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Let us consider now the case of a non-zero longitudinal field. The sta-
bilization condition (9.19) can be rewritten in dimensional units as follows:(

B ‖
B0

)2

>
mc2E0

aq B⊥B0
. (9.24)

In the frame of the SHTCL model the last inequality becomes especially
simple:

B ‖ > 0.1 B0 . (9.25)

Thus the longitudinal component can be one order of magnitude smaller
than the reconnecting components related to the electric current in the
current layer.

The maximum energy (written in dimensional units) of accelerated elec-
trons in the RCL is

Emax =
1

2m

(
qa B ‖

c

)2

(9.26)

or, in the SHTCL model,

Emax (keV) ≈ 10−5 ξ 2
‖ T (K) . (9.27)

If the current-layer temperature T ≈ 108 K and ξ 2
‖ ≈ 0.1, formula (9.27)

gives Emax ≈ 100 keV. Therefore

the longitudinal magnetic field increases the acceleration efficiency
to such a degree that it becomes possible to interpret the first stage
or the first step of electron acceleration in solar flares

as the particle energization process in a non-neutral SHTCL.
The results obtained are clear. On the one hand, the transversal field

turns a particle trajectory in the layer plane (the plane (x, z) in Figure 9.1).
At some point, where the projection of velocity vz on the electric field
direction changes its sign, the Lorentz force component associated with the
field component Bx = (−y/a) B0 pushes the particle out of the layer. This
process is described by Equation (9.4) with ξ ‖ = 0, or by Equation (9.15).
On the other hand, a non-zero longitudinal magnetic field tries to turn the
particle back to the layer. This effect is related to the first term on the
right-hand side of Equation (9.4). That is why the maximum velocity of a
particle is proportional to the gyro-frequency in the longitudinal field.

9.1.5 The non-adiabatic thickness of current layer

The condition (9.24) is simply understood from the physical point of view.
In the absence of a longitudinal magnetic field, there exists a region near
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the neutral plane (x, z), where the adiabatic approximation is not valid
(see Section 1.2.2). So we had to solve Equation (9.2) to determine the
character of the particle motion. The thickness of this region which is
called the non-adiabatic thickness of a current layer equals

d = (rLa)1/2 =
(

mc va

qB0

)1/2

. (9.28)

Here the maximum velocity v ≈ cE0/ξ⊥B0 is substituted in the formula
for the Larmor radius rL (see Appendix 3).

The longitudinal magnetic field tends to keep particles ‘frozen’ and to
confine them inside the layer. Obviously such a confinement can become
efficient, once

rL

(
B ‖
)

< d , (9.29)

where
rL

(
B ‖
)

=
mcv

qB ‖
=

rL

ξ ‖
. (9.30)

This last expression coincides with condition (9.24).
The condition given by Inequality (9.19) or (9.24), which is the same, is

not sufficient to ensure stability of the orbits, of course. A detailed study
of the solutions of Equation (9.14) shows that the instability domains of
considerable width exist for relatively low values of B ‖ (Efthymiopoulos
et al., 2005). For super-Dreicer electric fields, these domains are very nar-
row so that the criterion (9.19) is an acceptable approximation in order to
consider the particle acceleration in solar flares.

∗ ∗ ∗
Let us remind that, in the solar atmosphere, reconnection usually takes

place at the separators with the non-zero transversal and longitudinal com-
ponents of the magnetic field (Section 3.1). This effect was already consid-
ered in the MHD approximation from the viewpoint of the RCL energetics
(Chapter 6). The longitudinal and transversal components of the magnetic
field are also important for the current layer stability (Chapter 11). As
was shown in this Section, the longitudinal field has strong influence on the
kinetics of suprathermal particles: the magnetically non-neutral SHTCL
does efficient work as an electron accelerator and, at the same time, as a
trap for fast electrons in solar flares.

9.2 Regular versus chaotic acceleration

Considerable attention is focused on the phenomenon of dynamic chaos.
The stochastic behaviour of a dynamic system is due to its intrinsic non-
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linear properties rather than some external noise (Lichtenberg and Lieber-
man, 1983). A particular example of such a system is a particle moving in
the RCL.

So far both numerical (Chen and Palmadesso, 1986) and analytic (Büch-
ner and Zelenyi, 1989) treatments of the particle’s motion have concentrated
on a current layer with a small magnetic field component perpendicular to
the layer. This small transversal component has been shown to give rise to
chaotic particle behaviour. However current layers in the solar atmosphere
usually have also longitudinal (parallel to the electric field inside the RCL)
magnetic field components. The purpose of this section is to illustrate the
influence of the longitudinal field on the character of particle motion in
non-neutral current layers.

9.2.1 Reasons for chaos

Let us consider the RCL with the electric and magnetic fields (9.1). An
approximate solution to Equations (9.3)–(9.5) of particle motion in such
current layer was discussed above. Now we consider some general properties
of this set of equations, starting from the fact that it possesses three exact
constants of motion – the invariants of particle motion:

Cx = ẋ − ξ ‖ y + ξ⊥z , (9.31)

Cz = ż − ξ⊥x − 1
2

y2 − ε t , (9.32)

H =
1
2
(
ẋ 2 + ẏ 2 + ż 2)− ε z . (9.33)

Here H is the usual Hamiltonian (see Landau and Lifshitz, Mechanics, 1976,
Chapter 7, § 40).

Rewrite the set of master Equations (9.3)–(9.5) in the Hamiltonian form.
The usual way to do this is to introduce the four generalized coordinates

Q = { t , x , y , z } (9.34)

and the generalized momenta

P =
{

−H, ẋ − ξ‖ y , ẏ , ż − ξ⊥x − 1
2

y2
}

. (9.35)

Then the equations of motion take the form

Q̇i =
∂H
∂Pi

, Ṗi = − ∂H
∂Qi

( i = 0, 1, 2, 3 ) , (9.36)
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where
H = H(P, Q) + P0 . (9.37)

The transformed Hamiltonian H is formally time-independent since t is
treated as another coordinate variable. The constants of motion are now
as follows:

Cx = Px + ξ⊥z , (9.38)

Cz = Pz − εQ0 , (9.39)

H =
1
2
(
Px + ξ ‖ y

)2 +
1
2

P 2
y +

1
2

(
Pz + ξ⊥ x +

1
2

y2
)2

− ε z + P0 . (9.40)

The Hamiltonian system (9.36) is integrable if the three constants
of motion are in involution, i.e. their Poisson brackets are zero

(see Landau and Lifshitz, Mechanics, 1976, Chapter 7, § 42). Otherwise
the system is likely to demonstrate chaotic behaviour, i.e. the particle
trajectory inside the current layer is unpredictable.

Straightforward calculation, based on the definition (see vol. 1, Exer-
cise 1.2) for the Poisson brackets, shows that

[ H , Cx ] = 0 and [H , Cz ] = 0 .

However, for Cx and Cz we find

[ Cx , Cz ] = ξ⊥ ,

(9.41)

so that the constants Cx and Cz are not in involution.
Chen and Palmadesso (1986) have obtained this result for the case ξ ‖ =

0 and numerically showed the particle trajectory to be chaotic. In what
follows our attention will be drawn to the fact that a non-zero longitudinal
magnetic field leaves the result (9.41) unchanged. This means that the
chaos is entirely due to the transversal field which is proportional to
ξ⊥ inside the RCL.

Moreover, as will be proved below,

the longitudinal magnetic field tends to make the particle trajectory
bounded and integrable inside the RCL.

Therefore an additional constant of motion must be present in the set of
equations under consideration for a sufficiently large value of the parame-
ter ξ ‖ (Litvinenko, 1993). Seemingly, this constant cannot be expressed in
terms of elementary functions.
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9.2.2 The stabilizing effect of the longitudinal field

Because of the presence of three constants of motion, the phase trajectory –
the particle trajectory inside a six-dimensional phase space X – is restricted
to a three-dimensional surface. It follows from Equations (9.31)–(9.33) that
the particle coordinate and velocity components are subject to the relation

H =
1
2

ẏ2+
1
2
(
ξ ‖ y − ξ⊥z

)2+
1
2

(
ε t + ξ⊥ x +

1
2

y2
)2

−ε z = const , (9.42)

where zero initial conditions are assumed for simplicity.
A useful way to study the character of the particle motion is to calculate

the curvature of the energy surface H = H(P, Q).

The negative curvature K implies the exponentially fast divergence
with time of initially close trajectories.

In its turn, that gives rise to chaos. Analogous inferences can be drawn con-
cerning the particle motion in the usual coordinate space (Anosov, 1967).
Provided the curvature K ≤ 0, the asymptotic (for large t) behaviour of
the trajectory is indistinguishable from that of random motion, which cor-
responds to stochasticity.

As was shown by Speiser (1965, 1968), particle motions in the current
layer plane and across it occur almost independently. Thus, while study-
ing the instability in the y direction, it is justifiable to consider the two-
dimensional energy surface H = H(y, ẏ) , treating x and z as some time-
dependent constants. Attention must be centred on the motion along the
y axis, which is known to possess the strongest instability (Speiser, 1965).
Therefore the quantity to be calculated is

K =
HẏẏHyy − Hẏy

2

(1 + Hẏ
2 + Hy

2 )2
. (9.43)

Assuming that ξ 2
‖ 
 1 and that the particle is near the layer plane (i.e.,

y 
 1), we show that the denominator of formula (9.43) approximately
equals unity. Anyway, being positive, it does not influence the sign of K.
The curvature of the energy surface is calculated to be

K(t) ≈ ξ 2
‖ + ε t + ξ⊥ x +

3
2

y2 , (9.44)

or on making use of the invariant (9.32),

K(t) ≈ ξ 2
‖ + ż(t) + y2(t) . (9.45)
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It is known that ż ≥ −ε/ξ⊥ (Speiser, 1965). Thus strong chaos is
expected in the vicinity of the neutral plane y = 0 , provided ξ ‖ = 0 . In
this case the model of Büchner and Zelenyi (1989) is applicable. On the
other hand, inside the RCL and in its vicinity,

a sufficiently strong longitudinal magnetic field tends to suppress
chaos and make the particle motion regular.

The necessary condition for such a suppression is K > 0 , that is

ξ ‖ >

(
ε

ξ⊥

)1/2

. (9.46)

So, in another way, we arrive at an inequality which coincides with (9.19).
The inequality (9.46) gives ξ ‖ > 0.1 for typical solar flare conditions if
the particles under consideration are electrons (Somov, 1992; Somov et al.,
1998; Somov and Merenkova, 1999). Litvinenko and Somov (1993) have
been the first to pay attention to this important property of the magneti-
cally non-neutral current layer.

9.2.3 Characteristic times of processes

It might seem surprising that ξ ‖ in inequality (9.46) should tend to infinity
for ξ⊥ → 0. However, it is incorrect to consider such a limiting case. The
point is that the time needed for the instability to start developing is of the
order of ξ⊥−1 (Speiser, 1965). Hence, while being formally unstable, the
particle’s motion in the limit of small ξ⊥ is regular for all reasonable values
of time.

The result (9.46) is easy to understand from the physical viewpoint. A
typical time for destabilization of the y-motion, i.e. the time for divergence
of initially close trajectories inside the current layer, is (in dimensional
units)

t⊥ =
(am

F

)1/2
, (9.47)

where the Lorentz force component is evaluated to be

F ≈ 1
c

q vB0 =
1
c

q
cE

B⊥
B0 =

qE

ξ⊥
(9.48)

and some typical value of v = cE/B⊥ is assumed; q = Ze. The instability
creating the chaos becomes suppressed once it has no time for developing,
i.e.

t⊥ > t ‖ , (9.49)
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t ‖ being the time scale introduced by the longitudinal magnetic field:

t ‖ =
mc

qB‖
=

mc

ξ ‖ qB0
. (9.50)

Once (9.49) is valid, the particle becomes magnetized inside the current
layer and its trajectory is no longer chaotic. Clearly the inequality (9.49)
is equivalent to condition (9.46).

9.2.4 Dynamics of accelerated electrons in solar flares

A question at this point is: What observational data can be used to verify
the above-presented results? To put it another way: What are the obser-
vational consequences of chaotic particle dynamics? – Such consequences
do exist.

Consider electron acceleration in solar flares. The accelerated electrons
spiral in the coronal magnetic field and produce flare radio emission. Using
the data on radio pulsations, Kurths and Herzel (1986), Kurths et al. (1991),
Isliker (1992) have calculated the dimension of the pseudo-phase space re-
lated to the electron source. The technique for reconstructing phase space
from a one-dimensional data array is described by Schuster (1984), where
also the references to original works can be found.

The dimension of the pseudo-phase space serves as a measure of
chaos: the larger the dimension, the more chaotic is the system.

Using the data on ms-spikes, Isliker (1992) has found that the degree
of chaos varied from flare to flare and during the course of a flare. He
conjectured that such behaviour was due to some exterior (to the electron
source) parameter which could change with time. Based on the above
discussion, the role of this parameter may be ascribed to the value of the
longitudinal magnetic field.

This conclusion is in agreement with previous findings. From the theo-
retical viewpoint, the longitudinal field is determined by the photospheric
sources and does change in time. It is this change that can be responsible
for flare onset, i.e., the longitudinal field can be the ‘topological trigger’
of a solar flare (Section 3.2.1). As far as observations are concerned, the
electron acceleration during flares is likely to occur at the separators with a
strong longitudinal field, where magnetically non-neutral current layers are
formed (Section 3.1). As indicated above, the relative value of this field,
ξ ‖ = B‖ /B0 , determines whether the acceleration occurs in a regular or
stochastic manner. To summarize,
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the motion of electrons in magnetically non-neutral current layers
of solar flares becomes regular rather than chaotic, once the
relative value of the longitudinal magnetic field ξ ‖ > 0.1.

This fact has important implications for the dynamics of the electron accel-
eration in solar flares. It would be also of interest to perform calculations
analogous to those of Isliker (1992), in the context of the geomagnetic tail.

Recommended Reading: Froyland (1992).

9.2.5 Particle simulations of collisionless reconnection

A particle simulation study (e.g., Horiuchi and Sato, 1997) has investigated
collisionless driven reconnection in a sheared magnetic field by modeling
the response of a collisionless plasma to an external driving flow. They
specifically studied the effects of the transversal and longitudunal magnetic
fields on the rate of reconnection and the acceleration of electrons.

Litvinenko (1997) has used our model for electron acceleration in a
magnetically non-neutral current layer to interpret the results of the sim-
ulation. He explained the electron energization in both two-dimensional
(ξ⊥ �= 0, ξ ‖ = 0) and three-dimensional (ξ⊥ �= 0, ξ ‖ �= 0) magnetic fields.
An agreement was obtained between the analytical predictions and the
numerical results for the electron energy gain, the acceleration time, the
longitudinal field diving rise to adiabatic particle motion, and the scaling
with B ‖ of the collisionless resistivity due to particle escape from the RCL.

The particle simulation, therefore, has substantiated the theoretical
modeling presented in Section 9.1. This is important both for future more
general analytical models of particle acceleration and for the application of
the existing models, for example, to the electron acceleration in solar flares
(Sections 9.1.4 and 9.2.4).

Although the particle simulation (Horiuchi and Sato, 1997) had not been
run for a sufficient time to study the acceleration of protons, it did show
that the question of proton acceleration is more complicated. Their motion,
as we shall see in the next Section, is influenced by the polarization electric
field arising due to charge separation. Because it is much more difficult
to magnetize a proton than an electron, the protons tend to escape the
current layer across its border even when the electrons are well magnetized
by the longitudinal field B ‖. This leads to the generation of a transversal
electric field E⊥ directed towards the plane of the layer. This field may
have important consequences for the proton motion as we discuss below.
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9.3 Ion acceleration in current layers

9.3.1 Ions are much heavier than electrons

In Section 9.1 we considered the particle acceleration in a current layer,
taking into account not only the reconnecting field B 0, parallel to the x axis,
but also a small transversal field component B⊥ = ξ⊥B 0, parallel to the
y axis as shown in Figure 9.1. A typical relative value of the transversal
field is ξ⊥ ∼ 10−3 ÷ 10−2 (see Somov, 1992). In what follows we adopt the
value of ξ⊥ ≈ 3 × 10−3 for our estimates. The basic Speiser’s (1965) result
is that both the energy gain δE and the time that the particles spend in
the magnetically non-neutral RCL, δt in , are finite.

The transversal magnetic field makes the particle turn in the plane
of the layer, and then a component of the Lorentz force expels it
from the RCL plane almost along the field lines

(see Figure 3 in Speiser, 1965). The distance that the particle can travel
along the layer equals the Larmor diameter determined by the transversal
field and a typical speed of the particle.

Litvinenko and Somov (1993) generalized the results of Speiser (1965) by
including into consideration the longitudinal (parallel to the main electric
field E in Figure 9.1) magnetic field B ‖ in the layer.

The longitudinal field efficiently magnetizes fast electrons in the
RCL, but it cannot influence the motion of the accelerated protons
and heavier ions.

The Larmor radius of ions is much larger than the Larmor radius of elec-
trons having the same velocity because ions are much heavier than electrons.
As a consequence of this fact, the critical longitudinal field, necessary to
magnetize a particle and to accelerate it, is proportional to the square root
of the particle mass (see (9.24)). Hence we can use, first, the Speiser’s
non-relativistic formulae, derived for the case when an ion of mass m and
charge q = Ze enters the RCL with a negligible velocity:

δE = 2mc 2
(

E 0

B⊥

)2

, (9.51)

δt in =
π mc

q B⊥
. (9.52)

Generalizations of these formulae to particles with nonzero initial velocities
are given in Section 9.3.3.
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Thus, on the one hand, electrons can acquire even relativistic energies
in current layers with a nonzero longitudinal field B ‖ (Litvinenko and So-
mov, 1993). On the other hand, application of formulae (9.51) and (9.52)
to the RCL, formed, for example, behind a rising coronal mass ejection –
CME (see Section 9.4), shows that a nonzero field B⊥ radically restricts
the energy of heavier particles: δE for protons cannot exceed 20 MeV if a
typical value of ξ⊥ = 3 · 10−3 (B⊥ = 0.3 G) is assumed.

Therefore the relativistic energies cannot be reached after a single ‘in-
teraction’ of a proton with the layer (cf. Martens, 1988). To overcome this
difficulty, Martens conjectured that the relativistic acceleration could take
place in RCL regions where B⊥ → 0 (the neutral layer approximation),
and the protons are freely accelerated by the electric field. This conjecture,
however, does not seem to be adequate for actual RCLs, where reconnec-
tion always occurs in the presence of a transversal magnetic field. Though
we expect the latter to vary somewhat along the RCL (Somov, 1992), the
region with a vanishing B⊥ is so small that a particle will quickly leave the
region (and hence the RCL) before being accelerated. Thus we are led to
modify the classic Speiser’s model significantly.

Let us propose that a proton (or another ion) interacts with the RCL
more than once, each time gaining a finite, relatively small amount of en-
ergy. The effect could be the required relativistic acceleration. A similar
model was considered in the context of acceleration in the geomagnetic tail
(see Section 2.4 in Schabansky, 1971). However, the magnetic structures in
the solar atmosphere are quite different from that of the geomagnetic tail;
and conditions also differ. Therefore formulae given by Schabansky are in-
applicable to the problem at hand. For this reason, we have to consider
another model in application to the solar atmosphere.

9.3.2 Electrically non-neutral current layers

The factor that makes positively charged particles return to the RCL is the
transversal electric field E⊥, which is parallel to the y axis in Figure 9.2
and directed toward the layer plane from both sides (cf. Figure 9.1). What
is the origin of this electric field?

As we saw in the previous Section, protons and other ions, having much
larger masses than the electron mass, have significanly larger Larmor radii.
Both electrons and protons try to escape from magnetic confinement inside
the RCL. They are deflected by the magnetic field when they move out of
the layer. However the trajectories of electrons are bent to a much greater
degree owing to their smaller mass. As for the much heavier protons and
ions, they stream out of the layer almost freely. Hence the charge sepa-
ration arises, leading to the electric field E⊥ at both sides of the layer.
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Figure 9.2: An electrically non-neutral current layer: E⊥ is the transver-
sal component of the electric field. E is the electric field related to the
reconnection process.

This field detains the protons and ions in the vicinity of the electron cur-
rent layer (Harris, 1962; see also Chapter 5 in Longmire, 1963; Hoh, 1966;
Dobrowolny, 1968).

In an exact self-consistent one-dimensional model of the electrically non-
neutral current layer due to Harris (1962), this field equals

E⊥ = 2π σ q . (9.53)

Here the magnitude of the electric charge density integrated over the layer
thickness is

σ q =
( u

c

)2
nea , (9.54)

u is the current velocity of electrons in the RCL.
Let us estimate the velocity u from the Maxwell Equation for curlB as

u =
c

4π

B0

nea
. (9.55)

On substituting (9.55) and (9.54) in (9.53), we obtain

E⊥ ≈ kBT

e a
, (9.56)

where the equation B 2
0 /8π ≈ nkBT has been used, T being the plasma

temperature in the layer.
It is not obvious a priori that Harris’s solution applies to actual RCLs

with nonzero ξ⊥ and finite conductivity σ. It should be valid, however,
for small ξ⊥, at least as a first approximation. In fact all we need for our
calculations is the electric potential

φ =
∫

E⊥ dy , (9.57)
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which we take to equal kBT/e, the usual value owing to spread of a ‘cloud’
of charged particles.

The following point is worth emphasizing here. The charge separation
that gives rise to the potential φ mainly stems from the motion of protons
perpendicular to the layer plane. At the same time, some protons are known
to leave the layer almost along its plane. This property is a characteristic
feature of the Speiser’s mechanism of acceleration. It seems obvious that

even a modest transversal electric field will considerably influence
the motion of the particles, leaving the layer, because they always
move almost perpendicular to this field.

Having made this qualitative remark, we now proceed to calculating the
energy gain rate and maximum energy for the protons being accelerated in
the RCL, taking into account both the main components of electromagnetic
field (B 0 and E 0) and the transversal ones (B⊥ and E⊥).

9.3.3 Maximum particle energy and acceleration rates

According to the model delineated above, a positively charged particle
ejected from the RCL may be quickly reflected and moves back to the
layer. The reason for this is the electric field E⊥, directed perpendicular to
the current layer, which always exists outside the RCL (Harris, 1962). It is
of importance for what follows that the accelerated protons and other ions
are ejected from the layer almost along the field lines (Speiser, 1965). The
transversal electric field efficiently locks the particles in the RCL because
they always move almost in the plane of the layer. On getting into the layer
again, the particles are further accelerated and the cycle repeats itself.

In order to find the properties of the acceleration mechanism, we need to
dwell at some length on the particle motion outside the RCL. Let us consider
a proton leaving the RCL plane with energy E and momentum p. According
to Speiser (1965), the component of the momentum perpendicular to the
layer is

p⊥ ≈ ξ⊥ p 
 p (9.58)

for such a proton. The perpendicular component of the equation of motion
for the particle outside the electron current layer is

d
dt

p⊥(t) = − qE⊥ . (9.59)

Here we neglect the magnetic force, in order not to obscure the essential
physical point made in this Section. Equation (9.59) allows us to estimate
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the time spent by the proton between two successive interactions with the
RCL,

δt out =
2 p⊥
qE⊥

≈ 2 ξ⊥ p

qE⊥
. (9.60)

The largest energy attainable is determined by the condition that the
potential (9.57) is just enough to prevent the proton from leaving the RCL.
In other words, the field E⊥ must cancel the perpendicular momentum p⊥.
The energy conservation gives:

Emax =
(
E 2

max − p 2
⊥ c 2 )1/2

+ qφ , (9.61)

where
p 2

⊥ c 2 = ξ 2
⊥
(
E 2

max − (mc2)2
)
. (9.62)

Eliminating the unknown p⊥ between (9.61) and (9.62), we get the maxi-
mum energy

Emax = qφ
1

ξ 2
⊥

[
1 +

(
1 − ξ 2

⊥ +
ξ 4

⊥ (mc2)2

q2φ 2

)1/2
]

. (9.63)

According to formulae (9.56) and (9.57), here the electric field poten-
tial φ ≈ kBT/e. Formula (9.63) shows that

protons can actually be accelerated to GeV energies in the super-hot
turbulent-current layers (SHTCLs) in solar flares

(see Chapter 6): for instance Emax ≈ 2.4 GeV provided Te ≈ 108 K. Even
larger energies can be reached in RCL regions with a smaller transversal
magnetic field.

Note in passing that if a particle leaves the layer with the velocity that
is perpendicular to the magnetic field lines outside the RCL, the magnetic
reflection is very efficient too. In this case it occurs in a time of order the
inverse gyrofrequency in the field B 0.

The resulting acceleration rate can be estimated as

dE
dt

≈ 〈 δE 〉
δt in + δt out

. (9.64)

Here

〈 δE 〉 = 2E
(

E 0

B⊥

)2

(9.65)

is the relativistic generalization of the Speiser formula (9.51) for the average
energy gain. The averaging needs to be introduced because, in general,



9.3. Ion Acceleration 231

a term linear in a component of the particle momentum appears in the
expression for δE (cf. Speiser and Lyons, 1984).

In much the same way

δt in =
πE

c qB⊥
(9.66)

is the relativistic generalization of the Speiser formula (9.52). The approach
using the differential equation (9.64) is quite justified once the inequality
〈 δE 〉 
 Emax holds.

Equation (9.64), with account taken of the formulae (9.60), (9.65), and
(9.66), can be integrated in elementary functions. To simplify the problem
further, we note that

δt in

δt out
=

π E⊥
2 ξ⊥ B⊥

(
E
pc

)
≈ 103 E

pc
� 1 . (9.67)

Hence it is justifiable to ignore the second term in the denominator of
Equation (9.64). The simplified equation is integrated to give the kinetic
particle energy

K (t) ≡ E − mc 2 =
2
π

c qE 0

(
E 0

B⊥

)
t , (9.68)

whence the time of the particle acceleration is

t ac (K) ≈ 0.03
(

K
1 GeV

)
s . (9.69)

This result demonstrates the possibility of very efficient acceleration of
protons and other ions by the direct electric field in the RCL (Litvi-
nenko and Somov, 1995). At the same time, taking care of the ac-
tual magnetic field structure has considerably diminished (by a factor of
E 0/B⊥ = V/(ξ⊥ c) ≈ 10−1) the magnitude of the energy gain rate, as
compared with the case B⊥ = 0.

Alternatively, we could rewrite formula (9.68) to obtain the energy E as
a function of the number of particle entries to the RCL, Nint:

E (Nint) = mc 2 exp

[
2
(

E 0

B⊥

)2

Nint

]
. (9.70)

Therefore the particle must interact with the RCL

Nmax ≈
(

B⊥
E 0

)2

≈ 102 (9.71)
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times in order to reach a relativistic energy. As was shown above (see
Equation (9.63)), the transversal electric field outside the RCL is actually
capable of providing this number of reentries into the current layer.

In principle, the protons and other ions could leave the RCL along its
plane rather than across it. This is not likely, however, because of a very
short acceleration time t ac ; the distance a proton can travel along the layer
when being accelerated is less than c t ac ≈ 109 cm, that does not exceed a
typical RCL width and length 109 ÷ 1010 cm.

Therefore we have estimated the efficiency of the acceleration process in
the frame of the simple RCL model which contains several taciturn assump-
tions. One of them is a modification of the steady two-dimensional model
for the SHTCL (Chapter 6) with account of the Harris type equilibrium
across the layer. Such a possibility does not seem surprising one a priory ,
but it certainly has to be considered in detail somewhere else.

Another assumption is that the initially assumed conditions of the layer
equilibrium are not changed due to the acceleration, more exactly, during
the characteristic time of the acceleration of a particle. In fact, we con-
sider the number of particles accelerated to high energies as a small one
in comparison with the number of current driving thermal electrons inside
the RCL. However, in general, it remains to be seen that this assumption
can be well justified without careful numerical modelling of the real plasma
processes in the region of reconnection and particle acceleration.

9.4 How are solar particles accelerated?

9.4.1 Place of acceleration

It was widely believed that the most-energetic and longest-lasting solar
energetic particle events (SEPs) observed in interplanetary space result
from acceleration by the bow shocks of coronal mass ejections (CMEs).
However, using gamma-ray, X-ray and radio diagnostics of interacting (with
the solar plasmas and magnetic fields) particles and spaceborne and ground-
based detection of >∼ 20 MeV protons at 1 AU during two large events
(1989 September 29 and October 19), Klein et al. (1999) demonstrated that
time-extended acceleration processes in the low and middle corona, far
behind the CME, leave their imprints in the proton intensity time profiles
in interplanetary space for one or several hours after the onset of the solar
flare. So the bow shock is not the main accelerator of the high-energy
protons.

Electrons accelerated to ∼ 1− 100 keV are frequently observed in inter-
planetary space. The energy spectrum has a power-law shape, often extend-
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ing down to <∼ 2 keV without clear signatures of collisional losses. Electron
events showing enhanced electron fluxes at energies as low as 0.5 keV were
observed by Lin et al. (1996). This requires an acceleration in a low-density
coronal plasma.

Low-energy (2-19 keV) impulsive electron events observed in interplane-
tary space have been traced back to the Sun, using their interplanetary type
III radiation and metric-decimetric radio-spectrograms (Benz et al., 2001).
The highest frequencies and thus the radio signatures closest to an accelera-
tion region have been studied. All the selected events have been found to be
associated with the interplanetary type III bursts. This allows to identify
the associated coronal radio emission. The start frequency yields a lower
limit to the density in the acceleration region of the order of 3× 108 cm−3.

It is obvious that a 3D reconstruction of source locations depends on a
chosen model of the coronal density in terms of absolute heights. However
the relative positions are not altered by changing the atmospheric models.
The trajectories of the type III bursts may be stretched and shifted in height
but the topology of the birst remains the same. Figure 9.3 (cf. Paesold et
al., 2001) displays a sketch depicting a possible location of acceleration with
respect to two simultaneous bursts.

Type III  (B)Type III  (A)

Spike
source

Acceleration
region

Chromosphere

Electron
beams

Figure 9.3: Location of the acel-
eration region with respect to a
type III burst (labeled A) and an
associated spike source. A sec-
ond type III (labeled B) is dis-
played in a case of two simulta-
neous bursts. The upward mov-
ing electrons produce type III
bursts and the downward mov-
ing electrons lose their energy in
the chromosphere.

The spatial association of narrow band metric radio spikes with type III
bursts has been analyzed by using data provided by the Nancay Radioheli-
ograph (NRH) and the Phoenix-2 spectrometer (ETH Zurich), see Paesold
et al. (2001). It has been found that the spike source location, presum-
ably an acceleration region, is consistent with the backward extrapolation
of a trajectory of the type III bursts, tracing a magnetic field line. In one
of the five analyzed events, type III bursts with two different trajectories
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originating from the same spike source were identified.
These findings support the hypothesis that narrow metric spikes are

closely related to the acceleration region (Krucker et al., 1997). Escaping
beams of electrons cause the type III emission. Energetic electrons appear
to be injected into different and diverging coronal structures from one single
point as illustrated in Figure 9.3. Such a diverging magnetic field geometry
is a standard ingradient of reconnection.

9.4.2 Time of acceleration

Litvinenko and Somov (1995) have suggested that the time-extended (or
late, or second) acceleration of protons and perhaps heavier ions to relativis-
tic energies during the late phase of large-scale solar flares (e.g., Akimov et
al., 1996) occurs in a ‘vertical’ RCL (Figure 9.4). Here the field lines are
driven together and forced to reconnect below erupting loop prominences.
The time of RCL formation corresponds to the delay of the second phase
of acceleration after the first (or early), impulsive phase. The mechanism
invoked (the direct electric field acceleration) is, in fact, quite ordinary in
studies of the impulsive phase (Syrovatskii, 1981; Chupp, 1996). There are
good reasons to believe that the same mechanism also efficiently operates
during the second phase of the acceleration in large-scale flares occuring
high in the corona.

Chromosphere

Plasma
inflow

Current
layer

Plasma
outflow

Erupting
prominence

CME

Bow shock
wave

N S

Figure 9.4: When passing
through the corona, a promi-
nence strongly disturbs mag-
netic field and creates a
CME. The disturbed field
will relax to its initial state
via reconnection. This is
assumed to accompany by
a prolongated energy re-
lease and particle acceler-
ation (Litvinenko and So-
mov, 1995).

First, early radio imaging observations of solar flares (Palmer and



9.4. Solar Particle Acceleration 235

Smerd, 1972; Stewart and Labrum, 1972) were indicative of particle ac-
celeration at the cusps of helmet magnetic structures in the corona. These
are exactly the structures where RCLs are expected to form according to the
Yohkoh observations in soft and hard X-rays (see Kosugi and Somov, 1998).

Note that the acceleration by Langmuir turbulence inside the RCL in
the helmet structure, invoked by Zhang and Chupp (1989) to explain the
electron acceleration in the flare of April 27, 1981, is too slow to account
for the generation of relativistic protons and requires an unreasonably high
turbulence level.

Specific models have been designed to explain the particle acceleration
in magnetic cusp geometry, in particular the two-step acceleration model
with a RCL and magnetic collapsing trap, described in Section 7.3.

Second, gamma-emission during large flares consists of separate peaks
with a characteristic duration of 0.04–0.3 s (Gal’per et al., 1994; Akimov
et al., 1996). If this behaviour is interpreted in terms of a succession of
separate acts of the acceleration, then the shock mechanism is also too
slow since the acceleration time would be

t ac = 50
(

100 G
B 0

)(
E

1 GeV

)
s ≈ 50 s (9.72)

(Colgate, 1988). By contrast, as we saw above,

the direct electric field inside the RCL provides not only the maxi-
mum energy but also the necessary energy gain rate

(see formula (9.69)). High velocities (up to the coronal Alfvén speed) of
erupting filaments and other CMEs imply a large direct electric field in the
RCL. This is the reason why the acceleration mechanism considered is so
efficient in fast transient phenomena in the corona (Somov, 1981). Strong
variability of gamma-emission may reflect the regime of impulsive, bursty
reconnection in the RCL.

An interesting feature of the mechanism considered is that neither the
maximum energy nor the acceleration rate depend upon the particle mass.
Hence the mechanism may play a role in the preferential acceleration of
heavy ions during solar flares.

Recall that Martens (1988) applied the Speiser (1965) model when con-
sidering relativistic acceleration of protons during the late phase of flares.
However it turned out necessary to assume an idealized geometry of the
magnetic field in the RCL, viz. B⊥ → 0, in order to account for the rela-
tivistic acceleration. We have seen that the difficulty can be alleviated by
allowing for the transversal electric field E⊥ outside the layer. This field
necessarily arises in the vicinity of the RCL (Harris, 1962).
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Though MHD shocks are usually thought to be responsible for the rel-
ativistic generation of protons during the late phase of extended (gradual)
gamma-ray/proton flares (Bai and Sturrock, 1989), another mechanism –
the direct electric field acceleration in RCL – can explain the proton ac-
celeration to the highest energies observed, at least in flares with strong
variability of gamma-emission. Of course, the same sudden mass motions
that lead to formation of current layers also give rise to strong shock waves,
so the two mechanisms of acceleration can easily coexist in a solar flare.

9.5 Cosmic ray problem

The cosmic ray energy spectrum extends from 1 GeV to 100 EeV (the pre-
fix “E” is for “exa”, i.e. 1018). To be accelerated at such high energies, a
particle has to be submitted to powerful electromagnetic fields. Such ener-
gies hardly can be reached by any one-shot mechanism. In the late forties,
the Fermi mechanism was introduced as the stochastic and repetitive scat-
tering by “magnetic clouds”. However such a process is a very slow one
and to reach the highest energies under “normal conditions”, the necessary
acceleration time often exceeds the age of the universe.

Many models with extreme parameters or assumptions were proposed
in the past. They mostly relay on relativistic shock acceleration such as
in hot spots of powerful radio-galaxies. However such galaxies are rare
objects. The second type models relate the ultra-high-energy cosmic rays to
another long-lasting astrophysical puzzle, the Gamma Ray Bursts (GRBs).
These are characterized by the emission of huge amounts of energies (a non-
negligible fraction of the mass energy of the Sun) over a very short time,
minutes.

GRBs are observed as gamma rays but with, in some cases, X-ray and
optical counterparts. Their distribution is uniform over the sky; and they
happen at a rate of 2-3 per day. Young black holes, neutron stars and
magnetars were proposed as putative sources of cosmic rays, because these
rapidly rotating compact objects possibly are the sources of the most intense
magnetic fields in the universe. The capability of such relativistic systems
to reach the required energies has to be investigated in the context of the
magnetic reconnection concept.



Chapter 10

Structural Instability of
Reconnecting Current
Layers

The interrelation between the stability and the structure of current
layers governs their nonlinear evolution and determines a reconnection
regime. In this Chapter we study the structural instability of the
reconnecting current layer, i.e. its evolutionarity.

10.1 Some properties of current layers

10.1.1 Current layer splitting

The continuous MHD flow of a perfectly conducting medium is impos-
sible in the zeroth point of a magnetic field, in which the electric field
differs from zero. In the vicinity of this peculiar point the frozen-in con-
dition breaks down (Section 2.1.2), and the reconnectiong current layer
(RCL in Figure 10.1) – the discontinuity dividing magnetic fields of op-
posite directions – forms there in compliance with the statement of Sy-
rovatskii (1971). Later on Brushlinskii et al. (1980), Podgornii and Sy-
rovatskii (1981), Biskamp (1986, 1997) observed the splitting of the RCL
into other MHD discontinuities in their numerical experiments.

This splitting (or bifurcation) of the RCL is usually discussed in relation
to the configuration suggested by Petschek (1964), which appears in partic-
ular during the reconnection of uniform magnetic fluxes (see Exercise 10.1).

237
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(a)

(b)

RCL
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x
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x*0
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Figure 10.1: Thin current layers: (a) without reverse electric currents, and
(b) with two reverse currents (RC), DC is a region of direct current.

It consists of a system of MHD discontinuities, crossing in the small central
diffusion region D.

As distinct from Petschek’s configuration, the thin wide current layer
forms in the vicinity of a hyperbolic zeroth point of a strong magnetic field
as shown in Figure 10.2. Just this case (and more complicated ones) has
been realized in the numerical MHD experiments carried out by Brushlinskii
et al. (1980), Podgornii and Syrovatskii (1981), Biskamp (1986), Antiochos
et al. (1996), Karpen et al. (1998) and will be considered below.

The splitting of the current layer means a change of the regime of mag-
netic reconnection, since the distribution of electric current becomes two-
dimensional. In the present Chapter we consider the conditions under which
the splitting takes place and point out its possible reason. This reason is
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RCL

y

x

S-S-

S-

Figure 10.2: A splitted current layer (RCL) with the attached MHD dis-
continuities – the four slow shock waves (S−).

the non-evolutionarity of the RCL as a discontinuity or its structural in-
stability, as people sometimes say.

10.1.2 Evolutionarity of reconnecting current layers

The one-dimensional equations of ideal MHD have discontinuous solutions:
fast and slow shock waves, tangential, contact and Alfvén discontinuities,
peculiar shocks (vol. 1, Chapter 16). As was shown, a steady discontinuity
may exist in a real plasma only if it is stable with respect to the break up
into other discontinuities or the transition to some unsteady flow (vol. 1,
Chapter 17).

Let the MHD quantities be subjected to an infinitesimal perturbation
at the initial instant of time. Then a linear passage of waves out from the
discontinuity occurs. If the amplitudes of these waves and the displacement
of the discontinuity are uniquely determined from the linearized boundary
conditions, then the problem of the time evolution of the initial perturba-
tion has a single solution. If this problem does not have a single solution,
then the supposition that the initial perturbation is small is not valid. In
this case

the infinitesimal perturbation results in an instant (in the approxi-
mation of an ideal medium) non-linear change of the original flow.

This is a non-evolutionary discontinuity. Note that, as distinct from a non-
evolutionary discontinuity, the perturbation of an unstable evolutionary
discontinuity remains infinitesimal during a small enough period of time.
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The criterion of evolutionarity results from the comparison of two num-
bers. Nw is the number of the independent unknown parameters: the
amplitudes of outgoing, i.e. reflected and refracted, waves and the dis-
placement of the discontinuity, describing infinitesimal perturbation. And
Ne is the number of independent boundary conditions (equations) which
infer the unknown parameters by the amplitudes of the incident waves. If
these numbers are equal, then the discontinuity satisfies the requirement of
evolutionarity. Otherwise the problem of the time evolution of an initial
infinitesimal perturbation does not have a solution, or else it has an infinite
amount of solutions. Such a discontinuity cannot exist in a real medium.

As the direction of the propagation of a wave depends on the relationship
between its group velocity and the flow velocity,

the requirement of evolutionarity gives the restriction on the unper-
turbed MHD quantities on both sides of the discontinuity.

In particular, the shock waves turn out to be evolutionary when either the
upflow and the downflow velocities are larger than the Alfvén speed (fast
shocks) or smaller than it (slow shocks).

The RCL cannot be reduced to a one-dimensional flow, since the inho-
mogeneity of velocity in it is two-dimensional, and is characterized by two
spatial parameters. The thickness of the layer, i.e. the distance 2a between
the reconnecting magnetic fluxes (see Figure 1.5), determines the rate of
magnetic field dissipation in it, but the width 2b characterizes the storage
of magnetic energy in the domain of the flux interaction.

In what follows we obtain the conditions under which, in a plasma of
high conductivity, infinitesimal perturbations interact with the RCL as with
a discontinuity, and the problem of its evolutionarity with respect to such
perturbations can be solved.

10.1.3 Magnetic field near the current layer

Consider the thin current layer, appearing in the vicinity of the zeroth point
of a magnetic field

B0 = (h0y, h0x, 0 ) ,

at which the electric field
E = ( 0, 0, E )

differs from zero. The magnetic field lines, frozen into the plasma, drift
along the y axis into the layer, where the frozen-in condition breaks down,
reconnect in it, and flow out along the x axis. Syrovatskii (1971) represented
the coordinate dependence of the field B outside the layer in a complex
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form, supposing that the half-thickness of the current layer a (size along
the y axis) equals zero (see Figure 10.1),

By + iBx = h0
(
ζ2 − (x∗)2

) (
ζ2 − b2)−1/2

(10.1)

(see also Chapter 3 in Somov and Syrovatskii, 1976b). Here the complex
variable ζ = x + i y, b is the half-width of the layer (size along the x axis),
c is the speed of light, and I is the total current in the layer. The quantity
I varies through the range 0 ≤ I ≤ ch0b

2/4. At the points

x∗ = ±
√

1
2

b2 +
2I

ch0
(10.2)

the magnetic field changes its sign (see formula (10.1) and Figure 10.1b).
For | x |< | x∗ | the direction of the current coincides with the direction

of the electric field. This is direct (DC) current in Figure 10.1b. However
for | x∗ |< | x |< b it has the opposite direction (reverse currents RC). If
x ∼ b and b − | x∗ | ∼ b, then the reverse current is comparable with the
forward one. Suppose that precisely this configuration appears. In so doing
all MHD quantities outside (but near) the RCL may be treated as quasi-
homogeneous everywhere, except in some neighborhood of the points x = x∗

and x = ± b, which are excluded from the further consideration.
Given the plasma conductivity σ is infinite the quantity b increases

indefinitely with time. If σ is limited, then the finite width 2b settles in
finite time (Syrovatskii, 1976a) and a/b �= 0, although a 
 b. In this
case, as distinct from (10.1), By �= 0 on the surface of the current layer.
However, when σ is large enough, Bx � By outside some neighborhood
of the points (10.2). Later on By is assumed to be zero. More general
formulation of the problem is given in Section 3.4 in Somov (1992).

10.1.4 Reconnecting current layer flows

Let the flow of the plasma satisfy the MHD approximation. If a 
 b, all
quantities except the velocity v are quasi-homogeneous along the x axis
inside the layer. As for the inhomogeneity of the velocity, it is two-
dimensional, since it follows from the mass conservation equation that at
the point x = 0, y = 0

∂vx

∂x
= − ∂vy

∂y

because of the flow symmetry. Therefore the RCL cannot be reduced to a
one-dimensional flow. This is obvious because

two reconnecting magnetic fluxes move towards each other and the
plasma flow inside the current layer is thus two-dimensional.
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If the conductivity is infinite it becomes a tangential discontinuity in the
limit t → ∞.

Let us consider a settled RCL. Then the electric field E is independent
of time. This being so the ratio a/b was estimated by Syrovatskii (1976a)
from the steady-state Ohm’s law

a

b
∼ νm h0

cE
, (10.3)

where νm is the magnetic diffusivity. Besides, in the stationary model, the
electric field is independent of the coordinates. Hence

in the region of direct current the plasma flows into the layer, but
in the regions of reverse currents it flows out along the y axis.

x

y

vy v

2a

DCRC RC

Figure 10.3: Plasma flows inside the RCL and in its vicinity.

Such character of the conductive plasma flows is shown schematically in
Figure 10.3. The velocity component vy changes the sign when the plasma
flows from the region DC of direct current into two regions RC of reverse
current, which are the same regions as in Figure 10.1b. This is important
for counting the number Nw of the outgoing small-amplitude waves.

10.1.5 Additional simplifying assumptions

Let us suppose that all dissipative factors except the magnetic diffusiv-
ity νm equal zero, but νm is so small that

cE

h0b

 h0b√

4πρ
. (10.4)
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The left side of this inequality represents the characteristic value of the
drift velocity directed to the current layer vy, the right side gives the value
of the Alfvén speed VA .

Consider also that

ρ in ∼ ρ ex. (10.5)

Here the indexes ‘in′ and ‘ex′ denote the quantities inside and outside the
layer. Such a distribution was, for example, in the numerical experiment
by Brushlinskii et al. (1980).

On the surface of the current layer the magnetic field increases without
bound but the drift velocity tends to zero, if the conductivity is infinite.
At the same time the quantity of the pressure p outside the RCL is close
to its value for ζ = ∞ and does not equal zero or infinity for all σ. On this
basis it may be thought that, outside the neighborhood of the point (10.2),
the sound velocity Vs satisfies the condition

v ex
y 
 V ex

s 
 V ex
A

,

(10.6)

when the conductivity is large enough. Inequalities (10.6) are well consis-
tent with the magnetostatic approximation (see vol. 1, Section 13.1.3).

Taking the characteristic values of these quantities for an active region
in the solar corona:

vy ∼ 10 km/s , Vs ∼ 100 km/s , VA ∼ 1000 km/s ,

we see that the approximation (10.6) well holds there.
As far as the component of the velocity vx is concerned, its modulus

grows from zero for x = 0 to

| v in
x | ∼ h0b√

4πρ
(10.7)

for x = x∗ (Syrovatskii, 1971) and then reduces to zero for | x | = b.
Outside, the component vx also does not exceed the characteristic Alfvén
speed.

Let us now investigate the infinitesimal perturbation of the RCL using
the outlined properties of the plasma flow.
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10.2 Small perturbations outside the RCL

10.2.1 Basic assumptions

Let us assume that the MHD quantities Q are subjected to an infinitesimal
perturbation δQ. Suppose that δvz ≡ 0 and δBz ≡ 0, and outside the
current layer the perturbation satisfies the WKB approximation. Then its
wave vector k, in the zeroth order in terms of the small parameter 1/kb, is
determined from the dispersion equation

ω 0

[
i k2 V 2

s (kVA)2 − V 2
s k2 ω 0

(
i ω 0 − νm k2 )−

− i k2 V 2
A

ω 2
0 + ω 3

0
(
i ω 0 − νm k2 )] = 0 , (10.8)

where ω 0 = ω − kv.
Let us impose the following restriction on the frequency ω:

vy

a

 ω ‖ 
 Vs

a
,

(10.9)

where
ω ‖ = ω − kx vx . (10.10)

Besides, for the sake of simplicity, we put

vy ∼ V 3
s

V 2
A

. (10.11)

We will show in Section 10.5.3 that precisely this velocity appears in the
criterion of evolutionarity for the RCL.

10.2.2 Propagation of perturbations normal to a RCL

At first, let us consider the case of the propagation of the perturbations
normal to the current layer, i.e. the perturbations with kx = 0. In the
zeroth order in terms of the small parameters, given by inequality (10.9),
the solutions of Equation (10.8) take the form

k d
y = − i

vy

νm

V 2
A

V 2
s

, (10.12)

k 0
y =

ω

vy
, (10.13)
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k −
y =

ω

vy
, (10.14)

k +
y = ± ω

VA

. (10.15)

Here the root (10.14) is twofold.
The WKB approximation (see Landau et al., Electrodynamics of Con-

tinuous Media, 1984, Chapter 10, § 85, Geometrical optics) holds for these
perturbations if

1/k +
y b 
 1

since | k +
y | is the least wave number. This is equivalent to the following

condition for the frequency ω:

ω � h0√
4πρ

. (10.16)

When condition (10.16) is true, the derivatives of the unperturbed quan-
tities over the coordinates in the linear MHD equations are negligible and
the dispersion Equation (10.8) is valid.

To obtain the criterion of evolutionarity it is necessary to classify the
perturbations according to whether they are incoming to the current layer
or outgoing from it. Generally, such a classification has to be made by the
sign of the sum of the projections of the velocity v of the medium and the
group velocity on the normal to the layer. However, as it was mentioned
by Kontorovich (1959), in the case of normal propagation it is sufficient
to determine only the sign of the phase velocity, since in the absence of
frequency dispersion the latter coincides with the projection of the group
velocity on the direction of the vector k in the system of coordinates, where
the plasma is at rest.

The perturbation with the wave vector k 0
y from formula (10.13) corre-

sponds to an entropy wave (see vol. 1, Section 15.2.1), but k −
y from (10.14)

corresponds to the slow magnetoacoustic wave propagating perpendicu-
larly to the magnetic field. In the system of coordinates, where the moving
plasma is at rest, their phase velocities equal zero, but in the laboratory
system they coincide with the plasma velocity v. This being so,

both perturbations are incoming to the RCL when the plasma flows
into it, and are outgoing ones when the plasma flows out.

Besides, by virtue of the left side of inequality (10.9), we have conditions

k 0
y � 1/a and k −

y � 1/a.

Hence the RCL is not a discontinuity for the perturbations (10.13) and
(10.14).
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The perturbation with the wave vector k +
y from (10.15) represents fast

magnetoacoustic waves. Their phase velocity ω/k +
y satisfies the condition

V +
ph � vy (see (10.6) and (10.15)) and is aligned with the normal to the

RCL or opposed to it. So one of them is always incoming to the layer and
the other is outgoing from it, regardless of the sign of vy. As distinct from
k 0

y and k −
y , the quantity k +

y 
 1/a, and the waves (10.15) interact with
the RCL as with a discontinuity.

The perturbation k d
y from (10.12) is a dissipative wave and it damps

within a distance which is much smaller than the layer half-thickness a.
Consequently, as was pointed out by Roikhvarger and Syrovatskii (1974),
its amplitude does not appear in the boundary conditions on the surface of
a discontinuity. This being so, the dissipative effects outside the RCL are
negligible.

Thus, in the case of normal propagation,

there is one outgoing wave on each side of the current layer when
the plasma flows into it (in the region DC of forward current),

and there are four of such waves, when the plasma flows out (in the domains
RC of the reverse currents).

10.2.3 The inclined propagation of perturbations

Let us now turn to the inclined propagation. To solve the problem of the
evolutionarity of the current layer as a discontinuity, it is necessary to obtain
the solution of Equation (10.8) with common ω and kx. Kontorovich (1959)
showed that, for a given flow, the number of waves incoming to the x axis
and outgoing from it, with common ω and kx, is independent of kx, i.e. of
the angle of propagation (see also Chapter 3 in Anderson, 1963). Thus it
is sufficient to determine the number of such waves for kx = 0. From the
preceding it follows that, when the plasma flows into the layer (the region
DC of the forward current in Figure 10.1b), there is one outgoing wave on
each side of it. But when the plasma flows out there are four of them.

For the RCL under condition (10.9), however, the number of the per-
turbations with ky 
 1/a (i.e. those for which the amplitudes are discon-
tinuous across it) depends on kx. If kx = 0, then there are two of such
perturbations, determined by the wave vector k +

y from (10.15). As will
be shown below, there are three for the inclined propagation. This fact is
important in our further considerations.

The wave vector of a slow magnetoacoustic wave is given by the formula

| k− | =
ω

vy sin θ + vx cos θ ± | V −
ph |

, (10.17)
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where V −
ph is the phase velocity, and θ is the angle between k− and the

x axis. Here the scalar product kv is represented in the form

kv = | k− | × ( vy sin θ + vx cos θ ) .

With Vs 
 VA the following expression for | V −
ph | is valid:

| V −
ph | =

VAVs

V⊥
| cos θ |

[
1 +

1
2

V 2
A

V 2
s

V 4
⊥

cos2 θ + o

(
V 2

A
V 2

s

V 4
⊥

)]
, (10.18)

where V 2
⊥ = V 2

A
+ V 2

s .
Let us choose the angle θ 0 in such a way that | V −

ph |∼ Vs, i.e. | cos θ 0 |
is not small, and find the solutions of Equation (10.8) for fixed ω and

kx = | k− | cos θ 0 . (10.19)

For this purpose let us separate out the unknown variable ky

( ω ‖ − ky vy )
[ (

νm vy V 2
s

)
k 5

y +
(
i v 2

y V 2
⊥ − νm ω ‖ V 2

s

)
k 4

y −

−
(
2i ω ‖ vy V 2

⊥
)
k 3

y + i
(

ω 2
‖ V 2

⊥ − k 2
x V 2

A
V 2

s

)
k 2

y −

−
[
2i ω ‖ vy

(
V 2

⊥ k 2
x − 2 ω 2

‖
)]

ky + (10.20)

+i k 2
x

(
ω 2

‖ V 2
⊥ − k 2

x V 2
A

V 2
s

)
− i ω 4

‖
]

= 0 .

Here condition (10.9) is used.
In the zeroth order in terms of the small parameters, given by Inequal-

ity (10.9), this equation has the following solutions: (10.12) and

k 0
y =

ω ‖
vy

, (10.21)

k1−
y =

2 ω ‖
vy

, (10.22)

k2−
y = kx tan θ 0 , (10.23)

k s
y =

1
2

[
ω ‖ V 2

s cos2 θ 0

2vy V 2
A

±
(

−
4 ω 2

‖
V 2

s

+

+
ω 2

‖ V 4
s cos4 θ 0

4v 2
y V 4

A

± 2 sin θ 0 | cos θ 0 |
ω 2

‖ Vs

vy V 2
A

)1/2 ]
. (10.24)



248 Chapter 10. Structural Instability of RCL

The sign in the round brackets in (10.24) coincides with the sign in front of
| V −

ph | in formula (10.17), but that in front of the round brackets specifies
two different solutions of Equation (10.20). From inequality (10.9) it follows
that for the perturbations (10.21) and (10.22) ky � 1/a, but for (10.23)
and (10.24), on the contrary, ky 
 1/a.

The waves k 1−
y and k 2−

y are slow magnetoacoustic ones, here with the
angle between k 2− and the x axis equals θ 0 for kx from (10.19). As for the
waves k s

y , they may be either slow magnetoacoustic or the surface ones,
depending on the ratio vy V 2

A
/V 3

s . Recall that if the perturbations are
characterized by a common θ, but not kx, as in the present case, then there
are always two slow waves, but the rest are fast magnetoacoustic waves.

If the expression in the round brackets in formula (10.24) is negative,
then k s

y has an imaginary part and the corresponding perturbations increase
or decrease exponentially with the characteristic length, which is much
smaller than a, while propagating away from the surface.

Investigation of the polynomial of the second degree in vy in the round
brackets in formula (10.24) shows that it equals zero at the points

vy =
V 3

s

4 V 2
A

| cos θ 0 | × ( ± sin θ 0 ± 1) . (10.25)

Here the sign in front of sin θ 0 is given by the sign in formula (10.17).
Two signs in front of 1 determine two ends of the length on the axis of vy,
within which the perturbations (10.24) are slow magnetoacoustic waves.
Outside this length they become surface waves. The one of them, which
increases, while propagating away from the surface, should be rejected as it
does not satisfy the boundary condition at infinity. As was stated by Kon-
torovich (1959), the decreasing perturbation should be classified as outgoing
from the discontinuity surface.

Below we will use the fact that for large enough velocities, vy, the waves
(10.24) are surface ones, independent of θ 0. It may be shown that the
function vy(θ 0), determined by formula (10.24), is restricted by modulus
from above by the quantity

v max
y =

3
√

3
16

V 3
s

V 2
A

, (10.26)

here the maximum value (10.26) is reached for θ 0 = π/6. If

| vy | > v max
y , (10.27)

the waves (10.24) are surface ones for all θ 0.
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The surface perturbation, which decreases with distance from the x axis,
does not transfer energy away from the layer surface, because its amplitude
equals zero at y = ∞. However this

surface wave enters into the total perturbation of the RCL and its
amplitude must be determined from the boundary conditions. In
this sense the wave is classified as an outgoing one.

As for the increasing perturbation, it is formally an incoming wave, but
it must be discarded, since it tends to infinity as y → ∞ . Note that for this
reason in the domain of the plasma outflow, where only one incoming wave is
possible, the incoming waves are absent, for a given θ 0, when | vy |> v max

y .
Note that v max

y coincides with the maximum value of the projection of
the group velocity of a slow magnetoacoustic wave on the y axis, which in
the approximation Vs 
 VA has the form

(V −
gr )y =

V 3
s

V 2
A

sin θ cos3 θ . (10.28)

Moreover this value is also reached for the angle θ = π/6. So inequal-
ity (10.27) means that

all slow waves are either incoming or outgoing, provided the plasma
flows into or out of the RCL.

To solve the problem of evolutionarity of the current layer we now have to
derive boundary conditions. They relate the amplitudes of the perturba-
tions with ky 
 1/a (that interact with the layer as with a discontinuity)
on two sides of the surface.

However, as distinct from a one-dimensional discontinuity, the waves
with ky 
 1/a outside the current layer may lead to the perturbations
for which the inverse inequality is valid in the interior. Furthermore, since
inside the layer the dissipative effects are essential, the wave numbers of
these perturbations have imaginary parts that tend to infinity in the limit
a/b → 0. This means that the magnitude of the perturbation increases
without bound, and therefore

the linearized one-dimensional boundary conditions generally do not
hold at the reconnecting current layer (RCL)

(Markovskii and Somov, 1996). This fact can be understood in the next
Section from the analysis of the perturbations inside the current layer.
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10.3 Perturbations inside the RCL

10.3.1 Linearized dissipative MHD equations

Let us deduce the equations for the perturbed MHD quantities δQ inside
the current layer. In this case y <∼ a. We linearize the dissipative MHD
equations (see vol. 1, Section 12.2.2).

For Qz ≡ 0 and ∂ δQ/∂z ≡ 0 the equations for δvz and δBz, which
we put equal to zero, are separated from the equations for the other small
quantities. In the latter we may neglect the derivatives ∂p/∂x, ∂ B/∂x,
and ∂ρ/∂x in the approximation a 
 b. The left side of inequality (10.9)
allows us also to neglect the derivative ∂vx/∂x.

Consider, for example, the linear equation of mass conservation

∂ δρ

∂t
+ δρ

∂vx

∂x
+ ρ

∂ δvx

∂x
+ δvx

∂ ρ

∂x
+ vx

∂ δρ

∂x
+

+vy
∂ δρ

∂y
+ δρ

∂vy

∂y
+ δvy

∂ρ

∂y
+ ρ

∂ δvy

∂y
= 0 . (10.29)

Since, inside the RCL, the inhomogeneity of the velocity is two-dimensional
then, together with the terms proportional to ∂vx/∂x, we have to neglect
the terms with ∂vy/∂y.

Let us choose the sign in formula (10.17) coinciding with the sign of vx.
Inside the layer | vx | is a growing function of | y |, but kx is constant. So
from formulae (10.10) and (10.17) it follows that | ω ‖ | increases, while | y |
decreases, and satisfies the condition

| ω ‖ | > | ω ex
‖ | . (10.30)

Estimating
∂ δρ

∂t
+ vx

∂ δρ

∂x
∼ ω ‖ δρ ,

∂vy

∂y
∼

v ex
y

a
,

we get from (10.30) and the left side of (10.9) that

∂ δρ

∂t
+ vx

∂ δρ

∂x
� δρ

∂vy

∂y
, q.e.d.

If the other sign in (10.17) is chosen, then a value of y exists for which
ω ‖ = 0 and this inequality does not hold.

Similar reasoning is valid for the other equations. Hence ∂Q/∂x = 0 in
the zeroth order in terms of the small parameters given by relation (10.9).
Besides, we put ∂Q/∂t = 0 in all equations.



10.3. Perturbations inside the RCL 251

Following Syrovatskii (1956), let us substitute ∂ δQ/∂t by

− i ω
(

δQ − ξ
∂Q

∂y

)
≡ − i ω D̂Q , (10.31)

and ∂ δQ/∂x by i kx D̂Q, where ξ is the displacement of the layer as a unit.
Then we obtain the set of linear ordinary differential equations with respect
to y

i ω ‖ D̂ρ = i kx ρ D̂vx + ( ρ δvy ) ′ + vy δρ ′ , (10.32)

i kx D̂Bx + δB ′
y = 0 , (10.33)

i ω ‖ ρ D̂vx = i kx D̂p + ρ vy δv ′
x − B ′

x δBy

4π
+ v ′

x ρ δvy , (10.34)

i ω ‖ ρ δvy = δ

(
p +

B 2
x

8π

)′
+ ρ vy δv ′

y − i kx
Bx δBy

4π
, (10.35)

i ω ‖ D̂p = i kx γp D̂vx + γp δv ′
y +

+ δ ( p ′vy ) − (γ − 1)
2π

νm B ′
x δB ′

x , (10.36)

i ω ‖ D̂Bx = (Bx δvy) ′ + vy δB ′
x − v ′

x δBy − νm δB ′′
x , (10.37)

where the prime denotes the differentiation with respect to y. Here we
make use of the equality

p +
B 2

x

8π
= const , (10.38)

which follows from the y component of the unperturbed momentum equa-
tion.

10.3.2 Boundary conditions

Under certain restrictions on the unperturbed MHD quantities Q and the
frequency ω, the boundary conditions (the conservation laws), which relate
the amplitudes of the small perturbations on both sides of the current layer,
may be deduced from the set of linear Equations (10.32)–(10.37).

For a one-dimensional discontinuity these conditions are obtained as a
result of integrating the linear equations over the thickness of the domain
in which the unperturbed quantities change substantially, and allowing this
thickness (the thickness 2a of the layer shown in Figure 10.3) to tend to
zero.
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Let us integrate, for example, the induction Equation (10.37), substitut-
ing v ′

x = −ω ′
‖ /kx (see definition (10.10)) and δBy from Equation (10.33)

i ω ex
‖

+a∫
−a

δBx dy =
{

Bx

(
δvy + iω ‖ ξ

) }
+

+

+a∫
−a

vy δB ′
x dy − νm { δB ′

x } . (10.39)

Here and below, the braces denote the jump of a quantity over a discon-
tinuity. Supposing that δQ varies only slightly inside the discontinuity, if
k ex

y a 
 1 outside it, we can estimate the integral proportional to ω ex
‖ :

ω ex
‖

+a∫
−a

δBx dy ∼ ω ex
‖ δB ex

x a .

Let us compare this expression with the jump

{ Bx δvy } ∼ B ex
x δv ex

y .

In the case under study the requirement k ex
y a 
 1 is satisfied for the waves

(10.23) and (10.24). The relationship between the perturbations δQ in such
waves, in approximation (10.6) and (10.9), is given by the formulae:

δp ∼ V 2
s δρ , δvx ∼ Vs

δρ

ρ
, δBx ∼ Bx

(
Vs

VA

)2
δρ

ρ
,

δvy ∼ Vs

(
Vs

VA

)2
δρ

ρ
, and δBy ∼ Bx

(
Vs

VA

)2
δρ

ρ
. (10.40)

Taking (10.40) into account, we find that the condition

ω ex
‖

+a∫
−a

δBx dy 
 { Bx δvy }

coincides with the inequality k ex
y a 
 1, i.e. with the right side of (10.9).

Similar reasoning for the other terms in Equation (10.37) leads to the
following boundary condition{

Bx

(
δvy + iω ‖ ξ

) }
= 0 . (10.41)
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The application of this approach to Equation (10.33) gives

{ δBy − i kx Bx ξ } = 0 . (10.42)

As in the magnetoacoustic waves, in approximation (10.9)

δvy = −
ω ‖ δBy

kx Bx
, (10.43)

Equations (10.41) and (10.42) are satisfied if

δBy = i kx ξ B ex
x , (10.44)

and, consequently,
δvy = − i ω ex

‖ ξ . (10.45)

As distinct from a one-dimensional discontinuity, δQ changes substantially
inside the RCL. We will show that the perturbation with k ex

y 
 1/a out-
side the RCL may lead to perturbations inside it, for which k in

y � 1/a

and k in
y has an imaginary part. These perturbations increase or decrease

exponentially on the characteristic length which is much smaller than a. So
the above estimations of the terms in Equation (10.37) are generally not
valid.

10.3.3 Dimensionless equations and small parameters

To deduce the boundary conditions on the RCL as on the surface of a dis-
continuity, let us obtain the solutions of the set (10.32)–(10.37) inside the
layer for given ω and kx. Assume that outside the layer only the ampli-
tudes of the waves with k ex

y 
 1/a differ from zero. Let us bring Equa-
tions (10.32)–(10.37) to a dimensionless form by the following substitution
of variable and unknown functions:

y = a ỹ , Q = Q ex Q̃ , δQ = δQ ex δQ̃ , (10.46)

ξ =
δv ex

y

ω ex
‖

ξ̃ , kx =
ω ex

‖
V ex

s

k̃ x , (10.47)

δvy = −i ξ ω ‖ +
a ω ex

‖
V ex

s

δv ex
y ω̃ ‖ δṽy , (10.48)

δBy = i kx ξBx +
a ω ex

‖
V ex

s

δB ex
y δB̃y . (10.49)
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Here the quantities δQ ex are related by formula (10.40), the tilde denotes
the dimensionless functions and the expressions for δvy and δBy contain
the boundary values (10.44) and (10.45) in an explicit form.

Let us insert expressions (10.46)–(10.49) into Equations (10.32)–(10.37)
and introduce the following four small parameters in accordance with the
basic assumptions (10.9) and (10.11):

ε 0 =
v ex

y

a ω ex
‖

, ε 1 =
a ω ex

‖
V ex

s

, ε 2 =
v ex

y

V ex
s

, ε 3 =
(

V ex
s

V ex
A

)2

. (10.50)

As a result, we obtain equations describing the dimensionless functions,

i ω̃ ‖ δρ̃ = i k̃x ρ̃ δṽx + ε 3 ( ρ̃ ω̃ ‖ δṽy ) ′ + ε 0 ṽy δρ̃ ′ , (10.51)

i k̃x δB̃x + δB̃ ′
y = 0 , (10.52)

i ω̃ ‖ ρ̃ δṽx = i k̃x δp̃ − 1
k̃x

ε 3 ω̃ ‖ ω̃ ′
‖ ρ̃ δṽy −

−B̃ ′
x δB̃y + ε 0 ṽy ρ̃ δṽ ′

x , (10.53)

(
δp̃ + B̃x δB̃x

)′
= ε 2 ε 3 ρ̃ ṽy

[
i ξ̃ ω̃ ′

‖ − ε 1
(
ω̃ ‖ δṽy

)′ ]+

+ε 1 ε 3 ω̃ 2
‖ ρ̃
(

ξ̃ + i ε 1 δṽy

)
− ε 1 k̃x B̃x

(
k̃x ξ̃B̃x − i ε 1 δB̃y

)
, (10.54)

i ω̃ ‖ δp̃ = i k̃x p̃ δṽx + ε 3

[
p̃
(
ω̃ ‖ δṽy

)′ +
1
γ

ω̃ ‖ p̃ ′ δṽy

]
+

+ ε 0

[
ṽy δp̃ ′ − 2 (γ − 1) B̃ ′

x δB̃ ′
x

]
, (10.55)

i ω̃ ‖ δB̃x =
(

B̃x ω̃ ‖ δṽ y

)′
+

1
k̃x

ω̃ ′
‖ δB̃y +

+ε 0

(
ṽy δB̃ ′

x − δB̃ ′′
x

)
. (10.56)

This is the complete set of dimensionless equations valid on the RCL as a
discontinuity surface.
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10.3.4 Solution of the linearized equations

Since we are interested in the solutions of the set of Equations (10.51)–
(10.56) in approximation (10.9), let us allow the small parameters ε i (ex-
cept the parameter ε 3) to tend to zero. Then the equations reduce to the
following simpler ones:

i ω̃ ‖ δρ̃ = i ρ̃ δṽx , (10.57)

i δB̃x + δB̃ ′
y = 0 , (10.58)

i ω̃ ‖ ρ̃ δṽx = i δp̃ − ε 3 ω̃ ‖ ω̃ ′
‖ ρ̃ δṽy − B̃ ′

x δB̃y , (10.59)(
δp̃ + B̃x δB̃x

)′
= 0 , (10.60)

i ω̃ ‖ δp̃ = i p̃ δṽx + ε 3

[
p̃
(
ω̃ ‖ δṽy

)′ +
1
γ

ω̃ ‖ p̃ ′ δṽy

]
, (10.61)

i ω̃ ‖ δB̃x =
(

B̃x ω̃ ‖ δṽy

)′
+ ω̃ ′

‖ δB̃y . (10.62)

The terms proportional to ε 3 are retained in Equations (10.59) and (10.61),
since inside the current layer the quantities(

ω̃ ′
‖ , ω̃ ‖

)
<∼ 1/

√
ε 3

(see (10.7)) and ( p̃, p̃ ′ ) ∼ 1/ε 3 (see equality (10.38)). Besides, the ex-
pression for k̃x, which follows from (10.18) and (10.19), is used

k̃x = 1 + O(ε 2) + O(ε 3) . (10.63)

In the set (10.57)–(10.62) the Equations (10.57) and (10.59) are not
differential, but serve as the algebraic definitions of the functions δṽx and
δρ̃. After the substitution of δB̃x from Equation (10.58) to (10.62), the
latter becomes the full derivative with respect to ỹ and, by integrating, is
brought to the form

δB̃y + B̃x δṽy = 0 . (10.64)

The constant of integration in this equation is put equal to zero, as the per-
turbation outside the layer represents the superposition of magnetoacoustic
waves, for which (10.43) holds. The integration of Equation (10.60) gives

δp̃ + B̃x δB̃x = C 0 . (10.65)

The substitution of (10.59), (10.64) and (10.65) in Equation (10.61) reduces
it to [

ε 3 p̃ + B̃ 2
x

(
1 − p̃

ρ̃ ω̃ 2
‖

)]
δṽ ′

y +
(

1
γ

ε 3 p̃ ′ + B̃x B̃ ′
x

)
δṽy =
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= iC 0

(
1 − p̃

ρ̃ ω̃ 2
‖

)
. (10.66)

Expressing the dimensionless values in the coefficient in front of δṽy in
terms of the dimensional ones, we find that they are equal to(

p +
B 2

x

8π

)′ 4πa

( B ex
x )2

= 0 . (10.67)

(see equality (10.38)).
Hence the solution of the set (10.58), (10.60)–(10.62) is

δṽy = iC 0

∫ (
1 − p̃/ρ̃ ω̃ 2

‖
)

dỹ

ε 3 p̃ + B̃ 2
x

(
1 − p̃/ρ̃ ω̃ 2

‖
) + C , (10.68)

δB̃y = − B̃x δṽy , (10.69)

δB̃x = − i
(

B̃x δṽy

)′
, (10.70)

δp̃ = C 0 − B̃x δB̃x . (10.71)

The solution (10.68)–(10.71) has a singularity at the point ỹ 0, in which

Ã ≡ ε 3 p̃ + B̃ 2
x

(
1 − p̃

ρ̃ ω̃ 2
‖

)
= 0 , (10.72)

and the function in the integral in (10.68) turns to infinity. However it
may be shown by expressing δQ ′ in terms of δQ in the set (10.32)–(10.37)
that it has a singularity only for y = 0, where vy = 0. This means that
in some neighborhood of ỹ 0 we cannot neglect the small parameters in the
set (10.51)–(10.56) and turn to (10.57)–(10.62). The vicinity of the point
ỹ 0 will be considered below.

Let us now find the remaining solutions of the set of Equations (10.51)–
(10.56) in the domain where the formulae (10.68)–(10.71) are valid. We
suppose, for the sake of definiteness, that v in

x ∼ V ex
A

(see (10.7)), i.e.
ω̃ 2

‖ ∼ 1/ε 3. Such a relation holds if x is not close to 0 and ± b. The solu-
tion (10.68)–(10.71) is valid when the expression in the integral in (10.68)
is of order of unity. Since, inside the current layer B̃x

<∼ 1 and p̃ ∼ 1/ε 3, it
follows from (10.68) and (10.72), that in this case

Ã ∼ 1 . (10.73)
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Then the remaining solutions of the set (10.51)–(10.56) satisfy the WKB
approximation inside the RCL and may be found from the dispersion Equa-
tion (10.20).

Let us express the dimensionless quantities in Ã in terms of the dimen-
sional ones and take into account that

kx = ω ex
‖ /V ex

s .

Then we find that the quantity Ã is related with the coefficient in front of
k 2

y in dispersion Equation (10.20) in the following way:

A = ω 2
‖ V 2

⊥ − k 2
x V 2

A
V 2

s ∼ ω 2
‖
(
V ex

A

)2
Ã . (10.74)

Under condition (10.73) in the zeroth order in terms of the small para-
meters ε i (see definition (10.50)) the solutions of Equation (10.20) take on
the form (10.21) and

k d
y =

ω ‖
vy

, (10.75)

k −
y = ±

√
iA

V 2
s νm ω ‖

, (10.76)

k ∗
y =

1
A

[
ω ‖ vy F ±

√
ω 2

‖ v 2
y F 2 − A

(
k 2

x A − ω 4
‖
)]

, (10.77)

where
F = V 2

⊥ k 2
x − 2 ω 2

‖ .

From the basic Inequality (10.9) it follows that the wave vectors (10.21),
(10.75), and (10.76) satisfy the WKB approximation inside the RCL. The
dispersion equation is valid for them, as in the limit ky � 1/a the terms
with the derivatives of unperturbed quantities in Equations (10.32)–(10.37)
are negligible.

The expressions (10.42), (10.75), and (10.76) give us four solutions of
the set of Equations (10.32)–(10.37). By contrast, the perturbations (10.77)
do not satisfy the WKB approximation, since they have 1/ky a → 0. In this
case we cannot neglect the derivatives of unperturbed quantities in the set
of Equations (10.32)–(10.37), so we cannot use Equation (10.20). These
perturbations are described by formulae (10.68)–(10.71).

Thus we have shown that

there are four perturbations, which satisfy the WKB approximation
inside the RCL, regardless of the value of kx.
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Recall that outside the current layer there are also four of such perturba-
tions in the case of normal propagation, but in the case of oblique propa-
gation there are three. Therefore in the latter case the perturbations with
ky 
 1/a and ky � 1/a transform to each other.

10.4 Solution on the boundary of the RCL

In order to obtain the boundary conditions it is necessary to determine the
value of the perturbation on the boundary of the current layer, i.e. for
Q = Q ex. In this case

a 
 y 
 1/k ex
y .

If Q = Q ex, then the solution (10.68)–(10.71) is not valid, since the
coefficients in Equation (10.66) are much smaller than unity (see defini-
tions (10.46)) and the small parameters cannot be neglected in deducing of
this equation.

Let us find the solutions of Equations (10.51)–(10.56) in the neighbor-
hood of the boundary of the RCL in the domain

Q̃ ∼ 1 . (10.78)

Note that as p in � p ex and ω in
‖ � ω ex

‖ , the value of ỹ exists, for which
p̃ � 1 and ω̃ ‖ � 1, although for ỹ � 1 always Q̃ ′/Q̃ 
 1.

Substitute Equation (10.52) in (10.56) and then substitute (10.56) and
(10.53) in Equation (10.54), in the same way as for deduction of (10.66),
but hold the terms proportional to the small parameter ε 0

i ω̃ ‖

(
1 − p̃

ρ̃ ω̃ 2
‖

)
δp̃ = ω̃ ‖ ε 3

(
p̃ δṽ ′

y +
1
γ

p̃ ′ δṽy

)
−

− p̃

ρ̃ ω̃ ‖
B̃ ′

x δB̃y + ε 0 ṽy

(
p̃

ω̃ ‖
δṽ ′

x + δp̃ ′
)

. (10.79)

Here we use (10.63) and the inequality ε 0 
 ( ε 2, ε 3 ), which follows from
condition (10.9).

As the derivatives δṽ ′
x and δp̃ ′ appear in (10.78) with small parameters,

in the first order they may be expressed from Equations (10.59) and (10.60),
which do not contain small parameters. Let us integrate Equation (10.59)
and use (10.64) and (10.65). Then, taking into account that Q̃ ′ 
 1 and
considering (10.67), we find the equation describing the function δṽy,

i ε 0 B̃ 2
x ṽy

(
1 +

p̃

ρ̃ ω̃ 2
‖

)
δṽ ′′

y + ω̃ ‖ Ã δṽ ′
y = iC 0 ω̃ ‖

(
1 − p̃

ρ̃ ω̃ 2
‖

)
(10.80)
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(cf. Equation (10.66)). Three cases differ.
(a) Let

1 − p̃/ρ̃ ω̃ 2
‖ � ε 0 ,

then Ã � ε 0 (see definition (10.72)), as in the domain (10.78) ε 3 p̃ 
 ε 0 ,
and Equation (10.66) is valid.

(b) Let
1 − p̃/ρ̃ ω̃ 2

‖ <∼ ε 0 ,

then Ã <∼ ε 0 and all the terms in Equation (10.79) are essential. In this
case, in the first order, it is sufficient to substitute δp̃ in Equation (10.79)
from (10.65), but not from (10.54). So the small parameter ε 1 does not
enter in Equation (10.80).

(c) On the boundary of the layer ( | Q̃ | = 1 ),

1 − p̃

ρ̃ ω̃ 2
‖

= 0 , Ã = 0 ,

and Equation (10.80) transforms to δṽ ′′
y = 0. After integrating, this equal-

ity turns to the following one:

δṽy = C∗ ỹ + C . (10.81)

Expression (10.81) together with (10.69)–(10.71) defines three solutions of
the set of Equations (10.51)–(10.56). The remaining three solutions for
| Q̃ | = 1 satisfy the WKB approximation with the wave vectors (10.12),
(10.21), and (10.22).

∗ ∗ ∗
Let us now return to the vicinity of the point ỹ 0, in which Ã = 0.

From Equation (10.38) and condition (10.7) it follows that the point ỹ 0
may generally be situated either in the domain ỹ <∼ 1 or ỹ � 1. If

ỹ 0
<∼ 1 , (10.82)

then the terms containing ṽ ′
y appear in the equation for δṽy with Ã = 0.

As ṽ ′
y ∼ 1, they are found to be comparable with the terms propor-

tional to ∂vx/∂x, which we have neglected when deducing the set of Equa-
tions (10.32)–(10.37). Because of this, to determine δṽy in the vicinity of
ỹ 0, in the present case, it is necessary to solve a partial differential equation.

Let
ỹ 0 � 1 , (10.83)

then ṽ ′
y 
 1 and for ỹ = ỹ 0, in the first order, δṽy is described by an

ordinary differential equation. In particular, in the domain (10.78), it is
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the Equation (10.80). It does not have a singularity for Ã = 0 and the
solutions of the set of Equations (10.51)–(10.56) in the vicinity of ỹ 0 are
given by the formulae (10.81), (10.69)–(10.71), (10.12), (10.21), and (10.22).

Finally let us establish the correspondence between the perturbations
outside and inside the RCL. Assume that (10.83) holds and, for ỹ <∼ 1
(10.73) is true.

Solving the set of Equations (10.51)–(10.56) in the domain

1 

(

p̃ , ω̃ 2
‖
)


 1/ε 3 ,

it may be shown that the following correspondence takes place. The per-
turbations, which are described by the wave vectors k d

y from (10.12) and
k 0

y from (10.21) outside the RCL, transform into (10.76) and (10.21) inside
it, i.e. represent the same roots of Equation (10.20) for the different values
of ỹ.

The wave (10.22) transforms into one of the perturbations (10.76),
with the sign ‘−′ or ‘+′ depending on the sign of vy.

Hence the superposition of (10.23) and (10.24) corresponds to the superpo-
sition of (10.68)–(10.71) and the other perturbation (10.76).

Besides, the frequency ω ‖ from the interval (10.9) may be chosen in
such a way, that the solution proportional to C 0 exists inside the RCL for
all ỹ. In this case the solution proportional to C ∗ , in the domain (10.78),
transforms, for ỹ <∼ 1 into the perturbation with the wave vector (10.76).
Thus

the three waves with λ ex
y � a outside the RCL cause the perturba-

tion inside the RCL, for which λ in
y 
 a.

So now we can formulate the conditions of evolutionarity for the RCL.

10.5 The criterion of evolutionarity

10.5.1 One-dimensional boundary conditions

Let us now turn to the criterion of evolutionarity. With this end in view, we
deduce the boundary conditions on the RCL as a surface of a discontinuity.
There are two possibilities.

(a) If the amplitudes of the perturbations (10.21), (10.75), and (10.76)
with ky � 1/a inside the layer differ from zero, then the boundary con-
ditions, similar to those which hold on one-dimensional discontinuities, do
not exist on its surface. If this were not so, then the quantity δvy would
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remain constant after a transition across the layer, by virtue of condition
(10.45). However the magnitude of the perturbations (10.21), (10.75), and
(10.76) changes substantially within the distance a and (10.45) is not valid
in a general case.

(b) We consider below only such perturbations that the amplitudes of
the modes (10.21), (10.75), and (10.76) equal zero. This requirement is
obeyed by the solution of Equations (10.32)–(10.37), if the constant C 0
differs from zero, but the other constants equal zero (see the end of Sec-
tion 10.4).

Let us obtain the boundary conditions which the solution proportional
to C 0 satisfies. Due to (10.81), formulae (10.48) and (10.49) give the bound-
ary values (10.44) and (10.45) for δvy and δBy. From (10.45) it follows that

{ δvy } = 0 . (10.84)

As for condition (10.44), it is equivalent to (10.45) and does not result in an
additional boundary condition. Expression (10.71) determines the second
boundary condition {

δp +
Bx δBx

4π

}
= 0 . (10.85)

Finally formula (10.70) means that

δBx = 0 (10.86)

on both sides of the discontinuity, since δṽ ′
y = 0 and B̃ ′

x = 0.
The appearance of the equality (10.86) is caused by the fact that we

consider the perturbation, for which only the constant C 0 differs from zero,
but not an arbitrary one. Given another perturbation is present inside the
RCL, the condition (10.86) is generally not satisfied. As δB x in magneto-
acoustic waves do not equal zero, condition (10.86) together with (10.84)
and (10.85) represents four boundary conditions, relating the amplitudes
of the waves outside the RCL. Note that equalities (10.57) and (10.58)
do not give additional boundary conditions, since they are valid for the
perturbations in magnetoacoustic waves.

10.5.2 Solutions of the boundary equations

Now we write Equations (10.84)–(10.86) in an explicit form, i.e. express-
ing all small quantities in terms of the perturbation of density. As was
pointed out at the end of Section 10.4, the superposition of the waves (10.23)
and (10.24) outside the RCL corresponds to the superposition of the solu-
tions (10.68)–(10.71) and (10.76) inside it.
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This being so, the waves (10.23) and (10.24) are present outside the
RCL, but the amplitudes of the waves (10.12), (10.21), and (10.22) equal
zero, if inside it only the constant C 0 differs from zero. Using the rela-
tionship between the perturbations of MHD quantities in magnetoacoustic
waves in approximation (10.9) we obtain from the boundary conditions
(10.84)–(10.86), respectively

3∑
i=1

k
(i)
y+

( k (i) )2

(
δρ

(i)
+ + δρ

(i)
−
)

= 0 , (10.87)

3∑
i=1

1
( k (i) )2

(
δρ

(i)
+ − δρ

(i)
−
)

= 0 , (10.88)

3∑
i=1

(
k

(i)
y

k (i)

)2

δρ
(i)
± = 0 . (10.89)

Here the indexes + and − denote the quantities outside the RCL for y =
+ ∞ and y = − ∞, the index i specifies three waves (10.23) and (10.24);
and it is taken into account that

k
(i)
y+ = − k

(i)
y−

due to the plasma flow symmetry.
Let us find the solutions of these equations for the cases of the inflowing

and the outflowing of a plasma, i.e. determine the amplitudes of outgoing
waves versus the amplitudes of incident ones.

If the plasma flows into the layer, then there are two outgoing waves:
one on each side. As there are four equations, set (10.87)–(10.89) has
solutions only for a definite relationship between the amplitudes of incident
waves. If these amplitudes are arbitrary, then the set of Equations (10.87)–
(10.89) does not have a solution. It means that for such perturbations
condition (10.86) cannot be satisfied. Since equality (10.86) is valid always,
when C 0 is the only constant which differs from zero, a violation of this
equality results in the fact that the other constants, i.e. the amplitudes of
the perturbations with k in

y � 1/a, differ from zero. Hence, in this case, the
boundary conditions do not exist on the surface of the layer, i.e. it is not a
discontinuity, and the conclusion of its evolutionarity cannot be obeyed.

Let the plasma flow out from the current layer. In this case there are four
outgoing waves (two on each side). Denote them by the indexes i = 1, 2.
Then their amplitudes δρ

(1,2)
± are expressed in terms of the amplitudes δρ

(3)
±

of incident waves in the following way

δρ
(1)
± = −1

2

(
k (1)

k (3)

)2
k

(2)
y − k

(3)
y

k
(2)
y − k

(1)
y

×
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×
[

k
(3)
y

k
(1)
y

(
δρ

(3)
+ + δρ

(3)
−
)

± k
(2)
y + k

(3)
y

k
(2)
y + k

(1)
y

(
δρ

(3)
+ − δρ

(3)
−
)]

, (10.90)

δρ
(2)
± = −

(
k (2)

k
(2)
y

)2 [(
k

(3)
y

k (3)

)2

δρ
(3)
± +

(
k

(1)
y

k (1)

)2

δρ
(1)
±

]
. (10.91)

In formula (10.90) all the quantities k
(i)
y are taken for one side of the

discontinuity. From (10.90) it follows that if k
(1)
y = k

(2)
y and k

(2)
y �= k

(3)
y ,

then δρ
(1)
± turns to infinity, i.e. the coefficients of refraction and reflection

are not limited.
Let us find the conditions under which the wave vectors of two outgoing

waves coincide. In Section 10.2 it was shown that if

| v ex
y |< 3

√
3

16
V 3

s

V 2
A

, (10.92)

then the resonant angle θ ∗
0 exists, for which the expression in the round

brackets in formula (10.24) equals zero and two roots (10.24) coincide. This
angle is determined by Equation (10.25).

Provided θ 0 = θ ∗
0 , both waves (10.24) are outgoing, since if the plasma

flows out from the current layer, then there is only one incoming wave. In
the present case its wave vector is given by formula (10.23) and k

(2)
y �= k

(3)
y .

If condition (10.92) is not valid, then the expression in the round brackets
in (10.24) is negative and the corresponding waves are surface ones for
all θ 0 (see Section 10.2). In this case all wave vectors are different and
k

(i)
y �= ± k

(j)
y for i �= j. So the coefficients of refraction and reflection are

limited.
For the definite, but rather general, distribution of the unperturbed

MHD properties inside the RCL the expressions describing the perturbation
(and thus the transition between the perturbations with ky 
 1/a and ky �
1/a) can be found in an analytical form (Markovskii and Somov, 1996).
These solutions are represented schematically in Figure 10.4.

Horizontal solid and dotted lines represent the solutions with ky 
 1/a
and ky � 1/a respectively. Inclined lines represent the solutions that do
not satisfy the WKB approximation. Superposition of perturbations on one
side of the bold line y = ± a transforms to superposition of perturbations
on the other side.

In the case of normal propagation the long waves, ky 
 1/a, do not
transform to the short ones, ky � 1/a, (see Figure 10.4a). In this case the
long waves interact with the RCL as with a tangential discontinuity, i.e. as if
vy equals zero. The amplitudes of the waves satisfy the linearized boundary
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Figure 10.4: Schematic representation of solutions of the linear MHD equa-
tions in the case of normal (a) and oblique (b) propagation.

conditions for magnetoacoustic waves at a tangential discontinuity with
vx1 = vx2: {

δp +
Bx δBx

4π

}
= 0 , { δvy } = 0 . (10.93)

There are thus two boundary equations and two outgoing waves (see
Section 10.2.2) regardless of the sign of vy. Moreover these equations always
have a unique solution, therefore the RCL is evolutionary with respect to
normally propagating waves.

Another situation arises in the case of oblique propagation. In this
case long waves outside the layer transform inside it to short waves. This
imposes two additional boundary conditions on the perturbations that in-
teract with the layer as with a discontinuity, because for such perturbations
the amplitudes of short waves must be equal zero. Therefore

the RCL behaves like a discontinuity only with respect to a specially
selected perturbation.

We emphasize that the conditions (10.93) appear as a result of the proper-
ties of the solutions of the linearized MHD equations, while the additional
conditions occur due to the fact that we consider the perturbation which is
not arbitrary. An otherwise additional condition generally does not hold.

With respect to these perturbations the problem of evolutionarity can
be posed. However, the conclusions on non-evolutionarity are different for
the domain of direct current, where the plasma flows into the RCL, and for
the domains of reverse current, where the plasma flows out.
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10.5.3 Evolutionarity and splitting of current layers

Thus we have obtained the criterion of evolutionarity for the RCL as a
discontinuity.

If the plasma flows into the layer (in the region DC of the direct current
in Figures 10.1b and 10.3) or if inequality (10.92) does not hold, then the
conclusion of non-evolutionarity cannot hold. In this case the current
layer either does not behave like a discontinuity or else the problem of
its infinitesimal perturbation has a single solution. The last is the case
when we can consider an ordinary problem of linear stability. For example,
the question on the linear tearing instability always exists concerning the
central part (the region of the direct current) of the RCL (see Chapter 11).

Let the relation (10.92) be valid, provided the plasma flows out from the
layer (in the regions RC of the reverse current in Figures 10.1b and 10.3),
and the outflow velocity is less than the projection of the group velocity
of a slow magnetoacoustic wave on the normal to the layer (see (10.92)).
Then the perturbation exists, for which, firstly, the boundary conditions
on the surface of the layer are true, and, secondly, the amplitudes of the
outgoing waves are as large as is wished, compared with the amplitudes of
the incident ones in the limit ε i → 0, i.e. when the conductivity is large
enough.

Such a perturbation inside the RCL is the solution of the set of Equa-
tions (10.32)–(10.37) proportional to C 0, and is characterized by the res-
onant angle θ ∗

0 from (10.25) outside it. Thus the perturbation is not de-
scribed by linear equations and the problem of its time evolution does not
have a single solution. Hence the current layer is non-evolutionary, as the
initial perturbation of the MHD flow is not small. This perturbation
may be the splitting of the RCL into shock waves that are observed in the
numerical experiments carried out by Brushlinskii et al. (1980), Podgornii
and Syrovarskii (1981), Biskamp (1986, 1997).

Therefore we have found a possible cause of splitting of the RCL into
a set of the one-dimensional MHD discontinuities observed in numerical
experiments. Moreover we have obtained the condition under which the
splitting takes place. This allows us to unify the two regimes of magnetic
reconnection in current layers: with attached shocks and without them.
Such a unified model can be used to describe unsteady phenomena in as-
trophysical plasma, which occur as a result of magnetic reconnection.
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10.6 Practice: Exercises and Answers

Exercise 10.1. Discuss basic properties of the Petschek-type recon-
necting region with the four slow MHD shocks shown in Figure 10.5
(Petschek, 1964).

α

S

S S

S

B

D

Figure 10.5: The Petschek-type reconnecting flow.

Answer. As shown in Figure 10.5, there is a diffusion region D which
occupies a small central part of the area under consideration. Two pairs of
the slow MHD shock waves S− propagate away from the diffusion region.
These shocks may be regarded loosely as current layers extending from the
reconnecting current layer (RCL) in Figure 10.2.

While plasma flow carries magnetic field through these shock waves,
the direction of the magnetic field vector rotates towards the normal, and
the strength of the field decreases in this process. When the inflow ve-
locity v0 is much less than the Alfvén velocity, the angle α becomes very
small, which makes the external flow almost uniform. As the inflow velocity
increases, the inclination of the waves increase, which in turn decreases the
field strength at the diffusion region.

Petschek (1964) estimated the maximum inflow velocity by assuming
that the magnetic field in the inflow regions is potential and uniform at
large distances. The reconnection rate turns out to be

v0

VA,0

≈ 1
log Rem

. (10.94)

When the magnetic Reynolds number Rem is sufficiently large, the Petschek
rate would still correspond to a much faster inflow compared to the Sweet-
Parker rate given by formula (6.21). In this sense, Petschek (1964) was the
first to propose a fast reconnection model.
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The elegance of this simple model has meant that it has been possible to
generalize it in several ways; this has been done by different authors. These
further developments cast even more serious doubt on the validity of the
Petschek model. Since the reconnection rate may depend sensitively on the
boundary conditions, building detailed and realistic models of reconnection
is an extremely challenging problem (see Biskamp, 1997).



Chapter 11

Tearing Instability of
Reconnecting Current
Layers

The tearing instability can play a significant role in reconnecting
current layers, but it is well stabilized in many cases of interest. For
this reason, quasi-stationary current layers can exist for a long time
in astrophysical plasma, for example in the solar corona, in the Earth
magnetospheric tail.

11.1 The origin of the tearing instability

11.1.1 Two necessary conditions

Among the host of instabilities appearing in a plasma with magnetic field,
the tearing mode is of fundamental value for processes which transform
‘free’ magnetic energy into other kinds of energy. In a sense, the tearing
instability is an integral part of magnetic reconnection. It is conceivable
that the instability can play the role of a triggering mechanism for many of
its essentially nonstationary manifestations in astrophysical plasma – flares
on the Sun and in magnetospheres of the Earth and other astrophysical
bodies.

The tearing instability has a universal character and arises in recon-
necting current layers over quite a wide range of their parameter values.
In fact, it is seen from the 2D picture of the magnetic field lines shown

269
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in Figure 11.1a, that this state with the neutral current layer at y = 0
is energetically high and hence it must tend to a lower one, depicted in
Figure 11.1b.

y

x

(a)

(b)

B
0

B
0

Figure 11.1: (a) Magnetic field ‘reversal’, a peculiarity of the configuration
of field lines in a neutral current layer. (b) Magnetic-field lines in the course
of the tearing instability; the arrows show the plasma velocity directions.

Such a transition may be interpreted as a process of coalescence of paral-
lel currents constituting the current layer. However, for ideally conducting
plasma, the process is impossible since it implies the displacement of field
lines, leading to their tearing and the formation of closed loops – magnetic
islands. This transition, i.e. the reconnection of field lines, is known to
be forbidden by the condition of magnetic lines freezing into plasma (see
vol. 1, Section 12.3.2). Such a restriction is removed given a finite (even if
very high) electric conductivity. Thus

for the tearing instability to develop, two conditions are necessary:
(1) magnetic field reversal and (2) the availability of a finite electric
conductivity.

The instability is called tearing because, as we have seen, its growth, once
unbounded, causes the current layer to tear into separate filaments.

11.1.2 Historical comments

Before giving an account of the theory of the tearing instability, let us
briefly describe the history of the question. Dungey (1958) supposed that
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the availability of a neutral line in a plasma with finite conductivity leads
to the instability giving rise to the current concentration. This hypothesis
was based on the consideration of a non-equilibrium configuration of the
magnetic field with an X-line whose separatrix (forming the letter X) lines
intersect at an angle not equal to π/2 (see also discussion of the paper by
Zwingmann et al. (1985) in Chapter 14).

The presence of the instability was experimentally found in configura-
tions of a pinch type (Colgate and Furth, 1960), for which stability had
been predicted by the ideal MHD theory. Using Dungey’s mechanism,
Furth (1961) qualitatively explained the current layer tearing instability.
Murty (1961) investigated the same process theoretically and found the
presence of the tearing mode in a resistive current layer for the low conduc-
tivity case. Finally, the theory of resistive MHD instabilities was thoroughly
developed for the case of the neutral current layer without plasma flows, in
the famous work of Furth et al. (1963).

In the framework of the kinetic approach the first fundamental results on
the tearing instability were obtained by Coppi et al. (1966). They showed
that the tearing instability arises from coupling between a negative energy
wave and a dissipative process. Landau resonance of electrons inside and
near the zero magnetic field plane was proposed to provide the appropriate
dissipation mechanism (Section 11.6).

In parallel with the investigation of the tearing instability, mechanisms
resulting in its stabilization were searched for. Why? – The point is that
laboratory and numerical experiments, as well as astrophysical observa-
tions, contrary to theoretical predictions, allowed one to conclude that
reconnecting current layers can be stable for a long time. The
appearance of such stable states is of paramount importance, in particular,
for the physics of reconnecting current layers (RCLs) in the cosmic plasma.

Furth (1967) proposed the hypothesis that the tearing mode is sup-
pressed by a small transversal magnetic field (i.e., perpendicular to the
current layer). As pointed out by Pneuman (1974),

such a non-neutral current layer, cannot be topologically affected
by an infinitesimal displacement,

as opposed to a neutral current layer that does not contain a transver-
sal field. This suggests that a disturbance of finite amplitude is neces-
sary to disturb the RCL, i.e. the configuration could be metastable (see
Section 11.6.3). The stabilizing effect of the transversal field was demon-
strated in the frame of the kinetic approach by Schindler (1974), Galeev
and Zelenyi (1975, 1976).

Janicke (1980, 1982) considered the same hypothesis in the context of
MHD and drew the conclusion that the stabilizing influence was absent.
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This is the reason why a fundamental indecision as to the role of the
transversal field remained for a long time. On the one hand, Somov and
Verneta (1988, 1989) demonstrated a considerable stabilizing effect within
the limits of the MHD approach. They also explained the reasons for neg-
ative results due to Janicke. Incidentally, on the other hand, Otto (1991),
Birk and Otto (1991) once again confirmed the conclusion that, in the con-
text of Janicke’s model, the transversal component of the magnetic field
does not change the tearing increment. A comparative review of alterna-
tive approaches is given, for example, in Somov and Verneta (1993). As we
shall also see in Section 11.4, the transversal component of the magnetic
field does modify the collisional tearing mode in such a way that it results
in its stabilization.

Having finished this brief introduction, we come now to an account of
the basic theory of the tearing instability.

11.2 The simplest problem and its solution

In Chapter 10, we obtained the criterion of evolutionarity for the RCL with
respect to magnetoacoustic waves. We saw that in the region of the direct
current, the current layer either does not behave like a discontinuity or else
the problem of its small perturbation has a single solution. Therefore, in
this region, we are well motivated to consider an ordinary problem of linear
stability.

11.2.1 The model and equations for small disturbances

We begin by obtaining an expression for the growth rate of a pure tear-
ing instability without additional stabilizing or destabilizing effects. For
this purpose, we consider the case when the instability increment is much
larger than the inverse time of magnetic diffusion τr. As will be shown
in Section 11.5, once these quantities are of the same order, the effect of
plasma compressibility becomes decisive. Provided diffusion may be ig-
nored, plasma drift into the reconnecting current layer (RCL) becomes
unimportant since its characteristic time is also τr. For the case ω � V/b
(ω is the instability increment, V is the speed of plasma outflow from the
RCL, b is its half-width, see Figure 1.5), the plasma flow along the current
layer is negligible as well.

Let us consider the instability in a linear approximation:

f (r, t) = f0 (r) + f1 (r, t) .
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Unperturbed quantities in the frame of the simplest model depend only
upon the y coordinate which is perpendicular to the current layer as shown
in Figure 11.1a:

f0 = f0 (y) .

Hence small perturbations are of the form

f1 (r, t) = f1 (y) exp [ i (kxx + kzz) + ωt ] , (11.1)

provided 1/kx 
 b.
The set of the MHD equations for an incompressible plasma with a finite

conductivity σ is reduced to the following one:

curl
(

ρ
dv
dt

)
= curl

(
1
4π

curl B × B
)

,

∂ B
∂t

= curl (v × B) − curl
( η

4π
curl B

)
,

∂ρ

∂t
+ v · ∇ρ = 0 ,

∂η

∂t
+ v · ∇η = 0 ,

div v = 0 , div B = 0 .

Here η = c2/σ is the value proportional to magnetic diffusivity (see Ap-
pendix 3); the other symbols are conventional. This set gives the following
equations for the perturbations:

ω curl ( ρ0 v1) = curl
{

1
4π

[ (B0 · ∇ )B1 + (B1 · ∇ )B0 ]
}

,

ω B1 = (B0 · ∇ )v1 − (v1 · ∇ )B0 − 1
4π

( ∇η0 × curl B1 −

− η0 ∆ B1 + ∇η1 × curl B0 − η1 ∆ B0) ,

ω ρ1 + v1 · ∇ρ0 = 0 , ω η1 + v1 · ∇η0 = 0 ,

div v1 = 0 , div B1 = 0 .

These dimensional equations are reduced to two dimensionless equations
containing y components of the velocity and magnetic field perturbations
as unknown variables:

( ρ̃ W ′ ) ′ = α2 ρ̃ 2 W − S 2α2

p
( α2F Ψ + F ′′ Ψ − F Ψ ′′ ) , (11.2)

Ψ ′′ =
(

α2 +
p

η̃

)
Ψ +

(
F

η̃
+

η̃ ′ F ′

p η̃

)
W. (11.3)
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Here

Ψ =
B 1y

B (a)
, W = −i v 1y k τr , µ =

y

a
,

F =
k · B0

k B (a)
, k =

(
k2)1/2

, α = k a , τr =
4πa2

〈 η 〉 ,

τA =
a (4π〈 ρ 〉)1/2

B (a)
, S =

τr

τA

, p = ω τr , η̃ =
η 0

〈 η 〉 , ρ̃ =
ρ 0

〈 ρ 〉 .

Thus we intend to solve Equations (11.2) and (11.3). As will be seen
from the final results, the tearing instability is a long-wave mode:

α2 
 1 . (11.4)

Hence this case is considered from the beginning. For definiteness, the
following distribution of the unperturbed field is chosen:

B0 = F (µ) ex ,

where

F (µ) =

⎧⎨⎩ −1 , µ < −1 ,
µ , −1 < µ < 1 ,
1 , µ > 1 .

Let us examine the instability mode with the fastest growth, for which
the condition

k ‖ B0

holds. Assume that
S � 1 , (11.5)

i.e., the plasma is highly-conductive (compare definition of S with definition
of the magnetic Reynolds number (Appendix 3) where v = VA , L = a).
What this means is that

dissipative processes in such a regime are not large in magnitude,
while they play a principle role in the tearing instability,

as was mentioned in the previous Section.

11.2.2 The external non-dissipative region

Starting from some distance y from the neutral plane y = 0 of the current
layer, the dissipative processes may be ignored. We shall call this region
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the external non-dissipative one. In the limiting case

S =
τr

τA

=
VAa

νm
→ ∞ ,

Equation (11.2) is simplified to

Ψ ′′ −
(

α2 +
F ′′

F

)
Ψ = 0 . (11.6)

The function Ψ should be even for reasons of symmetry:

Ψ (−µ) = Ψ (µ) . (11.7)

The boundary condition for the sought-after function must be formulated
for µ → ∞:

Ψ → 0 . (11.8)

Since µ = y/a �= 0, Equation (11.6), under conditions (11.7)–(11.8), has
the following solution:

Ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A exp [α(µ + 1) ] , µ < −1 ,

A
{[

cosh α +
(
1 − α−1

)
sinhα

]
cosh α µ+

+
[
sinhα +

(
1 − α−1

)
cosh α

]
sinhα µ

}
, −1 < µ < 0 ,

Ψ (−µ) , µ > 0 .
(11.9)

Here A is an arbitrary constant.
The derivative Ψ ′ suffers a rupture at the point µ = 0, with

∆ ′ =
Ψ ′

Ψ

∣∣∣∣+0

−0
≈ 2

α
(11.10)

for α2 
 1. This fact signifies that the solution applicable in the external
non-dissipative region corresponds to a singular current at the µ = 0 plane.

The approximation S → ∞ is not applicable in a neighbourhood of the
point µ = 0. This will be called the internal dissipative region. Outside
this region the solution is described by the function (11.9) which, for µ → 0
(once α2 
 1), gives the asymptotic expression

Ψ ∼ const
(

1 +
1
α

|µ |
)

. (11.11)
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11.2.3 The internal dissipative region

Let us consider now the neighbourhood of the point µ = 0 where the
condition S → ∞ does not hold. Since this region is sufficiently small, the
quantities ρ̃ and η̃ may be assumed to vary weakly inside it. On using this
assumption and making the change of variables

θ =
(

α2S 2

p

)1/4

µ , (11.12)

Z = Ψ ′′ , (11.13)

the set of Equations (11.2)–(11.3) results in the equation for the func-
tion Z = Z (θ)

Z ′′′ =
(
ν + θ2 )Z ′ + 4θZ . (11.14)

This equation must be supplemented by the conditions

Z (−θ) = Z (θ) ,
Z → 0 for θ → ∞ .

(11.15)

We find from (11.14)–(11.15) that the sought-after function Z (θ) has the
following asymptotic behaviour for θ � 1 (θ → ∞):

Z ∼ A1 exp
(
− θ 2/2

)
+ B θ −4 . (11.16)

For θ < 1 the function Z (θ) has no singularities and can be expanded in a
Taylor series.

In order to obtain the dispersion relation the integrals

I0 =

+∞∫
0

Ψ ′′ dµ , I1 =

+∞∫
0

Ψ ′′µ dµ (11.17)

have to be evaluated. On normalizing the function Z (θ) by the condition

Z (0) = 1 ,

we find from (11.16) that

Ĩ0 =

+∞∫
0

Z (θ) dθ ≈ 1 , Ĩ1 =

+∞∫
0

Z (θ) θ dθ ≈ 1 . (11.18)

The integrals (11.17) are expressed through (11.18).
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For the function Ψ (θ), we have

Ψ (θ) =

θ∫
0

dθ1

θ1∫
0

Z (θ2) dθ2 ,

whence

Ψ (µ) ∼ const
(

1 +
I0

(1/p) − I1
|µ |
)

(11.19)

for θ → ∞. Here it is taken into account that

Ψ ′′
µµ (0) = p Ψ (0) .

11.2.4 Matching of the solutions and the dispersion
relation

As is seen from the asymptotic solution (11.16), the approximation S → ∞
is valid once µ � ε0, where

ε0 =
( p

α2S 2

)1/4
. (11.20)

Hence the function (11.19) must coincide with (11.12). Equating them
results in the dispersion equation(

1 − p 3/2

αS

)
− p α

( p

α2S 2

)1/4
= 0 . (11.21)

There is no difficulty in understanding that, given the ratio

p 3/2

αS

 1 , (11.22)

the equation is reduced to

p ≈
(

S

α

)2/5

, (11.23)

while given

p α
( p

α2S 2

)1/4

 1 , (11.24)

it reduces to
p = (αS)2/3

. (11.25)
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Conditions (11.22) and (11.24) are equivalent to

p α2 � 1 (11.26)

and
p α2 
 1 , (11.27)

respectively. Region (11.26) may be termed that of ‘short’ waves, whereas
region (11.27) is that of ‘long’ waves. In the former the growth rate increases
with the increase of the wavelength, while decreasing in the latter.

At p α2 ∼ 1, i.e., when α ∼ S 1/4 , the growth rate reaches the maximum

pmax ∼ S 1/2 . (11.28)

Recall that the dimensionless parameters

α = ka =
2πa

λ
, p = ω τr .

Without using the condition α2 
 1, Equation (11.6) shows that ∆′ ≈ 0
for α ≈ 1. So the tearing instability completely disappears for α ≈ 1 and
exists in the region of the wave length

λ > 2πa .
(11.29)

That is why it is called a long-wave instability.

kS

ωS

0 2 4

0.2

0.6

0.4
Figure 11.2: The dependence
of the tearing instability incre-
ment ωs on the wave vector ks.

As α → S−1, the increment tends to τ −1
r . As was mentioned earlier, in

this case, i.e. in the region α < S−1, the effect of compressibility becomes
dominant. It will be discussed in Section 11.5.
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Expression (11.23) was obtained analitically by Furth et al. (1963); they
also obtained the dependence (11.25) numerically. The results of the nu-
merical solution of the general Equation (11.21) are given in Figure 11.2,
using the notation

ωs = ω τr S−1/2 , ks = ka S 1/4 . (11.30)

Recall that the dimensionless parameter S is the Lundquist number (6.22)
but determined with respect to the current-layer thickness a.

11.3 Physical interpretation of the instability

11.3.1 Acting forces of the tearing instability

We now present another derivation of the dispersion relations, based on the
consideration of the physical mechanism of the tearing instability (Furth et
al., 1963). Let us make use of the absolute system of units where the speed
of light c = 1. Besides, every coefficient of order unity will be set equal to
unity.

xF

F

d

L

v
v x

y

ε a a
0

y
B 0

y

Figure 11.3: The magnetic field lines and the velocity in the course of
the development of a tearing instability. The small arrows show velocity
directions. Forces are shown by thick empty arrows. ε0a is the internal
region thickness. The case ε0 < α is shown.

Let a small perturbation appear in the reconnecting current layer
(RCL). As a consequence of the magnetic field structure (namely, antipar-
allel directions of reconnecting components on either side of the neutral
plane), a driving force Fd of the instability arises, accelerating the plasma
along the x axis, i.e. along the width of the layer (see Figure 11.3). This
force corresponds to a simple fact:

parallel electric currents flowing inside the neutral layer attract each
other and tend to coalesce into separate current filaments.
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Thus the driving force of the instability generates plasma motions inside
the RCL, directed along the x axis, with a velocity v1x. As this takes place,
the surrounding plasma must, by virtue of the flow continuity, flow into the
internal region with a velocity v1y. As a consequence, the electric current js
arises, giving rise to the corresponding Lorentz force FLy, hindering the
plasma from flowing into the internal region:

js = σ v1y ε0B , FLy = js ε0B = σ v1y (ε0B)2.

Here we have taken into account that the reconnecting component of the
field at the boundary of the internal region is equal to Bx(y) = ε0B, where
ε0a is the thickness of the internal region.

The force FLy is directed against the plasma motion and is compa-
rable in magnitude with the driving force Fd of the instability.

Hence the power with which the driving force performs work on a unit
volume of the plasma is

P = v1yFLy = σ v 2
1y (ε0B)2. (11.31)

This power goes to acceleration of the plasma; that is why

P = K, (11.32)

where K is the kinetic energy acquired by the unit plasma volume in unit
time:

K = ωρ v 2
1x = ωρ

v 2
1y

(k ε0a)2
. (11.33)

Here use is made of the incompressibility condition div v = 0:

v1x =
v1y

k ε0a
.

On comparing (11.31) and (11.33), an expression for the thickness of the
internal dissipative region is found,

ε0 =
( ωρ

k2a2B2σ

)1/4
, (11.34)

which coincides with expression (11.9), obtained earlier from the analytical
solution.
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11.3.2 Dispersion equation for tearing instability

Let us now find the dispersion relations. In the dissipative region, where
the flows of plasma and field lines are relatively independent, the first ad-
dendum on the right-hand side of Ohm’s law

η j = E + v × B

dominates the second one, though these two are of the same order of mag-
nitude. What this means is that ε0a must be taken in such a way that

η j1 ∼ E1 . (11.35)

However the plasma and magnetic field line motions are not completely
independent, even in the internal dissipative region. The electric field per-
turbation E1 is related with that of the magnetic field perturbation B1
through

E1 ∼ ωB1y

k
.

Using the Maxwell’s equations

curl B =
4π

c
j and divB = 0 ,

we obtain

j1 ∼ B ′′
1

4πk
(11.36)

once ka < 1. Relations (11.35) and (11.36) give rise to

ωB1y

η
∼

B ′′
1y

4π
. (11.37)

Now the quantity B ′′
1y has to be evaluated. As a consequence of a partial

freezing-in, magnetic field deviations during the plasma motion along the
layer in a region with a thickness

aε̃ ∼ a2k ,

since aε̃λ ∼ a2. For
aε̃ > aε0 (11.38)

this gives the estimate

B ′′
1y ∼

B ′
1y

ε0a
∼ B1y

ε0a ε̃a
∼ B1y

ε0ka3 , (11.39)
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whereas for
aε̃ < aε0 (11.40)

one has

B ′′
1y ∼

B ′
1y

ε0a
∼ B1y

(ε0a)2
. (11.41)

It is a simple matter to see that the inequality (11.38) is equivalent to
the inequality (11.26) determining the region of short-wave perturbations,
while the inequality (11.40) is equivalent to (11.27) which corresponds to the
long-wave region. Substituting the relations (11.39) and (11.41) in (11.37),
with care taken of (11.34), leads to the dispersion relations:

ω5 =
η3B3

a10ρ

1
k2 (11.42)

for the case (11.38), and

ω3 =
ηB2

a2ρ
k2 (11.43)

for the case (11.40). Equations (11.42) and (11.43) are easily shown to be
equivalent, respectively, to Equations (11.23) and (11.25), obtained analyt-
ically in Section 11.2.

11.4 The stabilizing effect of transversal field

While describing the effect of a transversal magnetic field, attention will be
centred on the physical picture of the phenomenon. In this way we are able
to understand the stabilization mechanism and easily obtain the dispersion
relations for the tearing instability with a transversal field.

Given the transversal field, the plasma moves along the width of the
RCL, overcoming the braking influence of the transversal field as shown in
Figure 11.4. Taking this fact into account, we have instead of (11.32) to
write down

P = K + Π . (11.44)

The second term on the right is the work done in a unit of time against the
force FB⊥ related to the transversal field B⊥, and it is given by

Π = v1x FB⊥ . (11.45)

Here
FB⊥ = jB⊥B⊥ and jB⊥ = σ v1x B⊥ . (11.46)
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Figure 11.4: The magnetic field lines and velocities for the tearing instabil-
ity in the RCL with a transversal magnetic field.

Using Equations (11.45)–(11.46) and divv = 0, the power Π is evaluated
to be

Π = σB 2
⊥

v 2
1y

(k ε0a)2
. (11.47)

Substituting the relations (11.31), (11.33), and (11.46) in the relation (11.44)
gives

σ v 2
1y (ε0B)2 =

ωρ v 2
1y

(k ε0a)2
+ σ B 2

⊥
v 2
1y

(k ε0a)2
.

From this there immediately follows an estimate for the thickness of the
internal dissipative region with the transversal field at hand:

ε0 =
( ωρ

k2a2B2σ

)1/4
(

1 +
σB 2

⊥
ωρ

)1/4

(11.48)

or

ε0(ξ⊥) = ε0(0)
(

1 +
ξ2
⊥S2

p

)1/4

.

Here ξ⊥ = B⊥/B and the internal region thickness for B⊥ = 0 is designated
as ε0(0). Now ε0(ξ⊥) is implied in the expressions (11.36) to (11.41) by ε0.
Substituting (11.48) in (11.36)–(11.41) gives the dispersion relations:

ω5 =
η3B3

a10ρ

1
k2 − B 2

⊥
ρη

ω4

in the short-wave region
ε0 < α , (11.49)



284 Chapter 11. Tearing Instability

and

ω3 =
ηB2

a2ρ
k2 − B 2

⊥
ρ η

ω2

in the long-wave region
ε0 > α . (11.50)

Let us rewrite the same dispersion relations in the dimensionless form

p5 =
(

S

α

)2

− ξ 2
⊥S2p4 (11.51)

and
p3 = α2S2 − ξ 2

⊥S2p2 (11.52)

for the cases (11.49) and (11.50), respectively. It is easy to comprehend
that

the transversal component of magnetic field decreases the tearing
mode increment over the whole wave range and also decreases the
wavelength at which the increment peaks.

The rigorous analytic solution (Somov and Verneta, 1989) gives us the
dispersion relation

∆1/4
(

α2S2

p

)1/4(
1 − p3/2

αS
∆−1/2

)
− p α

(π

2

)1/2
= 0 , (11.53)

where

∆ =
(

1 +
ξ 2
⊥S2

p

)−1

. (11.54)

From Equation (11.53) the dispersion relations (11.51) and (11.52) follow,
given the conditions (11.49) and (11.50), respectively.

The stabilizing influence of the transversal field is demonstrated by Fig-
ure 11.5 on which the graphs of the instability increment ω τr dependence
on the wave length λ/a are presented for S = 108 and three values of the
transversal field: ξ⊥0 = 0 , ξ⊥1 = 10−4 , and ξ⊥2 = 10−3 . The solutions of
the asymptotical Equations (11.51) and (11.52) are shown by the straight
dotted lines, the solutions of the exact Equation (11.53) are shown by solid
curves. The figure shows that,

as the transversal magnetic field increases, the increment of the
tearing instability in the reconnecting current layer (RCL) decreases
and its maximum moves to the short-wave region.
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Figure 11.5: The dependence of the collisional tearing instability increment
on the wavelength and the transversal component of magnetic field.

Nishikawa and Sakai (1982) have numerically solved a set of eigenmode
equations in a RCL with the transversal magnetic field. The mode associ-
ated with magnetic island formation was investigated. It was found that
the transversal component strongly modifies this mode and has a significant
stabilizing effect on the collisional tearing mode.

11.5 Compressibility and a longitudinal field

11.5.1 Neutral current layers

Let us find the conditions under which compressibility of plasma should be
taken care of and show the effect of compressibility on the tearing instabil-
ity of the reconnecting current layer (RCL). For simplicity’s sake, we first
restrict our attention to the case By = B⊥ = 0 and Bz = B ‖ = 0.

During development of the tearing instability, the plasma starts moving
along the width of the layer as shown in Figure 11.3. Given the finite value
of the sound velocity, Vs, the plasma in the neighbourhood | δx | < Vs / ω
of the reconnection point is drawn into the motion in a characteristic time
of the instability growth ω−1. Provided Vs / ω > λ, the plasma may be
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considered incompressible. In the opposite case

Vs

ω
< λ (11.55)

the compressibility of the plasma must be accounted for: divv �= 0. In this
case the estimate

v1x

(Vs / ω)
∼ v1y

ε0a
(11.56)

holds, where ε0a is the internal region dimension.
Let us compare the work done by the driving instability force (Sec-

tion 11.3) in unit time on unit volume,

P ∼ σv 2
1y (ε0B)2 ,

with the kinetic energy acquired in unit time by the unit plasma volume
drawn into the motion along the RCL within the neighbourhood | δx | <
Vs/ω of the reconnection point,

K ∼ ωρ0 v 2
1x ∼ ωρ0

(
Vs

ω

1
ε0a

)2

v 2
1y .

Here relation (11.56) is used. Equating P and K gives an estimate for ε0:

ε0 ∼
(

ρ0V
2

s

ωa2σB2

)1/4

∼
(

1
ωτr

V 2
s

V 2
Ax

)1/4

, (11.57)

where VAx = Bx/
√

4πρ is the Alfvén speed.
Now substituting the quantity (11.57) for ε0 in formulae (11.37)–(11.41)

immediately results in the dispersion relation

ω ≈ 1
τr

V 2
Ax

V 2
s

.

Thus it is seen that

because of compressibility of the plasma, a new branch of the tearing
instability arises in the reconnecting current layer

in the long-wave region

λ > λ0 ≈ V s

ω
∼ 2πa S

(
VAx

V s

)−3

, (11.58)

which was absent for an incompressible plasma (ω → 0 for λ > λ0). Recall
that so far we have treated the case B⊥ = 0, B ‖ = 0, i.e. the magnetically
neutral current layer.
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11.5.2 Non-neutral current layers

In the context of the above treatment, the role of a longitudinal field Bz =
B ‖ �= 0 (along the electric current in the RCL) becomes clear. While com-
pressing a plasma with a longitudinal magnetic field which is in fact frozen
into the plasma, the work is to be done to compress the longitu-
dinal field (Somov and Titov, 1985b). Thus, given the longitudinal field,
the plasma pressure is supressed by the sum of the plasma pressure and
the magnetic one (connected with the longitudinal field). This leads to the
change

Vs →
(
V 2

s + V 2
A‖
)1/2

, (11.59)

where VA‖ = B ‖/
√

4πρ , which describes the stabilizing influence of the
longitudinal field. Once

B ‖ > Bx(a) , (11.60)

the instability caused by the compressibility becomes suppressed.
Note that the values obtained for the growth rate of the instability

are comparable with the inverse time of magnetic diffusion τ−1
r . Magnetic

diffusion, however, is neutralized by the plasma drift into the RCL (see
Section 3.5 in Somov, 1992) and the stationary zero configuration persists
for a time ts � τr. If the condition

ρout 
 ρin (11.61)

is satisfied, where ρout and ρin are the plasma densities inside and out-
side the layer, respectively, the plasma drift into the RCL cannot usually
suppress the tearing instability (see, however, Pollard and Taylor, 1979).
Hence the tearing instability of the RCL can play an essential role as a
universal dynamic instability (Somov and Verneta, 1993).

The rigorous analytic solution of the problem concerning the compress-
ibility effect on the tearing mode development was given by Verneta and
Somov (1993).

In actual RCLs, the plasma continuously flows into the layer through
its wide surfaces and flows out through the narrow side boundaries (see
Figure 6.3).

The fast outflow of plasmas from the reconnecting current layer can
be of principal importance for its tearing stability

(Syrovatskii, 1981). The accelerating outflow along the main (Bx) magnetic
field, which is present in the configuration with the velocity stagnation
point, causes a substantial decrease in the magnitude of the linear growth
rate and, for some parameter ranges, stabilization (Ip and Sonnerup, 1996).
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11.6 The kinetic approach

11.6.1 The tearing instability of neutral layer

We now desribe the tearing instability in the framework of the collisionless
plasma model, starting from the Vlasov equation (see vol. 1, Section 3.1.2)

∂fk

∂t
+ v

∂fk

∂r
+

Fk

mk

∂fk

∂v
= 0 . (11.62)

Here

Fk = qk

(
E +

1
c

v × B
)

and symbols k = e, i denote electrons and ions, respectively.
As equilibrium distribution functions describing the reconnecting cur-

rent layer (RCL), it is appropriate to choose (Harris, 1962)

f
(0)

k (y) = n0 exp
{

− 1
kBTk

[
1
2

mkv2 − ϑk

(
mkvz +

1
c

qkA(0)
)]}

.

(11.63)
The notation is conventional. Here the vector potential A = ezA for a two-
dimensional magnetic field B = curl A is introduced. The scalar potential
is excluded by choosing ϑi/T i = −ϑe/Te. ϑe and ϑi are the flow velocities
of electrons and ions.

Such distribution functions (as can be shown using Maxwell’s equations)
specify a current layer with the following characteristics:
(a) the equilibrium magnetic field

B = B0 (y) ex ,

where

B0 (y) = B0 tanh
y

a
(11.64)

on choosing
A(0) (y) = const × ln cosh

y

a
;

(b) the plasma density in the RCL

n(0) (y) = n0 cosh−2 y

a
, (11.65)

where

n0 =
1

kB(Te + T i)
B 2

0

8π
;
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(c) the RCL half-thickness

a =
2ckB(Te + T i)
eB0 (ϑi − ϑe)

. (11.66)

Therefore a magnetically-neutral one-dimemsional current layer of the Har-
ris type is considered.

Near the plane y = 0 where B0 = 0, particle motion is almost free inside
a non-adiabatic region of thickness 2dk (cf. definition (9.28)). Outside this
region the particles are magnetized. The quantity dk can be evaluated as
follows (see also Section 9.1). The local Larmor radius of a particle at the
boundary of the region is

r(k)
L

(dk) =
VTk mk c

qk B0 (dk/a)
.

Equating it to the internal dissipative region thickness

r(k)
L

(dk) ≈ dk ,

we find

dk ≈
√

ar
(k)
L ,

(11.67)

where r(k)
L

is the Larmor radius in the B0 field. Thus the motion of particles
of kind k is assumed to be free inside the region | y | < dk, whereas they are
magnetized once | y | > dk.

� � �

Equations (11.62) will be solved in a linear approximation. The Fourier
components of the perturbations are of the form

f (1)(r, t) = f (1)(y) exp (ωt + ikx) . (11.68)

Recall that the case k ‖ B0 is considered. The initial Equations (11.62)
give, for perturbations,

(ω + ikvx) f
(1)

k = − 1
mk

F (1)
k · ∂f

(0)
k

∂v
.

These equations determine the approximate form of the perturbed distri-
bution function, the connection between f

(1)
k , E (1), and A(1):

f
(1)

k =
qkf

(0)
k

kBTk

{
ϑkA(1) + E (1) vz

ω + ikvx

}
. (11.69)
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The first term on the right-hand side represents the influence of
the magnetic field perturbation and the second one represents the
interaction between the electric field of a wave and particles.

The latter contribution is negligible outside the RCL as the particle motion
becomes adiabatic and there is no electric field along the magnetic field
lines.

From Maxwell’s equations, the perturbation electric field

E (1) = −1
c

ωA(1) .

(11.70)

Final results show that the instability growth rate complies with the con-
dition

ω < k VTk , (11.71)

where (different from the mean thermal velocity introduced in vol. 1, Sec-
tion 8.1.4)

VTk =
√

2k Tk

mk
. (11.72)

Therefore we consider a low-frequency mode of the instability. This is the
reason for assuming that

1
vx − i (ω/k)

≈ iπ δ (vx) + Vp
(

1
vx

)
(11.73)

(the Sokhotsky formula). Here Vp is the principal value of an integral (see
Vladimirov, 1971, Chapter 2, § 7).

� � �

If W is the total kinetic energy of the particles in the perturbation, then

dW

dt
=
∑

k

qk

∫
E (1) vz f

(1)
k d 3v dy . (11.74)

On the other hand, the energy conservation law gives

dW

dt
= − 1

8π

d

dt

∫ (
B (1)

)2
dy . (11.75)

Substituting (11.69) and (11.73) in formula (11.74), we get

dW

dt
=

π

k

∑
k

qk

kBTk

+dk∫
−dk

[ ∫
f

(0)
k δ (vx)

(
E (1) vz

)2
d 3 v

]
dy −
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− 1
4π

d

dt

+∞∫
−∞

n(y)
n(0)

(
A(1)

a

)2

dy
def=
∑

k

d

dt
W r

k − d

dt
W m . (11.76)

Here dW r
k /dt is the growth rate of the kinetic energy of the resonant parti-

cles of kind k in the region | y | < dk, whereas dW m/dt is the rate of energy
decrease of the remaining particles.

The electron resonance term is (r (i)
L

/r (e)
L

)1/2 times greater than the
ion one. Taking this fact into account, we find from formulae (11.75)
and (11.76) for electrons (k = e)

W r = ω

+de∫
−de

[∫
f (0)
e δ (vx)

∣∣∣∣(A(1)
)2

vz

∣∣∣∣ 2 d 3v

]
dy =

=
kBTe

8πe2

+∞∫
−∞

{∣∣∣∣ ∂A(1)

∂y

∣∣∣∣ 2 +
∣∣∣A(1)

∣∣∣ 2(k2 − 2
a2 cosh2(y/a)

)}
dy =

= W m − 1
8π

∫ (
B (1)

)2
dy . (11.77)

From this it follows that the energy transfer to electrons exists in the region

ka < 1 or λ > 2πa (11.78)

(cf. condition (11.29)). This process constitutes the development of the
electron mode of the tearing instability.

The electron mode of the teraing instability arises from the coupling
of a negative energy perturbation (associated with filamentation
of the original magnetically-neutral current layer) to the electron
energization due to Landau resonance

(see vol. 1, Section 7.1.2).
Formula (11.77) gives us the following estimate for the growth rate of

the electron tearing instability:

ω ≈
(

a

r
(e)
L

)2
de

VTe
. (11.79)

Coppi et al. (1966) first proposed the electron tearing instability as a mech-
anism of explosive reconnection in the Earth magnetotail during substorm
break-up (Section 11.6.3).
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11.6.2 Stabilization by the transversal field

As we saw above, Landau resonance of electrons inside the neutral cur-
rent layer was proposed to provide the appropriate collisionless dissipation
necessary for the spontaneous reconnection in the geomagnetic tail during
a substorm (Coppi et al., 1966). However Schindler (1974) showed that
nonzero magnetic field component B⊥ normal to the current layer magne-
tizes the electrons and restricts them from being resonant. As a result,
the required dissipation relies upon the ions that are still unmagnetized.
So Schindler proposed the so called ion tearing instability, in which the
dissipation is due to ion Landau resonance. In this model the electrons act
only as a charge neutralizing background.

Galeev and Zelenyi (1975, 1976) found, however, that the magnetized
electrons can change the basic character of the tearing perturbation, thus
making the ion energization invalid as a driver for the instability. Therefore
the kinetic tearing instability can be suppressed by the transversal (i.e.
perpendicular to the current layer plane) magnetic field. Let us consider
this effect in some detail.

(a) We begin by considering sufficiently small values of the transversal
field B⊥, for which the inequality

ω(e)
L

=
eB⊥
mec

< ω (11.80)

holds. Here ω(e)
L

is the electron gyro-frequency in the transversal magnetic
field B⊥; recall that ω is the instability increment.

In this case electrons in the region | y | < de, where the reconnecting
magnetic field components tend to zero, are in Landau resonance with
the electric field perturbation (11.70). As a consequence, the electron
tearing mode develops in the reconnecting current layer (see above).

(b) As the transversal field increases, the Larmor frequency ω(e)
L

in-
creases as well. When ω(e)

L
> ω the electron resonance with the electric

field perturbation breaks down and the electron mode of the instability
becomes stabilized (Schindler, 1974). This takes place for

B⊥
B0

= ξ⊥ >

(
r(e)
L

a

)5/2(
1 +

T i

Te

)
. (11.81)

If the electron mode of the tearing is stabilized, there remains the pos-
sibility for ions to become the resonant particles, gaining energy. However
electron gyration also stabilizes the ion mode up to the values (Galeev and
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Zelenyi, 1976):

B⊥
B0

<

(
r(e)
L

a

)1/4(
1 +

T i

Te

)−1/2

. (11.82)

Thus there exists a ‘split’ – a range of values of the magnetic field transversal
component(

r(e)
L

a

)5/2(
1 +

T i

Te

)
<

B⊥
B0

= ξ⊥ <

(
r(e)
L

a

)1/4(
1 +

T i

Te

)−1/2

. (11.83)

Here the linear kinetic tearing instability becomes suppressed
(Galeev and Zelenyi, 1976). Somov and Verneta (1988) have shown that

the transversal magnetic field effect ensures the tearing stability of
high-temperature reconnecting turbulent-current layers

during the ‘main’ or ‘hot’ phase of solar flares (Somov and Verneta, 1993;
see also Section 3.5 in Somov, 1992).

11.6.3 The tearing instability of the geomagnetic tail

Although the tearing instability was first proposed as a clue mechanism of
magnetospheric substorms many years ago (Coppi et al., 1966), its prime
role among other substorm processes was persistently challenged. The main
theoretical reason was the proof by Lembege and Pellat (1982) that

the sign of the energy of the tearing mode perturbations can be
changed from negative to positive one due to the drift motion of
magnetized electrons inside the reconnecting current layer (RCL.

This conclusion is similar to that one of Galeev and Zelenyi (1976) but
Lembege and Pellat showed in particularly that this effect stabilizes the
tearing instability under the condition

ξ⊥ =
B⊥
B0

<
π

4
ka (11.84)

regardless the temperature ratio Te/T i. Here a corresponds to the current-
layer half-thickness according to the Harris formula (11.64).

Condition (11.84) shows that in the case of adiabatic electrons the tear-
ing instability can be stabilized only for very short wavelengths

λ < λmin =
π2

2
a

ξ⊥
. (11.85)
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They are too short to be relevant to the underlying spontaneous reconnec-
tion process in the geomagnetic tail current layer. In fact, condition (11.85)
coincides with that of the WKB approximation in the stability analysis and
as a result has made the linear tearing instability as the substorm mecha-
nism suspect.

There were many attempts to restore necessarily the linear ion insta-
bility as a clue substorm process. All of them look, however, pretty incon-
sistent with a general representation of the substorm as a relatively fast
unloading process in the tail of the magnetosphere. The substorm is usu-
ally preceded and prepared by the quasi-static changes in the tail during
the growth phase (Nagai et al., 1998; Kokubun and Kamide, 1998).

From a consideration of observational constraints on the onset mecha-
nism Sitnov et al. (1997), Sitnov and Sharma (1998) concluded that

the tearing instability must have a considerable initial stage when
the equilibrium magnetic field topology is still conserved.

Moreover the instability is shown to have no linear stage. Instead, either the
explicitly nonlinear or pseudolinear instability of negative energy eigenmode
can develope. So the unavoidable nonlinearity is a key element of the
substorm.

Sitnov et al. use the theory of catastrophes (Haken, 1978; Gucken-
heimer and Holmes, 1983) to consider a substorm as backward bifurcation
in an open nonlinear system. In general, the theory of catastrophes is widely
accepted as an appropriate mathematical tool to describe abrupt changes
in a low-dimensional system driven by quasi-stationary evolution of a set
of control parameters. The theory can be applied if we treat the tearing
instability as a process for the growth of a large-scale one-mode perturba-
tion.

NI

MS

LS

U

A

Figure 11.6: The effective poten-
tial U as a function of the state
parameter A.

In Figure 11.6 the effective potential U of the geomagnetic tail current
layer near the marginal state of a tearing instability is shown as a function
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of the state parameter A. A process of quasi-stationary transformation of
the potential minimum (LS) into the point of inflection (MS) is shown by
the dashed arrow.

Being located near the bottom of the potential U well before the catas-
trophe, the system is linearly stable (LS) because of positive energy of
small perturbations from the minimum. The transition to instability is pos-
sible only at the moment of the catastrophe or before the catastrophe under
the influence of a finite amplitude perturbation (the large solid arrow) nec-
essary to surmount the potential barrier. In both cases the destabilization
of the system proves to be nonlinear.

Many difficulties of the substorm theory have arisen presumably not
from the incorrect physics involved but rather from irrelevant mathemati-
cal treatment of the instability problem. Suitable treatment of the tearing
instability as a backward bifurcation can resolve some long-standing prob-
lems in the theory including the consistent description of both triggered and
spontaneous onsets. Much more can be done due to further elaboration of
this promising approach to the magnetospheric substorm mechanism.



Chapter 12

Magnetic Reconnection
and Turbulence

The open issues focused on in this Chapter presumably will determine
the nearest future as well as the most interesting perspectives of plasma
astrophysics.

12.1 Reconnection and magnetic helicity

12.1.1 General properties of complex MHD systems

We are going to consider some properties of the reconnection process in
complex magnetic field configurations containing many places (points or
lines) where reconnection occurs. Such a situation frequently appears in
space plasmas, for example in a set of closely packed flux tubes suggested
by Parker (1972). The tubes tend to form many reconnecting current layers
(RCLs) at their interfaces. This may be the case of active regions on the
Sun when the field-line footpoint motions are slow enough to consider the
evolution of the coronal magnetic field as a series of equilibria, but fast
enough to explain coronal heating (see Sections 12.2.1 and 12.4.2).

Another example of a similar complex structure is the ‘spaghetti’ model
of solar flares suggested by de Jager (1986) or the ‘avalanche’ model of
them (Parker, 1988; Lu and Hamilton, 1991; Zirker and Cleveland, 1993).
The last assumes that the energy release process in flares can be under-
stood as avalanches of many small reconnection events. LaRosa and
Moore (1993) propose that the large production rate of energetic electrons
in solar flares (Section 9.1) is achieved through MHD turbulent cascade (see

297
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vol. 1, Section 7.2.3) of the bulk kinetic energy of the outflows from many
separate reconnecting current layers (see also Antonucci et al., 1996).

How can we estimate the rate of magnetic energy release due to re-
connection in such a very complex system of flux tubes? – The inherent
complexity of the field configuration which can be used as a model does not
allow any optimism in an attempt to solve the dissipative MHD problem
numerically.

An alternative approach to that of solving the MHD equations as
they stand is to reformulate them in terms of invariant quantities.

As we have seen in vol. 1, Section 9.4, the mass, momentum and energy
are conserving quantities and can be used to construct invariants. For
example, the total energy of a system before reconnection is equal to the
total energy after reconnection plus dissipation. A less familiar invariant
in ideal MHD is the magnetic helicity or, more exactly, the global magnetic
helicity (see Exercise 12.1):

H =
∫
V

A · B d 3r . (12.1)

Here A is a vector potential for field B, and V is the plasma volume bounded
by a magnetic surface S, i.e.

B · n
∣∣

S
= 0 . (12.2)

Woltjer (1958) showed that

in ideal magnetohydrodynamic motions the global magnetic helicity
H is conserved in any closed magnetic flux tube.

Woltjer’s theorem may be extended to open-end flux tubes as well, pro-
vided the ends do not suffer any motion. In order to explain the observed
toroidal field reversal in reversed-field pinches, Taylor (1974) generalized
the ideal MHD result derived by Woltjer to a class of dissipative motions.
Woltjer’s theorem can also be used to show that the fields which minimize
the magnetic energy subject to given initial and boundary conditions are
in general force-free fields (Exercise 12.2).

The magnetic helicity, defined by definition (12.1), provides a measure
of the linkage or knottedness of field lines (e.g., Berger, 1988a and 1988b).
The helicity is a topological property of a magnetic field (see, for
example, Exercise 12.1). In ideal MHD there is no reconnection. For this
reason, the magnetic helicity is conserved.

If we do not have ideal MHD there is some reconnection, and helicity is
not conserved. However
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reconnection at a large magnetic Reynolds number generally con-
serves the global magnetic helicity to a great extent.

In laboratory (Taylor, 1974, 1986), solar (Berger, 1984) and magnetospheric
(Wright and Berger, 1989) plasmas the fraction of helicity dissipated is
normally very small.

The approximate conservation of magnetic helicity has been success-
ful in calculating heating rates in the solar corona (Section 12.2.1). The
main idea here is that the magnetic field tends to minimize its energy,
subject to the constraint that its topological characteristic – helicity – is
fixed. Reconnection gives the fastest way for this relaxation. The magnetic
configuration in the region which is subject to reconnection should relax
towards a constant-α force-free field. Such a field is also called the linear
force-free field. Taylor (1974) used this conjecture – Taylor’s hypothesis –
to predict the formation of a Lundquist field in actively reconnecting fusion
devices.

Interestingly, however, it is observed in some laboratory experiments
that the relaxation can take place without the conservation of global mag-
netic helicity. Presumably such unexpected loss of helicity may be related
to a self-organization effect in a reversed field plasma (Hirano et al., 1997).
Even if the value of H is null at the initial stage, the plasma relaxes to a
certain field configuration by producing the toroidal magnetic field and H.

12.1.2 Two types of MHD turbulence

Turbulence in ordinary fluids has great consequences: it changes the proper-
ties of flow and changes large-scale flow pattern, even under time averaging.
Turbulence introduses eddy diffusion and eddy viscosity, and it increases
momentum coupling and drag forces by orders of magnitude (see Mathieu
and Scott, 2000; Pope, 2000). It should obviously have a wide variety of
consequences in magnetized cosmic plasmas, even in the MHD approxima-
tion.

There are at least two distinct types of MHD driven turbulence. First,
when the external large-scale magnetic field is strong, the resulting
turbulence can be described as the nonlinear interactions of Alfvén waves
(e.g., Goldreich and Sridhar, 1997). Early works by Iroshnikov (1964) and
Kraichnan (1965) obtained a k−3/2 spectrum for both magnetic energy and
kinetic energy in the presence of a dynamically significant magnetic field.

However these works were based on the assumption of isotropy in
wavenumber space (see vol. 1, Section 7.2.2), which is difficult to justify
unless the magnetic field is very weak. Goldreich and Sridhar (1997) as-
sume a critical level of anysotropy, such that magnetic and hydrodynamic
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forces are comparable, and predict a k−5/3 spectrum for strong external
field turbulence. Solar wind observations (see Leamon et al., 1998), which
are well within the strong magnetized regime, and numerical studies (Cho
and Vishniac, 2000a) seem to support the Kolmogorov type scaling law.

Second, when the external magnetic field is weak, the MHD turbu-
lence near the scale of the largest energy-containing eddies or vortices will
be more or less like ordinary hydrodynamic turbulence with a small mag-
netic back reaction. In this regime, the turbulent eddy turnover time at
the large scale L/V is less than the Alfvénic time of the scale L/B. Here
V and B are rms velocity and magnetic field strength divided by (4πρ)1/2

respectively, and L is the scale of energy injection (recall that we consider
driven turbulence) or the largest energy-containing eddies.

Various aspects of the weak external field MHD turbulence have been
studied both theoretically and numerically. Since large-scale magnetic fields
are observed in almost all astrophysical objects, the generation and main-
tenance of such fields is one of the most important issues in this regime. In
the mean field dynamo theory (Moffatt, 1978; Parker, 1979),

turbulent motions at small scales are biased to create an electromo-
tive force along the direction of the large-scale magnetic field.

This effect, called the α-effect, works to amplify and maintain large-scale
magnetic fields.

Whether or not the α-effect actually works depends on the structure
of the MHD turbulence, especially on the mobility of the field lines. For
example, when equipartition between magnetic and kinetic energy densities
occurs at any scale larger than the dissipative scale, the mobility of the field
lines and the α-effect may be greatly reduced.

In the case of hydrodynamical turbulence, the energy cascades to smaller
scales (see vol. 1, Figure 7.3). If we introduce an uniform weak magnetic
field, turbulent motions will stretch the magnetic field lines and divert
energy to the small-scale magnetic field.

As the field lines are stretched, the magnetic energy density in-
creases rapidly, untill the generation of small-scale magnetic struc-
tures is balanced by the magnetic back reaction

at some scale between L and the dissipation scale lmin.
This will happen when the magnetic and kinetic energy densities asso-

ciated with a scale l (l > lmin) are comparable so the Lorentz forces resist
further stretching at or below that scale. However stretching at scales
larger than l is still possible, and the magnetic energy density will continue
to grow if l (l < L) can increase. Eventually, a final stationary state will
be reached.
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What is the scale of energy equipartition? What is the magnetic field
structure? – The answer to the later question depends on the nature of
diffusive processes acting on the magnetic field.

Suppose that magnetic field lines are unable to smooth the tangled fields
at small scales. Then, as a result of the turbulent energy cascade and the
subsequent stretching of field lines,

magnetic fields may have thin fibril structures with many polarity
reversals within the energy equipartition scale l.

Consequently, magnetic structures on the equipartition scale are highly
elongated along the external magnetic field direction (Batchelor, 1950).
This is the kind of picture one obtains by considering passive advection of
magnetic fields in a chaotic flow (for a review see Ott, 1998).

On the other hand, if we assume that MHD turbulence is always capable
of relaxing tangled field lines at small scales, then we expect eddies at the
final equipartition scale to be nearly isotropic (Cho and Vishniac, 2000b).

12.1.3 Helical scaling in MHD turbulence

The turbulent flows and tangled magnetic fields seem to be observed, for
example, in the Earth’s plasma sheet (see Borovsky and Furnsten, 2003).
Here the turbulence appears to be a turbulence of eddies rather than a
turbulence of Alfvén or other MHD waves. In this dynamical respect, it is
similar to the turbulence observed in the solar wind. As for dissipation, two
mechanisms appear to be important. One of them is electric coupling of
the turbulent flows to the resistive ionosphere. The second one is a direct
cascade of energy in the turbulence to small scales (see vol. 1, Section 7.2.2)
where internal dissipation should occur at non-MHD scales.

The possibility of the self-similar cascade transfer of the hydrodynamic
helicity flux over the spectrum was first introduced by Brissaud et al. (1973).
The following two scenarios were analyzed from the standpoint of the di-
mensionality method: (a) the simultaneous transfer of energy and helicity
with constant fluxes over the spectra of both parameters, (b) a constant
helicity flux determining the energy distribution.

The influence of the hydrodynamic helicity is obvious from a physical
standpoint:

two helical vortices with strong axial motion in one direction have
a tendency to merge because of the Bernoulli effect.

In other words, helicity should result in redistribution of the chaotic energy.
Moreover a helicity flux that characterizes the variation of the mean helicity
should also appear. Above all, helicity has an effect on the spectral features



302 Chapter 12. Reconnection and Turbulence

of turbulence. As for the spectra, variations occur in incompressible, com-
pressible, and stratified media, as shown by Moiseev and Chkhetiani (1996).
One of the tendencies inherent in helical media is the energy transfer to
the long-wavelength region due to the tendency of helical vortices to
merge.

According to Moiseev and Chkhetiani (1996), the mechanism that gen-
erates the mean hydrodynamic helicity leads to a second cascade range in
addition to the Kolmogorov range (vol. 1, Section 7.2.2). The constant that
does not depend on the scale of the helicity here is its flux. Nevertheless
this requirement, like the requirement that the energy flux F be constant
in the Kolmogorov range, is not inflexible. The spectral characteristics un-
dergo significant changes. They are associated, as we understand, with at
least a partial inverse cascade into the large-scale region.

There is a broad class of effects that generate both hydrodynamic helic-
ity itself and large helicity fluctuations under terrestrial and astrophysical
conditions. In particular, the simultaneous presence of such factors as tem-
perature and density gradients, shearing flows, and nonuniform rotation is
sufficient.

Like the direct cascade in the Kolmogorov turbulence, the inverse cas-
cade is accomplished by nonlinear interactions, suggesting that nonlin-
earity is important. However a spectral type of inverse cascade is the
strongly nonlocal inverse cascade process, which is usually referred to as
the α-effect (Moffatt, 1978; Krause and Rädler, 1980). This effect exists
already in linear kinematic problems.

A strong indication, that the α-effect is responsible for large-scale mag-
netic field generation, comes from detailed analysis of three-dimensional
simulations of forced MHD turbulence (Brandenburg, 2001). This may
seem rather surprising at the first glance, if one pictures large-scale field
generation as the result of an inverse cascade process, that (Brandenburg
and Subramanian, 2000)

the exact type of nonlinearity in the MHD equations is unessential
as far as the nature of large-scale field generation is concerned.

However, magnetic helicity can only change on a resistive timescale. So the
time it takes to organize the field into large scales increases with magnetic
Reynolds number.

12.1.4 Large-scale solar dynamo

Magnetic activity in the Sun occurs on a wide range of spatial and tem-
poral scales. Small-scale photospheric fields are highly intermittent (see
Section 12.4). The large-scale magnetic fields display remarkably ordered
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dynamics, involving cycles of activity with well-defined rules. There is an
eleven year period for sunspot activity. At the beginning of a cycle, sunspot
first appear in pairs at midlatitudes. Then subsequently the sites of emer-
gence migrate towards the equator over the course of the cycle.

The magnetic orientation of the sunspot pairs reverses from one cycle
to the next. So the full magnetic cycle has a mean period of 22 years. The
exact period of magnetic activity varies slightly and is a useful measure
of the strength of solar activity, with shorter periods corresponding to a
more active Sun. The magnetic cycle is also chaotically modulated on a
longer timescales and exhibits intervals of reduced sunspot activity known
as grand minima with a characteristic period of about 2000 years.

Such organized dynamics on time-scales that are short compared to
diffusive times requires the systematic regeneration of magnetic fields by
the MHD dynamo.

The smaller scale photospheric field is believed to result from local dy-
namo action in the convective flows at or near the solar surface (e.g., Cat-
taneo, 1999; see also Section 13.5). It is likely that the large-scale (global)
magnetic field is generated deeper within the Sun, probably at the interface
between the solar convective zone and the radiative zone. The sunspot ob-
servations are most straightforwardly interpreted as the surface emergence
of a large-scale toroidal field. The generation of such a field relies on the
presence of differential rotation which stretches out poloidal field lines into
strong regular toroidal field (see vol. 1, Section 20.1.5).

Helioseismology, which can assess the internal differential rotation by
using frequency splitting of acoustic modes, has revealed the existence of a
large radial shear below the convective zone (see vol. 1, Figure 20.4), now
known as the solar tachocline. Here the angular velocity profile changes
from being largely constant on radial lines in the convective zone to nearly
solid body rotation in the radiative interior. This radial shear layer is
certainly suitable for generating a strong toroidal field from any poloidal
field there.

Parker (1993) postulated that the toroidal field results from the action
of the shear on any poloidal component of the field in the tachocline region,
while the weaker poloidal field is generated throughout the convection zone
by the action of cyclonic (helical) turbulence. The key to this model is that

the transport of magnetic fields in the convective zone is enhanced
relative to that in the stable layer as a result of the turbulent con-
vective flows.

The poloidal magnetic flux that is generated in the convective zone is read-
ily transported by the enhanced diffusivity there, and some of it is then
expelled into the region below.
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However strong toroidal fields produced in the tachocline are not trans-
ported away from their region of generation because of the relatively low
turbulent diffusivity there. Hence the strong toroidal field may be stored
successfully in the radiative region without significantly modifying the con-
vection in the separate layer above. Recent dynamo models have built on
this interface concept.

12.2 Coronal heating and flares

12.2.1 Coronal heating in solar active regions

Heyvaerts and Priest (1984), Browning (1988) developed the model of cur-
rent dissipation by reconnection, adapting Taylor’s hypothesis to the con-
ditions in a solar active region. They assumed that at any time the most
relaxed accessible magnetic configuration is a linear force-free field which
can be determined from the evolution of magnetic helicity. By so doing,
Heyvaerts and Priest illustrated the role of the velocity v of photospheric
motions in coronal heating. No heating is produced if these motions are
very slow, and negligible heating is also produced when they are very fast.
So

coronal heating presumably results from photospheric motions
which build up magnetic stresses in the corona at a rate compa-
rable to that at which reconnection relaxes them.

The corresponding heating rate can be estimated in order of magnitude by:

F ≈ B2

4π
v

(
lb

lb + lv

) (
τd v

lb

)
, (12.3)

where τd is the effective dissipative time, lb and lv are scale lengths for the
magnetic field and velocity at the boundary. (Terms in brackets are limiting
factors smaller than 1.) The results showed that a substantial contribution
to coronal heating can come from current dissipation by reconnection.

Reconnection with a small magnetic Reynolds number can produce
significant dissipation of helicity, of course.

Wright and Berger (1991) proved that helicity dissipation in two-dimentional
configurations is associated with the retention of some of the inflowing mag-
netic flux by the reconnection region R r. When the reconnection site is a
simple Ohmic conductor, all the field parallel to the reconnection line (the
longitudinal component of magnetic field) that is swept into the region R r
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is retained (Somov and Titov, 1985a and 1985b). In contrast, the inflow-
ing magnetic field perpendicular to the line is annihilated. Wright and
Berger (1991) relate the amount of helicity dissipation to the retained mag-
netic flux.

12.2.2 Helicity and reconnection in solar flares

Flares in a solar or stellar atmosphere predominantly arise from the re-
lease of coronal magnetic energy. Since magnetic field lines may have fixed
endpoints in the photosphere, observations of photospheric quantities such
as shear and twist become important diagnostics for energy storage in the
corona.

The magnetic energy of an equilibrium field in the corona can be related
to measures of its net shear and twist. For example,

the magnetic energy of a linear force-free field is proportional to its
magnetic helicity

(see Exercise 12.2). Berger (1988b) presented a formula for the energy
of a non-linear force-free field in terms of linking field lines and electric
currents. This allows us to partition the magnetic energy among different
current sources in a well-defined way. For example, energy due to reconnect-
ing current layers (RCLs) may be compared to energy due to field-aligned
currents (see Chapter 14).

Pre-flare magnetic fields are often modeled as a twisted flux tube asso-
ciated with a solar prominence. Twisting can be introduced either by pho-
tospheric twisting flows (presumably due to Coriolis forces) at the locations
where the base of the arch enters the photosphere (Gold and Hoyle, 1960),
or by flux cancellation, i.e. by the shear flows along the photospheric neutral
line and the converging flows in direction to the neutral line (e.g., Somov
et al., 2002a).

If one assumes that the magnetic field of a pre-flare prominence can be
modeled as a flux tube which is uniformly twisted and force-free, then it
is possible to compute a relative energy, for example, the energy difference
between a twisted arch and a similar arch described by a potential field.
However in order to make realistic estimates of the energy available from
a twisted tube for a flare, one must address the issue of the post-flare
magnetic configuration. If it is assumed that the total helicity is conserved,
it might be well that a linear force-free field, rather than a potential field,
represents the post-flare configuration of the flux tube.

In general, estimates of the energy available in terms of the topological
complexity of the magnetic field have been made by Berger (1994). The
argument that the post-flare configuration should be a linear force-free field
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is based on the work of Woltjer and requires that the Taylor conjecture be
true (Section 12.1). The key point is that, in deriving the result that a
linear force-free field is the lowest energy state that can reach when helicity
is conserved, Woltier used the approximation of ideal MHD. But this means
that

the constant α or linear force-free state is topologically inaccessible
from most initial configurations of a magnetic field.

While Taylor’s conjecture, that the global helicity is conserved while finite
diffusivity effects are invoked to allow the field to relax to a linear one,
gives one way out of this conundrum, it is not entirely satisfactory from a
theoretical point of view (Marsh, 1996).

It is believed that the excess energy, which is the energy difference
between the contained energy and the minimum energy predicted by the
Taylor hypothesis, is more rapidly dissipated than the magnetic he-
licity. It is also believed that reconnection may lead to the fast MHD
relaxation process to the minimum energy state, creating flares. However
this theoretical preposition should be subject to careful observational ex-
amination.

In principle, there may be an application in observational models of the
field structure of an active region with vector magnetogram data supplying
information on the force-free field parameter α. This would provide a check
on the model’s insight as to the true topology of the field.

Using vector magnetograms and X-ray morfology, Pevtsov et al. (1996)
determine the helicity density of the magnetic field in active region NOAA
7154 during 1992 May 5–12. The observations show that a long, twisted
X-ray structure retained the same helicity density as the two shorter struc-
tures, but its greater length implies a higher coronal twist. The measured
length and α value combine to imply a twist that exceeds the threshold for
the MHD kink instability. It appears that such simple models, which have
found that the kink instability does not lead to the global dissipation, do
not adequately address the physical processes that govern coronal fields.

Numerical integration of the 3D dissipative MHD equations, in those the
pressure gradient force and the density variation are neglected, shows that
magnetic reconnection driven by the resistive tearing instability growing on
the magnetic shear inversion layer can cause the spontaneous formation of
sigmoidal structure (Kusano, 2005). This process could be understood as a
manifestation of the minimum energy state, which has the excess magnetic
helicity compared to the bifurcation criterion for the linear force-free field
(Taylor, 1974). It is also numerically demonstrated that the formation of
the sigmoids can be followed by an explosive energy liberation.
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12.3 Stochastic acceleration in solar flares

Modern observations of solar energetic particles (SEPs) and hard electro-
magnetic radiations produced by solar flares indicate that stochastic accel-
eration of charged particles by waves or wave turbulence, a second-order
Fermi-type acceleration mechanism (see vol. 1, Section 7.2), may play an
important role in understanding the energy release processes and the con-
sequent plasma heating and particle acceleration. At first, this theory was
applied to the acceleration of nonthermal electrons which are responsible for
the microwave and hard X-ray emissions and for the type III radio bursts
during the impulsive phase of solar flares.

12.3.1 Stochastic acceleration of electrons

LaRosa et al. (1996), Miller et al. (1996) presented a model for the ac-
celeration of electrons from thermal to relativistic energies in solar flares.
They assume that fast outflows from the sites of reconnection generate a
cascading MHD turbulence. The ratio of the gas pressure to the magnetic
one is presumably small in this cascade. Thus the MHD turbulence has a
small parameter β (our parameter γ2) and mainly comprises of two low-
amplitude wave modes: (a) Alfvén waves and (b) fast magnetoacoustic
waves (see vol. 1, Section 15.2). The authors do not consider a possible role
of slow magnetoacoustic waves in the acceleration of protons.

LaRosa et al. assume that in the reconnection-driven turbulence there
is an equipartition between these two modes. About half of the energy
of the turbulence resides in Alfvén waves and about half in fast magneto-
acoustic waves (FMW). The threshold speed of the resonance determines
the selectivity of the wave-particle interaction. Assuming B(0) ≈ 500 G,
T (0) ≈ 3 × 106 K, and n(0) ≈ 1010 cm−3, they found that the Alfvén
speed VA ≈ 0.036 c, the electron thermal speed VTe ≈ 0.032 c, and the
proton thermal speed VTe ≈ 7.4 × 10−4 c. Therefore the threshold speed is
far in the tail of the proton distribution, and a negligible number of protons
could be accelerated by FMW or Alfvén waves. Consequently protons or
other ions are a negligible dissipation source for these waves, but not for
slow magnetoacoustic waves (SMW) ignored by LaRosa et al.

On the other hand, VA is only slightly above VTe, and a significant
number of the ambient electrons can resonate with the waves. Thus FMW
almost exclusively accelerate electrons under the solar flare conditions
accepted above. (They strongly differ from the conditions typical for the
model of super-hot turbulent-current layers considered in Chapter 7.) The
process under consideration could be called a small-amplitude Fermi accel-
eration or a resonant Fermi acceleration of second order (Miller et al., 1996)
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to denote the resonant character of the wave-particle interaction.

If we can ignore the gyroresonant part of the interaction, then only
the parallel energy would systematically increase,

leading to a velocity-space anisotropy in the electron distribution function.
So, beyond the main question of the origin and actual properties of the

turbulence under consideration, an interesting question challenging electron
energization by the Fermi process is pitch-angle scattering. In the absence
of ancillary scattering, acceleration by FMW would lead to a systematic
decrease of particle pitch-angles. Acceleration would then become less effi-
cient, since only those waves with very high parallel phase speed would be
able to resonate with the particles. However, as a tail is formed in the par-
allel direction, there would appear one or another instability which excites
waves (for example, the fire-hose instability; see Paesold and Benz, 1999)
that can scatter the electrons back to a nearly isotropic state.

We should not forget, of course, that the usual Coulomb collisions (see
vol. 1, Chapters 8 and 4), even being very rare, can well affect forma-
tion of the accelerated-electron distribution. The Coulomb scattering of
anisotropic accelerated electrons leads to their isotropization. As a result,
the acceleration efficiency can significantly rise like in the case of accelera-
tion in solar-flare collapsing magnetic traps (Kovalev and Somov, 2003).

With the introduction of isotropizing scattering of any origin, we
can avarage the momentum diffusion equation in spherical coordinates over
the pitch-angle θ and obtain the isotropic momentum diffusion equation

∂f

∂t
=

1
p2

∂

∂p

(
p2D(p)

∂f

∂p

)
. (12.4)

Here

D(p) =
1
2

+1∫
−1

Dpp dµ , (12.5)

p is the magnitude of the momentum vector p, µ = cos θ, and Dpp is
the µ-dependent momentum diffusion coefficient (see Miller et al., 1996).
The quantity f is the phase-space distribution function, normalized such
that f(p, t) 4πp2dp equals the number of particles per unit volume with
momentum in the interval dp about p.

Electron acceleration and wave evolution are thus described by the two
coupled partial differential equations: Equation (12.4) and the diffusion
equation in the wave-number space (see vol. 1, Equation(7.28)). Their
solution allows to evaluate the bulk energization of electrons by Fermi ac-
celeration from the MHD turbulence expected in solar flares.
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LaRosa et al. (1996) has found that the Fermi acceleration acts fast
enough to be the damping mechanism for the FMW turbulence. This means
that Fermi acceleration becomes fast enough at short enough scales λ ∼
λmin in the turbulent cascade of fast magnetoacoustic waves to end the
cascade by dissipating the cascading turbulent energy into random-velocity
kinetic energy of electrons. Practically all of the energy of the FMW tur-
bulence is absorbed by the electrons while the protons get practically none.

12.3.2 Acceleration of protons and heavy ions

As we saw above, fast magnetoacoustic waves (FMW) can cascade to higher
frequencies, eventually Landau resonate with the thermal electrons and
accelerate them by the small-amplitude Fermi-type mechanism. In this
Section we shall discuss the acceleration of protons and heavy ions by Alfvén
waves that are a part of the same MHD turbulent cascade but cyclotron
resonate with particles.

Let us consider for simplicity only the Alfvén waves with phase velocities
parallel and antiparallel to the background field B (0). These waves have
left-hand circular polarization relative to B (0) and occupy the frequency
range below the cyclotron frequency (see Appendix 3) of Hydrogen, i.e.,
protons:

ω < ω
(H)

B
=

ecB

EH

. (12.6)

As the waves increase in frequency, they resonate with protons of progres-
sively lower energies.

For simplicity we also take the low-frequency limit for the dispersion
relation of the Alfvén waves under consideration:

ω = VA | k‖ | . (12.7)

In a multi-ion astrophysical plasma, there are resonances and cutoffs in the
dispersion relation corresponding to each kind i of ions. However, because
of their small abundance, Fe and the Ne group do not affect the dispersion
relation. The He group will produce a resonance at ω

(He)

B
and a cutoff

at a slightly higher frequency. We shall take, however, the Alfvén wave
dispersion relation (12.7) for all

ω < ω
(He)

B
.

In general, a low-frequency Alfvén wave propagating obliquely with re-
spect to the ambient field B (0) has a linearly polarized magnetic field B (1)

normal to both B (0) and k (see vol. 1, Figure 15.1). The wave electric
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field E (1) is normal to B (0) and B (1). A low-frequency FMW (vol. 1, Sec-
tion 15.2.3) has a linearly polarized electric field E (1) normal to both B (0)

and k. In each case the electric field can be decomposed into left- and right-
handed components. However, for parallel propagation, all Alfvén waves
are left-handed, while all the FMWs are right-handed.

Since we consider the Alfvén waves which phase velocities are strictly
parallel and antiparallel to the background field, there is only one resonant
wave and it is the backward-moving Alfvén wave (Miller and Reames, 1996).
Applying the cyclotron resonance condition (see vol. 1, formula (7.16)) for
this wave with s = 1, we find its wavenumber

k‖ = −
ω (i)

B

γL

(
VA + v‖

) . (12.8)

Hence

when the Alfvén wave frequency becomes close to the ion-cyclotron
frequency ω (i)

B
, the thermal ions of the kind i would be accelerated

out of the background energies.

The first kind of ions encountered by the Alfvén waves will be the one
with the lowest cyclotron frequency, namely Fe. This is well visualized by
Figure 1 in Miller and Reames. However, due to the low Fe abundance,
the waves will not be completely damped and will continue to cascade up
the group of ions with the next higher cyclotron frequency, namely Ne, Mg,
and Si. These ions will be also accelerated but the waves will not be totally
damped again. They encounter 4He, C, N, and O. These ions do complitely
dissipate the waves and halt the turbulent cascade.

Miller and Reames (1996) showed that abundance ratios similar to those
observed in the interplanetary space after solar flares can result from the
stochastic acceleration by cascading Alfvén waves in impulsive flares.

12.3.3 Acceleration of 3He and 4He in solar flares

The most crucial challenge to the models including the stochastic accelera-
tion arises from the extreme enhancement of 3He observed in some impul-
sive solar events. Nonrelativistic 3He and 4He ions resonate mostly with
waves with frequencies close to the α-particle gyrofrequency. To study the
stochastic acceleration of these ions, the exact dispersion relation for the
relevant wave modes must be used, resulting in more efficient acceleration
than scattering that could lead to anisotropic particle distributions. Liu et
al. (2006) have carried out a quantitave study and have showed that the
interplay of the acceleration, Coulomb energy loss, and the escape processes
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in the stochastic acceleration of 3He and 4He by parallel-propagating waves
can account for the 3He enhancement, its varied range, and the spectral
shape as observed with the Advanced Composition Explorer (ACE).

In general, stochastic acceleration is attractive on several points. One
of them is that the stochastic interaction of particles with cascading waves
in astrophysical plasma offers, in principle, the opportunity to unify elec-
tron and ion acceleration within the context of a single model. Specifically
the picture that is emerging is one in which resonant wave-particle inter-
actions are able to account for acceleration of particles out of the thermal
background and to relativistic energies.

12.3.4 Electron-dominated solar flares

Hard X- and gamma-ray observations of solar flares have a wide range of
energy from about 10 keV to about 10 GeV with relatively high spectral
and temporal resolutions. Photon spectra over this range show signifi-
cant deviations from the simple power law (e.g., Park et al., 1997). The
study of these deviations can provide information about the acceleration
mechanism. There is, however, some ambiguity in the analysis of the obser-
vational data because both accelerated electrons and protons contribute to
the hard electromagnetic emission. Fortunately, there exist impulsive flares
which have little or no evidence of nuclear exitation lines in the gamma-ray
range. Such ‘electron-dominated’ events are uncontaminated by the pro-
ton processes and provide direct insights into the nature of the electron
acceleration.

Park et al. (1997) use a model consisting of a finite-size region in the
solar corona near the flare-loop top which contains a high-density of turbu-
lence. Here the electrons are accelerated. Because of the rapid scattering
by waves, the electrons trapped in this region have a nearly isotropic dis-
tribution. They emit bremsstrahlung photons which can be considered in a
thin-target approximation. However electrons eventually escape this region
after an escape time of τesc(E) and lose most of their energy E in the chro-
mosphere at the footpoints where they also emit hard X- and gamma-rays.
This is called the thick-target source (see vol. 1, Section 4.4.2).

Instead of the simplified Equation (12.4), the Fokker-Planck equation
(vol. 1, Section 3.1.4) re-written in energy space is used to describe the
spectrum of electrons assuming isotropy and homogeneity:

∂N

∂t
= − ∂

∂E { [ A(E) − |B(E) | ] N } +
∂2

∂E2 [ D(E) N ] −

− N

τes(E)
+ Q(E) . (12.9)
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Here N(E , t) dE is the number of electrons per unit volume in the energy
interval dE , A(E) is the systematic acceleration rate, D(E) is the diffusion
coefficient, Q(E) is a source term. The energy loss term

B(E) =
(

dE
dt

)
L

(12.10)

includes both Coulomb collision and synchrotron radiation losses.
Take the Maxwellian distribution as the source term

Q(E) = Q0
2√
π

(
E

kBT

)1/2

exp
(

− E
kBT

)
, (12.11)

where Q0 is the rate at which the ambient plasma electrons of tempera-
ture T are accelerated. At steady state, the number of escaping particles
is equal to the number of accelerated electrons:∫

N

τes(E)
dE =

∫
Q(E) dE = Q0 . (12.12)

The temperature T of about 17 MK is taken. The coefficients A(E), D(E),
and τes(E) of the Fokker-Planck equation are determined by the particle
acceleration mechanism. They can be written in the form:

A(E) = D (q + 2) (γLβ) q−1, (12.13)

D(E) = D β (γLβ) q, (12.14)

τes(E) = Tes
(γLβ) s

β
. (12.15)

Here D, Tes, q, and s are independent of the kinetic energy E = γL − 1
measured in units of mec

2, and βc is the velocity of electrons.
The acceleration time τa, which is also the timescale for reaching the

steady state in Equation (12.9), can be estimated as

τa(E) ≈ τ
D

(E) ≈ E2

D(E)
. (12.16)

This should be less than the rise time of a flare. For three of four flares
described by Park et al. (1997), the overall rise time τr of the hard X-rays is
about 10 s and the total duration of the flare τf is about 100 s. For the most
impulsive flare τr < 2 s and τf ≈ 8 s. Hence the steady state approximation
is justified. After setting ∂/∂t = 0, we can divide Equation (12.9) by one of
the parameters, say the diffusion coefficient D, without changing the steady
state solution.
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The acceleration time for an electron with energy E = 1 is approximately
D−1. Therefore, for three flares with the rise time τr ≈ 10 s, Park et
al. (1997) estimate D ≈ 0.15 s−1. For the shortest flare D ≈ 1 s−1. Shorter
rise times are possible, but these require higher values of the turbulence
energy density and the magnetic field. With D fixed, the number of free
parameters in the general stochastic model described above is reduced by
one.

The numerical solutions show that the wistler wave resonant accelera-
tion of electrons fits the observed spectra over the entire range of energy
in four flares. The high-energy cutoff in the two flares can be attributed to
synchrotron radiation losses in the presence of a 500 G magnetic field at the
acceleration site. The observed break in the photon spectra of all four flares
around 1 MeV can be attributed to a combination of the energy dependence
of the escape time τes(E) of particles out of the acceleration region and the
change in the energy dependence of the bremsstrahlung cross-section be-
tween the nonrelativistic and relativistic regimes. Further steepening of the
spectrum at even lower energies is caused by Coulomb losses.

12.4 Mechanisms of coronal heating

12.4.1 Heating of the quiet solar corona

The high temperature of the solar corona was originally interpreted as due
to the steady dissipation of various kinds of waves coming from the lower
layers (see Ulmschneider et al., 1991). Later on, heating by a myriad of very
small flares releasing magnetic energy by reconnection has also been pro-
posed (Gold, 1964; Priest, 1982; Parker, 1988). However these microflares
or nanoflares have not yet been well identified.

It is difficult to detect the smallest flares in active regions, but in the
quiet corona the background flux and stray light are smaller, and sensitive
observations, for example, by the EIT (the Extreme ultraviolet Imaging
Telescope) on SOHO can be used (Benz and Krucker, 1998). The thermal
radiation of the quiet corona in high-temperature iron lines is found to
fluctuate significantly, even on the shortest time scale as short as 2 min
and in the faintest pixels. These observations give us an evidence that

a significant fraction of the ‘steady heating’ in the quiet coronal
regions is, in fact, impulsive.

The most prominent enhancements are identified with the X-ray flares
above the network of the quiet chromosphere. Presumably, these X-ray
flares above network elements are caused by additional plasma injected
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from below and heated to slightly higher temperatures than the preexisting
corona.

Magnetic flux tubes in the photosphere are subject to constant buffet-
ing by convective motions, and as a result, flux tubes experience random
walk through the photosphere. From time to time, these motions will have
the effect that a flux tube will come into contact with another tube of op-
posite polarity. We refer to this process as reconnection in weakly-ionized
plasma (Chapter 13). Another possibility is the photospheric dynamo effect
(Section 13.5) which, in an initially weak field, generates thin flux tubes of
strong magnetic fields. Such tubes extend high into the chromosphere and
can contribute to the mass and energy balance of the quiet corona.

SOHO ’s MDI (the Michelson Doppler Imager) observations show that
the magnetic field in the quiet network of the solar photosphere is organized
into relatively small ‘concentrations’ (magnetic elements, small loops etc.)
with fluxes in the range of 1018 Mx up to a few times 1019 Mx, and an
intrinsic field strength of the order of a kilogauss. These concentrations are
embedded in a superposion of flows, including the granulation and super-
granulation. They fragment in response to sheared flows, merge when they
collide with others of the same polarity, or cancel against concentrations of
opposite polarity. Newly emerging fluxes replace the canceled ones.

Schrijver et al. (1997) present a quantitative statistical model that is
consistent with the histogram of fluxes contained in concentrations of mag-
netic flux in the quiet network as well as with estimated collision frequencies
and fragmentation rates. Based on the model, Schrijver et al. estimate that
as much flux is cancelled as is present in quiet-network elements in 1.5 to
3 days. This time scale is close to the timescale for flux replacement by
emergence in ephemeral regions. So that this appears to be the most im-
portant source of flux for the quiet network. Schrijver et al. (1997) point
out that the reconnection process appears to be an important source of
outer-atmosphere heating.

Direct evidence that the ‘magnetic carpet’ (Day, 1998), an ensemble
of magnetic concentrations in the photosphere, really can heat the corona
comes from the two other SOHO instruments, the Coronal Diagnostic Spec-
trometer (CDS) and the Extreme ultraviolet Imaging Telescope (EIT). Both
instruments have recorded local brightenings of hot plasma that coincide
with disappearaces of the carpet’s elements. This indicates that just about
all the elements reconnect and cancel, thereby releasing magnetic energy,
rather than simply sick back beneath the photosphere.

The coronal transition region and chromospheric lines observed by
SOHO together with centimeter radio emission of the quiet Sun simul-
taneously observed by the VLA show that the corona above the magnetic
network has a higher pressure and is more variable than that above the in-
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terior of supergranular cells. Comparison of multiwavelength observations
of quiet Sun emission shows good spatial correlations between enhanced
radiations originating from the chromosphere to the corona. Furthermore

the coronal heating events follow the basic properties of regular solar
flares

and thus may be interpreted as microflares and nanoflares (Benz and
Krucker, 1999). The differences seem to be mainly quantitative (Krucker
and Benz, 2000).

∗ ∗ ∗

What do we need to replenish the entire magnetic carpet quickly, say
1-3 days (Schrijver et al., 1997; Moore et al., 1999) ? – A rapid replenish-
ment, including the entire cancelation of magnetic fluxes inside the carpet,
requires the fundamental assumption of a two-level reconnection in the solar
atmosphere (e.g., Somov, 1999).

First, we may apply the concept of fast reconnection of electric cur-
rents as the source of energy for microflares to explain coronal heating in
quiet regions (Somov and Hénoux, 1999). Second, in addition to coronal
reconnection, we need an efficient mechanism of magnetic field and current
dissipation in the photosphere and chromosphere. The presence of a huge
amount of neutrals in the weakly ionized plasma in the temperature min-
imum region makes its electrodynamical properties very different from an
ideal MHD medium. Dissipative collisional reconnection is very efficient
here (Litvinenko and Somov, 1994b; Litvinenko, 1999; Roald et al., 2000).
Presumably the same mechanism can be responsible for the heating of the
chromosphere.

12.4.2 Coronal heating in active regions

The soft X-ray observations of the Sun from Yohkoh have revealed that
roughly half of the X-ray luminosity comes from a tiny fraction (∼ 2 %) of
the solar disk (Acton, 1996). Virtually all of the X-ray luminosity is con-
centrated within active regions, where the magnetic field is the strongest.
While the corona is evidently heated everywhere, there is no question that
it is heated most intensively within active regions. So this Section will focus
entirely on active regions.

The energy that heats the corona almost certainly propagates upward
across the photosphere. Since the magnetic field plays a dominant role,
the required energy flux can be expessed in terms of the electromagnetic
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Poynting vector in an ideal MHD medium (see vol. 1, Exercise 13.5):

GP =
1
4π

B × (v × B ) . (12.17)

Assuming that the plasma vertical velocity vz vanishes, we have the follow-
ing expression for the vertical component of the energy flux:

Gz = − 1
4π

(v · B ) Bz . (12.18)

A value of Gz ∼ 107 erg cm−2 s−1 is frequently used to account for the
X-ray flux from active regions.

Detailed models of coronal heating in active regions typically invoke
mechanisms belonging to one of the two broadly defined categories:
wave (AC) or stress (DC) heating.

In wave heating, the large-scale magnetic field surves essentially as a
conductor for small-scale Alfvén waves propagating into the corona. So the
average flux of wave energy can be written as

< Gz > = −
√

ρ

4π
< v2 > Bz . (12.19)

Here Bz is the large-scale, stationary field, and < v2 > is the mean square
velocity amplitude of the Alfvén waves. If the AC heating is the case, one
expects to find some kind of correlation between the mean photospheric
field strength and the heating flux.

In stress heating, the coronal magnetic field stores energy in the form
of DC electric currents until it can be dissipated through, for example,
nanoflares (e.g., Parker, 1988). Estimating the rate of energy storage results
in a Poynting flux of the form

Gz = cd | v |B 2
z . (12.20)

Here the constant cd describes the efficiency of magnetic dissipation, which
might involve the random velocity v or the magnetic field geometry. Any-
way, the Poynting flux in Equations (12.19) and (12.20) scales differently
with the magnetic field Bz. While the constants of proportionality in each
case may vary due to numerous other factors,

we might expect a large enough sample to be capable of distinguish-
ing between the two mechanisms of coronal heating.

To analyze whether active region heating is dominated by slow (DC) or
rapid (AC) photospheric motions of magnetic footpoints, the so-called re-
duced magnetohydrodynamic (RMHD) equations are used. They describe
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the dynamic evolution of the macroscopic structures of coronal loops as-
suming a fully turbulent state in the coronal plasma (Milano et al., 1997).
The boundary condition for these equations is the subphotospheric velocity
field which stresses the magnetic field lines, thus replenishing the magnetic
energy that is continuously being dissipated inside the corona. In a tur-
bulent scenario, energy is efficiently transferred by a direct cascade to the
‘microscale’, where viscous and Joule dissipation take place (see, however,
Section 12.1.3).

Therefore, for the macroscopic dynamics of the fields, the net effect of
turbulence is to produce a dramatic enhancement of the dissipation rate.
Milano et al. (1997) integrated the large-scale evolution of a coronal loop
and computed the effective dissipation coefficients by applying the eddy-
damped closure model. They conclude that

for broadband power-law photospheric power spectra, the heating
of coronal loops is DC dominated.

Nonetheless a better knowledge of the photospheric power spectrum as a
function of both frequency and wavenumber will allow for more accurate
predictions of the heating rate from the theory.

12.5 Practice: Exercises and Answers

Exercise 12.1. Consider two interconnected ring-tubes C1 and C1 with
magnetic fluxes Φ1 and Φ2 inside of them but without a magnetic field
outside (Figure 12.1).

C
C

1
2

2
1

Φ
Φ

Figure 12.1: Two interconnected
magnetic flux tubes.

Show that the global magnetic helicity of the system is given by the
formula (Moffatt, 1978):

H = 2Φ1Φ2 . (12.21)

Answer. First, we calculate the helicity of the tube C1 by integrating
formula (12.1) over the volume V1 of the tube C1 and replacing B d 3r by
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Φ1 d r where dr is the length along the circuit C1:

H1 =
∫
V1

A · B d 3r = Φ1

∮
C1

A · d r . (12.22)

By virtue of the Stokes theorem

H1 = Φ1

∫
S1

curlA · dS = Φ1

∫
S1

B · dS = Φ1Φ2 . (12.23)

Since the other tube C2 makes the same contribution to the helicity, we
obtain the Moffatt formula (12.21).

Therefore

the global magnetic helicity depends only on the fact that the two
magnetic fluxes are interlinked.

The value of the helicity does not change if we deform the flux tubes as
long as the linkage remains the same.

If, however, by magnetic reconnection the tubes would be cut and re-
moved so that the linkage between them were broken, then the global he-
licity would go to zero. So we conclude that

as long as the topology of magnetic fluxes does not change, the
magnetic helicity is an invariant.

Exercise 12.2. Show that for the force-free fields with constant α, the
magnetic energy is proportional to the global helicity (Woltjer, 1959):

M = α H 1
8π

. (12.24)

Here

M =
∫
V

B2

8π
dV , (12.25)

V is the volume of a simply connected region bounded by a magnetic surface
S where B · n = 0 (see Section 12.1.1).

Discuss a kind of a surface integral which must be added to expres-
sion (12.24) in the case of a multiply connected volume such as a torus (see
Reiman, 1980).



Chapter 13

Reconnection in
Weakly-Ionized Plasma

Magnetic reconnection, while being well established in the solar corona,
is successfully invoked for explanation of many phenomena in the low-
temperature weakly-ionized plasma in the solar atmosphere.

13.1 Early observations and classical models

Magnetic reconnection, while being firmly established as a means of en-
ergy release in the high-temperature corona of the Sun during solar flares,
is frequently invoked for explanation of various phenomena in the low-
temperature plasma of the solar atmosphere. A particular example of
these is the prominence phenomenon. Prominences are defined as dense
(≈ 1011 cm−3) and cool (≈ 6000 K) plasma ‘clouds’ visible in Hα above
the solar surface (Tandberg-Hanssen, 1995). Pneuman (1983) suggested
that both the material necessary for their formation and the magnetic field
topology supporting them are the result of reconnection.

According to Pneuman (see also Syrovatskii, 1982) a neutral line of the
magnetic field is produced in the corona owing to some kind of plasma flow
in the photosphere. Reconnection at this line gives rise to a helical magnetic
field configuration. As this takes place, chromospheric material flows into
the reconnection region and is then carried up by the reconnected field lines
which are concave upward. The material is thereupon radiatively cooled to
form a prominence that nests in the helical field topology.

An interesting modification of this model is due to van Ballegooijen and

319
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Martens (1989, 1990) who conjectured that the reconnection place is in fact
located at the photospheric boundary. The point is that

if reconnection takes place deep enough in the solar atmosphere, a
sufficient quantity of material can easily be supplied to the corona,

thus facilitating the process of prominence formation. On the observational
side this conjecture is substantiated by the fact (Martin, 1986) that for
several hours before the formation of a filament, small-scale fragments of
opposite polarity flux were seen to cancel in the region below the eventual
filament.

So the model accounts for the cancelling magnetic features that are
usually observed to be present in the photosphere below prominences. The
scenario of the phenomenon has three phases: (a) a pre-interaction phase
in which two opposite polarity photospheric magnetic fragments are uncon-
nected magnetically, (b) an interaction phase when the fragments reconnect
in the corona and create a filament, (c) a flux cancellation phase when re-
connection in the photosphere produces the cancelling magnetic features.

Roumeliotis and Moore (1993) have developed a linear, analytical model
for reconnection at an X-type neutral line (cf. Chapter 2). The reconnec-
tion process is assumed to be driven by converging or diverging motions
applied at the photosphere. The gas pressure has been ignored (without
much justifications) in the vicinity of the neutral line, and only small per-
turbations have been considered. The model relates the flows around the
diffusion region, where dissipative effects are important, to the photospheric
driving motions. The calculations based on this linear theory support the
possibility of the laminar, slow reconnection occuring low in the solar at-
mosphere.

None of the above-mentioned authors considered the details of the re-
connection process. Therefore it is still unclear whether the process can
occur effectively enough in low-temperature plasma to ensure the upward
flux of matter that is sufficient for prominence formation in the corona. In
this Chapter we shall treat the reconnection process in the chromosphere
and the photosphere in greater detail.

The reconnecting current layer (RCL) is envisaged to be formed in con-
sequence of centre-to-boundary flows of weakly ionized plasma in convective
cells. It is in such a current layer that field lines reconnect to change the field
topology in the way suggested by Syrovatskii (1982) and Pneuman (1983).
As distinct from the coronal case, we treat the current layer in the chro-
mosphere and photosphere. We shall find that the reconnection efficiency
is highest in the temperature minimum region, where the classical electric
conductivity of weakly ionized plasma reaches its minimum.
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13.2 Model of reconnecting current layer

13.2.1 Simplest balance equations

Let us consider a stationary reconnecting current layer (RCL) in the chro-
mosphere and photosphere (Litvinenko and Somov, 1994b; Litvinenko, 1999).
To find its characteristics, let us write down the order-of-magnitude rela-
tions stemming from the one-fluid equations of continuity, momentum con-
servation (both across and along the layer) and magnetic field diffusion into
the layer:

n0v0 b = nv1a , (13.1)

(1 + x (T0)) n0 kBT0 +
B0

2

8π
= (1 + x (T )) nkBT , (13.2)

(1 + x (T )) n kBT = mp n
v2
1

2
+ (1 + x (T0)) n0 kBT0 , (13.3)

c2

4π σ (T ) a
= v0 . (13.4)

Here a and b are the layer half-thickness and half-width. n0 and n are
the plasma concentrations outside and inside the layer, x is the ionisation
degree, v0 and v1 are the plasma inflow and outflow velocities, mp is the
proton mass (hydrogen being assumed to be the main component of the
medium), T0 and T are the temperatures outside and inside the RCL. σ is
the collisional conductivity in the layer where the magnetic field perpen-
dicular to the electric current is zero. B0 is the field in the vicinity of the
RCL.

The set of Equations (13.1)–(13.4) should be supplemented by the en-
ergy balance equation. However it is not an easy matter to do this. On the
one hand, thermal conductivity is unlikely to play a significant role in the
energy balance of the low-temperature RCL. On the other hand, there are
no reliable calculations for the radiative loss function L (T ) in the temper-
ature domain < 104 K. An attempt to solve the radiative transfer equation
for such a thin layer in the dense plasma of the low solar atmosphere would
be an unjustified procedure given the order-of-magnitude character of the
model at hand.

Let us adhere to the simplest assumption, namely that the cooling pro-
cesses are effective enough to ensure the approximate equality of plasma
temperatures inside and outside the RCL. Hence we postulate that

T ≈ T0 . (13.5)
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This means that we do not expect an abrupt temperature enhancement
in the RCL as in the fully ionized case. Note that the photospheric den-
sity is about 108 times as large as that of the corona. Roughly speaking,
if the same amount of magnetic free energy is released in the corona and
photosphere into heat in the same volume, each particle of the photosphere
would receive approximately 10−8 of the energy given to each particle of the
corona. For example, the so-called type II white-light flares (Mauas, 1990;
Fang and Ding, 1995) are supposed to be the dissipation of magnetic field
by reconnection in the photosphere. Such flares bring a temperature en-
hancement only of 150–200 K.

13.2.2 Solution of the balance equations

Now the sought-after quantities (the RCL parameters a, b etc.) can be ex-
pressed with the aid of Equations (13.1)–(13.5) via the external parameters
n0, T, x, σ, v0, and B0 :

a =
c2

4π σ (T ) v0
, (13.6)

b = (1 + β−1) a
v1

v0
, (13.7)

n = n0 (1 + β−1) , (13.8)

v1 = VA,s ≡ B0
[
4π mp n0 (1 + β−1)

]−1/2
. (13.9)

Here
β = (1 + x (T )) n0 kBT

8π

B0
2 (13.10)

and VA,s is the Alfvén speed defined by formula (6.7).
Returning to the question posed in the introduction of this Section, it

is now straightforward to calculate the mass flux into the corona through
the RCL, assuming the latter to be vertically orientated:

F = 2mp nv1 al = 2mp n0 (1 + β−1)
c2 l VA,s

4π σv0
, (13.11)

l ∼ 109 cm being a typical value of the current layer length.
To find numerical values of the current layer parameters, we make use

of the chromosphere model due to Vernazza et al. (1981). This model gives
us the input parameters n0, x and T as functions of the height h above
the lower photospheric boundary, i.e. the level where the optical column
depth in continuum τ5000 = 1. The collisional conductivity, σ, for this
model was calculated by Kubát and Karlický (1986). A typical value of the
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field is assumed to be B0 ≈ 100 G. As for the inflow velocity, it is a free
parameter. Its magnitude is of the order of the photospheric convective flow
velocity ≈ 100 m/s. Table 13.1 presents the RCL characteristics predicted
by our model using these data and the layer length l ≈ 109 cm.

Table 13.1: Parameters of the reconnecting current layer in the chromo-
sphere and photosphere

Height h, km 0 0 350 350 2110 2110

Temperature T, 103 K 6.4 6.4 4.5 4.5 18.5 18.5

Conductivity σ, 1011 s−1 6 6 1.5 1.5 140 140

Inflow v0, 10 m s−1 1 10 1 10 1 10
velocity

Half-thickness a, 104 cm 10 1 50 5 0.5 0.05

Half-width b, 107 cm 0.8 10−2 10 0.1 3000 30

Concentration n, 1016 cm−3 10 10 1 1 0.02 0.02

Outflow v1, km s−1 0.6 0.6 2 2 20 20
velocity
Mass flux F, 1010 g s−1 300 30 300 30 0.4 0.04

13.2.3 Characteristics of the reconnecting current layer

Apart from variation of the inflow velocity, we consider three levels in the
solar atmosphere, in an attempt to clarify the physical picture of the recon-
nection process. These are the lower photosphere (h = 0 km), the tempera-
ture minimum (h = 350 km), and the upper chromosphere (h = 2113 km).
The properties of the reconnection process drastically differ at these lev-
els. Different regimes of linear reconnection (Craig and McClymont, 1993;
Priest et al., 1994) seem to be possible, including very slow (very small
magnetic Reynolds number) reconnection.
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The remarkable thing is that reconnection is predicted to effectively
occur only in a thin layer (not thicker than several hundred km), coinciding
with the temperature minimum region. Here

a relatively thick current layer can be formed, where reconnection
proceeds at a rate imposed by the converging plasma flows.

Since the magnetic field is relatively weak, the flow is practically incom-
pressible. Magnetic energy is transformed into the thermal and kinetic
energy of the resulting plasma motion. The upward flux of matter through
the current layer into the corona is capable of supplying 1016 g of cold
chromospheric material in a time of 104 s. This is amply sufficient for the
formation of a huge prominence.

An interesting peculiarity of the solution obtained is the inverse pro-
portionality of the mass flux to the inflow velocity. The physical reason for
this is that decreasing v0 leads to a decrease of the electric current in the
current layer and hence the magnetic field gradient. Since B0 is kept fixed,
the layer thickness 2a has to increase, thus augmenting the matter flux.

Below the temperature minimum, the RCL does not form; a ≈ b be-
cause the plasma density is very high there. That diminishes the Alfvén
speed and prevents the magnetic field from playing a significant role in the
plasma dynamics. The overall geometry of the field is that of an X-point,
so that the inflow magnetic field is highly nonuniform. This regime cor-
responds to the ‘nonuniform’ reconnection class according to classification
given by Priest et al. (1994).

As for reconnection in the upper chromosphere, it is not efficient either.
The reason for this is the relatively high temperature, resulting in the high
conductivity (Table 13.1), which makes magnetic diffusion into the RCL
too slow for any observable consequences related to the mass flux into the
corona.

∗ ∗ ∗

Several remarks are in order here, concerning our initial assumptions.
First, we have assumed the RCL to be purely neutral, that is no magnetic
field perpendicular to the layer has been taken into account. Allowing for
a non-zero transversal field ξ⊥ B0 , Equation (13.1) might be rewritten as
follows:

n0v0 b = nv1 (a + ξ⊥ b) . (13.12)

Since our model predicts the layer to be rather thick (a / b > 10−2 ) this
correction is of no importance: a small transversal field does not consid-
erably increase the effective cross-section of the matter outflow from the
current layer.



13.3. Reconnection in Prominences 325

Second, formula (13.5) needs some justification. By way of example,
let us suppose that the influx of magnetic energy is balanced by radiative
losses:

B0
2

4π
v0 b = L (T ) xn2 ab . (13.13)

A crude estimate for the loss function L (T ) = χ Tα has been given by, for
example, Peres et al. (1982). Using this estimate together with the above
RCL characteristics, one could find T ≈ 104 K (for h = 350 km). Given the
order-of-magnitude character of our model, it seems reasonable to presume
that radiative losses can balance the Joule heating, so that (13.5) is valid
as a first approximation. Anyway, although we expect the plasma heating
to have some impact on our results, it is not likely to considerably alter
the conclusions concerning reconnection efficiency. This is well supported
by numerical results obtained in the more accurate model by Oreshina and
Somov (1998).

Finally, we have implicitly assumed the plasma flow in the reconnec-
tion region to be well coupled. What this means is that both neutral and
charged plasma components participate in the plasma flow (see, however,
Section 13.4). As a consequence, the total density appears in the expres-
sion for the Alfvén speed determining the outflow velocity. If the coupling
were weak, the ion Alfvén speed would have to be used in Equation (13.9),
giving a faster outflow of ions.

Zweibel (1989) investigated reconnection in partially ionized plasmas
and introduced the parameter Q defining the degree of coupling:

Q =
v0

a νni
, (13.14)

νni being the frequency of neutral-ion collisions. The smaller Q is, the
stronger is the coupling. It is easy to check that for the RCL in the tem-
perature minimum region Q ≈ 10−5 − 10−1 for v0 = 103 − 105 cm s−1.
This value of Q substantiates the assumption of strong coupling for rea-
sonably slow inflows. In fact, a more self-consistent consideration of the
reconnection region is necessary to take account of the generalized Ohm’s
law in a weakly-ionized plasma with a magnetic field near the temperature
minimum.

13.3 Reconnection in solar prominences

The idea that reconnection in the dense cool plasma of the solar atmosphere
is a mechanism of the so-called quiescent prominence (filament) formation
was put forward many years ago. The model of prominence formation
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by dint of the reconnection process was shown to predict realistic field
topologies near filaments. However no investigation were performed on the
value of the upward flux of plasma into the corona. As were proved in
the previous Section, the flux can be high enough to explain the filament
formation in a reasonable time: F ≈ 1011 − 1012 g s−1. This seems to
be a strong argument in favour of the Pneuman–van Ballegooijen–Martens
model. However there were only circumstantial pieces of evidence in its
favour.

Compared with the corona,

the solar photosphere provides us with a unique place to observe
the magnetic reconnection process directly,

since the magnetic fields can be measured with high resolution.
Direct indications of reconnection in the temperature minimum have

been found on the basis of the study of photospheric and chromospheric
magnetograms together with dopplergrams in the same spectral lines. Liu
et al. (1995) have obtained magnetograms in the Hβ (λ4861.34 A) and
FeI (λ5324.19 A) lines. A comparative study of such magnetograms has
revealed the existence of reverse polarity features. The appearance and
behaviour of these features can be explained by the twisting of the magnetic
flux tubes and reconnection of them in the layer between the photosphere
and the chromosphere, i.e. in the temperature minimum region.

Observations show that reverse polarity cancellation is supposed to be
a slow magnetic reconnection in the photosphere. Certainly we can adjust
the parameters to account for observed flux canceling. It has been also
revealed (Wang, 1999) that in all well-observed events there is no connecting
transversal field between two canceling component. So observation support
the reconnection explanation.

We have seen that current layers can be formed in the temperature
minimum region in response to photospheric flows. Reconnection efficiency
is determined by the high collisinal resistivity rather than by the turbulent
one, as opposed to the coronal case. As a final speculation, high-speed
flows which are predicted by our model in regions of strong magnetic fields
(B0 > 300 G) might be identified with spicules.

∗ ∗ ∗

Optical observations reviewed by Martin (1998) confirm the necessary
conditions for the formation and maintenance of the filaments: (a) loca-
tion of filaments at a boundary between opposite-polarity magnetic fields,
(b) a system of overlying coronal loops, (c) a magnetically-defined channel
beneath, (d) the convergence of the opposite-polarity network of magnetic
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fields towards their common boundary within the channel, and (e) cance-
lation of magnetic flux at the common polarity boundary.

Evidence is put forth for three additional conditions associated with
fully developed filaments: (A) field-aligned mass flows parallel with their
fine structure, (B) a multi-polar background source of a small-scale mag-
netic field necessary for the formation of the filament barbs, and (C) a
handedness property known as chirality which requires them to be either
of two types, dextral or sinistral.

In the northern hemisphere most quiescent filaments are dextral ,
and in the southern hemisphere most are sinistral .

This refers to the direction of the magnetic field when standing on the
positive polarity and gives the two possible orientations for the axial field:
namely to the right for a dextral structure and to the left for a sinistral
one.

One-to-one relationships have been established between the chirality of
filaments and the chirality of their filament channels and overlying coro-
nal arcades. These findings reinforce either evidence that every filament
magnetic field is separate from the magnetic field of the overlying arcade
but both are parts of a larger magnetic field system. The larger system
has at least quadrupolar footprints in the photosphere (cf. Fig-
ure 14.1) and includes the filament channel and subphotospheric magnetic
fields (Martin, 1998).

To explain the hemispheric pattern, Mackay et al. (1998) consider the
emergence of a sheared activity complex. The complex interacts with a
remnant flux and, after convergence and flux cancellation, the filament
forms in the channel. A key feature of the model is the net magnetic
helicity of the complex. With the correct sign a filament channel can form,
but with the opposite sign no filament channel forms after convergence
because a transversal structure of the field is obtained across the polarity
inversion line. This situation is quite similar to that one which will be
shown in Figure 14.3.

Three-dimensional quasi-dissipative MHD simulations (Galsgaard and
Longbottom, 1999) show that a thin RCL is created above the polarity
inversion line. When the current becomes strong enough, magnetic recon-
nection starts. In the right parameter regime,

with the correct sign of helicity, the reconnected field lines are able
to lift plasma several pressure scale heights against solar gravity.

The lifted plasma forms a region with an enhanced density above the RCL
along the polarity inversion line.
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13.4 Element fractionation by reconnection

It is observationally established that element abundances of the solar corona
and solar wind obey a systematic fractionation pattern with respect to
their original photospheric abundances. This pattern is organized in such a
way that elements with a low first ionization potential (FIP), the so-called
low-FIP elements, are enriched by a factor of about four. Apparently the
elements are enriched or depleted by a process that depends on the FIP
or perhaps even more clearly on the characteristic first ionization time and
the relative diffusion length for the neutrals of the minor species colliding
with the dominant hydrogen atoms.

When two regions of opposite magnetic polarity come into contact with
each other in a partially ionized plasma, ions drifting in response to the
Lorentz force fall into the minimum of the magnetic field, and then the
drifting ions force the neutrals to take part in the flow. This is the case
considered by Arge and Mullan (1998). An essential aspect of reconnection
in weakly-ionized plasma is that

the atoms have no trouble flowing accross the magnetic field lines;
the ions are not entirely constrained to follow the field lines as this
should be in ideal MHD.

Instead, they have a significant component across the field lines. The reason
is dissipation in the form of ion-atom collisions. In view of the
fact that the atoms move across field lines freely, and in the view of the
fact that collisional coupling connects the atom fluid and the ion fluid, it
is not surprising that ions are not tied strictly to the field lines. As a
result, departures from ideal MHD behaviour are an inevitable feature of
the process we discuss here.

Because of the finite time required for ion-atom collisions to occur, the
plasma which emerges from the RCL has an ion/atom ratio which may
be altered relative to that in the ambient medium. Arge and Mullan show
that in chromospheric conditions, outflowing plasma exhibits enhancements
in ion/atom ratios which may be as large as a factor of ten or more. The
results are relevant in the context of the Sun, where the coronal abundances
of elements with low FIP are systematically enhanced in certain magnetic
structures.

The first ionization potential gives the energy scale of an atomic species,
hence many atomic parameters and the chemical behaviour of elements are
closely related to it. Thus, in principle,

very different physical mechanisms could be imagined which would
produce an FIP dependence of elemental abundance
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(see Section 13.5.3). It is important that the observed FIP enhancement
varies from one type of solar magnetic features to another, ranging from
unity (i.e., no enhancement) in impulsive flares to as much as 10 in diverging
field structures. The last suggests that magnetic field topology plays
a role in creating the FIP effect in the Sun.

If the magnetic field can trap the solar material and confine it (such as
in a loop), the FIP effect apparently does not occur. On the other hand, if
the field is such that a free outflow of material is allowed (e.g., in divergent
field), then the FIP effect develops to a large amplitude. For this reason,
when we model magnetic interactions in the chromosphere, for example
the fine magnetic-flux tube formation (Section 13.5.3) we have to choose a
topology which allows material to flow out freely.

In stars other than the Sun, EUV data have allowed to search for the FIP
effect. Some stars with magnetic activity levels significantly higher than the
Sun show evedence for FIP enhancement. This is consistent with a magnetic
origin of FIP enhancement. Moreover the same FIP-based compositional
fractionation mechanism at work in the solar atmosphere is presumably
operational in the coronae of significantly more active stars (Laming and
Drake, 1999).

13.5 The photospheric dynamo

13.5.1 Current generation mechanisms

In the deep photosphere, under the temperature minimum, particles are
well coupled by collisions. That is why the physics of the deep photo-
sphere, including the physics of magnetic flux tubes, is often described by
the resistive one-fluid MHD approach. The same is valid even more for
under-photospheric layers.

In the temperature minimum region, there are many neutral atoms
which collide with ions and bring them into macroscopic motion. However
the electrons remain frozen in the magnetic field. Therefore a treatment of
this region as

an ensemble of three fluids (electrons, ions and neutrals) is neces-
sary to give a clear physical insight on the mechanisms of current
generation near the temperature minimum

in the photosphere – the photospheric dynamo effect. Moreover, higher in
the solar chromosphere, significant effects arise due to the density decrease
that leads to a decoupling of the motions of ions and neutrals, that cannot
be described by the one-fluid approximation.
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For an axially symmetrical magnetic field, the horizontal velocities of
electrons, ions and neutrals can be found analytically by solving the equa-
tions which describe the balance of the horizontal forces acting on each
particle fluid (Hénoux and Somov, 1991). The horizontal velocities of ions
and neutrals derived from these equations are relative to the horizontal ve-
locities in the convective zone – the primary source of motion. It has been
shown that, in an initially weak magnetic field,

a radial inflow of neutrals can generate azimuthal DC currents, and
an azimuthal velocity field can create radial DC currents leading to
the circulation of vertical currents.

The effects of such velocity fields on the intensity and topology of electric
currents flowing in thin magnetic flux tubes will be discussed below.

13.5.2 Physics of thin magnetic flux tubes

A schematic representation of an open flux tube S is given in Figure 13.1,
which shows the location of the solar chromosphere Ch and photosphere Ph
with the temperature minimum region T . Such a semi-empirical model
follows, for example, from the He I (λ10830 A) triplet observations (Somov
and Kozlova, 1998).

Let us consider the electric currents generated by azimuthal flows with
the velocity vϕ in a partially ionized plasma in the region T . Since it is the
relative azimuthal velocity between the magnetic field lines and the plasma,
these currents can result either from azimuthal motions of the photosheric
plasma around a fixed magnetic field or from the rotation around the flux
tube axis of the magnetic field inserted in a static partially ionized atmo-
sphere. Anyway the azimuthal flows generate the radial currents jr.

An inflow of the radial current density jr is related to the vertical current
density jz by continuity equation

∂jz

∂z
= −1

r

∂ (rjr)
∂r

. (13.15)

The vertical electric current

Jz =
∫

2π rjz(r) dr (13.16)

cannot be derived locally, i.e. independently of the contribution of the other
neighbouring (in height z) layers in the solar atmosphere. Every layer in
the temperature minimum region T acts as a current generator in a circuit
that extends above and below this layer. So a circuit model is necessary to
relate the total current Jz to the current densities. However, in all cases the
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Figure 13.1: A simplified model of an open flux tube in the solar atmo-
sphere. (a) The generation of electric currents and the pinch effect. (b)
The motion of neutrals and their diffusion across the magnetic field lines
in the chromosphere.

contributions of every layer to the circuit regions placed above and below
it are proportional to the inverse ratio of the resistances of these parts of
the circuit.

The magnetic forces produced by these currents play a significant role
in the structure and dynamics of flux tubes. Even for moderate values of
the azimuthal photospheric velocities vϕ, the current Jz created is strong
enough to prevent by the pinch effect (an action of the Lorentz force compo-
nent Fr) an opening of the flux tube with height (Hénoux and Somov, 1997).

Despite the decrease of the ambient gas pressure with height, the
thin magnetic flux tube extends into the solar atmosphere high
above the temperature minimum.

In the internal part of the tube, the rise from the photosphere of a
partially ionized plasma is found to have four effects.

First, the upflow of this plasma is associated to a leak of neutrals across
the field lines as shown in Figure 13.1b and leads to an increase of the
ionization degree with altitude typical for the chromosphere. Moreover the
upflow brings above the temperature minimum an energy flux comparable
to the flux required for chromospheric heating.

Second, the outflow of neutrals takes place at the chromospheric level
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across the field lines. Here the neutrals occupy an extensive area shown
by the shadow in Figure 13.1b outside the tube. This outflow of neutrals
leads to ion-neutral separation and may explain the observed abundance
anomalies in the corona by enhancing in the upper part of the tube the
abundances of elements of a low ionization potential (Section 13.5.3).

Third, the upward motion velocities are high enough to lift the matter
to an altitude characteristic of spicules or even macrospicules.

Fourth, if the footpoints of the flux tubes are twisted by the photo-
sphere, then when they emerge into the transition region and release their
magnetic energy some rotational component is retained. Strong evidence
has been found from SOHO ’s CDS (the Coronal Diagnostic Spectrometer)
observations to support the hypothesis that rotation plays a role in the dy-
namics of transition region features. These observations are interpreted as
indicating the presence of a rotating plasma, a sort of solar tornado (Pike
and Mason, 1998).

13.5.3 FIP fractionation theory

The flux-tube model predicts the formation of closed or open structures
with higher-temperature ionization state and higher low FIP to high FIP
elements abundance ratios than the surrounding. A strong pressure gradi-
ent across the field lines can be present in the flux tubes where electric cur-
rents are circulating (Hénoux and Somov, 1991, 1997). Since they produce
two of the ingredients that are required for ion-neutral fraction-
ation by magnetic fields, i.e. small scales and strong pressure gradients
perpendicular to the field lines (Hénoux and Somov, 1992), these currents
can lead to the efficient ion-neutral fractionation.

Azimutal motions of the partially ionized photospheric plasma, with
velocity vϕ at the boundary of the tube, r = r0, generate a system of two
current shells: Sin and Sout in Figure 13.2 (Hénoux and Somov, 1992, 1999).
The vertical currents jz in these shells flow in opposite directions, such that
the azimutal component of the field, Bϕ, vanishes at infinity. This result
can be easily understood in the case of a fully ionized atmosphere where
the field lines are frozen in the plasma. However the study of a partially
ionized atmosphere gives insight into questions that cannot be tackled in the
hypothesis of a fully ionized plasma, i.e. the possible difference in velocities
perpendicular to the field lines of ions and neutrals.

The internal current system and the azimutal component of the mag-
netic field, Bϕ, create an inward radial force Bϕjz that enhances, by the
pinch effect discussed in Section 13.5.2, the pressure inside the internal part
of the tube.
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Figure 13.2: A simplified model of a thin magnetic flux tube in the solar
atmosphere. (a) The vertical current density jz and azimutal component
of field Bϕ create the pinch effect in the internal part of the tube. (b)
The radial current density jr and azimutal magnetic field Bϕ produce the
upward force in the photosphere.

The pinch effect is present from the photosphere to the chromo-
sphere but its consequences are different in these two regions.

In the photosphere, collisions couple ions and neutrals; so they do not cross
the field lines. Above the photosphere, due to the exponential decrease of
the density and, as a result, of the ion-neutral friction force with height,
the difference in radial velocities of neutrals and ions increases with height.

The current densities and magnetic fields in the flux tube are such that,
at hydrogen densities lower than 1013 cm−3, the collisional coupling is low
enough to allow the neutrals to cross the field lines and to escape from
the internal current shell with high velocities. In usual plane-parallel-
atmosphere models, the fractionation starts in the temperature minimum
region T in Figure 13.2a at a temperature of about 4000 K. So the popu-
lation of ionized low FIP species begin to be enhanced inside the internal
current shell just at heights where the usual models place the chromospheric
temperature rise and where the separation between the hot and cool com-
ponents of the Ayres (1996) bifurcation model starts to take place.

Between the two opposite currents flowing vertically, the upwards
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Lorentz force component Bϕjr is present. Since the change of the direction
of the vertical currents goes with the change of direction, from the photo-
sphere to the chromosphere, of the transversal current jr carried by ions,
the Bϕjr force always produces a net ascending action. The intensity of
this force is compatible with an ejection of matter up to heights of about
10 000 km, and therefore with the formation of spicules. This force acts in
a shell, between the two neutralizing currents, where the gas pressure and
collisional friction forces are reduced; it acts on ions and may then lead
to a FIP effect in spicules by rising up preferentially the ionized low FIP
species. A quantitative study of all these effects remains to be done.

13.6 Practice: Exercises and Answers

Exercise 13.1. Consider basic features of the magnetic flux-tube twist by
a vortex-type motion of the fully ionized plasma.

Answer. Let us consider first the twisting action of a fully ionized
plasma motion on a magnetic flux tube with Br = 0 everywhere as this is
shown in Figure 13.3a.
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Figure 13.3: Twisting flow of a fully ionized plasma inside a flux-tube. (a)
Azimutal velocity distribution at the surface r = const, 2δz is the thickness
of a twisting zone. (b) A field line on this surface and the associated radial
and vertical components of electric current densities jr and jz in the twisting
zone. (c) The vertical component fz of the Lorentz force compresses plasma
in a central part of the twisting zone, but in outer parts it makes the twisted
field line move outwards.
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The tube consists of vertical magnetic field lines. Each surface r =
const rotates with the constant velocity vϕ,0 but there is an excess of the
azimuthal velocity δvϕ in the layer (z0 − δz, zo + δz) with a maximum at
z = z0. In this case, the radial component of electric current density, jr,
reverses twice with the height z according to formula:

jr = − 1
r

∂

∂z
(rBϕ) . (13.17)

This is shown in Figure 13.3b in the plane (z, r).
The existence of a maximum of the azimutal angular velocity at a given

radial distance r0 makes the vertical component of the electric current den-
sity, jz, to reverse also with height as well as with the radial distance r
because

jz = +
1
r

∂

∂r
(rBϕ) . (13.18)

A Lorentz force tends to compensate for the twist of the field lines by
the detwisting motions of the plasma (Figure 13.3c). The azimuthal and
vertical components of this force are respectively:

fϕ = − jrBz and fz = + jrBϕ . (13.19)

The vertical component creates some compression of the plasma in the
central part of the twisting zone, but it will also act in the outer parts of
the twisting zone. This will preferentially result in a propagation of the
twist and plasma along the tube.

Exercise 13.2. Discuss basic features of the magnetic flux-tube generation
by vortex-type flows of the weakly ionized plasma near the temperature
minimum in the solar atmosphere.

Answer. Let V c
ϕ be the azimutal component of the velocity field at the

boundary between the convective zone and the photosphere as shown in
Figure 13.4.

Strong collisional coupling occurs in the low photosphere because of
high collisional frequencies ν i and νe in comparison with gyrofrequen-
cies ω (i)

B
and ω (e)

B
. So the electric conductivity can be considered as

isotropic. Moreover at the boundary with the convective zone the con-
ductivity is so high that the ideal MHD approximation can be accepted,
and the electric field acting on particles is null:

E c
r − εV c

ϕ B = 0 . (13.20)

So, in the steady case considered here, the radial electric field is continuous
from the convective zone to the photosphere:

Er = E c
r = εV c

ϕ B . (13.21)
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Figure 13.4: Twisting flow of a partially ionized plasma inside a magnetic
flux-tube in the temperature minimum region, generated by a vortex flow
in the convective zone under the photosphere. (a) Azimutal velocity distri-
bution at the surface r = const, 2δz is the thickness of a generator zone. (b)
A field line on this surface together with the radial and vertical components
of the electric current density in the generator zone. (c) The Lorentz force
components. The radial component fr which is responsible for the pinch
effect appears.

Strong electromagnetic coupling between electrons and ions occurs in
the upper chromosphere because of low collisional frequencies ν i and νe
in comparison with gyrofrequencies ω (i)

B
and ω (e)

B
. At temperatures above

104 K, the ideal MHD approximation can be taken again. So we can put
the same boundary condition (13.21) in the upper chromosphere and lower
layers.

This means that the upper part of the twisted tube in the steady case
must rotate with the same azimutal velocity as the lowest part at the bound-
ary with the convective zone (see Figure 13.4).

In the generator region, the poloidal electric current, jr + jz, is gener-
ated as well as in a fully ionized plasma, except with an opposite direction
of circulation. Additionaly, another electric current is present; this is an
azimuthal current jϕ. In a partially ionized plasma, the difference in the
amplitude of the friction forces between neutrals and ions, between neutrals
and electrons (Hénoux and Somov, 1991) leads to the generation of an az-
imuthal current jϕ with the same sign as the azimuthal velocity of neutrals
relative to the azimuthal velocity of the electrons that are practically frozen
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in the magnetic fields.
The flow of neutrals across the magnetic field B generates a motion of

ions in the same direction. So

jϕ ≈ ne
(
vϕ,n − V c

ϕ

)
+ j H

ϕ , (13.22)

where j H
ϕ is the Hall current related with the electric field component Er.



Chapter 14

Magnetic Reconnection of
Electric Currents

Magnetic reconnection reconnects field lines together with field-aligned
electric currents. This process may play a significant role in the dy-
namics of astrophysical plasma because of a topological interruption
of the electric currents.

14.1 Introductory comments

We shall consider the general idea of interruption and redistribution of elec-
tric currents which are aligned with magnetic-field lines (the field-aligned
currents in what follows), for example in the solar atmosphere. The cur-
rents are created under the photosphere and/or inside it, as well as they
are generated in the corona. However, independently of their origin, elec-
tric currents distributed in the solar atmosphere reconnect together with
magnetic field lines. So the currents are interrupted and redistributed in a
topological way.

This phenomenon will be discussed in the classical example of a 2D con-
figuration with four magnetic sources of interchanging polarity and with the
3D topological model described in Section 3.2.1. Converging or diverging
flows in the photosphere create a thin reconnecting current layer (RCL) at
the separator – the line where separatrix surfaces are crossing. Shearing
flows generate highly concentrated currents at the separatrices. We discuss
their properties and point out that

339
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the interruption of field-aligned electric currents by the magnetic
reconnection process at the separator can be responsible for fast
energy release in astrophysical plasma,

for example, in solar flares, in active regions with observed large shear as
well as in quiet regions above the ‘magnetic carpet’ responsible for heating
of the quiet corona.

14.2 Flare energy storage and release

14.2.1 From early models to future investigations

It has for a long time been clear that the energy released in flares is stored
originally as magnetic energy of electric currents in the solar atmosphere.
At least, there do not appear to be any other sources of energy which are
adequate. Simple estimates of the free magnetic energy content in typical
active regions (e.g., Den and Somov, 1989) show that it generally exceeds
the observed energy of flares as well as the energy which is necessary for
coronal heating in active regions. Free magnetic energy can, in principle,
be converted into kinetic and thermal energy of the solar plasma with par-
ticle acceleration to high energies and other things that can be observed in
the solar atmosphere and interplanetary space. This is the flare or, more
exactly, the solar flare problem.

Jacobsen and Carlqvist (1964), Alfvén and Carlqvist (1967) were the
first to suggest that

the interruption of electric currents in the solar corona creates strong
electric fields that accelerate particles during flares.

This mechanism of magnetic energy release and its conversion into ther-
mal and supra-thermal energies of particles has been considered and well
developed by many authors (e.g., Baum et al., 1978). The interruption
of current was described as the formation of an electrostatic double layer
within a current system – an electric circuit – storing the flare energy.

The formation of the double layer locally leads to a direct acceleration
of particles. However, because the potential (which gives this acceleration)
must be maintained by the external system, the global effects of the double
layers are not small. In general, they lead to an MHD relaxation of the sur-
rouding magnetic field-plasma configuration providing the influx of energy
which is dissipated by the double layers (Raadu, 1984).

∗ ∗ ∗
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An alternative approach to the solar flare problem was introduced by
Giovanelli (1946, 1947, 1948), Dungey (1958) and Sweet (1958). After
them, it was believed that

the solar flare energy can be accumulated as magnetic energy of a
reconnecting current layer (RCL)

in the place of magnetic flux interaction and redistribution, more exactly,
at the separators (Sweet, 1958). This idea was well supported by many
analytical investigations, by laboratory and numerical experiments (for a
review see Syrovatskii, 1981; Priest, 1982; Somov, 1992), by observations
of the reconnection process in space plasmas (Hones, 1984; Berger, 1988a)
and especially on the Sun (Tsuneta, 1993; Demoulin et al., 1993; Bagalá et
al., 1995).

In fact, the laboratory experiment by Stenzel and Gekelman (1984)
clearly indicated the appearance of double layers in the RCL. This means
that local interruptions of the electric current, induced by reconnection, can
exist in the place of magnetic-field line reconnection. In what follows, we
will consider another effect – magnetic reconnection of electric currents –
the physical phenomenon which is different from the creation of an ordinary
double layer in the reconnecting current layer or in the field-aligned current.
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Figure 14.1: A model of
the coronal magnetic field
in an active complex with
four magnetic sources in
the photosphere.

Hénoux and Somov (1987) considered two systems of large-scale coronal
currents J1 and J2 distributed inside two different magnetic cells interacting
along the separator X as shown in Figure 14.1. Such a model for an active
region complex is, in fact, the case of the magnetic topology described
in Section 3.2.1. The two field lines B1 and B2 connect the ‘old’ (N, S)
and ‘new’ (n, s) centres of activity (active regions). The coronal currents
that flow from one magnetic flux region to the other (from the old region
to the new one) are distributed inside the two different cells and shown
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schematically as the total currents J1 and J2 along the field lines B1 and
B2.

N S sn

J
1

Ph

B1

B
2J

2

RCL

Figure 14.2: Coronal currents for the aligned old and new bipolar regions.

For simplicity, in Figure 14.2 the geometry of the same magnetic field
lines and currents is illustrated in the case where the old and new bipolar
regions are aligned. The field lines B1 and B2 near the RCL along the sep-
arator (cf. Figure 3.4) have an opposite direction and can be reconnected.
The two current systems J1 and J2 can be close to each other near the
separator. Moreover, in the case under consideration, the currents flow in
the same direction. Therefore, as in Gold and Hoyle (1960), Sakai and de
Jager (1996), they attract each other. So the field-aligned electric currents
have to modify the equilibrium conditions for the RCL along the separator
(Hénoux and Somov, 1987).

The components of the magnetic field transversal to the separator
reconnect together with electric currents flowing along them.

In this way, with a perpendicular magnetic field inside the place of inter-
ruption, magnetic reconnection creates local interruptions of the electric
currents in the solar atmosphere. If these currents are highly concentrated,
their interruption can give rise to strong electric fields accelerating particles
and can contribute significantly to the flare energetics.

Let us consider the magnetic fields created by the currents. These ad-
ditional or secondary fields are perpendicular to the currents; hence they
are parallel to the separator. Therefore they play the role of the longi-
tudinal magnetic field near the RCL (Section 6.2.2). Being superimposed
on the potential magnetic field, the additional field components Bϕ create
two field line spirals: left-handed and right-handed (Figure 14.3a). When
looking along the positive direction of the main field lines B1 and B2, we



14.2. Energy Storage and Release 343

see the two opposite orientations for the spirals: namely to the right for
the dextral structure (for example, filament) and to the left for the sinistral
one.
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Figure 14.3: Two possible orientations of twist in two interacting magnetic
flux-tubes with field-aligned electric currents.

When the currents flow in the same direction, as was shown in Fig-
ure 14.2, the azimuthal components Bϕ1 and Bϕ2 have the same direction
of rotation. Being opposite inside the RCL, they reconnect well: fully or
partially. At the same time, the Lorentz force FL pushes the parallel cur-
rents one to another. Therefore the case shown in Figure 14.3a is the most
favourable for reconnection of magnetic fields and field-aligned electric cur-
rents.

On the contrary, if the currents are antiparallel, as shown in Fig-
ure 14.3b, the azimuthal components Bϕ1 and Bϕ2 cannot be reconnected.
They are compressed and they decrease the reconnection rate for the main
components of the magnetic fields B1 and B2, as it was discussed in Sec-
tion 6.2.2. Hence a handedness property known as chirality does influence
upon the magnetic reconnection of electric currents.

This is a qualitative picture of reconnection of the field-aligned electric
current according to Hénoux and Somov (1987). Physical properties of the
electric current reconnection in a highly-magnitized plasma have not been
investigated yet. Many of them remain to be understood, in particular, the
role of Hall’s and perpendicular conductivities (see Appendix 3) at the place
of the electric current rupture and the role of plasma motions generated
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there. However it is clear that magnetic reconnection changes the path of
an electric current circuit . Because of large dimensions, the current circuit
in the corona has a huge inductance. So a large inductive voltage can be
generated locally, leading to a complex electrodynamic phenomenon with
particle acceleration to high energies.

The review of the present situation in the solar flare theory will help
us to understand the basic features of the electric current reconnection
phenomenon in Section 14.4, see also Somov and Hénoux (1999).

14.2.2 Some alternative trends in the flare theory

A potential field in an active region contains a minimal energy which cannot
be extracted from the plasma-magnetic field system. It was a question
whether or not it is possible to explain the pre-flare energy storage in the
force-free approximation, i.e only with electric currents aligned with the
magnetic field. This idea never looked too promissing, except in some
investigations (see Sturrock, 1991) that suggested that the energy of a force-
free field (FFF) generated by footpoint shearing flows can exceed the energy
of the ‘completely open’ field having the same boundary condition (the
same vertical component) in the photospheric plane. If this were true, we
could expect an explosive opening of such an FFF configuration with a fast
release of excess energy. Then spontaneous eruptive opening could be a
good model for coronal transients or coronal mass ejections (CMEs).

Aly (1984), by using the virial theorem (vol. 1, Section 19.1), as well as
without it (Aly, 1991), has shown that the energy of any FFF occupying a
‘coronal half-space’ is either infinite or smaller than the energy of the open
field. So obviously the opening costs energy and cannot occur sponta-
neously. The initial field must have free energy in excess of the threshold
set by the open field limit. Only that excess is available to lift and drive
the expelled plasma in CMEs or other similar phenomena (Sturrock, 1991).

This conclusion seems to be natural and could actually have impor-
tant consequences for our understanding of non-steady phenomena with
the opening of the coronal magnetic fields. Let us mention some of these
consequences, bearing in mind, however, that coronal fields are never com-
pletely open or completely closed (see Low and Smith, 1993).

Generally, the electric currents flowing across the field allow the corona
to have a magnetic energy in excess of the Aly’s limit. These currents can
be generated by any non-magnetic forces; for example, the gravity force,
the gradient of gas pressure or inertia forces. The problem arises because
such forces are normally relatively weak in comparison with the magnetic
force in the corona. Therefore the related effects can be considered as small
corrections to the FFF (see vol. 1, Section 13.1.3).
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Another possibility is that the real currents in the corona comprise two
different types: (i) smoothly distributed currents that are necessarily
parallel or nearly parallel to the magnetic field lines, so that the field is
locally force-free or nearly force-free; (ii) thin current layers of different
origin, in which the gas pressure gradient or other forces are significant.
If, following Aly (1984, 1991), we could recognize the low efficiency of the
smooth FFF (i) in energetics and dynamics of global eruptive events in
the corona, we could well replace them by potential fields in evolution
and action (e.g., Syrovatskii and Somov, 1980). This means that, to some
extent, it is possible to neglect the field-aligned current in (i); we may call
this approximation the minimum current corona. However, at least one
exception can be important. It will be discussed in the next Section.

If we do not consider flares or other flare-like events that open coronal
fields, and if we do not investigate how to extract the accumulated energy
from the FFF, then it is easy to conclude that the free magnetic energy
can well be accumulated in FFFs, even if they are smoothly distributed.
The basic idea here, used by many authors, is that photospheric footpoint
motions stress the coronal field lines, inflate them, thereby producing free
magnetic energy. For example, Porter et al. (1992) have studied the energy
build-up in the stressed coronal fields possessing cylindrical symmetry. In
the non-linear FFF approximation (α �= const), they have shown that

a reasonable amount of the photospheric twist can produce enough
free magnetic energy to power of a typical solar flare.

The rate of the energy build-up is enhanced if the greatest twist and/or the
magnetic flux is concentrated closer to the photospheric neutral line.

14.2.3 Current layers at separatrices

Analytically, by using the Grad-Shafranov equation, and numerically, by
quasi-static MHD computations, Zwingmann et al. (1985) have shown the
occurence of current layers near the separatrix in sheared field structures
containing an X-type neutral point – the place where the separatrices cross.
They interpret the break-down of the quasi-static theory near the separatrix
as evidence for the appearance of a boundary layer with the current flowing
parallel to the poloidal (Section 14.3) magnetic field.

Low (1991), Vekstein and Priest (1992) demonstrated analytically, in
the force-free approximation, that shearing flows can produce current lay-
ers along separatrices with or without neutral points. Numerical solutions
of the time-dependent MHD equations by Karpen et al. (1991), generally,
confirmed the formation of currents in the frame of the line tying approxi-
mation. They concluded, however, that true (reconnecting) current layers
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(RCL) do not form in the solar corona when a more realistic atmospheric
model is considered without a null point present in the initial potential field.
These authors found more distributed currents, related to plasma inertia
and the absence of a true static equilibrium, that cannot be considered as
thin current layers.

Therefore

shearing flows in the photosphere generate highly-concentrated elec-
tric currents flowing along and near separatrices.

In this context, we suggest a new mechanism of flare energy release – the
topological interruption of electric currents in the solar atmosphere and
their redistribution (Section 14.4). We shall consider two stages of its de-
velopment. In the first, the electric currents are produced by photospheric
shearing motions and the magnetic energy is stored in the system of concen-
trated field-aligned currents. In the second stage, the flare energy release
takes place because a strong electric current system is approaching the sep-
arator and disrupted by the magnetic field line reconnection process in the
separator region.

14.3 Current layer formation mechanisms

14.3.1 Magnetic footpoints and their displacements

Let us discuss the topological interruption of coronal electric currents by
using the classical example of a potential field in the plane (x, y) shown
in Figure 14.4. Here ei are the ‘magnetic charges’ placed on the x axis at
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Figure 14.4: A 2D model of the magnetic field of four sources of interchang-
ing polarities.
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the points with coordinates (xi , 0) , i = 1, 2, 3, and 4 at the underphoto-
spheric plane y = 0. For simplicity we assume that they have interchanging
balanced polarities: e1 = − e4 = Q and − e2 = e3 = q . So these are the
same magnetic charges as in Figure 3.2 but placed along a straight line –
the x axis. This relative position of magnetic sources corresponds to the
idealized case shown in Figure 3.1.

The solid curves show two separatrices crossing at the neutral point X
(cf. Figure 1.3) which is the special topological line in the z direction – the
separator. Two field lines are shown by the dashed curves A1 and A2. They
start from the magnetic charge e1, go near the neutral point but arrive at
different charges: e2 and e4 respectively. So they have different magnetic
connectivity.

This is the initial configuration of a magnetic field. Just to keep the
same notation as in the early works related with the controlled nuclear
fusion (Morozov and Solov’ev, 1966a; Shafranov, 1966), we refer to a mag-
netic field in the plane (x, y) as the poloidal one. This part of the magnetic
field B(0)

p (x, y) is described by the z component of the vector potential A:

B(0)
p (x, y) =

(
∂A(0)

∂y
, −∂A(0)

∂x
, 0
)

, (14.1)

where
A(0) (x, y) =

(
0, 0, A(0) (x, y)

)
.

In the case under consideration

A(0) (x, y) =
4∑

i=1

ln ri , (14.2)

where
ri =

[
(x − xi)2 + y2 ]1/2

(see Lavrent’ev and Shabat, 1973, Chapter 3, § 2).
Near the X-type point, where the field equals zero, the vector-potential

can be written as (cf. formula (2.23)):

A(0) (x, y) =
1
2

h0
[
−(x − x0)2 + (y − y0)2

]
, (14.3)

with x0 and y0 being the coordinates of the neutral point. The constant
which can be added to the vector-potential is selected in such a way that
A = 0 on the sepatrices – the lines that separate the magnetic fluxes of
different linkage (or connectivity).
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The main aim of our treatment is to understand the relative efficiency
in generation and dissipation of electric currents of different origin. Bearing
this aim in mind we will consider different motions in the photosperic plane,
i.d. different displacements of field line footpoints.

Following Low (1991), we will consider three classes of displace-
ments. The displacements of the first class are strictly on the line of the
magnetic charges – the x axis in Figure 14.4. These displacements model
the converging, diverging or emerging motions of the magnetic sources in
the photosphere. They keep the magnetic field lines in the plane of the
initial field – the plane (x, y).

Shearing flows in the z direction belong to the second and third classes.
The displacements of the second class are only ‘antisymmetric in x’, i.e.
the photospheric velocity in the z direction is an odd function of x. No
symmetry is prescribed for the third class of displacements.

14.3.2 Classical 2D reconnection

The displacements of the first class defined above do not create RCLs in
the absence of a neutral point X shown in Figure 14.4. The appearance
of such a point on the boundary (for example, in the photosheric plane)
is a necessary condition for the creation of a RCL. A sufficient condition
is the existence of a non-zero electric field in this point (Section 2.1.2).
The magnetic field remains potential above the photospheric plane if the
boundary conditions prohibit the appearance of a neutral point. In general,
however, ‘a neutral point begins to appear’ on the boundary surface (Somov
and Syrovatskii, 1972; Low, 1991) and the reconnecting current layer is
generated in it by the electric field.

Let us consider, as the simplest example, a symmetrical initial distribu-
tion of magnetic charges shown in Figure 14.5a and the small symmetrical
displacements of footpoints x2 and x3 as follows

δx2 = −δx3 = δx(t) .

They are shown in Figure 14.5b. In the presence of the neutral line X, in
its vicinity, the electromagnetic field can be expressed through the vector-
potential (Syrovatskii, 1966a, 1971)

A (x, y, t) = A(0) (x, y) + δA(t) . (14.4)

Here δA(t) is the value of the magnetic flux which has to be reconnected
in the current layer at the neutral point. Then, after the reconnection time
τr, the magnetic field will be potential one again, but with new positions
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Figure 14.5: (a) The initial field configuration; (b) the formation of the re-
connecting current layer RCL under the converging motion of footpoints x2
and x3 ; (c) the disappearance of the RCL when the field relaxes to the new
potential state.
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of the footpoints x2 + δx , x3 − δx. The value δA(t) is proportional to the
displacement δx.

It is clear from formula (14.4) that in the vicinity of the neutral line
there is a uniform electric field directed along the line:

E = −1
c

∂

∂t
A = ( 0, 0, Ez) , (14.5)

where

Ez = −1
c

∂ δA(t)
∂t

. (14.6)

It is just this field which produces an electric current J along the neutral
line (Figure 1.4b) as well as a drift motion of plasma outside the line (Fig-
ure 1.4a). In a time of the order of the Alfvén time τA , the current layer is
formed along the neutral line.

Figure 14.5b schematically illustrates the process of the current layer
formation induced by the photospheric displacements δx of the first class.
The relaxation of the magnetic field which contains the current layer to the
potential field corresponding to the new boundary conditions is shown in
Figure 14.5c.

14.3.3 Creation of current layers by shearing flows

Let us consider some general properties of the field component Bz from
the initial field (Figure 14.4) generated by a shearing displacement δz (x)
in the FFF approximation. To study plasma equilibrium and stability, it is
convenient to use the specific volume of the magnetic flux tube (see vol. 1,
Section 19.3.2) or simply the specific magnetic volume. This is the ratio
of the geometrical volume of the flux tube d V to the enclosed magnetic
flux d Φ, i.e.

U =
d V

d Φ
. (14.7)

For a field line specified by a given value of vector-potential A, by invoking
the conservation of magnetic flux inside the tube, the specific volume is

U (A) =
∫

d l

B
. (14.8)

The integral in (14.8) is taken along the field line between two certain
appropriate points corresponding to the beginning and the end of the tube.
For the example considered in Figure 14.4, the beginning and the end of
a tube are defined by the photospheric points x1 and x2 for all field lines
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connecting these points above the photospheric plane:

U (A) =

x2∫
x1

d l

B
(0)
p (x, y)

. (14.9)

By integrating the differential equation for a magnetic field line

dz

Bz
=

d l

B
(0)
p (x, y)

, (14.10)

taking account of (14.9), we see that the toroidal component Bz is given
by the displacement of field line footpoints at the boundary plane y = 0:

Bz (A) =
δz (A)
U (A)

. (14.11)

We see from (14.11) that, even if the displacement δz is a continuous func-
tion of x, a problem may arise for the following reason. In the presence of
topological features like X-type points, the different field lines, by having
different footpoints xi in the photosphere and different footpoint displace-
ments δxi, may have the same values of A. Therefore discontinuities of Bz

may appear above the photospheric plane.
Zwingmann et al. (1985) have illustrated this important feature of

sheared magnetic fields analytically by considering the FFF locally near
a hyperbolic X-point of the form (cf. formula (14.3)):

A(0) (x, y) = −ax2

2
+

by2

2
with a �= b . (14.12)

They showed that the specific volume has a logarithmic divergence for A
corresponding to the separatrices that cross at the X-point, i.e. for A = 0.
This means, first of all, that one of the diverging physical quantities is the
poloidal current density

j p = curlBz =
dBz (A)

dA
· B(0)

p ∝ 1
A ln2A

. (14.13)

The total current integrated in the direction perpendicular to the initial
poloidal field B(0)

p is finite:

Jt =

A2∫
A1

dBz (A)
dA

dA = Bz (A2) − Bz (A1) . (14.14)

We are therefore led to the conclusion that



352 Chapter 14. Reconnection of Electric Currents

shearing flows do induce the current layers extending along the se-
paratrices, with the current flowing parallel to the poloidal field.

This theoretical conclusion was also tested by numerical computations
(Zwingmann et al., 1985) which take into account the physical effects that
in real plasmas keep the current density from becoming infinitely large (see
also Section 14.4).

14.3.4 Antisymmetrical shearing flows

The conclusion made above is valid even in the cases of very high symmetry,
e.g. if the displacements are antisymmetric, and the initial potential field
is symmetric (Figure 14.5) with respect to the y axis. This is clear from
the following example. Let

x1 = −x4 , x2 = −x3 ,

and
δz1 = − δz4 = δZ , δz2 = − δz3 = δz ,

as shown in Figure 14.6.
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Figure 14.6: A 2D initial magnetic field configuration and the antisymmet-
ric shearing motions of footpoints δZ and δz.

The specific volume of the magnetic flux tube which goes along the field
line A1 from the point x1 very near the neutral X-point to the point x2
consists of two terms

U (A1) =

X∫
x1

d l

B
(0)
p (x, y)

+

x2∫
X

d l

B
(0)
p (x, y)

≡ U1,X + UX,2 . (14.15)
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According to (14.11) the toroidal (or longitudinal) component of the mag-
netic field is equal to

Bz (A1) =
δz2 − δz1

U1,X + UX,2
. (14.16)

For the field line A2 which goes from x1 to x4 very near the X-point, with
account of the symmetry described above, we find the specific volume

U (A2) = U1,X + UX,4 = 2U1,X (14.17)

and the relative displacement δz = δz4 − δz1 = − 2 δz1. So

Bz (A2) = − δz1

U1X
�= Bz (A1) . (14.18)

Hence an antisymmetric shear creates the discontinuity of the toroidal field,
i.e. the current layer with total current (14.14) along the separatrices, in
the presence of X-type point even if the initial potential field is symmetric.

Consider another example. Let the shearing motions be antisymmet-
ric and the initial magnetic field be symmetric, but with the neutral point
placed below the level of the photosheric plane (Low, 1991). In this case
the separatrix surface separates two ‘magnetic islands’ from each other at
the point x = 0 and y = 0 as well as separating them from the surrounding
field at the total separatrix surface in Figure 14.7. In this way the con-
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Figure 14.7: A 2D potential magnetic field of the quadrupole type without
a neutral point above the photospheric plane.

nectivity of the magnetic field is discontinuous, and one may in principal
expect the creation of magnetic field discontinuities. However, because of
the symmetry, the specific volume is

U (A2) = U1,O + UO,4 = 2U1,O (14.19)
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with a relative displacement

δz = δz4 − δz1 = − 2 δz1 .

Therefore

Bz (A2) = Bz (A1) . (14.20)

We see that the second class of boundary motions cannot create current
layers in the absence of neutral points (Figure 14.7). However an antisym-
metric shear creates current layers with the currents flowing along sepa-
ratrices in the plane (x, y) in the presence of a neutral point, even if the
initial potential field is symmetrical one (Figure 14.6).

All the other shearing boundary displacements directed in the z direc-
tion are called the third class, according to the classification by Low (1991),
and are discussed in the next Section.

14.3.5 The third class of displacements

Several examples of the third class displacements, including those which are
symmetrical in x, were studied by Low (1991), Vekstein and Priest (1992).
It was shown that these shearing displacements can create discontinuities
of the Bz component which are related with electric currents along sepa-
ratrices. The displacements can generate such current layers even in the
absence of a neutral point, but the separatrices are necessary of course.

The general boundary displacement is a superposition of displacements
from all these three classes. Titov et al. (1993) demonstrated the existence
of sections of the photospheric polarity inversion line where the overlying
field lines are parallel to the photosphere (like in Figure 14.7). Such sec-
tions, called ‘bald patches’, may exist for a wide range of fields created by
four concentrated sources of magnetic flux (Gorbachev and Somov, 1989,
1990; Lau, 1993). Bald patches appear, for example, when the photospheric
neutral line is bent too much in an S-like manner, because this is the case
of the separator appearance (Somov, 1985; Somov and Merenkova, 1999;
Somov et al., 2001). The field lines touching a patch belong to a separatrix
surface along which a current layer may be formed by shearing motions of
magnetic footpoints at the photosphere.

In the next Section we will discuss the mechanisms which determine the
real thickness and other properties of the current layers.
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14.4 The shear and reconnection of currents

14.4.1 Physical processes related to shear and recon-
nection

Let us start by discussing the second and third classes of displacements.
Since the current density jp is parallel to the poloidal field B (0)

p (see for-
mula (14.13)), the plasma velocity vz and the total magnetic field

B t = B (0)
p + Bz

are parallel to the discontinuity surface which coincides locally with the
plane tangential to the separatrix. In this case, all the MHD boundary
conditions are satisfied identically except one:

p1 +
B 2

1

8π
= p2 +

B 2
2

8π
. (14.21)

This means that the velocity and the magnetic field may experience arbi-
trary jumps in magnitude and direction, being parallel to the discontinuity
surface. The only requirement is that the total pressure, i.e. the sum of the
gas pressure and the magnetic one, remains continuous at the discontinuity
surface.

According to the general classification of MHD discontinuities given
in vol. 1, Section 16.2, these discontinuities, generated by shearing flows,
are usual tangetial discontinuities, except that the plasma velocities in the
z direction are small in comparison with the Alfvén speed in the solar
corona because the magnetic field is strong there. Therefore, until we take
into account the effect discussed at the end of Section 14.4.3,

we consider MHD tangential discontinuities as a good model for
highly concentrated currents at separatrices, generated by shearing
flows in the photosphere.

As treated in MHD, tangential discontinuities have several remarkable
properties. One of them is important for what follows. Even in astophysical
plasma of very low resistivity, such as the solar coronal plasma, a tangential
discontinuity is a non-evolutionary discontinuity (vol. 1, Section 17.1). In
contrast to the behaviour of the RCL, there is not a steady solution, the
stability of which can be considered in the linear approximation.

The origin of this effect lies in the fact that the thickness of a tangential
discontinuity is a continuously growing value if the electrical resistivity is
finite. After its creation the Bz component starts to evolve in accordance
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with the diffusion equation

∂Bz

∂t
=

∂

∂s

(
νm

∂Bz

∂s

)
. (14.22)

Here νm is the magnetic diffusivity, s is the coordinate ortogonal to the
discontinuity surface. By virtue of Equation (14.22), the total magnetic
flux of Bz does not change:

∂

∂t

+∞∫
−∞

Bz ds = νm
∂Bz

∂s

∣∣∣∣∣
+∞

−∞
= 0 . (14.23)

The thickness of a tangential discontinuity is increasing, but a part of the
excess magnetic energy related with a tangential discontinuity is released
in the continuous process in the form of Joule heating at a rate

∂

∂t

+∞∫
−∞

Bz
2

8π
ds = − 1

4π

+∞∫
−∞

νm

(
∂Bz

∂s

)2

ds �= 0 . (14.24)

Magnetic diffusion always acts to smooth out gradients in both the mag-
netic field and the electric current density, not to concentrate them. This
property has been well demonstrated by many numerical computations.

In the RCL, however, the process of magnetic diffusion away from the
discontinuity is compensated by the plasma drift motions into the layer.
That is why the steady state for the RCL can exist with the layer width

a = νm v −1
d , (14.25)

where vd is the drift velocity, and the RCL at separator can be considered
as an evolutionary discontinuity (Chapter 10). So

there is a principal difference between the reconnecting current layer
at the separator and the current layers at separatrices.

It is important that it is not possible to consider the RCL as a one-
dimensional discontinuity because the plasma coming into the layer has
to be compensated by plasma outflow from it. These two conditions are
necessary for the existence of steady states for the RCL.

As for tangential discontinuities generated by shearing flows in the pho-
tosphere, their electric currents are always spreading out in both directions
from sepatrix surfaces into the surrounding coronal plasma. By doing so,
a part of the electric current flowing along the separatrices appears on the
field lines which have already been reconnected (see Figure 14.4), but the
remaining
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part of the electric current will be reconnected later on together
with the field lines which have not been reconnected yet.

Hence we have to consider how electric currents flowing along the magnetic
field lines reconnect with them.

We shall not discuss here all other mechanisms (except presumably the
most important one in Section 14.4.3) which make the tangential disconti-
nuity currents more distributed rather than concentrated. Neither will we
discuss the generation of the electric currents of different origin in the solar
corona, for example, currents due to variations in plasma response time
(because of plasma inertia) at different heights in the solar atmosphere,
nor currents related to the absence of a true static equilibrium (Karpen et
al., 1991). We only would like to point out that electric currents of dif-
ferent origin, being field-aligned after their generation (Spicer, 1982), may
participate in the process of magnetic field line reconnection.

14.4.2 Topological interruption of electric currents

The magnetic reconnection process does the same with electric currents
as with magnetic field lines, i.e. it disrupts them and connects them in a
different way. Physical consequences of the phenomenon have not yet been
well investigated, but some of them look clear and unavoidable.

The first of these, an interruption of the electric current, produces an
electric field. It is neccesary to note here that if reconnection of magnetic
field lines would create symmetrical reconnection of currents, then one elec-
tric current, J1 , should replace another one, J2 , which is equal to the first
current, and no electric field could be induced in such a way. Such coinci-
dence has zero probalility.

In general, the reconnected currents are not equal among themselves;
hence the current (J1 − J2 ) is actually interrupted at the X point of
reconnection. This process creates an electric field at the separator.

The simplest but realistic example is the case where we neglect one of the
currents; e.g., J2 = 0 . Figure 14.8 shows such example. A new emerging
magnetic flux (s, n) moves upward together with electric current J . This
current is disrupted by the magnetic reconnection process in the RCL and
appears to be connected into new electric circuits.

14.4.3 The inductive change of energy

The second consequence of non-symmetrical reconnection of electric cur-
rents is related to the fact that the current (J1 − J2 ) is connected in
another electric circuit which, in general, has another self-inductance L.
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Figure 14.8: A reconnecting field
with electric currents: (a) the ini-
tial state is mainly potential but
contains a loop of emerging flux
which carries a current J , (b) the
pre-reconnection state, (c) the final
state after reconnection of the field
lines and field-aligned currents.

Hence the magnetic reconnection of the current ( J1 − J2 ) changes the
energy of the current system

W
L

=
LJ2

2
(14.26)

and its inductive time scale

τ
L

= L/R . (14.27)

A larger circuit implies a larger energy but a longer inductive time scale.
Zuccarello et al. (1987) pointed out that the magnetic energy release

in a flare should not be attributed to current dissipation but rather to
a change in the current pattern that reduces the stored magnetic energy.
They introduced an example of how self-inductance and energy storage can
be changed in a sheared FFF arcade. In fact, the inductive change of energy
can be reversed, with the stored energy being resupplied on the inductive
time scale. In terms of MHD, the inductive energy W

L
is the energy of the

azimuthal magnetic field Bϕ related to the field-aligned current J .
There is an essential advantage in our model of reconnecting electric cur-

rents. The topological interruption of large-scale electric currents flowing
along and near separatrix surfaces does not require an increase of the total
resistivity R everywhere the currents flow but only in the place where these
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surfaces cross, i.e. along the separator line. More exactly, the plasma resis-
tivity must be increased, for example by excitation of plasma turbulence,
only inside the very thin RCL at the separator. Otherwise the reconnec-
tion process will be too slow and the rate of energy release insufficient for
a typical flare.

Another important property of the model under consideration is that
magnetic reconnection, when it is fast enough, restricts the current den-
sity jp of electric currents flowing along the separatrix surfaces and near
them. The mechanism of this restriction is the same topological one.

If the characteristic time τx of the δx displacements which drive recon-
nection is comparable with the reconnection time scale τr, then the field
lines connecting the footpoints xi with the X-type point (see Figure 14.5a)
will not play the role of separatrices anylonger after the time τr. New
magnetic field lines, shown by the dashed curves in Figure 14.5c, with foot-
points x ′

i = xi + δxi will be the place where a new portion of shearing
motions will produce a new portion of highly concentrated currents along
these field lines, but not the previous ones. Therefore the real velocities of
the footpoint displacements and the real reconnection rate determine the
real distribution of concentrated electric currents generated by shearing
flows in the photosphere.

14.5 Potential and non-potential fields

14.5.1 Properties of potential fields

To sum up what we can agree concerning the role of a magnetic field in
solar flares, let us classify the magnetic fields in an active region, as shown
in Figure 14.9. The field is divided broadly into two categories: (a) the
potential or current-free part and (b) the non-potential part related to
electric currents flowing in an active region.

Starting from the photosphere up to some significant height in the
corona, the magnetic energy density greatly exceeds that of the thermal,
kinetic and gravitational energy of the solar plasma. So the magnetic field
can be considered in the strong field approximation. This means that the
coronal field is mainly potential. At least, it is potential in a large scale, in
which the field determines the global structure of an active region.

However the potential field, which satisfies the given boundary condi-
tions in the photosphere and in the solar wind, has the minimum of energy
because the potential field is current-free by definition. Two important
consequences for the physics of large flares follow from this fact.

First, being disrupted, for example by an eruptive prominence, the field
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Figure 14.9: Main types of the magnetic field in an active region according
to their physical properties.

lines of the potential field are connected back again via reconnection. This
behaviour is important for understanding the so-called eruptive flares. In
the strong field approximation, the magnetic field, changing in time, sets
the solar plasma in motion. Such a motion can be described by the set of
the ordinary differential equations. They are much simpler than the partial
derivative equations of the usual MHD. This is a natural simplicity of the
actual conditions in the solar atmosphere. In order to solve the simplified
MHD equations, we have to find the potential field as a function of time.
This is not difficult.

Second, since no energy can be taken from the current-free field, the
current-carring components have to be unavoidably introduced in the large-
flare modeling to explain accumulation of energy before a flare and its
release in the flare process. We assume here that the solar flare is the
phenomenon which takes its energy during the flare from some volume in
the corona.

14.5.2 Classification of non-potential fields

The non-potential parts of the field are related to electric currents in the
solar corona. It is of principal importance to distinguish the currents of
different origin (Figure 14.9) because they have different physical proper-
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ties and, as a consequence, different behaviours in the pre-flare and flare
processes. The actual currents conventionally comprise two different types:

(a) the smoothly-distributed currents that are necessarily parallel or
nearly parallel to the field lines, so the magnetic field is locally force-free
(FFF) or nearly force-free;

(b) the strongly-concentrated electric currents like a RCL at separators
and a current layer (CL) at separatrices.

It was a question whether or not it is possible to explain the pre-flare
energy storage in a FFF, i.e. only with electric currents aligned with the
magnetic field lines. If this could be true, we would expect an explosive
opening of such a configuration with fast release of the excess energy. As
mentioned above, the coronal fields can be considered as strong (and as a
consequence the FFF or potential) only in some range of heights: starting
from the photosphere up to a height in the corona where solar wind be-
comes fast enough to influence the magnetic field. Hence the corona has
an upper boundary which is essential for the coronal field structure (Somov
and Syrovatskii, 1972). The coronal fields are never completely open or
completely closed (Low and Smith, 1993). Their energy is always lower
than the Aly-Sturrock limit but higher than the energy of a potential field
(Antiochos et al., 1999).

If we recognize the low efficiency of the FFF in eruptive solar flares,
we have to assume that the currents flowing across the field lines allow
the corona to have a magnetic energy in excess of some limit (lower than
the Aly-Sturrock limit) to drive an eruptive flare. These currents can, in
principle, be generated by any non-magnetic force – for example, the gravity
force, the gradient of gas pressure or forces of the inertia origin.

Two problems arise, however, in this aspect: (a) in the strong mag-
netic field, such forces are normally relatively weak in comparison with the
magnetic force in the corona, at least in large scales; (b) the smoothly-
distributed currents dissipate too slowly in a low-resistivity plasma. So the
highly-concentrated currents are necessary to explain an extremely high
power of energy release in the impulsive phase of a flare. The RCLs may
allow an active region to overcome both difficulties.

In a low-resistivity plasma, the thin CLs appear to hinder a redistri-
bution of interacting magnetic fluxes (see the fourth line in Figure 14.9).
They appear at separators in the corona, where reconnection redistributes
the fluxes so that the field remains nearly potential. Since resistivity is
extremely low, only very slow reconnection proceeds in such a RCL which
we call it a slowly-reconnecting RCL. The wider the layer, the larger the
magnetic energy is accumulated in the region of the interacting fluxes.

There is a principal difference between the RCL at a separator and
the CL at separatrices. It is impossible to consider the RCL as a one-
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dimensional discontinuity because the plasma coming into the RCL has to
be compensated by plasma outflow from it. As for the CL generated at sep-
aratrices, it represents the current distribution typical for the MHD tangen-
tial discontinuities which are non-evolutionary; they are always spreading
out in both directions from separatrix surfaces into surrounding plasma. On
the contrary, the current density inside the RCL usually grows with time
and reaches one or another limit. For example, wave excitation begins and
wave-particle interaction becomes efficient to produce high resistivity, or
the collisionless dynamic dissipation allows the fast process of collisionless
reconnection.

Therefore the potential field determines a large-scale structure of the
flare-active regions while the RCL at separators together with the other
non-potential components of magnetic field determine energetics and dy-
namics of a large eruptive flare.

14.6 To the future observations by Solar-B

Magnetic reconnection of electric currents generated by shearing flows in
the photosphere may play significant role in the energetics of solar flares
related to observed photospheric shear. Thanks to a huge database collected
by Yohkoh, TRACE , RHESSI , and othe satellites, it was found that an
active region creates the large two-ribbon flares as well as it is the most
eruptive when the active region grows in size and exhibit an S-shaped loop
structure or sigmoid structure (see Sections 3.2.3 and 3.2.4). On the other
hand, other flares may be not so large and may not have any significant
shear. So they have a different kind of electric currents related, for example,
to diverging and converging flows in the photosphere near the region of a
newly emerging flux, which we called the first class displacements.

To understand the relative role of different electric currents in the en-
ergetics and dynamics of an active region,

it is necessary to study the evolution of its magnetic structure in
and above the photosphere.

This would allow us to determine not only the magnetic fluxes of certain
magnetic links but also their changes – redistribution and reconnection.
Such a study would also give us an information, at least qualitative, about
the structure and evolution of the electric field in an active region.

Three experiments will be flown on the Japan Institute of Space and As-
tronautical Science (ISAS) Solar-B mission planned for launch in 2006. The
objective of Solar-B is to study the origin of the corona and the coupling
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between the fine magnetic structure in the photosphere and the dynamic
processes occuring in the corona.

The Solar-B payload consists of three high-resolution solar telescopes in
visible light, soft X-ray, and extreme ultra-violet (EUV) wavelengths: (a) a
50-cm optical telescope, the Solar Optical Telescope (SOT), with sophisti-
cated focal plane instrumentation, the Focal Plane Package (FPP); (b) an
X-ray telescope (XRT) for imaging the high-temperature coronal plasma
with a wide field of view covering the whole Sun and with an improved
angular resolution, approximately 1 arcsec, i.e. a few times better than
Yohkoh’s SXR telescope; and (c) an EUV imaging spectrometer (EIS) for
diagnosing events observed.

The telescope SOT will give quantitative measurements of the magnetic
fields in features as small as 100 km in size thereby providing 10 times bet-
ter resolution than other space- and ground-based magnetic field measure-
ments. So the SOT instrument will give us opportunity to observe the Sun
continuously with the level of resolution that ground-based observations can
match only under exceptionally good conditions. SOT aims at measuring
the magnetic field and the Doppler velocity field in the photosphere.

Placed in a sun-synchronous circular orbit with altitude 600 km and
inclination 97.9 degrees, which will keep the instruments in continuous
sunlight with no day/night cycle for nine months each year, the Solar-B
satellite will carry out multi-wavelength observation in optical, EUV, and
X-ray ranges. This will give an important contribution to the main goal of
the Solar-B project: understanding the origin and dynamics of the basic
magnetic structures and their effects on the solar corona. So we shall be
able to understand comprehensively the solar photosphere and the corona,
as a system.



Epilogue

Most of the known matter in the Universe is in an ionized state, and many
naturally occuring plasmas, such as the atmosphere of the Sun and mag-
netic stars, the magnetospheres of the Earth and other planets, the magne-
tospheres of pulsars and other relativistic objects, galactic and extragalactic
jets, exibit distinctively plasma-dynamical phenomena arising from the ef-
fects of magnetic and electric forces. The science of plasma astrophysics
was born and developed to provide an understanding of these naturally
occurring plasmas and those which will be discovered and investigated in
future space observations. With this aim, from the very beginning, many
of the conceptual tools and many different approaches were introduced
and developed in the course of general fundamental research on the plasma
state or independently. How can we understand the interconnection be-
tween different descriptions of astrophysical plasma behavior?

I was frequently asked by my students to give them a quick introduc-
tion to the theory of astrophysical plasma. It turned out that it is not easy
to do for many reasons. The most important of them is that the usual
way of such an introduction is generalization. This means that we go from
simple well-known things to more complicated ones, for example, we gener-
alize the ordinary hydrodynamics to magnetohydrodynamics. Though this
way certainly makes a textbook easier to read, it does not give the reader
complete knowledge of the subject, the tools esspecially. For a long time,
my goal was to write a book which I would myself had liked when I first
took up the subject, plasma astrophysics, and which I could recommend
to my students to provide them an accessible introduction to plasma
astrophysics at least at an intuitive level of the basic concepts.

We began a long journey together, when we first started such a book,
“Plasma Astrophysics. I. Fundamentals and Practice” (referred in the text
as vol. 1), and we are now almost at that journey’s end, book “Plasma
Astrophysics. 2. Reconnection and Flares”.

A unifying theme of the first book (vol. 1) was the attempt at a deeper
understanding of the underlying physics. Starting from the most general
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physical principles, we have seen the consecutive simplifications of them and
of simplifying assumptions which allowed us to obtain a simpler description
of plasma under cosmic conditions. In so doing, the boundaries of the
domain of applicability for the approximation at hand were well outlined
from the viewpoint of physics and possible applications.

On the basis of this approach we can find the answers to the key ques-
tions: (1) what approximation is the simplest but a sufficient one for a
description of a phenomenon in astrophysical plasma; (2) how to build an
adequate model for the phenomenon, for example, a solar flare.

Practice is really important in the theory of astrophysical plasma;
related exercises (problems and answers supplemented to each chapter)
surved to better understanding of its physics. Most of the problems for
students have been used as homework in the lecture course. A particular
feature of the problems is that they widely range in difficulty from fairly
straightforward (useful for an exam) to quite challenging. This property is
not an advantage or disadvantage of the book but rather a current state
of modern astrophysics.

As for applications, evidently preference was given to physical processes
in the solar plasma. The Sun is unique in the astrophysical realm for the
great diversity of the diagnostic data that are available. Much attention to
solar plasma physics was and will be conditioned by the possibility of the
all-round observational test of theoretical models.

Some fourty-fourty five years ago it was still possible, as Alfvén and
Fälthammar (1963) so ably demonstrated, to write a single book on cos-
mic plasma theory concerning practically everything worth knowing of the
subject. The subsequent development has been explosive, and today a
corresponding comprehensive coverage would require a hole library. The
present book is an earnest attempt to a general overview of the whole area
but big gaps unavoidably appear. Important and interesting effects and
problems have been skipped because I either felt to go too far beyond an
introductory text for students or, worse, I have not been aware of them.

There would be infinitely more to say about new space observa-
tions, modern numerical simulations, and analytical investigations
of astrophysical plasma.

Any reader who, after having read this book, would like to become ac-
quainted with profound results of astrophysical plasma should keep this
fact in mind. I hope, however, that he/she, having learned sufficiently
many topics of this textbook, will willingly and easily fill the gaps. Good
luck!



Appendix 1. Acronyms

Acronym Meaning

ACE Advanced Composition Explorer
CME coronal mass ejection
CDS Coronal Diagnostic Spectrometer
EIT Extreme ultraviolet Imaging Telescope
FFF force free (magnetic) field
FIP first ionization potential
GOES Geostationary Operational Environmental Satellite
GONG Global Oscillation Network Group
LDE long duration event
MDI Michelson Doppler Imager
PNL polarity inversion line (of the photospheric magnetic field)
RCL reconnecting current layer
RHESSI Reuven Ramaty High Energy Solar Spectroscopic Imager
SHTCL super-hot turbulent-current layer
SNL simplified neutral line (of the photospheric magnetic field)
SOHO Solar and Heliospheric Observatory
SEPs solar energetic particles
TRACE Transition Region and Coronal Explorer
VLA Very Large Array
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Latin alphabet

Symbol Description Introduced
in Section
(Formula)

A vector potential of a magnetic field 1.1
d thickness of non-adiabatic region 9.1
h magnetic field gradient 1.1
H Hamiltonian 9.2
H magnetic helicity 12.1
K curvature of a magnetic field line 9.2
l current layer length 13
L (T ) radiative loss function 13
u electric current velocity 2.3
V velocity of the plasma flow 13
Va gradient of the Alfvén speed 2.1
x ionisation degree 13
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Greek alphabet

Symbol Description Introduced
in Section
(Formula)

ε dimensionless electric field 9.1
εα small parameter of expansion 10.3
νni neutral-ion mean collisional frequency 13
ξ displacement of a current layer 10.3
ξ ‖ dimensionless longitudinal magnetic field 9.1
ξ⊥ dimensionless transverse magnetic field 9.1
ξ displacement of the medium 2.1
Π work against the Lorentz force 11.4
τr reconnection time scale 14.4



Appendix 3
Useful Formulae

The most important characteristics of astrophysical plasmas (for more
detail see vol. 1, Plasma Astrophysics: Fundamental and Practice)

Alfvén speed

VA =
B√
4πρ

≈ 2.18 × 1011 B√
n

, cm s−1 .

Conductivity of magnetized plasma

σ ‖ = σ =
e2n

me
τei ≈ 2.53 × 108 n (cm−3) τei (s) , s−1 ,

σ⊥ = σ
1

1 +
(
ω

(e)
B τei

)2 , σH = σ
ω(e)

B
τei

1 +
(
ω

(e)
B τei

)2 .

Coulomb logarithm

ln Λ = ln

[(
3k 3/2

B

2π1/2 e3

)(
T 3

e

ne

)1/2
]

≈ ln

[
1.25 × 104

(
T 3

e

ne

)1/2
]

.

Cyclotron frequency (or gyrofrequency)

ωB =
ecB

E .

Debye radius (Te = T , T i = 0 or Te � Ti)

rD =
(

kBT

4π ne2

)1/2

.
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Debye radius in electron-proton thermal plasma (Te = Tp = T )

rD =
(

kBT

8π e2 n

)1/2

≈ 4.9
(

T

n

)1/2

, cm .

Dreicer electric field

EDr =
4πe3 ln Λ

kB

ne

Te
≈ 6.54 × 10−8 ne

Te
, V cm−1 .

Drift velocity

vd =
c

e

F × B
B 2 .

Electric drift velocity

vd = c
E × B

B 2 .

Electric field in magnetized plasma

E ≈ 1
c

vB ≈ 10−8 v (cm s−1) B (G) , V cm−1 .

Electron plasma frequency

ω
(e)
pl =

(
4π e2 ne

me

)1/2

≈ 5.64 × 104 √
ne , rad s−1 .

Electron-ion collision (energy exchange) time

τei (E) =
memi [ 3kB (Te/me + T i/mi) ]3/2

e 2
e e 2

i (6π)1/2 8 ln Λ
.

Gradient drift velocity

vd =
Mc

eB
n × ∇B .

Larmor frequency of a non-relativistic electron

ω (e)
B

=
eB

mec
≈ 1.76 × 107 B (G) , rad s−1 .

Larmor frequency of a non-relativistic proton

ω (p)
B

≈ 9.58 × 103 B (G) , rad s−1 .

Larmor radius of a non-relativistic electron

r (e)
L

=
c p⊥
eB

≈ 5.69 × 10−8 v (cm s−1)
B (G)

, cm .
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Larmor radius of a non-relativistic proton

r (p)
L

≈ 1.04 × 10−4 v (cm s−1)
B (G)

, cm .

Larmor radius of a non-relativistic thermal electrons

r (e)
L

=
VTe

ω
(e)
B

≈ 3.83 × 10−2

√
Te (K)

B (G)
, cm .

Larmor radius of a non-relativistic thermal protons

r (p)
L

=
VTp

ω
(p)
B

≈ 1.64

√
Tp (K)

B (G)
, cm .

Lundquist number

NL = Rem(VA , L) =
VAL

νm
.

Magnetic diffusivity (or viscosity)

νm =
c2

4πσ
≈ 7.2 × 1019 1

σ
, cm2 s−1 .

Magnetic moment of a particle on the Larmor orbit

M =
1
c

JS =
e ωB r 2

L

2c
=

p 2
⊥

2mB
=

E⊥
B

.

Magnetic Reynolds number

Rem =
L2

νm τ
=

vL

νm

Mean thermal velocity of electrons

VTe =
(

3kB T e

me

)1/2

≈ 6.74 × 105
√

Te (K) , cm s−1 .

Mean thermal velocity of protons

VTp ≈ 1.57 × 104
√

Tp (K) , cm s−1 .

Sound speed in electron-proton plasma

Vs =
(

γg
p

ρ

)1/2

≈ 1.66 × 104
√

T (K) , cm s−1 .
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Thermal electron collisional time

τee =
m 2

e

0.714 e4 8π ln Λ
V 3

Te

ne
≈ 4.04 × 10−20 V 3

Te

ne
, s .

Thermal proton collisional time

τpp =
m 2

p

0.714 e4 8π ln Λ
V 3

Tp

np
≈ 1.36 × 10−13 V 3

Tp

np
, s .

Time of energy exchange between electrons and protons

τep (E) ≈ 22 τpp ≈ 950 τee .



Appendix 4. Constants

Fundamental physical constants

Speed of light c 2.998 × 1010 cm s−1

Electron charge e 4.802 × 10−10 CGSE
Electron mass me 9.109 × 10−28 g
Proton mass mp 1.673 × 10−24 g
Boltzmann constant kB 1.381 × 10−16 erg K−1

Gravitational constant G 6.673 × 10−8 dyne cm2 g−2

Planck’s constant h 6.625 × 10−27 erg s

Some useful constants and units

Ampere (current) A 3 × 109 CGSE
Angström (length) A 10−8 cm
Electron Volt (energy) eV 1.602 × 10−12 erg

eV 11605 K
Gauss (magnetic induction) G 3 × 1010 CGSE
Henry (inductance) H 1.111 × 10−12 s2 cm−1

Ionization potential of
hydrogen 13.60 eV

Joule (energy) J 107 erg
Maxwell (magnetic flux) M 3 × 1010 CGSE
Ohm (resistance) Ω 1.111 × 10−12 s cm−1

Tesla (magnetic induction) 104 Gauss
Volt (potential) V 3.333 × 10−3 CGSE
Watt (power) W 107 erg s−1

Weber (magnetic flux) Wb 108 Maxwell
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Some astrophysical constants

Astronomical unit AU 1.496 × 1013 cm
Mass of the Sun M	 1.989 × 1033 g
Mass of the Earth ME 5.98 × 1027 g
Solar radius R	 6.960 × 1010 cm
Solar surface gravity g	 2.740 × 104 cm s−2

Solar luminosity L	 3.827 × 1033 erg s−1

Mass loss rate Ṁ	 1012 g s−1

Rotation period of the Sun T	 26 days (at equator)
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Color Plates

Fig. 4.2. The HXR source contours (blue curves) at the HXR maximum of the
Bastille day flare overlaid on the MDI magnetogram. The green curve PNL repre-
sents the photospheric neutral line. SNL is the simplified neutral line.



Fig. 4.3. The HXR source positions in the beginning of the first HXR spike S1
(yellow contours) and near its end (blue contours).



Fig. 4.4. The position and motion of the strongest HXR sources K1 and K2 relative
to the SMFT magnetogram on 14 July.



Fig. 4.5. H-band images of the brightest kernel K1 in the rise and decay of the first
HXR spike S1 overlaid on the SMFT magnetogram on July 14.
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