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About This Book

If you want to learn the most fundamental things about plasma astrophysics
with the least amount of time — and who doesn’t? — this text is for you. This
book is addressed to young people, mainly to students, without a background
in plasma physics; it grew from the lectures given many times in the Faculty of
General and Applied Physics at the Moscow Institute of Physics and Technics
(the well known ‘fiz-tekh’) since 1977. A similar full-year course was also
offered to the students of the Astronomical Division of the Faculty of Physics
at the Moscow State University over the years after 1990. A considerable
amount of new material, related to modern astrophysics, has been added to
the lectures. So the contents of the book can hardly be presented during a
one-year lecture course, without additional seminars.

In fact, just the seminars with the topics ‘how to make a cake’ were
especially pleasant for the author and useful for students. In part, the text
of the book retains the imprint of the seminar form, implying a more lively
dialogue with the reader and more visual representation of individual notions
and statements. At the same time, the author’s desire was that these digres-
sions from the academic language of the monograph will not harm the rigour
of presentation of this textbook’s subject — the physical and mathematical
introduction to plasma astrophysics.

There is no unique simple model of a plasma, which encompasses all situ-
ations in space. We have to familiarize ourselves with many different models
applied to different situations. We need clear guidelines when a model works
and when it does not work. Hence the best strategy is to develop an intu-
ition about plasma physics, but how to develop it?

The idea of the book is not typical for the majority of textbooks on plasma
astrophysics. Its idea is

the consecutive consideration of physical principles, starting from
the most general ones, and of simplifying assumptions which give
us a simpler description of plasma under cosmic conditions.

Thus I would recommend the students to read the book straight through
each chapter to see the central line of the plasma astrophysics, its classic
fundamentals. In so doing, the boundaries of the domain of applicability
of the approximation at hand will be outlined from the viewpoint of physics

xiii



xiv About This Book

rather than of many possible astronomical applications. After that, as an aid
to detailed understanding, please return with pencil and paper to work out
the missing steps (if any) in the formal mathematics.

On the basis of such an approach the student interested in modern astro-
physics, its current practice, will find the answers to two key questions:

(1) what approximation is the best one (the simplest but sufficient) for
description of a phenomenon in astrophysical plasma,;

(2) how to build an adequate model for the phenomenon, for example, a
solar flare or a flare in the corona of an accretion disk.

Practice is really important for the theory of astrophysical plasma. Related
exercises (problems and answers supplemented to each chapter) to improve
skill do not thwart the theory but serve to better understanding of plasma
astrophysics.

As for the applications, preference evidently is given to physical processes
in the solar plasma. Why? — Much attention to solar plasma physics is con-
ditioned by the possibility of the all-round observational test of theoretical
models. This statement primarily relates to the processes in the solar atmo-
sphere. For instance, flares on the Sun, in contrast to those on other stars as
well as a lot of other analogous phenomena in the Universe, can be seen in
their development, i.e. we can obtain a sequence of images during the flare’s
evolution, not only in the optical and radio ranges but also in the ultraviolet,
soft and hard X-ray, gamma-ray ranges.

This book is mainly intended for students who have mastered a course of
general physics and have some initial knowledge of theoretical physics. For
beginning students, who may not know in which subfields of astrophysics they
wish to specialize,

it is better to cover a lot of fundamental theories thoroughly than
to dig deeply into any particular astrophysical subject or object,

even a very interesting one, for example black holes. Astronomers and astro-
physicists of the future will need tools that allow them to explore in many
different directions. Moreover astronomy of the future will be, more than
hitherto, precise science similar to mathematics and physics.

The beginning graduate students are usually confronted with a confusing
amount of work on plasma astrophysics published in a widely dispersed scien-
tific literature. Knowing this difficulty, the author has tried as far as possible
to represent the material in a self-contained form which does not require the
reading of additional literature. However there is an extensive bibliography in
the end of the book, allowing one to find the original works. In many cases,
particularly where a paper in Russian is involved, the author has aimed to
give the full bibliographic description of the work, including its title, etc.

Furthermore the book contains recommendations as to an introductory
(unavoidable) reading needed to refresh the memory about a particular fact,
as well as to additional (further) reading to refine one’s understanding of the
subject. Separate remarks of an historical character are included in many
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places. It is sometimes simpler to explain the interrelation of discoveries by
representing the subject in its development. It is the author’s opinion that
the outstanding discoveries in plasma astrophysics are by no means governed
by chance. With the same thought in mind, the author gives preference to
original papers on a topic under consideration; it happens in science, as in
art, that an original is better than nice-looking modernizations. Anyway,

knowledge of the history of science and especially of natural science
is of great significance for its understanding and development.

The majority of the book’s chapters begin from an ‘elementary account’
and illustrative simple examples but finish with the most modern results of
scientific importance. New problems determine the most interesting perspec-
tives of plasma astrophysics as a new developing science. The author hopes,
in this context, that professionals in the field of plasma astrophysics and ad-
jacent sciences will enjoy reading this book too. Open issues are the focus of
our attention in many places where they are. In this way, perspectives of
the plasma astrophysics with its many applications will be also of interest
for readers. The book can be used as a textbook but has higher potential of
modern scientific monograph.

The first volume of the book is unique in covering the basic principles
and main practical tools required for understanding and work in plasma as-
trophysics. The second volume ”Plasma Astrophysics. 2. Reconnection and
Flares” (referred in the text as vol. 2) represents the basic physics of the
magnetic reconnection phenomenon and the flares of electromagnetic origin
in space plasmas in the solar system, relativistic objects, accretion disks, their
coronae.
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Plasma Astrophysics
History and Neighbours

Plasma astrophysics studies electromagnetic processes and phenomena in
space, mainly the role of forces of an electromagnetic nature in the dynamics
of cosmic matter. Two factors are specific to the latter: its gaseous state
and high conductivity. Such a combination is unlikely to be found under
natural conditions on Earth; the matter is either a non-conducting gas (the
case of gas dynamics or hydrodynamics) or a liquid or a solid conductor. By
contrast, plasma is the main state of cosmic matter. It is precisely
the poor knowledge of cosmic phenomena and cosmic plasma properties that
explains the retarded development of plasma astrophysics. It has been distin-
guished as an independent branch of physics in the pioneering works of Alfvén
(see Alfvén, 1950).

Soon after that, the problem of thermonuclear reactions initiated a great
advance in plasma research (Simon, 1959; Glasstone and Loveberg, 1960;
Leontovich, 1960). This branch has been developing rather independently,
although being partly ‘fed’ by astrophysical ideas. They contributed to the
growth of plasma physics, for example, the idea of stelarators. Presently, the
reverse influence of laboratory plasma physics on astrophysics is also impor-
tant.

From the physical viewpoint,

plasma astrophysics is a part of plasma theory related in the first
place to the dynamics of a low-resistivity plasma in space.

However it is this part that is the most poorly studied one under laboratory
conditions. During the 1930s, scientists began to realize that the Sun and
other stars are powered by nuclear fusion and they began to think of re-
creating the process in the laboratory. The ideas of astro- and geophysics
dominate here, as before. At present time, they mainly come from many
space experiments and fine astronomical ground-based observations. From
this viewpoint, plasma astrophysics belongs to experimental science.

Electric currents and, therefore, magnetic fields are easily generated in the
astrophysical plasma owing to its low resistivity. The energy of magnetic fields
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is accumulated in plasma, and the sudden release of this energy — an original
electrodynamical ‘burst’ or ‘explosion’ — takes place under definite but quite
general conditions. It is accompanied by fast directed plasma ejections (jets),
powerful flows of heat and radiation and impulsive acceleration of particles to
high energies.

This phenomenon is quite a widespread one. It can be observed in flares
on the Sun and other stars, in the Earth’s magnetosphere as magnetic storms
and substorms, in coronae of accretion disks of cosmic X-ray sources, in nuclei
of active galaxies and quasars. The second volume of this book is devouted to
the physics of magnetic reconnection and flares generated by reconnection in
plasma in the solar system, single and double stars, relativistic objects, and
other astrophysical objects.

The subject of the first volume of present book is the systematic descrip-
tion of the most important topics of plasma astrophysics. However the aim
of the book is not the strict substantiation of the main principals and basic
equations of plasma physics; this can be found in many wonderful monographs
(Klimontovich, 1986; Schram, 1991; Liboff, 2003). There are also many nice
textbooks (Goldston and Rutherford, 1995; Choudhuri, 1998; Parks, 2004) to
learn general plasma physics without or with some astrophysical applications.

The primary aim of the book in your hands is rather the solution of a
much more modest but still important problem, namely to help the students
of astrophysics to understand the interrelation and limits of applicability of
different approximations which are used in plasma astrophysics. If, on his/her
way, the reader will continously try, following the author, to reproduce all
mathematical transformation, he/she finally will soon find the pleasant feeling
of real knowledge of the subject and the real desire for constructive work in
plasma astrophysics.

The book will help the young reader to master the modern methods of
plasma astrophysics and will teach the application of these methods while
solving concrete problems in the physics of the Sun and many other astronom-
ical objects. A good working knowledge of plasma astrophysics is essential for
the modern astrophysicist.



Chapter 1

Particles and Fields: Exact
Self-Consistent Description

There exist two different ways to describe ezxactly the behaviour of a
system of charged particles in electromagnetic and gravitational fields.
The first description, the Newton set of motion equations, is conve-
nient for a small number of interacting particles. For systems of large
numbers of particles, it is more advantageous to deal with the single
Liouville equation for an ezact distribution function.

1.1 Interacting particles and Liouville’s theo-
rem

1.1.1 Continuity in phase space

Let us consider a system of N interacting particle. Without much justification
(which will be given in Chapter 2), let us introduce the distribution function

f=f(r,v,t) (1.1)

for particles as follows. We consider the six-dimensional (6D) space called
phase space X = {r,v}. The number of particles present in a small volume
dX = d3rd3v at a point X (see Figure 1.1) at a moment of time ¢ is defined
to be

dN(X,t) = f(X,t)dX. (1.2)

Accordingly, the total number of the particles at this moment is

N(t):/f(X,t) dXE//f(r,v,t)dSrdBV. (1.3)
3
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X
d’v dX
x Figure 1.1: The 6D phase space X.
A small volume dX at a point X.
d’r
! !
0 r

If, for definiteness, we use the Cartesian coordinates, then
X={z v,z vy, vy, v, }
is a point of the phase space (Figure 1.2) and
X = { vy, vy, V2, Vs, Uy, s } (1.4)

is the velocity of this point in the phase space.

Let us suppose the coordinates and velocities of the particles are changing
continuously — ‘from point to point’. This corresponds to a continuous motion
of the particles in phase space and can be expressed by the continuity equation:

%erivx (Xf)=0

(1.5)

or

0 .

a—{ +divy (vf) +divy (Vf) =0.
Equation (1.5) expresses the conservation law for the particles, since the in-
tegration of (1.5) over a volume U enclosed by the surface S in Figure 1.2

gives

%/de—i—/divX(Xf)dX:
U U

by virtue of definition (1.2) and the Ostrogradskii-Gauss theorem

i)
= 5 N

+/@#MS:;AW)U+/stzu (1.6)

S S

U

Here a surface element d S, normal to the boundary S, is oriented towards
its outside, so that imports are counted as negative (e.g., Smirnov, 1965,
Section 126). J = X f is the particle flur density in phase space. Thus
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v S
X g X / J
Figure 1.2: The 6D phase ds
space X. The volume U is en- U
closed by the surface S.
0 r

a change of the particle number in a given phase space volume U is
defined by the particle flux through the boundary surface S only.

The reason is clear. There are no sources or sinks for the particles inside the
volume. Otherwise the source and sink terms must be added to the right-hand
side of Equation (1.5).

1.1.2 The character of particle interactions

Let us rewrite Equation (1.5) in another form in order to understand the
meaning of divergent terms. The first of them is

divy (vf) = fdiv, v+ (v-Vy) f=0+(v- V) f,

since r and v are independent variables in phase space X. The second diver-
gent term is
divy (Vf) = fdivy v+ V-V, f.

So far no assumption has been made as to the character of particle in-
teractions. It is worth doing here. Let us restrict our consideration to the
interactions with

divy, v =0,
(1.7)
then Equation (1.5) can be rewritten in the equivalent form:
F
Uovvwr+ Eover=o
ot m
or 5
—f+Xva:o, (1.8)

ot
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where

. F, F, F,
X{Ux,’Uy,’Uz, ) ya }
m m m

Having written that, we ‘trace’ the particle phase trajectories. Thus Liou-
ville’s theorem is found to have the following formulation:

af F

=L -V, .V, f=0. 1.9
5 TV Ve S+ Vo f (1.9)
Liouville’s theorem: The distribution function remains constant on
the particle phase trajectories if condition (1.7) is satisfied.

We shall call Equation (1.9) the Liouwville equation. Let us define also the

Liouville operator

D 0 -0 0 F

— ==+ X—=— Ve +— V. 1.10

Di— ot Cax o VT (1.10)
This operator is just the total time derivative following a particle motion in
the phase space X. By using definition (1.10), we rewrite Liouville’s theorem
as follows:

Df B
DtV
(1.11)
M (a) M (b)
J,
v I
J.
—>| dX | == F dX
J,
{a,
0 r 0 r

Figure 1.3: Action of the two different terms of the Liouville operator in the
6D phase space X.

What factors lead to the changes in the distribution function?

Let dX be a small volume in the phase space X. The second term in
Equation (1.9), vV, f, means that the particles go into and out of the phase
volume element considered, because their velocities are not zero (Figure 1.3a).
So this term describes a simple kinematic effect. The third term, (F/m)-Vy f,
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means that the particles escape from the phase volume element dX or come
into this element due to their acceleration or deceleration under the influence
of forces (Figure 1.3b).

Some important properties of the Liouville equation are considered in Ex-
ercises 1.1-1.4.

1.1.3 The Lorentz force, gravity

Let us recall that the forces have to satisfy condition (1.7). We rewrite it as
follows:

Do 1 OF,
oX) 78 ~0

Ove m v,

or
OF,

vy

0, a=1,2,3. (1.12)
In other words,

the component F, of the force vector F does not depend upon the
velocity component vg,.

This is a sufficient condition.
The classical Lorentz force

1
F,=c¢|E,+ E(VXB)Q (1.13)

obviously has that property. The gravitational force in the classical approxi-
mation is entirely independent of velocity.

Other forces may be considered, depending on the situation, for example
the forces resulting from the emission and/or absorption of radiation by astro-
physical plasma, which is electromagnetic in nature, though maybe quantum.
These forces when they are important should be considered with account
of their relative significance, conservative or dissipative character, and other
physical properties taken.

1.1.4 Collisional friction in plasma

As a contrary example we consider the friction force (cf. formula (8.66) for
the collisional drag force in plasma):

F=—kv, (1.14)

where the constant & > 0. In this case the right-hand side of Liouville’s
equation is not zero:
F 3

k
—fdivyv=—fdivy, — = I,
m m
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Figure 1.4: Particle density
increase in phase space as a
result of the action of the
friction force F.

because 5
v
2 = = 3.
0 Vg
Instead of Liouville’s equation we have
Df 3k
- =— 0. 1.15
i =) (1.15)

The distribution function (that is the particle density) does not remain con-
stant on particle trajectories but increases as the time elapses. Along the
phase trajectories, it increases exponentially:

F(t,v) ~ F(0,1,7) exp (i’j t) . (1.16)

The physical sense of this phenomenon is obvious. As the particles are decel-
erated by the friction force, they move down in Figure 1.4. By so doing, they
are concentrated in the constantly diminishing region of phase space situated
in the vicinity of the axis v = 0.

There is a viewpoint that the Liouville theorem is valid for the forces
that do not disperse particle velocities (Shkarofsky et al., 1966, Chapter 2).
Why? It is usually implied that particle collisions enlarge such a dispersion:

divy, v > 0. So
Df _(of
Dt~ \ ot

In this case the right-hand side of Equation (1.17) is called the collisional
integral (see Sections 2.1 and 2.2). In contrast to the right-hand side of (1.15),
that of Equation (1.17) is usually negative.

The above example of the friction force is instructive in that it shows how
the forces that are diminishing the velocity dispersion (divy, v < 0) lead to

) = —fdivy v <0. (1.17)
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the violation of Liouville’s theorem; in other words, how they lead to a change
of the distribution function along the particle trajectories. For the validity of
Liouville’s theorem only the condition (1.7) is important; in the velocity space,
the divergence of the forces has to equal zero. The sign of this divergence is
unimportant.

1.1.5 The exact distribution function

Let us consider another property of the Liouville theorem. We introduce the
N-particle distribution function of the form

f(t,r,v) Z §(r—ri(t) 6 (v —vi(t)). (1.18)

We shall call such a distribution function the exact one. It is illustrated by
schematic Figure 1.5.

Figure 1.5: The one-dimensional analogy of the exact distribution function.

A
f

Let us substitute this expression for the distribution function in Equa-
tion (1.9). The resulting three terms are

= =) (—1) 8 (r—ri(t) a8 (v — vilt) +

i

+ (-1 (x —rilt)) 84 (v = vilt) b (1.19)

vV f Z Vo 0L (r —1i(t)) 8 (v — (1)), (1.20)
P ovj=tn j—f -y %ur—ri(t)) L) . (21)

Here the index o = 1,2,3 or (z,y, z). The prime denotes the derivative with
respect to the argument of a function; for the delta function, see definition
of the derivative in Vladimirov (1971). The overdot denotes differentiation
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with respect to time ¢. Summation over the repeated index « (contraction) is
implied: _ _ _ '
B = SL i+ 0+ 8L

The sum of terms (1.19)—(1.21) equals zero. Let us rewrite it as follows

0= " (=ri+0vi) 0L (r—1s(t) 6 (v — v(t)) +

%

. F
—0r + =) §(r —ri(t)) 6L (v —vi(t)) .
+§j(%+m)<rrm>gvv<»
This can occur just then that all the coefficients of different combinations of

delta functions with their derivatives equal zero as well. Therefore we find

drl — i) dvl _ 1
a7 at — my

Fy (ri(t),vi(t)) . (1.22)

Thus

the Liouville equation for an exact distribution function is equivalent
to the Newton set of equations for a particle motion, both describing
a purely dynamic behaviour of the particles.

It is natural since this distribution function is exact. No statistical averaging
has been done so far. It is for this reason that both descriptions — namely,
the Newton set and the Liouville theorem for the exact distribution function
— are dynamic (as well as reversible, of course) and equivalent. Statistics will
appear in the next Chapter when, instead of the exact description of a system,
we begin to use some mean characteristics such as temperature, density etc.
This is the statistical description that is valid for systems containing a large
number of particles.

We have shown that finding a solution of the Liouville equation for an
exact distribution function

Df _

=0
Dt

(1.23)

is the same as the integration of the motion equations. Therefore

for systems of a large number of interacting particles, it is much
more advantageous to deal with the single Liouville equation for
the exact distribution function which describes the entire system.

Recommended Reading: Landau and Lifshitz, Mechanics (1976), Chap-
ters 2 and 7; Landau and Lifshitz, Statistical Physics (1959b), Chapter 1,
§1-3.
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1.2 Charged particles in the electromagnetic
field

1.2.1 General formulation of the problem

Let us start from recalling basic physics notations and establishing a common
basis. Maxwell’s equations for the electric field E and magnetic field B are
well known to have the form (see Landau and Lifshitz, Classical Theory of
Field, 1975, Chapter 4, § 26):

47 ., 1 O0E

1B =— - — 1.24

cut c It c Ot’ ( )
10B

E= — — 1.25

cur vt ( )

divB =0, (1.26)

divE = 4mp9. (1.27)

The fields are completely determined by electric charges and electric currents.
Note that, in general, Maxwell’s equations imply the continuity equation for
electric charge (see Exercise 1.5) as well as the conservation law for electro-
magnetic field energy (Exercise 1.6).

°
€1 @ € b
. T i)
Figure 1.6: A system r;(t) R
of N charged particles. 0 ® e,
Let there be N particles with charges eq, e, ... e, ...e,, coordinates

r;(t) and velocities v;(t), see Figure 1.6. By definition, the electric charge
density

N
pl(r,t) =) €6 (r—r(t)) (1.28)
i=1
and the density of electric current
N
jrt) =" evi(t)d(r—ri(t)). (1.29)
i=1

The delta function of the vector-argument is defined as usually:

3
S(r—ri(t) =[] 6a=0(rs —ri(t)) 6 (ry —rj(t)) 6 (r- —r(t)). (1.30)

a=1
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The coordinates and velocities of particles can be found by integrating the
equations of motion — the Newton equations:

. _dry

P= o= vi(t), (1.31)
. dVl‘ o 1 ) ) 1 . )

Vi= o= Eel E(r;(t)) + o Vix B (ri(t)) | - (1.32)

Let us count the number of unknown quantities: the vectors B, E, r;, and
v;. We obtain: 3+3+3N+3N = 6 (N+1). The number of equations is equal
to 8 + 6N = 6 (N + 1) + 2. Therefore two equations seem to be unnecessary.
Why is this so?

1.2.2 The continuity equation for electric charge

Let us make sure that the definitions (1.28) and (1.29) conform to the con-
servation law for electric charge. Differentiating (1.28) with respect to time
gives (see Exercise 1.7)

dp4 I

ﬁ :7; 61'5&7’0(. (133)

Here the index o« = 1,2,3. The prime denotes the derivative with respect
to the argument of the delta function, see Vladimirov (1971). The overdot
denotes differentiation with respect to time t¢.
For the electric current density (1.29) we have the divergence
.0 ;
divj = %]a = ; e;ve by . (1.34)

Comparing formula (1.33) with (1.34) we see that

a
aOLt Fdivj=0.
(1.35)
Therefore the definitions for p9 and j conform to the continuity Equa-

tion (1.35).

As we shall see it in Exercise 1.5, conservation of electric charge follows
also directly from the Maxwell Equations (1.24) and (1.27). The difference is
that above we have not used Equation (1.27).

1.2.3 Initial equations and initial conditions

Operating with the divergence on Equation (1.24) and using the continuity
Equation (1.35), we obtain

4w dpd 10 .
Oc(at>+catleE.
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Thus, by postulating the definitions (1.28) and (1.29), by virtue of the con-
tinuity Equation (1.35) and without using the Maxwell Equation (1.27), we
find that

%(diVE*ZL’/qu) =0. (1.36)

Hence Equation (1.27) will be valid at any moment of time, provided it is true
at the initial moment.
Let us operate with the divergence on Equation (1.25):

0
—divB =0. 1.
5 div 0 (1.37)

We come to the conclusion that the Equations (1.26) and (1.27) play the role
of initial conditions for the time-dependent equations

%B =—ccurlE (1.38)
and 9
aEz—FccurlB—élﬂ'j. (1.39)

Equation (1.26) implies the absence of magnetic charges or, which is the same,
the solenoidal character of the magnetic field.

Thus, in order to describe the gas consisting of N charged particles, we
consider the time-dependent problem of N bodies with a given interaction
law.

The electromagnetic part of the interaction is described by Max-
well’s equations, the time-independent scalar equations playing the
role of initial conditions for the time-dependent problem.

Therefore the set consisting of eight Maxwell’s equations and 6N Newton’s
equations is neither over- nor underdetermined. It is closed with respect to
the time-dependent problem, i.e. it consists of 6 (N +1) equations for 6 (N +1)
variables, once the initial and boundary conditions are given.

1.2.4 Astrophysical plasma applications

The set of equations described above can be treated analytically in just three
cases:

1. N = 1, the motion of a charged particle in a given electromagnetic
field, for example, drift motions and the so-called adiabatic invariants,
wave-particle interaction and the problem of particle acceleration in as-
trophysical plasma; e.g., Chapters 7 and 18.

2. N =2, Coulomb collisions of two charged particles. This is important
for the kinetic description of physical processes, for example, the kinetic
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effects under propagation of accelerated particles in plasma, collisional
heating of plasma by a beam of fast electrons or/and ions, see Chapters
4 and 8.

3. N — o0, a very large number of particles. This case is the frequently
considered one in plasma astrophysics, because it allows us to introduce
macroscopic descriptions of plasma, the widely-used magnetohydrody-
namic (MHD) approximation; Chapters 9, and 12.

Numerical integration of Equations (1.24)—(1.32) in the case of large but
finite N, like N =~ 3 x 10, is possible by using powerful modern computers.
Such computations called ‘particle simulations’ have proved to be increasingly
useful for understanding properties of astrophysical plasma. One important
example of a simulation is magnetic reconnection in a collisionless plasma
(Horiuchi and Sato, 1994; Cai and Lee, 1997). This process often leads to fast
energy conversion from field energy to particle energy, flares in astrophysical
plasma (see vol. 2).

Note also that the set of equations described above can be generalized to
include consideration of neutral particles. This is necessary, for instance, in
the study of the generalized Ohm’s law (Chapter 9) which can be applied in
the investigation of physical processes in weakly-ionized plasmas, for example
in the solar photosphere and prominences.

Dusty and self-gravitational plasmas in space are interesting in view of
the diverse and often surprising facts about planetary rings and comet envi-
ronments, interstellar dark space (Bliokh et al., 1995; Kikuchi, 2001). Two
effects are often of basic importance, gravitational and electric, since charged
or polarized dust grains involved in such environments are much heavier than
electrons and ions. So a variety of electric rather than magnetic phenom-
ena are taking place predominantly; and gravitational forces acting on dust
particles can become appreciable.

1.3 Gravitational systems

Gravity plays a central role in the dynamics of many astrophysical systems
— from stars to the Universe as a whole (Lahav et al., 1996; Rose, 1998;
Bertin, 1999; Dadhich and Kembhavi, 2000). It is important for many astro-
physical applications that a gravitational force (as well as an electromagnetic
force) acts on the particles:

Here the gravitational potential

Sltr)=—-Y _Gme (1.41)
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G is the gravitational constant. We shall return to this subject many times,
for example, while studying the virial theorem in MHD (Chapter 19). This
theorem is widely used in astrophysics.

At first sight, it may seem that a gravitational system, like stars in a
galaxy, will be easier to study than a plasma, because there is gravitational
charge (i.e. mass) of only one sign compared to the electric charges of two
opposite signs. However the reality is the other way round. Though the
potential (1.41) of the gravitational interaction looks similar to the Coulomb
potential of charged particles (see formula (8.1)),

physical properties of gravitational systems differ so much from
properties of astrophysical plasma.

We shall see this fundamental difference, for example, in Section 3.3 and
many times in what follows. A deep unifying theme which underlies many
astrophysical results is that self-gravity is incompatible with thermodynamic
equilibrium (see Section 9.6).

1.4 Practice: Exercises and Answers

Exercise 1.1 [Section 1.1.2] Show that any distribution function that is a
function of the constants of the motion — the invariants of motion — satisfies
Liouville’s equation (1.11).

Answer. A general solution of the equations of motion (1.22) depends on
2N constants C; where ¢ = 1, 2, ...2N. If we assume that the distribution
function is a function of these constants of the motion

f=F(C1, ...Ci .. Con ), (1.42)

we can rewrite the left-hand side of Equation (1.11) as

2EE@) e

Because C; are constants of the motion, DC;/Dt = 0. Therefore the right-
hand side of Equation (1.43) is also zero, and the distribution function (1.42)
satisfies the Liouville equation. This is the so-called Jeans theorem. It will be
used, for example, in the theory of wave-particle interaction in astrophysical
plasma (Section 7.1).

Exercise 1.2 [Section 1.1.2] Rewrite the Liouville theorem by using the
Hamilton equations instead of the Newton equations.
Answer. Rewrite the Newton set of the motion Equations (1.22) in the
Hamilton form (see Landau and Lifshitz, Mechanics, 1976, Chapter 7, § 40):
o0H . OH

Go=gp Fa=—g5 - (a=123), (1.44)
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where H(P, q) is the Hamiltonian of the system under consideration, ¢, and
P, are the generalized coordinates and momemta, respectively.

Let us substitute the variables r and v in the Liouville equation (1.9) by
the generalized variables q and P. By doing so and using Equations (1.44),
we obtain the following form of the Liouville equation

of
E-FVPH-qu—VqH-VPf:O. (1.45)

Because of symmetry of the last equation, it is convenient here to use the
Poisson brackets (see Landau and Lifshitz, Mechanics, 1976, Chapter 7, § 42).
Recall that the Poisson brackets for arbitrary quantities A and B are defined

to be s
0A OB 0A 0B
A, B]= L E S P2, 1.4
[4, B] ;(aqa 0P, OP, 0qa) (1.46)

Appling definition (1.46) to Equation (1.45), we find the final form of the
Liouville theorem

of
N +[f,H]=0.
(1.47)
Q.e.d. Note that for a system in equilibrium
[f,H]=0. (1.48)

Exercise 1.3 [Section 1.1.2] Discuss what to do with the Liouville theorem,
if it is impossible to disregard quantum indeterminacy and assume that the
classical description of a system is justified. Consider the case of dense fluids
inside stars, for example, white dwarfs.

Comment. Inside a white dwarf star the temperature T' ~ 10° K, but the
density is very high: n ~ 10%® —103° cm =2 (e.g., de Martino et al., 2003). The
electrons cannot be regarded as classical particles. We have to consider them
as a quantum system with a Fermi-Dirac distribution (see § 57 in Landau and
Lifshitz, Statistical Physics, 1959b; Kittel, 1995).

Exercise 1.4 [Section 1.1.2] Recall the Liouville theorem in a course of
mechanics — the phase volume is independent of ¢, i.e. it is the invariant of
motion (e.g., Landau and Lifshitz, Mechanics, 1976, Chapter 7, § 46). Show
that this formulation is equivalent to Equation (1.11).

Exercise 1.5 [Section 1.2.1] Show that Maxwell’s equations imply the con-
tinuity equation for the electric charge.
Answer. Operating with the divergence on Equation (1.24), we have
4 10
0= L divi+ - = divE.
c c Ot
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Substituting (1.27) in this equation gives us the continuity equation for the
electric charge

%pq—l—divjzo. (1.49)

Thus Maxwell’s equations conform to the charge continuity equation.

Exercise 1.6 [Section 1.2.1] Starting from Maxwell’s equation, derive the
energy conservation law for an electromagnetic field.

Answer. Let us multiply Equation (1.24) by the electric field vector E
and add it to Equation (1.25) multiplied by the magnetic field vector B. The
result is

1_0E 1_0B 4T
EEE-%EBW_—?JE—(BcurlE—EcurlB).

By using the known formula from vector analysis

div [ax b]=bcurla—acurlb,

we rewrite the last equation as follows

1 0 47
— 2 (E?+B))=_—_5E—div]/ExB
2¢ at( + ) ¢ iv [Bx B
or
9 W=—E—-divG
o~ '
(1.50)
Here ) )
E°+B
W=—"7/— 1.51
o (1.51)
is the energy of electromagnetic field in a unit volume of space;
c
G=—[ExB 1.52
= [BxB] (15)

is the flux of electromagnetic field energy through a unit surface in space, i.e.
the energy flux density for electromagnetic field. This is called the Poynting
vector.

The first term on the right-hand side of Equation (1.50) is the power of
work done by the electric field on all the charged particles in the unit volume
of space. In the simplest approximation

B- ¢ (1.53)
evE = — .
dt '
where £ is the particle kinetic energy (see Equation (5.6)). Hence instead of
Equation (1.50) we write the following form of the energy conservation law:
0 <E2 +B?  po?
el

ot \ 8 2> +div (ﬁ [E x B]) =0. (1.54)
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Compare this simple approach to the energy conservation law for charged par-
ticles and an electromagnetic field with the more general situation considered
in Section 12.1.3.

Exercise 1.7 [Section 1.2.2] Clarify the meaning of the right-hand side of
Equation (1.33).

Answer. Substitute definition (1.30) of the delta-function in defini-
tion (1.28) of the electric charge density and differentiate the result over time ¢:

0t NS 0 | 20

o =2 2 | =gty L0 0 gy 0 i) =
N 3 9 3 - dri
i=1 a=1 o B=1

This is the right-hand side of Equation (1.33).



Chapter 2

Statistical Description of
Interacting Particle
Systems

In a system which consists of many interacting particles, the statistical
mechanism of ‘mixing’ in phase space works and makes the system’s
behaviour on average more simple.

2.1 The averaging of Liouville’s equation

2.1.1 Averaging over phase space

As was shown in the first Chapter, the exact state of a system consisting of
N interacting particles can be given by the ezact distribution function (see
definition (1.18)) in six-dimensional (6D) phase space X = {r,v}. This is
defined as the sum of §-functions in N points of phase space:

N

Fle,vit) =" 6 —ri(t) 6 (v —vi(t)). (2.1)

i=1

Instead of the equations of motion, we use Liouville’s equation to describe the
change of the system state (Section 1.1.5):

of . F .
STV Vel Ve f=0. (2.2)

Once the exact initial state of all the particles is known, it can be repre-
sented by N points in the phase space X (Figure 2.1). The motion of these

19
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Figure 2.1: Particle trajectories in the 6D phase space X.

r

points is described by Liouville’s equation (1.9) or by the 6N equations of
motion (1.22).

In fact we usually know only some average characteristics of the system’s
state, such as the temperature, density, etc. Moreover the behaviour of each
single particle is in general of no interest. For this reason, instead of the
exact distribution function (2.1), let us introduce the distribution function
averaged over a small volume AX of phase space, i.e. over a small interval of
coordinates Ar and velocities Av centered at the point (r,v), at a moment
of time ¢:

(Frv,D)x = ﬁ /f(X,t) ixX —
AX

:ArlAv / f(r,v,t)d’rd>v. (2.3)

Ar Av

Here d3r = dxdydz and d3v = du, dvy dv, if use is made of Cartesian
coordinates.

To put the same in another way, the mean number of particles present at
a moment of time ¢ in the element of phase volume AX is

<f(r7vat)>X CAX = /f(r,v,t)dX.
AX

The total number N of particles in the system is the integral over the whole
phase space X.

Obviously the distribution function averaged over phase volume differs
from the exact one as shown in Figure 2.2.
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A (a)
X
A
<f>
(b)
X

Figure 2.2: The one-dimensional analogy of the distribution function aver-
aging over phase space X: (a) the exact distribution function (2.1), (b) the
averaged function (2.3).

2.1.2 Two statistical postulates

Let us average the same exact distribution function (2.1) over a small time
interval At centred at a moment of time ¢:

(Flr,v.t)) = é /f(r,v,t) dt . (2.4)
At

Here At is small in comparison with the characteristic time of the system’s
evolution:
At € Tey . (2.5)

We assume that the following two statistical postulates concerning systems
containing a large number of particles are applicable to the system considered.

The first postulate. The mean values ( f), and (f); exist for suffi-
ciently small AX and At and are independent of the averaging scales AX
and At.

Clearly the first postulate implies that the number of particles should be
large. For a small number of particles the mean value depends upon the aver-
aging scale: if, for instance, N = 1 then the exact distribution function (2.1)
is simply a d-function, and the average over the variable X is ( f), = 1/AX.
For illustration, the case (AX); > AX is shown in Figure 2.3.

The second postulate is

(fX1)x = (F(X,))e = f(X,8). (2.6)
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Figure 2.3: Averaging of the
exact distribution function f
which is equal to a d-function.
< ]’p\ AX is a small volume of
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In other words, the averaging of the distribution function over phase space is
equivalent to the averaging over time.

While speaking of the small AX and At, we assume that they are not
too small: AX must contain a reasonably large number of particles while At
must be large in comparison with the duration of drastic changes of the exact
distribution function, such as the duration of the particle Coulomb collisions:

At > .. (2.7

It is in this case that the statistical mechanism of particle ‘mixing’ in phase
space is at work and

the averaging of the exact distribution function over the time At is
equivalent to the averaging over the phase volume AX.

2.1.3 A statistical mechanism of mixing in phase space

Let us understand qualitatively how the mixing mechanism works in phase
space. We start from the dynamical description of the N-particle system in
6 N-dimensional phase space in which

F:{ri,vi}, i:1,2,...N,

a point is determined (¢ = 0 in Figure 2.4) by the initial conditions of all the
particles. The motion of this point, that is the dynamical evolution of the
system, can be described by Liouville’s equation or equations of motion. The
point moves along a complicated dynamical trajectory because the interactions
in a many-particle system are extremely intricate and complicated.

The dynamical trajectory has a remarkable property which we shall il-
lustrate by the following example. Imagine a glass vessel containing a gas
consisting of a large number N of particles (molecules or charged particles).
The state of this gas at any moment of time is depicted by a single point in
the phase space I'.
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V.

[] ar

r;

Figure 2.4: The dynamical trajectory of a system of N particles in the 6/N-
dimensional phase space T'.

Let us imagine another vessel which is identical to the first one, with one
exception, being that at any moment of time the gas state in the second
vessel is different from that in the first one. These states are depicted by two
different points in the space I'. For example, at t = 0, they are points 1 and
2 in Figure 2.5.

V.

[ ] ar

r;

Figure 2.5: The trajectories of two systems never cross each other.

With the passage of time, the gas states in both vessels change, whereas
the two points in the space I' draw two different dynamical trajectories (Fig-
ure 2.5). These trajectories do not intersect. If they had intersected at just
one point, then the state of the first gas, determined by 6 N numbers (r;, v;),
would have coincided with the state of the second gas. These numbers could
have been taken as the initial conditions which, in turn, would have uniquely
determined the motion. The two trajectories would have merged into one.
For the same reason the trajectory of a system cannot intersect itself. Thus
we come to the conclusion that
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only one dynamical trajectory of a many particle system passes
through each point of the phase space I'.

Since the trajectories differ in initial conditions, we can introduce an infi-
nite ensemble of systems (glass vessels) corresponding to the different initial
conditions. In a finite time the ensemble of dynamical trajectories will closely
fill the phase space I', without intersections. By averaging over the ensemble
we can answer the question of what the probability is that, at a moment of
time ¢, the system will be found in an element AT’ = Ar; Av; of the phase
space I

dw = ( f(r;,v;)). dT. (2.8)

Here ( f(r;,v;))y is a function of all the coordinates and velocities. It plays
the role of the probability distribution density in the phase space I' and is
called the statistical distribution function or simply the distribution function.
It is obtained by way of statistical averaging over the ensemble and evidently
corresponds to definition (2.3).

It is rather obvious that the same probability density can be obtained in an-
other way — through the averaging over time. The dynamical trajectory of
a system, given a sufficient time At, will closely cover phase space. There
will be no self-intersections; but since the trajectory is very intricate it will
repeatedly pass through the phase space element AT'. Let (At) . be the time
during which the system locates in AI'. For a sufficiently large At, which is
formally restricted by the characteristic time of slow evolution of the system
as a whole, the ratio (At)./At tends to the limit

lim (At), dw

Aiseo At dTD = (f(ri,vi,t))e. (2.9)

By virtue of the role of the probability density, it is clear that

the statistical averaging over the ensemble (2.8) is equivalent to the
averaging over time (2.9) as well as to the definition (2.4).

2.1.4 The derivation of a general kinetic equation

Now we have everything what we need to average the exact Liouville Equa-
tion (2.2). Since the equation contains the derivatives with respect to time ¢
and phase-space coordinates (r, v) the procedure of averaging over the interval
AX At is defined as follows:

f(X, 1) :ﬁ //f(X,t)dth. (2.10)

AX At
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Averaging the first term of the Liouville equation gives

1 (8
AXAt// dX di = At/at AX/de dt =

AX At At

_ Lt [fo.. _9f
—E/a”“na 211)
At

In the last equality the use is made of the fact that, by virtue of the second
postulate of statistics (2.6), the averaging of the smooth averaged function
does not change it.

Let us average the second term in Equation (2.2):

AXAt//vo‘aradth AX/ T(X /fdt X =

AX At At

B o ... of
AX

Here the index o = 1,2, 3.

In order to average the term containing the force F, let us represent it as a
sum of a mean force (F) and the force due to the difference of the real force
field from the mean (smooth) one:

F=(F)+F' (2.13)

Substituting definition (2.13) in the third term in Equation (2.2) and averaging
this term, we have

! / F—ﬁdth

AX At m Ovg
AX At
,<Fa>i/ 9 / //F _
= ax ) o |m )T dXJrAXAt m adth*
AX
_ (Fa) of 1 / Fyof
om 8UQ+AXA7§ m Ovg, X di. (2.14)

AX At

Gathering all three terms together, we write the averaged Liouville equation
in the form

of <F> 3f

(2.15)
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where

of \ 1 F! of
(z%) T AX At // m Ov, X dt.

AX At

(2.16)

Equation (2.15) and its right-hand side (2.16) are called the kinetic equation
and the collisional integral (cf. definition (1.17)), respectively.

Therefore we have found the most general form of the kinetic equation
with a collisional integral, which is nice but cannot be directly used in plasma
astrophysics, without making some additional simplifying assumptions. The
main assumption, the binary character of collisions, will be taken into account
in the next Section, see also Section 3.3.

2.2 A collisional integral and correlation func-
tions

2.2.1 Binary interactions

We shall distinguish different kinds of particles, for example, electrons and
protons, because their behaviours differ. Let fy (r,v,t) be the exact distribu-
tion function (2.1) of particles of the kind k, i.e.

(r,v,t) Z 8 (r—rpi(t) 6 (v —vii(t)), (2.17)

the index 7 denoting the ith particle of kind &k, Nj, being the number of particles
of kind k. The Liouville Equation (2.2) for the particles of kind k takes a view

ofx
ot

my is the mass of a particle of kind k.

The force acting on a particle of kind k at a point (r,v) of the phase
space X at a moment of time ¢, Fk,a (r,v,t), is the sum of forces acting on
this particle from all other particles:

F),
+v-V, fk—i-f Vv fk—O (2.18)

Fro (r,v,1) Z Z B (v (t), via(?)) - (2.19)

So the total force Fk’a (r,v,t) depends upon the instant positions and veloci-
ties (generally with the time delay taken into account) of all the particles and
can be written with the help of the exact distribution function as follows:

Fro(rvit)=>_ /F,M (X, X1) fi (X1,t) dX;. (2.20)
l X,
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Here
N;
t) = Z 6 (X — Xu(t))

is the exact distribution function of particles of kind [, the variable of inte-
gration is designated as X; = {ry, vy } and dX; = d3r; d3vy.

Formula (2.20) takes into account that the forces considered are binary
ones, i.e. they can be represented as a sum of interactions between two par-
ticles.

Making use of the representation (2.20), let us average the force term in
the Liouville equation (2.2), as this has been done in (2.14). We have

! L Ofx B
AX At //mikava(rvvvt)%dth_
AX At

)
AXAt //Z/—Fma (X, X1) fi (X1, )avaf W (X,t)dX dX, dt =

AX At L ox,
1 -
:E /Z/iFkl,a(XaXl) X
Ax Uox, 1tk

0

1 ~ ~
X% Kt/fk (Xﬂf) fl (Xl,t) dt dXdX1 (221)

At

Here we have taken into account that the exact distribution function f; (X1, ¢)
is independent of the velocity v, which is a part of the variable X = {r, v}
related to the particles of the kind &, and that the interaction law Fkl,a (X, Xy)
is explicitly independent of time ¢.

Formula (2.21) contains the pair products of exact distribution functions
of different particle kinds, as is natural for the case of binary interactions.

2.2.2 Binary correlation

Let us represent the exact distribution function fk as

fr (X,1) = fir (X,8) + ¢n (X, 1), (2.22)

where fi, (X, t) is the statistically averaged distribution function, ¢y (X,t) is
the deviation of the exact distribution function from the averaged one. In
general the deviation is not small, of course. It is obvious that, according to
definition (2.22),

G (X, t) = fir (X.t) — fr (X, 1)

hence
(& (X,1)) =0. (2.23)
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Let us consider the integrals of pair products, appearing in the averaged
force term (2.21). In view of definition (2.22), they can be rewritten as

é/fk (X,0) fi (X0, 8 dt = o (Xo0) i (X0,8) + fu (X, X0 8), (2.24)
At

where

fu (X X0 = 5 [ Ge(X0 0 (Xt dr, (225)

At
The function fy; is referred to as the correlation function or, more exactly,
the binary correlation function.

The physical meaning of the correlation function is clear from (2.24). The
left-hand side of Equation (2.24) means the probability to find a particle of
kind k at a point X of the phase space at a moment of time t under condition
that a particle of kind [ places at a point X; at the same time. In the
right-hand side of (2.24) the distribution function fj (X,t) characterizes the
probability that a particle of kind k stays at a point X at a moment of time ¢.
The function f; (X1,t) plays the analogous role for the particles of kind I.

If the particles of kind k did not interact with those of kind [, then
their distributions would be independent, i.e. probability densities
would simply multiply:

(fi (X,0) fi(X1.8)) = fi (X,8) fi(Xa,1). (2.26)
So in the right-hand side of Equation (2.24) there should be

fr (X, X1,t) =0. (2.27)

In other words there would be no correlation in the particle distribution.
With the proviso that the parameter characterizing the binary interaction,
namely Coulomb collision considered below,

G~ <612>/<m;2> ; (2.28)

is small under conditions in a wide range, the correlation function must be
relatively small:

if the interaction is weak, the second term in the right-hand side
of (2.24) must be small in comparison with the first one.

We shall come back to the discussion of this property in Section 3.1. This
fundamental property allows us to construct a theory of plasma in many cases
of astrophysical interest.
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2.2.3 The collisional integral and binary correlation
Now let us substitute (2.24) in formula (2.21) for the averaged force term

1 1 - dfx
7 Pt Y ax =
AXAt//mk ko )(%a

AX At

2 0
:ﬁ/ Z/mLkalaa(Xle) I [fr (X, 1) fi (Xq,t) +
AX l X, @

+ fr (X, X1, 1) ] dX dX, =

since fi (X,t) is a smooth fuction, its derivative over v, can be brought out
of the averaging procedure:

:[éii’afk(x’t)} ﬁ/x/mikpkl,a(xaxl) Ji(Xy,t)dXdXy o +

Ax boxy

1 1 - 0
+E / zl:/kal,a(XaXl) %fkl(XaXl,t)dXXm—
AX X,

= L Fk,a (){7 t) M

mp O0vgy

1 Ofr (X, X1,1
+; /mikal,a(Xle) % dX; .
X1

+

(2.29)

Here we have taken into account that the averaging of smooth functions does
not change them, and the following definition of the averaged force is used:

Fk,a(X7t):§/Z/Fkl,a(XyXl) f1 (X, t) dX dX; =

ax box,
=> / Frio (X, X1) fi (X1,t)dX, . (2.30)
l X,

This definition coincides with the previous definition (2.14) of the average
force, since

all the deviations of the real force Fj from the mean (smooth)
force Fy; are taken care of in the deviations ¢y and ¢; of the real
distribution functions f; and f; from their mean values fj and f.
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Thus the collisional integral can be represented in the form
Ofr / Ofu (X, X1,1)

— Fra (X, X)) ————2dX;. 2.31

( ) § i, 1) Do, 1 (2.31)

Moreover, if in the last term of (2.29) the binary interactions can be repre-
sented by smooth functions of the type exe; (|rx — r; |) ™2 with account of the
Debye shielding (Sections 3.2 and 8.2), then formally the velocity dependence
may be neglected.

Let us recall an important particular case considered in Section 1.1. For
the Lorentz force (1.13) as well as for the gravitational one (1.41), the condi-
tion (1.7) is satisfied. Let us require that in formula (2.31)

0
Ovgy
In fact this condition was tacitly assumed from the early beginning, from

Equation (2.2). Anyway, in the case (2.32), we obtain from formula (2.31) the
following expession

Fria (X, X1)=0. (2.32)

<88J:fk> - 8% Z /*Fkla(X X1) fu (X, X0,t) dXy . (2.33)

Hence the collisional integral, at least, for the Coulomb and gravity forces can
be written in the divergent form in the velocity space v:

(2.34)
where the flux of particles of kind % in the velocity space (cf. Figure 1.3b) is
Jka (X, 1) /—Fkla (X, X1) fr (X, X1,t)dX; . (2.35)

Lo,

Therefore we arrive to conclusion that the averaged Liouville equation or
the kinetic equation for particles of kind &
Ofr (X, 1) Ofk (X, 1) Fro(X,t) Ofx (X,t)
—— + Va + =
ot Ora mp 0vq

- ava /7Fkl0‘(X X1) fu (X, X1,1) dXy (2.36)

contains the unknown functlon fr1. Hence the kinetic equation (2.36) for
distribution function fj is not closed. We have to find the equation for the
correlation function fi;. This will be done in the next Section.
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2.3 Equations for correlation functions

To derive the equations for correlation functions (in the first place for the
function of pair correlations fg;), it is not necessary to introduce any new
postulates or develop new formalisms. All the necessary equations and aver-
aging procedures are at hand.

Looking at definition (2.25), we see that we need an equation which will
describe the deviation of distribution function from its mean value, i.e. the
function ¢ = fk — frx. In order to derive such equation, we simply have
to subtract the averaged representation (2.36) from the exact Liouville equa-
tion (2.2). The result is

0pe (X,t) 99k (X) | Fra 0fi  Fra 0f

ot Ora my, Ovgy my Ovgy
0 1
:% Z /mikaLa (X7X1) fkl (X,Xl)Xm (237)
L%,
Here
Fro(X,t)=>_ / Frio (X, X1) fi (X1,t) dXy (2.38)
L%,

is the ezact force (2.20) acting on a particle of the kind k at the point X of
phase space, and

Fro(X,t)=>_ /FW (X, X1) fi (X1,t) dX, (2.39)
Uox,
is the statistically averaged force (2.30).
Thus the difference between the exact force and the averaged one is

Fro—Fra=) /F,d,a (X, X1) ¢ (X1, ) dX, . (2.40)
L%,
We substitute it in Equation (2.37) where the difference of force terms can be

rewritten as follows:
Fro 0fk Fro Ofy Fro—Fra Ak Fro 041

mp Ovg, me Ov, mp Ovg mp Ovg

The result of the substitution is
Fro 0fk  Fra Ofs _

1 Z 9 Fio 0§
:Z/mkok-l,a(X,Xﬂ <pl(X17t)dX1£+ k, Ok n

O0vg my  Ovg
l X,
1 R 0 ox
+> /nTkF‘”"”‘ (X, X1) @1 (X1,t)dX, o (2.41)

le
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On substituting (2.41) in Equation (2.37) we have the equation for the
deviation ¢y of the exact distribution function fj, from its mean value fy:

06k (X, 1) 06k (X, 1)
o Tl T

Considering that we have to derive the equation for the pair correlation func-
tion

. =0. (2.42)

frr (X1, Xo,t) = (@r (X1, 1) @1 (X2,1)),

let us take two equations:
one for ¢y, (X1,1)

0 (X1,t) 0P (X1,t)  Fra 00k (X1,1)
_— a : . =0 2.43
ot L 0 T1,a + my 0 V1, * ( )
and another for ¢; (Xa, 1)
91 (X2,1) 0@ (X2,t) | Fra 0o (Xa,t)
_ a : .=0. 2.44
ot 2 072,04 + my 0v2.0 + ( )

Now we add the equations resulting from (2.43) multiplied by ¢; and (2.44)
multiplied by ¢r. We obtain
. Ok ¢ o¢k . o¢1

wlﬁ—i_ kﬁ"f’ﬁaarim%‘i‘vzam@

or
9 (br @1) 9 (Pr ¢1) 9 (Pr ¢1)
—_— a—F—— a———+ ... =0. 2.45
ot N Tor, P Ton, (2.45)
On averaging Equation (2.45) we finally have the equation for the pair corre-
lation function in the following form:

0 X1, X0, t 0 X1, X0, t 0 X1, X0, t
fror (X1, 23)+ frr (Xa, 2>)+ fror (X1, 23)+

[e3

ot e 87“17a . 87‘2,04
Fro (X1,1) Ofia (X3, X5, 1) Fio(X2,t) Ofn (X1, Xo,1)
+ N N
mg 8’1)1’(1 my 8'02,04
Ofr (Xy,t) 1
e  Fina (X1, X, X3, X5, 1) dX.
* (‘9’01@ Z/mk kn,a( 1 3) fnl( 3, X2, ) 3 +
afl (X27 / 1
C Ouvga — Fina (X2, X nk (X3, X1,t)dX3 =
8v2a Z my In, ( 2 B)fk( 3 1 ) 3
= 801a Z /7Fkna(X17X3) Frin (X1, X0, X3,1)dX3 —

802 > / = Funa (X2, Xa) fun (X0, X0, X ) dXs. (2:40)
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Here

1 R . .
Froim (X1, X2, X3,t) = Al /SOk (X1,t) &1 (Xa,t) @ (X3, 1) dt (2.47)
At

is the function of triple correlations (see also Exercise 2.1).

Thus Equation (2.46) for the pair correlation function contains the un-
known function of triple correlations. In general,

the chain of equations for correlation functions can be shown to
be unclosed: the equation for the correlation function of sth order
contains the function of the order (s + 1).

2.4 Practice: Exercises and Answers

Exercise 2.1 [Section 2.3] By analogy with formula (2.24), show that

= fu (X1,t) fi(Xo,t) fn (X3,1)+
+ i (X1, 1) fin (X2, X3,t) + fi (X2,t) frn (X1, X3,t) +
+ o (X3,t) fr (X1, Xo,t) + frun (X1, X2, X3,1) .

Exercise 2.2 Discuss a similarity and difference between the kinetic theory
presented in this Chapter and the famous BBGKY hierarchy theory devel-
oped by Bogoliubov (1946), Born and Green (1949), Kirkwood (1946), and
Yvon (1935).

Hint. Show that essential to both derivations is the weak-coupling as-
sumption, according to which

grazing encounters, involving small fractional energy and momen-
tum exchange between colliding particles, dominate the evolution
of the velocity distribution function.

The weak-coupling assumption provides justification of the widely appreci-
ated practice which leads to a very significant simplification of the original
collisional integral; for more detail see Klimontovich (1975, 1986).
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Weakly-Coupled Systems
with Binary Collisions

In a system which consists of many interacting particles, the weak-
coupling assumption allows us to introduce a well controlled approxi-
mation to consider the chain of the equations for correlation functions.
This leads to a very significant simplification of the original collisional
integral to describe collisional relaxation and transport in astrophysi-
cal plasma but not in self-gravitating systems.

3.1 Approximations for binary collisions

3.1.1 The small parameter of kinetic theory

The infinite chain of equations for the distribution function and correlation
functions does not contain more information in itself than the initial Liouville
equation for the exact distribution function. Actually, the statistical mixing
of trajectories in phase space with subsequent statistical smoothing over the
physically infinitesimal volume allows to lose ‘useless information’ — the infor-
mation about the exact motion of particles. Just for this reason, description
of the system’s behaviour becomes irreversible.

The value of the chain is also that the chain allows a direct introduction
of new physical assumptions which make it possible to break the chain off
at some term (Figure 3.1) and to estimate the resulting error. We call this
procedure a well controlled approximation.

There is no universal way of breaking the chain off. It is intimately related,
in particular, to the physical state of a plasma. Different states (as well
as different aims) require different approximations. In general, the physical
state of a plasma can be characterized, at least partially, by the ratio of
the mean energy of two particle interaction to their mean kinetic

35
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Figure 3.1: How to break the infinite chain of the equations for correlation
functions? LT is the Liouville theorem (1.11) or Equation (2.18) for an exact
distribution function fy. KE and BC are the kinetic Equation (2.36) for fi
and Equation (2.46) for the binary correlation function fy;.

energy (parameter (2.28)). If the last one can be reasonably characterized
by some temperature T' (Section 9.1), then this ratio

2

~ o (k7)1 3.1
7y (kaT) (3.1)
As a mean distance between the particles we take (1) ~ n~/3. Hence the
ratio

2 €2 pl/3

¢ = i (kg T) E X T (3.2)
is termed the interaction parameter. It is small for a sufficiently hot and
rarefied plasma.

In many astrophysical plasmas, for example in the solar corona (see Exer-
cise 3.2), the interaction parameter is really very small. So the thermal kinetic
energy of plasma particles is much larger than their interaction energy. The
particles are almost free or moving on definite trajectories in the external
fields if the later are present.

We shall call this case the approximation of weak Coulomb interaction.
An existence of the small parameter allows us to have a complete description
of this interaction by using the perturbation procedure. Moreover such a
description is the simplest and the most exact one.

While constructing the kinetic theory, it is natural to use the perturbation
theory with respect to the small parameter ;. This means that

the distribution function f; must be taken to be of order unity,
the pair correlation function fj; of order (;, the triple correlation
function fy,, of order (2, etc

We shall see in what follows that this principle has a deep physical sense in
kinetic theory. Such plasmas are said to be ‘weakly coupled’.

An opposite case, when the interaction parameter takes values larger than
unity, is very dense, relatively cold plasmas, for example in the interiors of
white dwarf stars (Exercise 3.3). These plasmas are ‘strongly coupled’.
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3.1.2 The Vlasov kinetic equation

In the zeroth order with respect to the small parameter (;, we obtain the
Vlasov equation with the self-consistent electromagnetic field (Vlasov, 1938,
1945):

8fk(Xat) afk(X7t)
ot * % Org,

+ek<E+1va>ém”x”:0. (3.3)
my Cc @ 8va

_|_

Here E and B are the electric and magnetic fields obeying Maxwell’s equa-
tions:

10B
IE=—- — ivE =4r (p°+ pd
cur vl div m(p°+p9),
(3.4)
_18E 4T ., .q . _
CurlB—Eﬁ‘i‘?(‘] +J )7 leB—O.

p? and j are the densities of external charges and currents; they describe the
external fields, for example, the uniform magnetic field By. p< and j¢ are the
charge and current densities due to the plasma particles themselves:

pd(r,t) = Z ek/fk (r,v,t)d3v, (3.5)
k v

jq(r,t)zzek/vfk(r,mt)dsv. (3.6)
k v

So, if we are considering processes which occur on a time scale much shorter
than the time scale of collisions,

Tev K T, (37)

we may use a description which includes the electric and magnetic fields aris-
ing from the plasma charge density and current density, but neglects the
microfields responsible for binary collisions. This means that F’' = 0
in formula (2.13), therefore the collisional integral (2.16) is also equal to zero.

The Vlasov kinetic Equation (3.3) together with the definitions (3.5) and
(3.6), and with Maxwell’s Equations (3.4) serve as a classic basis for the
theory of oscillations and waves in a plasma (e.g., Silin, 1971; Schmidt, 1979;
Benz, 2002) with the small parameter ¢; and small correlational effects of
higher orders. The Vlasov equation is also a proper basis for kinetic theory
of wave-particle interactions in astrophysical plasma (Chapter 7) and shock
waves in collisionless plasma (Section 16.4). The Vlasov equation was strongly
criticized by Ginzburg et al. (1946).
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One of the natural limitations of the Vlasov equation is that it will not
make a plasma relax to a Maxwellian distribution (Section 9.5), since we effec-
tively neglect collisions by neglecting the binary correlation function. Vlasov
was the first to recognize that

the electromagnetic interaction among plasma particles is qualita-
tively different from the interaction in an ordinary gas.

3.1.3 The Landau collisional integral

Using the perturbation theory with respect to the small interaction parame-
ter (; in the first order, and, therefore, neglecting the close Coulomb collisions
(this will be justified in Section 8.1.5), we can find the kinetic equation with
the collisional integral given by Landau (1937)

ofx 0
(81&) —_87()‘]&0” (38)

where the flux of particles of kind & in the velocity space (cf. formula (2.35))
is
me? InA ofi O fr
J o = k 2 / _
k, my ; € fk mlavl,g fl myg 81;,6_,5 x
Vi

(u? 80 — UaUg)
X e

d3v,. (3.9)

Here u = v — vy is the relative velocity, d3v; corresponds to the integra-
tion over the whole velocity space of ‘field’ particles . In A is the Coulomb
logarithm which takes into account divergence of the Coulomb-collision cross-
section (see Section 8.1.5). The full kinetic Equation (2.15) with the Landau
collisional integral is a nonlinear integro-differential equation for the distribu-
tion function fy (r,v,t) of particles of the kind k.

The date of publication of the Landau (1937) paper may be considered as
the date of birth of the kinetic theory of collisional fully-ionized plasma. The
theory of collisionless plasma begins with the classical paper of Vlasov (1938).
In fact, these two approaches correspond to different limiting cases.

The Landau integral takes into account the part of the particle
interaction which determines dissipation while the Vlasov equation
allows for the average field, and is thus reversible.

For example, in the Vlasov theory the question of the role of collisions in
the neighbourhood of resonances remains open. The famous paper by Lan-
dau (1946) was devoted to this problem. Landau used the reversible Vlasov
equation as the basis to study the dynamics of a small perturbation of the
Maxwell distribution function, f®)(r,v,t). In order to solve the linearized
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Vlasov equation (Section 7.1.1), he made use of the Laplace transformation,
and defined the rule to avoid a pole in the divergent integral (see Section 7.1.2)
by the replacement w — w +i0.

This technique for avoiding singularities may be formally replaced by a
different procedure. Namely it is possible to add a small dissipative term
—uf(l)(r,v,t) to the linearized Vlasov equation. In this way, the Fourier
transform of the kinetic equation involves the complex frequency w = W’ +iv,
leading with ¥ — 0 to the same expression for the Landau damping. Note,
however, that

the Landau damping is not by randomizing collisions but by a trans-
fer of wave field energy into oscillations of resonant particles

(see Section 7.1.2).

Thus there are two different approaches to the description of plasma os-
cillation damping. The first is based on mathematical regularization of the
Cauchy integral divergence. In this approach the physical nature of the damp-
ing seems to be not considered since the initial equation remains reversible.
However the Landau method is really a beautiful example of complex analysis
leading to an important new physical result.

The second approach reduces the reversible Vlasov equation to an irre-
versible one. Although the dissipation is assumed to be negligibly small, one
cannot take the limit v — 0 directly in the master equations: this can be done
only in the final formulae. This second method of introducing the collisional
damping is more natural. It shows that

even very rare collisions play the principal role in the physics of
collisionless plasma.

It is this approach that has been adopted in Klimontovich (1986). A more
comprehensive solution of this principal question, however, can only be ob-
tained on the basis of the dissipative kinetic equation.

The example of the Landau resonance and Landau damping demonstrates
that some fundamental problems still remain unsolved in the kinetic the-
ory of plasma. They arise from inconsistent descriptions of the transition
from the reversible equations of the mechanics of charge particles and fields
to the irreversible equations for statistically averaged distribution functions
(Klimontovich, 1998).

In the first approximation with respect to the small interaction parame-
ter ¢; we find the Maxwellian distribution function and the effect of Debye
shielding. This is the subject of the Section 3.2.

3.1.4 The Fokker-Planck equation

The smallness of the interaction parameter (; signifies that, in the Landau
collisional integral, the sufficiently distant Coulomb collisions are taken care
of as the interactions with a small momentum and energy transfer (see
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Section 8.1). For this reason, it comes as no surprise that the Landau inte-
gral can be considered as a particular case of a different approach which is
the Fokker-Planck equation (Fokker, 1914; Planck, 1917). The latter gener-
ally describes systems of many particles that move under action of stochastic
forces producing small changes in particle velocities (for a review see Chan-
drasekhar, 1943a).

Let us consider a distribution function independent of space so that
f = f(v,t). The Fokker-Planck equation describes the distribution func-
tion evolution due to nonstop overlapping weak collisions resulting in
particle diffusion in velocity space:

af\ o 0
<8t> 7—%[aaf]+m[baﬂf]- (3'10)

The Fokker-Planck equation formally coincides with the diffusion-type
equation (which is irreversible of course) for some admixture with concentra-
tion f, for example Brownian particles (or test particles) in a gas, on which
stochastic forces are exerted by the molecules of the gas. The coefficient b,g
plays the role of the diffusion coefficient and is equal to

1
bas = 5 (60a) o (3.11)

i.e. is expressed in terms of the averaged velocity changes in elementary acts
— collisions:

(0Vap) 4 = (V4 dvg) . (3.12)

The other coefficient is
o = (00q) 5, = (00 ) . (3.13)

It is known as the Fokker-Planck coefficient of dynamic friction. For example,
a Brownian particle moving with velocity v through the gas experiences a
drag opposing the motion (see Figure 1.4).

In order to find the mean values appearing in the Fokker-Planck equa-
tion, we have to make clear the physical and mathematical sense of expres-
sions (3.12) and (3.13), see Exercise 3.4.

The mean values of velocity changes are in fact statistically averaged
and determined by the forces acting between a test particle and
scatterers (field particles or waves).

Because of this, these averaged quantities have to be expressed by the colli-
sional integral with the corresponding cross-sections (Exercises 3.5 and 3.6).
The ‘standard’ derivation of the Fokker-Planck equation from the Boltzmann
integral, with discussion of its particular features, can be found for example
in Shoub (1987); however see Section 11.5 in Balescu (1975).
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For electrons and ions in a plasma, such calculations can be made and
give us the Landau integral; see Section 11.8 in Balescu (1975). The kinetic
equation found in this way will allow us to study the Coulomb interaction of
accelerated particle beams with astrophysical plasma (Chapter 4). The first
term in the Fokker-Planck equation is a friction which slows down the parti-
cles of the beam and move them toward the zero velocity in the velocity space
(Figure 3.2), the second term represents the three-dimensional diffusion of
the beam particles in the velocity space.

, f vy =0 Figure 3.2: A beam of fast particles

in plasma can generate the Langmuir
waves due to the bump-on tail insta-
bility which will be shown in Chap-
ter 7. Here we illustrate only the sim-
! plest effects of Coulomb collisions,
: that will be considered in Chapter 4.
|

0 Y|

During the motion of a beam of accelerated particles in a plasma a reverse
current of thermal electrons is generated, which tends to compensate the
electric current of accelerated particles — the direct current.

The electric field driving the reverse current makes a great impact
on the particle beam kinetics.

That is why, in order to solve the problem of accelerated particle propagation
in, for example, the solar atmosphere, we inevitably have to apply a com-
bined approach, which takes into account both the electric field influence on
the accelerated particles (as in the Vlasov equation) and their scattering from
the thermal particles of a plasma (as in the Landau equation; see Section 4.5).

The Landau collisional integral is effectively used in many problems of
plasma astrophysics. It permits a considerable simplification of the calcula-
tions of many quantities determined by collisions of charged particles, such
as the viscosity coefficient, thermal conductivity, electric conductivity, etc.
(Section 9.5).

The Landau collisional integral does not take into account the close colli-
sions since they are responsible for large exchange of the particle momentum
(see Section 8.1). So the interaction parameter is not small, and the pertur-
bation theory is not applicable (Exercise 3.6). The close Coulomb collisions of

charged particles can play an important role in collective plasma phenomena
(Klimontovich, 1986).
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3.2 Correlation function and Debye shielding

We are going to understand the most fundamental property of the binary
correlation function. With this aim in mind, we shall solve the second equation
in the chain illustrated by Figure 3.1. To solve this equation we have to know
two functions: the distribution function f; from the first link in the chain and
the triple correlation function fy;, from the third link.

3.2.1 The Maxwellian distribution function

Let us consider the stationary (9/9t = 0) solution to the equations for corre-
lation functions, assuming the interaction parameter ; to be small and using
the method of successive approximations in the following form. First,
we set fr; = 0 in the averaged Liouville equation (2.36) for the distribution
function fj, then we assume that the triple correlation function fg;, is zero
in Equation (2.46) for the correlation function f; etc.

The plasma is supposed to be stationary, uniform and in the thermody-
namic equilibrium state, i.e. the particle velocity distribution is assumed to
be a Maxwellian function

mg v

2
fe (X) = fi (vz) = ¢ exp ( ok Tk> . (3.14)

The constant ¢ is determined by the normalizing condition and equals

3/2
k= T <2kaTk) '

It is obvious that the Maxwellian function (3.14) satisfies the kinetic equa-
tion (2.36) under assumption made above if the average force is equal to zero:

Fra(X,t) = Fro(X)=0. (3.15)

Since we will need the same assumption in the next Section, we shall justify
it there.

3.2.2 The averaged force and electric neutrality

To a first approximation, i.e. with account of fy; # 0, the distribution func-
tion is also uniform with respect to its space variables. Let us substitute
the Maxwellian distribution function (3.14) in the pair-correlation function
Equation (2.46), neglecting all the interactions except the Coulomb ones. For
the latter, in circumstances where the averaged distribution functions for the
components are uniform, we obtain the following expression for the averaged
force (2.30):

Fro (60) =3 [ Fua (X0, Xa) i (Xa) dXa =
l X
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since plasma is uniform, f; does not depend of ro
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if the plasma is assumed to be electrically neutral:

E nlel:(),
l

(3.18)

or quasi-neutral (see Section 8.2).

Balanced charges of ions and electrons determine the name plasma
according Langmuir (1928). So the average force (2.30) is equal to zero in
the electrically neutral plasma but is not equal to zero in a system of charged
particles of the same charge sign: positive or negative, it does not matter.
Such a system tends to expand.

There is no neutrality in gravitational systems. The large-scale gravi-
tational field makes an overall thermodynamic equilibrium impossible (Sec-
tion 9.6). Moreover, on the contrary to plasma, they tend to contract and
collapse.

3.2.3 Pair correlations and the Debye radius

As a first approximation, on putting the triple correlation function fy;, = 0,
we obtain from Equation (2.46), in view of condition (3.17), the following
equation for the binary or pair correlation function fy;:

0 frl O fri _

V2,
({97“17& (97“2’&

- _Z / {W;Fkna (X1, X3) fr (X3, X2)
R

U1,

Of

8’01’@

_|_

1 0
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Let us consider the particles of two kinds — electrons and ions, assuming the
ions to be motionless and homogeneously distributed. Then the ions do not
take part in any kinetic processes; hence ¢; = 0 for ions and the correlation
functions associated with ¢; equal zero as well:

fii = Oa fei =0 etc. (320)
Among the pair correlation functions, only one has a non-zero magnitude
fee (XlaXZ) :f(XlaX2)- (321)

Taking into account (3.20), (3.21), and (3.14), rewrite Equation (3.19) as
follows

0 0

o o

Vi V2
0 Iy 0 1]

= le / [vi-F (X1, X3) f (X3, X2) fe(vi)+
X3
+ vy - F (XQ,X3) f (Xl,Xg) fe (Vg)] ng . (322)

Since vi and vy are arbitrary and refer to the same kind of particles (elec-
trons), Equation (3.22) takes the form
aof 1
(91‘1 o kBT

/ F (X1, X3) f(X3,X3) fe(v1)dXs. (3.23)
X3

Taking into account the character of Coulomb force in the same approxi-
mation as in formula (3.17) and assuming the correlation to exist only between
the positions of the particles in space (rather than between velocities), let us
integrate both sides of Equation (3.23) over d®v; d3vsy. The result is

dg (r1,r3) ne? 1 3
— Ve m—m—— , . .24
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Here the function
g(I‘l,I'g) :/ /f(Xl,XQ) d3V1 dSVQ. (325)
V1 V2
We integrate Equation (3.24) over r; and designate the function
g(ri,r2) = 9(7“122) )
where 112 = |r1 — ra|. So we obtain the equation
2 2
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Its solution is
Co r
= — - 3.26
g(r) rexp(r), (3.26)

where

o kT 1/2
D\ drne?
(3.27)

is the Debye radius. It will be defined in just this way (see formula (8.33))
for the case when the shielding is due to the particles of one kind — due to
electrons. A more general formula for the Debye radius will be derived in
Section 8.2.

The constant of integration

1

co=——+—
drr2n

(3.28)

(see Exercise 3.8). Substituting (3.28) in solution (3.26) gives the sought-after
pair correlation function, i.e. the velocity-integrated correlation function

1 1 r ez 1 r
[ — RN = — - —_— . «2
9(r) drr2nr eXp ( ’/‘D> kT r eXp ( TD) (3.29)

Formula (3.29) shows that

the Debye radius is a characteristic length scale of pair correlations
in a fully-ionized equilibrium plasma:

(3.30)

This result proves to be fair in the context of Section 8.2 where the De-
bye shielding will be considered in another approach. Comparison of for-
mula (3.30) with (8.32) shows that, as one might have anticipated,

the binary correlation function reproduces the shape of the actual
potential of interaction, i.e. the shielded Coulomb potential.

It is known that cosmic plasma can exhibit collective phenomena arising
out of mutual interactions of many charged particles. Since the Debye radius
r, is a characteristic length scale of pair correlations, the number nrg gives
us a measure of the number of particles which can interact simultaneously.
The inverse of this number is the so-called plasma parameter

(p = (nri’)_l : (3.31)
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This is a small quantity as well as it can be expressed in terms of the small
interaction parameter ¢; (Exercise 3.1). The fact that ¢, < 1 implies a large
number of plasma particles in a volume enclosed by the sphere of
the Debye radius. In many astrophysical applications the plasma parame-
ter (3.31) is really small (e.g., Exercise 3.2). So the collective phenomena can
be really important in cosmic plasma.

3.3 Gravitational systems

There is a fundamental difference between plasma and the gravitational sys-
tems with potential (1.41), for example, the stars in a galaxy. This difference
lies in the nature of the gravitational force: there is no shielding to vitiate
this long-range 1/r? force. The collisional integral formally equals infinity
because the binary correlation function g(r) ~ 1/r.

The conventional wisdom of such system dynamics (see Binney and
Tremaine, 1987) asserts that the structure and evolution of a collection of
N self-gravitating point masses can be described by the collisionless kinetic
equation, the gravitational analog of the Vlasov equation (Exercises 3.9 and
16.7). On the basis of what we have seen above,

the collisionless appoach in gravitational systems, i.e. the entire
neglect of particle pair correlations, constitutes an uncontrolled
approximation.

Unlike the case of plasma, we cannot derive the next order correction to
the collisionless kinetic equation in the context of a systematic perturbation
expansion.

Physically, this is manifested by the fact that the 1/r potential yields
an infinite cross-section, so that, when evaluating the effects of collisions in
the usual way (Section 8.1.5) for an infinite homogeneous system, we en-
counter logarithmic divergences in the limit of large impact parameter (for-
mula (8.18)), see however Exercise 3.9. We may hope to circumvent this
difficulty, the problematic Coulomb logarithm of gravitational dynamics, by
first identifying the bulk mean field force (F) in definition (2.13), acting at
any given point in space and then treating fluctuations F/ away from the mean
field force. This splitting into a mean field plus fluctuations can be introduced
formally (Kandrup, 1998) and allows one to write down the collisional integral
of the type (2.16). However, this is difficult to implement concretely because
of the apparent absence of a clean separation of time scales.

For the N-body problem with N > 1 we might expect that these fluctua-
tions are small, so that their effects do in fact constitute a small perturbation.
So it is assumed that, on long time scales, one must allow for discreteness
effects, described by the Fokker-Plank equation (3.10) or the kinetic equation
with the Landau collisional integral (3.8); see Exercise 3.10.

Given that theoretical analyses have as yet proven inconclusive, one might
instead seek resource to numerical experiments. This, however, is also difficult
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for gravitational systems not characterized by a high degree of symmetry.
There is in fact only one concrete setting where detailed computations have
been done, namely the toy model of one-dimensional gravity.

In summary, even though a mean gravitational field theory based on
the Vlasov equation may seem well motivated physically, there is as yet no
rigorous proof of its validity and, in particular, no rigorous estimate as to the
time scale on which it might be expected to fail.

Hydrodynamic description of gravitational systems has a difficulty of the
same origin. The gravitational attraction cannot be screened (Section 9.6).

3.4 Comments on numerical simulations

At present, astrophysical plasma processes are typically investigated in well
developed and distinct approaches. One approach, described by the Vlasov
equation, is the collisionless limit used when collective effects dominate. In
cases where the plasma dynamics is determined by collisional processes in ex-
ternal fields and where the self-consistent fields can be neglected, the Fokker-
Planck approach is used. At the same time, it is known that

both collective kinetic effects and Coulomb collisions can play an
essential role in a great variety of astrophysical phenomena

starting from the most simple one — propagation of fast particles in plasma
(Chapter 4). Besides, as was mentioned in Section 3.1.3, collisions play the
principal role in the physics of collisionless plasma. Taking collisions
into account may lead not only to quantitative but also qualitative changes
in the plasma behaviour, even if the collision frequency v is much less than
the electron plasma frequency.

It is known that, even in the collisionless limit, the kinetic equation is still
too difficult for numerical simulations, and the ‘macroparticle’ methods are the
most widely used algorithms. In these methods, instead of direct numerical
solution of the kinetic equation, a set of ordinary differential equations for
every macroparticle is solved. These equations are the characteristics of the
Vlasov equation.

In the case of a collisional plasma, the position of a macroparticle satisfies
the usual equation of the collisionless case

) dr

= = =v(t), (3.32)

but the momentum equation is modified owing to the Coulomb collisions.
They are described by the Fokker-Planck operator (3.10) which introduces
a friction (the coefficient a,) and diffusion (the coefficient bog) in velocity
space. Thus it is necessary to find the effective collisional force F. which acts
on the macroparticles:

dv

vV — =

(F, +F.). (3.33)
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The collisional force can be introduced phenomenologically (see Jones et
al., 1996) but a more mathematically correct approach can be constructed
using the stochastic equivalence of the Fokker-Planck and Langevin equations
(see Cadjan and Ivanov, 1999). So stochastic differential equations can
be regarded as an alternative to the description of astrophysical plasma in
terms of distribution function.

The Langevin approach allows one to overcome some difficulties
related to the Fokker-Planck equation and to simulate actual plasma
processes, taking account of both collective effects and Coulomb
collisions.

Generally, if we want to construct an effective method for the simulation
of complex nonlinear processes in astrophysical plasma, we have to satisfy the
following obvious but conflicting conditions.

First, the method should be adequate for the task in hand. For a number
of problems the application of simplified models of the collisional integral
can provide a correct description and ensure good accuracy. The constructed
model should describe collisional effects with the desired accuracy.

Second, the method should be computationally efficient. The algorithm
should not be extremely time-consuming. In practice, some compromise be-
tween accuracy and complexity of the method should be achieved. Otherwise,
we restrict ourselves either to a relatively simple setup of the problem or to a
too-rough description of the phenomena.

A ‘recipe’: the choice of a particular collisional model (or a model of the
collisional integral) is determined by the importance and particular features
of the collisional processes in a given astrophysical problem.

3.5 Practice: Exercises and Answers

Exercise 3.1 [Section 3.1.1] Show that the interaction parameter

L o3
: 7 3.34
¢ 47 °P ( )

if the Debye radius is given by formula (3.27). Discuss the difference between
(i and (p.

Exercise 3.2 [Section 3.1.1] How many particles are inside the Debye sphere
in the solar corona?

Answer. From formula (8.31) for the Debye radius in two-component
equilibrium plasma (see also formula (8.77) in Exercise 8.3) it follows that for
electron-proton plasma with 7'~ 2 x 10 K and n =~ 2 x 108 cm 2 the Debye

radius 12 12
kT T
T, = <87r62n) ~ 4.9 (n) ~ 0.5 cm. (3.35)
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The number of particles inside the Debye sphere

4 .
N, =n 3 mrd ~ 10%. (3.36)
Hence the typical value of plasma parameter (3.31) in the corona is really

small: ¢, ~ 10~8. The interaction parameter (3.2) is also small: ¢; ~ 1076
(see formula (3.34)).

Exercise 3.3 [Section 3.1.1] Estimate the interaction parameter (3.2) in the
interior of white dwarf stars (de Martino et al., 2003; see also Exercise 1.3).

Comment. It may seem at first sight that the mutual interactions be-
tween electrons would be very important inside a white dwarf star. However,
in a system of fermions with most states filled up to the Fermi energy,

collisions among nearby electrons are suppressed due to the fact
that the electrons may not have free state available for occupation
after the collision

(see Kittel, 1995). Hence electrons inside a white dwarf star are often ap-
proximated as a perfect gas made up of non-interacting fermions (see § 57 in
Landau and Lifshitz, Statistical Physics, 1959b). For this reason, some results
of plasma astrophysics are applicable to the electron gas inside white dwarfs.

Exercise 3.4 [Section 3.1.4] Let w = w (v, dv) be the probability that a
test particle changes its velocity v to v + dv in the time interval 6t. The
velocity distribution at the time ¢ can be written as

flv,t) = /f(v — v, t—0t)w (v —6v, dv)d3ov. (3.37)

Bearing in mind that the interaction parameter (3.1) is small and, therefore,
|0v| < | v, expand the product fw under the integral into a Taylor series.

Take the first three terms in the series and show that, in formulae (3.13)
and (3.12), the average velocity change per time interval dt:

(dvy ) = /(SvOéwd?’év7 (3.38)

Svg dvg ) = | dvg dvgwd>dv. 3.39
B B

Show that the Fokker-Planck equation (3.10) follows from the Taylor series
expansion of the function f(v,t) given by formula (3.37).

Exercise 3.5 [Section 3.1.4] Express the collisional integral in terms of the

differential cross-sections of interaction between particles (Smirnov, 1981).
Discussion. Boltzmann (1872) considered a delute neutral gas. Since the

particles in a neutral gas do not have long-range interactions like the charged
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particles in a plasma, they are assumed to interact only when they collide,
i.e. when the separation between two particles is not much larger than 2a,
where a is the ‘radius of a particle’. A particle moves freely in a straight line
between two collisions.

In a binary collision, let v and v; be the velocities of particles k& and [
before the collision, v/ and v be the velocities of the same particles after the
collision. There are two types of collisions: (a) one that increases the density
of the particles at a given point of phase space by bringing in particles from
other phase space locations, (b) the other that reduces the density of particles
by taking particles away from this point to other phase space locations; these
are the collisions v +v; = v +v/.

By using notations taken into account that k and [ can be different kinds
of particles, we write the Boltzmann collisional integral in the form (cf. Boltz-
mann, 1956):

<68ftk> :;//(fk/fl/_fkfl)vkldUkld3Vl. (3.40)
¢ v Q

Here vi; = v, — v; is the relative velocity, d3v; corresponds to the integra-
tion over the whole velocity space of ‘field’ particles I. fr = fi (t,r,vg) is
the distribution function of particles of the kind k, f; = fi (t,r,v/). The
product f; f/ corresponds to the collisions v} + v/ — v + v; which inhance
the particle density.

The precollision velocities v and v; are related to the postcollision ve-
locities v/ and v/ through the conservation laws of momentum and energy.
These relations give us four scalar equations. However we need six equations
to find two vectors v; and v;.

A fifth condition comes from the fact the vectors v, and v/ will have to lie
in the plane of the vectors vy and v;. This follows from the momentum con-
servation law and means that collisions are coplanar if the force of interaction
between two particles is radial.

We need one more condition. We do not expect, of course, that the out-
come of a collision is independent of the nature of interaction. If the impact
parameter of the collision is given, we can calculate the defection produced by
the collision from the interaction potential. The case of the Coulomb potential
is considered in Chapter 8.

Since we are interested here in a statistical treatment, it is enough for us
to know the probability of deflection in different direction or a differential
scattering cross-section

doy (Vg1, X)
dcrkl = dQ dQ, (341)
where d§) = 27 sin ydy is a solid angle. If the particles are modelled as
hard spheres undergoing two-body elastic collisions, the differential scattering
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cross-section is a function of the scattering angle y alone. The Boltzmann gas
model can be used for low-density neutral particles as well as for interactions
of charged particles with neutral particles.

In plasma astrophysics, the Rutherford formula (8.8) is used to character-
ize the Coulomb collisions of charged particles. A general case is considered,
for example, in Kogan (1967), Silin (1971), Lifshitz and Pitaevskii (1981).

Exercise 3.6 [Section 3.1.4] Show that the Fokker-Planck collisional model
can be derived from the Boltzmann collisional integral (3.40) under the as-
sumption that the change in the velocity of a particle due to a collision is
rather small.

Exercise 3.7 [Section 3.1.4] The Landau collisional integral is generally
thought to approximate the Boltzmann integral (3.40) for the 1/r potentials
to ‘dominant order’, i.e. to within terms of order 1/lnA, where InA is the
Coulomb logarithm (see formula (8.23)). However this is not the whole truth.
Show that the Landau integral approximates the Boltzmann integral to the
dominant order only in parts of the velocity space.

Hint. This can be established by carring the Taylor series expansion of
the Boltzmann integral to the fourth order. The first term in the series will
be the familiar Landau-type collisional integral. The conclusion, drawn from
the higher-order terms (Shoub, 1987), is that the large-angle scattering pro-
cesses can play a more significant role in the evolution of the distribution
function than currently believed. The normally ‘nondominant’ part of the
diffusion tensor can make a contribution to the collisional term that decays
more slowly with increasing velocity than do terms that are retained. In gen-
eral, the approximations made are not uniformly valid in the velocity space,
if the particle distribution functions are not sufficiently close to equilibrium
distributions (Cercignani, 1969).

Exercise 3.8 [Section 3.2.3] Find the constant of integration cqg in for-
mula (3.26).

Answer. Let us solve the Poisson equation for the potential ¢ (more
justification will be given in Section 8.2):

Ap = —47ren{1— [1—1—00 exp <—T>}} =
T .

4
= 1oC0 exp (_r) . (3.42)

r Ty

Here it is taken into account that

//(fk (X1) fi (X2)) d®vid®va = ny (r1) ny (r2) + gt (t1,12) .

Vi V2
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The general solution of Equation (3.42) in the spherically symmetric case, i.e.
the solution of equation

1 d? ( )747reco r
a2 O T T R T

D

is of the form

Since, as r — 0, the potential ¢ takes the form (—e)/r, ¢c1 = ¢y =0, and the
only non-zero constant is

1
drr2n’

Co =

(3.43)

Q.e.d.

Exercise 3.9 [Section 3.3] Following Section 3.1.2, write and discuss the
gravitational analog of the Vlasov equation.

Answer. The basic assumption underlying the Vlasov equation is that
the gravitational N-body system can be described probabilistically in terms
of a statistically smooth distribution function f (X,t). The Vlasov equation
manifests the idea that this function will stream freely in the self-consistent
gravitational potential ¢ (r,t) (cf. (1.41)) associated with f (X, ¢), so that

Of (X.1) ,  OF(X,t) 96 f (X.0

ot e Ora  Ov, =0 (3:44)

Here
AP =—4nGp(r,t) (3.45)

and

p(r,t) = /f(r,v,t)d3v. (3.46)

Note that, in the context of the mean field theory, a distribution of particles
over their masses has no effect.

Applying for example to the system of stars in a galaxy, Equation (3.44)
implies that the net gravitational force acting on a star is determined by the
large-scale structure of the galaxy rather than by whether the star happens to
lie close to some other star. The force on any star does not vary rapidly, and
each star is supposed to accelerate smoothly through the force field generated
by the galaxy as a whole.

In fact, encounters between stars may cause the acceleration v to differ
from the smoothed gravitational force —V¢ and therefore invalidate Equa-
tion (3.44). Gravitational encounters are not screened, they can be
thought of as leading to an additional collisional term on the right side of the
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equation — a collisional integral. However very little is known mathematically
about such possibility as we can see in Section 3.3.

Exercise 3.10 [Section 3.3] Following Section 3.1.3, discuss a gravitational

analog of the Landau integral in the following form (e.g., Lancellotti and
Kiessling, 2001):

of 0 [Plv=v'] (0 0

(3.47)

Here o is a constant determined by the effective collision rate.



Chapter 4

Propagation of Fast
Particles in Plasma

Among a variety of kinetic phenomena related to fast particles in as-
trophysical plasma, the simplest effect is Coulomb collisions under
propagation of the particles in a plasma. An important role of the
reverse-current electric field in this situation is demonstrated.

4.1 Derivation of the basic kinetic equation

4.1.1 Basic approximations

Among a rich variety of kinetic phenomena related to accelerated fast electrons
and ions in astrophysical plasma (Kivelson and Russell, 1995) let us consider
the simplest effect — Coulomb collisions under propagation of fast particle
beams in a fully-ionized thermal plasma. We shall assume that there
exists some external (background) magnetic field By which determines a way
of fast particle propagation and which can be locally considered as a uniform
one.

Electric and magnetic fields, E and B, related to a beam of fast particles
will be discussed in Section 4.5. Heating of plasma will be considered, for
example, in Section 8.3. So, untill this will be necessary,

accelerated particles will be considered as ‘test’ particles that do
not influence the background plasma and magnetic field By.

Let f = f(t, r, v) be an unknown distribution function of test particles.
In what follows, ¢ = Ze and m = Am,, are electric charge and mass of a test
particle, respectively.

We restrict a problem by consideration of fast but non-relativistic particles
interacting with background plasma which consists of thermal electrons (m; =

55
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me and e; = —e) and thermal protons (mg = m, and es = +e). Both
components of a plasma are in thermodynamic equilibrium. Using the kinetic
equation with the Landau collisional integral (3.8) we obtain

of _ of 1 or __ 9
5 T O‘ara+m{Ea+c[VX(B+BO)]O‘}8va__6vaJa’ (4.1)

with E=0 and B =0,

2
_7rq InA of
Jai Z /{ mgavlﬁ fmavg}x

" (u? daB — UaUg)
w3

d3v;. (4.2)

Here u = v — vy is the relative velocity, d3v; corresponds to the integration

over the whole velocity space of the plasma particles [ = 1, 2. They are
distributed by the Maxwellian function (3.14):
3/2 2
Me Me U
e \V) = Te ex - 4.3
o (¥) (%kBTe) p( 2kBTe> (43)
and
m 3/2 my, v2
= P S —— . 4.4
o=y (550 ) e (= ) (1.4)

For the sake of simplicity we assume T, = T, = T (see, however, Sec-
tion 8.3.2) as well as ne = n, = n. Also for the sake of simplicity we shall
consider the stationary situation (9/0t = 0).

Moreover we shall assume that the distribution function f depends on one
spatial variable — the coordinate z measured along the field By, on the value
of velocity v and the angle # between the velocity vector v and the axis z.
Therefore

f=7f(z0v0). (4.5)

In this case of the axial symmetry, the term containing the Lorentz force,
related to the external field By, in Equation (4.1) is equal to zero because the
vector v X By is perpendicular to the plane (v, Bg) but the vector df /v is
placed in this plane.

Under ussumptions made above, Equation (4.1) takes the following form:

of 1 3( ) 1 1 0
9z w2 ow v v sin@ 90

vcos 6 (sinf Jy) . (4.6)

The distribution function f is not an isotropic one. So the angular compo-
nent Jy of the particle flux is not equal to zero.
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4.1.2 Dimensionless kinetic equation in energy space

Let us introduce the dimensionless non-relativistic energy of the fast particles

2

() o

and the dimensionless column depth along the magnetic field

¢ =¢/e. (4.8)

Here
z

§:/n(z) dz, cm™2, (4.9)
0

is the dimensional column depth passed by the fast particles along the z axis;
the unit of its measurement is

~ k27?2 m\?
=—L | — -2, 4.1
¢ me2q?In A (me) > o (4.10)

Equation (4.6) in the dimensionless variables (4.7) and (4.8) takes the
following form (Somov, 1982):

\/Ecosﬂg—]; _ % % {\/EDW(J:) [ g—i 4 (m) f} } + Do) Aof. (4.11)
Py Y 2 ()] +
+ (:zp >1/2 [erf\%}) - % eXp(X)] (4.12)
with v Z;p i
and e

which is the error function. The diffusion coefficient over the angle 6

Dy () =8i2{[“f(\/‘5@(2x—1)+j% exp(—x)} n

me /2 erf (v X) 2
+ () [\/?(QX -1)+ NG exp (—X)] } , (4.13)
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1 0 . 0
A= 506 90 (S“”’ae)

is the 6-dependent part of the Laplace operator.
To point out the similarity of the equation obtained with the Fokker-Planck
equation (3.10), let us rewrite Equation (4.11) as follows:

and

) ) 0?
\/Ecosﬂa—g:—%[F(z)fﬁ—@[D(:c)f]+D9(x)Agf. (4.14)
Here the first coefficient
dD 1
Fr)= =2 - (T;” + 236) D, (z) (4.15)

characterized the regular losses of energy when accelerated particles pass
through the plasma. The second coeflicient

D(z) = D, () (4.16)

describes the energy diffusion. The third coefficient Dg(z) corresponds to the
fast particle diffusion over the angle 6.

Kudriavtsev (1958) derived the time-dependent equation which has the
right-hand side similar to the one in our Equation (4.11) but for the isotropic
distribution function f = f(¢,x) for fast ions in a thermal plasma. By using
the Laplace transformation, Kudriavtsev solved the problem of maxweliza-
tion of fast ions that initially had the mono-energetic distribution f(0,z) ~
0(x — xzp). The same problem has been solved numerically by MacDonald et
al. (1957). (Note that in formula (8) by Kudriavtsev for the ‘radial’ compo-
nent j, of the fast ion flow in the velocity space, the factor /7 must be in
the nominator but not in the denominator.) Both solutions (analytical and
numerical) show, of course, that the higher the ion energy, the longer the
maxwellization process.

In the particular case when all the particles are the same (m = me =
mp), the right-hand side of Equation (4.11) can be found, for example, by
using the formulae for the Fokker-Planck coefficients (3.13) and (3.11) from
Balesku (1963).

4.2 A kinetic equation at high speeds

Bearing in mind particles accelerated to high speeds in astrophysical plasma,
let us consider some approximations and some solutions of the kinetic Equa-
tion (4.11) that correspond to these approximations. First of all, we shall
assume that the dimensionless energy (4.7) of the fast particles

x> 1. (4.17)
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This means that speeds of the particles are much higher than the mean thermal
velocity of plasma electrons (8.15). However, for the sake of simplicity, we
restrict the problem by consideration of the fast but non-relativistic particles.

Under condition (4.17), we obtain from (4.12) and (4.13) the following
simple formulae for the coefficients in the kinetic Equation (4.11):

D, (x) = % (1 + :zp) 7 (4.18)

D9 (:L‘) =

1
2x+/T

It is mot taken into account here yet that me < mp. The first term on
the right-hand side of formula for D., (see the unit inside the brackets) is a
contribution of collisions with the thermal electrons of a plasma, the second
term (see the ratio me/my) comes from collisions with the thermal protons.
However the electrons and protons give equal contributions to the angular
diffusion coefficient Dy. This is important to see when we derive formula
(4.19) from (4.13).

Under the same assumption, the Fokker-Planck type equation (4.14) has
the following coefficients:

D(z) = —— (1 + me) : (4.20)

mp

Fla) = - L (1 4 D 1) , (4.21)

and the same coefficient of angular diffusion Dg(z) of course.
Formulae (4.18) and (4.20) demonstrate that

(4.19)

energy diffusion due to collisions with thermal electrons is faster in
myp/me times than that due to collisions with thermal protons.

However the angular diffusion rate is equally determined by both electrons
and protons in a plasma.

The second term on the right-hand side of the formula for F'(z) describes
the regular losses of fast particle energy by collisions with thermal protons of
plasma. Since z > 1 and m > m,, this term is always smaller than the first
one. Taking into account that m. < m, we also neglect the second term in
formula for D(x). Hence, in approximation under consideration,

m 1 1 1
Mme /T N -
Let us estimate a relative role of the first and second terms on the right-

hand side of Equation (4.14). Dividing the former by the last with account of
(4.22) taken gives the ratio

F(z) = (4.22)

=—u, (4.23)
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which is always much greater than unity. So, for fast particles with speeds
much greater than the thermal velocity of plasma electrons,

the regular losses of energy due to Coulomb collisions always domi-
nate the energy diffusion.

However the energy diffusion may appear significant near the lower energy
boundary &; of the fast particle spectrum if £ ~ k,7T". This seems to be the
case of electron acceleration in high-temperature turbulent-current layers in
solar flares (see vol. 2, Sections 6.3 and 7.1). This simply means that, near
the lower energy £ ~ 10 keV, the initial assumption (4.17) becomes invalid.
Instead of (4.17), z — 1; so we have to solve exactly Equation (4.11).

Let us compare the first and third terms on the right-hand side of Equa-
tion (4.14). Dividing the former by the last with account of (4.22) taken gives
the ratio

Fl) _,m (4.24)
xDg(x) Me
For fast protons and heavier ions, we can neglect angular scattering in com-
parison with the regular losses of energy.
Formula (4.24) shows, however, that

for fast electons, it is impossible to neglect the angular diffusion in
comparison with the regular losses of energy.

Since the case of fast electrons will be considered later on in more detail, let us
rewrite the non-relativistic kinetic equation in the high-speed approximation
as follows:

of 1of 1

sl 5 = v or T2

Aof.

(4.25)
Recall that the energy diffusion is neglected in (4.25) according to (4.23).

4.3 The classical thick-target model

We have just seen that, in the fast electron kinetic Equation (4.25), it is not
reasonable to neglect the angular diffusion. Let us, however, consider the
well-known and widely-used model of a thick target. From Equation (4.25),
by neglecting the angular diffusion, we obtain the following equation
of 10f

¢  xox’

With a new variable y = (/u, where p = cos 6, this equation becomes espe-
cially simple:

cos 6 (4.26)

-~ Lo, (4.27)
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General solution of this equation can be written as

2
fla,y)=F (2 + y) : (4.28)
where F is an arbitrary function of its argument. Recall that u = const,
because we have neglected the angular diffusion; so the fast electrons move
along straight lines # = const without any scattering.

Let us consider the initial (y = 0) energy distribution of fast electrons —
the injection spectrum — as a power law:

f(@,0) =coz™ " O(z — 21) O(z2 — x) po() - (4.29)

Here ©(x) is the teta-function; pg(u) is the angular distribution of fast elec-
trons, for example, for a beam of electrons injected parallel to the z axis

1
po(p) = 1 — 22 6(p—1). (4.30)

According to (4.28) the general solution of the kinetic equation for the fast
electrons at the column depth y has the following form:

2 —Y0/2
fa =z (Gry) Ol mn, (@31

where
z{y = Re (z, —2y) vz
Let us consider the normalization condition for the distribution function,
first, in the dimensional variables z, v, and 6 (see definition (4.5)). If ny(z)
is the density of electrons in the beam at distance z from the injection

plane z = 0, then
ny(z) = //f(z, v, 0) v?dv 27 sinfdf, cm3. (4.32)
00

It is taken into account here that we consider the case of a beam with the
axial symmetry in velocity space.

Now we rewrite the same normalization condition in the dimensionless
variable {, x, and pu:

oo 1

nb<<):w(2kBT>3/2 [ [1@ o idean, ans )

Me

0 -1

For initial energy distribution (4.29) and initial angular distribution (4.30),
formula (4.33) gives

ok, TN [ [
’I’Lb(O):ﬂ'< L ) co/x_7°+1/2dxz /N(O,ac)dsc7 em ™3, (4.34)

Me
zy
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Here

2%, T

Me

3/2
N(,z)=m ( > cox 020z — x1) O(xy — ) (4.35)
is the differential spectrum of the fast electron density at the boundary ¢ =0
where they are injected.

Let &£ be the kinetic energy of a fast electron measured in keV. Then we
rewrite (4.35) as

N0,E) = K& O —-£)0(E& —E&), em P keVTE, (4.36)
where the coefficient
2k, T 3/2 kT v+1/2 _3 y—1/2
K= < . ) | 1oV , cm™ °keV , (4.37)

and the spectral index
Y= —1. (4.38)

Hence the injection spectrum of fast electrons is determined by parame-
ters (4.37) and (4.38).

Substituting ¢y and ~y from (4.37) and (4.38) in (4.31) allows us to obtain
the differential spectrum of the number density of fast electrons passed the
coulomn depth ¢ measured in cm™2 (see definition (4.9)):

N(&E) = K (24 £2)” /P12 & (4.39)

xO(E—E)O(E—E), em PkeV L.

Here
&0 = (2a06)"/? (4.40)

is the minimal energy of electrons that can pass the depth &, the ‘constant’
ag (a slow function of energy &) originates from the Coulomb logarithm and
equals

ap = 2met In A ~ (4.41)

~1.3x1071 x [m( €

me2

) - % Inn+38.7|, keVZcm?.

In formula (4.39)
1/2

51/,2(5) = (512,2 - 502(5)) (4~42)

are the new boundaries of energetic spectrum, when the fast electrons have

passed the column depth £.
Solution (4.39) shows that

the regular losses of energy due to Coulomb collisions shift the spec-
trum of fast electrons to lower energies and make it harder
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N £E>0

Figure 4.1: An injection spectrum (£ = 0) and the spectrum of fast electrons
that have passed the column depth &.

as illustrated by schematic Figure 4.1. Both effects follow from the fact that,
in Equation (4.26), we have taken into account only the regular losses of
energy (4.22). For non-relativistic electrons F(z) = —1//x.

In the solar system, the Sun is the most energetic particle accelerator,
producing electrons of up to tens of MeV and ions of up tens of Gev. The
accelerated 20-100 keV electrons appear to contain a significant part of the
total energy of a large solar flare (Lin and Hudson, 1971; Syrovatskii and
Shmeleva, 1972), indicating that the particle acceleration and energy release
processes are intimately linked. Flare accelerated electrons colliding with the
ambient solar atmosphere produce the bremsstrahlung hard X-ray (HXR)
emission.

Syrovatskii and Shmeleva (1972) used the solution (4.39) to calculate the
HXR bremsstrahlung which arises during inelastic collisions of accelerated
electrons with thermal ions in the solar atmosphere during flares (e.g., Strong
et al., 1999). Brown (1971), in the same approximation but using a different
method, has found a similar formula for HXR intensity but with the different
numerical coefficient by factor 7 in Section 5 (see formulae (14) and (15)).
Anyway, since that time,

the simplest thick-target model is widely accepted as a likely mecha-
nism and an appropriate mathematical tool to explain and describe
the HXR emission observed during flares

on the Sun and other stars or generally in cosmic plasma (see, however, Sec-
tions 4.4 and 4.5). In the classical formulation of the thick-target model,
beams of accelerated electrons stream along the magnetic field lines and loose
their energy by Coulomb collisions in denser layers of the solar atmosphere,
mainly in the chromosphere.
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4.4 The role of angular diffusion

4.4.1 An approximate account of scattering

As we have seen in Section 4.2, for fast electrons, we cannot neglect the
angular scattering in comparison with the regular losses of energy in kinetic
Equation (4.14). Hence, in the classical thich-target model, we have to take
the angular scattering into account at least approximately.

If, for example, the beam of fast electrons penetrates a plane parallel the
stratified plasma such as the solar chromosphere, the scattering of an aver-
age beam of electrons may conveniently be described by the Chandrasekhar-
Spitzer formulae (8.51) and (8.52) in terms of a coordinate z normal to the
atmospheric strata and directed into the plasma. Then the mean electron
energy £ may be expressed as a function of z while the scattering is measured
in terms of the angle §(z) which the mean electron velocity v makes with the
z axis at that point. So

v|=v, =vu, where pu=cosf. (4.43)

The dimensional column depth passed by electrons along the z axis is

&= /n(z) dz, cm™2, (4.44)
0
In terms of £, the Chandrasekhar-Spitzer formulae (8.51) and (8.52) are:
% - —% Ui (4.45)
and
CZ’g - —g g v, (4.46)

where ag = 2me? In A (see definition (4.41)). Thus we have an ordinary dif-
ferential equation

B1de_ 1 dv.
2& dE w, dE
with solution
£\3/2 v,
—_— fr— 4.4
(&)) Vo (4.47)

where the suffix 0 refers to values at £ = 0. Since v, /p = v and v?/vE = £ /&,

we find that
v, _ ﬁ (5)1/2
vzo  po \&o '
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Therefore it follows from (4.47) that

(4.48)

This nice formula (Brown, 1972) shows that on average when an electron has
suffered a 60° deflection its energy has been reduced by 50 %.
Resubstituting (4.48) in (4.45) and (4.46) gives the solutions for y and &:

I 3ape \'/3
:0<1M0202) . (449

For small depth &
H & 1— o

%7?0,\’ ,UOCC:O2

¢. (4.50)

Let us compare these results with the general solution (4.28) obtained
without account taken of scattering in the classical thick-target model.

4.4.2 The thick-target model
According to (4.28)

z? 2
— =— 4.51
5 ty=5 (4.51)
where xg is an initial energy of an electron. Hence
=2, (4.52)
o

where y = (/p and p = const = pg. Therefore for electrons with initial
energy & solution (4.28) gives us:

1/2
5% - (1 - ui?(? 5) ' 5
It .
§<< &= ﬁ7
then
5% ~1— u:gg ¢ (4.54)

Formula (4.54) coincides with (4.50). The fast electrons in the thick-target
model have the same behaviour at small depth & as that one predicted by the
approximate Chandrasekhar-Spitzer formulae.
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However, with increase of the column depth &, the approximate for-
mula (4.49) predicts much faster losses of energy in comparison with the
classical thick-target model which does not take collisional scattering into
account.

In Figure 4.2, the dashed straight line (a) corresponds to the asymptotic
formula (4.50) which is valid for small column depth €. Moreover here pg = 0,
SO

1--=>. (4.55)

The solid curve (b) represents the classical thick-target model; it takes
only the collisional losses of energy into account. With po = 0, formula (4.53)

is "
£
= = <1 - i) . (4.56)

An approximate scattering model described above is presented by the curve (¢)
which corresponds to formula (4.49) with po = 0, so

£ _ (1 3¢ )1/3, (4.57)

8/80

0 e/%, 1

Figure 4.2: The mean energy £ of fast electrons that have passed the column
depth & (from Somov, 1982).

Figure 4.2 shows that



4.5. Reverse-current Electric Field 67

the collisional scattering and energy losses become very great in
comparison with the classical thick-target model if the column
depth £ is not very small.

Brown (1972) used the approximate formula (4.49) to develop an approx-
imate thick-target model in which accelerated electrons penetrate downward
into the solar chromosphere during a flare. Here the electron distribution is
greatly modified by collisions — not only by energy losses but also by scat-
tering. Directivity and polarization of the hard X-ray bremsstrahlung
emission have been calculated in such oversimplified thick-target model in
which the guiding field By is vertical. The model predicted that the degree
of polarization should rise from zero to around 30 % near the solar limb.

Unfortunately the accuracy of the model decreases when the collisional
scattering and energy losses become not small. The reason is that the mean
rates (4.45) and (4.46) represent well the modification of the electron velocity
distribution only at small depth £&. A more accurate formulation of the kinetic
problem will be given in the next Section with account taken of the collisional
scattering and one more mechanism of the electron beam anisotropization.
Generally, it seems true that the total absorption of the accelerated electrons
in a thick target might result in negligible directivity and polarization of the
hard X-ray emission.

4.5 The reverse-current electric-field effect

4.5.1 The necessity for a beam-neutralizing current

We assume that some external magnetic field By channels a fast particle prop-
agation and can be locally considered as uniform. The electric and magnetic
fields E and B related to a beam of fast electrons are superposed on this
field. In this way, the beam will be considered as a real electric current J
which influences the background plasma and magnetic field By. In order not
to obscure the essential physical points related to the electromagnetic field of
the beam, we shall neglect all other processes like the radiative and hydro-
dynamic response of the background plasma to a fast heating by the electron
beam (Section 8.3.2).

In the classical thick-target model for hard X-ray bremsstrahlung emission
during solar flares, if the fast electrons are supposed to have about the parallel
velocities, then the number of injected beam particles per unit time has to
be very large — in the order of Z 1036 electrons s~! above 25 keV during
the impulsive phase of a flare (Hoyng et al., 1976). Given the large electron
fluxes implied by the hard X-ray observations, various authors realized that
the beam electric current must be enormous — J 2 10'7 Ampere.

This would imply the magnetic field of the beam B 2z 10° G. So the
magnetic energy contents of the coronal volume should be more than six or-
ders of magnitude larger than the pre-flare contents for an average coronal
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field By =~ 100 G. Such situation is not likely to occur because the electron
beams are thought to be created by conversion of the magnetic energy avail-
able in the corona into kinetic energy.

Apart from this energy problem there is another difficulty related to beams
of ~ 1038 electrons s~!; they create an enormous charge displacement. For a
typical coronal volume of 10?® cm? and an electron density 10° cm ™3, the total
number of electrons is 1037. A stream of 103¢ electrons s~! would evacuate
all the electrons out of the volume in about 10 s. As a result an enormous
charge difference between the corona and the chromosphere would be build
up.

In reality the above mentioned problems will not occur, because the beam
propagates in a background well-conducting plasma. The charge displace-
ment by the beam will quickly create an electric field E| which causes the
plasma electrons to redistribute in such a way as to neutralize the local charge
built:

divE; =4np9. (4.58)

Because this electric field is caused by charge separation, it is frequently re-
ferred to as an electrostatic field.

The second effect is related to the inductive properties of a plasma. In a
plasma the magnetic field will not vary considerably on a timescale shorter
than the magnetic diffusion time. For beams with radii comparable to the
radii of coronal flaring loops this scale is much longer than the duration of
the impulsive phase. When the current varies in magnitude, immediately an
inductive electric field Eo will be created. It drives a current jo of plasma
electrons in such a way to prevent magnetic field variations on a time scale
shorter than the magnetic diffusion time. As a result the magnetic field will
not vary much during the impulsive phase:

47 10
1B~ t~0~ —] -—E,. 4.59
cur cons L2 + - 5 B2 (4.59)
So the electrostatic effect allows the plasma to ‘absorb’ the excess charge
imposed by the beam of fast electrons; and the inductive effect prevents the
magnetic field from changing faster than the allowed diffusion time.

Both the electrostatic and the inductive electric field will effectively
result in an electron plasma current which is in opposite direction
of the beam current J.

This electron plasma current is commonly referred to as the reverse or return
current J,..

Van den Oord (1990) has analyzed the electrostatic and inductive response
of a plasma to a prescribed electron beam. By using the Maxwell equations
together with the time-dependent Ohm’s law (Section 11.2) and with the
equation of motion for the plasma electrons in the hydrodynamic approxima-
tion (Section 9.4), he has shown that the non-linear terms are responsible for
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a coupling between the electrostatic (irrotational) and inductive (solenoidal)
vector fields generated by the beam in a plasma. In order to obtain analytical
solutions, van den Oord has decoupled the electrostatic and inductive fields,
by ignoring the non-linear terms in the equation of motion, and has found
solutions for a mono-energetic blunt beam.

An application of the model in conditions of the solar corona leads to the
following results. Charge neutralization is accompanied by plasma oscillations
(see formula (8.35)), that are present behind the beam front, and occurs on a
time-scale of a few electron-ion collision times. This is also the time scale on
which the plasma waves damp out. The net current in the system quickly be-
comes too low and therefore also the resulting magnetic field strength remains
low (B < Bo)

Although the electric field near the beam front is locally strong, the oscilla-
tory character prevents strong acceleration of the plasma electrons. According
to the van den Oord model, all the beam energy is used initially to accelerate
the plasma electrons from rest and later on to drive the reverse current against
collisional losses. In what follows, we shall use these results and shall formu-
late an opposite problem in the kinetic approximation. We shall not consider
the beam as prescribed. On the contrary, we shall consider an influence of
the electric field, which drives the reverse current, on the distribution
function of fast electrons in the thick-target plasma.

4.5.2 Formulation of a realistic kinetic problem

The direct electric current carried by the fast electrons is equal to

Jac(z) = e/f(v, 0, z)v cosOd®v. (4.60)

We shall consider this current to be fully balanced by the reverse current of
the thermal electrons in the ambient plasma,

Jac(2) = jre(2) = j(2) - (4.61)

This means that here we do not consider a very fast process of the reverse
current generation. The time-dependent process of current neutralization,
with account of both electrostatic and inductive effects taken (Section 4.5.1),
has been investigated in linear approximation by van den Oord (1990). Instead
of that we shall construct a self-consistent approach for solving the pure kinetic
problem with a steady electric field E = E(z) which drives the reverse current.

So, using Ohm’s law, we determine the reverse-current electric field to be
equal to

E(z) = i) . (4.62)
o
Here o is conductivity of the plasma; we can assume that the conductivity

is determined by, for example, Coulomb collisions (Section 11.1). This is the
case of a cold dense astrophysical plasma.
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On the other hand, the plasma turbulence effects are also important, for
example, in the heat conductive front between the high-temperature source
of energy and cold plasma of the thick-target. Anyway, even though we ex-
pect the wave-particle interactions to have some effects on the fast electrons
(Chapter 7), it is unlikely that such effects can change significantly the dis-
tribution function of fast electrons with energies far exceeding the energies of
the particles in a background cold plasma.

What is really important is the reverse-current electric field, it results
in an essential change of the fast electron behaviour in the plasma. That
is why, to solve the thick-target problem, we develop a combined approach
which takes into account the electric field (4.62) as in the Vlasov equation and
Coulomb collisions as in the Landau equation. So the distribution function
for the fast electrons in the target is described by the following equation
(Diakonov and Somov, 1988):

v COSGg _ B cos@g 226 sin? @ of _ (g{) . (4.63)
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Here the second and the third terms are the expression of the term

iE(r)g

Me ov

in the dimensional variables v and . On the right-hand side of Equation (4.63)
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is the linearized collisional integral; v(v) is the collisional rate for fast electrons
in the cold plasma.

To set the mathematical problem in the simplest form (see Figure 4.3),
we assume that ‘superhot’ (T, = Tp 2 10® K) and ‘cold’ (Toy = Ty ~
10* — 105 K < Tp) plasmas occupy the two half-spaces separated by the plane
turbulent front (z = 0). The superhot region represents the source of energy,
for example, the high-temperature reconnecting current layer (RCL) in a solar
flare. Let

+v(v)

fs = fs(U7 9) (465)

be the electron distribution function in the source. fs is, for example, the
Maxwellian function for the case of thermal electron runaway (Diakonov and
Somov, 1988) or a superposition of thermal and nonthermal functions in the
general case. To study the effect of the reverse-current electric field in the
classical thick-target model, Litvinenko and Somov (1991b) considered only
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Figure 4.3: The fast electron propagation in a thick-target cold plasma. TF
is the turbulent front between the superhot source of fast electrons and the
cold plasma.

accelerated electrons with an energetic power-law spectrum. Anyway, the
function f is normalized to the electron number density ng in the source:

/fs(v, 0)d3v =ny. (4.66)

Because the electron runaway in a turbulent plasma (Gurevich and Zhiv-
lyuk, 1966) is similar to the ordinary collisional runaway effect (Section 8.4.3),
the electrons with velocities

Ve > Ve (4.67)

where v, is some critical velocity, can freely penetrate through the turbulent
front into the cold plasma. Electrons with lower velocities remain trapped in
the source. In this Section, we are going to consider the distribution function
for the fast electrons escaping into the cold plasma and propagating there.
The boundary condition for the forward-flying (the suffix ff) fast electrons
may be taken as

fi(v,0,0) = fs(v, 0)O(v —ve), 0<0<7/2, (4.68)

where O is the theta-function.

The distribution function for the back-flying electrons is determined from
the solution of Equation (4.63) everywhere, including the boundary z = 0.
Therefore the problem has been formulated. Note the obvious but important
thing; Equation (4.63) contains two unknown functions: the fast electron
distribution function f(v, 0, z) and the electric field E(z). So the kinetic
Equation (4.63) must be solved together with Equations (4.60)—(4.62). This
is the complete set of equations to be solved self-consistently.
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4.5.3 Dimensionless parameters of the problem

In the dimensionless variables (4.7), (4.8) and pu = cos 8§, Equation (4.63) takes
the form

of of af af 2f 1
2L 9epa® 2L — 1—p?) L =22 —+=-A,f (4.69
e pe B Gy e Lo w) G = Gy T T g g Al (469)
Here the dimensionless electron energy
2
Mmev
= 4.
T T (4.70)

is normalized with the temperature Ty of the superhot plasma; for exam-
ple, Ty = T, ~ 100 MK is an effective electron temperature of the high-
temperature (super-hot) turbulent-current layer (see vol. 2, Section 6.3) The
ratio of the cold-to-superhot plasma temperature
T 4

=21~ 1074, 4.71
if we consider as example the injection of fast electrons into the solar chro-
mosphere. The dimensionless column depth ¢ (see definition (4.8)) equals the
dimensional column depth passed by fast electrons

&= [ n(2)dz, em ™2, (4.72)
/

divided by the unit of its measurement

k2T

-2, 4.
retnA (4.73)

£=

The dimensionless electric field

E 2
= -, 4.74
B, 7 (4.74)
where S A
4
g - 2rme mAm (4.75)

D1 kB T1

is the Dreicer field in the cold plasma of the target (cf. definition (8.70)).
The parameter € can be found from the self-consistent solution of the com-
plete set of equations and the boundary conditions as desribed in Section 4.5.2.
The parameter € is not small in a general case and, in particular, in the so-
lar flare problem e ~ 2 — 20 (see Figure 4 in Diakonov and Somov, 1988).
Therefore, from (4.74)
-

E=cs By, ~ (107*—-10"% E,, , (4.76)
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so Ohm'’s law (4.62) is well applicable in this case.

Let us set the specific form of the boundary distribution function (4.68).
The processes of electron acceleration in astrophysical plasma and their heat-
ing are always closely related. However, for the sake of contrast of them to
each other, we consider separately two different functions.

(a) We shall suppose that the electron distribution in the superhot plasma
is near to the Maxwellian one. So the distribution function

fs(z, p) =noco exp(—z)h(p), p=>0, (4.77)

with the constant
3/2
Me
cp=|—— .
0 (27rk;BT0>

(b) For accelerated electrons we shall use the power-law spectum as the
boundary distribution function for the forward-flying electrons

fre@, p) = fo(@, 1) ©(p—1) =ngcox™ " h(p), p=0, (4.78)

with another normalization constant ¢p. In principle, the function h(u) is
indefinite but should satisfy some additional conditions; at least the func-
tion h(p) should be maximally smooth (Diakonov and Somov, 1988).

4.5.4 Coulomb losses of energy
4.5.4 (a) Electric current in the thick target

In Equation (4.69), the term 72 (0% f/02?) describes the energy diffusion. As
we know from Section 4.2, for fast electrons with velocities much greater than
the thermal velocity of plasma electrons, the regular losses of energy due to
collisions always dominate the energy diffusion. So we neglect this term in
comparison with the term x (0f/0x).

However, as we also know from Section 4.2, we cannot neglect the term
with the py-dependent part A, f of the differential operator Laplacian A. This
term is responsible for the angular diffusion of electrons and is not small in
comparison to the regular losses term x (9f/0x).

Therefore we can ignore only the term with small parameter 7 in Equa-
tion (4.69). After that we have

gg—Qeuana—f—i—ax(l )87f+ W—l—[(l ,u)gi

ox o Jdx 2 0p
By using this equation, we would like to obtain the equation which determines

the behaviour of the direct electric current carried by fast electrons in the
target. It follows from definition (4.60) that

Jac(¢) = 2me <2k TO) //f T,y ) zppdr dp. (4.80)

nx

} (4.79)



74 Chapter 4. Fast Particles in Astrophysical Plasma

So we have to divide Equation (4.79) by z and to integrate it as in for-
mula (4.80).

All terms on the right-hand side of Equation (4.79), except one, give zero
contributions. The only term x (9f/0x), describing the regular energy losses
due to Coulomb collisions, determines the changes of electric current

3(€) = Jac(€) = jre(C) (4.81)

along the coulomn depth ( into the target. It gives the right-hand side of the
equation:

+1

di
P=—o [ oo ) (4.82)

d¢

21
with constant )
2k Ty

cj = me (Tfle) : (4.83)

The physical meaning of Equation (4.82) is that

fast electrons lose their energy and mix with thermal particles of
the ambient cold plasma due to Coulomb collisions.

Thus the self-consistent reverse-current problem demands to consider the
term « (9f /Ox), describing the Coulomb energy losses.

4.5.4 (b) 2D versus 1D models for the thick target

Equation (4.82) shows that the electric current j(¢) decreases along the
coulomn depth ( into the target because of the ‘falling out’ of ‘completely’
stopped (z = 0) electrons from the distribution function owing to collisional
losses of energy. From the electric current continuity equation it follows that
a current change is possible only when there are electron ‘sources’ and/or
‘sinks’ in the thick target.

In the energy region where Equation (4.69) is valid (z > 1), the colli-
sional friction force (Section 8.4.1) is inversely proportional to z. For this
reason, the electrons with low energies quickly slow down to energies of the
order of 7 and thus mix with the thermal electrons in the ambient plasma.
Since in Equation (4.79) formally 7 = 0, the ‘falling out’ takes place under
x = 0 according to formula (4.82).

The models under consideration in this Chapter, except the classical thick-
target model in Section 4.3, are two-dimensional (2D) in the velocity space
(see definition (4.5)). This fact has an important consequence.

Some electrons after injection into the thick target make a curve
trajectory and cross the boundary in the reverse direction without
significant losses of energy.
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These electrons come back to the source (the place of acceleration) without
being stopped in the target; they determine the boundary distribution func-
tion for back-flying electrons and constitute a significant part (possibly the
bulk) of all injected electrons.

Such a process is impossible in one-dimensional (1D) models, like the clas-
sical thick-target model, because an electron cannot change the initial direc-
tion to the opposite one without being stopped to zeroth velocity and acceler-
ated by the reverse-current electric field from the zeroth velocity in the reverse
direction. So collisional losses of energy are involved twice in the 1D dynamics
of all fast electrons stopped in the target. In general, the 1D kinetic models
taking Coulomb collisions into account are non-physical approximations.

The other group of injected electrons considered in 2D models is composed
of the fast electrons which, after moving in the target under electrostatic and
friction forces, do not come back in the particle source. With suitable values
of energy x and angle 6, they lose a lot of their initial energy and stop their
motion in the target not far from the boundary. There seem to be small
amounts of such particles. They determine the electric current change. Thus
the current j(¢) and, hence, the electric field F(¢) can change slowly near the
boundary.

Among the particles that determine the current, we may choose a small
subgroup of fast electrons which penetrate to such a depth into the target
where the electric field is very small (¢ < 1) and further on they are moving
affected only by collisions. Even for this small subgroup the 2D models are
certainly more realistic in comparison with the 1D models which do not take
into account the collisional scattering (Section 4.4).

4.5.5 New physical results

Usually to solve the 2D (in velocity space) kinetic equation one develops a
complicated numerical method. Diakonov and Somov (1988) have developed a
new technique to obtain an approximate analytical solution of Equation (4.63)
taking the Coulomb collisions and the reverse-current field into account. They
have applied this technique to the case of thermal runaway electrons in solar
flares. It appears that the reverse-current electric field leads to a significant
reduction of the convective heat flux carried by fast electrons escaping
from the high-temperature plasma to the cold one.

It is not justified to exclude the reverse-current electric-field effects
in studies of convective heat transport by fast thermal electrons in
astrophysical plasma, for example, in solar flares.

Litvinenko and Somov (1991b) have used the same technique to study
the behaviour of the electrons accelerated inside a reconnecting current layer
(RCL) in the solar atmosphere during flares. They have shown that the
reverse-current electric field results in an essential change of the fast electron
behaviour in the thick target.
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The reverse-current electric field leads to a quicker decrease of the
distribution function with the column depth in comparison with the
classical thick-target model.

It is worth mentioning here that both models (thermal and non-thermal) lead
to practically the same value of the field near the boundary, €, and this value
is large: €9 > 1. So the effects of the reverse-current field are not small.

The distribution function appears to be an almost isotropic one. The
main part of the injected electrons returns into the source. As a result, the
hard X-ray polarization appears much smaller than in the collisional thick-
target model without taking account of the reverse current. In calculations
by Litvinenko and Somov (1991b), the maximum polarization was found to
be of about 4 % only. So a major conclusion of this section is that

in order to have a more precise insight into the problem of electron
acceleration in solar flares, we inevitably have to take into account
the reverse-current electric-field effects.

They make the accelerated electron distribution to be almost isotropic and
leads to a significant decrease of expected hard X-ray bremsstrahlung polar-
ization (Somov and Tindo, 1978).

4.5.6 To the future models

After all said above, it is rather surprising to conclude that the most of the
above mentioned 2D models, which have been developed after the classical
thick-target model (Section 4.3), are however not used to obtain a more re-
alistic quantitative informaton on fast electrons in solar flares. The simplest
classical thick-target model is still very popular. Up to now we do not have
a realistic time-dependent self-consistent thick-target model (which must be
simple enough to be easily used) to interpret and analyze the hard X-ray
emission so frequently detected in space.

Future models will incorporate such fine effects like a nonuniform initial
ionization of chromospheric plasma in the thick-target (Brown et al., 1998a;
2003), the time-of-flight effect (Aschwanden et al., 1998; Brown et al., 1998b;
Aschwanden, 2002), with account taken of the effect of the reverse-current
electric field as an effect of primary importance. Otherwise the accuracy of
a model is lower that the accuracy of modern hard X-ray data obtained by
RHESSI (Lin et al., 2002; 2003).

* * *

Now let us clarify our plans. Before transition to the hydrodynamic descrip-
tion that is valid for systems containing a large number of colliding particles,
we have to study two particular but interesting cases.

First, N = 1, a particle in a given force field. This simplest approximation
gives us clear approach to several fundamental issues of collisionless plasma.



4.6. Practice: Exercises and Answers 7

In particular, it is necessary to outline the basis of kinetic theory for wave-
particle interactions in astrophysical plasma (Chapter 7).

Second, N = 2, binary collisions of particles with the Coulomb potential
of interaction. They are typical for collisional plasma. We have to know the
Coulomb collisions well to justify the hydrodynamic description of astrophys-
ical plasma (Chapter 9).

In the next Chapter we start from the former.

4.6 Practice: Exercises and Answers

Exercise 4.1. [Section 4.3] How deep can the accelerated electrons with
the initial energy & ~ 10 keV penetrate from the solar corona into the chro-
mosphere?

Answer. From formula (4.40) we find the simplest estimation for the
column depth

€= & cm ™2 (4.84)
" 240’ ' '

Substituting & ~ 10 keV and n ~ 10'2 cm ™2 in formula (4.41) gives ag ~
3x 10718 keV? cm?2. With this value ag we find € ~ 10 cm~2. At such depth
in the chromosphere, the density of the plasma n ~ 10’2 cm ™3 indeed.

Accelerated electrons with energies & > 10 keV penetrate deeper and
contribute significantly to impulsive heating of the optical part of a solar flare
(see a temperature enhancement at ¢ ~ 10?° cm~2 in Figure 8.4).

Exercise 4.2. [Section 4.5] How strong is the reverse-current electric field
in the chromosphere during a solar flare?
Answer. According to (4.76), the electric field

E=c-E,, ~(10* =103 E,,. (4.85)

IR

In the chromosphere (Exercise 8.4), the Dreicer field F,, > 0.1Vem™*. So,
under injection of accelerated electrons into the chromosphere during the im-
pulsive phase of a flare, the reverse-current field £ > 1075 — 10~*Vem ™!,
With the length scale [ ~ 10%km, this electric field gives rise to a poten-
tial p = El ~1—10 keV.

Exercise 4.3. [Section 4.5.4] Discuss expected properties of a solution of
Equation (4.79) without the collisional energy losses term x (9f/0x).
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Motion of a Charged
Particle in Given Fields

Astrophysical plasma is often an extremely tenuous gas of charged par-
ticles, without net charge on average. If there are very few encounters
between particles, we need only to consider the responses of a particle
to the force fields in which it moves. The simplest situation, a single
particle in given fields, allows us to understand the drift motions of
different origin and electric currents in such collisionless plasma.

5.1 A particle in constant homogeneous fields

5.1.1 Relativistic equation of motion

In order to study the motion of a charged particle, let us consider the following
basic equation:
dp
dt
In relativistic mechanics (see Landau and Lifshitz, Classical Theory of Field,
1975, Chapter 2, § 9) the particle momentum and energy are

:eE—i—EVXB—l—mg. (5.1)
c

mv ch

and £=-——1C (5.2)

Pe iz NS

respectively. By using the Lorentz factor
1

= — 5.3
ST >3

we rewrite formulae (5.2) as
p=ymv and &=~y mc’. (5.4)

79



80 Chapter 5. Motion of a Particle in Fields

Hence
&
P=5V. (5.5)

By taking the scalar product of Equation (5.1) with the velocity vector v
we obtain Je
T _F. .
pn v, (5.6)
where

F=e¢eE+mg

is a non-magnetic force. The particle kinetic energy change during the time dt
is d€ = v - dp. Therefore, according to Equation (5.6), the work on a
particle is done by the non-magnetic force only. In what follows we
shall remember that magnetic fields are ‘lazy’ and do not work.

Let us consider the particle motion in constant homogeneous fields.

5.1.2 Constant non-magnetic forces

Now let a non-magnetic force be parallel to the y axis, F = F'e,, and let the
initial momentum of the particle be parallel to the x axis, pg = po € .

y F
Figure 5.1: The trajectory
of particle motion under the
. action of a constant non-
Y F— . —_— magnetic force.
! 0
|
I
I
|
0 X x

Then we integrate Equation (5.1) to find that the particle moves along the
catenary shown in Figure 5.1:

& F
y—yO:;{cosh{(x—xo)]—l}. (5.7)
Here & is an initial energy of the particle.

Formula (5.7) in the non-relativistic limit is that of a parabola:

F (x — x0)?.

Y—%Yo = 2mv02
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5.1.3 Constant homogeneous magnetic fields

Let the non-magnetic force F = 0. The magnetic force in a constant and
homogeneous field results in particle motions. Let us show that. From Equa-

tion (5.1) we have
dp e
_— = = B . .
praa B (5.8)
We known by virtue of (5.6) that the particle kinetic energy £ = const.
Therefore | v | = const, and from Equation (5.8)

V=w,vXn. (5.9)

Here the overdot denotes the derivative with respect to time t, n is the unit
vector along the field B = Bn, and the constant

__ecB
Wy =2
is the gyrofrequency or cyclotron frequency. We use sometimes, in what fol-
lows, the name Larmor frequency. The last is a slightly confusing terminology
in view of the fact that there is the frequency of the Larmor precession (see
§ 45 in Landau and Lifshitz, Classical Theory of Field, 1975), w, , which turns
out to be half of the gyrofrequency w.
In the non-relativistic limit, the gyrofrequency

(5.10)

eB
Wy =—.
P me
(5.11)
By integrating Equation (5.9) we find the linear differential equation
r=w,rxn+C, (5.12)

where vector C = const.
By taking the scalar product of Equation (5.12) with the unit vector n we
have
n-r=Cj=v(t=0).

The constant C can be removed from consideration by an appropriate choice
of the moving reference system. C; = 0 in the reference system where F = 0
(Section 5.1.4), and this choice is consistent with the initial Equation (5.8).
Therefore

r] =wg I, Xn. (5.13)

The vector r, is changing with the velocity v, which is perpendicular to r
itself. Hence the change of vector r is a rotation with the constant frequency
w =wyn. Thus we have

v =wgr) = const =wv, (0),
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and
v, (0) _ Evy(0) _cpy

ecB eB’

ry =

Wy

since it follows from formula (5.5) that
Ev, =cp, .

We have obtained the expression for the gyroradius or the Larmor radius

CpL
’I“L = 7€B .

(5.14)

The term ‘rigidity’ is introduced in cosmic physics:

R = %. (5.15)

The rigidity of a particle is measured in Volts:

Ry L] eV

] S V.

Rigidity is usually used together with the term ‘pitch-angle’
- (VE,\B) . (5.16)

From (5.14) and (5.15) it follows that the particle’s gyroradius or Larmor
radius is

= —. (5.17)
That is why

the particles with the same rigidity and pitch-angle move along the
same trajectories in a magnetic field.

This fact is used in the physics of the magnetospheres of the Earth and other
planets, as well as in general physics of “cosmic rays” (Ginzburg and Sy-
rovatskii, 1964; Schlickeiser, 2002).

The cosmic rays, high-energy (from 10° eV to somewhat above 1020 eV)
particles of cosmological origin, were discovered almost a century ago but they
are one of the very few means available to an Earth-based observer to study
astrophysical or cosmological phenomena. The knowledge of their incoming
direction and their energy spectrum are the bits and pieces of a complex
puzzle which can give us information on the mechanism that produced them
at the origin, unfortunately distorted by many effects they undergo during
their journey over huge distances.
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5.1.4 Non-magnetic force in a magnetic field

Let us consider the case when a non-magnetic force F is perpendicular to the
homogeneous magnetic field B (see Figure 5.2). For the sake of simplicity, we
shall consider the non-relativistic equation of motion:

mv=F+5vxB. (5.18)
(&
(a) y P, 9
yo ------- .I —
F i
| Va
® B 5
; 1 3
0 xo X
S y
------- °
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0 x

Figure 5.2: The trajectory of motion a positively charged particle in a uniform
magnetic field under the action of a non-magnetic force. Slow (a) and fast (b)
drifts.

Let us try to find the solution of this equation in the form
V=vVq+u. (5.19)

Here vq is some constant velocity, so that substituting (5.19) in Equa-
tion (5.18) gives

ma+0=SuxB+F+ S vyxB.
c c
We choose vq in such a way that the two last terms vanish:

F+SvixB=0.
C
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This is the case if the following expression is chosen:

c FxB

Vg=-— —eo.
e B2

(5.20)

Actually, by using the known vector identity
ax(bxc)=b(a-c)—c(a-b),

we infer B
- vgxB=nn-F)—-F=-F,
c

since F L n = B/B. So formula (5.20) is correct.

Thus if a non-magnetic force F is perpendicular to the field B, the particle
motion is a sum of the drift with the velocity (5.20) called drift velocity, which
is perpendicular to both F and B, and the spiral motion round the magnetic
field lines — the gyromotion:

mﬁ:%uxB. (5.21)
Depending on a relative speed of these two motions, we distinguish slow (vq <
u) and fast (vq > u) drifts, see (a) and (b) in Figure 5.2.

To understand the motion, let us think first about how the particle would
move if only the magnetic field were present. It would gyrate in a circle, and
the direction of motion around the circle would depend on the sign of the
particle’s charge. The radius of the circle, r, , would vary with the particle’s
mass and would therefore much larger for an ion than for an electron if their
velocities were the same (see formula 5.14).

The non-magnetic force F accelerates the particle during part of each orbit
(see 1 — 2 in Figure 5.2a) and decelerates it during the remaining part of the
orbit (see 2 — 3 in Figure 5.2a). The result is that the orbit is a distorted
circle with a larger-than-average radius of curvature during half of the orbit
and a smaller-than-average radius of curvature during the remaining half of
the orbit. A net displacement is perpendicular to the force F and the magnetic
field B.

5.1.5 Electric and gravitational drifts

As we have seen above, in collisionless plasma, any force F, that is capable

of accelerating or decelerating particles as they gyrate about the magnetic

field B, will result in a drift perpendicular to both the field and the force.
(a) If F = eE, then the drift is called electric drift, its velocity

ExB

R (5.22)

Vq =2¢
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Figure 5.3: Electric drift. The kinetic energy & of a positively charged parti-
cle pT is a maximum at the upper point 1, hence the curvature radius r, of
the trajectory is a maximum at this point.

being independent of the particle charge and mass (Figure 5.3).
Since the drift velocity depends upon neither the charge nor the mass of
the particle,

the electric drift generates the motion of collisionless plasma as a
whole with the velocity v = vq relative to a magnetic field.

Being involved in the electric drift, the collisionless plasma tends: (a) to
flow similar to a fluid, and (b) to be ‘squeezed out’ from direct action of the
electric field E applied in a direction which is perpendicular to the magnetic
field B. Formula (5.22) says that the drift velocity is perpendicular to both
the electric and magnetic fields. This is sometimes referred to as an ‘E-cross-B
drift’, but its magnitude is inversely proportional to the magnitude of B.

We should not forget that formula (5.22) was obtained in the non-
relativistic limit. In fact, formula (5.22) would formally result in vg > ¢
for £ > B.

® B )
— —
g + v
p d
°

: Va
ce2.2.9.09.0029010 =

Figure 5.4: Gravitational drift. Initiation of an electric current by the action
of the gravity force in a collisionless plasma with magnetic field.
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(b) For the gravitational force F = mg formula (5.20) gives the drift
velocity
mec g x B

e B2

The gravitational drift velocity is seen to depend upon the particle mass and
charge. Positively charged particles drift in the direction coinciding with that
of the product g x B, while negatively charged particles drift in the opposite
direction as shown in Figure 5.4. Therefore

(5.23)

Vq =

a gravitational field is capable of generating an electric current in a
magnetized collisionless plasma.

5.2 Weakly inhomogeneous slowly changing fields

5.2.1 Small parameters in the motion equation

Let us take the non-relativistic Equation (5.18) for the motion of a charged
particle and rewrite it as follows:

1
D(f-g)=E+-ixB. (5.24)
e c
On making this expression non-dimensional
r t v g B E
* t*f— * * _ S B*—f E*fi
r L ) T ) A4 UO 3 g g ) BO ) EO )
we have the following equation
L 2 L
o2 (f*ng*) — B E* + = By i* x B*.
e T L cT

Normalize this equation with respect to the last term (the Lorentz force)
by dividing the equation by LBy/cT:
m ¢ 1 . Ey cr

A = _ E*+ r* x B*.
eBOT(r agg) By L tr

Introduce the dimensionless parameter

m c 1

e By 17

aB
Two situations are conceivable.
(a) Spatially homogeneous magnetic and electric fields are slowly changing
in time. The characteristic time 7 = 1/w, where w is a characteristic field
change frequency. Therefore the dimensionless parameter o, is equal to

o, =—. (a)
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(b) For the fields that are constant in time but weakly inhomogeneous,
the characteristic time is to be defined as 7 = L/vg, L and vy being the char-
acteristic values of the field dimensions and the particle velocity, respectively.
In this case

a, == (b)

Generally, a superposition of these two cases takes place. The field is called
weakly inhomogeneous slowly changing field, if

<

« ~ < 1.

B

w
Wy L

(5.25)

The second parameter of the problem,

- EO CT
oy = By L
characterizes the relative role of the electric field. We assume o, = 1, because,
if this parameter is small, this can be taken into account in the final result.
The third dimensionless parameter og = g72/L is not important for our
consideration in this Section; so we put ag = 1.
Thus we have

a, (i —g*) =E* + i* x B*, (5.26)

the equation formally coinciding with the initial dimensional one. That is why
it is possible to work with Equation (5.24), using as a small parameter the
dimensional quantity m/e. This method is rather unusual but quite justified
and widely used in plasma physics. The corresponding expansion in the Taylor
series is termed the expansion in powers of m/e. We find such a solution of
Equation (5.24).

5.2.2 Expansion in powers of m/e

Now let us represent the solution of Equation (5.24) as a sum of two terms,
r(t)=R(t)+r, (). (5.27)

The first term R () describes the motion of the guiding center of the Lar-
mor circle, the second term r, (¢) corresponds to the rotational motion or
gyromotion of the particle. The case of an electron e~ is shown in Figure 5.5.
Recall that for the constant homogeneous magnetic field (see (5.14))
CpL - m cv

" eB e B’
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Figure 5.5: The Larmor motion of a
negatively charged particle (an elec-
tron) in a weakly inhomogeneous
slowly changing field.

i.e., the Larmor radius is proportional to the parameter m/e. It is natural
to suppose that the dependence is the same for the weakly inhomogeneous
slowly changing field, i.e.
i, [~ 2

For example, if the magnetic field does not change in time and does not change
much within the gyroradius, then the particle moves through a nearly uniform
magnetic field while making a circular round. However the non-uniformities
make the guiding center move in a way different from a simple translatory
motion. We are going to find the equation describing the guiding center
motion.

Let us substitute (5.27) in Equation (5.24) and expand the fields g, E, and
B in the Taylor series about the point r = R

gr)=g®R) +(r,-V)g(R)+...,

R
Er)=ER) +(, - V)ER)+..., (5.28)
B(r)=B®R)+(r, V)B(R)+....

<
m

From Equation (5.24) we have
i’:g—k(T) [E(r)—l—i'xB(r) .
e c

Hence the basic equation contains the small parameter m/e to the power (-1).
By substituting (5.27) and (5.28) in this equation we obtain

R+ i, =g®+(r, - V)gR)+
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Note that we have to think carefully about smallness of different terms in
Equation (5.29). For example, the magnitude of ¥, is not small:
r
| I"L|NMN7’LQJB ~agayt~ 1.
T
The particle velocity is not small, although the Larmor radius is
small. That is the physical reason for the term

my\~1 1

(%) =i x (- V) B®)]

(& Cc

having zero order with respect to the small parameter m/e.
The acceleration term 1, is not small either:

. |, | 2 -1 m\~1
| ¥, |~ T; ~rowl o N(;) .
In the expansion (5.29) let us retain only the terms with the order of
smallness less than one, that is

. . m\—1 1 .
R) = - i, +g®)+ () [E(R)A—CRXB(R)}—S—
© -y ()

(=1

() o E® (D) LR (V) B®)]
(0) (0)
+(%)_1% fo[(rL~V)B(R)]+O(%). (5.30)

(0)

Here the orders of smallness of the corresponding terms are given in brackets
under the braces.

5.2.3 The averaging over gyromotion

In order to obtain the equation for guiding center motion let us average Equa-
tion (5.30) over a small period of the Larmor rotation,

T, =T

B

Wy

Since (r, )= ( r,)=( ¥ ) =0, we infer the following equation
1 . m
E(R)+ - RxB(R)} + O(;) +

+£(1’~Lx[(rL'V)B(R)]>. (5.31)
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Let us consider the last term which also has to be averaged. Here we may
put
I, =wy, I, Xn.

On rearrangement (see Exercise 5.9), we obtain

%(fo[(rL-V)B(R)H:—%VB. (5.32)
Here 1 1
M=-=-—== (mr?) = ~JS (5.33)

is the magnetic moment of a particle on the Larmor orbit (Figure 5.6). The
case of electron e~ is shown here.

B M

e J

Figure 5.6: The motion of a negatively charged particle on the Larmor orbit
and its magnetic moment. The moment is antiparallel to the magnetic field.

We interpret —e (w,/27) as the current +J associated with the gyrating
electron. That is why we call M a dipole magnetic moment as the name
usually refers to a property of a current loop defined as the current J flowing
through the loop times the area S of the loop (see Sivukhin, 1952). Hence it
is clear from (5.33) that M is the magnetic moment of the gyrating particle.

So a single gyrating charge generates a magnetic dipole. Note that, for
any charge of a particle, positive or negative,

the direction of the dipole magnetic moment is opposite to the di-
rection of the magnetic field.

Therefore the diamagnetic effect has to occur.
Substituting the non-relativistic formula w, = eB/mc in (5.33) gives

(5.34)

Therefore

the magnetic moment is proportional to the magnetic field flux
through the surface covering the particle’s Larmor orbit.

It is also obvious from (5.32) that we can use the following formula for the
force acting on the magnetic moment:

F=-MVB.

(5.35)
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C B : . .
\ Figure 5.7: The diamagnetic
L@ — - o force acts on the guiding center
. R z moving along the symmetry axis
/ of a magnetic mirror configura-

tion.

Let the field strength increase along the field direction. For the sake of
simplicity, we consider a magnetic configuration symmetric around the central
field line as shown in Figure 5.7. The strength of the magnetic field increases
when the guiding center (not a particle) of a particle moves along the central
line in the direction of the axis z. The force (5.35) is exerted along the field
and away from the direction of increase of the field. As a consequence,
the parallel component of the guiding center velocity R decreases to zero at
some maximum strength of the magnetic field and then changes sign. We say
that the particle experiences a mirror force, and we shall call the place where
it turns around a magnetic mirror. Note that a charged particle moving along
the symmetry axis z is unaffected by magnetic force of course.

Finally, from Equation (5.31), we obtain the equation of the guiding center
motion:

R=g<R)+% [E(R)—s—inB(R) —%VB(R) +o(%). (5.36)

The guiding center calculations involve considerably less amount of nu-
merical work and produce trajectories in good agreement with detailed cal-
culations if the non-uniformities of the magnetic and other fields are really
small over the region through which the particle is making the circular motion.
Moreover

the guiding center theory helps us to develope an intuition about
the motions of charged particles in magnetic field.

And this intuition turns out to be useful in solving many practical problems
of plasma astrophysics, for example, in physics of the Earth magnetosphere.

5.2.4 Spiral motion of the guiding center

Even without regarding the terms O(m/e), Equation (5.36) is more difficult
in comparison with (5.24). The term g (R), the term with electric field E (R),
and the two last terms in Equation (5.36) apart, it is seen that

R= ° RxB. (5.37)
mc

Therefore the guiding center spirals, as does the particle (cf. Equation (5.8)).
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By analogy with formula (5.14), the guiding center spiral radius can be
found 3
mcR |
R, = . 5.38
+ eB ( )

So it is a small quantity of order

R. _Ri r,

T, vy L

as compared with the particle Larmor radius (5.14).

The radius of the guiding center spiral is of the order of m/e as
compared with the particle Larmor radius. Consequently, this spiral has a
higher order with respect to the small parameter m/e and can be neglected
in the approximation under study.

5.2.5 Gradient and inertial drifts
Let us neglect the term O(m/e) in Equation (5.36) and take the vector product
of Equation (5.36) with the unit vector n = B/B:

. B .
Rxn:gxn+£Exn+€—(Rxn)xn+MnxVB.
m me m

From this we find the drift velocity across the magnetic field

Exn me
+ —gxn+

R, =nx(Rxn)=c¢ B B

+%nxVB—%Rxn. (5.39)

The first term on the right-hand side of Equation (5.39) corresponds to
the electric drift (5.22), the second one presents the gravitational drift (5.23).
The third term is new for us in this Chapter; it describes the gradient drift
arising due to the magnetic field inhomogeneity. The gradient drift velocity

Me
Vq = EHXVB

(5.40)

The same formula follows of course from (5.20) after substituting in it the
formula (5.35) for the force acting on the magnetic moment M in the weakly
inhomogeneous field.

So, if a particle gyrates in a magnetic field whose strength changes from
one side of its gyration orbit to the other, the instantaneous radius of the
curvature of the orbit will become alternately smaller and larger. Averaged
over several gyrations,
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the particle drifts in a direction perpendicular to both the magnetic
field and the direction in which the strength of the field changes.

The fourth term on the right-hand side of (5.39) corresponds to the inertial
drift:

Vd:—ERXn

(5.41)

Let us consider it in some detail. For calculating the inertial drift veloc-
ity (5.41), we have to know the guiding center acceleration R. It will suffice
for the calculation of R to consider Equation (5.39) in the zeroth order, since
the last term of (5.39) contains the small parameter m/e. In this order with
respect to m/e, we have

. Exn
RJ_ =cC B .
Hence the guiding center acceleration
d d . . d Exn
_Yp_° - = . 42
R = dtR dt(RH+RL) 7 <v|n+c B ) (5.42)

Because this aspect of particle motion is important in accounting for the
special properties of a collisionless cosmic plasma, it is good to understand it
not only mathematically but also in an intuitive manner.

5.2.5 (a) The centrifugal drift

At first, we consider the particular case assuming the electric field E =
in formula (5.42), the magnetic field B being time-independent but weakly
inhomogeneous. Under these conditions

dv dn

=@M =R T

The first term on the right-hand side does not contribute to the drift velocity
since n X n = 0. Rewrite the second term as follows:

dn Jon
11|dt=11|<8t —|—UH( V)n) (5.43)

In this formula, the first term on the right equals zero for the time-independent
field. The second one is equal to

vi(m-V)n=—vf (R> . (5.44)

Here R, is a radius of curvature for the field line at a given point R. At this
point the unit vector e, is directed from the curvature center 0. as shown in
Figure 5.8.
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B

Figure 5.8: The frame of reference
for derivation of the formula for the
inertial drift in weakly inhomoge-
neous magnetic field.

Thus the dependence of the inertial drift velocity on the curvature of the
weakly inhomogeneous magnetic field is found

1

RJ“C = Rc wB

v e xm. (5.45)

This is the drift of a particle under action of the centrifugal force

muv H2

c = R.

ec. (5.46)

In formula (5.45), the centrifugal force produced by motion of a particle
along the magnetic field appears explicitly. Therefore the centrifugal drift
velocity can be seen to be a special case of the expression (5.20) obtained for
drift produced by an arbitrary non-magnetic force F.

5.2.5 (b) The curvature-dependent drift

Let us come back to the gradient drift and consider a time-independent
weakly-inhomogeneous magnetic field. Its gradient

1 1
VB:@V(B~B)=§[(B'V)B‘*‘BXCUHB]-

In a current-free region curl B = 0, and hence

1

B=—
\Y B(

B-V)B=(1n -V)B=(n-V)Bn=B(n- -V)n+

+n(n-VB)=-B (;) +n(n-VB).
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The last term does not contribute to the gradient drift velocity (5.40). The
contribution of the first term to the drift velocity is

. Me €\ M _ M
RL—eBHX((_B),}-\{C>__6RCHXQC—6RC € X1n. (547)

Here, according to definition (5.33) and formula (5.14), the magnetic moment

2 2
M:EJS:%:&. (5.48)
c

2c 2cwy

On substituting formula (5.48) into (5.47) we see that the gradient drift
in a time-independent weakly-inhomogeneous magnetic field has a structure
analogous to the centrifugal drift (5.45):

. 1 1
Rl|gr:m§vfecxn. (5.49)

Therefore we can add the curvature-dependent part of the gradient drift (5.49)
to the centrifugal drift (5.45):

. 1 1

RLZ'R,CWB<U|2+2UE> €. X1n. (550)
This formula unites the two drifts that depend on the field line
curvature of a weakly inhomogeneous magnetic field.

In a curved magnetic field, the gradient drift is present in combination with
the centrifugal drift.

5.2.5 (¢) The curvature-independent gradient drift

It is worth considering the part of the gradient drift, that is independent of
the field line curvature. Let the field lines be straight (R. — 00), their density
increasing unidirectionally as shown in Figure 5.9. The field strength By at
a point 2 is greater than that one at a point 1. So, according to (5.17), the
Larmor radius

o), <rl,

The particle moves in the manner indicated in Figure 5.9.

For comparison purposes, it is worth remembering another illustration.
This is related to, on the contrary, the non-magnetic force F (Section 5.1.4).
Under action of the force, the particle velocity at a point 1 in Figure 5.10, vy,
is greater than at a point 2. Hence the Larmor radius r, = cp, /eB is greater
at a point 1 than at a point 2 as well.

In other words, when the particle is at the point 2 at the top of its trajec-
tory, the force F and the Lorentz force (e/c) v x B both act in the downward
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2
® B ]
—
VB Va
1 p+ ——
[ ]

: Va
ce 2292900000192 =

Figure 5.9: The simplest interpretation of the gradient drift. A gradient in
the field strength, VB, in the direction perpendicular to B will produce a
drift motion of ions and electrons.
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Figure 5.10: The physical nature of the drift under the action of a non-
magnetic force F which is perpendicular to the uniform magnetic field B.

direction in Figure 5.10. This enhanced normal acceleration makes the tra-
jectory more sharply bent than it would have been in the absence of the force
F. On the other hand, when the particle is at the bottom point 1, the Lorentz
force is diluted by F, thereby causing the trajectory to be less sharply bent.
As a result, there is a drift of the guiding center in a direction perpendicular
to both B and F.

Figures 5.9 and 5.10 also demonstrate the validity of formula (5.35).

The drifts with velocity which depends on the particle charge and mass,
like the gradient drift, can give rise to a current by making the electrons
and ions drift in opposite directions. Such drifts can also be important for
the problem of element abundances or element fractionation (see the second
volume of this book).

Recommended Reading: Sivukhin (1965), Morozov and Solov’ev (1966b)
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5.3 Practice: Exercises and Answers

Exercise 5.1 [Section 5.1] Evaluate the gyrofrequency for thermal electrons
and protons in the solar corona above a sunspot.

Answer. At typical temperature in the corona, T =~ 2 x 10% K, from the
non-relativistic formula (5.11), it follows that: the electron gyrofrequency

w® =1.76 x 10" B(G), rads*; (5.51)
the proton gyrofrequency
w® =958 x 10* B(G), rads™'. (5.52)

The gyrofrequency of electrons is my / me &~ 1.84 x 103 times larger than that
one of protons. Just above a sunspot the field strength can be as high as
B =~ 3000 G. Here w](:) ~ 5 x 10%rad s~!. The emission of thermal electrons
at this height in the corona can be observed at wavelength A ~ 4 cm.

Exercise 5.2 [Section 5.1] Under conditions of the corona (Exercise 5.1),
evaluate the mean thermal velocity and the Larmor radius of thermal electrons
and protons.

Answer. The thermal velocity of particles with mass m; and tempera-

ture T} is
3k, T;\'/?
Vi = (7]731) . (5.53)

Respectively, for electrons and protons:

Vre = 6.74 x 10° /T, (K), cms™!, (5.54)

Vrp = 1.57 x 10*/ T, (K), cms™'. (5.55)

At the coronal temperature Ve & 9.5 x 103 km s~ ~ 10? cm s~ and Vrp =
220 km s~ 1.
From (5.14) we find the following formulae for the Larmor radius:

T. (K)

and

o VTe

() =383 x102 X2 oy 5.56
" w® ) B(G) = (5.56)
and
1% T, (K)
(P) = Tp = 713
T ) 1.64 B(G) cm. (5.57)
B

At T ~2x10% K and B = 3000 G we find 7(®) ~ 0.2 mm and r{P) ~ 1 cm.

Exercise 5.3. [Section 5.1] During solar flares electrons are accelerated to
energies higher than 20-30 keV. These electrons produce the bremsstrahlung
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emission. The lower boundary of the spectrum of accelerated electrons is not
known because the thermal X-ray emission of the high-temperature (super-
hot) plasma masks the lower boundary of the non-thermal X-ray spectrum.
Assuming that the lower energy of accelerated electrons K ~ 30 keV, find
their velocity and the Larmor radius in the corona.

Answer. The kinetic energy of a particle

K=E&—mc, (5.58)

where £ is the total energy (5.2), mc®> = 511 keV for an electron. Since

K /mc? < 1, formula (5.58) can be used in the non-relativistic limit: K =

mv? /2. From here the velocity of a 30 keV electron v ~ 101 cms™! ~ 0.3 c.
The Larmor radius of a non-relativistic electron according to (5.14)

vy (cm s71)

(©) = 5.69 x 1078 —= 5.59
) X BG) ( )
For a 30 keV electron 1
() ~ 5. 102 —— . .
r 5.6 x10° g (5.60)

Above a sunspot with B = 3000 G the Larmor radius rL(e) ~ 2 mm. Inside
a coronal magnetic trap with a field B ~ 100 G the electrons with kinetic
energy K ~ 30 keV have the Larmor radius rL(e) ~ 6 cm.

Exercise 5.4 [Section 5.1] Under conditions of the previous Exercise esti-
mate the Larmor radius of a proton moving with the same velocity as a 30 keV
electron.

Answer. For a non-relativistic proton it follows from formula (5.14) that

—1
P = 1,04 x 1074 Y225

“BG) cm. (5.61)

Above a sunspot a proton with velocity =~ 0.3 ¢ has the Larmor radius &~ 3 m.
Inside a coronal trap with magnetic field =~ 100 G the Larmor radius ~ 10 cm.
So

non-relativistic protons (and other ions) can be well trapped in coro-
nal magnetic traps including collapsing ones

(see vol. 2, Chapter 7). This is important for the problem of ion acceleration
in solar flares.

Exercise 5.5 [Section 5.1] The stronger magnetic field, the smaller is the
Larmor radius r, of an electron. Find the condition when 7 is so small as
the de Broglie wavelength of the electron

L T e S (5.62)

P omev VK(@EeV)
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Here h is Planck’s constant, K is the kinetic energy (5.58) of the electron. If
K =1 eV, the de Broglie wavelength A\, ~ 10~7 cm ~ 10 Angstrom.

Answer. In the non-relativistic limit, the electron with kinetic energy K
has the Larmor radius

K (eV)

=3.37T Y¥Y——=
E B(G)

cm. (5.63)
When the energy of the electron is 1 eV and the field has a strength of 1 G,
the Larmor radius r;, ~ 3 cm. However for a field of 3 x 107 G, the Larmor
radius is diminished to the de Broglie wavelength ~ 10~7 cm. So for white
dwarfs which have B > 107 G, and especially for neutron stars, we have to
take into account

the quantization effect of the magnetic field: the Larmor radius is
no longer arbitrary but can take only certain definite values.

We call a magnetic field the superstrong one, if r, < A\,. Substituting (5.63)
and (5.62) into this condition, we rewrite it as follows

B>3x10"K(eV), G. (5.64)

In superstrong fields the classic theory of particle motion, developed above, is
no longer valid and certain quantum effects appear.

The energy difference between the levels of a non-relativistic electron in a
superstrong field is

B
5, ~ % % ~107% B, eV. (5.65)
On the other hand, the difference between energy levels in an atom, for ex-
ample a hydrogen atom, is of about 10 eV; this is comparable with &, in a
superstrong field B > 108 — 10° G. In ordinary conditions B is not so large
and does not affect the internal structure of atoms.

Inside and near neutron stars B > 10'' — 102 G. In such fields a lot of
abnormal phenomena come into existence due to the profound influence of the
external field on the interior of atoms. For example, the electron orbits around
nuclei become very oblate. Two heavy atoms, e.g. iron atoms, combine into a
molecule (Fey) and, moreover, these molecules form polymolecular substances,
which are constituents of the hard surface of neutron stars (Ruderman, 1971;
Rose, 1998).

Exceedingly superstrong (ultrastrong) fields, 2 10'* G, are suggested in
the so-called magnetars, the highly-magnetized, newly-born neutron stars (see
Section 19.1.3).

Exercise 5.6 [Section 5.1] Is it justified to neglect the radiation reaction
in the motion Equation (5.8) while considering the gyromotion of electrons in
astrophysical plasmas?
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Answer. In the non-relativistic limit v? < ¢, the total energy radiated
per unit time by a charge e moving with acceleration I can be calculated
in the dipolar approximation (see Landau and Lifshitz, Classical Theory of
Field, 1975, Chapter 9, § 67):

2 .,

I=-—4d

= (5.66)

Here d = er and d = ef.

In a uniform magnetic field B, an electron moves in a helical trajectory. For
the transversal motion in the Larmor orbit » = r_, the total power radiated
by the electron

— 22 a4_ 22 5 5 5.67
=33 ¢ MW =337 Wp- (5.67)
Here v = w r,, is the velocity of the electron in the Larmor orbit.

Let us estimate the strength of the magnetic field such that an electron
with kinetic energy K = mv? /2 would radiate an appreciable amount of energy

during one period of gyration, 7, = 27 /w,. Consider a ratio

Th 1 dK 2n
p=2 = - T 5.68
7 T, K dt wg ( )
Substituting (5.67) in (5.68) gives
8t €3
,=—-———Ba~14x10"" B(G). 5.69
=3 x (@) (5.69)

Therefore, while considering the gyromotion of non-relativistic electrons
in cosmic plasmas, the radiation reaction could be important in the motion
Equation (5.8) only in ultrastrong magnetic fields with
3 (mc?)?

Bz —

S N 101 G. (5.70)

However other physical processes already dominate under such conditions; see
discussion in Exercise 5.5.

Recall that formula (5.67) is not valid for a relativistic electron moving in
the Larmor orbit; see next Exercise.

Exercise 5.7 [Section 5.1] For a relativistic electron moving in the Larmor
orbit with a speed v = (¢, the total power of radiation is given by formula
(see Landau and Lifshitz, Classical Theory of Field, 1975, Chapter 9, § 74):

_ 2 7
T 33 m2 11—

B?. (5.71)

Therefore, in contrast to the non-relativistic formula (5.67), I — oo when
0 — 1. Find the rate of energy loss for such an electron.
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Answer. According to (5.4), for a relativistic particle
E? = (pc)* + (mc?)? . (5.72)

By using this expression we rewrite formula (5.71) as follows

d&€ 2¢* B2
e _ 22 _ g2) )
i B ((mc - =& ) (5.73)
From here we find
£ 2¢%B?
w = Cth ( W t —+ COHSt) . (574)

With an increase of time t, the particle’s energy monotonuouly decreases to
the value & = mc? with the characteristic time
3m3c®
Tr = ooape (5.75)
Comparing between this time and 27 wgl gives us the characteristic value
of magnetic field

3m2c? 1/2
B = — (12 . 5.76
47 e3 ( A ) ( )

We see that B — 0 when 8 — 1. So, for relativistic electrons, there is no
need in strong magnetic fields to radiate efficiently unless they become non-
relativistic particles (see Exercise 5.6). This means that

for relativistic electrons, the radiative losses of energy can be im-
portant even in relatively weak magnetic fields.

That is why the synchrotron radiation is very widespread in astrophysical
conditions (e.g., Ginzburg and Syrovatskii, 1965). It was the first radio-
astronomical radiation mechanism which had been successfully used by classi-
cal astrophysics to interpret the continuum spectrum of the Crab nebula. The
synchrotron mechanism of radio emission works in any source which contains
relativistic electrons in a magnetic field: in the solar corona during flares, in
the Jovian magnetosphere, interstellar medium, supernova remnants etc.

Exercise 5.8 [Section 5.2.3] Consider an actual force acting on a particle
gyrating around the central field line in the magnetic mirror configuration
shown in Figure 5.7.

Answer. Let us use the cylindrical coordinates (r, z, ¢) with the axis z
along the central field line as shown in Figure 5.7. In the weakly inhomoge-
neous magnetic field, the predominant component is B, but there is a small
component B, which produces the z component of the Lorentz force:

F, = %%BT . (5.77)
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Here the ¢-component is the gyromotion velocity v ; for a negatively (pos-
itively) charged particle, it is directed in the positive (negative) ¢-direction
(see Figure 5.6).

The component B, of the magnetic field can be found from condition
div B = 0 as follows:

1 0B,
P= st (5.78)
Substituting (5.78) into (5.77) gives
0B,
F,=-M 5 (5.79)

where M is the magnetic moment (5.33) of the gyrating particle.

Exercise 5.9 [Section 5.2.3] Derive formula (5.32) for the last term in the
averaged Equation (5.31).
Answer. We have to write down the following expression explicitly

(rL Xn) X [(rL V)B(R)]

and then to average it. It is a matter to do that, once we make use of the
following tensor identities:

(a X b)o, = eag.yagb,y.
Here engy is the unit antisymmetric tensor, and
€aBy Cuvy = Oapu 08y — Oaw Opy -

On rearrangement, we average the last term in Equation (5.31) to obtain

i(fo[(rL-V)B(R)H:—MVB, (5.80)

where ] 1
€Wy 2
- 27T(7“L) - JS (5.81)

is the magnetic moment of a particle on the Larmor orbit.



Chapter 6

Adiabatic Invariants in
Astrophysical Plasma

Adiabatic invariants are useful to understand many interesting proper-
ties of collisionless plasma in cosmic magnetic fields: trapping and ac-
celeration of charged particles in collapsing magnetic traps, the Fermi
acceleration, “cosmic rays” origin.

6.1 General definitions

As is known from mechanics (see Landau and Lifshitz, Mechanics, 1976, Chap-
ter 7, § 49), the so-called adiabatic invariants remain constant under changing
conditions of motion, if these changes are slow. Recall that the system exe-
cuting a finite one-dimensional motion is assumed to be characterized by a
parameter A that is slowly — adiabatically — changing with time:

A/ A>T, (6.1)

Here T is a characteristic time for the system (e.g., a particle in given fields)
motion.

More precisely, if the parameter A did not change, the system would be
closed and would execute a strictly periodic motion with the period T like a
simple pendulum in gravitational field. In this case the energy of the system,
&, would be invariant.

Under the slowly changing parameter A, if £ ~ A, then the integral

I= %qu, (6.2)

rather than the energy &, is conserved. Here P and ¢ are the generalized
momentum and coordinate, respectively. The integral is taken along the tra-
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jectory of motion under given £ and A. The integral I is referred to as the
adiabatic invariant.

6.2 Two main invariants

6.2.1 Motion in the Larmor plane

The motion of a charged particle in slowly changing weakly inhomogeneous
fields has been considered in the previous section. Several types of periodic
motion can be found. In particular, the particle’s motion in the plane per-
pendicular to the magnetic field — the Larmor motion — is periodic. Let P be
the generalized momentum. According to definition (6.2) for such a motion
the adiabatic invariants are the integrals

I = %Pl dqi =const and I, = j{Pg dqo = const,

taken over a period of the motion of coordinates q1 and ¢ in the plane of the
Larmor orbit.

It is convenient to combine these integrals, that is simply to add them
together:

I:%PLwiq:const. (6.3)

(This is the same, of course, as ¢ = 7, ¢ in definition (6.2) with 0 < ¢ < 27.)
Here e
P, =p,+ - A

is the generalized momentum (see Landau and Lifshitz, Classical Theory of

Field, 1975, Chapter 3, § 16) projection onto the plane mentioned above. In

this plane q = r,. The vector potential A is perpendicular to the vector B

since B = curl A, and p is the ordinary kinetic momentum of a particle.
Now perform the integration in formula (6.3)

I:j{Pl.er :pr.er _A'_S%Aer —

:27rerJ_—E /curlA-dS:
c
s
by virtue of the Stokes theorem

:2777’Lpl—9/B-dS:27rerl—EBﬂ'rf. (6.4)
¢ c

5
Substituting r, = ¢p, /eB (cf. formula (5.17)) into (6.4) gives

e 2

Y2
I = — == = const.
e B
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Thus we come to the conclusion that the conserving quantity is

(6.5)

This quantity is called the first or transversal adiabatic invariant.
According to definition (5.33), the particle magnetic moment for the Lar-

mor orbit is ) .
1 P L
M==-JS=_" =—. 6.6
c 2mB B (6.6)
Here use is made of the non-relativistic formula for the Larmor frequency (5.11)
and the non-relativistic kinetic energy of the particle transversal motion is
designated as
pl
K, ==.
L7 om
When (6.5) is compared with (6.6), it is apparent that the particle magnetic
moment is conserved in the non-relativistic approximation.

In the relativistic limit the particle magnetic moment (6.6) does not remain
constant; however, the first adiabatic invariant can be interpreted to represent
the magnetic field flux through the surface covering the particle Larmor orbit,

2 2
c
®=Bm? = 7;—2 % = const . (6.7)
This also follows directly from (6.4), when we substitute the relativistic for-
mula

eB
pL =1 e (6.8)

into the first term on the right-hand side of formula (6.4). We obtain

I =

ol®

(B 7r7‘3) = z D. (6.9)

Therefore

in the relativistic case, the magnetic field flux ® through the sur-
face S covering the particle Larmor orbit is conserved.

6.2.2 Magnetic mirrors and traps

Let us imagine the time-independent magnetic field, the field lines forming

the convergent flux. As a rule, the field takes such a form in the vicinity of

its sources, for instance, a sunspot S in the photosphere Ph in Figure 6.1.
The particle transversal momentum is

pL=psind, (6.10)
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Figure 6.1: A converging flux
of field lines forms a magnetic
‘mirror’. At the point M, the
parallel component of momen-
tum reverses under action of
the diamagnetic force (5.35).

it being known that p = const, since by virtue of (5.6) we have £ = const.
Substituting (6.10) into (6.5) gives

sin” § sin? 6,
B = const = By
or
sin? 9 = B sin? 6 . (6.11)
By

This formula shows that, for the increasing B, a point M; must appear in
which sin? #; = 1. The corresponding value of the field is equal to

By = By / sin? 6. (6.12)
At this point the particle ‘reflection’ takes place:
p=pcosf =0.

The regions of convergent field lines are frequently referred to as magnetic
‘mirrors’.

So, if there is a field-aligned gradient of the magnetic-field strength, the
component of velocity parallel to the field decreases as the particle moves into
a region of increasing field magnitude, although the total velocity is conserved.
Eventually, under action of the diamagnetic force (5.35), the parallel velocity
reverses (see the point M; in Figure 6.1). Such reflections constitute the
principle of a magnetic trap. For example, magnetic fields create traps for
fast particles in the solar atmosphere as shown in Figure 6.2. The particles
are injected into the coronal magnetic tubes called flaring loops, during a
flare. Let us suppose that this injection occurs at the loop apex.

Let us also suppose that, having hit the chromosphere Ch, the particles
‘die’ because of collisions. The particles do not return to the coronal part of
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Figure 6.2: A coronal
magnetic tube as a trap
for particles accelerated
in a solar flare. 6 < 6y
is the loss cone. Mo-
tion between the mirror
points M; and My is
called bounce motion.

the trap, their energy being transferred to the chromospheric plasma, leading
to its heating. Such particles are termed precipitating ones. Their pitch-angles
have to be less than 6g:

0 < 6y (613)

with
0o = arcsiny/ By / By (6.14)

in accordance with (6.12). Here By is the magnetic field at the trap apex, By
is the field at the upper chromosphere level at the mirror points M; and M,
as shown in Figure 6.2. The quantity B; / By is called the cork ratio.

The angle region (6.13) is termed the loss cone. The particles with the
initial momenta inside the loss cone precipitate from the trap. By contrast,
the particles with 6 > 0y at the loop apex experience reflection and do not
reach the chromosphere. Such particles are termed trapped ones.

An interesting situation arises if the diffusion of the trapped particles into
the loss cone is slower than their precipitation from the trap into the chro-
mosphere. Then the distribution function becomes anisotropic, since the loss
cone is ‘eaten away’, and non-equilibrium. The situation is quite analogous to
the case of the distribution function formation with the positive derivative in
some velocity region, like the bump-on-tail distribution (Figure 7.2). As a re-
sult, some kinetic instabilities (e.g., Silin, 1971; Schram, 1991; Shu, 1992) can
be excited which lead to such plasma processes as wave excitation, anomalous
particle transfer owing to the particles scattering off the waves, and anomalous
diffusion into the loss cone (see also Chapter 7).
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6.2.3 Bounce motion

Let us consider another example of a particle motion in a magnetic trap,
namely that of a motion between two magnetic corks, the transversal drift
being small during the period of longitudinal motion. In other words, the
conditions of periodic longitudinal motion are changing adiabatically slowly.
Then the second adiabatic invariant, referred to as the longitudinal one, is
conserved:

[/ B
Iz%ﬂdl:p%\/l—sirﬁ@dl:pﬂ( 1— 5 dl. (6.15)
1

Here account is taken of the facts that the vector A is perpendicular to the
vector B and p = | p| = const since £ = const; the formula (6.11) for the first
adiabatic invariant is used in the last equality.

0
v e
O~ P~ >
m— N
[

— L/ N/ —
= — B
— — 1

= i

Figure 6.3: An idealized model of a long trap with a short moving cork. Unless
a charged particle has its velocity vector very close to the axis of the trap, it
is reflected back and forth between the mirrors, thereby remaining trapped.

L

Let us apply formula (6.15) to the case of a long trap with short corks:
[ < L in Figure 6.3. The longitudinal invariant for such a trap is

I:]{p” dl~2p, L= const.

Therefore the second adiabatic invariant is associated with the cyclical bounce
motion between two mirrors or corks and is equal to

p, L = const.

(6.16)

Let us suppose now that the distance between the corks is changing, that
is the trap length L = L(t). Then from (6.16) it follows that
L(0)
p, (t) =p,(0) L(t) " (6.17)
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It is evident from (6.17) that (a) increasing the distance between the corks
decreases the longitudinal momentum and, consequently, the particle energy,
and (b) particle acceleration takes place in the trap if two magnetic corks are
approaching each other as is shown by vector v in Figure 6.3.

The former case can describe the so-called ‘adiabatic cooling’ of accelerated
particles, for example, in a magnetic trap which is captured by the solar wind
and is expanding into interplanetary space. The latter case is more interesting.
It corresponds to the Fermi mechanism considered in the next Section.

6.2.4 The Fermi acceleration

The famous theory of Fermi (1949) discussed the so-called interstellar ‘clouds’
that carry magnetic fields and could reflect charged particles. The same role
could be played for instance by magnetic inhomogeneities in the solar wind
or interplanetary medium. Fermi visualized that charged particles can be
accelerated by being repeatedly hit by the moving magnetic clouds.

The energy of a particle, £, will increase or decrease according to whether
a cloud (an inhomogeneity of magnetic field) that causes the reflection moves
toward the particle (head-on collision) or away from it (overtaken collision).
The particle gains energy in a head-on collision but there can be also ‘trailing’
collisions in which energy is lost. It was shown by Fermi (1949, 1954) that

on the average, the energy increases because the head-on collisions
are more probable than the overtaking collisions

(see a non-relativistic treatment of the problem in Exercise 6.1). Through
this stochastic mechanism

the energy of the particle increases at a rate that, for relativistic
particles, is proportional to their energy

(Exercise 6.2):

d&
= xE. (6.18)

That is why such a mechanism is often called the first-order (in energy &)
Fermi acceleration. The higher the energy £, the faster acceleration.
This is the most important feature of the Fermi mechanism. However we shall
call it the stochastic Fermi acceleration to avoid a slightly confusing terminol-
ogy in view of the fact that there is another parameter (a relative velocity of
magnetic clouds) which characterizes the coefficient of proportionality in the
problem under consideration (see Exercise 6.2).

From formula (6.18) follows that the energy £ increases exponentially with
time:

Et) =& expti ) (6.19)

where & is the initial energy, t, is the acceleration time scale.
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Large-scale MHD turbulence is generally considered as a source of
magnetic inhomogeneities accelerating particles in astrophysical plasma. Ac-
celeration of particles by MHD turbulence has long been recognized as a pos-
sible mechanism for solar and galactic cosmic rays (Davis, 1956).

Though the Fermi acceleration has been popular, it appears to be neither
efficient nor selective. A mirror reflects particles on a nonselective basis:
thermal particles may be reflected as well as suprathermal ones. Therefore
one is faced with the conclusion (Eichler, 1979) that most of the energy in
the MHD turbulence goes into bulk heating of the plasma rather than
the selective acceleration of only a minority of particles. We shall come back
to this question in Chapter 7.

If we somehow arrange that only head-on collisions take place, then the ac-
celeration process will be much more efficient. We should call the acceleration
resulting from such a situation the regular Fermi acceleration. More often,
however, this mechanism is called the first-order (in the small parameter vy, /¢,
where vy, is the velocity of the moving magnetic clouds; see Exercise 6.1). The
simplest example of this type mechanism is a pair of converging shock waves
(Wentzel, 1964). In this case, there is no deceleration by trailing collisions
(see formula (6.22) in Exercise 6.1) that reduce the net efficiency to the sec-
ond order in the parameter v, /c (Exercise 6.2).

One of several well-known examples of this type of the Fermi acceleration
is the impulsive (with high rate of energy gain) acceleration between two ap-
proaching shocks Sy, in the model of a flaring loop as shown in Figure 6.4.
To explain the hard X-ray and gamma-ray time profiles in solar flares, Bai et
al. (1983) assumed that pre-accelerated electrons penetrate into the flare loop
and heat the upper chromosphere to high-temperatures rapidly. As a conse-
quence of the fast expansion of a high-temperature plasma into the corona —
the process of chromospheric ‘evaporation’, two shock waves S, move upward
from both footpoints.

Energetic particles are to be reflected only by colliding with the shock
fronts. In such a way, the regular Fermi acceleration of particles between
two shocks was suggested as a mechanism for the second-step acceleration of
protons and electrons in flares. A similar example of the regular Fermi-type
acceleration also related to a collapsing (L(t) — 0) magnetic trap in solar
flares is considered in vol. 2, Chapter 7.

The cosmic rays (see Section 5.1.3) were assumed to be accelerated by
crossing shock fronts generated in explosive phenomena such as supernovae.
However a very simple dimensional argument shows the kind of difficulties
encountered even by the most violent phenomena in the Universe.

The more energetic are the particles, the larger are their Larmor
radius and/or the higher are the magnetic fields B necessary to
confine them within the limits of a cosmic accelerator.

The size of a accelerator R must be larger than the Larmor radius of a particle.
The product BR large enough to suit the 10%° eV energy range exists in no
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Figure 6.4: The flare-heated chromospheric plasma P rapidly expands into
the corona. Particle acceleration of the first order Fermi type may occur in a
magnetic loop between two converging shock waves Sy,.

known standard astrophysical object.

6.3 The flux invariant

Let us consider the axisymmetric trap which is modelled on, for example,
the Earth’s magnetic field. Three types of the particle’s motion are shown in
Figure 6.5.

First, on the time scales of Larmor period, the particle spirals about a
field line. Second, since there is a field-aligned gradient of the field strength,
the particle oscillates between two mirrors M7 and Ms. Third, if the guiding
center does not lie on the trap’s symmetry axis then the radial gradient
of field (cf. Figure 5.9) causes the drift around this axis. This drift (for-
mula (5.40)) is superimposed on the particle’s oscillatory of rotation.

As the particle bounces between the mirrors and also drifts from one field
line to another one, it traces some magnetic surface Sq. The latter is called
the drift shell. Let T; be the period of particle motion on this surface.

If the magnetic field B = B (t) is changing so slowly that B/ B > T,
then a third adiabatic invariant, referred to as a flux one, is conserved:

q):/B-dS:const. (6.20)
5
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Figure 6.5: Particle drift in a trap, due to the radial gradient of field.

Thus the first adiabatic invariant implies conservation of the magnetic flux
through the Larmor orbit, B7r?, whereas

the flux invariant implies conservation of the magnetic flux through
the closed orbit of guiding center motion,

that is the flux through the shaded surface S in Figure 6.5.

6.4 Approximation accuracy. Exact solutions

Adiabatic invariants have been obtained in the approximation of weakly inho-
mogeneous slowly changing magnetic fields. The invariants are approzrimate
integrals of motion, widely used in plasma astrophysics. However we should
not forget two important facts. First, the adiabatic theory has a limited,
though exponential, accuracy. Second, this theory has a limited, though wide,
area of applicability. The second vo;ume of this book will be devoted to the
effect of magnetic reconnection and will present a situation when the adiabatic
theory a priory does not apply.

Exact solutions to the equations of charged particle motion usually require
numerical integration. The motion in the field of a magnetic dipole is a
simple case that, nevertheless, is of practical significance. The reason for that
is the possibility to approximate the Earth’s magnetic field at moderately
large distances by the dipole field. It was Stérmer (1955) who contributed
significantly to the solution of this problem.

Two types of trajectories are considered.

(a) The ones coming from infinity and returning there. These have been
calculated in order to find out whether a particle can reach a given point
along a given direction. An answer to this question is important for cosmic
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ray theories. For each point on the Earth and for each direction the so-
called ‘threshold rigidity’ has been calculated. If a rigidity is greater than the
threshold one, then the particle can reach the point. The vertical threshold
rigidity is the most universally used one. This characterizes particle arrival in
the direction of the smallest column depth of the Earth atmosphere.

(b) The orbits of trapped particles. Two radiation belts of the Earth,
the inner and the outer, have been shown to exist. The mechanisms which
generate trapped particles are not yet fully understood. They are presumably
related to geomagnetic storms (Tverskoy, 1969; Walt, 1994).

Both gradient drift and curvature drift cause the positive particles in the
radiation belt to drift westward in the Earth dipole magnetic field. Thus the
radiation belt forms a ring of westward current circulating the Earth. This
current tends to decrease the strength of the basic northward magnetic field
observed at low latitudes on the Earth surface. There is a simple theoretical
relationship between the depression of the magnetic field at the surface of the
Earth and the total energy in the trapped particles. This relation allows us to
use the observed change of the magnetic field as an indication of the amount
of the energy in ring-current particles.

Recommended Reading: Northrop (1963), Kivelson and Russell (1995).

6.5 Practice: Exercises and Answers

Exercise 6.1 [Section 6.2.4] Show that a non-relativistic particle on average
gains energy in collisions with moving magnetic clouds.

Answer. Let us consider the simplest model of one-dimensional motions
of clouds: half of the clouds are moving in one direction and the other half
moving in the opposite direction with the same velocity v,,. Let a particle of
initial velocity Vj undergo a head-on collision. The initial velocity seen from
the rest frame of the cloud is V; 4+ v,,. If the collision is elastic, the particle
bounces back in the opposite direction with the same magnitude of velocity
Vo + vy, in this rest frame. In the observer’s frame, the reflected velocity
appears to be Vy + 2v,,,. Hence the gain of kinetic energy K according to the
observer equals

1 1
oKy = 3m (Vo + 20mm)° — 3 mVE = 2muy, (Vo +vm) - (6.21)
Similarly, the energy loss in a trailing collision
K- = =2muvy, (Vo —vpm) - (6.22)

The probability of head-on collisions is proportional to the relative velocity
Vo+vm, whereas the probability of trailing collisions is proportional to Vj—wvy,.
Therefore the average gain of kinetic energy is equal to

Vo+wv Vo—v
Ko = 5]C+M oI 20 T g 2
20,

o
2Um,

(6.23)
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So a particle is accelerated.

Exercise 6.2 [Section 6.2.4] Prove the Fermi formula (6.18) for a relativistic
particle.

Answer. Make the same procedure as that one in Exercise 6.1 by using
the corresponding expressions in special relativity to see that the average
energy gain

000 = 4 (%’")25. (6.24)

Formula (6.24) obviously reduces to (6.23) in the non-relativistic limit on
putting £ = mc?2.

So the average energy gain is proportional to the energy. Therefore the en-
ergy of a relativistic particle suffering repeated collisions with moving nagnetic

clouds increases according to formula

d
d—f =a,&, (6.25)
where «,, is a constant. Q.e.d.

Note also that the average energy gain (6.24) is propotional to the dimen-
sionless parameter (v,,/ 0)2. Since actual clouds are moving at non-relativistic
velocities, this parameter should be a very small number. Hence the accelera-
tion process is quite inefficient. Because of this quadratic dependence on v,,,
this process is referred as the second-order Fermi acceleration.

If only head-on collisions take place, then the acceleration is much more
efficient. It follows from formula (6.21) that, for V > v,,, the energy gain will
depend linearly on v,,. So the acceleration resulting from such conditions is
called the first-order Fermi acceleration. Such conditions are well possible, for
example, in collapsing magnetic traps created by the magnetic reconnection
process in solar flares (see vol. 2, Chapter 7).

Powerful shock waves in a plasma with magnetic field (like the solar wind)
may well provide sites for the first-order Fermi acceleration. Magnetic inho-
mogeneities are expected on both sides of the shock front. It is possible that
a charged particle is trapped near the front and repeatedly reflected from
magnetic inhomogeneities on both sides. Such collisions may lead to more ef-
ficient acceleration (see Chapter 18) compared to original Fermi’s acceleration
by moving interstellar clouds.



Chapter 7

Wave-Particle Interaction
in Astrophysical Plasma

The growth or damping of the waves, the emission of radiation, the
scattering and acceleration of particles — all these phenomena may
result from wave-particle interaction, a process in which a wave ex-
changes energy with the particles in astrophysical plasma.

7.1 The basis of kinetic theory

7.1.1 The linearized Vlasov equation

In this Chapter we shall only outline the physics and main methods used to
describe the wave-particle interaction in collisionless astrophysical plasmas as
well as in Maxwellian plasmas where fast particles interact with electromag-
netic waves. In the simplest — linear — approach, the idea is in the following.

We assume the unperturbed plasma to be uniform and characterized by
the distribution functions fk(o) of its components k: electrons and ions. The
unperturbed plasma is also assumed to be steady. So

79 =19 w). (7.1)

Let B be the unperturbed uniform magnetic field inside the plasma.
We further assume that the only zero-order force is the Lorentz force with
E©® =o.

The dynamics of individual particles is determined by the first-order forces
related to the wave electric field E() and wave magnetic field B™M. To
describe these particles we shall use the perturbation function fk(l), which
is linear in EM and B, Under the assumptions made, we see that the
Vlasov equation (Section 3.1.2) can be a proper basis for the kinetic theory

115
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of wave-particle interaction. For this reason we shall realize the following
procedure.

(a) We linearize the Vlasov equation (3.3) together with the Maxwell
equations (3.4) for the self-consistent wave field. Equation (3.3) becomes

art (X, t) afM (X, 1)
ot Org
1
+ek<1va(o>> o5 (Xt) _

mi \ C OV

+ Vo +

(0)
_ Gk (E(l)—i— 1 VXB(1)> o, (v) _ (7.2)
my c OVq

(03

The left-hand side of the linear Equation (7.2) is the Liouville opera-
tor (1.10) acting on the first-order distribution function for particles
following unperturbed trajectories in phase space X = {r,v}:

1
D f(l) _ Fk'(,a) 8fk(0)
Dt T mp v,

This fact (together with the linear Lorentz force in the right-hand side of
(7.3) and the linearized Maxwell equations) can be used to find the general
solution of the problem. We are not going to do this here (see Exercise 7.1).
Instead, we shall make several simplifying assumptions to demonstrate the
most important features of kinetic theory on the basis of Equation (7.3).

(b) Let us consider a small harmonic perturbation varying as

(7.3)

fk(l)(t, r,v) = fe (v) exp[—i(wt —k-1)]. (7.4)

Substituting the plane wave expression (7.4) with a similar presentation of
the perturbed electromagnetic field in Equation (7.2) gives us the following
linear equation:

my C o

E(l— k'v>+k<v' )
w w
Here the Faraday law (1.25) has been used to substitute for the wave magnetic
field.
(c) We shall assume that the waves propagate parallel to the ambient
field B (*) which defines the z axis of a Cartesian system. From Section 5.1 it
follows that in a uniform magnetic field there exist two constants of a parti-

cle’s motion: the parallel velocity v|| and the magnitude of the perpendicular
velocity

(w—kev) fi(v) — & (1 va<0>> Ohln) _
B

ek
my,

05" (v)

o (7.5)

vy =|vy| :(vﬁ—i—v;)lﬂ.
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Hence the unperturbed distribution function

FO = 19 (v, 01), (7.6)

as required by Jeans’s theorem (Exercise 1.1). Therefore in what follows
we can consider two cases of resonance, corresponding two variables in the
distribution function (7.6).

7.1.2 The Landau resonance and Landau damping

Let us consider the so-called electrostatic waves which have only a parallel
electric field EM) = E | under the assumption of parallel propagation:

kxB©® =0. (7.7)
In this case the linearized Vlasov Equation (7.5) reduces to
: ;o oen (1 ofc _ en - OfY
l(w_kUI)fk_m(CVXB(O)>aaUa:ﬂlkEl87111. (7.8)

Now let us find the perturbation of charge density according to defini-
tion (3.5):

pdW (r,t) = Z ek/fk(l) (r,v,t)d%v. (7.9)
k v

Hence the amplitude

pl= Z ek/fk (v)d3v. (7.10)
k v

When we calculate the charge density by using Equation (7.8), the second
term on the left-hand side of this equation vanishes on integration over per-
pendicular velocity.

Therefore, for parallel propagating electrostatic waves, the harmonic per-
turbation of charge density is given by

B e2 1 af(o)
04 =—iE § —k/ kE_ duy . 7.11
g e | (ko) oy (711
v

Formula (7.11) shows that there is a resonance which occurs when

w—kjy =0

(7.12)

or when the particle velocity equals the parallel phase velocity of the wave,
w/ky . This is the Landau resonance.
A physical picture of Landau resonance is simple.



118 Chapter 7. Wave-Particle Interactions

When the resonance condition (7.12) is satisfied the particle ‘sees’
the electric field of the wave as a static electric field in the particle’s
rest system

(see Exercise 7.3).

Particles in resonance moving slightly faster than the wave will lose energy,
while those moving slightly slower will gain energy. Since the Maxwellian
distribution is decreasing with velocity,

in a Maxwellian plasma, near the Landau resonance, there are more
particles at lower velocities than at higher velocities. That is why
the plasma gains energy at the expense of the wave.

7] 7]

(a) (b)

0 o/k) v 0 o/k) v)

Figure 7.1: The Landau damping. (a) The initial distribution function of
thermal electrons with some narrow region centered at the resonance with the
wave. (b) The distribution function after an evolution due to interaction of
the electrons with the wave.

This effect, illustrated by Figure 7.1 (see also Exercise 7.6), is called the
Landau damping (Landau, 1946) or collisionless damping. Normally we think
of damping as a dissipative process and hence expect it to be present only in
systems where collisions can convert a part of the wave energy into thermal
energy. At first sight, damping in a collisionless system seems mystifying since
we ask the question where could the energy have gone. For a negative slope
of the distribution function at the phase velocity w/k, there are more particle
which are accelerated than which are decelerated. For this reason the wave
puts a net amount of energy in the particles so that there is a loss of wave
energy. Therefore the Landau damping is not by randomizing collisions but
by a transfer of wave field energy into oscillations of resonant particles.

Landau damping is often the dominant damping mechanism for waves,
such as ion-acoustic waves and Langmuir waves, in thermal plasma without a
magnetic field.

The absorption of longitudinal waves in plasma in the thermal equi-
librium is often determined by collisionless damping
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(e.g., Zheleznyakov, 1996).

On the other hand, if a distribution function has more particles at higher
velocities than at lower velocities in some region of phase space as shown in
Figure 7.2, this distribution will be unstable to waves that are in resonance
with the particles. This is the known ‘bump-on-tail’ instability. Due to this
type of instability, a beam of fast electrons (with velocities much higher than
the thermal speed of electrons in the plasma) causes Langmuir waves to grow.
Langmuir waves generated through the bump-on-tail instability play an es-
sential role, for example, in solar radio bursts.

(0)
/] f (U”)
Figure 7.2: The bump-on-tail distri-
bution function with the resonance
condition in the region of a positive

slope.

There are many examples in plasma astrophysics in which one species
(e.g., electrons) moves relative to another. Solar flares produce a significant
flux of fast electrons moving through the plasma in interplanetary space. Fast
electrons move away from a planetary shock through the solar wind. Aurorae
are produced by fast electrons moving along Earth’s magnetic-field lines. If
we consider a stream of plasma with an average velocity impinding on another
plasma at rest, we have just the same situation. The system has an instability
such that

the kinetic energy of the relative motion between the plasma steams
is fed into a plasma wave of the appropriate phase velocity.

So all the two-stream instabilities have, in fact, the same origin.

The above derivation emphasizes the close relation of the Landau damping
with the Cherenkov effect (see Exercises 7.2-5). It has been definitely
pointed out by Ginzburg and Zheleznyakov (1958) that

the Landau damping and the Cherenkov absorption of plasma
waves, the inverse Cherenkov effect, are the same phenomenon

initially described in two different ways.

The discussion hitherto has focused on the linear Landau damping, i.e.
the behaviour of a small perturbation which satisfies the linearized Vlasov
equation. However this picture can be extended to finite amplitude pertur-
bations (Kadomtsev, 1976, Chapter 4). In the context of plasma astrophysics,
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this means considering nonlinear Landau damping, which generalized the lin-
ear theory by incorporating the possibility of mode-mode couplings that allow
energy transfer between different modes.

In fact, the linear theory illuminates only a narrow window out of the
wealth of all effects related to wave-particle interactions. Mathematically, the
linear theory uses a well-developed algorithm. Few analytical methods
are known to treat the much wider field of nonlinear effects, and most of
these methods rely on approximations and lowest-order perturbation theory.
The theory of weak wave-particle interaction or weak turbulence as well as
the quasi-linear theory for different types of waves are still today the most
important parts in astrophysical applications (e.g., Treumann and Baumjo-
hann, 1997; Benz, 2002).

7.1.3 Gyroresonance

As for the Landau resonance, we shall use the linear Equation (7.5) as a
basis, assuming that a wave is propagating parallel to the ambient field B (¥,
However, this time, we shall further assume that the wave electric field E ()
and hence the wave magnetic field B™ are perpendicular to the ambient
magnetic field.
Under the assumption of a harmonic perturbation (7.4) we shall make use
of the so-called polarized coordinates:
g EetiBy  p _ Eeoify 13)
V2 V2

Subscripts [ and r correspond to the waves with left- and right-hand circular
polarizations, respectively.

By definition, the wave is right-hand circular polarized if E, leads Ey by
a quarter of a wave period. If, for such a wave, we multiply Equation (7.5)
by velocity
Uy — 10y

V2

and integrate over velocity space, making use of (7.6) and the fact that the
unperturbed distriburion function f(©) is a symmetric function of v , we find
the equation which determines (see definition (3.6)) the current density in the
harmonic perturbation:

(7.14)

V, =

ji=-1> X E.x (7.15)

k (0) k (0)
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Here wék) is the Larmor frequency of a particle of a kind k, the integer s can
be positive or negative. The resonance condition in formula (7.15) for current
density is the gyroresonance:

w — k”UH — st(k) =0.

(7.16)

We see that a gyroresonant interaction occurs when the Doppler-shifted wave
frequency
Wy =W — k” ’U” 5 (7.17)

as observed by a particle moving with the parallel velocity v, is an integer
multiple s of the Larmor frequency in the guiding center frame, i.e.

wy, = st(k) . (7.18)
Depending upon the initial relative phase of the wave and particle,
the particle will corotate with either an accelerating or decelerating
electric field over a significant portion of its Larmor motion,

resulting in an appreciable gain or loss of energy, respectively.

If the particle and transversal electric field rotate in the same sense, the
integer s > 0, whereas an opposite sense of rotation requires s < 0. However
the strongest interaction usually occurs when the Doppler-shifted frequency
exactly matches the particle Larmor frequency.

The gyroresonance is important for generating waves such as the wistler
mode, which is polarized predominantly perpendicular to the ambient field.

For a wave to grow from gyroresonance, there should be a net de-
crease in particle energy as the particle diffuses down the phase-
space density gradient defined by the numerator in formula (7.15),

i.e. by the expression enclosed in large square brackets under the integral in
formula (7.15).

For the parallel propagation of a wave in plasma, the Landau resonance
is associated with parallel electric fields. For perpendicular electric fields,
particles and fields can be in gyroresonance. It is clear that the Landau
resonance diffuses particles parallel to the ambient magnetic field, whereas
gyroresonance causes diffusion in the pitch angle. This can be seen
in the wave frame, i.e. the frame in which the parallel phase velocity of the
wave is zero. If we transform the expression enclosed in large square brackets
in formula (7.15) to the wave frame, we find that in this frame the gradient
in velocity space is gradient with respect to pitch angle . Hence

the main effect of gyroresonance is to cause particles to change pitch
angle in the wave frame.
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This is contrasted with the Landau resonance, where the diffusion is in the
parallel velocity v due to the term 0 f ©)/0 v) and therefore mainly in energy,
rather than pitch angle.

As such, then the Landau-resonant instabilities are often driven by bump-
on-tail distributions of particles, whereas gyroresonant instabilities are driven
by pitch-angle anisotropy. Thus the gyroresonance-type instabilities can ap-
pear as soon as a ‘tail’ or beam is formed in the direction parallel to the
background field B (?). They excite waves that scatter the particles back to a
nearly isotropic state.

7.2 Stochastic acceleration of particles by waves

7.2.1 The principles of particle acceleration by waves

In Section 7.1 we considered the resonant interaction between particles and
one wave propagating parallel to the uniform magnetic field B (°) in a uniform
plasma without an external electric field: E(®) = 0. The dynamics of indi-
vidual particles was determined by the first-order forces related to the wave
electric field EM and wave magnetic field B (). We described behavior of
these particles by the linearized Vlasov equation (7.2) for the perturbation
function fk(l), which is linear in E(®) and B(™,
Under simplifing assumptions made, we saw that, in addition to the Lan-
dau resonance (7.12):
wy, =0, (7.19)

other resonances (7.16) arise in wave-particle interaction. These are the gy-
roresonances which occur when the Doppler-shifted frequency

w, = w — k| (7.20)

(as observed by a particle moving with parallel velocity v ) is some integer
multiple s of the particle Larmor frequency swék):

—sw®
W =Ssw, .

(7.21)

If a wave is, in general, oblique, its electric field has components transver-
sal and parallel to B (9 whereas if the wave is parallel, its electric field is
transversal. Since the transversal field typically consists of left- and right-
hand polarized components, the integer s may be either positive or negative.
Anyway

the energy gain is severely limited due to the particle losing reso-
nance with the wave.



7.2. Particle Acceleration by Waves 123

Large gains of energy are possible, in principle, if a spectrum of waves is
present. In this case, the resonant interaction of a particle with one wave
can result in an energy change that brings this particle into resonance with a
neighboring wave, which then changes the energy so as to allow the particle
to resonate with another wave, and so on. Such an energy change can be
diffusive, but over long time scales there is a net gain of energy, resulting in
stochastic acceleration.

A traditional problem of the process under discussion is the so-called in-
jection energy. The problem arises since for many waves in plasma their
phase velocity along the ambient magnetic field, w/kj , is much greater than
the mean thermal velocity of particles. Let us re-write the gyroresonance

condition (7.21) as
(k)
w Sw
Y, < — ”U”) = B, (722)
"k ki

Here the relativistic Lorentz factor v, has been taken into account (see Exer-
cise 7.3). Consider two opposite cases.

(a) For low thermal velocities we can neglect v in Equation (7.22) and
see that, in order to resonate with a thermal particle, the waves must have
very high frequencies w = wB(k) or very small k.

For the case of thermal electrons and protons in the solar corona, their
Larmor frequencies are very high (Exercise 5.1). If we try to choose a minimal
value of k), we are strongly restricted by a maximal value of wavelenghts,
which must be certainly smaller than the maximal size of an acceleration
region. These difficulties naturally lead to much doubt about the viability of
stochastic acceleration and to a search for preacceleration mechanisms.

(b) On the other hand, high energy particles need, according to the reso-
nance condition (7.22), waves with very low frequencies: w < wB(k). Therefore

a very broad-band spectrum of waves (extending from = wék) to very
low frequencies) is necessary to accelerate particles from thermal to
relativistic energies.

In principle, the so-called wave cascading from low to high frequencies can
be a way of producing the necessary broad-band spectrum. The idea comes
from the Kolmogorov theory of hydrodynamic turbulence (Kolmogorov, 1941).
Here the evolution of turbulence can be described by the Kolmogorov-
style dimensional analysis or by a diffusion of energy in wavenumber
space. The last idea was subsequently introduced to MHD by Zhou and
Matthaeus (1990). They presented a general transfer equation for the wave
spectral density. In Section 7.2.2, we shall discuss briefly both approaches and
their applications; see also Goldreich and Sridhar (1997).

The stochastic acceleration of particles by waves is essentially the resonant
form of Fermi acceleration (see Section 6.2 (c)). An important feature of
stochastic acceleration is an isotropization process because
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the pitch-angle scattering increases the volume of wave phase space
that can be sampled by the resonant particles (7.22).

In general, if isotropization exists and keeps the distribution isotropic dur-
ing an acceleration time, it increases the acceleration efficiency. For example,
Alfvén (1949) considered the betatron acceleration in an uniform magnetic
field B (9)(¢) which changes periodically in time and has local nonuniformi-
ties B() characterized by significant variations at distances smaller than the
Larmor radius of accelerated particles.

When a particle passes through such nonuniformities its motion becomes
random, with the momenta tending to be uniformly distributed between the
three degrees of freedom. For this reason, when the field B (°)(t) contracts, a
fraction of the energy acquired due to betatron acceleration is transferred to
the parallel component of the particle motion. As a consequence, the decrease
in the energy of the transverse motion with decreasing magnetic field is smaller
than its increase in the growth time. Thus the particle acquires an additional
energy on completion of the full cycle. Therefore the total particle energy can
systematically increase even if the fluctuating magnetic field does not grow.
This phenomenon is known as the Alfvén pumping.

Tverskoi (1967, 1968) showed that in a turbulent cosmic plasma, the Fermi
acceleration related to the reflection from long strong waves is efficient only
in the presence of fast particle scattering by short waves whose length is
comparable to the particle Larmor radius.

7.2.2 The Kolmogorov theory of turbulence

In general terms, a hydrodynamic flow tends to become turbulent if the ra-
tio of inertial to viscous terms in the equation of motion, as described by
the Reynolds number (see Chapter 12), is sufficiently large. In order not
to obscure the essential physical point made in this section, we assume that
a turbulence is isotropic and homogeneous. So we define a one-dimensional
spectral density W (k), which is the wave energy density per unit volume in
the wave vector space k.

First, we remind the Kolmogorov (1941) treatment of stationary turbu-
lence of incompressible fluid. The steady state assumption implies that the
energy flux F' through a sphere of radius k is independent of time. In the in-
ertial range of wave numbers, for which supply and dissipation of energy are
neglected, the flux F' is also independent of the wave vector k. If P denotes the
total rate of energy dissipation at the short wave (k = kmax) edge of the iner-
tial range, which equals the rate of energy supply at the long wave (k = k i)
edge, then F' =P and dF/dk = 0 in the inertial range in Figure 7.3.

Kolmogorov’s theory adopts the hypothesis that with the above assump-
tions the flux F' through a sphere of radius k£ in the inertial range depends
only upon the energy in that sphere and upon the wave number. Thus by
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W(k)

Figure 7.3: The energy per unit
wave number in Kolmogorov’s tur-
bulence is plotted as a function of
wavenumber in the inertial range B
between the source A at small k and
the sink C at large k.

dimensional analysis we arrive at
F=P~W325/2 (7.23)

From here it follows that the one-dimensional spectral density

W (k) = Cp P23 k=53,

(7.24)

This is the famous Kolmogorov spectrum for the fluid isotropic turbulence,
involving the Kolmogorov constant C.

The turbulent velocity field in fluid can be thought of as being made of
many eddies of different sizes. The input energy is usually fed into the system
in a way to produce the largest eddies. Kolmogorov had realized that these
large eddies can feed energy to the smaller eddies and these in turn feed the
still smaller eddies, resulting in a cascade of energy from the larger eddies to
the smaller ones.

If we anticipate the viscosity v (see Section 12.2.2) to be not important
for this process, we neglect dissipation of energy. However we cannot have
eddies of indefinitely small size. For sufficiently small eddies of size l;,;, and
velocity vpin, the Reynolds number is of order unity, i.e.

lmin Umin ~ V. (725)

So the energy in these small eddies is dissipated by viscosity.

Let the energy be fed into the turbulence at some rate P per unit mass
per unit time at the larges eddies of size [« and velocity viax, for which the
Reynolds number

lmax max
Re = + > 1. (7.26)

Then this energy cascades to smaller and smaller eddies untill it reaches the
smallest eddies satisfying condition (7.25).
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The intermediate eddies merely transmit the energy to the smaller eddies.
Let characterize these intermediate eddies only by their size [ and velocity v.
Since they are able to transmit the energy at the required rate P, Kolmogorov
postulated that it must be possible to express P in terms of [ and v. On
dimensional grounds, there is only one way of writing P in terms of [ and v:

P~ (7.27)

From here
v~ (PLY3, (7.28)

So

the velocity associated with the turbulent eddies of a particular size
is proportional to the cube root of this size.

This result is known as the Kolmogorov scaling law. The scaling law (7.28)
expresses the same thing as (7.24). This is shown in Exercise 7.10.

The Kolmogorov scaling law (7.28) was verified by doing experiments on
a turbulent fluid with a sufficiently large inertial range. In laboratory it is
very difficult to reach high enough Reynolds numbers to produce a sufficiently
broad inertial range. One of the first confirmations of it was reported by Grant
et al. (1962) by conducting experiments in a tidal channel between Vancouver
Island and mainland Canada (see also Stewart and Grant, 1969).

The Kolmogorov power spectrum (7.24) is observed in the turbulent
boundary layer on the ground and in some other turbulent flows in astro-
physical plasma (for example, in the solar wind), in spite of the fact that, in
all these cases, the original assumptions of incompressibility and isotropy are
not fulfilled.

7.2.3 MHD turbulent cascading

The Kolmogorov concept of independence of widely separated wave num-
bers in the inertial range of fluid turbulence was modified for the MHD case
by Iroshnikov (1963) and Kraichnan (1965). When the magnetic energy in
subinertial wave numbers exceeds the total energy in the inertial range, the
predicted inertial range spectrum is proportional to k—3/2, instead of k=5/3.
Note that the Kolmogorov spectrum is steeper than the Kraichnan spectrum
(5/3 > 3/2).

Leith (1967) introduced a diffusion approximation for spectral transfer of
energy in isotropic hydrodynamic turbulence. This approach may be viewed
as an alternative to the straight-forward dimensional analysis discussed above.
However it is a natural extension since this approach approximates the spec-
tral transfer as a local process in wave number space, i.e. in accordance with
the spirit of the Kolmogorov hypotheses that the total energy is conserved
with respect to couplings between waves. Therefore
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just diffusion is a physically appealing framework for the simplest
model to describe this kind of local conservative transfer.

If some waves, propagating parallel to the uniform field B(?)| are injected at
the longest wavelength A = A\ .« and if a Kolmogorov-like nonlinear cascade
transfers the wave energy to smaller scales, then the diffusion equation in wave
number space

ow 0 < ow

can describe injection, cascading, and damping of the waves. Here Dy is a dif-
fusion coefficient that depends on W and can be determined for Kolmogorov-
type cascading. +y (k) is the damping rate usually due to particle acceleration
in high-temperature low-density astrophysical plasma. The wave energy is
dissipated by accelerating particles in smallest scales A ~ A pin.

The source term S in Equation (7.29) is proportional to the injection
rate @ of the wave energy. A mechanism by which the waves are generated
is typically unknown but easily postulated. For example, MHD waves can be
formed by a large-scale restructuring of the magnetic field in astrophysical
plasma, which presumably occurs in nonstationary phenomena with flare-like
energy releases due to magnetic reconnection.

In summary, the wave cascading and particle acceleration are described by
one wave-diffusion equation, in which the damping depends on the accelerating
particle spectra, and by diffusion equations (one for each kind k of particles:
electrons, protons and other ions) for accelerating particles. The system is
therefore highly coupled and generally nonlinear or quasilinear in the case of
small-amplitude waves.

7.3 The relativistic electron-positron plasma

According to present views, in a number of astrophysical objects there
is a relativistic plasma that mainly consists of electrons and positrons.
Among these objects are pulsar magnetospheres (Ruderman and Suther-
land, 1975; Michel, 1991), accretion disks in close binary systems (Takahara
and Kusunose, 1985; Rose, 1998), relativistic jets from active galactic nuclei
(Begelman et al., 1984; Peacock, 1999), and magnetospheres of rotating black
holes in active galactic nuclei (Hirotani and Okamoto, 1998).

Because of synchrotron losses, the relativistic collisionless plasma in a
strong magnetic field should be strongly anisotropic: its particle momenta
should have a virtually one-dimensional distribution distended along the field.
The transversal (with respect to the field) momentum of a particle is small
compared with the longitudinal momentum. In accordance with Ruderman
and Sutherland (1975), such a particle distribution is formed near the pulsar
surface under the action of a strong longitudinal electric field and synchrotron
radiation. What equations can be used as starting ones for a description of
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the electron-positron plasma? — The answer depends upon a property of the
plasma, which we would like to describe.

It is known that the anisotropy can result in various types of instabili-
ties, for example, the fire-hose instability of the relativistic electron-positron
plasma (Mikhailovskii, 1979). Behaviour of Alfvén waves in the isotropic and
anisotropic plasmas can be essentially different (Mikhailovskii et al., 1985).

We suppose that the anisotropic relativistic approach of a type of the CGL
approximation (Section 11.5) can be used to consider the problem of Alfvén
waves of finite amplitude. However the dispersion effects are important for
such waves and are not taken into account in the CGL approximation. The
problem can be analysed on the basis of the standard kinetic approach with use
of the Vlasov equation (Section 3.1.2). As we saw above, such a procedure
is sufficiently effective in the case of linear problems but is complicated in
study of nonlinear processes when one must deal with parts of the distribution
function square and cubic to the wave amplitude.

More effective kinetic approaches are demonstrated in Mikhailovskii et
al. (1985). Omne of them is based on expansion in the series of the inverse
power of the background magnetic field (Section 5.2) and allowance for the
cyclotron effects as a small corrections. Using this approach, Mikhailovskii et
al. consider the nonlinear Alfvén waves both in the case of an almost one-
dimensional momentum particle distribution (the case of a pulsar plasma) and
in the case of an isotropic plasma. The later case is interesting, in particular,
for the reason that it has been also analysed by means of the MHD equations
(Section 20.1.4). Two types of Alfvén solitons (the moving-wave type and
the nonlinear wave-packet type) can exist in relativistic collisionless electron-
positron plasma.

Magnetic reconnection in a collisionless relativistic electron-positron plasma
is considered as a mechanism of electron and lepton acceleration in large-scale
extragalactic jets, pulsar outflows like the Crab Nebular and core regions
of active galactic nuclei (AGN) as the respectiv jet origin (see Larrabee et
al., 2003; Jaroschek et al., 2004).

Recommended Reading: Lifshitz and Pitaevskii, Physical Kinetics (1981)
Chapters 3 and 6.

7.4 Practice: Exercises and Answers

Exercise 7.1 [Section 7.1.1] Write the general solution of the linear Equa-
tion (7.2).

Answer. Since the left-hand side of (7.2) is the time derivative (more
exactly, the Liouville operator (1.10) acting on the first-order distribution
function for particles following unperturbed trajectories), the solution of (7.2)
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is formally the integral over time

¢ 0
FO vt = - / <E<1> + iy B<1>> 8 wvir) (7.30)
mg c o Ovy
— 00
Here the integration follows an unperturbed-particle trajectory to the point
(r,v) in phase space X.

In principle, substitution of (7.30) into the Poisson law for electrostatic
waves gives a perturbation of electric charge density (3.5). Similarly, one can
determine a perturbation of current density (3.6) by substitution of (7.30)
into the Ampére law in the case of electromagnetic waves. In practice, solv-
ing (7.30) is fairly complicated.

Exercise 7.2 [Section 7.1.2] Show that, for a particle with velocity v in a
plasma without magnetic field, the resonance condition correspondes to:

w—k-v=0. (7.31)
This is usually called the Cherenkov condition.

Exercise 7.3 [Sections 7.1.2, 7.2.1] Consider a wave that has frequency w
and wave vector k in the laboratory frame. Show that in the rest frame of
the particle the frequency of the wave is

wo =7, (w—k-v), (7.32)

N = <1 - 1]2>1/2 (7.33)

c2

where

is the Lorentz factor of the particle. Therefore the Cherenkov resonance con-
dition (7.31) corresponds to wy = 0, which means that the fields appear static
in the rest frame of the particle.

Answer. Apply the Lorentz transformation to the four-vector { k, iw/c}
(see Landau and Lifshitz, Classical Theory of Field, 1975, Chapter 6, § 48).

Exercise 7.4 [Section 7.1.2] In a transparent medium with a refraction
index n, greater than unity, the Cherenkov condition (7.31) can be satisfied
for fast particles with

B==>—. (7.34)

Let x be the angle between the particle’s velocity v and the wave vector k
of appearing emission which is called Cherenkov emission (Cherenkov, 1934,
1937).

As we know, a charged particle must move non-uniformly to radiate in
vacuum. As an example we may recall the formula (5.66) for dipole emission.
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In a medium, however, condition (7.34) allows the uniformly moving paricle
to radiate.

Show that Cherenkov emission is confined to the surface of a cone with
the cone half-angle (as shown in Figure 7.4)

1
X = arccos — . (7.35)

Figure 7.4: The wave-vector cone
of the Cherenkov emission.

Radiation with wave vectors along the conic surface (7.35) is generated as a
result of the Cherenkov emission. Discuss an analogy between the Cherenkov
emission pattern and the bow wave of a ship or a supersonic aircraft.

Exercise 7.5 [Section 7.1.2] Consider the one-dimensional motion of an
electron in the electric field of a Langmuir wave of a small but finite amplitude.
Answer. Let the electric field potential of the wave be of the form

Y = pgcos (wlfle) t— kx) . (7.36)

In the reference frame moving with the wave (see Section 10.2.2), the field is
static:
» =g coskx. (7.37)

This potential is shown in Figure 7.5a.
For an electron having a small velocity near x = 0, we have the following
equation of motion:

0
mei:ea—iz—eq}oksink‘x%—engka. (7.38)

So such a trapped electron is oscillating with frequency

. 1/2
w® =k <90°> . (7.39)

Me

This is illustrated by particle trajectories in the two-dimensional phase space
(Figure 7.5b).
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Figure 7.5: (a) The the electric field potential in a Langmuir wave of a small
but finite amplitude. (b) The phase trajectories of an electron in the wave.

The potential energy —ep of the trapped electron has maximum at the
minimum of the potential ¢, at points M which determine the separatrix S.

Exercise 7.6 [Section 7.1.2] Consider the Landau resonance for electrons in
a Maxwellian plasma. It is clear that electrons moving much slower or much
faster than the wave tend to see the electric field that averages to zero. So we
have to consider only the particles in some small part of velocity space close
to the phase velocity as shown in Figure 7.1.

Since the slope of the initial distribution function is negative, there
are more electrons at lower velocity than at higher velocity near the reso-
nance (7.12). Estimate a difference.

Exercise 7.7 [Section 7.1.2] Show that the Landau damping prevents

plasma waves from escaping the region where w = wzfle ) (see definition (8.78))
into rarefied plasma, for example, from the solar corona to interplanetary
medium (see Zheleznyakov, 1996).

Hint. Consider the dispersion equation for electromagnetic waves in a

homogeneous equilibrium plasma without a magnetic field.

Exercise 7.8 [Section 7.1.2] In the fire-hose instability, the driving force
is the beam pressure parallel to the magnetic field. Show that this pressure
increases the amplitude of an electromagnetic transverse wave in a way anal-
ogous to that of a water flowing through a hose.

Hint. Consider low-frequency transverse waves in a homogeneous equilib-
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rium plasma with a magnetic field. Such waves are called the kinetic Alfven
waves. They extend to frequencies higher than that are valid for MHD. Let a
beam of protons or electrons travel parallel to the magnetic field. An analysis
of linear disturbances similar to the MHD waves will introduce an additional
term into the dispersion equation of the Alfven wave. Note that an instability
occurs for beams of protons or electrons. Consider the threshold condition in
both cases.

Exercise 7.9 [Section 7.1.3] Show that fast ions can generate whistler-mode
waves when the resonant particles are traveling faster than the wave. Show
that, in this case, the effect of Doppler shift is to change the sense of rotation
of the wave electric field in the resonant-particle frame from right-handed to
left-handed.

Exercise 7.10 [Section 7.2.2] Show that the Kolmogorov spectrum formula
(7.24) follows from the Kolmogorov scaling law (7.28).

Answer. The kinetic energy density associated with some wavenumber k
is W (k) dk, which can be roughly written as

W(k)k ~v?. (7.40)
Substituting for v from formula (7.28) with [ ~ 1/k, we have
W(k)k ~P3E=2/3, (7.41)

From here the Kolmogorov spectrum (7.24) readily follows.



Chapter 8

Coulomb Collisions in
Astrophysical Plasma

Binary collisions of particles with the Coulomb potential of interaction
are typical for physics of collisional plasmas in space and especially for
gravitational systems. Coulomb collisions of fast particles with plasma
particles determine momentum and energy losses of fast particles, the
relaxation processes in astrophysical plasma.

8.1 Close and distant collisions

8.1.1 The collision parameters

Binary interactions of particles, described by the Coulomb potential
o(r) = -, (8.1)

have been studied in mechanics (see Landau and Lifshitz, Mechanics, 1976,
Chapter 4, § 19). Considering binary interactions as collisions, we are inter-
ested only in their final result, the duration of the interaction and the actual
form of particle trajectories being neglected. Thus in the centre-of-mass sys-
tem, each particle is deflected through an angle x defined by the relation

X €162

tan 5= (8.2)
or el X
L(x) = - cot 5 (8.3)
Here myms
m=—————- (8.4)
mi + mo
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is the reduced mass, v is the relative particle velocity at infinity, [ is the
“impact parameter’. The last is the closest distance of the particle’s approach,
were it not for their interaction as shown in Figure 8.1.

Figure 8.1: The trajectory of a light particle with mass m; near a heavy
particle with mass mso.

For particles deflected through a right angle

l (g) =1, = % (8.5)
so the initial formula (8.2) is conveniently rewritten as
tan% = ZT
(8.6)
The collisions are called close if
7/2<x<m, ie. 0<I1<I,. (8.7)

Correspondingly, for distant collisions [ > I and 0 < x < 7/2. Both cases
are shown in Figure 8.2.

8.1.2 The Rutherford formula

The average characteristics of the Coulomb collisions are obtained with the
aid of the formula for the differential cross-section. It is called the Rutherford
formula and is derived from (8.3) as follows:

dl

do = 2w l(x)dl =2 i(x) ’ ax dx =

_ mefed cos(x/2) d ( e1es )2 dQ

m2vt sin®(x/2) ~ L2me? sin?(x/2) (8.8)
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Figure 8.2: Close (a) and distant (b) collisions of particles in the momentum
space in the centre-of-mass system.

Here the modulus bars indicate the absolute value of the derivative dl/dy
because it has a negative sign: with increase of the impact parameter [, the
scattering angle x decreases; the solid angle d 2 = 27 sin x dx.

By integrating (8.8) over the back hemisphere (8.7), we find the total
cross-section of close collisions

12 a2, (8.9)

This formula follows directly from definition (8.5), of course, without inte-
grating the differential cross-section (8.8).

8.1.3 The test particle concept

By analogy with the usual gas, the concept of a ‘test’ particle is introduced
to analyse the collisions in plasma. For instance the frequency of test particle
(mq, e1) collisions with ‘field” particles (mg, e2) is introduced:

2,2

Vel = N U1 Ogl = % . (8.10)

Here, for simplicity’s sake, it is assumed that mg > m; =~ m (see for-

mula (8.4)) and vy < v1. So this is, for example, the case of an electron
colliding with ‘cold’ ions.

The length of mean free path A of a test particle in a gas consisting of field

particles is, by definition, the distance along which the particle suffers one

collision,

A=v vt (8.11)
From (8.10) and (8.11) it follows for close collisions that

(8.12)



136 Chapter 8. Coulomb Collisions

Hence the time between two consecutive collisions is

Al m2vd v
ST L L S (8.13)
U1 TE{ €5 N2 %)
or the frequency of close collisions
1 mele2 ng no
Vo= =~ g, (8.14)
Tel m{v; vy

which is the same as formula (8.10) of course.

8.1.4 Particles in a magnetic trap

Formulae (8.10) and (8.13) are frequently used in order to find out what
approximation we have to use to consider the astrophysical plasma. For ex-
ample, if the length of mean free path A of the test particles inside a magnetic
trap (Section 6.2) is greater than the trap’s size, then such particles can be
considered in the collisionless approximation. Here charge separation may be
found to be essential, as well as the electric field resulting from it (Alfvén and
Falthammar, 1963; Persson, 1963).

While the magnetic mirror is the primary trapping mechanism, the
electrostatic potential also traps electrons

with energies low to overcome the electrostatic potential.

In the solar atmosphere, the electrostatic potential produced, in solar-flare
magnetic traps, has an energy equivalent of the average energy of accelerated
electrons. The number and energy fluxes of the electrons that escape from the
trap can be reduced by as much as ~ 50 or more depending on the magnetic
mirror ratio of the flare loop and the ratio of the ion and electron anisotropy
factors (Spicer and Emslie, 1988).

Some other effects due to non-collisional particles in the so-called collapsing
magnetic traps are mentioned in Section 6.2; they will be considered in Sec-
tion 18.3 and vol. 2, Chapter 7. For example, the electric potential mentioned
above increases the efficiency of confinement and acceleration of electrons in
solar flares (Kovalev and Somov, 2002).

On the other hand, if the length of the mean free path of the test particles
is much less than the trap’s size, the collisions play an important role. As
a rule they maxwellise the plasma (the gas of test particles), making it an
equilibrium one. In such a plasma the notion of temperature is meaningful, as
we shall see in Chapter 9. For example, while considering thermal electrons
(having the density n. and the temperature Ti) in the trap, an electron with
the mean thermal velocity (see definition (5.53))

[ 3k, T,
Ve = 3k To (8.15)
Me
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should be taken as the test particle. Then we obtain the known ‘T’ to the 3/2
power’ law for the time of the Coulomb collisions (8.13):

73/2

Ne

T ~

(8.16)

The hotter the astrophysical plasma is, the more non-collisional is
it with respect to some physical phenomenon or another.

The characteristic time 7 of the Coulomb collisions has to be compared
with the characteristic times of other physical processes: the time of particle
motion between magnetic corks in the trap, the period of the Larmor rotation,
the time of heating or cooling, etc.

8.1.5 The role of distant collisions

Because for small angles x the differential cross-section (8.8) is

dx

do ~ =,
3

(8.17)

the total cross-section diverges.

Such divergence of the collisional cross-section always occurs, once
the interaction potential has no restricting factor,

or, to put the same in another way, if the interaction forces do not break off at
some distance, as in the case of hard balls. This fact is of fundamental impor-
tance, for example, in stellar dynamics (Jeans, 1929; Chandrasekhar, 1943a)
or, more exactly, in any astrophysical system governed by gravitational force
(say a gravitational system), see Sections 3.3 and 9.6.

Although each distant collision causes only a small deflection of the test
particle trajectory, they are present in such large numbers that their total
action upon the particle is greater or much greater than that of relatively rare
close collisions. Let us convince ourselves that this is true.

Each collision causes a small change in momentum perpendicular to the
initial direction of the particle’s motion:

2 tan (x/2)  2mqvy (1/1) 9 T
1+tan2(y/2) 1+ (@02~ ~ 7t 1ga?

Here x =1, /l,and 0 <z < 1.
Since distant collisions occur chaotically, we are usually interested in the
mean rate of change in the quantity pJQ_:

dpL =psinx = miv;

x=0
d

£p12_ = / (5PJ_)2 ng vy do =

x=m/2
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0
dx
=8 2312/7@ . 8.18
TN Mivy L1 A+a2)2z nx ) (8.18)
1
The integral diverges logarithmically on the upper limit. Let us
restrict it to some maximal value of the impact parameter

A =lnax/lL . (8.19)
Then the integral is approximately equal to
d
dtpl—87rn2m1v1 12 lnA—WeleQ—SlnA (8.20)

The factor In A is referred to as the Coulomb logarithm.

Introduce the characteristic time 7, during which the perpendicular com-
ponent of the momentum acquires a value equal to the initial momen-
tum mqvq:

i (4 p2) = il (21)
= MU —_— = .
= Y e L mefeiny (81InA)’

In other words, the mean resulting deflection becomes comparable with the
quantity 7/2 in a time 7,. Recall that this deflection through a large angle
is a result of many distant collisions.

The effective frequency of distant collisions that corresponds to the time 7
is

1 meded ng
= —=—5—=- 8InA, 8.22
YT T O (8.22)

which is 81n A larger than the close collisions frequency (8.14):

v, =8InA-vyy.

(8.23)

The factor 81n A is usually much greater than unity; its typical value is Z 102
under physical definition of In A given in Section 8.2.

The influence of the close Coulomb collisions on kinetic processes in
astrophysical plasma is, as a rule, negligibly small in comparison to
the action of distant collisions.

For example, the distant collisions determine an evolution of the distribution
function of fast electrons injected into the thermal plasma in the solar atmo-
sphere diring solar flares. However this does not mean that the close
collisions do never play any role in plasma astrophysics. Just in the
same example, the close collisions of fast electrons with thermal ions create
hard X-ray bremsstrahlung emission in the range 10-100 keV, because the
close collisions are responsible for large exchange of the particle momentum.
For typical flare parameters (hv &~ 20 keV, In A &~ 20) the efficiency of the
bremsstrahlung process is ~ 3 x 1075 (Brown, 1971; Korchak, 1971).
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8.2 Debye shielding and plasma oscillations

8.2.1 Simple illustrations of the shielding effect

While considering the distant collisions, we have removed the divergence of
the integral (8.18) which describes the mean rate of change of the test particle
transversal momentum, purely formally — by artificially restricting the radius
of action of the Coulomb forces at some maximal distance l,,x. Meanwhile
this maximal distance may be chosen quite justifiably, based on the following
reasoning. In a plasma,

each charged particle attracts oppositely charged particles and, at
the same time, repels the particles of the same charge.

As a consequence, the oppositely charged particles tend to gather around the
particle, thus weakening its Coulomb field. As a result of such ‘shielding’ the
action of the field extends over a distance no greater than some quantity r,
called Debye radius.

The concept of Debye shielding has a clear meaning. Let us assume that a
plasma contains an immovable charge which then creates the electrostatic field
in its vicinity. As a final result of shielding interactions mentioned above, some
equilibrium distribution of two components: positive and negative plasma
particles is established in this field. Its electrostatic potential ¢ is related to
the densities of ions n; and electrons n, via the Poisson equation

Ap = —4dme (Zni — ne) , (8.24)

where Ze is the ion charge.

In the thermodynamic equilibrium state the ion and electron densities in
the electrostatic field with potential ¢ (r) are to be distributed according to
Boltzmann’s law

Z
ni = nd exp (— k:;i) , ne=nl exp (k?;c) . (8.25)

The constant coefficients are set equal to the mean densities n and n? of
plasma particles, since ¢ — 0 far from the particle considered.
Supposing that the Coulomb interaction is so weak that

Zep < kT and ep < k,Te, (8.26)

or restricting our consideration to the approximate solutions applicable at
large distances from the shielded charge, we expand both exponents (8.25) in
a series and substitute in Equation (8.24). We obtain the following equation:

Ld [ .dy 0 Zep 0 ey
S R A L L —n0 (1 -
r2 dr (T dr> e { i ( k,T; fle + kyTe
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—dme | (n = Zn0) 4 - ((znp) Z + () Tl) <p] | (8.27)

As usual the actual plasma is quasi-neutral on average (see the next Sec-
tion); instead of this let us assume here (like in Sections 3.2.2 and 3.2.3) that
the plasma is ideally neutral:

Znd =n?. (8.28)

1
Thus we have an equation

1 (de) _dmend
r2 dr dr )]k

A 1 %)
i )p=2 2
(Ti * Te> L) (8.29)

On the right-hand side of Equation (8.29) we have two terms for a two-
component plasma. We divide them by ¢, then

B

1 1 1 4dre?n? T,
— = = e (1 +Z e) . (8.30)
rg r,(;) 2 r]ge) 2 ko Te T;
Therefore 1o
kg T.T;
= 31
"o <4ﬂ'62n§ ZT, + Ti> (8:31)

is known as the Debye radius, being first derived by Debye and Hiickel (1923)
in the theory of electrolytes.

The solution of Equation (8.27) corresponding to the charge e situated at
the origin of the coordinates is the potential

(8.32)

At distances greater than r,, the electrostatic interaction is exponentially
small.

The Debye length is an effective range for collisions, the potential be-
tween charged particles being the shielded Coulomb potential (8.32)
rather than the Coulomb one (8.1) which would apply in a vacuum.

That is why:
(a) the binary correlation function (3.30) reproduces the shape of the
shielded Coulomb potential (8.32),
(b) the Debye radius r,, is substituted in the Coulomb logarithm (8.20)
in place of I ax-
A formula that is simpler than (8.31) is frequently used for the Debye

radius, namely
e T \/2
(e) — B
Ty (477627%) . (8.33)
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This variant of the formula for the Debye radius implies that the shielding
is due to just the particles of one sign, more exactly, electrons, i.e. in the
formulae (8.25) we have T; = 0 (the approximation of cold ions) and T, =T
(see Exercise 9.3). This is the electron Debye radius. The corresponding
formula for the Coulomb logarithm is

1/2

k3 T3
InA=In % (;) . (8.34)

Tts values typical of the solar atmosphere are around 20 (Exercise 8.1).

Formula (8.33) shows that the electron Debye radius increases with an
increase of temperature, since electrons with higher kinetic energy can with-
stand the attraction of the positive ion charge Ze up to larger distances. It
decreases with an increase of density ng, since a larger number of electrons
and ions can be accommodated in shorter distances to screen the electric field
of charge Ze.

8.2.2 Charge neutrality and oscillations in plasma

The Debye shielding length is fundamental to the nature of a plasma. That
is why this important characteristic appears again and again in plasma astro-
physics, starting from the binary correlation function (3.30).

The first point to note is that a plasma maintains approzimate charge
neutrality (Sections 11.5.2 and 3.2.2). The reason for this is simply that any
significant imbalance of positive and negative charge could only be maintained
by a huge electric field. The movement of electrons to neutralize a charge
inhomogeneity would be followed by an oscillatory motion (e.g., Alfvén and
Falthammar, 1963, Chapter 4).

This brings us to a second characteristic of plasmas called the plasma
frequency or, more exactly, the electron plasma frequency:

(e) 471'62 Ne 1/2
W, =|—— .
pl Me

A charge density disturbance oscillates with this frequency (see Sec-
tion 10.2.1). These oscillations are called Langmuir waves or plasma waves.
Therefore, under most circumstances,

(8.35)

plasma cannot sustain electric fields for lengths in excess of the

Debye radius or times in excess of a plasma period Tp(le) =27/ wzfle).

However one cannot talk of plasma oscillations unless a large number of
thermal particles are involved in the motion. It is the Debye shielding length
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which determines the spatial range of the field set up by the charge inequality:

1 Ve
Ty = ﬁ w(e) . (836)

pl

Here Ve is the mean thermal velocity of electrons. Therefore the Debye
length

oo VTe
D ()
wpl

(8.37)

So a fully-ionized plasma in the termodynamic equilibrium is a quasi-neutral
medium. The space and time scales of charge separation in such plasma are
the Debye radius and the inverse plasma frequency. Therefore the plasma
oscillations are a typical example of collective phenomena (Section 3.2.3).

The Coulomb collisions, of course, damp the amplitude of the plasma
oscillations with the rate which is proportional to the frequency vg; of electron-
ion collisions (see Exercise 10.3).

8.3 Collisional relaxations in cosmic plasma

8.3.1 Some exact solutions

It was shown in Section 8.1 that, as a result of the Coulomb collisions, a
particle deflects through an angle comparable with 7 /2 in a characteristic time
given by formula (8.21). More exact calculations of the Coulomb collisions
times, that take into account the thermal motion of field particles, have been
carried out by Spitzer (1940) and Chandrasekhar (1943). These calculations
are cumbersome, so we give only their final results.

Let us consider the electron component of a plasma. Suppose that the test
particles likewise are electrons moving with mean thermal velocity. Then the
exact calculation gives instead of the formula (8.21) the time

m2 (3k,Te/me)3? 1

Tedne (8InA) 0714 (8:38)

Tee =

This is called the time of mutual electron collisions or simply the electron
collisional time. Comparison of formula (8.38) with (8.21) shows that the
difference (the last factor in (8.38)) is not large. So the consideration of
binary collisions in the approximation used in Section 8.1 is accurate enough,
at least for astrophysical applications.

The analogous time of mutual collisions for ions, having mass m;, charge e;,
temperature T; and density n;, is equal to

m? (3k,Ti/m;)? 1
Tii = : .
meln; (8lnA)  0.714

(8.39)
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If a plasma is quasi-neutral: e;n; & —esne = en, where e; = —Ze,, and if
T. =~ T}, then the ratio

1/2
Tii mj / 1
Tee Me 73"

Coulomb collisions between thermal ions occur much more rarely
than those between thermal electrons.

(8.40)

However it is not the time of collisions between ions 73 — the ion collisional
time, but rather the time of electron-ion collisions that is the greatest. This
characterizes, in particular, the process of temperature equalizing between the
electron and ion components in a plasma. The rate of temperature equalizing
can be determined from the equation

dT. Ti—T.
dt - Tei (5) ’

(8.41)

where 74 (€) is the time of equilibrium establishment between the electron and
ion plasma components. It characterizes the rate of exchange of energy £ be-
tween the components and equals (Spitzer, 1940, 1962; see also Sivukhin, 1966,
8§ 9 and § 17; cf. formulae (42.5) in Lifshitz and Pitaevskii, 1981, § 42)

mem; [ 3k, (To/me + T /m;) | 3/2
(€)= 8.42
Tei (€) el ei2 (67r)1/2 (81InA) ( )
For comparison with formula (8.40) let us put 73 = T,. Then
2 \1/2
7o (€) = 0517 & (:) T (8.43)

Thus the time of energy exchange between electrons and ions is much greater
than the time of mutual ion collisions.

In a plasma consisting of electrons and protons with equal temperatures
we have

Tep(E) = 22 Tpp ~ 950 Tee - (8.44)

The energy exchange between electron and ion components occurs
so slowly that for each component a distribution may be set up
which is close to Maxwellian with the proper temperature.

That is the reason why we often deal with a two-temperature plasma. More-
over the so-called adiabatic model for two-temperature plasma (Section 8.3.3)
is often used in astrophysics.
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8.3.2 Two-temperature plasma in solar flares
8.3.2 (a) Impulsive heating by accelerated electrons

Let us illustrate the situation, discussed above, by two examples from the
physics of flares. The first is the impulsive heating of the solar atmosphere
by a powerful beam of accelerated electrons. The beam impinges on the
chromosphere from the coronal part of a flare along the magnetic field tubes.
The maximal energy flux is Fyay 2 10! erg cm™2s7!. The time profile with
the maximum at ¢ $ 5 s of the energy flux at the upper boundary of the
chromosphere has been used for numerical solution of the two-temperature
dissipative hydrodynamic equations (Chapter 2 in Somov, 1992).

Yohkoh observations, made using three of the instruments on board — the
Hard X-ray Telescope (HXT), the Soft X-ray Telescope (SXT), and the Bragg
Crystal Spectrometer (BCS) — show that the nonthermal electron energy flux
can be even larger, for example, in the flare of 16 December 1991 (see Figure 6a
in McDonald et al., 1999), the maximal energy flux is

Fruax = 2.5 x 102 erg s71/2 x 10'” ¢cm? ~ 10'? erg cm 257,

Weak beams do not produce a significant response of the chromosphere (see
Figure 6b in McDonald et al., 1999), of course, just hard X-ray bremsstrahlung.

In the chromosphere, beam electrons lose their energy by mainly Coulomb
collisions.

The fastest process is the primary one, namely that of energy trans-
fer from the beam electrons to the thermal electrons

of chromospheric plasma (Figure 8.3).

As a result, plasma electrons are rapidly heated to high temperatures: in a
matter of seconds the electron temperature reaches values of the order of ten
million degrees. At the same time, the ion temperature lags considerably, by
one order of magnitude, behind the electron temperature (Figure 8.4). Here
the Lagrange variable

z

E=— / n(z) dz + Emin, cm ™2, (8.45)

Zmax

z is the height above the photosphere, z,,x corresponds to the transition layer
between the chromosphere and corona before an impulsive heating. Therefore
¢ is the column depth — the number of atoms and ions in a column (of the unit
cross-section) measured down into the chromosphere from its upper boundary,
the transition layer.

The column depth &, = n.l, is the number of ions inside a flaring loop
which is the coronal part of a reconnected magnetic-field-line tube (see vol. 2,
Section 3.2.1); [, is the length of the reconnected field line, n. is the plasma
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Figure 8.3: A scheme of the energy exchange in the two-temperature model
of hydrodynamic response of the solar atmosphere to impulsive heating by an
electron beam.

density inside the tube above the transition layer between the chromosphere
and corona before an impulsive heating. Let us assume, for simplicity, that

&t )

Emin <& =—, cm™ ~. (8.46)

2@1
Here &7 is the column thickness that the accelerated electrons with the minimal
energy £; measured in keV can pass in a plasma before they stop (see formula
(4.40)). The assumption (8.46) means that we neglect the energy losses of
the electrons in the coronal part of the loop. In this way, we consider direct
impulsive heating of the chromosphere by an electron beam. Accelerated
electrons penetrate into the chromosphere to significant depth; for this reason
a significant fraction of the beam energy is lost as radiation in optical and
EUV lines. The column depth of evaporated plasma ¢ ~ 2 x 10 em~2 but
its temperature does not exceed Tmax ~ 107 K.

The difference between the electron and ion temperatures is essen-
tial, at first, for the dynamics of high-temperature plasma
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which absorbs the main part (> 90 %) of the beam energy flux. Let us imagine
that only the electrons are heated, while the ion heating can be neglected. In
this case the electron temperature is twice as large as it would be in the case
of equal heating of the electrons and ions,

The rate of high-temperature plasma cooling is mainly determined by heat
fluxes into colder plasma. These can be evaluated by the formula for the
classical heat flux

F.=— k. VT, (8.47)

under conditions when this formula is applicable, of course (see Somov et

al., 1981). Here ko = ko Te5/2 is the classical heat conductivity due to the
Coulomb collisions of plasma electrons. From formula (8.47) we see that the

heat flux is proportional to Te7/ 2 Therefore the real heat flux
F.(T.)1 ~2"%F.(Ty) (8.48)

can be an order of magnitude (27/2 ~ 10) larger than the flux calculated in
one-temperature (T, = T;) models. Because of this, the one-temperature
models are much less dynamic than one would expect.

The effect becomes even more important if the accelerated electrons heat
a preliminary (before a flare) evaporated ‘hot’ plasma. This formally means
that, in formula (8.45), the column depth £ i = ncl- is not small in compari-
son with £;. So we have to take into account the direct impulsive heating of the
plasma inside the coronal part of the flaring loop. Such process (Duijveman
et al., 1983; MacNeice et al., 1984) can very efficiently produce a ‘superhot’
plasma which has an electron temperature T, much higher than the maximal
temperature in the case of chromospheric heating considered above.
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8.3.2 (b) Heating by high-temperature current layers

The difference between the electron and ion temperatures is known to be
critical for a wide variety of kinetic effects, in particular for the generation
of some turbulence (for example, ion-acoustic or ion-cyclotron) in the impul-
sively heated plasma. The turbulence, in its turn, has a great impact on the
efficiency of heating and particle acceleration in a plasma.

The second example, when the electron component of a plasma has a tem-
perature that is considerably different from the ion temperature, is supplied by
the high-temperature turbulent-current layers (Somov, 1981 and 1986; Somov
and Titov, 1983) in the regions of reconnection. Since the layer thickness 2a
is small in comparison with its width 2b (see vol. 2, Figure 6.1), the plasma
inflow quickly enters the region of the Joule dissipation of reconnecting mag-
netic field components. Here the impulsively fast heating of the electrons
and ions takes place, resulting in considerably different tempera-
tures. The conditions in a reconnecting current layer (RCL) in the solar
corona, especially, in flares (vol. 2, Section 6.3) are such that

the Coulomb exchange of energy between the impulsively heated
electrons and ions inside the RCL can be entirely neglected.

One of distinctive features of fast reconnection in RCLs, proposed as the
primary energy source in solar flares, is the presence of fast plasma outflows,
or jets, whose velocities are nearly equal to the Alfvén velocity, see defini-
tion (15.30). Outflows can give origin to plasma velocity distributions with
equal and opposite components along the x axis in Figure 8.5 and, as a con-
sequence, along the line-of-sight (l.o.s.) to an observer. Therefore, in this
way, they can create a symmetric supra-thermal broadening in the soft
X-ray and EUV lines observed during solar flares. The broadening mainly
depends on the electron and ion temperatures inside the RCL (Antonucci and
Somov, 1992).
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Figure 8.5: High-temperature plasma velocities near a reconnecting current
layer.

A comparison of the supra-thermal profiles of the Fe XXV emission lines
observed at flare onset with the predictions of the high-temperature turbulent-
current layer model suggests that the observed supra-thermal broadenings are
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consistent with the presence in the flare region of several small-scale or one
(a few) curved large-scale RCLs (Antonucci et al., 1996).

The energy release by reconnection has been invoked to explain both large-
scale events, such as solar flares and coronal mass ejections (CMEs), and
small-scale phenomena, such as the coronal and chromospheric microflares
that probably heat the corona (vol. 2, Section 12.4) and accelerate the solar
wind. Ultraviolet observations of the so-called explosive events in the solar
chromosphere by SUMER, (the Solar Ultraviolet Measurements of Emitted
Radiation instrument) on the spacecraft SOHO (the Solar and Heliospheric
Observatory) reveal the presence of bi-directional plasma jets ejected from
small sites above the solar surface (Innes et al., 1997; cf. Antonucci and So-
mov, 1992). The structure of these jets evolves in the manner predicted by the-
oretical models of reconnection (see Figure 1 in Somov and Syrovatskii, 1976a),
thereby leading strong support to the view that reconnection is the fundamen-
tal process for accelerating plasma on the Sun.

8.3.3 An adiabatic model for two-temperature plasma

As we saw in Section 8.3.1, equilibrium in an electron-proton plasma is
achieved in three stages. First, the electrons reach a Maxwellian distribu-
tion with temperature T, on a time 7ee. Then, on a longer time,

Tpp ~ (mp/me)1/2 Tee 5

the protons reach a Maxwellian distribution with temperature 7;,. Finally,
the two temperatures equalize on the longest time of order

Tep ~ (Mp/Me) Tee -

Let us suppose that a two-temperature plasma is created by a strong
shock wave in an electron-proton plasma. The shock primarily heats
ions because the kinetic energy of a particle is proportional to the particle
mass. In the postshock region, the protons reach thermal equilibrium on a
time 7, after they are heated through the shock (Zel’dovich and Raizer, 1966,
2002). Within this time the proton temperature is significantly higher than
the electron one. Subsequently the protons share their thermal energy with
the electrons through Coulomb collisions.

In astrophysical plasma, sometimes, a difference between electron
and ion temperatures can be observed at huge linear scales.

For example, the so-called X-ray clusters, or clusters of galaxies, with the X-
ray temperatures (4 — 10) x 107 K show noticeable differences between their
electron and ion temperatures at radii greater than 2 Mpc.

The clusters of galaxies are the largest objects in the Universe, contain-
ing galaxies and dark matter, collisionless particles and a diffuse gas compo-
nent. The last one is called the intracluster medium and has a temperature
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of about 108 K, thus emitting hard X-rays (HXR) mainly through the ther-
mal bremsstrahlung of the electrons. In the outer parts of the clusters, the
free-free cooling time is much longer than the Hubble time. So we neglect
radiative cooling in such plasma which is supposed to be heated by the shock
in the accretion flow (see Takizawa, 1998).

If we could also neglect heat conduction (for example, by assuming that the
thermal conductivity of the intracluster medium is strongly reduced by a tem-
perature gradient-driven kinetic instability, see Hattori and Umetsu, 2000),
then the electrons would be considered as an adiabatic gas. It would be very
convenient to calculate the electron and ion temperature profiles by using the
adiabatic model of a two-temperature plasma by Fox and Loeb (1997). This
is also the case if tangled magnetic fields, for example of turbulent origin, can
suppress heat conduction in high-temperature plasma. So we assume that
there exists

a chaotic magnetic field that is sufficiently strong to suppress heat
conduction in high-temperature astrophysical plasma, yet small
enough to have negligible dynamical and dissipative effects including
Joule heating.

These conditions seem to be approximatelly satiesfied in cluster environments;
for more detail see Fox and Loeb (1997).

The general case of a strong shock in a fully ionized plasma with heat
conduction is complicated by the fact that the electron thermal speed exceeds
the shock speed, allowing the electrons to preheat the plasma ahead of the
shock (Zel’dovich and Raizer, 1966). Usually heat conduction determines
internal scales of the problem being in competition with the thermal
instability driven by radiative cooling (Field, 1965; see also Somov and Sy-
rovatskii, 1976a). Radiation emitted by the high-temperature plasma behind
the shock also may heat a preshock region. Fast particles, escaping from the
high-tempertature plasma (see Section 8.4.3), may contribute the preshock
heating too. So we have to be very careful when we apply the adiabatic
model of two-temperature plasma to astrophysical conditions.

If come back to HXR tails observed in the X-ray spectra of some clus-
ters, one suggestion is that all or part of this emission might be nonthermal
bremsstrahlung from suprathermal electrons with energies of ~ 10 — 100 keV.
This nonthermal electrons would form a population in excess of the normal
thermal gas, which is the bulk of the intracluster medium. The most natural
explanation of this suprathermal population would be that they are particles
currently being accelerated to high energies by turbulence in the intraclus-
ter medium. Sarazin and Kempner (2000) have calculated models for the
nonthermal HXR bremsstrahlung in the clasters of galaxies.

The high-Mach-number shocks in young supernova remnants (SNRs)
do not produce electron-ion temperature equilibration either. The heating
process in these collisionless shocks is not well understood, but the Coulomb
collisions times are too long to provide the required heating. Presumably the
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plasma collective processes should be responsible for the heating; see discus-
sion and references in Section 16.4. This raises the question of whether the
heating process leads to temperature equilibration or not. It appears that
the observed electron temperature (T, ~ 1 keV) remains very low compared
to the observed ion temperature (T; ~ 500 keV for ions O VII) behind the
shock.

8.3.4 Two-temperature accretion flows

Magnetized accretion disks have become the most convincing physical para-
digm to explain a low emission from the central engines of active galactic
nuclei (AGN) and X-ray binary sources (see also Section 13.2). The observed
radiation comes from the energy dissipation required to maintain steady ac-
cretion of plasma on to the central object. In the standard model of the
optically-thin accreation disk, the heat energy released by viscous dissipation
is radiated almost immediatelly by the accreating plasma. So

the net luminosity must be equal to (~ one-half) the gravitational
energy released as the mass falls onto the central object.

In a few of binary stellar systems, the mass of the primary star has been
measured and found to be consistent with the mass of a neutron star, ~
1.4 M . In several other systems, however, the mass of the primary is found
to be greater than 3 M, which makes these stars too massive to be neutron
stars. These are considered as black hole candidates.

Although neutron stars and black holes have been distinguished on the
basis of their masses, the real physical distinction between the two is that
black holes must have a horizon (a surface through which the matter and
energy fall in but from which nothing escapes) while neutron stars are normal
stars with surfaces. This basic difference provides an opportunity to test the
reality of black holes (see Narayan et al., 1997).

Two-temperature advection-dominated accretion flows (ADAFs) have re-
ceived much attention in an effort to explain low-luminosity stellar and galac-
tic accreting sources (Blackman, 1999; Wiita, 1999; Manmoto, 2000). Here
the ions are assumed to receive the energy dissipated by the steady accretion
without having enough time to transfer their energy to the cooler
electrons before falling on to the central object.

While the electrons can almost always radiate efficiently, the protons will
not, as long as Coulomb processes are the only thing that share energy between
electrons and protons. So some or most of the dissipated energy is advected
(Section 13.2.3), not radiated, as it would have been if the electrons received
all of the dissipated energy. In the ADAF model, the heat generated via
viscosity is advected inward rather than radiated away locally like a standard
accretion disk (Novikov and Torn, 1973; Shakura and Sunyaev, 1973).

When the central object is a black hole, the advected energy is lost
forever rather than reradiated as it would be for a neutron star.
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Precisely such observed differences between corresponding X-ray binary sys-
tems have been purported to provide evidence for black hole horizons (Narayan
et al., 1997; see also Chakrabarti, 1999); see, however, discussion of the ADAF
model in Section 9.3.3.

8.4 Dynamic friction in astrophysical plasma

8.4.1 The collisional drag force and energy losses
8.4.1 (a) Chandrasekhar-Spitzer’s formulae

As in Sections 8.1 and 8.3, we use the concept of a test particle to illustrate
the effects of the collisional drag force in astrophysical plasma. A test particle
of mass m; and charge e; is incident with velocity v in a gas containing field
particles of mass mg, charge e and density ny. In what follows, v will be
the component of the test particle velocity parallel to the original direction of
its motion.

First, for the sake of simplicity, let us consider the field particles at rest. As
in Section 8.1.5, integration over all possible values of the impact parameter
up to the upper cut-off at | = [,.¢ yields the following formulae describing
the mean rates of energy losses and of scattering for the incident particle
(Spitzer, 1962):

& 2meded In A my
e et i Sttt 4
o z o~ N9 U (8.49)
and p 2,2 1 A
mefes In my 9
— =1+ — . 8.50
i 22 ( +m2)”2v (8.50)

Here £ is the energy of the incident particle (see definition (5.2)).
If we consider a beam of accelerated electrons in astrophysical ionized
plasma, the most important are interactions with electrons and protons. So

d&€ 2me* In A Me
— =— (1 8.51
dt & < + mp> fle® (8:51)
and p A
d  me'ln Me 9
7 [l o (3 + mp> Ne V. (8.52)
Thus

both ambient electrons and protons produce scattering (8.52) of
the incident electrons but only ambient electrons contribute
significantly to the energy losses;

the contribution of protons in the rate of energy losses (8.51) is proportional
to the small ratio me/mp. This is consistent, of course, with what we have
concluded in Section 4.2 for fast particles propagating in thermal plasma.
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We neglect collective effects due to interaction of the plasma and the elec-
tron beam as a whole without any justification here. It must be emphasized
also at this point that formulae (8.51) and (8.52) describe the mean rates of
change of £ and v|| for the electrons of an incident beam but neglect the dis-
persions about these means. The accuracy of such procedure decreases as the
scattering and energy losses become not small. These ristrictions have been
discussed in Section 4.4. Now we recall that we have neglected the proper
motions of the plasma particles. Let us take them into account.

8.4.1 (b) Energy losses in plasma

The most general non-relativistic formula for Coulomb losses in the many-
component thermal plasma is given, for example, in Trubnikov (1965), Sivu-
khin (1966) and can be expressed as follows:

d€ d€ dret In A Z2Z2 ny, voomy
dt—Z(dt) —zk: oo o P (%M> (8.53)

P =
k k

Here Zy, mg, ny and vy, are the charge, mass, density and thermal velocity of
the plasma particles of the kind k; they have a temperature Tj,. Z, M = Am,
and v are the charge, mass and velocity of the incident particles; their kinetic
energy £ = Mv?/2. Contrary to definition (8.15) of the mean thermal velocity,
in formula (8.53) the thermal velocity is equal to the most probable velocity
of thermal particles (Sivukhin, 1966):

2%k, T), \“/*
vk:< 5 ’“) . (8.54)
mg
It is convenient to determine the dimensionless variable
1/2
v my &

=— = —= — 8.55
T (M kBTk> (8:55)

and to rewrite the dimensionless function Pj, as follows
P (m %>:ierf(x )—(1—%-%)1@( (—27) (8.56)

k\ Tk, M Tr k M ﬁ p k) - .

Here

erf (zy) = % / exp (—t?) dt (8.57)

is the probability integral.
Let us consider the low-energy limit. Note that

mi » 2 my 2 mi 2 .
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Hence the dimensionless function

0 (8.59)

m;c) _ 2 mi <
M VT M
and, according to formula (8.53), the energy losses rate

d “InA 22722
Pk—< 5) _ 8ymeiIn BT ). (8.60)
k
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This means that a test particle with zeroth (or very small) velocity takes
energy from the field particles having the temperature T;. The hot field
particles heat a cold test particle.

Consider an opposite limiting case. If xx > 1, then, being positive, the

function 1
Py (zk %) ~ o0 when @1 (8.61)

So the higher the energy of a test particle, the smaller are the Coulomb losses.
The maximum of the dimensionless function P}, is reached at =y max ~
1.52, see schematical Figure 8.6.
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Figure 8.6: The Coulomb losses (with the sign minus in formula (8.53)) of
energy of a test particle as a function of its velocity measured in the most
probable velocity of the field thermal particles of the kind k.

Astrophysical plasma consists of many components. To obtain the total
losses it is necessary to sum over all of them in formula (8.53). However
two components — electrons and protons — give the largest contribution. In a
plasma consisting of electrons and protons with n, = n, = n and temperatures
T. and T}, we have (Korchak, 1980):

72 nlnA . (me) %) N (2:?;)1/2 P, ({L‘p’ TE)] , (8.62)
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where the constant ¢, ~ 1.6 x 10723,
The location of both maxima of the function (8.62) is determined by con-
ditions:
r1=xp~ 152 and =z =z~ 1.52. (8.63)

As follows from formula (8.62), the ratio of losses in the maxima

Poasp  (me T\? 1 (TN (5.64)

Pmax,e - mp Tp - 43 Tp ’ ’
The maximum of the electron Coulomb losses is the main energy
threshold of the particle acceleration from low energies.

The proton barrier is considerably lower than the electron one.

The energy loss contribution of the proton component of astrophysical
plasma does not seem to be important. This is not always true, however.
First of all, formula (8.64) shows that the Coulomb losses on thermal protons
increase with the growth of the ratio T./7,. This may be an important
case if particles of low energies are accelerated in super-hot turbulent-current
layers (SHTCLs, see vol. 2, Section 6.3). The second argument comes from a
consideration of very low energies of accelerated particles. In this region, the
efficiency of acceleration is low for the majority of accelerating mechanisms.
However, just in this region of low energies,

the Coulomb losses can strongly influence the nuclear composition
and the charge-state of accelerated particles in astrophysical plasma

(Korchak, 1980; see also Holman, 1995; Bodmer and Bochsler, 2000; Bykov
et al., 2000).

When particular acceleration mechanisms in a astrophysical plasma are
considered, the role of Coulomb collisions often reduces to the energy losses of
the accelerated particles and, in particular, to the presence of the loss barrier
at low velocities. As a result, Coulomb collisions decrease the efficiency of
any acceleration mechanism. Contrary to this statement, we shall see that
in many cases Coulomb collisions can play a much less trivial and not so
passive role (e.g., vol. 2, Section 12.3.1). This makes plasma astrophysics
more interesting.

8.4.1 (c¢) Dynamic friction in plasma

The collisional drag force Fy acts on a test particle (mass M, charge Ze) mov-
ing through the many-component plasma with the Maxwellian distribution of
field particles:

M%vH:—Ff:—Z Fy (v)). (8.65)
k

Here the velocity component v | is parallel to the vector of the initial velocity
of an incident test particle.
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For a test particle with a velocity v much below the thermal velocity (8.54)
of the field particles with the mass my, temperature Ty, and number den-
sity ng,

dre* In A Z2Z2ny mg 2 v
Fy k (1 —) LIS 8.66
! zk: oy Ty HNTREN AT (8.66)

Therefore at small velocities the collisional drag force is proportional to the
component v (cf. formula (1.14)).

When the test particle velocity exceeds the thermal velocity of the field
particles, the drag force decreases with v as follows:

2met In A Z2Z2 ny, mey (VN
Ff_§Fk~Zk: - o (1+ﬁ) (w) ~ v, (8.67)
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Figure 8.7: The collisional drag force Fj (with the sign minus in formula
(8.65)) on a test particle as a function of its velocity v| measured in the most
probable velocity vy of the field particles of the kind k.

The general formula for collisional drag force is given, for example, in
Sivukhin (1966) and is illustrated by schematical Figure 8.7; here the dimen-
sionless variable x|, = v”/vk. The drag force vanishes when x|, = 0; it
linearly increases with increasing ||, becoming a maximum when

Tk = Tk max = 0.97, (8.68)
and then falls off, approaching zero asymptotically as |, — oo. This be-

haviour of the drag force has important consequences discussed below.

8.4.2 Electric runaway

It has been assumed above that the plasma is characterized by the Maxwellian
distribution and that there are no external fields. Let us now assume that a
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uniform electric field E is switched on at some instant of time, the velocity
distribution being assumed to be Maxwellian at this time. At least, at the
beginning of the process when the velocity distribution has not yet changed
appreciably, the time variation of the test-particle momentum Mv due to
Coulomb collisions with plasma particles will still be given by formulae (8.66)
and (8.67) supplemented by the electric force ZeE in Equation (8.65).

Thus, considering the component v as a component of the test-particle
velocity v which is parallel to the electric field E, we rewrite Equation (8.65)
as follows:

d
M%v”:—FJw—ZeE:—Xk:F;H—ZeE. (8.69)

If the test-particle velocity is not small in comparison with the thermal veloc-
ity vg, then the collisional drag force on a test particle falls off with increasing
velocity v, according to formula (8.67), while the electric force is velocity
independent. Therefore

for all particles with high enough velocities the electric force exceeds
the collisional drag force, and the particles are able to run away from
the thermal distribution.

Equating the electric and collisional drag forces allows us to see the crit-
ical velocity v., above which runaway will occur for a given electric field
strength F, see point B in Figure 8.7. Runaway in astrophysical plasma can
occur as long as there is a component of the electric field along the magnetic
field. Before the acceleration of the heavy ions becomes significant, the accel-
eration of the light electrons gives rise to the electron runaway effect which
was first predicted by Giovanelli (1949). He has shown that

e as the electric field applied to a highly ionized gas is increased, the cur-
rent, which is initially limited by elastic collisions between electrons and
positive ions, increases rapidly as the field strength reaches a critical
value;

e this is due to a reduction in the cross-section of positive ions for scat-
tering of electrons with increasing electron velocity.

In a strong electric field (or in a plasma of sufficiently low density and
high temperature) all the electrons are accelerated by the field, i.e. become
the runaway electrons. The Dreicer field (Dreicer, 1959):

B dredIn A ne

FE -
Dr kB Tc

(8.70)
approximately correspondes to the electric field strength for which ve, = ve.
Here v, is the most probable velocity of thermal electrons (8.54).

In a weak field only very fast electrons will run away, i.e. those veloc-
ity v > ver. The velocity ve, depends in an essential manner on the magni-
tude of electric field. In a weak field, the velocity v, is naturally much larger
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than the thermal velocity of electrons in the plasma. Therefore the number
of runaway electrons should be very small if their distribution would remain
maxwellian for velocities v I < ver. This is not true however.

In order to determine the flux of runaway electrons we must know the way
in which the density of electrons having a velocity v | ~ v, varies under action
of the runaway effect. This means that we must know the velocity distribution
for the electrons for v|| ~ ve;. To consider this problem self-consistently it is
necessary to solve the kinetic equation taking both collisions and the electric
field into account (Section 4.5). It appears that Coulomb collisions creat a
power-law tail distribution between a region of thermal velocities and the
region where V|| R Ver with a constant flux of electrons directed from low
to high velocities. By so doing, Coulomb collisions increase the flux of
runaway electrons (Gurevich, 1961).

To have an idea of the magnitude of the Dreicer field (see Exercise 8.4),
let us substitute the definition of the Debye radius (8.31) in formula (8.70)
and assume that T, =T, =T and n, = np, =n. We find

e InA
Bor =025 ™02
D D

(8.71)

So the Dreicer field is approximatelly equal to the electric field of a positive
charge at a distance slightly smaller than the Debye radius.

8.4.3 Thermal runaway in astrophysical plasma

Let us consider a plasma with a non-uniform distribution of electron temper-
ature T,. Let [, be the characteristic length of the temperature profile and Ao
be the mean free path of thermal electrons. For the classical heat conductivity
to be applicable, it is necessary to satisfy a condition (Section 9.5):

T
Ae Kl = N (8.72)

The mean free path of a particle increases with its velocity. This can be seen
from formula (8.13) which gives us the mean free path

A =Ty ~ ot (8.73)
That is why

a number of fast electrons can penetrate from a hot plasma into cold
one even if the gradient of temperature is very small.

In such a way, the hot plasma can lose some part of its thermal energy
transferred by fast thermal escaping electrons. In addition to the usual heat
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flux (8.47), which is determined locally by the Coulomb collisions of plasma
electrons, there appears a non-local energy flux carried by the fast electrons
practically without collisions. A classical diffusive heat transfer and a con-
vective one, determined by thermal runaway electrons, are always present in
plasma.

It is interesting for astrophysical applications that, at not too small tem-
perature gradients, the convective transfer of thermal energy can play a prin-
cipal role. Gurevich and Istomin (1979) have examined the case of a small
temperature gradient. By using a perturbation analysis for the high-speed
kinetic equation (Section 4.2), they have shown that the fast growth of the
mean free path with increasing velocity gives an abrupt growth of the number
of fast electrons in the cold plasma.

The opposite case of a large temperature gradient in the narrow tran-
sition layer between a high-temperature plasma and a cold one was investi-
gated by many authors with applications to the problem of energy transfer in
the solar atmosphere. For example, Shoub (1983) has solved numerically the
boundary-value problem for the Fokker-Planck equation in the model of the
transition layer between the corona and the chromosphere in quiet conditions.
An excess of fast electrons has been found in the low transion layer region.
As for solar flares, the prevailing view is that

the high-temperature plasma can lose energy efficiently by the con-
vective heat transfer by the thermal runaway electrons

(see Somov, 1992).

In both cases, however, it is important to take into account that the fast
runaway electrons, similar to any beam of fast particles, generate the
electric field which drives the reverse current of thermal electrons.
Diakonov and Somov (1988) have found an analytical solution to the self-
consistent kinetic problem on the beam of escaping thermal electrons and its
associated reverse current (Section 4.5). They have shown that the reverse-
current electric field in solar flares leads to a significant reduction of the con-
vective heat flux carried by fast electrons escaping from the high-temperature
plasma to the cold one.

Recommended Reading: Sivukhin (1966), Somov (1992).

8.5 Practice: Exercises and Answers

Exercise 8.1 [Section 8.1] For an electron, which moves in the solar corona
with a mean thermal velocity (Exercise 5.2), evaluate the characteristic time
of close and distant collisions with thermal protons.
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Answer. Characteristic time of close electron-proton collisions follows
from formula (8.13) and is equal to

mfi Vie 496 x 10-1% Ve

mel np Np

, S. (8.74)

Tel,ep =

At typical temperatures of electrons in the corona T, ~ 2x10% K, their thermal
velocity (5.54) Vipe &~ 9.5 x 10® ecm s~1. Substituting this value in (8.74) and
assuming np, & ne ~ 2 x 108 cm ™3, we find that 7., ¢p ~ 22 s.

According to (8.21) the characteristic time of distant collisions is 8 In A
shorter than the close collision time (8.74). Hence, first, we have to find the
value of the Coulomb logarithm (8.34):

3k3/2 T3 1/2 T3 1/2
InA = In l<21§23> (n) ~In [1.25 x 10* (n) . (8.75)
vis (&) e e

At typical coronal temperature and density, formula (8.75) gives
InA~22.
With this value of In A formula (8.21) gives

2 3
mg 1 Vi

3
~ 2.87 x 1072 @, s. (8.76)

Tl,ep =
P et 8InA ny Np

In the solar corona 7 ¢, ~ 0.1 s. Therefore the distant collisions of thermal
electrons with thermal protons in the corona are really much more frequent
in comparison with close collisions.

Exercise 8.2 [Section 8.2] Evaluate the Debye radius and the plasma fre-
quency in the solar corona.

Answer. From (8.31) it follows that for electron-proton plasma with
T, =T, = T and n. = n, = n the Debye radius

kBT 1/2 T 1/2

Under conditions in the solar corona 7, = 0.5 cm.
The electron plasma frequency (8.35)

(e) 4me? ne 12 4 —1
Wi =\ T ~ 5.64 x 10* \/n., rad s™, (8.78)
e
or
Vp(lc) = w](j)/%r ~ 10* /n., Hz. (8.79)

In the solar corona wp(le) ~10% rad s
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Exercise 8.3 [Section 8.3] Under conditions of Exercise 8.1 evaluate the
exact (determined by formulae (8.38) and (8.39)) collisional times between
thermal electrons and between thermal protons, respectively. Compare these
times with the characteristic time of energy exchange between electrons and
protons in the coronal plasma.

Answer. By substituting In A in (8.38), we have the following expression
for the thermal electron collisional time
me2 V’lge ~ —20 V’1§e
S 07l etsr A n, 0TS

(8.80)

Tee

In the solar corona 7ee & 0.2 s. For thermal protons formula (8.39) gives

m2 Vd Vd

p Tp —13 " Tp
- ~1.36 x 10713 Z1B 8.81
P T 0714 ' 87 InA n, x np (8.81)

Assuming T, = T, and n, = n., we find the proton collisional time in the
solar corona T,, ~ 7 s; this is in a good agreement with formula (8.40), of
course.

Let us find the time of energy exchange between electrons and protons.
By using formula (8.44), we have

Tep(€) = 227, ~ 164 5. (8.82)

So the energy exchange between electron and proton components in the coro-
nal plasma is the slowest process determined by Coulomb collisions.

Exercise 8.4 [Section 8.4] Evaluate and compare Dreicer’s electric fields in
the solar corona and in the chromosphere.
Answer. From (8.70) it follows that

4redIn A n Ne (cm™2)
EF, =——— 2 x754x107% =2 Vem " 8.83
Dr kB Te X Te (K) Y cm ( )

Here it was taken In A = 21.6 according to Exercise 8.1.

At typical temperature and number density of electrons in the solar corona
T, ~ 2 x 108 K and n ~ 2 x 108 cm ™3, we find that the Dreicer electric field
E, ~7x1075Vem " ~ 107°Vem ™. The same value follows, of course,
from formula (8.71) with r, ~ 0.5 cm (see Exercise 8.3).

In the solar chromosphere ne > 2 x 10'° cm ™2 and T, < 10* K. According
to formula (8.83), the Dreicer electric field F,, > 0.1V ecm™! in the chromo-
sphere is, at least, 10* times stronger than the coronal one.

Exercise 8.5. Define the dynamic friction by gravitational force as momen-
tum loss by a massive moving object, for example a star in a galaxy, due to its
gravitational interaction with its own gravitationally induced wake. Discuss
two possibilities: (a) the background medium consists of collisionless matter
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(other stars in the galaxy), (b) the medium is entirely gaseous (e.g., Os-
triker, 1999). The first case, the gravitational drag in collisionless systems
(Chandrasekhar, 1943b), has widespread theoretical application in modern
astrophysics.

Hint. At first, let us qualitatively understand why a friction force should
arise in a collisionless gravitational system. Suppose a star has moved from a
point A to a point B as shown in Figure 8.8.
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Figure 8.8: An illustration of the origin of dynamic friction in a collisionless
gravitational system.

While passing from A to B, the star attracted the surrounding stars to-
wards itself. Hence the number density of stars around AB should be slightly
larger than that ahead of B. Therefore the star at the point B experiences
a net gravitational attraction in the backward direction, i.e. in the direction
opposite to the direction of the star velocity vector v.

The variety of consequences of the gravitational drag force in collisionless
astronomical systems includes the mass segregation in star clusters, sinking
satellites in dark matter galaxy halo, orbital decay of binary supermassive
black holes after galaxy mergers, etc. (Binney and Tremain, 1987).

Exercise 8.6. Discuss why the rate of escape of stars from a galactic claster,
evaluated ignoring dynamic friction, is too rapid to be compatible with a
life for the cluster (Chandrasekhar, 1943c). Show that the escape rate is
drastically reduced when dynamic friction is allowed for.



Chapter 9

Macroscopic Description of
Astrophysical Plasma

In this Chapter we are not concerned with individual particles but we
will treat individual kinds of particles as continuous media interacting
between themselves and with an electromagnetic field. This approach
gives us the multi-fluid models of plasma, which are useful to consider
many properties of astrophysical plasma.

9.1 Summary of microscopic description

The averaged Liouville equation or kinetic equation gives us a microscopic
(though averaged in a statistical sense) description of the plasma state’s evo-
lution. Let us consider the way of transition to a less comprehensive macro-
scopic description of a plasma. We start from the kinetic equation for particles
of kind k, in the form derived in Section 2.2:

o T e T o0, _<8t)' (9-1)

Here the statistically averaged force is

Fro(X,t)=>_ / Frio (X, X1) fi (X1,t) dX, (9.2)
l X,

and the collisional integral

afy 0

163
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where the flux of particles of kind k

Tha (X 8) = /—F,M (X, X1) fr (X, X1,0) dX, (9.4)
l X1

in the six-dimensional phase space X = {r,v}.

9.2 Transition to macroscopic description

Before turning our attention to the deduction of equations for the macroscopic
quantities or macroscopic transfer equations, let us define the following mo-
ments of the distribution function.

(a) The zeroth moment (without multiplying the distribution func-
tion fi by the velocity)

/fk (r,v,t)d3v = ny(r,t) (9.5)

is obviously the number of particles of kind £ in a unit volume, i.e. the number
density of particles of kind k. It is related to the mass density in a natural
way:

pr(r,t) = myg ng(r,t).

The plasma mass density is accordingly
t) = Z pr(r,t) = Z myg n(r,t). (9.6)
k E

(b) The first moment of the distribution function, i.e. the integral of
the product of the velocity to the first power and the distribution function fg,

Va fi(r, v, 1) d*V = ng up o (9.7

v

is the product of the number density of particles of kind k by their mean

velocity

1 )
U oL, t) = - Vg, fk(r,v,t)dsv. (9.8)

Consequently, the mean momentum of particles of kind %k in a unit volume is
expressed in terms of the first moment of the distribution function as follows

Mg Mg Uk = My, | Vo Fro(r, v, 1) d3v. (9.9)

v
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(c) The second moment of the distribution function is defined to be

HC(V];) (I‘, t) =Mk / Vol fk (I‘, v, t) d V =Mgng Uk o Uk, +p(£ﬁ) . (910)

v

Here we have introduced
!

Vo

= Vo — Uk,

which is the deviation of the particle velocity from its mean value

Uk,a = <Uk7a >v

in the sense of the definition (9.8), so that (v/ ) = 0; and

péﬁ) = mk/v;vﬁ/ fr (v, v, 1) d3v, (9.11)

v

is termed the pressure tensor.

H;? is the tensor of momentum flux density for particles of kind k. Its

component 1T g;) is the ath component of the momentum transported by the

particles of kind k, in a unit time, across the unit area perpendicular to the
axis rg.

Once we know the distribution function fi (r,v,t), which contains all the
statistically averaged information on the system of the particles of kind k at
the microscopic level, we can derive all macroscopic quantities related to these
particles. So, higher moments of the distribution function will be introduced
as needed.

9.3 Macroscopic transfer equations

Note that the deduction of macroscopic equations is nothing but just the
derivation of the equations for the distribution function moments.

9.3.1 Equation for the zeroth moment

Let us calculate the zeroth moment of the kinetic Equation (9.1):

8fk 3 % 3 Fka 8fk _/ afk 3
ET dv /Ua or. d’v + - ava bv 5 d°v. (9.12)

We interchange the order of integration over velocities and the differentiation
with respect to time ¢ in the first term and with respect to coordinates r, in
the second one. Under the second integral

Ofx 0 d

= 7(Uafk) fk: 81"@ ara

Ua% Ora (Vafk) =0
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since r and v are independent variables in phase space X.

Taking into account that the distribution function quickly approaches zero
as v — 00, the integral of the third term is taken by parts and is equal to zero
(Exercise 9.1).

Finally, the integral of the right-hand side of (9.12) describes the change
in the number of particles of kind % in a unit volume, in a unit time, as a
result of collisions with particles of other kinds. If the processes of transfor-
mation, during which the particle kind can be changed (such as ionization,
recombination, charge exchange, dissociation etc., see Exercise 9.2), are not
allowed for, then the last integral is zero as well:

/ <68J;’“> d3v (9.13)

v

Thus, by integration of (9.12), the following equation is found to result
from (9.1)

Ong 9
ot ora

NEg Uk, = 0.

(9.14)

This is the usual continuity equation expressing the conservation of particles
of kind k or (that is the same, of course) conservation of their mass:

apk 0
_ —_— a = . 1
5 Br Pl k. 0 (9.15)

Here
pr(r,t) = my ng(r,t)

is the mass density of particles of kind k.
Equation (9.14) for the zeroth moment n; depends on the unknown first
moment uj . This is illustrated by Figure 9.1.

9.3.2 The momentum conservation law

Now let us calculate the first moment of the kinetic Equation (9.1) multiplied
by the mass my:

mk/—Uad3v—|—mk/vav5%di”v—&—/vaFkﬁ%Cﬁv:
B 1<)

v v

:mk/ (iﬁ) d3v (9.16)

v
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fk <> fk fkl fkln
X —_
Q> KEWBCY_ -
<>

mO0 n,

ml [\ uy
Figure 9.1: From the microscopic to the macroscopic view of a plasma. LT'
is the Liouville theorem (1.11) for an exact distribution function f;. KE and
BC are the kinetic Equation (2.36) and the equation for the binary correla-
tion function. mO0 is the equation for the zeroth moment of the distribution

function fx, the number density ny of the particles of kind k. This equation
is unclosed.

With allowance made for the definitions (9.7) and (9.10), we obtain the mo-
mentum conservation law

d 0
a5t (mgng uko) + % (mknk U, aUk,B +PO(Z)> -
A Fralr,t))o = (FC) (r,1)),. (9.17)

Here p(i];) is the pressure tensor (9.11).

The mean force acting on the particles of kind k in a unit volume (the
mean force per unit volume) is (see Exercise 9.3):

(Fro(r,t)), = /Fk,a (r,v,t) fi (r,v,t) d>v. (9.18)
This should not be confused with the statistical mean force acting on a single
particle (see definition (9.2)). The statistically averaged force (9.2) is under
the integral in formula (9.18).
In the particular case of the Lorentz force, we rewrite the mean force per
unit volume as follows:

1
(Fra(r,0))o =nkex | Ba+ = (uy x B),

or

1,
<Fk,a(rvt)>v:p2Ea+E(,]2XB)a.

(9.19)
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Here p,! and j§ are the mean densities of electric charge and current, produced
by the particles of kind k. However note that

the mean electromagnetic force couples all the charged components
of cosmic plasma together

because the electric and magnetic fields, E and B, act on all charged compo-
nents and, at the same time, all charged components contribute to the electric
and magnetic fields according to Maxwell’s equations.

The right-hand side of Equation (9.17) contains the mean force resulting
from collisions, i.e. the mean collisional force (see Exercise 9.4):

(F) (r,1))y = mk/ <88J;’“> d3v (9.20)

Substituting (9.3) in definition (9.20) gives us the following formula
(©) 9 3
<Fka(r7t)>7):7mk Vo Jkﬂd V. (921)
El a’l)ﬁ E

Let us integrate (9.21) by parts. For this purpose, at first, we find the deriva-
tive

Ovgy 0
87115(%‘]16’5) Jkga Jr’l)aaivﬁjkﬁ.
From this it follows that
o0 0
Vo %Jk,ﬁ = —Jip0as + 0 (Va Jk,) =
=—J +i(vJ ) (9.22)
= k,a 81}5 aJkg)- .

On substituting (9.22) and (9.4) in (9.20) and integrating, we obtain the most
general formula for the mean collisional force

(F) (r,t))y = mk/ Jra (v, 1) dPv = (9.23)

v

_Z///Fkla (r,v,r1,v1) fu (r,v,r1,v1,t) d®r1d?vid?v.

I#k vV Vi ri
Note that

for the particles of the same kind, the elastic collisions cannot change
the total particle momentum per unit volume.
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That is why [ # k in the sum (9.23).

Formula (9.23) contains the unknown binary correlation function fg;. The
last should be found from the correlation function Equation (2.46) indicated
as the second link BC in Figure 9.1. Thus the equation for the first moment
of the distribution function is as much unclosed as the initial kinetic Equa-
tion (9.1), which is the first equation of the chain for correlation functions
(see KF in Figure 9.1).

If there are several kinds of particles, and if each of them is in the state of
thermodynamic equilibrium, then the mean collisional force can convention-
ally be expressed in terms of the mean momentum loss during the collisions
of a particle of kind k with the particles of other kinds:

FO (1)), = -3 kN (Uka — Uua)
(Fra (1) ; -

(9.24)

Here T,&l = vy is the mean frequency of collisions between the particles of
kinds k£ and I. This force is zero, once the particles of all kinds have identical
velocities. The mean collisional force, as well as the mean electromagnetic
force, tends to make astrophysical plasma be a single hydrodynamic medium
(see Section 12.1).

If u; o < ur,o then the mean collisional force is negative:

the fastly moving particles of kind & slow down by dint of collisions
with the slowly moving particles of other kinds.

Formula (9.24) has the status of a good approximation in plasma astrophysics.

9.3.3 The energy conservation law

The second moment (9.10) of a distribution function f is the tensor of mo-
mentum flux density IT (5? In general, in order to find an equation for this
tensor, we should multiply the kinetic Equation (9.1) by the factor my vovg
and integrate over velocity space v. In this way, we could arrive to a matrix
equation in partial derivatives. If we take the trace of this equation we could
obtain the partial differential scalar equation for energy density of the par-
ticles under consideration (e.g., Shkarofsky et al., 1966; § 9.2). This is the
correct self-consistent way which is the basis of the moment method. For our
aims, a more simple direct procedure is sufficient and correct.

In order to derive the energy conservation law, we multiply Equation (9.1)
by the particle’s kinetic energy m;v2/2 and integrate over velocities, taking
into account that

Vo = Uk + v(;

and
2 2 7\2 /
Vo = uk,a + (Ua) + 2uk,a Vo -
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A straightforward integration yields

0 [ pru? 0 ui (k)
at( + pr €k +% PrUE o ?‘ng tDPog Uk,B Tt Qka | =

2
= pH(E-uy) + (F,EC) : uk) +Q (r1). (9.25)
Here ,
my ep(r,t) = L / Mfk (r,v,t)d3v =
Nk 2
=k /(v(;)2 fr (x,v, 1) dv (9.26)
an

v

is the mean kinetic energy of chaotic (non-directed) motion per single particle
of kind k. Thus the first term on the left-hand side of Equation (9.25) rep-
resents the time derivative of the energy of the particles of kink & in a unit
volume, which is the sum of kinetic energy of a regular motion with the mean
velocity uy and the so-called internal energy.

The pressure tensor can be written as

p((xl;) = prdap + ﬂ;? . (9.27)

Thus, on rearrangement, we obtain the following general equation

a u2 a U2 c
5 <pkk + pr 5k> 4+ [Pkuk,a (k + wk) + wo(é? Uk,B + (ko | =

2 Ora 2
_ 4R, () 9)
=pd (E-ug) + (F,7 -up ) + Q.7 (r,1). (9.28)
Here
wy = ep + 22 (9.29)
Pk

is the heat function per unit mass. Therefore the second term on the left-hand
side contains the energy flux

ui
PrUK o 7+wk )

which can be called the ‘advective’ flux of kinetic energy.

Let us mention the well known astrophysical application of this term. The
advective cooling of ions heated by viscosity might dominate the cooling by the
electron-ion collisions, for example, in a low-density high-temperature plasma
flow near a rotating black hole. In such an advection-dominated accretion flow
(ADAF), the heat generated via viscosity is transferred inward rather than

radiated away locally like in a standard accretion disk model (see Sections 8.3.4
and 13.2).
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On the other hand, discussing the ADAF model as a solution for the im-
portant astrophysical problem should be treated with reasonable cautions.
Looking at Equations (9.25) for electrons and ions separately, we see how
many assumptions have to be made to arrive to the ADAF approximation.
For example, this is not realistic to assume that plasma electrons are heated
only due to Coulomb collisions with ions and, for this reason, the electrons are
much cooler than the ions. The suggestions underlying the ADAF approxi-
mation ignore several physical effects including reconnection and dissipation
of magnetic fields (regular and random) in astrophysical plasma. This makes
a physical basis of the model very uncertain.

* * *

In order to clarify the physical meaning of the definitions given above, let
us, for a while, come back to the general principles of plasma physics. If the
particles of the kth kind are in the thermodynamic equilibrium state, then fy
is the Maxwellian function with the temperature Tj:

3/2 2
(0) _ M my [V — ug(r) |
ka (I‘, V) = nk(r) |:27Tk]377k(r):| exp {— W} 5 (930)

see Section 9.5. In this case, according to formula (9.26), the mean kinetic
energy of chaotic motion per single particle of kind &

3
mg €k — ikBTk. (931)

The pressure tensor (9.11) is isotropic:

p;? =Pk dag, (9.32)
where
P = Nk ]fB Tk (933)

is the gas pressure of the particles of kind k. This is also the equation of state
for the ideal gas. Thus we have found that the pressure tensor is diagonal.
This implies the absence of viscosity for the ideal gas, as we shall see below.
The heat function per unit mass or, more exactly, the specific enthalpy is
e 5 kT

W =€ +— =
P 2 my

(9.34)

This is a particular case of the thermodynamic equilibrium state; it will be
discussed in Section 9.5.

* * *

In general, we do not expect that the system of the particles of kind k has
reached thermodynamic equilibrium. Nevertheless we use the mean kinetic en-
ergy (9.26) to define the effective temperature T}, according to definition (9.31).
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Such a kinetic temperature is just a measure for the spread of the particle
distribution in velocity space. The kinetic temperatures of different compo-
nents in astrophysical plasma may differ from each other. Moreover, in an
anisotropic plasma, the kinetic temperatures parallel and perpendicular to
the magnetic field are different.

Without supposing thermodynamic equilibrium, in an anisotropic plasma,
the part associated with the deviation of the distribution function from the
isotropic one (which does not need to be a Maxwellian function in general) is
distinguished in the pressure tensor:

P —pidag =7l (9.35)

Here wi? is called the wiscous stress tensor. So the term wo(‘? ug,g in the
energy-conservation Equation (9.25) represents the flux of energy released by
the viscous force in the particles of kind k.

The vector )

/
dre = [ L o v aiv (9.36)

is the heat flux density due to the particles of kind k in a system of coordinates,
in which the gas of these particles is immovable at a given point of space.
Formula (9.36) shows that a third order term appears in the second order
moment of the kinetic equation.

The right-hand side of the energy conservation law (9.25) contains the
following three terms:

(a) The first term

pi (E-uy) = ngeg Eq upa (9.37)

is the work done by the Lorentz force (without the magnetic field, of course)
in unit time on unit volume.
(b) The second term

(F]EC) . uk) = Uk« /mk ’U; <8a.];k> d3V (938)

is the work done by the collisional force of friction of the particles of kind k
with all other particles in unit time on unit volume. This means that

the work of friction force results from the mean momentum change
of particles of kind &k (moving with the mean velocity uy) owing to
collisions with all other particles.

(c) The last term

0 (M):/ M (%}) d3v (9.39)
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is the rate of thermal energy release (heating or cooling) in a gas of the
particles of kind £ due to collisions with other particles. Recall that the
collisional integral depends on the binary correlation function fg;.

9.4 (General properties of transfer equations

9.4.1 Divergent and hydrodynamic forms

Equations (9.14), (9.17), and (9.25) are referred to as the equations of particle,
momentum and energy transfer, respectively; and the approximation in which
they have been obtained is called the model of mutually penetrating charged
gases. These gases are not assumed to be in the thermodynamic equilibrium.
However the definition of the temperature (9.31) may be generally considered
as formally coinciding with the corresponding definition pertaining to the gas
of particles of kind k in thermodynamic equilibrium.

The equations of mass, momentum and energy transfer are written in the
‘divergent’ form. This essentially states the conservation laws and turns out
to be convenient in numerical work, to constract the conservative schemes for
computations. Sometimes, other forms are more convenient. For instance,
the equation of momentum transfer or simply the equation of motion (9.17)
can be brought into the frequently used form (with the aid of the continuity
Equation (9.14) to remove the derivative dpy/0t):

du duga) 0 k) |
p’“( TR ) Brg s+
H{(Fra (0,8) )0 + (FE) (r,0)),. (9.40)

The so-called substantial derivative appears on the left-hand side of this
equation:

ﬁ—g_i'_ i_g_i'_ -V
at ot P ary ot TRV

(9.41)

This substantial or advective derivative — the total time derivative following a
fluid element of kind k — is typical of hydrodynamic-type equations, to which
the equation of motion (9.40) belongs. The total time derivative with respect
to the mean velocity uy of the particles of kind k& is different for each kind k.
In Chapter 12 on the one-fluid MHD theory, we shall introduce the substantial
derivative with respect to the average velocity of the plasma as a whole.

For the case of the Lorentz force (9.19), the equation of motion of the
particles of kind k£ can be rewritten as follows:

d(k)uka 0 k 1 .
pkidt, :7(’95 éﬁ)+pkE + - (_],‘ij)aJr
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+ <Fl£,co)¢ (r,t) )vs (9.42)

where the last term is the mean collisional force (9.20) or, more specifically,
(9.24).

9.4.2 Status of conservation laws

As we saw in Section 9.3, when we treat a plasma as several continuous media
(the mutually penetrating charged gases), for each of them,

the main three average properties (density, velocity, and a quantity
like temperature or pressure) are governed by the basic conserva-
tion laws for mass, momentum, and energy in the media.

These conservation equations are useful, of course, except they contain
more unknowns than the number of equations. The transfer equations for
local macroscopic quantities are as much unclosed as the initial kinetic Equa-
tion (9.1) which is the first equation of the chain for correlation functions (see
KFE in Figure 9.2). For example, formula (9.23) for the mean collisional force
contains the unknown binary correlation function fr;. The last should be
found from the correlation function Equation (2.46) indicated as the second
link BC' in Figure 9.2. The terms (9.38) and (9.39) in the energy conservation
Equation (9.25) also depend on the unknown binary correlation function f;.

fk fk fkl fkln
<>
D> GEETs
<> Figure 9.2: LT is the Liouville
theorem for an exact distribution
0: function. KFE and BC' are the ki-
mu.- ny, netic equation and the equation
for the binary correlation func-
ml: w, \ufkl(- tion. m0, ml etc. are the chain
/ — of the equation for the moments
— of the distribution function fg.
m2: ¢ ’\
* ( Ch 9

A

It is also important that the transfer equations are unclosed in ‘orthogonal’
direction: the Equation (9.14) for the zeroth moment (see m0 in Figure 9.2),
density ny, depends on the unknown first moment, the mean velocity ug, and
so on. This process of generating equations for the higher moments could
be extended indefinitely depending solely on how many primary variables
(ng, ug, €k, ...) one is prepared to introduce. However, if at any level the
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distribution function is known, or can be approximated to, in terms of the
primary variables for which the equations have already been generated, then
this set of equation should be closed. We will come back to this critical point
in the next Section.

Three basic conservation laws for mass, momentum, and energy in
the components of astrophysical plasma represent the main transfer
equations that are the first three links in the chain of the equations
for the distribution function moments.

It certainly would not be possible to arrive to this fundamental conclusion
and would be difficult to derive the conservation laws in the form of the
transfer Equations (9.14), (9.17), and (9.25) in the way which is typical for
the majority of textbooks: from simple specific knowledges to more general
ones. Such generalization means that we could go from well-known things to
more complicated ones, for example, from the Newton equation of motion of
a particle to the ordinary hydrodynamic equation of fluid motion. Though
this way makes a text easier to read, it does not give the reader complete
knowledge of a subject. That is why we selected the opposite way: from
general to specific knowledges.

The consecutive consideration of physical principles, starting from the
most general ones, and of simplifying assumptions, which give us a simpler
description of plasma under astrophysical conditions, allows us to find the
answers to two key questions:

(1) what approximation is the best one (the simplest but sufficient) for
description of a phenomenon in astrophysical plasma;

(2) how to build an adequate model for the phenomenon, for example, a
solar flare or a flare in the corona of an accretion disk.

From a mathematical point of view, an elegant treatment of particle trans-
fer in plasma can be based on the use of non-canonical conjugate variables
(for example, r and p are not canonically conjugate for a system of par-
ticles moving under the Lorentz force) and the associated Lie algebra (see
Balescu, 1988).

9.5 Equation of state and transfer coefficients

The transfer equations for a plasma component k£ would be closed with respect
to the three unknown terms py, ug, and ey, if it were possible to express the
other unknown quantities py, 7 ;2)7 q(ik), etc. in terms of these three variables,
or the variables pg, ui and the formally defined temperature 7. For this
purpose, we have to know the equation of state and the so-called transfer
coefficients. How can we find them?

Formally, we should write equations for higher (than second) moments of
the distribution function. However these equations will not be closed either.

How shall we proceed?
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According to the general principles of statistical physics,

any distribution function tends, by virtue of collisions, to assume
the Maxwellian form.

In this case the equation of state is that of the ideal gas.

The Maxwellian distribution is the kinetic equation solution for a sta-
tionary homogeneous plasma in the absence of any mean force in the thermal
equilibrium state, i.e. for a plasma in thermodynamic equilibrium. Then
spatial gradients and derivatives with respect to time are zero. In fact they
are always nonzero. For this reason, the assumption of full thermodynamic
equilibrium is replaced with the local thermodynamic equilibrium (LTE). Mo-
rover

if the gradients and derivatives are small, then the real distribution
function differs little from the local Maxwellian one, the difference
being proportional to the small gradients or derivatives.

Thus if we are interested in the processes occurring in a time ¢, which is
much greater than the characteristic collision time 7, and at a distance L,
which is much larger than the particle mean free path A,

t>71, L>M\, (9.43)

then the particle distribution function fi(r,v,t) can be thought of as a sum
of the local Maxwellian distribution

3/2
(0) _ i
Wt = mte) | pies ]

" _mk|v—uk(r,t)|2 (9.44)
P 2k, Ti(r, 1) '

and some small additional term fk(l)(r, v,t). Therefore
Jerv,t) = (0w )+ 10wy, R0 < 0 (9.45)

According to (9.44), the function fk(o) depends on ¢ and r through ng(r, t),

Tk (r,t) and ug(r,t). Therefore we have derivatives 3fk,(0)/3t and 3fk.(0)/3ra.

Now we substitute (9.44) in the kinetic Equation (9.1) and linearly ap-
proximate the collisional integral (9.3) by using one or another of the models
introduced in Chapter 3; alternatively, see Exercise 9.5 as a specific exam-
ple. Then we seek the additional term fk(l) in the linear approximation with
respect to the factors disturbing the Maxwellian distribution, such as gradi-
ents of physical parameters, electric fields etc. The quantities ch’“), ﬂo(/g) ete.,
which in their turn are proportional to the same factors, can be expressed in
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terms of fk(l). The proportionality coefficients are the sought-after transfer
coefficients.

For example, in the case of the heat flux ¢, both the additional term fk(l)
and the flux ¢, are chosen to be proportional to the temperature gradient.
Thus, in a fully ionized plasma in the limit of a vanishing magnetic field, we
find the heat flux in the electron component of plasma:

Ge = —Ke VT, s (946)
where . 5
1.84 x 10~
R 52 9.47
K oA A (9.47)

is the coefficient of electron thermal conductivity (Spitzer, 1962).

In the presence of strong magnetic field, all the transport coefficients be-
come highly anisotropic. Since the Maxwellian function (9.44) and its deriva-
tives are uniquely determined by the parameters ny, ug, and T}, the transfer
coeflicients are expressed in terms of the same quantities and magnetic field B,
of course.

This procedure makes it possible to close the set of transfer equa-
tions for astrophysical plasma

under the conditions (9.43). The first step is to calculate the departure fk(l)
from the Maxwellian distribution function by using some method of handling
collisions. Several models have been suggested on different grounds to account
for collisions in plasma (Shkarofsky et al., 1966; Krall and Trivelpiece, 1973).

The first three moment equations have been extensively used in astro-
physics, for example, in the investigations of the solar wind. They have led
to a significant understanding of phenomena such as escape, acceleration, and
cooling. However, as more detailed solar wind observations become available,
it appeared that the simplified, collisionally dominated models are not ade-
quate for most of the interplanetary range and for most of the times, i.e. most
physical states of the solar wind.

A higher order, closed set of equations for the six moments have been
derived for multi-fluid, moderately non-Mazwellian plasma of the solar wind
(Cuperman and Dryer, 1985). On the basis of these equations, for example,
the generalized expression for heat flux relates the flux to the temperature
gradients, relative streaming velocity, thermal anisotropies, temperature dif-
ferences of the components.

Recommended Reading: Braginskii (1965), Hollweg (1986).

9.6 Gravitational systems

There is a big difference between astrophysical plasmas and astrophysical
gravitational systems (Section 3.3). The gravitational attraction cannot be
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screened. A large-scale gravitational field always exists over a system. This
follows from the formula (3.17) which shows that the averaged gravitational
force cannot be equal to zero because the neutrality condition (3.18) cannot
be satisfied if all the particles have the same charge sign.

The large-scale gravitational field makes an overall thermodynamic
equilibrium impossible. On the contrary, the electric force in a plasma is
screened beyond the Debye radius and does not come in the way of the plasma
having a proper thermodynamic equilibrium. Therefore, as one might have
anticipated,

those results of plasma astrophysics which explicitly depend upon
the plasma being in thermodynamic equilibrium do not hold for
gravitational systems.

For gravitational systems, like the stars in a galaxy, we may hope that
the final distribution function reflects something about the initial conditions
rather than just reflecting the relaxation mechanism. The random motions
of the stars may be not only non-Maxwellian but even direction dependent
within the system. So galaxies may be providing us with clues on how they
were formed (Palmer, 1994; Bertin, 1999; Peacock, 1999).

If we assume that the stars form a collisionless system (see, however, Sec-
tion 3.3), they do not exert pressure. Such a pressureless gravitating system is
unstable (Jean’s instability). Presumably a real galaxy should possess some-
thing akin to pressure to withstand the collapsing action of its gravity. This
‘pressure’ is associated with the random motion of stars. So the role of sound
speed is assumed to be played by the root mean speed of the stars.

Another justification for treating a galaxy in the hydrodynamic approxi-
mation is that we consider processes on a spatial scale which is large enough
to contain a large number of stars — one of the two requirements of the con-
tinuum mechanics. Anyway, several aspects of the structure of a galaxy can
be understood by assuming that it is made up of a continuum medium. More
often than not,

hydrodynamics provides a first level description of an astrophysical
phenomenon governed predominantly by the gravitational force.

Magnetic fields are usually included later on in order to address additional
issues. For example, the early stages of star formation during which an inter-
stellar cloud of low density collapses under the action of its own gravity can
be modeled in the hydrodynamic approximation. However, when we want to
explain the difference between the angular momentum of the cloud and that
of the born star, we have to include the effect of a magnetic field.

9.7 Practice: Exercises and Answers

Exercise 9.1 [Section 9.3] Show that the third integral in Equation (9.12)
equals zero.
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Answer. Let us find the derivative

0 (Fk,a ) _ Fra Ofx +£ 0Fia  Fro Of

Ovg \ my

me Ovg  mi Ovg me vy
The condition (1.7) has been used on the right-hand side as the condition
0F} o

= 0. 9.48
Do, (9.48)
Hence s
Fio, 0 F voee
u jdgv:lfk(r?vﬂf) :Oa
m a’l)a mp v——00

v

if the distribution function f quickly approaches zero as v — oo; q.e.d.

Exercise 9.2 [Section 9.3] Write the continuity equation with account of
ionization and recombination.

Answer. The continuity equation including the source/sink terms related
to ionization/recombination or charge exchange reads

8nk 0

WvL%nkuk,a:zl: (Vi —vwng) - (9.49)

Here nj; denotes the particle density of species k, either neutral or ionized.
The right-hand side of the equation is the change of nj due to collisions. The
coefficients ~yx; and 7y, denote the rate of transformation of species k into
species [ and vice versa. These rates must obey the relation

ZZ(’Ylknl*’Ykznk)ZO, (9.50)
kool

which ensures the total particle number density conservation.

Exercise 9.3 [Section 9.3] Consider the third integral in the first moment
Equation (9.16).
Answer. Let us find the derivative

0 8fk BFk ¥l 8%
a aF = aF B a feY : F =
au5 (vaFrp &) = vaFlp 05 T By fr+ Frg fr 905
0
Z’UQFkﬁj +0+4 Fig frdap - (9.51)
6’0/3

The condition (1.7) has been used on the right-hand side as the condition

8Fk,ﬁ

0. 52
o 0 (9.52)
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It follows from (9.51) that

O fr 0
UaFk,/B % = GTJg (UaFk,ﬁ fk) - Fk,a fk-

Thus

v— 400
— /F,m frd3v. (9.53)
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/’UQFkﬁ gz{; d3V = ’UaFk fk

v

The first term on the right-hand side equals zero, if the distribution function f
quickly approaches zero as v — oco. Therefore, for the mean force acting on
the particles of kind k& in a unit volume, formula (9.18) has finally arrived.

Exercise 9.4 [Section 9.3] Find a condition under which the mean collisional
force (9.20) is determined only by random motions of the particles of kind k.
Answer. In definition (9.20), let us take into account that

Vo = Uk,q + VL
Thus we obtain
c dfx O fk
<F1£(l (r,1) ) = MEuk,a / ( En ) d*v +m /v <6t d3v. (9.54)

The first integral on the right-hand side equals zero if condition (9.13) is
satisfied. The remaining part

<F;§i1 (r,t) ) = mk/ <8£“) d3v (9.55)

v

Thus the average transfer of momentum from the particles of kind & to the
particles of other kinds is solely due to the random motions of the particles of
kind k if the processes of transformation, during which the particle kind can
be changed, are not allowed for.

Exercise 9.5 [Section 9.5] Let us approximate the collisional integral (9.3)
by the following simple form (Bhatnagar et al., 1954):

<8fk> _ fulevit) - v, (9.56)

ot Te

where an arbitrary distribution function fi(r,v,t) relaxes to the Maxwellian

distribution function fk(o) (r,v,t), as discussed in Section 9.5, in a collisional
time 7. Discuss why this simple approximation illuminates much of the basic
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physics of transport phenomena in a relatively less-painful way for neutral
gases but is not very reliable for plasmas, especially in the presence of magnetic
fields.

Comment. The departure of the distribution function from the pure
Maxwellian one, the function

FP v, t) = fule,v, ) — 10, v, 1) (9.57)

satisfies the following equation:

e\ e Fra 05 _ S

v =
ot * Org my  Ovug, Te

(9.58)

which is called the BGK (Bhatnagar, Gross and Krook) equation.

If a gradient in space, 9/0r,, gives rise to the departure from the
Maxwellian distribution, then in order to have a rough estimate of the ef-
fect, we may balance the second term on the left-hand side of Equation (9.58)
with its right-hand side:

(1)
vl £ ‘fk ‘ (9.59)
L - Te '

Here |v, | is the typical velocity of the particles of kind k, L is the typ-
ical length scale over which properties of the system change appreciably.
From (9.59) it follows that

1)
EEPY
A

(9.60)

Thus the departure from the Maxwellian distribution will be small if the mean
free path A, is small compared to the typical length scale. This is consistent
with the second condition of (9.43).



Chapter 10

Multi-Fluid Models of
Astrophysical Plasma

The multi-fluid models of plasma in electric and magnetic fields allow
us to consider many important properties of astrophysical plasma, in
particular the Langmuir and electromagnetic waves, as well as many
other interesting applications.

10.1 Multi-fluid models in astrophysics

The transfer Equations (9.14), (9.17), and (9.25) give us the hydrodynamic-
type description of multi-component astrophysical plasma in electric and mag-
netic fields. The problem is that, if we would like to solve the equations for
one of the plasma components, we could not escape solving the transfer equa-
tions for all of the components since they depend on each other and on the
electric and magnetic fields. For this reason, we should minimize the number
of plasma components under consideration.

The ‘two-fluid’ hydrodynamic-type equations are often used to describe
the flow of the electrons and protons of a fully-ionized astrophysical plasma
under the action of an electric and magnetic fields. Such treatment yields,
for example, the generalized Ohm’s law in astrophysical plasma (Chapter 11)
as well as a dynamical friction force which maximizes when the relative drift
velocity is equal to the sum of the most probable random speeds of the elec-
trons and ions. For relative drift velocities in excess of this value, the friction
force decreases rapidly. The electron and ion currents flowing parallel to the
existing magnetic fields increase steadily in time, i.e. runaway (Dreicer, 1959;
see also Section 8.4).

The ‘multi-fluid” models are useful, for example, to explore properties of
the solar wind (e.g., Bodmer and Bochsler, 2000). The electrons, protons,

183
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and alpha particles in the solar wind constitute the main three components,
while the less abundant elements and isotopes are treated as test species. To
model the main gases, we have to study solutions for the conservation-law
equations of the three components. The behaviour of minor ions depends in
a complicated manner on their mass and on their charge, structured by the
interplay of acceleration, gravity, pressure gradient, electromagnetic fields,
Coulomb friction force, and thermal diffusion. Such models allow one to
explore the efficiency of isotope fractionation processes in the solar corona.

10.2 Langmuir waves

Because a plasma consists of at least two components (electrons and ions),
the number of possible waves is larger than in a normal fluid or gas, where
sound or acoustic waves are the only possible waves. In this Section we shall
discuss the simplest waves in plasma, whose properties can be deduced from
the hydrodynamic-type equations for two mutually penetrating charged gases
(Section 9.4).

Although astrophysical plasma is almost always magnetized, we can quite
often neglect the magnetic field in discussing small-amplitude plasma waves;
the condition will become clear later. The reduced complexity of the governing
equations can be further simplified by approximations.

10.2.1 Langmuir waves in a cold plasma

Let us assume that the ions do not move at all (they are infinitely massive)
and they are uniformly distributed in space. So the ions have a fixed number
density ng. This is a cold ion approximation.

Let us also neglect all magnetic fields. We shall assume that any variations
of electron density ne, electron velocity u., and related electric field E occur
only in one dimension — the z axis. Then we are left with a set of three
equations:

(a) the continuity equation (9.14) for electrons

One 0

a._ ee:O, 10.1
8t+8xnu ( )

(b) the motion equation (9.40)

a Ue a Ue ape
elle \ ™7, e - - - eEg;, 10.2
mn(at +u 83:) 5 " (10.2)
(c) the electric field equation
0FE,
= 4dme (ng — Ne) - (10.3)

Ox
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In general, we cannot solve these nonlinear equations exactly, except for
very special cases. One of them is trivial:

Nne =ng, U=0, p.=const, FE,=0. (10.4)

This solution corresponds to a stationary electron gas of uniform density.
Let us linearize Equations (10.1)—(10.3) with respect to the state (10.4).
This yields the following set of linear equations:

anl 8u1 o
o 0oy — (10.5)
du 0
MeNg a—tl =— % —enek1 , (10.6)
OF
6301 =4meny . (10.7)

Let us consider the special case of cold electrons:
pe =0. (10.8)

Now we eliminate uy and F; from the set of equation by taking the time
derivative of Equation (10.5) to obtain the oscillator equation

2 2
0" my n <47re no) n =0, (10.9)

ot? Me

If we displace some electrons to produce an initial perturbation, we create
a positive-charge density at the position where they started. This positive-
charge perturbation attracts the electrons, which will tend to move back to
their original position, but will overshoot it. They come back again, overshoot
it, and so on. Without any damping, the energy put into the plasma to create
the perturbation will remain in the plasma. So the oscillation will continue
forever with the frequency

Are? 1/2
Ly <M>

pl Me

(10.10)

called the electron plasma frequency.

Therefore, in a two-component cold plasma, there exist the oscillations
of charge density — Langmuir waves which frequency is independent of the
wave vector k; so the group velocity, Vg = dw/dk, is zero. Thus

in a cold plasma, Langmuir waves are spatially localized oscillations
of electric charge density which do not propagate at all.

Note that there is no equivalent to these oscillations in gasdynamics or
gravitational dynamics, for which there is no charge separation and related
electric-type force.
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10.2.2 Langmuir waves in a warm plasma

What happens with behaviour of a Langmuir wave, if the electron temperature
is not equal to zero? — Let us drop the assumption (10.8) of zero pressure in
the linear equations (10.5)—(10.7). We then must include the perturbation of

electron pressure
% :nokB% +kBTO% (10.11)
in Equation (10.6).

Now we must relate ny to T; and vice versa. For example, we could
argue that for long-wavelength waves the compression is the one-dimensional
(N = 1) adiabatic process with the index v = (N + 2)/N = 3. In this case,
the perturbation of electron pressure becomes

0p1 ony
— PR 10.
DL = 3y Ty (10.12)

Naturally we expect now an initial perturbation to propagate through the
plasma as a wave. Thus a plane-wave solution of the form

fi(z,t) = frexp[—i (wt — kz)] (10.13)

should satisfy the linear differential equations. The quantities with tildes are
the complex amplitudes. They obey three linear algebraic equations:

7i(.¢.)7~11 +1kn0ﬁ1 :0,
—iwmeng U1 —‘rik‘?)k‘BTo n1 + eng El =0,
ik By +4mei; =0.

To have a nontrivial solution, the determinant must be zero. Its solution is

w= :I:wp(le) (1 + 37‘12) k2)1/2 ,

(10.14)
where 1 v
Te
To = —= —oy s (10.15)
V3 W

is the electron Debye radius; Ve is the mean thermal velocity (8.15) of elec-
trons in a plasma.

The dispersion equation (10.14) can be also derived from the Vlasov equa-
tion, of course (see formula (49) in Vlasov, 1938). It is similar to the well-
known relation for the propagation of transverse electromagnetic waves in a
vacuum, except that the role of the light velocity ¢ is here played by the
thermal velocity V.. This dispersion relation is shown in Figure 10.1.

Therefore the frequency w of Langmuir waves in a plasma with warm
electrons depends on the wave vector k which is parallel to the xz-axis. So
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Figure 10.1: A dispersion diagram (solid curves) for Langmuir waves in a
warm plasma. The ions do not move at all. Dashed straight lines are drawn
for Langmuir waves in a cold plasma.

the group velocity, dw/9k, of Langmuir waves in a warm plasma
without magnetic field is not equal to zero.
They oscillate at the electron plasma frequency w](;) and propagate in a warm
plasma. It follows from (10.14) and (10.15) that the group velocity is

_ Ow

vy =09 _yak _3kT k.

ok~ T*Tw T me w

(10.16)

Therefore the plasma waves are propagating as long as the electron tempera-
ture is non-zero. Moreover, due to the small mass of the electrons, the group
velocity (10.16) is always relatively large.

10.2.3 Ion effects in Langmuir waves

Let us show that, when the ions are allowed to move, ion contributions are
important only for slow variations or low-frequency waves because the ions
cannot react quickly enough.

We are still dealing with linear waves which involve only the first-order
electric field E( directed along the wave vector k which is parallel to the z-
axis. Linearizing the continuity equations for electrons and ions, the motion
equations for electrons and ions, as well as the electric field equation, let us
assume that the electrons and ions both obey the adiabatic Equation (10.12).
Then we again use the wave solution (10.13) to reduce the linearized differ-
ential equations to algebraic ones and to obtain the determinant. Because
mi/me > 1, we neglect the term m, w? in this determinant as compared with
the term m;w?. By so doing, we obtain the relation

2 o (Viks T vekpTe 1
=k . 10.17
W ( my + mi 1+ k%2 ( )

This dispersion relation is shown in Figure 10.2.
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Figure 10.2: A dispersion diagram for ion-acoustic waves (part a) and for ion
plasma waves (part b) in a warm plasma without magnetic field.

In the limit of small krg

1kT‘1 ek Te
W? = k2 (7 pliy Jeo )szVf;. (10.18)
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This is the so-called ion-acoustic waves. They are shown by a curve part (a)
in Figure 10.2. The group velocity of the wave is independent of k:

1/2
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(10.19)

An opposite limit is obtained for cold ions. If ion temperature T; — 0, then
kry, > 1, i.e., short wavelengths are under consideration. In this case, shown
by the curve part (b) in Figure 10.2, the cold ions oscillate with a frequency

i 4dren, 1/2
W =+ <m> (10.20)

called the ion plasma frequency.

Ton-acoustic waves are observed in many cases. They were registred, for
example, by the spacecraft Voyager 1 in the upstream side of the Jovian bow
shock. Ion-acoustic waves presumably play an important role in solar flares,
for example, in super-hot turbulent-current layers (see vol. 2, Section 6.3).

10.3 Electromagnetic waves in plasma

In this Section we still assume that the unperturbed plasma has no magnetic
field: B(®) = 0. However we shall discuss waves that carry not only an electric
field E () but also a magnetic field B,

Let us consider transversal waves, so that k- E® =0 and k- B® = 0.
The last equality is imposed by Equation (1.26) and is always true. We do
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not need Equation (1.27) in this case either. We shall neglect the ion motion,
which is justified for high-frequency waves. So the remaining equations in
their linearized form are

dul

8; = -vVpY —enOEW (10.21)

(1)
87;;; +nOdival) =0, (10.22)

4 19EW
carl BM = %j(l) + 5 (10.23)
1oBW

curlEW = z 0 o (10.24)
iV =enOul®, (10.25)

The Lorentz force does not appear in the electron-motion Equation (10.21)

because it is of the second-order small value proportional to uél) x B,

Furthermore vectors E() and ugl) are perpendicular to the wave vector k,

and thus ne(l) =0 and pe(l) = 0. After assuming the exponential plane-wave
form (10.13) and using usual algebra, we find the dispersion equation for

electromagnetic waves:
w2 =wi? + k22 (10.26)

Here c is the speed of light in a vacuum. This dispersion relation is shown in
Figure 10.3.

®

Figure 10.3: The dispersion diagram for
electromagnetic waves in a cold plasma
without magnetic field. For large values
of k (short wavelengths), the group ve-
locity (the slope of the solid curve) and
phase velocity approach the speed of the
light (dashed line). For small values of
k (long wavelengths), the group velocity
goes to zero.

(e)

If the wave frequency w is much larger the electron plasma frequency Wy s

the wave becomes a free-space light wave with w = kc.
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(e)

If w— w_’, a wave would decay in space and not propagate. In this case,

pl
the index of refraction
(e)27\1/2
y8 w
j2
goes to zero. If w < wlfle ), the refraction index becomes imaginary.
Moving through astrophysical plasma of changing wp(le), a wave is reflected

when w = wlfle) and, therefore, n,, = 0. This allows one to measure remotely

the plasma density, for example, in the Earth ionosphere.
(e)

Another application is in ionospheric heating. At the height where Wy s

equal to the wave frequency, the group velocity
dw  kc?

Vyp = 2o =

also goes to zero.

The wave amplitude becames large there because its flux of energy
cannot propagate.

The large electric field of the wave can accelerate electrons and drive currents
in the ionospheric plasma. In this way, the wave can heat and modify the
plasma. If the power from a transmitter on the ground emitting a radiation
at a frequency w is large enough, the heating is quite significant.

10.4 What do we miss?

We have considered two basic types of waves in a two-fluid plasma. The
Langmuir wave or plasma wave (as well as the ion plasma wave) does not
have a wave magnetic field. The electromagnetic wave does have a magnetic
field but can propagate only if its frequency is above the plasma frequency. We
should see that, when there is a stationary magnetic field in the plasma, the
wave properties become more complex and more interesting (e.g., Stix, 1992;
Zheleznyakov, 1996).

In particular, we could find that the electromagnetic wave with its fre-
quency below the plasma frequency can propagate through a magnetized
plasma. For low-frequency waves this effect will be demonstrated in the mag-
netohydrodynamic (MHD) approximation in Chapter 15. What else has been
lost in the above consideration?

The advantage of the hydrodynamic approach used in this Section to study
the basic properties of waves in a two-fluid plasma is the relative simplicity.
The hydrodynamic-type equations have three spatial dimensions and time,
rather than the seven-dimensional phase space of the Vlasov kinetic theory
(Section 3.1.2).
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The obvious disadvantage is that some subtle fine effects, such as Landau
damping (Section 7.1.2) which is caused by a resonance with particles moving
at the phase velocity of a wave, cannot be obtained from the hydrodynamic-
type equations. We have to use a kinetic treatment to specify how a distribu-
tion of particles responds to a wave. In this case we use the Vlasov equation
to specify how the distribution functions of electrons and ions are affected by
the wave fields (e.g., Chapter 7).

To calculate the collisional damping of plasma waves simply, the simplest
hydrodynamic model is useful (Exercise 10.3).

The hydrodynamic-type models work only when a finite number of the low-
order moments are sufficient to provide all the essential information about the
system.

If the distribution function has some unusual features, then a few
low-order moments may not carry all the necassary information,

and we may lose important physics by restricting ourselves to the quasi-
hydrodynamic description of cosmic plasma.

10.5 Practice: Exercises and Answers

Exercise 10.1. Show that in the solar corona a dynamic viscosity coefficient
can be given by a simple formula (Hollweg, 1986):

n~10"16 Tp5/2 , gem tsTh (10.29)

where T}, is the proton temperature, and the Coulomb logarithm has been
taken to be 22. So, with 7}, ~ 2 x 10° K, the viscosity coefficient in the corona

n~1lgemts™h
Why does the viscosity grow with the proton temperature? Why is it so large
and does it grow with temperature so quickly?

Hint. Consider a fully-ionized hydrogen plasma in a magnetic field. Let
Tpp represent the typical Coulomb collisional time (8.39) for thermal protons.
Let wB(p) denote the proton cyclotron frequency (5.52).

Write the viscous stress tensor (9.35) for the protons. This tensor involves
five coeflicients of viscosity, denoted ¢, 71, ... 74 by Braginskii (1965). Show
that the coefficient ¢ is by far the largest one (10.29). The coefficients 73

and 74 are smaller by factors ~ (wép)rpp)il, while n1 and 7o are smaller
-2
than 779 by factors ~ (wép)Tpp) . Thus the parts of the viscous stress tensor

involving the off-diagonal terms can often be neglected. The part involving
1o can be dynamically and thermodynamically important.

Exercise 10.2. Discuss a famous puzzle of plasma astrophysics. Solar flares
generate electron beams that move through the solar corona and the inter-
planetary space at velocities ~ 0.3 ¢ (see Exercise 5.3). These fast beams
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should lose their energy quickly to plasma waves. In fact, they do generate
waves called solar type III radio bursts. However the solar fast electrons are
still seen far beyond the orbit of the Earth. Why?

Hint. The link between the electron beams and the waves observed in
space near the Earth or even on the ground is a little more complex than it
seems. It involves the transformation of the electrostatic plasma oscillations
with frequency near wp(le) into electromagnetic waves at the same frequency.
In any realistic situation, the electrons in the beam are not cold but have a
thermal spread. They cause a plasma wave to grow. But as the electric field
in the wave grows, the electrons are heated.

The spreading and slowing of the beam in the velocity space cannot be
described by fluid equations. This process is often referred to as quasi-linear
diffusion. We can expect that the electron beam has slowed and spread in
the velocity space to such a degree that waves do not grow anymore. A stable
situation can occur, and a warm electron beam can propagate through the
plasma without lossing energy.

Exercise 10.3. Show that Coulomb collisions damp the Langmuir plasma

waves with the rate
Imw=—2v. (10.30)

Hint. Following formula (9.24), add to the right-hand side of the electron
motion Equation (10.2) the collisional friction term

+ MeNe Vei (ui,a - ue,oe) .



Chapter 11

The Generalized Ohm’s
Law in Plasma

The multi-fluid models of the astrophysical plasma in magnetic field
allow us to derive the generalized Ohm’s law and to consider important
physical approximations as well as many interesting applications.

11.1 The classic Ohm’s law

The classic Ohm’s law, j = oE, relates the current j to the electric field E in a
conductor in rest. The coefficient o is electric conductivity. As we know, the
electric field in plasma determines the electron and ion acceleration, rather
than their velocity. That is why, generally, such a simple relation as the classic
Ohm’s law does not exist. Moreover, while considering astrophysical plasmas,
it is necessary to take into account the presence of a magnetic field and the
motion of a plasma as a whole, and as a medium consisting of several moving
components.

Recall the way of deriving the usual classic Ohm’s law in plasma without
magnetic field. The electric current is determined by the relative motion of
electrons and ions. Considering the processes in which all quantities vary
only slightly in a time between the electron-ion collisions, electron inertia can
be neglected. An equilibrium is set up between the electric field action and
electrons-on-ions friction (see point A in Figure 8.7). Let us assume that the
ions do not move. Then the condition for this equilibrium with respect to the
electron gas

0= —encEqy + Mene Vei (0 — Ue,n)

results in Ohm’s law

e2n,

Ja = —€Nelleq = —— Eo = 0E,, (11.1)
Melei
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where )
e Ne

o =

(11.2)

Melei
is the electric conductivity.

In order to deduce the generalized Ohm’s law for the plasma with mag-
netic field, we have to consider at least two equations of motion — for the elec-
tron and ion components. A crude theory of conductivity in a fully-ionized
plasma can be given in terms of a two-fluid approximation. The more general
case, with the motion of neutrals taken into account, has been considered
by Schliiter (1951), Alfvén and Falthammar (1963); see also different appli-
cations of the generalized Ohm’s law in the three-component astrophysical
plasma (Schabansky, 1971; Kunkel, 1984; Hénoux and Somov, 1991 and 1997;
Murata, 1991).

11.2 Derivation of basic equations
Let us write the momentum-transfer Equations (9.17) for the electrons and

ions, taking proper account of the Lorentz force (9.19) and the friction
force (9.24). We have two following equations:

(e)
) o11; 1
mea(neue,a):— 87,,85 — €Ne |:E+C(ueXB):|a+
+ MeNe Vei (ui,a - ue,a) 3 (113)
) onl 1
mi—(nium):— + Z; en; E—‘r*(uiXB) +
ot ’ 87‘5 c o
+ MeNj Vei (Ue,a — Uiya) - (11.4)

The last term in (11.3) represents the mean momentum transferred, because
of collisions (formula (9.24)), from ions to electrons. It is equal, with opposite
sign, to the last term in (11.4). It is assumed that there are just two kinds
of particles, their total momentum remaining constant under the action of
elastic collisions.

Suppose that the ions are protons (Z; = 1) and electrical neutrality is
observed:

Ny ="nNe=n.

Let us multiply Equation (11.3) by —e/m, and add it to Equation (11.4)
multiplied by e/m;. The result is

0 e e
&[en(ui,a_uc,a)] - |:mFi,a_ch,a:| +

i e

1 1 2 e i
o) 2 2 (o) (o) -
me My c Me a myi o
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Me

—Veien | (Ui g — Ue o) + — (Ui, — Uera) | - (11.5)
; p—
Here © )
o1, o1L)
ca=——22 and Fy,=-—2° (11.6)
87“,3 87"5
Let us introduce the velocity of the centre-of-mass system
g MM (11.7)
mi + Me
Since m; > M,
u:ui—i—%uemui. (11.8)
mi

On treating Equation (11.5), we neglect the small terms of the order of the
ratio me/m;. On rearrangement, we obtain the equation for the current

j=en(u;—u.) (11.9)

in the system of coordinates (11.8). This equation is
i’  e*n

ot Me

[E%—i(uxB)}— (j'xB)—

MeC

e e
—l/eij/—f—fFi—iFe. (1110)
my e
The prime designates the electric current in the system of moving plasma, i.e.
in the rest-frame of the plasma. Let E, denote the electric field in this frame

of reference, i.e.

1
E,=E+-uxB. (11.11)
c
Now we divide Equation (11.10) by ve; and represent it in the form
2 w(©) 1 9j’ 1
j =g, - yxn - — D +(6Fi—eFe), (11.12)
Melei Vei Vei ot Vei i Me

where n = B/B and wB(e) = eB/mc is the electron gyro-frequency.

Thus we have derived a differential equation for the current j’.

The third and the fourth terms on the right do not depend of magnetic
field. Let us replace them by some effective electric field such that

1 0j' e 1 1
Eg=—— — | —F,——F. ), 11.13
g Heft Vei Ot * Vei (mi Me ) ( )
where
e’n
g =

Me Vei

(11.14)
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is the plasma conductivity in the absence of magnetic field. Combine the
fields (11.11) and (11.13),
E' = Eu + Eeﬁ ’

in order to rewrite (11.12) in the form

w(©
j'=0E’— 2 j’ xn. (11.15)

el

We will consider (11.15) as an algebraic equation in j’, neglecting the 9j’/0t
dependence of the field (11.13). Note, however, that

the term 0j’/0t is by no means small in the problem of the particle
acceleration by a strong electric field in astrophysical plasma.

Collisionless reconnection is an example in which particle inertia (usually
combined with anomalous resistivity, see vol. 2, Section 6.3) of the current
replaces classical resistivity in allowing fast reconnection to occur (e.g., Drake
and Kleva, 1991; Horiuchi and Sato, 1994).

11.3 The general solution

Let us find the solution to (11.15) as a sum of three currents

j/ZO_HEﬁ—i_O—J-Ei—’_JHnXEJ/“

(11.16)
Substituting formula (11.16) in Equation (11.15) gives
2
ol=0=—", (11.17)
MelVei
1 1
R Sy Te=— (11.18)
1+ ((.«Jée)Tei) Vei
(OF .
w el
Oy =01 (wB(e)Tei) =0 s T (11.19)

—s =
1+ (wée)Tei>

Formula (11.16) is called the generalized Ohm’s law. It shows that the
presence of a magnetic field in a plasma not only changes the magnitude of
the conductivity, but the form of Ohm’s law as well: generally, the electric
field and the resulting current are not parallel, since o, # o . Therefore the
electric conductivity of a plasma in a magnetic field is anisotropic. Moreover
the current component j! which is perpendicular to both the magnetic and
electric fields, appears in the plasma. This component is the so-called Hall
current (Figure 11.1).
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Figure 11.1: The generalized Ohm’s law j! |
in a magnetized plasma: the direct (j ﬂ I }
and j|) and Hall’s (j;,) currents in a |
plasma with electric (E’) and magnetic n4 |
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11.4 The conductivity of magnetized plasma

11.4.1 Two limiting cases

The magnetic-field influence on the conductivity o of the ‘direct’ current j|
across the magnetic field B and on the Hall-current conductivity o, is deter-
mined by the parameter wB(e)Tei which is the turning angle of an electron on
the Larmor circle in the intercollisional time. Let us consider two limiting
cases.

(a) Let the turning angle be small: )

W Tei K 1. .
() 1 11.20

Obviously this inequality corresponds to the weak magnetic field or dense cool
plasma, so that the electric current is scarcely affected by the magnetic field:

oo =0, % %wB(e)Tei <1. (11.21)
Thus in a frame of reference associated with the plasma, the usual Ohm’s law
with isotropic conductivity holds.
(b) The opposite case, when the electrons spiral freely between rare
collisions:
w7 > 1, (11.22)

corresponds to the strong magnetic field and hot rarefied plasma. This plasma
is termed the magnetized one. It is frequently encountered under astrophysical
conditions. In this case

-2

-1
o|=0, 0LROC (wB(e)Tei) , oy RO (wB(e)Tei) , (11.23)

or )
o~ (wB(e)Tei) oy R (wB(e)Tei> ol . (11.24)



198 Chapter 11. Generalized Ohm’s Law

Hence in the magnetized plasma, for example in the solar corona (see
Exercises 11.1 and 11.2),

I >0, >0 .

(11.25)

In other words, the impact of the magnetic field on the direct current is
especially strong for the component resulting from the electric field E{. The
current in the E/ direction is considerably weaker than it would be in the
absence of a magnetic field. Why is this so?

11.4.2 The physical interpretation

The physical mechanism of the perpendicular current j| is illustrated by Fig-
ure 11.2.
The primary effect of the electric field E| in the presence of the
magnetic field B is not the current in the direction E|, but rather
the electric drift in the direction perpendicular to both B and E/ .

The electric drift velocity (5.22) is independent of the particle’s mass and
charge. The electric drift of electrons and ions generates the motion of the
plasma as a whole with the velocity v = v4q. This would be the case if there
were no collisions at all (Figure 5.3).

+
b o
E,
. =
B® . 1 Va

eoM =

| S 0000

ueJ_

Figure 11.2: Initiation of the current in the direction of the perpendicular
field E/ as the result of rare collisions (1, 2, 3, ...) against a background of
the electric drift. Only collisions of electrons are shown.

Collisions, even infrequent ones, result in a disturbance of the particle’s
Larmor motion, leading to a displacement of the ions (not shown in Fig-
ure 11.2) along E', and the electrons in the opposite direction as shown in
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Figure 11.2. The small electric current j| (a factor of wB(e)Tei smaller than the
drift one) appears in the direction E/ .

To ensure the current across the magnetic field, the so-called Hall electric
field is necessary, that is the electric field component perpendicular to both
the current j| and the field B (Braginskii, 1965; Sivukhin, 1996, Chapter 7,
§ 98). This is the secondary effect but it is not small in a strong magnetic
field.

The Hall electric field balances the Lorentz force acting on the car-
riers of the perpendicular electric current in plasma due to the pres-

ence of a magnetic field,
i.e. the force

en en
—uy  xB——u. xB=
c c

F(jl)
1
=—-en(ujL —u. ) xB (11.26)
c

Hence the magnitude of the Hall electric field is
1
E' = —j| xB. (11.27)

The Hall electric field in plasma is frequently set up automatically, as a
consequence of small charge separation within the limits of quasi-neutrality.
In this case the ‘external’ field, which has to be applied to the plasma, is
determined by the expressions

Ej=ji/oy and E]=j] /oy, (11.28)

We shall not discuss here the dissipation process under the conditions
of anisotropic conductivity. In general, the symmetric highest component
of the conductivity tensor can play the most important role (see Landau
et al., 1984, Chapter 3) in this process of fundamental significance for the
flare energy release problem. In the particular case of a fully-ionized plasma,
the tendency for a particle to spiral round the magnetic field lines insures
the great reduction in the transversal conductivity (11.18). However, since
the dissipation of the energy of the electric current into Joule heat is due
solely to collisions between particles, the reduced conductivity does not lead
to increased dissipation (Exercise 11.3).

On the other hand, the Hall electric field and Hall electric current can
significantly modify conditions of magnetic reconnection (e.g., Bhattachar-
jee, 2004).

11.5 Currents and charges in plasma

11.5.1 Collisional and collisionless plasmas

Let us point out another property of the generalized Ohm’s law in astrophys-
ical plasma. Under laboratory conditions, as a rule, one cannot neglect the
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gradient forces (11.6). On the contrary, these forces usually play no part in
astrophysical plasma. We shall ignore them. This simplification may be not
well justified however in such important applications as reconnecting current
layers (RCLs), shock waves and other discontinuities.

Moreover let us also restrict our consideration to very slow (say hydrody-
namic) motions of plasma. These motions are supposed to be so slow that
the following three conditions are fulfilled.

First, it is supposed that

1
Ww=— <K Vej O VT > 1, (11.29)
T

where 7 is a characteristic time of the plasma motions. Thus

departures of actual distribution functions for electrons and ions
from the Maxwellian distribution are small.

This allows us to handle the transport phenomena in linear approximation.

Moreover, if a single-fluid model is to make physical sence, the electrons
and ions could have comparable temperatures, ideally, the same tempera-
ture T which is the temperature of the plasma as a whole:

T,=T,=T.

Second, we neglect the electron inertia in comparison with that of the ions
and make use of (11.8). This condition is usually written in the form

i) eB

(11.30)

Thus

the plasma motions have to be so slow that their frequency is smaller
than the lowest gyro-frequency of the particles.

Recall that the gyro-frequency of ions wB(i) < wéc).
The third condition

Vei > wB(e) or wée)Tei < 1. (11.31)

Hence the hydrodynamic approximation can be used, the conductivity ¢ being
isotropic. The generalized Ohm’s law assumes the following form which is
specific to magnetohydrodynamics (MHD):

1
j’za(E—f—uxB). (11.32)
c
The MHD approximation is the subject of the next chapter. Numerous ap-

plications of MHD to various phenomena in astrophysical plasma will be con-
sidered in many places in the remainder of the book.
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In the opposite case (11.22), when the parameter wB(e)Tei is large, charged
particles revolve around magnetic field lines, and a typical particle may spend
a considerable time in a region of a size of the order of the gyroradius (5.14).
Hence, if the length scale of the plasma is much larger than the gyroradius,
we may expect the hydrodynamic-type models to work.

It appears that, even when the parameter wée)Tei tends to infinity (like
in the solar corona, see Exercise 11.2) and collisions are negligible, the quasi-
hydrodynamic description of plasma, the Chew-Goldberger-Low (CGL) ap-
proximation (Chew et al., 1956) is possible (especially if the actual electric
field E in a collisionless plasma is perpendicular to a sufficiently strong mag-
netic field B) and quite useful. This is because

the strong magnetic field makes the plasma, even a non-collisional
one, more ‘interconnected’; so to speak, more hydrodynamic in the
directions perpendicular to the magnetic field.

That allows one to write down a well-justified set of two-dimensional MHD
equations for the collisionless plasma in a magnetic field (see Volkov, 1966,
Equations (42)—(45)). As for the motion of collisionless particles along the
magnetic field, some important kinetic features and physical restrictions still
are significant (Klimontovich and Silin, 1961; Shkarofsky et al., 1969, Chap-
ter 10). Chew et al. (1956) emphasized that “a strictly hydrodynamic ap-
proach to the problem is appropriate only when some special circumstance
suppresses the effects of pressure transport along the magnetic lines”.

There is ample experimental evidence that strong magnetic fields do make
astrophysical plasmas behave like hydrodynamic charged fluids. This does not
mean, of course, that there are no pure kinetic phenomena in such plasmas.
There are many of them indeed.

11.5.2 Volume charge and quasi-neutrality

One more remark concerning the generalized Ohm’s law is important for the
following. While deriving the law in Section 11.2, the ezact charge neutrality
of plasma or the exact electric neutrality was assumed:

Zini =ne =n, (11.33)

i.e. the absolute absence of the volume charge in plasma: p% = 0. The same
assumption was also used in Sections 8.2 and 3.2. However there is no need
for such a strong restriction. It is sufficient to require quasi-neutrality, i.e.
the numbers of ions (with account of their charge taken) and electrons per
unit volume are very nearly equal:
Zini e (11.34)

Te

So
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the volume charge density has to be small in comparison to the
plasma density.

Once the volume charge density
p1#£0, (11.35)
yet another term must be taken into account in the generalized Ohm’s law:
ji=p%u. (11.36)

This is the so-called convective current. It is caused by the volume charge
transfer and must be added to the conductive current (11.16).

The volume charge, the associated electric force p9E and the convective
current p<u are of great importance in electrodynamics of relativistic objects
such as black holes (Novikov and Frolov, 1989) and pulsars (Michel, 1991).
Charge-separated plasmas originate in magnetospheres of rotating black
holes, for example, a super-massive black hole in active galactic nuclei. The
shortage of charge leads to the emergence of a strong electric field along
the magnetic field lines. The parallel electric field accelerates migratory
electrons and/or positrons to ultrarelativistic energies (e.g., Hirotani and
Okamoto, 1998).

Charge density oscillations in a plasma, the Langmuir waves, are consid-
ered in Section 10.2.

* * *

The volume charge density can be evaluated in the following manner. On the
one hand, from Maxwell’s equation divE = 47p? we estimate

Ty — 11.37
P ( )
On the other hand, the non-relativistic equation of plasma motion yields
P nek,T
eE N == 9
en i 7
so that T
E~ 32— (11.38)

el
On substituting (11.38) in (11.37), we find the following estimate

pt BT 111 (KT
ene el 4nL en. L2 \ 4me2n,

or

(11.39)
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Since the usual concept of plasma implies that the Debye radius
r, L L, (11.40)

the volume charge density is small in comparison with the plasma density.

When we consider phenomena with a length scale L much larger than the
Debye radius r, and a time scale 7 much larger than the inverse the plasma
frequency, the charge separation in the plasma can be neglected.

11.6 Practice: Exercises and Answers

Exercise 11.1 [Section 11.4] Evaluate the characteristic value of the parallel
conductivity (11.17) in the solar corona.
Answer. It follows from formula (11.17) that

2

P i =253 x 1037 ~ 100 — 1017, 1, (11.41)

e

if we take Tep ~ 0.2 — 2.0 s (Exercise 8.1).

| =

Exercise 11.2 [Section 11.4] Estimate the parameter wB(e)Tei in the solar
corona above a sunspot.

Answer. Just above a large sunspot the field strength can be as high as
B ~ 3000G. Here the electron Larmor frequency w(®) ~ 5 x 10 rad s™*
(Exercise 5.1). Characteristic time of close electron-proton collisions 7ep (¢l) ~
22 s (see Exercise 8.1). Therefore w(®)7;(cl) ~ 102 rad > 1.

Distant collisions are much more frequent (Exercise 8.1). However, even
with 7¢p ~ 0.1 s, we obtain

wée)Tei ~10%rad > 1.
So, for anisoptropic conductivity in the corona, the approximate formu-

lae (11.23) can be well used.

Exercise 11.3 [Section 11.4.2] Consider the generalized Ohm’s law in the
case when the electric field is perpendicular to the magnetic field B = Bn.
So

j’=0,E| +o,nxE/, (11.42)

where
1 wB(e) Tei

o—y oy=0—2 " (11.43)
1+ (wée)rei> 1+ (wB(e)Tei)

This indicates that the current j| in the direction of E/ is reduced in the

ratio ) )
1/ (1 + (wB(e)TCi) ) ~ (wB(e)TCi) , if wB(e)Tci >1,

o] =
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by the magnetic field. In addition, the other current (wée)Tei)Q times as large
flows in the direction perpendicular to both B and E{; this is the Hall cur-
rent j! .

Show that the reduction in the ‘perpendicular’ conductivity (Figure 11.1)
does not increase the rate of dissipation of current energy (see Cowling, 1976,

§6.2).



Chapter 12

Single-Fluid Models for
Astrophysical Plasma

Single-fluid models are the simplest but sufficient approximation to
describe many large-scale low-frequency phenomena in astrophysical
plasma: regular and turbulent dynamo, plasma motions driven by
strong magnetic fields, accreation disks, and relativistic jets.

12.1 Derivation of the single-fluid equations

12.1.1 The continuity equation

In order to consider cosmic plasma as a single hydrodynamic medium, we have
to sum each of the three transfer equations over all kinds of particles. Let us
start from the continuity Equation (9.14). With allowance for the definition
of the plasma mass density (9.6), we have

- + div (Z pkuk> =0. (12.1)

The mean velocities of motion for all kinds of particles are supposed to be
equal to the plasma hydrodynamic velocity:

u (r,t) =ug (r,t) =--- =u(r,t), (12.2)

as a result of action of the mean collisional force (9.24). However this is not
a general case.
In general, the mean velocities are not the same, but a frame of reference

can be chosen in which
pu=> prug. (12.3)
k

205



206 Chapter 12. Single-Fluid Models

Then from (12.1) and (12.3) we obtain the usual continuity equation

ap

ot +divpu=0.

(12.4)

12.1.2 The momentum conservation law in plasma

In much the same way as in previous Section, we handle the momentum
transfer Equation (9.42). On summing over all kinds of particles, we obtain
the following equation:

dug,
Pt

9 1. c
=gy es o Eat L xB),+ Y (F ), (125)
k

Here the volume charge density in plasma is
pl=">" nge, = L aive (12.6)
- 47 ’

and the electric current density is

c 1 OE
j:anekuk:—curlB———.
p 4m dm Ot

(12.7)

The electric and magnetic fields, E and B, involved in this description are av-
eraged fields associated with the total electric charge density p? and the total
current density j. They satiesfy the macroscopic Maxwell equations. In cos-
mic plasma, the magnetic permeability and the electric permittivity can almost
always be replaced by their vacuum values. For this reason, the macroscopic
Maxwell equations have the same structure as Equations (1.27) and (1.24)
that have been used on the right-hand side of formulae (12.6) and (12.7).
Since elastic collisions do not change the total momentum, we have

S (F (x,1) =0. (12.8)

k

On substituting (12.6)—(12.8) in Equation (12.5), the latter can be rear-
ranged to give the momentum conservation law for plasma

d g 0
= — — pas + F.(E,B).
P 8Tﬁpﬁ+ (E,B)

(12.9)
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Here the electromagnetic force is written in terms of the electric and magnetic
field vectors:

F,(EB =——-—"———Mg3. 12.10
( ) ot dmc org & ( )
The tensor
1 1 o 9
Mg = o —E,Eg — B,Bg + 3 6(15 (E + B ) (12.11)
T

is called the Mazwellian tensor of stresses.
The divergent form of the momentum conservation law is

—|—7(Hag+Mag) =0.

ot 67‘5

4me

8{pua+(ExB)a} )

(12.12)

The operator 9/0t acts on two terms that correspond to momentum density:
pu is the momentum of the motion of the plasma as a whole in a unit vol-
ume, E x B/4mc is the momentum density of the electromagnetic field. The
divergency operator 9/9r, acts on

IIog = pap + pUuaug (12.13)

which is the momentum flux density tensor
Mos = 1Y) (12.14)
k

see definition (9.10). Therefore the pressure tensor

Pap = pfsaﬁ + Tas (1215)

where

P=)_ (12.16)
k
is the total plasma pressure, the sum of partial pressures, and

k
Tag = D T (12.17)
k

is the viscous stress tensor (see definition (9.35)), which allows for the trans-
port of momentum from one layer of the plasma flow to the other layers so
that relative motions inside the plasma are damped out. If we accept con-
dition (12.2) then the random velocities are now defined with respect to the
macroscopic velocity u of the plasma as a whole.

The momentum conservation law in the form (12.9) or (12.12) is applied
for a wide range of conditions in cosmic plasmas like fluid relativistic flows,
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for example, astrophysical jets (Section 13.3). The assumption that the astro-
physical plasma behaves as a continuum medium, which is essential if these
forms of the momentum conservation law are to be applied, is excellent in the
cases in which we are often interested:

the Debye length and the particle Larmor radii are much smaller
than the plasma flow scales.

On the other hand, going from the multi-fluid description to a single-fluid
model is a seriuos damage because we loose an information not only on the
small-scale dynamics of the electrons and ions but also on the high-frequency
processes in plasma.

The single-fluid equations describe the low-frequency large-scale be-
haviour of plasma in astrophysical conditions.

12.1.3 The energy conservation law

In a similar manner as above, the energy conservation law is derived. We
sum the general Equation (9.25) over k and then substitute in the resulting
equation the total electric charge density (12.6) and the total electric current
density (12.7) expressed in terms of the electric field E and magnetic field B.
On rearrangement, the following divergent form of the energy conservation
law (cf. the simplified Equation (1.54) for electromagnetic field energy and
kinetic energy of charged particles) is obtained:

a [ pu? E? 4 B2
- 7+p€+7 +

ot 8w
0 u? c
+8Ta|:pu(y(2+w>+4ﬂ_(EXB)o{+ﬂ'aﬁuﬁ+qa:|
= (uaF\9) . 12.18
(b)), (12.19

On the left-hand side of this equation, an additional term has appeared: the
operatop 0/0t acts on the energy density of the electromagnetic field
E? + B?

8t

The divergency operator 9/9r,, acts on the Pointing vector, the electromag-
netic energy flux through a unit surface in space:

W= (12.19)

G=_ [ExB]. (12.20)

The right-hand side of Equation (12.18) contains the total work of friction
forces (9.38) in unit time on unit volume

(uaFa(C))ff -y (Flfcj u,w) = uk,a/mk vl (%ﬁ“) d3v. (12.21)
% k J c
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This work related to the relative motion of the plasma components is not zero.
By contrast, the total heat release under elastic collisions between particles
of different kinds (see definition (9.39)) is

Z QL (r,1) / i ( (%{f) d3v =0. (12.22)

Elastic collisions in a plasma conserve both the total momentum
(see Equation (12.8)) and the total energy (see Equation (12.22)).

If we accept condition (12.2) then, with account of formula (9.24), the
collisional heating (12.21) by friction force is also equal to zero. In this limit,
there is not any term which contains the collisional integral. Collisions have
done a good job.

Note, in conclusion, that we do not have any equations for the anisotropic
part of the pressure tensor, which is the viscous stress tensor 7,3, and for the
flux g, of heat due to random motions of particles. This is not unexpected, of
course, but inherent at the method of the moments as discussed in Section 9.4.
We have to find these transfer coefficients by using the procedure described
in Section 9.5.

12.2 Basic assumptions and the MHD equa-
tions

12.2.1 Old and new simplifying assumptions

As we saw in Chapter 9, the set of transfer equations for local macroscopic
quantities determines the behaviour of different kinds of particles, such as elec-
trons and ions in astrophysical plasma, once two main conditions are complied
with:

(a) many collisions occur in a characteristic time 7 of the process or phe-
nomenon under consideration:

> T, (12.23)

(b) the particle’s path between two collisions — the particle’s free path —
significantly smaller than the distance L, over which macroscopic quantities
change considerably:

L> .. (12.24)

Here 7. and A, are the collisional time and the collisional mean free path,
respectively. Once these conditions are satisfied, we can close the set of hy-
drodynamic transfer equations, as has been discussed in Section 9.5.

While considering the generalized Ohm’s law in Chapter 11, three other as-
sumptions have been made, that are complementary to the restriction (12.23)
on the characteristic time 7 of the process.
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The first condition can be written in the form

TS Th = vy, (12.25)
where 7; is the electron-ion collisional time, the longest collisional relaxation
time. Thus departures from the Maxwellian distribution are small. Moreover
the electrons and ions should have comparable temperatures, ideally, the same
temperature T' being the temperature of the plasma as a whole.

Second, we neglect the electron inertia in comparison with that of the ions.
This condition is usually written as

eB

mic

N -1 .
T > (wé‘)) , where wB(l) = (12.26)
Thus the plasma motions have to be so slow that their frequency w = 1/7
is smaller than the lowest gyro-frequency of the particles. Recall that the
gyro-frequency of ions wéi) < wB(e).
The third condition,
wrg <1, (12.27)

is necessary to write down Ohm’s law in the form
] 1
j=c|E+-vxB|+piv. (12.28)
c

Here v is the macroscopic velocity of plasma considered as a continuous
medium, E and B are the electric and magnetic fields in the ‘laboratory’
system of coordinates, where we measure the velocity v. Accordingly,

1
E,=E+-vxB (12.29)
C

is the electric field in a frame of reference related to the plasma. The isotropic
conductivity is (formula (11.14)):

62TL

(12.30)

o = .
Me Vei

Complementary to the restriction (12.24) on the characteristic length L of
the phenomenon, we have to add the condition

L>r,, (12.31)

where 7, is the Debye radius. Then the volume charge density p< is small in
comparison with the plasma density p.

Under the conditions listed above, we use the general hydrodynamic-type
equations which are the conservation laws for mass (12.4), momentum (12.5)
and energy (12.18).
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These equations have a much wider area of applicability than the
equations of ordinary magnetohydrodynamics derived below.

The latter will be much simpler than the equations derived in Section 12.1.
Therefore new additional simplifying assumptions are necessary. Let us
introduce them. There are two.

* * *

First assumption: the plasma conductivity ¢ is assumed to be large, the
electromagnetic processes being not very fast. Then, in Maxwell’s equa-
tion (1.24)
4 1 OE
curl B = p J+C T
we ignore the displacement current in comparison to the conductive one. The
corresponding condition is found by evaluating the currents as follows

1E _Ar
=K

cC T C

or wFk <<4noFE.

Thus we suppose that

w <K 4dro.

(12.32)

In the same order with reference to the small parameter w/c (or, more
exactly, w/4no), we can neglect the convective current (see formula (11.36)
and its discussion in Section 11.5.2) in comparison with the conductive current
in Ohm’s law (12.28). Actually,

1 LE 1
plv=uvdivE ﬂ-N ~ 7 47rN4 E<oFE,
once the condition (12.32) is satisfied.

The conductivity of astrophysical plasma, which is often treated in the
MHD approximation, is very high (e.g., Exercise 11.1). This is the reason
why condition (12.32) is satisfied up to frequencies close to optical ones.

Neglecting the displacement current and the convective current,
Maxwell’s equations and Ohm’s law result in the following relations:

j= i curl B, (12.33)
1 c
E=—-—-vxB+ —curlB, (12.34)
c dmo
1
pl=——div(vxB), (12.35)
4me

divB =0, (12.36)
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B 2
aa—tzcurl(va)Jr;T—aAB. (12.37)
Once two vectors, B and v, are given, the current density j, the elec-
tric field E, and the volume charge density p9 are completely determined by
formulae (12.33)—(12.35). Thus

the problem is reduced to finding the interaction of the magnetic
field B and the hydrodynamic velocity field v.

As a consequence, the approach under discussion has come to be known as
magnetohydrodynamics (Alfvén, 1950; Syrovatskii, 1957).

The corresponding equation of plasma motion is obtained by substitution
of formulae (12.33)-(12.35) in the equation of momentum transfer (12.5).
With due regard for the manner in which viscous forces are usually written
in hydrodynamics, we have

d 1
pd—;’:—Vp +pqE—EBxcurlB+

+nAv+(C+g)Vdivv. (12.38)

Here 7 is the first viscosity coeflicient, ( is the second viscosity coefficient (see
Landau and Lifshitz, Fluid Mechanics, 1959a, Chapter 2, § 15). Formulae for
these coeflicients as well as for the viscous forces should be derived from the
moment equation for the pressure tensor, which we were not inclined to write
down in Section 9.3 being busy in the way to the energy conservation law.

* * *

A second additional simplifying assumption has to be introduced now.
Treating Equation (12.38), the electric force p1E can be ignored in compari-
son to the magnetic one if

v < c?, (12.39)

that is in the non-relativistic approximation. To make certain that this is
true, evaluate the electric force using (12.35) and (12.34):

plE~n — — —m— — (12.40)

the magnetic force being proportional to

1 B? 1
—|B I1B|~ — —. 12.41
I |BxewlBl~ 2 (12.41)
Comparing (12.40) with (12.41), we see that the electric force is a factor of

v?/c? short of the magnetic one.
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In a great number of astrophysical applications of MHD, the plasma ve-
locities fall far short of the speed of light. The Sun is a good case in point.
Here the largest velocities observed, for example, in coronal transients and
coronal mass ejections (CMEs) do not exceed several thousands of km/s, i.e.
< 108 em/s. Under these conditions, we neglect the electric force acting
upon the volume charge in comparison with the magnetic force.

However the relativistic objects such as accretion disks near black holes
(see Chapter 7 in Novikov and Frolov, 1989), and pulsar magnetospheres are
at the other extreme (Michel, 1991; Rose, 1998). The electric force acting on
the volume charge plays a crucial role in the electrodynamics of relativistic
objects.

12.2.2 Non-relativistic magnetohydrodynamics

With the assumptions made above, the considerable simplifications have been
obtained; and now we write the following set of equations of non-relativistic

MHD: P 5
9 vy =21, 12.42
at P’ org P (12.42)
%—]?:curl(va)+VmAB, (12.43)
divB =0, (12.44)
% +divpv =0, (12.45)
0 [ pv? B2
g (P =) = —di 12.4
8t(2 +p€+877) divG, (12.46)
p=p(p,T). (12.47)

In contrast to Equation (12.12), the momentum of electromagnetic field
does not appear on the left-hand side of the non-relativistic Equation (12.42).
It is negligibly small in comparison to the plasma stream momentum pv,.
This fact is a consequence of neglecting the displacement current in Maxwell’s
equations.

On the right-hand side of Equation (12.42), the asterisk refers to the total
(unlike (12.13)) momentum flux density tensor II; 5, which is equal to

1 (B2
(;kﬁ = pfsaﬁ + pvavg + e (2 (Saﬂ - BaBﬁ> - 0‘(\;6. (12.48)

In Equation (12.43)

02

m=— 12.49
v 4o ( )

is the magnetic diffusivity (or magnetic viscosity). It plays the same role
in Equation (12.43) as the kinematic viscosity v = n/p in the equation of
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plasma motion (12.42). The vector G is defined as the energy flux density
(cf. Equation (12.18))

Go = Y w)+ L Bx(vxB)], -
a TP\ YT v °‘

—— (BxcwlB),~0olzvs — VT, (12.50)

w=¢+"= (12.51)

(see definition (9.34)).
The Poynting vector appearing as a part in expression (12.50) is rewritten
using formula (12.34):

c 1 Vm
G.=—ExB=—Bx xB)——Bxcurl B. 12.52
P A4r 4w (v ) 4w at ( )
As usually in electrodynamics, the flux of electromagnetic energy disappeares
when electric field E is parallel to magnetic field B.
The energy flux density due to friction processes is written as the contrac-
tion of the velocity vector v and the viscous stress tensor

Oov, Ov 2 ov ov
o =1 (%+a£ - g(sag 87,:) +c5a5673 (12.53)
(see Landau and Lifshitz, Fluid Mechanics, 1959a, Chapter 2, § 15). How
should we find formula (12.53) and formulae for coefficients 1 and ¢? — In
order to find an equation for the second moment (9.10), we should multiply
the kinetic Equation (9.1) by the factor my v,vs and integrate over velocity
space v. In this way, we could derive the equations for the anisotropic part of
the pressure tensor and for the flux of heat due to random motions of particles
(Shkarofsky et al., 1966; § 9.2). We restrict ourself just by recalling the
expressions for the viscous stress tensor (12.53) and heat flux density —xkVT,
where k is the plasma thermal conductivity.

* * *

The equation of state (12.47) can be rewritten in other thermodynamic
variables. In order to do this, we have to make use of Equations (12.42)-
(12.45) and the thermodynamic identities

1
deszs—i—%dp and dw:Tds—&—;dp.

Here s is the entropy per unit mass.
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At the same time, it is convenient to transform the energy conservation
law (12.46) from the divergent form to the hydrodynamic one containing the
substantial derivative (9.41). On rearrangement, Equation (12.46) results in
the heat transfer equation

ds  vm 9 v Ovq .
pT T i (curl B)" + o35 s +diveVT. (12.54)

It shows that

the heat abundance change d@Q = pT ds in a moving element of unit
volume is a sum of the Joule and viscous heating and conductive
heat redistribution to neighbour elements.

The momentum conservation law (12.42) can be also recast into the equa-
tion of plasma motion in the hydrodynamic form:
d \Y 1 1
Y= BxeuB+ ave - (¢+ 1) vdivv.  (1255)
dt p 4p p p 3
Once again, we see that the momentum of electromagnetic field does not
appear in the non-relativistic equation of plasma motion.

12.2.3 Relativistic magnetohydrodynamics

Relativistic MHD models are of considerable interest in several areas of as-
trophysics. The theory of gravitational collapse and models of supernova
explosions are based on relativistic hydrodynamic models for a star. In most
models a key feature is the occurrence of a relativistic shock, for example, to
expel the bulk of the star. The effects of deviations from spherical symmetry
due to an initial angular momentum and magnetic field require the use of
relativistic MHD models.

In the theories of galaxy formation, relativistic fluid models have been
used, for example, in order to describe the evolution of perturbations of
the baryon and radiation components of the cosmic medium. Theories of
relativistic stars are also based on relativistic fluid model (Zel’dovich and
Novikov, 1978; Rose, 1998).

When the medium interacts electromagnetically and is highly conducting,
the simplest description is in terms of relativistic MHD. From the mathema-
tical viewpoint, the relativistic MHD was mainly treated in the framework of
general relativity. This means that the MHD equations were studied in con-
junction with Einstein’s equations. Lichnerowicz (1967) has made a thorough
and deep investigation of the initial value problem. Gravitohydromagnetics
describes one of the most fascinating phenomena in the outer space (e.g.,
Punsly, 2001).

In many applications, however, one neglects the gravitational field gener-
ated by the conducting medium in comparison with the background gravita-
tional field as well as in many cases one simply uses special relativity. Math-
ematically this amounts to taking into account only the conservation laws
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for matter and the electromagnetic field, neglecting Einstein’s equa-
tions. Such relativistic MHD theory is much simpler than the full general
relativistic theory. So more detailed results can be obtained (Anile, 1989;
Novikov and Frolov, 1989; Koide et al., 1999).

12.3 Magnetic flux conservation. Ideal MHD

12.3.1 Integral and differential forms of the law

Equations (12.45), (12.42), and (12.46) are the conservation laws for mass,
momentum, and energy, respectively. Let us show that, with the proviso that
vm = 0, Equation (12.43) is the magnetic flux conservation law.

Let us consider the derivative of the vector B flux through a surface S
moving with the plasma (Figure 12.1).

X

Figure 12.1: The magnetic field B flux through the surface S moving with a
plasma with velocity v.

According to the known formula of vector analysis (see Smirnov, 1965),
we have

B
% B-dS:/(aat+vdivB+curl(B><v))~dS. (12.56)
S S

By virtue of Equation (12.44), formula (12.56) is rewritten as follows

d 0B
dt/B~dS—/<at—curl(v><B)>~dS7
5

S
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or, making use of Equation (12.43),

d/B dS—I/m/AB ds.
dt

S

(12.57)

Thus, if we cannot neglect magnetic diffusivity v,,, then

the change rate of magnetic flux through a surface moving together
with a conducting plasma is proportional to the magnetic diffusivity
of the plasma.

The right-hand side of formula (12.57) can be rewritten with the help of
the Stokes theorem:
d

7 B- defum%C,urleil. (12.58)

S L

Here L is the ‘liquid’ contour bounding the surface S. We have also used here
that
AB = —curl curl B.

By using Equation (12.33) we have

/B ds=-°< ]fj dl.

The change rate of flux through a surface connected with the moving plasma
is proportional to the electric resistivity c—! of the plasma.

Equation (12.59) is equivalent to the differential Equation (12.43) and
presents an integral form of the magnetic flux conservation law.

(12.59)

The magnetic flux through any surface moving with the plasma is
conserved, once the electric resistivity o' can be ignored.

Let us clarify the conditions when it is possible to neglect electric resistivity
of plasma. The relative role of the dissipation processes in the differential
Equation (12.43) can be evaluated by proceeding as follows. In a spirit similar
to that of Section 5.2, we pass on to the dimensionless variables

r _t v B
r L ’ T v v ’ B() ( )
On substituting definition (12.60) into Equation (12.43) we obtain
BO oB* UBO * * * BO * P *
Tat* :T url (V XB)+I/mﬁAB
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Now we normalize this equation with respect to its left-hand side, i.e.

oB* ot

ot~ L

The dimensionless Equation (12.61) contains two dimensionless parame-
ters. The first one,

UmT

curl” (v* x B*) + Tz A*B*. (12.61)

uT
T

will be discussed in the next Section. Here, for simplicity, we assume § = 1.
The second parameter,

5:

(12.62)

is termed the magnetic Reynolds number, by analogy with the hydrodynamic
Reynolds number Re = vL/v. This parameter characterizes the ratio of the
first term on the right-hand side of (12.61) to the second one. Omitting the
asterisk, we write Equation (12.61) in the dimensionless form

0B 1

W:CHrI(VXB)JFRem

AB. (12.63)

The larger the magnetic Reynolds number, the smaller the role
played by magnetic diffusivity.

So the magnetic Reynolds number is the dimensionless measure of the
relative importance of resistivity. If Re,, > 1, we neglect the plasma resis-
tivity and associated Joule heating and magnetic field dissipation, just as one
neglects viscosity effects under large Reynolds numbers in ordinary hydrody-
namics.

In laboratory experiments, for example in devices for studying the pro-
cesses of current layer formation and rupture during magnetic reconnection
(e.g., Altyntsev et al., 1977; Bogdanov et al., 1986, 2000), because of a small
value L?, the magnetic Reynolds number is usually not large: Re, ~ 1 — 3.
In this case the electric resistivity has a dominant role, and Joule dissipation
is important.

12.3.2 The equations of ideal MHD

Under astrophysical conditions, owing to the low resistivity and the enor-
mously large length scales usually considered, the magnetic Reynolds number
is also very large: Re, > 109 (for example, in the solar corona; see Exer-
cise 12.1). Therefore, in a great number of problems of plasma astrophysics,
it is sufficient to consider a medium with infinite conductivity:

Repy > 1. (12.64)
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Furthermore the usual Reynolds number can be large as well (see, however,
Exercise 12.2):
Re>1. (12.65)

Let us also assume the heat exchange to be of minor importance. This
assumption is not universally true either. Sometimes the thermal conduc-
tivity (due to thermal electrons or radiation) is so effective that the plasma
behaviour must be considered as isothermal, rather than adiabatic. However,
conventionally,

while treating the ‘ideal medium’, all dissipative transfer coefficients
as well as the thermal conductivity are set equal to zero

in the non-relativistic MHD equations (12.42)—(12.49):

(12.66)

The complete set of the MHD equations for the ideal medium has two dif-
ferent (but equivalent) forms. The first one (with the energy Equation 12.54)
is the form of transfer equations:

%+(V.v)vz_%—ﬁBxcuﬂB,
B
aa—t =curl(vxB), divB=0, (12.67)
) 0
FAdivpv=0, S +(v-V)s=0, p=p(ps).

ot ot
The other form of ideal MHD equations is the divergent form which also
corresponds to the conservation laws for energy, momentum, mass and mag-

netic flux:

2 BQ
% (’”2’ e+ &r) — —divG, (12.68)
0 0 .
% = —divpv, (12.70)
aa—]ta =curl(vxB), (12.71)
divB =0, (12.72)

p=p(ps). (12.73)
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Here the energy flux density and the momentum flux density tensor are, re-
spectively, equal to (cf. (12.50) and (12.48))

2 1
G=pv(Zt+w|+—(B>v—(B-v)B), (12.74)
2 47
. 1 (B?

The magnetic flux conservation law (12.71) written in the integral
form

d
p B-dS=0, (12.76)
S

where the integral is taken over an arbitrary surface moving with the plasma,
is quite characteristic of ideal MHD. It allows us to clearly represent the
magnetic field as a set of field lines attached to the medium, as if they were
‘frozen into’ it. For this reason, Equation (12.71) is frequently referred to as
the ‘freezing-in’ equation.

The freezing-in property converts the notion of magnetic field line from
the purely geometric to the material sphere.

In the ideally conducting medium, the field lines move together with
the plasma. The medium displacement conserves not only the mag-
netic flux but each of the field lines as well.

To convince ourselves that this is the case, we have to imagine a thin tube
of magnetic field lines. There is no magnetic flux through any part of the
surface formed by the collection of the boundary field lines that intersect the
closed curve L. Let this flux tube evolve in time. Because of flux conservation,
the plasma elements that are initially on the same magnetic flux tube must
remain on the magnetic flux tube.

In ideal MHD flows, magnetic field lines inside the thin flux tube accom-
pany the plasma. They are therefore materialized and are unbreakable because
the flux tube links the same ‘fluid particles’ or the same ‘fluid elements’. As
a result its topology cannot change. Fluid particles which are not initially
on a common field line cannot become linked by one later on. This general
topological constraint restricts the ideal MHD motions, forbidding a lot of
motions that would otherwise appear.

Conversely, the constraint that the thin flux tube follows the fluid particle
motion, whatever its complexity, may create situations where the magnetic
field structure becomes itself very complex (see vol. 2, Chapter 12).

In general, the field intensity B is a local quantity. However the magnetic
field lines (even in vacuum) are integral characteristics of the field. Their
analysis becomes more complicated. Nonetheless, a large number of actual
fields have been studied because the general features of the morphology — an
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investigation of mon-local structures — of magnetic fields are fairly important
in plasma astrophysics.

The geometry of the field lines appears in different ways in the equilibrium
criteria for astrophysical plasma. For example, much depends on whether the
field lines are concave or convex, on the value of the gradient of the so-called
specific volume of magnetic flux tubes (Chapter 19), on the presence of X-type
points (Section 14.3) as well as on a number of other topological characteristics,
e.g. magnetic helicity (see vol. 2, Chapter 12).

12.4 Practice: Exercises and Answers

Exercise 12.1 [Section 12.3.2] Estimate the magnetic diffusivity and the
magnetic Reynolds number under typical conditions in the solar corona.

Answer. Let us take characteristic values of the parallel conductivity as
they were estimated in Exercise 11.1:

op=0~10"—-10"7s7".

Substituting these values in formula (12.49) we obtain
1
Vi = —— = 7.2x 10" = ~ 10° — 10* cm®s™ 1. (12.77)
o o

According to definition (12.62) the magnetic Reynolds number

L
Rey = o= ~ 10 — 1012 (12.78)
Vm

if the characteristic values of length and velocity, L ~ 10* km ~ 10° cm
and v ~ 10 km s™% ~ 10% cm s~!, are taken for the corona. Thus the ideal
MHD approximation can be well used to consider, for example, magnetic field
diffusion in coronal linear scales.

Exercise 12.2 [Section 12.3.2] Show that

in the solar corona, viscosity of plasma can be a much more impor-
tant dissipative mechanism than its electric resistivity.

Answer. By using the formula (10.29) for viscosity, let us estimate the
value of kinematic viscosity in the solar corona:

v="23x%10" cm?s 1. (12.79)
p

Here T}, ~ 2 x 10% K and Np X Ne =2 X 108 cm—3 have been taken as the
typical proton temperature and density.
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If the characteristic values of length and velocity, L ~ 10° cm and v ~
105 cm s71, are taken (see Exercise 12.1), then the hydrodynamic Reynolds
number

L
Re = —— ~ 0.3. (12.80)

v
The smallness of this number demonstrates the potential importance of viscos-
ity in the solar corona. A comparison between (12.80) and (12.78) shows that
Ren > Re. Clearly, the viscous effects can dominate the effects of electric
resistivity in coronal plasma.



Chapter 13

Magnetohydrodynamics in
Astrophysics

Magnetohydrodynamics (MHD) is the simplest but sufficient approx-
imation to describe many large-scale low-frequency phenomena in as-
trophysical plasma: regular and turbulent dynamo, plasma motions
driven by strong magnetic fields, accreation disks, and relativistic jets.

13.1 The main approximations in ideal MHD

13.1.1 Dimensionless equations

The equations of MHD, even the ideal MHD, constitute a set of nonlinear dif-
ferential equations in partial derivatives. The order of the set is rather high,
while its structure is complicated. To formulate a problem in the context of
MHD, we have to know the initial and boundary conditions admissible by this
set of equations. To do this, in turn, we have to know the type of these equa-
tions, in the sense adopted in mathematical physics (see Vladimirov, 1971).

To formulate a problem, one usually uses one or another approximation,
which makes it possible to isolate the main effect — the essence of the phe-
nomenon. For instance, if the magnetic Reynolds number is small, then the
plasma moves comparatively easily with respect to the magnetic field. This
is the case in MHD generators and other laboratory and technical devices
(Sutton and Sherman, 1965, § 1.3; Shercliff, 1965, § 6.5).

The opposite approximation is that of large magnetic Reynolds numbers,
when magnetic field ‘freezing in’ takes place in the plasma (see Section 12.3.2).
Obviously, the transversal (with respect to the magnetic field) plasma flows
are implied. For any flow along the field, Equation (12.71) holds. This ap-
proximation is quite characteristic of the astrophysical plasma dynamics.

223
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How can we isolate the main effect in a physical phenomenon and correctly
formulate the problem? — From the above examples concerning the magnetic
Reynolds number, the following rule suggests itself:

take the dimensional parameters characterizing the phenomenon at
hand, combine them into dimensionless combinations and then, on
calculating their numerical values, make use of the corresponding
approximation in the set of dimensionless equations.

Such an approach is effective in hydrodynamics (Sedov, 1973, Vol. 1).
Let us start with the set of the ideal MHD Equations (12.67):

ov _Vp 1
E'F(V'V)V——p —47TprcurlB, (13.1)
B
687 = curl (v x B), (13.2)
dp ..
- = 13.
at—i—dlvpv 0, (13.3)
%JF(V.V)SZ(L (13.4)
divB =0, (13.5)
p=p(p,s). (13.6)

Let the quantities L, 7, v, po, po, So, and By be the characteristic values of
length, time, velocity, density, pressure, entropy and field strength, respec-
tively. Rewrite Equations (13.1)—(13.6) in the dimensionless variables

r t B
S T - S
eI . Bo

Omitting the asterisk, we obtain the equations in dimensionless variables (So-
mov and Syrovatskii, 1976b):

1 1
52{588‘;_|_(V.V)v}:_72vpp—pBxcurlB, (13.7)
0B

e o0 curl (v x B), (13.8)
%—f—édivpv:o, (13.9)
@M(V-V)s—o (13.10)

ot - '
divB =0, (13.11)

p=p(p:s). (13.12)
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Here
uT 2 v? 2 Po
A v T T e
(13.13)
are three dimensionless parameters characterizing the problem;
v, = Bo (13.14)

VAT po

is the characteristic value of the Alfvén speed (see Exercise 13.1).

If the gravitational force were taken into account in (13.1), Equation (13.7)
would contain another dimensionless parameter, gL/ VAQ, where g is the grav-
itational acceleration. The analysis of these parameters allows us to gain an
understanding of the approximations which are possible in the ideal MHD.

13.1.2 Weak magnetic fields in astrophysical plasma
We begin with the assumption that

e2>1 and A2 >1. (13.15)

As is seen from Equation (13.7), in the zero-order approximation relative to
the small parameters e~ and 72, we neglect the magnetic force as com-
pared to the inertia force and the gas pressure gradient. In subsequent ap-
proximations, the magnetic effects are treated as a small correction to the
hydrodynamic ones.

A lot of problems of plasma astrophysics are solved in this approxima-
tion, termed the weak magnetic field approximation. Among the simplest of
them are the ones concerning the weak field’s influence on hydrostatic equi-
librium. An example is the problem of the influence of poloidal and toroidal
magnetic fields on the equilibrium of a self-gravitating plasma ball (a star,
the magnetoid of quasar’s kernel etc., see examples in Section 19.1.3).

Some other problems are in fact analogous to the previously mentioned
ones. They are called kinematic problems, since

they treat the influence of a given plasma flow on the magnetic field;
the reverse influence is considered to be negligible.

Such problems are reduced to finding the magnetic field distribution resulting
from the known velocity field. An example is the problem of magnetic field
amplification and support by stationary plasma flows (magnetic dynamo) or
turbulent amplification. The simplest example is the problem of magnetic field
amplification by plasma differential rotation (Elsasser, 1956; Moffat, 1978;
Parker, 1979; Riidiger and von Rekowski, 1998).

A leading candidate to explain the origin of large-scale magnetic fields in
astrophysical plasma is the mean-field turbulent magnetic dynamo theory
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(Moffat, 1978; Parker, 1979; Zel’dovich et al., 1983). The theory appeals to a
combination of helical turbulence (leading to the so-called « effect), differential
rotation (the € effect) and turbulent diffusion to exponentiate an initial seed
mean magnetic field. The total magnetic field is split into a mean component
and a fluctuating component, and the rate of growth of the mean field is
sought.

The mean field grows on a length scale much larger than the outer scale of
the turbulent velocity, with a growth time much larger than the eddy turnover
time at the outer scale. A combination of kinetic and magnetic helicities
provides a statistical correlation of small-scale loops favorable to exponential
growth. Turbulent diffusion is needed to redistribute the amplified mean field
rapidly to ensure a net mean flux gain inside the system of interest (a star
or galaxy). Rapid growth of the fluctuating field necessarily accompanies the
mean-field dynamo. Its impact upon the growth of the mean field, and the
impact of the mean field itself on its own growth are controversial and depends
crucially on the boundary conditions (e.g., Blackman and Field, 2000).

13.1.3 Strong magnetic fields in plasma

The opposite approximation — that of the strong magnetic field — has been
less well studied. It reflects the specificity of MHD to a greater extent than
the weak field approximation. The strong field approximation is valid when
the magnetic force

1
F,, = i B x curl B (13.16)

dominates all the others (inertia force, gas pressure gradient, etc.). Within
the framework of Equation (13.7), the magnetic field is referred to as a strong
one if in some region under consideration

2«1 and A1, (13.17)

i.e. if the magnetic energy density greatly exceeds that of the kinetic and
thermal energies:
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From Equation (13.7) it follows that, in the zeroth order with respect to
the small parameters (13.17), the magnetic field is force-free, i.e. it obeys the
equation

B x curl B=0. (13.18)

This conclusion is quite natural:

if the magnetic force dominates all the others, then the magnetic
field must balance itself in the region under consideration.
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Condition (13.18) obviously means that electric currents flow parallel to
magnetic field lines. If, in addition, electric currents are absent in some region
(in the zeroth approximation relative to the small parameters €2 and 72), then
the strong field is simply potential in this region:

crlB=0, B=VU, AUV=0. (13.19)

In principle, the magnetic field can be force-free or even potential for another
reason: due to the equilibrium of non-magnetic forces. However this does not
happen frequently.

Let us consider the first order in the small parameters (13.17). If they are
not equally significant, there are two possibilities.

(a) We suppose, at first, that
2y, (13.20)

Then we neglect the inertia force in Equation (13.7) as compared to the gas
pressure gradient. Decomposing the magnetic force into a magnetic tension
force and a magnetic pressure gradient force (see Exercises 13.2 and 13.3),

Fm:—incurlB:i(B-V)B—VB—z, (13.21)
4 4 8
we obtain the following dimensionless equation:
B2
(B-V)B=V (2 + ’yQp) : (13.22)

Owing to the presence of the gas pressure gradient, the magnetic field differs
from the force-free one at any moment of time:

the magnetic tension force (B - V) B/4m must balance not only the
magnetic pressure gradient but that of the gas pressure as well.

Obviously the effect is proportional to the small parameter 2.

This approximation can be naturally called the magnetostatic one since
v = 0. It effectively works in regions of a strong magnetic field where the gas
pressure gradients are large, for example, in coronal loops and reconnecting
current layers (RCLs) in the solar corona (Exercise 13.4).

(b) The inertia force also causes the magnetic field to deviate from the
force-free one:

2 f1OV _ !
€ {6 5 +(v-V)v, = prcurlB. (13.23)

Here we ignored (in the first order) the gas pressure gradient as compared
with the inertia force. Thus it is not the relation (13.20) between the small
parameters (13.17), but rather its converse, that should be obeyed, i.e.

P <ed <. (13.24)
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The problems on plasma flows in a strong magnetic field are of considerable
interest in plasma astrophysics. To solve them, inequalities (13.24) can be
assumed to hold. Then we can use (13.23) as the MHD equation of motion.
The approximation corresponding inequalities (13.24) is naturally termed the
approximation of strong field and cold plasma.

The main applications of the strong-field-cold-plasma approximation are
concerned with the solar atmosphere (see vol. 2, Chapters 2 and 6) and the
Earth’s magnetosphere. Both astrophysical objects are well studied from the
observational viewpoint. So we can proceed with confidence from qualitative
interpretation to the construction of quantitative models. The presence of a
sufficiently strong magnetic field and a comparatively rarefied plasma is com-
mon for both phenomena. This justifies the applicability of the approximation
at hand.

A sufficiently strong magnetic field easily moves a comparatively
rarefied plasma in many non-stationary phenomena in space.

Analogous conditions are reproduced under laboratory modelling of these phe-
nomena (e.g., Hoshino et al., 2001). Some other astrophysical applications of
the strong-field-cold-plasma approximation will be discussed in the following
two Sections.

x ok %

In closing, let us consider the dimensionless parameter § = v7/L. As is seen
from Equation (13.23), it characterizes the relative role of the local /9t and
transport (v - V) terms in the substantial derivative d/dt.

If § > 1 then, in the zeroth approximation relative to the small parameter
0~ 1, the plasma flow can be considered to be stationary

1
e2(v-V)v=—--BxculB. (13.25)
p
If § < 1, i.e. plasma displacement is small during the magnetic field
change, then the transport term (v - V) can be ignored in the substantial
derivative and the equation of motion in the strong-field-cold-plasma approx-
imation takes the form
0 1
2% — " BxculB, (13.26)
ot p
other equations becoming linear. This case corresponds to small plasma dis-
placements from the equilibrial state, i.e. small perturbations. (If need be,
the right-hand side of Equation (13.26) can be linearized in the usual way.)
Generally the parameter § ~ 1 and the set of MHD equations in the
approximation of strong field and cold plasma for ideal medium assumes the
following dimensionless form:

d 1
zd—;’:—;BxcurlB, (13.27)
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aa—]tg =curl (vxB), (13.28)
% +divpv =0. (13.29)

In the next Chapter we shall consider some continuous plasma flows in a
strong magnetic field, which are described by Equations (13.27)—(13.29).

13.2 Accretion disks of stars

13.2.1 Angular momentum transfer in binary stars

Magnetic fields were discussed as a possible means of angular transport in
the development of accretion disk theory in the early seventies (Shakura and
Sunyaev, 1973; Novikov and Thorne, 1973). Interest in the role of magnetic
fields in binary stars steadily increased after the discovery of the nature of AM
Herculis. It appeared that the optical counterpart of the soft X-ray source has
linear and circular polarization in the V' and I spectral bands, of a strength
an order of magnitude larger than previously observed in any object. This
suggested the presence of a very strong field, with B ~ 108 G, assuming the
fundamental cyclotron frequency to be observed.

Similar systems were soon discovered. Evidence for strong magnetic fields
was subsequently found in the X-ray binary pulsars and the intermediate polar
binaries, both believed to include accretion disks. A magnetically channelled
wind from the main sequence star has been invoked to explain the higher
rates of mass transfer observed in binaries above the period gap, and in an
explanation of the gap. The winds from accretion disks have been suggested
as contributing to the inflow by removing angular momentum.

Magnetohydrodynamics in binary stars is now an area of central im-
portance in stellar astrophysics (Campbell, 1997; Rose, 1998). Magnetic fields
are believed to play a role even in apparently non-magnetic binaries. They
provide the most viable means, through the so-called shear-type instabilities,
of generating the MHD turbulence in an accretion disk necessary to drive the
plasma inflow via the resulting magnetic and viscous stresses.

The fundamental problem is the role of magnetic fields in redistributing
angular momentum in binary stars. The disk is fed by the plasma stream
originated in the L1 region (Figure 13.1) of the secondary star. In a steady
state,

plasma is transported through the disk at the rate it is supplied by
the stream and the angular momentum will be advected outwards.

Angular momentum avdection requires coupling between rings of rotating
plasma; the ordinary hydrodynamic viscosity is too weak to provide this.
Hence some form of anomalous viscosity must be invoked to explain the
plasma flow through the disk.
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Figure 13.1: The standard model of a binary system viewed down the rota-
tional pole. The tidally and rotationally distorted secondary star SS loses
plasma from the unstable L; point. The resulting plasma stream St feeds an
accretion disk D, centred on the primary star.

The key point is the recognition that a simple linear instability, which
we refer to here as the standard magnetorotational instability (Hawley et
al., 1995), generates MHD turbulence. This turbulence transports angular mo-
mentum outward through the disk, allowing accretion to proceed. Although
turbulence seems like a natural and straightforward transport mechanism, it
turns out that the magnetic fields are essential. Purely hydrodynamic tur-
bulence is not self-sustaining and does not produce sustained outward trans-
port of angular momentum (see Hawley and Balbus, 1999). MHD turbulence
greatly enhances angular momentum transport associated with the so-called
a-disks (Balbus and Papaloizou, 1999).

It is most probable that the accretion disks have turbulent motions gen-
erated by the shear instabilities. The turbulence and strong radial shear lead
to the generation and maintenance of a large scale magnetic field.

Viscous and magnetic stresses cause radial advection of the angular
momentum via the azimutal forces.

Provided these forces oppose the large-scale azimutal motion, plasma will spi-
ral in through the disk as angular momentum flows outwards. Presumably,
the approximation of a weak field (Section 13.1.2) can be used inside the
disk to model these effects. Most models to date involve a vertically aver-
aged structure. The future aim is to find 3D solutions which self-consistently
incorporate the magnetic shear instabilities and vertical structure.

The stellar spin dynamics and stability are also important, of course.
For example, in spin evolution calculations, a compact white draft, or neutron
star, is usually treated as a rigid body. This is valid provided the dynamic
time-scale for adjustments in the stellar structure is short compared to the
s