


 

 

 
 

R A P I D  P R O T O T Y P I N G  
O F  D I G I TA L  S Y S T E M S  

S O P C  E D I T I O N  



 

 

 
 

 
 
 
 

 
 
 

James O. Hamblen 

School of Electrical  and Computer Engineering 

Georgia Institute of Technology 

 

Tyson S. Hall 

School of Computing 

Southern Adventist University 

 

Michael D. Furman 

Department of Engineering 

Cambridge University 
 
 
 
 

R A P I D  P R O T O T Y P I N G  
O F  D I G I TA L  S Y S T E M S  

S O P C  E D I T I O N  



James O. Hamblen   Tyson S. Hall 
Georgia Institute of Technology Southern Adventist University 
Atlanta, GA   Collegedale, TN 
 
Michael D. Furman 
University of Florida 
Gainesville, FL 
 
 
 
 
 

 

 

 
 
 
 
 
Library of Congress Control Number: 2007934543 
 
ISBN 978-0-387-72670-0     e-ISBN 978-0-387-72671-7 
 
Printed on acid-free paper. 
 
© 2008 Springer Science+Business Media, LLC 
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of 
the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for 
brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or 
hereafter developed is forbidden.  The use in this publication of trade names, trademarks, service ma rks and similar 
terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they 
are subject to proprietary rights.  
 
The author and publisher of this book have used their best efforts in preparing this book. These efforts include the 
development, research, and testing of the theories and programs to determine their effectiveness. The author and 
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation 
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential 
damages in connection with, or arising out of, the furnishing, performance, or use of these programs  

 
Springer Science+Business Media, LLC or the author(s) make no warranty or representation, either express or 
implied, with respect to this DVD or book, including their quality, mechantability, or fitness for a particular purpose.  
In no event will Springer Science+Business Media, LLC or the author(s) be liable for direct, indirect, special, 
incidental, or consequential damages arising out of the use or inability to use the disc or book, even if Springer 
Science+Business Media, LLC or the author(s) has been advised of the possibility of such damages. 

 
Cover artwork based on FPGA image courtesy of Altera. Chip Images ©1995-2004 courtesy of Michael 
Davidson, Florida State University, http://micro.magnet.fsu.edu/chipshots. Altera, Byteblaster*, Cyclone, 
MAX, APEX, ACEX and QUARTUS are registered trademarks of Altera Corporation. XC4000 and Virtex 
are registered trademarks of Xilinx, Inc. MIPS is a registered trademark of MIPS Technologies, Inc. Plexiglas 
is a registered trademark of Rohn and Hass Company. This publication includes images from Corel Draw 
which are protected by the copyright laws of the U.S., Canada and elsewhere. Used under license. 
 
9  8  7  6  5  4  3  2  1                    
 
springer.com 



  

 

Table of Contents 
 

1 

1.1 Design Entry using the Graphic Editor_______________________________________ 9 
1.2 Compiling the Design ____________________________________________________ 16 
1.3 Simulation of the Design __________________________________________________ 17 
1.4 Testing Your Design on an FPGA Board ____________________________________ 18 
1.5 Downloading Your Design to the DE1 Board _________________________________ 19 
1.6 Downloading Your Design to the DE2 Board _________________________________ 22 
1.7 Downloading Your Design to the UP3 Board _________________________________ 25 
1.8 Downloading Your Design to the UP2 or UP1 Board __________________________ 27 
1.9 The 10 Minute VHDL Entry Tutorial _______________________________________ 29 
1.10 Compiling the VHDL Design ______________________________________________ 32 
1.11 The 10 Minute Verilog Entry Tutorial ______________________________________ 34 
1.12 Compiling the Verilog Design______________________________________________ 36 
1.13 Timing Analysis _________________________________________________________ 38 
1.14 The Floorplan Editor_____________________________________________________ 39 
1.15 Symbols and Hierarchy___________________________________________________ 40 
1.16 Functional Simulation ____________________________________________________ 41 
1.17 Laboratory Exercises_____________________________________________________ 42 

2 

2.1 FPGA and External Hardware Features_____________________________________ 47 
2.2 The FPGA Board’s Memory Features_______________________________________ 48 
2.3 The FPGA Board’s I/O Features ___________________________________________ 49 
2.4 Obtaining an FPGA Development Board and Cables __________________________ 53 

3 Programmable Logic Technology______________________________ 56 

3.1 CPLDs and FPGAs ______________________________________________________ 59 
3.2 Altera MAX 7000S Architecture – A Product Term CPLD Device _______________ 60 

R A P I D  P R O T O T Y P I N G  
O F  D I G I TA L  S Y S T E M S  

S O P C  E D I T I O N  

Tutorial I: The 15 Minute Design______________________________ 2 

FPGA Development Board Hardware and I/O Features____________ 46 



vi Rapid Prototyping of Digital Systems  
 

 
3.3 Altera Cyclone Architecture – A Look-Up Table FPGA Device _________________ 62 
3.4 Xilinx 4000 Architecture – A Look-Up Table FPGA Device ____________________ 65 
3.5 Computer Aided Design Tools for Programmable Logic _______________________ 67 
3.6 Next Generation FPGA CAD tools _________________________________________ 68 
3.7 Applications of FPGAs___________________________________________________ 69 
3.8 Features of New Generation FPGAs________________________________________ 69 
3.9 For additional information _______________________________________________ 70 
3.10 Laboratory Exercises ____________________________________________________ 71 

4 Tutorial II: Sequential Design and Hierarchy ____________________ 74 

4.1 Install the Tutorial Files and FPGAcore Library for your board ________________ 74 
4.2 Open the tutor2 Schematic _______________________________________________ 75 
4.3 Browse the Hierarchy____________________________________________________ 76 
4.4 Using Buses in a Schematic _______________________________________________ 78 
4.5 Testing the Pushbutton Counter and Displays _______________________________ 79 
4.6 Testing the Initial Design on the Board _____________________________________ 80 
4.7 Fixing the Switch Contact Bounce Problem__________________________________ 81 
4.8 Testing the Modified Design on the FPGA Board _____________________________ 82 
4.9 Laboratory Exercises ____________________________________________________ 83 

5 FPGAcore Library Functions _________________________________ 88 

5.1 FPGAcore LCD_Display: LCD Panel Character Display ______________________ 90 
5.2 FPGAcore DEC_7SEG: Hex to Seven-segment Decoder _______________________ 92 
5.3 FPGAcore Debounce: Pushbutton Debounce ________________________________ 94 
5.4 FPGAcore OnePulse:  Pushbutton Single Pulse ______________________________ 95 
5.5 FPGAcore Clk_Div: Clock Divider_________________________________________ 96 
5.6 FPGAcore VGA_Sync: VGA Video Sync Generation _________________________ 97 
5.7 FPGAcore Char_ROM:  Character Generation ROM_________________________ 99 
5.8 FPGAcore Keyboard: Read Keyboard Scan Code ___________________________ 100 
5.9 FPGAcore Mouse: Mouse Cursor_________________________________________ 102 
5.10 For additional information ______________________________________________ 103 

6 Using VHDL for Synthesis of Digital Hardware _________________ 106 

6.1 VHDL Data Types _____________________________________________________ 106 
6.2 VHDL Operators ______________________________________________________ 107 
6.3 VHDL Based Synthesis of Digital Hardware ________________________________ 108 
6.4 VHDL Synthesis Models of Gate Networks _________________________________ 108 



 Table of Contents vii 
 

  

 

6.5 VHDL Synthesis Model of a Seven-segment LED Decoder_____________________ 109 
6.6 VHDL Synthesis Model of a Multiplexer ___________________________________ 111 
6.7 VHDL Synthesis Model of Tri-State Output_________________________________ 112 
6.8 VHDL Synthesis Models of Flip-flops and Registers __________________________ 112 
6.9 Accidental Synthesis of Inferred Latches ___________________________________ 114 
6.10 VHDL Synthesis Model of a Counter ______________________________________ 114 
6.11 VHDL Synthesis Model of a State Machine _________________________________ 115 
6.12 VHDL Synthesis Model of an ALU with an Adder/Subtractor and a Shifter ______ 117 
6.13 VHDL Synthesis of Multiply and Divide Hardware __________________________ 118 
6.14 VHDL Synthesis Models for Memory ______________________________________ 119 
6.15 Hierarchy in VHDL Synthesis Models _____________________________________ 123 
6.16 Using a Testbench for Verification ________________________________________ 125 
6.17 For additional information _______________________________________________ 126 
6.18 Laboratory Exercises____________________________________________________ 126 

7 Using Verilog for Synthesis of Digital Hardware ________________ 130 

7.1 Verilog Data Types _____________________________________________________ 130 
7.2 Verilog Based Synthesis of Digital Hardware ________________________________ 130 
7.3 Verilog Operators ______________________________________________________ 131 
7.4 Verilog Synthesis Models of Gate Networks _________________________________ 132 
7.5 Verilog Synthesis Model of a Seven-segment LED Decoder ____________________ 132 
7.6 Verilog Synthesis Model of a Multiplexer ___________________________________ 133 
7.7 Verilog Synthesis Model of Tri-State Output ________________________________ 134 
7.8 Verilog Synthesis Models of Flip-flops and Registers _________________________ 135 
7.9 Accidental Synthesis of Inferred Latches ___________________________________ 136 
7.10 Verilog Synthesis Model of a Counter ______________________________________ 136 
7.11 Verilog Synthesis Model of a State Machine_________________________________ 137 
7.12 Verilog Synthesis Model of an ALU with an Adder/Subtractor and a Shifter _____ 138 
7.13 Verilog Synthesis of Multiply and Divide Hardware __________________________ 139 
7.14 Verilog Synthesis Models for Memory _____________________________________ 140 
7.15 Hierarchy in Verilog Synthesis Models _____________________________________ 143 
7.16 For additional information _______________________________________________ 144 
7.17 Laboratory Exercises____________________________________________________ 144 

8 State Machine Design: The Electric Train Controller_____________ 148 

8.1 The Train Control Problem ______________________________________________ 148 



viii Rapid Prototyping of Digital Systems  
 

 
8.2 Train Direction Outputs (DA1-DA0, and DB1-DB0) _________________________ 149 
8.3 Switch Direction Outputs (SW1, SW2, and SW3)____________________________ 150 
8.4 Train Sensor Input Signals (S1, S2, S3, S4, and S5) __________________________ 150 
8.5 An Example Controller Design ___________________________________________ 151 
8.6 VHDL Based Example Controller Design __________________________________ 154 
8.7 Verilog Based Example Controller Design__________________________________ 157 
8.8 Automatically Generating a State Diagram of a Design _______________________ 160 
8.9 Simulation Vector file for State Machine Simulation _________________________ 161 
8.10 Running the Train Control Simulation ____________________________________ 162 
8.11 Running the Video Train System (After Successful Simulation) ________________ 162 
8.12 A Hardware Implementation of the Train System Layout_____________________ 164 
8.13 Laboratory Exercises ___________________________________________________ 166 

9 A Simple Computer Design: The µP 3 _________________________ 170 

9.1 Computer Programs and Instructions _____________________________________ 171 
9.2 The Processor Fetch, Decode and Execute Cycle_____________________________ 172 

9.3 VHDL Model of the μP 3 ________________________________________________ 179 

9.4 Verilog Model of the μP 3 _______________________________________________ 182 

9.5 Automatically Generating a State Diagram of the μP3________________________ 186 

9.6 Simulation of the μP3 Computer__________________________________________ 187 
9.7 Laboratory Exercises ___________________________________________________ 188 

10 VGA Video Display Generation using FPGAs ___________________ 192 

10.1 Video Display Technology _______________________________________________ 192 
10.2 Video Refresh _________________________________________________________ 192 
10.3 Using an FPGA for VGA Video Signal Generation __________________________ 195 
10.4 A VHDL Sync Generation Example: FPGAcore VGA_SYNC _________________ 196 
10.5 Final Output Register for Video Signals ___________________________________ 198 
10.6 Required Pin Assignments for Video Output _______________________________ 198 
10.7 Video Examples________________________________________________________ 199 
10.8 A Character Based Video Design _________________________________________ 200 
10.9 Character Selection and Fonts ___________________________________________ 200 
10.10 VHDL Character Display Design Examples ________________________________ 203 
10.11 A Graphics Memory Design Example _____________________________________ 206 
10.12 Video Data Compression ________________________________________________ 207 
10.13 Video Color Mixing using Dithering_______________________________________ 207 



 Table of Contents ix 
 

  

 

10.14 VHDL Graphics Display Design Example __________________________________ 208 
10.15 Higher Video Resolution and Faster Refresh Rates___________________________ 209 
10.16 Laboratory Exercises____________________________________________________ 210 

11 Interfacing to the PS/2 Keyboard and Mouse ___________________ 214 

11.1 PS/2 Port Connections___________________________________________________ 214 
11.2 Keyboard Scan Codes ___________________________________________________ 215 
11.3 Make and Break Codes __________________________________________________ 215 
11.4 The PS/2 Serial Data Transmission Protocol ________________________________ 216 
11.5 Scan Code Set 2 for the PS/2 Keyboard_____________________________________ 218 
11.6 The Keyboard FPGAcore ________________________________________________ 220 
11.7 A Design Example Using the Keyboard FPGAcore ___________________________ 223 
11.8 Interfacing to the PS/2 Mouse ____________________________________________ 224 
11.9 The Mouse FPGAcore ___________________________________________________ 226 
11.10 Mouse Initialization _____________________________________________________ 226 
11.11 Mouse Data Packet Processing ____________________________________________ 227 
11.12 An Example Design Using the Mouse FPGAcore_____________________________ 228 
11.13 For Additional Information ______________________________________________ 229 
11.14 Laboratory Exercises____________________________________________________ 229 

12 Legacy Digital I/O Interfacing Standards ______________________ 232 

12.1 Parallel I/O Interface____________________________________________________ 232 
12.2 RS-232C Serial I/O Interface _____________________________________________ 233 
12.3 SPI Bus Interface _______________________________________________________ 235 
12.4 I2C Bus Interface _______________________________________________________ 237 
12.5 For Additional Information ______________________________________________ 239 
12.6 Laboratory Exercises____________________________________________________ 239 

13 FPGA Robotics Projects ____________________________________ 242 

13.1 The FPGA-bot Design ___________________________________________________ 242 
13.2 FPGA-bot Servo Drive Motors____________________________________________ 242 
13.3 Modifying the Servos to make Drive Motors ________________________________ 243 
13.4 VHDL Servo Driver Code for the FPGA-bot ________________________________ 244 
13.5 Low-cost Sensors for an FPGA Robot Project _______________________________ 246 
13.6 Assembly of the FPGA-bot Body __________________________________________ 259 
13.7 I/O Connections to the board’s Expansion Headers __________________________ 266 
13.8 Robot Projects Based on R/C Toys, Models, and Robot Kits ___________________ 267 



x Rapid Prototyping of Digital Systems  
 

 
13.9 For Additional Information ______________________________________________ 275 
13.10 Laboratory Exercises ___________________________________________________ 277 

14 A RISC Design: Synthesis of the MIPS Processor Core ___________ 284 

14.1 The MIPS Instruction Set and Processor ___________________________________ 284 
14.2 Using VHDL to Synthesize the MIPS Processor Core ________________________ 287 
14.3 The Top-Level Module__________________________________________________ 288 
14.4 The Control Unit_______________________________________________________ 291 
14.5 The Instruction Fetch Stage______________________________________________ 293 
14.6 The Decode Stage ______________________________________________________ 296 
14.7 The Execute Stage______________________________________________________ 298 
14.8 The Data Memory Stage ________________________________________________ 300 
14.9 Simulation of the MIPS Design ___________________________________________ 301 
14.10 MIPS Hardware Implementation on the FPGA Board _______________________ 302 
14.11 For Additional Information ______________________________________________ 303 
14.12 Laboratory Exercises ___________________________________________________ 304 

15 Introducing System-on-a-Programmable-Chip __________________ 310 

15.1 Processor Cores________________________________________________________ 310 
15.2 SOPC Design Flow _____________________________________________________ 311 
15.3 Initializing Memory ____________________________________________________ 313 
15.4 SOPC Design versus Traditional Design Modalities __________________________ 315 
15.5 An Example SOPC Design_______________________________________________ 316 
15.6 Hardware/Software Design Alternatives ___________________________________ 317 
15.7 For additional information ______________________________________________ 317 
15.8 Laboratory Exercises ___________________________________________________ 318 

16 Tutorial III: Nios II Processor Software Development ____________ 322 

16.1 Install the DE board files ________________________________________________ 322 
16.2 Starting a Nios II Software Project________________________________________ 322 
16.3 The Nios II IDE Software________________________________________________ 324 
16.4 Generating the Nios II System Library ____________________________________ 325 
16.5 Software Design with Nios II Peripherals __________________________________ 326 
16.6 Starting Software Design – main() ________________________________________ 329 
16.7 Downloading the Nios II Hardware and Software Projects ____________________ 330 
16.8 Executing the Software__________________________________________________ 331 
16.9 Starting Software Design for a Peripheral Test Program _____________________ 331 



 Table of Contents xi 
 

  

 

16.10 Handling Interrupts_____________________________________________________ 334 
16.11 Accessing Parallel I/O Peripherals_________________________________________ 335 
16.12 Communicating with the LCD Display (DE2 only) ___________________________ 336 
16.13 Testing SRAM _________________________________________________________ 339 
16.14 Testing Flash Memory___________________________________________________ 340 
16.15 Testing SDRAM ________________________________________________________ 341 
16.16 Downloading the Nios II Hardware and Software Projects ____________________ 346 
16.17 Executing the Software __________________________________________________ 347 
16.18 For additional information _______________________________________________ 347 
16.19 Laboratory Exercises____________________________________________________ 348 

17 Tutorial IV: Nios II Processor Hardware Design ________________ 352 

17.1 Install the DE board files ________________________________________________ 352 
17.2 Creating a New Project __________________________________________________ 352 
17.3 Starting SOPC Builder __________________________________________________ 353 
17.4 Adding a Nios II Processor _______________________________________________ 355 
17.5 Adding UART Peripherals _______________________________________________ 358 
17.6 Adding an Interval Timer Peripheral ______________________________________ 359 
17.7 Adding Parallel I/O Components__________________________________________ 360 
17.8 Adding an SRAM Memory Controller _____________________________________ 361 
17.9 Adding an SDRAM Memory Controller ____________________________________ 362 
17.10 Adding the LCD Module (DE2 Board Only) _________________________________ 362 
17.11 Adding an External Bus _________________________________________________ 363 
17.12 Adding Components to the External Bus ___________________________________ 364 
17.13 Global Processor Settings ________________________________________________ 364 
17.14 Finalizing the Nios II Processor ___________________________________________ 365 
17.15 Add the Processor Symbol to the Top-Level Schematic _______________________ 366 
17.16 Create a Phase-Locked Loop Component___________________________________ 367 
17.17 Complete the Top-Level Schematic ________________________________________ 368 
17.18 Design Compilation _____________________________________________________ 368 
17.19 Testing the Nios II Project _______________________________________________ 369 
17.20 For additional information _______________________________________________ 370 
17.21 Laboratory Exercises____________________________________________________ 370 

18 Operating System Support for SOPC Design ____________________ 374 

18.1 Nios II OS Support _____________________________________________________ 376 



xii Rapid Prototyping of Digital Systems  
 

 
18.2 eCos _________________________________________________________________ 377 
18.3 µC/OS-II _____________________________________________________________ 378 
18.4 µClinux ______________________________________________________________ 379 
18.5 Implementing the µClinux on the DE Board ________________________________ 380 
18.6 Hardware Design for µClinux Support ____________________________________ 380 
18.7 Configuring the DE Board_______________________________________________ 382 
18.8 Exploring µClinux on the DE Board_______________________________________ 385 
18.9 PS/2 Device Support in µClinux __________________________________________ 386 
18.10 Video Display in µClinux ________________________________________________ 386 
18.11 USB Devices in µClinux (DE2 Board Only) _________________________________ 387 
18.12 Network Communication in µClinux (DE2 Board Only) ______________________ 387 
18.13 For additional information ______________________________________________ 388 
18.14 Laboratory Exercises ___________________________________________________ 388 

Appendix  A: Generation of Pseudo Random Binary Sequences _______ 391 

Appendix B: Quartus II Design and Data File Extensions ____________ 393 

Appendix C: Common FPGA Pin Assignments _____________________ 394 

Appendix D: ASCII Character Code______________________________ 396 

Appendix E: Common I/O Connector Pin Assignments ______________ 397 

Glossary ____________________________________________________ 399 

Index ______________________________________________________ 407 

About the Accompanying DVD__________________________________ 411 
 



  

PREFACE 
Changes to the SOPC Edition 

Rapid Prototyping of Digital Systems provides an exciting and challenging 
laboratory component for undergraduate digital logic and computer design courses 
using FPGAs and CAD tools for simulation and hardware implementation. The 
more advanced topics and exercises also make this text useful for upper level 
courses in digital logic, programmable logic, and embedded systems. The SOPC 
edition includes Altera’s new Quartus II CAD tool and includes laboratory projects 
for Altera’s DE2 and the new DE1 FPGA boards. Student laboratory projects 
provided on the book’s DVD include video graphics and text, mouse and keyboard 
input, and several computer designs. 

Rapid Prototyping of Digital Systems includes four tutorials on the Altera Quartus 
II and Nios II tool environment, an overview of programmable logic, and IP cores 
with several easy-to-use input and output functions. These features were developed 
to help students get started quickly. Early design examples use schematic capture 
and IP cores developed for the Altera UP and DE FPGA boards. VHDL is used for 
more complex designs after a short introduction to VHDL-based synthesis. Verilog 
is also now supported as an option for the student projects.  

New chapters in this edition provide an overview of System-On-a-Programmable 
Chip (SOPC) technology and SOPC design examples for the DE1 & 2 boards using 
Altera’s new Nios II Processor hardware, the C software development tools, an 
overview of OS support for SOPC, and the uClinux operating system. A full set of 
Altera’s FPGA CAD tools is included on the book’s DVD. 

Intended Audience 

This text is intended to provide an exciting and challenging laboratory 
component for an undergraduate digital logic design class. The more advanced 
topics and exercises are also appropriate for consideration at schools that have 
an upper level course in digital logic or programmable logic. There are a 
number of excellent texts on digital logic design. For the most part, these texts 
do not include or fully integrate modern CAD tools, logic simulation, logic 
synthesis using hardware description languages, design hierarchy, current 
generation field programmable gate array (FPGA) technology and SOPC 
design. The goal of this text is to introduce these topics in the laboratory 
portion of the course. Even student laboratory projects can now implement 
entire digital and computer systems with hundreds of thousands of gates.  
Over the past eight years, we have developed a number of interesting and 
challenging laboratory projects involving serial communications, state 
machines with video output, video games and graphics, simple computers, 
keyboard and mouse interfaces, robotics, and pipelined RISC processor cores.  



xiv Rapid Prototyping of Digital Systems  
 

 
Source files and additional example files are available on the DVD for all 
designs presented in the text. The student version of the PC based CAD tool on 
the DVD can be freely distributed to students. Students can purchase their own 
FPGA board for little more than the price of a contemporary textbook. As an 
alternative, a few of the low-cost FPGA boards can be shared among students 
in a laboratory. Course instructors should contact the Altera University Program 
for detailed information on obtaining full versions of the CAD tools for 
laboratory PCs and educational FPGA boards for student laboratories. 

Topic Selection and Organization 

Chapter 1 is a short CAD tool tutorial that covers design entry, simulation, and 
hardware implementation using an FPGA. The majority of students can enter 
the design, simulate, and have the design successfully running on the FPGA 
board in less than thirty minutes. After working through the tutorial and 
becoming familiar with the process, similar designs can be accomplished in less 
than 10 minutes. 
Chapter 2 provides an overview of the various FPGA development boards. The 
features of each board are briefly described. Several tables listing pin 
connections of various I/O devices serve as an essential reference whenever a 
hardware design is implemented on the DE1, DE2, UP3, or UP 2 FPGA boards. 
Chapter 3 is an introduction to programmable logic technology. The 
capabilities and internal architectures of the most popular CPLDs and FPGAs 
are described. These include the Cyclone FPGA used on the FPGA board, and 
the Xilinx 4000 family FPGAs.  
Chapter 4 is a short CAD tool tutorial that serves as both a hierarchical and 
sequential design example. A counter is clocked by a pushbutton and the output 
is displayed in the seven-segment LEDs. The design is downloaded to the 
FPGA board and some real world timing issues arising from switch contact 
bounce are resolved. It uses several functions from the FPGAcore library which 
greatly simplify use of the FPGA’s input and output capabilities. 
Chapter 5 describes the available FPGAcore library I/O functions. The I/O 
devices include switches, the LCD, a decoder for seven segment LEDs, a 
multiple output clock divider, VGA output, keyboard input, and mouse input. 
Chapter 6 is an introduction to the use of VHDL for the synthesis of digital 
hardware. Rather than a lengthy description of syntax details, models of the 
commonly used digital hardware devices are developed and presented. Most 
VHDL textbooks use models developed only for simulation and frequently use 
language features not supported in synthesis tools. Our easy to understand 
synthesis examples were developed and tested on FPGAs using the Altera CAD 
tools. 
Chapter 7 is an introduction to the use of Verilog for the synthesis of digital 
hardware. The same hardware designs as Chapter 6 as modeled in Verilog. It is 
optional, but is included for those who would like an introduction to Verilog. 
Chapter 8 is a state machine design example. The state machine controls a 
virtual electric train simulation with video output generated directly by the 
FPGA. Using track sensor input, students must control two trains and three 



 Preface xv 
 

  

 

track switches to avoid collisions. An actual model train layout can also built 
using the new digital DCC trains interfaced to an FPGA board. 
Chapter 9 develops a model of a simple computer. The fetch, decode, and 
execute cycle is introduced and a brief model of the computer is developed 
using VHDL. A short assembly language program can be entered in the FPGA’s 
internal memory and executed in the simulator. 
Chapter 10 describes how to design an FPGA-based digital system to output 
VGA video. Numerous design examples are presented containing video with 
both text and graphics. Fundamental design issues in writing simple video 
games and graphics using an FPGA board are examined. 
Chapter 11 describes the PS/2 keyboard and mouse operation and presents 
interface examples for integrating designs on an FPGA board. Keyboard scan 
code tables, mouse data packets, commands, status codes, and the serial 
communications protocol are included. VHDL code for a keyboard and mouse 
interface is also presented. 
Chapter 12 describes several of the common I/O standards that are likely to be 
encountered in FPGA systems. Parallel, RS232 serial, SPI, and I2C standards 
and interfacing are discussed. 
Chapter 13 develops a design for an adaptable mobile robot using an FPGA 
board as the controller. Servo motors and several sensor technologies for a low 
cost mobile robot are described. A sample servo driver design is presented. 
Commercially available parts to construct the robot described can be obtained 
for as little as $60. Several robots can be built for use in the laboratory. 
Students with their own FPGA board may choose to build their own robot 
following the detailed instructions found in section 13.6. 
Chapter 14 describes a single clock cycle model of the MIPS RISC processor 
based on the hardware implementation presented in the widely used Patterson 
and Hennessy textbook, Computer Organization and Design the 
Hardware/Software Interface. Laboratory exercises that add new instructions, 
features, and pipelining are included at the end of the chapter. 
Chapters 15, 16, and 17 introduce students to SOPC design using the Nios II 
RISC processor core. Chapter 15 is an overview of the SOPC design approach. 
Chapter 16 contains a tutorial for the Nios II IDE software development tool 
and examples using the Nios II C/C++ compiler. Chapter 17 contains a tutorial 
on the processor core hardware configuration tool, SOPC builder. A DE2, DE1, 
or FPGA board is required for this new material since it is not supported on the 
UP2 or UP1’s smaller FPGA. 
Chapter 18 is new to the fourth edition and introduces students to a Linux 
based Real-Time Operating System (RTOS). A tutorial shows how the μClinux 
OS can be ported to the DE2 and DE1 FPGA boards.  
We anticipate that some schools will still choose to begin with TTL designs on 
a small protoboard for the first few labs. The first chapter can be started at this 
time since only OR and NOT logic functions are used to introduce the CAD 
tool environment. The CAD tool can also be used for simulation of TTL labs, 
since a TTL parts library is included. 



xvi Rapid Prototyping of Digital Systems  
 

 
Even though VHDL and Verilog are complex languages, we have found after 
several years of experimentation that students can write HDL models to 
synthesize hardware designs after a short overview with a few basic hardware 
design examples. The use of HDL templates and online help files in the CAD 
tool make this process easier. After the initial experience with HDL synthesis, 
students dislike the use of schematic capture on larger designs since it can be 
time consuming. Experience in industry has been much the same since large 
productivity gains have been achieved using HDL based synthesis tools for 
FPGAs and Application Specific Integrated Circuits (ASICs). 
Most digital logic classes include a simple computer design such as the one 
presented in Chapter 9 or a RISC processor such as the one presented in 
Chapter 14. If this is not covered in the first digital logic course, it could be 
used as a lab component for a subsequent computer architecture class. 
A typical quarter or semester length course could not cover all of the topics 
presented. The material in Chapters 7 through 17 can be used on a selective 
basis. The keyboard and mouse are supported by FPGAcore library functions, 
and the material presented in Chapter 11 is not required to use these library 
functions for keyboard or mouse input. A DE1, DE2, or FPGA board is required 
for the SOPC Nios designs in Chapters 16 and 17. 
A video game based on the material in Chapter 10 can serve as the basis for a 
final design project. We use robots with sensors from Chapter 13 that are 
controlled by the simple computer in Chapter 9. Students really enjoy working 
with the robot, and it presents almost infinite possibilities for an exciting design 
competition. More advanced classes might want to develop projects based on 
the Nios II processor reference design in Chapter 16 and 17 using C/C++ code 
or use the uClinux material in Chapter 18 to develop more complex application 
programs for embedded devices. 

Software and Hardware Packages 

We recommend the use of the new 7.1 SP1 web version of Quartus II FPGA 
CAD included with this book; all exercises were tested using this version. 
FPGA boards are available from the Altera University Program at special 
student pricing. Although boards can be easily shared among several students in 
a lab setting, pricing makes it possible for students who would like to purchase 
their own to do so. 
Details and suggestions for additional cables that may be required for a 
laboratory setup can be found in Section 2.4. Source files for all designs 
presented in the text are available on the DVD.  

Additional Web Material and Resources 

There is a web site for the text with additional course materials, slides, text 
errata, and software updates at: 

http://www.ece.gatech.edu/users/hamblen/book/book4e.htm  



 Preface xvii 
 

  

 

Acknowledgments 

Over three thousand students and several hundred teaching assistants have 
contributed to this work during the past eight years. In particular, we would like 
to acknowledge Doug McAlister, Michael Sugg, Jurgen Vogel, Greg Ruhl, Eric 
Van Heest, Mitch Kispet, Evan Anderson, Zachary Folkerts, and Nick Clark for 
their help in testing and developing several of the laboratory assignments and 
tools. Stephen Brown, Mike Phipps, Joe Hanson, Tawfiq Mossadak, and Eric 
Shiflet at Altera provided software, hardware, helpful advice, and 
encouragement. 
 



  

CHAPTER 1 

Tutorial I:                       
The 15-Minute Design 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



2 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

1 Tutorial I: The 15 Minute Design  
 

 

The purpose of this tutorial is to introduce the user to the Altera CAD tools and 
the University Program (DE1, DE2, UP3, UP2, or UP1) FPGA Development 
Boards in the shortest possible time. The format is an aggressive introduction to 
schematic, VHDL, and Verilog entry for those who want to get started quickly. 
The approach is tutorial and utilizes a path that is similar to most digital design 
processes.  

 

Once you have completed this tutorial, you will understand and be able to: 
 

• Navigate the Altera schematic entry environment, 
• Compile a VHDL or Verilog design file,  
• Simulate, debug, and test your designs, 
• Generate and verify timing characteristics, and 
• Download and run your design on a DE1, DE2, UP3, UP2, or UP1 

board.  
 

Determining your FPGA Board Type 

 
The first step is to identify which one of the various Altera Educational FPGA 
boards you are using for the tutorial. Examine the photographs in Figures 1.1 
to 1.4 and compare them to your board to determine which type of board you 
are using.  
There will be some minor variations in the instructions later on that depend on 
which board type you are using. After identifying your board, be sure to 
remember which model of Altera FPGA board you have (i.e., DE1, DE2, UP3, 
UP2 or UP1).  
If your board looks like Figure 1.4 and you see UP1X printed on the board, 
some early UP2 production boards had the designation UP1X printed on the 
board. The UP1X is electronically equivalent to a UP2 board and contains the 
same FPGA, so follow the instructions for a UP2 board.  
If you have a UP3 board, the UP3 board comes in two versions and you need 
to determine which version you have. The 1C12 version contains a larger 
EP1C12 FPGA instead of the EP1C6 FPGA. Check the part number on the 
FPGA chip on the left center of the board.  
 



 Tutorial I: The 15-Minute Design 3 
 

 

 

 

Figure 1.1  The Altera DE1 FPGA Development board. 

 

Figure 1.2  The Altera DE2 FPGA Development board. 



4 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

 

Figure 1.3  The Altera UP3 FPGA Development board. The 1C12 version has a larger EP1C12Q240 
FPGA. (Check the part number on the large square FPGA chip in middle of board). 

 

Figure 1.4 The Altera UP2 FPGA development board. UP1 boards appear very similar and can also 
be used, but instead of a FLEX EPF10K70 they use a smaller EPF10K20 FPGA that contains fewer 
logic elements. (Check the part number on the large square FPGA chip on right side of your board) 



 Tutorial I: The 15-Minute Design 5 
 

 

 

 
In this tutorial, a simple OR logic function will be demonstrated to provide an 
introduction to the Altera Quartus II CAD tools. After simulation, the design 
will then be used to program a field programmable gate array (FPGA) on an 
FPGA development board. The design will then be tested running on real 
hardware. 
 

ALTERA’S NEWEST BOARDS ARE THE DE1 AND DE2. IF YOU HAVE ONE OF THE OTHER FPGA 
BOARDS AS SEEN IN FIGURES 1.1 TO 1.4, YOU SHOULD ALWAYS FOLLOW THE INSTRUCTIONS 
AND PROCEDURES OUTLINED IN THE TEXT AND ON THE DVD FOR YOUR BOARD. THE DVD 

CONTAINS ADDITIONAL INFORMATION AND FILES FOR THE OLDER FPGA BOARDS. 

 
The inputs to the OR logic will be two pushbuttons and the output will be 
displayed using a light emitting diode (LED). Both the pushbuttons and the 
LED are part of the development board, and no external wiring is required.  
Of course, any actual design will be more complex, but the objective here is to 
quickly understand the capabilities and flow of the design tools with minimal 
effort and time.  
More complex digital designs including computers and color video graphics 
will be introduced later in this text after you have become familiar with the 
development tools and hardware description languages (Hals) used in digital 
designs. 
Granted, all this may not be accomplished in just 15 minutes; however, the 
skills acquired from this demonstration tutorial will enable the first-time user 
to duplicate similar designs in less time than that! 
 

INSTALL THE QUARTUS II WEB VERSION SOFTWARE USING THE DVD AND OBTAIN A WEB 
LICENSE FILE FROM ALTERA. CHECK FOR ALTERA QUARTUS II WEB VERSION SOFTWARE 

UPDATES AT WWW.ALTERA.COM. THE BOOKS DESIGNS WERE ALL TESTED WITH VERSION 7.1 
SP1. AS NEWER VERSIONS OF THE ALTERA SOFTWARE APPEAR, MINOR CHANGES MAY BE 

NEEDED. CHECK THE BOOK’S WEBSITE FOR ANY UPDATES. 

 
With the standard FPGA computer aided design tools, designs can be entered 
via schematic capture or by using a Hardware Description Language (HDL) 
such as VHDL or Verilog. It is also possible to combine blocks with different 
entry methods into a single design. As seen in Figure 1.5, tools can then be 
used to simulate, calculate timing delays, synthesize logic, and program a 
hardware implementation of the design on an FPGA. 



6 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

Fi
gu

re
 1

.5
  D

es
ig

n 
pr

oc
es

s f
or

 sc
he

m
at

ic
 o

r H
D

L 
en

try
.  

   
   



 Tutorial I: The 15-Minute Design 7 
 

 

 

The Board 
The default boards that will be used are the newer DE1 and DE2 boards. 
Although the following tutorial can be done with any of the DE1, DE2, UP3, 
UP2 or UP1 boards. Some minor modifications (i.e., the FPGA device number 
and pin number assignments) will be needed for the other boards. In this 
tutorial, complete instructions will be provided for all of the different FPGA 
boards. 

The Pushbuttons 

On the FPGA board, two pushbutton switch inputs, PB1 and PB2, are 
connected to FPGA input pins. Each pushbutton input is tied “High” with a 
pull-up resistor and pulled “Low” when the respective pushbutton is pressed. 
One needs to remember that when using the on-board pushbuttons, this "active 
low" condition ties zero volts to the input when the button is pressed and the 
Vcc high supply to the input when not pressed. See Figure 1.6. Vcc is 3.3V on 
newer boards and 5V on the older UP2 and 1 boards. On the FPGA board 
shown on the left in Figure 1.6, a logic “0” at the output turns on the LED. 
 

 

Figure 1.6 FPGA I/O connections to Pushbuttons (PBx) and LED: Right of center, active LOW LED 
output (i.e., UP1 and UP2 boards) or on far right active HIGH LED output (i.e., DE1, DE2, and UP3 
boards). Note that a depressed pushbutton input will be LOW. 

The LED Outputs 

On many of the newer FPGA development boards including the DE1 and DE2, 
the LED is connected with active HIGH outputs as in the right LED output 
illustration in Figure 1.6. This allows a HIGH signal on the output pin of the 
FPGA to turn the LED on and a LOW signal to turn it off.  
Historically, most digital logic output pins were designed to sink more current 
than they could source. In such cases, it makes sense to let the output pin of 
the FPGA tie the cathode (-) of the LED to ground to allow for a brighter LED 
(i.e., more current flowing); however, this configuration has the side effect of 
requiring a LOW signal to turn the LED on, but is generally the more common 



8 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

configuration. This active LOW output is actually the arrangement used on all 
seven segment LED displays on all of the FPGA development boards. 

The Problem Definition 

To illustrate the capabilities of the software in the simplest terms, we will 
build a circuit that turns off the LED when one OR the other pushbutton is 
pushed. In a simple logic equation, one could write:  
 
 
At first, this may seem too simple; however, the active low inputs and outputs 
add just enough complication to illustrate some of the more common errors, 
and it provides an opportunity to compare some of the different syntax features 
of VHDL and Verilog. (Students needing an exercise in DeMorgan's Law will 
also find these exercises particularly enlightening.) 
We will first build this circuit with the graphical editor and then implement it 
in VHDL and Verilog. As you work through the tutorial, note how the design 
entry method is relatively independent of the compile, timing, and simulation 
steps, and which FPGA board is used for the hardware implementation. 

Resolving the Active Low Signals 

Since the pushbuttons generate inverted signals and the LED requires an 
inverted or low level logic signal to turn off, we could build an OR logic 
circuit using the layout in Figure 1.7a. Recalling that a bubble on a gate input 
or output indicates inversion, careful examination shows that the two circuits 
in Figure 1.7 are functionally equivalent; however, the circuit in Figure 1.7a 
uses more gates and would take a bit longer to enter in the schematic editor. 
We will therefore use the single gate circuit illustrated in Figure 1.7b.  

 

                                  (a)                                                 (b) 

Figure 1.7a and 1.7b.  Equivalent circuits for ORing active low inputs and outputs. 

This form of the OR function is known as a "negative-logic OR." If you are 
confused, try writing a truth table to show this Boolean equality. (In Exercise 1 
at the end of the chapter, this circuit will be compared with its DeMorgan’s 
equivalent, the "positive-logic AND.").  

ON THE UP2 AND UP1 BOARDS, THE LEDS OUTPUT STATE WILL APPEAR INVERTED SINCE ITS 
LED OUTPUT CIRCUIT IS INVERTED, SO PUSHING ONE OF THE PUSHBUTTONS WILL TURN ON 

THE LED.  

LED_OFF  =  PB1_HIT   +   PB2_HIT 



 Tutorial I: The 15-Minute Design 9 
 

 

 

1.1 Design Entry using the Graphic Editor 
Examine the CAD tool overview diagram in Figure 1.5. The initial path in this 
section will be from schematic capture (Graphical Entry) to downloading the 
design to the FPGA board. On the way, we will pass through some of the 
nuances of the Compiler along with setting up and controlling a simulation. 
Later, after having actually tested the design, we will examine the Timing 
Analysis information of the design. Although relatively short, each step is 
carefully illustrated and explained. Install the Altera Quartus II software on 
your PC using the book’s DVD, if it is not already installed. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.8 Creating a new Quartus II Project. 

New Project Creation 

Start the Quartus II program. In Quartus II, the New Project wizard is used to 
create a new project. Choose File New Project Wizard. Click next in the 
Introduction window, if it appears to continue. A second dialog box will appear 
asking for the working directory for your new project. Enter an appropriate 
directory. For the project name and top-level design entity boxes, enter orgate. 
Click Next. If you need to create a new project directory with that name, click 
Yes. An Add Files dialog box then appears. This page is used to enter all of the 



10 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

design files (other than the top-level file). Since this simple project will only 
use a single top-level design file, click Next. 

Select the FPGA Device to be Used 

The next dialog box is used to select the FPGA device type as seen in Figure 
1.9. The detailed instructions for this step will vary depending on your board 
type.  
A summary of the different FPGA devices found on each board is shown in 
Table 1.1. Find your board’s FPGA family and device part number in Table 1.1 
and follow the specific instructions below for your board.  

Figure 1.9 Setting the FPGA Device Type. Settings shown are for the DE1 board. 



 Tutorial I: The 15-Minute Design 11 
 

 

 

Table 1.1  FPGA Devices used on the various Altera Educational FPGA boards. 

 DE1 DE2 UP3 UP2 & UP1 
FPGA 
Family 

Cyclone II Cyclone II Cyclone FLEX10K 

FPGA 
Device 

EP2C20F484C7 EP2C35F672C6 EP1C6Q240C8  
or 1C12 version 
EP1C12Q240C8 

EPF10K70RC240-4 
or on older UP1s 
EPF10K20RV240-4 

If you are using a DE1 or DE2 board:  

Select the Cyclone II Family FPGA. The DE1 uses an EP2C20F484C7 device 
and the DE2 uses a EP2C35F672C6 device.  

If you are using the UP3 board:  

Select Cyclone family. You will then need to select the specific FPGA device 
number on your board. The UP3 is available with two different sizes of 
Cyclone FPGAs: an EP1C6Q240C8 (UP3 1C6 board) or the larger 
EP1C12Q240C8 (UP3 1C12 board). Check the large square chip in the middle 
of the board to verify the exact FPGA part number. 

If you are using a UP2 or UP1:  

Select FLEX10K family. On the UP2, it will be a EPF10K70RC240-X (-X is 
the speed grade of the chip). Check the large square chip in the middle on the 
right side of the board to verify the FPGA part number. If you see 
EPF10K20RC240 on the FPGA, you have a UP1 board. The original UP1 
boards can also be used. The UP1 looks very similar to a UP2 and they use the 
same pin assignments and have the same I/O features as the UP2, but they 
contain a EPF10K20RC240 FPGA with fewer logic elements. UP1 users 
should always follow the instructions for the UP2, but specify the 
EPF10K20RC240 device type for each project. 

All Boards:  

The last digit in the FPGA part number is the speed grade. The correct speed 
grade is needed for accurate delays in timing simulations. You may need to 
change the setting of the Speed Grade on Pin Count dialog box to Any to 
display your specific device. Always choose the correct speed grade to match 
your board’s FPGA so that the correct delay times are used in the logic 
simulation tools.  
If you choose the wrong device type, you will have errors when you attempt to 
download your design to the FPGA.  
After selecting the correct FPGA part number, click Next, then on the third-
party EDA tools settings box also click Next since we will not be using any 
third-party EDA tools – only Quartus II. Double check the information 
summary page that appears and click Finish. In case of problems, use the back 
option to make changes. 



12 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

BNOR2

inst

Establishing Graphics (Schematic) as the Input Format 

You have now named your project and setup which FPGA will be used, now 
choose File New, and a popup menu will appear. Select Block 
Diagram/Schematic File, then click OK. This will create a blank schematic 
worksheet – a graphics display file (*.gdf file). Note that the toolbar options in 
Quartus II are context sensitive and change as different tools are selected. An 
empty schematic window with grids will appear named Block1.bdf. 

Enter and Place the OR Symbol in Your Schematic 

Click on the AND gate icon  on the left-side toolbar. This selects the symbol 
tool. In the upper left box under Libraries, expand the library path to see the 
options. Find the library named primitives and click on it to expand it. Then 
click to expand the logic library. Scroll down the list of logic symbols and 
select BNOR2. An OR gate with inverted inputs and outputs should appear in 
the symbol window. (The naming convention is B-bubbled NOR with 2 inputs. 
Although considered to be a NOR with active low inputs, it is fundamentally 
an OR gate with active low inputs and output.) Click OK at the bottom of the 
Symbol window. 

Figure 1.10  Creating the top-level project schematic  design file. 

Select the Block1.bdf window and the BNOR2 symbol will appear 
in the schematic. Drag the symbol to the middle of the window and 
left click to place it. Click on the arrow icon  on the left side 
toolbar or hit escape to stop inserting the symbol. 
 



 Tutorial I: The 15-Minute Design 13 
 

 

 

VCC
pin_name1 INPUT

pin_nameOUTPUT

TO USE THE ONLINE HELP SYSTEM, CLICK HELP ON THE TOP MENU, SELECT SEARCH AND 
THEN ENTER BNOR. AT ANY POINT IN THE TUTORIAL, EXTENSIVE ONLINE HELP IS ALWAYS 

AVAILABLE. TO SEARCH BY TOPIC OR KEYWORD SELECT THE HELP MENU AND FOLLOW THE 
INSTRUCTIONS THERE. 

Assigning the Output Pin for Your Schematic                  

Select the AND gate symbol again on the left side toolbar, expand the pin 
library, select output, and click OK. Using the mouse and the left mouse 
button, drag the output symbol to the right of the BNOR2 symbol leaving 
space between them – they will be connected later. 

Figure 1.11 Selecting a new symbol with the Symbol Tool. 

Assigning the Input Pins for Your Schematic                   

Find and place two pin input symbols to the left of the BNOR2 symbol in the 
same way that you just selected and placed the output symbol. (Another hint: 
Once selected, a symbol can be copied with Right Click Copy and pasted 
multiple times using the Right Click Paste function.). Hit the arrow symbol 
on the left tool bar and deselect the new symbol by moving the cursor away 
and clicking the left mouse button a second time. 



14 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

Connecting the Signal Lines 

When you move the mouse cursor near a wire, the cursor changes into a 
crosshair. Move to one end of a wire you need to add and push and hold down 
the left mouse button. Hold down the left mouse button and drag the end of the 
wire to the other point that you want to connect. Release the left button to 
connect the wire. If you need to delete a wire, click on it – the wire should turn 
blue when selected. Hit the delete key to remove it. You can also use the Right 
Click Delete function. Connect the other wires using the same process so 
that the diagram looks something like Figure 1.12 

Figure 1.12  Active low OR-gate schematic example with I/O pins connected. 

Enter the PIN Names 

Right click on the first      INPUT symbol. It will be outlined in blue 
and a menu will appear. Select Properties, type PB1 for the pin name and 
click OK. Name the other input pin PB2 and the output pin for the LED in a 
similar fashion. 

Assign the PIN Numbers to Connect the Pushbuttons and the LED 

Since the FPGA chip is already prewired to the pushbuttons and the LED on 
the printed circuit board (PCB), you need to look up the correct pin numbers 
and designate them in your design.  

Table 1.2  Hardwired I/O connections on the various FPGA boards in the design example. 

I/O Device DE1 Pin DE2 Pin UP3 Pin UP2 & 1 Pin 

PB1 R21 (Key1) N23 (Key1) 62 (SW7) 28 (FLEX PB1) 

PB2 T22 (Key2) P23 (Key2) 48 (SW4) 29 (FLEX PB2) 

LED R20(LEDR0) AE23(LEDR0) 56 (D3) 14 (7Seg  Dec. pt.) 

 
The information in Table 1.2 is from the documentation on the pinouts for the 
various FPGA board user’s manuals. (Table 2.4 lists additional I/O pins) In the 



 Tutorial I: The 15-Minute Design 15 
 

 

 

main menu, select Assignments Pin. (If the option to select the pin is 
unavailable, you need to go back and select Assignments Device, and make 
sure that your device is selected correctly.) You may need to adjust the 
Window sizes to find the pin assignment area or select the pulldown, 
View All Pins List; Figure 1.13 shows the pin list area with pin information 
entered. In the “Node Name” column, type the name of the new pin, PB1. In 
the “Location” column, double click, scroll down, and select the pin number 
for PB1 on your board  or type in the pin number in the blank space provided 
(NOTE: pin numbers will be different on the various FPGA boards refer to 
Table 1.2). The software adds PIN_ to the pin number. Repeat this process 
assigning PB2 and LED to the correct pins for your board. After assigning all 
three pins and verifying your entries, click File Save Project to save. 
Device and pin information is stored in the project’s *.qsf file. Pin names are 
also case sensitive. 

CAUTION: BE SURE TO USE UNIQUE NAMES FOR DIFFERENT PINS. PINS AND WIRES WITH THE 
SAME NAME ARE AUTOMATICALLY CONNECTED EVEN WITHOUT A VISIBLE WIRE SHOWING UP 

ON THE SCHEMATIC DIAGRAM. 

 

Figure 1.13  Assigning Pins with the Assignment Editor. 

Saving Your Schematic 

If you haven’t saved your file yet, Select File Save As and save your project 
using the filename ORGATE. Throughout the remainder of this tutorial you 
should always refer to the same project directory path when saving or opening 
files. A number of other files are automatically created by the Quartus II tools 
and maintained in your project directory. 



16 
 

 

 

Set Unused Pins as Inp

The memory chip
same time by unus
try to force outpu
which can overhea
possibility of any 
set in a new proje
the Device and P
the As inputs, tri
This setting is sa
project repeat this

1.2 Compiling t
Compiling your d
produces timing i
FPGA, and gener
changes are mad
always need to be 

Compiling your Projec

Compile by sele
report window wi
the compilation pr

Checking for Compile W

The project shoul
states, "Full Com
Info messages wil
blue in the messag
If you forget to a
performance for in
and the LED are 
left up to the comp

Examining the Report F

After compilation
design including t
Select the orga
Assignments and
numbers have bee
somewhere in one
earlier. You will n
You can also che
window with Pro
folder, and clickin
Rapid Prototyping of Digital Systems Chapter 1 

 
uts 

s on the development board could all be turned on at the 
ed pins on the FPGA, causing their tri-state output drivers to 
t data bus bits to different states. This causes high currents, 
t and damage devices after several minutes. To eliminate the 
damage to the board, the following option should always be 
ct. On the menu bar, select Assignments Device then click 
in Options button. Click on the Unused Pins tab and check 
-stated option. Click OK and then OK in the first window. 
ved in the projects *.qsf file. Any time you create a new 
 step. 

he Design 
esign checks for syntax errors, synthesizes the logic design, 
nformation for simulation, fits the design on the selected 
ates the file required to download the program. After any 
e to the design files or pin assignments, the project will 
re-compiled prior to simulation or downloading.  

t 

cting Processing Start Compilation. The compilation 
ll appear in the Quartus II screen and can be used to monitor 
ocess, view warnings, and errors. 

arnings and Errors 

d compile with 0 Errors. If a popup window appears that 
pilation was Successful," then you have not made an error. 
l appear in green in the message window. Warnings appear in 
e window and Errors will be red. Errors must be corrected. 
ssign pins, the compiler will select pins based on the best 
ternal timing and routing. Since the pins for the pushbuttons 
pre-wired on the FPGA boards, their assignment cannot be 
iler and the user must always specify them.  

ile 

, the compiler window shows a summary of the compiled 
he FPGA logic and memory resources used by the design. 
te.bdf schematic window. Use View Show Location 
 check the schematic’s I/O pins to verify the correct pin 
n assigned. If a pin is not assigned you may have a typo 
 of the pin names or you did not save your pin assignments 
eed to recompile whenever you change pin assignments.  
ck all of the FPGA’s pins by going to the compiler report 
cessing Compilation Report, expanding the Fitter file 
g on the Pin-out file. 



 Tutorial I: The 15-Minute Design 17 
 

 

 

1.3 Simulation of the Design 
For complex designs, the project is normally simulated prior to downloading to 
a FPGA. Although the OR example is straightforward, we will take you 
through the steps to illustrate the simulation of the circuit. 

Set Up the Simulation Traces 

Choose File New, select the Other Files tab, and then from the popup 
window select Vector Waveform File and click OK. A blank waveform 
window should be displayed. Right click on the Name column on the left side. 
Select Insert Nodes or Bus. Click on the Node Finder and then the LIST 
button. PB1, PB2 and LED should appear as trace values in the window. Then 
click on the center >> button and click OK and OK again. The signals should 
appear in the waveform window. 

Generate Test Vectors for Simulation 

A simulation requires external input data or "stimulus" data to test the circuit. 
Since the PB1 and PB2 input signals have not been set to a value, the 
simulator sets them to a default of zero. The ‘X’ on the LED trace indicates 
that the simulator has not yet been run. (If the simulator has been run and you 
still get an ‘X,’ then the simulator was unable to determine the output 
condition.) 
Right click on PB1; the PB1 trace will be highlighted. Select Value Count 
Value, then click on the Timing tab and change the entry in the field 
Multiplied By from 1 to 5 and click OK. An alternating pattern of Highs and 
Lows should appear in the PB1 trace. (Use View Zoom Out, if you cannot 
see the pattern.) Repeat the procedure for PB2 but this time change the entry in 
Multiplied By from 1 to 10. PB2 should now be an alternating pattern of ones 
and zeros but at twice the frequency of PB1.  
(Other useful options in the Value menu will generate a clock and set a signal 
High or Low. It is also possible to highlight a portion of a signal trace with the 
mouse and set the level manually.)  
When you need a longer simulation time in a waveform, you can change the 
default simulation end time using Edit End Time.  

Performing the Simulation with Your Timing Diagram 

Select File Save and click the Save button to save your project’s vector 
waveform file. Select Processing Start Simulation and click OK on the 
window that appears. The simulation should run and the output waveform for 
LED should now appear in the Simulation Report window. You may want to 
right click on the timing display and use the Zoom options to adjust the time 
scale as seen in Figure 1.14.  
 



18 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

 

Figure 1.14  Active low OR-gate timing simulation with device time delays. 

 
Note that the simulation includes the signal propagation timing delays through 
the FPGA and that it takes almost 10 ns (ns = 10-9 sec.) for an input change to 
be reflected in the delayed output. Taking this LED output time delay into 
account, examine the Simulation Waveform to verify that the LED output is 
Low only when either PB1 OR PB2 inputs are Low.  

1.4 Testing Your Design on an FPGA Board 
The next step is to download the design to a board and test it on real hardware. 
At this point, the instructions vary depending on which type of board you are 
using for the tutorial. If you do not know your board type, refer back to 
Figures 1.1 to 1.4 to identify it. You will need to skip ahead to the appropriate 
section for each board as listed below: 
 

• DE1 users go to Section 1.5 (next Section), 
• DE2 users skip ahead to Section 1.6,  
• UP3 users skip ahead to Section 1.7, 
• UP2 & UP1 users skip ahead to Section 1.8. 



 Tutorial I: The 15-Minute Design 19 
 

 

 

1.5 Downloading Your Design to the DE1 Board 

Hooking Up the DE1 Board to the Computer 

If you have a DE2, UP2, or UP3 board refer to the specific download Section 
on those boards and skip this section. To try your design on a DE1 board as 
seen in Figure 1.15, plug the USB download cable into the DE1 board’s USB 
connector (top left corner of the board) and attach the other end to an open 
USB port on the PC.  
The DE1 board is normally powered using only the USB download cable’s 5V 
power. The 7.5V AC to DC wall transformer supplied with the board attaches 
to the DC power connector located on the upper left corner of the DE2 board 
and can be used to supply power to the board when it is not attached to the PC 
(i.e., standalone operation).  

Figure 1.15  The Altera DE1 board showing Pushbutton and LED locations used in the design 
(enclosed in dashed ellipses seen at bottom of board).  

Power
ON/OFF

Switch

VGA
 Video PortLine

In
Line
Out

Mic
In

USB
Blaster

Port

RS-232
Port

24-bit Audio CODEC

Ocillators
27Mhz 50MHz 24Mhz

90nm
Cyclone II
FPGA with
20K LEs

Altera USB
Blaster

Controller
Chipset

Altera EPCS 16
Configuration Device

7.5V DC Power
Supply

Connector

RUN/PROG
Switch for
JTAG/AS

Modes

7-SEG Display Module

10 Red LEDs

10 Toggle Switches

8 Green LEDs

4 Push-button Switches

4MB Flash
Memory

SMA
External
Clock

SD Card Socket

8MB SDRAM

512KB SRAM

PS/2 Port



20 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

After attaching the USB cable, press in the DE1’s red power switch located on 
the upper left edge of the board below the USB connector to turn on the board. 
When properly powered, the blue power LED on the DE1 board near the 
power switch should light up and the other LEDs will all flash, if it is still 
setup to run the default demo design shipped from the factory. 

Preparing for Downloading 

Make sure that you have assigned the correct Device Name for the DE1. The 
DE1 contains a EP2C20F484C7 Cyclone II FGPA. When you change the 
device type you will also need to redo the pin assignments. Make sure that you 
have also assigned the correct pin numbers for the DE1 board. PB1 is pin R22, 
PB2 is pin R21 and the LED is pin U22. (refer to section 1.1 for help) 
Whenever you change the Device or pin assignments, it is necessary to 
recompile before downloading.  
After checking to make sure that the cables are hooked up properly, you are 
ready to download the compiled circuit to the DE1 board. Select 
Tools Programmer. Click on Hardware Setup, select the proper hardware, 
a USB-Blaster. (If a window comes up that displays, "No Hardware" to the 
right of the Hardware Setup button, use the Hardware Setup button to change 
currently selected hardware from "No Hardware" to "USB-Blaster". If a red 
JTAG error message appears or the start button is not working, close down the 
Programmer window and reopen it. If this still doesn’t correct the problem, 
then there is something else wrong with the setup or cable connection. Go back 
to the beginning of this section and check each step and connection carefully.) 

Final Steps to Download 

The filename orgate.sof should be displayed in the programmer window. The 
*.sof file contains the FPGA’s configuration (programming) data for your 
design. To the right of the filename in the Program/Configure column, check 
the Program/Configure box. To start downloading your design to the board, 
click on the Start button. Just a few seconds are required to download. If 
download is successful, a green info message displays in the system window 
notifying you the programming was successful.  

Testing Your Design 

On the DE1 board, the right two pushbuttons are used in the design and one of 
the LEDs to the right just above them. The locations of PB1 (Key0), PB2 
(Key1), and the LED (LEDG0) are in the lower right corner of the board as 
seen in Figure 1.13. After downloading your program to the DE1 board, the 
LED in the lower right corner should turn off whenever a pushbutton is hit. 
Since the output of the OR gate is driving the LED signal, it should be on 
when no pushbuttons are hit. Since the buttons are active low, and the BNOR2 
gate also has active low inputs and output, hitting either button should turn off 
the LED.  



 Tutorial I: The 15-Minute Design 21 
 

 

 

Congratulations! You have just entered, compiled, simulated, downloaded a 
design to a FPGA device, and verified its operation. Since you are using a DE1 
board, you can skip the next three sections on the DE2, UP3 or UP2 board and 
go directly to Section 1.9. 
 

                        

         COMPLETED TUTORIAL FILES ARE AVAILABLE ON THE TEXT’S DVD. 

                       IN THE BOOK’S DESIGN EXAMPLES, ADDITIONAL DE1 RELATED MATERIALS 

                       CAN BE FOUND IN THE BOOKSOFT_FE\DE1\CHAPX DIRECTORIES. 

 

 



22 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

1.6 Downloading Your Design to the DE2 Board 

Hooking Up the DE2 Board to the Computer 

If you have a DE1, UP2 or UP3 board refer to the download Sections on those 
boards. To test your design on a DE2 board as seen in Figure 1.16, plug the 
USB download cable into the DE2 board’s USB connector (leftmost of the 
three USB connectors on the top left side of the board) and attach the other end 
to an open USB port on the PC. Using the 9V AC to DC wall transformer 
attach power to the DC power connector located on the upper left corner of the 
DE2 board.  
Press the power switch located on the upper left edge of the board below the 
power connector. When properly powered, the blue power LED on the DE2 
board next to the power switch should light up and the other LEDs will flash, 
if it is still setup to run the default demo design shipped from the factory. 
 

9V DC Power
Supply

Connector

27Mhz Oscillator24-bit Audio CODEC

TV Decoder
(NTSC/PAL)

Power
ON/OFF
Switch USB

Host/Slave
Controller

Altera USB Blaster
Controller Chipset

Altera EPCS 16
Configuration Device

RUN/PROG
Switch for
JTAG/AS

Modes

LCD 16x2 Module

7-SEG Display Module

18 Red LEDs

18 Toggle Switches

1MB Flash
Memory

(upgradable to
4MB)

PS/2 Port

XSGA
10-bit DAC

Ethernet 10/100M
Controller

SD Card Connector

IrDA
Transceiver8 Green LEDs

SMA
Ext
Clk

4 Push-button Switches

90nm
Cyclone II
FPGA with
35K LEs

RS-232
PortEthernet

10/100M Port

XSGA
Video Port

Video
InUSB

Host

Line
In

Mic
Out

Mic
InUSB

Device

USB
Blaster

Port

50Mhz Oscillator

8MB SDRAM

512KB SRAM

88888888

 

Figure 1.16  Altera DE2 board showing the Pushbutton and LED locations used in design (enclosed 
in dashed ellipses seen in bottom right).  



 Tutorial I: The 15-Minute Design 23 
 

 

 

Preparing for Downloading 

Make sure that you have assigned the correct Device Name for the DE2. The 
DE2 contains a EP2C35F672C6 Cyclone II FGPA. When you change the 
device type you will also need to redo the pin assignments. Make sure that you 
have also assigned the correct pin numbers for the DE2 board. PB1 is pin N23, 
PB2 is pin P23 and the LED is pin AE23. (refer to section 1.1 for help) 
Whenever you change the Device or pin assignments, if is necessary to 
recompile before downloading.  
After checking to make sure that the cables and jumpers are hooked up 
properly, you are ready to download the compiled circuit to the DE2 board. 
Select Tools Programmer. Click on Hardware Setup, select the proper 
hardware, a USB-Blaster. (If a window comes up that displays, "No 
Hardware" to the right of the Hardware Setup button, use the Hardware Setup 
button to change currently selected hardware from "No Hardware" to "USB-
Blaster". If a red JTAG error message appears or the start button is not 
working, close down the Programmer window and reopen it. If this still 
doesn’t correct the problem, then there is something else wrong with the setup 
or cable connection. Go back to the beginning of this section and check each 
step and connection carefully.) 

Final Steps to Download 

The filename orgate.sof should be displayed in the programmer window. The 
*.sof file contains the FPGA’s configuration (programming) data for your 
design. To the right of the filename in the Program/Configure column, check 
the Program/Configure box. To start downloading your design to the board, 
click on the Start button. Just a few seconds are required to download. If 
download is successful, a green info message displays in the system window 
notifying you the programming was successful.  

Testing Your Design 

On the DE2 board, the middle two pushbuttons are used in the design and one 
of the LEDs to the left just above them. The locations of PB1, PB2, and the 
decimal LED are in the lower right corner of the board as seen in Figure 1.16. 
After downloading your program to the DE2 board, the LED in the lower right 
corner should turn off whenever a pushbutton is hit. Since the output of the OR 
gate is driving the LED signal, it should be on when no pushbuttons are hit. 
Since the buttons are active low, and the BNOR2 gate also has active low 
inputs and output, hitting either button should turn off the LED.  



24 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

Congratulations! You have just entered, compiled, simulated, downloaded a 
design to a FPGA device, and verified its operation. Since you are using a DE2 
board, you can skip the next two sections on the UP3 or UP2/1 board and go 
directly to Section 1.9. 
 
                        

                        

         COMPLETED TUTORIAL FILES ARE AVAILABLE ON THE TEXT’S DVD. 

                       IN THE BOOK’S DESIGN EXAMPLES, ADDITIONAL DE2 RELATED MATERIALS 

                       AND DESIGN FILES CAN BE FOUND IN THE BOOKSOFT_FE\DE2\CHAPX 

         DIRECTORIES. 

 



 Tutorial I: The 15-Minute Design 25 
 

 

 

1.7 Downloading Your Design to the UP3 Board 

Hooking Up the UP3 Board to the Computer 

If you have a UP2 board skip ahead to Section 1.8. To try your design on a 
UP3 board, plug the Byteblaster™ II cable into the UP3 board’s JTAG 
connector (innermost of the two connectors on the left side of the board) and 
attach the other end to the parallel port on the PC (USB port if you are using a 
USB Blaster). If you have not done so already, make sure that the PC’s BIOS 
settting for the printer port is ECP or EPP mode. Using the 6V AC to DC wall 
transformer attach power to the DC power connector (DC_IN) located on the 
lower right side of the UP3 board. Press in the power switch located on the 
right edge of the board above the power connector. When properly powered, 
two LEDs on the bottom of the UP3 board near the power connector should 
light up. A USB ByteBlaster can also be used, if one is available. 

Preparing for Downloading 

After checking to make sure that the cables are hooked up properly, you are 
ready to download the compiled circuit to the UP3 board. Select 
Tools Programmer. Click on Hardware Setup, select the proper hardware, 
a ByteBlasterII on LPT1. (If a window comes up that displays, No Hardware 
to the right of the Hardware Setup button, use the Hardware Setup button to 
change currently selected hardware from No Hardware to ByteblasterII. If a 
red JTAG error message appears or the start button is not working, close down 
the Programmer window and reopen it. If this still doesn’t correct the problem, 
then there is something else wrong with the setup or cable connection. Go back 
to the beginning of this section and check each step and connection carefully.) 
The new USB ByteBlaster can also be used. 

Final Steps to Download 

The filename orgate.sof should be displayed in the programmer window. The 
*.sof file contains the FPGA’s configuration (programming) data for your 
design. To the right of the filename in the Program/Configure column, check 
the Program/Configure box. To start downloading your design to the board, 
click on the Start button. Just a few seconds are required to download. If 
download is successful, a green info message displays in the system window 
notifying you the programming was successful.  

Testing Your Design 

The locations of PB1, PB2, and the decimal LED are indicated in Figure 1.17. 
After downloading your program to the UP3 board, the LED in the lower left 
corner should turn off whenever a pushbutton is hit. Since the output of the OR 
gate is driving the LED signal, it should be on when no pushbuttons are hit. 
Since the buttons are active low, and the BNOR2 gate also has active low 
inputs and output, hitting either button should turn off the LED.  
 



26 Rapid Prototyping of Digital Systems Chapter 1 
 

 

Figure 1.17  ALTERA UP3 board.  Pushbuttons and LED locations used in the tutorial design are 
seen in the lower left corner (enclosed in dashed ellipses). Silk-screening found on the board 
identifies each switch and LED. 

Congratulations! You have just entered, compiled, simulated, downloaded a 
design to a FPGA device, and verified its operation. Since you are using a UP3 
board, you can skip the next section on the UP2 board and go directly to 
Section 1.9. 
                        

                       COMPLETED TUTORIAL FILES ARE AVAILABLE ON THE TEXT’S DVD. 

                       IN THE BOOK’S DESIGN EXAMPLES, ADDITIONAL UP3 RELATED MATERIALS 

                       AND DESIGN FILES CAN BE FOUND IN THE BOOKSOFT_FE\UP3\CHAPX  

         DIRECTORIES.  THE \UP3\1C12\CHAPX DIRECTORIES CONTAINS DESIGNS FOR 

         THE LARGER FPGA USED ON THE 1C12 VERSION OF THE UP3 



 Tutorial I: The 15-Minute Design 27 
 

 

1.8 Downloading Your Design to the UP2 or UP1 Board 

Hooking Up the UP1 or UP  2 Board to the Computer 

To try your design on a UP1 or UP2 board, plug the ByteBlaster cable into the 
UP board (top left) and attach the other end to the parallel port on a PC. If you 
have not done so already, make sure that the PC’s BIOS settting for the printer 
port is ECP or EPP mode. Using a 9V AC to DC wall transformer or another 7 
to 9V DC power source, attach power to the DC power connector (DC_IN) 
located on the upper left-hand corner of the UP3 board. When properly 
powered, one of the green LEDs on the board should light up.  

Figure 1.18  ALTERA UP2 board with jumper settings and PB1, PB2, and LED locations.  

Verify that the device jumpers are set for the FLEX chip as shown in Table 1.2. 
The locations of the pushbuttons, PB1 and PB2, and the LED decimal point are 
also highlighted in Figure 1.18. (Note that for the MAX EPM7128 chip, the 
jumper pins are all set to the top position as indicated in Table 1.2.)  

Table 1.2 Jumper settings for downloading to the MAX and FLEX devices. 

 



28 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

Preparing for Downloading 

After checking to make sure that the cables and jumpers are hooked up 
properly, you are ready to download the compiled circuit to the UP2 board. 
Select Tools Programmer. Click on Hardware Setup, select the proper 
hardware, a ByteBlasterII on LPT1. (If a window comes up that displays, "No 
Hardware" to the right of the Hardware Setup button, use the Hardware Setup 
button to change currently selected hardware from "No Hardware" to 
"ByteBlasterII". If a red JTAG error message appears or the start button is not 
working, close down the Programmer window and reopen it. If this still 
doesn’t correct the problem, then there is something else wrong with the setup 
or cable connection. Go back to the beginning of this section and check each 
step and connection carefully.) The new USB ByteBlaster can also be used. 

Final Steps to Download 

Make sure that the Device Name has changed to EP10K20 or 
EPF10K20RC240 for the UP1 or EPF10K70RC240 for the UP2 (depending 
on the UP board and Quartus II version that you are running). Make sure you 
have also assigned the pin numbers for a UP2 board (see Table 1.1). If it does 
not display the correct device, then return to your schematic, assign the correct 
device first and then the pin numbers (See section 1.1.), recompile, and try 
again. Next, check the Program/Configure box. 
The Start button in the programming window should now be highlighted. 
Click on the Start button to download to the UP2 board. Just a few seconds are 
required to download. If download is successful, a green info successful 
programmer operation message displays in the system window. (If the Start 
button is not highlighted, click Hardware Setup from the programmer 
window. Confirm the port settings and click OK. If you still have problems 
confirm that the printer port BIOS settings use ECP or EPP mode.) 

Testing Your Design 

The locations of PB1, PB2, and the decimal LED are indicated in Figure 1.19. 
On the UP2, one of the seven-segment LEDs decimal points is used for 
monitoring the LED output.  

 Figure 1.19 UP2’s FLEX FPGA pin connection to seven-segment display decimal point. 

All of these LEDs are pre-wired to the FPGA chip with a pull-up resistor as 
illustrated earlier in Figure 1.6. This configuration allows the external resistor 

Pin 14



 Tutorial I: The 15-Minute Design 29 
 

 

 

to control the amount of current through the LED; however, it also requires the 
FPGA chip to output a Low signal to turn on the LED. (Students regularly 
forget this point and have a fully working project with an inverted pattern on 
the LEDs.). Vcc is 5V on the UP2.  
Figure 1.19 shows the UP2’s Flex FPGA pin number 14 hard wired to the 
seven-segment LEDs decimal point. On the UP2, in this tutorial, only the 
decimal point will be used for output. 
After downloading your program to the UP2 board, locate the two rightmost 
seven-segment displays. Since the output of the BNOR2 gate is driving the 
decimal LED signal on the left digit of the two seven-segment displays, it 
should be off (i.e., LED state is inverted on UP1 and UP2). Since the buttons 
are active low, and the BNOR2 gate also has active low inputs and output, 
hitting either button should turn on the LED.  
Congratulations! You have just entered, compiled, simulated, and downloaded 
a design to a FPGA device, and verified its operation. 

 

                       COMPLETED TUTORIAL FILES ARE AVAILABLE ON THE TEXT’S DVD. 

                       IN THE BOOK’S DESIGN EXAMPLES, ADDITIONAL UP2 RELATED MATERIALS 

                       CAN BE FOUND IN THE BOOKSOFT_FE\UP2\CHAPX DIRECTORIES.  

          ADDITIONAL UP   RELATED MATERIALS CAN BE FOUND IN THE  

          \UP1\CHAPX DIRECTORIES. 

 

1.9 The 10 Minute VHDL Entry Tutorial 
As an alternative to schematic capture, a hardware description language such 
as VHDL or Verilog can be used. In large designs, these languages greatly 
increase productivity and reduce design cycle time. Logic minimization and 
synthesis to a netlist are automatically performed by the compiler and 
synthesis tools. (A netlist is a textual representation of a schematic.) As an 
example, to perform addition, the VHDL statement: 

A <= B + C;  
will automatically generate an addition logic circuit with the correct number of 
bits to generate the new value of A. Using the OR-gate design from the 
Schematic Entry Tutorial, we will now create the same circuit using VHDL.  

 

PRIOR KNOWLEDGE OF VHDL  IS NOT NEEDED TO COMPLETE THIS TUTORIAL. 

 



30 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

Using a Template to Begin the Entry Process 

Choose File New, select VHDL File and OK. Place the cursor within the 
text area, right click the mouse, and select Insert Template. Make sure VHDL 
is selected. (Note the different prewritten templates. These are provided to 
expedite the entry of VHDL.) Select VHDL Constructs Design 
Units Entity Declaration. This template is the one you will generally start 
with since it also sets up the input and output declarations. The template for 
the ENTITY declaration appears in the Insert Template preview window. Click 
Insert and then Close to paste the template in your VHDL window. Since the 
editor knows that it is a VHDL source file, the text will appear in different 
context-sensitive colors. VHDL keywords appear in blue and strings in purple 
and comments are green. The color information should be used to detect minor 
syntax errors while still in the text editor. 

Saving the VHDL Source File 

Select File Save As and save the file as orgate.vhd – click Save.  

Replacing Comments in the VHDL Code 

The entire string indicating the position of the entity name, <entity_name>, 
should be set to the name used for the filename – in this case, orgate. There 
are two occurrences of <entity_name> in the text. Find and change both 
accordingly. 

Declaring the I/O Pins 

The input and output pins, PB1, PB2 and LED need to be specified in the 
PORT declaration. Since there are no input vectors, bi-directional I/O pins, or 
GENERIC declarations in this design, remove all of these lines. The source 
file should look like Figure 1.20.  

 

Figure 1.20  VHDL Entity declaration text. 



 Tutorial I: The 15-Minute Design 31 
 

 

 

Setting up the Architecture Body 

Click the mouse at the bottom of the text field. (We will be inserting another 
template here.) Following the earlier procedure for selecting a VHDL template 
(start with a right click), select VHDL Constructs Design 
Units Architecture Body. (The Architecture Body specifies the internal 
logic of the design.) The syntax for the Architecture Body appears in the text 
window after the other text. (You can now see why the template is left 
highlighted – had you not placed your cursor first, text would have appeared at 
your last cursor position. If you do misplace the template, hitting the Edit 
Undo key removes the new text.) 

Editing the Architecture Body 

Change the entity name in the ARCHITECTURE statement to orgate. 
Template lines with a "--" preceding a comment, need to be edited 
appropriately for each particular design. Delete the signal declaration line 
since this simple design does not require internal signals. Delete the remaining 
comment lines after BEGIN that start with "--", and insert LED <= NOT ( 
NOT PB1 OR NOT PB2 ) as a single line. (This line contains a deliberate 
syntax error that will be detected and fixed later.) Insert the following two 
lines at the beginning of the text file to define the libraries for the 
STD_LOGIC data type. 

 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.all; 

 

This is the preferred data type for bits in VHDL. The file should now appear 
similar to Figure 1.21. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1.21  VHDL OR-gate model (with syntax error). 



32 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

Before You Compile 

Before you compile the VHDL code, the FPGA device type and pin numbers 
need to be assigned with Assignments Device and Assignments Pin. If 
your pins are already defined from the earlier Schematic Entry Tutorial, just 
confirm the pin assignments. If you did not do this step earlier in the tutorial 
see the device and pin assignment instructions at the end of section 1.1. At this 
point, VHDL code is generally ready to be compiled, simulated, and 
downloaded to the board using steps identical to those used earlier in the 
schematic entry method. Once pin assignments are made, they are stored in the 
project’s *.qsf file. 

1.10 Compiling the VHDL Design 
The Compile process checks for syntax errors, synthesizes the logic design, 
produces timing information for simulation, fits the design on the FPGA, and 
generates the file required to program the FPGA. After any changes are made 
to the design files or pin assignments, the project should always be re-
compiled prior to simulation or programming.  
 

 

Figure 1.22  VHDL compilation with a syntax error. 

Select Project ADD/Remove Files in Current Project. Confirm that the 
new orgrate.vhd file is now part of project and remove the tutorial’s earlier 



 Tutorial I: The 15-Minute Design 33 
 

 

 

orgate.bdf file that the new VHDL file replaces from the project’s file list, if it 
is present. Click OK. Start the compiler with Processing Start 
Compilation. 

Checking for Compile Warnings and Errors 

The project should compile with an error. After compiling the VHDL code, a 
window indicating an error should appear. The result should look something 
like Figure 1.22. 
Double click on the first red error line and note that the cursor is placed in the 
editor either on or after the line missing the semicolon (;). VHDL statements 
should end with a semicolon. Add the semicolon to the end of the line so that it 
is now reads: 

  LED <= NOT ( NOT PB1 OR NOT PB2 ); 

Now, recompile, and you should have no errors. You can simulate your VHDL 
code using steps identical to the tutorial’s earlier schematic version of the 
project. 

Viewing the Synthesized Logic in a Schematic 

You can view the logic automatically generated by the VHDL synthesis tools 
using Tools Netlist Viewers RTL Schematic, after a successful 
compilation. A schematic of the logic synthesized by your VHDL code will be 
displayed as seen in Figure 1.23. This is a handy way to double check simple 
logic designs when first becoming familiar with VHDL or Verilog hardware 
description languages and their associated automatic logic synthesis tools. 
 

 

Figure 1.23  Logic schematic that was automatically synthesized from the VHDL code. 



34 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

1.11 The 10 Minute Verilog Entry Tutorial 
Verilog is another widely used hardware description language (HDL). Verilog 
and VHDL have roughly the same capabilites. VHDL is based on a PASCAL 
style syntax and Verilog is based on the C language. In large designs, HDLs 
greatly increase productivity and reduce design cycle time. Logic minimization 
and synthesis are automatically performed by the compiler and synthesis tools. 
Just like the previous VHDL example, to perform addition, the Verilog 
statement: 

A = B + C;  
will automatically generate an addition logic circuit with the correct number of 
bits to generate the new value of A.  
Using the OR-gate design from the Schematic Entry Tutorial and the VHDL 
Tutorial, we will now create the same circuit in Verilog.  

 

PRIOR KNOWLEDGE OF VERILOG IS NOT NEEDED TO COMPLETE THIS  TUTORIAL. 

 

Using a Template to Begin the Entry Process 

Choose File New, select Verilog HDL File and OK. Place the cursor within 
the text area, right click the mouse, and select Insert Template and then select 
Verilog HDL. (Note the different prewritten templates. These are built to 
expedite the entry of Verilog.) Select Constructs Design Units Module 
Declaration (style 2) – this declaration is the one you will generally start with 
since it also sets up the input and output declarations. Click Insert then Close 
and the template for the module declaration appears in the Text editor. Since 
the editor knows that it is a Verilog source file, the text will appear in different 
context-sensitive colors. Verilog keywords appear in blue and strings in purple 
and comments in green. The color information should be used to detect minor 
syntax errors while still in the text editor. 

Saving the new Verilog File 

Select File Save As. Note the automatic extension is .v (Verilog) and save 
the file as orgate.v – click Save.  

Replacing Comments in the Verilog Code 

The entire string indicating the position of the entity name, <module_name>, 
should be set to the name used for the filename – in this case, orgate. There is 
one occurrence of <module_name> in the text. Find and change it 
accordingly. Lines starting with // are comments and these will need to be 
replaced with the appropriate Verilog code. 



 Tutorial I: The 15-Minute Design 35 
 

 

 

Declaring the I/O Pins 

The input pins, PB1 and PB2, and the output pin, LED, need to be specified in 
the arguments of the Module statement and Port declaration. Since there are no 
‘inout pins’, ‘wire’, ‘reg’, or ‘integer’ declarations, or Always statements in 
this design, remove all of these lines. The source file should now look similar 
to  Figure 1.24.  
 

 

Figure 1.24  Verilog module declaration text. 

Setting up the Behavioral Code 

Click the mouse to just before the line starting with “endmodule”. (We will be 
inserting another template here.) Following the earlier procedure for selecting 
a Verilog template (start with a right click),  select a Constructs Module 
Items Continuous Assignment. (A single assign statement will specify the 
internal logic of this design.) The syntax for a Continuous Assignment 
Statement appears in the text window after the other text. (You can now see 
why the template is left highlighted – had you not placed your cursor first, text 
would have appeared at your last cursor position. If you do misplace the 
template, hitting the delete key removes the highlighted text.) 

Editing the Continuous Assignment Statement 

Change the <net lvalue> in the assign statement to "LED" and <value> to: 
! ( ! PB1 | ! PB2 ); 

Verilog is based on C and "|" (vertical line) is the bit wise OR operator. The "!" 
(exclamation point) is the NOT operator. Delete the remaining comment lines 
that start with "//". Delete the ";" at the end of the assign LED statement (This 
causes a deliberate syntax error that will be detected and fixed later.) The file 
should now appear as in Figure 1.25. 



36 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

Before You Compile 

Before you compile the Verilog code, the FPGA device type and pin numbers 
need to be assigned with Assignments Device and Assignments Pin. If 
your pins are already defined from the earlier Schematic Entry Tutorial, just 
confirm the pin assignments. If you did not do this step earlier in the tutorial 
see the device and pin assignment instructions at the end of Section 1.1.  

 

 
 

Figure 1.25  Verilog active low OR-gate model (with syntax error). 

At this point, Verilog code is generally ready to be compiled, simulated, and 
downloaded to the board using steps identical to those used earlier in the 
schematic entry method. Once pin assignments are made, they are stored in the 
project’s *.qsf file. 

1.12 Compiling the Verilog Design 
The Compile process checks for syntax errors, synthesizes the logic design, 
produces timing information for simulation, fits the design on the FPGA, and 
generates the file required to program the FPGA. After any changes are made 
to the design files or pin assignments, the project should always be re-
compiled prior to simulation or programming. 

 
Select Project ADD/Remove Files in Current Project. Confirm that the 
new orgrate.v file is now part of project and remove the tutorial’s earlier 
orgate.bdf or orgate.vhd files that the new Verilog file replaces from the 
project if either file is present. Click OK. Start the compiler with 
Processing Start Compilation. 



 Tutorial I: The 15-Minute Design 37 
 

 

 

Checking for Compile Warnings and Errors 

The project will compile with an error. After compiling the Verilog code, a 
window indicating an error should appear. (See Figure 1.26.) 
 

 
 

Figure 1.26  Verilog compilation with a syntax error. 

Double click on the first red error line and note that the cursor is placed in the 
editor either on or after the line missing the semicolon (;). Verilog statements 
should end with a semicolon. Add the semicolon to the end of the line so that it 
is now reads: 

assign LED =  ! ( ! PB1 | ! PB2 ); 

Now, recompile, and you should have no errors. You can simulate your Verilog 
code using steps identical to the tutorial’s earlier schematic version of the 
project. You can also view a schematic of the synthesized logic using 
Tools Netlist Viewers RTL Schematic similar to the steps previously 
outlined in the VHDL tutorial. 



38 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

1.13 Timing Analysis 
With every physical device, there are timing considerations. An FPGA’s timing 
is affected by: 
• Input buffer delays, 
• Signal routing interconnect delays within the FPGA, 
• The internal logic delays (in this case the OR), and 
• Output buffer delays. 
 

The timing analysis tool can be used to determine: 
• The physical delay times and  
• The maximum clock rates in your design. 

Starting the Analyzer 

At the top menu, select Processing Compilation Report and then in the 
Compilation Report window, expand Timing Analyzer and select tpd. A 
matrix of input to output delay times for the project will be computed and 
displayed as seen in Figure 1.27.  
 

 

Figure 1.27  Timing analyzer showing input to output signal propagation timing delays. 

Note that this is the same delay time seen in the simulator. These times include 
the input-to-output buffer delays at the pins and the interconnect delays inside 
the FPGA. The internal OR logic delay is only around a nanosecond relative to 
the rest of the device delay.  
The exact time shown will vary with different versions of the Altera CAD 
tools, the different FPGA chips found on the various boards, and different 
FPGA chip speed grades. Other timing analysis options include setup times, 
hold times, and clock rates for sequential circuits. 



 Tutorial I: The 15-Minute Design 39 
 

 

 

1.14 The Floorplan Editor 
A floorplan editor is a visual tool to assist expert users in manually placing and 
moving portions of logic circuits to different logic cells inside the FPGA. This 
is done in an attempt to achieve faster timing or better utilization of the FPGA.  
Floorplanning is typically used only on very large designs that contain 
subsections of hardware with critical high-speed timing. Since the interconnect 
delays are as large as the design’s logic delays, logic element and I/O pin 
placement is very critical in high speed designs. Vertical and horizontal 
interconnect buses are used through the FPGA to connect Logic Elements. 
For all but expert users, the compiler’s automatic place-and-route tools should 
be used. Automatic place-and-route was already performed by the fitter in the 
compile process of the tutorial. Timing constraints for critical signals can also 
be specified in some FPGA place and routing tools to help the fitter meet the 
design’s timing goals. 
To see the fitter’s automatic placement of the design inside the FPGA, select 
Assignment Back-Annotate Assignments click OK and then 
Assignments Timing Closure Floorplan. In the display that opens, zoom in 
and scroll around to find the colored logic element and gray shaded I/O pins 
used in your design. Find and select the colored Logic Element (LE), then 
View Routing show fan in and then show fan out, and a view like Figure 
1.28 showing the design can be produced for the DE1. 
There is a lot of empty space since the Cyclone II EP2C20 FPGA contains 
18,752 Logic Elements (LEs) and 315 I/O pins. Only 1 LE and three I/O pins 
were used in this design. If you move the logic cell or I/O pins to other 
locations, it will make small changes to the circuit timing because of changes 
in the interconnect delays inside the FPGA.  
Due to the vast number of possible combinations, FPGA CAD tools cannot 
explore every possible placement and routing option. The Quartus II Design 
Space Explorer tool can also be used to search and explore other design 
options in the design space. Large FPGA designs containing millions of gates 
can require several hours or even days of CPU time to examine many of the 
different place and route alternatives in the design space. 

 



40 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

 

Figure 1.28  Floorplan view showing the internal FPGA I/O and LE placements of an OR-gate on a 
DE1. User logic and pins used in the design are seen as shaded areas in the lower right corner. 

1.15 Symbols and Hierarchy 
The Symbol Editor is used to edit or create a symbol to represent a logic 
circuit. Symbols can be created for a design whenever a VHDL or Verilog file 
is compiled. Create a symbol for your VHDL design by opening the orgate.vhd 
file, and then select File Create/Update Create Symbol Files for 
Current File. 
Select File Open, change the file type setting for *.bsf, find and chose 
orgate.bsf to see the new symbol for your VHDL based design as shown in 
Figure 1.29. Inputs are typically shown on the left side of the symbol and 
outputs on the right side. Symbols are used for design hierarchy in more 
complex schematics. This new symbol can be used to add the circuit to a 
design with the graphic editor just like the BNOR2 symbol that was used 
earlier in the tutorial. Double clicking on a symbol in the graphic editor will 
open a pop-up requesting, “Select one design file.” Selecting the appropriate 
*.vhd, *.v, or *.bdf, file takes the user to the underlying Verilog, VHDL, or 
graphic file respectively by opening the underlying file in a different screen 
tab. 
 



 Tutorial I: The 15-Minute Design 41 
 

 

 

Figure 1.29  ORgate design symbol. 

1.16 Functional Simulation 
In large designs with long compile and simulation times, a faster functional 
simulation is commonly used initially. This type of simulation does not include 
device delay times and it is used solely to check for logic errors. Although a 
functional simulation is good for finding logic errors, a timing simulation is 
still necessary to check for any timing related errors as illustrated earlier in the 
tutorial. 

Performing a Functional Simulation 

To perform a functional simulation, set the simulator for functional simulation 
with Assignments Settings. Select Simulator Settings in the left column 
and then change the simulation mode from Timing to Functional. Run 
Processing Generate Functional Simulation Netlist. Finally, select 
Processing Start Simulation. Open the Simulation Report waveform and 
note that the output changes without any delay in response to an input, unlike 
the earlier timing simulation. To switch back to a timing-mode simulation, 
change the simulator setting back to timing, recompile, and restart the 
simulation.  
This short tutorial has gone through the basics of a simple design using a 
common path through the design tools. As you continue to work with the tools, 
you will want to explore more of the menus, options and shortcuts. Chapter 4 
contains a tutorial that will introduce a more complex design example. In 
Quartus II, Help Tutorial also contains more tutorials. Quartus II video 
tutorials and reference manuals are also available online at Altera’s website, 
www.altera.com .  
A number of files such as the *.q* files are maintained in the project directory 
to support a design. Appendix B contains a list of different file extensions used 
by Quartus II. One of the more important files in a project is the *.qsf file. It 
contains the device type and pin assignments along with a number of other 
project settings. 

orgate

inst

PB1PB1

PB2PB2

LEDLED

 



42 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

1.17 Laboratory Exercises 
1. The tutorials ORed the active low signals from the pushbuttons and produced an output 

that was required to be low to turn off an LED. This was accomplished with the 
"negative-logic OR" gate illustrated to the left in Figure 1.30.  

 

 

 

 

Figure 1.30  Equivalent gates: A negative logic OR and a positive-logic AND. 

We know from DeMorgan's Law that the equation in Figure 1.25 represents an 
equivalence. We should therefore be able to substitute a simple two-input AND gate as 
illustrated in Figure 1.29 and accomplish the same task as the single gate used in the 
tutorial. Substitute the AND2 gate for the BNOR2 gate in the schematic capture, then 
compile, simulate, and download the AND circuit. What can you conclude?  

2. Substitute in the VHDL code: 
LED <= PB1 AND PB2; 

  Or into the Verilog code: 
assign LED = PB1 & PB2; 

Compile, simulate, and download and test the new circuit. What can you conclude about 
gate equivalence using DeMorgan’s Theorem?  

3. Design a logic circuit to turn on the LED when both pushbuttons are pressed. Compile, 
simulate, and download the new circuit. 

4. Try a different logic function such as XOR. Start at the beginning or edit your existing 
schematic by deleting and replacing the BNOR2 symbol. Next repeat the tutorial steps to 
compile, simulate, download and test. 

5. Repeat problem 2 for all of the basic gates including, OR, NOR, NAND, XOR, XNOR, 
and NOT. Try using different LEDs and output your results simultaneously. Look up the 
pin connections for the FPGA chip in Table 2.4 and be sure to give each pinout a 
different name.  

6. Design, enter, simulate and implement a more complex logic gate network. One 
suggestion is a half adder. You will need two LED outputs.  

A  +  B  =  A ● B  



 Tutorial I: The 15-Minute Design 43 
 

 

 

7. In the schematic editor, try building the design with some 74xx TTL parts from the 
others maxplus2 symbol library.  

8. Draw a schematic and develop a simulation to test the 2-to-1 Mux function in the others 
maxplus2 symbol library.  

9. View the orgate.rpt file and find the device utilization, the pin assignments, and the 
netlist. A substantial portion of the time delay in this simple logic design is the input and 
output buffer delays and the internal routing of this signal inside the FPGA. Find this 
delay time by removing the BNOR2 gate and one of the inputs in the schematic. 
Connect the input pin to the output pin, recompile and rerun the timing analyzer to 
estimate this time delay. 

10. Use the chip editor to move the logic cell used in the OR-gate design to another location 
inside the FPGA. For information of the chip editor, use the Quartus II Help function. 
Try moving the LE used several columns farther away from the pushbutton and LED 
pins. Not all locations of the logic cell will work and some trial and error will be 
required. Save the edited design, rerun the timing analyzer, and compare the resulting 
time delays with the original time delays. See if you are able to achieve a faster 
implementation than the automatic place-and-route tools.  

11. Remove the pin number constraints from the schematic and let the compiler assign the 
pin locations. Rerun the timing analyzer and compare the time delays. Are they faster or 
slower than having specified the input pins? 

12. If you are using a UP2 board, retarget the example design to the MAX chip. Pin 
numbers for the MAX decimal point LED can be found in the UP2 User manual. It will 
be necessary to connect jumper wires from the MAX header to the pushbuttons. Select 
pins near the pushbuttons. Pin numbers can be seen on the board’s silk-screen. Compare 
the timing from the MAX implementation to the Flex implementation. 

13. If a storage oscilloscope or a fast logic analyzer is available, compare the predicted 
delay times from the simulation and timing analysis to the actual delays measured on the 
FPGA board. Force the pins to a header connector so that you can attach probes to the 
signal wires.  

14. Draw a schematic that uses the LPM_ADD_SUB megafunction to add two signed 
numbers on the Cyclone device. Use Tools  Megawizard to start the megawizard to 
help configure LPM symbols. Verify the proper operation using a simulation with two 4-
bit numbers. Do not use pipelining, clock, or carry in. Vary the number of bits in the 
adder and find the maximum delay time using the timing analyzer. Plot delay time 
versus number of bits for adder sizes of 4, 8, 16, 32, and 64 bits. Using the LC 
percentages listed in the compiler’s report file, estimate the hardware size in LEs. Plot 
LEs required versus number of bits. 



44 Rapid Prototyping of Digital Systems Chapter 1 
 

  

 

15. Use the DFF part from the primitives storage library and enter the symbol in a schematic 
using the graphical editor. Develop a simulation that exercises all of the features of the 
D flip-flop. Use Help on DFF for more information on this primitive. 

16. Use the DFFE part from the primitives storage library and enter the symbol in a 
schematic using the graphical editor. Develop a simulation that exercises all of the 
features of the D flip-flop with a clock enable. Use Help on DFFE for more information 
on this primitive. 

17. Use gates and a DFF part from the primitives storage library with graphical entry to 
implement the state machine shown in the following state diagram. Verify correct 
operation with a simulation using the Altera CAD tools. The simulation should exercise 
all arcs in the state diagram. A and B are the two states, X is the output and Y is the 
input. Use the timing analyzer’s Processing   Classic Timing Analyzer Tool   
Registered performance option tab to determine the maximum clock frequency on the 
Cyclone device. Reset is asynchronous and the DFF Q output should be high for state B. 

 

 

 

 

 

Reset     

B
X = 1

A
X = 0 0

11 

0
 

 

 

18. Repeat the previous problem but use one-hot encoding on the state machine. For one-hot 
encoding use two flip-flops with only one active for each state. For state A the flip-flop 
outputs would be "10" and for state B "01". One-hot encoding is common in FPGAs. 



 

Photo: The Altera DE1 board contains a Cyclone II FPGA, external SRAM, SDRAM & 
Flash memory, and a wide assortment of I/O devices and connectors. 
 
 
    

 

CHAPTER 2 

FPGA  Development Board 
Hardware and I/O Features 

 



46 Rapid Prototyping of Digital Systems Chapter 2 
 

  

 

2 FPGA Development Board Hardware and I/O Features 
 
Each of the five different FPGA boards (DE1, DE1, UP3, UP2, and UP1) have 
a slightly different feature set of logic, I/O interfaces, memory and other 
assorted hardware. As long as the FPGA board has enough logic and it has the 
required I/O features, a project can be implemented on any of the boards.  
FPGAs are available in a wide range of sizes with different feature sets. In 
general, FPGAs with more logic, more I/O pins, higher speed, or more memory 
are more expensive. When designing new products, choosing the FPGA with 
the proper feature set at the lowest cost is an important design consideration. 
 

 

Figure 2.1  The Altera DE1 board has a number of onboard I/O devices. 



 FPGA Development Board Hardware and I/O Features  47 
 

 

 

Power
ON/OFF
Switch

VGA
 Video PortLine

In
Line
Out

Mic
In

USB
Blaster

Port

RS-232
Port

24-bit Audio CODEC

Ocillators
27Mhz 50MHz 24Mhz

90nm
Cyclone II
FPGA with
20K LEs

Altera USB
Blaster

Controller
Chipset

Altera EPCS 16
Configuration Device

7.5V DC Power
Supply

Connector

RUN/PROG
Switch for
JTAG/AS

Modes

7-SEG Display Module

10 Red LEDs

10 Toggle Switches

8 Green LEDs

4 Push-button Switches

4MB Flash
Memory

SMA
External
Clock

SD Card Socket

8MB SDRAM

512KB SRAM

PS/2 Port

 

Figure 2.2  The Altera DE1 board’s I/O features. 

2.1 FPGA and External Hardware Features 
On each of the boards, the FPGA is the large square chip located near the center 
of the development board. Locate the FPGA chip on the DE1 board as seen in 
Figures 2.1 and 2.2. Each of the various board’s FPGAs has a different array of 
features. These are summarized for the different boards in Table 2.1. Each 
FPGA has a different number of logic elements (LE) that are used to implement 
user logic. They also contain varying amounts of both internal embedded 
memory blocks and the newer boards also have external memory.  
FPGAs such as the Cyclone II found on the DE1 and DE2 boards are designed 
to support Digital Signal Processing (DSP) applications, so they also contain 
hardware integer multipliers.  
On larger FPGAs, phase locked loops (PLLs) are used to divide, multiply, and 
shift the phase of clock signals. Remember that you must always compile your 
design for the correct board’s FPGA device and pin assignments or it will not 
download to the device and operate correctly. 



48 Rapid Prototyping of Digital Systems Chapter 2 
 

  

 

Table 2.1 FPGA and Hardware Features of the different development boards. 

FPGA & Hardware 
Features DE1 DE2 UP3 UP2 & 1 

Introduction Year 2006 2006 2004 2001 & 1999 
FPGA Family Cyclone II Cyclone II Cyclone Flex10K 

Logic Elements 
(LEs) 18,752 35,000 6,000 (1C6) or 

12,000 (1C12) 
3,744 or    1,152 

(UP1) 
Approximate Max. 
Logic Gate Count1 500,000 1,000,000 189,000 (1C6) 

or 378,000 
118,000 or 

63,000(UP1) 

FPGA Device Part 
Number EP2C20F484C7 EP2C35F672

C6 

EP1C6Q240C8 
or (1C12) 

EP1C12Q240C
8 

EPF10K70 
RC240-4 or 
EPF10K20 

RC240-4 (UP1) 

Memory in bits 204K bits 483K bits 80K or 208K 
bits 

18K bits 
12K (UP1) 

PLLs 4 4 2 No 
Integer 18 by 18 bit 

Multipliers 26 35 No No 
External 
Clocks 24, 27, 50 Mhz 27, 50Mhz 48, 66, or 

100Mhz 25Mhz 
External SRAM 

Memory 256K by 16 bits 256K by 16 
bits 64k by 16 bits No 

External SDRAM 
Memory 

1M by 16 bits 
with 4 banks 

1M by 16 bits 
with 4 banks 1M by 16 bits No 

Ext. Flash 
Memory 4M by 8 bits 4M by 8 bits 1M by 8 bits No 

Nios II Processor 
SoC Designs 

Supported 
Yes Yes Yes No 

2.2 The FPGA Board’s Memory Features 
In addition to the FPGA’s internal memory, the newer boards provide several 
external ROM and RAM memory devices as seen in Table 2.1. Capacities of 
external memory are much larger than the internal memory, but they will have a 
slower access time.  
FPGA processor cores such as the Nios II used in System-on-a-Chip (SoC) 
designs use external memory for program and data memory, and typically use 
the FPGA’s smaller and faster internal memory for register files and a cache. 
Flash and EEPROM are used to provide non-volatile memory storage. The 
EPCS1 serial Flash chip is used to automatically load the FPGA’s serial 
configuration data at power up in final systems where you do not want to 
download the board with the ByteBlaster each time power is applied.  

                                                           
1 This is only a very crude estimate of the number of equivalent two input NANDs in the FPGA’s hardware 
design. This should be viewed only as a very rough estimate since any real design cannot use every feature 
of every logic element. The estimates given here also include additional gates in the total count to account 
for the FPGA’s embedded memory blocks and hardware multipliers. Such crude gate count estimates can 
also vary by a factor of two or more between different FPGA venders for a similar device and they are 
rarely used now in industry. 



 FPGA Development Board Hardware and I/O Features  49 
 

 

 

A larger Flash memory chip is typically used to boot the initial program code 
on SoC designs that include a processor. Note that the older UP2 and UP1s 
cannot support a Nios processor since they lack external memory and have a 
smaller older FPGA. Links to detailed datasheets for many of the different 
board’s memory chips can be found on the book’s DVD or at the book’s 
website.  
Each board contains a crystal controlled clock circuit that is normally used as 
the master clock for the user’s digital logic circuit. Note that the frequency of 
the clock is different on the boards as seen in table 2.1. PLLs can be used to 
scale the crystal controlled clock to provide other clock frequencies. 

2.3 The FPGA Board’s I/O Features 
Each board provides a wide variety of I/O features as summarized in Table 2.2. 
For most devices, the FPGA board’s hardware provides only an electrical 
interface to the FPGA’s I/O pins. Logic that provides a device interface circuit 
or controller will need to be constructed by the user using the FPGA’s internal 
logic. Many design examples of interfacing to these various I/O devices can be 
found in the following chapters of this book. 
Standard 0.1 inch headers on each of the boards can be used to interface to 
external devices off of the board. A small custom PCB can be designed or a 0.1 
inch predrilled perforated protoboard can be used to plug into the header 
connectors on the board. Standard 0.1 inch ribbon cable connector technology 
can also be used to connect to another board with custom user hardware. 

Table 2.2 The I/O Features of the different development boards. 

I/O Features DE1 DE2 UP3 UP1& 2 
Pushbuttons 4 - debounced 4 - debounced 4 –no debounce 2 –no debounce 
User Switches 18 10 4 8 
User LEDs 8 green 10 red 9 green 18 red 4 No 
LCD Panel No 16 char x 2 line 16 char x 2 line No 
Seven Segment 
LED Displays 

4 8 No 2 

PS/2 Yes Yes Yes Yes 
RS-232 Serial Yes Yes Yes No 
VGA output 212 colors 230 colors 8 colors 8 colors 
I/O Expansion  
Header Pins 

2 – 40 Pin 
connectors 

2 – 40 Pin 
connectors 

4 – 72 I/O Pins 
total 

3 – add 60 Pin 
headers 

TV Decoder No Yes No No 
SD Card slot Yes Yes No No 
Printer Port No No Yes No 
Audio CODEC 24-bit 24-bit No No 
User USB No Yes No No 
IrDA No Yes No No 
Network No 10/100Mhz No No 
Optional Camera 
and Color LCD 
Panel  

Yes Yes No No 



50 Rapid Prototyping of Digital Systems Chapter 2 
 

  

 

Modern FPGAs are surface-mount chips that are soldered directly to the board. 
It is difficult if not impossible to replace the FPGA chip without expensive 
surface mount soldering equipment, so extreme care should be exercised when 
interfacing the FPGA I/O pins to any external devices.  
Standard I/O connector pin assignments used for external PS/2, serial, parallel, 
VGA, network and USB I/O cables can be found in Appendix F. 

Table 2.3  Requirements to use the different I/O Features 

I/O Device Description Hardware Interface Needed 
USB 1.1 Full Speed and Low Speed Processor & USB SIE engine core 

Serial Port RS 232 Full Modem UART to send and receive data 
Parallel Port IEEE 1284 State machine or Proc. for handshake 

PS/2 Port PC Keyboard or Mouse Serial Data - PS/2 state machine 
VGA Port for 

Video Display on 
Monitor 

RGB  three 1-bit signals on 
UP1,2,3, 10-bits on DE2 
and 3-bits on DE1 

State machine for sync signals & user 
logic to generate RGB color signals 

IDE Port Connector on UP3 Processor & IDE Device Driver 
Reset Switch Global Reset on UP3 Must use a reset in design 
Pushbutton 

Switches 
debounced on DE1 & DE2 
but not on the UP1,2, & 3 

Most applications will need a switch 
debounce Circuit on UP1,2,3 

Expansion Cards Connect to .1 inch headers Depends on expansion card used 
LEDs 1=ON (DE1 & DE2) None, but uses 1 FPGA I/O pin 

LCD Display 16 Character by 2 line 
ASCII Characters            
on DE2& UP3 

State machine or Processor to send 
ASCII characters and LCD commands 

Real Time Clock I2C clock chip on UP3 Serial Data - I2C state machine 
DIP/Slide Switch Switches (1=ON) None or Synchronizer Circuit 

 

WHEN CONNECTING EXTERNAL HARDWARE, ADDITIONAL PINS ARE AVAILABLE FOR USE ON 
THE HEADER CONNECTORS ON THE BOARD. FOR DETAILS, REFER TO THE BOARD’S 

REFERENCE MANUAL, WHICH IS ON THE BOOK’S DVD, AND IS ALSO AVAILABLE FREE AT 
HTTP://WWW.ALTERA.COM  OR AT HTTP://WWW.TERASIC.COM. 

 
Also, remember to assign pins as shown in the tutorials to avoid randomly 
turning on several of the memory devices at the same time. A tri-state bus 
conflict occurs when several tri-state outputs are turned on and they attempt to 
drive a single signal line to different logic levels. It is possible that such a tri-
state bus conflict on the memory data bus could damage the devices by 
overheating after several minutes of operation. 
Table 2.4 contains the pin assignments and names used for the DE1, DE2, UP3, 
and UP2 board’s most commonly used I/O devices that are used in basic digital 
designs. A complete list of all pin assignments for all of the boards is too 
lengthy to include here; however, they can be found in each of the FPGA 
board’s user manuals that are available on the book’s DVD in \Board\Chap2. 



 FPGA Development Board Hardware and I/O Features  51 
 

 

 

 Table 2.4  DE1, DE2, UP3, and UP2 Board’s FPGA I/O pin names and assignments 

 

Pin Name DE1 DE2 UP3 UP2, 
UP1 

Pin 
Type Function of Pin 

KEY0 R22 G26 48 28 PB1 Input Pushbutton KEY0 
(debounced, 0 = button hit) 

KEY1 R21 N23 49 29 PB2 Input Pushbutton KEY1 
(debounced, 0 = button hit) 

KEY2 T22 P23 57 - Input Pushbutton KEY2 
(debounced, 0 = button hit) 

KEY3 T21 W26 62 - Input Pushbutton KEY3 
(debounced, 0 = button hit) 

LEDR0 R20 AE23 56 25 
0=on Output RED LED R0             

(1 = LED ON, 0= LED OFF)

LEDR1 R19 AF23 55 14 
0=on Output RED LED R1             

(1 = LED ON, 0= LED OFF)

LEDR2 U19 AB21 54 - Output RED LED R2             
(1 = LED ON, 0= LED OFF)

LEDR3 Y19 AC22 53 - Output RED LED R3             
(1 = LED ON, 0= LED OFF)

SW0 L22 N25 58 41 Input Slide or DIP Switch         
(0=Down, non-debounced) 

SW1 L21 N26 59 40 Input Slide or DIP Switch         
(0=Down, non-debounced) 

SW2 M22 P25 60 39 Input Slide or DIP Switch         
(0=Down, non-debounced) 

SW3 V12 AE14 61 38 Input Slide or DIP Switch         
(0=Down, non-debounced) 

HEX0[0] J2 AF10 - 6 Output Seven Segment Display 0   
LED Segment A (0=on) 

HEX0[1] J1 AB12 - 7 Output Seven Segment Display  0  
LED Segment B (0=on) 

HEX0[2] H2 AC12 - 8 Output Seven Segment Display  0  
LED Segment C (0=on) 

HEX0[3] H1 AD11 - 9 Output Seven Segment Display 0   
LED Segment D (0=on) 

HEX0[4] F2 AE11 - 11 Output Seven Segment Display 0   
LED Segment E (0=on) 

HEX0[5] F1 V14 - 12 Output Seven Segment Display 0   
LED Segment F (0=on) 

HEX0[6] E2 V13 - 13 Output Seven Segment Display 0   
LED Segment G (0=on) 

HEX1[0] E1 V20 - 17 Output Seven Segment Display 1   
LED Segment A (0=on) 

HEX1[1] H6 V21 - 18 Output Seven Segment Display  1  
LED Segment B (0=on) 

HEX1[2] H5 W21 - 19 Output Seven Segment Display  1  
LED Segment C (0=on) 

HEX1[3] H4 Y22 - 20 Output Seven Segment Display 1   
LED Segment D (0=on) 



52 Rapid Prototyping of Digital Systems Chapter 2 
 

  

 

Pin Name DE1 DE2 UP3 UP2, 
UP1 

Pin 
Type Function of Pin 

HEX1[4] G3 AA24 - 21 Output Seven Segment Display 1   
LED Segment E (0=on) 

HEX1[5] D2 AA23 - 23 Output Seven Segment Display 1   
LED Segment F (0=on) 

HEX1[6] D1 AB24 - 24 Output Seven Segment Display 1   
LED Segment G (0=on) 

LCD_E - K3 50 - Output LCD Enable line 
LCD_RW - K4 73 - Output LCD R/W control line 
LCD_RS - K1 108 - Output LCD Register Select Line 

LCD_DATA[0] - J1 94 - Bidir. LCD Data Bus 

LCD_DATA[1] - J2 96 
(133) - Bidir. LCD Data Bus 

LCD_DATA[2] - H1 98 - Bidir. LCD Data Bus 
LCD_DATA[3] - H2 100 - Bidir. LCD Data Bus 

LCD_DATA[4] - J4 102 
(108) - Bidir. LCD Data Bus 

LCD_DATA[5] - J3 104 - Bidir. LCD Data Bus 
LCD_DATA[6] - H4 106 - Bidir. LCD Data Bus 
LCD_DATA[7] - H3 113 - Bidir. LCD Data Bus 

PS2_CLK H15 D26 12 30 Bidir. PS2 Connector 
PS2_DATA J14 C24 13 31 Bidir. PS2 Connector 

CLOCK L1 N2 153 
48Mhz 

91 
25Mhz Input 50MHz Crystal Controlled 

Clock 

VGA_RED B7 E10 228 236 Output VGA Red Video Signal      
(highest bit) 

VGA_GREEN A8 D12 122 237 Output VGA Green Video Signal    
(highest bit) 

VGA_BLUE B10 B12 170 238 Output VGA Blue Video Signal      
(highest bit) 

VGA_VSYNC B11 D8 226 239 Output VGA Connector Vertical     
Sync Signal 

VGA_HSYNC A11 A7 227 240 Output VGA Connector Horizontal 
Sync Signal 

 
The pushbuttons are not debounced on the UP3 and its clock frequency depends 
on the board’s JP3 jumper settings. Set JP3 to short pins 3-4 for the 48Mhz 
clock. UP3 pins enclosed in parenthesis in table 2.4 are for the larger FPGA 
used in the 1C12 version of the UP3 board. It requires more power and ground 
pins so there are some minor pin differences.  
On the UP2 board, the two pushbuttons are not debounced, the LEDs are the 
seven segment decimal points, and its clock is 25Mhz. The original UP1 boards 
look very similar to a UP2 and they use the same pin assignments as the UP2, 
but they contain a smaller EPF10K20RC240 FPGA. Verify the part number on 
the large FPGA chip on the right side of the board, if you are uncertain. 
 



 FPGA Development Board Hardware and I/O Features  53 
 

 

 

NOTE: If you ever switch a design to a different board, you will need to 
change the device type, redo all of the pin assignments, and then recompile for 
the new FPGA device. The voltage levels on FPGA pins can vary (3.3V or 5V), 
so be sure to check for the proper voltage levels when selecting an I/O pin to 
interface external hardware to the board.   
Do not connect high current devices such as motors or relay coils directly to 
FPGA I/O pins. These pins cannot provide the high current levels needed, and it 
may damage the FPGA’s. 

2.4 Obtaining an FPGA Development Board and Cables 
FPGA boards are available for purchase from Altera’s University Program at 
special educational pricing for schools and students (www.altera.com in the 
University Program area). The newest board, the DE1, is ordered, produced, 
and shipped directly from the manufacturer to minimize cost 
(www.terasic.com). Other DE2 and DE1 accessories such as a camera module 
and a small 320 by 240 color LCD panel are also available. Some UP3 add-on 
boards such as an A/D card can also be found at www.slscorp.com . 

 A Longer Cable for the ByteBlaster on UP3, UP2, and UP1 boards 

For use with the UP3, UP2 or UP1 boards, a longer 25pin to 25pin PC M/F 
parallel printer cable is useful since the 1 foot Byteblaster II cable provided 
with the boards is often too short to reach the PC’s printer port. All 25 wires 
must be connected in the printer extension cable. Any computer store should 
have these cables. A three-foot well-shielded cable works best. Avoid using 
extra long cables or very low-cost cables without good shielding as they can 
cause problems. The newer DE1 and DE2 boards come with a newer USB-
based ByteBlaster that has a longer USB cable, so no additional cable is 
needed. 
 
 

                        

                       ADDITIONAL REFERENCE MATERIALS AND DOCUMENTATION FOR EACH  

         FPGA BOARD CAN BE FOUND ON THE BOOK’S DVD IN THE  

          \BOARD\CHAP2 SUBDIRECTORIES. 

 

 



 

Photo: An Altera Flex 10K100 FPGA containing 10,000,000 Transistors and 100,000 
gates. The FPGA is in a pin grid array (PGA) package. The cover has been removed so 
that the chip die is visible in the center of the package. 
 
 
 
    

 

CHAPTER 3 

Programmable Logic 
Technology 



56 Rapid Prototyping of Digital Systems Chapter 3 
 

  

 

3 Programmable Logic Technology 
A wide spectrum of devices is available for the implementation of digital logic 
designs as shown in Figure 3.1. Older traditional off-the-shelf integrated circuit 
chips, such as SSI and MSI TTL, performed a fixed operation defined by the 
device manufacturer. A user must connect a number of different chip types to 
build even a simple logic circuit with this older technology. A large number of 
chips will also be required as each chip contains only a few basic logic gates. 
Application specific integrated circuits (ASICs), complex programmable logic 
devices (CPLDs), and field programmable gate arrays (FPGAs) are integrated 
circuits whose internal functional operation is defined by the user. ASICs 
require a final customized manufacturing step for the user-defined function. A 
CPLD or FPGA requires user programming to perform the desired operation. 

 

Figure 3.1  Digital logic technologies. 

The design tradeoffs of the different technologies are seen in Figure 3.2. Full 
custom VLSI development of a design at the transistor level can require several 
years of engineering effort for design and testing. Such an expensive 
development effort is warranted only for the highest volume devices. This 
approach can generate the highest performance devices. Examples of full 
custom devices include the microprocessor and RAM chips used in PCs. 
ASICs can be divided into three categories, Gate Arrays, Standard Cell and 
Structured. Gate Arrays are built from arrays of pre-manufactured logic cells. A 
single logic cell can implement a few gates or a flip-flop. A final manufacturing 
step is required to interconnect the sea of logic cells on a gate array. This 
interconnection pattern is created by the user to implement a particular design. 
Standard Cell devices contain no fixed internal structure. For standard cell 
devices, the manufacturer creates a custom photographic mask to build the chip 
based on the user's selection of devices, such as controllers, ALUs, RAM, 
ROM, and microprocessors from the manufacturer’s standard cell library. New 
Structured ASICs are similar to gate arrays but each array element contains 
more logic. They offer tradeoffs somewhere between other ASICs and FPGAs. 

Full 
Custom 

Standard 
Logic 

Progammable 
Logic (FPLDs) ASICs 

Digital  
Logic 

TTL 
74xx 

CMOS 
4xxx PLDs FPGAs 

Gate  
Arrays 

Microproce ssor 
& RAM 

Standard 
Cell 

CPLDs 



 Programmable Logic Technology  57 
 

 

 

Since ASICs require custom manufacturing, additional time and development 
costs are involved. Several months are normally required and substantial setup 
fees are charged. ASIC setup fees can be as high as a few million dollars. 
Additional effort in testing must be performed by the user since chips are tested 
after the final custom-manufacturing step. Any design error in the chip will lead 
to additional manufacturing delays and costs. For products with long lifetimes 
and large volumes, this approach has a lower cost per unit than CPLDs or 
FPGAs. Economic and performance tradeoffs between ASICs, CPLDs, and 
FPGAs are changing with each new generation of devices and design tools. 
 

PLDs

ASICs

Full Custom
VLSI Design

Speed,
Density,
Complexity,
Market
Volume
needed for
Product

Engineering Cost, Time to Develop Product 

CPLDs
FPGAs

 

Figure 3.2  Digital logic technology tradeoffs. 

Simple programmable logic devices (PLDs), such as programmable array logic 
(PALs), and programmable logic arrays (PLAs), have been in use for over thirty 
years. An example of a small PLA is shown in Figure 3.3. First, the logic 
equation is minimized and placed in sum of products (SOP) form. The PLA has 
four inputs, A, B, C, and D shown in the upper left corner of Figure 3.3. Every 
input connects to an inverter, making the inverted values of A, B, C, and D 
available for use. Each product term is implemented using an AND gate with 
several inputs. Outputs from the two product term’s AND gates then feed into 
an OR gate.  
A special shorthand notation is used in PLAs and PALs to represent the large 
number of inputs present in the AND and OR gate arrays. A gate input is 
present at each point where the vertical and horizontal signal lines cross in 
Figure 3.3. Note that this means that the two AND gates actually have eight 
inputs and the OR gate has two inputs in the PLA. Every input signal and its 
complement is available as an input to the AND gates. Each gate input in the 
PLA is controlled by a fuse. Initially all fuses are intact. By blowing selected 
fuses, or programming the PLA, the desired SOP equation is produced. The top 
AND gate in Figure 3.3 has fuses intact to the A and B inputs, so it produces 
the AB product term. The lower AND gate has fuses set to produce DC . The 
OR gate has both fuses intact, so it ORs both product terms from the AND 
gates to produce the final output, F = AB + DC . 



58 Rapid Prototyping of Digital Systems Chapter 3 
 

  

 

Small PLDs can replace several older fixed function TTL-style parts in a 
design. Most PLDs contain a PLA-like structure in which a series of AND gates 
with selectable or programmable inputs, feed into an OR gate. In PALs, the OR 
gate has a fixed number of inputs and is not programmable. The AND gates and 
OR gate are programmed to directly implement a sum-of-products Boolean 
equation. On many PLDs, the output of the OR gate is connected to a flip-flop 
whose output can then be feed back as an input into the AND gate array. This 
provides PLDs with the capability to implement simple state machines. A PLD 
can contain several of these AND/OR networks. 

 

Figure 3.3  Using a PLA to implement a Sum of Products equation. 

In more recent times, higher densities, higher speed, and cost advantages have 
enabled the use of programmable logic devices in a wider variety of designs. 
CPLDs and FPGAs are the highest density and most advanced programmable 
logic devices. Designs using a CPLD or FPGA typically require several weeks 
of engineering effort instead of months. These devices are also sometimes 
collectively called field programmable logic devices (FPLDs). 
ASICs and full custom designs provide faster clock times than CPLDs or 
FPGAs since they are hardwired and do not have programmable interconnect 
delays. Since ASICs and full custom designs do not require programmable 
interconnect circuitry they use less chip area, less power, and have a lower per 
unit manufacturing cost in large volumes. Initial engineering and setup costs for 
ASICs and full custom designs are much higher.  
For all but the most time critical design applications, CPLDs and FPGAs have 
adequate speed with maximum clock rates typically in the range of 50-
400MHz; however, clock rates up to 1GHz have been achieved on new 
generation FPGAs and many have a few high-speed 1-10 GHz output pins. 



 Programmable Logic Technology  59 
 

 

 

3.1 CPLDs and FPGAs 
Internally, CPLDs and FPGAs typically contain multiple copies of a basic 
programmable logic element (LE) or cell. The logic element can implement a 
network of several logic gates that then feed into 1 or 2 flip-flops. Logic 
elements are arranged in a column or matrix on the chip. To perform more 
complex operations, logic elements can be automatically connected to other 
logic elements on the chip using a programmable interconnection network. The 
interconnection network is also contained in the CPLD or FPGA. The 
interconnection network used to connect the logic elements contains row and/or 
column chip-wide interconnects. In addition, the interconnection network often 
contains shorter and faster programmable interconnects limited only to 
neighboring logic elements.  
When a design approaches the device size limits, it is possible to run out of 
either gate, interconnect, or pin resources when using a CPLD or FPGA. 
CPLDs tend to have faster and more predictable timing properties while FPGAs 
offer the highest gate densities and more features. 
Clock signals in large FPGAs normally use special low-skew global clock 
buffer lines. These are dedicated pins connected to an internal high-speed bus. 
This special bus is used to distribute the clock signal to all flip-flops in the 
device at the same time to minimize clock skew. If the global clock buffer line 
is not used, the clock is routed through the chip just like a normal signal. The 
clock signal could arrive at flip-flops at widely different times since 
interconnect delays will vary in different parts of the chip. This delay time can 
violate flip-flop setup and hold times and can cause metastability or 
unpredictable operation in flip-flops. Most large designs with a common clock 
that is used throughout the FPGA will require the use of the global clock buffer. 

  

Figure 3.4 Examples of FPGAs and advanced high pin count package types. 

The size of CPLDs and FPGAs is typically described in terms of useable or 
equivalent gates. This refers to the maximum number of two input NAND gates 
available in the device. This should be viewed as a rough estimate of size only. 



60 Rapid Prototyping of Digital Systems Chapter 3 
 

  

 

The internal architecture of three examples of CPLD and FPGA device 
technologies, the Altera MAX 7000, the Altera Cyclone, and the Xilinx 4000 
family will now be examined. An example of each of these devices is shown in 
Figure 3.4. From left to right the chips are an Altera MAX 7128S CPLD in a 
Plastic J-Lead Chip Carrier (PLCC), an Altera Cyclone 10K70 FPGA in a 
Plastic Quad Flat Pack (PQFP), and a Xilinx XC4052 FPGA in a ceramic Pin 
Grid Array Package (PGA). The PGA package has pins on .1" centers while the 
PQFP has pins on .05" centers at the edges of the package. Both Altera and 
Xilinx devices are available in a variety of packages.  
Packaging can represent a significant portion of the FPGA chip cost. The 
number of I/O pins on the FPGA package often limits designs. Larger ceramic 
packages such as a PGA with more pins are more expensive than plastic.  

3.2 Altera MAX 7000S Architecture – A Product Term CPLD 
Device 

The multiple array matrix (MAX) 7000S is a CPLD device family with 600 to 
20,000 gates. This device is configured by programming an internal electrically 
erasable programmable read only memory (EEPROM). Since an EEPROM is 
used for programming, the configuration is retained when power is removed. 
This device also allows in-circuit reprogrammability. 

 

Figure 3.5  MAX 7000 macrocell. 

The 7000 device family contains from 32 to 256 macrocells of the type seen in 
Figure 3.5. Similar to the early PALs, an individual macrocell contains five 
programmable AND gates with wide inputs that feed into an OR gate with a 
programmable inversion at the output. Just like a PAL, the AND/OR network is 

Product-
Term
Select
Matrix

Clear
Select

Clock/
Enable
Select

VCC

PRN

CLRN

ENA

D Q

Global
Clear

Global
Clock

To I/O
Control

Block

To PIA

This respresents a
multiplexer
controlled by the
configuration
program

Programmable
Register

36 Signals
from PIA

16 Expander
Product

Shared Logic
Expanders

LAB Local Array

Parallel Logic
Expanders
(from other
macrocells)



 Programmable Logic Technology  61 
 

 

 

designed to implement Boolean equations expressed in sum-of-products form. 
Inputs to the wide AND gate are available in both normal and inverted forms. 
Parallel expanders are included that are used to borrow extra product terms 
from adjacent macrocells for logic functions needing more than five product 
terms.  
The output from the AND/OR network can then be fed into a programmable 
flip-flop. Inputs to the AND gates include product terms from other macrocells 
in the same local block or signals from the chip-wide programmable 
interconnect array (PIA). The flip-flop contains Bypass, Enable, Clear and 
Preset functions and can be programmed to act as a D flip-flop, Toggle flip-
flop, JK flip-flop, or SR latch. 
Macrocells are combined into groups of 16 and called logic array blocks 
(LABs), for the overall device architecture as shown in Figure 3.6. The PIA can 
be used to route data to or from other LABs or external pins on the device. 
Each I/O pin contains a programmable tri-state output buffer. An FPGA’s I/O 
pin can thus be programmed as input, output, output with a tri-state driver, or 
even tri-state bi-directional. 
 

 
 

Figure 3.6  MAX 7000 CPLD architecture. 

Input/GCLK1
Input/OE2/GCLK2

Input/OE1

LAB A

Macrocells
1-166-

6-16

16

6-
16

I/O
Control
Block

6-16
I/O Pins

3

LAB C

Macrocells
33-486-

6-16

16

6-

I/O
Control
Block

6-16
I/O Pins

3

LAB B

LAB D

Macrocells
17-32

Macrocells
49-64

6-16

1

3

6-16

1

3

6-16
I/O Pins

6-16
I/O Pins

I/O
Control
Block

I/O
Control
Block

6

6

6

6

PIA

6 Output
Input/GCLRn

6 Output

6-

6-
16

6-

6-



62 Rapid Prototyping of Digital Systems Chapter 3 
 

  

 

3.3 Altera Cyclone Architecture – A Look-Up Table FPGA 
Device  

The Cyclone device is configured by loading internal static random access 
memory (SRAM). Since SRAM is used in FPGAs, the configuration will be 
lost whenever power is removed. In actual systems, a small external low-cost 
serial flash memory or programmable read only memory (PROM) is normally 
used to automatically load the FPGA’s programming information when the 
device powers up. 
FPGAs contain a two-dimensional row and column-based architecture to 
implement user logic. A column and row interconnection network provides 
signal connections between Logic Array Blocks (LABs) and embedded memory 
blocks. Interconnect delay times are on the same order of magnitude as logic 
delays. 
The Cyclone FPGA’s logic array consists of LABs, with 10 Logic Elements 
(LEs) in each LAB. An LE is a small unit of logic providing efficient 
implementation of user logic functions. LABs are grouped into rows and 
columns across the device. Cyclone devices range from 2,910 to 20,060 LEs. 
M4K RAM embedded memory blocks are dual-port memory blocks with 4K 
bits of memory plus parity (4,608 bits). These blocks provide dual-port or 
single-port memory from 1 to 36-bits wide at up to 200 MHz. These blocks are 
grouped into columns across the device in between certain LABs. The Cyclone 
EP1C6 and EP1C12 contain 92K and 239K bits of embedded RAM 
respectively.  
Each of the Cyclone device’s I/O pins is fed by an I/O element (IOE) located at 
the ends of LAB rows and columns around the periphery of the device. I/O pins 
support various single-ended and differential I/O standards. Each IOE contains 
a bidirectional I/O buffer and three registers for registering input, output, and 
output-enable signals.  
Cyclone devices also provide a global low-skew clock network and up to two 
Phase Locked Loops (PLLs). The global clock network consists of eight global 
clock lines that drive throughout the entire device. The global clock network 
can provide clocks for all resources within the device, such as IOEs, LEs, and 
memory blocks. Cyclone PLLs provide general-purpose clocking with clock 
multiplication/division and phase shifting as well as external outputs for high-
speed differential I/O support. 
Figure 3.7 shows a Cyclone logic element.  Logic gates are implemented using 
a look-up table (LUT), which is a high-speed 16 by 1 SRAM. Four inputs are 
used to address the LUT’s memory. The truth table for the desired gate network 
is loaded into the LUT's SRAM during programming. A single LUT can 
therefore model any network of gates with four inputs and one output. The 
multiplexers seen in Figure 3.7 are all controlled by bits in the FPGA’s SRAM 
configuration memory. 
 



 Programmable Logic Technology  63 
 

 

 

 
 
 

LABCTRL1

LABCTRL2

LABPRE/ALOAD

Chip-Wide Reset

Asynchronous
Clear/Preset/
Load Logic

Clock & Clock
Enable Select

LABCTRL1

LABCTRL2

LABCLKENA1

LABCLKENA2

Look-Up
Table
(LUT)

Carry
Chain

DATA1
DATA2
DATA3

DATA4

Addnsub

LAB Carry In
Carry In1
Carry In0

LAB Carry In
Carry In1
Carry In0

Synchronous
Load and

Clear Logic

Register Chain
Routing from
Previous LE

LAB-Wide
Synchronous

Load LAB-Wide
Synchronous

Clear Register Bypass

PRNALD
D

QADATA

ENA
CLRN

Register
Feedback

Programmable
RegisterPacked

Registered
Select

LUT Chain
Routing to
Next LE

Row, Column,
and Direct
Link Routing

Row, Column,
and Direct
Link Routing

Local Routing

Register Chain
Output

 

 

Figure 3.7  Cyclone Logic Element (LE). 

 
An example showing how a LUT can model a gate network is shown in Figure 
3.8. First, the gate network is converted into a truth table. Since there are four 
inputs and one output, a truth table with 16 rows and one output is needed. The 
truth table is then loaded into the LUT’s 16 by 1 high-speed SRAM when the 
FPGA is programmed.  
Note that the four gate inputs, A, B, C, and D, are used as address lines for the 
RAM and that F, the output of the truth table, is the data that is stored in the 
LUT’s RAM. In this manner, the LUT’s RAM implements the gate network by 
performing a RAM based table lookup instead of using actual logic gates.  



64 Rapid Prototyping of Digital Systems Chapter 3 
 

  

 

 
 

 
 

 

 

 

 

 

 

Figure 3.8  Using a look-up table (LUT) to model a gate network. 

More complex gate networks require interconnections with additional 
neighboring logic elements. The output of the LUT can be fed into a D flip-flop 
and then to the interconnection network. The clock, Clear, and Preset can be 
driven by internal logic or an external I/O pin. The flip-flop can be 
programmed to act as a D flip-flop, T flip-flop, JK flip-flop, or SR latch. Carry 
and Cascade chains connect to all LEs in the same row. 
Figure 3.9 shows a Logic Array Block (LAB). A logic array block is composed 
of ten logic elements (LEs). Both programmable local LAB and chip-wide row 
and column interconnects are available. Carry chains are also provided to 
support faster addition operations. 
Input-output elements (IOEs) are located at each of the device’s I/O pins. IOEs 
contain a programmable tri-state driver and an optional 1-bit flip-flop register. 
Each I/O pin can be programmed as input, output, output with a tri-state driver, 
or even tri-state bi-directional with or without a register. Four clock I/O pins 
connect to the eight low-skew global clock buffer lines that are provided in the 
device. 
 
 
 
 
 
 

RAM Contents 
Address Data 

A B C D F 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 1 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 1 

4 Input
LUT

(16 x 1 RAM)

A
B
C
D

F

A
B

C
D

F



 Programmable Logic Technology  65 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9  Cyclone Logic Array Blocks (LAB) and Interconnects. 

 

3.4 Xilinx 4000 Architecture – A Look-Up Table FPGA Device 
The Xilinx 4000 Family was a popular first generation FPGA device family 
with 2,000 to 180,000 usable gates. It is configured by programming internal 
SRAM. Figure 3.10 is a photograph of a six-inch silicon wafer containing 
several XC4010E 10,000 gate FPGA chip dice. Figure 3.11 is a contrast-
enhanced view of a single XC4010E die. If you look closely, you can see the 20 
by 20 array of logic elements and the surrounding interconnect lines. Die that 
pass wafer-level inspection and testing are sliced from the wafer and packaged 
in a chip. FPGA yields are typically 90% or higher after the first few 
production runs.  
As seen in Figure 3.12, this device contains a more complex logic element 
called a configurable logic block (CLB). Each CLB contains three SRAM-
based lookup tables. Outputs from the LUTs can be fed into two flip-flops and 
routed to other CLBs. A CLB’s lookup tables can also be configured to act as a 
16 by 2 RAM or a dual-port 16 by 1 RAM. High-speed carry logic is provided 
between adjacent CLBs.  

Row  Interconnect

Local
Interconnect

LAB Local
Interconnect

LAB

Direct Link
Interconnect
from
Adjacent
Block

Direct Link
Interconnect

from
Adjacent

Block

Direct Link
Interconnect
to Adjacent
Block

Direct Link
Interconnect
to Adjacent

Block



66 Rapid Prototyping of Digital Systems Chapter 3 
 

  

 

 

Figure 3.10  Silicon wafer containing XC4010E 10,000 gate FPGAs. 

 
 
 
 
 
 

 
 

 

 

 

 

Figure 3.11  Single XC4010E FPGA die showing 20 by 20 array of logic elements and interconnect. 

 
 
 
 



 Programmable Logic Technology  67 
 

 

 

 
 

 

 

 

 

 

 

 

Figure 3.12  Xilinx 4000 Family Configurable Logic Block (CLB). 

CLBs are arranged in a square matrix with a programmable hierarchical 
interconnection network. Devices in the family contain from 100 to 3,136 
CLBs. The multiplexers seen in Figure 3.12 are all controlled by bits in the 
FPGA’s SRAM configuration memory. 
 The complex hierarchical interconnection network contains varying length 
row, column, and neighboring CLB interconnect structures. Eight low-skew 
global clock buffers are also provided. Input-output blocks (IOBs), contain 
programmable tri-state drivers and optional registers. Each I/O pin can be 
programmed as input, output, output with a tri-state driver, or tri-state bi-
directional with or without a register. In the more recent Xilinx Virtex 4 
FPGAs, each CLB now contains four circuits similar to the earlier 4000 CLBs. 

3.5 Computer Aided Design Tools for Programmable Logic 
Increasing design complexity and higher gate densities are forcing digital 
designs to undergo a paradigm shift. Old technology, low-density logic 
families, such as the TTL 7400 or simple PLD families are rarely if ever used in 
new designs. With logic capacities of an individual FPGA chip approaching 
10,000,000 gates, manual design at the gate level is no longer a viable option in 
complex systems. Rapid prototyping using hardware description languages 
(HDLs), IP cores, and logic synthesis tools has all but replaced traditional gate-
level design with schematic capture entry. These new HDL-based logic 
synthesis tools can be used for both ASIC and FPGA-based designs. The two 
most widely used HDLs at the present time are VHDL and Verilog. 

Look-Up
Table
(LUT)

G4
G3
G2
G1

Look-Up
Table
(LUT)

F4
F3
F2
F1

Look-Up
Table
(LUT)

S/R
Control

S/R
Control

H1 DIN/H2 ECSR/H0

1

1

D

EC

SD

RD

Q

D

EC

SD
Q

RD

Register
Bypass

Register
Bypass

Programmable
Register

Programmable
Register

YQ

Y

XQ

X

4C1 • • • C4

K
(Clock)



68 Rapid Prototyping of Digital Systems Chapter 3 
 

  

 

The typical FPGA CAD tool design flow is shown in Figure 3.13. After design 
entry using an HDL or schematic, the design is automatically translated, 
optimized, synthesized, and saved as a netlist. (A netlist is a text-based 
representation of a logic diagram.) A functional simulation step is often added 
prior to the synthesis step to speed up simulations of large designs. 
An automatic tool then fits the design onto the device by converting the design 
to use the FPGA’s logic elements, first by placing the design in specific logic 
element locations in the FPGA and then by selecting the interconnection 
network routing paths. The place and route process can be quite involved and 
can take several minutes to compute on large designs. On large devices, 
combinatorial explosion (exponential growth) will prevent the tool from 
examining all possible place and route combinations. When designs require 
critical timing, some tools support timing constraints that can be placed on 
critical signal lines. These optional constraints are added to aid the place and 
route tool in finding a design placement with improved performance.  
 

Figure 3.13  CAD tool design flow for FPGAs. 

After place and route, simulation can be performed using actual gate and 
interconnect time delays from a detailed timing model of the device. Although 
errors can occur at any step, the most common path is to find errors during an 
exhaustive simulation. The final step is device programming and hardware 
verification on the FPGA. 

3.6 Next Generation FPGA CAD tools 
A few HDL synthesis tools now support behavioral synthesis. Unlike the more 
widely used register transfer level (RTL) models contained in this book, 
behavioral synthesis models do not specify the exact states and sequence of 
register transfers. A separate constraint file specifies the number of clocks 
needed to obtain selected signals and the tool automatically generates the state 
machines, logic, and register transfers needed.  
Although not currently in widespread use for current designs, newer FPGA 
CAD tools are also appearing based on other languages such as C and Java. 
Some of these system-level tools output VHDL or Verilog models as an 
intermediate step. New HDLs such as SystemVerilog (www.systemverilog.org) 
and SystemC (www.systemC.org) provide enhanced support for verification. 
Tools that automatically generate an FPGA design from other engineering tools 
such as MATLAB-Simulink or LabVIEW have also been introduced. These 
graphical based tools are primarily aimed at DSP application development for 
FPGAs using a library of specialized DSP blocks. 

Device
ProgrammingSimulationDevice

FittingTranslationDesign
Entry

Optimization &
Synthesis



 Programmable Logic Technology  69 
 

 

 

3.7 Applications of FPGAs 
The last decade has seen ever increasing application areas for FPGAs. A recent 
market study found over twelve times as many new FPGA-based designs as 
ASIC-based designs, and ASIC setup costs continue to increase. New 
generation FPGAs can have nearly ten million gates with clock rates 
approaching 1GHz. Example application areas include single chip replacements 
for old multichip technology designs, Digital Signal Processing (DSP), image 
processing, multimedia applications, high-speed communications and 
networking equipment such as routers and switches, the implementation of bus 
protocols such as peripheral component interconnect (PCI), microprocessor 
glue logic, co-processors, and microperipheral controllers.  
Several large FPGAs with an interconnection network are used to build 
hardware emulators. Hardware emulators are specially designed commercial 
devices used to prototype and test complex hardware designs that will later be 
implemented on gate arrays or custom VLSI devices. Hardware emulators are 
commonly used to build a prototype quickly during the development and 
testing of microprocessors. Several of the recent Intel and AMD processors 
used in PCs were tested on FPGA-based hardware emulators before the full 
custom VLSI processor chip was produced. 
A newer application area is reconfigurable computing. In reconfigurable 
computing, FPGAs are quickly reprogrammed or reconfigured multiple times 
during normal operation to enable them to perform different computations at 
different times for a particular application. 

3.8 Features of New Generation FPGAs 
Each new generation of FPGAs increases in size and performance. In addition 
to more logic elements, embedded memory blocks, and interconnects, other 
new features are appearing. Some FPGAs contain a mix of both product term 
and lookup tables to implement logic. Such product term structures typically 
require less chip area to implement the complex gating logic present in large 
state machines and address decoders. Many FPGAs include several phase-
locked loops (PLLs). These PLLs are used to multiply, divide, and adjust high-
speed clock signals. Similar to microprocessors used in PCs, many new FPGAs 
use a lower 1.5 to 3 Volt internal core power supply. To easily interface to 
external processor and memory chips, new FPGAs feature selectable I/O 
standards on I/O pins.  
High-speed hardware multipliers and multiply accumulators (MACs) are also 
available in FPGA families targeted for multiply intensive DSP and graphics 
applications. Several FPGAs from Altera and Xilinx are available with 
commercial internal RISC microprocessor intellectual property (IP) cores. 
These include the Nios, ARM, Microblaze, and PowerPC. The Nios and 
Microblaze processors are an HDL model that is synthesized using the FPGA’s 
standard logic elements. The ARM, and PowerPC are commercial IP cores with 
custom VLSI layouts. These new devices are a hybrid that contains both ASIC 
and FPGA features. Several processors can be implemented in a single FPGA.  



70 Rapid Prototyping of Digital Systems Chapter 3 
 

  

 

These FPGAs come with additional software tools for the processor, including 
C/C++ compilers. Some processor cores are available with a small operating 
system kernel. These new large FPGAs with a microprocessor IP core are 
targeted for System on-a-Chip (SOC) applications. When an FPGA is used for 
SOC applications it is also called System on-a-Programmable Chip (SOPC). 
On many of the largest FPGAs, redundant rows of logic elements are included 
to increase yields. As any VLSI device gets larger the probability of a 
manufacturing defect increases. If a defective logic element is found during 
initial testing, the entire row is mapped out and replaced with a spare row of 
logic elements. This operation is transparent to the user. 

3.9 For additional information 
This short overview of programmable logic technology has provided a brief 
introduction to FPGA architectures. Altera and Xilinx have the largest market 
share of current FPGA vendors. Additional CPLD and FPGA manufacturers 
include Lattice, Actel, Atmel, Quicklogic, and Cypress. Actel, Quicklogic, and 
Cypress have one-time programmable FPGA devices. These devices utilize 
antifuse programming technology. Antifuses are open circuits that short circuit 
or have low impedance only after programming. Trade publications such as 
Electronic Design News periodically have a comparison of the available 
devices and manufacturers. 
The March 2007 issue of IEEE Computer contains several articles on recent 
developments in FPGA tools and reconfigurable computing using FPGAs. 
Altera MAX 7000, Cyclone, Cyclone II, and Stratix II family data manuals with 
a more in-depth explanation of device hardware details are available free online 
at Altera’s website, http://www.altera.com.  
For other examples of FPGA architectures, details on the Xilinx Spartan 3E and 
Virtex II Pro families can be found at http://www.xilinx.com. 
An introduction to the mathematics and algorithms used internally by digital 
logic CAD tools can be found in Synthesis and Optimization of Digital Circuits 
by Giovanni De Micheli, McGraw-Hill, 1994 and Logic Synthesis and 
Verification Algorithms by Hactel and Somenzi, Springer Publishers, 1996. The 
Design Warrior’s Guide to FPGAs by Clive Maxfield, Elsevier, 2004 contains 
an overview of commercial FPGA devices and commercial EDA tool flows for 
FPGA design. 



 Programmable Logic Technology  71 
 

 

 

3.10 Laboratory Exercises 
1. Show how the logic equation (A AND NOT(B)) OR (C AND NOT(D)) can be 

implemented using the following: 

A. The PLA in Figure 3.3 
B. The LUT in Figure 3.9 

Be sure to include the PLA fuse pattern and contents of the LUT.  

2. Examine the compiler report file and use the chip editor to explain how the OR-gate 
design in the tutorial in Chapter 1 was mapped into the Cyclone device. 

3. Retarget the design from Chapter 1 to a MAX 7000S device. Examine the compiler 
report file and use the chip editor to explain how the OR-gate design in the tutorial in 
Chapter 1 was mapped into the MAX device. 

4. Show how the logic equation (A AND NOT(B)) OR (C AND NOT(D)) can be 
implemented in the following: 

A. A MAX Logic Element 
B. A Cyclone Logic Element 
C. An XC4000 CLB 

Be sure to include the contents of any LUTs required and describe the required mux 
settings. 

5. Using data sheets available on the web, compare and contrast the features of newer 
generation FPGAs such as Altera’s Cyclone III and Stratix III, and Xilinx’s Virtex II and 
Virtex 4 families. 



 

    

CHAPTER 4 

Tutorial II: Sequential 
Design and Hierarchy 

  
 

 
 
 



74 Rapid Prototyping of Digital Systems       Chapter 4 
 

 

 

4 Tutorial II: Sequential Design and Hierarchy  
The second tutorial contains a more complex design containing sequential logic and 
hierarchy with a counter and a Hex display. To save time, much of the design has 
already been entered. The existing design will require some modifications. Once again, 
any of the Altera educational FPGA boards can be used. 
Once completed, you will: 

• Understand the fundamentals of hierarchical design tools, 
• Complete an example of a sequential logic design, 
• Use the FPGAcore library designed for the FPGA boards,  
• Use a hex display, pushbuttons, and the onboard clock,  
• Use buses in a schematic, and 
• Be able to perform automatic timing analysis of sequential circuits. 

4.1 Install the Tutorial Files and FPGAcore Library for your 
board 

 
Depending on your FPGA board type, slightly different I/O features are used in 
this tutorial as seen in Table 4.1. DE2 and UP3 boards will use their LCD 
display module to display a counter value in hexadecimal. On the DE1, UP2, 
and UP1 boards, two seven-segment LEDs will be used to display to counter 
value in hex. A slide switch, SW0,  is used on the DE2 and DE1 for the count 
up operation, and pushbuttons on the other boards.  

Table 4.1  FPGA I/O Devices used in the tutorial on the various FPGA boards. 

I/O Device DE1 DE2 UP3 UP2 & 1 

SW4 – count SW0 SW0 SW4 Flex PB1 

SW8 - reset KEY3 KEY3 SW8 Flex PB2 

Hex Display 7-Segment LEDs 
HEX0 & HEX1 

LCD module  LCD module Flex 7-Segment 
LEDs 

Clock 50Mhz 50Mhz 48Mhz 25Mhz 

 
 
Locate the \BOARD\chap4 directory on the DVD that came with the book. 
Each board type has a subdirectory with the required project files for that 
board. Copy all of the Chapter 4 tutorial files in this directory to your 
drive:\mydesigns directory or another subdirectory. 
In the UP3 directory, A special version of the files for the larger 1C12 UP3 
board is in the subdirectory \UP3\1C12\chap4. If you are using the UP2, a 
version of the files for the UP2 board is in the subdirectory, \UP2\chap4. 



 Tutorial II: Sequential Design and Hierarchy 75 
 

 

 

Figure 4.1 The tutor2.gdf schematic uses the LCD module on the DE2 and UP3 boards to display an 
8-bit counter value in hex. DE1 and UP2 boards use two seven-segment LED displays instead. 

4.2 Open the tutor2 Schematic 
After setting up the files in your directory, select File Open 
Project drive:\mydesigns\tutor2.qpf. Open the top-level schematic by 
selecting File Open drive:\mydesigns\tutor2.bdf (not tutor2.gdf) and a 
schematic similar to Figure 4.1 should be displayed. This design has been 
partially entered to save time. This is an 8-bit counter design that outputs the 
counter value to a two digit hexadecimal display.  
On the DE1 and UP2 version of the tutorial, you will see the counter value in 
two seven-segment LED displays and the DE2 and UP3 boards will use their 
LCD module.  
Click on the lpm_counter0 symbol to activate the MegaWizard Plug-In 
Manager. The MegaWizard seen in Figure 4.2 can be used to create and edit 
megafunctions. In this case, you can see that lpm_counter0 is an 8-bit binary 
counter that counts up. You can click on the documentation button and then 
generate sample waveforms to view more details about the counter’s operation. 
You can create new functions with the MegaWizard using 
Tools MegaWizard Plug-In Manager. Close the MegaWizard window to 
continue. 
 

 



76 Rapid Prototyping of Digital Systems       Chapter 4 
 

 

 

 

 

 

 

 

 

 

Figure 4.2 Lpm_counter0 MegaWizard edit window. 

Special hardware blocks have been designed to support the easy use of the 
advanced I/O features found on the FPGA board. They include pushbuttons, 
LCD displays, keyboard, mouse, and video output. More details on all of these 
FPGAcore functions are provided in Chapter 5. The FPGAcore functions 
needed for this tutorial have already been placed in this project’s directory. 
Several symbols from the FPGAcore library appear in the project library and 
are available to be entered in a design.  
As an alternative to copying these files to each project’s directory, under 
Project Add/Remove Files in Project, in the left column you can click on 
Libraries and enter another path to an external library such as the FPGAcore 
library.  

4.3 Browse the Hierarchy 
In engineering, the principle of functional decomposition is normally used in 
large designs. Complex designs are typically broken into smaller design units. 
The smaller design units are then more easily understood and implemented. The 
smaller designs are interconnected to form the complex system. The overall 
design is a hierarchy of interconnected smaller design units. This also promotes 
the re-use of portions of the design.  
The current schematic is a view of the top level of the design. In this design, 
the problem was decomposed into a module (design unit) or symbol with logic 
for a counter and another design unit to display the count. Each symbol also has 
an internal design that can be any combination of another schematic, 
megafunction, VHDL, or Verilog file.  
 



 Tutorial II: Sequential Design and Hierarchy 77 
 

 

 

Figure 4.3 Internal VHDL code for LCD_Display function.  

On schematic for the DE2 or UP3, double click on the LCD_Display symbol to 
see the underlying VHDL code that describes the internal operation of the 
LCD_Display block. As shown in Figure 4.3, it contains a complex state 
machine that sends commands and ASCII character data to the LCD controller.  
DE1 and UP2 users should click on the DEC_7SEG symbol. It contains VHDL 
code with a case statement to implement the seven-segment LED decoder 
hardware for the count display. 
As an alternative, the module could be designed in Verilog or even at the gate 
level using basic logic symbols (if you had infinite time and patience to work at 
that low of a level!). Close the VHDL text editor and return to the graphic 
editor.  
To see the overall hierarchy of the design, select View Utility Windows 
Project Navigator and make sure the Hierarchy tab is selected. After 
expanding this window as seen in Figure 4.4, note that the tutor2 schematic is 
comprised of two symbols.  
For the DE2 and UP3, the LCD_Display symbol is used in the design to output 
the count to the LCD display. The lpm_counter0 symbol contains the 8-bit 
binary counter. If you click on the “+” block on the lpm_counter symbol, you 
will see that it contains an lpm_counter megafunction.  In this case, the design 
hierarchy is three levels deep. After examining the hierarchy display window, 
close it and return to the graphic editor window that contains the tutor2 
schematic.  



78 Rapid Prototyping of Digital Systems       Chapter 4 
 

 

 

 

 

Figure 4.4 Hierarchy display window for the tutor2 design. 

4.4 Using Buses in a Schematic 
In Figure 4.5, find the heavy purple lines flowing out of the lpm_counter0 
symbol in the upper right corner and into the LCD_Display (DE2 and UP3) or 
DEC_7SEG (DE1 and UP2) symbol in the lower left corner. This is an example 
of a bus. A bus is just a parallel collection of numbered bits. The bus is labeled 
q[7..0] indicating the bus has eight signals (bits) named q[7], q[6] … q[0]. 
q[3..0] would be the low four bits of the q[7..0] bus and q[7..4] would be the 
high four bits. The q[7..0] bus sends the counter’s eight output bits to the 
appropriate display function for each FPGA board. 
 

 

Figure 4.5 Enlarged view of tutor2 design showing q[7..0] bus connnections. 

To connect single node lines to a bus, it is first necessary to assign a name such 
as q[7..0] to the bus. Then the node line that needs to connect to a bus line is 



 Tutorial II: Sequential Design and Hierarchy 79 
 

 

given the name of one or more of the bus elements. As an example, the counter 
output MSB signal line is labeled q[7]. To label a bus or node, right click on the 
node or bus line and select Properties. You can then type in or edit the name. 
When signal lines have the same name, they are automatically connected in the 
graphic editor. A physical node line connecting a node and a bus with the same 
name is optional. Leaving it out often times makes a complex schematic easier 
to follow since there will be fewer lines crossing on the schematic. Node and 
bus names must be assigned first when connecting a node to a bus. 

4.5 Testing the Pushbutton Counter and Displays 
Compile the design with Processing Start Compilation. Wait a few seconds 
for the “Full Compilation was successful” message to appear. Select 
Processing Classic Timing Analyzer Tool. This counter circuit is a 
sequential design. The primary timing issue in sequential circuits is the 
maximum clock rate. Whenever you compile, a timing analysis tool 
automatically runs that will determine the maximum clock frequency of the 
logic circuit.  
 

 

Figure 4.6 Timing analysis of a Sequential Circuit  

The Timing Analyzer shows the maximum clock frequency of this logic circuit 
to be approximately 120 MHz. Clock rates you will obtain will vary depending 
on the FPGA device type, the complexity and size of the logic circuits, the 
speed grade of the chip, and the CAD tool version and settings. In this design, 
the clock is supplied by a manual switch input so a clock input of only a few 
hertz will be used for the counter.  



80 Rapid Prototyping of Digital Systems       Chapter 4 
 

 

 

Since the FPGA’s clock input  on the DE2 and UP3 is only 50 or 48 MHz for 
the LCD_Display core, this simple counter cannot be overclocked. Close and 
exit the timing analyzer. 

4.6 Testing the Initial Design on the Board 
Download the design to the FPGA board. If you need help downloading to the 
board, refer back to Sections 1.5 to 1.8 depending on board type. 
The name of the specific switch assigned for each FPGA board is shown in 
Table 4.2. Hit or turn on the count switch several times to clock the counter and 
watch the count display as it counts up. When the switch is hit, it will 
occasionally count up by more than one. This is a product of mechanical 
bounce in the switch. A switch contains a metal spring that actually forces 
contact and bounces several times before stabilizing. The high-speed logic 
circuits will react to the switch contact bounce just as if several clock signals 
have occured. This makes the counter count up by more than one randomlly.  
 

Table 4.2 Location of Switches on each FPGA board. 

I/O Device DE1 DE2 UP3 UP2 & 1 

SW4 – count up SW0 SW0 SW4 Flex PB1

SW8 - reset KEY3 KEY3 SW8 Flex PB2

 
 

 

Figure 4.7 Oscillosope display of switch contact bounce.  



 Tutorial II: Sequential Design and Hierarchy 81 
 

 

The actual output of the switch as it appears on a digital oscilloscope is shown 
in Figure 4.7. When the switch is hit, a random number of pulses appear as the 
switches mechanical metal contacts bounce several times and then finally 
stabilize. Several of the pulses will have a voltage and duration long enough to 
generate extra clock pulses to the counter. An FPGA will respond to pulses in 
the nanosecond (ns)  range, and these pulses are in the microsecond (μs) range.  
This problem occurs with all slide switches or pushbuttons in digital designs. If 
the pushbutton is a double-pole double-throw (DPDT; i.e., has both an ON and 
an OFF contact), an SR latch is commonly used to remove the contact bounce. 
The pushbutton on the FPGA boards are single pole single throw (SPST), so a 
time averaging filter is used. This example demonstrates why designs must be 
tested on actual hardware after simulation. This problem would not have shown 
up in a simulation.Verify that the reset switch resets the display and the counter. 
DE1 and DE2 boards already have a hardware debounce circuit on the four 
pushbuttons and that is why the undebounced slide switch (SW0) was used 
instead. The other boards do not have this built-in hardware debounce circuit 
on their pushbuttons. 

4.7 Fixing the Switch Contact Bounce Problem 
For the hardware implementation to work correctly, the switch contact bounce 
must be removed. A logic circuit that filters the pushbutton output using a small 
shift register can be added to filter the output. This process is called switch 
debouncing. Using the right click, insert the symbol debounce from the project 
library into the schematic.  
 

 
 
 
 
 

 
 
 

 

 

 

 

 

Figure 4.8 Modified tutor2 design schematic. 



82 Rapid Prototyping of Digital Systems       Chapter 4 
 

 

 

Disconnect the pushbutton from the lpm_counter0’s clock pin and connect it to 
the pushbutton input pin, PB, on the debounce symbol. Now connect the 
PB_DEBOUNCED pin to the lpm_counter0’s clock pin. The debounce circuit 
needs a 100Hz clock signal for the time averaging filter. The clock needed is 
much slower than a 25-50MHz system clock, so a clock prescalar is needed. A 
clock prescalar is a logic circuit that divides a clock signal.  
Add the clk_div symbol from the project library to the schematic. Connect the 
100Hz input pin on the debounce symbol to the 100Hz output pin on the clock 
prescalar. Connect the 48MHz clock input on the clk_div symbol to the 
clk_48MHz (or clk_50Mhz on DE1 and DE2) input pin.  
The internal VHDL design in the debounce module generates the switch 
debounce circuit. The debounce circuit contains a 4-bit shift register that is 
clocked at 100Hz. The shift register shifts in the inverted pushbutton output. 
When any of the  four bits of the shift register (i.e., four 10 ms time-spaced 
samples of the pushbutton’s output) are High the output of the debounce circuit 
changes to High. When all  four bits of the shift register are Low the output 
goes Low. This delays the High to Low change until after the switch contact 
bounce stops. 
If the external input signal being counted or used for a reset was a fast clock 
that was not synchronized to the internal FPGA clock, another problem with the 
simple counter circuit could appear that would cause problems. If the external 
input signal changes right at a clock edge, it could violate the flip-flop setup 
and hold times and cause upredictable results (metastability). The traditional 
solution for this problem is to feed any external input signals through two 
cascaded D flip-flops that are clocked by the system clock. This reduces the 
probability of a such an error to only once in several years even for a rapidly 
changing clock input signal. This circuit is sometimes called a synchronizer. A 
very slowly changing signal, such as a user input switch, has a very low 
probability of such an event occuring even without a synchronizer circuit, but it 
could still occur and would require a synchronizer in mission critical 
applications where such a failure could be catastrophic. 

4.8 Testing the Modified Design on the FPGA Board 
Verify that your schematic has the same connections to the new debounce and 
clock divide symbols as seen in Figure 4.8. Compile the design and download 
the design to the board again. Hit the count switch several times to clock the 
counter and watch the LCD display as it counts up. It should now count up 
reliably by one whenever the pushbutton is hit. Hit the reset switch and verify 
that the count resets to zero. 
The FPGAcore functions LCD_Display or DEC_7SEG, clk_div, and debounce 
will be useful in future design projects using the FPGA board. They can be used 
in any VHDL, Verilog, or schematic designs by using the graphical editor and 
FPGAcore symbols or by using an HDL component instantiation statement. 



 Tutorial II: Sequential Design and Hierarchy 83 
 

 

 
 

 

                       ALL SOURCE CODE FOR THE BOOK’S DESIGNS IS AVAILABLE ON THE DVD. 

                       MATERIALS CAN BE FOUND IN THE \BOOKSOFT_FE\BOARD\CHAPX  

                       DIRECTORIES FOR EACH SPECIFIC BOARD (I.E., DE1, DE2, UP3, UP2) 

 

 
 
 

4.9 Laboratory Exercises  
1. Simulate the initial design without the switch debounce circuit by setting up an initial 

reset pulse and a periodic 200 ns clock input in the simulator. In sequential simulations, 
turn on the setup and hold time violation detection simulator setting option before 
running the simulator. This will check for flip-flop timing problems that would otherwise 
go undetected in the simulation. Adjust the reset pulse so that it changes right before the 
clock edge and run another simulation to see if you can produce a setup or hold violation. 

2. Modify the counter circuit so that it counts down or up depending on the state of a switch 
input. See Table 2.4 for the pin assignment for the new switch input. 

3. Modify the counter circuit so that it parallel loads a count value from the four switches on 
the FPGA board when PB2 is pushed. Zero out the low four counter bits during a load. 
Since the switch inputs are only used when PB2 is hit, they do not need to be debounced. 
See Table 2.4 for the pin assignments for the new switch inputs. 

4. Build a stopwatch with the following modifications to the design. Disconnect the counter 
clk line and connect it to the clock_10hz pin on the clock_div symbol. Clock a toggle 
flip-flop with the pb_debounced output. A toggle flip-flop, tff, can be found in the prim 
symbol library. A toggle flip-flop’s output changes state every time it is clocked. Connect 
the output of the toggle flip-flop to a new count enable input added to the counter with 
the megawizard. The count should start and stop when PB1 is hit. Elapsed time in tenths 
of seconds should be displayed in hexadecimal. Pushing PB2 should reset the stopwatch. 

5. The elapsed time in the stopwatch from problem 3 is displayed in hexadecimal. Replace 
the counter with two cascaded binary-coded-decimal (BCD) counters so that it displays 
the elapsed time as two decimal digits. 



84 Rapid Prototyping of Digital Systems       Chapter 4 
 

 

 

6. Build a watch by expanding the counter circuit to count seconds, hours, and minutes. The 
two pushbuttons reset and start the watch.  

7. Replace the lpm_counter0 logic with a VHDL or Verilog counter design, simulate the 
design, and verify operation on the FPGA board. Read Chapter 5 and note the example 
counter design in section 6.10. 

8. Draw a schematic, develop a simulation, and download a design to the FPGA board that 
uses the LCD displays for outputs and the DIP switch for input, to test the 74161 4-bit 
TTL counter function found in the /others/maxplus2 symbol library. Use the DIP or slide 
switch to provide four inputs for a parallel load of the count. Use a debounced pushbutton 
input for the clock. Use the second pushbutton for the load input. 

9. Draw a schematic, develop a simulation, and download a design to the FPGA board to 
test the following functions that can be created with the MegaWizard: 

LPM_ADD_SUB: a 2-bit adder/subtractor; test the add operation 

LPM_ADD_SUB: a 2-bit adder/subtractor; test the subtract operation 

LPM_COMPARE: compare two 2-bit unsigned numbers 

LPM_DECODE: a 4 to 16-bit decoder 

LPM_CLSHIFT: a 4-bit shift register 

LPM_MULT: a 2-bit unsigned multiply 

The LPM megafunctions require several parameters to specify bus size and other various 
options. For this problem, do not use pipelining and use the unregistered input options. 
Refer to the online help files for each LPM function for additional information. In the 
enter symbol window, use the megawizard button to help configure LPM symbols. Use 
the FPGA boards switches for four inputs as needed and display the output in hex on the 
two seven-segment displays. Use a debounced pushbutton input for the clock, if one is 
required. Use the second pushbutton for a Clear or Reset input. Use the timing analyzer 
to determine the worst-case delay time for each function.  

10. Draw a schematic and develop a simulation to test the LPM_ROM megafunction. Create 
a sixteen word ROM with eight data bits per word. Specify initial values in hex for the 
ROM in a memory initialization file (*.mif) file. The contents of each memory location 
should be initialized to four times its address. See MIF in the online help for details on 
the syntax of a MIF file. Enter the address in four switches and display the data from the 
ROM in the two seven-segment LEDs or the LCD. Determine the access time of the 
ROM. 

 



 Tutorial II: Sequential Design and Hierarchy 85 
 

 

11. Using gates and the DFF part from the primitives/storage library, design a circuit that 
implements the state machine shown below. Use two D flip-flops with an encoded state. 

For the encoded states use A = "00", B = "01", and C = "10". Ensure that the undefined 
"11" state enters a known state. Enter the design using the graphical editor. Develop a 
simulation that tests the state machine for correct operation. The simulation should test 
all states and arcs in the state diagram and the "11" state. Use the Processing  
 Classic Timing Analyzer Tool option to determine the maximum clock frequency 

on the Cyclone device. Use an asynchronous reset. 

12. Repeat the previous problem using one-hot encoding. Recall that one-hot encoding uses 
one flip-flop per state, and only one flip-flop is ever active at any given time in valid 
states. The state encoding for the one-hot state machine would be A =  "100", B =  "010", 
and C =  "001". Start with a reset in the simulation. It is not necessary to test illegal states 
in the one-hot simulation. One-hot state machine encoding is recommended by many 
FPGA device manufacturers. 

 

 

 

A

Reset

CB
Output1  

X1

1X0X

X0



 

 

CHAPTER 5 

FPGAcore Library 
Functions 

debounce

inst

pbpb

clock_100Hzclock_100Hz

pb_debouncedpb_debounced

 

onepulse

inst

PB_debouncedPB_debounced

clockclock

PB_single_pulsePB_single_pulse

  
clk_div

inst

clock_48Mhzclock_48Mhz clock_1MHzclock_1MHz

clock_100KHzclock_100KHz

clock_10KHzclock_10KHz

clock_1KHzclock_1KHz

clock_100Hzclock_100Hz

clock_10Hzclock_10Hz

clock_1Hzclock_1Hz

keyboard

inst

keyboard_clkkeyboard_clk

keyboard_datakeyboard_data

clock_48Mhzclock_48Mhz

resetreset

readread

scan_code[7..0]scan_code[7..0]

scan_readyscan_ready

MOUSE

inst

clock_48Mhzclock_48Mhz

resetreset

lef t_buttonlef t_button

right_buttonright_button

mouse_cursor_row[9..0]mouse_cursor_row[9..0]

mouse_cursor_column[9..0]mouse_cursor_column[9..0]

mouse_datamouse_data

mouse_clkmouse_clk

  

LCD_Display

inst

Hex_Display_Data[num_hex_digits*4-1..0]Hex_Display_Data[num_hex_digits*4-1..0]

resetreset

clk_48Mhzclk_48Mhz

LCD_RSLCD_RS

LCD_ELCD_E

LCD_RWLCD_RW

DATA_BUS[7..0]DATA_BUS[7..0]

 
VGA_SYNC

inst

clock_48Mhzclock_48Mhz

redred

greengreen

blueblue

red_outred_out

green_outgreen_out

blue_outblue_out

horiz_sync_outhoriz_sync_out

vert_sync_outvert_sync_out

video_onvideo_on

pixel_clockpixel_clock

pixel_row[9..0]pixel_row[9..0]

pixel_column[9..0]pixel_column[9..0]

    

Char_ROM

inst

clockclock

character_address[5..0]character_address[5..0]

font_row[2..0]font_row[2..0]

font_col[2..0]font_col[2..0]

rom_mux_outputrom_mux_output

 



88 Rapid Prototyping of Digital Systems   Chapter 5 
 

 

 

5 FPGAcore Library Functions 
In complex hierarchical designs, intellectual property (IP) cores are frequently 
used. An IP core is a previously developed synthesizable hardware design that 
provides a widely used function. Commercially licensed IP cores include 
functions such as microprocessors, microcontrollers, bus interfaces, multimedia 
and DSP functions, and communications controllers. IP cores promote design 
reuse and reduce development time by providing common hardware functions 
for use in a new design.  
The FPGAcore functions listed in Table 5.1 are designed to simplify use of the 
FPGA board’s pushbuttons, keyboard, mouse, LCD display, seven-segment 
LEDs, and video output features. They can be used in schematic capture, 
VHDL, or Verilog based designs. Full source code is provided on the DVD. 
 

Table 5.1  The FPGAcore Functions. 

FPGAcore 
Name 

Description 

LCD_Display Displays ASCII Characters and Hex Data on an LCD Panel 
DEC_7SEG Display Hex Data on a seven-segment LED Display 
Debounce Pushbutton Debounce Circuit 
OnePulse Pushbutton Single Pulse Circuit 
Clk_Div Clock Prescaler with 7 slower frequency outputs (1MHz to 1hz)  
VGA_Sync VGA Sync signal generator for FPGA that outputs pixel addresses 
Video_PLL Used by VGA Sync to generate the video pixel clock using a PLL 
Char_ROM Small Character Font ROM for video character generation 
Keyboard Reads keyboard scan codes from the board’s PS/2 connector 
Mouse Reads PS/2 mouse data and outputs cursor row and column address 

 
 
FPGAcores can be used as symbols from the FPGAcore library, accessed via a 
VHDL package, or used as a component in other VHDL or Verilog files. An 
example of using the FPGAcore package in VHDL can be found in the file 
\board\chap5\FPGApack.vhd available on the DVD. The use of FPGApack’s 
VHDL package saves retyping lengthy component declarations for the core 
functions in each VHDL-based design.  
This section contains a one-page summary of each FPGAcore interface. VHDL 
source code is provided for all FPGAcores on the DVD. Additional 
documentation, examples, and interface details can be found in later chapters 
on video signal generation, the keyboard, and the mouse. The Clk_Div, 
LCD_Display, and Debounce functions were already used in the tutorial design 
example in Chapter 4.  
For correct operation of the FPGAcore functions, I/O pin assignments must be 
made as shown in the description of each FPGAcore function. Clock inputs are 
also required on several of the FPGAcore functions. The Clk_Div FPGAcore is 
setup to provide the slower clock signals needed by some of the core functions.  



 FPGAcore Library Functions 89 
 

 

 

Source code for the FPGAcore functions must be in the project directory or in 
the user’s library search path. Review Section 4.2 for additional information on 
checking the library path. The VGA_Sync, Video_PLL, and LCD_Display core 
functions are often modified by the user to support different display resolutions 
and message options for each design. Be sure to select the right version of these 
core functions when adding file paths for a new project.  
For UP2 and UP1 users, the same functionality is provided in the FPGAcore 
library functions found on the DVD in the \UP2\Chap5 and \UP1\Chap5 
directories. Since the DE1 and UP2 do not have an LCD display, the seven 
segment display core, DEC_7SEG, must be used instead.  
On the UP2 and UP1, only the 640 by 480 video mode is possible since the 
FPGA on these boards does not have a Phase Locked Loop (PLL) to generate 
the higher clock frequencies needed for other video display resolutions. 
 
 
 

                        

                       ALL OF THE SOURCE CODE FOR THE VARIOUS FPGACORE FUNCTIONS  

                       CAN BE FOUND ON THE DVD IN THE \BOARD\CHAP5 SUBDIRECTORIES.   

                       



90 Rapid Prototyping of Digital Systems   Chapter 5 
 

 

 

5.1  FPGAcore LCD_Display: LCD Panel Character Display 
 

Figure 5.1 Symbol for LCD_Display FPGAcore. 

The LCD_Display core is used to display static ASCII characters and changing 
hex values from hardware on the DE2’s or UP3’s 16 by 2 line LCD display 
panel. The core’s VHDL code can be configured internally by the user to 
display different ASCII strings and hex data fields. Instructions can be found in 
comments in the core’s VHDL code. A Generic, Num_Hex_Digits, is used to set 
the size of the Hex_Display_Data input (i.e., Each hex digit displayed requires 
a 4-bit signal).  
The LCD controller datasheet contains information on graphics characters and 
LCD commands. A state machine is used to send data and commands to the 
LCD controller and to generate the required handshake signals. An ASCII to 
hex table can be found in Appendix D. See LCD_Display.vhd for more 
information. 
 

5.1.1 VHDL Component Declaration 
COMPONENT LCD_Display 
 PORT(Hex_Display_Data:  IN    STD_LOGIC_VECTOR 
      ((Num_Hex_Digits*4)-1 DOWNTO 0); 
   reset, clock_48MHz: IN STD_LOGIC; 
   LCD_RS, LCD_E:  OUT STD_LOGIC; 
   LCD_RW:   INOUT STD_LOGIC; 
 DATA_BUS:   INOUT STD_LOGIC_VECTOR(7 DOWNTO 0)); 
END COMPONENT; 
 

5.1.2 Inputs 
Hex_Display_Data contains the 4-bit hexadecimal hardware signal values to 
convert to ASCII hex digits and send to the LED display. The Generic, 
Num_Hex_Digits, adjusts the size of the input hex data. Generics can be 
assigned a value in an HDL file or with a block’s parameter assignment in a 
schematic. In a schematic, use View Parameter assignment to see the 
generic value and the symbol’s properties parameters tab to set it. 

LCD_Display

inst

Hex_Display_Data[num_hex_digits*4-1..0]Hex_Display_Data[num_hex_digits*4-1..0]

resetreset

clk_48Mhzclk_48Mhz

LCD_RSLCD_RS

LCD_ELCD_E

LCD_RWLCD_RW

DATA_BUS[7..0]DATA_BUS[7..0]



 FPGAcore Library Functions 91 
 

 

 

 
5.1.3 Outputs 

Outputs control an 8-bit tri-state bidirectional data bus to the LCD panel. 
Handshake lines are used to transfer ASCII data to the display. Pin assignments 
for the LCD module on the DE2 and UP3 boards are listed below. The DE1, 
UP2, and UP1 boards do not have a built-in LCD display module. 

 

Table 5.2  The LCD Pin Assignments  

Pin Name DE1 DE2 UP3 UP2, 
UP1 

Pin 
Type 

Function of Pin 

LCD_E - K3 50 - Output LCD Enable line 
LCD_RW - K4 73 - Output LCD R/W control line 
LCD_RS - K1 108 - Output LCD Register Select Line 

LCD_DATA[0] - J1 94 - Bidir. LCD Data Bus 
LCD_DATA[1] - J2 96(133) - Bidir. LCD Data Bus 
LCD_DATA[2] - H1 98 - Bidir. LCD Data Bus 
LCD_DATA[3] - H2 100 - Bidir. LCD Data Bus 
LCD_DATA[4] - J4 102(108) - Bidir. LCD Data Bus 
LCD_DATA[5] - J3 104 - Bidir. LCD Data Bus 
LCD_DATA[6] - H4 106 - Bidir. LCD Data Bus 
LCD_DATA[7] - H3 113 - Bidir. LCD Data Bus 

 



92 Rapid Prototyping of Digital Systems   Chapter 5 
 

 

 

5.2 FPGAcore DEC_7SEG: Hex to Seven-segment Decoder 
 

 

Figure 5.2 Symbol for DEC_7SEG FPGAcore. 

The FPGAcore Dec_7seg shown in Figure 5.2 is a hexadecimal to seven-
segment display decoder with active low outputs. This function is used to 
display hex numbers on an FPGA board’s seven-segment LED displays. 
 

5.2.1 VHDL Component Declaration 
COMPONENT dec_7seg 
 PORT( hex_digit : IN  STD_LOGIC_VECTOR ( 3 DOWNTO 0 ); 
  seg_a, seg_b, seg_c,  
  seg_d, seg_e, seg_f, 
  seg_g   : OUT  STD_LOGIC  ); 
END COMPONENT; 

 
5.2.2 Inputs 

Hex_digit is the 4-bit hexadecimal value to send to the LED display. 
Hex_digit[3] is the most-significant bit. 
 

5.2.3 Outputs 
Segments a through g are active low and should be connected as output pins to 
the corresponding pin on a seven-segment display. Table 5.3 lists the pin 
assignments for the first two hex displays on the FPGA boards. The UP3 does 
not contain seven segment displays, but it does have an LCD module. More 
than two seven segment displays are available on both the DE1 and DE2 
boards, see the appropriate board’s user manuals for a complete list of pin 
assignments. 



 FPGAcore Library Functions 93 
 

 

 

 

Table 5.3  The Seven Segment Display Pin Assignments  

 

Pin Name DE1 DE2 UP3 UP2, 
UP1 

Pin 
Type Function of Pin 

HEX0[0] J2 AF10 - 6 Output Seven Segment Display 0   
LED Segment A (0=on) 

HEX0[1] J1 AB12 - 7 Output Seven Segment Display  0  
LED Segment B (0=on) 

HEX0[2] H2 AC12 - 8 Output Seven Segment Display  0  
LED Segment C (0=on) 

HEX0[3] H1 AD11 - 9 Output Seven Segment Display 0   
LED Segment D (0=on) 

HEX0[4] F2 AE11 - 11 Output Seven Segment Display 0   
LED Segment E (0=on) 

HEX0[5] F1 V14 - 12 Output Seven Segment Display 0   
LED Segment F (0=on) 

HEX0[6] E2 V13 - 13 Output Seven Segment Display 0   
LED Segment G (0=on) 

HEX1[0] E1 V20 - 17 Output Seven Segment Display 1   
LED Segment A (0=on) 

HEX1[1] H6 V21 - 18 Output Seven Segment Display  1  
LED Segment B (0=on) 

HEX1[2] H5 W21 - 19 Output Seven Segment Display  1  
LED Segment C (0=on) 

HEX1[3] H4 Y22 - 20 Output Seven Segment Display 1   
LED Segment D (0=on) 

HEX1[4] G3 AA24 - 21 Output Seven Segment Display 1   
LED Segment E (0=on) 

HEX1[5] D2 AA23 - 23 Output Seven Segment Display 1   
LED Segment F (0=on) 

HEX1[6] D1 AB24 - 24 Output Seven Segment Display 1   
LED Segment G (0=on) 

 
 
 

 



94 Rapid Prototyping of Digital Systems   Chapter 5 
 

 

 

5.3 FPGAcore Debounce: Pushbutton Debounce 

Figure 5.3 Symbol for Debounce FPGAcore. 

The FPGAcore Debounce shown in Figure 5.3 is a pushbutton debounce circuit. 
This function is used to filter mechanical contact bounce in a switch or 
pushbutton. A shift register is used to filter out the switch contact bounce. The 
shift register takes several time spaced samples of the switch input and changes 
the output only after several sequential samples are the same value. 

5.3.1 VHDL Component Declaration 
COMPONENT  debounce 
 PORT(  pb, clock_100Hz  : IN  STD_LOGIC; 
  pb_debounced  : OUT  STD_LOGIC; 
END COMPONENT; 

5.3.2 Inputs 
PB is the raw pushbutton input. It should be tied to an input pin connected to a 
pushbutton or slide switch. See Chapter 2 for pushbutton and switch pin 
numbers. Clock is a clock signal of approximately 100Hz that is used for the 
internal 50ms switch debounce filter circuits. UP3, UP2, and UP1 board 
pushbuttons are not debounced in hardware, but DE2 and DE1 boards are. 

5.3.3 Outputs 
PB_debounced is the debounced pushbutton output. The output will remain 
Low until the pushbutton is released. If a pulse is needed to be only 1 clock 
period long, add the OnePulse core function to the debounced switch output. 

Table 5.4  The Pushbutton Switch Pin Assignments  

Pin Name DE1 DE2 UP3 UP2, UP1 Pin Type Function of Pin 

KEY0 R22 G26 48 28 PB1 Input 
Pushbutton KEY0 

(debounced, 0 = button hit) 

KEY1 R21 N23 49 29 PB2 Input 
Pushbutton KEY1 

(debounced, 0 = button hit) 

KEY2 T22 P23 57 - Input 
Pushbutton KEY2 

(debounced, 0 = button hit) 

KEY3 T21 W26 62 - Input 
Pushbutton KEY3 

(debounced, 0 = button hit) 

debounce

inst

pbpb

clock_100Hzclock_100Hz

pb_debouncedpb_debounced



 FPGAcore Library Functions 95 
 

 

 

5.4 FPGAcore OnePulse:  Pushbutton Single Pulse  

 

 

 

Figure 5.4 Symbol for OnePulse FPGAcore. 

The FPGAcore OnePulse shown in Figure 5.4 is a pushbutton single-pulse 
circuit. Output from the pushbutton is High for only one clock cycle no matter 
how long the pushbutton is pressed. This function is useful in state machines 
that read external pushbutton inputs. In general, fewer states are required when 
it is known that inputs only activate for one clock cycle. Internally, an edge-
triggered flip-flop is used to build a simple state machine. 
 

5.4.1 VHDL Component Declaration  
COMPONENT  onepulse  
 PORT( PB_debounced, clock : IN  STD_LOGIC; 
  PB_single_pulse : OUT  STD_LOGIC  ); 
END COMPONENT; 

 
5.4.2 Inputs 

PB_debounced is the debounced pushbutton input. It should be connected to a 
debounced pushbutton. 
Clock is the user’s state-machine clock. It can be any frequency. In some 
designs, the user may want to edit the VHDL code to add a reset input. 
 

5.4.3 Outputs 
PB_single_pulse is the output, which is High for only one clock cycle when a 
pushbutton is hit. 

 

onepulse

inst

PB_debouncedPB_debounced

clockclock

PB_single_pulsePB_single_pulse



96 Rapid Prototyping of Digital Systems   Chapter 5 
 

 

 

5.5 FPGAcore Clk_Div: Clock Divider 

 

 

 

Figure 5.5 Symbol for Clk_Div FPGAcore. 

The FPGAcore Clk_Div shown in Figure 5.5 is used to provide clock signals 
slower than the on-board clock oscillator. The output signals are obtained by 
dividing down the clock input signal. Multiple output taps provide clock 
frequencies in powers of ten.  

5.5.1 VHDL Component Declaration 
COMPONENT clk_div 
 PORT( clock_48MHz : IN STD_LOGIC; 
  clock_1MHz : OUT STD_LOGIC; 
  clock_100kHz : OUT STD_LOGIC; 
  clock_10kHz : OUT STD_LOGIC; 
  clock_1kHz : OUT STD_LOGIC; 
  clock_100Hz : OUT STD_LOGIC; 
  clock_10Hz : OUT STD_LOGIC; 
  clock_1Hz  : OUT STD_LOGIC ); 
END COMPONENT; 

5.5.2 Inputs 
A different frequency input clock is used on different FPGA boards, so each 
board has a slightly different version of this function. The UP3 version is 
shown. Clock_48MHz is an input pin that should be connected to the UP3 on-
board 48MHz USB clock. The pin number for the UP3’s 48MHz USB clock is 
29. Make sure the JP3 jumper selects the 48MHz USB clock (default setting).  

5.5.3 Outputs 
Clock_1MHz through clock_1Hz provide output signals of the specified 
frequency. Based on a crystal oscillator, the actual frequency is 1.007 ± .005% 
times the listed value. 

Table 5.5  The Crystal Oscillator Clock Pin Assignments  

Pin 
Name DE1 DE2 UP3 UP2, UP1 Pin Type Function   

of Pin 

CLOCK L1 50Mhz N2 50Mhz 153 48Mhz 91  25Mhz Input 25-50MHz 
Clock 

 

clk_div

inst

clock_48Mhzclock_48Mhz clock_1MHzclock_1MHz

clock_100KHzclock_100KHz

clock_10KHzclock_10KHz

clock_1KHzclock_1KHz

clock_100Hzclock_100Hz

clock_10Hzclock_10Hz

clock_1Hzclock_1Hz



 FPGAcore Library Functions 97 
 

 

 

5.6 FPGAcore VGA_Sync: VGA Video Sync Generation 

 

 

 

 

 

 

Figure 5.6 Symbol for VGA_Sync  FPGAcore. 

 
The FPGAcore VGA_Sync shown in Figure 5.6 provides horizontal and 
vertical sync signals to generate an 8-color 640 by 480 pixel VGA video image. 
For more detailed information on video signal generation see Chapter 9.  
A table of the common screen resolutions and refresh rates along with the 
required pixel clocks and sync count values can be found at the end of the 
VGA_Sync IP core source code. When changing resolutions or refresh rates, 
use the MegaWizard edit feature to adjust the video_pll.vhd code to output a 
different pixel clock rate and change the horizontal and vertical sync counter 
limits to the six new values found in the table.  
Video_pll.vhd must be present to compile VGA_Sync since it uses this 
component for the clock. 
 

5.6.1 VHDL Component Declaration 
COMPONENT vga_sync 

                 PORT( clock_48MHz, red, green, blue: IN   STD_LOGIC; 
                 red_out, green_out, blue_out,  
                 horiz_sync_out, vert_sync_out:            OUT STD_LOGIC; 
                 pixel_row, pixel_column:                      OUT STD_LOGIC_VECTOR( 9 DOWNTO 0 ) ); 

END COMPONENT; 
 

VGA_SYNC

inst

clock_48Mhzclock_48Mhz

redred

greengreen

blueblue

red_outred_out

green_outgreen_out

blue_outblue_out

horiz_sync_outhoriz_sync_out

vert_sync_outvert_sync_out

video_onvideo_on

pixel_clockpixel_clock

pixel_row[9..0]pixel_row[9..0]

pixel_column[9..0]pixel_column[9..0]



98 Rapid Prototyping of Digital Systems   Chapter 5 
 

 

 

5.6.2 Inputs 
Clock is an input pin that must be connected to the on-board clock. One of the 
FPGA’s Phase Locked Loops (PLL) is used to generate the exact video clock 
rate required in the video_pll.vhd code. Red, Green, and Blue inputs provide the 
color information for the video signal. External user logic must generate the 
RGB input signals. One of the FPGA’s PLLs is used to generate the required 
pixel clock on all boards except the UP2 and UP1, which only provide a 25Mhz 
clock for 640 by 480 modes. An external reference clock of 48 or 50MHz is 
used by the PLL for the input clock on the other FPGA boards.  
 

5.6.3 Outputs 
• Horiz_sync is an output pin that should be tied to the VGA horizontal 

sync. 
• Vert_sync is an output pin that should be tied to the VGA vertical sync. 
• Red_out is an output pin that should be tied to the red RGB signal. 
• Green_out is an output pin that should be tied to the green RGB signal. 
• Blue_out is an output pin that should be tied to the blue RGB signal.  

An interface circuit on the UP2 & UP3 boards converts the digital red, green, 
and blue video color signals to the appropriate analog voltage for the monitor. 
On the UP3, set jumper JP3 to short pins 3-4 for the 48Mhz clock. Eight colors 
are possible using the three digital color signals. A four-bit signal is used on the 
DE1 for a total of 4096 colors and the DE2 has 10-bits per color. Just wiring up 
a signal to a couple of the high color bits on boards with more colors gives a 
solid color for simple designs that use only a few colors. 
Pixel_clock, pixel_row, and pixel_column are outputs that provide the current 
pixel clock and the pixel address. Video_on indicates that pixel data is being 
displayed and a retrace cycle is not presently occurring. These outputs are used 
by user logic to generate RGB color input data.  
 

Table 5.6  The VGA Video Display Pin Assignments  

Pin Name DE1 DE2 UP3 UP2, 
UP1 

Pin 
Type Function of Pin 

CLOCK L1 
50Mhz 

N2 
50Mhz 

153 
48Mhz 

91 
25Mhz Input 25-50MHz Clock - PLL 

input on DEx and UP3 

VGA_RED B7 E10 228 236 Output VGA Red Video Signal   
(highest bit) 

VGA_GREEN A8 D12 122 237 Output VGA Green Video 
Signal  (highest bit) 

VGA_BLUE B10 B12 170 238 Output VGA Blue Video Signal  
(highest bit) 

VGA_VSYNC B11 D8 226 239 Output VGA Connector 
Vertical     Sync Signal 

VGA_HSYNC A11 A7 227 240 Output VGA Connector 
Horizontal Sync Signal 



 FPGAcore Library Functions 99 
 

 

 

5.7 FPGAcore Char_ROM:  Character Generation ROM 

 

 

 

 

Figure 5.7 Symbol for Char_ROM FPGAcore. 

The FPGAcore Char_ROM shown in Figure 5.7 is a character generation ROM 
used to generate text in a video display. Each character is represented by an 8 
by 8 pixel font. For more information on video character generation see 
Chapter 10. Character codes are listed in Table 10.2 of Section 10.9. Font data 
is contained in the memory initialization file, tcgrom.mif. One Cyclone M4K 
memory block is required for the ROM that holds the font data. 
 

5.7.1 VHDL Component Declaration 
COMPONENT char_rom 
 PORT( clock   : IN STD_LOGIC; 
  character_address  : IN STD_LOGIC_VECTOR( 5 DOWNTO 0 ); 
  font_row, font_col  : IN STD_LOGIC_VECTOR( 2 DOWNTO 0 ); 
  rom_mux_output  : OUT STD_LOGIC); 
END COMPONENT; 

 
5.7.2 Inputs 

Character_address is the address of the alphanumeric character to display. 
Font_row and font_col are used to index through the 8 by 8 font to address the 
single pixels needed for video signal generation. Clock loads the address 
register and should be tied to the video pixel_clock. 
 

5.7.3 Outputs 
Rom_mux_output is the pixel font value indexed by the address inputs. It is 
used by user logic to generate the RGB pixel color data for the video signal. 

Char_ROM

inst

clockclock

character_address[5..0]character_address[5..0]

font_row[2..0]font_row[2..0]

font_col[2..0]font_col[2..0]

rom_mux_outputrom_mux_output



100 Rapid Prototyping of Digital Systems   Chapter 5 
 

 

 

5.8 FPGAcore Keyboard: Read Keyboard Scan Code 

 

 

 

 

Figure 5.8 Symbol for Keyboard FPGAcore.  

The FPGAcore Keyboard shown in Figure 5.8 is used to read the PS/2 
keyboard scan code from a keyboard attached to the FPGA board’s PS/2 
connector. This function converts the serial data from the keyboard to parallel 
format to produce the scan code output. For detailed information on keyboard 
applications and scan codes see Table 11.2 in Chapter 11. 
 

5.8.1 VHDL Component Declaration 
COMPONENT keyboard 
 PORT( keyboard_clk, keyboard_data, clock_48MHz ,  
  reset, read  : IN     STD_LOGIC; 
  scan_code  : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
  scan_ready  : OUT STD_LOGIC); 
END COMPONENT; 

 
5.8.2 Inputs 

• Clock_48MHz is an input pin that must be connected to the on-board 
clock oscillator.  

• Keyboard_clk and keyboard_data are PS/2 input data lines from the 
keyboard.  

• Pin assignments for the FPGA boards are listed in Table 5.7. 
Read is a handshake input signal. The rising edge of the read signal clears the 
scan ready signal. Reset is an input that clears the internal registers and flags 
used for serial-to-parallel conversion. 

Table 5.7  The PS/2 Keyboard Pin Assignments  

Pin Name DE1 DE2 UP3 UP2, 
UP1 

Pin 
Type Function of Pin 

PS2_CLK H15 D26 12 30 Bidir. PS2 Connector 
PS2_DATA J14 C24 13 31 Bidir. PS2 Connector 

 

keyboard

inst

keyboard_clkkeyboard_clk

keyboard_datakeyboard_data

clock_48Mhzclock_48Mhz

resetreset

readread

scan_code[7..0]scan_code[7..0]

scan_readyscan_ready



 FPGAcore Library Functions 101 
 

 

 

5.8.3 Outputs 
Scan_code contains the bytes transmitted by the keyboard when a key is 
pressed or released. See Table 11.2 in Chapter 11 for a listing of keyboard scan 
codes. Scan codes for a single key are a sequence of several bytes. A make code 
is sent when a key is hit, and a break code is sent whenever a key is released. 
When typing, it is normal to have several keys on a keyboard depressed at the 
same time on different fingers. Also, some features require holding down 
multiple keys, so several make codes may be seen before the break code for a 
particular key. 
Scan_ready is a handshake output signal that goes High when a new scan code 
is sent by the keyboard. The read input clears scan_ready. The scan_ready 
handshake line should be used to ensure that a new scan code is read only once. 

 



102 Rapid Prototyping of Digital Systems   Chapter 5 
 

 

 

5.9 FPGAcore Mouse: Mouse Cursor 

 

 

 

 

 

 

Figure 5.9 Symbol for Mouse FPGAcore. 

The FPGAcore Mouse shown in Figure 5.9 is used to read position data from a 
mouse attached to the UP3’s PS/2 connector. It outputs a row and column 
cursor address for use in video applications. The mouse must be attached to the 
FPGA board prior to downloading for proper initialization.  
The internal operation of the core and more detailed information on mouse 
applications, commands, and data formats can be found in Chapter 11. 
 

5.9.1 VHDL Component Declaration 
COMPONENT mouse 
 PORT( clock_48MHz, reset  : IN STD_LOGIC; 
  mouse_data   : INOUT STD_LOGIC; 
  mouse_clk    : INOUT STD_LOGIC; 
  left_button, right_button  : OUT STD_LOGIC; 
  mouse_cursor_row  : OUT STD_LOGIC_VECTOR( 9 DOWNTO 0 ) ); 
  mouse_cursor_column  : OUT STD_LOGIC_VECTOR( 9 DOWNTO 0 ) ); 
END COMPONENT; 

 
5.9.2 Inputs 

Clock_48MHz is an input pin that must be connected to the on-board clock. On 
DE1 and DE2 boards a 50Mhz clock is used. Mouse_clk and mouse_data are 
bi-directional PS/2 signal lines from the mouse.  

MOUSE

inst

clock_48Mhzclock_48Mhz

resetreset

lef t_buttonlef t_button

right_buttonright_button

mouse_cursor_row[9..0]mouse_cursor_row[9..0]

mouse_cursor_column[9..0]mouse_cursor_column[9..0]

mouse_datamouse_data

mouse_clkmouse_clk



 FPGAcore Library Functions 103 
 

 

 

 

Table 5.8  The PS/2 Mouse Pin Assignments  

Pin Name DE1 DE2 UP3 UP2, 
UP1 

Pin 
Type Function of Pin 

PS2_CLK H15 D26 12 30 Bidir. PS2 Clk Connector 
PS2_DATA J14 C24 13 31 Bidir. PS2 Data Connector 

 
 

5.9.3 Outputs 
Mouse_cursor_row and mouse_cursor_column are outputs that contain the 
current address of the mouse cursor in the 640 by 480 screen area. The cursor is 
initialized to the center of the screen. Left_button and right_button outputs are 
High when the corresponding mouse button is pressed. 

5.10 For additional information 
The FPGA cores summarized in this chapter are used extensively in the 
textbook’s design examples, and complete source code is provided on the DVD. 
They are provided to support any new FPGA designs that you may develop. 
Extensive lists of more complex commercial third-party IP cores available for 
purchase can be found at the major FPGA vendor web sites, www.altera.com 
and www.xilinx.com. Pricing on commercial cores can be expensive and access 
to source code may not be provided. An assortment of free open source IP cores 
for FPGAs is available at www.opencores.org. 

 
 
 
 

                        

                       SOURCE CODE FOR THE FPGACORE FUNCTIONS IS ON THE DVD. 

                       IN THE BOOK’S DESIGN EXAMPLES, ADDITIONAL MATERIALS 

                       CAN BE FOUND IN EACH \BOARD\CHAPX DIRECTORY. 

 



 

 

CHAPTER 6 

Using VHDL for 
Synthesis of Digital 
Hardware   



106 Rapid Prototyping of Digital Systems   Chapter 6 
 

 

 

6 Using VHDL for Synthesis of Digital Hardware  
In the past, most digital designs were manually entered into a schematic entry 
tool. With increasingly large and more complex designs, this is a tedious and 
time-consuming process. Logic synthesis using hardware description languages 
is becoming widely used since it greatly reduces development time and cost. It 
also enables more exploration of design alternatives, more flexibility to 
changes in the hardware technology, and promotes design reuse.  
VHDL is a language widely used to model and design digital hardware. VHDL 
is the subject of IEEE standards 1076 and 1164 and is supported by numerous 
CAD tool and programmable logic vendors. VHDL is an acronym for VHSIC 
Hardware Description Language. VHSIC, Very High Speed Integrated Circuits, 
was a USA Department of Defense program in the 1980s that sponsored the 
early development of VHDL. VHDL has syntax similar to ADA and PASCAL. 
Conventional programming languages are based on a sequential operation 
model. Digital hardware devices by their very nature operate in parallel. This 
means that conventional programming languages cannot accurately describe or 
model the operation of digital hardware since they are based on the sequential 
execution of statements. VHDL is designed to model parallel operations.  

IT IS CRUCIAL TO REMEMBER THAT VHDL MODULES, CONCURRENT STATEMENTS, AND 
PROCESSES ALL OPERATE IN PARALLEL.  

In VHDL, variables change without delay and signals change with a small 
delay. For VHDL synthesis, signals are normally used instead of variables so 
that simulation works the same as the synthesized hardware. 
A subset of VHDL is used for logic synthesis. In this section, a brief 
introduction to VHDL for logic synthesis will be presented. It is assumed that 
the reader is already familiar with basic digital logic devices and PASCAL, 
ADA, or VHDL.  
Whenever you need help with VHDL syntax, VHDL templates of common 
statements are available in the Quartus II online help. In the text editor, just 
click the right mouse button and Insert Templates and select VHDL. 

6.1 VHDL Data Types 
In addition to the normal language data types such as Boolean, integer, and 
real, VHDL contains new types useful in modeling digital hardware. For logic 
synthesis, the most important type is standard logic. Type standard logic, 
STD_LOGIC, is normally used to model a logic bit. To accurately model the 
operation of digital circuits, more values than "0" or "1" are needed for a logic 
bit. In the logic simulator, a standard logic bit can have nine values, U, X, 0, 1, 
Z, W, L, H, and "-". U is uninitialized and X is forced unknown. Z is tri-state or 
high impedance. L and H are weak "0" and weak "1". "-" is don’t care. Type 
STD_LOGIC_VECTOR contains a one-dimensional array of STD_LOGIC bits. 
Using these types normally requires the inclusion of special standard logic 
libraries at the beginning of each VHDL module. The value of a standard logic 



 Using VHDL for Synthesis of Digital Hardware 107 
 

 

 

bit can be set to ‘0’ or ‘1’ using single quotes. A standard logic vector constant, 
such as the 2-bit zero value, "00" must be enclosed in double quotes. X”F” is 
the four bit hexadecimal value F. 

6.2 VHDL Operators 
Table 6.1 lists the VHDL operators and their common function in VHDL 
synthesis tools. 

Table 6.1 VHDL Operators. 

VHDL Operator Operation 
+ Addition 
- Subtraction 
* Multiplication* 
/ Division* 

MOD  Modulus* 
REM  Remainder* 

& Concatenation – used to combine bits 
SLL** logical shift left 
SRL** logical shift right 
SLA** arithmetic shift left 
SRA** arithmetic shift right 
ROL** rotate left 
ROR** rotate right 

= equality 
/= Inequality 
< less than 

<= less than or equal 
> greater than 

>= greater than or equal 
NOT logical NOT 
AND logical AND 
OR logical OR 

NAND logical NAND 
NOR logical NOR 
XOR logical XOR 

XNOR* logical XNOR 

*Not supported in many VHDL synthesis tools. In the Quartus II tools, only 
multiply and divide by integers are supported. Mod and Rem are not 
supported in Quartus II. Efficient design of multiply or divide hardware may 
require the user to specify the arithmetic algorithm and design in VHDL.  
** Supported only in 1076-1993 VHDL only. 

 

Table 6.2 illustrates two useful VHDL conversion functions for type STD_LOGIC 
and integer. 



108 Rapid Prototyping of Digital Systems   Chapter 6 
 

 

 

 

Table 6.2  STD_LOGIC conversion functions. 

  Function   Example: 

CONV_STD_LOGIC_VECTOR( integer, bits ) CONV_STD_LOGIC_VECTOR( 7, 4 ) 

Converts an integer to a standard logic 
vector. Useful to enter constants. 
CONV_SIGNED and CONV_UNSIGNED 
work in a similar way to produce signed 
and unsigned values. 

Produces a standard logic vector of  
"0111". 

CONV_INTEGER( std_logic_vector ) CONV_INTEGER( "0111" ) 

Converts a standard logic vector to an 
integer. Useful for array indexing when 
using a std_logic_vector signal for the array 
index. 

Produces an integer value of 7. 

 

6.3 VHDL Based Synthesis of Digital Hardware 
VHDL can be used to construct models at a variety of levels such as structural, 
behavioral, register transfer level (RTL), and timing. An RTL model of a circuit 
described in VHDL describes the input/output relationship in terms of dataflow 
operations on signal and register values. If registers are required, a synchronous 
clocking scheme is normally used. Sometimes an RTL model is also referred to 
as a dataflow-style model. 
VHDL simulation models often include physical device time delays. In VHDL 
models written for logic synthesis, timing information should not be provided.  
For timing simulations, the CAD tools automatically include the actual timing 
delays for the synthesized logic circuit. A FPGA timing model supplied by the 
CAD tool vendor is used to automatically generate the physical device time 
delays inside the FPGA. Sometimes this timing model is also written in VHDL. 
For a quick overview of VHDL, several constructs that can be used to 
synthesize common digital hardware devices will be presented. 

6.4 VHDL Synthesis Models of Gate Networks 
The first example consists of a simple gate network. In this model, both a 
concurrent assignment statement and a sequential process are shown which 
generate the same gate network. X is the output on one network and Y is the 
output on the other gate network. The two gate networks operate in parallel.  
In VHDL synthesis, inputs and outputs from the port declaration in the module 
will become I/O pins on the programmable logic device. Comment lines begin 
with "--". The Quartus II editor performs syntax coloring and is useful to 
quickly find major problems with VHDL syntax.  



 Using VHDL for Synthesis of Digital Hardware 109 
 

 

 

Inside a process, statements are executed in sequential order, and all processes 
are executed in parallel. If multiple assignments are made to a signal inside a 
process, the last assignment is taken as the new signal value. 

      
 

 
 
 
 
LIBRARY IEEE;    -- Include Libraries for standard logic data types 
USE  IEEE.STD_LOGIC_1164.ALL;  
     -- Entity name normally the same as file name 
ENTITY gate_network IS  -- Ports: Declares module inputs and outputs 
 PORT( A, B, C  : IN  STD_LOGIC;   
     -- Standard Logic Vector ( Array of 4 Bits )  
    D  : IN  STD_LOGIC_VECTOR( 3 DOWNTO 0 ); 
     -- Output Signals 
     X, Y  : OUT  STD_LOGIC );      
END gate_network;              
       
    -- Defines internal module architecture 
ARCHITECTURE behavior OF gate_network IS 
BEGIN    -- Concurrent assignment statements operate in parallel 
    -- D(1) selects bit 1 of standard logic vector D   
 X <= A AND NOT( B OR C ) AND ( D( 1 ) XOR D( 2 ) ); 
 
    -- Process must declare a sensitivity list,  
    -- In this case it is  ( A, B, C, D ) 
    -- List includes all signals that can change the outputs 
     PROCESS ( A, B, C, D ) 
 BEGIN   -- Statements inside process execute sequentially 
  Y <= A AND NOT( B OR C) AND ( D( 1) XOR D( 2 ) ); 
     END PROCESS; 
END behavior; 

6.5 VHDL Synthesis Model of a Seven-segment LED Decoder 
The following VHDL code implements a seven-segment decoder for seven-
segment LED displays. A 7-bit standard logic vector is used to assign the value 
of all seven bits in a single case statement. In the logic vector, the most-
significant bit is segment ‘a’ and the least-significant bit is segment ‘g’. The 
logic synthesis CAD tool automatically minimizes the logic required for 
implementation. The signal MSD contains the 4-bit binary value to be 

A

B
C

D(1)
D(2)

Y

A

B
C

D(1)
D(2)

X



110 Rapid Prototyping of Digital Systems   Chapter 6 
 

 

 

a

b

c

d

e

f
g

dp

displayed in hexadecimal. MSD is the left or most-significant digit. Another 
identical process with a different input variable is needed for the second display 
digit. 
 

LED_MSD_DISPLAY:   -- BCD to 7 Segment Decoder for LED Displays 
 
PROCESS  (MSD) 
BEGIN 
     -- Case statement implements a logic truth table  
    CASE MSD IS 
 WHEN "0000" => 
   MSD_7SEG <= "1111110"; 
 WHEN "0001" => 
   MSD_7SEG <= "0110000"; 
 WHEN "0010" => 
   MSD_7SEG <= "1101101"; 
 WHEN "0011" => 
   MSD_7SEG <= "1111001"; 
 WHEN "0100" => 
   MSD_7SEG <= "0110011"; 
 WHEN "0101" => 
   MSD_7SEG <= "1011011"; 
 WHEN "0110" => 
   MSD_7SEG <= "1011111"; 
 WHEN "0111" => 
   MSD_7SEG <= "1110000"; 
 WHEN "1000" => 
   MSD_7SEG <= "1111111"; 
 WHEN "1001" => 
   MSD_7SEG <= "1111011";  
 WHEN OTHERS => 
   MSD_7SEG <= "0111110"; 
    END CASE; 
 
END PROCESS LED_MSD_DISPLAY; 

 
 

The following VHDL concurrent assignment statements provide the value to be 
displayed and connect the individual segments. NOT is used since a logic zero 
actually turns on the LED. Automatic minimization in the synthesis process 
will eliminate the extra inverter in the logic circuit. Pin assignments for the 
seven-segment display must be included in the project’s *.qsf file or in the top-
level schematic.               

          -- Provide 4-bit value to display 
MSD <= PC ( 7 DOWNTO 4 ); 
          -- Drive the seven-segments (LEDs are active low)  
MSD_a <= NOT MSD_7SEG( 6 ); 
MSD_b <= NOT MSD_7SEG( 5 ); 
MSD_c <= NOT MSD_7SEG( 4 ); 
MSD_d <= NOT MSD_7SEG( 3 ); 
MSD_e <= NOT MSD_7SEG( 2 ); 



 Using VHDL for Synthesis of Digital Hardware 111 
 

 

 

0

1

Mux_Control

Mux_Outx

A

B

MSD_f <= NOT MSD_7SEG( 1 ); 
MSD_g <= NOT MSD_7SEG( 0 ); 

6.6 VHDL Synthesis Model of a Multiplexer 
The next example shows several alternative ways to synthesize a 2-to-1 
multiplexer in VHDL. Four identical multiplexers that operate in parallel are 
synthesized by this example. In VHDL, IF and CASE statements must be inside 
a process. The inputs and outputs from the multiplexers could be changed to 
standard logic vectors if an entire bus is multiplexed. Multiplexers with more 
than two inputs can also be easily constructed. Nested IF-THEN-ELSE 
statements generate priority-encoded logic that requires more hardware and 
produce a slower circuit than a CASE statement. 

 
LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
 
ENTITY multiplexer IS    -- Input Signals and Mux Control 
 PORT( A, B, Mux_Control  : IN  STD_LOGIC; 
  Mux_Out1, Mux_Out2,  
  Mux_Out3, Mux_Out4  : OUT  STD_LOGIC  ); 
END multiplexer; 
 
ARCHITECTURE behavior OF multiplexer IS 
BEGIN      -- selected signal assignment statement… 
 
 Mux_Out1 <= A WHEN Mux_Control = '0' ELSE B; 
      -- … with Select Statement 
 WITH Mux_control SELECT 
 
 Mux_Out2 <=  A WHEN     '0', 
   B WHEN     '1', 
   A WHEN OTHERS;  -- OTHERS case required since STD_LOGIC 
      --      has values other than "0" or "1" 
 PROCESS ( A, B, Mux_Control) 
 BEGIN     -- Statements inside a process  
  IF Mux_Control = '0' THEN  --      execute sequentially. 
      Mux_Out3 <= A;  
  ELSE  
      Mux_out3 <= B;  
  END IF; 
 
  CASE Mux_Control IS 
   WHEN '0' => 
        Mux_Out4 <= A; 
   WHEN '1' => 
    Mux_Out4 <= B; 
   WHEN OTHERS => 
    Mux_Out4 <= A; 
  END CASE; 
 END PROCESS; 
END behavior; 



112 Rapid Prototyping of Digital Systems   Chapter 6 
 

 

 

Control

Tri_Out
A

 
 
 

6.7 VHDL Synthesis Model of Tri-State Output 
Tri-state gates are supported in VHDL synthesis tools and are supported in 
many programmable logic devices. Most programmable logic devices have tri-
state output pins. Some programmable logic devices do not support internal tri-
state logic. Here is a VHDL example of a tri-state output. In VHDL, the 
assignment of the value "Z" to a signal produces a tri-state output. 
 

LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL;  
 
ENTITY tristate IS 
 PORT( A, Control  : IN  STD_LOGIC; 
  Tri_out  : INOUT  STD_LOGIC); -- Use Inout for bi-directional tri-state
        --      signals or out for output only 
END tristate; 
 
ARCHITECTURE behavior OF tristate IS  -- defines internal module architecture 
BEGIN 
 Tri_out <= A WHEN Control = '0' ELSE 'Z'; -- Assignment of 'Z' value generates  
END behavior;      --     tri-state output 
 

6.8 VHDL Synthesis Models of Flip-flops and Registers 
In the next example, several flip-flops will be generated. Unlike earlier 
combinational hardware devices, a flip-flop can only be synthesized inside a 
process. In VHDL, Clock’EVENT is true whenever the clock signal changes. 
The positive clock edge is selected by  (clock’EVENT AND clock = ‘1’)  and 
positive edge triggered D flip-flops will be used for synthesis.  
The following module contains a variety of Reset and Enable options on 
positive edge-triggered D flip-flops. Processes with a wait statement do not 
need a process sensitivity list. A process can only have one clock or reset type.  
The negative clock edge is selected by  (clock’EVENT AND clock = ‘0’) and 
negative edge-triggered D flip-flops will be generated during synthesis. If 
(Clock = ’1’) is substituted for  (clock’EVENT AND clock = ‘1’) level-
triggered latches will be selected for logic synthesis. Rising_edge(clock) can 
also be used instead of clock’EVENT AND clock = ‘1’. Falling_edge(clock) is 
also supported for negative clock edges. 
 

LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
ENTITY DFFs IS 
 PORT(  D, Clock, Reset, Enable  : IN STD_LOGIC; 
     Q1, Q2, Q3, Q4   : OUT STD_LOGIC  ); 
END DFFs; 



 Using VHDL for Synthesis of Digital Hardware 113 
 

 

 

 
ARCHITECTURE behavior OF DFFs IS 
BEGIN       
       
 
 PROCESS     -- Positive edge triggered D flip-flop 
 BEGIN     -- If WAIT is used no sensitivity list is used 
  WAIT UNTIL ( Clock 'EVENT AND Clock = '1' );  
        Q1 <= D; 
 END PROCESS; 
 
       
 PROCESS     -- Positive edge triggered D flip-flop 
 BEGIN      --      with synchronous reset 
  WAIT UNTIL ( Clock 'EVENT AND Clock = '1' ); 
   IF reset = '1'  THEN  
         Q2 <= '0';  
   ELSE  
         Q2 <= D;  
   END IF; 
 END PROCESS; 
 
 
 PROCESS (Reset,Clock)    -- Positive edge triggered D flip-flop 
 BEGIN     --      with asynchronous reset 
  IF reset = '1' THEN  
        Q3 <= '0';  
  ELSIF ( clock 'EVENT AND clock = '1' ) THEN 
        Q3 <= D; 
  END IF; 
 END PROCESS; 
 
 PROCESS (Reset,Clock)    -- Positive edge triggered D flip-flop 
 BEGIN     --      with asynchronous reset and 
       --      enable 
  IF reset = '1' THEN  
        Q4 <= '0';  
  ELSIF ( clock 'EVENT AND clock = '1' ) THEN 
         IF Enable = '1' THEN  
             Q4 <= D;  
         END IF; 
  END IF; 
 END PROCESS; 
END behavior; 

 
In VHDL, as in any digital logic designs, it is not good design practice to AND 
or gate other signals with the clock. Use a flip-flop with a clock enable instead 
to avoid timing and clock skew problems. In some limited cases, such as power 
management, a single level of clock gating can be used. This works only when 
a small amount of clock skew can be tolerated and the signal gated with the 
clock is known to be hazard or glitch free. A particular programmable logic 

Q2
0

1

Reset

D

0

Q1

Q3

D   Q Q4
0

1

Enable

Q4

D

Clock

D

D

Reset

D   Q

Clock

Reset

D   Q

Clock

D   Q

Clock



114 Rapid Prototyping of Digital Systems   Chapter 6 
 

 

 

device may not support every flip-flop or latch type and Set/Reset and Enable 
option.  
If D and Q are replaced by standard logic vectors in these examples, registers 
with the correct number of bits will be generated instead of individual flip-
flops.  

 

6.9 Accidental Synthesis of Inferred Latches 
Here is a very common problem to be aware of when coding VHDL for 
synthesis. If a non-clocked process has any path that does not assign a value to 
an output, VHDL assumes you want to use the previous value. A level triggered 
latch is automatically generated or inferred by the synthesis tool to save the 
previous value. In many cases, this can cause serious errors in the design. 
Edge-triggered flip-flops should not be mixed with level-triggered latches in a 
design, or serious timing problems will result. Typically this can happen in 
CASE statements or nested IF statements. In the following example, the signal 
OUTPUT2 infers a latch when synthesized. Assigning a value to OUTPUT2 in 
the last ELSE clause will eliminate the inferred latch. 
 
LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
ENTITY ilatch IS 
 PORT( A, B    : IN  STD_LOGIC; 
  Output1, Output2  : OUT  STD_LOGIC  ); 
END ilatch; 
 
ARCHITECTURE behavior OF ilatch IS 
BEGIN 
 PROCESS ( A, B ) 
 BEGIN 
  IF A = '0' THEN  
       Output1 <= '0'; 
       Output2 <= '0';  
  ELSE  
       IF B = '1' THEN 
            Output1 <= '1'; 
            Output2 <= '1'; 
       ELSE   -- Latch inferred since no value is assigned 
            Output1 <= '0'; --    to output2 in the else clause! 
       END IF; 
  END IF; 
 END PROCESS; 
END behavior; 

6.10 VHDL Synthesis Model of a Counter 
Here is an 8-bit counter design. This design performs arithmetic operations on 
standard logic vectors. Since this example includes arithmetic operations, two 
new libraries must be included at the beginning of the module. Either signed or 
unsigned libraries can be selected, but not both. Since the unsigned library was 

Output2
D   Q

Clock



 Using VHDL for Synthesis of Digital Hardware 115 
 

 

 

used, an 8-bit magnitude comparator is automatically synthesized for the 
internal_count < max_count comparison.  
Compare operations between standard logic and integer types are supported. 
The assignment internal_count <= internal_count + 1 synthesizes an 8-bit 
incrementer. An incrementer circuit requires less hardware than an adder that 
adds one. The operation, "+1", is treated as a special incrementer case by 
synthesis tools.  
VHDL does not allow reading of an "OUT" signal so an internal_count signal is 
used which is always the same as count. This is the first example that includes 
an internal signal. Note its declaration at the beginning of the architecture 
section. 

 
LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
USE  IEEE.STD_LOGIC_ARITH.ALL; 
USE  IEEE.STD_LOGIC_UNSIGNED.ALL; 
ENTITY Counter IS 
 PORT( Clock, Reset :  IN  STD_LOGIC; 
      Max_count :  IN  STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
      Count   :  OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 )  ); 
END Counter; 
 
ARCHITECTURE behavior OF Counter IS -- Declare signal(s) internal to module  
 SIGNAL internal_count :  STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
BEGIN 
 count <= internal_count; 
 
 PROCESS ( Reset,Clock ) 
  BEGIN    -- Reset counter 
   IF reset = '1' THEN 
        internal_count <= "00000000"; 
   ELSIF ( clock 'EVENT AND clock = '1' ) THEN 
        IF internal_count < Max_count THEN -- Check for maximum count 
    internal_count <= internal_count + 1; -- Increment Counter 
        ELSE    -- Count >=  Max_Count  
    internal_count <= "00000000";  --       reset Counter 
        END IF; 
   END IF; 
 END PROCESS; 
END behavior; 

6.11 VHDL Synthesis Model of a State Machine 
The next example is a Moore state machine with three states, two inputs and a 
single output. A state diagram of the example state machine is shown in Figure 
6.1. In VHDL, an enumerated data type is specified for the current state using 
the TYPE statement. This allows the synthesis tool to assign the actual "0" or 
"1" values to the states. In many cases, this will produce a smaller hardware 
design than direct assignment of the state values in VHDL.  



116 Rapid Prototyping of Digital Systems   Chapter 6 
 

 

 

Depending on the synthesis tool settings, the states may be encoded or 
constructed using the one-hot technique. Outputs are defined in the last 
WITH… SELECT statement. This statement lists the output for each state and 
eliminates possible problems with inferred latches. To avoid possible timing 
problems, unsynchronized external inputs to a state machine should be 
synchronized by passing them through one or two D flip-flops that are clocked 
by the state machine’s clock. 

 

Figure 6.1 State Diagram for st_mach VHDL example 

 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
 
ENTITY st_mach IS 
 PORT( clk, reset  : IN  STD_LOGIC; 
      Input1, Input2 : IN  STD_LOGIC; 
      Output1  : OUT STD_LOGIC); 
END st_mach; 
 
ARCHITECTURE A OF st_mach IS 
         -- Enumerated Data Type for State 
 TYPE STATE_TYPE IS ( state_A, state_B, state_C ); 
 SIGNAL state: STATE_TYPE; 
 
BEGIN 
 PROCESS ( reset, clk ) 
 BEGIN 
  IF reset = '1' THEN    -- Reset State 
       state <= state_A; 
  ELSIF clk 'EVENT AND clk = '1' THEN 

 

A

Reset

CB 
Output1        

X1

1X0 X 

X0



 Using VHDL for Synthesis of Digital Hardware 117 
 

 

 

 
   CASE state IS    -- Define Next State Transitions using a Case 
         --       Statement based on the Current State 
    WHEN state_A => 
     IF Input1 = '0' THEN 
          state <= state_B; 
     ELSE 
          state <= state_C; 
     END IF; 
 
    WHEN state_B => 
     state <= state_C; 
 
    WHEN state_C => 
     IF Input2 = '1' THEN 
          state <= state_A; 
     END IF; 
 
    WHEN OTHERS => 
     state <= state_A; 
   END CASE; 
  END IF; 
 END PROCESS; 
 
 WITH state SELECT    -- Define State Machine Outputs 
  Output1 <= '0' WHEN state_A, 
     '1' WHEN state_B, 
     '0' WHEN state_C; 
END a; 

6.12 VHDL Synthesis Model of an ALU with an Adder/Subtractor 
and a Shifter 

Here is an 8-bit arithmetic logic unit (ALU) that adds, subtracts, bitwise ANDs, 
or bitwise ORs, two operands and then performs an optional shift on the output. 
The most-significant two bits of the Op-code select the arithmetic logical 
operation. If the least-significant bit of the op_code equals ‘1’ a 1-bit left-shift 
operation is performed. An addition and subtraction circuit is synthesized for 
the "+" and "-" operator. Depending on the number of bits and the speed versus 
area settings in the synthesis tool, ripple carry or carry-lookahead circuits will 
be used. Several "+" and "-" operations in multiple assignment statements may 
generate multiple ALUs and increase the hardware size, depending on the 
VHDL CAD tool and compiler settings used. If a single ALU is desired, muxes 
can be placed at the inputs and the "+" operator would be used only in a single 
assignment statement. 
 

LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
USE  IEEE.STD_LOGIC_ARITH.ALL; 
USE  IEEE.STD_LOGIC_UNSIGNED.ALL; 
ENTITY ALU IS 



118 Rapid Prototyping of Digital Systems   Chapter 6 
 

 

 

 PORT(  Op_code  : IN     STD_LOGIC_VECTOR( 2 DOWNTO 0 ); 
      A_input, B_input : IN     STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
     ALU_output  : OUT    STD_LOGIC_VECTOR( 7 DOWNTO 0 ) ); 
END ALU; 
 
ARCHITECTURE behavior OF ALU IS 
    -- Declare signal(s) internal to module here 
 SIGNAL temp_output  :  STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
BEGIN 
 
 PROCESS ( Op_code, A_input, B_input ) 
 BEGIN 

--Select Arithmetic/Logical Operation  
  CASE Op_Code (  2 DOWNTO 1 ) IS  
   WHEN "00" => 
     temp_output <= A_input   +  B_input; 
   WHEN "01" => 
     temp_output <= A_input  -  B_input;  
   WHEN "10" => 
     temp_output <= A_input   AND B_input;  
   WHEN "11" => 
     temp_output <= A_input   OR B_input; 
   WHEN OTHERS => 
     temp_output <= "00000000"; 
  END CASE; 
 
  -- Select Shift Operation: Shift bits left with zero fill using concatenation operator 
  --     Can also use VHDL 1076-1993 shift operator such as SLL 
 
  IF Op_Code( 0 ) = '1' THEN   
       Alu_output <= temp_output( 6 DOWNTO 0 ) & '0'; 
  ELSE  
        Alu_output <= temp_output; 
  END IF; 
 END PROCESS;  
END behavior; 

6.13 VHDL Synthesis of Multiply and Divide Hardware 
In the Quartus II tool, integer multiply and divide is supported using VHDL’s 
"*" and "/" operators. Mod and Rem are not supported in Quartus II. In current 
generation tools, efficient design of multiply or divide hardware typically 
requires the use of a vendor-specific library function or even the specification 
of the arithmetic algorithm and hardware implementation in VHDL.  
A wide variety of multiply and divide algorithms that trade off time versus 
hardware size can be found in most computer arithmetic texts. Several such 
references are listed at the end of this chapter. These algorithms require a 
sequence of add/subtract and shift operations that can be easily synthesized in 
VHDL using the standard operators. The LPM_MULT function in Quartus II 
can be used to synthesize integer multipliers. LPM_DIVIDE, is also available. 
When using LPM functions, Tools MegaWizard Plug-in Manager can be 



 Using VHDL for Synthesis of Digital Hardware 119 
 

 

 

used to help generate VHDL code. The LPM functions also support pipeline 
options. Array multiply and divide hardware for more than a few bits requires 
extensive hardware and a large FPGA. 

 
LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
USE  IEEE.STD_LOGIC_ARITH.ALL; 
USE  IEEE.STD_LOGIC_UNSIGNED.ALL; 
LIBRARY lpm; 
USE lpm.lpm_components.ALL; 
 
ENTITY mult IS 
 PORT(  A, B : IN STD_LOGIC_VECTOR(   7 DOWNTO 0 ); 
     Product : OUT  STD_LOGIC_VECTOR( 15 DOWNTO 0 ) ); 
END mult; 
 
ARCHITECTURE a OF mult IS 
BEGIN      -- LPM 8x8 multiply function P = A * B  
 multiply: lpm_mult 
    GENERIC MAP( LPM_WIDTHA   =>  8, 
    LPM_WIDTHB   =>  8, 
    LPM_WIDTHS   => 16, 
    LPM_WIDTHP   => 16, 
    LPM_REPRESENTATION  =>   "UNSIGNED" ) 
 
 PORT MAP (   data => A, 
       datab => B, 
      result => Product ); 
END a; 

 
Floating-point operations can be implemented on very large FPGAs; however, 
performance is lower than current floating-point DSP and microprocessor 
chips. The floating-point algorithms must be coded by the user in VHDL using 
integer add, multiply, divide, and shift operations. The LPM_CLSHIFT 
function is useful for the barrel shifter needed in a floating-point ALU. Some 
floating point IP cores are starting to appear. Many FPGA vendors also have 
optimized arithmetic packages for DSP applications such as FIR filters. 

6.14 VHDL Synthesis Models for Memory 
Typically, it is more efficient to call a vendor-specific function to synthesize 
RAM. These functions typically use the FPGA’s internal RAM blocks rather 
than building a RAM using FPGA logic elements. The memory function in the 
Altera toolset is the ALTSYNCRAM function. On the UP2 board’s older 
FPGA, the LPM_RAM_DQ memory function can also be used. The memory 
can be set to an initial value using a separate memory initialization file with the 
extension *.mif. A similar call, LPM_ROM, can be used to synthesize ROM. 
If small blocks of multi-ported or other special-purpose RAM are needed, they 
can be synthesized using registers with address decoders for the write operation 
and multiplexers for the read operation. Additional read or write ports can be 



120 Rapid Prototyping of Digital Systems   Chapter 6 
 

 

 

added to synthesized RAM. An example of this approach is a dual-ported 
register file for a computer processor core. Most RISC processors need to read 
two registers on each clock cycle and write to a third register.  

VHDL Memory Model - Example One 

The first memory example synthesizes a memory that can perform a read and a 
write operation every clock cycle. Memory is built using arrays of positive 
edge-triggered D flip-flops. Memory write, memwrite, is gated with an address 
decoder output and used as an enable to load each memory location during a 
write operation. A synchronous write operation is more reliable. Asynchronous 
write operations respond to any logic hazards or momentary level changes on 
the write signal. As in any synchronous memory, the write address must be 
stable before the rising edge of the clock signal. A non-clocked mux is used for 
the read operation. If desired, memory can be initialized by a reset signal. 

 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
 
ENTITY memory IS 
 PORT( read_data  : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
      read_address  :  IN STD_LOGIC_VECTOR( 2 DOWNTO 0 ); 
      write_data   :  IN STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
      write_address : IN STD_LOGIC_VECTOR( 2 DOWNTO 0 ); 
      Memwrite  : IN STD_LOGIC; 
      clock,reset  : IN STD_LOGIC  ); 
END memory; 
 
ARCHITECTURE behavior OF memory IS 
 SIGNAL mem0, mem1  :   STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
 
BEGIN 
 PROCESS (read_address, mem0, mem1) -- Process for memory read operation 
 BEGIN 
  CASE read_address IS 
   WHEN "000" => 
     read_data <= mem0; 
   WHEN "001" => 
     read_data <= mem1; 
   WHEN OTHERS =>  -- Unimplemented memory locations 
     read_data <= X"FF" ; 
  END CASE; 
 END PROCESS;           
 
 PROCESS 
 BEGIN    
  WAIT UNTIL clock 'EVENT AND clock = '1'; 
   IF ( reset = '1' ) THEN 
    mem0 <= X"55" ; -- Initial values for memory (optional) 
    mem1 <= X"AA" ; 
   ELSE 



 Using VHDL for Synthesis of Digital Hardware 121 
 

 

 

    IF memwrite = '1' THEN  -- Write to memory? 
         CASE write_address IS  -- Use a flip-flop with  
            WHEN "000" =>  --        an enable for memory 
       mem0 <= write_data; 
      WHEN "001" => 
       mem1 <= write_data; 
      WHEN OTHERS => -- unimplemented memory locations 
           NULL; 
    END CASE; 
    END IF; 
   END IF; 
 END PROCESS; 
END behavior; 

VHDL Memory Model - Example Two 

The second example uses an array of standard logic vectors to implement 
memory. This approach is easier to write in VHDL since the array index 
generates the address decoder and multiplexers automatically; however, it is a 
little more difficult to access the values of individual array elements during 
simulation. There are a few VHDL synthesis tools that do not support array 
types. Synthesizing RAM requires a vast amount of programmable logic 
resources. Only a few hundred bits of RAM can be synthesized, even on large 
devices. Each bit of RAM requires 10 to 20 logic gates and a large amount of 
FPGA interconnect resources. Some tools may automatically detect synthesized 
RAM and use the FPGA’s embedded memory blocks.  

 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
 
ENTITY memory IS 
 PORT(  read_data : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
     read_address : IN STD_LOGIC_VECTOR( 2 DOWNTO 0 ); 
     write_data : IN STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
     write_address : IN STD_LOGIC_VECTOR( 2 DOWNTO 0 ); 
     Memwrite  : IN STD_LOGIC; 
     Clock  : IN STD_LOGIC  ); 
END memory; 
ARCHITECTURE behavior OF memory IS 
       -- define new data type for memory array 
 TYPE memory_type IS ARRAY ( 0 TO 7 ) OF STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
 SIGNAL memory   : memory_type; 
BEGIN 
 -- Read Memory and  convert array index to an integer with CONV_INTEGER 
 read_data <= memory( CONV_INTEGER( read_address( 2 DOWNTO 0 ) ) ); 
 
 PROCESS    -- Write Memory? 
  BEGIN  
  WAIT UNTIL clock 'EVENT AND clock = '1'; 
  IF ( memwrite = '1' ) THEN       
 -- convert array index to an integer with CONV_INTEGER 
       memory( CONV_INTEGER( write_address( 2 DOWNTO 0 ) ) ) <= write_data; 



122 Rapid Prototyping of Digital Systems   Chapter 6 
 

 

 

  END IF; 
 END PROCESS; 
END behavior; 

VHDL Memory Model - Example Three 

The third example shows the use of the ALTSYNCRAM megafunction to 
implement a block of memory. An additional library is needed for the  
megafunctions. (For more information on the megafunctions see the online help 
guide in the Quartus II tool.) In single port mode, the ALTSYNCRAM memory 
can do either a read or a write operation in a single clock cycle since there is 
only one address bus. In dual port mode, it can do both a read and write. If this 
is the only memory operation needed, the ALTSYNCRAM function produces a 
more efficient hardware implementation than synthesis of the memory in 
VHDL. In the ALTSYNCRAM megafunction, the memory address must be 
clocked into a dedicated address register located inside the FPGA’s 
synchronous memory block. Asynchronous memory operations without a clock 
can cause timing problems and are not supported on many FPGAs including the 
Cyclone. 
 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
LIBRARY Altera_mf; 
USE altera_mf.altera_mf_components.all; 
 
ENTITY amemory IS 
 PORT( read_data   : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
    memory_address  : IN STD_LOGIC_VECTOR( 2 DOWNTO 0 ); 
    write_data   : IN STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
    Memwrite   : IN STD_LOGIC; 
    clock,reset   : IN STD_LOGIC ); 
END amemory; 
 
ARCHITECTURE behavior OF amemory IS 
BEGIN 
 data_memory: altsyncram  -- Altsyncram memory function 
 GENERIC MAP ( operation_mode => “SINGLE_PORT”, 
    width_a  => 8, 
    widthad_a => 3, 
    lpm_type => “altsyncram”, 
    outdata_reg_a  => "UNREGISTERED", 
                            -- Reads in mif file for initial data values (optional) 
    init_file => "memory.mif", 
    intended_device_family => “Cyclone” ) 
 
 PORT MAP (wren_a => Memwrite,  clock0  => clock,   
     address_a => memory_address( 2 DOWNTO 0 ),  
     data_a => write_data,  q_a => read_data ); 
END behavior; 

 



 Using VHDL for Synthesis of Digital Hardware 123 
 

 

 

On the Cyclone FPGA chip, the memory can be implemented using the M4K 
memory blocks, which are separate from the FPGA’s logic cells. In the Cyclone 
EP1C6 chip there are 20 M4K RAM blocks at 4Kbits each for a total of 92,160 
bits. In the Cyclone EP1C12 there are 52 M4K blocks for a total of 239,616 
bits. Each M4K block can be setup to be 4K by 1, 2K by 2, 1K by 4, 512 by 8, 
256 by 16, 256 by 18, 128 by 32 or 128 by 36 bits wide. The 
Tools MegaWizard Plug-in Manager feature is useful to configure the 
Altsyncram parameters. 

 

6.15 Hierarchy in VHDL Synthesis Models 
Large VHDL models should be split into a hierarchy using a top-level structural 
model in VHDL or by using the symbol and graphic editor in the Quartus II 
tool. In the graphical editor, a VHDL file can be used to define the contents of a 
symbol block. Synthesis tools run faster using a hierarchy on large models and 
it is easier to write, understand, and maintain a large design when it is broken 
up into smaller modules.  
An example of a hierarchical design with three submodules is seen in the 
schematic in Figure 6.2. Following the schematic, the same design using a top-
level VHDL structural model is shown. This VHDL structural model provides 
the same connection information as the schematic seen in Figure 6.2.  
Debounce, Onepulse, and Clk_div are the names of the VHDL submodules. 
Each one of these submodules has a separate VHDL source file. In the Quartus 
II tool, compiling the top-level module will automatically compile the lower-
level modules.  
In the example, VHDL structural-model example, note the use of a component 
declaration for each submodule. The component statement declares the module 
name and the inputs and outputs of the module. Internal signal names used for 
interconnections of components must also be declared at the beginning of the 
component list.  
In the final section, port mappings are used to specify the module or component 
interconnections. Port names and their order must be the same in the VHDL 
submodule file, the component instantiations, and the port mappings. 
Component instantiations are given unique labels so that a single component 
can be used several times.  
Note that node names in the schematic or signals in VHDL used to interconnect 
modules need not always have the same names as the signals in the components 
they connect. Just like signal or wire names in a schematic are not always the 
same as the pin names on chips that they connect. As an example, 
pb_debounced on the debounce component connects to an internal signal with a 
different name, pb1_debounced. 
 



124 Rapid Prototyping of Digital Systems   Chapter 6 
 

 

 

Figure 6.2 Schematic of Hierarchical Design Example 

LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
USE  IEEE.STD_LOGIC_ARITH.ALL; 
USE  IEEE.STD_LOGIC_UNSIGNED.ALL; 
ENTITY hierarch IS 
 PORT ( clock_48MHz, pb1  : IN STD_LOGIC; 
  pb1_single_pulse  : OUT STD_LOGIC); 
END hierarch; 
ARCHITECTURE structural OF hierarch IS 
-- Declare internal signals needed to connect submodules 
SIGNAL clock_1MHz, clock_100Hz, pb1_debounced : STD_LOGIC; 
-- Use Components to Define Submodules and Parameters 
 COMPONENT debounce 
  PORT( pb, clock_100Hz  : IN STD_LOGIC; 
            pb_debounced : OUT STD_LOGIC); 
 END COMPONENT;   
  
 COMPONENT onepulse 
  PORT(pb_debounced, clock : IN STD_LOGIC; 
   pb_single_pulse  : OUT STD_LOGIC); 
 END COMPONENT; 
 
 COMPONENT clk_div 
  PORT( clock_48MHz : IN STD_LOGIC; 
   clock_1MHz : OUT STD_LOGIC; 
   clock_100kHz : OUT STD_LOGIC; 
   clock_10kHz : OUT STD_LOGIC; 
   clock_1kHz : OUT STD_LOGIC; 
   clock_100Hz : OUT STD_LOGIC; 
   clock_10Hz : OUT STD_LOGIC; 
   clock_1Hz  : OUT STD_LOGIC); 
 END COMPONENT;          
BEGIN 

clock_48Mhz clock_1MHz

clock_100KHz

clock_10KHz

clock_1KHz

clock_100Hz

clock_10Hz

clock_1Hz

clk_div

inst

pb

clock_100Hz

pb_debounced

debounce

inst1

PB_debounced

clock

PB_single_pulse

onepulse

inst2

PB1_Single_PulsePB1_DebouncedPB1

Clock_48Mhz

Clock_100Hz

Clock_1Mhz



 Using VHDL for Synthesis of Digital Hardware 125 
 

 

 

 
 
-- Use Port Map to connect signals between components in the hierarchy 
debounce1 : debounce PORT MAP  (pb => pb1, clock_100Hz = >clock_100Hz, 
       pb_debounced = >pb1_debounced); 
 
prescalar : clk_div  PORT MAP (clock_48MHz = >clock_48MHz,  
                                                       clock_1MHz =>clock_1MHz,  
                   clock_100hz = >clock_100hz); 
 
single_pulse : onepulse PORT MAP (pb_debounced = >pb1_debounced,  
       clock => clock_1MHz,  
        pb_single_pulse => pb1_single_pulse); 
END structural; 

6.16 Using a Testbench for Verification 
Complex VHDL synthesis models are frequently verified by simulation of the 
model’s behavior in a specially written entity called a testbench. As seen in 
Figure 6.3, the top–level testbench module contains a component instantiation 
of the hardware unit under test (UUT). The testbench also contains VHDL code 
used to automatically generate input stimulus to the UUT and automatically 
monitor the response of the UUT for correct operation.  
The testbench contains test vectors and timing information used in testing the 
UUT. The testbench’s VHDL code is used only for testing, and it is not 
synthesized. This keeps the test-only code portion of the VHDL model separate 
from the UUT’s hardware synthesis model. Third party simulation tools such as 
ModelSIM or Active-HDL are typically required for this approach. 
Unfortunately, full versions of these third party simulation tools are currently 
very expensive for students or individuals. 

 
 

Figure 6.3 Using a testbench for automatic verification during simulation. 

 Hardware UUT 

Response 
Monitor 

Stimulus 
Generator 

Testbench 



126 Rapid Prototyping of Digital Systems   Chapter 6 
 

 

 

The testbench approach is critical in large ASIC designs where all errors are 
costly. Automatic Test Equipment (ATE) can also use a properly written 
testbench and its test vector and timing information to physically test each 
ASIC chip for correct operation after production. In large designs, the testbench 
can require as much time and effort as the UUT’s synthesis model. By 
performing both a functional simulation and a timing simulation of the UUT 
with the same test vectors, it is also possible to check for any synthesis-related 
errors.  

6.17 For additional information 
The chapter has introduced the basics of using VHDL for digital synthesis. It 
has not explored all of the language options available. The Altera online help 
contains VHDL syntax and templates. A large number of VHDL reference 
textbooks are also available. Unfortunately, only a few of them currently 
examine using VHDL models that can be used for digital logic synthesis. One 
such text is HDL Chip Design by Douglas J. Smith, Doone Publications, 1996.  
A number of alternative integer multiply, divide, and floating-point algorithms 
with different speed versus area tradeoffs can be found in computer arithmetic 
textbooks. Two such examples are Digital Computer Arithmetic Design and 
Implementation by Cavanagh, McGraw Hill, 1984, and Computer Arithmetic 
Algorithms by Israel Koren, Prentice Hall, 1993. 

6.18 Laboratory Exercises 
1. Rewrite and compile the VHDL model for the seven-segment decoder in Section 6.5 

replacing the PROCESS and CASE statements with a WITH…SELECT statement. 

2. Write a VHDL model for the state machine shown in the following state diagram and 
verify correct operation with a simulation using the Altera CAD tools. A and B are the 
two states, X is the output, and Y is the input. Use the timing analyzer to determine the 
maximum clock frequency on the Cyclone EP1C6Q240C8 device. 

  

3. Write a VHDL model for a 32-bit, arithmetic logic unit (ALU). Verify correct operation 
with a simulation using the Altera CAD tools. A and B are 32-bit inputs to the ALU, and 
Y is the output. A shift operation follows the arithmetic and logical operation. The 
opcode controls ALU functions as follows: 

 

 
 

 

Reset     

B
X=1

A
X = 0 0

11 

0 



 Using VHDL for Synthesis of Digital Hardware 127 
 

 

 

Opcode Operation Function 
000XX ALU_OUT <= A Pass A 
001XX ALU_OUT <= A + B Add 
010XX ALU_OUT <= A-B Subtract 
011XX ALU_OUT <= A AND B Logical AND 
100XX ALU_OUT <= A OR B Logical OR 
101XX ALU_OUT <= A + 1 Increment A 
110XX ALU_OUT <= A-1 Decrement A 
111XX ALU_OUT <= B Pass B 
XXX00 Y <= ALU_OUT Pass ALU_OUT 
XXX01 Y<= SHL(ALU_OUT) Shift Left 
XXX10 Y<=SHR(ALU_OUT) Shift Right (unsigned-zero fill) 
XXX11 Y<= 0 Pass 0’s 

 
4. Use the Cyclone chip as the target device. Determine the worst case time delay of the 

ALU using the timing analyzer. Examine the report file and find the device utilization. 
Use the logic element (LE) device utilization percentage found in the compilation report 
to compare the size of the designs. 

5. Explore different synthesis options for the ALU from problem 3. Change the area and 
speed synthesis settings in the compiler under Assignments Settings Analysis and 
Synthesis Settings, rerun the timing analyzer to determine speed, and examine the report 
file for hardware size estimates. Include data points for the default, optimized for speed, 
balanced, and optimized for area settings. Build a plot showing the speed versus area 
trade-offs possible in the synthesis tool. Use the logic element (LE) device utilization 
percentage found in the compilation report to compare the size of the designs. 

6. Develop a VHDL model of one of the TTL chips listed below. The model should be 
functionally equivalent, but there will be timing differences. Compare the timing 
differences between the VHDL FPGA implementation and the TTL chip. Use a data 
book or find a data sheet using the World Wide Web. 

A. 7400 Quad nand gate 

B. 74LS241 Octal buffer with tri-state output 

C. 74LS273 Octal D flip-flop with Clear 

D. 74163 4-bit binary counter 

E. 74LS181 4-bit ALU 

7. Replace the 8count block used in the tutorial in Chapter 4, with a new counter module 
written in VHDL. Simulate the design and download a test program to the UP3 board. 

8. Implement a 128 by 32 RAM using VHDL and the Altsyncram function. Do not use 
registered output options. Target the design to the Cyclone EP1C6240C8 device. Use the 
timing analyzer to determine the worst-case read and write access times for the memory.  

9. Study the VHDL code in the LCD Display FPGAcore function and draw a state diagram 
of the initialization and data transfer operations and explain its operation. You may find it 
helpful to examine the data sheet for the LCD display’s microcontroller. 

 



 

 

CHAPTER 7 

Using Verilog for 
Synthesis of Digital 
Hardware   

  

module ALU ( ALU_control, Ainput, Binput, Clock, Shift_output); 
   input [2:0] ALU_control; 
   input [15:0] Ainput; 
  input [15:0] Binput; 
   input Clock; 
   output[15:0] Shift_output; 
   reg [15:0] Shift_output; 
   reg [15:0] ALU_output; 
 
  /* Select ALU Arithmetic/Logical Operation */ 
always @(ALU_control or Ainput or Binput) 
   case (ALU_control[2:1]) 
      0: ALU_output = Ainput + Binput; 
     1: ALU_output = Ainput - Binput; 
      2: ALU_output = Ainput & Binput; 
      3: ALU_output = Ainput | Binput; 
      default: ALU_output = 0; 
   endcase 
 
  /* Shift bits left using shift left operator if required and load register */ 
always @(posedge Clock) 
   if (ALU_control[0]==1) 
      Shift_output = ALU_output << 1; 
   else 
      Shift_output = ALU_output; 
endmodule 

ALU_control(2 ..1)

16

16 16

ALU_control(0)

16

16

Ainput Binput

Shift Left

Shift_output

ALU_output

A L U
+, -, AND, OR

RegisterClock



130 Rapid Prototyping of Digital Systems   Chapter 7 
 

 

 

7 Using Verilog for Synthesis of Digital Hardware  
Verilog is another language that, like VHDL, is widely used to model and 
design digital hardware. In the early years, Verilog was a proprietary language 
developed by one CAD vendor, Gateway. Verilog was developed in the 1980’s 
and was initially used to model high-end ASIC devices. In 1990, Verilog was 
released into the public domain, and Verilog now is the subject of IEEE 
standard 1364. Today, Verilog is supported by numerous CAD tool and 
programmable logic vendors. Verilog has a syntax style similar to the C 
programming language. Schools are more likely to cover VHDL since it was in 
the public domain several years earlier; however, in the FPGA industry, VHDL 
and Verilog have an almost equal market share for new design development. 
Conventional programming languages are based on a sequential operation 
model. Digital hardware devices by their very nature operate in parallel. This 
means that conventional programming languages cannot accurately describe or 
model the operation of digital hardware since they are based on the sequential 
execution of statements. Like VHDL, Verilog is designed to model parallel 
operations.  

IT IS CRUCIAL TO REMEMBER THAT VERILOG MODULES AND CONCURRENT STATEMENTS ALL 
OPERATE IN PARALLEL.  

In this section, a brief introduction to Verilog for logic synthesis will be 
presented. It is assumed that the reader is already familiar with basic digital 
logic devices and some basic C syntax.  
Whenever you need help with Verilog syntax, Verilog templates of common 
statements are available in the Quartus II online help. In the text editor, just 
click the right mouse button and Insert Templates select Verilog. 

7.1 Verilog Data Types 
For logic synthesis, Verilog has simple data types. The net data type, wire, and 
the register data type, reg. A model with a net data type, wire, has a 
corresponding electrical connection or wire in the modeled device. Type reg is 
updated under the control of the surrounding procedural flow constructs 
typically inside an always statement. Type reg does not necessarily imply that 
the synthesized hardware for a signal contains a register, digital storage device, 
or flip-flop. It can also be purely combinational logic. 
Table 7.1 lists the Verilog operators and their common function in Verilog 
synthesis tools. 

7.2 Verilog Based Synthesis of Digital Hardware 
Verilog can be used to construct models at a variety of abstraction levels such 
as structural, behavioral, register transfer level (RTL), and timing. An RTL 
model of a circuit described in Verilog describes the input/output relationship in 
terms of dataflow operations on signal and register values. If registers are 



 Using Verilog for Synthesis of Digital Hardware 131 
 

 

 

required, a synchronous clocking scheme is normally used. Sometimes an RTL 
model is also referred to as a dataflow-style model. 
Verilog simulation models often include physical device time delays. In Verilog 
models written for logic synthesis, timing information should not be provided.  
For timing simulations, the CAD tools automatically include the actual timing 
delays for the synthesized logic circuit. An FPGA timing model supplied by the 
CAD tool vendor is used to automatically generate the physical device time 
delays inside the FPGA. Sometimes this timing model is also written in 
Verilog. For a quick overview of Verilog, several constructs that can be used to 
synthesize common digital hardware devices will be presented. 

7.3 Verilog Operators 
Table 7.1 lists the Verilog operators and their common function in Verilog 
synthesis tools. 

Table 7.1 Verilog Operators. 

Verilog Operator Operation 
+ Addition 
- Subtraction 
* Multiplication* 
/ Division* 

%  Modulus* 
{ } Concatenation – used to combine bits 
<< rotate left 
>> rotate right 
= equality 
!= Inequality 
< less than 

<= less than or equal 
> greater than 

>= greater than or equal 
! logical negation 

&& logical AND 
|| logical OR 
& Bitwise AND 
| Bitwise OR 
^ Bitwise XOR 

~ Bitwise Negation 
*Not supported in some Verilog synthesis tools. In the Quartus II tools, 
multiply , divide, and mod of integer values is supported. Efficient design of 
multiply or divide hardware may require the user to specify the arithmetic 
algorithm and design in Verilog.  



132 Rapid Prototyping of Digital Systems   Chapter 7 
 

 

 

7.4 Verilog Synthesis Models of Gate Networks 
The first example consists of a simple gate network. In this model, both a 
concurrent assignment statement and a sequential always block are shown that 
generate the same gate network. X is the output on one network and Y is the 
output on the other gate network. The two gate networks operate in parallel.  
In Verilog synthesis, inputs and outputs from the module will become I/O pins 
on the programmable logic device. For comments “//” makes the rest of a line a 
comment and “/*” and “*/” can be used to make a block of lines a comment. 
The Quartus II editor performs syntax coloring and is useful to quickly find 
major problems with Verilog syntax. Verilog is case sensitive just like C. 
Verilog concurrent statements are executed in parallel. Inside an always 
statement, statements are executed in sequential order, and all of the always 
statements are executed in parallel. The always statement is Verilog’s 
equivalent of a process in VHDL. 

 
      

 
module gatenetwork(A, B, C, D, X, Y); 
 input A; 
 input B; 
 input C; 
 input [2:1] D; 
 output X, Y; 
 reg Y; 
  // concurrent assignment statement  
 wire X = A & ~(B|C) & (D[1] ^ D[2]); 
  /* Always concurrent statement- sequential execution inside */ 
 always @( A or B or C or D) 
  Y = A & ~(B|C) & (D[1] ^ D[2]); 
 
endmodule 
 

7.5 Verilog Synthesis Model of a Seven-segment LED Decoder 
The following Verilog code implements a seven-segment decoder for seven-
segment LED displays. A 7-bit vector is used to assign the value of all seven 
bits in a single case statement. In the 7-bit logic vector, the most-significant bit 
is segment ‘a’ and the least-significant bit is segment ‘g’. The logic synthesis 
CAD tool automatically minimizes the logic required for implementation. The 
signal Hex_digit contains the 4-bit binary value to be displayed in hexadecimal.  

A

B
C

D(1)
D(2)

Y

A

B
C

D(1)
D(2)

X



 Using Verilog for Synthesis of Digital Hardware 133 
 

 

 

a

b

c

d

e

f
g

dp

 
module DEC_7SEG(Hex_digit, segment_a, segment_b, segment_c,  
   segment_d, segment_e, segment_f, segment_g); 
   input [3:0] Hex_digit; 
   output segment_a, segment_b, segment_c, segment_d; 
   output segment_e, segment_f, segment_g; 
   reg [6:0] segment_data; 
 
   always @(Hex_digit) 

/* Case statement implements a logic truth table using gates*/ 
    case (Hex_digit) 

           4’b 0000:   segment_data = 7'b 1111110; 
           4’b 0001:   segment_data = 7'b 0110000; 
           4’b 0010:   segment_data = 7'b 1101101; 
           4’b 0011:   segment_data = 7'b 1111001; 
           4’b 0100:   segment_data = 7'b 0110011; 
           4’b 0101:   segment_data = 7'b 1011011; 
           4’b 0110:   segment_data = 7'b 1011111; 
           4’b 0111:   segment_data = 7'b 1110000; 
           4’b 1000:   segment_data = 7'b 1111111; 
           4’b 1001:   segment_data = 7'b 1111011;  
           4’b 1010:   segment_data = 7'b 1110111; 
           4’b 1011:   segment_data = 7'b 0011111;  
     4’b 1100:   segment_data = 7'b 1001110;  
          4’b 1101:   segment_data = 7'b 0111101;  
         4’b 1110:   segment_data = 7'b 1001111;  
         4’b 1111:   segment_data = 7'b 1000111;  
       default:     segment_data = 7'b 0111110; 

     endcase 
 
The following Verilog concurrent assignment statements extract the seven 1-bit 
values needed to connect the individual segments. The not operator (~) is used 
since a logic zero actually turns on most LEDs. Automatic minimization in the 
synthesis process will eliminate the extra inverter in the logic circuit.  

  
  /* extract segment data bits and invert */ 
  /* LED driver circuit is inverted */ 

 wire segment_a = ~segment_data[6]; 
 wire segment_b = ~segment_data[5]; 
 wire segment_c = ~segment_data[4]; 
 wire segment_d = ~segment_data[3]; 
 wire segment_e = ~segment_data[2]; 
 wire segment_f =  ~segment_data[1]; 
 wire segment_g = ~segment_data[0]; 
endmodule 

 

7.6 Verilog Synthesis Model of a Multiplexer 
The next example shows several alternative ways to synthesize a 2-to-1 
multiplexer in Verilog. Three identical multiplexers that operate in parallel are 
synthesized by this example. The wire conditional continuous assignment 



134 Rapid Prototyping of Digital Systems   Chapter 7 
 

 

 

Control

Tri_Out
A

0

1

Mux_Control

Mux_Outx

A

B

statement can be used for a 2-to-1 mux. A concurrent assign statement can also 
be used instead of wire, if the output signal is already declared. In Verilog, IF 
and CASE statements must be inside an always statement. The inputs and 
outputs from the multiplexers could be changed to bit vectors if an entire bus is 
multiplexed. Multiplexers with more than two inputs can also be easily 
constructed and a case statement is preferred. Nested IF statements generate 
priority-encoded logic that requires more hardware and produce a slower circuit 
than a CASE statement. 

  /* Multiplexer example shows three ways to model a 2 to 1 mux */ 
module multiplexer(A, B, mux_control, mux_out1, mux_out2, mux_out3); 
 input A;    /* Input Signals and Mux Control  */ 
 input B; 
 input mux_control; 
 output mux_out1,mux_out2, mux_out3; 
 reg mux_out2, mux_out3; 
      /* Conditional Continuous Assignment Statement */    
      /*   works like an IF - ELSE */ 
 wire mux_out1 = (mux_control)? B:A; 
      /* If statement inside always statement */ 
  always @(A or B or mux_control) 
   if (mux_control) 
    mux_out2 = B; 
   else 
    mux_out2 = A; 
      /* Case statement inside always statement */ 
  always @(A or B or mux_control) 
   case (mux_control) 
    0: mux_out3 = A; 
    1: mux_out3 = B; 
    default: mux_out3 = A; 
   endcase    
endmodule 

7.7 Verilog Synthesis Model of Tri-State Output 
Tri-state gates are supported in Verilog synthesis tools and are supported in 
many programmable logic devices. Most programmable logic devices have tri-
state output pins. Some programmable logic devices do not support internal tri-
state logic. Here is a Verilog example of a tri-state output. In Verilog, the 
assignment of the value "Z" to a signal produces a tri-state output.  

module tristate (a, control, tri_out); 
 input a, control; 
 output tri_out; 
 reg tri_out; 
 always @(control or a) 

   if (control) 
    /* Assignment of Z value generates a tri-state output */ 
    tri_out = 1'bZ; 
   else 
    tri_out = a; 

endmodule 



 Using Verilog for Synthesis of Digital Hardware 135 
 

 

 

7.8 Verilog Synthesis Models of Flip-flops and Registers 
In the next example, several flip-flops will be generated. Unlike earlier 
combinational hardware devices, a flip-flop can only be synthesized inside an 
always statement. The positive clock edge is selected by posedge clock and 
positive edge triggered D flip-flops will be used for synthesis. The following 
module contains a variety of Reset and Enable options on positive edge-
triggered D flip-flops. The negative clock edge is selected by negedge clock 
and negative edge-triggered D flip-flops used during synthesis. 

 
 module DFFs(D, clock, reset, enable, Q1, Q2, Q3, Q4); 
 input D; 
 input clock; 
 input reset; 
 input enable; 
 output Q1, Q2, Q3, Q4; 
 reg Q1, Q2, Q3, Q4; 
      /* Positive edge triggered D flip-flop */ 
  always @(posedge clock) 
    Q1 = D; 
      /* Positive edge triggered D flip-flop */     
    /*      with synchronous reset */ 
  always @(posedge clock)  
   if (reset)  
     Q2 = 0; 
    else 
     Q2 = D; 
    /* Positive edge triggered D flip-flop */ 
      /*      with asynchronous reset */ 
  always @(posedge clock or posedge reset) 
    if (reset) 
     Q3 = 0; 
    else 
     Q3 = D; 
    /* Positive edge triggered D flip-flop */ 
    /* with asynchronous reset and enable */ 
  always @(posedge clock or posedge reset) 
    if (reset) 
     Q4 = 0; 
    else if (enable) 
     Q4 = D; 
 endmodule 

 
 
In Verilog, as in any digital logic designs, it is not good design practice to AND 
or gate other signals with the clock. Use a flip-flop with a clock enable instead 
to avoid timing and clock skew problems. In some limited cases, such as power 
management, a single level of clock gating can be used. This works only when 
a small amount of clock skew can be tolerated and the signal gated with the 
clock is known to be hazard or glitch free. A particular programmable logic 

Q2
0

1

Reset

D

0

Q1

Q3

D   Q Q4
0

1

Enable

Q4

D

Clock

D

D

Reset

D   Q

Clock

Reset

D   Q

Clock

D   Q

Clock



136 Rapid Prototyping of Digital Systems   Chapter 7 
 

 

 

device may not support every flip-flop or latch type and all of the Set/Reset and 
Enable options.  
If D and Q are replaced by bit vectors in any of these examples, registers with 
the correct number of bits will be generated instead of individual flip-flops.  

7.9 Accidental Synthesis of Inferred Latches 
Here is a very common problem to be aware of when coding Verilog for 
synthesis. If a non-clocked process has any path that does not assign a value to 
an output, Verilog assumes you want to use the previous value. A level 
triggered latch is automatically generated or inferred by the synthesis tool to 
save the previous value. In many cases, this can cause serious errors in the 
design. Edge-triggered flip-flops should not be mixed with level-triggered 
latches in a design or serious timing problems will result. Typically this can 
happen in CASE statements or nested IF statements. In the following example, 
the signal Output2 infers a latch when synthesized. Assigning a value to 
Output2 in the last ELSE clause will eliminate the inferred latch. Warning 
messages may be generated during compilation when a latch is inferred on 
some tools. Note the use of begin…end is somewhat different than the use of 
braces in C. 

 
module ilatch( A, B, Output1, Output2); 
input A, B; 
output Output1, Output2; 
reg Output1, Output2; 
 
always@( A or B) 
 if (!A) 
  begin 
   Output1 = 0; 
   Output2 = 0; 
  end 
 else 
  if (B) 
         begin 
    Output1 = 1; 
    Output2 = 1; 
             end 
  else     /*latch inferred since no value */ 
   Output1 = 0; /*is assigned to Output2 here */   
endmodule 

7.10 Verilog Synthesis Model of a Counter 
Here is an 8-bit counter design. Compare operations such as “<” are supported 
and they generate a comparator logic circuit to test for the maximum count 
value. The assignment count = count+1; synthesizes an 8-bit incrementer. An 
incrementer circuit requires less hardware than an adder that adds one. The 
operation, "+1", is treated as a special incrementer case by synthesis tools.  

  

Output2
D   Q

Clock



 Using Verilog for Synthesis of Digital Hardware 137 
 

 

 

 
module counter(clock, reset, max_count, count); 
  input clock; 
  input reset; 
  input  [7:0] max_count; 
  output [7:0] count; 
  reg [7:0] count; 
    /* use positive clock edge for counter */ 
  always @(posedge clock or posedge reset) 
   begin 
    if (reset) 
      count = 0;   /* Reset  Counter */ 
    else if (count < max_count)    /* Check for maximum count */ 
    count = count + 1;           /* Increment Counter */ 
    else  
      count = 0;     /*  Counter set back to 0*/ 
   end 
 endmodule 
 

7.11 Verilog Synthesis Model of a State Machine 
The next example shows a Moore state machine with three states, two inputs 
and a single output. A state diagram of the example state machine is shown in 
Figure 7.1. Unlike VHDL, A direct assignment of the state values is required in 
Verilog’s parameter statement. The first Always block assigns the next state 
using a case statement that is updated on the positive clock edge, posedge. 

 

Figure 7.1 State Diagram for state_mach Verilog example 

 
module state_mach (clk, reset, input1, input2 ,output1); 
   input clk, reset, input1, input2; 
   output output1; 
   reg output1; 
  reg [1:0] state; 

 

A

Reset

CB  
Output1      

X1

1X0X

X0



138 Rapid Prototyping of Digital Systems   Chapter 7 
 

 

 

     
    /* Make State Assignments */ 
   parameter [1:0] state_A = 0, state_B = 1, state_C = 2; 
 
always@(posedge clk or posedge reset) 
   begin 
      if (reset) 
          state = state_A; 
      else 
    /* Define Next State Transitions using a Case */ 
    /* Statement based on the Current State */ 
          case (state) 
            state_A: 
                  if (input1==0) 
                      state = state_B; 
                  else 
                      state = state_C; 
            state_B:  
                  state = state_C; 
            state_C: 
                   if (input2) state = state_A; 
    default:  state = state_A; 
          endcase 
   end 
    /* Define State Machine Outputs */ 
always @(state) 
     begin 
         case (state) 
             state_A: output1 = 0; 
             state_B: output1 = 1; 
             state_C: output1 = 0; 
             default:  output1 = 0; 
        endcase 
     end 
endmodule 

7.12 Verilog Synthesis Model of an ALU with an 
Adder/Subtractor and a Shifter 

Here is an 8-bit arithmetic logic unit (ALU) that adds, subtracts, bitwise ANDs, 
or bitwise ORs, two operands and then performs an optional shift on the output. 
The most-significant two bits of the Op-code select the arithmetic logical 
operation. If the least-significant bit of the op_code equals ‘1’ a 1-bit left-shift 
operation is performed. An addition and subtraction circuit is synthesized for 
the "+" and "-" operator.  
Depending on the number of bits and the speed versus area settings in the 
synthesis tool, ripple carry or carry-lookahead circuits will be used. Several "+" 
and "-" operations in multiple assignment statements may generate multiple 
ALUs and increase the hardware size, depending on the Verilog CAD tool and 
compiler settings used. If a single ALU is desired, muxes can be placed at the 



 Using Verilog for Synthesis of Digital Hardware 139 
 

 

 

inputs and the "+" operator would be used only in a single assignment 
statement. 
 
 

module ALU ( ALU_control, Ainput, Binput, Clock, Shift_output); 
   input [2:0] ALU_control; 
   input [15:0] Ainput; 
   input [15:0] Binput; 
   input Clock; 
   output[15:0] Shift_output; 
   reg [15:0] Shift_output; 
   reg [15:0] ALU_output; 
 
  /* Select ALU Arithmetic/Logical Operation */ 
always @(ALU_control or Ainput or Binput) 
   case (ALU_control[2:1]) 
      0: ALU_output = Ainput + Binput; 
     1: ALU_output = Ainput - Binput; 
      2: ALU_output = Ainput & Binput; 
      3: ALU_output = Ainput | Binput; 
      default: ALU_output = 0; 
   endcase 
 
  /* Shift bits left using shift left operator if required and load register */ 
always @(posedge Clock) 
   if (ALU_control[0]==1) 
      Shift_output = ALU_output << 1; 
   else 
      Shift_output = ALU_output; 
endmodule 

 

7.13 Verilog Synthesis of Multiply and Divide Hardware 
In the Quartus II tool, integer multiply and divide is supported using Verilog’s 
"*" and "/" operators. In current generation tools, efficient design of multiply or 
divide hardware typically requires the use of a vendor-specific library function 
or even the specification of the arithmetic algorithm and hardware 
implementation in Verilog.  
A wide variety of multiply and divide algorithms that trade off time versus 
hardware size can be found in most computer arithmetic texts. Several such 
references are listed at the end of this chapter. These algorithms require a 
sequence of add/subtract and shift operations that can be easily synthesized in 
Verilog using the standard operators. The LPM_MULT function in Quartus II 
can be used to synthesize integer multipliers. LPM_DIVIDE, is also available. 
When using LPM functions, Tools MegaWizard Plug-in Manager can be 
used to help generate Verilog code. The LPM functions also support pipeline 
options. Array multiply and divide hardware for more than a few bits requires 
extensive hardware and a large FPGA. A few large FPGAs now contain 
multiplier blocks. 

ALU_control(2 ..1)

16

16 16

ALU_control(0)

16

16

Ainput Binput

Shift Left

Shift_output

ALU_output

A L U
+, -, AND, OR

RegisterClock



140 Rapid Prototyping of Digital Systems   Chapter 7 
 

 

 

 
 
module mult (dataa, datab, result); 
 input [7:0]  dataa; 
 input [7:0]  datab; 
 output [15:0]  result; 
 
 wire [15:0] sub_wire0; 
 wire [15:0] result = sub_wire0[15:0]; 
     /* Altera LPM 8x8 multiply function  result = dataa * datab */ 
 lpm_mult lpm_mult_component ( 
    .dataa (dataa), 
    .datab (datab), 
    .result (sub_wire0) ); 
 defparam 
  lpm_mult_component.lpm_widtha = 8, 
  lpm_mult_component.lpm_widthb = 8, 
  lpm_mult_component.lpm_widthp = 16, 
  lpm_mult_component.lpm_widths = 1, 
  lpm_mult_component.lpm_type = "LPM_MULT", 
  lpm_mult_component.lpm_representation = "UNSIGNED", 
 
endmodule 

 
Floating-point operations can be implemented on very large FPGAs; however, 
performance is lower than current floating-point DSP and microprocessor 
chips. The floating-point algorithms must be coded by the user in Verilog using 
integer add, multiply, divide, and shift operations. The LPM_CLSHIFT 
function is useful for the barrel shifter needed in a floating-point ALU. Some 
floating point IP cores are starting to appear. Many FPGA vendors also have 
optimized arithmetic packages for DSP applications such as FIR filters. 

7.14 Verilog Synthesis Models for Memory 
Typically, it is more efficient to call a vendor-specific function to synthesize 
RAM. These functions typically use the FPGA’s internal RAM blocks rather 
than building a RAM using FPGA logic elements. The memory function in the 
Altera toolset is the ALTSYNCRAM function. On the UP2 board’s older 
FPGA, the LPM_RAM_DQ memory function should be used. The memory can 
be set to an initial value using a separate memory initialization file with the 
extension *.mif. A similar call, LPM_ROM, can be used to synthesize ROM. 
If small blocks of multi-ported or other special-purpose RAM are needed, they 
can be synthesized using registers with address decoders for the write operation 
and multiplexers for the read operation. Additional read or write ports can be 
added to synthesize RAM. An example of this approach is a dual-ported 
register file for a computer processor core. Most RISC processors need to read 
two registers on each clock cycle and write to a third register.  



 Using Verilog for Synthesis of Digital Hardware 141 
 

 

 

Verilog Memory Model - Example One 

The first memory example synthesizes a memory that can perform a read and a 
write operation every clock cycle. Memory is built using arrays of positive 
edge-triggered D flip-flops. Memory write, memwrite, is gated with an address 
decoder output and used as an enable to load each memory location during a 
write operation. A synchronous write operation is more reliable. Asynchronous 
write operations respond to any logic hazards or momentary level changes on 
the write signal. As in any synchronous memory, the write address must be 
stable before the rising edge of the clock signal. A non-clocked mux is used for 
the read operation. If desired, memory can be initialized by a reset signal. 

 
 module memory(read_data, read_address, write_data, write_address,  
                 memwrite, clock, reset); 
 output [7:0] read_data; 
 input [2:0] read_address; 
 input [7:0] write_data; 
 input [2:0] write_address; 
 input memwrite; 
 input clock; 
 input reset; 
 reg [7:0] read_data, mem0, mem1; 
  
     /* Block for memory read */ 
 always @(read_address or mem0 or mem1) 
  begin 
    case(read_address) 
     3'b 000: read_data = mem0; 
     3'b 001: read_data = mem1; 
     /* Unimplemented memory */ 
     default: read_data = 8'h FF; 
    endcase 
  end 
  
     /* Block for memory write */ 
 always @(posedge clock or posedge reset) 
  begin 
   if (reset) 
     begin 
     /* Initial values for memory (optional) */ 
     mem0 = 8'h AA ; 
     mem1 = 8'h 55; 
    end 
   else if (memwrite) 
     /* write new value to memory */ 
    case (write_address) 
     3'b 000 : mem0 = write_data; 
     3'b 001 : mem1 = write_data; 
    endcase 
  end 
 endmodule  
 



142 Rapid Prototyping of Digital Systems   Chapter 7 
 

 

 

Verilog Memory Model - Example Two 

The second example shows the use of Altera’s ALTSYNCRAM megafunction 
to implement a block of memory. For more information on the megafunctions 
see the online help guide in the Quartus II tool. In single port mode, the 
ALTSYNCRAM memory can do either a read or a write operation in a single 
clock cycle since there is only one address bus. In dual port mode, it can do 
both a read and write. If this is the only memory operation needed, the 
ALTSYNCRAM function produces a more efficient hardware implementation 
than synthesis of the memory in Verilog. In the ALTSYNCRAM megafunction, 
the memory address must be clocked into a dedicated address register located 
inside the FPGA’s synchronous memory block. Asynchronous memory 
operations without a clock can cause timing problems and are not supported on 
many FPGAs including the Cyclone. 
 

 module amemory ( write_data, write_enable, address, clock, read_data); 
 
 input [7:0]  write_data; 
 input   write_enable; 
 input [2:0]  address; 
 input   clock; 
 output [7:0]  read_data; 
 wire [7:0] sub_wire0; 
 wire [7:0] read_data = sub_wire0[7:0]; 
    /* Use Altera Altsyncram function for memory */ 
 altsyncram altsyncram_component ( 
    .wren_a (write_enable), 
    .clock0 (clock), 
    .address_a (address), 
    .data_a (write_data), 
    .q_a (sub_wire0)); 
 defparam 
  altsyncram_component.operation_mode = "SINGLE_PORT", 
    /* 8 data bits, 3 address bits, and no register on read data */ 
  altsyncram_component.width_a = 8, 
  altsyncram_component.widthad_a = 3, 
  altsyncram_component.outdata_reg_a = "UNREGISTERED", 
     /* Reads in mif file for initial memory data values (optional) */ 
  altsyncram_component.init_file = "memory.mif"; 
 endmodule  

 
On the Cyclone FPGA chip, the memory can be implemented using the M4K 
memory blocks, which are separate from the FPGA’s logic cells. In the Cyclone 
EP1C6 chip there are 20 M4K RAM blocks at 4Kbits each for a total of 92,160 
bits. In the Cyclone EP1C12 there are 52 M4K blocks for a total of 239,616 
bits. Each M4K block can be setup to be 4K by 1, 2K by 2, 1K by 4, 512 by 8, 
256 by 16,256 by 18, 128 by 32 or 128 by 36 bits wide. The 
Tools Megawizard Plug-in Manager feature is useful to configure the 
Altsyncram parameters. 



 Using Verilog for Synthesis of Digital Hardware 143 
 

 

 

7.15 Hierarchy in Verilog Synthesis Models 
Large Verilog models should be split into a hierarchy using a top-level 
structural model in Verilog or by using the symbol and graphic editor in the 
Quartus II tool. In the graphical editor, a Verilog file can be used to define the 
contents of a symbol block. Synthesis tools run faster using a hierarchy on 
large models and it is easier to write, understand, and maintain a large design 
when it is broken up into smaller modules.   
An example of a hierarchical design with three submodules is seen in the 
schematic in Figure 7.2. Following the schematic, the same design using a top-
level Verilog structural model is shown. This Verilog structural model provides 
the same connection information as the schematic seen in Figure 7.2.  
Debounce, Onepulse, and Clk_div are the names of the Verilog submodules. 
Each one of these submodules has a separate Verilog source file. In the Quartus 
II tool, compiling the top-level module will automatically compile the lower-
level modules.  
In the example Verilog structural-model example for Figure 7.2, note the use of 
a component instantiation statement for each of the three submodules. The 
component instantiation statement declares the module name and connects 
inputs and outputs of the module. New internal signal names used for 
interconnections of modules should also be declared at the beginning of the top 
level module.  
The order of each module’s signal names must be the same as in the Verilog 
submodule files. Each instantiation of a module is given a unique name so that 
a single module can be used several times. As an example, the single 
instantiation of the debounce module is called debounce1 in the example code. 

Figure 7.2 Schematic of Hierarchical Design Example 

clock_48Mhz clock_1MHz

clock_100KHz

clock_10KHz

clock_1KHz

clock_100Hz

clock_10Hz

clock_1Hz

clk_div

inst

pb

clock_100Hz

pb_debounced

debounce

inst1

PB_debounced

clock

PB_single_pulse

onepulse

inst2

PB1_Single_PulsePB1_DebouncedPB1

Clock_48Mhz

Clock_100Hz

Clock_1Mhz



144 Rapid Prototyping of Digital Systems   Chapter 7 
 

 

 

Note that node names in the schematic or signals in Verilog used to 
interconnect modules need not always have the same names as the signals in 
the components they connect. As an example, PB_debounced on the debounce 
component connects to an internal signal with a different name, 
PB1_debounced. 
 
module hierarch(Clock_48MHz, PB1, PB1_Single_Pulse); 
  input Clock_48MHz, PB1; 
  output PB1_Single_Pulse; 

     /* Declare internal interconnect signals */ 
  reg Clock_100Hz, Clock_1MHz, PB1_Debounced; 

 
     /* declare and connect all  three modules in the hierarchy */ 

   debounce debounce1( PB1, Clock_100Hz, PB1_Debounced); 
 
   clk_div clk_div1( Clock_48MHz, Clock_1MHz, Clock_100Hz); 
 
   onepulse onepulse1( PB1_Debounced, Clock_100Hz, PB1_Single_Pulse); 
 
endmodule 

 

7.16 For additional information 
The chapter has introduced the basics of using Verilog for digital synthesis. It 
has not explored all of the language options available. The Altera online help 
contains Verilog syntax and templates. A number of Verilog reference textbooks 
are also available. Unfortunately, not all of them currently contain Verilog 
models that can be used for digital logic synthesis. Two recommendations are 
HDL Chip Design by Douglas J. Smith, Doone Publications, 1996 and 
Modeling, Synthesis, and Rapid Prototyping with the Verilog HDL by Michael 
Ciletti, 1999. An interesting free VHDL to Verilog conversion program is also 
available at www.ocean-logic.com/downloads.htm. 

7.17 Laboratory Exercises 
1. Write a Verilog model for the state machine shown in the following state diagram and 

verify correct operation with a simulation using the Altera CAD tools. A and B are the 
two states, X is the output, and Y is the input. Use the timing analyzer to determine the 
maximum clock frequency on the Cyclone EP1C6Q240C8 device. 

  

 

Reset     

B
X=1

A
X = 0 0

11 

0 



 Using Verilog for Synthesis of Digital Hardware 145 
 

 

 

2. Write a Verilog model for a 32-bit, arithmetic logic unit (ALU). Verify correct operation 
with a simulation using the Altera CAD tools. A and B are 32-bit inputs to the ALU, and 
Y is the output. A shift operation follows the arithmetic and logical operation. The 
opcode controls ALU functions as follows: 

 

Opcode Operation Function 

000XX ALU_OUT <= A Pass A 

001XX ALU_OUT <= A + B Add 

010XX ALU_OUT <= A-B Subtract 

011XX ALU_OUT <= A AND B Logical AND 

100XX ALU_OUT <= A OR B Logical OR 

101XX ALU_OUT <= A + 1 Increment A 

110XX ALU_OUT <= A-1 Decrement A 

111XX ALU_OUT <= B Pass B 

XXX00 Y <= ALU_OUT Pass ALU_OUT 

XXX01 Y<= SHL(ALU_OUT) Shift Left 

XXX10 Y<=SHR(ALU_OUT) Shift Right (unsigned-zero fill) 

XXX11 Y<= 0 Pass 0’s 

 
3. Use the Cyclone chip as the target device. Determine the worst case time delay of the 

ALU using the timing analyzer. Examine the report file and find the device utilization. 
Use the logic element (LE) device utilization percentage found in the compilation report 
to compare the size of the designs. 

4. Explore different synthesis options for the ALU from problem 3. Change the area and 
speed synthesis settings in the compiler under Assignments Settings Analysis and 
Synthesis Settings, rerun the timing analyzer to determine speed, and examine the report 
file for hardware size estimates. Include data points for the default, optimized for speed, 
balanced, and optimized for area settings. Build a plot showing the speed versus area 
trade-offs possible in the synthesis tool. Use the logic element (LE) device utilization 
percentage found in the compilation report to compare the size of the designs. 

5. Develop a Verilog model of one of the TTL chips listed below. The model should be 
functionally equivalent, but there will be timing differences. Compare the timing 
differences between the Verilog FPGA implementation and the TTL chip. Use a data 
book or find a data sheet using the World Wide Web. 

F. 7400 Quad nand gate 

G. 74LS241 Octal buffer with tri-state output 

H. 74LS273 Octal D flip-flop with Clear 

I. 74163 4-bit binary counter 

J. 74LS181 4-bit ALU 

6. Replace the 8count block used in the tutorial in Chapter 4, with a new counter module 
written in Verilog. Simulate the design and download a test program to the UP3 board. 



146 Rapid Prototyping of Digital Systems   Chapter 7 
 

 

 

7. Implement a 128 by 32 RAM using Verilog and the Altsyncram function. Do not use 
registered output options. Target the design to the Cyclone II device. Use the timing 
analysis tools to determine the worst-case read and write access times for the memory. 

 



 

 

CHAPTER 8 

State Machine Design: 
The Electric Train 
Controller  

DE1 



148 Rapid Prototyping of Digital Systems   Chapter 8 
 

 

 

8 State Machine Design: The Electric Train Controller 

8.1 The Train Control Problem 
The track layout of a small electric train system is shown in Figure 8.1. Two 
trains, we'll call A and B, run on the tracks, hopefully without colliding. To 
avoid collisions, the trains require a safety controller that allows trains to move 
in and out of intersections without mishap.  
For safe operation, only one train at a time can be present on any given track 
segment. The track layout seen in Figure 8.1 is divided into four track 
segments. Each track segment has sensors that are used to detect trains at the 
entry and exit points.  
In Figure 8.1, there are two Trains A and B. As an example, assume Train A 
always runs on the outer track loop and Train B on the inner track loop. Assume 
for a moment that Train A has just passed Sensor 4 and is near Switch 3 moving 
counterclockwise. Let's also assume that Train B is moving counterclockwise 
and approaching Sensor 2. Since Train B is entering the common track (Track 
2), Train A must be stopped when it reaches Sensor 1, and must wait until Train 
B has passed Sensor 3 (i.e., Train B is out of the common track). At this point, 
the track switches should switch for Train A, Train A will be allowed to enter 
Track 2, and Train B will continue moving toward Sensor 2. 
The controller is a state machine that uses the sensors as inputs. The 
controller’s outputs control the direction of the trains and the position of the 
switches. However, the state machine does not control the speed of the train. 
This means that the system controller must function correctly independent of 
the speed of the two trains.  
 

 

Figure 8.1  Track layout with input sensors and output switches and output tracks. 

Sensor 1 Sensor 2 Sensor 3 Sensor 4
Sensor 5

Track 2

Track 4

Track 3

Track 1
Switch 3

Switch 1 Switch 2

A

B



 State Machine Design: The Electric Train Controller 149 
 

 

 

  
An FPGA-based "virtual" train simulation will be used that emulates this setup 
and provides video output. Since there are no actual power circuits connected 
to a train on the FPGA board, it is only intended to give you a visual indication 
of how the output signals work in the real system. The following sections 
describe how the state machine should control each signal to operate the trains 
properly.  

8.2 Train Direction Outputs (DA1-DA0, and DB1-DB0) 
The direction for each train is controlled by four output signals (two for each 
train), DA (DA1-DA0) for train A, and DB (DB1-DB0) for train B2. When 
these signals indicate forward “01” for a particular train, a train will move 
counterclockwise (on track 4, the train moves toward the outer track). When the 
signals imply reverse “10”, the train(s) will move clockwise. The “11” value is 
illegal and should not be used. When these signals are set to “00”, a train will 
stop. (See Figure 8.2.) 
 
 

 

 

Figure 8.2 Controlling the train’s motion with the train direction signals.                                    

                                                           
2 For those familiar with earlier editions of this book, additional track power signals were required for 
power control relays. This new train problem is based on newer digital DCC model trains and it no longer 
needs the track power signals and relays, so they have been eliminated. The signals work exactly the same 
as the previous train setup, if you assume that track power supply A always runs train A and track power 
supply B always runs train B. 

Sensor 1 Sensor 2 Sensor 3 Sensor 4
Sensor 5

Track 2

Track 4

Track 3

Track 1
Switch 3

Switch 1 Switch 2

DA = 01 : Train A Moves Forward
(counterclockwise)



150 Rapid Prototyping of Digital Systems   Chapter 8 
 

 

 

8.3 Switch Direction Outputs (SW1, SW2, and SW3) 
Switch directions are controlled by asserting the SW1, SW2, and SW3 output 
signals either high (outside connected with inside track) or low (outside tracks 
connected). That is, anytime all of the switches are set to 1, the tracks are setup 
such that the outside tracks are connected to the inside tracks. (See Figure 8.3.)  
If a train moves the wrong direction through an open switch it will derail. Be 
careful. If a train is at the point labeled "Track 1" in Figure 8.3 and is moving 
to the left, it will derail at Switch 3. To keep it from derailing, SW3 would need 
to be set to 0. 
Also, note that Tracks 3 and 4 cross at an intersection and care must be taken to 
avoid a crash at this point. 

 

Figure 8.3 Track direction if all switches are asserted (SW1 = SW2 = SW3 = 1)  

8.4 Train Sensor Input Signals (S1, S2, S3, S4, and S5)  
The five train sensor input signals (S1, S2, S3, S4, and S5) go high when a train 
is near the sensor location. It should be noted that sensors (S1, S2, S3, S4, and 
S5) do not go high for only one clock cycle. In fact, the sensors fire 
continuously for many clock cycles per passage of a train. This means that if 
your design is testing the same sensor from one state to another, you must wait 
for the signal to change from high to low. 
As an example, if you wanted to count how many times that a train passes 
Sensor 1, you can not just have an "IF S1 GOTO count-one state" followed by 
"IF S1 GOTO count-two state." You would need to have a state that sees 
S1=‘1’, then S1=‘0’, then S1=‘1’ again before you can be sure that it has 
passed S1 twice. If your state machine has two concurrent states that look for 
S1=’1’, the state machine will pass through both states in two consecutive 
clock cycles although the train will have passed S1 only once. 
Another way would be to detect S1=’1’, then S4=’1’, then S1=’1’ if, in fact, the 
train was traversing the outside loop continuously. Either method will ensure 
that the train passed S1 twice. 

Sensor 1 Sensor 2 Sensor 3 Sensor 4
Sensor 5

Track 2

Track 4

Track 3

Track 1
Switch 3

Switch 1 Switch 2



 State Machine Design: The Electric Train Controller 151 
 

 

 

 
The state machine’s signal inputs and outputs have been summarized in the 
following figure: 
 

Reset

Se nsor -5 (S5)

Se nsor -4 (S4)

Se nsor -3 (S3)

Se nsor -2 (S2)

Se nsor -1 (S1)

CLK

Switch-3 ( Sw3)
Switch-2 ( Sw2)

Switch-1 ( Sw1)

Dir ecti on A1 ( DA1)
Dir ecti on A2 ( DA0)

Dir ecti on B1 (DB1)
Dir ecti on B0 (DB0)

FPGA

State
Machine

 

 Sensor (S1, S2, S3, S4, S5)  = 1   Train Present 

   = 0   Train not Present 

 

  Switches (SW1, SW2, SW3) = 0   Connected to Outside Track 

   = 1   Connected to Inside Track 

 

 Train Direction (DA1-DA0) and (DB1-DB0) = 00   Stop 

   = 01   Forward (Counterclockwise) 

   = 10   Backward (Clockwise) 

 

Figure 8.4  Train Control State Machine I/O Configuration. 

8.5 An Example Controller Design 
We will now examine a working example of a train controller state machine. 
For this controller, two trains run counterclockwise at various speeds and avoid 
collisions. One Train (A) runs on the outer track and the other train (B) runs on 
the inner track. Only one train at a time is allowed to occupy the common track.  
Both an ASM chart and a classic state bubble diagram are illustrated in Figures 
8.5 and 8.6 respectively. In the ASM chart, state names, ABout, Ain, Bin, 
Bstop, and Astop indicate the active and possible states. The rectangles contain 



152 Rapid Prototyping of Digital Systems   Chapter 8 
 

 

 

the active (High) outputs for the given state. Outputs not listed are always 
assumed to be inactive (Low).  
The diamond shapes in the ASM chart indicate where the state machine tests 
the condition of the inputs (S1, S2, etc.). When two signals are shown in a 
diamond, they are both tested at the same time for the indicated values.  
A state machine classic bubble diagram is shown in Figure 8.6. Both Figures 
8.5 and 8.6 contain the same information. They are simply different styles of 
representing a state diagram. The track diagrams in Figure 8.7 show the states 
visually. In the state names, "in" and "out" refer to the state of track 2, the track 
that is common to both loops. 
 

Description of States in Example State Machine 
 

All States 
• All signals that are not "Asserted" are zero and imply a logical result as described. 
 

ABout: "Trains A and B Outside" 
• DA0 Asserted: Train A is on the outside track and moving counterclockwise (forward). 
• DB0 Asserted: Train B is on the inner track (not the common track) and also moving forward. 
• Note that by NOT Asserting DA1, it is automatically zero -- same for DB1. Hence, the outputs are  

DA = “01” and  DB = “01”. 
 

Ain:  "Train A moves to Common Track" 
• Sensor 1 has fired either first or at the same time as Sensor 2.  
• Either Train A is trying to move towards the common track, or  
• Both trains are attempting to move towards the common track.  
• Both trains are allowed to enter here; however, state Bstop will stop B if both have entered.  
• DA0 Asserted: Train A is on the outside track and moving counterclockwise (forward). 
• DB0 Asserted: Train B is on the inner track (not the common track) and also moving forward. 

 
Bstop:  "Train B stopped at S2 waiting for Train A to clear common track" 

• DA0 Asserted: Train A is moving from the outside track to the common track. 
• Train B has arrived at Sensor 2 and is stopped and waits until Sensor 4 fires. 
• SW1 and SW2 are NOT Asserted to allow the outside track to connect to common track. 

 
Bin:  "Train B has reached Sensor 2 before Train A reaches Sensor 1" 

• Train B is allowed to enter the common track. Train A is approaching Sensor 1. 
• DA0 Asserted: Train A is on the outside track and moving counterclockwise (forward). 
• DB0 Asserted: Train B is on the inner track moving towards the common track. 
• SW1 Asserted: Switch 1 is set to let the inner track connect to the common track. 
• SW2 Asserted: Switch 2 is set to let the inner track connect to the common track. 

 
Astop:  "Train A stopped at S1 waiting for Train B to clear the common track" 

• DB0 Asserted: Train B is on the inner track moving towards the common track. 
• SW1 and SW2 Asserted: Switches 1 and 2 are set to connect the inner track to the common track. 



 State Machine Design: The Electric Train Controller 153 
 

 

 

S3

S1, S3

S1, S2

Astop

Bin

Bstop

Ain

ABout

DB0,
Sw1, Sw2

DA0, DB0,
Sw1, Sw2

DA0, DB0

S2, S4

S4

DA0, DB0

DA0

1d

1
1

d1

10

01

00

00

00 d1

0
0

10

 
 

Figure 8.5  Example Train Controller ASM Chart. 

 
 

Figure 8.6  Example Train Controller State Diagram. 

ABout

DA0, DB0

Bstop

DA0

Bin

DA0, DB0,
Sw1, Sw2

Astop

DB0,
Sw1, Sw2

Ain

DA0, DB0

S2 = 0
S4 = 0

S1 = 0
S2 = 0

S1 = 0
S3 = 0

S4 = 0 S3 = 0

S3 = 1 S4 = 1S2 = 1
S4 = 0

S2 = d
S4 = 1

S1 = 1
S2 = d

S1 = d
S3 = 1

S1 = 0
S2 = 1

S1 = 1
S3 = 0



154 Rapid Prototyping of Digital Systems   Chapter 8 
 

 

 

 

Figure 8.7  Working diagrams of train positions for each state. 

Table 8.1 Outputs corresponding to states. 

 
State ABout Ain Astop Bin Bstop 
Sw1 0 0 1 1 0 
Sw2 0 0 1 1 0 
Sw3 0 0 0 0 0 

DA(1-0) 01 01 00 01 01 
DB(1-0) 01 01 01 01 00 

 
 

8.6 VHDL Based Example Controller Design 
The corresponding VHDL code for the state machine in Figures 8.5 and 8.6 is 
shown below. A CASE statement based on the current state examines the inputs 
to select the next state. At each clock edge, the next state becomes the current 
state. WITH…SELECT statements at the end of the program specify the 

B

S1 S2 S3 S4
S5

T2

T4

T3

T1
Sw3

Sw1 Sw2

ABout:  DA0, DB0 ( DA = 1, DB = 1 )

S1 S2 S3 S4
S5

T4

T3

T1
Sw3

Sw1 Sw2

Ain:  DA0, DB0 ( DA = 1, DB = 1 )

S1 S2 S3 S4
S5

T4

T3

T1
Sw3

Sw1 Sw2

Bstop:  DA0 ( DA = 1, DB = 0 )

S1 S2 S3 S4
S5

T4

T3

T1
Sw3

Sw1 Sw2

Bin:   DA0,    DB0,   Sw1, Sw2
( DA = 1, DB = 1, Sw1, Sw2 )

S1 S2 S3 S4
S5

T4

T3

T1
Sw3

Sw1 Sw2

Astop:   DB0,  Sw1, Sw2
( DA = 0. DB = 1, Sw1, Sw2 )

T2T2

T2T2

A

B

A

B

B A

BA

A B



 State Machine Design: The Electric Train Controller 155 
 

 

 

outputs for each state. For additional VHDL help, see the help files in the 
Altera CAD tools or look at the VHDL examples in Chapter 6. 
  

-- Example State machine to control trains-- File: Tcontrol.vhd 
-- 
-- These libraries are required in all VHDL source files 
LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
USE  IEEE.STD_LOGIC_ARITH.ALL; 
USE  IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
   -- This section defines state machine inputs and outputs 
   -- No modifications should be needed in this section 
ENTITY Tcontrol IS  
PORT( reset, clock, sensor1, sensor2,  
  sensor3, sensor4, sensor5 : IN  STD_LOGIC; 
             switch1, switch2, switch3 : OUT  STD_LOGIC; 
   -- dirA and dirB are 2-bit logic vectors(i.e. an array of 2 bits) 
            dirA, dirB    : OUT STD_LOGIC_VECTOR( 1 DOWNTO 0 )); 
END Tcontrol; 
 
    -- This code describes how the state machine operates 
    -- This section will need changes for a different  state machine 
ARCHITECTURE a OF Tcontrol IS 
 
    -- Define local signals (i.e. non input or output signals) here 
 TYPE STATE_TYPE IS ( ABout, Ain, Bin, Astop, Bstop ); 
 SIGNAL state: STATE_TYPE; 
 SIGNAL sensor12, sensor13, sensor24   : STD_LOGIC_VECTOR(1 DOWNTO 0); 
 
BEGIN 
    -- This section describes how the state machine behaves 
    -- this process runs once every time reset or the clock changes 
 PROCESS ( reset, clock ) 
 BEGIN 
    -- Reset to this state (i.e. asynchronous reset) 
  IF reset = '1' THEN 
   state <= ABout; 
  ELSIF clock'EVENT AND clock = '1' THEN 
 
    -- clock'EVENT means value of clock just changed  
    --This section will execute once on each positive clock edge 
    --Signal assignments in this section will generate D flip-flops 
    -- Case statement to determine next state 
   CASE state IS 
    WHEN ABout => 
      -- This Case checks both sensor1 and sensor2 bits 
     CASE Sensor12 IS 
      -- Note: VHDL's use of double quote for bit vector versus 
      -- a single quote for only one bit! 
         WHEN "00" => state <= About; 
      WHEN "01" => state <= Bin; 



156 Rapid Prototyping of Digital Systems   Chapter 8 
 

 

 

      WHEN "10" => state <= Ain; 
      WHEN "11" => state <= Ain; 
      -- Default case is always required 
      WHEN OTHERS => state <= ABout; 
     END CASE; 
 
    WHEN Ain => 
     CASE Sensor24 IS 
      WHEN "00" => state <= Ain; 
      WHEN "01" => state <= ABout; 
      WHEN "10" => state <= Bstop; 
      WHEN "11" => state <= ABout; 
      WHEN OTHERS => state <= ABout; 
     END CASE; 
 
    WHEN Bin => 
     CASE Sensor13 IS 
      WHEN "00" => state <= Bin; 
      WHEN "01" => state <= ABout; 
      WHEN "10" => state <= Astop; 
      WHEN "11" => state <= About; 
      WHEN OTHERS => state <= ABout; 
     END CASE; 
 
    WHEN Astop => 
     IF Sensor3 = '1' THEN 
      state <= Ain; 
         ELSE 
                                      state <= Astop; 
     END IF; 
 
    WHEN Bstop =>  
     IF Sensor4 = '1' THEN 
      state <= Bin; 
                                ELSE 
                                       state <= Bstop; 
     END IF; 
   END CASE; 
  END IF; 
 END PROCESS; 

   -- combine sensor bits for case statements above 
   -- "&" operator combines bits 
sensor12 <= sensor1 & sensor2; 
sensor13 <= sensor1 & sensor3; 
sensor24 <= sensor2 & sensor4; 

     
   -- These outputs do not depend on the state  

    Switch3 <= '0'; 
    



 State Machine Design: The Electric Train Controller 157 
 

 

 

-- Outputs that depend on state, use state to select value 
   -- Be sure to specify every output for every state  
   -- values will not default to zero! 
 WITH state SELECT 
  Switch1  <= '0' WHEN ABout, 
    '0' WHEN Ain, 
    '1' WHEN Bin, 
                   '1'    WHEN Astop, 
                   '0'    WHEN Bstop; 
 WITH state SELECT 
  Switch2  <= '0' WHEN ABout, 
    '0' WHEN Ain, 
    '1' WHEN Bin, 
                    '1'    WHEN Astop, 
                   '0'    WHEN Bstop; 
 WITH state SELECT 
  DirA  <= "01" WHEN ABout, 
    "01" WHEN Ain, 
    "01" WHEN Bin, 
                    "00"   WHEN Astop, 
                    "01"   WHEN Bstop; 
 WITH state SELECT 
  DirB  <= "01" WHEN ABout, 
    "01" WHEN Ain, 
    "01" WHEN Bin, 
                   "01"   WHEN Astop, 
                "00"   WHEN Bstop; 
END a; 

 

8.7 Verilog Based Example Controller Design 
The corresponding Verilog code for the state machine in Figures 8.5 and 8.6 is 
shown below. A CASE statement based on the current state examines the inputs 
to select the next state. At each clock edge, the next state becomes the current 
state. A second CASE statement at the end of the program specifies the outputs 
for each state. For additional Verilog help, see the help files in the Altera CAD 
tools or look at the Verilog examples in Chapter 7. 

 
 

    // Example Verilog State machine to control trains  
module Tcontrol (reset, clock, sensor1, sensor2, sensor3, sensor4, sensor5,  

    switch1, switch2, switch3, dirA, dirB); 
    // This section defines state machine inputs and outputs 
    // No modifications should be needed in this section 
 input reset, clock, sensor1, sensor2, sensor3, sensor4, sensor5; 
 output switch1, switch2, switch3; 
 output [1:0] dirA, dirB; 
 reg switch1, switch2; 
    // dirA and dirB are 2-bit logic vectors(i.e. an array of 2 bits) 
 reg [1:0] dirA, dirB; 
 reg [2:0] state;     



158 Rapid Prototyping of Digital Systems   Chapter 8 
 

 

 

// This code describes how the state machine operates 
    // This section will need changes for a different state machine 
    // State assignments are needed in Verilog 
 parameter ABout = 0, Ain = 1, Bin = 2, Astop = 3, Bstop = 4; 
    // This section describes how the state machine behaves 
    // this process runs once every time reset or the clock changes 
 always @(posedge clock or posedge reset) 
  begin 
    // Reset to this state (i.e. asynchronous reset) 
   if (reset) 
    state = ABout; 
   else 
    // posedge clock means positive clock edge  
    //This section will execute once on each positive clock edge 
    //Signal assignments in this section will generate D flip-flops 
   case (state) // Case statement to determine next state 
    ABout:  
     // This Case checks both sensor1 and sensor2 bits 
     case (sensor12) 
      2'b 00: state = ABout; 
      2'b 01: state = Bin; 
      2'b 10: state = Ain; 
      2'b 11: state = Ain; 
      // Default case is needed here 
      default: state = ABout; 
     endcase 
    Ain:  
     case (sensor24) 
      2'b 00: state = Ain; 
      2'b 01: state = ABout; 
      2'b 10: state = Bstop; 
      2'b 11: state = ABout; 
      default: state = ABout; 
     endcase 
    Bin:  
     case (sensor13) 
      2'b 00: state = Bin; 
      2'b 01: state = ABout; 
      2'b 10: state = Astop; 
      2'b 11: state = ABout; 
      default: state = ABout; 
     endcase 
    Astop:  
     if (sensor3)  
      state = Ain; 
     else 
      state = Astop; 

Bstop:  
     if (sensor4) 
      state = Bin; 
     else 
      state = Bstop; 



 State Machine Design: The Electric Train Controller 159 
 

 

 

    default: state = ABout;   
   endcase 
  end 
    // combine sensor bits for case statements above 
    // { } operators combine bits 
 wire [1:0] sensor12 = {sensor1, sensor2}; 
 wire [1:0] sensor13 = {sensor1, sensor3}; 
 wire [1:0] sensor24 = {sensor2, sensor4}; 
    // These outputs do not depend on the state  
 wire switch3 = 0; 
    // Outputs that depend on state, use state to select value 
    // Be sure to specify every output for every state  
    // values will not default to zero! 
 always @(state) 
  begin 
   case (state) 
    ABout: 
     begin 
      switch1 = 0; 
      switch2 = 0; 
      dirA = 2'b 01; 
      dirB = 2'b 01; 
     end 
    Ain: 
     begin 
      switch1 = 0; 
      switch2 = 0; 
      dirA = 2'b 01; 
      dirB = 2'b 01; 
     end 
    Bin: 
     begin 
      switch1 = 1; 
      switch2 = 1; 
      dirA = 2'b 01; 
      dirB = 2'b 01; 
     end 
    Astop: 
     begin 
      switch1 = 1; 
      switch2 = 1; 
      dirA = 2'b 00; 
      dirB = 2'b 01; 
     end 

Bstop: 
     begin 
      switch1 = 0; 
      switch2 = 0; 
      dirA = 2'b 01; 
      dirB = 2'b 00; 
     end 
     



160 Rapid Prototyping of Digital Systems   Chapter 8 
 

 

 

default: 
     begin 
      switch1 = 0; 
      switch2 = 0; 
      dirA = 2'b 00; 
      dirB = 2'b 00; 
     end 
   endcase 
  end  
endmodule 
 
 

8.8 Automatically Generating a State Diagram of a Design 
You can use Tools Netlist Viewers State Diagram Viewer to 
automatically generate a state diagram and state table of a VHDL or Verilog 
based state machine after it has been compiled successfully as seen in Figure 
8.8. The encoding tab at the bottom will also display the state encodings which 
typically use the one-hot encoding scheme (i.e., one flip-flop is used per state 
and the active flip-flop indicates the current state). 
 
 

 
 

Figure 8.8 Automatically generated state diagram of Tcontrol.vhd. 



 State Machine Design: The Electric Train Controller 161 
 

 

 

8.9 Simulation Vector file for State Machine Simulation 
The vector waveform file, tcontrol.vwf, seen in Figure 8.9 controls the 
simulation and tests the state machine. A vector waveform file specifies the 
simulation stimulus and display. This file sets up a 40ns clock and specifies 
sensor patterns (inputs to the state machine), which will be used to test the state 
machine. These patterns were chosen by picking a path in the state diagram that 
moves to all of the different states.  
The sensor-input patterns will need to be changed if you change to a different 
train pattern, and therefore, the state machine. Sensor inputs should not change 
faster than the clock cycle time of 40ns. As a minimum, try to test all of the 
states and arcs in your state machine simulation. 
 

 

 

Figure 8.9 Tcontrol.vwf vector waveform file for simulation. 

 
 

 
 

Figure 8.10 Simulation of Tcontrol.vhd using the Tcontrol.vwf vector waveform file in Figure 8.9. 



162 Rapid Prototyping of Digital Systems   Chapter 8 
 

 

 

8.10 Running the Train Control Simulation 
Follow these steps to compile and simulate the state machine for the electric 
train controller. 

Select Current Project 

Make Tcontrol.vhd the current project with File Open Project Name 
Then find and select Tcontrol.vhd. 

Compile and Simulate 

Select Processing Start Compilation and Simulation. The simulator will 
run automatically if there are no compile errors. Select  
Processing Simulation Report to see the timing diagram display of your 
simulation as seen in Figure 8.10. Whenever you change your VHDL (or 
Verilog) source you will need to repeat this step. If you get compile errors, 
clicking on the error will move the text editor to the error location. The Altera 
software has extensive online help including HDL syntax examples. 
Make any text changes to Tcontrol.vhd or Tcontrol.vwf (test vector waveform 
file) with File Open. This brings up a special editor window. Note that the 
menus at the top of the screen change depending on which window is currently 
open. 

Updating new Simulation Test Vectors 

To update the simulation with new test vectors from a modified Tcontrol.vwf, 
select  Processing Start Simulation. The simulation will then run with the 
new test vectors. If you modify Tcontrol.vhd, you will need to recompile first. 

8.11 Running the Video Train System (After Successful 
Simulation) 

A simulated or "virtual" train system is provided to test the controller without 
putting trains and people at risk. The simulation runs on the FPGA chip. The 
output of the simulation is displayed on a VGA monitor connected directly to 
the FPGA board. A typical video output display is seen in Figure 8.11. This 
module is also written in VHDL and it provides the sensor inputs and uses the 
outputs from the state machine to control the trains. The module tcontrol.vhd is 
automatically connected to the train simulation. 
 
Here are the steps to run the virtual train system simulation: 

Select the top-level project 

Make Train.vhd the current project with File Open Project Name  
Then find and select Train.qpf. Train.qsf must be in the project directory since 
it contains the FPGA chip pin assignment information needed for video outputs 
and switch inputs. Double check that your FPGA Device type is correct. 



 State Machine Design: The Electric Train Controller 163 
 

 

 

Compile the Project 

Select Processing Start Compilation. Train.vhd will link in your 
tcontrol.vhd file if it is in the same directory, when compiled. This is a large 
program, so it will take a few seconds to compile.  

Download the Video Train Simulation 

Select Tools Programmer. When the programmer window opens click on the 
Program/Configure box if it is not already selected. In case of problems, see the 
FPGA board download tutorials in Chapter 1 for more details. The FPGA board 
must be turned on the power supply must be connected, and the Byteblaster* 
cable must be plugged into the PC. When everything is setup, the start button in 
the programming window should highlight. If the start button is not 
highlighted, try closing and reopening the programmer window. Under 
Hardware setup the Byteblaster should be selected. To download the board, 
click on the highlighted start button. Attach a VGA monitor to the FPGA 
board. 

 

Figure 8.11 Video Image from Train System Simulation. 

Viewing the Video Train Simulation 

Train output should appear on the VGA monitor after downloading is complete 
as seen in Figure 8.11. On the DE1 and DE2, FPGA KEY2 is run/step/stop and 
FPGA KEY1 is the reset. Train A is displayed in black and Train B is displayed 



164 Rapid Prototyping of Digital Systems   Chapter 8 
 

 

 

in red. On the DE1 and DE2, hit KEY2 once to start the train simulation 
running. Hitting KEY2 again will stop the simulation. If you hit KEY2 twice 
quickly while trains are stopped, it will single step to the next track sensor state 
change. Other boards also use two pushbuttons for these functions. 
Sensor and switch values are indicated with a green or red square on the 
display. Switch values are the squares next to each switch location. Green 
indicates no train present on a sensor and it indicates switch connected to 
outside track for a switch.  
On the DE2 and UP3 board’s, the LCD display top line shows the values of the 
sensor (s), and switch (sw) signals in binary and the bottom line indicates the 
values of DirA and DirB in binary. The most significant bit in each field is the 
highest numbered bit. 
If a possible train wreck is detected by two trains running on the same track 
segment, the simulation halts and the monitor will flash. The FPGA board’s 
slide or DIP switches control the speed of Train A (low 2 bits) and B (high 2 
bits). Be sure to check operation with different train speeds. Many problems 
occur more often with a fast moving and a slow moving train. 

8.12 A Hardware Implementation of the Train System Layout 
Using the new Digital Command Control (DCC) model trains3, a model train 
system with a similar track layout and control scheme can be setup and 
controlled by the FPGA board4. In DCC model trains, the train speed, direction, 
and other special features are controlled via a bipolar bit stream that is 
transmitted on the train tracks along with the power. A DCC decoder is located 
inside each train’s engine that interprets the DCC signals and initiates the 
desired action (i.e., change in speed, direction, or feature status).  
On a DCC system, trains are individually addressable. As seen in Figure 8.12, 
the DCC signal’s frequency or zero crossing rate is changed in the DCC signal 
to transmit the data bits used for a command. A DCC command contains both a 
train address and a speed command. Each train engine is assigned a unique 
address. The electric motors in the train’s engine are powered by a simple diode 
circuit that provides full–wave rectification of the bipolar DCC signal that is 
present on the track. In this way, the two metal train tracks can simultaneously 
provide both direct current (DC) power and speed control commands for the 
trains. 
The output voltages and current levels provided by an FPGA output pin cannot 
drive the DCC train signals directly, but an FPGA can send the DCC data 
streams to the train track with the addition of a higher current H–bridge circuit 
that controls the train’s power supply. An H-bridge contains four large power 
transistors that provide the higher drive current needed for DC motors and they 

                                                           
3 DCC standards are approved by the National Model Railroad Association and are available online 
at  http://www.nmra.org/standards/DCC/standards_rps/DCCStds.html. 
4 Additional details on using FPGAs for DCC can be found in “Using the Using FPGAs to 
Simulate and Implement Digital Design Systems in the Classroom”, by T. S. Hall and J. O. 
Hamblen in the Proceedings of the 2006 ASEE Southeast Section Conference. 

 



 State Machine Design: The Electric Train Controller 165 
 

 

 

can also reverse the motor. Integrated H–bridge modules are available that can 
minimize the number of discrete components used. One such example is the 
National Semiconductor LMD18200 integrated H–bridge module. The 
LMD18200 supports TTL and CMOS compatible inputs allowing the FPGA 
board’s output pins to be connected directly to the H-bridge inputs. A H-bridge 
typically requires two digital input control pins (i.e., forward, reverse, and 
stop). The H-bridge switches the train’s power supply and in addition to the 
FPGA output pins that drive the H-bridge inputs, a ground connection is 
required between the train’s power supply and the FPGA power supply. 
 

 

Figure 8.12 A portion of a DCC train signal is seen above. The zero crossing rate of a DCC signal is 
used to send data bits for train speed commands. The DCC signal is also rectified in each train’s 
engine to provide 7-22V DC power for the train’s electric motor and decoder circuits. 

For the train sensors, Sharp GP2L26 infrared (IR) photointerrupter sensors can 
be used to detect when a train passes each sensor point. These sensors emit IR 
light from an LED and detect when the light is reflected back with an IR 
detector circuit. These sensors are very small (3mm x 4mm) and can fit 
between the rails on the track. Wires can be run down through the roadbed to a 
central protoboard where the discrete components needed for interfacing to this 
sensor are connected. Many model trains have dark underbodies, and the IR 
photo sensors can not always detect the trains passing over them. To increase 
the visibility of the trains to the photo sensors, pieces of reflective tape can be 
taped to the bottom of the trains. 
 

 

Figure 8.13 An example DCC model train speed and direction command packet. 

Preamble

Data Byte Start Bit Packet End Bit

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Address Data Byte Instruction Data Byte Error Detection Data Byte

Data Byte Start BitPacket Start Bit



166 Rapid Prototyping of Digital Systems   Chapter 8 
 

 

 

Another version of the train.VHD program, dcc_train.zip is available on the 
book’s DVD that will control a DCC train setup. It replaces the video train 
simulation module and produces the outputs needed to run the real DCC train 
system. It contains a DCC IP core, DCC_low_level.vhd, which generates the 
appropriate DCC signal packets as seen in Figure 8.13. The DCC data stream is 
generated by combining the Speed switch inputs and the Train direction signals 
(i.e., DA, DB) from the Tcontrol module. The appropriate DCC command 
packet is created from these signals and then saved in a register. The registered 
command is shifted out to produce a serial bit stream. The DCC standard only 
provides for one–way communication, and thus, no transmission guarantee can 
be made (i.e., no acknowledgement is sent back by the train). Therefore, a 
given DCC command is repeatedly shifted out until another command is 
received to ensure transmission of each command. Continuous transmission 
also insures a consistent power level on the tracks.  
Additional construction details for anyone building the FPGA-based DCC 
model train setup are available at the book’s website. The FPGA uses five input 
pins to read in from the IR photointerrupter track sensors, two output bits to 
send DCC commands, and two output bits to control each of the three track 
switches. Each track switch has two solenoid drivers that open and close a 
switch. The proper solenoid must be briefly turned on or pulsed to move the 
switch and then turned off. Leaving the solenoid turned on continuously will 
overheat and eventually burn out the solenoid. The 50ms timed pulse required 
to briefly energize a track switch’s solenoid is already provided in the IP core.  
To connect the train setup to all of the FPGA I/O pins, a ribbon cable can be 
attached to one of the I/O expansion headers on the FPGA board with the other 
end attached to the train interface circuitry on a protoboard or custom printed 
circuit board (PCB). The FPGA device type and I/O pin assignments for the 
train.VHD project will need to be changed depending on each user’s custom 
train interface circuitry and the FPGA board I/O expansion connector used. 
Consult each FPGA board’s reference manual for complete details on the I/O 
expansion header’s FPGA pin numbers. 

8.13 Laboratory Exercises  
1. Assuming that train A now runs clockwise and B remains counterclockwise, draw a new 

state diagram and implement the new controller. If you use VHDL to design the new 
controller, you can modify the code presented in section 8.7. Simulate the controller and 
then run the video train simulation. 

2. Design a state machine to operate the two trains avoiding collisions but minimizing their 
idle time. Trains must not crash by moving the wrong direction into an open switch. 
Develop a simulation to verify your state machine is operating correctly before running 
the video train system. The trains are assumed to be in the initial positions as shown in 
Figure 8.14. Train A is to move counterclockwise around the outside track until it comes 
to Sensor 1, then move to the inside track stopping at Sensor 5 and waiting for B to pass 
Sensor 3 twice. Trains can move at different speeds, so no assumption should be made 



 State Machine Design: The Electric Train Controller 167 
 

 

 

about the train speeds. A train hitting a sensor can be stopped before entering the switch 
area. 

Once B has passed Sensor 3 twice, Train A moves to the outside track and continues 
around counterclockwise until it picks up where it left off at the starting position as 
shown in Figure 8.15. Train B is to move as designated only stopping at a sensor to avoid 
collisions with A. Train B will then continue as soon as there is no potential collision and 
continue as designated. Trains A and B should run continuously, stopping only to avoid a 
potential collision. 

 

Figure 8.14 Initial Positions of Trains at State Machine Reset with Initial Paths Designated. 

 

Figure 8.15 Return Path of Train A. 

3. Use the single pulse FPGAcore functions on each raw sensor input to produce state 
machine sensor inputs that go High for only one clock cycle per passage of a train. 
Rework the state machine design with this assumption and repeat problem 1 or 2.  

4. Develop another pattern of train movement and design a state machine to implement it. 

5. Implement a real train setup using DCC model trains. Debug your control module using 
the video simulation module first, to avoid any real train crashes that may damage the 
trains. Typically laboratory space is limited, so keep in mind that the smaller gauge 
model trains will require less space for the track layout. 

 

Sensor 1 Sensor 2 Sensor 3 Sensor 4
Sensor 5

Track 2

Track 4

Track 3

Track 1

Switch 3

Switch 1 Switch 2

A

B

Sensor 1

Sensor 2 Sensor 3

Sensor 4
Sensor 5

Track 2

Track 4

Track 3

Track 1

Switch 3

Switch 1 Switch 2

B

A



 

A partial die photograph of individual transistors about 10 microns tall on the Intel i4004 
microprocessor is seen above. The 1971 Intel 4004 was the world’s first single chip 
microprocessor. Prior to the 4004, Intel made memory chips. The 4004 was a 4-bit CPU 
with a clock rate of 108 kHz that contains 2,300 transistors. Photograph ©1995-2004 
courtesy of Michael Davidson, http://micro.magnet.fsu.edu/chipshots. 
  
    

CHAPTER 9 

A Simple Computer 
Design: The μP 3 

 
 
 
 

 
 



170 Rapid Prototyping of Digital Systems   Chapter 9 
 

 

 

9 A Simple Computer Design: The µP 3 
 

A traditional digital computer consists of three main units, the processor or 
central processing unit (CPU), the memory that stores program instructions and 
data, and the input/output hardware that communicates to other devices. As 
seen in Figure 9.1, these units are connected by a collection of parallel digital 
signals called a bus. Typically, signals on the bus include the memory address, 
memory data, and bus status. Bus status signals indicate the current bus 
operation, memory read, memory write, or input/output operation. 

 

Figure 9.1 Architecture of a Simple Computer System. 

 
Internally, the CPU contains a small number of registers that are used to store 
data inside the processor. Registers such as PC, IR, AC, MAR and MDR are 
built using D flip-flops for data storage. One or more arithmetic logic units 
(ALUs) are also contained inside the CPU. The ALU is used to perform 
arithmetic and logical operations on data values. Common ALU operations 
include add, subtract, and logical and/or operations. Register-to-bus 
connections are hard wired for simple point-to-point connections. When one of 
several registers can drive the bus, the connections are constructed using 
multiplexers, open collector outputs, or tri-state outputs. The control unit is a 
complex state machine that controls the internal operation of the processor. 
The primary operation performed by the processor is the execution of 
sequences of instructions stored in main memory. The CPU or processor reads 
or fetches an instruction from memory, decodes the instruction to determine 
what operations are required, and then executes the instruction. The control unit 
controls this sequence of operations in the processor. 

Processor 
 
 
 
 
 
 
               
 
 
 

Memory Input/Ouput 

Data Bus 
 

Address Bus 
 

PC IR 

AC 

MDR 

MAR 

 
ALU 

Control 
Unit 



 A Simple Computer Design: The µP3 171 
 

 

 

9.1 Computer Programs and Instructions 
A computer program is a sequence of instructions that perform a desired 
operation. Instructions are stored in memory. For the following simple μP 3 
computer design, an instruction consists of 16 bits. As seen in Figure 9.2 the 
high eight bits of the instruction contain the opcode. The instruction operation 
code or "opcode" specifies the operation, such as add or subtract, that will be 
performed by the instruction. Typically, an instruction sends one set of data 
values through the ALU to perform this operation. The low eight bits of each 
instruction contain a memory address field. Depending on the opcode, this 
address may point to a data location or the location of another instruction. 
Some example instructions are shown in Figure 9.3. 

Figure 9.2 Simple μP 3 Computer Instruction Format. 

 
Instruction Mnemonic  Operation Preformed    Opcode Value 
ADD  address  AC <= AC + contents of memory address 00 
STORE  address  contents of memory address <= AC  01 
LOAD  address  AC <= contents of memory address  02 
JUMP address  PC <= address     03 
JNEG address  If AC < 0 Then PC <= address   04 
 

Figure 9.3 Basic μP 3  Computer Instructions. 

An example program to compute A = B + C is shown in Figure 9.4. This 
program is a sequence of three instructions. Program variables such as A, B, 
and C are typically stored in dedicated memory locations. The symbolic 
representation of the instructions, called assembly language, is shown in the 
first column. The second column contains the same program in machine 
language (the binary pattern that is actually loaded into the computer’s 
memory).  
The machine language can be derived using the instruction format in Figure 
9.2. First, find the opcode for each instruction in the first column of Figure 9.3. 
This provides the first two hexadecimal digits in machine language. Second, 
assign the data values of A, B, and C to be stored in hexadecimal addresses 
10,11, and 12 in memory. The address provides the last two hexadecimal digits 
of each machine instruction. 

O p c o d e             A d d r e s s  
1 5                           8   7                            0  



172 Rapid Prototyping of Digital Systems   Chapter 9 
 

 

 

  Assembly Language  Machine Language 
  LOAD B   0211 
  ADD C   0012 
  STORE A   0110 

Figure 9.4 Example Computer Program for A = B + C. 

The assignment of the data addresses must not conflict with instruction 
addresses. Normally, the data is stored in memory after all of the instructions in 
the program. In this case, if we assume the program starts at address 0, the 
three instructions will use memory addresses 0,1, and 2.  
The instructions in this example program all perform data operations and 
execute in strictly sequential order. Instructions such as JUMP and JNEG are 
used to transfer control to a different address. Jump and Branch instructions do 
not execute in sequential order. Jump and Branch instructions must be used to 
implement control structures such as an IF…THEN statement or program 
loops. Details are provided in an exercise at the end of this section. 
Assemblers are computer programs that automatically convert the symbolic 
assembly language program into the binary machine language. Compilers are 
programs that automatically translate higher-level languages, such as C or 
Pascal, into a sequence of machine instructions. Many compilers also have an 
option to output assembly language to aid in debugging. 
The programmer's view of the computer only includes the registers (such as the 
program counter) and details that are required to understand the function of 
assembly or machine language instructions. Other registers and control 
hardware, such as the instruction register (IR), memory address register 
(MAR), and memory data register (MDR), are internal to the CPU and are not 
described in the assembly language level model of the computer. Computer 
engineers designing the processor must understand the function and operation 
of these internal registers and additional control hardware. 

9.2 The Processor Fetch, Decode and Execute Cycle 
The processor reads or fetches an instruction from memory, decodes the 
instruction to determine what operations are required, and then executes the 
instruction as seen in Figure 9.5. A simple state machine called the control unit 
controls this sequence of operations in the processor. The fetch, decode, and 
execute cycle is found in machines ranging from microprocessor-based PCs to 
supercomputers. Implementation of the fetch, decode, and execute cycle 
requires several register transfer operations and clock cycles in this example 
design.  
The program counter contains the address of the current instruction. Normally, 
to fetch the next instruction from memory the processor must increment the 
program counter (PC). The processor must then send the address value in the 
PC to memory over the bus by loading the memory address register (MAR) and 
start a memory read operation on the bus. After a small delay, the instruction 



 A Simple Computer Design: The µP3 173 
 

 

 

data will appear on the memory data bus lines, and it will be latched into the 
memory data register (MDR).  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.5 Processor Fetch, Decode and Execute Cycle. 

Execution of the instruction may require an additional memory cycle so the 
instruction is normally saved in the CPU's instruction register (IR). Using the 
value in the IR, the instruction can now be decoded. Execution of the 
instruction will require additional operations in the CPU and perhaps additional 
memory operations.  
The Accumulator (AC) is the primary register used to perform data calculations 
and to hold temporary program data in the processor. After completing 
execution of the instruction the processor begins the cycle again by fetching the 
next instruction. 
The detailed operation of a computer is often modeled by describing the 
register transfers occurring in the computer system. A variety of register 
transfer level (RTL) languages such as VHDL or Verilog are designed for this 
application. Unlike more traditional programming languages, RTL languages 
can model parallel operations and map easily into hardware designs. Logic 
synthesis tools can also be used to implement a hardware design automatically 
using an RTL description. 
To explain the function and operation of the CPU in detail, consider the 
example computer design in Figure 9.1. The CPU contains a general-purpose 
data register called the accumulator (AC) and the program counter (PC). The 
arithmetic logic unit (ALU) is used for arithmetic and logical operations.  
The fetch, decode, and execute cycle can be implemented in this computer 
using the sequence of register transfer operations shown in Figure 9.6. The next 
instruction is fetched from memory with the following register transfer 
operations: 

MAR = PC  
Read Memory,  MDR = Instruction value from memory 
 IR = MDR 
PC = PC + 1 

Fetch Next 
Instruction 

Decode  
Instruction 

Execute  
Instruction 



174 Rapid Prototyping of Digital Systems   Chapter 9 
 

 

 

After this sequence of operations, the current instruction is in the instruction 
register (IR). This instruction is one of several possible machine instructions 
such as ADD, LOAD, or STORE. The opcode field is tested to decode the 
specific machine instruction. The address field of the instruction register 
contains the address of possible data operands. Using the address field, a 
memory read is started in the decode state.  
The decode state transfers control to one of several possible next states based 
on the opcode value. Each instruction requires a short sequence of register 
transfer operations to implement or execute that instruction. These register 
transfer operations are then performed to execute the instruction. Only a few of 
the instruction execute states are shown in Figure 9.6. When execution of the 
current instruction is completed, the cycle repeats by starting a memory read 
operation and returning to the fetch state. A small state machine called a control 
unit is used to control these internal processor states and control signals. 

Figure 9.6 Detailed View of Fetch, Decode, and Execute for the μP 3 Computer Design.   

Figure 9.7 is the datapath used for the implementation of the μP 3 Computer. A 
computer’s datapath consists of the registers, memory interface, ALUs, and the 
bus structures used to connect them. The vertical lines are the three major 
busses used to connect the registers. On the bus lines in the datapath, a “/” with 
a number indicates the number of bits on the bus. Data values present on the 
active busses are shown in hexadecimal. MW is the memory write control line. 
A reset must be used to force the processor into a known state after power is 
applied. The initial contents of registers and memory produced by a reset can 
also be seen in Figure 9.7. Since the PC and MAR are reset to 00, program 
execution will start at 00.  
Note that memory contains the machine code for the example program 
presented earlier. Recall that the program consists of a LOAD, ADD, and 

EXECUTE 

 
*MAR=PC 

Read Memory 
IR=MDR 

PC=PC+1  
 

MDR=AC 
Write Memory AC=MDR AC=AC+MDR 

MAR=IR 
Read 

Memory 

 
 
FETCH 

DECODE 

Opcode=ADD Opcode=LOAD Opcode=STORE 

... 



 A Simple Computer Design: The µP3 175 
 

 

 

STORE instruction starting at address 00. Data values for this example program 
are stored in memory locations, 10, 11, and 12.  

 

Figure 9.7 Datapath used for the μP 3 Computer Design after applying reset.  

Consider the execution of the ADD machine instruction (0012) stored at 
program location 01 in detail. The instruction, ADD address, adds the contents 
of the memory location at address 12 to the contents of AC and stores the result 
in AC. The following sequence of register transfer operations will be required 
to fetch and execute this instruction. 

FETCH: REGISTER TRANSFER CYCLE 1:                                                       
MAR = PC prior to fetch, read memory, IR = MDR, PC = PC + 1  

First, the memory address register is loaded with the PC. In the example 
program, the ADD instruction (0012) is at location 01 in memory, so the PC 
and MAR will both contain 01. In this implementation of the computer, the 
MAR=PC operation will be moved to the end of the fetch, decode, and execute 
loop to the execute state in order to save a clock cycle. To fetch the instruction, 
a memory read operation is started. After a small delay for the memory access 
time, the ADD instruction is available at the input of the instruction register. To 
set up for the next instruction fetch, one is added to the program counter. The 
last two operations occur in parallel during one clock cycle using two different 
data busses.  

00:  02 11
01:  00 12
02:  01 10
03:  03 03

IR

register_AC

PC

MAR

Memory

MDR

ALU

MW = ‘0’

00 00

00

00

00 00

02 11

10:  00 00
11:  00 04
12:  00 03

16 8 16
+1



176 Rapid Prototyping of Digital Systems   Chapter 9 
 

 

 

At the rising edge of the clock signal, the decode state is entered. A block 
diagram of the register transfer operations for the fetch state is seen in Figure 
9.8. Inactive busses are not shown. 

 

Figure 9.8 Register transfers in the ADD instruction’s Fetch State.   

DECODE: REGISTER TRANSFER CYCLE 2:                                                           
Decode Opcode to find Next State, MAR = IR, and start memory read 

Using the new value in the IR, the CPU control hardware decodes the 
instruction's opcode of 00 and determines that this is an ADD instruction. 
Therefore, the next state in the following clock cycle will be the execute state 
for the ADD instruction.  
Instructions typically are decoded in hardware using combinational circuits 
such as decoders, programmable logic arrays (PLAs), or perhaps even a small 
ROM. A memory read cycle is always started in decode, since the instruction 
may require a memory data operand in the execute state.  
The ADD instruction requires a data operand from memory address 12. In 
Figure 9.9, the low 8–bit address field portion of the instruction in the IR is 
transferred to the MAR. At the next clock, after a small delay for the memory 
access time, the ADD instruction’s data operand value from memory (0003) 
will be available in the MDR. 

00:  02 11
01:  00 12
02:  01 10
03:  03 03

+1

IR

register_AC

PC

MAR

Memory

MDR

ALU

02 11

01

01

00 04

00 12

10:  00 00
11:  00 04
12:  00 03

16



 A Simple Computer Design: The µP3 177 
 

 

 

 

 

Figure 9.9 Register transfers in the ADD instruction’s Decode State.  

EXECUTE ADD: REGISTER TRANSFER CYCLE 3:                               
AC = AC + MDR, MAR = PC*, and GOTO FETCH 

The two values can now be added. The ALU operation input is set for addition 
by the control unit. As shown in Figure 9.10, the MDR’s value of 0003 is fed 
into one input of the ALU. The contents of register AC (0004) are fed into the 
other ALU input. After a small delay for the addition circuitry, the sum of 0007 
is produced by the ALU and will be loaded into the AC at the next clock. To 
provide the address for the next instruction fetch, the MAR is loaded with the 
current value of the PC (02). Note that by moving the operation, MAR=PC, to 
every instruction’s final execute state, the fetch state can execute in one clock 
cycle. The ADD instruction is now complete and the processor starts to fetch 
the next instruction at the next clock cycle. Since three states were required, an 
ADD instruction will require three clock cycles to complete the operation. 
After considering this example, it should be obvious that a thorough 
understanding of each instruction, the hardware organization, busses, control 
signals, and timing is required to design a processor. Some operations can be 
performed in parallel, while others must be performed sequentially. A bus can 
only transfer one value per clock cycle and an ALU can only compute one 
value per clock cycle, so ALUs, bus structures, and data transfers will limit 
those operations that can be done in parallel during a single clock cycle. In the 

00:  02 11
01:  00 12
02:  01 10
03:  03 03

IR

register_AC

PC

MAR

Memory

MDR

ALU

00 12

02

01

00 04

00 12

10:  00 00
11:  00 04
12:  00 03

812

12



178 Rapid Prototyping of Digital Systems   Chapter 9 
 

 

 

states examined, a maximum of three buses were used for register transfers. 
Timing in critical paths, such as ALU delays and memory access times, will 
determine the clock speed at which these operations can be performed. 

 

Figure 9.10 Register transfers in the ADD instruction’s Execute State.  

The μP 3’s multiple clock cycles per instruction implementation approach was 
used in early generation microprocessors. These computers had limited 
hardware, since the VLSI technology at that time supported orders of 
magnitude fewer gates on a chip than is now possible in current devices. 
Current generation processors, such as those used in personal computers, have 
a hundred or more instructions, and use additional means to speedup program 
execution. Instruction formats are more complex with up to 32 data registers 
and with additional instruction bits that are used for longer address fields and 
more powerful addressing modes.  
Pipelining converts fetch, decode, and execute into a parallel operation mode 
instead of sequential. As an example, with three stage pipelining, the fetch unit 
fetches instruction n + 2, while the decode unit decodes instruction n + 1, and 
the execute unit executes instruction n. With this faster pipelined approach, an 
instruction finishes execution every clock cycle rather than three as in the 
simple computer design presented here.  
Superscalar machines are pipelined computers that contain multiple fetch, 
decode and execute units. Superscalar computers can execute several 
instructions in one clock cycle. Most current generation processors including 

10:  00 00
11:  00 04
12:  00 03

00:  02 11
01:  00 12
02:  01 10
03:  03 03

IR

register_AC

PC

MAR

Memory

MDR

ALU

00 12

02

12

00 04

00 03

16 8 16

00 07

02

00 0400 03



 A Simple Computer Design: The µP3 179 
 

 

 

those in personal computers are both pipelined and superscalar. An example of 
a pipelined, reduced instruction set computer (RISC) design can be found in 
Chapter 14. 

9.3 VHDL Model of the μP 3 
To demonstrate the operation of a computer, a VHDL model of the μP 3 
computer is shown in Figure 9.11. The simple μP 3 computer design fits easily 
into a FPGA device using less than 1-10% of its logic. The computer’s RAM 
memory is implemented using the Altsyncram function which uses the FPGA’s 
internal memory blocks.  
The remainder of the computer model is basically a VHDL-based state machine 
that implements the fetch, decode, and execute cycle. The first few lines 
declare internal registers for the processor along with the states needed for the 
fetch, decode and execute cycle. A long CASE statement is used to implement 
the control unit state machine. A reset state is needed to initialize the processor. 
In the reset state, several of the registers are reset to zero and a memory read of 
the first instruction is started. This forces the processor to start executing 
instructions at location 00 in a predictable state after a reset. 
The fetch state adds one to the PC and loads the instruction into the instruction 
register (IR). After the rising edge of the clock signal, the decode state starts. In 
decode, the low eight bits of the instruction register are used to start a memory 
read operation in case the instruction needs a data operand from memory. The 
decode state contains another CASE statement to decode the instruction using 
the opcode value in the high eight bits of the instruction. This means that the 
computer can have up to 256 different instructions, although only four are 
implemented in the basic model. Other instructions can be added as exercises. 
After the rising edge of the clock signal, control transfers to an execute state 
that is specific for each instruction.  
Some instructions can execute in one clock cycle and some instructions may 
take more than one clock cycle. Instructions that write to memory will require 
more than one state for execute because of memory timing constraints. As seen 
in the STORE instruction, the memory address and data needs to be stable 
before and after the memory write signal is High, hence, additional states are 
used to avoid violating memory setup and hold times. When each instruction 
finishes the execute state, MAR is loaded with the PC to start the fetch of the 
next instruction. After the final execute state for each instruction, control 
returns to the fetch state.  
Since the FPGA’s synchronous memory block requires and contains an internal 
memory address and memory write register, it is necessary to make all 
assignments to the memory address register and memory write outside of the 
process to avoid having two cascaded registers. Recall that any assignment 
made in a clocked process synthesizes registers. Two cascaded MAR registers 
would require a delay of two clocks to load a new address for a memory 
operation. 
The machine language program shown in Figure 9.12 is loaded into memory 
using a memory initialization file (*.mif). This produces 256 words of 16-bit 



180 Rapid Prototyping of Digital Systems   Chapter 9 
 

 

 

memory for instructions and data. The memory initialization file, program.mif 
can be edited to change the loaded program. A write is performed only when 
the memory_write signal is High. On a Cyclone FPGA device, the access time 
for memory operations is in the range of 5-10ns. 
 

  -- Simple Computer Model Scomp.vhd 
LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
USE  IEEE.STD_LOGIC_ARITH.ALL; 
USE  IEEE.STD_LOGIC_UNSIGNED.ALL; 
LIBRARY altera_mf; 
USE altera_mf.altera_mf_components.ALL; 
 
ENTITY SCOMP IS 
PORT( clock, reset    : IN STD_LOGIC; 
              program_counter_out   : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
              register_AC_out  : OUT STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
  memory_data_register_out : OUT STD_LOGIC_VECTOR(15 DOWNTO 0 )); 
  memory_address_register_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0 ); 
  memory_write_out  : OUT STD_LOGIC); 
END SCOMP; 
 
ARCHITECTURE a OF scomp IS 
TYPE STATE_TYPE IS ( reset_pc, fetch, decode, execute_add, execute_load, execute_store,  
        execute_store2, execute_jump ); 
SIGNAL state: STATE_TYPE; 
SIGNAL instruction_register, memory_data_register  : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
SIGNAL register_AC     : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
SIGNAL program_counter    :  STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
SIGNAL memory_address_register  : STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
SIGNAL memory_write    : STD_LOGIC; 
BEGIN 
  -- Use Altsyncram function for computer's memory (256 16-bit words) 
      memory: altsyncram 
       GENERIC MAP ( 
  operation_mode => "SINGLE_PORT", 
  width_a => 16, 
  widthad_a => 8, 
  lpm_type => "altsyncram", 
  outdata_reg_a => "UNREGISTERED", 
   -- Reads in mif file for initial program and data values 
  init_file => "program.mif", 
  intended_device_family => "Cyclone") 
   
 PORT MAP (wren_a => memory_write, clock0 => clock,  
     address_a =>memory_address_register,  data_a => Register_AC,  
                     q_a => memory_data_register ); 
   -- Output major signals for simulation 
     program_counter_out  <= program_counter; 
     register_AC_out   <= register_AC; 
     memory_data_register_out  <= memory_data_register; 
     memory_address_register_out <= memory_address_register; 
       
 



 A Simple Computer Design: The µP3 181 
 

 

 

PROCESS ( CLOCK, RESET ) 
 BEGIN 
 IF reset = '1' THEN 
  state <= reset_pc; 
 ELSIF clock'EVENT AND clock = '1' THEN 
 
  CASE state IS 
     -- reset the computer, need to clear some registers 
  WHEN reset_pc => 
   program_counter  <= "00000000"; 
   register_AC   <= "0000000000000000"; 
   state    <= fetch; 
     -- Fetch instruction from memory and add 1 to PC 
  WHEN fetch => 
   instruction_register  <= memory_data_register; 
   program_counter  <= program_counter + 1; 
   state    <= decode; 
     -- Decode instruction and send out address of any data operands 
  WHEN decode => 
   CASE instruction_register( 15 DOWNTO 8 ) IS 
    WHEN "00000000" => 
        state <= execute_add; 
    WHEN "00000001" => 
        state <= execute_store; 
    WHEN "00000010" => 
        state <= execute_load;   
    WHEN "00000011" => 
        state <= execute_jump; 
    WHEN OTHERS => 
        state <= fetch; 
   END CASE; 
     -- Execute the ADD instruction 
  WHEN execute_add => 
   register_ac   <= register_ac + memory_data_register;     
   state    <= fetch; 
     -- Execute the STORE instruction 
     -- (needs two clock cycles for memory write and fetch mem setup) 
  WHEN execute_store => 
     -- write register_A to memory, enable memory write 
     -- load memory address and data registers for memory write 
   state    <= execute_store2; 

  --finish memory write operation and load memory registers  
  --for next fetch memory read operation  

        WHEN execute_store2 => 
   state    <= fetch; 
     -- Execute the LOAD instruction 
  WHEN execute_load => 
   register_ac   <=  memory_data_register; 
   state    <=  fetch; 
     -- Execute the JUMP instruction 
  WHEN execute_jump => 
   program_counter  <= instruction_register( 7 DOWNTO 0 ); 
   state    <= fetch; 
  WHEN OTHERS => 
   state <= fetch; 



182 Rapid Prototyping of Digital Systems   Chapter 9 
 

 

 

  END CASE; 
 END IF; 
 END PROCESS; 
 
   -- memory address register is already inside synchronous memory unit  
   -- need to load its value based on current state 
   -- (no second register is used - not inside a process here) 
   WITH state SELECT 
    memory_address_register <= "00000000"  WHEN reset_pc, 
        program_counter     WHEN fetch, 
        instruction_register(7 DOWNTO 0)  WHEN decode, 
        program_counter     WHEN execute_add, 
        instruction_register(7 DOWNTO 0)  WHEN execute_store, 
        program_counter     WHEN execute_store2, 
        program_counter     WHEN execute_load, 
        instruction_register(7 DOWNTO 0)  WHEN execute_jump; 
    WITH state SELECT 
    memory_write <=   '1'    WHEN execute_store, 
        '0'    WHEN Others; 
END a; 
 

Figure 9.11  VHDL Model of μP 3 Computer. 

9.4 Verilog Model of the μP 3 
To demonstrate the operation of the computer using Verilog, a Verilog model of 
the μP 3 computer is shown in Figure 9.12. The computer’s RAM memory is 
implemented using the Altsyncram function which uses the FPGA’s internal 
memory blocks. The remainder of the computer model is basically a Verilog-
based state machine that implements the fetch, decode, and execute cycle. The 
first few lines declare internal registers for the processor along with the states 
needed for the fetch, decode and execute cycle. A long CASE statement is used 
to implement the control unit state machine. A reset state is needed to initialize 
the processor. In the reset state, several of the registers are reset to zero and a 
memory read of the first instruction is started. This forces the processor to start 
executing instructions at location 00 in a predictable state after a reset. A 
second case statement at the end of the code makes assignments to the memory 
address register based on the current state. 
 

//uP3 Computer Design in Verilog 
module scomp (clock,reset,program_counter,register_A,  
  memory_data_register_out, instruction_register); 
 
   input clock,reset; 
   output [7:0] program_counter; 
   output [15:0] register_A, memory_data_register_out, instruction_register; 
 
   reg  [15:0] register_A,  instruction_register; 
   reg  [7:0] program_counter; 
   reg  [3:0] state; 



 A Simple Computer Design: The µP3 183 
 

 

 

 
// State Encodings for Control Unit 
parameter reset_pc  = 0, 
  fetch  = 1, 
  decode  = 2, 
  execute_add  = 3, 
  execute_store  = 4, 
  execute_store2  = 5, 
  execute_store3  = 6, 
  execute_load = 7, 
  execute_jump = 8; 
 
reg [7:0] memory_address_register; 
reg memory_write; 
  
wire [15:0] memory_data_register; 
wire [15:0] memory_data_register_out = memory_data_register; 
wire [15:0] memory_address_register_out = memory_address_register; 
wire memory_write_out = memory_write; 
 
// Use Altsynram function for computer's memory (256 16-bit words) 
altsyncram altsyncram_component ( 
    .wren_a (memory_write_out), 
    .clock0 (clock), 
    .address_a (memory_address_register_out), 
    .data_a (register_A), 
    .q_a (memory_data_register)); 
 defparam 
  altsyncram_component.operation_mode = "SINGLE_PORT", 
  altsyncram_component.width_a = 16, 
  altsyncram_component.widthad_a = 8, 
  altsyncram_component.outdata_reg_a = "UNREGISTERED", 
  altsyncram_component.lpm_type = "altsyncram", 
// Reads in mif file for initial program and data values 
  altsyncram_component.init_file = "program.mif", 
  altsyncram_component.intended_device_family = "Cyclone"; 
 
 
   always @(posedge clock or posedge reset) 
     begin 
        if (reset) 
            state = reset_pc; 
        else  
 case (state) 
// reset the computer, need to clear some registers 
         reset_pc : 
          begin 
     program_counter = 8'b00000000; 
     register_A = 16'b0000000000000000; 
     state = fetch; 
          end 
// Fetch instruction from memory and add 1 to program counter 



184 Rapid Prototyping of Digital Systems   Chapter 9 
 

 

 

         fetch : 
          begin 
     instruction_register = memory_data_register; 
     program_counter = program_counter + 1; 
     state = decode; 
          end 
// Decode instruction and send out address of any required data operands 
         decode : 
          begin 
    case (instruction_register[15:8]) 
     8'b00000000: 
          state = execute_add; 
     8'b00000001: 
           state = execute_store; 
     8'b00000010: 
         state = execute_load; 
     8'b00000011: 
         state = execute_jump; 
     default: 
         state = fetch; 
    endcase 
          end 
// Execute the ADD instruction 
         execute_add : 
          begin 
    register_A = register_A + memory_data_register; 
    state = fetch; 
          end 
// Execute the STORE instruction (needs three clock cycles for memory write) 
         execute_store : 
          begin 
// write register_A to memory 
     state = execute_store2; 
          end 
// This state ensures that the memory address is valid until after memory_write goes low 
         execute_store2 : 
          begin 
    state = execute_store3; 
          end 
// Execute the LOAD instruction 
         execute_load : 
          begin 
    register_A = memory_data_register; 
    state = fetch; 
// Execute the JUMP instruction 
          end 
         execute_jump : 
          begin 
    program_counter = instruction_register[7:0]; 
    state = fetch; 
          end 
         default : 



 A Simple Computer Design: The µP3 185 
 

 

 

          begin 
                state = fetch; 
          end 
  endcase 
     end 
 // Make these assignments immediately during current state (i.e., unregistered) 
  always @(state or program_counter or instruction_register) 
    begin 
  case (state) 
   reset_pc:   memory_address_register = 8'h 00; 
   fetch:   memory_address_register = program_counter; 
   decode:   memory_address_register = instruction_register[7:0]; 
   execute_add:   memory_address_register = program_counter; 
   execute_store:   memory_address_register = instruction_register[7:0]; 
   execute_store2: memory_address_register = program_counter; 
   execute_load:  memory_address_register = program_counter; 
   execute_jump:  memory_address_register = instruction_register[7:0]; 
   default:   memory_address_register = program_counter; 
  endcase 
  case (state) 
   execute_store:  memory_write = 1'b 1; 
   default:   memory_write = 1'b 0; 
  endcase 
   end   
endmodule 
 

Figure 9.12  Verilog Model of μP 3 Computer. 

 
 
DEPTH = 256;  % Memory depth and width are required % 
WIDTH = 16;  % Enter a decimal number % 
 
ADDRESS_RADIX = HEX; % Address and value radixes are optional % 
DATA_RADIX = HEX;  % Enter BIN, DEC, HEX, or OCT; unless  % 
   % otherwise specified, radixes = HEX % 
 
  -- Specify values for addresses, which can be single address or range 
CONTENT 
    BEGIN 
       [00..FF]       : 0000; % Range--Every address from 00 to FF = 0000 (Default) % 
          00 : 0210; % LOAD AC with MEM(10) % 
          01 : 0011; % ADD MEM(11) to AC % 
          02 : 0112; % STORE AC in MEM(12) % 
          03 : 0212; % LOAD AC with MEM(12) check for new value of FFFF % 
          04 : 0304; % JUMP to 04 (loop forever) % 
          10 : AAAA; % Data Value of B % 
          11 : 5555; % Data Value of C% 
          12 : 0000; % Data Value of A - should be FFFF after running program % 
    END ; 
  

Figure 9.13 Progam.mif file containg μP 3 Computer Program and DATA. 



186 Rapid Prototyping of Digital Systems   Chapter 9 
 

 

 

9.5 Automatically Generating a State Diagram of the μP3 
Using Tools Netlist Viewers State Diagram Viewer to automatically 
produce a state diagram of the μP3 model’s state machine, the state diagram 
seen in Figure 9.14 is generated.  
Note that the Fetch, Decode and Execute cycle is clearly displayed in the state 
diagram. The initial reset state is seen on the far left of the state diagram. The 
Fetch state (highlighted) jumps to Decode. Decode then jumps to one of several 
Execute states depending on the instruction opcode. After execution of the 
instruction is complete, all of the various execute states jump back to Fetch. 
The state table displayed below the state diagram. Click on the encoding tab at 
the very bottom to see how the different states are encoded in hardware. 
 
 

 

 

Figure 9.14 Automatically generated state diagram of the μP3 model. 



 A Simple Computer Design: The µP3 187 
 

 

 

9.6 Simulation of the μP3 Computer 
A simulation output from the VHDL model is seen in Figure 9.15. After a reset, 
the test program seen in Figure 9.13, loads, adds, and stores a data value to 
compute A = B + C. The final value is then loaded again to demonstrate that the 
memory contains the correct value for A. The program then ends with a jump 
instruction that jumps back to its own address producing an infinite loop. After 
running the program, FF is stored in location 12. Memory can be examined in 
the Simulator after running a program by clicking on the Logical Memories 
section in the left column of the Simulation Report. An example is shown in 
Figure 9.16. Note that the clock period is set to 20ns for simulation. 

 

 

 

 

 

Figure 9.15 Simulation of the Simple μP 3 Computer Program. 

 

 
 

Figure 9.16 Simulation display of μP 3 Computer Memory showing result stored in memory 



188 Rapid Prototyping of Digital Systems   Chapter 9 
 

 

 

9.7 Laboratory Exercises 
1. Compile and simulate the μP 3 computer VHDL or Verilog model. Rewrite the machine 

language program in the program.mif file to compute A = (B + C) + D. Store D in 
location 13 in memory. End the program with a Jump instruction that jumps to itself. Be 
sure to select the UP3’s Cyclone device as the target. Find the maximum clock rate of the 
μP 3 computer. Examine the project’s compiler report and find the logic cell (LC) 
percentage utilized.  

2. Add the JNEG execute state to the CASE statement in the model. JNEG is Jump if AC < 
0. If A >= 0 the next sequential instruction is executed. In most cases, a new instruction 
will just require a new execute state in the decode CASE statement. Use the opcode value 
of 04 for JNEG. Test the new instruction with the following test program that implements 
the operation, IF  A>= 0 THEN B = C 

                         Assembly Language  Machine Language      Memory Address 
LOAD    A   0210   00 
JNEG    End_of_If  0404   01 
LOAD    C   0212   02 
STORE   B   0111   03 

   End_of_If: JMP       End_of_If    0304   04 
 

End_of_If is an example of a label; it is a symbolic representation for a location in the 
program. Labels are used in assembly language to mark locations in a program. The last 
line that starts out with End_of_If: is the address used for the End_of_If  symbol in the 
Jump instruction address field. Assuming the program starts at address 00, the value of 
the End_of_If label will be  04. Test the JNEG instruction for both cases A < 0 and 
A >= 0. Place nonzero values in the *.mif file for B and C so that you can verify the 
program executes correctly. 

3. Add the instructions in the table below to the VHDL model, construct a test program for 
each instruction, compile and simulate to verify correct operation. In JPOS and JZERO 
instructions, both cases must be tested. 

Instruction Function Opcode 
SUBT address AC = AC - MDR 05 
XOR  address AC = AC XOR MDR 06 
OR  address AC = AC OR MDR 07 
AND  address AC = AC AND MDR 08 
JPOS  address IF AC > 0 THEN PC = address 09 
JZERO address IF AC = 0 THEN PC = address 0A 
ADDI  address AC = AC + address 0B 
 



 A Simple Computer Design: The µP3 189 
 

 

 

In the logical XOR instruction each bit is exclusive OR’ed with the corresponding bit in 
each operation for a total of sixteen independent exclusive OR operations. This is called a 
bitwise logical operation. OR and AND are also bitwise logical operations. The add-
immediate instruction, ADDI, sign extends the 8-bit address field value to 16 bits. To 
sign extend, copy the sign bit to all eight high bits. This allows the use of both positive 
and negative two’s complement numbers for the 8-bit immediate value stored in the 
instruction. 

4. Add the following two shift instructions to the simple computer model and verify with a 
test program and simulation. 

Instruction Function Opcode 
SHL  address AC = AC shifted left address bits     0C 
SHR  address AC = AC shifted right address bits    0D 

The function LPM_CLSHIFT is useful to implement multiple bit shifts. SHL and SHR 
can also be used if 1993 VHDL features are enabled in the compiler. Only the low four 
bits of the address field contain the shift amount. The other four bits are always zero. 

5. Run the μP 3 computer model using one of the FPGA boards. Use a debounced 
pushbutton for the clock and the other pushbutton for reset. Output the PC in hex to the 
LCD display or seven segment LEDs. Run a test program on the board and verify the 
correct value of the PC appears in the LCD display by stepping through the program 
using the pushbutton.  

6. Add these two input/output (I/O) instructions to the μP 3 computer model running on the 
UP3 board.  

Instruction Function Opcode 
IN     i/o address AC = switch bits  (low 4 bits) 0E 

OUT  i/o address LCD or 7-Seg LED displays hex value of 
AC 

0F 

 

These instructions modify or use only the low eight bits of AC. Remove the PC display 
feature from the previous problem, if it was added or for more of a challenge place the 
AC value on the second line of the hex display by modifying the LCD display code. Test 
the new I/O instructions by writing a program that reads in the switches, adds one to the 
switch value, and outputs this value to the LED display. Repeat the input, add, and output 
operation in an infinite loop by jumping back to the start of the program. Add a new 
register, register_output, to the input of the seven-segment decoder that drives the LED 
display or use the LCD display. The register is loaded with the value of AC only when an 
OUT instruction is executed. Compile, download, and execute the program on the FPGA 
board. When several I/O devices are present, they should respond only to their own 
unique I/O address, just like memory. 



190 Rapid Prototyping of Digital Systems   Chapter 9 
 

 

 

7. Use the timing analyzer to determine the maximum clock rate for the μP 3 computer. 
Using this value, compute the execution time for the example program in Figure 9.4. 

8. Modify the video output display described in Chapter 9 for the MIPS computer example 
to display the μP 3’s internal registers. While running on the FPGA board, use the 
pushbuttons for clock and reset as suggested in problem 5. 

9. Add video character output and keyboard input to the computer, after studying the 
material presented in Chapters 9 and 10. 

10. Add the WAIT instruction to the simple computer model and verify with a test program 
and simulation. WAIT value, loads and starts an 8-bit ten-millisecond (10-2 second) timer 
and then waits value*10 ms before returning to fetch for the next instruction. Use an 
opcode of 10 for the WAIT instruction. 

11. Expand the memory address space of the μP 3 computer from eight bits to nine bits. 
Some registers will also need an additional bit. Use 512 locations of 16-bit memory.  
Expand the address field by 1-bit by reducing the size of the opcode field by 1-bit. This 
will limit the number of different instructions to 128 but the maximum program size can 
now increase from 256 locations to 512 locations. 

12. Modify the μP 3 computer so that it uses two different memories. Use one memory for 
instructions and a new memory for data values. The new data memory should be 256 or 
512 (see previous problem ) locations of 16-bit data. 

13. Add a subroutine CALL and RETURN instruction to the μP 3 computer design. Use a 
dedicated register to store the return address or use a stack with a stack pointer register. 
The stack should start at high addresses and as it grows move to lower addresses. 

14. Implement a stack as suggested in the previous problem and add instructions to PUSH or 
POP register AC from the stack. At reset, set the stack pointer to the highest address of 
data memory. 

15. Add all of the instructions and features suggested in the exercises to the μP 3 computer 
and use it as a microcontroller core for one of the robot projects suggested in Chapter 12. 
Additional instructions of your own design along with an interval timer that can be read 
using the IN instruction may also be useful. 

16. Using the two low-bits from the opcode field, add a register address field that selects one 
of four different data registers A, B, C, or D for each instruction. 

17. Use the implementation approach in the μP 3 computer model as a starting point to 
implement the basic instruction set of a different computer from your digital logic 
textbook or other reference manual. 



 

The video image above was produced by an FPGA board design. 
 
 
 
                  

CHAPTER 10 

VGA Video Display 
Generation using 
FPGAs  



192 Rapid Prototyping of Digital Systems  Chapter 10 
 

 

 

10 VGA Video Display Generation using FPGAs 
To understand how it is possible to generate a video image using an FPGA 
board, it is first necessary to understand the various components of a video 
signal. A VGA video signal contains 5 active signals. Two signals compatible 
with TTL logic levels, horizontal sync and vertical sync, are used for 
synchronization of the video. Three analog signals with 0.7 to 1.0-Volt peak-to-
peak levels are used to control the color. The color signals are Red, Green, and 
Blue. They are often collectively referred to as the RGB signals. By changing 
the analog levels of the three RGB signals all other colors are produced.  

10.1 Video Display Technology 
The first technology used to display video images dictated the nature of the 
video signals. Even though LCD monitors are now in common use, the major 
component inside early VGA computer monitors was the color CRT or Cathode 
Ray Tube shown in Figure 10.1. The electron beam must be scanned over the 
viewing screen in a sequence of horizontal lines to generate an image. The 
deflection yoke uses magnetic or electrostatic fields to deflect the electron 
beam to the appropriate position on the face of the CRT. The RGB color 
information in the video signal is used to control the strength of the electron 
beam. Light is generated when the beam is turned on by a video signal and it 
strikes a color phosphor dot or line on the face of the CRT. The face of a color 
CRT contains a series of rows with three different phosphors. One type of 
phosphor is used for each of the primary colors of red, green, and blue.  
In standard VGA format, as seen in Figure 10.2, the screen contains 640 by 480 
picture elements or pixels. The video signal must redraw the entire screen 60 
times per second to provide for motion in the image and to reduce flicker. This 
period is called the refresh rate. The human eye can detect flicker at refresh 
rates less than 30 to 60Hz.  
To reduce flicker from interference from fluorescent lighting sources, refresh 
rates higher than 60 Hz at around 70Hz are sometimes used in PC monitors. 
The color of each pixel is determined by the value of the RGB signals when the 
signal scans across each pixel. In 640 by 480-pixel mode, with a 60Hz refresh 
rate, this is approximately 40 ns per pixel. A 25MHz clock has a period of 40 
ns. A slightly higher clock rate will produce a higher refresh rate.  

10.2 Video Refresh 
The screen refresh process seen in Figure 10.2 begins in the top left corner and 
paints 1 pixel at a time from left to right. At the end of the first row, the row 
increments and the column address is reset to the first column. Each row is 
painted until all pixels have been displayed. Once the entire screen has been 
painted, the refresh process begins again.  
The video signal paints or refreshes the image using the following process. The 
vertical sync signal, as shown in Figure 10.3 tells the monitor to start 
displaying a new image or frame, and the monitor starts in the upper left corner 



 VGA Video Display Generation 193 
 

 

 

with pixel 0,0. The horizontal sync signal, as shown in Figure 10.4, tells the 
monitor to refresh another row of 640 pixels.  
After 480 rows of pixels are refreshed with 480 horizontal sync signals, a 
vertical sync signal resets the monitor to the upper left comer and the process 
continues. During the time when pixel data is not being displayed and the beam 
is returning to the left column to start another horizontal scan, the RGB signals 
should all be set to the color black (all zeros). 

Figure 10.1 Color CRT and Phosphor Dots on Face of Display.  

Glass Face Plate

Phosphor Dots
on Glass Face
Plate

Electron Gun

Grid

Deflection
Yoke

Scanning Electron Beam

Phosphor
Screen

Metal
Mask

Electron Guns

GreenRed

Blue

R B G R B G R

B G R B G R B G

R B G R B G R B



194 Rapid Prototyping of Digital Systems  Chapter 10 
 

 

 

 
 

Figure 10.2 VGA Image - 640 by 480 Pixel Layout. 

 
 

 

Figure 10.3 Vertical Sync Signal Timing for 640 by 480 at 60Hz. 

 

 
Figure 10.4 Horizontal Sync Signal Timing for 640 by 480 at 60Hz. 

 
0,0 

639,479 

640 Pixels in a row 

480 
Pixels 
in a 
column 

0,479 

639,0 

480 Horizontal Scan Lines and Retrace 
 .

.

. 

 

R e d ,   G r e e n , 
B l u e 

P i x e l   D a t a 
1.02 ms 15.24 ms 0.35 ms

6 4   µ s 
16.6 ms

480 Horizontal Refresh Cycles

Vertical 
Sync 

 R e d ,   G r e e n , 
B l u e 

P i x e l   D a t a 
1.89 µs 25.17 µs 0.94 µs

3 . 7 7 µs 
31.77 µs

Horizontal 
Sync 



 VGA Video Display Generation 195 
 

 

 

Many VGA monitors will shut down if the two sync signals are not the correct 
values. Most PC monitors have an LED that is green when it detects valid sync 
signals and yellow when it does not lock in with the sync signals. Modern 
monitors will sync up to an almost continuous range of refresh rates up to their 
design maximum. In a PC graphics card, a dedicated video memory location is 
used to store the color value of every pixel in the display. This memory is read 
out as the beam scans across the screen to produce the RGB signals. There is 
not enough memory inside current generation FPGA chips for this approach, so 
other techniques will be developed which require less memory. 

 

10.3 Using an FPGA for VGA Video Signal Generation  
To provide interesting output options in complex designs, video output can be 
developed using hardware inside the FPGA. Only five signals or pins are 
required, two sync signals and three RGB color signals. A simple resistor and 
diode circuit is used to convert TTL output pin signals from the FPGA to the 
low voltage analog RGB signals for the video signal. This supports two levels 
for each signal in the RGB data and thus produces a total of eight colors. This 
circuit and a VGA connector for a monitor are already installed on the Altera 
UP3 board. The FPGA’s Phase Locked Loop (PLL) can be used to generate 
clocks for a wide variety of video resolutions and refresh rates. 
  

  
H o r iz o n ta l
S y n c  
 
V e r t ic a l 
S y n c  
 
   V G A  S ig n a ls  
 
R  
G  
B  

 
        S y n c  G e n e ra t io n   
              C o u n te rs  
 
         R o w                C o l

 
      P ix e l R A M  o r  
      C h a ra c te r   
      G e n e ra to r   R O M  

2 5  M h z  
 C lo c k  

D a ta  
fro m  
D e s ig n  
 

 
As seen in Figure 10.5, a 25.175 MHz clock, which is the 640 by 480 VGA 
pixel data rate of approximately 40ns is used to drive counters that generate the 
horizontal and vertical sync signals. Additional counters generate row and 
column addresses. In some designs, pixel resolution will be reduced from 640 
by 480 to a lower resolution by using a clock divide operation on the row and 
column counters. The row and column addresses feed into a pixel RAM for 
graphics data or a character generator ROM when used to display text. The 
required RAM or ROM is also implemented inside the FPGA chip. 

Figure 10.5 FPGA based generation of VGA Video Signals.  



196 Rapid Prototyping of Digital Systems  Chapter 10 
 

 

 

10.4 A VHDL Sync Generation Example: FPGAcore VGA_SYNC 

The FPGAcore function, VGA_SYNC is used to generate the timing signals 
needed for a VGA video display. Although VGA_SYNC is written in VHDL, 
like the other FPGAcore functions it can be used as a symbol in a design 
created with any entry method.  
The following VHDL code generates the horizontal and vertical sync signals, 
by using 10-bit counters, H_count for the horizontal count and V_count for the 
vertical count. H_count and V_count generate a pixel row and column address 
that is output and available for use by other processes. User logic uses these 
signals to determine the x and y coordinates of the present video location. The 
pixel address is used in generating the image’s RGB color data. On all boards 
except the UP2 and UP1, the internal logic uses a 25 MHz clock generated by a 
PLL in the design file Video_PLL.vhd. Counters are used to produce video sync 
timing signals like those seen in figures 10.3 and 10.4. This process is used in 
all of the video examples that follow. 

 
LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
USE  IEEE.STD_LOGIC_ARITH.ALL; 
USE  IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
ENTITY VGA_SYNC IS 
 PORT( clock_25MHz, red, green, blue : IN STD_LOGIC; 
   red_out, green_out, blue_out : OUT  STD_LOGIC;  
   horiz_sync_out, vert_sync_out : OUT  STD_LOGIC; 
   pixel_row, pixel_column  : OUT  STD_LOGIC_VECTOR( 9 DOWNTO 0 )); 
END VGA_SYNC; 
 
ARCHITECTURE a OF VGA_SYNC IS 
 SIGNAL horiz_sync, vert_sync   : STD_LOGIC; 
 SIGNAL video_on, video_on_v, video_on_h : STD_LOGIC; 
 SIGNAL h_count, v_count    : STD_LOGIC_VECTOR( 9 DOWNTO 0 ); 
 
BEGIN 
 
     -- video_on is High only when RGB data is displayed 
video_on <= video_on_H AND video_on_V; 
 

VGA_SYNC

inst

clock_48Mhzclock_48Mhz

redred

greengreen

blueblue

red_outred_out

green_outgreen_out

blue_outblue_out

horiz_sync_outhoriz_sync_out

vert_sync_outvert_sync_out

video_onvideo_on

pixel_clockpixel_clock

pixel_row[9..0]pixel_row[9..0]

pixel_column[9..0]pixel_column[9..0]

 



 VGA Video Display Generation 197 
 

 

 

 
PROCESS 
 BEGIN 
 WAIT UNTIL( clock_25MHz'EVENT ) AND ( clock_25MHz = '1' ); 
 
    --Generate Horizontal and Vertical Timing Signals for Video Signal 
    -- H_count counts pixels (640 + extra time for sync signals) 
    -- 
    --  Horiz_sync  -------------------------------------------________-------- 
    --  H_count       0                640              659     755    799 
    -- 
 IF ( h_count = 799 ) THEN 
     h_count <= "0000000000"; 
 ELSE 
     h_count <= h_count + 1; 
 END IF; 
 
    --Generate Horizontal Sync Signal using H_count 
 IF ( h_count <= 755 ) AND  (h_count => 659 ) THEN 
     horiz_sync <= '0'; 
 ELSE 
     horiz_sync <= '1'; 
 END IF; 
    --V_count counts rows of pixels (480 + extra time for sync signals) 
    --   
    --  Vert_sync      ----------------------------------------_______------------ 
    --  V_count         0                      480                 493-494          524 
    -- 
 IF ( v_count >= 524 ) AND ( h_count => 699 ) THEN 
     v_count <= "0000000000"; 
 ELSIF ( h_count = 699 ) THEN 
     v_count <= v_count + 1; 
 END IF; 
    -- Generate Vertical Sync Signal using V_count 
 IF ( v_count <= 494 ) AND ( v_count = >493 ) THEN 
     vert_sync <= '0'; 
 ELSE 
    vert_sync <= '1'; 
 END IF; 
    -- Generate Video on Screen Signals for Pixel Data 
 IF ( h_count <= 639 ) THEN 
     video_on_h   <= '1'; 
     pixel_column <= h_count; 
 ELSE 
     video_on_h <= '0'; 
 END IF; 
 
 IF ( v_count <= 479 ) THEN 
     video_on_v <= '1'; 
     pixel_row    <= v_count; 
 ELSE 
     video_on_v <= '0'; 



198 Rapid Prototyping of Digital Systems  Chapter 10 
 

 

 

 END IF; 
 
     -- Put all video signals through DFFs to eliminate  
     -- any delays that can cause a blurry image 
     -- Turn off RGB outputs when outside video display area 
 red_out   <= red AND video_on; 
 green_out   <= green AND video_on; 
 blue_out   <= blue AND video_on; 
 horiz_sync_out  <= horiz_sync; 
 vert_sync_out  <= vert_sync; 
 
 END PROCESS; 
END a; 

 
To turn off RGB data when the pixels are not being displayed the video_on 
signals are generated. Video_on is gated with the RGB inputs to produce the 
RGB outputs. Video_on is low during the time that the beam is resetting to the 
start of a new line or screen. They are used in the logic for the final RGB 
outputs to force them to the zero state. VGA_SYNC also puts the all of video 
outputs through a final register to eliminate any timing differences in the video 
outputs. VGA_SYNC outputs the pixel row and column address. See the 
comments at the end of VGA_SYNC.VHD for information on setting up other 
screen resolutions and refresh rates. 

10.5 Final Output Register for Video Signals 
The final video output for the RGB and sync signals in any design should be 
directly from a flip-flop output. Even a small time delay of a few nanoseconds 
from the logic that generates the RGB color signals will cause a blurry video 
image. Since the RGB signals must be delayed a pixel clock period to eliminate 
any possible timing delays, the sync signals must also be delayed by clocking 
them through a D flip-flop. If the outputs all come directly from a flip-flop 
output, the video signals will all change at the same time and a sharper video 
image is produced. The last few lines of VHDL code in the FPGAcore 
VGA_SYNC design generate this final output register. 

10.6 Required Pin Assignments for Video Output 
The FPGA board requires the chip pins as seen in Table 10.1 to be defined in 
the project’s *.qsf file, or elsewhere in your design in order to display the video 
signals. These pins are hard wired on the FPGA board to the VGA connector 
and cannot be changed.  
A pixel clock is also needed at the appropriate rate for the screen resolution and 
refresh rate. A PLL is used to generate this clock on the FPGA. The FPGA’s 
external crystal controlled clock is used as input for the PLL on all boards 
except the UP2 and UP1 (no PLL on these boards). On the UP3, set jumper JP3 
to short pins 3-4 for the 48Mhz clock. A table of the common screen resolutions 
and refresh rates with the required pixel clocks and sync counter values can be 
found at the end of the VGA_SYNC IP core code.  
 



 VGA Video Display Generation 199 
 

 

 

Table 10.1  The VGA Video Display Pin Assignments  

Pin Name DE1 DE2 UP3 UP2, 
UP1 

Pin 
Type 

Function of Pin 

CLOCK L1 
50Mhz 

N2 
50Mhz 

153 
48Mhz 

91 
25Mhz 

Input 25-50MHz Clock  

VGA_RED B7 E10 228 236 Output VGA Red Video Signal    
(highest bit on DE1/2) 

VGA_GREEN A8 D12 122 237 Output VGA Green Video 
Signal (highest bit on 

DE1/2) 
VGA_BLUE B10 B12 170 238 Output VGA Blue Video Signal   

(highest bit on DE1/2) 
VGA_VSYNC B11 D8 226 239 Output VGA Connector Vertical   

Sync Signal 
VGA_HSYNC A11 A7 227 240 Output VGA Connector 

Horizontal Sync Signal 
 

10.7 Video Examples 
For a simple video example with the VGA_SYNC function, the following 
schematic produces a video simulation of a red LED. When the PB1 pushbutton 
is hit, the color of the entire video screen will change from black to red. The 
VGA_LED project setup is seen below: 

 
 
 

VGA_SYNC outputs the pixel row and column address. Pixel_row and 
Pixel_column are normally inputs to user logic that in turn generates the RGB 
color data. Here is a simple example that uses the pixel_column output to 
generate the RGB inputs. Bits 7, 6, and 5 of the pixel_column count are 
connected to the RGB data. Since bits 4 through 0 of pixel column are not 
connected, RGB color data will only change once every 32 pixels across the 
screen. This in turn generates a sequence of color bars in the video output. The 
color bars display the eight different colors that can be generated by the three 
digital RGB outputs in the VGA_BAR project. 
 

VCCClock_48Mhz INPUT

VCCPBSWITCH4 INPUT
VGA_RedOUTPUT

VGA_GreenOUTPUT

VGA_HSyncOUTPUT

VGA_VSyncOUTPUT

VGA_BlueOUTPUT

GND
11

clock_48Mhz

red

green

blue

red_out

green_out

blue_out

horiz_sync_out

vert_sync_out

video_on

pixel_clock

pixel_row[9..0]

pixel_column[9..0]

VGA_SYNC

1



200 Rapid Prototyping of Digital Systems  Chapter 10 
 

 

 

 

10.8 A Character Based Video Design  
One option is a video display that contains mainly textual data. For this 
approach, a pixel pattern or font is needed to display each different character. 
The character font can be stored in a ROM implemented inside the FPGA. A 
memory initialization file, *.mif, can be used to initialize the ROM contents 
during download. Given the memory limitations inside many FPGAs, one 
option that fits is a display of 40 characters by 30 lines.  
Each letter, number, or symbol is a pixel image from the 8 by 8 character font. 
To make the characters larger, each dot in the font maps to a 2 by 2 pixel block 
so that a single character requires 16 by 16 pixels. This was done by dividing 
the row and column counters by 2. Recall that in binary, division by powers of 
two can be accomplished by truncating the lower bits, so no hardware is needed 
for this step. The row and column counters provide inputs to circuits that 
address the character font ROM and determine the color of each pixel. The 
clock used is the onboard 25.175MHz clock and other timing signals needed 
are obtained by dividing this clock down in hardware. 

10.9 Character Selection and Fonts 
Because the screen is constantly being refreshed and the video image is being 
generated on-the-fly as the beam moves across the video display, it is necessary 
to use other registers, ROM, or RAM inside the FPGA to hold and select the 
characters to be displayed on the screen. Each location in this character ROM 
or RAM contains only the starting address of the character font in font ROM. 
Using two levels of memory results in a design that is more compact and uses 
far less memory bits. This technique was used on early generation computers 
before the PC. 
Here is an example implementation of a character font used in the FPGAcore 
function, char_ROM. To display an "A" the character ROM would contain only 
the starting address 000001 for the font table for "A". The 8 by 8 font in the 
character generation ROM would generate the letter "A" using the following 
eight memory words: 

 
 

VCCClock_48Mhz INPUT VGA_RedOUTPUT

VGA_GreenOUTPUT

VGA_HSyncOUTPUT

VGA_VSyncOUTPUT

VGA_BlueOUTPUT

clock_48Mhz

red

green

blue

red_out

green_out

blue_out

horiz_sync_out

vert_sync_out

video_on

pixel_clock

pixel_row[9..0]

pixel_column[9..0]

VGA_SYNC

1
Pixel_column[9..0]

Pixel_row[9..0]
Pixel_column[5]

Pixel_column[6]

Pixel_column[7]



 VGA Video Display Generation 201 
 

 

 

   
Address  Font Data              

        000001000 :  00011000 ; 
        000001001 :    00111100 ; 
        000001010 :    01100110 ; 
        000001011 :    01111110 ; 
        000001100 :   01100110 ; 
        000001101 :   01100110 ; 
        000001110 :   01100110 ; 
        000001111 :   00000000 ; 
 

Figure 10.6  Font Memory Data for the Character "A". 

 

 

 

Figure 10.7 Accessing a Character Font Using a ROM. 

 
The column counters are used to select each font bit from left to right in each 
word of font memory as the video signal moves across a row. This value is used 
to drive the logic for the RGB signals so that a "0" font bit has a different color 
from a "1". Using the low three character font row address bits, the row counter 
would select the next memory location from the character font ROM when the 
display moves to the next row.  
A 3-bit font column address can be used with a multiplexer to select the 
appropriate bit from the ROM output word to drive the RGB pixel color data. 
Both the character font ROM and the multiplexer are contained in the 
FPGAcore char_ROM as shown below. The VHDL code declares the memory 
size using the LPM_ROM function and the tcgrom.mif file contains the initial 
values or font data for the ROM. 

 Character 
Generation 

ROM 
 

   
64 characters 

   512 by 8 ROM 

8  8-bit words  
per character 

8 by 8 Font 
Pixel Data 

Character 
Address 
000001 for A 

Font Row 
Address 
000...111 

6 

3 

8 



202 Rapid Prototyping of Digital Systems  Chapter 10 
 

 

 

 
 
LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
USE  IEEE.STD_LOGIC_ARITH.ALL; 
USE  IEEE.STD_LOGIC_UNSIGNED.ALL; 
LIBRARY lpm; 
USE lpm.lpm_components.ALL; 
 
ENTITY Char_ROM IS 
 PORT( character_address : IN STD_LOGIC_VECTOR( 5 DOWNTO 0 ); 
  font_row, font_col : IN  STD_LOGIC_VECTOR( 2 DOWNTO 0 ); 
  rom_mux_output : OUT STD_LOGIC); 
END Char_ROM; 
 
ARCHITECTURE a OF Char_ROM IS 
 SIGNAL rom_data  : STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
 SIGNAL rom_address : STD_LOGIC_VECTOR( 8 DOWNTO 0 ); 
BEGIN 
   -- Small 8 by 8 Character Generator ROM for Video Display 
   -- Each character is 8 8-bit words of pixel data 
 char_gen_rom: lpm_rom 
      GENERIC MAP (  
  lpm_widthad  => 9, 
         lpm_numwords  => 512, 
         lpm_outdata  => "UNREGISTERED", 
         lpm_address_control  => "UNREGISTERED", 
   -- Reads in mif file for character generator font data  
         lpm_file  => "tcgrom.mif", 
         lpm_width  => 8) 
      PORT MAP ( address => rom_address, q = > rom_data); 
        rom_address <= character_address & font_row; 
   -- Mux to pick off correct rom data bit from 8-bit word 
   -- for on screen character generation 
        rom_mux_output <= rom_data (  
  (CONV_INTEGER( NOT font_col( 2 DOWNTO 0 ))) ); 
END a; 

 

Char_ROM

inst

clockclock

character_address[5..0]character_address[5..0]

font_row[2..0]font_row[2..0]

font_col[2..0]font_col[2..0]

rom_mux_outputrom_mux_output

 



 VGA Video Display Generation 203 
 

 

 

Table 10.2  Character Address Map for 8 by 8 Font ROM. 

CHAR ADDRESS CHAR ADDRESS CHAR ADDRESS CHAR ADDRESS 
@ 00 P 20 Space 40 0 60 
A 01 Q 21 ! 41 1 61 
B 02 R 22 " 42 2 62 
C 03 S 23 # 43 3 63 
D 04 T 24 $ 44 4 64 
E 05 U 25 % 45 5 65 
F 06 V 26 & 46 6 66 
G 07 W 27 ‘ 47 7 67 
H 10 X 30 ( 50 8 70 
I 11 Y 31 ) 51 9 71 
J 12 Z 32 * 52 A 72 
K 13 [ 33 + 53 B 73 
L 14 Dn Arrow 34 , 54 C 74 
M 15 ] 35 - 55 D 75 
N 16 Up Arrow 36 . 56 E 76 
O 17 Lft Arrow 37 / 57 F 77 
 
A 16 by 16 pixel area is used to display a single character with the character 
font. As the display moves to another character outside of the 16 by 16 pixel 
area, a different location is selected in the character RAM using the high bits of 
the row and column counters. This in turn selects another location in the 
character font ROM to display another character. 
Due to limited ROM space, only the capital letters, numbers and some symbols 
are provided. Table 10.2 shows the alphanumeric characters followed by the 
high six bits of its octal character address in the font ROM. For example, a 
space is represented by octal code 40. The repeated letters A-F were used to 
simplify the conversion and display of hexadecimal values. 

10.10 VHDL Character Display Design Examples 
The FPGAcores VGA_SYNC and CHAR_ROM are designed to be used 
together to generate a text display. CHAR_ROM contains an 8 by 8 pixel 
character font. In the following schematic, a test pattern with 40 characters 
across with 30 lines down is displayed in the VGA_CHARACTER project. 
Examining the RGB inputs on the VGA_SYNC core you can see that characters 
will be white (111 = RGB) with a red (100 = RGB) background. Each character 
uses a 16 by 16 pixel area in the 640 by 480 display area. Since the low bit in 
the pixel row and column address is skipped in the font row and font column 
ROM inputs, each data bit from the font is a displayed in a 2 by 2 pixel area. 
Since pixel row bits 9 to 4 are used for the character address a new character 
will be displayed every 16th pixel row or character line. Division by 16 occurs 
without any logic since the low four bits are not connected. 
 



204 Rapid Prototyping of Digital Systems  Chapter 10 
 

 

Normally, more complex user designed logic is used to generate the character 
address. The video example shown in Figure 10.8 is an implementation of the 
MIPS RISC processor core. The values of major busses are displayed in 
hexadecimal and it is possible to single step through instructions and watch the 
values on the video display. This example includes both constant and variable 
character display areas. The video setup is the same as the schematic, but 
additional logic is used to generate the character address. 
 

 

Figure 10.8 MIPS Computer Video Output. 

VCCClock_48Mhz INPUT VGA_RedOUTPUT

VGA_GreenOUTPUT

VGA_HSyncOUTPUT

VGA_VSyncOUTPUT

VGA_BlueOUTPUT

clock_48Mhz

red

green

blue

red_out

green_out

blue_out

horiz_sync_out

vert_sync_out

video_on

pixel_clock

pixel_row[9..0]

pixel_column[9..0]

VGA_SYNC

1

clock

character_address[5..0]

font_row[2..0]

font_col[2..0]

rom_mux_output

Char_ROM

inst

VCC

Pixel_column[9..0]

Pixel_row[9..0]

Pixel_row[9..4]

Pixel_row[3..1]

Pixel_column[3..1]



 VGA Video Display Generation 205 
 

 

 

Pixel row address and column address counters are used to determine the 
current character column and line position on the screen. They are generated as 
the image scans across the screen with the VGA_SYNC core by using the high 
six bits of the pixel row and pixel column outputs. Each character is a 16 by 16 
block of pixels. The divide by 16 operation just requires truncation of the low 
four bits of the pixel row and column. The display area is 40 characters by 30 
lines.  
Constant character data for titles in the left column is stored in a small ROM 
called the character format ROM. This section of code sets up the format ROM 
that contains the character addresses for the constant character data in the left 
column of the video image for the display.  

 
 -- Character Format ROM for Video Display 
 -- Displays constant format character data 
 -- on left side of Display area 

 format_rom: lpm_rom 
      GENERIC MAP (  
 lpm_widthad  => 6, 
        lpm_numwords  =>60, 
        lpm_outdata  => "UNREGISTERED", 
        lpm_address_control  => "UNREGISTERED", 
  -- Reads in mif file for data display titles 
        lpm_file  =>"format.mif", 
        lpm_width  => 6) 

 
Each pixel clock cycle, a process containing a series of nested CASE 
statements is used to select the character to display as the image scans across 
the screen. The CASE statements check the row and column counter outputs 
from the sync unit to determine the exact character column and character line 
that is currently being displayed. The CASE statements then output the 
character address for the desired character to the char_ROM FPGAcore.  
Table 10.1 lists the address of each character in the font ROM. Alphabetic 
characters start at octal location 01 and numbers start at octal location 60. Octal 
location 40 contains a space that is used whenever no character is displayed. 
When the display is in the left column, data from the format_ROM is used. Any 
unused character display areas must select the space character that has blank or 
all zero font data.  
Hexadecimal variables in the right column in Figure 10.8 are generated by 
using 4-bit data values from the design to index into the character font ROM. 
As an example, the value "11" & PC(7 DOWNTO 4), when used as the 
character address to the FPGAcore, char_ROM, will map into the character font 
for 0..9 and A..F. The actual hex character selected is based on the current value 
of the 4 bits in the VHDL signal, PC. As seen in the last column of Table 10.1, 
the letters, A..F, appear again after decimal numbers in the font ROM to 
simplify this hexadecimal mapping conversion. 



206 Rapid Prototyping of Digital Systems  Chapter 10 
 

 

 

10.11 A Graphics Memory Design Example 
For another example, assume the display will be used to display only graphics 
data. The Cyclone EP1C6 FPGA contains 92K bits of memory. If only two 
colors are used in the RGB signals, one bit will be required for each pixel in the 
video RAM. If a 300 by 300 pixel video RAM was implemented in the Cyclone 
chip it would use all of the chip’s 92K-bit memory. For full color RGB data of  
three bits per pixel, a 175 by  175 pixel RAM would use all of the 92K on-chip 
memory and no memory would be left for the remainder of the design.  
Pixel memory must always be in read mode whenever RGB data is displayed. 
To avoid flicker and memory access conflicts on single port memory, designs 
should update pixel RAM and other signals that produce the RGB output, 
during the time the RGB data is not being displayed.  
When the scan of each horizontal line is complete there are typically over 100 
clock cycles before the next RGB value is needed, as seen in Figure 10.9. 
Additional clocks are available when a vertical sync signal resets the monitor to 
the first display line. The exact number of clocks available depends on the 
video resolution and refresh rate. 
In most cases, calculations that change the video image should be performed 
during this off-screen period of time to avoid memory conflicts with the 
readout of video RAM or other registers which are used to produce the RGB 
video pixel color signals. Since on-chip pixel memory is limited, complex 
graphic designs with higher resolutions will require another approach.  

 

 

 

Figure 10.9 Display and Compute clock cycles available in a single 640 by 480 Video Frame. 

          Horizontal Sync Counter 
0     639             799 
 
Display                      Compute 
RGB          New RGB 
Data          Data 
On Screen         During 
          Retrace 
 
 
 
479 

       

             
             524 
 

             Vertical Sync Counter 



 VGA Video Display Generation 207 
 

 

 

10.12 Video Data Compression 
Here are some ideas to save memory and produce more complex graphics. 
Compress the video pixel data in memory and uncompress it on-the-fly as the 
video signal is generated. One compression technique that works well is run 
length encoding (RLE). The RLE compression technique only requires a simple 
state machine and a counter for decoding.  
In RLE, the pixels in the display are encoded into a sequence of length and 
color fields. The length field specifies the number of sequentially scanned 
pixels with the same color. In simple color images, substantial data 
compression can be achieved with RLE and it is used in PCs to encode color 
bitmaps. Matlab can be used to read bitmaps into a two-dimensional array and 
then write the output as an RLE encoded version directly to a *.mif file. An 
example program is available on the DVD. Bitmap file formats and some C 
utilities to help read bitmaps can be found on the web. 
Many early video games, such as Pong, have a background color with a few 
moving images. In such cases, the background image can be the default color 
value and not stored in video RAM. Hardware comparators can check the row 
and column counts as the video signal is generated and detect when another 
image other than the background should be displayed. When the comparator 
signals that the row and column count matches the image location, the image’s 
color data instead of the normal background data is switched into the RGB 
output using gates or a multiplexer.  
The image can be made to move if its current row and column location is stored 
in registers and the output of these registers are used as the comparator input. 
Additional logic can be used to increment or decrement the image’s location 
registers slowly over time and produce motion. Multiple hardware comparators 
can be used to support several fixed and moving images. These moving images 
are also called sprites. This approach was used in early-generation video 
games. 

10.13 Video Color Mixing using Dithering 
PC graphics cards use an analog to digital converter to drive the analog RGB 
color signals. Although the hardware directly supports only eight different pixel 
colors using digital color signals, there are some techniques that can be used to 
generate more colors. On analog CRTs, pixels can be overclocked at two to four 
times the normal rate to turn on and off the 1-bit color signal several times 
while scanning across a single pixel. The FPGA’s PLL is handy to generate the 
higher frequency clocks need. Along the same lines, anding the final color 
signal output with the clock signal itself can further reduce the signal’s on time 
to ½ a clock or less. Unfortunately, this technique does not work quite as well 
on LCD monitors due to the differences in the internal electronics. 
The screen is refreshed at 60Hz, but flicker is almost undetected by the human 
eye at 30Hz. So, in odd refresh scans one pixel color is used and in even refresh 
scans another pixel color is used. This 30Hz color mixing or dithering 
technique works best if large areas have both colors arranged in a checkerboard 
pattern. Alternating scans use the inverse checkerboard colors. At 30Hz, the eye 



208 Rapid Prototyping of Digital Systems  Chapter 10 
 

 

 

can detect color intensity flicker in large regions unless the alternating 
checkerboard pattern is used.  

10.14 VHDL Graphics Display Design Example 
This simple graphics example will generate a ball that bounces up and down on 
the screen. As seen in Figure 10.10, in the VGA_BALL project the ball is red 
and the background is white. This example requires the VGA_SYNC design 
from Section 10.4 to generate the video sync and the pixel address signals. The 
pixel_row signal is used to determine the current row and the pixel_column 
signal determines the current column. Using the current row and column 
addresses, the process Display_Ball generates the red ball on the white 
background and produces the ball_on signal which displays the red ball using 
the logic in the red, green, and blue equations.  

 

Figure 10.10 Bouncing Ball Video Output. 

Ball_X_pos and Ball_y_pos are the current address of the center of the ball. 
Size is the size of the square ball. 
The process Move_Ball moves the ball a few pixels every vertical sync and 
checks for bounces off of the walls. Ball_motion is the number of pixels to 
move the ball at each vertical sync clock. The VGA_SYNC core is also used to 
generate sync signals and pixel addresses, but is not shown in the code below. 

 
ENTITY ball IS 
 PORT(  
  SIGNAL Red, Green, Blue   : OUT STD_LOGIC; 
  SIGNAL vert_sync_out    : IN STD_LOGIC; 
  SIGNAL pixel_row, pixel_column  : IN STD_LOGIC_VECTOR( 9 DOWNTO 0 )); 
END ball; 
ARCHITECTURE behavior OF ball IS 
      -- Video Display Signals    
  SIGNAL reset, Ball_on, Direction : STD_LOGIC; 
  SIGNAL Size    : STD_LOGIC_VECTOR( 9 DOWNTO 0 );   
  SIGNAL Ball_Y_motion    : STD_LOGIC_VECTOR( 9 DOWNTO 0 ); 
  SIGNAL Ball_Y_pos, Ball_X_pos : STD_LOGIC_VECTOR( 9 DOWNTO 0 ); 



 VGA Video Display Generation 209 
 

 

 

BEGIN               -- Size of Ball 
 Size   <=  CONV_STD_LOGIC_VECTOR (8,10 ); 
      -- Ball center  X address 
 Ball_X_pos <= CONV_STD_LOGIC_VECTOR( 320,10 ); 
      -- Colors for pixel data on video signal 
 Red  <=  '1';   -- Turn off Green and Blue to make  
      -- color Red when displaying ball 
 Green   <= NOT Ball_on; 
 Blue   <= NOT Ball_on; 
 
Display_Ball:  
 PROCESS ( Ball_X_pos, Ball_Y_pos, pixel_column, pixel_row, Size ) 
 BEGIN    -- check row & column for ball area 
      -- Set Ball_on = '1' to display ball 
  IF  ( ‘0’ & Ball_X_pos  <= pixel_column + Size ) AND 
   ( Ball_X_pos + Size >= ‘0’ & pixel_column  ) AND 
   ( ‘0’ & Ball_Y_pos  <= pixel_row + Size  ) AND 
   ( Ball_Y_pos + Size >= ‘0’ & pixel_row   ) THEN 
      Ball_on <= '1'; 
   ELSE 
      Ball_on <= '0'; 
  END IF; 
 END PROCESS Display_Ball; 
 
Move_Ball:  
 PROCESS 
 BEGIN 
    -- Move ball once every vertical sync 
 WAIT UNTIL Vert_sync'EVENT AND Vert_sync = '1'; 
    -- Bounce off top or bottom of screen 
  IF (‘0’ & Ball_Y_pos) >= CONV_STD_LOGIC_VECTOR(480,10) - Size THEN 
        Ball_Y_motion <=  CONV_STD_LOGIC_VECTOR(-2,10); 
  ELSIF  Ball_Y_pos <= Size   THEN 
       Ball_Y_motion <= CONV_STD_LOGIC_VECTOR(2,10); 
  END IF; 
    -- Compute next ball Y position 
  Ball_Y_pos <= Ball_Y_pos + Ball_Y_motion; 
 END PROCESS Move_Ball; 
END behavior; 

10.15 Higher Video Resolution and Faster Refresh Rates 
The Video Sync FPGAcore function is designed to support higher resolutions 
and refresh rates. The UP2 and UP1 boards can only support their Video Sync 
core’s existing 640 by 480 60Hz video mode since it does not have an internal 
PLL to produce different pixel clocks. Table 10.3 shows several common 
screen resolutions and refresh rates. To change resolutions or refresh rates two 
changes are needed. First, change the PLL’s video output pixel clock to the new 
frequency value by editing the Video_PLL.vhd file using the MegaWizard edit 
feature. Second, the six counter constant values used to generate the horizontal 
and vertical sync signals in the Video_Sync.vhd core need to be changed to the 
new six values for the desired resolution and refresh rate found in the large 



210 Rapid Prototyping of Digital Systems  Chapter 10 
 

 

 

table at the end of the Video_Sync.vhd file. Keep in mind that higher 
resolutions will require more pixel memory and smaller hardware delays that 
can support the faster clock rates needed.  

Table 10.3  Pixel clock rates for some common video resolutions and refresh rates. 

 
Mode Refresh Hor. Sync Pixel clock
640x480 60Hz  31.5kHz  25.175MHz 
640x480  63Hz  32.8kHz  28.322MHz 
640x480  70Hz  36.5kHz  31.5MHz  
640x480  72Hz  37.9kHz  31.5MHz  
800x600 56Hz  35.1kHz  36.0MHz  
800x600 60Hz  37.9kHz  40.0MHz  
800x600 72Hz  48.0kHz  50.0MHz  
1024x768 60Hz  48.4kHz  65.0MHz  
1024x768 70Hz  56.5kHz  75.0MHz  
1024x768 70Hz  56.25kHz 72.0MHz  
1024x768 76Hz  62.5kHz  85.0MHz  
1280x1024 61Hz  64.24kHz 110.0MHz  
1280x1024 74Hz  78.85kHz 135.0MHz    

10.16 Laboratory Exercises 
1. Design a video output display that displays a large version of your initials. Hint: use the 

character generation ROM, the Video Sync FPGAcore, and some of the higher bits of the 
row and column pixel counters to generate larger characters. 

2. Modify the bouncing ball example to bounce and move in both the X and Y directions. 
You will need to add code for motion in two directions and check additional walls for a 
bounce condition. 

3. Modify the bouncing ball example to move up or down based on input from the two 
pushbuttons. 

4. Modify the example to support different speeds. Read the speed of the ball from the 
FPGA switches. 

5. Draw a more detailed ball in the bouncing ball example. Use a small ROM to hold a 
small detailed color image of a ball. 

6. Make a Pong-type video game by using pushbutton input to move a paddle up and down 
that the ball will bounce off of. 

7. Design your own video game with graphics. Some ideas include breakout, space 
invaders, Tetris, a slot machine, poker, craps, blackjack, pinball, and roulette. Keep the 



 VGA Video Display Generation 211 
 

 

 

graphics simple so that the design will fit on the FPGA chip. If the video game needs a 
random number generator, information on random number generation can be found in 
Appendix A. 

8. Use the character font ROM and the ideas from the MIPS character output example to 
add video character output to another complex design. 

9. Using Matlab or C, write a program to convert a color bitmap into a *.mif file with run-
length encoding. Design a state machine to read out the memory and generate the RGB 
color signals to display the bitmap. Use a reduced resolution pixel size such as 160 by 
120. Find a bitmap to display or create one with a paint program. It will work best if the 
bitmap is already 160 by 120 pixels or smaller. A school mascot or your favorite cartoon 
character might make an interesting choice. Limited internal memory is available in the 
FPGA, so a 12-bit RLE format with nine bits for length and three bits for color can be 
used with up to 7,600 locations on the UP3. Some boards have more slightly more 
memory as seen in Table 2.1. This means that the bitmap can only have several thousand 
color changes as the image is scanned across the display. Simple images such as cartoons 
have fewer color changes. A Matlab example is on the DVD. 

10. Add color mixing or dithering with more than 8 colors to the previous problem. The 3-bit 
color code in the RLE encoded memory can be used to map into a color palette. The 
color palette contains the RGB patterns used for color mixing or interlacing. On boards 
that support more than 8 colors directly in hardware, the color palette value can be used 
directly to drive several of the higher RGB output bits. The color palette memory selects 
8 different colors. The program translating the bitmap should select the 8 closest colors 
for the color palette. 

11. Modify the VGA Sync core to support a higher screen resolution and demonstrate it 
using one of the earlier example video designs. 



 

A PS/2 mouse is shown above with the cover removed. The ball (upper right) rolls two 
plastic X and Y axles with a slotted wheel at one end. The slotted wheel passes through a 
square slotted case containing an IR emitter and detector pair. When the wheel rotates it 
generates pulses by interrupting the IR light beam. A microcontroller (lower left) counts 
the pulses and sends data packets containing mouse movement and button data to the PC. 
 
 

CHAPTER 11 

Interfacing to the PS/2 
Keyboard and Mouse 

  



214 Rapid Prototyping of Digital Systems   Chapter 11 
 

 

 

11 Interfacing to the PS/2 Keyboard and Mouse  
The PS/2 interface was originally developed for the IBM PC/AT’s mouse and 
keyboard in 1984. The Altera FPGA boards support the use of either a mouse or 
keyboard using a PS/2 connector on the board (not both at the same time). This 
provides only the basic electrical connections from the PS/2 cable and the 
FPGA chip. It is necessary to design a hardware interface using logic in the 
FPGA chip to communicate with a keyboard or a mouse. Serial-to-parallel 
conversion using a shift register is required in the interface hardware. 

11.1 PS/2 Port Connections  
The PS/2 port consists of 6 pins including ground, power (VDD), keyboard 
data, and a keyboard clock line. The FPGA board supplies the power to the 
mouse or keyboard. Two lines are not used. Pins must be specified in one of the 
design files.  

Table 11.1 PS/2 Keyboard Commands and Messages. 

Commands Sent to Keyboard Hex Value 
Reset Keyboard  
 Keyboard returns AA, 00 after self-test 

FF 

Resend Message FE 
Set key typematic (autorepeat) 
 XX is scan code for key 

FB, XX 

Set key make and break FC, XX 
Set key make FD, XX 
Set all key typematic, make and break FA 
Set all keys make F9 
Set all keys make and break F8 
Make all keys typematic (autorepeat) F7 
Set to Default Values F6 
Clear Buffers and start scanning keys F4 
Set typematic (autorepeat) rate and delay 
 Set typematic (autorepeat) rate and delay  
    Bits 6 and 5 are delay (250ms to 1 sec) 
    Bits 4 to 0 are rate (all 0’s-30x/sec to all 1’s 2x/sec) 

F3, XX 

Read keyboard ID 
 Keyboard sends FA, 83, AB 

F2 

Set scan code set 
 XX is 01, 02, or 03 

F0, XX 

Echo EE 
Set Keyboard LEDs 
 XX is 00000 Scroll, Num, and Caps Lock bits 
 1 is LED on and 0 is LED off 

ED, XX 

 
Both the clock and data lines are open collector and bi-directional. The clock 
line is normally controlled by the keyboard, but it can also be driven by the 
computer system or in this case the FPGA chip, when it wants to stop data 
transmissions from the keyboard. Both the keyboard and the system can drive 
the data line. The data line is the sole source for the data transfer between the 



 Interfacing to the PS/2 Keyboard and Mouse 215 
 

 

 

computer and keyboard. The keyboard and the system can exchange several 
commands and messages as seen in Tables 11.1 and 11.2. 

 

Table 11.2  PS/2 Commands and messages sent by keyboard. 

 
Messages Sent by Keyboard Hex Value 
Resend Message FE 
Two bad messages in a row FC 
Keyboard Acknowledge Command 
 Sent by Keyboard after each command byte FA 

Response to Echo command EE 
Keyboard passed self-test AA 
Keyboard buffer overflow 00 

 

11.2 Keyboard Scan Codes  
Keyboards are normally encoded by placing the key switches in a matrix of 
rows and columns. All rows and columns are periodically checked by the 
keyboard encoder or "scanned" at a high rate to find any key state changes. Key 
data is passed serially to the computer from the keyboard using what is known 
as a scan code. Each keyboard key has a unique scan code based on the key 
switch matrix row and column address to identify the key pressed.  
There are different varieties of scan codes available to use depending on the 
type of keyboard used. The PS/2 keyboard has two sets of scan codes. The 
default scan code set is used upon power on unless the computer system sends a 
command the keyboard to use an alternate set. The typical PC sends commands 
to the keyboard on power up and it uses an alternate scan code set. To interface 
the keyboard to the FPGA board, it is simpler to use the default scan code set 
since no initialization commands are required. 

11.3 Make and Break Codes  
The keyboard scan codes consist of  'Make' and 'Break' codes. One make code 
is sent every time a key is pressed. When a key is released, a break code is sent. 
For most keys, the break code is a data stream of F0 followed by the make code 
for the key. Be aware that when typing, it is common to hit the next key(s) 
before releasing the first key hit. 
Using this configuration, the system can tell whether or not the key has been 
pressed, and if more than one key is being held down, it can also distinguish 
which key has been released. One example of this is when a shift key is held 
down. While it is held down, the '3' key should return the value for the '#' 
symbol instead of the value for the '3' symbol. Also note that if a key is held 
down, the make code is continuously sent via the typematic rate until it is 
released, at which time the break code is sent.  



216 Rapid Prototyping of Digital Systems   Chapter 11 
 

 

 

11.4 The PS/2 Serial Data Transmission Protocol  
The scan codes are sent serially using 11 bits on the bi-directional data line. 
When neither the keyboard nor the computer needs to send data, the data line 
and the clock line are High (inactive).  
As seen in Figure 11.1, the transmission of a single key or command consists of 
the following components:  
 

1. A start bit ('0') 
2. 8 data bits containing the key scan code in low to high bit order 
3. Odd parity bit such that the eight data bits plus the parity bit are an odd 
number of ones 
4. A stop bit ('1')                                                                     
 

The following sequence of events occur during a transmission of a command by 
the keyboard: 
  

1. The keyboard checks to ensure that both the clock and keyboard lines are 
inactive. Inactive is indicated by a High state. If both are inactive, the keyboard 
prepares the 'start' bit by dropping the data line Low. 
2. The keyboard then drops the clock line Low for approximately 35us. 
3. The keyboard will then clock out the remaining 10 bits at an approximate 
rate of 70us per clock period. The keyboard drives both the data and clock line. 
4. The computer is responsible for recognizing the ‘start’ bit and for receiving 
the serial data. The serial data, which is 8 bits, is followed by an odd parity bit 
and finally a High stop bit. If the keyboard wishes to send more data, it follows 
the 12th bit immediately with the next ‘start’ bit. 
This pattern repeats until the keyboard is finished sending data at which point 
the clock and data lines will return to their inactive High state. 

Figure 11.1 Keyboard Transmission of a Scan Code. 

 

  

Clock 
 
 
 
 
Data 

Start 
Bit=0 Stop 

Bit=1 
Odd Parity 
Bit=0 

  0         1         1        0         1         0        0         0  

8 Data Bits in Low to High Order 
Scan Code shown is 16H for a “1” character 
which is keyboard key #2 



 Interfacing to the PS/2 Keyboard and Mouse 217 
 

 

 

In Figure 11.1 the keyboard is sending a scan code of 16 for the "1" key and it 
has a zero parity bit. When implementing the interface code, it will be 
necessary to filter the slow keyboard clock to ensure reliable operation with the 
fast logic inside the FPGA chip. Whenever an electrical pulse is transmitted on 
a wire, electromagnetic properties of the wire cause the pulse to be distorted 
and some portions of the pulse may be reflected from the end of the wire. On 
some PS/2 keyboards and mice there is a reflected pulse on the cable that is 
strong enough to cause additional phantom clocks to appear on the clock line.  
Here is one approach that solves the reflected pulse problem. Feed the PS/2 
clock signal into an 8-bit shift register that uses a 24MHz clock. AND the bits 
of the shift register together and use the output of the AND gate as the new 
"filtered" clock. This prevents noise and ringing on the clock line from causing 
occasional extra clocks during the serial-to-parallel conversion in the FPGA 
chip.  
A few keyboards and mice will work without the clock filter and many will not. 
They all will work with the clock filter, and it is relatively easy to implement. 
This circuit is included in the FPGAcores for the keyboard and the mouse. Pin 
assignments for the various FPGA boards are seen in Table 11.3 

Table 11.3  The PS/2 Keyboard or Mouse Pin Assignments  

Pin Name DE1 DE2 UP3 UP2, 
UP1 

Pin 
Type 

Function of Pin 

PS2_CLK H15 D26 12 30 Bidir. PS2 Connector 
PS2_DATA J14 C24 13 31 Bidir. PS2 Connector 

 
As seen in Figure 11.2, the computer system or FPGA chip in this case sends 
commands to the PS/2 keyboard as follows:  
 
1. System drives the clock line Low for approximately 60us to inhibit any new 
keyboard data transmissions. The clock line is bi-directional. 
2. System drives the data line Low and then releases the clock line to signal 
that it has data for the keyboard. 
3. The keyboard will generate clock signals in order to clock out the remaining 
serial bits in the command. 
4. The system will send its 8-bit command followed by a parity bit and a stop 
bit. 
5. After the stop bit is driven High, the data line is released. 
 
Upon completion of each command byte, the keyboard will send an 
acknowledge (ACK) signal, FA, if it received the data successfully. If the 
system does not release the data line, the keyboard will continue to generate the 
clock, and upon completion, it will send a ‘re-send command’ signal, FE or FC, 
to the system. A parity error or missing stop bit will also generate a re-send 
command signal. 



218 Rapid Prototyping of Digital Systems   Chapter 11 
 

 

 

 
 

 

Figure 11.2 System Transmission of a Command to PS/2 Device. 

11.5 Scan Code Set 2 for the PS/2 Keyboard 
PS/2 keyboards are available in several languages with different characters 
printed on the keys. A two-step process is required to find the scan code. A key 
number is used to lookup the scan code. Key numbers needed for the scan code 
table are shown in Figure 11.3 for the English language keyboard layout. 
 

 

Figure 11.3 Key Numbers for Scan Code. 

Each key sends out a make code when hit and a break code when released. 
When several keys are hit at the same time, several make codes will be sent 
before a break code.  

  

Clock 
 
 
 
 
Data 

System Data 
Ready 
to Send=0 

Stop 
Bit=1 

Odd Parity 
Bit=0 

  0         0         1        0         1         1        1         1  

8 Data Bits in Low to High Order 
Command Code shown is F4H  

Inhibit 
I/O 

ESC
110

F1
112

F2
113

F3
114

F4
115

F5
116

F6
117

F7
118

F8
119

F9
120

F10
121

F11
122

F12
123

Print
Scrn
124

Pause
126

Scroll
Lock
125

~     `
1

!     1
2

@    2
3

#   3
4

$   4
5

%   5
6

^   6
7

&   7
8

*   8
9

(     9
10

)     0
11

-   _
12

=   +
13

Backspace
15

    Tab
16

Q
17

W
18

E
19

R
20

T
21

Y
22

U
23

I
24

O
25

P
26

[     {
27

]    }
28

\         |
29

    Caps Lock
30

A
31

S
32

D
33

F
34

G
35

H
36

J
37

K
38

L
39

;     :
40

‘    “
41

Enter
43

Z
46

X
47

C
48

V
49

B
50

N
51

M
52

,     <
53

.     >
54

/     ?
55

Shift
57

    Shift
44

    Ctrl
58

Ctrl
64

Alt
62

Alt
60 61

Insert
75

Home
80

Del
76

End
81

Pg Up
85

Pg Dn
86

83

79 84 89

/
95

*
100

-
105

8
96

+

106
4
76

5
97

6
102

2
98

0       Ins
99

.   Del
104

Num
Lock
90

7
Home

91

9
Pg Up

101

1
End
93

3
Pg Dn

103
Enter

108



 Interfacing to the PS/2 Keyboard and Mouse 219 
 

 

 

The keyboard powers up using this scan code as the default. Commands must 
be sent to the keyboard to use other scan code sets. The PC sends out an 
initialization command that forces the keyboard to use the other scan code.  
The interface is much simpler if the default scan code is used. If the default 
scan code is used, no commands will need to be sent to the keyboard. The keys 
in Table 11.4 for the default scan code are typematic (i.e. they automatically 
repeat the make code if held down). 
 

 Table 11.4 Scan Codes for PS/2 Keyboard.  

 

Key# Make 
Code 

Break 
Code Key# Make 

Code 
Break 
Code Key# Make 

Code 
Break 
Code 

1 0E F0 0E 31 1C F0 1C 90 77 F0 77 
2 16 F0 16 32 1B F0 1B 91 6C F0 6C 
3 1E F0 1E 33 23 F0 23 92 6B F0 6B 
4 26 F0 26 34 2B F0 2B 93 69 F0 69 
5 25 F0 25 35 34 F0 34 96 75 F0 75 
6 2E F0 2E 36 33 F0 33 97 73 F0 73 
7 36 F0 36 37 3B F0 3B 98 72 F0 72 
8 3D F0 3D 38 42 F0 42 99 70 F0 70 
9 3E F0 3E 39 4B F0 4B 100 7C F0 7C 

10 46 F0 46 40 4C F0 4C 101 7D F0 7D 
11 45 F0 45 41 52 F0 52 102 74 F0 74 
12 4E F0 4E 43 5A F0 5A 103 7A F0 7A 
13 55 F0 55 44 12 F0 12 104 71 F0 71 
15 66 F0 66 46 1A F0 1A 105 7B F0 7B 
16 0D F0 0D 47 22 F0 22 106 79 F0 79 
17 15 F0 15 48 21 F0 21 110 76 F0 76 
18 1D F0 1D 49 2A F0 2A 112 05 F0 05 
19 24 F0 24 50 32 F0 32 113 06 F0 06 
20 2D F0 2P 51 31 F0 31 114 04 F0 04 
21 2C F0 2C 52 3A F0 3A 115 0c F0 0C 
22 35 F0 35 53 41 F0 41 116 03 F0 03 
23 3C F0 3C 54 49 F0 49 117 0B F0 0B 
24 43 F0 43 55 4A F0 4A 118 83 F0 83 
25 44 F0 44 57 59 F0 59 119 0A F0 0A 
26 4D F0 4D 58 14 F0 14 120 01 F0 01 
27 54 F0 54 60 11 F0 11 121 09 F0 09 
28 5B F0 5B 61 29 F0 29 122 78 F0 78 
29 5D F0 5D 62 E0 11 E0 F0 11 123 07 F0 07 

The remaining key codes are a function of the shift, control, alt, or num-lock keys. 



220 Rapid Prototyping of Digital Systems   Chapter 11 
 

 

 

 Table 11.4 (Continued) - Scan Codes for PS/2 Keyboard.  

                             

Key No Shift or 
Num Lock Shift* Num Lock On 

# Make Break Make Break Make Break 
76 E0 70 E0 F0 70 E0 F0 12 E0 70 E0 F0 70 E0 12 E0 12 E0 70 E0 F0 70 E0 F0 12 
76 E0 71 E0 F0 71 E0 F0 12 E0 71 E0 F0 71 E0 12  E0 12 E0 71  E0 F0 71 E0 T0 12 
79 E0 6B E0 F0 6B E0 F0 12 E0 6B E0 F0 6B E0 12 E0 12 E0 6B  E0 F0 6B E0 F0 12 
80 E0 6C E0 F0 6C E0 F0 12 E0 6C E0 F0 6C E0 12 E0 12 E0 6C  E0 F0 6C E0 F0 12 
81 E0 69 E0 F0 69 E0 F0 12 E0 69 E0 F0 69 E0 12 E0 12 E0 69  E0 F0 69 E0 F0 12 
83 E0 75 E0 F0 75 E0 F0 12 E0 75 E0 F0 75 E0 12 E0 12 E0 75  E0 F0 75 E0 F0 12 
84 E0 72 E0 F0 72 E0 F0 12 E0 72 E0 F0 72 E0 12 E0 12 E0 72  E0 F0 72 E0 F0 12 
85 E0 7D E0 F0 7D E0 F0 12 E0 7D E0 F0 7D E0 12 E0 12 E0 7D  E0 F0 7D E0 F0 12 
86 E0 7A E0 F0 7A E0 F0 12 E0 7A E0 F0 7A E0 12 E0 12 E0 7A  E0 F0 7A E0 F0 12 
89 E0 74 E0 F0 74 E0 F0 12 E0 74 E0 F0 74 E0 12 E0 12 E0 74  E0 F0 74 E0 F0 12 

* When the left Shift Key is held down, the 12 - FO 12 shift make and break is sent with the other scan 
codes. When the right Shift Key is held down, 59 – FO 59 is sent. 

 
Key Scan Code Shift Case * 

# Make Break Make Break 
95 E0 4A E0 F0 4A E0 F0 12 E0 4A E0 12 F0 4A 

*  When the left Shift Key is held down, the 12 - FO 12 shift make and break is sent with the other scan 
codes. When the right Shift Key is held down, 59 - FO 59 is sent. When both Shift Keys are down, both 
sets of codes are sent with the other scan codes. 

 
Key Scan Code Control Case, Shift Case Alt Case 

# Make Break Make Break Make Break 
124 E0 12 E0 7C E0 F0 7C E0 F0 I2 E0 7C E0 F0 7C 84 F0 84 

 
Key # Make Code Control Key Pressed 
126 * El 14 77 El F0 14 F0 77 E0 7E E0 F0 7E 

*  This key does not repeat 
 

11.6 The Keyboard FPGAcore 
The following VHDL code for the keyboard FPGAcore shown in Figure 11.4 
reads the scan code bytes from the keyboard. In this example code, no 
command is ever sent to the keyboard, so clock and data are always used as 
inputs and the keyboard power-on defaults are used.  
To send commands, a more complex bi-directional tri-state clock and data 
interface is required. The details of such an interface are explained in later 
sections on the PS/2 mouse. The keyboard powers up and sends the self-test 
code AA and 00 to the FPGA chip before it is downloaded.  

 



 Interfacing to the PS/2 Keyboard and Mouse 221 
 

 

 

 

Figure 11.4 Keyboard FPGAcore  

LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
USE  IEEE.STD_LOGIC_ARITH.ALL; 
USE  IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
ENTITY keyboard IS 
 PORT( keyboard_clk, keyboard_data, clock_48MHz ,  
   reset, read   : IN STD_LOGIC; 
   scan_code   : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
   scan_ready  : OUT STD_LOGIC); 
END keyboard; 
 
ARCHITECTURE a OF keyboard IS 
 SIGNAL INCNT    : STD_LOGIC_VECTOR( 3 DOWNTO 0 ); 
 SIGNAL SHIFTIN     : STD_LOGIC_VECTOR( 8 DOWNTO 0 ); 
 SIGNAL READ_CHAR, clock_enable  : STD_LOGIC; 
 SIGNAL INFLAG, ready_set   : STD_LOGIC; 
 SIGNAL keyboard_clk_filtered    : STD_LOGIC; 
 SIGNAL filter     : STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
 
BEGIN 
 PROCESS ( read, ready_set ) 
 BEGIN 

  IF read = '1' THEN  
      scan_ready <= '0'; 

  ELSIF ready_set'EVENT AND ready_set = '1' THEN 
      scan_ready <= '1'; 
  END IF; 
 END PROCESS; 
    --This process filters the raw clock signal coming from the  
    -- keyboard using a shift register and two AND gates 
Clock_filter:  
 PROCESS 
  BEGIN 
  WAIT UNTIL clock_48MHz'EVENT AND clock_48MHz = '1'; 
  clock_enable <= NOT clock_enable; 
  IF clock_enable = ‘1’ THEN 
   filter ( 6 DOWNTO 0 ) <= filter( 7 DOWNTO 1 ) ; 

keyboard

inst

keyboard_clkkeyboard_clk

keyboard_datakeyboard_data

clock_48Mhzclock_48Mhz

resetreset

readread

scan_code[7..0]scan_code[7..0]

scan_readyscan_ready



222 Rapid Prototyping of Digital Systems   Chapter 11 
 

 

 

   filter( 7 ) <= keyboard_clk; 
   IF filter = "11111111" THEN  
       keyboard_clk_filtered <= '1'; 
   ELSIF filter = "00000000" THEN  
       keyboard_clk_filtered <= '0'; 
   END IF; 
     END IF; 
 END PROCESS Clock_filter; 
   --This process reads in serial scan code data coming from the keyboard 
 PROCESS 
 BEGIN 
  WAIT UNTIL (KEYBOARD_CLK_filtered'EVENT AND KEYBOARD_CLK_filtered = '1'); 
  IF RESET = '0' THEN 
   INCNT  <= "0000"; 
   READ_CHAR  <= '0'; 
  ELSE 
   IF KEYBOARD_DATA = '0' AND READ_CHAR = '0' THEN 
    READ_CHAR <= '1'; 
    ready_set <= '0'; 

   ELSE 
       -- Shift in next 8 data bits to assemble a scan code 
    IF READ_CHAR = '1' THEN 
     IF INCNT < "1001" THEN 
                INCNT  <= INCNT + 1; 
                SHIFTIN( 7 DOWNTO 0 ) <= SHIFTIN( 8 DOWNTO 1 ); 
                SHIFTIN( 8 ) <= KEYBOARD_DATA; 
                      ready_set <= '0'; 
       -- End of scan code character, so set flags and exit loop 
     ELSE 
      scan_code  <= SHIFTIN( 7 DOWNTO 0 ); 
      READ_CHAR <='0'; 
      ready_set  <= '1'; 
      INCNT  <= "0000"; 
     END IF; 
    END IF; 
   END IF; 
 END IF; 
END PROCESS; 
END a; 

 
The keyboard clock is filtered in the Clock_filter process using an 8-bit shift 
register and an AND gate to eliminate any reflected pulses, noise, or timing 
hazards that can be found on some keyboards. The clock signal in this process 
is the 48 MHz system clock divided by two to produce a 24 MHz clock rate 
using the clock enable signal. On DE1 and DE2 boards, a 50Mhz clock input is 
used. The output signal, keyboard_clk_filtered, will only change if the input 
signal, keyboard_clk, has been High or Low for eight successive 24 MHz 
clocks or 320ns. This filters out noise and reflected pulses on the keyboard 
cable that could cause an extra or false clock signal on the fast FPGA chip. This 
problem has been observed to occur on some PS/2 keyboards and mice and is 
fixed by the filter routine. 



 Interfacing to the PS/2 Keyboard and Mouse 223 
 

 

 

The RECV_KBD process waits for a start bit, converts the next eight serial data 
bits to parallel, stores the input character in the signal, charin, and sets a flag, 
scan_ready, to indicate a new character was read. . The scan_ready or input 
ready flag is a handshake signal needed to ensure that a new scan code is read 
in and processed only once. Scan_ready is set whenever a new scan code is 
received. The input signal, read, resets the scan ready handshake signal. 
The process using this code to read the key scan code would need to wait until 
the input ready flag, scan_ready, goes High. This process should then read in 
the new scan code value, scan_code. Last, read should be forced High and Low 
to clear the scan_ready handshake signal.  
Since the set and reset conditions for scan_ready come from different processes 
each with different clocks, it is necessary to write a third process to generate 
the scan_ready handshake signal using the set and reset conditions from the 
other two processes. Hitting a common key will send a 1-byte make code and a 
2-byte break code. This will produce at least three different scan_code values 
each time a key is hit and released. 
A shift register is used with the filtered clock signals to perform the serial to 
parallel conversion. No command is ever sent the keyboard and it powers up 
using scan code set 2. Since commands are not sent to the keyboard, in this 
example clock and data lines are not bi-directional. The parity bit is not 
checked. 

11.7 A Design Example Using the Keyboard FPGAcore 
Here is a simple design using the Keyboard and LCD_Display FPGAcores. The 
last six bytes of scan codes will appear in the LCD display (or on some FPGA 
boards in the seven segment LEDs). The block code_FIFO saves the last six 
scan codes for the LCD display and is not used on the FPGA boards with a two 
digit hex LED display. 

Figure 11.5 Example design using the Keyboard FPGAcore. 

 

 

 

 

 

 

VCC
SW8 INPUT

VCC
CLK_48Mhz INPUT

LCD_RSOUTPUT

LCD_EOUTPUT

LCD_RWOUTPUT

VCC
DATA_BUS[7..0]BIDIR

VCCPS2_CLK BIDIR
VCCPS2_DATA BIDIR

reset

clk_48Mhz

Hex_Display _Data[num_hex_digits*4-1..0]

LCD_RS

LCD_E

LCD_RW

DATA_BUS[7..0]

LCD_Display

inst1

scan_code[7..0]

scan_ready

clock_48Mhz

reset

Hex_display _data[39..0]

read

code_FIFO

inst3

key board_clk

key board_data

clock_48Mhz

reset

read

scan_code[7..0]

scan_ready

key board

inst

Hex_Display _Data[39..0]

Hex_Display _Data[39..0]



224 Rapid Prototyping of Digital Systems   Chapter 11 
 

 

 

11.8 Interfacing to the PS/2 Mouse  
 
Just like the PS/2 keyboard, the PS/2 mouse uses the PS/2 synchronous bi-
directional serial communication protocol described in section 11.4 and shown 
in Figures 11.1 and 11.2. Internally, the mouse contains a ball that rolls two 
slotted wheels. The wheels are connected to two optical encoders. The two 
encoders sense x and y motion by counting pulses when the wheels move. It 
also contains two or three pushbuttons that can be read by the system and a 
single-chip microcontroller. The microcontroller in the mouse sends data 
packets to the computer reporting movement and button status.  
It is necessary for the computer or in this case the FPGA chip to send the mouse 
an initialization command to have it start sending mouse data packets. This 
makes interfacing to the mouse more difficult than interfacing to the keyboard. 
As seen in Table 11.5, the command value needed for initialization after power 
up is F4, enable streaming mode. 
 

Table 11.5  PS/2 Mouse Commands. 

 
Commands Sent to Mouse Hex Value 

Reset Mouse FF 
         Mouse returns AA, 00 after self-test  
Resend Message FE 
Set to Default Values F6 
Enable Streaming Mode 
 Mouse starts sending data packets at default rate 

F4 

Disable Streaming Mode F5 
Set sampling rate 
 XX is number of packets per second 

F3, XX 

Read Device Type F2 
Set Remote Mode EE 
Set Wrap Mode 
 Mouse returns data sent by system 

EC 

Read Remote Data 
 Mouse sends 1 data packet 

EB 

Set Stream Mode EA 
Status Request 
 Mouse returns 3-bytes with current settings 

E9 

Set Resolution 
 XX is 0, 1, 2, 3 

E8, XX 

Set Scaling 2 to 1 E7 
Reset Scaling E6 



 Interfacing to the PS/2 Keyboard and Mouse 225 
 

 

 

 

 

Table 11.6  PS/2 Mouse Messages. 

 
Messages Sent by Mouse Hex Value 

Resend Message FE 
Two bad messages in a row FC 
Mouse Acknowledge Command 
 Sent by Mouse after each command byte 

FA 

Mouse passed self-test AA 
 

 
 

After streaming mode is enabled, the mouse sends data to the system in three 
byte data packets that contain motion and pushbutton status. The format of a 
three-byte mouse data packet is seen in Table 11.7. 
 
 

Table 11.7 PS/2 Mouse Data Packet Format. 

 
  MSB LSB 
Bit 7 6 5 4 3 2 1 0 
Byte 1 Yo Xo Ys Xs 1 M R L 
Byte 2 X7 X6 X5 X4 X3 X2 X1 X0 
Byte 3 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 

L = Left Key Status bit ( For buttons 1 = Pressed and 0 = Released ) 
M = Middle Key Status bit ( This bit is reserved in the standard PS/2 mouse protocol, but 

some three button mice use the bit for middle button status.) 
R = Right Key Status bit 
X7 – X0 = Moving distance of X in two’s complement 
  ( Moving Left = Negative;  Moving Right = Positive ) 
Y7 – Y0 = Moving distance of Y in two’s complement  
  ( Moving Up = Positive; Moving Down = Negative ) 
Xo = X Data Overflow bit  ( 1 = Overflow ) 
Yo = Y Data Overflow bit  ( 1 = Overflow )  
Xs = X Data sign bit ( 1 = Negative ) 
Ys = Y Data sign bit ( 1 = Negative ) 
 

 



226 Rapid Prototyping of Digital Systems   Chapter 11 
 

 

 

11.9 The Mouse FPGAcore 
The FPGAcore function Mouse is designed to provide a simple interface to the 
mouse. This function initializes the mouse and then monitors the mouse data 
transmissions. It outputs a mouse cursor address and button status. The internal 
operation of the Mouse FPGAcore is rather complex and the fundamentals are 
described in the section that follows. Like the other FPGAcore functions, it is 
written in VHDL and complete source code is provided. 
 
 

 
 
To interface to the mouse, a clock filter, serial-to-parallel conversion and 
parallel-to-serial conversion with two shift registers is required along with a 
state machine to control the various modes. See the earlier PS/2 keyboard 
section for an example of a clock filter design.  

11.10 Mouse Initialization 
Two lines are used to interface to the mouse, PS/2 clock and data. The lines 
must be tri-state bi-directional, since at times they are driven by the mouse and 
at other times by the FPGA chip. All clock, data, and handshake signals share 
two tri-state, bi-directional lines, clock and data. These two lines must be 
declared bi-directional when pin assignments are made and they must have tri-
state outputs in the interface. The mouse actually has open collector outputs 
that can be simulated by using a tri-state output. The mouse always drives the 
clock signal for any serial data exchanges. The FPGA chip can inhibit mouse 
transmissions by pulling the clock line Low at any time.  
The FPGA chip drives the data line when sending commands to the mouse. 
When the mouse sends data to the FPGA chip it drives the data line. The tri-
state bi-directional handshaking is described in more detail in the IBM PS/2 
Technical Reference manual. A simpler version with just the basics for 
operation with the FPGA boards is presented here. Just like the keyboard, the 
mouse interface is more reliable if a clock filter is used on the clock line. 
At power-up, the mouse runs a self-test and sends out the codes AA and 00. The 
clock and data FPGA chip outputs are tri-stated before downloading the board, 
so they float High. High turns out to be ready to send for mouse data, so AA 

MOUSE

inst

clock_48Mhzclock_48Mhz

resetreset

lef t_buttonlef t_button

right_buttonright_button

mouse_cursor_row[9..0]mouse_cursor_row[9..0]

mouse_cursor_column[9..0]mouse_cursor_column[9..0]

mouse_datamouse_data

mouse_clkmouse_clk

 



 Interfacing to the PS/2 Keyboard and Mouse 227 
 

 

 

and 00 are sent out prior to downloading and need not be considered in the 
interface. This assumes that the mouse is plugged in before applying power to 
the UP3 board and downloading the design.  
The default power-up mode is streaming mode disabled. To get the mouse to 
start sending 3-byte data packets, the streaming mode must be turned on by 
sending the enable streaming mode command, F4, to the mouse from the FPGA 
chip. The clock tri-state line is driven Low by the FPGA for at least 60us to 
inhibit any data transmissions from the mouse. This is the only case when the 
FPGA chip should ever drive the clock line. The data line is then driven Low 
by the FPGA chip to signal that the system has a command to send the mouse.  

Figure 11.6 Transmission of Mouse Initialization Command.  

The clock line is driven High for four clocks at 24 MHz and then tri-stated to 
simulate an open collector output. This reduces the rise time and reflections on 
the mouse cable that might be seen by the fast FPGA chip logic as the clock 
line returns to the High state. As an alternative, the mouse clock input to the 
FPGA could be briefly disabled while the clock line returns to the High state. 
Next the mouse, seeing data Low and clock High, starts clocking in the serial 
data from the FPGA chip. The data is followed by an odd parity bit and a High 
stop bit. The handshake signal of the data line starting out Low takes the place 
of the start bit when sending commands to the mouse. 
With the FPGA chip clock and data drivers both tri-stated, the mouse then 
responds to this message by sending an acknowledge message code, FA, back 
to the FPGA chip. Data from the mouse includes a Low start bit, eight data bits, 
an odd parity bit, and a High stop bit. The mouse, as always, drives the clock 
line for the serial data transmission. The mouse is now initialized. 

11.11 Mouse Data Packet Processing 
As long as the FPGA chip clock and data drivers remain tri-stated, the mouse 
then starts sending 3-byte data packets at the power-up default sampling rate of 
100 per second. Bytes 2 and 3 of the data packet contain X and Y motion values 
as was seen in Table 11.6. These values can be positive or negative, and they 
are in two’s complement format.  

  

Clock 
 
 
 
 
Data 

System Data 
Ready 
to Send=0 

Stop 
Bit=1 

Odd Parity 
Bit=0 

  0         0         1        0         1         1        1         1  

8 Data Bits in Low to High Order 
Command Code shown is F4H  

Inhibit 
I/O 



228 Rapid Prototyping of Digital Systems   Chapter 11 
 

 

 

For a video mouse cursor such as is seen in the PC, the motion value will need 
to be added to the current value every time a new data packet is received. 
Assuming 640 by 480 pixel resolution, two 10-bit registers containing the 
current cursor row and column addresses are needed. These registers are 
updated every packet by adding the sign extended 8-bit X and Y motion values 
found in bytes 2 and 3 of the data packet. The cursor normally would be 
initialized to the center of the video screen at power-up. 

11.12 An Example Design Using the Mouse FPGAcore 
In this example design, the mouse drives the  LCD display on the DE2 or UP3 
boards. The mouse cursor powers up to the center position of the 640 by 480 
video screen. Note that the PS/2 mouse clock and data pins must be bi-
directional. The block Mouse_LCD_interface rearranges the mouse core output 
signals for use by the LCD_Display core function. On FPGA boards without an 
LCD module, the seven segment LED displays are used instead. 

 

Figure 11.7 Example design using the Mouse FPGAcore. 

VCC
SW8 INPUT

VCC
CLK_48Mhz INPUT

LCD_RSOUTPUT

LCD_EOUTPUT

LCD_RWOUTPUT

VCC
DATA_BUS[7..0]BIDIR

VCC
PS2_CLKBIDIR

VCC
PS2_DATABIDIR

reset

clk_48Mhz

Hex_Display _Data[num_hex_digits*4-1..0]

LCD_RS

LCD_E

LCD_RW

DATA_BUS[7..0]

LCD_Display

inst

clock_48Mhz

reset

lef t_button

right_button

mouse_cursor_row[9..0]

mouse_cursor_column[9..0]

mouse_data

mouse_clk

MOUSE

inst1

mouse_cursor_row[9..0]

mouse_cursor_column[9..0]

lef t_button

right_button

Hex_Display _Data[23..0]

mouse_LCD_interf ace

inst3

lef t_button

right_button

right_button
lef t_button



 Interfacing to the PS/2 Keyboard and Mouse 229 
 

 

 

11.13 For Additional Information 
The IBM PS/2 Hardware Interface Technical Reference Manual, IBM 
Corporation, 1988 contains the original PS/2 information on the keyboard and 
mouse in the Keyboard and Auxiliary Device Controller Chapter. Scan codes 
for the alternate scan code set normally used by the PC can be found on the 
web and in many PC reference manuals. 

11.14 Laboratory Exercises 
1. Write a VHDL module to read a keyboard scan code and display the entire scan code 

string in hexadecimal on the VGA display using the VGA_SYNC and CHAR_ROM 
FPGAcores. It will require the use of the read and scan ready handshake lines and a small 
RAM to hold the scan code bytes. 

2. After reading the section on the PS/2 mouse, design an interface that can also send 
commands to the keyboard. Demonstrate that the design works correctly by changing the 
status of the keyboard LEDs after reading the new settings from switches. 

3. Develop a keyboard module that uses the alternate scan code set used by the PC. 

4. Write the keyboard module in another HDL such as Verilog. 

5. Use the keyboard as a new input device for a video game, the μP1 computer, or another 
application. 

6. Generate a video display that has a moving cursor controlled by the mouse using the 
Mouse and VGA_Sync FPGAcores. Use the mouse buttons to change the color of the 
cursor. 

7. Use the mouse as input to a video etch-a-sketch. Use a monochrome 128 by 128 1-bit 
pixel RAM with the VGA_Sync core in your video design. Display a cursor. To draw a 
line, the left mouse button should be held down. 

8. Use the mouse as an input device in another design with video output or a simple video 
game such as pong, breakout, or Tetris. 

9. Write a mouse driver in Verilog. Use the mouse information provided in sections 11.2 
and 11.3. 



 

The EIA RS-232C standard is widely used in PCs on the COM ports for serial data 
transmission. 
 
 
 

CHAPTER 12 

Legacy Digital I/O 
Interfacing Standards  

   
0 0 0 0 1 0 1 0

Start
Bit

0 1 2 3 4 5 6 7 Stop
BitData Bit number

Mark (1)

Space (0)

ASCII “P” = 0x50

Time
LSB MSB  



232 Rapid Prototyping of Digital Systems   Chapter 12 
 

 

 

12 Legacy Digital I/O Interfacing Standards 
Historically, several common digital interface standards have developed over 
the years to interface computers to their peripheral devices. This chapter will 
introduce several of the older standards and briefly describe how they function 
in a hardware design. Each standard has a unique set of hardware and 
performance tradeoffs. Many devices and ICs are available that use these 
standards. These interfaces are present in most PCs and are found in many 
embedded systems including FPGA boards. 

12.1 Parallel I/O Interface 
The parallel printer interface standard was developed by Centronics in the 
1970s and is a widely used standard for transferring 8-bit parallel data. Most 
PCs have a parallel port. Data is transferred in parallel using eight data bits and 
standard digital logic voltage levels. Additional status and control bits are 
required for the sender and receiver to exchange handshake signals that 
synchronize each 8-bit data transfer. Typically, the parallel printer port is 
interfaced to two 8-bit I/O ports on a processor. One I/O port is used for 8-bit 
data transfers and one I/O port for the status and control bits that are used for 
handshake signals. 
The transfer of an 8-bit data value is shown in Figure 12.1. First, the computer 
waits for the printer’s busy signal to go Low. Next, the computer outputs the 
eight data bits and the computer then sets strobe Low for at least 0.5us. The 
computer then waits for the printer to pulse Ack Low. The computer must wait 
for Ack Low before changing the data or strobe lines. The printer may go Busy 
after it raises Ack. The printer handshake lines are also used to force the 
computer to wait for events like a slow carriage return or page feed on a 
mechanical printer or errors like a paper out condition. Sometimes a timeout 
loop is used to detect conditions like paper out. The UP3 board has a standard 
printer parallel port connector. With the appropriate hardware, it can be used to 
communicate with a standard printer. 
In addition to printers, some special purpose devices also use the individual 
parallel port bits in a number of different ways to output digital logic bits to 
control external hardware. The ByteBlaster adapter you use to program the 
FPGA is one such example.  
The original parallel interface supported only unidirectional data transfers from 
a computer to a printer. Recent parallel port standards such as IEEE 1284 ECP 
and EPP support bidirectional and faster data transfers between an external 
device and the computer. In these newer modes, another control bit from the 
computer specifies the data transfer direction and tri-state gate outputs are used 
in both the computer and printer to drive the data lines bidirectionally.  
Parallel cables will only work for relatively short distances. The RS-232C 
standard in the next section supports longer cables with fewer wires, but it also 
has lower bandwidth and data transfer rates. 

 
 



 Legacy Digital I/O Interface Standards 233 
 

 

 

 
 

Data Lines

Busy

nStrobe

nAck

Data Valid

1 2 3 4
 

 

 

Figure 12.1 Parallel Port transfer of an 8-bit data value 

12.2 RS-232C Serial I/O Interface 
 

The Electronics Industry Association (EIA) RS-232C Serial interface is one of 
the oldest serial I/O standards. In Europe, is it also called V.24. 8-bit data is 
transmitted one bit at a time serially. Most PCs have an RS-232C serial COM 
port. Serial interfaces have an advantage in that they require fewer wires in the 
cable than a parallel interface and can support longer cables. In RS-232C’s 
simplest implementation, only three wires are used in the cable. One wire for 
transmit data (TD), one for receive data (RD) and one for signal ground (GND). 
Individual bits are clocked in and out serially using a clock signal. The 
frequency of this bit clock is called the serial interface’s baud rate. (Baudot was 
a French engineer that developed an early serial interface for the telegraph.) 
Since two different signal wires are used for receive and transmit, serial devices 
can be transferring data in both directions at the same time (full-duplex). The 
ASCII character code is typically used on serial devices, but they can also be 
used to transfer 8-bit binary values.  
The baud rate clock is not synchronized by using a signal wire connected 
between the sending and receiving devices, rather it is asynchronous and is 
derived by a state machine watching the serial data bit transitions occurring at 
the receiver. For this to function correctly, the transmitter and receiver must be 
setup to operate at the same clock or baud rate. Even though they have the same 
clock rate, the clock phase must still be synchronized between a serial 
transmitter and receiver by examining the incoming serial data line. The 
hardware logic circuit needed for this common serial interface is called a 
Universal Asynchronous Receiver Transmitter (UART). 
 
 



234 Rapid Prototyping of Digital Systems   Chapter 12 
 

 

 

 

0 0 0 0 1 0 1 0

Start
Bit

0 1 2 3 4 5 6 7 Stop
BitData Bit number

Mark (1)

Space (0)

ASCII “P” = 0x50

Time
LSB MSB

 
 

 

Figure 12.2 RS-232C Serial interface transmission of an 8-bit data value 

 
 
Figure 12.2 shows the transmission of a single ASCII character over an RS-
232C serial interface. The serial bit has two states. Mark is the high state (>3V) 
and Space is the low state (<-3V). Older generation serial devices will have 
around +12V and -12V levels for Mark and Space. Note that for the proper RS-
232 voltage levels, a standard digital logic output bit will have to have its 
voltage levels converted for use in a serial interface. Special ICs are normally 
used for this RS-232C voltage conversion. To reduce the need for additional 
circuits, these ICs also generate the required DC supply voltages from the 
standard digital logic DC power supplies. This special IC chip is already 
present on the UP3’s serial interface. FPGA logic elements can be used to build 
the UART hardware function. 
The idle state is High (Mark). Whenever the interface starts sending a new 8-bit 
data value, the line is dropped Low (Space) for one clock cycle (baud rate 
clock). This is called the start bit. The eight data bits are then clocked out 
during the next eight baud clocks in low to high bit order. The highest data bit 
is sometimes used as a parity bit for error detection, when only seven data bits 
are used instead of eight. After the data bits are clocked out, the bit goes high 
for one clock. This is called the Stop bit. Sometimes at low baud rates, two 
Stop bits are present. Note that at least 10 clocks are required to transfer an  8-
bit data value. 
Typically, UARTs transfer 8-bit data values in and out to other internal logic 
using an 8-bit parallel I/O port interfaced to a processor. Extra UART status 
bits can be read by the processor that indicate another 8-bit data value can be 
sent to the UART or another 8-bit data value is available to read in from the 
UART. Since serial transmission is very slow compared to a processor’s clock, 
these status bits must be checked in software or hardware for their proper state 
or the processor will send/receive data faster than the UART can produce or 
consume it. Other status bits can also be used to detect various error conditions. 



 Legacy Digital I/O Interface Standards 235 
 

 

 

A UARTs transmitter uses a shift register clocked by the baud rate clock to 
convert the 8-bit parallel data to eight serial bits. Start and stop bits are 
automatically added by the UART’s hardware. 
At the other end of the serial cable, another UART’s receiver uses the Stop and 
Start bits to reset its internal state machine that is attempting to synchronize its 
receive clock phase to the incoming serial bit data. This state machine 
synchronizes the receive clock phase whenever it sees an edge on the incoming 
serial line. Note that several consecutive bits could be the same value inside the 
eight data bits, so there is not an edge transition on every single clock.  
A UART typically uses an internal clock that is eight or sixteen times the baud 
rate to watch for edges on the incoming serial data line. UARTs also use this 
faster clock and a counter to attempt to sample the data bits in the middle of 
each bit’s time frame to minimize the possibility of reading in an incorrect 
value near an edge. Since long wires are allowed on an RS-232C serial 
interface, there will likely be noise and ringing present whenever the serial bit 
changes. Clocking in the bit in the middle of its time frame greatly increases 
the reliability of the interface. A second shift register is used for serial to 
parallel conversion in the UART’s receiver circuit.  
Some serial devices also require additional hardware handshake lines to stop 
and start the flow of a new 8-bit data value over the serial interface. These 
handshake lines require additional signal wires in the cable used to connect the 
serial device. Some of the more commonly used handshake lines are RTS 
(request to send), CTS (clear to send), DCD (data carrier detect), DSR (data set 
ready), and DTR (data terminal ready). 
There are two types of serial devices defined in the RS-232C standard, data 
terminal equipment (DTE) and data carrier equipment (DCE). A standard RS-
232C serial cable is designed to connect a DTE device to a DCE device. When 
connecting two serial devices of the same type, a special null modem cable or 
adapter is needed. A null modem exchanges the TD and RD signal lines at one 
end of the cable along with several connections on the handshake lines. If you 
experience problems when connecting a new serial device, the various 
handshake and null modem cable options can be quickly checked using a low-
cost in-line RS-232C analyzer breakout box. 
The UP3 board contains a RS-232 serial connector, and it has the required 
voltage conversion IC needed for serial data transmission. 

12.3 SPI Bus Interface 
The serial peripheral interface (SPI) bus  created by Motorola in the 1980s is 
used primarily for synchronous serial communication between a host processor 
and peripheral ICs. Four signal lines are used: Chip Select (CS), Serial Data 
Input (SDI), Serial Data Output (SDO), Serial Clock (SCLK). CS and SCLK 
are outputs provided by the master device. The slave devices receive their clock 
and chip select inputs from the master. If an SPI device is not selected, its SDO 
output line goes into a high impedance state (tri-state). The number of serial 
bits transferred to the slave device varies from device to device. Each slave 
device contains an internal shift register used to transfer data. 



236 Rapid Prototyping of Digital Systems   Chapter 12 
 

 

 

Two types on connections between master and slave devices are supported as 
seen in Figure 12.3. In a cascaded connection, all slaves in the chain share a 
single chip select line driven by the master. The master device outputs SDO and 
it connects as an input to a slave device’s SDI input. A slave’s SDO output 
connects to another slave’s SDI input. The serial data cascades through all of 
the slaves and the final slave in the chain connects its SDO line to the master’s 
SDI input to complete the chain. In this configuration, the slave devices appear 
as one larger slave device, the data output of one device feeds into the input of 
another device, thus forming one large shift register. 
 

Master
CS0
CS1
CS2

SCLK
SDO

SDI

Slave

Slave

Slave

SDI SDO

SDI

SDO

SDI

SDO

                  

Master
CS0
CS1
CS2

SCLK
SDO

SDI

Slave 0

Slave 1

Slave 2

SDI SDO

SDO

SDO

SDI

SDI

 
 

Figure 12.3 The two SPI slave device configuration options. 

The second SPI configuration option supports independent slave devices, each 
device has its own unique chip select input line coming from the master. The 
master’s SDO output connects to each slaves SDI input. The slave’s SDO tri-
state outputs are connected together and to the master’s SDI input. Only the 
selected slave’s SDO output is driven, the others are tri-stated. 
Multiple masters are also supported in SPI. Several SPI modes are supported 
with serial data being valid on either the rising edge or the falling edge of the 
clock. Serial clock rates can range from 30 kHz to 3 MHz depending on the 
devices used. Most commonly, devices place new data on the bus during the 
falling clock edge and data is latched off the bus on the rising edge after it 
stabilizes, but you will need to check data sheets for specific master and slave 
devices to confirm this since some devices use the opposite clock edges.  
Some Motorola literature may use different names for the SPI signals. CS may 
appear as SS, SDI as MOSI, and SDO as MISO. In National Semiconductor 
products, SPI is also known as Microwire. SPI devices are also available in 
several different voltage supply levels ranging from 2.3 to 5 volts. Since SPI 
uses a common clock, the hardware interface is simpler than RS-232C serial. 
 
 
 
 
 



 Legacy Digital I/O Interface Standards 237 
 

 

 

12.4  I2C Bus Interface 
The Inter IC (I2C) bus is a widely used standard developed by Phillips in the 
1980s for connecting ICs on the same circuit board. Many small ICs now 
include I2C pins to transfer data serially to other ICs. For lower bandwidth 
signals, a serial interface has an advantage in that it requires fewer interconnect 
lines. The I2C bus uses two signal wires called SCL and SDA. SCL is the clock 
line and SDA is the 1-bit serial data & address line. A common ground signal is 
also needed. The SCL and SDA lines are open drain. This means that the output 
is only driven Low, never High. An external pull-up resistor pulls the lines 
High whenever there is not a device driving the lines Low. 
In an FPGA with tri-state output pins, you can simulate open drain outputs by 
tri-stating the output whenever the bit should go High and only driving the 
output signal Low. Even though there are multiple devices on the I2C bus, only 
one pull-up resistor is used for the entire I2C bus. 
Devices on the I2C bus are masters or slaves. The slaves are the devices that 
respond to bus requests from the master. Each slave is assigned its own unique 
7-bit I2C bus address. Since both address and data information is transferred 
over the bus, the protocol is a bit more involved than SPI. When the master 
needs to talk to a slave, it issues a start sequence on the I2C bus. In a start 
sequence, SDA goes from High to Low while SCL is High. To stop an I2C 
sequence, the master sends a stop sequence command. In a stop sequence, SDA 
goes from Low to High while SCL is High. Start and stop sequences are the 
only times a change may occur in SDA while SCL is High.  
The master drives the SCL clock line to transfer each new I2C serial bit. To 
force a wait, a slave device can drive SCL Low. Therefore, before each new I2C 
SCL clock, the master checks to see if SCL is being forced Low by a slave. If it 
is, the master must wait. SCL clocks are typically up to 100 kHz with 400 kHz 
available on some new devices. 
 

1 2 7 8 1 29 8 93-7
 R/W  ACK

ACK Signal
from Receiver

Byte Complete Clock Line held
Low while serviced

ACK
START STOP

SDA

SCL
S P

ACK Signal from
Receiver

MSB

Address Data  
 

Figure 12.4 I2C interface serial transmission of an 8-bit data value 

 
All address and data transfers contain eight bits with a final acknowledge 
(ACK) handshake bit for a total of  nine bits. All address and data transfers 
send the High bits first, one per SCL clock bit High. In an address transfer, the 



238 Rapid Prototyping of Digital Systems   Chapter 12 
 

 

 

7-bit address is sent and the eighth bit is a R/W bit (0=read, 1=write). Some IC 
datasheets just append this final R/W bit to the address field and show an 8-bit 
address field (with even 8-bit addresses for read and odd for write).  
The last bit in all data and address transfers, bit nine, is an ACK from the slave. 
The slave normally drives ACK Low on the last SCL cycle to indicate it is 
ready for another byte. If ACK is not Low, the master should send a stop 
sequence to terminate the transfer. 
As seen in Figure 12.4, when a master wants to write data to a slave device, it 
issues the following bus transactions: 
 

1. Master sends a start sequence. 
2. Master sends the 7-bit I2C address (high bits first) of the slave with the 

R/W bit set Low.  
3. Master sends the 8-bit internal register number to write. 
4. Master sends 8-bit data value(s). Highest bits first. 
5. Master sends a stop sequence. 

 
When a master wants to read data from a slave device, it issues the following 
bus transactions: 
 

1. Master sends a start sequence. 
2. Master sends the 7-bit I2C address of the slave (high bits first) with the 

R/W bit set Low. 
3. Master sends the 8-bit internal register number to read. 
4. Master sends a start sequence. 
5. Master sends the 7-bit I2C address of the slave (high bits first) with the 

R/W bit set High. 
6. Master reads the 8-bit data value(s). Highest bits first. 
7. Master sends a stop sequence. 

 
In the full I2C standard, multiple bus masters are also supported with collision 
detection and bus arbitration. Collision occurs when two masters attempt to 
drive the bus at the same time. Arbitration schemes must decide which device 
can drive the bus when multiple masters are present. Some of the newest I2C 
devices can support a high-speed 3.4 MHz clock rate, 10-bit addresses, 
programmable slave addresses, and lower supply voltages. The System 
Management Bus (SMB) bus developed by Intel in 1995 that is used for 
temperature, fan speed, and voltage measurements on many PC motherboards is 
based on the I2C bus. On the UP3 board, the real-time clock chip and the serial 
EEPROM chip use an I2C bus interface. Many new TVs, automobiles, and other 
consumer electronics also contain I2C interfaces between chips for control 
features.  



 Legacy Digital I/O Interface Standards 239 
 

 

 

SPI and I2C both offer good support for communication with low-speed 
devices. SPI is better suited to applications that need to transfer higher 
bandwidth data streams without the need for explicit address information. Some 
of the most common SPI examples are analog-to-digital (A/D) and digital-to-
analog (D/A) converters used to continuously sample or output analog signals. 
Since addressing is required for I2C, it requires more hardware, but with 
advances in VLSI technology these additional hardware costs are minimal. In 
2005, one FPGA vendor calculated that a single I/O pin on an FPGA package 
costs as much as 50,000 transistors inside the chip. 

12.5 For Additional Information 
The books Parallel Port Complete and Serial Port Complete by Jan Axelson 
published by Lakeview Research (www.lvr.com) contain complete details on 
using parallel and serial ports. The full I2C specification is available from 
Philips Semiconductors (www.phillipssemiconductor.com) and SMB at 
(www.smbus.org). The Motorola MC68HC11 data manual 
(www.freescale.com) and various National Semiconductor manuals 
(www.national.com) have more information on SPI. Analog Devices 
(www.analogdevices.com) makes a wide variety of A/D and D/A converters 
with SPI and parallel interfaces. 

12.6 Laboratory Exercises 
1. Interface a printer with a parallel port to the UP3 board’s parallel port. Connect the two 

devices using a printer cable. Design logic using a state machine or a processor core for 
the FPGA to transfer data and handle the handshake lines. You may want to use an older 
printer so that any problems with your design will not damage the printer. Be careful not 
to generate tri-state bus conflicts on the parallel data lines by making sure you drive the 
data direction bit to the proper state. Have the UP3 print a short ASCII message on the 
printer ending with an ASCII form or page feed to print the message on a page. A form 
feed may be needed to cause the printer to print since most printers store characters in an 
internal page buffer. 

2. Interface the FPGA board’s serial port (DE1, DE2 or UP3) to a PC serial port using a 
serial cable. Run a serial communications program on the PC. Send a short message to 
the PC from the FPGA and display the data from the PC on the FPGA board’s LCD 
panel or seven-segment LEDs. 

3. Design an I2C interface for the UP3 board’s real-time clock chip. Display the time from 
the chip on the UP3 board’s LCD display. Don’t forget to check the UP3 board’s jumper 
settings and battery for the real-time clock chip. The data sheet for the clock chip 
contains address and data formats. 

 

 



240 Rapid Prototyping of Digital Systems   Chapter 12 
 

 

 

4. Obtain an IC chip with an SPI or I2C interface and design an interface for it on the FPGA 
board. Chips with SPI interfaces include analog-to-digital converters, digital-to-analog 
converters and various sensor modules. Header I/O and power connections are available 
on the FPGA boards with 5V or 3V logic levels. Consult the board’s user manual for pin 
assignments. 



 

 
                    
 Photo: The FPGA-bot is a small robot controlled by an FPGA board   
 
 
    

CHAPTER 13 

FPGA Robotics 
Projects 

  



242 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

13 FPGA Robotics Projects 

13.1 The FPGA-bot Design 
The FPGA-bot shown in Figure 13.1 is a low-cost moving robotics platform 
designed for use the DE1, DE2, UP3, or UP2 board. The FPGA-bot is designed 
to be a small autonomous vehicle that is programmed to move in response to 
sensory input. A wide variety of sensors can be easily attached to the FPGA-
bot.  
The round platform is cut from plastic and a readily available 7.2V or 8.4V R/C 
rechargeable battery pack is used to supply power. Two diametrically opposed 
drive motors move the robot. A third inactive castor wheel or skid is used to 
provide stability. The robot can move forward, reverse, and rotate in place. Two 
relatively inexpensive radio control servos are used as drive motors. The FPGA 
is programmed to act as the controller. The R/C servos are modified to act as 
drive motors. The servos are controlled by timing pulses produced by the FPGA 
board. 

 

 

 

 

 

 

 

Figure 13.1 The FPGA-bot uses an R/C car battery and R/C servos for drive motors. 

13.2 FPGA-bot Servo Drive Motors 
A typical radio control servo is shown in Figure 13.2. Servos have a drive 
wheel that is controlled by a coded signal. The servo shown is a Futaba S3003 
which is identical, internally, to the Tower TS53J servo. Radio control 
servomotors are mass-produced for the hobby market and are therefore 
relatively inexpensive and consistently available. They are ideally suited for 
robotics applications. Internally, the servo contains a DC drive motor (seen on 



 FPGA Robotics Projects 243 
 

 

 

the left in Figure 13.2), built-in control circuitry, and a gear reduction system. 
They are small, produce a relatively large amount of torque for their size, and 
run at the appropriate speed for a robotics drive motor.  

Figure 13.2 Left: Radio Control Servo Motor and Right: Servo with Case and Gears Removed. 

The control circuitry of the servo uses a potentiometer (variable resistor) that is 
used to sense the angular position of the output shaft. The potentiometer is the 
tall component on the right in Figure 13.2. The output shaft of a servo normally 
travels 180-210 degrees. A single control bit is used to specify the angular 
position of the shaft. The timing of this bit specifies the angular position for the 
shaft. The potentiometer senses the angle, and if the shaft is not at the correct 
angle, the internal control circuit turns the motor in the correct direction until 
the desired angle is sensed. 
The control signal bit specifies the desired angle. The desired angle is encoded 
using pulse width modulation (PWM). The width of the active high pulse varies 
from 1-2 ms. A 1ms pulse is 0 degrees, 1.5ms is 90 degrees and a 2 ms pulse is 
approximately 180 degrees. New timing pulses are sent to the servo every 20 
ms. 

13.3 Modifying the Servos to make Drive Motors 
Normally, a servo has a mechanical stop that prevents it from traveling move 
than half a revolution. If this stop is removed along with other modifications to 
the potentiometer, a servo can be converted to a continuously rotating drive 
motor. Modifications to the servo are not reversible and they will void the 
warranty. Some robot kit vendors sell servos that are already modified. 
To modify the servo, open the housing by removing the screws and carefully 
note the location of the gears, so that they can be reassembled later. The 
potentiometer can be replaced with two 2.2K ohm ¼ watt resistors or 
disconnected by cutting the potentiometer shaft shorter and setting it to the 



244 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

center position so that it reports the 90-degree position. A more accurate setting 
can be achieved by sending the servo a 1.5ms pulse and adjusting the 
potentiometer until the motor stops moving. The potentiometer can then be 
glued in place with CA glue. In the center position the potentiometer will have 
the same resistance from each of the outside pins to the center pin. If the 
potentiometer is replaced with two resistors, a resistor is connected between 
each of the two outside pins and the center pin.  
In some servos, there will be less mechanical play if the potentiometer is 
disabled by cutting the center pin and modified by drilling out the stop on the 
potentiometer so that it can rotate freely. The two resistors are then added to 
replace the potentiometer in the circuit. 
The largest gear in the gear train that drives the output shaft normally has a tab 
molded on it that serves as the mechanical stop. After removing the screw on 
the output shaft and removing the large gear, the mechanical stop can be 
carefully trimmed off with a hobby saw, knife, or small rotary-grinding tool. 
The servo is then carefully re-assembled. 
After modifications, if a pulse shorter than 1.5 ms is sent, the motor will 
continuously rotate in one direction. If a pulse longer than 1.5 ms is sent the 
motor will continuously rotate in the other direction. The 1.5 ms or 90-degree 
position is sometimes called the neutral position or dead zone. The drive signal 
to the motor is proportional, so the farther it is from the neutral position the 
faster it moves. This can be used to control the speed of the motor if the neutral 
position is carefully adjusted. A pulse width of 0 ms or no pulse will stop the 
servomotor. 
A servo has three wires, +4 to +6 Volt DC power, ground, and the signal wire. 
The assignment of the three signals on the connector varies among different 
servo manufacturers. For Futaba servos, the red wire is +5, black is ground, and 
the white or yellow wire is the pulse width signal line. For JR and Hitec servos, 
the orange or yellow wire is the signal line and red is +5, and black or brown is 
ground. 
On the FPGA-bot, the FPGA board must be programmed to provide the two 
timing signals to control the servo drive motors. 

13.4 VHDL Servo Driver Code for the FPGA-bot 
To drive the motors a servo signal must be sent every 20 ms with a 0, 1, or 2 ms 
pulse. The FPGA board is programmed to produce the timing signals that drive 
the motors. If no pulse is sent, the motor stops. If a 1 ms pulse is sent, the 
motor moves clockwise and if a 2 ms pulse is sent the motor moves in the 
reverse direction, counterclockwise. To move the FPGA-bot forward, one motor 
moves clockwise while the other motor moves counterclockwise. This is 
because of the way the motors are mounted to the FPGA-bot base.  
In the code that follows, lmotor_dir and rmotor_dir specify the direction for the 
left and right motor. If both signals are ‘1’ the UP3 bot moves forward. The 
VHDL code actually moves one motor in the opposite direction to move 
forward. If both are ‘0’ the robot moves in reverse. If one is ‘1’ and the other is 
‘0’, the UP3 bot turns by rotating in place. The two speed controls are 



 FPGA Robotics Projects 245 
 

 

 

lmotor_speed and rmotor_speed. In the speed control signals, ‘0’ is stop and ‘1’ 
is run. A 1kHz clock is used for the counters in the module. The FPGAcore 
function, clk_div, can be used to provide this signal. Two more complex 
techniques for implementing variable speed control are discussed in problems 
at the end of the chapter. Acroname sells a low-cost optical encoder kit made by 
Nubotics that can be attached to standard R/C servo wheels and used for 
position feedback and more accurate motor speed control. 

 
LIBRARY IEEE; 
USE  IEEE.STD_LOGIC_1164.ALL; 
USE  IEEE.STD_LOGIC_ARITH.ALL; 
USE  IEEE.STD_LOGIC_UNSIGNED.ALL; 
ENTITY motor_control IS 
 PORT       (clock_1kHz   : IN STD_LOGIC; 
  lmotor_dir, rmotor_dir  : IN STD_LOGIC; 
  lmotor_speed, rmotor_speed : IN STD_LOGIC; 
  lmotor, rmotor  : OUT STD_LOGIC); 
END motor_control; 
 
ARCHITECTURE a OF motor_control IS 
 SIGNAL count_motor: STD_LOGIC_VECTOR( 4 DOWNTO 0 );  
BEGIN 
 PROCESS 
        BEGIN 
    -- Count_motor is a 20ms  timer 
  WAIT UNTIL clock_1kHz'EVENT AND clock_1kHz = '1'; 
   IF count_motor /=19 THEN 
           count_motor <= count_motor + 1; 
   ELSE 
           count_motor <= "00000"; 
   END IF; 
   IF count_motor >= 17 AND count_motor < 18 THEN 
    -- Don’t generate any pulse for speed = 0 
    IF lmotor_speed = '0' THEN  
            lmotor <= '0';  
    ELSE 
            lmotor <= '1'; 
    END IF; 
    IF rmotor_speed = '0' THEN  
            rmotor <= '0';  
    ELSE 
            rmotor <= '1'; 
    END IF; 
    -- Generate a 1 or 2ms pulse for each motor 
    -- depending on direction 
    -- reverse directions between the two motors because 
    -- of servo mounting on the FPGA-bot base 
   ELSIF count_motor >=18 AND count_motor <19 THEN 
    IF lmotor_speed /= '0' THEN 
            CASE lmotor_dir IS 
     -- FORWARD 



246 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

     WHEN '0' => 
        lmotor <= '1'; 
     -- REVERSE 
     WHEN '1' => 
      lmotor <= '0'; 
     WHEN OTHERS => NULL; 
     END CASE; 
    ELSE 
     lmotor <= '0'; 
    END IF; 
    IF rmotor_speed /= '0' THEN 
            CASE rmotor_dir IS 
     -- FORWARD 
     WHEN '1' => 
         rmotor <= '1'; 
     -- REVERSE 
     WHEN '0' => 
      rmotor <= '0'; 
     WHEN OTHERS => NULL; 
     END CASE; 
    ELSE 
     rmotor <= '0'; 
    END IF; 
   ELSE 
    lmotor <= '0'; 
    rmotor <= '0'; 
   END IF; 
 END PROCESS; 
END a; 

13.5 Low-cost Sensors for an FPGA Robot Project 
A wide variety a sensors can be attached to the FPGA board. A few of the more 
interesting sensors are described here. These include infrared modules to avoid 
objects, track lines, and support communication between FPGA-bots. Other 
modules include sonar and IR to measure the distance to the nearest object and 
a digital compass to determine the orientation of the FPGA-bot. Most robots 
will need to combine or “fuse” data from several types of sensors to provide 
more reliable operation. 
Signal conditioning circuits are required in many cases to convert the signals to 
digital logic levels for interfacing to the digital inputs and outputs on the FPGA 
board. Analog sensors will require an analog-to-digital converter IC to interface 
to the FPGA board, so these devices pose a more challenging problem. Small 
low-cost A/D ICs are available with SPI interfaces that require a minimal 
number of FPGA pins. 
Sensor module kits are available and are the easiest to use since they come with 
a small printed circuit board to connect the parts. Sensors can also be built 
using component parts and assembled on a small protoboard attached to the 
FPGA-bot. Sensor modules are interfaced by connecting jumper wires to digital 
inputs and outputs on the FPGA board’s J3 and J2 expansion header connector.   



 FPGA Robotics Projects 247 
 

 

 

Sensors with a single output bit can utilize a simple control scheme, and for 
basic tasks the robot can be controlled using hardware as simple as a state 
machine. More advanced sensors that report actual distance, location, or 
heading measurements will likely require a processor core on the FPGA 
running a program that interprets sensor readings and implements the robot’s 
control algorithm. 

 
• Line Tracker Sensor 

A line tracker module from Lynxmotion is shown in Figure 13.3. This device 
uses three pairs of red LEDs and infrared (IR) phototransistor sensors that 
indicate the presence or absence of a black line below each sensor. When the 
correct voltages are applied in a circuit, an IR phototransistor operates as a 
switch. When IR is present the switch turns on and when no IR is present the 
switch turns off. The LED transmits red light that contains enough IR to trigger 
the phototransistor. 
Each LED and phototransistor in a pair are mounted so that the light from the 
LED bounces off the floor and back to the IR phototransistor. The LED and IR 
sensor must be mounted very close to the floor for reliable operation. Black 
tape or a black marker is used to draw a line on the floor. The black line does 
not reflect light so no IR signal is returned. Three pairs of LEDs and IR 
phototransistor sensors produce the three digital signals, left, center, and right. 
The FPGA-bot can be programmed to follow a line on the floor by using these 
three signals to steer the robot. The mail delivery robots used in large office 
buildings use a similar technique to follow lines or signal cables in the floor. 

 

Figure 13.3 – Three LEDs and phototransistors are mounted on bottom of the Line Tracker board. 

 
• Infrared Proximity Detector 

An IR proximity sensor module from Lynxmotion is seen in Figure 13.4. The 
FPGA-bot can be outfitted with an infrared proximity detector that is activated 
by two off-angle infrared transmitting LEDs. The circuit utilizes a center-



248 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

placed infrared sensor (Sharp GP1U5) to detect the infrared LED return as seen 
in Figure 13.5. The Sharp GP1U5 was originally designed to be used as the IR 
receiver in TV and VCR remote control units. From the diagram, one can see 
that the sensitivity of the sensor is based on the angle of the LEDs. The LEDs 
can be outfitted with short heat-shrink tubes to better direct the infrared light 
forward. This prevents a significant number of false reflections coming from 
the floor. The IR sensor will still occasionally detect a few false returns and it 
will function more reliably with some hardware or software filtering. 

 

Figure 13.4 IR Proximity Sensor Module – Two IR LEDs on sides and one IR sensor in middle. 

 

 

Figure 13.5 Proximity detector active sensor area. 



 FPGA Robotics Projects 249 
 

 

 

As seen in Figure 13.6, the circuit on the IR proximity module utilizes a small 
feedback oscillator to set up a transmit frequency that can be easily detected by 
the detector module. This module utilizes a band-pass filter that essentially 
filters out ambient light. Some older first generation electronic ballasts used in 
commercial fluorescent lights can interfere with the IR sensors since they 
operate at the same frequency as the filter. Newer ballasts now operate at a 
higher frequency since they also caused problems with IR TV remote control 
signals. 

LED Enable.H 
 
 
 
 
Signal Detect.L 

5v 

38 KHz 180 
Ohm 

1 of 2  
IR  LEDs 

IR  Detector 

 
 

Figure 13.6 Circuit layout of one LED and the receiver module on the infrared detector. 

 
In Figure 13.6, when the Left_LED Enable signal is High, the Low side of the 
IR LED is pulled to ground. This forces a voltage drop across the LED at the 
frequency of the 5v to ground oscillating signal. In other words, the LED 
produces IR light pulses at 38 kHz. Using a 38 kHz signal helps reduce noise 
from other ambient light sources.  
Since the IR detector has an internal band-pass filter centered at 38 kHz, the 
detector is most sensitive to the transmitted oscillating light. The 5v pull-up 
resistor allows the IR Detector’s open collector output to pull up the SOUT 
signal to High when no IR output is sensed. To detect right and left differences, 
the right and left LEDs are alternately switched so that the detected signals are 
not ambiguous. If both the left and right LEDs detect an object at the same 
time, the object is in front of the sensor.  
If the IR sensor was built from component parts, a hardware timer implemented 
on the UP3 board could be used to supply the 38-40 kHz signal. Similar IR 
LEDs and IR detector modules are available from Radio Shack, #276-137B, 
and Digikey, #160-1060. Assuming two FPGA-bots are equipped with IR 
sensor modules, it is also possible to use this module as a serial communication 
link between the robots. One FPGA-bot transmits using its IR LED and the 
other FPGA-bot receives it using its IR sensor. To prevent interference, the IR 
LEDs are turned off on the FPGA-bot acting as a receiver. Just like an IR TV 



250 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

remote, the IR LED and sensor must be facing each other. Bandwidth is limited 
by the 38kHz modulation on the IR signal and the filters inside the IR detector. 
(An IR sensor strip that converts IR to visible light is available from Radio 
Shack. This sensor can be used to confirm the operation of IR LEDs.)  

• Wheel Encoder 
The Nubotics WW01 WheelWatcher incremental quadrature encoder system 
from Acroname is shown in Figure 13.7. This low-cost electronics board bolts 
onto the top of a standard-size R/C servo. The adhesive-backed codewheel 
attaches to a wheel mounted on the servo’s output shaft. Two pairs of optical 
emitters and receivers bounce light beams off of the codewheel.  
Note that there are 32 black stripes on the reflective codewheel. When the 
wheel is rotating, the encoder produces two series of digital pulses that are 90 
degrees out of phase. When one of the pulses changes twice before the other 
pulse changes, the direction has been reversed. 128 clock pulses per revolution 
are produced and a separate direction signal indicates the current direction of 
rotation. By counting pulses with a counter or by accurately measuring the time 
between individual pulses using a fast hardware counter on the FPGA, it is 
possible to more accurately control the position and velocity of the servo motor. 
When used on robot drive motors, this optical encoder feedback provides more 
accurate position and speed control for the robot. 

 
 
 

Figure 13.7 Nubotics WW-01 Wheel Watcher Incremental Encoder System. 



 FPGA Robotics Projects 251 
 

 

 

 
• Sonar Ranging Units 

The Devantech SRF10 Sonar Module is shown in Figure 13.8. This device uses 
ultrasonic sound waves to measure distances from a few inches to around 35 
feet. They are widely used in robotics. The timing of the sound echo indicates 
distance to the nearest object. The transducer first functions as a transmitter by 
emitting several cycles of a ultrasonic signal, and then functions as a receiver to 
detect sound waves returned by bouncing off nearby objects. Even though 
ultrasound is inaudible, the transducer also generates a slight audible click each 
time the device transmits. The beamwidth is rather wide, and several sonar 
modules facing in different directions are commonly used. 
The time it takes for the ultrasonic echo signal to return is measured using an 
IC mounted on the back side of the board. This time is converted to distance 
since sound travels out and back at 0.9 ms per foot. Only around 10-20 samples 
per second are possible with the device since it takes time to wait for echoes to 
return. Some sonar modules require external hardware to measure the pulse 
timing to produce the distance to target. The SRF10 device operates off +5V 
DC, and it sends distance measurements back to the host using an I2C bus. A 
number of other similar Sonar modules are available. 

 

 

 

 

 

 

Figure 13.8 Devantech SRF10 Ultrasonic Range Finder. 

• IR Distance Sensors 
The Sharp GPD2D02 seen in Figure 13.9 is an IR device that can provide 
distance measurements similar to the slightly more expensive sonar sensor. This 
sensor has a shorter range of 10 to 80 cm (~ 4 to 32 inches). The distance is 
output by the sensor on a single pin as a digital 8-bit serial stream.  



252 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

Figure 13.9 Sharp IR Ranging Module. 

 
 

Figure 13.10 Operation of Sharp IR Ranging Module. 

As shown in Figure 13.10, internally the GPD2D02 contains an IR LED and a 
position-sensitive IR detector. The IR LED transmits a modulated beam of 
infrared light. When the light strikes an object, most of the light will be 
reflected back to the LED. Since no surface is a perfect optical reflector, 
scattering of the IR beam occurs at the surface of the object and some of the 
light is reflected back to the position sensitive detector. By comparing the near 
and far object beams shown in Figure 13.10, it is apparent that the position at 
which the scattered reflected IR beam hits the detector is a function of the 
reflection angle.  

Near Object

Far Object

Position
Sensitive
IR Detector

IR LED

Scattered
Reflection

Lens Lens



 FPGA Robotics Projects 253 
 

 

 

The 8-bit integer value reported by the sensor in cm is approximately 
 

offset
DISTANCE

+⎟
⎠
⎞

⎜
⎝
⎛∗ − 9.1tan1000 1 . 

 
The constant 1.9 is the distance between the lenses in cm. The offset is the no-
object present value returned by the sensor. This offset constant can vary by as 
much as 17 between different sensors and has a typical value of 25. Note that a 
close object reports a larger value and a distant object reports a smaller value. 
Objects closer than 10cm will report an incorrect value and should be avoided 
by placing the sensor away from the edge of the robot. Large objects beyond 80 
cm can sometimes report an incorrect value that makes them appear closer. 
A special connector (Japan Solderless Terminal #S4B-ZR) is required to 
connect to the GPD2D02. If desoldering equipment is available, the small 
connector can also be desoldered from the sensor and wires attached directly to 
the sensor.  
In addition to +5V and ground pins, the sensor has an input, Vin, and a serial 
output, Vout. Vin is an input to the sensor that clocks out the serial data on 
Vout. When Vin is Low for around 70 ms, the sensor takes a reading. When a 
reading is available, Vout goes High.  
On each of the next eight falling clock edges of Vin, the sensor will output a 
new data bit. The eight data bits should be clocked into the FPGA on the rising 
edges of Vin (when they are stable). When clocking out the data, the clock 
period on Vin should be 0.4 ms or less. The eight data bits are clocked out in 
high to low order. If Vin is not dropped Low within 1.5 ms after clocking out 
the final data bit, the sensor shuts down to save power. A shift register can be 
used to assemble the data bits. The demo program ir_dist.bdf on the DVD 
contains a VHDL-based IP core for use with the GP2D02 sensor. 
The sensor’s Vin pin is an open-drain input. Open-drain or open-collector 
inputs should never be driven High. An FPGA’s tri-state output pin can be 
connected directly to an open-drain input, if the tri-state output is never driven 
High. When Vin should be High, tri-state the FPGA’s output pin and when the 
output should be Low, drive the output pin Low with the tri-state gate turned on 
with a low output. 
Open-drain or open-collector inputs contain an internal pull-up resistor to +5V. 
Multiple open-drain (open-collector) outputs can be tied together to a single 
open drain (open-collector) input to perform a wired-AND operation. Any one 
of the outputs can pull the input Low. If no output pulls the signal Low, a single 
pull-up resistor forces the input High. This wired-AND operation occurs just by 
tying the open-drain (open-collector) outputs together and no physical AND 
gate is needed. In negative logic, a wired-OR operation occurs.   
Normal gate outputs cannot be connected. This wired-AND logic only works 
because these gates have special output circuits that do not contain a transistor 
that forces the input High. This transistor is present in normal gate outputs. If a 
normal gate output is connected to other open-drain (open-collector) outputs, 



254 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

its transistor could turn on to force the input High at the same time another 
gate’s output transistor turns on to force it Low. This would short the power 
supply to ground drawing excessive current that might damage the devices. An 
analog and longer range version of this IR distance sensor are also available. 
 

• Magnetic Compass Sensors 
Various electronic components are available that detect the magnetic field of 
the earth to indicate direction. A low-cost digital compass sensor is shown in 
Figure 13.11. The Dinsmore model 1490, often used in electronic automobile 
compasses, is a combination of a miniature rotor jewel suspended with four 
Hall-effect (magnetic) switches. Four active-low outputs are provided for the 
four compass directions. When the module is facing North, the North output is 
Low and the other three outputs will be High. Eight directions are detected by 
the device, since two outputs can become active simultaneously. In this way, 
the device can indicate the four intermediate directions, NE, SE, SW, and NW. 
NE for example activates the active-low North and East outputs. The device 
can operate off +5V.  
Mount any compass device as far away from motors as possible to avoid 
magnetic interference from the magnets inside the motor. Four 2.2K ohm pull-
up resistors to +5V are required to interface to the UP3 board, since the four 
digital output pins, N, S, E, and W, all have open-collector outputs. Just like a 
real compass, a time delay is needed after a quick rotation to allow the outputs 
to stabilize. If the compass module leads are carefully bent, the compass 
module and the four required pull-up resistors can be mounted on a standard 
20-pin DIP, machined-pin, wire-wrap socket and connected to the UP3 header 
socket. 
An analog version of the device is available with 1-degree accuracy, but it 
requires an analog-to-digital conversion chip or signal phase timing for 
interfacing.  

 
 

Figure 13.11 Dinsmore 1490 Digital Compass Sensor. 

  



 FPGA Robotics Projects 255 
 

 

 

• Electronic Compass Sensors 
Low-cost electronic compass modules are also available that detect the 
magnetic field of the earth to indicate direction. The cost is two to three times 
that of the mechanical compass described in the previous section. New 
generation electronic compass modules offer more accuracy and faster settling 
times than mechanical compass sensors. An electronic compass module from 
PNI is shown in Fig. 13.12. This module contains a 2-axis magneto-inductive 
sensor and an ASIC. Heading information and magnetic field measurement data 
is available using a digital SPI serial interface.  

Figure 13.12 PNI Electronic Compass Module.  

 
• Low-cost Gyros and Accelerometers 

 
Gyros and accelerometers are useful sensors for robots that need a balance 
sense. This can include robots that balance on two wheels like the Segway 
Human Transporter, robots that walk on two legs, and even robots that fly. 
Gyros and accelerometers have traditionally been used in aircraft autopilots and 
inertial measurement units (IMUs). Helicopters use a gyro to stabilize and 
control the tail rotor. Recently, Microelectromechanical Systems (MEMS) 
technology has produced small low-cost piezo-gyroscope and accelerometer 
ICs. These devices were originally used in automobile airbags. The gyros 
output a voltage level that is proportional to the speed or rate of the tilt angle 
changes. An analog-to-digital converter will be needed to input the gyro signal. 
The MEMS accelerometers output a voltage level or a pulse that changes its 



256 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

duty cycle proportionally (e.g., PWM) to the tilt angle by sensing the change in 
acceleration due to gravity. Gyros will drift slowly over time and an 
accelerometer is needed to correct the gyro’s drift. Without an accelerometer to 
correct for gyro drift, the tilt error slowly grows to the point where the robot 
would lose its balance. Accelerometers will respond more slowly to tilt than the 
gyro, so both a gyro and accelerometer is typically needed for each axis that 
needs a balance sense.  
A complementary filter is used to combine or fuse sensor data from both the 
gyro and accelerometer to generate a more accurate tilt angle. Kalman filtering 
techniques can be used to improve the accuracy of noisy measurements. Noise 
levels are still somewhat high at very low G forces on these low-cost gyros and 
accelerometer IC sensors, so currently they are not useful for navigation since 
they cannot accurately determine the exact location of a slow moving robot by 
integrating the sensor measurements over time. 
Analog Devices makes a variety of these sensors and sells small evaluation 
boards for them. It is likely that small low-cost sensor modules containing both 
a MEMS gyro and an accelerometer with a microcontroller will be available 
commercially in the near term. 
 

 

Figure 13.13 Small sensor board for an aircraft autopilot system. Photograph ©2004 courtesy of 
Henrik Christophersen , Georgia Institute of Technology Unmanned Aerial Research Facility.  



 FPGA Robotics Projects 257 
 

 

 

Figure 13.13 shows a sensor board for an autopilot system that is used for 
unmanned aircraft. In the top corner, three MEMS gyros and accelerometers are 
mounted at right angles to provide data on all three axes. The white square flat 
module between the two vertical assemblies is a GPS receiver. The black 
square ICs at each end of the vertical assemblies are airspeed and altitude 
sensors. An A/D chip with an SPI interface is used to read sensors that have 
analog voltage outputs. The three square modules near the bottom edge of the 
board are DC to DC voltage converters. The lower board contains an FPGA and 
a DSP processor. 
 

• GPS and DGPS receivers 
The Global Positioning System was built by the US Department of Defense to 
provide highly precise worldwide positioning. Triangulation using radio signals 
from several satellites provides a position accurate to 25 meters. With an 
additional land-based correction signal, Differential GPS (DGPS) improves the 
accuracy to 3 meters. DGPS receivers provide ideal position data for robot 
navigation. Unfortunately, with current systems you are not likely to receive the 
GPS radio signals indoors in most buildings, so their use is typically limited to 
larger more rugged outdoor robots. Low-cost single chip GPS modules such as 
the Motorola FS Oncore seen in Figure 13.14 or the Ublox in Figure 13.13 are 
currently available. An SPI serial interface is supported. A new generation of 
highly sensitive GPS systems is being developed that may function indoors in 
some buildings. 
 
 
 
 

 

 

 

Figure 13.14 Motorola Single Chip GPS module.  

• Thermal Image Sensors 
Low-cost thermal image sensors can provide thermal imaging data for robots. 
Most thermal sensors such as those used in motion detectors and burglar alarms 
detect only movement. Thermopile sensors measure the temperature of a heat 
source. One such sensor, the Devantech TPA81 Thermopile Array is shown in 
Figure 13.15. It contains 8 Pyro-electric sensors arranged in a column that 



258 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

detect infra-red in the radiant heat range of 2um to 22um range. It contains an 
on-board PIC microcontroller.  
When the sensor is mounted on a servo, it can be used to horizontally scan an 
area and generate a thermal image. Candle flames and human body heat can be 
detected several feet away at room temperature. It uses an I2C bus for 
interfacing to the host controller. 
 

 

Figure 13.15 Devantech TPA81 Eight Pixel Thermal Array Sensor.  

 
 

• Solid State Cameras 
Low-cost solid state cameras can provide visual sensors for robots. Keep in 
mind that advanced image processing and visual pattern recognition requires 
complex algorithms that need a lot of processing power. The CMUCAM2 
developed at Carnegie Mellon University seen in Figure 13.16 contains a PIC 
microcontroller and can transfer image data using a serial connection. It can 
track color blobs and report their location and size in an image at 26 to 50 
frames per second.  
Low-cost USB cameras are another option, but they will require a USB core 
interface and additional image processing. The low-cost CMOS color camera 
assembly OV6620 or OV7620 used in the CMUCAM2 module from 
Omnivision (www.ovt.com) can also be directly interfaced to an FPGA. It uses 
an I2C interface for camera control signals and a separate parallel bus is used to 
transfer image data. 

 
 
 



 FPGA Robotics Projects 259 
 

 

 

 

 

 

 

 

 

 

Figure 13.16 The CMUCAM2 contains a color video camera on a chip and a microcontroller . 

13.6 Assembly of the FPGA-bot Body 
 

Assembly of the FPGA-bot can be accomplished in about an hour. A drill or 
drill press, screwdriver, scissors, a soldering iron, and a wire stripper are the 
only tools required. First, obtain the parts in the parts list. Next, drill out the 
holes in the round Plexiglas base (part #15) as shown in Figure 13.17. The 
mounting holes will move around depending on which FPGA board is used. 
The DE2 board is a bit larger than the other boards and you may want to 
increase the size of the plastic base to accommodate it or mount it on long 
standoffs well above the servo wheels. 
To prevent scratches, leave the paper covering on the Plexiglas until all of the 
holes are marked and drilled out. The front of the base is on the right side in 
Figure 13.17. The wheel slots are symmetric with respect to the center of the 
circle.  
Proper alignment of the four screw mounting holes for the FPGA board is 
critical. Unscrew the four standoffs from the bottom of the FPGA board. 
Carefully place it towards the rear of the plastic base as shown in Figure 13.17, 
and mark the location of the screw holes using a pen or pencil. Any FPGA 
board can also be used, but the mounting holes will be in different locations. 
Leave extra space in front of the FPGA board on the plastic base for use by 
forward facing sensor modules as seen in Figures 13.1 and 13.9. Double check 
that the board clears the top of the servo wheels once it is mounted. Longer 
standoffs can also be used to clear the wheels, if needed. Locate the cable and 
switch holes as shown in Figure 13.17. Exact positioning on these holes is not 
critical. If one is available, use an automatic center punch to help align the drill 
holes. The board’s expansion header pins should face towards the front of the 



260 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

base so that it is easy to attach the sensors. Re-attach the standoffs to the FPGA 
board and set it aside. After all holes are drilled, remove the paper covering the 
Plexiglas.  
 

Wheel Slots
3/8” by 2 3/4”

Servo Cable
Two 3/8”
Holes

UP3 Mounting Screw
Four 1/8” Holes

Switch and
Power Cable
Two 7/32”
Holes

3/16” Plexiglass 10.5” Circle

1 3/8”

1 3/8”

 

 

Figure 13.17 FPGA-bot Plexiglas Base with wheel slots and approximate drill hole locations for the 
UP3 board. Verify the exact dimensions and mounting hole locations for each individual FPGA 
board.  

Mount the toggle switch (part #8) in the hole provided in the base. If available, 
Loctite or CA glue can be used on the switch mounting threads to prevent the 
switch nut from working lose. Solder the red wire (+7.2V) from the battery 
connector to one of the switch contacts. This is the connector with wires that 
plugs into the battery pack connector (part #4). Solder one of the twin lead 
wires (part #9) to the other switch terminal. Solder the other twin lead wire to 
the black (GND) battery connector wire and insulate the splice with heat shrink 
tubing or electrical tape (part #10).  
Route the twin lead wire through the hole provided in the base. A small knot in  
the twin lead on the bottom side of the base can be used for strain relief. Solder 
the power connector (part #11) to the other end of the twin lead wire on the top 
of the base. The center conductor is +7.2V and the outer conductor is ground on 
the power connector. 



 FPGA Robotics Projects 261 
 

 

 

Check the power connections with an ohmmeter for shorts and proper polarity 
before connecting the battery. For strain relief and extra insulation, consider 
sealing up the power connector with Silicone RTV or insulating one of the wire 
connections with heat shrink tubing. Be careful, NiCAD and NiMH batteries 
have been known to explode or catch on fire, if there is a short. A fuse on the 
battery power wire might be a good idea, if you are prone to shorting out 
circuits. 
 

Figure 13.18 Bottom view of FPGA-bot base showing battery, servos, wheels, and cabling.  

Attach the battery pack (part #2) to the bottom of the Plexiglas base with 
sticky-back Velcro (part #16). Figure 13.18 is a close-up photo of the bottom 
side of the FPGA-bot. A NiMH battery pack is shown in Figure 13.18. If you 
use a larger NiCAD battery pack, it can be mounted in the middle of the base 
about one inch off center towards the rear wheel, with the battery pack 
connector facing the rear.  



262 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

The battery is moved towards the rear for balance to place the weight on the 
rear skid. The Velcro on the base should be around 2 inches longer than the 
battery pack towards the rear of the robot to allow for positioning of the battery 
later on to balance the robot. The wire and connector on the battery pack should 
also be attached to the base to prevent it from dragging on the floor. Attach a 
small piece of Velcro on the rear of the connector so that the battery wires can 
be attached to the base. Attach the battery pack to the base. 
On UP3, UP2, and UP1 boards, solder a 60-pin female header socket (part #7) 
to the expansion header B location. Attach the FPGA board to the top of the 
base with 4-40 screws (part #18), using the hex spacers provided on the FPGA 
board (part #14). Figure 13.19 is a close-up photo of the top of the FPGA-bot. 
Double check power connections and polarity with an ohmmeter. The inner 
contact on the power connector should be +7.2V, the outer contact is ground, 
and the toggle switch should turn it off. Then plug the power connector into the 
FPGA board. Plug in the battery connector and flip the power switch. An LED 
should light up on the FPGA board indicating power on. The Cyclone 
expansion B header socket faces the front of the robot. DE2 and DE1 boards 
already have expansion sockets soldered to the board. 
Mount the wheels (part #5) on two modified servos (part #3). If you are not 
using the special servo wheels, you may need to enlarge the hole in the center 
of each wheel by drilling it out partially with a drill bit that is the same size as 
the servo output shaft. The depth of the hole should be slightly shorter than the 
servo output shaft and not all the way through the wheel, so that the wheel does 
not contact the servo body. The servo output shaft screw is inserted on the side 
of the wheel with the smaller hole. A washer may be required on the servo 
screw. The wheel should not contact the servo case and must be mounted so 
that it is straight on the servo. CA glue or Blue Loctite can also be used to 
attach the wheels and screws more securely to the servo output shaft.  
Attach the servos to the bottom of the base using double sided foam tape (part 
#17) or a more durable servo mounting bracket. The servo body faces toward 
the center of the base. Be sure to carefully center the wheels in the plastic-base 
wheel slot. If you are using foam tape, make sure all surfaces are clean and free 
of grease, so that the foam tape adhesive will work properly. Lightly sanding 
the servo case and adding a drop of CA glue helps with tape adhesion. Route 
the servo connector and wire through the holes provided in the base.  
Attach a tail wheel to the base or a skid (part #19) at the rear of the battery 
pack using layers of foam tape as needed. Move the battery as needed so that 
the robot has proper balance and rests on the two wheels and the rear skid.  
Attach another skid to the front of the battery pack using several layers of foam 
tape. The front skid should not contact the floor and at least ¼ inch of clearance 
is recommended. The front skid only serves to prevent the robot from tipping 
forward during abrupt stops.  
On the UP3, attach a 3-pin .1 inch header (part #9) to the small wire wrap 
protoboard in an open area. One is required for each servo on the robot. Solder 
wires from the appropriate pins J2 and J3 connections on the protoboard to the 
new header pins. The three wires on the servo are Vcc (4.8 to 6 volts), ground, 



 FPGA Robotics Projects 263 
 

 

 

and the PCM control signal wire. Some manufacturers’ servos have different 
power connections, but they all have three pins. Wrap extra servo wire around 
the hex spacers underneath the UP3 board.  
 

 

Figure 13.19 Top View of FPGA-bot Base with Compass, IR, and Sonar Sensor Modules. A UP3 
FPGA board is shown, but any FPGA board can be used.  

Optional sensor modules such as the IR proximity detector or line tracker can 
be attached to the base unit with foam tape. Run wires from the sensors to the 
expansion connectors. A small .1 inch wire wrap protoboard with 40-pin female 
header connectors soldered to the protoboard as shown in Figure 13.19 is handy 
for making servo and sensor connections to the FPGA board. In Figure 13.19, a 
third servo is used to make a sensor turret for IR and Sonar distance sensors. 

 

• Parts List for the FPGA-bot  

1. An Altera FPGA Board. The FPGA board serves as the controller for the FPGA-bot. It 
is attached to the FPGA-bot body with screws. No modifications are required to the 
board. Any of the Altera FPGA boards can be used, but mounting holes will be in 
different locations. 

 

 



264 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

• Parts Available from a Hobby Store 
2. A 7.2V to 8.4V 1300-1700mAh Rechargeable NiCAD battery pack with the 

standard Kyosho battery connector. This is a standard R/C car part, and it is used to 
power the FPGA-bot. For a small additional cost, new NiMH batteries are also available 
that store almost twice the energy per weight. The battery will need to be charged prior 
to first use.  

3. Two modified R/C Servomotors. Two identical model servos are required so that the 
motors run at the same speed. Servo modifications are described in section 13.3. Any 
servo should work. The following servos have been tested: Tower Hobbies TS53J, 
Futaba S148 and S3003, and HS 300. Some manufacturers’ servos appear to run in the 
reverse direction. This is easily fixed in the hardware design since the motor controller 
is implemented on the UP3 board. Several robot parts vendor sell modified servos for a 
slightly higher cost. Ball bearing servos are worth the extra cost, if you intend to run the 
robot constantly for several months. A third unmodified servo will be needed if you 
want a rotating sensor turret as shown on the example FPGA-bot photo. 

4. Kyosho Female Battery connector with wire leads, Duratrax or Tower Hobbies 
#DTXC2280. This is used to connect to battery. A connector is needed so that the 
battery can be disconnected from the FPGA-bot and connected to a charger. 

5. Two Acroname or Lynxmotion servo wheels. These wheels are 2 ¾ plastic wheels 
that are designed to attach to the servo’s output shaft spline. Prather Products 2¼-inch 
aluminum racing wheels with rubber O ring tires, Tower Hobbies #PRAQ1810 or Hayes 
Products #114, 2 ¼-inch hard plastic racing wheels (also available from Tower Hobbies) 
can be used as a substitute. These somewhat smaller two alternative wheels will work, 
but they do not have the spline to match the servo output shaft and are a bit more 
difficult to connect reliably than the Acroname or Lynxmotion servo wheels. 

6. A Castering Wheel or Two small Teflon or Nylon Furniture Slides. There is a bit too 
much mechanical play in common furniture casters for a small robot and they tend to 
randomly deflect the robots direction after sharp turns. Lynxmotion’s #TWA-01 is a 
mini castering robot tail wheel built using an R/C airplane tail wheel that works well. 
The mounting wire needs to be bent a little off center so that the wheel quickly rotates to 
the direction of travel. Other robot parts vendors such as Acroname also have robot tail 
wheels, but a spacer may be required to adjust the height. The battery will need to be 
moved a bit and perhaps rotated ninety degrees to accommodate them and still maintain 
proper balance on the robot base. Magic Sliders 7/8-inch diameter circular discs also 
work well on flat surfaces. The slides are used as a skid instead of a third wheel on the 
FPGA-bot. Metal or hard plastic will also work. Attached to the bottom of the battery 
with several layers of foam tape, an optional front skid can be used for stability during 
abrupt stops. On flat surfaces, a Teflon skid actually works better than a common small 
furniture caster from a hardware store.  



 FPGA Robotics Projects 265 
 

 

 

7. A charger for the 7.2V or 8.4V battery pack. An adjustable DC power supply can be 
used to charge the battery if it is properly adjusted and timed so that the battery is not 
overcharged. Overcharged batteries will get hot and will have a shorter life. Automatic 
peak-detection quick chargers are the easiest and most foolproof to use. These chargers 
shut off automatically when the battery is charged. One quick charger can be used for 
several robots as a full charge is achieved in less than 30 minutes with around 5 Amps 
maximum charge current. Inexpensive trickle battery chargers deliver only around 75 
mA of charge current, and they will require several hours charge the battery. 

• Parts Available from an Electronics Parts Store 
8. Three 40-pin .1-inch double row PC board mount female header sockets, DigiKey 

#S4310 or equivalent. These sockets are soldered into a small 0.1” center wire wrap 
protoboard that fits into the Santa Cruz Expansion connector on the UP3. This is used to 
connect servos and sensors to the UP3 board. 

9. A 2 to 3 inch strip of .1” single row breakaway headers. DigiKey #S1021-36 or 
equivalent These headers are used to make custom servo and sensor connectors on the 
protoboard. They can be soldered to the protoboard. 

10. A small wire wrap protoboard with holes on .1” centers cut down to 2” by 2.8”. A 
This is used to make a protoboard for use with the UP3 board. The protoboard contains 
connectors for servos and sensor. A protoboard with solder pads makes it easier to 
mount the connectors. 

11. A miniature toggle switch with solder lug connections. The switch should have a 
contact rating of more than two amps (Radio Shack #275-635B or equivalent). Only two 
contacts or single pole single throw (SPST) is needed on the switch to turn power on 
and off. If all of your servos and sensors connect to the UP3 and do not use the 
Vunregulated supply, you could eliminate the switch by using the UP3’s power switch. 

12. Approximately 9 inches of small-gauge twin-lead speaker wire. This part is used to 
connect power to the UP3 board. The wire must fit into the DC power plug (part# 11). 
Typically, 20-22 gauge wire is required. Two individual wires can also be used, but twin 
lead is preferred.  

13. A 1-inch piece of small heat shrink tubing or electrical tape. This part is used to 
insulate a splice in the twin-lead power wire. 

14. A Coaxial DC Power Plug with 5mm O.D. and 2.1mm I.D., Radio Shack Number 
274-1567 or equivalent. This power plug fits the power socket on the UP3 board. A 
different size plug is needed for the UP2 board, use #274-1568 that has a 2.5mm I.D. 

15. An assortment of small wire jumpers and connectors to attach wires to the male 
headers on the UP3. These are the jumper wires commonly used for protoboards. Two 



266 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

short jumpers are used to connect the two servo signal wires, and other jumpers are used 
to any connect sensor boards.  

16. Four, 1-inch hex spacers with 4-40 threads or use the shorter spacers that come 
with the board. These are used to mount the UP3 board to the Plexiglas base using the 
holes in the UP3 board.  

• Parts Available from a Hardware Store 
17. 3/16-inch thick Plexiglas cut into a 10.5-inch diameter circle. This part is the base of 

the robot. Colored Plexiglas such as opaque white, will not show scratches as easy as 
clear. Holes to cutout and drill are shown in Figure 13.11. If a band saw, jig saw, or 
other machine tool is not available, a local plastics fabricator can cut this out. When 
using a number of very large sensors or a DE2 board, it may be necessary to increase the 
size slightly or add another circular deck for sensor mounting. A larger robot requires 
more space for maneuvering. To prevent scratches on the Plexiglas, keep the paper 
backing on the plastic until all of the holes have been marked and drilled out. The size 
of the wheel slots may need to change depending on the wheels you select. 

18. One 8-inch long strip of 2-inch wide sticky-back Velcro. Two 8-inch long strips, 1 
inch wide can also be used. The Velcro is used to attach the battery to the bottom of the 
Plexiglas base. Since the battery is attached with Velcro and a connector, it can be 
quickly replaced and removed for charging. 

19. Approximately 8 inches of 1-inch wide double-sided 3M foam tape. This is used to 
attach servos, skids, and optional sensor boards to the base. Be sure to clean surfaces to 
remove any grease or oil prior to application of the tape for better adhesion. For a more 
durable servo mount, Lynxmotion has aluminum servo mounting brackets that can be 
used instead of the double sided tape. 

20. Four 4-40 Screws 5/16-inch or slightly longer. The screws are used to attach the UP3 
board to Plexiglas. The screws thread into the hex spacers attached to the UP3 board. 

21. Blue Loctite, Cyanoacrylate (CA) Glue, and Clear Silicone RTV. These adhesives 
and glues are useful to secure screws, servos, and wheels. The mechanical vibration on 
moving robots tends to shake parts loose over time. These items can also be found at 
most hobby shops. Only a few drops are needed for a single robot. A single tube or 
container will build several robots. 

13.7 I/O Connections to the board’s Expansion Headers 
Most servos and sensor I/O signals will need to be attached to an expansion 
header. Many FPGA pins are now 3.3V. R/C Servos and most sensors use 5V, 
but be sure to check the device’s datasheet. Don’t forget to connect a ground 
signal between the device and the FPGA board, even if the device has it’s own 
power supply or a direct connection to a battery. Several ground and power pins 



 FPGA Robotics Projects 267 
 

 

 

are available on the FPGA board’s expansion headers. A 5V 1A power supply 
pin is available on the UP3’s J2 expansion connector. J4 has a 3.3V supply 
connection pin and JP6 can be used as another 5V supply connection. 
A small protoboard can be built to connect servos and sensors to the FPGA 
board. All of the connectors and pins on the boards line up on tenth inch 
centers. A 0.1” perfboard or wire wrap protoboard can be cut down to 2” by 2 
7/8” so that it fits over J1, J2, J3, and J4. 0.1” 40 pin connectors to attached the 
protoboard to connect to J1..4 can be mounted on the protoboard. A wire warp 
protoboard with holes every .1” has solder pads that can be used to attach 
connectors using solder. Point to point wiring and soldering can be used to 
make connections on the protoboard from the J1..J4 connectors to the .1” 
connectors used to attach servos and sensors. Small single row strips of .1” 
header pins can be snapped apart to make male connectors on the board for the 
servos and most sensors. 
You may want to consider isolating your robot’s servo or motor power supply 
from the supply used for the FPGA board’s logic to control the noise generated 
on the supply lines by the DC motors. On larger robots, two batteries are 
sometimes used. A Vunregulated connection that does not go through the 5V 
regulator and is connected directly to the UP3’s power input jack is available 
on JP8 and J4. The 9V supply is connected after the input power switch on the 
UP3 and to JP5. This also can be used to power servos and motors, assuming 
the battery voltage level is not too high. If the battery voltage is too high, 
another regulator can be used for the motors.  
At a minimum, decoupling capacitors connected across the servo’s power 
supply connections are a good idea. If you plan on having several sensors on 
your robot, you may want to consider building a small PCB with header pins 
for the sensor power and data connections as seen in Figure 13.19. Most R/C 
servos can run on 4.8 to 6V. 

13.8 Robot Projects Based on R/C Toys, Models, and Robot Kits  
A second option for building an FPGA driven robot involves modifying a low-
cost radio-controlled (R/C) car or truck. Fundamentally, almost any large R/C 
car or truck can be modified to work with the Altera board, although some are 
clearly better choices than others.  
In our robot, we used a Radio Shack (www.radioshack.com) R/C 4WD SUV 
shown in Figure 13.20. The R/C platform affords a more robust drive train and 
control; however, turning radius and noise levels are sacrificed over the smaller 
FPGA-bot. The R/C SUV has a spring suspension and large soft tires that make 
it operable outdoors on rougher surfaces. Following are some R/C car selection 
considerations that will affect available modifications and control of the new 
platform. 
 

 
 
 



268 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

 
 

 
 

Figure 13.20 FPGA Controlled Toy R/C Truck with IR Distance Sensors.  

• Seven-Function Controls 
When choosing an R/C car, select one that has a remote control with at least 
seven remote functions (forward, backward, forward-right, forward-left, 
backward-right, backward-left, and stop). Note that these low-cost R/C cars do 
not have variable speed or variable turning controls; however, once they are 
interfaced to the FPGA board, variable speed and turning can be accomplished 
by changing the duty cycle of the command signals. (More on this later.)  
A control module built using the FPGAs logic allows a relatively inexpensive 
R/C car to perform with the capabilities of the more expensive cars with 
“digital proportional steering” and “digital proportional speed controls.” Once 
interfaced to the FPGA board, an IP core (Robot_CTL) is used to handle 
control of all direction and speed control outputs. As illustrated in Figure 13.21, 
the IP core control module affords a higher degree of control than the original 
radio control. The outputs connect to the R/C cars internal control circuits that 
drive the DC Motors.  



 FPGA Robotics Projects 269 
 

 

 

FwdRev 1 Bit  0 = Forward/1 = Reverse 
 Direction 3 Bits  First bit Left/Right, 2nd and 3rd bit is angle. 
        0-00 = Left – Straight* 
        0-01 = Left – Slight Turn 
        0-10 = Left – Medium Turn 

0-11 = Left – Full Turn 
1-00 = Right – Straight* 
1-01 = Right – Slight Turn 

        1-10 = Right – Medium Turn 
     1-11 = Right – Full Turn 
     * Note: 000 and 100 are both Straight 
 Speed  3 Bits  000 = Stop 
     001 = Slowest Speed 
     : : : 

111 = Fastest Speed 

Figure 13.21 Robot Control IP Core with Pulsed Speed & Steering Control.  

• Speed  
When considering the speed of the vehicle, a modest speed is more desirable 
than the faster speeds. At 800 feet per minute, our prototype FPGA controlled 
robot car moves fast enough to be difficult to catch. In almost all cases, the 
robot is operated at half the maximum speed or less. The limiting factor is 
generally the delay inherent in the sensor’s input sampling rate and range. A 
fast moving car typically will hit the wall before a collision sensor can take the 
data samples needed to initiate avoidance. 
To control the speed (or the degree of turn) a repeated pulse train is sent to the 
forward or reverse signals (left or right signals for direction). Instead of a 
steady high signal causing the car to move forward at full speed, the pulse train 
varies the duty cycle to change speed (or degree of turn). By modulating the 
duty cycle of the pulse train, “digital proportional control” can be implemented 
on each control signal. In other words, changing the duty cycle can control the 
speed and the degree of turn. The more the duty cycle approaches 100%, the 
harder the turn and/or the faster the speed. 



270 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

The frequency of the pulsed control signal used must be higher than the natural 
mechanical frequency response of the system. A very slow changing pulse will 
cause the motor and gears to vibrate and make additional noise. Pulse 
frequencies of a few kHz are typically used to avoid this problem. 
When reversing direction on a moving DC motor, it is common practice to 
include a small time delay with the motor turned off to reduce the inductive 
voltage spikes produced by the motor windings. Recall that changing current 
flow through an inductor produces voltage. Without the delay in some circuits, 
these high voltage spikes can damage or reduce the life of the transistors 
controlling the motor. This delay can be incorporated in the IP control core, if 
needed. 
Figure 13.22 illustrates the relationship between turn angle, speed, and duty 
cycle on the control signals. The figure implies that the duty cycle is linear, i.e., 
a 50% duty cycle produces half speed. Actually, the duty cycle is very non-
linear and highly dependent on the type of car, size of the DC motors, and 
power. (An R/C car with a dying battery performs as if the duty cycle is 
considerably less.) By experimenting with patterns of the 16-bit speed and 
direction vectors used in the IP core controller, a more linear relationship can 
be established between the command bit patterns and the actual performance of 
the vehicle.  

 

Figure 13.22 Affect of Duty Cycle on Turning Angle and Speed.  

• Battery Choice 
The choice of car will also dictate the type of batteries and charger that will be 
needed. Note that some cars come with 9.6V packs and others come with 7.2V 
packs. Both should work well with the UP3 board as a controller. The prototype 
used the 7.2V pack that discharged quickly and required a second pack placed 
in parallel with the first to support longer run times. The cars with a 9.6V pack 
should give the UP3 board’s 5V onboard regulator a better regulator margin and 
a longer life between recharges. 

Turn
Angle Speed

Full

1/2

1/3

1/4



 FPGA Robotics Projects 271 
 

 

 

• Mounting the FPGA Board 
Before you select an R/C car, make sure that there is a good place to mount the 
FPGA board. If the car is large enough, there is usually a large flat area under 
the car body cover molding to secure the FPGA board.  

• Interfacing the FPGA Board to the R/C Car 
Remove appropriate body cover screws and expose the PC board receiver and 
control module. Most current low-cost R/C toy cars have a single electronic PC 
board that contains both control circuits. Generally, there is one 16 or 18-pin 
DIP radio command demodulator chip in the center of the board that converts 
the radio signals into simple digital control signals. These digital control 
signals then activate the H-bridge circuit that controls the DC motors that drive 
the wheels of the R/C car.  
An H-bridge is a standard electronic circuit used to control DC motors. It 
allows for both forward and reverse operation of the same DC motor. H-bridge 
circuits contain four large power transistors that are needed to turn on and 
reverse a DC motor. Discrete transistors may be used to build the H-bridge or it 
may be in an IC or packaged module that connects directly to the motors. 

NEVER ATTEMPT TO DRIVE A MOTOR OR RELAY WITH AN FPGA PIN DIRECTLY, IT CANNOT 
SUPPLY THE HIGH CURRENT LEVELS THAT THESE DEVICES NEED. THE FPGA’S OUTPUT PIN 

DRIVER CIRCUIT MAY BE DESTROYED. 

 
If the car supports seven functions, it will have at least four pins coming off of 
the DIP chip package that break down into Left, Right, Forward, and Reverse. 
Using a voltmeter or an oscilloscope, test which pins change when the remote 
control is set to each of the four directions. From each of the designated 
command pins on the chip, the trace on the PC board will run to separate H-
bridge circuits for each motor.  
By clipping or desoldering and pulling out the four control pins on the chip 
going to the board and soldering wires from each chip pin hole pad trace to the 
FPGA (Figures 13.23 and 13.24), the FPGA board can control the four 
directions and speed of the R/C car using the car’s existing H-bridge circuits. In 
our modification, we desoldered the entire chip and put a socket on the board. 
To have the original control signals coming from the radio control module also 
sent to the FPGA board, run four more wires from the clipped chip pins to the 
one of the FPGA’s headers. If the four clipped chip pins (RCx) are connected to 
the FPGA board, logic can be designed to include the original radio control 
functions supplied by the handheld remote control unit. You can also make this 
connection at the H-bridge circuit if necessary. On the UP3, you will want to 
use the UP3s 5V I/O pins for this interface. 
 



272 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

 

Figure 13.23 Interfacing to the R/C Car’s Internal Control Signals at the Demodulator IC.  

 

 

Figure 13.24 Photo Showing Control Modifications to R/C Car Control Board.  

• Hobbyist R/C Models, Robot Kits, and Commercial Robot Bases 
For those with a larger budget, higher quality R/C hobbyist cars are available 
with built-in proportional steering and pulsed electronic speed controls. The 
control interface to these cars uses standard R/C PWM signals that are identical 
to the PWM servo control bit described at the end of Section 13.2. An example 
R/C Hummer can be seen in Figure 13.25. This robot is controlled using a C 
program running on the FPGA’s Nios processor core. Various robot kits without 
control electronics or a computer are also available. Almost any of these robot 
kits can be controlled by the UP2 or UP3 board provided they are large enough 
to carry it and can power it from their battery or carry a second battery for the 

Rt
Lt

Rev
Fwd

RCLt
RCRt

RCRev
RCFwd



 FPGA Robotics Projects 273 
 

 

 

UP3. An interesting walking robot kit containing 12 R/C servos is seen in 
Figure 13.26.  
 

 

Figure 13.25 Hobbyist R/C model with a CMU camera and R/C PWM servos controlled by an FPGA 

 

Figure 13.26 Lynxmotion Hexpod Walking Robot Kit with 12 R/C servos  



274 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

 
 

Figure 13.27 ActiveMedia’s Amigobot robot base controlled by an FPGA with a Nios Processor  

Some commercial robot bases are also available such as the Amigobot as seen 
in Figure 13.27, the ER1 from Evolution Robotics and the mobile robot 
platform from Drrobot. The Amigobot uses an RS-232C serial interface and the 
ER1 uses USB for motor control. A robot base contains a motor, drive 
electronics, sensors, and a battery, but it has no high-level controller. 
One of the newest and most attractive low-cost options for a robot base is 
iRobot’s iCreate robot base as seen in Figure 13.28 (www.irobot.com). It is 
basically a “Roomba” robotic vacuum cleaner without the vacuum parts. It 
contains an internal microcontroller, two drive motors with feedback, audio 
output, and several simple sensors (i.e., IR, bump or contact switches, and IR 
cliff or surface drop-off sensors). Using an RS-232 serial port, motor 
commands can be sent to the microcontroller and the sensor status can be read 
back. An FPGA board running a Nios processor can talk to the iCreate 
microcontroller using the RS-232 serial port. You can write the required robot 
application code for the Nios processor in C.  
6-32 screw holes are provided on top of the base that can easily be used to 
mount an FPGA board using an additional flat rectangular piece of Plexiglas or 
Lexan. The rectangular sheet of plastic bolts to the base using the four screw 
holes above the open cargo area, and the FPGA board bolts to the sheet of 
plastic. Power can be provided at up to 1 amp using the iCreate’s internal 
battery or there is also space in the cargo area for an additional battery pack for 
the FPGA board. The internal battery voltage is 18V, so a 7, 9, or 5 volt DC 
regulator (depends on which FPGA board) is needed to drop the voltage for the 
FPGA board (note: too high of a DC input voltage will overheat the FPGA 
board’s internal DC regulator). A DB-25 connector seen at the center in Figure 
13.28 provides all of the power and serial port connections needed. 



 FPGA Robotics Projects 275 
 

 

Figure 13.28 iRobots iCreate robot base can be controlled by an FPGA with a Nios Processor using 
an RS-232 serial port to send commands to the iCreate robot’s internal microcontroller. Photograph 
courtesy of iRobot.  

Once you develop a working robot and want to run existing demos, you may 
want to program the FPGA board’s flash memory configuration device so that 
your design automatically runs whenever the board is turned on. 

13.9 For Additional Information 
Radio-controlled cars and parts such as batteries, battery chargers, and servos can be 
obtained at a local hobby shop or via mail order at a lower cost from: 

Tower Hobbies http://www.towerhobbies.com 
P.O. Box 9078 
Champaign, IL 61826-9078 
800-637-6050 
 

IR Proximity, Line Tracker, Sonar sensors, Servos, Wheels, and Robot kits can be 
obtained via mail order from: 

Lynxmotion, Inc. http://www.lynxmotion.com 
104 Partridge Road 
Pekin, IL 61554-1403 
309-382-1254 



276 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

 
Mondotronics http://www.robotstore.com 
4286 Redwood Highway #226 
San Raphael, CA 94903 
800–374–5764 

 
Sensors & Robot kits, Servo wheels for robots, and Servo wheel encoder kits can also 
be obtained via mail order from: 

Acroname http://www.acroname.com 
P.O. Box 1894 
Nederland, CO 80466 
303-258-3161 

 
Low-cost digital and analog compass sensors are available via mail order from: 

Dinsmore Instrument Co. http://www.dinsmoresensors.com 
P.O. Box 345 
Flint, Michigan 48501 
810-744-1790 

 
Electronic Compass Modules are available from: 
  PNI Corp    http://www.pnicorp.com 
  5464 Skylane Blvd. Suite A 
  Santa Rosa, CA 95403 
 
GPS and DGPS ICs and modules are available from: 
  Motorola TCG    http://www.motorola.com/gps 
  GPS Products 
  2900 South Diablo Way 
  Tempe, AZ 85282 
 

u-blox AG http://www.u-blox.com 
Zürcherstrasse 68 
8800 Thalwil 
Schweiz 

 
A wide array of robot sensor modules is available from: 

Devantech Ltd (Robot Electronics)     http://www.robot-electronics.co.uk 
Unit 2B Gilray Road 
Diss 
Norfolk 
IP22 4EU 
England 



 FPGA Robotics Projects 277 
 

 

 

Robotics Connection http://www.roboticsconnection.com  
4355 Cobb Parkway 
Suite J148 
Atlanta, GA 30339 

 
A wide array of various sensor and GPS boards is available from: 

 
Spark Fun Electronics http://www.sparkfun.com  
2500 Central Ave. 
Suite Q 
Boulder, CO 80301 
 

A longer list of robot parts vendors and sites can be found at: 
 

http://users.ece.gatech.edu/~hamblen/4006/robot_links.htm 
 

13.10 Laboratory Exercises 
1. Develop a counter design to find the dead zone of a converted R/C servo motor. The dead 

or null zone is the time near 1.5ms that actually makes the servo motor stop moving. As 
in the example motor driver code, send a width adjusted pulse every 20ms. You will need 
a resolution of at least .01ms to find the dead zone, so a clock faster than the example 
code is required. For example, the motor might actually stop at 1.54ms instead of 1.50ms. 
Use the clk_div FPGAcore function to provide the clock. The design should increase the 
width of the timing pulse if one pushbutton is hit and decrease the width if the other 
pushbutton is hit. Display the width of the timing pulse in the seven-segment LEDs. Use 
a Cyclone DIP-switch input to select the motor to examine. By hitting the pushbuttons, 
you should be able to stop and reverse the motor. The dead zone will be between the 
settings where the drive wheel reverses direction. At the dead zone, the drive wheel 
should stop. Settings near the dead zone will make the motor run slower. Record the dead 
zone for both the left and right motor. 

2. Using the dead zone settings from problem 1, design a motor speed controller. Settings 
within around .2ms of the dead zone will make the motor run slower. The closer to the 
dead zone the slower the motor will run. Include at least four speed settings for each 
motor. See if you can get the robot to move in a straight line at a slow speed. 

3. Develop a speed controller for the robot drive motors by pulsing the drive motors on and 
off. The motors are sent a pulse of 1ms for reverse and 2ms for forward at full speed. If 
no pulse is sent for 20ms, the motor stops. If a motor is sent a 1 or 2ms pulse followed by 
no pulse in a repeating pattern, it will move slower. To move even slower use pulse, no 
pulse, no pulse in a repeating pattern. To move faster use pulse, no pulse, pulse in a 
repeating pattern. Using this approach, develop a speed controller for the robot with at 
least five speeds and direction. Send no pulse for the stop speed. Some additional 
mechanical noise will result from pulsing the motors at slow speeds. See if the robot will 
move in a straight line at a slow speed. 

4. Use an IR LED and IR sensor to add position feedback to the motors. You can build it 
yourself or a similar servo wheel encoder kit built by Nubotics is available from 
Acroname. Some sensor modules are available that have both the IR LED and IR sensor 
mounted in a single plastic case. For reflective sensors, mark the wheels with radial black 



278 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

paint stripes or black drafting tape and count the pulses from the IR sensor to determine 
movement of the wheel. Another option would be to draw the radial stripes using a PC 
drawing program and print it on clear adhesive labels made for laser printers. The labels 
could then be placed on the flat side of the wheel. If a transmissive sensor arrangement is 
used, holes can be drilled in the main wheel or a second smaller slotted wheel could be 
attached to the servo output shaft that periodically interrupts the IR light beam from the 
LED to the sensor. In this case, the LED and sensor are mounted on opposite sides of the 
wheel. This same optical sensing technique is used in many mice to detect movement of 
the mouse ball. Use the position feedback to implement more accurate variable speed and 
position control for the motors. 

5. Design a state machine using a counter/timer that will move the robot in the following 
fixed pattern:  
• Move forward for 6 seconds. 

• Turn right and go forward for 4 seconds (do not count the time it takes to turn). 

• Turn left and go forward for 2 seconds. 

• Stop, pause for 2 seconds, turn 180 degrees, and start over. 

Determine the amount of time required for 90- and 180-degree turns by trial and error. A 
10Hz or 100Hz clock should be used for the timer. Use the clk_div FPGAcore to divide 
the UP3 on-board clock. The state machine should check the timer to see if the correct 
amount of time has elapsed before moving to the next state in the path. The timer is reset 
when moving to a new portion of the path. Use an initial state that turns off the motors 
until a pushbutton is hit, so that it is easier to control the robot during download. Since 
there is no motor position feedback, all turns and the actual distance traveled by the 
FPGA-bot will vary slightly.  

 

6 sec. 

6 sec. 

4 sec. 4 sec. 

2 sec. 

2 sec. 
Start 

Turn 180 
Degrees 

 

Figure 13.29  Simple path for state machine without sensor response. 

6. Using a ROM, develop a ROM-based state machine that reads a motor direction and 
time from the ROM. Put a complex pattern such as a dance step in the ROM using a 
MIF file. For looping, another field in the ROM can be used to specify a jump to a 
different next address. 



 FPGA Robotics Projects 279 
 

 

 

7. Using the keyboard FPGAcore, design an interface to the keyboard that allows the 
keyboard to be used as a remote control device to move the robot. Pick at least five 
different keys to command to robot to move, turn left, turn right, or stop. 

8. Interface an IR proximity sensor module to the FPGA-bot using jumpers connected 
to the Cyclone male header socket. Attach the module in front of the header socket 
using foam tape. Alternate driving the left and right IR LEDs at 100Hz. Check for an 
IR sensor return and develop two signals, LEFT and RIGHT to indicate if the IR 
sensor return is from the left or right IR LED. The IR LEDs may need to be adjusted 
or shielded with some heat shrink tubing so that the floor does not reflect IR to the 
sensor. Use the LEFT and RIGHT signals to drive the decimal points on two LEDs to 
help adjust the sensor. It may be necessary to filter the IR returns using a counter 
with a return/no return threshold for reliable operation. Using a clock faster than 
100Hz, for example 10kHz, only set LEFT or RIGHT if the return was present for 
several clock cycles. 

9. Using IR sensor input, develop a design for the FPGA-bot that follows a person. The 
person must be within a foot or so of the FPGA-bot. When a left signal is present 
turn left, when a right signal is present turn right, and when both signals are present, 
move forward a few inches and stop. When all signals are lost, the FPGA-bot should 
rotate until an IR return is acquired. 

10. Use motor speed control and a state machine with a timer to perform a small figure 
eight with the FPGA-bot. 

11. Once the IR proximity sensor module from problem 8 is interfaced, design a state 
machine for the robot that moves forward and avoids obstacles. If it sees an obstacle 
to the left, turn right, and if there is an obstacle to the right, turn left. If both left and 
right obstacles are present, the robot should go backwards by reversing both motors. 

12. With two FPGA-bots facing each other, develop a serial communications protocol 
using the IR LEDs and sensors. Assume the serial data is fixed in length and always 
starts with a known pattern at a fixed clock rate. The IR LEDs are pulsed at around 
40kHz and the sensor has a 40kHz filter, so this will limit the bandwidth to a few 
kHz. Transmit the 8-bit value from the Cyclone DIP switches and display the value 
in the receiving FPGA-bot seven-segment LED displays. Display the raw IR sensor 
input in the decimal point LED to aid in debugging and alignment. 

13. Interface the line-following module to the FPGA-bot, and design a state machine that 
follows a line. The line-following module has three sensor signals, left, center, and 
right. If the line drifts to the left, turn right, and if the line drifts to the right, turn left. 
Adjust turn constants so that the FPGA-bot moves along the line as fast as possible. 
If speed control was developed for the FPGA-bot as suggested in earlier problems, 
try using speed control for smaller less abrupt turns. 

14. Using a standard IR remote control unit from a television or VCR and an IR sensor 
interfaced to the FPGA-bot, implement a remote control for the FPGA-bot. Different 
buttons on the remote control unit generate a different sequence of timing pulses. A 
digital oscilloscope or logic analyzer can be used to examine the timing pulses. 

15. Interface the a magnetic or electronic compass module to the FPGA-bot, and design a 
state machine that performs the following operation: 

• Turn North. 

• Move forward 4 seconds. 



280 Rapid Prototyping of Digital Systems   Chapter 13 
 

 

 

• Turn East. 

• Move forward 4 seconds. 

• Turn Southwest. 

• Move forward 6.6 seconds. 

• Stop and repeat when the pushbutton is hit. 

The mechanical compass has a small time delay due to the inertia of the magnetized 
rotor. Just like a real compass, it will swing back and forth for awhile before 
stopping. With care, the leads on the compass module can be plugged into a DIP 
socket with wire wrapped power supply and pull-up resistor connections on a small 
protoboard or make a printed circuit board for the compass with jumper wires to plug 
into the Cyclone female header socket. Make sure the compass module is mounted so 
that it is level and as far away from the motors magnets as possible. 

16. Interface a Sonar-ranging module to the FPGA-bot and perform the following 
operation: 

• Scan the immediate area 360 degrees by rotating the robot  

• Locate the nearest object. 

• Move close to the object and stop. 

17. Attach the Sonar transducer to an unmodified servo’s output shaft. Use the new servo 
to scan the area and locate the closest object. To sweep the unmodified servo back 
and forth, a timing pulse that slowly increases from 1ms to 2ms and back to 1ms is 
required. Move close to the nearest object and stop. 

18. Attach several IR ranging sensors to the FPGA-bot and use the sensor data to 
develop a wall following robot. 

19. Interface additional sensors, switches, etc., to the FPGA-bot so that it can navigate a 
maze. If several robots are being developed, consider a contest such as best time 
through the maze or best time after learning the maze. 

20. Use the μP 3 computer from Chapter 8 to implement a microcontroller to control the 
robot instead of a custom state machine. Write a μP 3 assembly language program to 
solve one of the previous problems. Interface a time-delay timer, the sensors, and the 
motor speed control unit to the μP 3 computer using I/O ports as suggested in 
problem 8.6. The additional machine instructions suggested in the exercises in 
Chapter 8 would also be useful. 

21. Use a Nios processor to control the robot with C code using the UP3 Nios II 
reference design in Chapters 16 & 17. 



 FPGA Robotics Projects 281 
 

 

 

22. Develop and hold a FPGA-bot design contest. Information on previous and current 
robotics contests can be found online at various web sites. Here are some ideas that 
have been used for other robot design contests: 

• Robot Maze Solving 

• Robot Dance Contest 

• Sumo Wrestling 

• Robot Soccer Teams 

• Robot Laser Tag 

• Fire Fighting Robots 

• Robots that collect objects  

• Robots that detect mines 

 



 

A full die photograph of the MIPS R2000 RISC Microprocessor is shown above.  The 
1986 MIPS R2000 with five pipeline stages and 450,000 transistors was the world’s first 
commercial RISC microprocessor. Photograph ©1995-2004 courtesy of Michael 
Davidson, Florida State University, http://micro.magnet.fsu.edu/chipshots.  
 
 

CHAPTER 14 

A RISC Design: 
Synthesis of the MIPS 
Processor Core 

 

 



284 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

14   A RISC Design: Synthesis of the MIPS Processor Core  

14.1 The MIPS Instruction Set and Processor  
The MIPS is an example of a modern reduced instruction set computer (RISC) 
developed in the 1980s. The MIPS instruction set is used by NEC, Nintendo, 
Motorola, Sony, and licensed for use by numerous other semiconductor 
manufacturers. It has fixed-length 32-bit instructions and thirty-two 32-bit 
general-purpose registers. Register 0 always contains the value 0. A memory 
word is 32 bits wide.  
As seen in Table 14.1, the MIPS has only three instruction formats. Only I-
format LOAD and STORE instructions reference memory operands. R-format 
instructions such as ADD, AND, and OR perform operations only on data in the 
registers. They require two register operands, Rs and Rt. The result of the 
operation is stored in a third register, Rd. R-format shift and function fields are 
used as an extended opcode field. J-format instructions include the jump 
instructions. 
 

Table 14.1 MIPS 32-bit Instruction Formats. 

Field Size 6-bits 5-bits 5-bits 5-bits 5-bits 6-bits 
 R - Format Opcode Rs Rt Rd Shift Function 
 I - Format Opcode Rs Rt Address/immediate value 
 J - Format Opcode Branch target address 

 
LW is the mnemonic for the Load Word instruction and SW is the mnemonic 
for Store Word. The following MIPS assembly language program computes 
A = B + C. 

 
LW  $2, B  ;Register 2 = value of memory at address B 
LW  $3, C  ;Register 3 = value of memory at address C 
ADD $4, $2, $3 ;Register 4 = B + C 
SW  $4, A  ;Value of memory at address A = Register 4 

 
The MIPS I-format instruction, BEQ, branches if two registers have the same 
value. As an example, the instruction BEQ $1, $2, LABEL jumps to LABEL if 
register 1 equals register 2. A branch instruction’s address field contains the 
offset from the current address. The PC must be added to the address field to 
compute the branch address. This is called PC-relative addressing.  
LW and SW instructions contain an offset and a base register that are used for 
array addressing. As an example, LW $1, 100($2) adds an offset of 100 to the 
contents of register 2 and uses the sum as the memory address to read data 
from. The value from memory is then loaded into register 1. Using register 0, 
which always contains a 0, as the base register disables this addressing feature.  



 A RISC Design: Synthesis of the MIPS Processor Core 285 
 

 

 

Table 14.2 MIPS Processor Core Instructions. 

Mnemonic Format 
Opcode 

Field 
Function 

Field 
Instruction 

Add R 0 32 Add 
Addi I 8 - Add Immediate 
Addu R 0 33 Add Unsigned 
Sub R 0 34 Subtract 

Subu R 0 35 Subtract Unsigned 
And R 0 36 Bitwise And 
Or R 0 37 Bitwise OR 
Sll R 0 0 Shift Left Logical 
Srl R 0 2 Shift Right Logical 
Slt R 0 42 Set if Less Than 
Lui I 15 - Load Upper Immediate 
Lw I 35 - Load Word 
Sw I 43 - Store Word 
Beq I 4 - Branch on Equal 
Bne I 5 - Branch on Not Equal 

J J 2 - Jump 
Jal J 3 - Jump and Link (used for Call) 

Jr R 0 8 Jump Register (used for 
Return) 

 
 
A summary of the basic MIPS instructions is shown in Table 14.2. In depth 
explanations of all MIPS instructions and assembly language programming 
examples can be found in the references listed in section 14.11.  
A hardware implementation of the MIPS processor core based on the example 
in the widely used textbook, Computer Organization and Design The 
Hardware/Software Interface by Patterson and Hennessy, is shown in Figure 
14.1. This implementation of the MIPS performs fetch, decode, and execute in 
one clock cycle. Starting at the left in Figure 14.1, the program counter (PC) is 
used to fetch the next address in instruction memory. Since memory is byte 
addressable, four is added to address the next 32-bit (or 4-byte) word in 
memory. At the same time as the instruction fetch, the adder above instruction 
memory is used to add four to the PC to generate the next address. The output 
of instruction memory is the next 32-bit instruction. 
The instruction’s opcode is then sent to the control unit and the function code is 
sent to the ALU control unit. The instruction’s register address fields are used 
to address the two-port register file. The two-port register file can perform two 
independent reads and one write in one clock cycle. This implements the 
decode operation. 



286 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

 

Figure 14.1 MIPS Single Clock Cycle Implementation.  

The two outputs of the register file then feed into the data ALU inputs. The 
control units setup the ALU operation required to execute the instruction. Next, 
Load and Store instructions read or write to data memory. R-format instructions 
bypass data memory using a multiplexer. Last, R-format and Load instructions 
write back a new value into the register file.  
PC-relative branch instructions use the adder and multiplexer shown above the 
data ALU in Figure 14.1 to compute the branch address. The multiplexer is 
required for conditional branch operations. After all outputs have stabilized, the 
next clock loads in the new value of the PC and the process repeats for the next 
instruction. 
RISC instruction sets are easier to pipeline. With pipelining, the fetch, decode, 
execute, data memory, and register file write operations all work in parallel. In 
a single clock cycle, five different instructions are present in the pipeline. The 
basis for a pipelined hardware implementation of the MIPS is shown in Figure 
14.2. 
Additional complications arise because of data dependencies between 
instructions in the pipeline and branch operations. These problems can be 
resolved using hazard detection, data forwarding techniques, and branch 

4

PC
Read
Address

Instruction
Memory

Instruction
[31-0]

Instruction
[31-26] Control

Unit

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-11]

Instruction
[15-0]

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
Data 1

Read
Data 2

Zero

ALU
Result

ADD
ADD

Result
Shift
Left

2

Address

Write
Data

Data
Memory

Read
Data

ADD

Sign
Extend

16 32

ALU
ControlInstruction

[5-0]

0

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

M
u
x

Registers

PC + 4

ALU



 A RISC Design: Synthesis of the MIPS Processor Core 287 
 

 

 

flushing. With pipelining, most RISC instructions execute in one clock cycle. 
Branch instructions will still require flushing of the pipeline. Exercises that add 
pipelining to the processor core are included at the end of the chapter.  

 

Figure 14.2  MIPS Pipelined Implementation. 

14.2 Using VHDL to Synthesize the MIPS Processor Core 
A VHDL-synthesis model of the MIPS single clock cycle model from Figure 
14.1 will be developed in this section. This model can be used for simulation 
and implemented using the UP3 board. 
The full 32-bit model requires a couple minutes to synthesize. When testing 
new changes you might want to use the faster functional (i.e. no timing delays) 
simulation approach before using a full timing delay model. This approach is 
commonly used on larger models with long synthesis and simulation times. 
A two-level hierarchy is used in the model. MIPS.VHD is the top-level of the 
hierarchy. It consists of a structural VHDL model that connects the five 
behavioral modules. The five behavioral modules are already setup so that they 
correspond to the different stages for the MIPS. This makes it much easier to 
modify when the model is pipelined in later laboratory exercises. For many 
synthesis tools, hierarchy is also required to synthesize large logic designs. 
IFETCH.VHD is the VHDL submodule that contains instruction memory and 
the program counter. CONTROL.VHD contains the logic for the control unit. 

PC Address

Instruction
Memory

Control

Instruction
[15-0]

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
Data 1

Read
Data 2

ALU

Zero

ALU
Result

Shift
Left

2

Address

Write
Data

Data
Memory

Read
Data

ADD

4

Sign
Extend

16 32 ALU
Control

1

0

M
u
x

0

1

M
u
x

Registers

Instruction
[20-16]
Instruction
[15-11]

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r

ADD
ADD

Result

0

1

M
u
x

6

WB

M

EX

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r

PCSrc

ID/EX

0

1

M
u
x

ALUOp

RegDst

ALUSrc

WB

M

EX/MEM

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r

WB

MEM/WB

Branch

MemRead

IF/ID



288 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

IDECODE.VHD contains the multi-ported register file. EXECUTE.VHD 
contains the data and branch address ALUs. DMEMORY.VHD contains the 
data memory. 

14.3 The Top-Level Module 
The MIPS.VHD file contains the top-level design file. MIPS.VHD is a VHDL 
structural model that connects the five component parts of the MIPS. This 
module could also be created using the schematic editor and connecting the 
symbols for each VHDL submodule. The inputs are the clock and reset signals. 
The values of major busses and important control signals are copied and output 
from the top level so that they are available for easy display in simulations. 
Signals that are not outputs at the top level will occasionally not exist due to 
the compilers logic optimizations during synthesis.  

 
 

    -- Top Level Structural Model for MIPS Processor Core 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
USE IEEE.STD_LOGIC_ARITH.ALL; 
 
ENTITY MIPS IS 
 
 PORT( reset, clock    : IN  STD_LOGIC;  

  -- Output important signals to pins for easy display in Simulator 
  PC     : OUT  STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
  ALU_result_out, read_data_1_out, read_data_2_out,  
  write_data_out, Instruction_out  : OUT  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
  Branch_out, Zero_out, Memwrite_out,  
  Regwrite_out    : OUT  STD_LOGIC ); 
END  TOP_SPIM; 
 
ARCHITECTURE structure OF TOP_SPIM IS 
 
 COMPONENT Ifetch 
         PORT( Instruction  : OUT  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
          PC_plus_4_out   : OUT   STD_LOGIC_VECTOR( 9 DOWNTO 0 ); 
          Add_result   : IN  STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
          Branch    : IN  STD_LOGIC; 
          Zero    : IN  STD_LOGIC; 
          PC_out   : OUT  STD_LOGIC_VECTOR( 9 DOWNTO 0 ); 
          clock,reset   : IN  STD_LOGIC ); 

 END COMPONENT;  
 

 COMPONENT Idecode 
       PORT( read_data_1   : OUT  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
          read_data_2   : OUT  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
          Instruction   : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
          read_data   : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
          ALU_result   : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
          RegWrite, MemtoReg  : IN  STD_LOGIC; 



 A RISC Design: Synthesis of the MIPS Processor Core 289 
 

 

 

          RegDst   : IN  STD_LOGIC; 
          Sign_extend   : OUT  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
          clock, reset  : IN  STD_LOGIC ); 

 END COMPONENT; 
 
 COMPONENT control 

      PORT(  Opcode   : IN  STD_LOGIC_VECTOR( 5 DOWNTO 0 ); 
              RegDst   : OUT  STD_LOGIC; 
              ALUSrc   : OUT  STD_LOGIC; 
              MemtoReg   : OUT  STD_LOGIC; 
              RegWrite   : OUT  STD_LOGIC; 
              MemRead   : OUT  STD_LOGIC; 
              MemWrite   : OUT  STD_LOGIC; 
              Branch    : OUT  STD_LOGIC; 
              ALUop    : OUT  STD_LOGIC_VECTOR( 1 DOWNTO 0 ); 
              clock, reset  : IN  STD_LOGIC ); 

 END COMPONENT; 
 

 COMPONENT  Execute 
         PORT( Read_data_1   : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
                 Read_data_2   : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
                 Sign_Extend   : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
                 Function_opcode  : IN  STD_LOGIC_VECTOR( 5 DOWNTO 0 ); 
                 ALUOp    : IN  STD_LOGIC_VECTOR( 1 DOWNTO 0 ); 
                 ALUSrc   : IN  STD_LOGIC; 
                 Zero    : OUT STD_LOGIC; 
                 ALU_Result   : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
                 Add_Result   : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
                 PC_plus_4   : IN  STD_LOGIC_VECTOR( 9 DOWNTO 0 ); 
                 clock, reset  : IN  STD_LOGIC ); 
 END COMPONENT; 
 
 
 COMPONENT dmemory 
      PORT( read_data   : OUT  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
          address   : IN  STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
          write_data   : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
          MemRead, Memwrite  : IN  STD_LOGIC; 
          Clock,reset  : IN  STD_LOGIC ); 
 END COMPONENT; 
 

     -- declare signals used to connect VHDL components 
 SIGNAL PC_plus_4  :  STD_LOGIC_VECTOR( 9 DOWNTO 0 ); 

 SIGNAL read_data_1  : STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
 SIGNAL read_data_2  : STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
 SIGNAL Sign_Extend  : STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
 SIGNAL Add_result  : STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
 SIGNAL ALU_result  : STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
 SIGNAL read_data   : STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
 SIGNAL ALUSrc   : STD_LOGIC; 
 SIGNAL Branch   : STD_LOGIC; 
 SIGNAL RegDst   : STD_LOGIC; 



290 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

 SIGNAL Regwrite   : STD_LOGIC; 
 SIGNAL Zero   : STD_LOGIC; 
 SIGNAL MemWrite   : STD_LOGIC; 
 SIGNAL MemtoReg  : STD_LOGIC; 
 SIGNAL MemRead   : STD_LOGIC; 
 SIGNAL ALUop   : STD_LOGIC_VECTOR(  1 DOWNTO 0 ); 
 SIGNAL Instruction  : STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
 
BEGIN 
     -- copy important signals to output pins for easy  
     -- display in Simulator 
   Instruction_out  <= Instruction; 
   ALU_result_out  <= ALU_result; 
   read_data_1_out  <= read_data_1; 
   read_data_2_out  <= read_data_2; 
   write_data_out   <= read_data WHEN MemtoReg = '1' ELSE ALU_result; 
   Branch_out   <= Branch; 
   Zero_out   <= Zero; 
   RegWrite_out  <= RegWrite; 
   MemWrite_out  <= MemWrite;  

     -- connect the 5 MIPS components    
  IFE : Ifetch 

 PORT MAP ( Instruction  => Instruction, 
            PC_plus_4_out  => PC_plus_4, 
   Add_result  => Add_result, 
   Branch  => Branch, 
   Zero  => Zero, 
   PC_out  => PC,           
   clock  => clock,   
   reset  => reset ); 
 
   ID : Idecode 
    PORT MAP ( read_data_1  => read_data_1, 
          read_data_2  => read_data_2, 
          Instruction  => Instruction, 

         read_data  => read_data, 
   ALU_result  => ALU_result, 
   RegWrite  => RegWrite, 
   MemtoReg  => MemtoReg, 
   RegDst  => RegDst, 
   Sign_extend  => Sign_extend, 
          clock  => clock,   
   reset  => reset ); 
 
 
   CTL:   control 
 PORT MAP (  Opcode  => Instruction( 31 DOWNTO 26 ), 
   RegDst  => RegDst, 
   ALUSrc  => ALUSrc, 
   MemtoReg  => MemtoReg, 
   RegWrite  => RegWrite, 
   MemRead  => MemRead, 



 A RISC Design: Synthesis of the MIPS Processor Core 291 
 

 

 

   MemWrite  => MemWrite, 
   Branch  => Branch, 
   ALUop  => ALUop, 
                 clock  => clock, 
   reset  => reset ); 
 
   EXE:  Execute 
    PORT MAP ( Read_data_1  => read_data_1, 
              Read_data_2  => read_data_2, 
   Sign_extend  => Sign_extend, 
                 Function_opcode => Instruction( 5 DOWNTO 0 ), 
   ALUOp  => ALUop, 
   ALUSrc  => ALUSrc, 
   Zero  => Zero, 
                 ALU_Result => ALU_Result, 
   Add_Result  => Add_Result, 
   PC_plus_4 => PC_plus_4, 
                 Clock => clock, 
   Reset => reset ); 
 
   MEM:  dmemory 
 PORT MAP ( read_data  => read_data, 
   address  => ALU_Result, 
   write_data  => read_data_2, 
   MemRead  => MemRead,  
   Memwrite  => MemWrite,  
                 clock  => clock,   
   reset  => reset ); 
END structure; 
 

14.4 The Control Unit 
The control unit of the MIPS shown in Figure 14.3 examines the instruction 
opcode bits and generates eight control signals used by the other stages of the 
processor. Recall that the high six bits of a MIPS instruction contain the 
opcode. The opcode value is used to determine the instruction type. 

 
 

 
 
 

Figure 14.3 Block Diagram of MIPS Control Unit. 

Instruction
[31-26] Control

Unit

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite



292 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

  -- control module (implements MIPS control unit) 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
USE IEEE.STD_LOGIC_ARITH.ALL; 
USE IEEE.STD_LOGIC_SIGNED.ALL; 
 
ENTITY control IS 
   PORT( Opcode   : IN  STD_LOGIC_VECTOR( 5 DOWNTO 0 ); 
           RegDst   : OUT  STD_LOGIC; 
           ALUSrc   : OUT  STD_LOGIC; 
           MemtoReg   : OUT  STD_LOGIC; 
           RegWrite   : OUT  STD_LOGIC; 
           MemRead   : OUT  STD_LOGIC; 
           MemWrite   : OUT  STD_LOGIC; 
           Branch   : OUT  STD_LOGIC; 
           ALUop   : OUT  STD_LOGIC_VECTOR( 1 DOWNTO 0 ); 
           clock, reset  : IN  STD_LOGIC );    
END control; 

 
 

ARCHITECTURE behavior OF control IS 
    
 
 SIGNAL  R_format, Lw, Sw, Beq  : STD_LOGIC; 
 
 
BEGIN            
    -- Code to generate control signals using opcode bits 
 R_format  <=  '1'  WHEN  Opcode = "000000"  ELSE '0'; 
 Lw            <=  '1'  WHEN  Opcode = "100011"  ELSE '0'; 
  Sw            <=  '1'  WHEN  Opcode = "101011"  ELSE '0'; 
    Beq           <=  '1'  WHEN  Opcode = "000100"  ELSE '0'; 
 
   RegDst     <=  R_format; 
  ALUSrc   <=  Lw OR Sw; 
 MemtoReg  <=  Lw; 
   RegWrite  <=  R_format OR Lw; 
   MemRead  <=  Lw; 
    MemWrite  <=  Sw;  
  Branch        <=  Beq; 
 ALUOp( 1 )  <=  R_format; 
 ALUOp( 0 )  <=  Beq;  
 
   END behavior; 
 
 
 
 
 
 



 A RISC Design: Synthesis of the MIPS Processor Core 293 
 

 

 

14.5 The Instruction Fetch Stage 
The instruction fetch stage of the MIPS shown in Figure 14.4 contains the 
instruction memory, the program counter, and the hardware to increment the 
program counter to compute the next instruction address. 

 

Figure 14.4 Block Diagram of MIPS Fetch Unit. 

 
Instruction memory is implemented using the Altsyncram megafunction. 256 by 
32 bits of instruction memory is available. This requires two of the Cyclone 
chip’s M4K RAM  memory blocks. Since the Altsyncram memory requires an 
address register, the PC register is actually implemented inside the memory 
block. A copy of the PC external to the memory block is also saved for use in 
simulation displays. 

 
-- Ifetch module (provides the PC and instruction  
--memory for the MIPS computer) 

LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
USE IEEE.STD_LOGIC_ARITH.ALL; 
USE IEEE.STD_LOGIC_UNSIGNED.ALL; 
LIBRARY altera_mf; 
USE altera_mf.altera_mf_components.ALL; 
 
ENTITY Ifetch IS 

 PORT( SIGNAL Instruction  : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
         SIGNAL PC_plus_4_out  : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 

          SIGNAL Add_result  : IN  STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
          SIGNAL Branch  : IN  STD_LOGIC; 
          SIGNAL Zero   : IN  STD_LOGIC; 
        SIGNAL PC_out  : OUT STD_LOGIC_VECTOR( 9 DOWNTO 0 ); 
          SIGNAL clock, reset  : IN  STD_LOGIC); 
END Ifetch; 

0

1

M
u
x

PC Read
Address

Instruction
Memory

Instruction
[31-0]

Next
PC

Clock

ADD Result

Zero
Branch

PC + 4ADD

4



294 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

 
ARCHITECTURE behavior OF Ifetch IS 
 SIGNAL PC, PC_plus_4  : STD_LOGIC_VECTOR( 9 DOWNTO 0 ); 
 SIGNAL next_PC   : STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
BEGIN 

      --ROM for Instruction Memory 
data_memory: altsyncram 

  
 GENERIC MAP (  
  operation_mode => "ROM", 
  width_a => 32, 
  widthad_a => 8, 
  lpm_type => "altsyncram", 
  outdata_reg_a => "UNREGISTERED", 

     -- Reads in mif file for initial data memory values 
  init_file => "program.mif", 
  intended_device_family => "Cyclone") 
 

     -- Fetch next instruction from memory using PC 
 PORT MAP (  

    clock0     =>  clock, 
    address_a  => Mem_Addr,  
    q_a  => Instruction  
    ); 

        -- Instructions always start on a word address - not byte 
  PC(1 DOWNTO 0) <= "00"; 

        -- copy output signals - allows read inside module 
  PC_out    <= PC; 
  PC_plus_4_out  <= PC_plus_4; 

         -- send word address to inst. memory address register 
  Mem_Addr <= Next_PC; 

         -- Adder to increment PC by 4         
        PC_plus_4( 9 DOWNTO 2 )  <= PC( 9 DOWNTO 2 ) + 1; 
        PC_plus_4( 1 DOWNTO 0 )  <= "00"; 

      -- Mux to select Branch Address or PC + 4         
  Next_PC  <=  X”00” WHEN Reset = ‘1’  ELSE 
   Add_result  WHEN ( ( Branch = '1' ) AND ( Zero = '1' ) )  
   ELSE   PC_plus_4( 9 DOWNTO 2 ); 
 
           -- Store PC in register and load next PC on clock edge 
 PROCESS 

  BEGIN 
   WAIT UNTIL ( clock'EVENT ) AND ( clock = '1' ); 
   IF reset = '1' THEN 
       PC <= "0000000000" ;  
   ELSE  
       PC( 9 DOWNTO 2 ) <= Next_PC; 
   END IF; 
 END PROCESS; 
END behavior; 
 



 A RISC Design: Synthesis of the MIPS Processor Core 295 
 

 

 

The MIPS program is contained in instruction memory. Instruction memory is 
automatically initialized using the program.mif file shown in Figure 14.5. This 
initialization only occurs once during download and not at a reset.  
For different test programs, the appropriate machine code must be entered in 
this file in hex. Note that the memory addresses displayed in the program.mif 
file are word addresses while addresses in registers such as the PC are byte 
addresses. The byte address is four times the word address since a 32-bit word 
contains four bytes. Only word addresses can be used in the *.mif files. 

 
 

-- MIPS Instruction Memory Initialization File 
 
 
Depth = 256; 
Width = 32; 
Address_radix = HEX; 
Data_radix = HEX; 
Content 
Begin 

 
 -- Use NOPS for default instruction memory values 

   [00..FF]: 00000000;   -- nop (sll r0,r0,0) 
 -- Place MIPS Instructions here 
 -- Note: memory addresses are in words and not bytes 
 -- i.e. next location is +1 and not +4 

 
  
   00: 8C020000;   -- lw $2,0 ;memory(00)=55 
   01: 8C030001;   -- lw $3,1 ;memory(01)=AA 
   02: 00430820;   -- add $1,$2,$3 
   03: AC010003;   -- sw $1,3 ;memory(03)=FF 
   04: 1022FFFF;   -- beq $1,$2,-4 
   05: 1021FFFA;   -- beq $1,$1,-24 
 
End; 
 
 

Figure 14.5 MIPS Program Memory Initialization File, program.mif. 



296 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

14.6 The Decode Stage 
The decode stage of the MIPS contains the register file as shown in Figure 
14.6. The MIPS contains thirty-two 32-bit registers. The register file requires a 
major portion of the hardware required to implement the MIPS. Registers are 
initialized to the register number during a reset. This is done to enable the use 
of shorter test programs that do not have to load all of the registers. A VHDL 
FOR...LOOP structure is used to generate the initial register values at reset. 

 

Figure 14.6 Block Diagram of MIPS Decode Unit. 

     --  Idecode module (implements the register file for 
LIBRARY IEEE;    -- the MIPS computer) 
USE IEEE.STD_LOGIC_1164.ALL; 
USE IEEE.STD_LOGIC_ARITH.ALL; 
USE IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
ENTITY Idecode IS 
   PORT( read_data_1 : OUT  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
   read_data_2 : OUT  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
   Instruction  : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
   read_data  : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
   ALU_result : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
   RegWrite  : IN  STD_LOGIC; 
   MemtoReg  : IN  STD_LOGIC; 
   RegDst   : IN  STD_LOGIC; 
   Sign_extend  : OUT  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
   clock,reset : IN  STD_LOGIC ); 
END Idecode; 
 
 

Read Data

Instruction
[25 - 21]

Instruction
[20 - 16]

Instruction
[15 - 11]

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
Data 1

Read
Data 2

0

1

M
u
x

Registers

Instruction
[15 - 0] Sign

Extend
16 32

0

1

M
u
x

ALU Result

MemtoReg

RegWrite
RegDst



 A RISC Design: Synthesis of the MIPS Processor Core 297 
 

 

 

ARCHITECTURE behavior OF Idecode IS 
TYPE register_file IS ARRAY ( 0 TO 31 ) OF STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
 
 SIGNAL register_array: register_file; 
 SIGNAL write_register_address  : STD_LOGIC_VECTOR( 4 DOWNTO 0 ); 
 SIGNAL write_data   : STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
 SIGNAL read_register_1_address : STD_LOGIC_VECTOR( 4 DOWNTO 0 ); 
 SIGNAL read_register_2_address : STD_LOGIC_VECTOR( 4 DOWNTO 0 ); 
 SIGNAL write_register_address_1 : STD_LOGIC_VECTOR( 4 DOWNTO 0 ); 
 SIGNAL write_register_address_0 : STD_LOGIC_VECTOR( 4 DOWNTO 0 ); 
 SIGNAL Instruction_immediate_value : STD_LOGIC_VECTOR( 15 DOWNTO 0 ); 
 
BEGIN 
 read_register_1_address  <= Instruction( 25 DOWNTO 21 ); 
    read_register_2_address  <= Instruction( 20 DOWNTO 16 ); 
    write_register_address_1 <= Instruction( 15 DOWNTO 11 ); 
    write_register_address_0  <= Instruction( 20 DOWNTO 16 ); 
    Instruction_immediate_value  <= Instruction( 15 DOWNTO 0 ); 
     -- Read Register 1 Operation 
 read_data_1 <= register_array( CONV_INTEGER( read_register_1_address) ); 
     -- Read Register 2 Operation    
 read_data_2 <= register_array( CONV_INTEGER( read_register_2_address) ); 
     -- Mux for Register Write Address 
     write_register_address <= write_register_address_1  
   WHEN RegDst = '1'  ELSE write_register_address_0; 
     -- Mux to bypass data memory for Rformat instructions 
 write_data <= ALU_result( 31 DOWNTO 0 )  
   WHEN ( MemtoReg = '0' )  ELSE read_data; 
     -- Sign Extend 16-bits to 32-bits 
     Sign_extend <= X"0000" & Instruction_immediate_value 
  WHEN Instruction_immediate_value(15) = '0' 
  ELSE X"FFFF" & Instruction_immediate_value; 
 
PROCESS 
 BEGIN 
  WAIT UNTIL clock'EVENT AND clock = '1'; 
  IF reset = '1' THEN 
     -- Initial register values on reset are register = reg# 
     -- use loop to automatically generate reset logic  
     -- for all registers 
   FOR i IN 0 TO 31 LOOP 
    register_array(i) <= CONV_STD_LOGIC_VECTOR( i, 32 ); 
    END LOOP; 
     -- Write back to register - don't write to register 0 
    ELSIF RegWrite = '1' AND write_register_address /= 0 THEN 
        register_array( CONV_INTEGER( write_register_address)) <= write_data; 
  END IF; 
 END PROCESS; 
END behavior; 
 
 
 



298 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

14.7 The Execute Stage 
The execute stage of the MIPS shown in Figure 14.7 contains the data ALU and 
a branch address adder used for PC-relative branch instructions. Multiplexers 
that select different data for the ALU input are also in this stage.  

 

Figure 14.7 Block Diagram of MIPS Execute Unit. 

--  Execute module (implements the data ALU and Branch Address Adder   
--  for the MIPS computer) 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
USE IEEE.STD_LOGIC_ARITH.ALL; 
USE IEEE.STD_LOGIC_SIGNED.ALL; 
 
ENTITY  Execute IS 
 PORT( Read_data_1  : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
   Read_data_2  : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
   Sign_extend  : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
   Function_opcode  : IN  STD_LOGIC_VECTOR( 5 DOWNTO 0 ); 
   ALUOp  : IN  STD_LOGIC_VECTOR( 1 DOWNTO 0 ); 
   ALUSrc  : IN  STD_LOGIC; 
   Zero  : OUT STD_LOGIC; 
   ALU_Result  : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
   Add_Result  : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
   PC_plus_4  : IN  STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
   clock, reset : IN  STD_LOGIC ); 
END Execute; 

 

2

1
Zero

ALU
Result

0

1

M
u
x

ALU

ADD
ADD

Result

Shift
Left

2

PC+4

Sign
E xtend

Read
Data

Sign
E xtend

Read
Data

ALU
ControlA L UOP

A L USrc



 A RISC Design: Synthesis of the MIPS Processor Core 299 
 

 

 

 
ARCHITECTURE behavior OF Execute IS 
SIGNAL Ainput, Binput   : STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
SIGNAL ALU_output_mux : STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
SIGNAL Branch_Add   : STD_LOGIC_VECTOR( 8 DOWNTO 0 ); 
SIGNAL ALU_ctl  : STD_LOGIC_VECTOR( 2 DOWNTO 0 ); 
BEGIN 
  Ainput <= Read_data_1; 
      -- ALU input mux 
 Binput <= Read_data_2  
  WHEN ( ALUSrc = '0' )  
    ELSE  Sign_extend( 31 DOWNTO 0 ); 
      -- Generate ALU control bits 
 ALU_ctl( 0 ) <= ( Function_opcode( 0 ) OR Function_opcode( 3 ) ) AND ALUOp(1 ); 
 ALU_ctl( 1 ) <= ( NOT Function_opcode( 2 ) ) OR (NOT ALUOp( 1 ) ); 
 ALU_ctl( 2 ) <= ( Function_opcode( 1 ) AND ALUOp( 1 )) OR ALUOp( 0 ); 
      -- Generate Zero Flag 

 Zero <= '1'  
  WHEN ( ALU_output_mux( 31 DOWNTO 0 ) =  X"00000000"  ) 
  ELSE '0';     

      -- Select ALU output for SLT         
 ALU_result <=  X"0000000" & B"000" & ALU_output_mux( 31 )  
  WHEN  ALU_ctl = "111"  
  ELSE   ALU_output_mux( 31 DOWNTO 0 ); 
      -- Adder to compute Branch Address 
 Branch_Add <= PC_plus_4( 9 DOWNTO 2 ) +  Sign_extend( 7 DOWNTO 0 ) ; 

 Add_result  <= Branch_Add( 7 DOWNTO 0 ); 
 
PROCESS ( ALU_ctl, Ainput, Binput ) 
 BEGIN 
     -- Select ALU operation 
  CASE ALU_ctl IS 
      -- ALU performs ALUresult = A_input AND B_input 
   WHEN "000"  => ALU_output_mux  <= Ainput AND Binput;  
      -- ALU performs ALUresult = A_input OR B_input 
       WHEN "001"  => ALU_output_mux  <= Ainput OR Binput; 
      -- ALU performs ALUresult = A_input + B_input 
   WHEN "010"  => ALU_output_mux  <= Ainput + Binput; 
      -- ALU performs ? 
    WHEN "011"  => ALU_output_mux  <= X”00000000” ; 
      -- ALU performs ? 
    WHEN "100"  => ALU_output_mux  <= X"00000000" ; 
      -- ALU performs ? 
    WHEN "101"  => ALU_output_mux  <= X"00000000" ; 
      -- ALU performs ALUresult = A_input - B_input 
    WHEN "110"  => ALU_output_mux  <= Ainput - Binput; 
      -- ALU performs SLT 
     WHEN "111"  => ALU_output_mux  <= Ainput - Binput ; 
    WHEN OTHERS => ALU_output_mux  <= X"00000000" ; 
   END CASE; 
  END PROCESS; 
 END behavior; 



300 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

14.8 The Data Memory Stage 
The data memory stage of the MIPS core shown in Figure 14.8 contains the 
data memory. To speed synthesis and simulation, data memory is limited to 256 
locations of 32-bit memory. Data memory is implemented using the Altsyncram 
megafunction. Memory write cycle timing is critical in any design. The 
Altsyncram function requires an internal address register with a clock. In this 
design, the falling clock edge is used to load the data memories internal address 
register. The rising clock edge starts the next instruction. Two M4K RAM 
blocks are used for data memory. Two M4K RAM blocks are also used for the 
32-bit instruction memory. 

 

Figure 14.8 Block Diagram of MIPS Data Memory Unit. 

--  Dmemory module (implements the data 
-- memory for the MIPS computer) 
 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
USE IEEE.STD_LOGIC_ARITH.ALL; 
USE IEEE.STD_LOGIC_SIGNED.ALL; 
LIBRARY altera_mf; 
USE altera_mf.atlera_mf_components.ALL; 
 
ENTITY dmemory IS 
 PORT( read_data    : OUT  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
          address    : IN  STD_LOGIC_VECTOR( 7 DOWNTO 0 ); 
          write_data    : IN  STD_LOGIC_VECTOR( 31 DOWNTO 0 ); 
      MemRead, Memwrite  : IN  STD_LOGIC; 
              clock, reset   : IN  STD_LOGIC ); 
END dmemory; 
 
ARCHITECTURE behavior OF dmemory IS 
SIGNAL write_clock : STD_LOGIC; 
BEGIN 
  
 
 

 

Address

Write
Data

Data
Memory

Read
Data

MemWrite

MemRead



 A RISC Design: Synthesis of the MIPS Processor Core 301 
 

 

 

 data_memory: altsyncram 
 GENERIC MAP (  
  operation_mode => "SINGLE_PORT", 
  width_a => 32, 
  widthad_a => 8, 
  lpm_type => "altsyncram", 
  outdata_reg_a => "UNREGISTERED", 
    -- Reads in mif file for initial data memory values 
  init_file => "dmemory.mif", 
  intended_device_family => "Cyclone"lpm_widthad  =>  8 
 ) 
      PORT MAP ( 
  wren_a => memwrite, 
  clock0 => write_clock, 
  address_a => address, 
  data_a => write_data, 
  q_a => read_data ); 
    -- Load memory address & data register with write clock 
  write_clock <= NOT clock; 
END behavior; 

 
MIPS data memory is initialized to the value specified in the file dmemory.mif 
shown in Figure 14.9. Note that the address displayed in the dmemory.mif file 
is a word address and not a byte address. Two values, 0x55555555 and 
0xAAAAAAA, at byte address 0 and 4 are used for memory data in the short 
test program. The remaining locations are all initialized to zero.  
 

--  MIPS Data Memory Initialization File 
 Depth = 256; 
 Width = 32; 
 Content 
 Begin 

   -- default value for memory 
       [00..FF] : 00000000; 
   -- initial values for test program 
       00 : 55555555; 
       01 : AAAAAAAA; 

 End; 
 

Figure 14.9 MIPS Data Memory Initialization File, dmemory.mif. 

14.9 Simulation of the MIPS Design 
The top-level file MIPS.VHD is compiled and used for simulation of the MIPS. 
It uses VHDL component instantiations to connect the five submodules. The 
values of major busses and important control signals are output at the top level 
for use in simulations. A reset is required to start the simulation with PC = 0. A 
clock with a period of approximately 200ns is required for the simulation. 



302 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

Memory is initialized only at the start of the simulation. A reset does not re-
initialize memory.  
The execution of a short test program can be seen in the MIPS simulation 
output shown in Figure 14.10. The program loads two registers from memory 
with the LW instructions, adds the registers with an ADD, and stores the sum 
with SW. Next, the program does not take a BEQ conditional branch with a 
false branch condition. Last, the program loops back to the start of the program 
at PC = 000 with another BEQ conditional branch with a true branch condition. 
 

 

Figure 14.10 Simulation of MIPS test program. 

14.10 MIPS Hardware Implementation on the FPGA Board 
A special version of the top level of the MIPS, VIDEO_MIPS.VHD, is identical 
to MIPS.VHD except that it also contains a VGA video output display driver. 
As seen in Figure 14.11, this driver displays the hexadecimal value of major 
busses in the MIPS  processor on a monitor. The video character generation 
technique used is discussed in Chapter 10. On the FPGA boards, it also displays 
the PC in the LCD or LED displays. All FPGA boards use pushbuttons for the 
clock and reset inputs. The clock pushbutton toggles the processor clock so you 
can see the data changes occurring on each clock edge as you step through 
MIPS machine instructions. This top-level module should be used instead of 
MIPS.VHD after the design has been debugged in simulations. The final design 
with video output is then downloaded to the FPGA chip on the board. The 
video driver uses two M4K RAM embedded memory blocks for format and 
character font data. 



 A RISC Design: Synthesis of the MIPS Processor Core 303 
 

 

 

After simulation with MIPS.VHD, recompile using VIDEO_MIPS.VHD and 
download the design to the FPGA board for hardware verification. Attach a 
VGA monitor to the board’s VGA connector. Any changes or additions made to 
top level signal names in MIPS.VHD and other modules as suggested in the 
exercises will need to also be cut and pasted into VIDEO_MIPS.VHD.  

Figure 14.11 MIPS with Video Output generated by UP3 Board. 

14.11 For Additional Information 
The MIPS processor design and pipelining are described in the widely-used 
Patterson and Hennessy textbook, Computer Organization and Design The 
Hardware/Software Interface, Third Edition, Morgan Kaufman Publishers, 
2005. The MIPS instructions are described in Chapter 2 and Appendix A of this 
text. The hardware design of the MIPS, used as the basis for this model, is 
described in Chapters 5 and 6 of the Patterson and Hennessy text. 
SPIM, a free MIPS R2000 assembly language assembler and PC-based 
simulator developed by James Larus, is available free from 
http://www.cs.wisc.edu/~larus/spim.html . The reference manual for the SPIM 
simulator contains additional explanations of all of the MIPS instructions. 
The MIPS instruction set and assembly language programming is also 
described in J. Waldron, Introduction to RISC Assembly Language 
Programming, Addison Wesley, 1999, and Kane and Heinrich, MIPS RISC 
Architecture, Prentice Hall, 1992. 

                        

                        A SMALLER VERSION OF THE MIPS PROCESSOR FOR THE UP1 AND UP2 IS  

                         PROVIDED ON THE DVD. 8-BIT DATA IS USED WITH ONLY 8 REGISTERS. 

  



304 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

14.12 Laboratory Exercises 
1. Use VHDL to synthesize the MIPS single clock cycle design in the file 

TOP_SPIM.VHD. After synthesis and simulation perform the following steps: 

Display and print the timing diagram from the simulation. Verify that the information on 
the timing diagram shows that the hardware is functioning correctly. Examine the test 
program in IFETCH.VHD. Look at the program counter, the instruction bus, the register 
file and ALU outputs, and control signals on the timing diagram and carefully follow the 
execution of each instruction in the test program. Label the important values for each 
instruction on the timing diagram and attach a short write-up explaining in detail what the 
timing diagram shows relative to each instruction's execution and correct operation. 

Return to the simulator and run the simulation again. Examine the ALU output in the 
timing diagram window. Zoom in on the ALU output during execution of the add 
instruction and see what happens when it changes values. Explain exactly what is 
happening at this point. Hint: Real hardware has timing delays.  

2. Recompile the MIPS model using the VIDEO_MIPS.VHD file, which generates video 
output. Download the design to the FPGA board. Attach a VGA monitor to the FPGA 
board. Single step through the program using the pushbuttons. 

3. Write a MIPS test program for the AND, OR, and SUB instructions and run it on the 
VHDL MIPS simulation. These are all R-format instructions just like the ADD 
instruction. Modifications to the memory initialization files, program.mif and 
dmemory.mif, (i.e. only if you use data from memory in the test program) will be 
required. Registers have been preloaded with the register number to make it easy to run 
short test programs.  

4. Add and test the JMP instruction. The JMP or jump instruction is not PC-relative like the 
branch instructions. The J-format JMP instruction loads the PC with the low 26 bits of 
the instruction. Modifications to the existing VHDL MIPS model will be required. For a 
suggested change, see the hardware modifications on page 313 of Computer 
Organization and Design The Hardware/Software Interface. 

5. Add and test the BNE, branch if not equal, instruction. Modifications to the existing 
VHDL MIPS model will be required. Hint: Follow the implementation details of the 
existing BEQ, branch if equal, instruction and a change to add BNE should be obvious. 
Both BEQ and BNE must function correctly in a simulation. Be sure to test both the 
branch and no branch cases. 

6. Add and test the I-format ADDIU, add immediate unsigned, instruction. Modifications to 
the existing VHDL MIPS model will be required.  



 A RISC Design: Synthesis of the MIPS Processor Core 305 
 

 

 

7. Add and test the R-format SLT, set if less than, instruction. As an example SLT $1, $2, 
$3 performs the operation, If $2<$3 Then $1 = 1 Else $1 = 0. SLT is used before BEQ or 
BNE to implement the other branch conditions such as less than or greater. 

8. Pipeline the MIPS VHDL simulation. Test your VHDL model by running a simulation of 
the example program shown in Figure 6.21 using the pipeline hardware shown in Figure 
6.27 in Computer Organization and Design The Hardware/Software Interface. To 
minimize changes, pipeline registers must be placed in the VHDL module that generates 
the input to the pipeline. As an example, all of the pipeline registers that store control 
signals must be placed in the control module. Synthesize and check the control module 
first, since it is simple to see if it works correctly when you add the pipeline flip-flops. 
Use the following notation which minimizes changes to create the new pipeline register 
signals, add a "D_" in front of the signal name to indicate it is the input to a D flip-flop 
used in a pipeline register. Signals that go through two D flip-flops would be "DD_" and 
three would be "DDD_". As an example, instruction would be the registered version of 
the signal, D_instruction. 

Add pipeline registers to the existing modules that generate the inputs to the pipeline 
registers shown in the text. This will prevent adding more modules and will not require 
extensive changes to the MIP.VHD module. Add signal and process statements to model 
the pipeline modules – see the PC in the ifetch.vhd module for an example of how this 
can work. A few muxes may have to be moved to different modules. 

The control module should contain all of the control pipeline registers – 1, 2, or 3 stages 
of pipeline registers for control signals. Some control signals must be reset to zero, so use 
a D flip-flop with a synchronous reset for these pipeline registers. This generates a flip-
flop with a Clear input that will be tied to Reset. Critical pipeline registers with control 
signals such as regwrite or memwrite should be cleared at reset so that the pipeline starts 
up correctly. The MIPS instruction ADD $0, $0, $0 is all zeros and does not modify any 
values in registers or memory. It is used to initialize the IF/ID pipeline at reset. Pipeline 
registers for instruction and data memory outputs can also be added by modifying options 
in the Altsyncram megafunction.  

The data memory clocking scheme might also change with pipelining. In Dmemory.vhd, 
the data memory address and data inputs are already pipelined inside the altsyncram 
function used for data memory (this is why it has a clock input). You will need to take 
this into account when you pipeline your design. High speed memory writes almost 
always require a clock and the design in the textbook skips over this point – since they do 
not have their design running on real hardware. As an example, in the Quartus software 
you can’t even have altsyncram memory without a clock! 

Currently in the original single cycle design, data memory uses NOT CLOCK as the 
clock input so that there is time to get both the correct ALU result loaded into the 



306 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

memories internal address and data pipeline registers (first half of clock cycle) and write 
to memory (second half of clock cycle).  

Once you pipeline the model, you will probably want to have your data memory clock 
input use CLOCK instead of NOT CLOCK for the fastest clock cycle time. With NOT 
CLOCK you would be loading the ALU Result into the pipeline register in the middle of 
the clock cycle (not the end) – so it would slow down the clock cycle time on real 
hardware. 

Since there is already a pipeline register in the data memory inputs, don’t add another one 
in the address or data input paths to data memory, if you switch NOT CLOCK to 
CLOCK. You will still need to delay the ALU result two clocks (with two pipeline 
registers) for the register file write back operation. 

Sections 6.2 and 6.3 of Computer Organization and Design The Hardware/Software 
Interface contain additional background information on pipelining. 

9. Once the MIPS is pipelined as in problem 8, data hazards can occur between the five 
instructions present in the pipeline. As an example consider the following program: 

Sub $2,$1,$3 
Add $4,$2,$5 

The subtract instruction stores a result in register 2 and the following add instruction uses 
register 2 as a source operand. The new value of register 2 is written into the register file 
by SUB $2,$1,$3 in the write-back stage after the old value of register 2 was read out by 
ADD $4,$2,$5 in the decode stage. This problem is fixed by adding two forwarding 
muxes to each ALU input in the execute stage. In addition to the existing values feeding 
in the two ALU inputs, the forwarding multiplexers can also select the last ALU result or 
the last value in the data memory stage. These muxes are controlled by comparing the rd, 
rt, and rs register address fields of instructions in the decode, execute, or data memory 
stages. Instruction rd fields will need to be added to the pipelines in the execute, data 
memory, and write-back stages for the forwarding compare operations. Since register 0 is 
always zero, do not forward register 0 values. 

Add forwarding control to the pipelined model developed in problem 8. Test your VHDL 
model by running a simulation of the example program shown in Figure 6.29 using the 
hardware shown in Figures 6.32 of Computer Organization and Design The 
Hardware/Software Interface by Patterson and Hennessy.  

Two forwarding multiplexers must also be added to the Idecode module so that a register 
file write and read to the same register work correctly in one clock cycle. If the register 
file write address equals one of the two read addresses, the register file write data value 
should be forwarded out the appropriate read data port instead of the normal register file 



 A RISC Design: Synthesis of the MIPS Processor Core 307 
 

 

 

read  data value. Section 6.4 of Computer Organization and Design The 
Hardware/Software Interface contains additional background information on forwarding. 

10. Add LW/SW forwarding to the pipelined model. This will allow an LW to be followed 
by an SW that uses the same register. It is possible since the MEM/WB register contains 
the load instruction register write data in time for use in the MEM stage of the store. 
Write a test program and verify correct operation in a simulation. 

11. When a branch is taken, several of the instructions that follow a branch have already been 
loaded into the pipeline. A process called flushing is used to prevent the execution of 
these instructions. Several of the pipeline registers are cleared so that these instructions 
do not store any values to registers or memory or cause a forwarding operation. Add 
branch flushing to the pipelined MIPS VHDL model as shown in Figures 6.38 of the 
Computer Organization and Design The Hardware/Software Interface by Patterson and 
Hennessy. Note that two new forwarding multiplexers at the register file outputs (not 
shown in the Figure, currently at ALU inputs) are needed to eliminate the new Branch 
data hazards that appear when the branch comparator is moved into to the decode stage. 
Section 6.6 of Computer Organization and Design The Hardware/Software Interface 
contains additional background information on branch hazards. 

12. Use the timing analyzer to determine the maximum clock rate for the pipelined MIPS 
implementation, verify correct operation at this clock rate in a simulation, and compare 
the clock rate to the original non-pipelined MIPS implementation. 

13. Redesign the pipelined MIPS VHDL model so that branch instructions have 1 delay slot 
as seen in Figure 6.40 (i.e. one instruction after the branch is executed even when the 
branch is taken). Rewrite the VHDL model of the MIPS and test the program from the 
problem 10 assuming 1 delay slot. Move instructions around and add nops if needed. 

14. Add the overflow exception hardware suggested at the end of Chapter 6 in Figure 6.42 of 
Computer Organization and Design The Hardware/Software Interface by Patterson and 
Hennessy. Add an overflow circuit that produces the exception with a test program 
containing an ADD instruction that overflows. Display the PC and the trap address in 
your simulation. For test and simulation purposes make the exception address 40 instead 
of 40000040. Section 6.8 of Computer Organization and Design The Hardware/Software 
Interface contains additional background information on exceptions. 

15. Investigate using two Altsyncram memory blocks to implement the register file in 
IDECODE. A single Altsyncram block can be configured to do a read and write in one 
clock cycle (dual port). To perform two reads, use two Altsyncrams that contain the same 
data (i.e. always write to both blocks). 

16. Add the required instructions to the model to run the MIPS bubble sort program from 
Chapter 3 of Computer Organization and Design The Hardware/Software Interface. 



308 Rapid Prototyping of Digital Systems   Chapter 14 
 

 

 

After verifying correct operation with a simulation, download the design to the FPGA 
board and trace execution of the program using the video output. Sort this four element 
array 4, 3, 5, 1. 

17. Add programmed keyboard input and video output to the sort program from the previous 
problem using the keyboard, vga_sync, and char_rom FPGAcores. Use a dedicated 
memory location to interface to I/O devices. Appendix A.36-38 of Computer 
Organization and Design The Hardware/Software Interface contains an explanation of 
MIPS memory-mapped terminal I/O. 

18. The MIPS VHDL model was designed to be easy to understand. Investigate various 
techniques to increase the clock rate such as using two dual-port memory blocks for the 
register file, moving hardware to different pipeline stages to even out delays, or changing 
the way memory is clocked. Additional fitter effort settings may also help. Use the timing 
analysis tools to evaluate design changes. 

19. Develop a VHDL synthesis model for another RISC processor’s instruction set. Possible 
choices include the Nios, Microblaze, Picoblaze, PowerPC, ARM, SUN SPARC, the 
DEC ALPHA, and the HP PARISC. DVD Appendix D of Computer Organization and 
Design The Hardware/Software Interface contains information on several RISC 
processors. Earlier hardware implementations of the commercial RISC processors 
designed before they became superscalar are more likely to fit on a FPGA. 

 



 

A small SOPC-based aircraft autopilot system that contains an FPGA with a Nios 
processor core, a DSP processor, and memory is seen above. The bottom sensor board 
contains a GPS receiver, an A/D converter, MEMS gyros and accelerometers for all three 
axes, an airspeed sensor, and an altitude sensor. Photograph ©2004 courtesy of Henrik 
Christophersen, Georgia Institute of Technology Unmanned Aerial Research Facility. 
 
  
 

CHAPTER 15 

Introducing System-on-a-
Programmable-Chip 

 

 



310 Rapid Prototyping of Digital Systems   Chapter 15 
 

 

 

15   Introducing System-on-a-Programmable-Chip5 
A new technology has emerged that enables designers to utilize a large FPGA 
that contains both memory and logic elements along with an intellectual 
property (IP) processor core to implement a computer and custom hardware for 
system-on-a-chip (SOC) applications. This new approach has been termed 
system-on-a-programmable-chip (SOPC). 

15.1 Processor Cores 
Processor cores can be classified as either “hard” or “soft.” This designation 
refers to the flexibility/configurability of the core. Hard cores are less 
configurable; however, they tend to have higher performance characteristics 
than soft cores. 
Hard processor cores use an embedded processor core (in dedicated silicon) in 
addition to the FPGA's normal logic elements. Hard processor cores added to 
an FPGA are a hybrid approach, offering performance trade-offs that fall 
somewhere between a traditional ASIC and an FPGA; they are available from 
several manufacturers with a number of different processor flavors. For 
example, Altera offers an ARM processor core embedded in its APEX 20KE 
family of FPGAs that is marketed as an Excalibur™ device. Xilinx's Virtex-
II Pro family of FPGAs include up to four PowerPC processor cores on-chip. 
Cypress Semiconductor also offers a variation of the SOPC system. Cypress's 
Programmable-System-on-a-Chip (PSoC™) is formed on an M8C processor 
core with configurable logic blocks designed to implement the peripheral 
interfaces, which include analog-to-digital converters, digital-to-analog 
converters, timers, counters, and UARTs.6 
Soft cores, such as Altera's Nios II and Xilinx's MicroBlaze processors, use 
existing programmable logic elements from the FPGA to implement the 
processor logic. As seen in Table 15.1, soft-core processors can be very feature-
rich and flexible, often allowing the designer to specify the memory width, the 
ALU functionality, number and types of peripherals, and memory address space 
parameters at compile time. However, such flexibility comes at a cost. Soft 
cores have slower clock rates and use more power than an equivalent hard 
processor core. 
With current pricing on large FPGAs, the addition of a soft processor core costs 
as little as thirty-five cents based on the logic elements it requires. The 
remainder of the FPGA's logic elements can be used to build application-
specific system hardware. Traditional system-on-a-chip devices (ASICs and 
custom VLSI ICs) still offer higher performance, but they also have large 

                                                           
5 Portions reprinted, with permission, from T. S. Hall and J. O. Hamblen, "System-on-a-Programmable-
Chip Development Platforms in the Classroom," IEEE Transactions on Education, vol. 47, no. 4, pp. 502-
507, Nov. 2004.  © 2004 IEEE. 
6 D. Seguine, “Just add sensor - integrating analog and digital signal conditioning in a programmable 
system on chip,” Proceedings of IEEE Sensors, vol. 1, pp. 665–668, 2002. 
M. Mar, B. Sullam, and E. Blom, “An architecture for a configurable mixed-signal device,” IEEE J. Solid-
State Circuits, vol. 38, pp. 565–568, Mar. 2003. 



 Introducing System-on-a-Programmable-Chip 311 
 

 

 

development costs and longer turnaround times.7 For projects requiring a 
hardware implementation, the FPGA-based SOPC approach is easier, faster, 
and more economical in low to medium quantity production. 
 

Table 15.1  Features of Commercial Soft Processor Cores for FPGAs 

Feature Nios II 5.0 MicroBlaze 4.0 
Datapath 32 bits 32 bits 

Pipeline Stages 1-6 3 

Frequency Up to 200 MHz8 Up to 200 MHz4 

Gate Count 26,000 – 72,000 30,000 – 60,000 

Register File 32 general purpose &
6 special purpose 

32 general purpose & 
32 special purpose 

Instruction Word 32 bits 32 bits 

Instruction Cache Optional Optional 

Hardware Multiply & Divide Optional Optional 

Hardware Floating Point Third Party Optional 

 
 
Typically, additional software tools are provided along with each processor core 
to support SOPC development. A special CAD tool specific to each soft 
processor core is used to configure processor options, which can include 
register file size, hardware multiply and divide, floating point hardware, 
interrupts, and I/O hardware. This tool outputs an HDL synthesis model of the 
processor core in VHDL or Verilog. In addition to the processor, other system 
logic is added and the resulting design is synthesized using a standard FPGA 
synthesis CAD tool. The embedded application program (software) for the 
processor is typically written in C or C++ and compiled using a customized 
compiler provided with the processor core tools. 

15.2 SOPC Design Flow 
The traditional flow of commercial CAD tools typically follows a path from 
hardware description language (HDL) or schematic design entry through 
synthesis and place and route tools to the programming of the FPGA. FPGA 
manufacturers provide CAD tools such as Altera's Quartus II and Xilinx's ISE 
software, which step the designer through this process. As shown in Fig. 15.1, 
the addition of a processor core and the tools associated with it are a superset of 
the traditional tools. The standard synthesis, place and route, and programming 

                                                           
7 H. Chang et al., Surviving the SOC Revolution a Guide to Platform-Based Design. Norwell, MA: Kluwer, 
1999. 
8 This speed is not achievable on all devices for either processor core. Some FPGAs may limit the 
maximum frequency to as low as 50 MHz. 



312 Rapid Prototyping of Digital Systems   Chapter 15 
 

 

 

functionality is still needed, and in the case of both Altera and Xilinx, the same 
CAD tools (Quartus II or ISE) are used to implement these blocks. 

Processor Core Configuration Tools 

Today, a number of pre-defined processor cores are available from various 
sources. GPL-licensed public processor cores can be found on the web (i.e., 
www.opencores.org and www.leox.org), while companies such as Altera (Nios 
II processor), Xilinx (MicroBlaze processor), and Tensilica (Xtensa processor) 
provide their processors and/or development tools for a fee. 
 
 

Processor Core
Configuration

Tool

Design
Entry
Tool

FPGA
Synthesis

Tool

HDL or NetlistHDL or Schematic

FPGA
Place and Route

Tool

Program
FPGA

and
Initialize
Memory

Processor

Memory

Processor
Config. Data

C/C++ Compiler
for Processor

Additional User
Hardware
(optional)

Application
Program Source

Code

Binary
Program/Data

Files

Operating
System Kernel
and Libraries

(optional)

Hardware
Design

Software
Design

Traditional
FPGA Tool
Flow

Netlist

 

Figure 15.1 The CAD tool flow for SOPC design is comprised of the traditional design process for 
FPGA-based systems with the addition of the Processor Core Configuration Tool and software design 
tools. In this figure, the program and data memory is assumed to be on-chip for simplicity. 

 
Processor cores provided by FPGA manufacturers are typically manually 
optimized for the specific FPGA family being used, and as such, are more 
efficiently implemented on the FPGA than a student-designed core (especially 
given the time and resource constraints of most class projects). The simple 
computer and MIPS processor cores developed earlier in this book were 
designed to be easy for students to understand and were not optimized for any 
particular FPGA. Additionally, FPGA companies provide extensive support 



 Introducing System-on-a-Programmable-Chip 313 
 

 

 

tools to ease the customization and use of their cores, including high-level 
compilers targeted at the custom cores. 
In the case of Altera and Xilinx, the Processor Core Configuration Tool block 
shown in Fig. 15.1 is realized in a user-friendly GUI interface that allows the 
designer to customize the processor for a particular project. The configurable 
parameters can include the datapath width, memory, address space, and 
peripherals (including arbitrarily defined general-purpose I/O, UARTs, Ethernet 
controllers, memory controllers, etc.). Once the processor parameters are 
specified in the GUI interface, the processor core is generated in the form of an 
HDL file (in Altera) or a netlist file (in Xilinx). This file can then be included 
within a traditional HDL or schematic design using the standard CAD tools. 
Specific pin assignments and additional user logic can be included at this point 
like any other FPGA design. Next, the full hardware design (processor core and 
any additional user logic) is compiled (synthesis, place and route, etc.), and the 
FPGA can be programmed with the resulting file using the standard tools. The 
hardware design is complete, and the FPGA logic has been determined.  

High-level Compiler for Processor Core 

As shown on the right side of Fig. 15.1, the next step is to write and compile 
the software that will be executed on the soft processor core. When the 
Processor Core Configuration Tool generates the HDL or netlist files, it also 
creates a number of library files and their associated C header files that are 
customized for the specific processor core generated. A C/C++ compiler 
targeted at this processor is also provided. The designer can then program stand 
alone programs to run on the processor. Optionally, the designer can compile 
code for an operating system targeted for the processor core. Several operating 
systems for the Nios II are available from third-party vendors along with the 
community supported open source eCos (www.niosforum.com). 

15.3 Initializing Memory 
Once a program/data binary file has been generated, it must be loaded into the 
processor's program and data memories. This loading can be done several ways 
depending on the memory configuration of the processor at hand. 

On-chip Memory 

If the application program is small and can fit into the memory blocks available 
on the FPGA, then the program can be initialized in the memory when the 
hardware configuration is programmed. This initialization is done through the 
standard FPGA tools, such as Altera's Quartus II software or Xilinx's ISE 
software. However, on-chip memory is typically very limited, and this solution 
is not usually an option. 

Bootloader 

In a prototyping environment, the application program will most likely be 
modified a number of times before the final program is complete. In this case, 
the ability to download the application code from a PC to the memory on an 



314 Rapid Prototyping of Digital Systems   Chapter 15 
 

 

 

FPGA board must be provided. This functionality, typically called a 
“bootloader” or “boot monitor,” can be implemented in either software or 
hardware. 
A software bootloader is comprised of code that is loaded into an on-chip 
memory and starts running on power up. This program is small enough (1-2 
KB) to fit in most on-chip memories, and its primary function is to receive a 
program binary file over the serial port (or other interface), load it into external 
memory, and then start the new code executing. In this way, a new program can 
be stored into external memory (SRAM, SDRAM, Flash memory, etc.) by 
downloading it over the serial or JTAG port (or other interface) on the fly 
without having to reload the FPGA's hardware configuration. Xilinx provides a 
boot monitor for their MicroBlaze soft-core processor that includes the ability 
to download a program binary over the serial port (or other interface), store it 
in memory, and start the code executing. They also provide a more enhanced 
version called XMDstub that adds debugging capabilities. Altera’s legacy Nios 
processors included a bootloader called GERMS. The Nios II processor still 
includes limited support for the GERMS monitor; however, a hardware 
bootloader is the preferred solution in Nios II. 
A hardware bootloader provides functionality very similar to a software 
bootloader; however, it is implemented in dedicated logic within the processor 
core. Typically, the processor will be paused or stalled upon power up and the 
hardware bootloader will have direct access to memory or the memory registers 
in the processor’s datapath. The bootloader hardware can start and stop the 
processor and can control the downloading of a program over the JTAG or 
serial interface to the desired memory locations. Altera’s hardware bootloader 
is a part of the JTAG debug module, which resides within the Nios II processor. 
This logic uses the JTAG interface with the PC to receive the execution code, 
and it then writes the code to the appropriate memory. Finally, the bootloader 
hardware overwrites the processor’s program counter with the start address of 
the code just downloaded and releases the pause bit to allow the processor to 
begin executing the downloaded code. 

External Non-volatile Storage 

The application program code can be stored on an external EEPROM, Flash 
memory, or other form of non-volatile memory. The application program can 
either be pre-programmed in the external memory module (for a production 
run) or a bootloader program can be used to store the application program in 
non-volatile storage. For low-speed applications, the code can be executed 
directly from the external memory. However, if high-speed functionality is 
required, then a designer could use three memories as shown in Fig. 15.2. In 
this scheme, the on-chip memory is initialized with a bootloader, which handles 
the movement of the application program between the memories. (On-chip 
memory is replaced with a hardware bootloader on some systems including the 
Nios II processor.) 
The fast, volatile memory (i.e., SDRAM) is used to store the application 
program during execution. Finally, the slower, non-volatile memory (i.e., Flash 



 Introducing System-on-a-Programmable-Chip 315 
 

 

 

or EEPROM) is used for the permanent storage of the application program. The 
bootloader program can be modified to initialize the system, retrieve a program 
from non-volatile memory, store it in the faster, volatile memory, and then start 
it executing from the faster memory. This scheme provides the advantages of 
permanent storage, fast execution, and the ability to modify the application 
program when needed. Of course, it comes at the expense of having additional 
memory.  
 

Vo la tile  M e m ory
(fo r A pp lica tion

P rogram  E xecu tion )

N on-vo la tile  M em ory
(fo r A pp lica tion

P rogram  Sto rag e)

P ro cesso r
C ore

O n-ch ip  M em ory
(In itia lized  w ith

boo tloa der)

To P C
(v ia  S e ria l In te rface )

FP G A

 
 

Figure 15.2 This arrangement of on-chip and external memories provides flexibility and 
performance to an SOPC system. 

15.4 SOPC Design versus Traditional Design Modalities 
The traditional design modalities are ASIC and fixed-processor design. SOPC 
design has advantages and disadvantages to both of these alternatives as 
highlighted in Table 15.2. The strengths of SOPC design are a reconfigurable, 
flexible nature and the short development cycle. However, the trade offs 
include lower maximum performance, higher unit costs in production, and 
relatively high power consumption. 
The benefit of having a flexible hardware infrastructure can not be 
overestimated. In many new designs, features and specifications are modified 
throughout the design cycle. For example, marketing may detect a shift in 
demand requiring additional features (e.g., demand drops for cell phones 
without cameras), a protocol or specification is updated (e.g., USB 2.0 is 
introduced), or the customer requests an additional feature. In traditional design 
modalities (including ASIC and fixed-processor designs), these changes can 
dramatically effect the ASIC design, processor selection, and/or printed circuit 
board design. Since the hardware architecture is often settled upon early in the 
design cycle, making changes to the hardware design later in the cycle will 
typically result in delaying a product’s release and increasing its cost. 
Flexible infrastructure can also be beneficial in extending the life (and thus 
reducing the cost) of a product’s hardware. With flexible, reconfigurable logic, 
often a single printed circuit board can be designed that can be used in multiple 
product lines and in multiple generations/versions of a single product. Using 



316 Rapid Prototyping of Digital Systems   Chapter 15 
 

 

 

reconfigurable logic as the heart of a design, allows it to be reprogrammed to 
implement a wide range of systems and designs. Extending the life of a board 
design even one generation can result in significant savings and can largely 
offset the increased per-unit expense of reconfigurable devices. 
 

Table 15.2  Comparing SOPC, ASIC, and Fixed-Processor Design Modalities 

Feature SOPC ASIC Fixed-Processor 

S/W Flexibility       

H/W Flexibility       

Reconfigurability       

Development 
Time/Cost       

Peripheral 
Equipment Costs       

Performance       

Production Cost    9   

Power Efficiency       

 
Legend:  – Good;  – Moderate;   – Poor 
 

The SOPC approach is ideal for student projects. SOPC boards can be used and 
reused to support an extremely wide range of student projects at a very low 
cost. ASIC development times are too long and mask setup fees are too high to 
be considered for general student projects. A fixed-processor option will often 
require additional hardware and perhaps even a new printed circuit board 
(PCB) design for each application. Given the complexity of today’s multilayer 
surface mount PCB designs, it is highly unlikely that students would have 
sufficient time and funds to develop a new printed circuit board for a design 
project. 

15.5 An Example SOPC Design 
The SOPC-based autopilot system seen in the photograph on the first page of 
this chapter and the sensor board that mounts below it (described earlier in 
Section 13.5) makes an interesting case study in SOPC design10. The autopilot 
system continuously reads in sensor data that indicates attitude, altitude, speed, 
and location. It then uses this data to solve the control system motion equations 
for the aircraft and then outputs updated signals to control the aircraft.  

                                                           
9 In very large quantities. 
10 Henrik B. Christophersen; R. W. Pickell; James C. Neidhoefer; Adrian A. Koller; Suresh K. Kannan; 
Eric N. Johnson,  “A Compact Guidance, Navigation, and Control System for Unmanned Aerial Vehicles”, 
Journal of Aerospace Computing, Information, and Communication, pp.,1542-9423, vol.3 no.5. 



 Introducing System-on-a-Programmable-Chip 317 
 

 

 

The flexibility of SOPC design allows the use of FPGA’s logic elements to 
interface to a wide range of sensors without the need for additional I/O support 
chips that would be needed if a more traditional fixed-processor option was 
used. This results in an extremely small and low weight PCB design. An ASIC 
could be used instead of the FPGA, but the small production quantities needed 
for this system do not justify the greatly increased development time and cost 
needed for an ASIC. 
Different types of aircraft also require markedly different I/O standards for the 
control outputs. Some aircraft controls use serial interfaces, while others use 
PWM or even parallel I/O. Here again, the flexibility of using the FPGA’s logic 
elements to implement the I/O interface is of great benefit. By varying the logic 
in the interface peripherals, the same programmable processor core and PCB 
board can be used to support a wide range of aircraft without any hardware 
changes to the PCB.  
The autopilot system requires intensive floating-point calculations to solve the 
complex control system equations for the aircraft. While it would be possible to 
perform floating-point calculations using a larger FPGA, the decision was made 
to use a fixed-processor DSP chip for the intensive floating-point calculations. 
By offloading the algorithmic computations to a fixed processor, the Nios II 
processor is primarily acting as an intelligent I/O processor for the system. This 
partitioning of the system between a fixed-processor DSP and soft-core 
processor results in higher computational performance than using just an FPGA 
(with floating-point hardware logic) and higher interface flexibility than using 
just a fixed processor in the system. However, new generations of FPGAs with 
DSP features such as hardware multipliers and floating-point IP cores are 
currently changing this set of design tradeoffs.  

15.6 Hardware/Software Design Alternatives 
The SOPC-based approach offers new design space alternatives. It is possible 
to explore design options that use software, dedicated hardware, or a mixture of 
both. Hardware solutions offer faster computations, but offer less flexibility 
and may require a larger FPGA. Implementation of solutions using software is 
easier to design for more complicated algorithms.  
It is also possible to consider a combination of both approaches. Some 
processor cores allow the user to add custom instructions. If an application 
program requires the same calculation repeatedly in loops, adding a custom 
instruction using extra hardware to accelerate the inner loop code can greatly 
speed up the application. 

15.7 For additional information 
This chapter has provided a brief overview of SOPC systems and designs. More 
information about SOPC systems can be found from manufacturers such as 
Altera, Xilinx, Cypress Semiconductor, Stretch Incorporated, and Tensilica. 
SOPC systems are an active area of research. Publications of interest include 
the following: 
 



318 Rapid Prototyping of Digital Systems   Chapter 15 
 

 

 

• T. S. Hall and J. O. Hamblen, "System-on-a-Programmable-Chip 
Development Platforms in the Classroom," IEEE Transactions on 
Education, vol. 47, no. 4, pp. 502-507, Nov. 2004. 

• C. Snyder, “FPGA processor cores get serious,” in Cahners Microprocessor 
Report, http://www.MPRonline.com/, Sept. 2000. 

• D. Seguine, “Just add sensor - integrating analog and digital signal 
conditioning in a programmable system on chip,” Proceedings of IEEE 
Sensors, vol. 1, pp. 665–668, 2002. 

• M. Mar, B. Sullam, and E. Blom, “An architecture for a configurable 
mixed-signal device,” IEEE J. Solid-State Circuits, vol. 38, pp. 565–568, 
Mar. 2003. 

• H. Chang and et. al., Surviving the SOC Revolution A Guide to Platform-
Based Design. Kluwer Academic Publishers, 1999. 

• J. Fisher, P. Faraboschi, and C. Young, Embedded Computing : A VLIW 
Approach to Architecture, Compilers and Tools, Morgan Kaufmann,  2004. 

• A. Jerraya, H. Tenhunen, and W. Wolf, “Multiprocessor Systems-on-Chips,” 
IEEE Computer, vol. 38, no. 7, pp. 36-41, July 2005. 

• S. Liebson and J. Kim, “Configurable Processors: A New Era in Chip 
Design,” IEEE Computer, vol. 38, no. 7, pp.51-59, July 2005. 

15.8 Laboratory Exercises 
1. Compare the instruction formats and the instruction set of the Nios II processor to the 

MIPS processor from Chapter 14. Information on the Nios II instruction set architecture 
is available at Altera’s website (www.altera.com) in the Nios II Processor Reference 
Handbook.  

2. A system needs a processor to run a control program, but the application also needs to 
compute FFTs at a somewhat high data rate. FFTs require  a large number of multiply 
and add operations on an array in nested loops. What SOPC hardware/software design 
tradeoffs would you need to consider? Justify your answer. 

3. List several types of products that could likely take advantage of the SOPC design 
approach. Explain your reasoning. 

4. Compare the memory read access time of the FPGA’s Flash and SRAM memory chips. 
Information can be found in each chip’s datasheet. If the processor did not have an 
instruction cache, how much faster could a program read instructions from SRAM? 

5. You are asked to specify the memory types and sizes for an SOPC design that will 
execute a program with a 60 KB length or footprint. During execution, the program 
requires 16 KB of data memory for the stack and heap. If the SOPC hardware mandates a 
single memory (for program and data memory), select the type and size of memory. 
Perform an online search to find a manufacturer and model number for the memory you 



 Introducing System-on-a-Programmable-Chip 319 
 

 

 

selected. You may have to modify your initial selection based on availability and cost of 
various memories. Justify your selection considering cost, specification, performance, 
and availability. Don’t forget that you need non-volatile memory to boot the system. 

6. Given the SOPC system outlined in Problem 5, select the type and size of memory 
needed for this system when program and data memory are separate. Justify your 
selection considering cost, specification, performance, and availability. Compare the 
single memory option from Problem 5 with the dual-memory option from this problem. 
Which memory configuration is preferable? Justify your answer. 

7. There are a number of different non-volatile memory technologies available to SOPC 
designers. For a system with a 256 KB code footprint, compare the cost, 
reprogrammability, configuration time, access time (reading only), and longevity for 
PROM, EEPROM, and Flash memories. 

 



 

The Nios II IDE tool compiles C/C++ code for the Nios II processor and provides an 
integrated software development environment for Nios II systems. 
 
    

CHAPTER 16 

Tutorial III: Nios II 
Processor Software 
Development 

 

 



322 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

16 Tutorial III: Nios II Processor Software Development 
Designing systems with embeddeded processors requires both hardware and 
software design elements. A collection of CAD tools developed by Altera enable 
you to design both the hardware and software for a fully functional, 
customizable, soft-core processor called Nios II. This tutorial steps you through 
the software development for a Nios II processor executing on the DE board. A 
Nios II processor reference design targeted for the DE board is used here. To 
design a custom Nios II processor refer to Tutorial IV (in the following chapter), 
which introduces the hardware design tools for the Nios II processor.  

Upon completion of this tutorial, you will be able to: 
• Navigate Altera’s Nios II Integrated Development Environment (IDE), 
• Write a C-language software program that executes on the Nios II 

reference design, 
• Download and execute a software program on the Nios II processor, and 
• Test the peripherals and memory components of the Nios II reference 

design on a DE1 or DE2 board. 
This tutorial will step you through writing and running two programs for the 
Nios II processor. First, a simple “Hello World” type of program will be 
written, compiled, downloaded to the DE board, and run. Next, a test program 
that uses interrupts, pushbuttons, switches, LEDs, SRAM, Flash memory, 
SDRAM, and the LCD display (on the DE2 board only) will be written that can 
be used to test the major peripherals on the DE board. 

 
  THE DVD CONTAINS A VERSION OF CHAPTERS 16 AND 17 FOR THE 

 UP 3 BOARDS. 
 

16.1 Install the DE board files 
Run the installation program for Altera’s University Program IP Library. This 
program can be found on the DVD at \Altera_Software\UP_IP_Library.exe. 

16.2 Starting a Nios II Software Project 
The Nios II Integrated Development Environment (IDE) is a standalone 
program that works in conjunction with Quartus II. To design software in the 
IDE, Quartus II does not have to be installed on your system; however, you will 
need a valid Quartus II project with a Nios II processor in it to use the IDE. A 
Nios II reference design for the DE board is included on the DVD that came 
with this book. This hardware design will be used for the remainder of this 
tutorial. Copy the design files from booksoft_fe\de2\chap16 on the DVD to a 
working directory on your hard drive. (If you are using a DE1 board, then copy 
the files from the booksoft_fe\de1\chap16 folder on the DVD.) The software 
design files will be stored in a subdirectory of this project directory. 



 Tutorial III: Nios II Processor Software Development 323 
 

 

 

Open the Nios II IDE software. For the default installation, the software icon 
can be found under Start All Programs Altera Nios II EDS 7.1 Nios 
II 7.1 IDE. 
You should be prompted to Select a Workspace. If the dialog box in Figure 
16.1 does not appear, then select File Switch Workspace…. The workspace 
is a cache for information about all projects associated with a given Nios II 
processor design. Enter the full pathname of the Quartus II project directory 
you created above (the directory to which DVD\booksoft_fe\de2\chap16 was 
copied) followed by the subdirectory \software as shown in Figure 16.1. Click 
OK to select the default location and continue. 

 

 

Figure 16.1 Setting the Nios II IDE workspace to the Nios II reference design software directory. 

To create a new project, select File New Project…. The New Project 
wizard will begin. On the first dialog box, select Nios II C/C++ Application 
and click Next to continue. 
In the next dialog box, fill in the requested information as shown in Figure 
16.2. The name of the project is rpds_software, the SOPC Builder System 
should point to the nios32.ptf file in the project directory you copied from the 
DVD, and the Project Template should be set to Blank Project. If the 
workspace was correctly set to your project directory as detailed above, then 
the default location will be correct and Specify Location should be unchecked. 
However, if the workspace is set to some other directory, then select Specify 
Location and enter c:\your_project_directory\software in the Location field. 
Click Next to continue. 
In the final dialog box, select the option Create a new system library named: 
rpds_software_syslib. Click Finish to create and open the project. When the 
New Project dialog box disappears, click on the Workbench icon on the 
Welcome page in the main IDE window if the main project view does not 
appear automatically. 

 



324 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

 

Figure 16.2 Create a blank project for the Nios II reference design. 

16.3 The Nios II IDE Software 
Take a few minutes to orient yourself to the Nios II IDE software. The middle 
of the window will display the contents of the source files when you open 
them. The Outline pane on the right-hand side will provide links to each of the 
functions that are declared in the open C source file. Clicking on a link will 
jump the cursor to the start of that function. On the left-hand side, a list of 
projects for the current workspace is shown in the Nios II C/C++ Projects 
pane.  
Two projects should appear in the C/C++ Projects pane by default (after 
having created your new blank project): rpds_software and 
rpds_software_syslib.  

• The rpds_software library is the location for your software. Since a 
blank project has been created, no source or header files exist in this 
library yet.  

• The rpds_software_syslib library is the container for the top-level 
system header file (system.h) that contains the names and base addresses 
of peripherals in the Nios II reference design system for which you are 
writing software. It also contains links to libraries of device drivers for 



 Tutorial III: Nios II Processor Software Development 325 
 

 

 

the Nios II processor, peripherals from SOPC Builder, and any 
additional component libraries that have been installed. Except for the 
links to the device driver libraries, the rpds_software_syslib library will 
be empty until the system library is generated in the next section. 

16.4 Generating the Nios II System Library 
Each Nios II system is unique. It has different peripherals, different memory-
mapped addresses, different interrupt settings, etc. To accommodate this 
flexibility, the Nios II IDE creates a system library from your Nios II hardware 
settings file (e.g., nios32.ptf). The system library defines the names of the 
peripherals in a given system and maps them to their memory addresses, and it 
defines several system-critical definitions that are used to make several 
standard C libraries compatible with your specific Nios II system. 
Before the system library can be generated, several settings must be modified. 
Right click on rpds_software_syslib in the Nios II C/C++ Projects pane and 
select Properties from the drop-down menu. In the dialog box, select System 
Library from the list on the left to view the configuration options for the 
system library. 
Under System Library Contents, select the jtag_uart device for stdout, 
stderr, and stdin. The Nios II system allows the stdout, stderr, and stdin data 
streams to be redirected to a UART interface using a serial cable connected to 
your PC. This means that the output of printf and other standard output 
functions will be displayed in a console window on your PC since there is no 
monitor attached to the FPGA directly at the moment. Likewise, the use of 
scanf and other standard input functions will wait for data to be transmitted 
from the PC to the UART. Any text that you type in the Nios II IDE’s console 
window will be sent via the UART to the Nios II processor. One or more of 
these output streams can be set to the uart device. This will result in data for 
that stream being sent over a serial cable connected to the RS-232 serial port on 
the DE board. For this tutorial, leave all data streams set to jtag_uart so only 
the USB cable is needed.  
Notice that the various segments of memory can be individually assigned to 
different memory devices (SRAM, SDRAM, Flash, etc.). For this tutorial, set 
all of the memory segments to sram. It is also useful to note that this dialog 
box contains an option to use a Small C library for your project. Selecting this 
option, removes many of the less common functions of the ANSI C standard 
library such as printf’s floating-point number support, scanf, file seek (fseek), 
and more. Using a small standard library can result in a much smaller amount 
of memory needed for storing your software. A complete list of standard library 
functions affected by selecting the Small C Library option can be found in the 
Nios II Software Developer’s Handbook available on Altera’s website. For this 
tutorial, leave the Small C Library option unchecked as shown in Figure 16.3 
and click OK to continue. 

 



326 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

  

Figure 16.3 These are the system library settings that should be used for this tutorial. 

To generate the system library for this Nios II system, right click on 
rpds_software_syslib in the Nios II C/C++ Projects pane and select Build 
Project from the drop-down menu. Once building has completed, view the files 
created by the build by expanding the rpds_software_syslib item in the Nios II 
C/C++ Projects pane. Under the rpds_software_syslib folder, several folders 
appear. The Includes folder contains links to the device drivers for peripherals 
in the Nios II reference design processor that you are using. The Debug  
System Description folder contains the system.h header file that includes 
definitions for all of the peripherals in this Nios II processor. 

16.5 Software Design with Nios II Peripherals 
Accessing and communicating with Nios II peripherals can be accomplished in 
three general methods: direct register access, hardware abstraction layer (HAL) 
interface, and standard ANSI C library functions. Depending on the complexity 
of the operation and the specific device being used, a programmer will often 
use each of the three methods at one point or another. In this tutorial, direct 
register access will be used to communicate with the LEDs, dipswitches, and 
LCD display. The HAL interface will be used to communicate with Flash and 
install an interrupt handler for the pushbuttons, and standard C library 
conventions will be used to access the memory and timer devices. The SRAM 
and SDRAM device drivers support standard memory-style access; however, 
they do not currently support standard file I/O (fread, fwrite, etc.). A memory-
based filesystem and the accompanying file I/O operations can be added by the 
user. 



 Tutorial III: Nios II Processor Software Development 327 
 

 

 

Below, each type of peripheral access is discussed. As an example, the C code 
necessary to provide a one second delay using each method is shown in Figures 
16.4-6. 

 
 
#include “system.h” 
 
#include “altera_avalon_timer_regs.h” 
 
int main( void ) { 
 
  IOWR_ALTERA_AVALON_TIMER_PERIODL( TIMER0_BASE,  

(48000000 & 0xFFFF) ); 
 
  IOWR_ALTERA_AVALON_TIMER_PERIODH( TIMER0_BASE,  

((48000000>>16) & 0xFFFF) ); 
 
  IOWR_ALTERA_AVALON_TIMER_STATUS( TIMER0_BASE, 0 ); 
 
  IOWR_ALTERA_AVALON_TIMER_CONTROL( TIMER0_BASE, 0x4 ); 
 
  while( (IORD_ALTERA_AVALON_TIMER_STATUS( TIMER0_BASE ) & 
          ALTERA_AVALON_TIMER_STATUS_TO_MSK) == 0 ) {} 
 
} 

Figure 16.4 This is the C code necessary for providing a one second delay by directly accessing the 
system timer’s registers. The timer peripheral in this system is called timer0. 

Direct Register Access 

Each peripheral’s registers can be directly accessed through read and write 
macros that are defined in each component’s device driver header file. This 
type of communication is the lowest level and while it provides the most 
flexibility in interfacing with peripherals, it can also be the most tedious. As 
illustrated in Figure 16.4, interfacing with the timer device can be quite 
cumbersome, even to provide a relatively straight-forward function such as a 
one second delay. If you read the actual count to determine elapsed time, you 
also need to keep in mind how your code will function when the timer count 
wraps around and starts over. 

 



328 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

 
#include <sys/alt_alarm.h> 
 
int main( void ) { 
  int first_val, second_val; 
 
  second_val = 0; 
  first_val  = alt_nticks(); 
 
  while( (second_val – first_val) < 1000000 ) { 
    second_val = alt_nticks(); 
  } 
} 
 

Figure 16.5 This is the C code necessary for providing a one second delay by using the HAL 
interface functions. 

HAL Interface 

A layer of software called a hardware abstraction layer (HAL) has been created 
that resides between the user code and the peripheral hardware registers. The 
HAL interface contains a number of very useful functions that allow the user to 
communicate with peripherals at a higher functional level. For example, the 
HAL interface provides functions alt_flash_open_dev, alt_read_flash, 
alt_write_flash, and alt_ flash_close_dev for communication with Flash 
memory. By providing these functions, Flash memory can be accessed by 
opening the device and reading from it and writing to it without having to 
create user functions that provide the read and write functionality from low-
level peripheral register accesses. 
For the timer device, a function called alt_nticks provides convenient access to 
the timer. As illustrated in Figure 16.5, the HAL functions provide a more 
straight-forward method of creating a one second delay.  

 
 
#include <unistd.h> 
 
int main( void ) { 
  usleep( 1000000 ); 
} 
 

Figure 16.6 This is the C code necessary for providing a one second delay by using the standard 
ANSI C library functions. 

Standard Library Functions 

Access to most of Nios II’s peripherals has been incorporated into the standard 
ANSI C library functions. Using standard ANSI C libraries such as stdlib, stdio, 



 Tutorial III: Nios II Processor Software Development 329 
 

 

 

string, time, malloc, etc. you can manipulate strings, access memory and 
memory-like devices through standard file I/O functions, use the timer to add a 
delay using usleep or wait functions, and much more. This is the highest level 
of abstraction provided by the Nios II IDE. Many of these functions use the 
peripheral-specific HAL functions to provide a single common interface to 
various types of peripherals. For example, fopen, fread, fwrite, and fclose 
functions from the stdio library can be used for memory accesses on some 
SDRAM, Flash, or SRAM memory devices. The system library functions will 
use the appropriate HAL function calls for each access depending on the 
particular memory device being used. To create a one second delay using the 
timer, a single call to the standard library function usleep can be made as 
shown in Figure 16.6  

 
 
#ifndef _RPDS_SOFTWARE_H_ 
#define _RPDS_SOFTWARE_H_ 
 
#include <stdio.h> 
#include <unistd.h> 
#include "system.h" 
#include "altera_avalon_pio_regs.h" 
 
#endif //_RPDS_SOFTWARE_H_ 
 

Figure 16.7 This is your first C program’s main header file. 

16.6 Starting Software Design – main() 
Create a C header file by selecting the rpds_software item in the Nios II 
C/C++ Projects pane. Choose File New Header File. When the dialog 
box appears, enter rpds_software.h for the Header File and click Finish to 
continue. 
Start your program’s main header file by adding the #include and definition 
statements shown in Figure 16.7. 
The C program that you will now write will print “Hello World” in the Nios II 
IDE’s console window (via the UART and serial cable), and it will blink eight 
of the red LEDs on the DE board. 
Create your program’s main C source file by selecting the rpds_software item 
in the Nios II C/C++ Projects pane. Choose File New File. When the 
dialog box appears, enter rpds_software.c for the File name and click Finish 
to continue. 
Start your program by including the rpds_software.h header file and typing the 
code shown in Figure 16.8.  

 



330 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

 
#include "rpds_software.h" 
 
int main( void ) { 
  unsigned char led_val = 1; 
   
  /* Print message to the Nios II IDE console via UART */ 
  printf( "Hello World\n" ); 
   
  while(1) { 
    /* Output a 8-bit value to the LEDs */ 
    IOWR_ALTERA_AVALON_PIO_DATA( LEDS_BASE, (led_val & 0xFF) ); 
 
    if( led_val == 0x80 )  
      led_val = 1; 
    else 
      led_val = led_val << 1; 
       
    /* Wait for 0.5 seconds */ 
    usleep( 500000 ); 
  } 
 
  return(0);   
} 
 

Figure 16.8 This is your first C program’s main source file. 

16.7 Downloading the Nios II Hardware and Software Projects 
To execute your software on a Nios II processor, you must configure the FPGA 
with the Nios II hardware reference design and then you can download the 
compiled program code to the processor’s program memory.  
Connect the USB cable. Verify that the Run/Prog switch on the DE board is set 
to Run, and then turn on the DE board. Select Tools Quartus II 
Programmer… to configure the FPGA. When the Quartus II Programmer 
appears, click on Add File… and select the rpds16.sof file from your project 
directory. Click Open to add the selected file to the download chain. Check the 
Program/Configure box on the row with your configuration file on it, and 
click Start to begin hardware configuration. 
Return to the Nios II IDE window. From the Nios II IDE window, right click 
the rpds_software item in the Nios II C/C++ Projects pane and select Build 
Project from the drop-down menu. This will begin a full compilation of all 
libraries in your project. 
IMPORTANT: In the reference hardware design, SW9 is used as the Nios II 
processor’s reset signal. Before code can be downloaded to the processor, it 
must be brought out of reset by setting SW9 in the up (or on) position.  
To download the compiled code to the Nios II processor executing on the 
FPGA, right click the rpds_software item in the Nios II C/C++ Projects pane 



 Tutorial III: Nios II Processor Software Development 331 
 

 

 

and select Run As Nios II Hardware. If the run settings dialog box appears, 
click the Run button to close this box. If the run settings dialog box appears, 
click the Run button to close this box. 

16.8 Executing the Software 
Once the program code has been downloaded to the Nios II processor’s 
program memory (SRAM in this configuration), your code automatically 
begins executing. As a part of the normal download process, the Nios II IDE 
downloads your program to memory and then reads the program memory back 
to verify that the code in program memory is correct. If there are any problems 
with downloading your program, then the processor is stalled and a message 
that alerts you to this fact appears in the Console pane in the bottom right-hand 
side of the Nios II IDE window. If this happens, verify that SW9 is in the up 
(on) position and then right click the rpds_software item in the Nios II C/C++ 
Projects pane and select Run As Nios II Hardware again. 
Once your program begins executing, the Nios II IDE’s Console pane becomes 
a standard input/output terminal connected to your processor via the RS-232 
UART device and cable. The text message “Hello World” should appear in the 
Console pane as soon as your program begins. Also, eight of the red LEDs on 
the DE board should blink one at a time. 

16.9 Starting Software Design for a Peripheral Test Program 
Now that you have written your first program and have it successfully running 
on the DE board, it is time to write a longer program that will test each of the 
major peripheral components on the DE board. 
A second project can be added to the current workspace, and since the same 
Nios II processor is being used for all projects in this workspace, the same 
system library can be used for them all. This option will be selected in the 
dialog box shown in Figure 16.9. 
To create a new project, select File New Project…. The New Project 
wizard will begin. On the first dialog box, select Nios II C/C++ Application 
and click Next to continue. 
In the next dialog box, fill in the requested information. The name of the 
project is rpds_de_test, the SOPC Builder System should point to the 
nios32.ptf file in your hardware project directory, and the Project Template 
should be set to Blank Project. If the workspace was correctly set to your 
project directory as detailed above, then the default location will be correct and 
Specify Location should be unchecked. However, if the workspace is set to 
some other directory, then select Specify Location and enter 
c:\your_project_directory\software in the Location field. Click Next to 
continue. 
In the final dialog box, select the option Select or create a system library and 
choose the rpds_software_syslib project from the list of Available System 
Library Projects for: nios32 as shown in Figure 16.9. Click Finish to create 
and open the project. 

 



332 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

 

Figure 16.9 Since this project uses the same Nios II processor as your first program, the same 
system library can be used. Select the rpds_software_syslib from the list of available libraries. 

Create a C header file by selecting the rpds_up3_test item in the Nios II 
C/C++ Projects pane. Choose File New Header File. When the dialog 
box appears, enter rpds_up3_test.h for the Header File and click Finish to 
continue. 
Start your program’s main header file by adding the #include and definition 
statements shown in Figure 16.10. 

 



 Tutorial III: Nios II Processor Software Development 333 
 

 

 

 
#ifndef _RPDS_DE_TEST_H_ 
#define _RPDS_DE_TEST_H_ 
 
#include <stdio.h> 
#include <unistd.h> 
#include "system.h" 
#include "alt_types.h" 
#include "sys/alt_irq.h" 
#include "sys/alt_flash.h" 
#include "altera_avalon_pio_regs.h" 
 
#endif //_RPDS_DE_TEST_H_ 
 

Figure 16.10 This is the beginning of your C program’s main header file. 

The C program that you will now write uses the four pushbuttons on the DE 
board to select which device to test. When a pushbutton is pressed, it will be 
decoded (in an interrupt handler) and a variable will be set. The program’s main 
thread will continuously read the function variable (at 50 ms intervals) and 
initiate the appropriate peripheral test. The function variable will be cleared at 
the end of each test routine so that buttons pressed while a peripheral is being 
tested will be ignored. The mapping of pushbutton to device shown in Table 
16.1 will be used. 
 

Table 16.1  Pushbutton to Device Mapping for Sample C Program 

Pushbuttons
(4-3-2-1) 

Peripheral 
to Test 

0001 LCD Display 

0010 SRAM Memory 

0100 Flash Memory 

1000 SDRAM Memory 

 
 



334 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

 
#include "rpds_de_test.h" 
 
int main( void ) { 
  volatile int function = 0; 
  int ret_val; 
 
  while(1) { 
    switch( function ) { 
      case 0x1:         /* Test the LCD display */ 
        ret_val = test_lcd(); 
        break; 
      case 0x2:         /* Test the SRAM */ 
        ret_val = test_sram(); 
        break; 
      case 0x4:         /* Test the Flash memory */ 
        ret_val = test_flash(); 
        break; 
      case 0x8:         /* Test the SDRAM */ 
        ret_val = test_sdram(); 
        break; 
      default:          /* Do nothing */ 
        break; 
    } 
    function = 0; 
    usleep( 50000 );    /* Wait 50 ms */ 
  }   
  return(0);   
} 
 

Figure 16.11 This is the beginning of your C program’s main source file. 

Create your program’s main C source file by selecting the rpds_de_test item in 
the Nios II C/C++ Projects pane. Choose File New File. When the dialog 
box appears, enter rpds_de_test.c for the File name and click Finish to 
continue. 
Start your program by including the rpds_de_test.h header file and typing the 
code shown in Figure 16.11.  

16.10 Handling Interrupts 
Inputs can be evaluated using two methods—polling and interrupts. To poll an 
input, your code can periodically check the value of the input device and 
determine if the value has changed. If a change has occurred, then the 
appropriate action should be taken to evaluate the input. An interrupt-driven 
input, however, works differently. When the value of the input changes, an 
interrupt signal is activated and the processor is alerted. The processor 
immediately performs a jump into a section of code known as the interrupt 
handler. This code determines which interrupt has occurred (most processors 
support multiple interrupt signals) and calls the appropriate interrupt service 



 Tutorial III: Nios II Processor Software Development 335 
 

 

 

routine (a function that has been written to handle the specific interrupt signal). 
When the interrupt service routine has finished processing the input, the 
processor returns to the code it was executing before the interrupt occurred. 
The program you are writing will use a combination of polling and interrupt 
driven inputs. The switches and function variable will be polled every 50 ms. 
The value of the switches will be displayed on the LEDs, and the value of the 
function variable will determine which, if any, peripheral should be tested. 
The pushbuttons on the DE board are represented by a 4-bit parallel I/O (PIO) 
peripheral called buttons in the Nios II reference design that you are using for 
this tutorial. The buttons PIO has been configured to generate an interrupt 
whenever any pushbutton is pressed and released. 
To support interrupts you first must create a function that will execute when an 
interrupt occurs. This function is called an interrupt service routine (ISR). ISRs 
should generally be very short and execute quickly. Add the function 
buttons_isr as shown in Figure 16.12. The ISR function here reads the value of 
the PIO’s edge capture register and stores it in the function variable. Next, it 
resets the edge capture register and IRQ mask register to allow the next 
interrupt to be captured and read properly. 

 
 
static void buttons_isr( void* context, alt_u32 id ) { 
  volatile int *function = (volatile int*) context; 
   
  *function = IORD_ALTERA_AVALON_PIO_EDGE_CAP( BUTTONS_BASE ); 
  IOWR_ALTERA_AVALON_PIO_EDGE_CAP( BUTTONS_BASE, 0 ); 
  IOWR_ALTERA_AVALON_PIO_IRQ_MASK( BUTTONS_BASE, 0xF );   
} 
 

Figure 16.12 This is the interrupt service routine for the pushbuttons. 

In your main function, you need to register your interrupt service routine and 
set the pushbuttons’ IRQ mask register to allow interrupts to be captured. Add 
the two following lines before the while loop in your main function: 
 
alt_irq_register(BUTTONS_IRQ, (void *) &function, buttons_isr); 
IOWR_ALTERA_AVALON_PIO_IRQ_MASK( BUTTONS_BASE, 0xF ); 

16.11 Accessing Parallel I/O Peripherals 
Macros are included in the altera_avalon_pio_regs.h file that read and write 
from the control and data registers in PIO components. You have already used 
these macros in the pushbutton’s interrupt service routine to read and write the 
edge capture register and IRQ mask register. Now, you need to use these 
macros to read the values from the dipswitches and write them to the LEDs. 
Add the following two lines immediately above the usleep( 50000 ) line in your 
main function: 

switches = IORD_ALTERA_AVALON_PIO_DATA( SWITCHES_BASE ); 



336 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

IOWR_ALTERA_AVALON_PIO_DATA( LEDS_BASE, switches ); 
 

You will also need to add a declaration for the integer variable switches to your 
main function. 

 
 
void lcd_init( void ) { 
 
  /* Set Function Code Four Times -- 8-bit, 2 line, 5x7 mode */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x38 ); 
  usleep(4100);   /* Wait 4.1 ms */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x38 ); 
  usleep(100);    /* Wait 100 us */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x38 ); 
  usleep(5000);   /* Wait 5.0 ms */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x38 ); 
  usleep(100); 
 
  /* Set Display to OFF */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x08 ); 
  usleep(100); 
 
  /* Set Display to ON */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x0C ); 
  usleep(100); 
 
  /* Set Entry Mode -- Cursor increment, display doesn't shift */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x06 ); 
  usleep(100); 
 
  /* Set the cursor to the home position */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x02 ); 
  usleep(2000); 
 
  /* Clear the display */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x01 ); 
  usleep(2000); 
} 
 

Figure 16.13 This is the LCD initialization function. 

16.12 Communicating with the LCD Display (DE2 only) 
The LCD display on the DE2 board can be treated similarly to a memory 
device. However, there are some additional initialization commands that must 
be sent to the LCD display that are not typical memory transactions. LCD 
initialization commands vary depending on the LCD controller chip that is on a 
particular LCD display. The manufacturer’s datasheet will detail the proper 
initialization procedure their LCD displays. The initialization routine for the 
LCD display that ships with the DE2 board is shown in Figure 16.13. Add this 



 Tutorial III: Nios II Processor Software Development 337 
 

 

 

routine to your C source file. Also, add a call to this function in your main 
function preceding the line of code that calls the test_lcd function. 
The code for test_lcd is shown in Figure 16.14. You will notice that this code 
expects several constants to be defined. Add definitions for the following 
constants in your rpds_de_test.h header file:  

• LCD_WR_COMMAND_REG = 0 
• LCD_WR_DATA_REG = 2 

 
The main function in your C source file should now be complete and look 
similar to the code in Figure 16.15. Note that a few printf statements have been 
added to provide the user with the program’s status while executing. 
 
alt_u32 test_lcd( void ) { 
  int i; 
  char message[17] = "Counting...     "; 
  char done[12] = "Done!      "; 
   
  /* Write a simple message on the first line. */ 
  for( i = 0; i < 16; i++ ) { 
    IOWR( LCD_BASE, LCD_WR_DATA_REG, message[i] ); 
    usleep(100); 
  } 
  /* Count along the bottom row */ 
  /* Set Address */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0xC0 ); 
  usleep(1000); 
  /* Display Count */ 
  for( i = 0; i < 10; i++ ) { 
    IOWR( LCD_BASE, LCD_WR_DATA_REG, (char)(i+0x30) ); 
    usleep(500000);   /* Wait 0.5 sec. */ 
  } 
 
 /* Write "Done!" message on first line. */ 
 /* Set Address */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x80 ); 
  usleep(1000); 
  /* Write data */ 
  for( i = 0; i < 11; i++ ) { 
    IOWR( LCD_BASE, LCD_WR_DATA_REG, done[i] ); 
    usleep(100); 
  } 
  return(0); 
} 
 

Figure 16.14 This is the code to test the LCD display. 

 



338 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

 
int main( void ) { 
  volatile int function = 0; 
  alt_u32 switches, ret_val; 
 
  printf("Welcome to the Nios II Test Program\n" ); 
 
  alt_irq_register(BUTTONS_IRQ, (void *) &function, buttons_isr); 
  IOWR_ALTERA_AVALON_PIO_IRQ_MASK( BUTTONS_BASE, 0xF ); 
 
  while(1) { 
    switch( function ) { 
      case 0x1:           /* Test the LCD display */ 
        printf("Testing LCD Display\n" ); 
        lcd_init(); 
        ret_val = test_lcd(); 
        printf("...Completed.\n" ); 
        break; 
      case 0x2:           /* Test the SRAM */ 
        printf("Testing SRAM\n" ); 
        ret_val = test_sram(); 
        printf("...Completed with %d Errors.\n", ret_val ); 
        break; 
      case 0x4:           /* Test the Flash memory */ 
        printf("Testing Flash memory\n" ); 
        ret_val = test_flash(); 
        printf("...Completed with %d Errors.\n", ret_val ); 
        break; 
      case 0x8:           /* Test the SDRAM */ 
        printf("Testing SDRAM\n" ); 
        ret_val = test_sdram(); 
        printf("...Completed with %d Errors.\n", ret_val ); 
        break; 
      default:            /* Do nothing */ 
        break; 
    } 
 
    function = 0; 
 
    switches = IORD_ALTERA_AVALON_PIO_DATA( SWITCHES_BASE ); 
    IOWR_ALTERA_AVALON_PIO_DATA( LEDS_BASE, switches ); 
 
    usleep( 50000 ); 
  }   
 
  return(0);   
} 

Figure 16.15 This is the completed main function. 



 Tutorial III: Nios II Processor Software Development 339 
 

 

 

16.13 Testing SRAM  
To test the SRAM, you will write a large number of values to memory and then 
read back from the same memory locations to verify that the contents of 
memory are what you expect. Since SRAM is currently being used for program 
and data memory, accessing SRAM is straight-forward. Any array that is 
created in a function will be stored in data memory (e.g., in SRAM). The code 
for test_sram is shown in Figure 16.16. You will notice that this code expects 
the constant value SRAM_MAX_WORDS to be defined. Add a definition for 
this constant to your rpds_de_test.h header file and set it equal to 8000. 
This test routine assumes that there is not a data cache memory present in the 
Nios II system. If data cache is present, then declaring an array in a function 
like test_sram would not ensure SRAM writes, because the data cache memory 
could be used as a temporary buffer. Since this function is very short and the 
array’s scope is internal to the function, it is highly likely that the array data 
would never be written to SRAM. To avoid these potential issues, the reference 
hardware design used in this tutorial does not include data cache. 
 

THERE ARE SEVERAL WAYS TO BYPASS DATA CACHE IN THE NIOS II PROCESSOR. (1) CREATE A 
BUFFER THAT IS LARGER THAN THE DATA CACHE TO FORCE AT LEAST SOME SRAM ACCESSES. 
(2) USE SPECIAL MEMORY ACCESS INSTRUCTIONS (SUCH AS LWIO AND SWIO) IN THE NIOS II 

INSTRUCTION SET THAT BYPASS DATA CACHE AND FORCE A MEMORY ACCESS.  

 
 

 
alt_u32 test_sram( void ) { 
  alt_u32 i, val; 
  alt_u32 errors = 0; 
  alt_u32 buffer[SRAM_MAX_WORDS]; 
 
  /* Write data to SRAM */ 
  for( i = 0; i < SRAM_MAX_WORDS; i++ ) { 
    buffer[i] = i + 1000; 
  } 
  /* Check output from SRAM */ 
  for( i = 0; i < SRAM_MAX_WORDS; i++ ) { 
    if( buffer[i] != (i+1000) ) 
      errors++; 
  } 
  return( errors ); 
} 
 

Figure 16.16 This is the code to test the SRAM memory device. 



340 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

16.14 Testing Flash Memory 
Flash memory is organized into blocks of data and is accessed in a different 
manner than SRAM and SDRAM. The Nios II HAL interface includes memory 
access functions for Flash devices that conform to the Common Flash Memory 
Interface (CFI) standard. The functions alt_flash_open_dev, alt_read_flash, 
alt_write_flash, and alt_flash_close_dev provide an interface that is very 
similar to file I/O. These subroutines and more lower-level functions are all 
declared in the sys/alt_flash.h header file. 
Flash memory write operations happen at the block level meaning that to write 
a block or any portion of a block (down to a single byte of data) requires the 
entire block of data to be erased and overwritten. When writing to a partial 
block of data, the user is responsible for reading the portion of the block that is 
not to be overwritten, storing it, and passing it with the new data as a complete 
block to be written. Also, keep in mind that Flash memory typically has a life 
expectancy of 100,000 write cycles. Because of the overhead involved in 
writing partial blocks of data and the finite number of write cycles for a given 
Flash memory device, it is best to buffer data until a full block can be written to 
Flash memory. 
The code for test_flash is shown in Figure 16.17. The data to be written to 
flash is buffered in the in_buff array located in data memory. Once is it full, the 
entire buffer is sent to the alt_flash_write command which partitions it into 
blocks of data and writes the full blocks to Flash memory. Depending on the 
total length of the in_buff array the final block written may be a partial block, 
but at least it will only get written once. You will also notice that this code 
expects the constant value FLASH_MAX_WORDS to be defined. Add a 
definition for this constant to your rpds_de_test.h header file and set it equal 
to 1000. 
 



 Tutorial III: Nios II Processor Software Development 341 
 

 

 

 
alt_u32 test_flash( void ) { 
  alt_u32 i, errors = 0; 
  alt_u32 in_buff[FLASH_MAX_WORDS], out_buff[FLASH_MAX_WORDS]; 
  alt_flash_fd* flash_handle; 
 
  flash_handle = alt_flash_open_dev( FLASH_NAME ); 
 
  /* Create data buffer to write to Flash memory */ 
  for( i = 0; i < FLASH_MAX_WORDS; i++ ) { 
    in_buff[i] = i + 1000000; 
  } 
 
  /* Write data to Flash memory */ 
  alt_write_flash( flash_handle, 0, in_buff, FLASH_MAX_WORDS*4 ); 
 
  /* Read data from Flash memory */ 
  alt_read_flash( flash_handle, 0, out_buff, FLASH_MAX_WORDS*4 ); 
 
  /* Check output from Flash memory */ 
  for( i = 0; i < FLASH_MAX_WORDS; i++ ) { 
    if( out_buff[i] != (i+1000000) ) 
      errors++; 
  } 
 
  alt_flash_close_dev( flash_handle ); 
  return( errors ); 
} 
 

Figure 16.17 This is the code to test the Flash memory device. 

16.15 Testing SDRAM 
To test the SDRAM, write a large number of values to memory and then read 
the same memory locations and verify that the contents of memory are the 
expected values. To access the SDRAM on the DE board, a pointer to the 
SDRAM memory space can be used. Once a pointer has been initialized to an 
address in the SDRAM memory space, that pointer can be dereferenced like an 
array to store values in successive SDRAM memory locations. This method of 
accessing memory would use the data cache if it were present (which it is not in 
the reference example). If you are using a Nios II processor with data cache and 
you want to access SDRAM directly (bypassing the data cache), then use you 
need to use the IORD and IOWR macros as shown in the previous sections.  
The code for test_sdram is shown in Figure 16.18. You will notice that this 
code expects the constant value SDRAM_MAX_WORDS to be defined. Add a 
definition for this constant to your rpds_de_test.h header file and set it equal 
to 1000000. 

 



342 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

 
alt_u32 test_sdram( void ) { 
  alt_u32 i; 
  alt_u32 errors = 0; 
  alt_u32 *buffer = (alt_u32 *)SDRAM_BASE; 
 
  /* Write data to SDRAM */ 
  for( i = 0; i < SDRAM_MAX_WORDS; i++ ) { 
    buffer[i] = (i + 1000000); 
  } 
 
  /* Check output from SDRAM */ 
  for( i = 0; i < SDRAM_MAX_WORDS; i++ ) { 
    if( buffer[i] != (i+1000000) ) 
      errors++; 
  } 
  return( errors );} 
 

Figure 16.18 This is the code to test the SDRAM memory device. 

Your C source and header files should now be complete. Figure 16.19 shows 
the final rpds_de_test.h header file, and Figure 16.20 shows the final 
rpds_de_test.c file. Notice that compiler directives have been put around code 
that refers to the LCD and is specific to the DE2 board. These directives allow 
this code to compile for either the DE1 or DE2 boards. 

 
#ifndef _RPDS_DE_TEST_H_ 
#define _RPDS_DE_TEST_H_ 
 
#include <stdio.h> 
#include <unistd.h> 
#include "system.h" 
#include "alt_types.h" 
#include "sys/alt_irq.h" 
#include "sys/alt_flash.h" 
#include "altera_avalon_pio_regs.h" 
 
/* LCD constants */ 
#ifdef LCD_NAME 
  #define LCD_WR_COMMAND_REG  0 
  #define LCD_WR_DATA_REG     2 
#endif 
 
/* Memory constants */ 
#define SRAM_MAX_WORDS       8000 
#define FLASH_MAX_WORDS      1000 
#define SDRAM_MAX_WORDS      1000000 
 
#endif //_RPDS_DE_TEST_H_ 

Figure 16.19 This is the final copy of the rpds_de_test.h header file. 



 Tutorial III: Nios II Processor Software Development 343 
 

 

 

 
#include "rpds_de_test.h" 
 
static void buttons_isr( void* context, alt_u32 id ) { 
  volatile int *function = (volatile int*) context; 
   
  *function = IORD_ALTERA_AVALON_PIO_EDGE_CAP( BUTTONS_BASE ); 
  IOWR_ALTERA_AVALON_PIO_EDGE_CAP( BUTTONS_BASE, 0 ); 
  IOWR_ALTERA_AVALON_PIO_IRQ_MASK( BUTTONS_BASE, 0xF ); 
} 
 
#ifdef LCD_NAME 
void lcd_init( void ) { 
  /* Set Function Code Four Times -- 8-bit, 2 line, 5x7 mode */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x38 ); 
  usleep(4100);   /* Wait 4.1 ms */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x38 ); 
  usleep(100);    /* Wait 100 us */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x38 ); 
  usleep(5000);   /* Wait 5.0 ms */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x38 ); 
  usleep(100); 
  /* Set Display to OFF */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x08 ); 
  usleep(100); 
  /* Set Display to ON */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x0C ); 
  usleep(100); 
  /* Set Entry Mode -- Cursor increment, display doesn't shift */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x06 ); 
  usleep(100); 
  /* Set the cursor to the home position */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x02 ); 
  usleep(2000); 
  /* Clear the display */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x01 ); 
  usleep(2000); 
} 
 
alt_u32 test_lcd( void ) { 
  int i; 
  char message[17] = "Counting...     "; 
  char done[12] = "Done!      "; 
   
  /* Write a simple message on the first line. */ 
  for( i = 0; i < 16; i++ ) { 
    IOWR( LCD_BASE, LCD_WR_DATA_REG, message[i] ); 
    usleep(100); 
  } 

Figure 16.20 This is the final copy of the rpds_de_test.c source file. 



344 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

  /* Count along the bottom row */ 
  /* Set Address */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0xC0 ); 
  usleep(1000); 
  /* Display Count */ 
  for( i = 0; i < 10; i++ ) { 
    IOWR( LCD_BASE, LCD_WR_DATA_REG, (char)(i+0x30) ); 
    usleep(500000);   /* Wait 0.5 sec. */ 
  } 
 
 /* Write "Done!" message on first line. */ 
 /* Set Address */ 
  IOWR( LCD_BASE, LCD_WR_COMMAND_REG, 0x80 ); 
  usleep(1000); 
  /* Write data */ 
  for( i = 0; i < 11; i++ ) { 
    IOWR( LCD_BASE, LCD_WR_DATA_REG, done[i] ); 
    usleep(100); 
  } 
  return(0); 
} 
#endif 
 
alt_u32 test_sram( void ) { 
  alt_u32 i, val; 
  alt_u32 errors = 0; 
  alt_u32 buffer[SRAM_MAX_WORDS]; 
 
  /* Write data to SRAM */ 
  for( i = 0; i < SRAM_MAX_WORDS; i++ ) { 
    buffer[i] = i + 1000; 
  } 
  /* Check output from SRAM */ 
  for( i = 0; i < SRAM_MAX_WORDS; i++ ) { 
    if( buffer[i] != (i+1000) ) 
      errors++; 
  } 
  return( errors ); 
} 
 
alt_u32 test_flash( void ) { 
  alt_u32 i, errors = 0; 
  alt_u32 in_buff[FLASH_MAX_WORDS], out_buff[FLASH_MAX_WORDS]; 
  alt_flash_fd* flash_handle; 
 
  flash_handle = alt_flash_open_dev( FLASH_NAME ); 
 

Figure 16.20 continued 



 Tutorial III: Nios II Processor Software Development 345 
 

 

 

  /* Create data buffer to write to Flash memory */ 
  for( i = 0; i < FLASH_MAX_WORDS; i++ ) { 
    in_buff[i] = i + 1000000; 
  } 
 
  /* Write data to Flash memory */ 
  alt_write_flash( flash_handle, 0, in_buff, FLASH_MAX_WORDS*4 ); 
 
  /* Read data from Flash memory */ 
  alt_read_flash( flash_handle, 0, out_buff, FLASH_MAX_WORDS*4 ); 
 
  /* Check output from Flash memory */ 
  for( i = 0; i < FLASH_MAX_WORDS; i++ ) { 
    if( out_buff[i] != (i+1000000) ) 
      errors++; 
  } 
 
  alt_flash_close_dev( flash_handle ); 
  return( errors ); 
} 
 
alt_u32 test_sdram( void ) { 
  alt_u32 i; 
  alt_u32 errors = 0; 
  alt_u32 *buffer = (alt_u32 *)SDRAM_BASE; 
 
  /* Write data to SDRAM */ 
  for( i = 0; i < SDRAM_MAX_WORDS; i++ ) { 
    buffer[i] = i + 1000000; 
  } 
  /* Check output from SDRAM */ 
  for( i = 0; i < SDRAM_MAX_WORDS; i++ ) { 
    if( buffer[i] != (i+1000000) ) 
      errors++; 
  } 
  return( errors ); 
} 
 
int main( void ) { 
  volatile int function = 0; 
  alt_u32 switches, ret_val; 
 
  printf( "Welcome to the Nios II Test Program\n" ); 
  alt_irq_register(BUTTONS_IRQ, (void *) &function, buttons_isr); 
  IOWR_ALTERA_AVALON_PIO_IRQ_MASK( BUTTONS_BASE, 0xF ); 
 

Figure 16.20 continued 



346 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

  while(1) { 
    switch( function ) { 
      case 0x1:           /* Test the LCD display */ 
        #ifdef LCD_NAME 
          printf("Testing LCD Display\n" ); 
          lcd_init(); 
          ret_val = test_lcd(); 
          printf("...Completed.\n" ); 
        #else 
          printf("No LCD Component is Present\n" ); 
        #endif 
        break; 
      case 0x2:           /* Test the SRAM */ 
        printf("Testing SRAM\n" ); 
        ret_val = test_sram(); 
        printf("...Completed with %d Errors.\n", ret_val ); 
        break; 
      case 0x4:           /* Test the Flash memory */ 
        printf("Testing Flash Memory\n" ); 
        ret_val = test_flash(); 
        printf("...Completed with %d Errors.\n", ret_val ); 
        break; 
      case 0x8:           /* Test the SDRAM */ 
        printf("Testing SDRAM\n" ); 
        ret_val = test_sdram(); 
        printf("...Completed with %d Errors.\n", ret_val ); 
        break; 
      default:            /* Do nothing */ 
        break; 
    } 
    function = 0; 
    switches = IORD_ALTERA_AVALON_PIO_DATA( SWITCHES_BASE ); 
    IOWR_ALTERA_AVALON_PIO_DATA( LEDS_BASE, switches ); 
    usleep( 50000 ); 
  }  
  return(0); 
} 

Figure 16.20 continued 

16.16 Downloading the Nios II Hardware and Software 
Projects 

To execute your software on a Nios II processor, you must configure the FPGA 
with the Nios II hardware reference design and then you can download the 
compiled program code to the processor’s program memory.  
Connect the USB cable. Verify that the Run/Prog switch on the DE board is set 
to Run, and then turn on the DE board. Select Tools  Quartus II 
Programmer… to configure the FPGA. When the Quartus II Programmer 
appears, click on Add File… and select the rpds16.sof file from your project 
directory. Click Open to add the selected file to the download chain. Check the 



 Tutorial III: Nios II Processor Software Development 347 
 

 

 

Program/Configure box on the row with your configuration file on it, and 
click Start to begin hardware configuration. 
Return to the Nios II IDE window. From the Nios II IDE window, right click 
the rpds_de_test item in the Nios II C/C++ Projects pane and select Build 
Project from the drop-down menu. This will begin a full compilation of all 
libraries in your project. 
IMPORTANT: In the reference hardware design, SW9 is used as the Nios II 
processor’s reset signal. Before code can be downloaded to the processor, it 
must be brought out of reset by setting SW9 in the up (or on) position.  
To download the compiled code to the Nios II processor executing on the 
FPGA, right click the rpds_de_test item in the Nios II C/C++ Projects pane 
and select Run As  Nios II Hardware. If the run settings dialog box appears, 
click the Run button to close this box. 

16.17 Executing the Software 
Once the program code has been downloaded to the Nios II processor’s 
program memory (SRAM in this configuration), your code should 
automatically start executing. As a part of the normal program download, the 
Nios II IDE verifies that the code in program memory is the same as 
downloaded program before program execution begins. If there are any 
problems with downloading your program then the processor is stalled and a 
message that alerts you to this fact appears in the Console pane in the bottom 
right-hand side of the Nios II IDE window. If this happens, verify that SW9 is 
in the up (on) position and then right click the rpds_de_test item in the Nios II 
C/C++ Projects pane and select Run As Nios II Hardware again. 
Once your program begins executing, the Nios II IDE’s Console pane becomes 
a standard input/output terminal connected to your processor via the JTAG 
UART device and cable. Press each of the four pushbuttons in turn. A different 
device will be tested when each button is pressed and released. Look at the text 
in the Console pane to verify that the proper test is being executed.  
Change the switches’ value and verify that the appropriate LEDs light. 
 

                        

                       ALL SOURCE FILES FOR THIS NIOS II SOFTWARE REFERENCE DESIGN  

          CAN BE FOUND ON THE DVD IN THE \DEX\CHAP16 DIRECTORY. 

 

16.18 For additional information 
This chapter has provided a brief overview of Nios II Software development. 
Additional information can be found at Altera’s website (www.altera.com) in 
the Nios II Software Developer’s Handbook and at the Nios Community forum 
(www.niosforum.com). 



348 Rapid Prototyping of Digital Systems Chapter 16 
  

 

 

16.19 Laboratory Exercises 
1. Write a C program to blink the eight green LEDs in a reversing shift pattern on the DE 

board. After the last LED in each direction turns on, reverse the direction of the shift. 
Run and demonstrate the program on the DE board. Recall that C supports shift 
operations (“<<” and “>>”) and you will need a time delay in your code to see the LEDs 
blink. 

2. Write a C program that displays a count of the seconds that the program has been running 
in the LCD display on the DE2 board or on the seven-segment displays on the DE1 
board. Demonstrate the program on the DE board. 

3. Expand the C program in the previous problem to display the elapsed time in hours, 
minutes, and seconds on the LCD (or seven-segment displays). Have one pushbutton 
reset the time to zero and another pushbutton start and stop the timer just like a 
stopwatch. 

4. Memory test programs cannot test all possible patterns. Research the various algorithms 
widely used in more thorough memory test programs and write your own more advanced 
memory test program for SRAM. Most memory test programs use several algorithms to 
check for different types of faults. Execute the test code from SDRAM. 

5. Write a retro version of the 1970’s classic kill the bit computer game for the DE board. 
The goal in the kill the bit game is to turn off all of the four LEDs using the four 
pushbuttons. The game starts with an initial non-zero pattern displayed in the LEDs.  The 
pattern constantly does a circular shift moving through the LEDs in a loop with a time 
delay to slow down the shifts. If you hit one of the four pushbuttons exactly when the the 
same number LED is turned on, it will turn off one LED in the pattern. If you hit a 
pushbutton and it’s LED is off another LED turns on. 

Here is how the program works. Each time just before the pattern shifts, the pattern is bit-
wise exclusive or’ed with one input sample from the pushbuttons to generate a new 
pattern. When both the pushbutton is pushed and its corresponding bit in the pattern are 
High, one less bit will be High in the new pattern after the exclusive or (i.e., 1 xor 1 is 0). 
After the shift, one less LED will be turned on since there is one less “1” in the new 
pattern. If your timing is off and the LED is not turned on when you hit the pushbutton, a 
new high bit will be generated in the pattern (i.e., 1 xor 0 is 1). When this happens, the 
new “1” bit in the pattern lights another LED. Note that you need a “1” when a 
pushbutton is pressed and a “1” to turn on an LED for the xor function to work. 

Display the elapsed time in the LCD display (or seven-segment displays) and stop the 
time display when a player wins the game (turns out all LEDs). Adjust the shift time 
delay for reasonable game play. Blink all of the LEDs when a player wins. If you want a 



 Tutorial III: Nios II Processor Software Development 349 
 

 

 

more challenging game, use a pattern and shift register larger than four bits and just 
display four bits at a time in the LEDs. 

6. Port an interesting C application program to the Nios II processor. Execute the 
application from SDRAM. 



 

SOPC Builder is a GUI-based hardware design tool used to configure the Nios II 
processor core options and to design bus and I/O interfaces for the processor. 
 
    

CHAPTER 17 

Tutorial IV: Nios II 
Processor Hardware 
Design 

 

 



352 Rapid Prototyping of Digital Systems Chapter 17 
  

 

 

17 Tutorial IV: Nios II Processor Hardware Design 
Designing systems with embeddeded processors requires both hardware and 
software design elements. A collection of CAD tools developed by Altera enable 
you to design both the hardware and software for a fully functional, 
customizable, soft-core processor called Nios II. This tutorial steps you through 
the hardware implementation of a Nios II processor for the DE1 and DE2 
boards, and Tutorial III (in the preceding chapter) introduces the software 
design tools for the Nios II processor.  

Upon completion of this tutorial, you will be able to: 
• Navigate Altera’s SOPC Builder (Nios II processor design wizard), 
• Generate a custom Nios II processor core, 
• Create a PLL that supplies a clock signal for the on-board SDRAM, and 
• Specify the top-level pin assignments and project settings necessary for 

implementing the Nios processor on the DE boards. 

 
  THE DVD CONTAINS A VERSION OF CHAPTERS 16 AND 17 FOR THE 

 UP 3 BOARDS. 
 

17.1 Install the DE board files 
Run the installation program for Altera’s University Program IP Library. This 
program can be found on the DVD at \Altera_Software\UP_IP_Library.exe. 

 

 

Figure 17.1 Import the default pin and project assignments for the DE board. 

17.2 Creating a New Project 
Create a new Quartus II project as illustrated in Tutorial I (see Section 1 of 
Chapter 1). Use the project name rpds17 and create a top-level Block 
Diagram/Schematic file named rpds17.bdf. 



 Tutorial IV: Nios II Processor Hardware Design 353 
 

 

 

Import the pin assignments and project settings file from the DVD by choosing 
Assignments Import Assignments…. Enter the full path for the 
booksoft_fe\de2\chap17\de2.qsf file located on the DVD that came with this 
book as shown in Figure 17.1. (If you are using a DE1 board, then you must use 
the booksoft_fe\de1\chap17\de1.qsf file located on the DVD.) Click on the 
Advanced button and verify that the settings match the dialog box in Figure 
17.2. If different settings are used, then all of the pin and project assignments 
may not be made correctly, and downloading your project to the DE board 
could damage it. When the settings are correct, click OK to exit the dialog box. 
Click OK in the Import Assignments dialog box to import the settings. 
 

 

Figure 17.2 It is important that the Advanced Import Options be set as shown here. 

17.3 Starting SOPC Builder 
A Nios II processor is created using the SOPC Builder wizard. Within this 
wizard, you can specify the settings for the Nios II processor, add peripherals, 
and select the bus connections, I/O memory mapping, and IRQ assignments for 
the processor. To start the SOPC Builder, choose Tools SOPC Builder…. 

 



354 Rapid Prototyping of Digital Systems Chapter 17 
  

 

Figure 17.3 Specifying the name of the Nios II processor for your system. 

In the Create New System dialog box, enter the name nios32, and set the 
Target HDL to VHDL as shown in Figure 17.3. Click OK to open SOPC 
Builder with a blank project titled nios32. 
The system settings in the top part of SOPC Builder window must be set for the 
board and device that you are using. For the DE boards, the on-board clock 
circuit generates several clock frequencies, including 24 MHz, 27 MHz, and 
50 MHz. For this tutorial, the 50 MHz clock signal will be used; therefore, 
enter 50.0 in the clk field. Select Cyclone II as Device Family. When these 
settings have been entered, your SOPC Builder window should look similar to 
the screen shot in Figure 17.4.  

IT IS CRITICAL THAT THE FREQUENCY SELECTED IN THE SOPC BUILDER IS THE ACTUAL 
CLOCK RATE USED IN YOUR HARDWARE DESIGN. IF A PLL IS USED TO GENERATE A DIFFERENT 
NIOS II CLOCK SIGNAL, THEN THAT CLOCK FREQUENCY MUST BE ENTERED INTO THE SOPC 
BUILDER BEFORE THE SYSTEM IS GENERATED. IF YOU MODIFY THE CLOCK FREQUENCY FOR 

THE NIOS II PROCESSOR LATER, THEN YOU MUST RE-GENERATE THE NIOS II PROCESSOR WITH 
THE UPDATED FREQUENCY SPECIFIED HERE. 

Take a minute to familiarize yourself with the layout of the SOPC Builder 
window. Along the left-hand side, there is an expandable list of components 
organized by category that can be added to a Nios II system. Click on the “+” 
symbol next to the items in this list to expand the list of components for each 
category. If board support packages have been installed, then those 
development boards will be listed as an item. Expanding these items will reveal 
components that are specific to these boards. If you installed the design files as 
discussed in Section 17.1, then the University Program DE1 Board and 
University Program DE2 Board categories will appear. 

 



 Tutorial IV: Nios II Processor Hardware Design 355 
 

 

 

 

Figure 17.4 Beginning a Nios II design in the SOPC Builder. 

17.4 Adding a Nios II Processor 
The first component that you will add to your Nios II processor design is the 
processor core itself. In the list of components on the left-hand side of the 
SOPC Builder, the Nios II Processor component. Click the Add… button at 
the bottom of the component list. 
When a component is added to your system, a dialog box will appear that 
allows you to select options and set specific parameters for this particular 
implementation. For the Nios II processor, the dialog box shown in Figure 17.5 
will appear. This first selection will determine the general parameters of the 
Nios II processor. Notice that there are three general configurations allowed 
that vary in size, performance, and functionality. Select the middle 
configuration, Nios II/s as shown in Figure 17.5. In the Hardware Multiply 
field, select Embedded Multipliers, and click Next to continue. 
The next dialog box allows you set the size of the instruction cache in the Nios 
II processor. Keep the default value (4 KB), and click Next twice to advance to 
the JTAG Debug Module dialog box.  



356 Rapid Prototyping of Digital Systems Chapter 17 
  

 

 

 

Figure 17.5 Nios II supports three different general configurations. Select Nios II/s for this tutorial. 

Nios II processors can be compiled with support for one of four different 
debugging systems. The differences between them are shown in Figure 17.6, 
along with the FPGA resources required to implement each type of debugging. 
There is an order of magnitude difference in the number of logic elements 
required to implement Level 4 debugging versus Level 1 debugging. This 
difference is significant when compared to the overall size of the Nios II 
processor. The Level 4 debugging system is two to three times larger then the 
Nios II/s processor itself. Since the cost of FPGAs are largely based on their 
size, the debugging logic will typically be removed before a design enters 
production to minimize the number of logic elements, and thus the size of the 
FPGA, required for the production quantities. 
The full features of Level 3 and Level 4 debugging are only available when a 
license from First Silicon Solutions, a third-party company, is purchased. The 
availability of this license within your company or school along with the 
complexity of your end system and the size of the FPGA available will be the 
primary factors in determining which debugging system should be selected for 



 Tutorial IV: Nios II Processor Hardware Design 357 
 

 

 

a given system. For this tutorial, select Level 1 (the default), and click Next to 
continue. 
The final option in the Nios II processor configuration is the adding of custom 
instructions. Nios II processors allow the addition of up to 256 custom 
instructions into the processor’s data path. These can be used to further 
customize your processor for a specific task. For this tutorial, no custom 
instructions will be added. Click Finish to complete the Nios II configuration 
for this system. 

 

Figure 17.6 Nios II supports four levels of debugging capabilities. Select Level 1 for this tutorial. 

When the SOPC Builder window reappears, the Nios II processor will appear as 
an added component in the main part of the window with the default module 
name cpu. Also, a number of error and warning messages will appear in the 
console at the bottom of the SOPC Builder window. These messages result 
from there not being any defined memory in the system yet. When memory is 
added in the next few sections, the messages will disappear. 



358 Rapid Prototyping of Digital Systems Chapter 17 
  

 

 

17.5 Adding UART Peripherals 
Two UART peripherals will be defined for this system: a JTAG UART and an 
RS-232 serial UART. The USB Blaster JTAG cable that is used to configure the 
FPGA can also be used as a UART device after the FPGA is configured. (The 
JTAG cable is also used as the communication channel between the PC and the 
debugging logic selected for the Nios II processor.) The Nios II software 
integrated development environment (IDE) uses the JTAG UART as the default 
device for downloading your software instructions to the Nios II processor and 
was used for that purpose in the previous tutorial on software design. 
Add the JTAG UART device by expanding Interface Protocols Serial. 
Select JTAG UART and click Add…. When the JTAG UART Configuration 
dialog box appears, click Finish to accept the default values for all fields and 
add the component.  

 

Figure 17.7 These are the settings for the RS-232 UART device to be added to the Nios II system. 

Older ByteBlaster II, ByteBlaster MV, and ByteBlaster JTAG cables did not 
transmit the run-tiem serial data robustly; therefore, a second RS-232 UART 
module was needed for run-time serial communication. The newer USB Blaster 
JTAG interface used on the DE boards works quite well as a run-time UART 
device. Thus, adding a second UART module is not required; however, adding 



 Tutorial IV: Nios II Processor Hardware Design 359 
 

 

 

an RS-232 UART module can be useful when debugging systems by providing 
an additional communication channel. 
Add the RS-232 UART peripheral by expanding Interface Protocols Serial. 
Select UART (RS-232 serial port) and click Add…. When the UART 
configuration dialog box appears, set the options as shown in Figure 17.7. Click 
Finish to add the component.  

17.6 Adding an Interval Timer Peripheral 
Most processor designs require at least one timer. This timer is used to delay 
the processor, coordinate transactions, timestamp events, generate time slice 
interrupts for an operating system scheduler, a watchdog timer, and more. The 
Nios II timer peripheral is flexible; it has several options and three predefined 
configurations. Add a full-featured interval timer to your Nios II processor by 
expanding Peripherals Microcontroller Peripherals. Select Interval Timer 
and click Add…. When the timer configuration dialog box appears, set the 
options as shown in Figure 17.8. Click Finish to add the component. In the 
SOPC Builder, rename the timer module to timer0. The “0” is appended to the 
timer name here to provide a consistent naming convention for your timers if 
additional timers are added at a later time. It is not unusual for a processor to 
have two or three timers – often of different configurations for specific uses. 

 

 

Figure 17.8 These are the settings for the interval timer device to be added to the Nios II system. 



360 Rapid Prototyping of Digital Systems Chapter 17 
  

 

 

Figure 17.9 These are the settings for the pushbutton PIO device to be added to the Nios II system. 

17.7 Adding Parallel I/O Components 
Many processors require a certain amount of general-purpose I/O pins. These 
pins can be attached directly to pushbuttons, switches, LEDs, and similar I/O 
devices. They can also be attached to relatively simple or low bandwidth 
interfaces that don’t have a large amount of overhead associated with data 
transmission. Examples of these types of interfaces include PS/2, I2C, SPI, and 
parallel data interfaces.  
In addition, general-purpose I/O pins can be used to pass low-bandwidth data 
between a custom VHDL or Verilog block and the Nios II processor. A faster 
method of transferring data to a VHDL block is to create a custom peripheral 
that can attach to the Avalon bus. Implementing a VHDL module that is 
compliant with the Avalon bus specification is more involved and requires more 
logic elements than using general-purpose I/O pins, but it does provide a faster 
more efficient interface. 
General-purpose I/O pins are added to the Nios II processor with the PIO 
(Parallel I/O) component. The PIO component has a number of options for 
customizing general-purpose I/O interfaces. PIO interfaces can be specified as 
input only, output only, or bidirectional. If bidirectional is selected here, then 
the direction of each pin must be set in the direction register at run-time via 
software. Input PIO interfaces can also have various interrupt and edge capture 
capabilities including the capturing of either or both edges and edge or level-
sensitive interrupt triggers. 



 Tutorial IV: Nios II Processor Hardware Design 361 
 

 

 

For this tutorial, you will add three PIO components: one for the pushbuttons, 
one for the switches, and one for the LEDs. First, add a PIO component for the 
pushbuttons to your processor design by expanding Peripherals  
Microcontroller Peripherals. Select PIO (Parallel I/O) and click Add…. 
When the PIO configuration dialog box appears, set the Width of the interface 
to 4 bits (there are four pushbuttons) and set the Direction to Input ports only 
as shown in Figure 17.9(a). Click Next to continue. On the next configuration 
page, set the options as shown in Figure 17.9(b). Click Finish to add the 
component. In the SOPC Builder, rename the PIO module to buttons.  
Using the same procedure as above, add a second PIO component for the 
dipswitches. The settings for the PIO devices are shown in Figure 17.10. 
Rename this PIO module to switches. 

Figure 17.10 These are the settings for the switch PIO device to be added to the Nios II system. 

Finally, add a third PIO component for the LEDs. On the first configuration 
page, set 8 bits for the Width, and set the Direction to Output ports only. 
When the PIO is an output-only device, the interrupt and edge-capture options 
are not applicable. Rename this PIO module to leds. 

17.8 Adding an SRAM Memory Controller 
Add the SRAM memory controller to your Nios II processor by expanding 
University Program DE2 Board. (The SRAM components are identical for 
the DE1 and DE2 boards, so the SRAM component may be added from either 
library.) Select SRAM and click Add…. When the SRAM configuration dialog 
box appears, click Finish to add the component. This component does not have 



362 Rapid Prototyping of Digital Systems Chapter 17 
  

 

 

any configuration options; therefore, the SRAM component dialog box contains 
information only. In the SOPC Builder, rename the SRAM module to sram. 

17.9 Adding an SDRAM Memory Controller 
There are three types of memory on the DE board: SDRAM, SRAM, and Flash. 
Each type of memory requires is own unique memory controller and must be 
added individually. Add the SDRAM memory controller by expanding 
Memories and Memory Controllers  SDRAM. Select SDRAM Controller 
and click Add…. The SDRAM controller must be configured for the timing 
requirements of the specific SDRAM brand and model being used. The 
configuration and timing values requested here are typically available in the 
datasheet for SDRAM ICs. For the SDRAM modules on the DE board, set the 
options in the configuration dialog boxes to the values shown in Figure 17.11. 
Click Finish to add the component. In the SOPC Builder, rename the SDRAM 
controller module to sdram. 

Figure 17.11 These are the SDRAM controller settings for use with the SDRAM on the DE boards. 

17.10 Adding the LCD Module (DE2 Board Only) 
The DE2 board contains a Liquid Crystal Display (LCD) component. To 
interface this display to the Nios II processor, add the LCD component to your 



 Tutorial IV: Nios II Processor Hardware Design 363 
 

 

 

Nios II processor by expanding Peripherals Display. Select Character LCD 
and click Add…. When the LCD component dialog box appears, click Finish 
to add the component. This component does not have any configuration 
options; therefore, the LCD component dialog box contains information only. 
The LCD component will be added to the list of peripherals in your Nios II 
processor. 

17.11 Adding an External Bus 
Multiple external devices can share the same address and data bus pins and 
dramatically reduce the number of pins required on the FPGA. The Nios II 
processor supports this type of bus sharing with its tristate bus components. On 
many boards the SRAM, SDRAM, Flash, and even an LCD device can share a 
signal external tristate bus. To accommodate the bidirectional data bus and 
multiple devices on a single bus, an Avalon Tristate Bridge component must be 
added. The Avalon tristate bridge creates a peripheral (tristate) bus to which 
multiple memory controllers and other external components can be attached. It 
also provides a seamless interface between the peripheral bus and the main 
system bus. A conceptual drawing of this arrangement is shown in Figure 
17.12. For the DE boards, the Flash device is the only peripheral attached to the 
tristate bus. The SDRAM, SRAM, and LCD devices all attach directly to the 
main system bus. 
 

 

Figure 17.12 This is a conceptual drawing of the bus configuration with the Tristate Bridge 
connecting the main system bus and the shared peripheral bus.  

Add the Avalon Tristate Bridge component by expanding Bridges and 
Adapters Memory Mapped. Select Avalon-MM Tristate Bridge and click 
Add…. There is only one option for this component: registered or not 
registered. Select Registered and click Finish to add the component. In the 
SOPC Builder, rename the bridge module to ext_bus. 



364 Rapid Prototyping of Digital Systems Chapter 17 
  

 

 

17.12 Adding Components to the External Bus 
Once the Avalon tri-state bridge has been added, the peripherals that are going 
to connect to the external peripheral bus can be added. First, add the Flash 
memory controller by expanding Memories and Memory 
Controllers Flash. Select Flash Memory (CFI) and click Add…. When the 
Flash memory configuration dialog box appears, set the options as shown in 
Figure 17.13. In the SOPC Builder, rename the flash module to flash. 
 

(a) (b) 

Figure 17.13 These are the Flash memory settings for use with the Flash on the DE boards. 

17.13 Global Processor Settings 
All of the necessary peripherals have been added now. The next step is to 
configure some global settings for your processor. 
To view and modify the bus connections in your processor, select View Show 
Connections Column. (If Show Connections Column is already selected, then 
un-select it and select it again.) This will expand the cpu and ext_bus modules 
in the table of peripherals and show the bus connections. The three buses are 
displayed vertically. From left-to-right, the buses are the main system 
instruction, main system data, and tri-state data bus. Notice that the UARTs, 
timer, LCD, and PIO components are only attached to the system data bus since 
they don’t normally interact with instruction memory. SRAM, SDRAM, and the 
Avalon Tristate Bridge are connected to both the system instruction and system 
data buses, because the memory devices can store both data and instruction 
memory. Finally, the Flash memory device is unconnected. It must be manually 
connected to the appropriate tristate bus. Hover your mouse over the 
connections column just to the left of the flash module. An open circle will 
appear on the tri-state data bus. Click on the open circle to connect the flash 
module to the external tristate bus (a connection is denoted by a solid, filled-in 
circle). The final SOPC Builder window should look like the screen shot in 
Figure 17.14. 



 Tutorial IV: Nios II Processor Hardware Design 365 
 

 

 

 

 

Figure 17.14 This is the completed Nios II design in SOPC Builder. 

The Nios II processor uses a memory-mapped I/O scheme for accessing 
peripherals. Each component added to the system is assigned a unique set of 
memory addresses. Any device or data registers needed for a particular 
peripheral can be accessed by reading from or writing to its respective memory 
address. In general, the specific memory address assignments do not matter as 
long as the assigned memory address spaces do not overlap. If the Nios II 
system is going to be a part of a legacy system, there may be some constraints 
placed on the memory address assignments; however, there is nothing intrinsic 
within the Nios II system that restricts the settings. For this tutorial, let SOPC 
Builder make the memory assignments automatically by selecting System  
Auto-Assign Base Addresses. Next, select System  Auto-Assign IRQs to 
have SOPC Builder automatically assign the IRQ values to the devices that 
support interrupts. 

17.14 Finalizing the Nios II Processor 
Now that the memory modules have been added, the Nios II processor 
configuration can be completed. Select the cpu module by clicking on it and 
then click the Edit… button. The Nios II Processor dialog box will appear 
allowing you to modify the program memory device and beginning address. For 
this tutorial, set the Reset Vector and Exception Vector to sram and keep the 



366 Rapid Prototyping of Digital Systems Chapter 17 
  

 

 

default offsets as shown in Figure 17.15. Click Finish to save the new 
processor settings. 

 

Figure 17.15 These are the processor configuration settings for the Nios II processor. 

In the SOPC Builder window, click the Next button. The System Generation 
dialog box is the final group of settings. For this tutorial, you will not be 
simulating the processor in ModelSim or other third-party simulation tool; 
therefore, unselect the Simulation. Create simulator project files option. 
Click the Generate button to generate the design files for your Nios II 
processor. It will take 2-3 minutes to generate your Nios II processor. When it 
completes, the console should contain a message that states that your processor 
was generated successfully. If your system does not generate successfully, 
study the error log display in the console, correct the problem, and re-generate 
the Nios II processor. When you have successfully generated your Nios II 
system, click the Exit button to close SOPC Builder. 

17.15 Add the Processor Symbol to the Top-Level Schematic 
When SOPC Builder closes, return to your blank top-level schematic window, 
rpds17.bdf. Double click on a blank area of your empty top-level schematic 



 Tutorial IV: Nios II Processor Hardware Design 367 
 

 

 

file to add a component. In the Libraries pane of the Symbol dialog box, 
expand the Project item and select the nios32 component. Click OK to add the 
selected component. Click in the middle of schematic file to place your Nios 
system. 

17.16 Create a Phase-Locked Loop Component 
SDRAM and the Nios II processor core operate on different clock edges. The 
Nios processor uses the rising edge and SDRAM the falling edge. The SDRAM 
would need a clock signal that is phase shifted by 180 degrees. An inverter 
would do this, but the phase shift also needs to be adjusted a bit to correct for 
the internal FPGA delays and the distance between the SDRAM and the FPGA 
on the DE board. To create this SDRAM clock signal, a phase-locked loop 
(PLL) component can be implemented on the FPGA. To create a PLL, use 
Quartus II’s MegaWizard Plug-in Manager by selecting Tools MegaWizard 
Plug-In Manager…. Click Next on page 1 of the wizard to create a new 
component. On page 2, select the Installed Plug-Ins I/O ALTPLL module 
from the list. Enter the full path of your project directory followed by the 
filename up3_pll into the output filename field. Complete the remaining fields 
with the information shown in Figure 17.16. Click Next to continue. 

 

 

Figure 17.16 These are the initial settings for the ALTPLL module. 

On page 3 of the MegaWizard manager, enter 50.00 MHz as the frequency of 
the inclock0 input. Leave the other options set to their default values. Click 
Next to continue. On page 4 of the MegaWizard manager, un-select all 
checkmarks. Click Next twice to advance to page 6. 
On page 6 of the MegaWizard manager, enter a Clock phase shift of -54 deg  
(-3 ns). Leave the other options set to their default values. Click Finish to skip 



368 Rapid Prototyping of Digital Systems Chapter 17 
  

 

 

pages 6 and 7 and jump to page 8 of the MegaWizard manager. Click Finish 
again to complete the MegaWizard manager and create the files for the PLL 
component.  
Double click on a blank area of the top-level schematic file. Select the Project 

up3_pll module and add it to your top-level schematic as shown in the 
completed schematic in Figure 17.17. 
IMPORTANT NOTE: Different or future versions of the Altera software may 
generate slightly different hardware time delays for the SDRAM clock. If you 
experience SDRAM errors after running memory tests on your final design or 
the program downloads to SDRAM do not verify, and after double checking 
that everything else is correct in your design, the PLL phase shift may need to 
be adjusted a small amount. Most designs seem to fall within about 30 degrees 
of -54 degrees. This corresponds to a time delay adjustment of only 1 or 2 ns. 

17.17 Complete the Top-Level Schematic 
To complete the top-level schematic, add the input, output, and bi-directional 
pins (and pin names) shown in Figure 17.17. Also, complete the connections 
between the two top-level components as shown in the figure. Finally, if you 
added the LCD component for the DE2 board, add a VCC symbol and connect 
it to the LCD_ON and LCD_BLON output pins to tie them High. If you have 
trouble reading the signal names in the figure, the file is available on the DVD. 

17.18 Design Compilation 
Verify that the pin assignments discussed in Section 17.2 were made correctly 
by going to Assignments Pins. A long list of pin numbers and names 
corresponding to the pin names you entered into the top-level schematic should 
appear. If it does not, then repeat the steps in Section 17.2 to import the pin 
assignments. 
Verify that the global assignments discussed in Section 17.2 were made 
correctly by going to Assignments Device… Device & Pin Options  
Unused Pins.  
The Reserve all unused pins option should be set to As input tri-stated. If it 
is not, then select this option. Click OK until all dialog boxes are closed. 
Select Processing Start Compilation to begin compiling your project. 
 



 Tutorial IV: Nios II Processor Hardware Design 369 
 

 

 

 

Figure 17.17 The final top-level schematic for the Nios II system on a DE2 board is shown here. The 
DE1 board schematic is similar except the LCD bus signals will not be present. 

17.19 Testing the Nios II Project 
To fully test your Nios II project, you will need to write a software program to 
run on the Nios II processor that tests each component. To complete this task, 
refer to the previous chapter, which contains Tutorial III: Nios II Processor 
Software Design.  
You might want to try your test program from the previous chapter first to 
verify that memory still works in your new design. After switching to a new 
workspace for the new project in Nios II IDE, create a blank project with a new 
system library that is based on your Nios II processor design. You can then 



370 Rapid Prototyping of Digital Systems Chapter 17 
  

 

 

import an existing software project into a new design project’s software 
directory using File Import. You will need to clean and rebuild the software 
project since the system library changes for each new hardware design. 
IMPORTANT: In the reference hardware design, SW9 is used as the Nios II 
processor’s reset signal. Before code can be downloaded to the processor, it 
must be brought out of reset by setting SW9 in the up (or on) position.  
 

                        

                       ALL SOURCE FILES FOR THIS NIOS II HARDWARE REFERENCE DESIGN 

          CAN BE FOUND ON THE DVD IN THE \DEX \CHAP17 DIRECTORY. 

 

17.20 For additional information 
This chapter has provided a brief overview of Nios II hardware development. 
Additional information can be found at Altera’s website (www.altera.com) in 
the Nios II Processor Reference Handbook, Embedded Peripherals Handbook 
and Hardware Development Tutorial. Nios II components for the DE boards 
and other reference designs can be found at Altera’s University Program 
website. The Nios Community Forum (www.niosforum.com) also contains 
useful information and downloads for Nios II projects. 

17.21 Laboratory Exercises 
1. Add two 8-bit PIOs to the Nios II hardware design that connect to the 5 volt I/O pins on 

the board’s header connector. Setup one port for input and one port for output. Connect 
the PIO port’s I/O pins to eight input pins and eight output pins on the header. This is a 
handy way to interface external devices and sensors like those used in the FPGA robot 
projects in Chapter 13 to the FPGA board’s Nios II processor. 

2. Add a PIO port to the Nios II hardware design and use the PIO port’s I/O bits to design 
an I2C hardware interface to the FPGA board’s real-time clock chip. Software will be 
needed to send I2C commands, the PIO port just provides a hardware interface to the I2C 
SDA and SLC bits (see Section 12.4). 

3. Add a parallel port to the Nios II hardware design. Use two 8-bit ports, one for data and 
one for status and control bits. Connect the PIO port’s I/O bits to the parallel port 
connector on the FPGA board. Software will be needed to monitor and control the 
handshake lines (see Section 12.1) when connecting to a device like a parallel printer. 

4. Add an SPI interface to the Nios II hardware design and use it to interface to an external 
SPI device connected to one of the FPGA board’s expansion connectors. 



 Tutorial IV: Nios II Processor Hardware Design 371 
 

 

 

5. Implement one of the FPGA robotics projects from Chapter 13 using a Nios II processor 
running C code. See problem 1 for robot interface suggestions. 

6. Design an automatic setback HVAC thermostat using the FPGA. Interface a temperature 
sensor to the FPGA. Some temperature sensors are available with digital outputs that 
would not require a separate analog-to-digital IC. Display the current time, temperature, 
heat, fan, and A/C status, and the temperature settings in the LCD. Use the pushbuttons 
to change the temperature settings and setback times. Use the LEDs to indicate the heat, 
A/C, and fan control outputs from the thermostat. You can heat the temperature sensor 
with your finger to cycle the thermostat and cool it with ice or an aerosol spray can of 
dust off cleaner. 

7. Interface a PS/2 keyboard or mouse to the Nios II processor using PIO ports. Write 
software to demonstrate the new keyboard or mouse interface. Display the output on the 
LCD or the UART. There are two major options to consider, use the keyboard and mouse 
cores from Chapter 11 or do everything in software. 

8. Use the video sync core and character generation ROM from Chapter 10 to add a video 
text display to the Nios processor. Add a dual port memory to store a screen full of 
characters. Write charcters to the dual port memory from the Nios II processor using PIO 
ports added to the Nios II design. The video system constantly reads the characters out of 
the dual port memory and then uses the character generation ROM to generate the video 
display. Write a software driver for the video display and attach a monitor to the FPGA’s 
VGA connector to demonstrate your design. 

9. After solving the previous two problems, develop software for a video game that uses the 
mouse or keyboard for input and displays output on the monitor. If you need graphics for 
your game, consider replacing the character memory and text display with a larger 
memory containing only pixels used in a graphics display. Keep in mind that the internal 
FPGA memory is limited. 

10. Add a custom instruction to the Nios II processor designed to speed up a particular 
application area. See the Nios II Custom Instruction User Guide. Demostrate the speedup 
obtained with the new instruction by running the application with and without the new 
instruction. 

11. Interface the dual port video display memory used in one of the earlier problems directly 
to the Avalon system bus instead of using PIO ports. See the Avalon Interface 
Specification Manual. 

12. Program the FPGA’s serial flash device so that your Nios II hardware design loads 
automatically at power up. See Appendix E for instructions on programming the FPGA’s 
serial flash configuration chip. 



372 Rapid Prototyping of Digital Systems Chapter 17 
  

 

 

13. Program a complete Nios II design into both Flash memories so that the FPGA board 
loads both the FPGA hardware configuration data and the software from the two Flash 
memories automatically at power up. See the Nios II Flash Programmer User Guide and 
study the section on how to port the Flash programmer to a new board type. A full 
version Altera software license is required for Flash programming of Nios II program 
code. 

 



 

Embedded operating systems can provide a wide variety of services to support 
application developers. The DE boards and Nios II soft-core processor support several 
embedded operating systems including µClinux, which is shown here driving a VGA 
monitor. 

CHAPTER 18 

Operating System 
Support for SOPC 
Design 

 

 
 



374 Rapid Prototyping of Digital Systems Chapter 18 
  

 
 

 

18 Operating System Support for SOPC Design  
Many electronic devices that contain a processor now require complex software 
that needs support for multitasking, synchronization of tasks, a wide range of 
I/O devices, scheduling and buffering of I/O operations, memory management, 
graphics displays, file systems, and/or networking. Developing custom code 
(like was done in Chapter 16) that can provide all of these services is an 
expensive and time consuming task. For example, one recent cell phone design 
contained over five million lines of code. Few projects will have the time and 
funding needed to develop all of this code entirely on their own. In cases such 
as this, it makes economic sense to use an existing operating system. An 
operating system (OS) can provide a wide array of features and services 
including those listed above. Software developers are more productive when an 
operating system is present since they can work at a higher level of abstraction 
by using the operating system’s Application Programming Interface (API) calls 
to access the services provided by the OS. 
The development time and costs saved more than offsets the licensing fees for 
the operating system. The typical commercial embedded OS license fees run 
only a few dollars per device and several open source operating systems are 
free. Some very simple low-end devices might not need an OS, but complexity 
constantly increases with each new generation of devices. 
The traditional desktop operating systems require a memory management unit 
(MMU) that provides hardware support for virtual memory addressing. This 
allows the OS to provide a kernel memory address space and a user memory 
address space. An MMU requires extensive processor hardware and the current 
FPGA soft-core processors do not contain an MMU. Specially designed 
embedded operating systems that have been targeted for small MMU-less 
devices are available11. They use only a single linear memory address space. An 
embedded OS typically requires less processing power and has a smaller 
memory footprint than a desktop OS. It also is likely to support booting from 
flash memory, produce ROMable code (i.e., generates code that can run from 
ROM memory), and to have I/O device drivers for the I/O devices that are more 
commonly found in small devices. A C/C++ compiler is typically provided with 
the OS. 
For these reasons, most complex embedded devices use an existing embedded 
operating system. Embedded operating systems typically are developed largely 
in C/C++ and normally come bundled with a C/C++ compiler, assembler, and 
debugging tools to assist designers in developing application programs and 
testing the device. Embedded system development tools must also support 
program execution using code stored in non-volatile memory such as ROM or 
Flash memory.  
Figure 18.1 shows the response embedded designers gave in a 2006 survey to 
the question “what languages do you use to develop embedded systems?” The 

                                                           
11 Embedded Linux System Design and Development by P. Raghavan, Amol Lad, and Sriram Neelakandan, 2005. 



 Operating System Support for SOPC Design 375 
 

 

 

C family of languages is clearly used for the majority of embedded systems 
development. For assembly language, the response indicated that around one 
third of embedded systems designers still have to use assembly language for at 
least some small portion of their designs. Other studies have indicated that 
assembly language is typically less than five to ten percent of the total code in 
current devices. 

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00%

Others

Assembly

Java

C#

C++

C

 

Figure 18.1 Programming languages used to develop embedded devices. 12 

 
Figure 18.2 indicates that 70% of new embedded devices contain an operating 
system. In those devices with an operating system, the most popular choice is 
an off-the-shelf commercial operating system. Commercial operating systems 
and commercial distributions of open source operating systems may have better 
OS development tools, a wider selection of device drivers, and an experienced 
consulting staff available to help with development. The real economic value of 
these services should not be overlooked when choosing an embedded OS for 
your project. One recent study claims that the total product development cost 
can actually turn out to be higher in some cases for an open source OS when 
software development time, salaries, and other required license fees are all 
included.13 
The embedded open source community is continuing to grow. When using an 
open source operating system, the costs and development time can be 
minimized by carefully selecting a platform (i.e., the processor and peripheral 
devices) that has a mature supporting code base within the open source 
community. 

                                                           
12 Language Survey data is from the 2006 annual embedded market survey conducted by EETimes and Embedded Systems 
Design Magazine (www.embedded.com). Articles published throughout the year discuss the results of the annual survey and 
examine the implications and trends found in the data. 
13 The Total Cost of Development study is available at www.embedded-forecast.com. This study surveyed several embedded 
product development projects to compare costs when using Open Source versus a Commercial OS. 

 



376 Rapid Prototyping of Digital Systems Chapter 18 
  

 
 

 

0% 10% 20% 30% 40% 50%

Open Source

Internally Developed

None

Commercial OS

 

Figure 18.2 Real-time OS kernels used in new embedded designs.14  

18.1 Nios II OS Support 
To support SOPC-based designs, a number of commercial third-party and open 
source operating systems have been ported to the processor cores running on 
current FPGAs. Several embedded operating systems are supported on the Nios 
II soft-core processor as seen in Table 18.1. An assortment of both open source 
and commercial operating systems are available. Many can be developed using 
the Nios II IDE. OS development often lags a bit behind new hardware 
developments, so the OS may require an older version of the IDE tools. Since 
the Nios II processor does not include MMU hardware, virtual memory 
addressing is not supported. An MMU-less embedded operating system is 
required that uses flat memory addressing.  
Most of the operating systems in Table 18.1 claim to be Real-Time Operating 
Systems (RTOS) . An RTOS is an OS that has a fixed upper bound on the 
interrupt latency and service time. A real-time system must respond to external 
events (i.e., interrupts) in a limited amount of time or the system will fail. 
There are two classes of real-time systems soft real-time and hard real-time. In 
soft real-time systems, critical tasks get priority and their response rate 
typically meets the timing constraint but is not guaranteed to always respond 
within the defined limit. A typical soft real-time example is a multimedia 
player. The player could occasionally skip a video frame or audio sample and a 
user might not even notice as long as it ran correctly the vast majority of the 
time. A hard real-time system, however, must guarantee a specified response 
rate or the system will fail. The average response time in a hard real-time OS is 
typically in the range of 0.5ms to 10ms. Some hard real-time systems must also 

                                                           
14 OS Survey data is from the 2006 annual embedded market survey conducted by EETimes and Embedded Systems Design 
Magazine (www.embedded.com).  



 Operating System Support for SOPC Design 377 
 

 

 

guarantee a narrow margin of response time variation. For example, a response 
rate that varies more than 10% can also cause some systems to fail.15 
Traditional desktop operating systems such as Windows and most Linux 
distributions are not hard real-time OSs, since they can occasionally have very 
long interrupt response times that are well outside the range currently expected 
in an RTOS. In an RTOS, the OS kernel code and user application code cannot 
disable interrupts for long periods of time. To convert a traditional OS to an 
RTOS normally requires rewriting all of the kernel code with this feature in 
mind.  

Table 18.1 OS support for the Nios II Processor 

 

 
eCos, MicroC/OS-II, and μClinux are three of the more popular OS choices 
available for the Nios II processor. These will be briefly examined in the next 
three sections followed by a more detailed look at running the μClinux kernel 
on the DE board. 

18.2 eCos 
eCos (embedded Configurable operating system) is an open source, royalty-fee 
RTOS designed for embedded systems and applications which need only one 
process with multiple threads. The OS can be can be customized for application 
requirements to deliver the best possible run-time performance and minimize 
hardware needs. It is programmed in the C programming language and has 
compatibility layers and APIs for POSIX and µITRON18. eCos was designed 

                                                           
15 Based on the definition and timing that was adopted by the Open, Modular, Architecture Control (OMAC) user group: A 
hard real-time system is a system that would fail if its timing requirements were not met; a soft real-time system can tolerate 
significant variations in the delivery of operating system services like interrupts, timers, and scheduling 
16 Included with the Nios II Embedded Design Suite, but licensed separately by Micrium. 
17 OSEK/VDX compliant. OSEK/VDX is an open standard of the automotive industry. 
18 More eCos information and examples can be found in Programming Embedded Systems, Second Edition With C and GNU 
Development Tools by Michael Barr and Anthony Massa.   

OS RTOS OS Type Company Name 
Nios II IDE 

Plug-in 
eCos Yes Open Source eCosCentric - 

Euros RTOS Yes Commercial Euros - 
Erika Enterprise Yes Commercial Evidence Yes 

ThreadX Yes Commercial Express Logic Yes 
Nucleus Plus Yes Commercial Mentor Graphics - 

MicroC/OS-II16 Yes Commercial Micrium Yes 
embOS Yes Commercial Segger - 
osCAN17 Yes Commercial Vector Informatik - 
μClinux - Open Source Microtronix Yes 
μClinux - Open Source Community Supported 

(based on Microtronix port) 
- 



378 Rapid Prototyping of Digital Systems Chapter 18 
  

 
 

 

for devices with memory size in the tens to hundreds of kilobytes and with real-
time requirements.  
eCos was developed by Cygnus Solutions and was later bought by Red Hat. In 
2002, Red Hat ended development of eCos and the developers then formed, 
eCosCentric, in order to continue development and provide support for eCos. 
Red Hat agreed to transfer its eCos copyrights to the Free Software Foundation 
in October 2005. eCosCentric has a version of their eCosPro distribution that 
has been ported to the Nios II processor. 

18.3 µC/OS-II  
µC/OS-II is a highly portable, scalable, preemptive, real-time, multitasking 
kernel for microprocessors and microcontrollers. µC/OS-II is written in C19. 
Since its introduction in 1992, µC/OS-II has been used in a wide array of 
products including cell phones, climate controls, audio/video processors, credit 
card processing units, and electrical instrumentation.  
µC/OS-II can manage up to 255 tasks and provides services such as 
semaphores, mutual exclusion semaphores, event flags, message mailboxes, 
message queues, task management, fixed-size memory block management, and 
time/timer management. 
µC/OS-II has been ported to the Nios II processor (Altera usually refers to it as 
MicroC/OS-II). Altera distributes MicroC/OS-II in the full commercial version 
of the Nios II EDS software and supports the Nios II port of the MicroC/OS-II 
kernel. Examples of MicroC/OS-II programs are included with the Nios II EDS 
software.  
The license for the Nios II MicroC/OS-II port is available from Micrium. 
Micrium offers free OS licensing for universities and students. A MicroC/OS-II 
reference manual and tutorial are available on the DVD and from Altera. 
As seen in Figure 18.3, the MicroC/OS-II kernel operates on top of the 
hardware abstraction layer (HAL) system library for the Nios II processor. By 
using the HAL, programs based on MicroC/OS-II are more portable to other 
Nios II hardware systems and are somewhat flexible with respect to hardware 
changes. MicroC/OS-II programs can use all HAL services and use the HAL 
APIs described earlier in this text. 

                                                           
19 The internal architecture of µC/OS-II is described in "µC/OS-II, The Real-Time Kernel"  by Jean J. Labrosse. 



 Operating System Support for SOPC Design 379 
 

 

 

 

Hardware Abstraction Layer (HAL)

Device

Driver

Device

Driver

Device

Driver

Device

Driver

Device

Driver

User Application Program

Nios II Processor System Hardware

Standard    C 
Library

MicroC/OS-II
API

 
 

Figure 18.3 MicroC/OS II System Architecture. 

18.4 µClinux  
The original “micro controller” Linux, µClinux, was derived from the Linux 
2.0 kernel and intended for microcontrollers like the Nios II processor that do 
not have a Memory Management Unit (MMU). µClinux was first ported to the 
Motorola MC68328 DragonBall Integrated Microprocessor. The first target 
system to successfully boot was a PalmPilot device in 1998. Currently, µClinux 
includes Linux kernel releases for 2.0, 2.4, and 2.6 as well as a collection of 
user applications, libraries and tool chains.  
After releasing the initial version, a developer community soon sprung up to 
extend work to newer kernels and other microprocessor architectures. In 1999, 
support was added for the Motorola (Freescale) ColdFire family of embedded 
microprocessors and the ARM processor. Recently, it has been ported to the 
Nios II processor. 
The µClinux project community continues to develop patches and supporting 
tools for using Linux on microcontrollers. μClinux has support for several 
architectures and forms the basis of many embedded products. Examples 
include network routers, gateways, security cameras, DVD and MP3 players, 
VoIP phones, scanners, and card readers. The NiosForum (www.niosfourm.org) 
supports an open source version of μClinux that has been ported to the Nios II 
Processor.  



380 Rapid Prototyping of Digital Systems Chapter 18 
  

 
 

 

18.5 Implementing the µClinux on the DE Board 
To illustrate the benefits of operating systems in embedded systems, the next 
few sections will step the reader through the design and implementation of a 
Nios II system running µClinux on a DE board. 
There are two main distributions of µClinux that work on the Nios II processor. 
The first distribution is controlled and released by Microtronix 
(www.microtronix.com). They provided the original kernel code modifications 
to support the Nios II processor. Their distribution also integrates into the Nios 
II IDE design environment. However, as of the publication date of this book, 
Microtronix’s latest version, release 1.4, does not work with Nios II 7.1. 
Release 1.4 was originally designed for Nios II 5.0 and there are reports of 
users on the Nios Community Forum (www.niosforum.com) successfully using 
it in Nios II 6.0. Microtronix distributions are freely available for download on 
the Nios Community Forum under Downloads. (To view the Downloads 
section, you must be a registered user of the forum’s website.) The primary 
advantage of this distribution is its tight integration into the Nios II IDE and 
build environment; however, Microtronix releases tend to lag behind Altera’s 
software releases. 
A second distribution of µClinux has been developed and released on the 
http://nioswiki.jot.com/WikiHome/ website by a group of developers who 
frequent the Nios Community Forum. These developers took Microtronix’s 
distribution and updated it with support for the latest Linux kernel release, 
additional device drivers, and a larger collection of libraries and user 
applications. Instead of integrating µClinux developing and compilation into 
the Nios II IDE, this distribution includes uClinux-dist, a Linux-based build 
environment. You must have access to a computer running the Linux operating 
system to install, customize, and build this distribution of the µClinux kernel. 
The remainder of this chapter will focus on this second distribution of µClinux, 
which will be referred to as µClinux for Nios II. While full details of the 
development of a custom µClinux kernel for the DE boards is beyond the scope 
of this book, a pre-built kernel is provided for the reader’s use and exploration. 
Readers who want to modify the kernel image should consult the 
http://nioswiki.jot.com/WikiHome/ website, which includes the uClinux-dist 
distribution as well as the necessary patches for Nios II freely available for 
download. In addition, this website has a number of tutorials and application 
notes available that step through the customization of various devices and 
services in µClinux (including information specific to the DE2 board). 
Additional help is available in the Nios Community Forum 
(www.niosforum.com).  

18.6 Hardware Design for µClinux Support 
When compiling µClinux for Nios II, the Nios II peripheral template file (.ptf) 
for the specific Nios II processor configuration being used must be provided. 
The .ptf file contains the processor and peripheral details for a given Nios II 
configuration including the IRQ mappings, memory address ranges for the 



 Operating System Support for SOPC Design 381 
 

 

 

memory and I/O peripherals, and a list of the names and types of the 
peripherals selected in the SOPC Builder. During the µClinux build process this 
file is used to generate a nios2_system.h file that contains C definitions for all 
of the peripheral names, addresses, IRQs, etc. The kernel and device driver 
source code includes this file and relies on it to access and configure the 
peripherals. Many of the device drivers use a hardcoded name for the peripheral 
being accessed. Thus, designing a Nios II system to be compatible with 
µClinux for Nios II requires that specific names be used for the peripherals in 
SOPC Builder. Failure to properly name devices (or edit the device driver files 
to match your Nios II system) will result in a loss of functionality within 
µClinux. A Nios II reference design for use with µClinux for Nios II is 
available on the DVD in the /DEx/chap18 directory (for the DE1 and DE2 
boards only). This system was developed in a method similar to that in Chapter 
17. However, specific peripheral names and configuration settings along with a 
number of additional peripherals were used to make this Nios II system 
compatible with µClinux for Nios II. The final SOPC Builder configuration is 
shown in Figure 18.4. 
 

 
 

Figure 18.4 This is the completed µClinux compatible Nios II design in SOPC Builder. 



382 Rapid Prototyping of Digital Systems Chapter 18 
  

 
 

 

18.7 Configuring the DE Board 
Configuring the DE board to run µClinux requires two steps. The FPGA must 
be configured to implement the Nios II processor system, and then the µClinux 
kernel image must be downloaded into SDRAM. Both configuration steps can 
be accomplished via the Nios II 7.1 Command Shell, which is available on the 
Windows Start menu Altera Nios II EDS 7.1 Nios II 7.1 Command Shell.  
The Command Shell window is a Cygwin environment so it will behave 
similarly to a Linux shell. Change directories to get to the folder where the 
reference design for Chapter 18 resides. For example, if you copied the chap18 
folder from the DVD to the C:\altera\qdesigns\ directory, then you would need 
to type the following commands: 
  cd c: 
  cd altera/qdesigns/chap18/complete 

 
Before configuring the FPGA, verify that the DE board is powered on and a 
USB cable is connected between your PC and the USB Blaster port on the DE 
board. Configure the FPGA with the .sof file provided with the reference design 
by running the following command: 
  nios2-configure-sof rpds18.sof 
 
If you have multiple JTAG cables or are programming a board with multiple 
FPGAs on it, then you will need to specify some of the optional parameters for 
the nios2-configure-sof command. Run nios2-configure-sof --help 
to view additional information about the command-line options for this 
program. 
The reference µClinux kernel provided here supports a VGA monitor, a PS/2 
keyboard or mouse, USB HID devices (i.e., keyboards, mice), USB memory 
sticks, Ethernet communication, and serial UART console terminal. (Not all of 
these devices are available on the DE1 board.) Attach a 9-pin serial cable 
between the DE board and your PC. Use HyperTerminal or another terminal 
program (BPS: 115200, Data Bits: 8, Parity: None, Stop Bits: 1, Flow Control: 
None) to attach to the µClinux console. The console will allow you to view the 
boot-up sequence and interact with the µClinux kernel via a command prompt. 
Attach a VGA monitor and PS/2 keyboard to the respective ports on the DE 
board. If you are using a DE2 board, you may also attach a USB mouse and 
Ethernet cable to the respective ports on the DE2 board. Because there is only 
one PS/2 port, it is recommended that you attach a keyboard to the PS/2 port 
and a mouse to the USB port or vice versa. A USB hub can be used to if you 
need to attach multiple USB devices to the DE2 board. 
Once you have connected the appropriate cables, the µClinux kernel image 
must be downloaded into the SDRAM chip and processor started executing at 
the proper memory address. Type the following command to do both of these 
actions at once: 
  nios2-download –g zImage 



 Operating System Support for SOPC Design 383 
 

 

 

An illustration of the Nios II Command Shell after the complete sequence of 
commands have executed is shown in Figure 18.5. When the kernel image 
download is complete, the processor will immediately begin executing at 
memory address 0x00D00000. µClinux will start booting immediately and the 
series of messages shown in Figure 18.6 should appear in your terminal 
window. (Some messages will vary for the DE1 board because device drivers 
for peripherals not available on the DE1 board will not load.) 
 
 
/cygdrive/c/altera/71/nios2eds/examples 
[SOPC Builder]$ cd c: 
/cygdrive/c 
[SOPC Builder]$ cd altera/qdesigns/rpds18/complete/ 
/cygdrive/c/altera/qdesigns/rpds18/complete 
[SOPC Builder]$ nios2-configure-sof rpds18.sof 
Searching for SOF file: 
in . 
  rpds18.sof 
 
Info: 
******************************************************************* 
Info: Running Quartus II Programmer 
Info: Command: quartus_pgm --no_banner --mode=jtag -o p;rpds18.sof 
Info: Using programming cable "USB-Blaster [USB-0]" 
Info: Started Programmer operation at Wed Aug 01 14:11:26 2007 
Info: Configuring device index 1 
Info: Device 1 contains JTAG ID code 0x020B40DD 
Info: Configuration succeeded -- 1 device(s) configured 
Info: Successfully performed operation(s) 
Info: Ended Programmer operation at Wed Aug 01 14:11:28 2007 
Info: Quartus II Programmer was successful. 0 errors, 0 warnings 
    Info: Allocated 51 megabytes of memory during processing 
    Info: Processing ended: Wed Aug 01 14:11:28 2007 
    Info: Elapsed time: 00:00:09 
/cygdrive/c/altera/qdesigns/rpds18/complete 
[SOPC Builder]$ nios2-download -g zImage 
Using cable "USB-Blaster [USB-0]", device 1, instance 0x00 
Pausing target processor: OK 
Initializing CPU cache (if present) 
OK 
Downloaded 1775KB in 22.6s (78.5KB/s) 
Verified OK 
Starting processor at address 0x00D00000 
/cygdrive/c/altera/qdesigns/rpds18/complete 
[SOPC Builder]$ 
 

Figure 18.5 The sequence of commands and output that appear when programming the FPGA via the 
Nios II Command Shell is shown here. 

 



384 Rapid Prototyping of Digital Systems Chapter 18 
  

 
 

 

 
 
Uncompressing Linux... Ok, booting the kernel. 
 
Linux version 2.6.19-uc1 (tyson@tyson-ubuntu) (gcc version 3.4.6) #125 
PREEMPT Tue Jul 31 14:10:46 EDT 2007 
  
uClinux/Nios II 
Altera Nios II support (C) 2004 Microtronix Datacom Ltd. 
 
setup_arch: No persistant network settings signature at 003F0000 
Built 1 zonelists.  Total pages: 2032 
Kernel command line:  
PID hash table entries: 32 (order: 5, 128 bytes) 
Console: colour dummy device 80x25 
Dentry cache hash table entries: 1024 (order: 0, 4096 bytes) 
Inode-cache hash table entries: 1024 (order: 0, 4096 bytes) 
Memory available: 5044k/8192k RAM, 0k/0k ROM (1971k kernel code, 1084k 
data) 
... 
fb0: Altera frame buffer device, using 600K of video memory 
altps2 : base 805010d0 irq 7 
io scheduler noop registered 
io scheduler deadline registered (default) 
NIOS serial driver version 0.0 
ttyS0 (irq = 2) is a builtin NIOS UART 
<DM9KS> I/O: 805010c8, VID: 90000a46  
usbmon: debugfs is not available 
driver isp1362-hcd, 2005-04-04 
isp1362-hcd isp1362-hcd: ISP1362 Host Controller 
isp1362-hcd isp1362-hcd: new USB bus registered, assigned bus number 1 
isp1362_hc_reset: 
... 
Welcome to 
          ____ _  _ 
         /  __| ||_|                  
    _   _| |  | | _ ____  _   _  _  _  
   | | | | |  | || |  _ \| | | |\ \/ / 
   | |_| | |__| || | | | | |_| |/    \ 
   |  ___\____|_||_|_| |_|\____|\_/\_/ 
   | | 
   |_| 
 
For further information check: 
http://www.uclinux.org/ 
... 
Sash command shell (version 1.1.1) 
/> 

Figure 18.6 This is an abbreviated version of the messages that print out in the console terminal 
when µClinux is booting.  



 Operating System Support for SOPC Design 385 
 

 

 

18.8 Exploring µClinux on the DE Board 
Once µClinux has booted properly, you can use console window on your PC 
(connected to the FPGA via a serial cable) or the terminal window display on 
the VGA monitor and a PS/2 keyboard attached to the DE2 board to explore 
µClinux. Standard Linux commands such as ls, cd, more, ps, kill, free, and stty 
all work. In particular, type ls -al to get a listing of the files and directories 
on the root filesystem (being implemented in SDRAM). Because the root 
filesystem, program memory, and data memory are all utilizing the single 8MB 
SDRAM chip on the DE board, this implementation is very tight on memory. 
Before running a new command, be sure to run the free command to check 
how much memory is available. If too many processes are running 
simultaneously, the kernel will run out of memory and crash. Table 18.2 
contains a summary of useful commands and programs are supported in this 
µClinux kernel image. Additional commands are available in the /bin directory 
and via the busybox application (type busybox for more information). 

Table 18.2 Selected Supported Commands in µClinux 

 
Command/Program Description 

ls List the files and folders in the current directory. 

ps List information about the currently running processes 
including the PID number for each process. 

kill Stops a running process. The PID for the process that 
will be halted must be specified. 

free Lists the amount of used and available memory. 

ping Starts a network utility that can be used to test network 
communication. 

ifconfig Displays and sets network configuration settings. 

dhcpcd 
Starts a DHCP client daemon that will automatically 
acquire an IP address and other the network settings 
from a DHCP server. 

ftpd Starts an FTP server daemon that can be used to access 
files on the µClinux system from over the network. 

telnetd Starts a telnet server daemon that can be used to access 
a µClinux console terminal over the network. 

boa Starts a lightweight web server on the µClinux system. 
The root web page is stored in /home/httpd/. 

mount Used to mount/access different filesystems including 
USB memory sticks. 

nano-X Starts a windowing environment in µClinux. 

nanowm Starts a window manager that runs in the nano-X 
environment. 

nxterm Starts a terminal program in nano-X. 
ntetris Starts a graphical version of the Tetris game in nano-X. 
nxview Displays a JPEG image in a window in nano-X. 

 
In additional to the standard Linux shell commands and typical user 
applications, a custom application targeting the DE boards has been added to 



386 Rapid Prototyping of Digital Systems Chapter 18 
  

 
 

 

this kernel image. The source code for this user µClinux application is shown in 
Figure 18.7. When run, it will display an 8-bit counter on eight of the red LEDs 
on the DE board. Start the program by typing flash_leds & in the terminal 
window. 
 
 
#include <stdio.h> 
#include <unistd.h> 
#include "nios2_system.h" 
 
int main( void ) 
{ 
   int i; 
   volatile unsigned *leds = ((volatile unsigned *)(na_leds)); 
 
   for(i=0; i<256; i++) 
   { 
      *leds = i; 
      sleep(1); 
   } 
   return 0; 
} 
 

Figure 18.7 This is the source code for a user program that has been included in the µClinux kernel 
image included on the DVD. 

18.9 PS/2 Device Support in µClinux 
The µClinux kernel image provided on the DVD includes support for a PS/2 
keyboard or mouse. The DE boards only have one PS/2 port on them, so only 
one PS/2 device can be used at a time. Attaching a PS/2 keyboard or mouse to 
the port will be detected by the µClinux PS/2 device driver, and several debug 
messages will print out in the console terminal window when a new device is 
recognized. The PS/2 devices are plug-and-play meaning that one can be 
removed and another device can be connected on the fly without having to 
reboot the kernel or processor. 

18.10 Video Display in µClinux  
The µClinux kernel image provided on the DVD supports the Video output on 
the DE board. This version of the kernel image starts the nano-X windowing 
environment along with the nanowm window manager and nxterm window 
terminal application during the boot process. The turquoise background color of 
the window manager and the terminal window should be visible on the VGA 
monitor when µClinux completes booting. There are several nano-X 
applications included in the kernel image for exploring the  graphical 
capabilities of µClinux. From a terminal window, try running nxclock (a 



 Operating System Support for SOPC Design 387 
 

 

 

graphical clock application), ntetris (a nano-X version of the Tetris game), 
or nxview (a JPEG image preview application). Be sure to monitor the 
available memory as additional processes are started.  

18.11 USB Devices in µClinux (DE2 Board Only)  
The µClinux kernel image provided on the DVD includes support for USB host 
functionality using the ISP1362 USB controller IC on the DE2 board. USB 
devices such as keyboards and mice can be supported through the Human 
Interface Devices (HID) drivers in µClinux. Plug a USB mouse or keyboard 
into the USB port on the DE2 board and notice the debug messages that display 
in the console terminal window. A USB mouse will control the cursor in the 
nano-X window manager, and a USB keyboard will allow you to enter text into 
the nano-X terminal window program or control the ntetris game. 
Support for USB storage devices (i.e., USB memory sticks or flash drives) is 
also included in this µClinux kernel image. Insert a USB flash drive into the 
USB slot. Several debug messages will print out on the console terminal 
window indicating that the USB storage device is recognized and accessible as 
device /dev/sda1. To access files on the USB storage device, the filesystem 
must first be mounted and mapped to a directory in the root filesystem. If the 
USB storage device is using a FAT filesystem (most USB flash drives that are 
used with Windows PCs use a FAT filesystem), type the following commands: 
  mkdir /mydrive 
  mount –t vfat /dev/sda1 /mydrive 

 
Once these commands have been executed, the contents of the USB flash drive 
will be available in the /mydrive directory. When you are finished with the 
USB flash drive, be sure to unmount the drive before removing it from the USB 
port. To unmount the drive, run the following command: 
  umount /mydrive 

18.12 Network Communication in µClinux (DE2 Board Only)  
The µClinux kernel image provided on the DVD includes a number of network 
utilities and applications. The ifconfig command is the primary utility used 
to configure the network settings such as MAC address and IP address. All 
network devices must have a unique hardware address known as a MAC 
address. The DE2 board has a software configurable MAC address, thus it is up 
to you to ensure that a unique address is used. To assign a MAC address, use 
the following command, where XX:XX:XX:XX:XX:XX is the unique number 
you are assigning: 
  ifconfig eth0 hw ether XX:XX:XX:XX:XX:XX 
 



388 Rapid Prototyping of Digital Systems Chapter 18 
  

 
 

 

To use a DHCP server to automatically configure the remaining network 
settings, run the following commands: 
  ifconfig eth0 up 
   dhcpcd & 
 
The command ifconfig -a will display the network settings. If a valid IP 
address is displayed after the label inet addr, then the DE2 board is 
successfully communicating on the network. To start any network server 
services on the DE2 board, you must first run inetd &. Inetd is a server 
daemon that monitors and manages all ports and internet services. Once the 
inetd process is running, you can start one or more of the server services such 
as boa (web server), telnetd (telnet server daemon), or ftpd (file transfer 
protocol server daemon). Be sure to monitor the available memory as additional 
processes are started.  
 

                        

                       ALL SOURCE FILES FOR THIS NIOS II µCLINUX REFERENCE DESIGN  

          CAN BE FOUND ON THE DVD IN THE \DEX\CHAP18 DIRECTORY. 

 

18.13 For additional information 
This chapter has provided a brief overview of embedded operating and the port 
of µClinux for the Nios II processor. Additional information about µClinux can 
be found at the can be found at the official µClinux website (www.uclinux.org). 
Additional information about the µClinux port for Nios II can be found at the 
µClinux Wiki (http://nioswiki.jot.com/WikiHome/) and the Nios Community 
forum (http://www.niosforum.com). More information about the other 
embedded operating systems discussed in this chapter are available at 
http://www.micrium.com/, http://ecos.sourceware.org/, http://www.rtos.com/, 
http://www.microtronix.com, http://www.mentor.com/, http://www.segger.com/, 
http://www.vector-informatik.de/, and http://www.euros-embedded.com/. 

18.14 Laboratory Exercises 
1. In Figure 18.4, notice that the clock frequency is set to 100 MHz. To handle the 

computational needs of an operating systems, the clock rate was increased from the 50 
MHz clock used in Chapter 17. Changing the clock frequency required several changes in 
the PLL settings that generate the processor and memory clocks. Open the Quartus II 
project for Chapter 18 that is provided on the DVD. What are the frequencies of the three 
clock signals being generated by the PLL block? Why is the phase shift of the SDRAM 
clock set to 108 degrees instead of the 54 degrees specified in Chapter 17? 



 Operating System Support for SOPC Design 389 
 

 

 

2. Load a small (~20KB) JPEG image onto a USB flash drive. Insert the drive into the USB 
slot on the DE2 board. Mount the drive as discussed in the chapter and use the nxview 
program to display the image. Make sure that there is sufficient memory available before 
you run the nxview program. 

3. Follow the instructions in the chapter for establishing a network connection on the DE2 
board and starting the boa web server. To demonstrate the working system, open a web 
browser on your PC and view the web page being served by the web server by entering 
the DE2 board’s IP address as the URL in the web browser. 

4. Using the ps, kill, and free commands, try stopping and starting the nano-X, nanowm, 
and other graphical programs one at a time. Record the approximate memory required for 
each program to run. Create a table that lists the processes and memory requirements for 
at least five µClinux programs.  

5. Using the ps, kill, and free commands, try stopping and starting the dhcdcd, inetd, 
telnetd, ftpd, and boa programs one at a time. Record the approximate memory required 
for each program to run. Create a table that lists the processes and memory requirements 
for these five µClinux programs.  

6. Create a new HTML page on your PC and save it to a USB flash drive. Insert the drive 
into the USB slot on the DE2 board. Mount the drive as discussed in the chapter. Delete 
the /home/httpd/index.html file using the rm command. Then replace the index.html file 
with a symbolic link to the HTML page on your flash drive using the ln command. 
Verify that your system displays the new web page by opening a web browser on your 
PC and viewing the web page being served by the web server (enter the DE2 board’s IP 
address as the URL in the web browser). 

7. Obtain the licenses needed for the MicroC/OS-II Nios II OS port. The license for the 
Nios II MicroC/OS-II port is available from Micrium (www.micrium.com) and a full 
commercial license for the Altera tools for schools is available from Altera’s University 
Program (www.altera.com). Micrium also offers free OS licensing for universities and 
students. Follow the steps in Altera’s MicroC/OS-II tutorial (available on the DVD or at 
Altera’s web site) to develop MicroC/OS-II for a Nios II reference design and run an 
application program on a DE board. Use the Cyclone II reference design and complete all 
steps up to the point where the board is downloaded. Currently, the older 6.1 version of 
the Quartus II and Nios II tools are required, but an updated version of the tutorial may 
be available soon. 

8. For a challenging problem, a Reference design is provided with the MicroC/OS-II 
tutorial for commercial Cypress II FPGA boards.  Consult this reference design to aid in 
modifying your DE Nios II reference design so that it is setup correctly to support 
MicroC/OS-II. Check Altera’s website for newer versions as they become available. 



390 Rapid Prototyping of Digital Systems Chapter 18 
  

 
 

 

Modify your Nios II DE board design so that the MicroC/OS-II is supported and run a 
test program on the DE board. 

9. For a more challenging problem, port the eCos operating system to a DE Board. It is 
available free at www.niosforum.com. First, run a simple hello world application using 
the UART. For the second test, write a multithreaded application with one thread talking 
to the UART and a second thread blinking the LEDs. 



 Rapid Prototyping of Digital Systems Appendix A  391 
  

 

   

Appendix  A: Generation of Pseudo Random Binary 
Sequences 

 
In many applications, random sequences of binary numbers are needed. These 
applications include random number generation for games, automatic test 
pattern generation, data encryption and decryption, data compression, and data 
error coding. Since a properly operating digital circuit never produces a random 
result, these sequences are called pseudo random. A long pseudo-random binary 
sequence appears to be random at first glance. 
Table A.1 shows how to make an "n" bit pseudo-random binary sequence 
generator. Here is how it works for n = 8. Build an 8-bit shift register that shifts 
left one bit per clock cycle. Find the entry in Table A.1 for n = 8. This entry 
shows that bits 8,6,5,4 should all XORed or XNORed together to generate the 
next shift input used as the low bit in the shift register. Recall that the order of 
XOR operations does not matter. Note that the low-bit number is "1" and not 
"0" in this table.  
A state machine that is actually a non-binary counter is produced. The counter 
visits all 2n-1 non-zero states once in a pseudo-random order and then repeats. 
Since the counter visits every state once, a uniform distribution of numbers 
from 1 to 2n-1 is generated. In addition to a shift register, only a minimal 
number of XOR or XNOR gates are needed for the circuit. The circuit is easy to 
synthesize in a HDL such as VHDL since only a few lines are required to shift 
and XOR the appropriate bits. Note that the next value in the random sequence 
is actually 2x or 2x + 1 the previous value, x. For applications that may require 
a more truly random appearing sequence order, use a larger random sequence 
generator and select a disjoint subset of the bits and shuffle the output bits.  
The initial value loaded in the counter is called the seed. The seed or the 
random number is never zero in this circuit. If a seed of zero is ever loaded in 
the shift register it will stay stuck at zero. If needed, the circuit can be modified 
so that it generates 2n states. For the same initial seed value, the circuit will 
always generate the same sequence of numbers. In applications that wait for 
input, a random seed can be obtained by building a counter with a fast clock 
and saving the value of the counter for the seed when an input device such as a 
pushbutton is activated.  
Additional information on pseudo-random binary sequence generators can be 
found in HDL Chip Design by D.J. Smith, Doone Publications, 1996, and 
Xilinx Application Note 52, 1996.  

 

 



392 Rapid Prototyping of Digital Systems Appendix A 
  

 

 

 

Table A.1  Primitive Polynomials Modulo 2. 

 

n XOR 
from bits n XOR 

from bits n XOR 
from bits n XOR 

from bits 
3 3,2 45 45,44,42,41 87 87,74 129 129,124 
4 4,3 46 46,45,26,25 88 88,87,17,16 130 130,127 
5 5,3 47 47,42 89 89,51 131 131,130,84,83 
6 6,5 48 48,47,21,20 90 90,89,72,71 132 132,103 
7 7,6 49 49,40 91 91,90,8,7 133 133,132,82,81 
8 8,6,5,4 50 50,49,24,23 92 92,91,80,79 134 134,77 
9 9,5 51 51,50,36,35 93 93,91 135 135,124 
10 10,7 52 52,49 94 94,73 136 136,135,11,10 
11 11,9 53 53,52,38,37 95 95,84 137 137,116 
12 12,6,4,1 54 54,53,18,17 96 96,94,49,47 138 138,137,131,130 
13 13,4,3,1 55 55,31 97 97,91 139 139,136,134,131 
14 14,5,3,1 56 56,55,35,34 98 98,87 140 140,111 
15 15,14 57 57,50 99 99,97,54,52 141 141,140,110,109 
16 16,15,13,4 58 58,39 100 100,63 142 142,121 
17 17,14 59 59,58,38,37 101 101,100,95,94 143 143,142,123,122 
18 18,11 60 60,59 102 102,101,36,35 144 144,143,75,74 
19 19,6,2,1 61 61,60,46,45 103 103,94 145 145,93 
20 20,17 62 62,61,6,5 104 104,103,94,93 146 146,145,87,86 
21 21,19 63 63,62 105 105,89 147 147,146,110,109 
22 22,21 64 64,63,61,60 106 106,91 148 148,121 
23 23,18 65 65,47 107 107,105,44,42 149 149,148,40,39 
24 24,23,22,17 66 66,65,57,56 108 108,77 150 150,97 
25 25,22 67 67,66,58,57 109 109,108,103,102 151 151,148 
26 26,6,2,1 68 68,59 110 110,109,98,97 152 152,151,87,86 
27 27,5,2,1 69 69,67,42,40 111 111,101 153 153,152 
28 28,25 70 70,69,55,54 112 112,110,69,67 154 154,152,27,25 
29 29,27 71 71,65 113 113,104 155 155,154,124,123 
30 30,6,4,1 72 72,66,25,19 114 114,113,33,32 156 156,155,41,40 
31 31,28 73 73,48 115 115,114,101,100 157 157,156,131,130 
32 32,22,2,1 74 74,73,59,58 116 116,115,46,45 158 158,157,132,131 
33 33,20 75 75,74,65,64 117 117,115,99,97 159 159,128 
34 34,27,2,1 76 76,75,41,40 118 118,85 160 160,159,142,141 
35 35,33 77 77,76,47,46 119 119,111 161 161,143 
36 36,25 78 78,77,59,58 120 120,113,9,2 162 162,161,75,74 
37 37,5,4,3,2,1 79 79,70 121 121,103 163 163,162,104,103 
38 38,6,5,1 80 80,79,43,42 122 122,121,63,62 164 164,163,151,150 
39 39,35 81 81,77 123 123,121 165 165,164,135,134 
40 40,38,21,19 82 82,79,47,44 124 124,87 166 166,165,128,127 
41 41,38 83 83,82,38,37 125 125,124,18,17 167 167,161 
42 42,41,20,19 84 84,71 126 126,125,90,89 168 168,166,153,151 
43 43,42,38,37 85 85,84,58,57 127 127,126   
44 44,43,18,17 86 86,85,74,73 128 128,126,101,99   
 

 



 Rapid Prototyping of Digital Systems Appendix B  393 
 

 

 

Appendix B: Quartus II Design and Data File Extensions 
 

 
 

Project Files 
Quartus II Project File (*.qpf) 
Quartus II Settings File (*.qsf) 
Quartus II Workspace File (*.qws) 
Quartus II Default Settings File (*.qdf) 

 
Design Files 

Altera Design File (*.adf) 
Block Design File (*.bdf) 
EDIF Input File (*.edf) 
Graphic Design File (*.gdf) 
OrCAD Schematic File (*.sch) 
State Machine File (*.smf) 
Text Design File (*.tdf) 
Verilog Design File (*.v) 
VHDL Design File (*.vhd) 
Waveform Design File (*.wdf) 
Xilinx Netlist File (*.xnf) 
 
 

Ancillary Data Files 
Assignment and Configuration File (*.acf) 
Assignment and Configuration Output (*.aco) 
Block Symbol File (*.bsf) 
Command File (*.cmd) 
EDIF Command File (*.edc) 
Fit File (*.fit) 
Intel Hexadecimal Format File (*.hex) 
History File (*.hst) 
Include File (*.inc) 
JTAG chain file (*.jcf) 
Library Mapping File (*.lmf) 
Log File (*.log) 
Memory Initialization File (*.mif) 
Memory Initialization Output File (*.mio) 
Message Text File (*.mtf) 

Programmer Log File (*.plf) 
Report File (*.rpt) 
Simulator Channel File (*.scf) 
Standard Delay Format (*.sdf) 
Standard Delay Format Output File (*.sdo) 
Symbol File (*.sym) 
Table File (*.tbl) 
Tabular Text File (*.ttf) 
Text Design Export File (*.tdx) 
Text Design Output File (*.tdo) 
Timing Analyzer Output File (*.tao) 
Vector File (*.vec) 
Verilog Quartus Mapping File (*.vqm) 
VHDL Memory Model Output File (*.vmo) 
 
 
 

Non-Editable Ancillary  
File Types 

Compiler Netlist File (*.cnf) 
Hierarchy Interconnect File (*.hif) 
JEDEC file (*.jed) 
Node Database File (*.ndb) 
Programmer Object File (*.pof) 
Raw Binary File (*.rbf) 
Serial Bitstream File (*.sbf) 
Simulator Initialization File (*.sif) 
Simulator Netlist File (*.snf) 
SRAM Object File (*.sof) 
 



394 Rapid Prototyping of Digital Systems Appendix C  
  

    

 

Appendix C: Common FPGA Pin Assignments  
Table C.1 FPGA board’s common I/O pin assignments.                            

Pin Name DE1 DE2 UP3 UP2, 
UP1 

Pin 
Type Function of Pin 

KEY0 R22 G26 48 28 
PB1 Input 

Pushbutton KEY0  
(debounced, 0 = button hit) 

KEY1 R21 N23 49 29 
PB2 Input 

Pushbutton KEY1  
(debounced, 0 = button hit) 

KEY2 T22 P23 57 - Input 
Pushbutton KEY2  
(debounced, 0 = button hit) 

KEY3 T21 W26 62 - Input 
Pushbutton KEY3  
(debounced, 0 = button hit) 

LEDR0 R20 AE23 56 25 
0=on Output RED LED R0                       

(1 = LED ON, 0= LED OFF) 

LEDR1 R19 AF23 55 14 
0=on Output RED LED R1                        

(1 = LED ON, 0= LED OFF) 

LEDR2 U19 AB21 54 - Output RED LED R2                        
(1 = LED ON, 0= LED OFF) 

LEDR3 Y19 AC22 53 - Output RED LED R3                        
(1 = LED ON, 0= LED OFF) 

SW0 L22 N25 58 41 Input Slide or DIP Switch               
(0=Down, non-debounced) 

SW1 L21 N26 59 40 Input Slide or DIP Switch               
(0=Down, non-debounced) 

SW2 M22 P25 60 39 Input Slide or DIP Switch               
(0=Down, non-debounced) 

SW3 V12 AE14 61 38 Input Slide or DIP Switch               
(0=Down, non-debounced) 

HEX0[0] J2 AF10 - 6 Output Seven Segment Display 0   
LED Segment A (0=on) 

HEX0[1] J1 AB12 - 7 Output Seven Segment Display  0  
LED Segment B (0=on) 

HEX0[2] H2 AC12 - 8 Output Seven Segment Display  0  
LED Segment C (0=on) 

HEX0[3] H1 AD11 - 9 Output Seven Segment Display 0   
LED Segment D (0=on) 

HEX0[4] F2 AE11 - 11 Output Seven Segment Display 0   
LED Segment E (0=on) 

HEX0[5] F1 V14 - 12 Output Seven Segment Display 0   
LED Segment F (0=on) 

HEX0[6] E2 V13 - 13 Output Seven Segment Display 0   
LED Segment G (0=on) 

HEX1[0] E1 V20 - 17 Output Seven Segment Display 1   
LED Segment A (0=on) 

HEX1[1] H6 V21 - 18 Output Seven Segment Display  1  
LED Segment B (0=on) 



 Rapid Prototyping of Digital Systems Appendix C 395 
 

 

 

Pin Name DE1 DE2 UP3 UP2, 
UP1 

Pin 
Type Function of Pin 

HEX1[2] H5 W21 - 19 Output Seven Segment Display  1  
LED Segment C (0=on) 

HEX1[3] H4 Y22 - 20 Output Seven Segment Display 1   
LED Segment D (0=on) 

HEX1[4] G3 AA24 - 21 Output Seven Segment Display 1   
LED Segment E (0=on) 

HEX1[5] D2 AA23 - 23 Output Seven Segment Display 1   
LED Segment F (0=on) 

HEX1[6] D1 AB24 - 24 Output Seven Segment Display 1   
LED Segment G (0=on) 

LCD_E - K3 50 - Output LCD Enable line 
LCD_RW - K4 73 - Output LCD R/W control line 
LCD_RS - K1 108 - Output LCD Register Select Line 
LCD_DATA[0] - J1 94 - Bidir. LCD Data Bus 
LCD_DATA[1] - J2 96(133) - Bidir. LCD Data Bus 
LCD_DATA[2] - H1 98 - Bidir. LCD Data Bus 
LCD_DATA[3] - H2 100 - Bidir. LCD Data Bus 

LCD_DATA[4] - J4 102 
(108) - Bidir. LCD Data Bus 

LCD_DATA[5] - J3 104 - Bidir. LCD Data Bus 
LCD_DATA[6] - H4 106 - Bidir. LCD Data Bus 
LCD_DATA[7] - H3 113 - Bidir. LCD Data Bus 
PS2_CLK H15 D26 12 30 Bidir. PS2 Connector 
PS2_DATA J14 C24 13 31 Bidir. PS2 Connector 

CLOCK L1 N2  153 
48Mhz 

91 
25Mhz Input 50MHz Crystal Controlled 

Clock  

VGA_RED B7 E10 228 236 Output VGA Red Video Signal       
(highest bit) 

VGA_GREEN A8 D12 122 237 Output VGA Green Video Signal    
(highest bit) 

VGA_BLUE B10 B12 170 238 Output VGA Blue Video Signal      
(highest bit) 

VGA_VSYNC B11 D8 226 239 Output VGA Connector Vertical     
Sync Signal 

VGA_HSYNC A11 A7 227 240 Output VGA Connector Horizontal 
Sync Signal 

The pushbuttons are not debounced on the UP3 and it’s clock frequency 
depends on the board’s JP3 jumper settings. Set JP3 to short pins 3-4 for the 
48Mhz clock. UP3 pins enclosed in parenthesis in table 2.4 are for the larger 
FPGA used in the 1C12 version of the UP3 board. It requires more power and 
ground pins so there are some minor pin differences. On the UP2 board, the two 
pushbuttons are not debounced, the LEDs are the seven segment decimal 
points, and its clock is 25Mhz. The original UP1 boards look very similar to a 
UP2 and they use the same pin assignments as the UP2, but they contain a 
smaller EPF10K20RC240 FPGA.Consult each board’s user manual for 
additional pin assignments not shown. 



396 Rapid Prototyping of Digital Systems Appendix D  
  

    

 

Appendix D: ASCII Character Code  
Table D.1 ASCII Character to Hexadecimal Conversion Table. 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI 
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US 
2 SP ! " # $ % & ' ( ) * + , - . / 
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 
4 @ A B C D E F G H I J K L M N O 
5 P Q R S T U V W X Y Z [ \ ] ^ _ 
6 ` a b c d e f g h i j k l m n o 
7 p q r s t u v w x y z { | } ~ DEL 

 
The American Standard Code for Information Interchange (ASCII) is a standard 
seven-bit code for computer equipment adopted in 1968. In Table D.1, locate 
“A”. It is in row 4 in column 1 and the hexadecimal value for “A” is therefore 
41. The UP3’s LCD and most RS-232C serial devices and printers use the 
ASCII character code. The eighth bit may be used for parity. Codes below 0x20 
are called control codes. Control codes perform operations other than printing a 
character. Several of the most common control codes are described below: 
 

NUL (null) – all zeros, sometimes used for end of strings.                    
BEL (bell) - Causes a beep in terminals and terminal emulation programs. 
BS  (backspace) - Moves the cursor move backwards (left) one space. 
HT (horizontal tab) - Moves the cursor right to the next tab stop.  The spacing 
of tab stops is dependent on the output device, but is often 8 or 10. 
LF  (line feed) - Moves the cursor down to a new line, but not to the left. 
VT  (vertical tab)            
FF  (form feed) - Advances paper to the top of the next page on printers. 
CR  (carriage return) - Moves the cursor all the way to the left, but does 
not advance to the next line. For a new line, both CR and LF are used. 
ESC (escape) – Sometimes used to terminate program commands 
SP (space) prints a blank space and cursor moves to the next character 
position. 
 

Note that the decimal digit characters “0” to “9” range in value from 0x30 to 
0x39. The code is setup so that “A”<“B”<”C”… so that numeric values can be 
used for alphabetical ordering. A single bit in the code changes the case of a 
character (i.e. see “A” and “a”). Extended ASCII codes use an eight bit code to 
display another 128 special graphics characters.  There are several different 
standards for these new graphics characters, so check the device manual for 
details. The first 128 characters are the same as the 7-bit original ASCII code 
standard. 



 Rapid Prototyping of Digital Systems Appendix E 397 
 

 

 

Appendix E: Common I/O Connector Pin Assignments 
Several of the more commonly used I/O connector pin assignments are shown 
in this appendix. These are handy if you need to make a custom cable, attach a 
custom device, or attach a test instrument to probe signals. The view is from the 
I/O connector pin side of the connector and not board side where the individual 
wires attach. The DE1 & 2 boards do not have a parallel printer connector, it is 
included here since it is found on the UP3 and is very commonly found on 
other devices. Most signals use the standard 5V digital logic levels. Recall that 
the COM serial port signals use special RS-232 voltage levels that can be as 
high as +12V and as low as -12V. The VGA red, green, and blue video color 
signals are low voltage analog signals. Signal pairs that end in “+” or “-” 
operate in differential mode (i.e., the signal is the voltage difference between 
the two signal pairs). On many connectors, small pin numbers can be found 
molded into the plastic case surrounding each pin. If only one mark is found on 
a connector or a color stripe on a ribbon cable going to a connector, it is 
typically pin 1. 

 

Pin # Signal Name Pin # Signal Name Pin #  Signal Name
1 Red 6 GND 11 NC
2 Green 7 GND 12 Vcc
3 Blue 8 GND 13 HSYNC
4 NC 9 NC 14 VSYNC
5 GND 10 GND 15 Vcc

Pin # Signal Name Pin # Signal Name Pin #  Signal Name
1 Vcc 3 USB+ 5 NC
2 USB– 4 GND 6 NC

Pin # Signal Name Pin # Signal Name Pin #  Signal Name
1 DCD 4 DTR 7 RTS
2 RXD 5 GND 8 CTS
3 TXD 6 DSR 9 RI

15

1115

6

51

96

41

Pin # Signal Name Pin # Signal Name Pin #  Signal Name
1 KB CLK 3 GND 5 -
2 - 4 KB DATA 6 5V

VGA – 15-pin D-sub Connector

USB - For connection to external USB

COM – 9-pin D-sub Connector

PS/2 - Keyboard and Mouse – 6-pin Mini-Din

1

4

3

2

5

6

 



398 Rapid Prototyping of Digital Systems Appendix E  
  

    

 

 
 
 
 

Pin # Signal Name Pin # Signal Name Pin #  Signal Name
1 FTXD+ 4 NC 7 NC
2 FTXD– 5 NC 8 NC
3 FRXIN+ 6 FRXIN– 9 –

Ethernet - RJ-45 Connector

8               2, 1

Pin # Signal Name Pin # Signal Name Pin #  Signal Name
1 Strobe 10 Acknowledge 19 Signal ground
2 Data bit 0 11 Busy 20 Signal ground
3 Data bit 1 12 Paper out 21 Signal ground
4 Data bit 2 13 Select 22 Signal ground
5 Data bit 3 14 Autofeed 23 Signal ground
6 Data bit 4 15 Error 24 Signal ground
7 Data bit 5 16 Reset 25 Signal ground
8 Data bit 6 17 Select (Dir) -- –
9 Data bit 7 18 Signal ground  -- –

Parallel Printer (LPT) - DB25 Pinout
(DB25 Male Connector)

1

13

14

25



 Rapid Prototyping of Digital Systems  Glossary 399 
 

 

 

Glossary 
 

Assignment & Configuration File (.acf): An ASCII file (with the extension .acf) 
used by the older MAX+PLUS tool to store information about probe, pin, location, 
chip, clique, logic option, timing, connected pin and device assignments, as well as 
configuration settings for the Compiler, Simulator, and Timing Analyzer for an entire 
project. The ACF stores information entered with menu commands in all MAX+PLUS 
II applications. You can also edit an ACF manually in a Text Editor window. This 
same information is now found in the *.q* files in Quartus II. 
Active-high (Active-low) node: A node that is activated when it is assigned a value 
one (zero) or Vcc (Gnd).  
AHDL: Acronym for Altera Hardware Description Language. Design entry language 
that supports Boolean equation, state machine, conditional, and decode logic. It also 
provides access to all Altera and user-defined macrofunctions. 
Ancillary file: A file that is associated with a Quartus II project, but is not a design 
file in the project hierarchy tree. 
Antifuse: Any of the programmable interconnect technologies forming electrical 
connection between two circuit points rather than making open connections. 
Architecture: Describes the behavior, RTL or dataflow, and/ or structure of a VHDL 
entity. An architecture is created with an architecture body. A single entity can have 
more than one architecture. In some VHDL tools, configuration declarations are used 
to specify which architectures to use for each entity. 
Array: A collection of one or more elements of the same type that are accessed using 
one or more indices depending on dimension of array. Array data types are declared 
with an array range and array element type. 
ASIC: Acronym for Application-Specific Integrated Circuit. A circuit whose final 
photographic mask process is user design dependent. 
ASM: Acronym for Algorithmic State Machine Chart. A flow-chart based method 
used to represent a state diagram. 
Assert: A statement that checks whether a specified condition is true. If the condition 
is not true, a report is generated during simulation. 
Assignment: In VHDL, assignment refers to the transfer of a value to a symbolic 
name or group, usually through a Boolean equation. The value on the right side of an 
assignment statement is assigned to the symbolic name or group on the left. 
Asynchronous input: An input signal that is not synchronized to the device Clock.  
Attribute: A special identifier used to return or specify information about a named 
entity. Predefined attributes are prefixed with the ‘ character. 
Back annotation: Process of incorporating time delay values into a design netlist 
reflecting the interconnect capacitance obtained from a completed design. Also, in 
Altera’s case, the process of copying device and resource assignments made by the 
Compiler into the Assignment and Configuration File for a project. This process 
preserves the current fit in future compilations. 
Block: A feature that allows partitioning of the design description within an 
architecture. 
Buried node: A combinatorial or registered signal that does not drive an output pin. 



400 Rapid Prototyping of Digital Systems  Glossary  
  

    

 

Cell: A logic function. It may be a gate, a flip-flop, or some other structure. Usually, a 
cell is small compared to other circuit building blocks. 
Cell library: The collective name for a set of logic functions defined by the 
manufacturer of an FPGA or ASIC. Simulation and synthesis tools use cell libraries 
when simulating and synthesizing a model. 
CLB: Acronym for Configurable Logic Block. This element is the basic building 
block of the Xilinx FPGA product family. 
Clock: A signal that triggers registers. In a flip-flop or state machine, the clock is an 
edge-sensitive signal. In edge-triggered flip-flops, the output of the flip-flop can 
change only on the clock edge. 
Clock enable: The level-sensitive signal on a flip-flop with E suffix, e.g., DFFE. 
When the Clock enable is low, clock transitions on the clock input of the flip-flop are 
ignored. 
Compiler Netlist File (.cnf): A binary file (with the extension .cnf) that contains the 
data from a design file. The CNF is created by the Compiler Netlist Extractor module 
of the MAX+PLUS II Compiler. 
Component: Specifies the port of a primitive or macrofunction in VHDL. A 
component consists of the name of the primitive or macrofunction, and a list of its 
inputs and outputs. Components are specified in the Component declaration. 
Component instantiation: A concurrent statement that references a declared 
component and creates one unique instance of that component. 
Configuration EPROM: A serial EPROM designed to configure (program) a FPGA. 
Concurrent statements: HDL statements that are executed in parallel. 
Configuration: It maps instances of VHDL components to design entities and 
describes how design entities are combined to form a complete design. Configuration 
declarations are used to specify which architectures to use for each entity. 
Configuration scheme: The method used to load configuration (programming) data 
into an FPGA.  
Constant: An object that has a constant value and cannot be changed. 
Control unit: The hardware of a machine that controls the data path. 
Cyclone: The FPGA family used on the UP3 boards. 
CPLD: Acronym for complex programmable logic device. CPLDs include an array of 
functionally complete or universal logic cells with an interconnection network. 
Data Path: The hardware path that provides data processing and transfer of 
information in a machine, as opposed to the controller. 
Design entity: A file that contains description of the logic for a project and is 
compiled by the Compiler. 
Design library: Stores VHDL units that have already been compiled. These units can 
be referenced in VHDL designs. 
Design unit: A section of VHDL description that can be compiled separately. Each 
design unit must have a unique name within the project. 
Dual-purpose pins: Pins used to configure an FPGA device that can be used as I/O 
pins after initialization. 
Dynamic reconfigurability: Capability of an FPGA to change its function "on -the-
fly" 



 Rapid Prototyping of Digital Systems  Glossary 401 
 

 

 

Embedded Array Block (EAB): A physically grouped set of 8 embedded cells that 
implement memory (RAM or ROM) or combinatorial logic in a Cyclone 10K device. 
A single EAB can implement a memory block of 256 x 8, 512 x 4, 1,024 x 2, or 2,048 
x 1 bits.  
EPLD: Acronym for EPROM programmable logic devices. This is a PLD that uses 
EPROM cells to internally configure the logic function. Also, erasable programmable 
logic device. 
Event: The change of value of a signal. Usually refers to simulation. 
Event scheduling: The process of scheduling of signal values to occur at some 
simulated time. 
Excitation function: A Boolean function that specifies logic that directs state 
transitions in a state machine. 
Exit condition: An expression that specifies a condition under which a loop should be 
terminated. 
FLEX 10K and FLEX 10KA: An Altera device family based on Flexible Logic 
Element MatriX architecture. This SRAM-based family offers high-performance, 
register-intensive, high-gate-count devices with embedded arrays. The Cyclone 10K 
device family includes the EPF10K100, EPF10K70, EPF10K50, EPF10K40, 
EPF10K30, EPF10K20, and EPF10K10 devices. The FPGA used on the UP2 board. 
Fan-out: The number of output signals that can be driven by the output of a logic cell. 
Fast Track interconnect: Dedicated connection paths that span the entire width and 
height of a Cyclone device. These connection paths allow the signals to travel between 
all LABs in device. 
Field name: An identifier that provides access to one element of a record data type. 
File type: A data type used to represent an arbitrary-length sequence of values of a 
given type. 
For loop: A VHDL loop construct in which an iteration scheme is a for statement. 
Finite state machine: The model of a sequential circuit that cycles through a 
predefined sequence of states.  
Fitting: Process of making a design fit into a specific FPGA architecture. Fitting 
involves technology mapping, placement, optimization, and partitioning among other 
operations. 
Flash: A non-volatile memory technology that also can be programmed in-circuit. 
Flip-flop: An edge-sensitive memory device (cell) that stores a single bit of data. 
Floorplan: Physical arrangement of functions within a connection framework of 
signal routing channels. 
FPGA: Acronym for field programmable gate array. A regular array of logic cells that 
is either functionally complete or universal with an interconnection network of signal 
routing channels. 
FPLD: Acronym for field programmable logic device. An integrated circuit used for 
implementing digital hardware that allows the end user to configure the chip to realize 
different designs. Configuring such a device is done using either a special 
programming unit or by doing it " in system". FLPDs include both CPLDs and 
FPGAs. 
Functional simulation: A simulation mode that simulates the logical performance of 
a project without timing information. 



402 Rapid Prototyping of Digital Systems  Glossary  
  

    

 

Functional test vector: The input stimulus used during simulation to verity a VHDL 
model operates functionally as intended. 
Functionally complete: Property of some Boolean logic functions permitting them to 
make any logic function by using only that function. The properties include making 
the AND function with an invert or the OR function with an invert or the OR function 
with an invert. 
Fuse: A metallic interconnect point that can be electrically changed from short circuit 
to an open circuit by applying electrical current. 
Gate: An electronic structure, built from transistors that performs a basic logic 
function. 
Gate array: Array of transistors interconnected to form gates. The gates in turn are 
configured to form larger functions. 
Gated clock: A clock configuration in which the output of an AND or OR gate drives 
a clock. 
Generic: A parameter passed to a VHDL entity, component or block that describes 
additional, instance-specific information about that entity, component or block. 
Glitch or spike: A narrow output pulse that occurs when a logic level changes two or 
more times over a short period. 
Global signal: A signal from a dedicated input pin that does not pass through the 
logic array before performing its specified function. Clock, Preset, Clear, and Output 
Enable signals can be global signals. 
GND: A Low-level input voltage. It is the default inactive node value. 
Graphic Design File (.gdf): A schematic design file (with the extension .gdf) created 
with the MAX+PLUS II Graphic Editor. 
HDL: Acronym for Hardware Description Language. A special language used to 
describe digital hardware. 
Hexadecimal: The base 16 number system (radix). Hexadecimal digits are 0 through 9 
and A through F.  
Hierarchy: The structure of a design description, expressed as a tree of related 
components. 
Identifier: A sequence of characters that uniquely identify a named entity in a design 
description. 
Index: A scalar value that specifies an element or range of elements within an array. 
Input vectors: Time-ordered binary numbers representing input values sequences to a 
simulation program. 
I/O cell register: A register on the periphery of a Cyclone 8000 device or a fast input-
type logic cell that is associated with an I/O pin. 
IP core: An intellectual property (IP) core is a previously developed synthesizable 
hardware design that provides a widely used function. Commercially licensed IP cores 
include functions such as microprocessors, microcontrollers, bus interfaces, 
multimedia and DSP operations, and communications controllers. 
LAB: Acronym for Logic Array Block. The LAB is the basic building block of the 
Altera MAX family. Each LAB contains at least one macrocell, an I/O block, and an 
expander product term array. 
Latch: A level-sensitive clocked memory device (cell) that stores a single bit of data. 
A High to low transition on the Latch Enable signal fixes the contents of the latch at 
the value of the data input until the next Low-to-High transition on Latch Enable. 



 Rapid Prototyping of Digital Systems  Glossary 403 
 

 

 

Latch enable: A level-sensitive signal that controls a latch. When it is High, the input 
flows through the output; when it is Low, the output holds its last value. 
Library: In VHDL a library statement is used to store analyzed design units. 
Literal: A value that can be applied to an object to some type. 
Logic Synthesizer: The Compiler module that uses several algorithms to minimize 
gate count, remove redundant logic, and utilize the device architecture as efficiently as 
possible. Processing can be customized with logic options and logic synthesis style 
assignments. This module also applies logic synthesis techniques to help implement 
timing requirements for a project. 
Least Significant Bit (LSB): The bit of a binary number that contributes the smallest 
quantity to the value of that number, i.e., the last member in a bus or group name. For 
example, the LSB for a bus or group named a[31..0] is a[0] (or a0). 
Logic Cell (LC): The generic term for a basic building block of an Altera device. In 
MAX devices, a logic cell (also called a macrocell) consists of two parts: 
combinatorial logic and a configurable register. The combinatorial logic allows a wide 
variety of logic functions. In Cyclone and FLEX devices, a logic cell (also called a 
logic element) consists of a look-up table (LUT) and a programmable register to 
support sequential functions. 
Logic element: A basic building block of an Altera Cyclone device. It consists of a 
look-up table i.e., a function generator that quickly computes any function of four 
variables, and a programmable flip-flop to support sequential functions. 
LPM: Acronym for library of Parameterized Modules. Denotes Altera’s library of 
design units that contain one or more changeable parts, and parameters that are used to 
customize a design unit as the application requires. 
Macro: When used with FPGAs, a logic cell configuration that can be repeated as 
needed. It can be a Hard or a Soft macro. Hard macros force predefined place and 
route rules between logic cells. 
Macrocell: In FPGAs, a portion of the FPGA that is smallest indivisible building 
block. In MAX devices it consists of two parts: combinatorial logic and a configurable 
register. 
MAX: Acronym for Multiple Array MatriX, which is an Altera product family. It is 
usually considered to be a CPLD. 
MAX+PLUS II: Acronym for multiple array matrix programmable logic user system 
II. An older set of computer aided design (CAD) tools that allow design and 
implementation of custom logic circuits with Altera’s MAX and Flex FPGA devices. 
Memory Initialization File (.mif): An ASCII file (with the extension .mif) used by 
Quartus II to specify the initial content of a memory block (RAM or ROM), i.e., the 
initial data values for each memory address. This file is used during project 
compilation and/or simulation. 
Mealy state machine: A type of state machine in which the outputs are a function of 
the inputs and the current state. 
Microblaze: A soft core RISC processor supported on Xilinx FPGAs. 
Moore state machine: A state machine in which the present state depends only on its 
previous input and previous state, and the present output depends only on the present 
state. In general Moore states machines have more states than a Mealy machine.  
Most Significant Bit (MSB): The bit of a binary number that contributes the greatest 
quantity to the value of that number, and the first member in a bus or group name. For 
example, the MSB for a bus named a[31..0] is a[31].  



404 Rapid Prototyping of Digital Systems  Glossary  
  

    

 

Mode: A direction of signal (either in, out, inout or buffer) used as subprogram 
parameter or port. 
Model: A representation that behaves similarly to the operation of some digital 
circuit. 
MPLD: Acronym for Mask Programmed Logic Device. 
Netlist: A text file that describes a logic design. Minimal requirements are 
identification of function elements, inputs, outputs, and connections. 
Netist synthesis: Process of deriving a netlist from an abstract representation, usually 
from a hardware description language. 
Nios: A soft core RISC processor supported on Altera FPGAs. 
NRE: Acronym for Non-Recurring Engineering expense. It reefers to one-time charge 
covering the use of design facilities, masks and overhead for test development of 
ASICs. 
Object: A named entity of a specific type that can be assigned a value. Object in 
VHDL include signals, constants, variables and files. 
Octal: The base 8 number system (radix). Octal digits are 0 though 7. 
One Hot Encoding: A design technique used more with FPGAs than CPLDs. Only 
one flip-flop output is active at any time. One flip-flop per state is used. State outputs 
do not need to be decoded and they are hazard free. 
Package: A collection of commonly used VHDL constructs that can be shared by 
more than one design unit. 
PAL: Acronym for programmable array logic. A relatively small FPLD containing a 
programmable AND plane followed by a fixed-OR plane. 
Parameter: An object or literal passed into a subprogram via that subprogram’s 
parameter list. 
Partitioning: Setting boundaries between subsections of a system or between multiple 
FPGA devices. 
Physical types: A data type used to represent measurements. 
Pin Number: A number used to assign an input or output signal in a design file, 
which corresponds to the pin number on an actual device. 
PLA: (programmable logic array) a relatively small FPLD that contains two levels of 
programmable logic-an AND plane and an OR plane. 
PLL: (phase locked loop) a device that can be used to multiply and divide clock 
signals and adjust the phase delay. 
Placement: Physical assignment of a logical function to a specific location within an 
FPGA. Once the logic function is placed, its interconnection is made by routing. 
PLD: Acronym for programmable logic device. This class of devices is comprised of 
PALs, PLAs, FPGAs, and CPLDs. 
Port: A symbolic name that represents an input or output of a primitive or of a 
macrofunction design file. 
Primitive: One of the basic functional blocks used to design circuits with Quartus II 
software. Primitives include buffers, flip-flops, latch, logical operators, ports, etc. 
Process: A basic VHDL concurrent statement represented by a collection of 
sequential statements that are executed whenever there is an event on any signal that 
appears in the process sensitivity list, or whenever an event occurs that satisfies 
condition of a wait statement within the process. 



 Rapid Prototyping of Digital Systems  Glossary 405 
 

 

 

Product Term: Two or more factors in a Boolean expression combined with an AND 
operator constitute a product term, where "product" means "logic product." 
Programmable switch: A user programmable switch that can connect a logic element 
or input/output element to an interconnect wire or one interconnect wire to another. 
Project: A project consists of all files that are associated with a particular design, 
including all subdesign files and ancillary files created by the user or by Quartus II 
software. The project name is the same as the name of the top-level design file without 
an extension. 
Propagation delay: The time required for any signal transition to travel between pins 
and/or nodes in a device. 
Radix: A number base. Group logic level and numerical values are entered and 
displayed in binary, decimal, hexadecimal, or octal radix in Quartus II. 
Reset: An active-high input signal that asynchronously resets the output of a register 
to a logic Low (0) or a state machine to its initial state, regardless of other inputs. 
Range: A subset of the possible values of a scalar type. 
Register: A memory device that contains several latches or flip-flops that are clocked 
from the same clock signal. 
Resource: A resource is a portion of a device that performs a specific, user-defined 
task (e.g., pins, logic cells, interconnection network). 
Retargetting: A process of translating a design from one FPGA or other technology 
to another. Retargetting involves technology-mapping optimization. 
Reset: An active-high input signal that asynchronously resets the output of a register 
to a logic Low (0) or a state machine to its initial state, regardless of other inputs. 
Ripple Clock: A clocking scheme in which the Q output of one flip-flop drives the 
Clock input to another flip-flop. Ripple clocks can cause timing problems in complex 
designs. 
RTL: Acronym for Register Transfer Level. The model of circuit described in VHDL 
that infers memory devices to store results of processing or data transfers. Sometimes 
it is referred to as a dataflow-style model. 
Scalar: A data type that has a distinct order of its values, allowing two objects or 
literals of that type to be compared using relational operators. 
Semicustom: General category of integrated circuits that can be configured directly 
by the user of an IC. It includes gate arrays and FPGA devices. 
Signal: In VHDL a data object that has a current value and scheduled future values at 
simulation times. In RTL models signals denote direct hardware connections. 
Simulation: Process of modeling a logical design and its stimuli in which the 
simulator calculates output signal values. 
Slew rate: Time rate of change of voltage. Some FPGAs permit a fast or slow slew 
rate to be programmed for an output pin. 
Slice: A one-dimensional, contiguous array created as a result of constraining a larger 
one-dimensional array. 
SOPC: Acronym for System On-a Programmable Chip. SOPC systems contain a hard 
or soft core processor in the FPGA in addition to other user logic. 
Speed performance: The maximum speed of a circuit implemented in an FPGA. It is 
set by the longest delay through any for combinational circuits, and by maximum 
clock frequency at which the circuit operates properly for sequential circuits. 



406 Rapid Prototyping of Digital Systems  Glossary  
  

    

 

State transition diagram: A graphical representation of the operation of a finite state 
machine using directed graphs. 
State: A state is implemented in a device as a pattern of 1's and 0's (bits) that are the 
outputs of multiple flip-flops (collectively called a state machine state register). 
Structural-type architecture: The level at which VHDL describes a circuit as an 
arrangement of interconnected components. 
Subprogram: A function or procedure. It can be declared globally or locally. 
Sum-of-products: A Boolean expression is said to be in sum-of-products form if it 
consists of product terms combined with the OR operator. 
Synthesis: The process of converting the model of a design described in VHDL from 
one level of abstraction to another, lower and more detailed level that can be 
implemented in hardware. 
Test bench: A VHDL model used to verify the correct behavior of another VHDL 
model, commonly known as the unit under test. 
Tri-state Buffer: A buffer with an input, output, and controlling Output Enable 
signal. If the Output Enable input is High, the output signal equals the input. If the 
Output Enable input is Low, the output signal is in a state of high impedance. Tri-state 
outputs can be tied together but only one should ever be enabled at any given time. 
Timing Simulation: A simulation that includes the actual device delay times. 
Two's Complement: A system of representing binary numbers in which the negative 
of a number is equal to its logic inverse plus 1. In VHDL, you must declare a two's 
complement binary number with a signed data type or use the signed library. 
Type: A declared name and its corresponding set of declared values representing the 
possible values the type. 
Type declaration: A VHDL declaration statement that creates a new data type. A type 
declaration must include a type name and a description of the entire set of possible 
values for that type. 
Universal logic cell: A logic cell capable of forming any combinational logic function 
of the number of inputs to the cell. RAM, ROM and multiplexers have been used to 
form universal logic cells. Sometimes they are also called look-up tables or function 
generators. 
Usable gates: Term used to denote the fact that not all gates on an FPGA may be 
accessible and used for application purposes. 
Variable: In VHDL, a data object that has only current value that can be changed in 
variable assignment statement. 
Verilog: An HDL with features similar to VHDL with a syntax reminiscent of C. 
VCC: A high-level input voltage represented as a High (1) logic level in binary group 
values.  
VHDL: Acronym for VHSIC (Very High Speed Integrated Circuits) Hardware 
Description Language. VHDL is used to describe function, interconnect and modeling. 
VITAL: Acronym for VHDL Initiative Toward ASIC Libraries. An industry-standard 
format for VHDL simulation libraries. 
 



 Rapid Prototyping of Digital Systems      Index     407 
 

 

 

Index 

A 

Altera Cyclone Architecture, 62 
Embedded memory blocks, 62 
Input output elements (IOEs), 64 
logic array block (LAB), 64 
Logic elements, 62 
PLLs, 62 

Altera FLEX 10K70 CPLD, 60 
Altera MAX 7000S Architecture, 60 
ALTSYNCRAM, 122, 142 
antifuse, 70 
application specific integrated circuits (ASICs), 56 
arithmetic logic unit (ALU), 117, 138 
ASCII, 396 

C 

case statement, 109, 132 
cathode ray tube (CRT), 192 
clock edge, 112, 135 
clocking in VHDL, 112, 135 
color in video display, 192 
complex programmable logic devices (CPLDs), 56 
component, 124 
computer aided design (CAD) tools, 67, 68 
concurrent assignment statement, 109 
conv_integer, 107 
conv_std_logic_vector, 107 

D 

DE 1, 2, 46 
Cyclone II device, 47 
downloading, 19 
other devices, 48 

DE 2, 2, 46 
Cyclone II device, 47 
downloading, 22 
other devices, 48 

digital oscilloscope, 81 
dithering, 207 
DVD Instructions, 411 

E 

eCOS, 377 
electric train 

direction, 149 
example controller, 151 
I/O summary, 151 
sensors, 150 

simulation, 161 
switches, 150 
video output, 162 

electrically erasable programmable read only memory 
(EEPROM), 60 

F 

field programmable gate arrays (FPGAs), 56 
field programmable logic devices (FPLDs) 

applications, 69 
floating point hardware, 119, 140 
for loop, 296 

G 

gate arrays, 56 
global clock buffer lines, 59, 64 

H 

Hard Real-Time, 376 
hardware emulator, 69 
H-bridge, 271 

I 

I2C Bus Interface, 237 
if statement, 111, 134 

K 

keyboard. See PS/2 keyboard 

L 

logic element (LE), 59 
look-up table (LUT), 62 
LPM_DIV, 118, 139 
LPM_MULT, 118, 139 
LPM_RAM_DQ, 122, 142 
LPM_ROM, 201 

M 

macrocell, 60 
metastability, 59 
MicroBlaze, 310 
MicroC/OS-II, 378 
MIPS, 284 

control, 291 



408 Rapid Prototyping of Digital Systems  Index  
  

    

 

decode, 296 
dmemory, 300 
execute, 298 
execution on UP 1, 302 
hardware implementation, 285 
ifetch, 293 
instruction formats, 284 
instructions, 285 
pipelined implementation, 286 
simulation, 301 
top_spim, 288 
VHDL synthesis model, 287 

MMU, 374 
mouse. See PS/2 mouse 
multiply and divide hardware, 118, 139 

N 

Nios, 310 
Nios Hardware, 352 
Nios II Command Shell, 382 
Nios II IDE Software, 324 
Nios II OS Support, 376 
Nios II Processor, 355 

Flash, 364 
Interval Timer, 359 
JTAG UART, 358 
LCD, 362, 363 
Parallel I/O, 360 
pin assignments, 353 
SDRAM, 362 
SDRAM PLL, 367 
SRAM, 361 
UART, 358 

Nios II Software 
Flash, 340 
Handling Interrupts, 334 
LCD Display, 336 
Parallel I/O, 335 
Peripherals, 326 
SRAM, 339 
timer, 327 

Nios II System Library, 325 
Nios Software, 322 

O 

open collector, 253 
open drain, 253 
Operating System, 374 

P 

Parallel I/O Interface, 232 
pin grid array package (PGA), 60 
pixels, 192 

plastic J-lead chip carrier (PLCC), 60 
plastic quad flat pack (PQFP), 60 
port map, 125 
process, 109 
process sensitivity list, 109, 112, 135 
processor fetch, decode and execute cycle, 172 
programmable array logic (PALs), 57 
programmable interconnect array (PIA), 61 
programmable logic, 56 
programmable logic arrays (PLAs), 57 
programmable logic devices, (PLDs), 57 
PS/2 keyboard, 214 

communications protocol, 216 
connections, 214 
make and break codes, 215 
scan codes, 215 
VHDL example, 221 

PS/2 mouse, 224 
commands and messages, 224 
data packet format, 225 
data packet processing, 227 
example design, 228 
initialization, 226 

Q 

Quartus II 
assigning a device, 10 
assigning pins, 13 
buses, 78 
compilation, 16 
connecting signal lines, 14 
entering pin names, 14 
errors and warnings, 16 
file extensions, 393 
floorplan editor, 39 
graphic editor, 9 
hierarchy, 76 
Quartus settings file (*.qsf), 15, 32, 36 
report file (*.rpt), 16 
schematic capture. See graphic editor 
simulation, 17 
simulation test vectors or stimulus, 17 
simulaton vector file (*.vec), 161 
symbol editor, 40 
symbol entry, 12 
timing analysis, 38, 79 
tutorial, 2, 74 
waveform editor file (*.scf), 17 

R 

radio-controlled (R/C) car, 267 
Real-Time System, 376 
reconfigurable computing, 69 
reduced instruction set computer (RISC), 284 
refresh. See VGA video display refresh 



 Rapid Prototyping of Digital Systems      Index     409 
 

 

 

robot, 242 
assembly, 259 
battery, 264 
battery charger, 265 
communication, 249 
electronic compass, 255 
GPS and DGPS receivers, 257 
gyros and accelerometers, 255 
infrared poximity detector, 247 
IR ranging, 251 
line tracker sensor, 247 
magnetic compass, 254, 258 
modifying servos, 243 
parts list, 263 
sensors, 246 
servo drive motors, 242 
solid state cameras, 258 
sonar, 251 
thermal image sensors, 257 
VHDL servo driver, 244 
wheel encoder, 250 

RS-232C Serial I/O Interface, 233 
RTOS, 376 
run length encoding (RLE), 207 

S 

Schematic View Tool, 33 
seven segment decoder, 109, 132 
shift operation in VHDL, 118 
Soft Real-Time, 376 
SOPC, 310 
SOPC Builder, 353 
SPI Bus Interface, 235 
SR latch, 81 
standard cells, 56 
State Diagram View Tool, 160 

T 

testbench, 125 
to_stdlogicvector, 107 
train. See electric train 
tri-state, 61, 112, 134, 253, 406 

U 

UART, 233 
uC/OS-II, 378 
uClinux, 379 

Commands, 385 
Network Support, 387 
PS/2 Support, 386 
USB Support, 387 
Video Support, 386 

unit under test (UUT), 125 

UP 1, 2, 46 
downloading, 27 
FLEX device, 47 
other devices, 48 

UP 2, 2, 46 
attaching power, 27 
downloading, 27 
FLEX device, 47 
other devices, 48 

UP 3, 2, 7, 46 
attaching power, 19, 22, 25 
Cyclone device, 47 
downloading, 25 
FPGA I/O pins, 51, 266 
LEDs, 7 
longer cable, 53 
other devices, 48 
Pin Assignments, 394 
power supplies, 53 
pushbutton contact bounce, 81 
pushbuttons, 7 

UP1core library 
dec_7seg, 92 

UP3 computer, 170 
fetch, decode, and execute, 172 
instructions, 171 
VHDL model, 179, 182 

UP3-bot. See robot 
UP3core, 88 
UP3core library, 88 

char_ROM, 99 
clk_div, 82, 96 
debounce, 81, 94 
dec_7seg, 90 
installation, 74 
keyboard, 100, 221 
mouse, 102, 226 
onepulse, 95 
tutorial, 75 
vga_sync, 97, 196 

V 

Verilog 
always statement, 132 
compilation, 36 
continuous assignment statement, 35 
data types, 130 
errors and warnings, 37 
hierarchy in models, 143 
inferred latches, 136 
operators, 131 
reg type, 130 
shift operations, 131 
structural model, 143 
synthesis of a counter, 136 
synthesis of a multiplexer, 133 



410 Rapid Prototyping of Digital Systems  Index  
  

    

 

synthesis of a state machine, 137 
synthesis of a tri-state output, 134 
synthesis of an adder, 138 
synthesis of an ALU, 138 
synthesis of an incrementer, 136 
synthesis of an subtractor, 138 
synthesis of digital hardware, 130 
synthesis of flip-flops and registers, 135 
synthesis of gate networks, 132 
synthesis of memory, 140 
synthesis of multiply and divide hardware, 139 
synthesis of seven segment decoder, 132 
tutorial, 34 
wire statement, 132 
wire types, 130 

VGA video display, 192 
bouncing ball example, 208 
character based, 200 
character font ROM, 203, 210 
color mixing using dithering, 207 
data compression, 207 
generation using an FPGA, 195 
graphics display, 206 
horizontal sync, 192 
pin assignments, 198 
refresh, 192 
RGB signals, 192 
using a final output register, 198 
vertical sync, 192 
video examples, 199 

VHDL 
Architecture body, 31 
compilation, 32 
conversion of data types, 108 
data types, 106 
editor syntax coloring, 30, 34 
Entity, 30, 34 
errors and warnings, 33 
hierarchy in models, 123 

inferred latches, 114 
libraries, 106, 114 
operators, 107 
shift operations, 107 
standard logic (STD_LOGIC), 106 
structural model, 123 
synthesis of a counter, 114 
synthesis of a multiplexer, 111 
synthesis of a state machine, 115 
synthesis of a tri-state output, 112 
synthesis of an adder, 117 
synthesis of an ALU, 117 
synthesis of an incrementer, 114 
synthesis of an subtractor, 117 
synthesis of digital hardware, 108 
synthesis of flip-flops and registers, 112 
synthesis of gate networks, 108 
synthesis of memory, 119 
synthesis of multiply and divide hardware, 118 
synthesis of seven segment decoder, 109 
train state machine, 154, 157 
tutorial, 29 
using templates for entry, 30, 34 

video display. See VGA video display 
virtual memory, 374 

W 

wait statement, 113 
wired-AND, 253 
with statement, 111 

X 

Xilinx 4000 Architecture, 65 
configurable logic block (CLB), 65 
Input output blocks (IOBs), 67 

Xilinx Virtex, 70 
 



 Rapid Prototyping of Digital Systems      DVD Instructions     411 
 

 

About the Accompanying DVD 
 
Rapid Prototyping of Digital Systems SOPC Edition, includes a DVD that contains Altera's QUARTUS II 
7.1 SP1 Web Edition, Nios II IDE, SOPC Builder, University IP cores, and source code for all of the text’s 
example VHDL, Verilog, Nios II SOPC reference designs, and Nios C/C++ example programs.  

 

QUARTUS® II Software 
The free Quartus® II 7.1 SP1 and Nios II Web Edition software includes everything you need to design 
for Altera’s low-cost FPGA and CPLD families. Features include: 

• Schematic- and text-based design entry  
• Integrated VHDL and Verilog HDL logic synthesis and simulation  
• SOPC Builder system generation software for the Nios II Processor 
• C/C++ Compiler and debugger for Nios II Processor systems 
• Place-and-route, verification, and FPGA programming functions  
• Timing Optimization Advisor  
• Resource Optimization Advisor    

 

Installing the QUARTUS® II  and Nios II Software 
Insert the textbook’s DVD in your DVD drive. Browse the file, index.html, on the DVD using a web 
browser for complete step by step instructions. Click on the link to the book’s website at the end of the 
index.html file to check for new software updates and any errata.  
 

Source Code for Design Examples from the Book 
Browse the file, index.html, on the DVD using a web browser for complete step by step instructions.  
Design examples from the book for each board type are located in in subdirectories 
\booksoft_fe\board\chapx, where x is the chapter number. To use the design files, copy them to the hard 
disk drive to your project directory or a subdirectory. In addition to *.bdf, *.vhd, *.v, and *.mif design files, 
be sure to copy any *.qpf, *.qsf, or *.qws files for each Quartus project. If you want to download a demo 
file, be sure to copy the *.sof device programming file. For Nios projects copy the entire project directory 
including subdirectories. The FPGAcore library files are in \chap5. – See Section 1.1 if you need to identify 
your FPGA board type.  
 
In some older versions of Windows prior to XP, DVD files that are copied to the hard drive may have the 
read only attribute set. If this is the case, after copying the design files you will need to clear the read only 
attribute on the hard disk copy of the files to be able to use them with the Altera tools. Using Windows 
Explorer, select the files and then use FILE => PROPERTY to clear the read only attribute. Control A 
can be used to select all of the files in a directory in Explorer. Failure to reset the read only attribute will 
cause file errors when running the Altera tools.  
 
 
 

 

Springer Science+Business Media, LLC or the author(s) make no warranty or representation, either express or implied, 
with respect to this DVD or book, including their quality, mechantability, or fitness for a particular purpose.  In no event 
will Springer Science+Business Media, LLC or the author(s) be liable for direct, indirect, special, incidental, or 
consequential damages arising out of the use or inability to use the disc or book, even if Springer Science+Business 
Media, LLC or the author(s) has been advised of the possibility of such damages. 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




