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Preface

Continued advances in semiconductor technology play a fundamental role in fueling
every aspect of innovation in those industries in which electronics is used. In
particular, one cannot fail to appreciate the benefits these advances offer in either
reducing the dimensions into which an electronic system can be built or increasing
the sheer complexity and overall functionality of the individual circuits. In general,
industry tends more to take advantage of the opportunity of offering additional
features and capability within a given space that reducing the overall size.

Whereas the manufacturing industry has matched the advances in the semicon-
ductor industry so that failure rates during fabrication at each stage have been
maintained at the same rate per element, the number of elements has increased
astronomically. As a result, unless measures are not taken, the overall failure rates
during production will increase dramatically. There are certain factors that will
compound this trend, for example the fact that semiconductor technology yields may
be a function of factors other than simple manufacturing ability and may become
unacceptable as functional density increases.

It is thus essential to investigate which parameters of the various manufacturing
processes are the most sensitive in the production failure equation, and to explore
how their influence can be reduced.

If one focuses on the integrated circuit itself, one might consider either address-
ing the parameters associated with the silicon processing, the disciplines involved
in the design activity flow, or better still, both! In fact they are combined in a new
design approach referred to as statistical analysis. This is heralded by many as the
next-generation

EDA technology and is currently oriented specifically at addressing timing
analysis and power sign-off. Research into this field commenced about five years
ago and saw significant activity during the period since that start, although there are
indications of reduced interest of late. This decline in activity may be partly due
to the fact that the results of the work have been slow to find application. Perhaps
the key direction identified during this period has been the need to develop and
optimize statistical models for integrated circuit library components, and it is in this
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vi Preface

area that effort will probably concentrate in the near future. This book will present
some results from research into this area and demonstrate how the manufacturing
parameter variations impact the design flow.

On the one hand, it is the objective of this book to provide designers with a
qualitative understanding of how process variations influence circuit behavior and to
indicate the most dominant parameters. On the other hand, from a practical point of
view, it must also acknowledge that designers need appropriate tools and strategies
to evaluate process variants and extract the modeling parameters.

It is true that certain modeling methods have been employed over the years
and constitute the framework under which submicron integrated circuits have been
developed to date. These have concentrated on evaluating a myriad of electrical
model parameters and their variation. This has led to an accurate determination of
the inter-dependence of these parameters under given conditions and does provide
the circuit developer with certain design information. For example, the designer can
determine whether the leakage current of a given cell or circuit is greater than a key
threshold specification, and similar determinations of power and delay can be made.
In fact, this modeling approach can include many parameters of low order effect yet
can be defined in such a way that many may be easily monitored and optimized in
the fabrication technology.

However, this specific case and corner analysis cannot assess such key factors
as yield and is too pessimistic and still too inaccurate to describe all variation
effects, particularly those than involve parameters with non-linear models and non-
Gaussian distributions. It is only from an appreciation of these current problems that
one can understand that the benefits of advanced technologies can only be realized
using an alternative approach such an advanced statistical design. It is an initial
insight into these new methods that the editors wish to present in these pages. It
is not the objective to look at the ultimate potential that will be achieved using
these methods, rather to present information on the research already complete. The
start-point is the presentation of key mathematical and physical fundamentals, an
essential basis for an appreciation of the subsequent chapters. It is also important
that the reader understand the main causes of parameter variations during production
and to appreciate that appropriate statistical methods must be accommodated in the
design flow.

This discussion leads into an overview of the current statistical methods and
methodologies which are presented from the designer’s perspective. Thus the text
leans towards the forms of analysis and their use rather than a derivation of the
underlying algorithms. This discussion is supported by some examples in which the
methods are used to improve circuit designs

Above all, through presenting the subject of process variation in the present form,
the editors wish to stimulate further discussion and recapture the earlier interest and
momentum in academic research. Without such activity, the strides made to date
towards developing methods to estimate such factors as yield and quality at the
design stage will be lost, and realizing the potential advantages of future technology
nodes may escape our grasp. To engender this interest in such a broad field, the core
of the book will limit its scope to:
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• exploring the impact of production variations from various points of view,
including manufacturing, EDA methods and circuit design techniques

• explaining the impact through simple reproducible examples.

Within this framework, the editors aim to present material that emphasizes the
problems that arise because of intrinsic parameter variations, illustrates the differ-
ences between the various methods used to address the variations, and indicates the
direction in which one must set course to find general solutions.

The core material for the book came from many sources – from consultation
with many experts in the semiconductor and EDA industries, from research centers,
and from university staff. It is only from such a wide canvas that the book could
genuinely represent the broad spectrum of views that surround this subject. The
heart of the book is thus that of these contributors, experts in the field who have
embodied their frustrations and practical experience in each page.

Certain chapters of the book use results obtained during two German re-
search projects which received funding from the German Federal Ministry of
Education and Research (BMBF). These projects are entitled ”Sigma 65: Tech-
nologiebasierte Modellierung und Analyseverfahren unter Bercksichtigung von
Streuungen im 65nm-Knoten” (Technology based modeling and analyzing meth-
ods considering variations within 65nm technology) and ”ENERGIE: Technolo-
gien fr energieeffiziente Computing-Plattformen” (Technologies for energy-efficient
computing platforms; the subproject is part of the the Leading-Edge Cluster
CoolSilicon) 1. Both projects address technology nodes beyond 65nm.

All contributors would like to thank the Springer Publishing Company for giving
them the opportunity to write this book and have it published. Special thanks go
to our Editor, Charles Glaser, for his understanding, encouragement, and support
during the conception and composition of this book. We also thank very much
Elizabeth Dougherty and Pasupathy Rathika for their assistance, efforts and patience
during the preparation of the print version.

Last but not least, we cannot close without thanking also the management and
our colleagues at the Fraunhofer-Gesellschaft (Design Automation Division of the
Institute for Integrated Circuits) without whose support this book would not have
been possible. Being able to work within the infrastructure of that organization
and the having available a willing staff to prepare illustrations, tables, and overall
structure have been invaluable.

Manfred Dietrich
Joachim Haase

1These activities were supported by the German Federal Ministry of Education and Research
(BMBF). The corresponding content is the sole responsibility of the authors. Funding initials are
01 M 3080 (Sigma65) and 13 N 10183 (ENERGIE).
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Chapter 1
Introduction

Joachim Haase and Manfred Dietrich

During the last years, the field of microelectronics has been moving to nanoelec-
tronics. This development provides opportunities for new products and applications.
However, development is no longer possible by simply downscaling technical
parameters as used in the past. Approaching the physical and technological limits of
electronic devices, new effects appear and have to be considered in the design pro-
cess. Due to the extreme miniaturization in microelectronics, even small variations
in the manufacturing process may lead to parameter variations which can make a
circuit unusable. A new aspect for digital designers is the occurrence of essential
variations not only from die to die but also within a die. Therefore, inter-die and
intra-die variations have to be taken into account not only in the design of analog
circuits as already done, but also in the digital design process. The great challenge is
to assure the functionality of high complex digital circuits with respect to physical,
technological, and economic boundary conditions. In order to evaluate design
solutions within an acceptable time and with acceptable efforts the methods applied
in the design process must support the analysis of design solutions as accurate as
necessary and as simple as possible. As a result, the expected yield will be achieved
and circuits can be manufactured economically. In this context, CMOS technology
will remain the most important driving force for microelectronics over the next years
and will be responsible for most of the innovations and new applications. For this
reason, the subsequent paragraph will focus on this technology. The first chapter
provides an introduction to the outlined problems.

J. Haase (�) • M. Dietrich
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2 J. Haase and M. Dietrich

1.1 Development of CMOS Semiconductor Technology

Technology progress in IC design and semiconductor manufacturing has resulted in
circuits with more functionality at lower prices for the last decades. The number of
components on a chip especially in digital CMOS circuits doubled roughly every 24
months as predicted by Moore’s Law. This trend was mostly driven by decreasing
the minimum feature sizes used in the fabrication process. The requirements in the
context of this development have been summarized in the International Technology
Roadmap for Semiconductors (ITRS) for years [1]. For a long time, the progress has
been expressed by moving from one technology node to the next. The technology
nodes were characterized by the half pitch item of DRAM staggered-contacted
metal bit lines as shown in Fig. 1.1. The 2009 ITRS document adds new criteria
for further developments. Nevertheless, the half-pitch definition anymore indicates
the direction of the expected future progress. In the case of MPUs and ASICs it
measures the half-pitch of M1 lines. For flash memories, it is the half-pitch of un-
conducted polysilicon lines.

In this way, the 130 nm-, 90 nm-, 65 nm-, 45 nm-nodes, and so on were defined.
The half-pitch is scaled by a factor S ≈ 0.7≈ 1/

√
2 = 1/α moving from one node

to the next. Over two cycles, the scaling factor is 0.5. In accordance with this devel-
opment, the device parameters, line parameters, and electrical operating conditions
were scaled. The result was a decrease of the delay time of digital components with
simultaneous decrease of the their sizes. Thus, faster chips with more components
could be developed that enabled a higher functionality. For more than 35 years, the
fundamental paper by Robert H. Dennard and others [2] could be used as a compass
for research and development in this area (see Tables 1.1 and 1.2, α =

√
2).

Fig. 1.1 2009 Definition of
pitches [1]
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Table 1.1 Scaling of device
parameters [2, 3]

Parameter Scaling factor

Channel length L 1/α
Channel width W 1/α
Oxide thickness tox 1/α
Body doping concentration Na α
Threshold voltage Vth (<)1/α
Gate capacitance Cg ∼ κox

tox
W ·L 1/α

Table 1.2 Scaling for
interconnection lines [2, 3]

Parameter Scaling factor

Wire pitch 1/α
Wire spacing sw 1/α
Wire width Ww 1/α
Wire length Lw 1/

√
α

Wire thickness tw 1/
√
α

Line resistance RL ∼ Lw
Wwtw

α
Line response time ∼RLC 1
Wire-to-wire capacitance ∼ κisolation

sw
twLw 1

Table 1.3 Scaling for circuit
performance [2, 3]

Parameter Scaling factor

Supply voltage 1/α
Depending voltages V 1/α
Current I 1/α
Delay time (of a component) 1/α
Power dissipation ∼V I (of a component) 1/α2

Power density ∼V I/A ∼ 1/α2

1/α2 1

Normalized voltage drop of lines ∼IRL/V α
Line current density ∼ I

twWw
Increasing with α

The scaling rules assured not only the functional progress. Performance was
increased while reducing power per circuit components. The power density retained
stable (see Table 1.3).

However, for instance downscaling the threshold voltage Vth and oxide thickness
tox results in higher subthreshold leakage and gate leakage currents resp. [4]. Thus,
power consumption became more and more a problem. “Dennard’s Law” could no
longer be followed [5]. To overcome the limits, new materials, new devices, and
new design concepts have been investigated [6]. In parallel, process variations have
to be considered in order to predict performance and yield of VLSI designs.

Further trends include, on the one hand, geometrical and equivalent scaling and,
on the other hand, a functional diversification. The first trend is announced as “More
Moore” while the second is discussed as “More than Moore” [1]. At the end, system-
level performance has to be improved [7]. In order to compare different solutions,
reliable methods to predict the system behavior are becoming necessary.
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1.2 Consequences of Silicon Technology Challenges

Reducing the channel length of the CMOS devices, short-channel effects such as
velocity saturation and drain-induced barrier lowering have to be considered. The
threshold voltage Vth strongly depends on the effective channel length Leff and the
operational voltages. These and other effects have to be considered in the transistor
models in order to predict performance and power consumption sufficiently exact.

Scaling of the threshold voltage Vth leads to a point where the subthreshold

leakage current Isub ∼ e
− Vth

nVT with slope factor n ≈ 1.5 and thermal voltage VT ∼
temperature T becomes a dominant factor for the power consumption of a circuit.
Thus, a further scaling of the threshold voltage is difficult. Furthermore, the signal
swing given by the difference of gate source voltage VGS and Vth cannot be decreased
under a critical limit without compromising the robust circuit behavior. This fact
furthermore limits the scaling of the supply voltage.

Further contributions to the transistor leakage are the band-to-band-tunneling

leakage and the gate leakage current Igate ∼ e
− tox
β1 , where β1 is a fitting coefficient.

The value strongly depends on the gate thickness tox. The gate leakage results from
tunneling of electrons through the gate dielectric [8]. The gate capacitance must
be maintained over a limit while shrinking the geometry in order to assure the
controllability of the channel current. Thus, shrinking of the gate thickness could be
avoided by a gate material with high permittivity known as high-k material. “High”
notes that the permittivity is greater than that of silicon oxide SiO2.

Shrinking the geometry also influences the interconnection of components. The
delay of local wires between gates remains constant (see Table 1.2). However, global
wires such as busses and clock networks tend to follow the chip dimensions. Wires
can be considered as distributed RC lines. The delay depends on the product of line
resistance times line capacitance. Thus in order to reduce the delay, interconnect
materials with lower resistance and dielectrics with lower permittivity (low-k
materials) have been investigated. For instance, a lower resistance can be achieved
by using copper instead of aluminium for interconnect lines. A lower permittivity
reduces also the parasitic wire-to-wire capacitance. However, it is suspected that
modifications of the dielectric material could lead to an inacceptable leakage.
Looking at the RC product, it follows that the delay of the interconnect lines
increases quadratically with its length. Thus, splitting the long interconnect lines and
inserting repeaters is a reasonable strategy to reduce the overall delay [9]. However,
this is paid by higher energy costs per transition because of the inserted drivers.
There is a tradeoff between speed and energy consumption. Reducing the signal
swing is an effective method to save energy. However, the robustness of the signal
transmission against supply noise, crosstalk, and variations of the line parameters
must be assured.

With scaling also the impact of the variations increases. It can be distinguished
between those that are coming from the manufacturing process as, for instance,
the lithography and those that are due to fundamental physical limitations as, for
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instance, given by energy quantization. The variations are classified into different
manners. Front-end variability is variability that impacts the devices. Back-end
variability results from steps creating the interconnects. Furthermore, it should be
distinguished between variations from die-to-die and variations within a die. They
are called inter-die and intra-die variations, respectively. The inter-die variations
impact all devices and interconnects of a die in (nearly) the same way. We will try
to describe them using correlated random variables, whereas intra-die variations
can be described by uncorrelated or weak spatial correlated random variables.
Downscaling the CMOS technology intra-die variations become more important.
The parameter P can be represented by a sum of its nominal value Pnom as well as
random variables characterizing the inter-die variation Pinter and intra-die variation
Pintra contributions [10]

P = Pnom+Pinter +Pintra. (1.1)

Besides these variations, changes of the environment a circuit operates in must
also be considered. The temperature, supply voltages, and input signals have
an impact on the circuit performance. These variations are called environmental
variations. The functionality of a circuit must be guaranteed within specified limits.
Last but not least the functionality over time must be assured. Aging effects such
as electromigration and negative bias temperature instability are further sources of
variations.

Furthermore, shrinking device geometry while scaling device parameters and
operating conditions in accordance makes the transistor performance more sensitive
to variations. This trend due to short-channel effects can be noticed for leakage
currents and speed. For instance, the sensitivity of the Ion current that depends on the
effective channel length Leff, the supply voltage, and the effective carrier mobility
μeff that depends on the channel doping Nch increases over technology generations
[11] and makes the delay times more sensitive against parameter variations.

In order to reduce the consequences of these developments, new technology
innovations and device architectures as strained silicon, silicon-on-insulator, very
high mobility devices, and for instance trigate transistors have been developed (see
more information, for instance, in [6, 9, 12]).

1.3 Impact on the Design Process

1.3.1 An Example Concerning Inter-Die and Intra-Die Variations

Let us discuss the impact of parameter variations on the design process with the help
of a simple example. The map between a performance value y and the parameter
values xi shall be given by a function f

f : Rn→R,(x1,x2, · · · ,xn) �→ y. (1.2)



6 J. Haase and M. Dietrich

Let Xi be a random variable that describes variations of the ith parameter and Y
describes the associated variation of the performance value

Y = f (X1,X2, · · · ,Xn) . (1.3)

Knowledge of the map f and the probability distributions of the Xi would allow to
determine the probability distribution of Y with the help of Monte Carlo simulation
studies. Using a simplified approach, expected tolerances of the performance
parameter can be estimated. f is replaced by its first-order Taylor series at the
operating point. The parameters shall be Gaussian distributed, where μi is the mean
or nominal value of the ith parameter and σi is its standard deviation. Thus for
“small” parameter variations, Y can be approximated by a first-order Taylor series

Y ≈ ynom +
n

∑
i=1

ai · (Xi− μi) , (1.4)

where ynom is the nominal value of the investigated performance parameter and ai =
d f
dxi

are the first-order derivatives or parameter sensitivities at the nominal values
of the parameters. Then Y is also Gaussian distributed with mean value ynom and
standard deviation σY where 3σY measures the tolerance. The variance is given by

σY
2 =

n

∑
i=1

ai
2σi

2 + 2 ·
n

∑
i=1

n

∑
j=i+1

ρi, jaia jσiσ j, (1.5)

where ρi, j is the correlation coefficient of the ith and jth parameter.
Let us now built up the sum of n parameters with the same Gaussian distribution

N(μ ,σ) and defining in this way a special performance variable Y ∗:

Y ∗ =
n

∑
i=1

Xi
∗. (1.6)

Y ∗ can for instance be interpreted as the delay time of a chain of n gates with same
delay distribution. If all delay times of the individual gates are strongly correlated
(all correlation coefficients ρi, j equal 1), it follows from (1.5)

σY ∗,correlated =

√
n ·σ2 + 2 · n · (n− 1)

2
·σ2 = n ·σ . (1.7)

If all delay times of the individual gates are strongly uncorrelated (all correlation
coefficients ρi, j equal 0), it follows from (1.5)

σY∗,uncorrelated =
√

n ·σ . (1.8)
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Fig. 1.2 σn of a sum of n variables divided by the standard deviation σ of one variable σn(r)
σ

Let us now assume that the variations of the parameters result from strongly cor-
related inter-die variations with variance r ·σ2 and uncorrelated intra-die variations
with variance (1−r)·σ2. The intra-die and inter-die variations are also uncorrelated.
Thus, the overall variance of an individual parameter retains σ2. Then we get

σY ∗,mixed = σn(r) =
√

n2 · r+ n · (1− r) ·σ (1.9)

Static timing analysis (STA) is widely used in the design flow for timing
verification. It assumes a full correlation of process parameters within a die. Thus,
it neglects the characteristics of intra-die variations and only considers inter-die
variations. The behavior is checked for “corner cases.” “Worst case,” “typical case,”
and “best case” are investigated for associated parameter sets of the transistor
models [13].

However, Fig. 1.2 shows that, for instance, the delay time may be overestimated
in this way. The procedure brings to much pessimism into the design flow. The
more intra-die variations have to be taken into account, the more improvements on
analysis methods are necessary.
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1.3.2 Consequences for Methods to Analyze Designs

Design methods for nanoscale CMOS have to consider the variability and uncer-
tainty of parameters predicting the behavior of a circuit. There is an impact of
challenges in nanoscale technology on EDA tool development [14]. A number of
methods are available to take variability into consideration.

The compact device models represent a link between the characteristics of the
manufacturing process and the methods that shall predict the behavior of a semi-
conductor circuit. Interactions that are understood can be expressed in a systematic
way by deterministic mathematical models. Phenomena that are poorly understood
are often described by stochastic models. Thus, the choice of an appropriate model is
essential for the subsequent conclusions. The Berkeley Short-channel IGFET Mod-
els are state-of-the-art compact MOS models. BSIM3 was a first industry-wide used
model. It was extended to the BSIM4 model in order to describe MOSFET physical
effects in the sub-100 nm regime. These models are based on threshold voltage
formulations. The new PSP model is a surface-potential based model. It promises
an accurate description of the moderate inversion region that becomes a larger part
of the voltage swing as the supply voltage is scaled down [15]. The behavior in the
time domain as well as the leakage behavior must be covered by the models in use.

Several methods have been developed and implemented to extract parameters of
compact models either from measurement or based on device simulations [16]. For
statistical design methods, the knowledge of the probability characteristics of the
parameters is necessary. Various methods have been developed to determine these
characteristics of the transistor parameters [17]. Important sources of variations
of the transistor behavior in the 65-nm process are, for instance, variations of
gate length, threshold voltage, and mobility [18]. The determination may base
on TCAD approaches or measurements of process variations using test chips or
circuits. Transistor arrays and ring oscillators are typical test structures for this
purpose [19]. However, there are only a few publications on real data concerning
process variations [20]. For future technology nodes, predictive transistor models
have been developed [11,21,22]. They enable to study future developments in a very
early stage. To map random process variability onto designer-controllable variables,
simple approaches have been investigated [23].

Several mathematical methods can be applied in order to describe the parameter
variations. In most cases, it can be and is assumed that the parameters are Gaussian
distributed. The dependency of the parameters can be expressed in these cases by
correlation matrices. However, if these parameters are not linearly mapped on the
performance variables, these variables are in general not Gaussian distributed. This
is for instance possible if the map (1.4) cannot be applied. Thus, it is also necessary
to consider methods for describing non-Gaussian random variables. Basic relations
between parameters and performance variables can be investigated using techniques
that analyze variances. In the case of Gaussian distributed parameters, principal
component analysis can be used to reduce the number of basic random variables.
Correlated non-Gaussian parameters can be transformed to statistically independent
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variables using independent component analysis for instance. Furthermore, appro-
priate methods for describing spatial correlation of parameters of a die must be
available if necessary.

A main task consists in mapping the probabilistic characteristics of process or
transistor parameters onto performance variables of components and circuits. In
principle, this can be done by numerical and analytical methods. Handling the
complexity arising in the IC design flow is a major problem. Thus, special methods
as, for instance, statistical static timing analysis (SSTA) [24] have been developed.
These methods require, on the one hand, an additional effort in a preparation phase –
for instance for library characterization. On the other hand, they assume some
simplifications as for instance linear mapping in order to handle the complexity.
Thus, in order to check their advantages and limitations it is necessary to the check
the results of these approaches against a “golden” model at least in the introduction
phase. A golden reference can often be established by Monte Carlo studies.

The objectives of the design process are often contradictory. Short delay times,
low leakage and dynamic power, high yield, and high robustness are requirements.
From the mathematical point of view, this is a multicriteria optimization problem.
A cost function built up by a weighted sum delivers only one solution. A set of
optimal solutions can be determined as a Pareto frontier [25]. Based on the proposed
optimal solution points, it can be decided which one should be preferred.

The following chapter describes fundamentals of transistor modeling and
mathematical methods to handle statistical design tasks. Chapter 3 gives a
description of the sources of variability and their representations. Chapter 4
demonstrates typical methods used for the investigations of the impact of variations
on the performance of a design. In Chap. 5, some application examples will show
how to make a good choice under the available methods and apply them for
special designs. The chapters give an overview on the current state of the art in the
different fields and go into more detail when discussing special experiences of the
contributors with some of the presented approaches.
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Chapter 2
Physical and Mathematical Fundamentals

Bernd Lemaitre, Christoph Sohrmann, Lutz Muche, and Joachim Haase

This chapter provides a short overview on the basics of CMOS transistor modeling
with respect to deep submicron requirements and mathematical approaches to
analyze variations in the design process. Technical terms are going to be defined
and explained; physical processes and mathematical theories will be illustrated.

The most important component in today’s microelectronics is the transistor.
Section 2.1 focuses on the MOSFET transistor and its modeling. The effects of
variations in different technology parameters on the transistors behavior will be
analyzed. The subsequent chapters build upon this background and deduce the
influence of the device level on the circuit level. MOSFET transistors are designed
as pMOS and nMOS transistors.

These complementary MOSFET transistors form the foundation of the imple-
mentation of low-energy CMOS circuits. Today more than 90% of all digital circuits
are designed and manufactured using this technology. The functionality of these
transistors will be briefly described in the first section of the chapter. In addition,
the effects of different technology parameters on their behavior will be examined
and effects of technology progress on the development of transistor modeling ap-
proaches will be discussed. Moreover, the relation between technological variations,
parameter sensitivities, and variations of model parameters will be investigated.

In addition, this section will outline the impact of variations of transistor
parameters on the variations of delay times and energy consumption of a circuit.

Section 2.2 introduces statistical methods for describing and analyzing variations
which are important for an understanding of approaches used in the design process.
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The section is going to explain how to describe univariate and multivariate
normal distributed random variables as well as non-Gaussian distributions.
Additionally, concepts to determine parameters of non-Gaussian distributions are
presented. Furthermore, methods that reduce the complexity of random variables
using principal component analysis and singular value decomposition will be
shown. There are different ways to transform random variables using analytical
and numerical methods. Underlying assumptions, limitations, and application
possibilities of these statistical methods will be discussed. Moreover, approaches
that allow for analyzing not only linear models but also second-order and special
polynomial higher-order models will be introduced. A short outlook on importance
sampling as a way to determine small probabilities and on the evaluation of results
by statistical tests concludes the chapter.

Bernd Lemaitre and Christoph Sohrmann are the authors of Sect. 2.1. Lutz Muche
and Joachim Haase prepared Sect. 2.2.

2.1 Modeling of CMOS Transistors

Physical, manufacturing, environmental, and operational conditions influence
strongly the CMOS transistor characteristics. When scaled into the deep submicron
regime, their influence on leakage and time domain behavior has to be evaluated
anew. The section describes the physical background behind different effects that
have to be considered by the digital designer as well as the impact of variations
on the behavior. Spatial and temporal correlations of parameters are considered.
The main objective is to separate first- and second-order effects that are important
for the static and dynamic behavior. The principles that determine the threshold
voltage and in this way the subthreshold leakage are discussed. This considers the
impact of channel length, drain-induced barrier lowering and body-biasing effect
among others. Furthermore, the mechanisms (Fowler–Nordheim and direct-oxide
tunneling) that are the source of gate leakage are presented. In order to keep the
gate leakage under control, high-κ materials are introduced. It is described how the
impact of the velocity-saturation effect on reducing the current drive for a given gate
voltage in the DSM regime influences the characteristic of the CMOS transistor.
Device and technology innovations such as strained silicon, dual-gated devices, and
very high mobility devices are briefly explained. In this chapter, various compact
transistor models also will be described with main focus on the BSIM model. An
overview of the various leakage mechanisms and an insight view into the leakage
modeling of those transistor models will be done. Also, aspects of variability
modeling will be discussed.

2.1.1 General Types of MOSFET Models

During the 1970s, the nMOS technology was the major technology for highly com-
plex, digital circuits. Because of the advantages of the CMOS technology, including
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low static power consumption, simple scalability laws, and stability of operation,
the CMOS technology became the general-purpose technology in the 1980s. The
use of electrical simulators, such as SPICE, allows a quick evaluation of the circuit
performance before high costly prototypes. However, the quality and accuracy of
the simulation results by a simulator depends on the quality and accuracy of the
circuit element model. Therefore, the used MOSFET model for circuit simulation
plays a crucial role in chip design productivity. One has to differentiate between two
main types of device models, the numerical device model and the compact model.
Numerical device models are used to study the device physics and to predict the
electrical and thermal behavior of a semiconductor device. These models solve a
set of partial differential equations, describing the physics of the device. Because
of their high computational effort and huge amount of memory, numerical device
models are not suited for use in circuit simulators. Compact models describe the
terminal properties of the device by using of a simplified set of equations, or by an
equivalent subcircuit model. The purpose of a compact model is to obtain simple,
fast, and accurate representations of the device behavior. Compact models are suited
to evaluate the performance of integrated circuits with large quantity of transistors.
In general, compact device models can be divided into three categories:

• Physical models (based on device physics)
• Table lookup models (with tables containing device data for different bias points)
• Empirical models (where the device characteristics are represented by equations

that fit the data)

2.1.2 A Brief History of Transistor Models

The first MOSFET model for SPICE-like circuit simulators, the LEVEL 1 model,
often called Shichman-Hodges model [1], is a simplified first-order model only for
long channel transistors. The simple model describes the current dependence on
voltages for a gate voltage greater than the threshold voltage. The subthreshold
behavior and current is assumed as zero. The terminal capacitances, which are
described by the Meyer model [2], are not charge-conserving. The LEVEL 2 model
addresses in addition second-order, small-geometry effects. The subthreshold cur-
rent is not equal to zero and the capacitive model can be either the Meyer model [2]
or the Ward-Dutton model [3], where the charge is conserved. In practice, the Level
2 model is computationally very complex. One of the main drawbacks of Level 2 are
the often observed convergence problems during circuit simulation. The drawbacks
are extensively discussed in [4]. The LEVEL 3 model is a semi-empirical model that
addresses the shortcomings of LEVEL 2. It uses the Ward-Dutton capacitive model
and convergence problems are rarely observed. The main drawbacks of the Level
3 model are the non-ideal modeling of the subthreshold current and the failure of
correct modeling of the output conductance gds, which is defined as

gds =
∂ Ids

∂Vds
. (2.1)
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Especially the failure of the gds modeling makes the simulation of analog circuits
critical; because gds is one of the main transistor attributes that affect the gain of an
operational amplifier, or in general analog circuits.

The growing demand of the market in the 1980s for CMOS digital and Mixed
Signal Chips and the higher pressure on the design groups pushes the development
of new model types of the second model generation. Obviously, the Level 1, 2, and 3
models had too many shortcomings in practice to simulate circuits with ever-larger
number of transistors and ever smaller dimensions. A different modeling approach
compared to the first model generation (LEVEL 1, 2, and 3) had to be chosen to
overcome especially the functional complexity and the shortcomings for smaller
transistors (short channel effects).

At the University of Berkeley, the so-called BSIM models [5] (Berkeley Short-
Channel IGFET Model) were developed with main emphasis on faster and more
robust mathematics for circuit simulation, but less effort in the developing physical
modeling approach. For analog circuit simulation, the main problems with the
first BSIM generation were again a poor and sometimes negative modeling of
the output conductance gds. Also, convergence problems occur within the SPICE
simulation. Some of these problems were enhanced by modifications within BSIM2
and a HSPICE version Level28 [6]. During practical use of these models, the
main shortcomings of the second model generation were their more empirical
modeling approach and therefore the need to implement more fitting parameter
without a clear physical meaning [7]. In the 1990s, the third model generation
was introduced by BSIM3 and its extension BSIM4, but also with MOS Model
9, that was brought in by Philips into the public domain. By formulation of the third
model generation, the modeling groups tried to come back to a more physical-based
modeling approach. This should allow a more physical assignment of the model
parameter to real physical measured effects and its values. Also, the introduction
of smoothing functions especially at the transition between two operation regions
of the transistor, which could not be modeled by one continuous equation, helps to
prevent the output conductance and convergence problems. All models up to now
uses formulations with the Drain-Source voltage as reference. The EKV model [8]
uses the Bulk voltage as reference and is therefore full symmetrical formulated
related to the Drain and the Source voltage. The mentioned MOSFET models are
only the well-known models, which are available in the public domain. A lot of
company proprietary models were developed by large semiconductor companies for
internal use, which are implemented in popular SPICE like simulators, e.g., [6].

In August 1996, the Compact Model Council (CMC) [9] was formed, by large
semiconductor, EDA companies and Foundries. The main purpose of the CMC was
the promotion and standardization of compact models, and the implementation into
commercial available SPICE-like simulators. The vision of the CMC was to promote
the international, nonexclusive standardization of compact model formulations,
and the model interfaces. One major push for forming the CMC, as industry-
driven organization, was the problem that many proprietary models were in use.
The interface between companies in cooperation or the interface working together
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with design houses was too complex. Therefore, there was the need to standardize
compact models for all major technologies in a way that customer communication
and efficiency can be enhanced. Within the CMC, some models were standardized,
e.g., BSIM3 and BSIM4 models for use down to 90 nm technologies.

In 2004 after many discussions in the modeling community, there was a widely-
agreed-upon understanding that traditional threshold-voltage compact models, as
used up to now, have to be replaced by more advanced surface-potential, or
inversion charge-based models. Besides the need to rework the short and narrow
channel effects, non-uniform lateral and vertical doping, and the introduction of
quantum-mechanical corrections for the new technology generations, the new fourth
model generation should have one continuous formulation over all regions of MOS
operation. In 2004, the CMC calls for the next generation of industrial compact
models, useful for 90 nm, 65 nm, 45 nm CMOS Technology nodes and below. Two
new modeling approaches were developed were a continuous formulation of the
MOS device behavior were described, based on the solution of the surface-potential
in the channelψs or the inversion charge Qinv. The University of Berkeley developed
the BSIM 5 model [10] with an iterative solution of the inversion charge Qinv.
The Pennsylvania State University and Philips developed together the PSP model
[12, 13] as a common modeling activity based on Philips MOS 11 (successor of
MOS 9) and the PS model from the Pennsylvania State University. The PSP model
based on a explicit solution on the surface-potential ψs. As third model, the HISIM
model [11,14], which was formulated years before, from the Hiroshima University,
was investigated by the CMC for a new modeling standard. The HISIM model bases
on an iterative solution of the surface-potential ψs (see also Table 2.1).

In 2006, the CMC has standardized, the PSP model for standard CMOS tech-
nologies and in 2007 the HISIM model for high-voltage, high power applications.

In Table 2.1, an overview of the main MOSFET models with the technology,
nodes, where these models are mainly in practical use, is given. The transition from
one model to another, pushed by the introduction of new technology generations
could only be done step by step. The new model will be tested and verified on
the data of the new technology. To start design activity in the new technology, the
technology characterization starts with the old model. If the new model is verified,
the new model is introduced in one of the next design packages. Also, for mature
technologies, such as 130 nm, Foundries will mostly use BSIM3 models today,
because a new re-characterization of the technology on the basis of the latest models
is too expensive. Therefore in practice all models of the 3rd generation are more or
less in use for active design, depending on the used technology node (Table 2.1).

2.1.3 MOS Physics and Modelling

The current section shall provide a brief introduction to MOS transistor physics
and its modeling. It is not supposed to be a comprehensive guide to semiconductor
physics, which would require a solid mathematical background. The goal is rather to
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Table 2.1 Overview of transistor models and respective technology nodes

Technology
node

MOSFET
model
generation

MOSFET
model

CMC
standard

Model type
based on

	1μm 1st generation Level 1 Vth

Level 2 Vth

Level 3 Vth

≥1μm 2nd generation BSIM 1 Vth

BSIM 2 Vth

350 nm HSPICE level 28 Vth

250 nm 3rd generation BSIM 3.x X(1996) Vth

180 nm BSIM 4.x X(2000) Vth

MOS 9, MOS 11 Vth

130 nm EKV Qinv (iterative)

90 nm 4th generation BSIM 5 Qinv (iterative)
65 nm PSP X(2006) ψs (explicit)
45 nm HISIM X(2007) ψs (iterative)
32 nm

learn some ideas leading to current modeling strategies and additionally learn about
some causes of variations. The interested and the expert reader shall be referred to
the appropriate literature for further study [3, 15]. Nevertheless, some fundamental
concepts will be required for understanding the operation of a transistor. Therefore,
we start this section with some basic concepts of semiconductor physics.

It is well known that the most widely used material in microelectronics today
is silicon. Unfortunately, the properties of pure silicon are far from adequate for
use in cutting edge applications. Therefore, the material requires some radical
manipulation before it may be applied. It turns out that introducing impurity atoms
into the silicon crystal, a process known as doping, provides such a handle. Doping
allows the electronic properties of silicon to be tweaked as desired. The reason
for this becomes clearer by revisiting silicon’s atomic structure. As a Group IV
element, each atom has four valence electrons. In the condensed state, silicon forms
a diamond cubic lattice with four covalent bonds at each lattice site. Four electrons
per site are involved in these bonds and no carriers are left for contributing to the
conduction process. Therefore, pure silicon is an inadequate material for electronic
applications. However, doping silicon with impurity atoms having either less or
more than the four electrons required for perfect bonding between neighboring
atoms introduces additional free carriers into the crystal. The main concept now is
that charge will not only be carried by the abundant electrons which are not involved
in the bonding process but also by so-called electron holes, a conceptual, positively
charged particle, describing the absence of a valence electron in the bonding process.
Electron holes are quasiparticles which behave like real particles and which may
therefore be modeled similarly. The concept of electrons and holes leads to the
following nomenclature. Group III elements are called p-type dopants since they
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Fig. 2.1 Existing types of MOSFETs

have less than four valence electrons and therefore introduce positively charged
holes into the silicon. Group V elements, on the other hand, are called n-type
dopants for the fact that they add abundant electrons to the lattice. Additionally, the
former are called acceptors for they are accepting electrons from the silicon crystal,
whereas the latter are called donors, atoms which donate electrons to the crystal.
In fact, a doped semiconductor at the same time contains both, electrons and holes.
Depending on the ratio of the two species, they are labeled as minority and majority
charge carriers. In n-type semiconductors, electrons are the majority and holes the
minority carriers. Vice versa for p-type semiconductors. The number of free carriers
in the crystal depends on the concentration of the doping atoms. The same applies
to the conductivity.

Depending on those physical properties, transistors may be categorized into a
variety of classes. The most fundamental two classes are the unipolar and the
bipolar devices. As the name suggests, in the former case, only one kind of carriers
contributes to the transport, whereas in the latter case both species may participate.
In the context of CMOS design, one is mainly concerned with unipolar devices,
also called field-effect transistors (FETs). Within the class of FETs, there are again
two main categories, the insulating gate type (IGFET) and the junction gate type
(JFET). The former type is most widely used and best known as its prominent
representative, the metal-oxide-semiconductor type (MOSFET). Transistors are
further distinguished by the type of terminal doping which can be either n-type
or p-type, as explained above. Depending on the doping type, a transistor can
now be either conducting or insulating at zero voltage between gate and source,
called bias. For the case of JFETs, both types are conducting. Applying a gate-
source voltage to either of the two suppresses possible current flow in the channel.
In case of MOSFETs, those two types are denoted as depletion or enhancement
type, depending on whether applying voltage between gate and source enhances or
suppresses the current in the channel, respectively. A schematic summary of FET-
types is given in Fig. 2.1.



18 B. Lemaitre et al.

Gate terminal

Gate oxide

n-typen-type

p-type

Metal Source terminalDrain terminal

Fig. 2.2 Schematic cross-sectional cut of an n-type MOSFET structure

After having introduced some fundamental physical ideas and types of transis-
tors, the following explanations focus on the structure and operation of MOSFETs.
Figure 2.2 schematically shows a cross-sectional view of a n-type MOSFET. The
base material, i.e., the substrate, is a slightly p-doped silicon crystal. Two heavily
n-doped regions are implanted as the source and the drain electrodes. Since substrate
remains in between, this forms an NPN-structure. Thus, no conduction is possible
in the off-state. The remaining p-substrate forms the channel of the transistor. An
insulating dielectric layer of silicon dioxide (SiO2) is then deposited right above the
channel, which separates the channel from the gate electrode. The gate material
is n- or p-doped polysilicon. The stacking of bulk, dielectric, and gate forms a
capacitor, which is loaded upon applying a voltage difference between bulk and
gate. As the naming MOSFET implies, the current-voltage-characteristics of the
channel can be manipulated by the electric field in the “bulk-gate-capacitor.” For
an n-type MOSFET, the source terminal is in general connected to the bulk and is
used as the voltage reference point. Therefore, the quantity Vgs equally refers to the
gate-bulk-voltage. Depending on the applied Vgs and Vds, three modes of operation
can be distinguished:

• Subthreshold or weak inversion regime: Vgs <Vth

• Linear regime: Vgs >Vth and Vds < (Vgs−Vth)
• Saturation or strong-inversion regime: Vgs >Vth and Vds > (Vgs−Vth)

The operation of the transistor is best understood by first letting Vds = 0 and slowly
raising Vgs. This process will be exemplarily described in the following using the
already discussed n-type device. By applying a positive voltage to the gate, Vgs > 0,
and entering the subthreshold or weak inversion regime, the majority carriers within
the p-type substrate will be repelled from the insulating SiO2 layer, thereby forming
a region depleted of majority carriers – the depletion region. This region contains
less positive carriers than the remaining bulk and thus is less positively charged.
Further increasing Vgs leads to fully majority-carriers-deprived SiO2 surface, leaving
a neutrally charged layer close to the insulator. This is observed when Vgs = Vth.
Here, the transistor switches to the linear regime. Beyond this point, a layer of
negatively charged carriers begins to accumulate at the insulator surface, forming an
oppositely charged layer within the positive p-type bulk background – the so-called
inversion layer.
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Table 2.2 Classification of transistor models

Vth-based models Charge-based models Surface potential-based models

LEVEL 1–3 EKV PSP
BSIM1–4 ACM HiSIM
Philips-MM9 BSIM5 Philips MM11

In the subthreshold regime, where Vgs lies in between flat-band-voltage and Vth,
the channel between source and drain is said to be in weak inversion. There are
very few free carriers available for charge transport. The current flows mainly by
diffusion rather than drift. As the name suggest, this regime is often made use of in
analog circuits. The source-drain current behaves similarly to the collector-emitter
current of a bipolar transistor. Below threshold, there is an exponential dependence
between drain-source current and gate-source voltage. This is the reason why the
subthreshold regime is important for low-voltage and low-power analog circuits.

Ids ∝ e
Vgs−Vth

nVT . (2.2)

For a few years now, this technique is more and more applied to digital circuits as
well [17]. Objectives are a low power-consumption, e.g., in sensor networks, or high
performance by achieving very low delays. However, in the subthreshold regime,
parameter variations are a much more severe challenge for the design because of the
strongly nonlinear behavior of delays and current as a function of input slew or load
capacitance.

The available transistor models may be classified by how the integral for the
drain current is evaluated. There are three common approaches: Vth based, charge
based, and surface potential based. This classification and its realization in transistor
models is shown in Table 2.2.

2.1.4 Physical Effects in Transistor Models

The growth in integrated circuit density and speed is the heart of the rapid growth
of the semiconductor industry. The transistor saturation current is an important
parameter because the transistor current determines the time needed to charge
and discharge the capacitive loads on a chip, and thus impacts the product speed
more than any other transistor parameter. The goal of MOSFET scaling could be
understood by two general topics.

First, the increase of transistor current (speed) for charging and discharging par-
asitic capacitances and second the reduced size (density). The increased transistor
current requires a short channel and high gate oxide field because the inversion layer
charge density is proportional to the oxide field. The reduced size of the device
requires a short channel length and smaller channel width. Therefore, the planar
CMOS devices were scaled in the past mainly by shrinking the dimensions and the
voltages [80] (Fig. 2.3).
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Fig. 2.3 Main trends in CMOS scaling

Table 2.3 Major effects to be modeled within 4th generation CMOS models for simulation down
to 45/32 nm

• Gate to body, gate to inversion, gate to
S/D oxide tunneling currents

• Stress effect as a function of layout
• Impact Ionization current
• Flicker Noise and thermal noise at all

terminals, all biases, all temperatures
• Nonuniform vertical doping
• Nonuniform lateral doping
• Short channel effect
• Drain-induced barrier lowering

(DIBL)
• Channel length modulation
• Substrate current induced body effect
• Velocity saturation including velocity

overshoot, source end velocity limit
• Well proximity effect on Vth
• Poly gate depletion

• Narrow-width effect
• Bulk-charge effect
• Field-dependent mobility
• Finite inversion layer thickness (quan-

tum mechanical effect)
• Non-quasi-static (NQS) effect
• Diode IV forward and reverse model
• Diode reverse breakdown
• Diode CV forward and reverse, includ-

ing temperature
• Gate resistance model
• Substrate resistance network
• GIDL/GISL
• Asymmetric and bias-dependent

source/drain resistance

As process technology scales beyond 100-nm feature sizes, for functional and
high-yielding silicon the traditional design approach needs to be modified to cope
with the increased process variation, interconnect processing difficulties, and other
novel physical effects [81] (Table 2.3).

The scaling of gate oxide in the nano-CMOS regime results in a significant
increase in gate direct tunneling current. The subthreshold leakage and gate direct
tunneling current are no longer second-order effects. The effect of gate-induced
drain leakage (GIDL/GISL) will be felt in designs, such as DRAM and low-power
SRAM, where the gate voltage is driven negative with respect to the source. Scaling
planar CMOS will face significant challenges. Introduction of new material systems,
e.g., strained Si/SOI, high-κ and metal gates were used to scale devices down to
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Fig. 2.4 Evaluation of the numbers of model parameter with the model complexity [79]

32 nm and 22 nm. In addition, new device architectures, e.g., multigates and 3D
devices were needed to break the scaling barriers in future beyond 22 nm technology
range.

The term high-κ dielectric refers to a material with a high dielectric constant κ
(as compared to silicon dioxide) used in semiconductor manufacturing processes,
which replaces the silicon dioxide gate dielectric.

As the thickness scales below 2 nm, leakage currents due to tunneling increase
drastically, leading to unwieldy power consumption and reduced device reliability.
Replacing the silicon dioxide gate dielectric with a high-κ material allows increased
gate capacitance without the unwanted leakage effects [82].

Strained silicon and strain engineering refers to a strategy employed in semi-
conductor manufacturing to enhance device performance. Performance benefits are
achieved by modulating strain in the transistor channel, which enhances electron
mobility (or hole mobility) and thereby conductivity through the channel [83].

In order to shrink down beyond 22 nm (see Fig. 2.4), 3D devices or multigate
devices which incorporate more than one gate into a single device are in devel-
opment. The multiple gates may be controlled by a single gate electrode, wherein
the multiple gate surfaces act electrically as a single gate, or as independent gate
electrodes. Multigate transistors are one of several strategies being developed by
CMOS semiconductor manufacturers to create ever-smaller microprocessors and
memory cells, colloquially referred to as extending Moore’s Law [84, 85].

Compact models describe the terminal properties of the scaled devices by using a
simplified set of equations, or by an equivalent subcircuit model. As a consequence
of the ongoing scaling activities and changing of device architecture, the compact
models have to follow by including the main new effects into the model equations.
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Also approximations needed for simplified modeling have to be adjusted. Second-
order effects in today’s technologies could change to first-order effects in the next
technology node, e.g., the subthreshold currents and the effect of gate-induced drain
leakage (GIDL/GISL).

Unfortunately for the first chip designs in a new technology, the designer has to
cope with available models, which were developed for older technology nodes.

The modeling and the availability of new models within commercial circuit
simulators, including all novel effects, will follow the technology development and
ramp up in a Manufacturing Line approximately 1–3 years later.

Also, the complexity of the models and the number of parameter will increase
with time, following the changes and the complexity of the scaled technologies.
The number of parameters of the most commonly used circuit simulation models
achieves an order of 1,000 parameter (see Fig. 2.4). Starting within the 1980,
some models were developed including geometry scaling models that increases the
number of model parameter extensively.

2.1.5 Impact of Variations and Model Sensitivity

After the previous short summary of various nominal effects occurring in today’s
technology, this section focuses on how process variations affect performance upon
the continuing scaling.

2.1.5.1 Variations and Scaling

During the last decades, MOS technology was constantly scaled down with a
rate approximately predicted by Moore’s law as easly as in 1965 [18]. The rate
at which the integration density increased over the years remained surprisingly
constant. This can be mainly attributed to the concept of constant field scaling,
where transistor parameters are scaled down such that the internal electric field
remains constant and thus the physical behavior is preserved. This has first been
proposed in the seminal work by Dennard et al. [19]. However, in order to maintain
or even increase circuit performance, the device threshold voltages need to be scaled
in proportion to the supply voltage [4]. This in turn has a severe side-effect on
the subthreshold leakage current, which depends exponentially on the difference
between Vgs and Vth. Therefore not only will nominal leakage increase drastically,
but also the sensitivity to threshold voltage fluctuations increases exponentially.
Since Vth-fluctuations are easily seen to increase with shrinking device dimensions
and decreasing dopant number, old-fashioned shrinking by scaling soon crosses
a point where reliability becomes a serious issue. Ever since, process variations
occurred within semiconductor fabrication. However, this point marked a new kind
of hurdle to be taken and its disturbing arrival in technology was anticipated long
before. Fortunately, the topic of process variations became strongly popular and
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much research had been done in order to prevent the sudden death of Moore’s Law.
Eventually, new strategies were introduced such as high-κ dielectrica, metal gates,
strained silicon, fully depleted SOI (FD-SOI), or multi-gate devices, coming to the
rescue of Moore’s prediction.

On the other hand, there is a constantly increasing variety of effects leading to an
increase of variability with the continuation of scaling. Kenyon et al. [21] recently
provided an excellent summary of challenges in terms of variability for the 45 nm
technology. One can summarize the most important sources of fluctuations, which
sooner or later require adequate modeling:

• Random dopant fluctuations [22]
• Line-edge roughness [23]
• Variations of oxide thickness [24]
• Nonuniform threshold voltage by fixed charge [25]
• Defects and traps [26]
• Patterning proximity effects [27]
• Polish [28]
• Strain-induced variation [29]
• Variations in implant and anneal processes [30]
• Variation of temperature in operation
• Ageing and wear-out
• Signal coupling and cross-talk
• Supply voltage and package noise

These unwieldy and mostly nonlinear effects need to be tackled and controlled by
process engineers and designers currently but even more so in the years to come.

2.1.5.2 Parameter Correlations

Generally, all fluctuations across devices, circuits, dies, wafers, or wafer lots are
correlated in a certain way. Only the correlation strength varies depending on
the source of the variation (which process step, environmental influences, and so
on). Considering a single parameter fluctuation, one may think of a temporal or
spatial correlation length within the manufacturing process. This length determines
whether the variation of a parameter can be modeled independently across different
entities or whether the coherence needs to be taken into account. For simplicity,
engineers usually take the binary approach by setting the correlation coefficient to
either zero or one, respectively. Although this is far from realistic, the usual lack of
detailed measurements renders any attempt of a more detailed modeling pointless.
One therefore retracts to such a simplified description which additionally offers two
major simplifications: First, each varying parameter can be statistically described by
as little as two numbers. Secondly, the binary correlation approach gives rise to the
appealingly simple notion of local and global fluctuations. Local fluctuations are
also known to analog designers as mismatch, the single most important statistical
design parameter for matching pair transistors. Since effects resulting from global
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fluctuations are usually taken into account by a corner-based analysis, they are of
lesser importance. However, as the number of corners increases exponentially with
each technology node, such guardbanding leads to a significant design pessimism,
strongly diminishing yield. The binary correlation description may be sufficient for
most modeling purposes. However, it is important to realize that a truly realistic and
physical variability model on circuit or system level requires a fully multivariate
stochastic description. This is rather involved since any fluctuating parameter needs
to be included as an additional dimension of a multivariate distribution function.
However, such methodology becomes especially important in hierarchical system
modeling with uncertain input [31–33].

2.1.5.3 Local Fluctuations and Pelgrom’s Mismatch Model

The importance of local parameter fluctuations has been emphasized previously.
Although analog design suffers strongly under local fluctuations, any circuit
involving matching transistor pairs, for instance an SRAM cell [34], is severely
affected. Apart from the transistor mismatch, nonuniform behavior throughout the
circuit is a result from local fluctuations. The first work to describe a model for local
fluctuations was the seminal paper by Pelgrom et al. [35]. Their mismatch model
was based on very few but fundamental assumptions and has general validity. The
model proposes a spatially varying parameter p(x,y) and defines the mismatch as the
difference of this parameter over two different rectangles, Ω1 and Ω2, representing
the areas of two devices. The model shall predict the difference of the expected
value of the parameter for each area, which reads as

Δ pΩ1Ω2 = 〈p(x,y)〉Ω1
−〈p(x,y)〉Ω2

. (2.3)

After parameterizing the distance by D and setting the area to |Ω | = W · L, the
variance of Δ p can be computed, yielding

σ2
Δ p =

AΔ p

WL
+ SΔ pD2, (2.4)

where AΔ p and SΔ p are process- and device-dependent parameters. This model
predicts in a simple form the local fluctuations under scaling and may be applied
to any parameter such as Vth or Tox. The fluctuation, i.e., standard deviation, of a
parameter as a function of device area can thus be estimated as

Δ loc p ∝
1√|Ω | . (2.5)

Fluctuations of device dimensions scale according to the equations Δ locL ∝ 1/
√

W
and Δ locW ∝ 1/

√
L. Pelgrom’s law is commonly used in analog design, where

increasing the device area is a well-established means of reducing local fluctuations.
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2.1.5.4 Mathematical Description of Fluctuations

This section looks at some mathematical aspects regarding the modeling of fluctu-
ations in circuit simulation. Any strategy leading to a continuation of the shrinking
process whilst improving performance must necessarily involve one of the two
following techniques: Reduction of the fluctuations themselves, for instance ΔVth,
ΔTox, or ΔLeff , or reduction of the responsiveness of the circuit to fluctuations.
Strong fluctuations alone do not necessarily imply a strong impact on the circuit’s
performance. If the circuit is insensitive to or even independent from this very
parameter, the range of variation becomes less significant for the design process.
The amount of impact is called sensitivity. Thus, the effect of a variation on a
performance quantity, in the following called y, depends equally on the parameter
fluctuation and the sensitivity of the measured quantity on the parameter. This fact
is also easily derived from a mathematical viewpoint and can be motivated by a
Taylor expansion of the usually complicated and unknown parameter dependence,
y = y(p), which up to first order reads as1

y≈ y0 +
∂y
∂ p

(p− p0). (2.6)

The parameter p usually varies according to a distribution within a range charac-
terized by its variance, σ2. The performance deviation from its nominal value y0

is henceforth called Δy. Since this quantity is dimensionful, one usually introduces
a normalization. Care has to be taken which normalization is used when reusing
sensitivity information from commercial simulators in an external context. In the
following, we define the sensitivity as

Δy
y

=
∂y
∂ p
Δ p
y
, (2.7)

where Δ p is the deviation of the parameter from its nominal value. Although being
just a low-order polynomial approximation, this model has quite a compelling
advantage: Even with a single sensitivity value in a single point of parameter
space, the device behavior with respect to many effects such as process variations,
degradation and aging can be approximated albeit in a qualitative fashion. This
model has proven to work remarkably well in practice. Additionally, the sensitivity
coefficient is a very handy ballpark number for a quick-and-dirty estimation of how
much the performance of a design is affected by the parameter. In many cases, the
sensitivity is readily determined by a finite-difference approach. If such a naive
approach is computationally too expensive, there is a great deal of literature dealing
with efficiently solving this problem [36–38]. At this point, however, we will not go
further into detail and investigate some model sensitivities analytically instead.

1Whether the symbol y refers to the value or to the function should be evident from the context.



26 B. Lemaitre et al.

In summary, the overall variability of a device, circuit, or system, is equally
affected by both, the variance of the parameters and the sensitivity against this
parameter. For physical parameters, the former is usually a technological artifact and
solely determined by the fabrication precision. The latter, however, may be adjusted
through circuit and system design. In the following, we will primarily focus on the
sensitivity of MOS transistors with respect to fluctuating parameters by reviewing
established leakage and timing models.

2.1.5.5 Delay Sensitivity

There are a number of analytically tractable models attempting to predict the
cell delay [16, 39–41] by approximating the drain current behavior. Such models
are usually of low complexity compared to full transistor models and contain
many assumption, for instance, regarding saturation velocity or gate voltage. The
simplification is achieved by introducing fit parameters which strongly depend on
the dimensions and technology used. However, this also means that they do not
predict the current correctly in all regimes. But such accuracy is not required for
a first-order manual analysis. Especially the Alpha Power Law Model by Sakurai
et al. [39] focuses only on the correct description of the cell delay. The authors
approximate the delay as a sum of two components: An input slope dependent part
and the time to charge or discharge the following cell. The input slope-dependent
component becomes less significant with enhanced velocity saturation. Under this
assumption, the estimated cell delay reads as

τcell ∝
CLVdd

Idsat
, (2.8)

where CL is the output capacitance to be driven by the cell. The saturation current is
defined by the α-model as

Idsat =
W
2L
μCox

(
Vgs−Vth

)α
, (2.9)

where α lies in between 1 and 1.5. In the constant field scaling picture with
a scaling factor S, the parameter scale according to W,L,Vdd,Vth,CL ∝ 1/S and
Cox ∝ S, and Vgs at saturation should be proportional to Vdd. For constant mobility,
we conclude that

Idsat ∝
1

Sα−1 , (2.10)

which decreases with increasing S. The cell delay can thus be assumed to scale as

τcell ∝ Sα−3 ≈ 1
S2 . (2.11)
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The same analysis can be carried out for the sensitivity. By applying the chain rule
to the delay dependence on Vth, we find

Δτcell

τcell
=
∂τcell

∂Vth

ΔVth

τcell
=
∂τcell

∂ Idsat

∂ Idsat

∂Vth

ΔVth

τcell
= α

ΔVth

Vgs−Vth
. (2.12)

Ignoring the scaling of ΔVth, this essentially leads to a scaling of the relative delay
fluctuations proportional to S. Thus, this simple model has shown that the impact
of fluctuations on the delay becomes worse in a simple scaling scenario. Therefore,
new technological concepts and devices are required in order to push Moore’s law
further. An equivalent reduction can only be achieved by introducing entirely new
models or by a reduction of the fluctuation itself, ΔVth. Until today, simulations
concluded that ΔVth remained almost a constant [42, 43]. However, this picture
will not hold for sub-45 nm technologies where a strong increase in variability is
predicted. The above analysis is meant as an exemplary calculation and may also
be carried out for more realistic drain current and timing models as well for other
parameters such as L, Vdd, or Cox.

2.1.5.6 Leakage Current Sensitivity

Modern MOS transistors exhibit a variety of different leakage mechanisms. A
comprehensive analysis of their nominal and sensitivity behavior is an involved
task. In order to demonstrate the multitude of leakage effects, we have summarized
significant sources of static leakage currents [44]:

• Reverse-bias pn junction leakage
• Subthreshold leakage current
• Gate oxide leakage current
• Gate induced drain/source leakage
• Gate current due to hot carrier injection
• Channel punchthrough current [45]
• Dielectric breakdown [16]

Additionally, there is a dynamic leakage component resulting from cell switching
and shorting the supply to the ground. The most pronounced leakage currents,
such as subthreshold leakage, shows a very strong sensitivity to Vth. In general,
the threshold voltage is one of the most important parameters regarding variability.
Much work has been done to compute scaling properties of Vth-fluctuations [42,43].
The formula for the threshold voltage can be written as [46]

Vth =Vfb + |2φp|+ λb

Cox

√
2qNchεS(|2φp|+Vsb)−λdVds, (2.13)
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where λb and λd are parameters for the drain-induced barrier lowering (DIBL) and
body-biasing effect. Then one can write the subthreshold leakage (drain leakage)
[46] as

Isub = μeffCox
W
L
(m− 1)V2

T e
Vgs−Vth

mVT

(
1− e

−Vds
VT

)
, (2.14)

the gate oxide leakage [46] as

Igate =WAg

(
Vdd

Tox

)2

exp

(
−Bg

Tox

Vdd

)
, (2.15)

and the GIDL (junction leakage) [47, 48] as

IGIDL = AWΔL
εSi

E0N0
E4

Si exp

(
− E0

ESi

)
. (2.16)

The GIDL is usually orders of magnitude larger in NMOS than in PMOS devices,
but overall negligible compared to other leakage mechanisms [4]. In deriving a
sensitivity expression, we therefore focus on subthreshold leakage variations under
varying Vth and compute the derivative of (2.14). One thus obtains

Δ Isub

Isub
=
∂ Isub

∂Vth

ΔVth

Isub
=− Isub

mVT

ΔVth

Isub
=−ΔVth

mVT
. (2.17)

Regarding the exponential dependence between the nominal current and the nominal
voltage, this result might come somewhat as a surprising. However, one has to bear
in mind that the nominal leakage current still grows exponentially with a Vth-swing.
The above sensitivity is only relative to this nominal dependence. In summary, when
scaling the technology, relative variations in the subthreshold leakage scale in a
similar fashion as ΔVth.

2.2 Methods to Describe and Analyse Parameter Variations

2.2.1 Introduction

We are interested in the statistical behavior of characteristics describing the quality
of a micro- or nanoelectronic structural element, such as leakage, delay or transition
time, say performance, output or response characteristics, denoted by y.

In particular, the values of these characteristics depend on numerous process
parameters (input variables) such as threshold voltage, oxide layer thickness or gate
lengths, e.g., Vth,Tox,ΔL, . . ., denoted by X1,X2, . . . ,Xm in the following. In other
terms, the performance characteristics y can be described by functional relationships
y = h(x1,x2, . . . ,xm). Call X the vector of process parameters XT = {X1,X2, . . . ,Xm}
of length m. Call Y a performance parameter. X1,X2, . . . ,Xm as well as Y are real
valued random variables. This is represented in Fig. 2.5.
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Fig. 2.5 Relation between
random input variables X and
random output performance
variable Y

In the following, we will consider several mathematical methods that are
provided to analyze the interaction between input and performance variables. This
gives an impression of the power and the limitations of the different approaches and
the related problems.

We assume the knowledge of the joint probability density function (PDF) fX (x)
of the process parameter vector X , or the PDF’s fX1(x1), fX2(x2), . . ., fXm(xm) of the
process parameters X1,X2, . . . ,Xm, in particular.

Our goal is the evaluation of the cumulative distribution function (CDF) FY (y),
PDF fY (y), and the moments EY k of the performance characteristic Y .

Starting point are the different possibilities to characterize random variables. The
process parameters can often be characterized by a normal distribution. However,
in a lot of cases nonnormal distributions are also of interest. This may concern
the description of process parameters but more often the performance variables.
Handling the variability of a huge number of parameters methods to reduce the
complexity is required. More details will follow in Sects. 2.2.3–2.2.6.

The characteristics of the performance variable can be investigated by analytical
methods if special requirements are fulfilled for the random characteristics of the
input variables and the function h. This is the content of Sect. 2.2.7. In general, the
dependency can be investigated by numerical methods. The interesting task is to
reduce the computational effort in this case. Related problems will be discussed in
Sect. 2.2.8.

At the end, we have to check the results by appropriate methods. This will be
discussed in Sect. 2.2.9.

2.2.2 Characterization of Random Variables

We want to refresh some terms that will be used to describe real-valued continuous
random variables. To simplify the representation, it is restricted to the one-
dimensional case. Generalizations for the multivariate case can be carried out.

The expected value of a random variable X with probability density function
fX (x) is given by

E [X ] =

∞∫
−∞

x · fX(x)dx = μX . (2.18)
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The moment of order k is defined by

E
[
Xk

]
=

∞∫
−∞

xk · fX(x)dx. (2.19)

The central moment of order k is defined by

E
[
(X− μX)

k
]
=

∞∫
−∞

(x− μX)
k · fX (x)dx. (2.20)

The second-order central moment is called variance

var(X) = E
[
(X− μX)

2
]
=

∞∫
−∞

(x− μX)
2 · fX (x)dx = σX

2, (2.21)

where the square root σX of the variance is the standard deviation of the random
variable. Let g be a mapping g : R→ R then we can generalize and determine the
expected value of the random variable given by g(X)

E [g(X)] =

∞∫
−∞

g(x) · fX (x)dx. (2.22)

Some general rules for handling the expected values can be derived. The expected
value of the random variable a ·X , where a is a constant is

E [a ·X ] = a ·E [X ] . (2.23)

Its variance is given by

var(a ·X) = E
[
a2 · (X− μX)

2
]
= a2 · var(X). (2.24)

The expected value of the sum of two random variables X and Y is always the
sum of the expected values

E [X +Y ] = E [X ]+E [Y ] . (2.25)

If two random variables X and Y are given, their covariance can be defined as
follows

cov(X ,Y) = E [(X− μX) · (Y − μY )] = E [X ·Y ]− μX ·μY

=

∞∫
−∞

∞∫
−∞

(x− μX) · (y− μY ) · fX (x) · fY (y)dxdy. (2.26)



2 Physical and Mathematical Fundamentals 31

The correlation coefficient ρX ,Y of two random variables is a normalized
covariance with values between −1 and 1

ρX ,Y =
cov(X ,Y )
σX ·σY

(2.27)

This correlation coefficient is also known as Pearson’s correlation coefficient.
Because of (2.27), the covariance of two random variables can be expressed by
cov(X ,Y) = ρ ·σX ·σY . Two random variables are uncorrelated if their correlation
coefficient equals 0. Two random variables X and Y are independent if for all R→R

maps g and h

E [g(X) ·h(Y)] = E [g(X)] ·E [h(Y )] . (2.28)

It follows from (2.28) that for independent random variables X and Y and con-
stants m and n the following relations are correct: E [Xm ·Y n] = E [Xm] ·E [Y n] and
also E [(X − μX)

m · (Y − μY )
n] = E [(X− μx)

m] · E [(Y − μY )
n]. Thus, independent

random variables are always uncorrelated. The opposite conclusion is in general not
right. Further conditions have to be fulfilled. If X and Y are jointly normal distributed
(see the following section) and uncorrelated, then they are also independent and
(2.28) can be applied.

2.2.3 Normal Distribution

2.2.3.1 Univariate Normal Distribution

The normal or Gaussian distribution often characterizes simple random variables
that are given around a mean μ . The samples of the random variable are real
numbers. Its special importance results from the central limit theorem. It indicates
that the sum of a sufficiently large number of independent and identically distributed
random variables with finite mean and variance will be approximately normally
distributed. The graph of the density function describes a bell-shaped curve. The
PDF of a normal distribution N(μ ,σ2) with mean μ and variance σ2, (σ > 0) is
given by

fX (x) =
1√

2πσ
exp

(−(x− μ)2

2σ2

)
. (2.29)

The CDF describes the probability that the random variable X is less or equal to
x. The subsequent formula describes the CDF of the normal distribution N(μ ,σ2)

FX(x) = Prob(X ≤ x) =

x∫
−∞

fx(t)dt =
1
2

(
1+ erf

(
x− μ√

2σ

))
(2.30)
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Table 2.4 Interval limits and probabilities of N(μ ,σ 2) distribution

Factor c Probability Prob(μ − c ·σ < X ≤ μ+ c ·σ ) in %

1.0 68.26894921
2.0 95.44997361
3.0 99.73002039
6.0 99.99999980

1.6448536270 90.0
1.9599639845 95.0
2.5758293035 99.0
3.2905267304 99.9

with the Gauss error function erf(x) = 2√
π

x∫
0

e−t2
dt. Thus, the probability that the

simple N(μ ,σ2) distributed random variable X belongs to the interval (μ−c ·σ ,μ+
c ·σ ] equals

Prob

(
(X− μ) · (X− μ)

σ2 ≤ c2
)
= erf

(
c√
2

)
(2.31)

Some typical values are summarized in Table 2.4

2.2.3.2 Standard Normal Distribution

The special case μ = 0,σ = 1 is called standard normal distribution N(0,1). Its PDF
is denoted by

ϕ(x) =
1√
2π

exp

(−x2

2

)
(2.32)

considering (2.29) and using (2.30) its CDF by

Φ(x) =

x∫
−∞
ϕ(t)dt =

1
2

(
1+ erf

(
x√
2

))
. (2.33)

Generation of Normal Distributed Random Variables

A N(μ ,σ2) normally distributed random variable X can be constructed by

X = μ+σ ·Z, (2.34)

where Z ∼N(0,1). This relation can be applied to create normal distributed random
numbers that are used, for instance, in Monte Carlo simulations. Standard normal
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distributed random number generators can be derived from uniform U(0,1) random
variables using the Box–Muller transformation or are available in appropriate
simulation tools.

Assuming that a random variable X is described by a normal distribution, the
parameters μ and σ2 can be estimated based on independently distributed observed
values x1,x2, · · · ,xn. Maximum-likelihood estimation is an estimation method that
determines the parameters of the distribution function in such a way that the sample
values have the greatest joint likelihood [49]. Maximum-likelihood estimators are

μ̂ =
1
n

n

∑
i=1

xi and s2 =
1
n

n

∑
i=1

(xi− μ̂)2. (2.35)

Because the estimated mean value μ̂ is used in (2.35) to estimate the variance,
the estimation of the variance is not unbiased. An unbiased estimator of the variance
based on Bessel’s correction is

σ̂2 =
1

n− 1

n

∑
i=1

(xi− μ̂)2 =
n

n− 1
· s2. (2.36)

This version is more frequently used.

2.2.3.3 Multivariate Normal Distribution

Let us now consider a m dimensional random vector XT = (X1,X2, · · · ,Xm) instead
of a simple random variable X . The components Xi of the random vector X are
simple random variables. We will discuss the case where the vector X is jointly
normally distributed. That means, each component Xi is normally distributed and
(!) arbitrary linear combinations of its components are also normally distributed.
However, the components are in general not independent. The vector of the mean
values of the components is μT = (μ1,μ2, · · · ,μm). The dependency of the random
components is described by the covariance matrix Σ . The elements of the covariance
matrix are

Σi, j = cov(Xi,Xj) = E[(Xi− μi)(Xj− μ j)] = ρi, j ·σi ·σ j, (2.37)

where E determines the expected value of a random variable, σi is the standard
deviation of Xi, σ j is the standard deviation of Xj. ρi, j (−1 ≤ ρi, j ≤ 1) is the
correlation coefficient of the random variables Xi and Xj. Thus, the PDF of the m
dimensional multivariate normal distribution is given by

fX(x) =
1

(
√

2π)m√
det(Σ)

exp

(
−1

2
· (x− μ)TΣ−1(x− μ)

)
. (2.38)

It is obvious that (2.29) is in accordance with (2.38) for the one-dimensional case.
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Fig. 2.6 Contour of a 3-ellipsoid with μT = (0,0,0), σ1 = σ2 = σ3 = 1, ρ1,2 = 0.3, ρ1,3 = 0.5
ρ2,3 =−0.2 and c = 3.7625

In the case of the univariate normal distribution, we were interested in the
probability that the samples of the random variable belong to the interval
(μ− c ·σ ,μ+ c ·σ ]. The equivalent question in the multivariate case consists in
determining the probability that the samples of the random vector X belong to the
m-ellipsoid with the contour (x− μ)TΣ−1(x− μ) = c2. It should be mentioned that
considering (2.38) the probability density of all points of this contour is the same
(Fig. 2.6).

The probability that the Nm(μ ,Σ) multivariate distributed vector X belongs to the
m-ellipsoid described above is given by [49, 50]

Prob(X− μ)TΣ−1(X− μ)≤ c2 = Fχ2
m

(
c2)= γ

(
m
2 ,

c2

2

)
Γ
(

m
2

) = P

(
m
2
,

c2

2

)
, (2.39)
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Fig. 2.7 c depending on dimension m = 1, · · · ,10 and Probability given by (2.39)

where Fχ2
m

is the CDF of the chi-square distribution with m independent variables,
γ and Γ denote the lower incomplete gamma and gamma functions resp. and P is
known as lower regularized gamma function [51]. Equation (2.39) corresponds to
(2.31) in the one-dimensional case.2

The dependency of c, dimension m and probability Prob used in (2.39) is
represented in Fig. 2.7. For m = 1, the associated c and Prob values are certainly
in accordance with Table 2.4. Furthermore, if for instance parameters are jointly
normally distributed and a performance value is within its specification limits for
all parameter samples inside of an ellipsoid, around the nominal values then this
specification is fulfilled at least with the probability given by (2.39). The greater the
distance c between contour and mean of the ellipsoid for a fixed m the greater is this
probability. This circumstance and its consequences will be discussed in more detail
in Sect. 4.6 on yield analysis methods.

A Nm(μ ,Σ) multivariate distributed random vector can be constructed by

X = μ+GGG ·Z, (2.40)

where the covariance matrix is expressed by Σ = GGG ·GGGT and Z consists of un-
correlated N(0,1) distributed normal random variables. That means Z is Nm(0, IIIm)

2 1
σ2 ∼ Σ−1 and erf

(
c√
2

)
= P

(
1
2 ,

c2

2

)
.
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distributed. Equation (2.40) is the multidimensional version of (2.34). The covari-
ance matrix Σ (det(Σ) = 0) is a symmetric positive definite matrix. Thus, Cholesky
decomposition can be used to determine the matrix elements of GGG. GGG is a lower
triangular matrix.

2.2.3.4 Bivariate Normal Distributed Random Numbers

For instance, in the bivariate case where X is N2(μ ,Σ) are jointly distributed with

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
(2.41)

using (2.38) we get the joint PDF

fX (x) = fX1,X2(x1,x2) =
1

2πσ1,σ2

√
1−ρ2

×exp

(
− 1

2(1−ρ2)

(
(x1− μ1)

2

σ2
1

− 2ρ(x1− μ1)(x2− μ2)

σ1σ2
+

(x2− μ2)
2

σ2
2

))
.

(2.42)

Because in this case Σ =

(
σ1 0
ρσ2

√
1−ρ2σ2

)
·
(
σ1 0
ρσ2

√
1−ρ2σ2

)T

the bivariate

normally distributed correlated random variables can be expressed as follows
(

X1

X2

)
=

(
μ1

μ2

)
+

(
σ1 0
ρσ2

√
1−ρ2σ2

)
·
(

Z1

Z2

)
, (2.43)

where Z1 and Z2 are N(0,1) distributed uncorrelated random numbers.
We mention that using this approach in general m uncorrelated random numbers

are necessary to describe a m dimensional multivariate random vector. To avoid
problems when m is a huge number, methods as principal component analysis (PCA)
can be applied to decrease the complexity.

As in the case of the univariate normal distribution, the vector of the mean
values and the covariance matrix can be estimated based on observed samples. The
formulas correspond to (2.35) and (2.36). However, it should be mentioned that if
each variable Xi in X is univariate normal, it can happen that the joint distribution is
not a multivariate normal distribution [52].
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2.2.4 Nonnormal Distributions

2.2.4.1 Moments of the Distribution of a Random Variable

The approximation of a given sample {y1,y2, . . .yn} to a PDF fY (y) is a well-studied
matter. Most of the methods base on the knowledge of the empirical moments
EY,EY 2,EY 3, . . ., (also the notation m1(Y ),m2(Y ),m3(Y ), . . . or even m1,m2,m3, . . .
is usual) or the central moments μ2(Y ),μ3(Y ), . . ., likewise.

Further important characteristics used for an evaluation are the skewness γ1 and
the kurtosis γ2 (also known as excess kurtosis)

γ1 =
μ3

μ3/2
2

, γ2 =
μ4

μ2
2

− 3. (2.44)

Special location measures of CDFs are called quantiles. A p-quantile Qp (0 <
p < 1) gives value, where the cumulative distribution function of a random variable
Y equals p. Special quantiles are the quartiles Q0.25 (lower quartile or first quartile),
Q0.50 (middle quartile, also called median or second quartile), Q0.75 (upper quartile
or third quartile), where the distribution takes the values 0.25, 0.50, and 0.75, resp.
Further quantiles are Q0.95, Q0.99, where p = 0.95, p = 0.99, respectively. For
instance y = Q0.95 means the probability for Y not to exceed the threshold y is 0.95,
P(Y < y) = 0.95. Instead of the quantiles, also percentiles may be used where p is
given by a percentage.

Quantile quantile plots (QQ plots) are standard tools in the explorative data anal-
ysis. They allow to compare samples of data jointly or a sample with a theoretical
distribution. An important special case is the normal quantile plot, where the values
of a normal distribution are drawn on the abscissa. If both distributions coincide, the
graph is approximately on the bisecting line. An S-like curve indicates a distribution
with a stronger kurtosis, an inverse S-like curve a distribution with smaller kurtosis.
A right skew (left skew) distribution generates a concave (convex) curve, resp.

2.2.4.2 Parameterization of Special Distributions Based on Moments

An approximation of the PDF of a performance characteristic Y of a sample can be
made by parameter fitting if a type of distribution function is assumed.

This method requires to specify a type of CDF FY (y), which can be a more
or less suited approximation only. The analytical known moments of FY (y) and
these obtained from the sample are identified, which allows an evaluation of the
parameters of FY (y).

Example. We assume the sample is Pearson type V distributed (inversed gamma
distribution). The PDF is

fY (y) =
pq

Γ (q)yq+1 exp

(
− p

y

)
, y≥ 0 (2.45)
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with

EY =
p

q− 1
, (q > 1), μ2(Y ) =

p2

(q− 1)2(q− 2)
, (q > 2) (2.46)

which immediately gives the real parameters p and q

p = EY

(
1+

(EY )2

μ2(Y )

)
, q = 2+

(EY )2

μ2(Y )
, (2.47)

where EY and μ2(Y ) can be estimated from the sample

ÊY = y =
1
n

n

∑
i=1

yi, μ̂2(Y ) =
1

n− 1

n

∑
i=1

(yi− y)2. (2.48)

The so-called method of moments is only based on the sample moments. It does
not consider the sample elements in particular.

Another approach of parameter fitting taking into account all sample values
y1,y2, . . . ,yn is the maximum likelihood (ML) approach. To estimate the wanted
parameters, the maximum likelihood function

l =
n

∑
i=1

log( fY (yi)) (2.49)

is to maximize, which implies the disappearance of the partial derivatives of l
with respect to parameters of fY (y). For the above example (inverted gamma
distribution), the conditions

∂ l
∂ p

=
∂ l
∂q

= 0 (2.50)

lead to

log p =
1
n

n

∑
i=1

logyi +
∂
∂q

(logΓ (q)) , q =
p
n

n

∑
i=1

1
yi
. (2.51)

In general, the maximum likelihood approach leads to equation systems, which
can be solved by an iteration procedure, but not explicitly.

Suitable standard distributions to approximate of the distributional behavior of
performance characteristics such as leakage or delay times are unimodal right
skewed distributions defined for y > 0. Good candidates are lognormal, Weibull,
skew t, skew normal and the wide class of Pearson distributions.

The Pearson distributions represents a wide class of distribution functions,
introduced by Pearson around 1895. All of them represent solutions of an ordinary
differential equation with seven real coefficients. According to the sizes of these
coefficients, the solutions are among others beta, Cauchy, χ2, inverse χ2, expo-
nential, Fisher, gamma, inverse gamma, normal, Pareto, t (Student), and uniform
distribution.
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The best approximation for a particular sample can be selected according to the
skewness γ1 and the kurtosis γ2, see [53].

2.2.4.3 Relationship Between Normal and Lognormal Distribution

The close relationships between normal and lognormal distribution can be applied
to investigate the logarithm log(Y ) instead of the performance Y itself. Since Y is
lognormal distributed with PDF

fY (y) =
1√

2πσy
exp

(
− (logy− μ)2

2σ2

)
, (2.52)

(y≥ 0,σ > 0), Y ∼ LN(μLN ,σ2
LN), log(Y )∼ N(μN ,σ2

N) with the relationships

μN = log

⎛
⎝ μ2

LN√
μ2

LN +σ2
LN

⎞
⎠ (2.53)

σ2
N = log

(
μ2

LN +σ2
LN

μ2
LN

)
(2.54)

and conversely

μLN = exp

(
μN +

σ2
N

2

)
(2.55)

σ2
LN = exp

(
2μN +σ2

N

)(
expσ2

N− 1
)
. (2.56)

2.2.4.4 The Skew Normal Distribution

A further promising candidate to describe performance parameters is the skew
normal distribution. Its PDF is given by

fY (y) =
2
c
ϕ
(

y− b
c

)
Φ

(
a

(
y− b

c

))

=
1

c
√

2π
exp

(
− (y− b)2

2c2

)(
1+ erf

(
a

y− b√
2c

))
, (2.57)

with −∞< y <+∞,c > 0, see Figs. 2.8–2.10. Its moments are given in Table 2.5.
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Fig. 2.8 The probability density function of skew normal distribution for b = c = 1 and various a

Fig. 2.9 The probability density function of skew normal distribution for a = c = 1 and various b
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Fig. 2.10 The probability density function of skew normal distribution for a = b = 1 and various c

2.2.4.5 General Approximations of the Distribution Based on Moments

Further suitable families of distribution functions are the generalized λ -distribution
(GLD) and the generalized β -distribution (GBD), cf. [54]. They are characterized
by four parameters. An approximation requires no further assumptions than the
knowledge of the first four moments (Table 2.6).

For the GLD, the probability density function is

fY (z) =
λ2

λ3yλ3−1 +λ4(1− y)λ4−1
, at z = Q(y), (2.58)

for λ3,λ4 >− 1
4 , where Q(y) denotes the quantile function

Q(y) = λ1 +
yλ3 − (1− y)λ4

λ2
, 0≤ y≤ 1, (2.59)

that means fY (z) is not given explicitly. Iteratively solving a nonlinear equation sys-
tem containing integral expressions of Euler’s beta function yields an approximation
for the GLD(λ1,λ2,λ3,λ4).

Its broad variety is the essential advantage of the GLD that can approximate
many different distributions.

Disadvantages of the GLD consists in the disability of solutions for

λ3,λ4 <−1
4

and 1+ γ2
1 ≤ γ2 + 3≤ 1.8(1+ γ2

1). (2.60)
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Table 2.6 Several standard distribution functions approximated by the GLD, cf. [54]

Distribution λ1 λ2 λ3 λ4

Normal N(0,1) 0 0.1975 0.1349 0.1349
Lognormal, μ = 0,σ = 1

3 0.8451 0.1085 0.01017 0.03422
χ2,θ = 3 0.8596 0.0095443 0.002058 0.02300
Exponential, θ = 1 0.006862 −0.0010805 −4.072 ·10−5 −0.001076

A further suitable class of distributions is the generalized Beta distribution
(GBD(β1,β2,β3,β4)). Its PDF is given by

fY (y) =

⎧⎪⎨
⎪⎩

(y−β1)
β3(β1 +β2− y)β4

β (β3 + 1,β4+ 1)ββ3+β4+1
2

, β1 ≤ y≤ β1 +β2

0, otherwise,

(2.61)

where β (a,b) denotes Euler’s beta function.
Knowing the sample moments EY, μ2(Y ), μ3(Y ), μ4(Y ), the parameters

β1, . . . ,β4 are obtained by iterative solving a nonlinear equation system.
The introduced methods describe the distributional behavior of the performance

parameters only, they do not incorporate the importance of the process parameters.

2.2.5 Methods to Reduce the Complexity

2.2.5.1 Principal Component Analysis (PCA)

The principal component analysis (PCA) is traditionally based on the spectral
decomposition of the covariance matrix Σ of a random vector. The objective of
the PCA is to transform a number of possibly correlated random variables into a
smaller number of uncorrelated random variables. These uncorrelated variables are
called principal components. This shall be shortly figured out.

We assume that an m-dimensional random vector X is given with mean value
E [X ] = μ and the symmetric covariance matrix

Σ = E

[(
X− μ

)
·
(

X− μ
)T

]
. (2.62)

Let λ1,λ2, · · · ,λm denote the eigenvalues of Σ . In general, Σ is positive semidef-
inite, that means, the λi, i = 1,2, . . . ,m are nonnegative real numbers. Σ can be
decomposed by use of eigendecomposition as follows

Σ =UUU ·ΛΛΛ ·UUUT , (2.63)



44 B. Lemaitre et al.

where UUU is the square matrix of orthonormalized eigenvectors of Σ with UUU ·UUUT = IIIm

and ΛΛΛ = diag(λ1,λ2, · · · ,λm) is a diagonal matrix with positive eigenvalues λ1 ≥
λ2≥ ·· · ≥ λm ≥ 0 of the covariance matrix. Equal values λi = λi+1 and zeros λ j = 0
are theoretically possible.

Thus, the random vector X can be represented by

X = μ+UUU ·ΛΛΛ 1
2 ·Z, (2.64)

where Z = (Z1,Z2 · · · ,Zm)
T is an m-dimensional random vector that is built up

by uncorrelated random variables Zi with mean value 0 and variance 1 and the

matrixΛΛΛ
1
2 = diag(

√
λ1,
√
λ2, · · · ,

√
λm). It can easily be shown that mean value and

applying (2.62) the covariance matrix of the random vector given by (2.64) equal μ
and Σ , resp.

If we now only consider the first dominant m′ eigenvalues, we can approximate
X by

X ≈ X̃ = μ+ŨUU · Λ̃ΛΛ
1
2 · Z̃, (2.65)

where Z̃ = (Z̃1, Z̃2 · · · , Z̃m′)
T is an m′-dimensional random vector that is built up

by uncorrelated random variables Z̃i with mean value 0 and variance 1. Λ̃ΛΛ
1
2 =

diag(
√
λ1,
√
λ2, · · · ,

√
λm′) is a diagonal matrix and ŨUU the matrix of the associated

eigenvectors with m rows and m′ columns. Thus, we approximate X with a fewer
number m′ of random variables. We only consider the principal contributors to the
variances of the components of X. However, the variance of the components of X is
nearly the same as the variance of the components of X̃ depending on the number
m′ of eigenvalues that are taken into consideration.

That means, the PCA is a method to project an m-dimensional space to a smaller
m′-dimensional one, m′ < m. The vector

Y =ΛΛΛ
1
2 ·Z (2.66)

in (2.64) forms the principal components. Thus, knowing the matrix UUU of normal-
ized eigenvectors of the covariance matrix Σ , the components Yi of the transformed
random variable Y = UUUT · (X− μ) are denoted as principal components. In other
terms, the principal components are linear combinations of the original random
variables, for instance the process parameters. Based on the properties of the
Euclidian norm, it can be shown that the total variance of the original and
transformed variables are equal,

m

∑
i=1
σ2(Yi) =

m

∑
i=1
σ2(Xi). (2.67)
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Considering (2.66), the eigenvalues of the covariance matrix of the original variables
indicate the contribution of the principal component Yi to the total variance, e.g.,

σ2(Yi) =
λi

m
∑
j=1
λ j

m

∑
j=1
σ2(Xj). (2.68)

The principal components are orthogonal among themselves, that means, they are
uncorrelated at all. There is no determination regarding the number m′ of principal
components, it can be chosen individually. The signal-to-noise ratio is given by :

SNR =
σ2

signal

σ2
noise

=
σ2(Y1)+ . . .+σ2(Ym′)

σ2(Ym′+1)+ . . .+σ2(Ym)
, (2.69)

where Y1, . . . ,Ym′ denotes the significant principal components and Ym′+1, . . . ,Ym

the neglected. A great ratio SNR	 1 means a good accuracy. Thus, the PCA is
a simple method to reduce the number of relevant dimensions of a relationship with
a minimum loss of information, in other terms, a simplification by reducing the
number of variables. The Cholesky decomposition of the covariance matrix does
not offer this opportunity.

If the variances of the components of the random vector X differ much, the PCA
should be carried based on the standardized random vector X′. Its components are
standardized to means of 0 and standard deviations of 1 at first. This can be done by
the transformation

X′ = DDD−1 ·
(

X− μ
)
, (2.70)

where the matrix DDD is a diagonal matrix that contains the standard deviations of
the components of X . The covariance matrix of the standardized random vector
X ′ equals its correlation matrix and is the same as the correlation matrix PPP of X .
Therefore, there is the following relation between the correlation and the covariance
matrix of X

PPP = DDD−1 ·Σ ·DDD−1. (2.71)

If the PCA is based on the standardized random variables, a scaling or shifting
of the process parameters does not change the results of the PCA. Therefore, PCA
based on the correlation matrix is sometimes preferred.

For a simple introduction to PCA, see [55] for further details [56, 57].
It has to be mentioned that the PCA by eigendecomposition and singular value

decomposition (SVD) provides (only) a representation by uncorrelated random
variables. If X is a multivariate normal distributed random vector, this is also a
decomposition into independent random variables. In this case, the components of
the random vectors Z̃ in (2.65) and (2.75) are uncorrelated (and independent) N(0,1)
distributed random variables. A decomposition of a random vector where several
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components are far away from a normal distribution into independent random
variables can be carried out by Independent Component Analysis (ICA) [58].

2.2.5.2 Complexity Reduction Based on Samples

We assume that n samples of an m-dimensional random vector are given by
{(xi1,xi2, · · · ,xim)

T}, i = 1, · · · ,n. Using the estimated mean values μ̂i =
1
n ∑

n
j=1 xi j,

we can built up a data matrix with m rows and n columns that contains the zero
centered samples corrected by their mean values.

MMM =

⎛
⎜⎜⎜⎜⎜⎝

x11− μ̂1 x21− μ̂1 · · · xn1− μ̂1

x12− μ̂2 x22− μ̂2 · · · xn2− μ̂2

...
...

. . .
...

x1m− μ̂m x2m− μ̂m · · · xnm− μ̂m

⎞
⎟⎟⎟⎟⎟⎠
. (2.72)

The matrix MMM can be used to estimate the covariance matrix of the associated
random vector X

Σ ≈ Σ̂ =
1

n− 1
·MMM ·MMMT . (2.73)

Two disadvantages are

• The occurrence of outliers, which can distort the results,
• Nonlinear relationships, which often cannot be identified.

Furthermore, for higher dimensions m, it can be difficult to calculate and store
an eigendecomposition for Σ̂ . Moving over to normalized components based on
a division of the components of MMM by the associated standard deviation may also be
recommended.

2.2.5.3 The Singular Value Decomposition (SVD)

A method in close relationship to the PCAbased on the eigendecomposition is the
SVD [59]. The SVD is based on a segmentation of the m× n matrix AAA =UUU ·SSS ·VVV T ,
where UUU is a m×m matrix with UUU ·UUUT = IIIm, VVV a n×n matrix with VVV ·VVV T = IIIn and
SSS a rectangular matrix with the same dimension as AAA. Only the diagonal entries sii

(i≤ min(m,n)) of SSS may be nonzero elements and they can be arranged in an order
of decreasing magnitude s11 ≥ s22, . . .. The positive diagonal elements are called
singular values. Let us now decompose

AAA =
1√

n− 1
·MMM =UUU ·SSS ·VVV T . (2.74)
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Then we can approximate the random vector X by using only the greatest m′ singular
values by

X ≈ μ̂+ŨUU · S̃SS · Z̃, (2.75)

where μ = (μ̂1, μ̂2, · · · , μ̂m)
T , ŨUU is a m×m′ matrix, S̃SS is a m′ ×m′ matrix, and Z̃ =

(Z̃1, Z̃2 · · · , Z̃m′)
T is an m′-dimensional random vector that is built up by uncorrelated

random variables Z̃i with mean value 0 and variance 1. For details to SVD see [57].

2.2.6 Special Problems Describing Random Variables

2.2.6.1 Inter-Die and Intra-Die Variations

We distinguish between inter-die variations and intra-die variations. Inter-die
variations are constant inside a die, but variable from die to die. Intra-die variations
are variable inside a die.

Inter-die variations cause a shifting of the mean values, whereas intra-die
variations are spatial correlated random variables or even location invariant random
variables on a die.

Differences of process parameters are caused in the fabrication process (pollu-
tion, material, and lithography defects), the environment (changes in temperature
and power supply) as well as physical effects (local focused temperature fluctua-
tions, electromigration).

With more and more shrinking structures, the intra-die variations increase.
The inter-die variation of a given process parameter can be described by

Xi = xnom +ΔXinter, (2.76)

where xnom denotes the nominal value and ΔX is a random variation being constant
for all elements of this die.

The intra-die variation of a process parameter is

Xi = xnom +ΔXinter +ΔX(ξ ,η), (2.77)

where (ξ ,η) means the spatial position on the die.
An easy mathematical model is given by [60]. The intra-die variation is an

uncorrelated random variable plus a spatial correlated random variable (both of them
are normal distributed).

Rao et al. [71] suggest a model for leakage estimation accounting for both inter-
and intra-die variations, basing on relationships (exponential function like) between
leakage current and gate length. The gate length of device can be described by

Ltotal,i = Lnom +ΔLinter +ΔLintra, j, (2.78)
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where the leakage is given by a sum of lognormal distributed random variables. This
relationship allows a split-up into the fractions of inter-die and intra-die variations.
In particular, increasing intra-die variations effects a strong increasing leakage.

2.2.7 Transformation of Random Variables by Analytical
Methods

2.2.7.1 Response Surface Methods

The Response Surface Method (RSM) was introduced by Box and Wilson [61].
A response surface can be thought to be a description of a physical relationship
by a mathematical model. Aim of response surface techniques is to find a good
approximation to describe dependencies y ≈ h(x). To construct such functions h in
an optimal way, a sequence of so-called designed experiments has to be carried out.
Also, simulation runs are of that kind.

To investigate and visualize response surfaces, so-called contour diagrams are
suitable (parts of response surfaces, where one or two parameters are changed and
all other are kept constant). Kinds of applications of response surfaces are

• Approximate mapping within a limited region
• Choice of operating conditions to achieve desired specifications
• Search for optimal conditions.

Candidates for response surface models are any analytical functions as for instance
polynomial approximations. For a first step, linear relationships (first-order designs)
often are satisfactory, for more detailed studies higher order polynomial (higher
order designs), transcendental, or other special approaches can be made.

As mentioned before, model building is based on experiments in order to
approximate the mapping between input and output variables of a system. Output
values are determined for special sets of input values. In our case, outputs may
be performance values as delay, leakage currents, and power dissipations, whereas
inputs may be process parameters or temperature and supply voltages. We would
like to briefly discuss the procedure how to set up and evaluate these experiments.

The objective of a designed experiment is to describe changes of the performance
parameter y in relationship to changes of the process parameter vector x. To
investigate those relationships, all process parameters must be varied, otherwise
relationships can be distorted by unrecorded hidden process parameters. A norming
of input parameters guarantees an equal treatment of all process parameters.
Transformations of the process parameters have the effect to changing the scale,
expanding it on one part, contracting it on the other. They cause changes of
the variances and further characteristics, which can be compensated by adequate
weightings.
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A factorial design calls a design, which is running over all combinations. With ni

levels of values of xi, i = 1,2, . . . ,m, the number of test runs of the factorial design
is n1 ·n2 · · ·nm. In general, factorial designs estimate the response surface with great
accuracy with a minimum of residual variance. Optimal designs are described for
multiple response surface approaches. In many cases, an optimal design is a regular
rotatable (rotational symmetric) operating design, e.g., for a first-order design (linear
function) a regular m-dimensional simplex with m+1 vertices and for a second order
design (quadratic function) an m-dimensional cube with 2m vertices.

With increasing number m of input parameters response surface approaches will
be more and more expensive. A possibility of simplification is the reduction of the
number of process parameters that considerably influence the result by a correlation
analysis. Let ρ(Z1,Z2) be the linear correlation coefficient between two random
variables Z1 and Z2, all those process parameters xi can be omitted, where the
absolute value of ρ(Xi,Y ) does not exceed a given threshold value.

In order to make all process parameters Xi equitable, a standardization is useful:

X ′i =
Xi− μi

σi
, (2.79)

where μi and σi are mean and standard deviation of the original unstandardized
random variable Xi. From now, all X ′i are of mean μ ′i = 0 and standard deviationσ ′i =
1. If they are normally distributed, 99.73% of Xi are inside the interval [−3,+3],
called the 3σ -limit.

To compare different response surface approaches, an iterative approach is
suggested. It helps to select an appropriate approximation – linear functions,
nonlinear with or without coupled terms, or more complicated analytical functions.
The coefficients are determined via the least square method by minimizing the
quadratical errors. The empirical residual variance

σ2
Res =

1
n−m− 1

n

∑
i=1

(
yi− h(xi)

)2
(2.80)

shows the goodness of different approaches. The relationship with the smallest σres

will be the best.
Extensions and special cases are studied in many papers.
The so-called “black-box model,” its meaning and working techniques for

polynomial approaches with noncoupled or coupled terms are introduced in [62].
A weighted least square method, which calculates sensitivities additionally to the

response surface is studied in [63].
An optimal design via response surface analysis by discussion of coupled terms,

orthogonality and rotatability is introduced in [64].
An extension to nonnormally distributed and coupled characteristics, including

the calculation of higher order moments is made in [65].
Response surface techniques are basic tools to investigate the statistical behavior

of any performance parameter y.
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2.2.7.2 Linear Models

Let us assume that the RSM delivers us a linear (more exact affine) dependency
between the input parameters x and the performance value y. That means,

h : D ⊂ R
m −→R, x �→ y = ynom+ aT · (x− μ) = ynom +

m

∑
i=1

ai · (xi− μi) .

(2.81)

Equation (2.81) is similar to a Taylor series expansion around xnom = μ ∈ D ⊂
R

m with the function value ynom. The components of a can be determined by the
parameter sensitivities at the operating point. However, it might often be better to
determine them via the difference of the performance values for different x values.
This might give a better approximation for the whole domain D of the function h.

The linear approach (2.81) offers the opportunity to study the random characteris-
tics of the performance variableY = h(X) in special cases by analytical methods. We
assume that X is N(μ ,Σ) multivariate normally distributed as described by (2.38).
Thus, it follows

E [Y ] = ynom = aT ·μ. (2.82)

If we use the representation X = μ+GGG ·Z, where Σ = GGG ·GGGT is segmented by a
Cholesky decomposition and Z is N (0, IIIm) distributed (see (2.40)) we get

E
[
(Y − ynom)

2
]
= σ2

Y = E
[(

aT ·GGG ·Z)2
]
= aT ·GGG · IIIm ·GGGT ·a = aTΣa. (2.83)

That means, Y is N
(
ynom,aTΣa

)
distributed.

Sum of n Uncorrelated Normal Distributed Random Variables

The last relation was already used in the Sect. 1.3.1 in order to discuss the
consequences of inter-die and intra-die variations. Let X be a n dimensional
N((μ ,μ , · · · ,μ)T ,σ2 · IIIn) distributed random vector. Its n components are uncor-
related and N(μ ,σ2) distributed. Using (2.82) and (2.83) and aT = (1,1, · · · ,1)2,
we see that the sum of n uncorrelated and N(μ ,σ2) variables is N(n · μ ,n ·σ2)
distributed. This fundamental result will also be used in Sect. 5.3.2.2 to characterize
strings of resistors. The situation is more complicated if h is not a linear map.
Sophisticated solutions can be found for special cases. Let y = h(x) = ∑m

i=1 x2
i

and Xi independent standard normal distributed variables Xi ∼ N(0,1). Then Y
is χ2-distributed with m degrees of freedom. Further rules can be established for
products and other complicated relationships. The distribution of the ratio of random
variables will be discussed in Sect. 5.3.2.
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Determination of the Worst Case Point in the Case of Linear Models

A worst case point xwc is the most likely parameter set at which the performance
of interest is exactly at the specification limit ywc under worst-case operating
conditions. Let h describe the relation between performance values and process
parameters under worst case operating conditions and fX the PDF of X . The
following relations have to be fulfilled

fX (xwc)→max (2.84)

h(xwc) = ywc. (2.85)

For the linear model using (2.81), we can also analytically determine the worst case
points. Considering the PDF of the multivariate normal distribution (2.38), the worst
case point xwc has to fulfill the following conditions

(
xwc− μ

)T
Σ−1

(
xwc− μ

)
→min (2.86)

ynom + aT ·
(

xwc− μ
)
= ywc. (2.87)

Using the substitution xwc = μ+GGG · zwc, we can formulate the equivalent problem

(zwc)T · zwc→min (2.88)

aT ·GGG · zwc = ywc− ynom. (2.89)

The second equation (2.89) represents a line and the first one (2.88) measures the
shortest distance between the origin of the coordinate system and the line. Thus, zwc

must be a multiple of (aT ·GGG)T = GGGT ·a. Finally, we get

xwc = μ+
ywc− ynom

aTΣa
·Σ ·a (2.90)

for the worst case point. The norm of the vector xwc−μ is called worst case distance.
Figure 2.11 demonstrates the situation described by (2.86)-(2.90). We can give a

geometric interpretation for this figure. The worst case point is that point where the
line in the domain region of h that belongs to the specification limit ywc touches an
m-ellipsoid given by (2.39).

We have to distinguish between a worst case point and a corner case point. The
corner case point is usually determined by deflecting all components of the random
vector X by an arbitrary fraction of the respective standard deviation toward the
specification limit. That means, a corner case point is given by

xcc = μ+ν ·
√
Σ̃ · sign(a) · sign(ywc− ynom), (2.91)

where Σ̃ is the matrix that only contains the diagonal elements of the covariance
matrix Σ . All other elements are zero.
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Fig. 2.11 Example of the position of a worst point xwc for a linear model

2.2.7.3 Second-Order Models

Another special case is the description of the response surface by a quadratic
function. Such a function can be represented by

h : D ⊂R
m −→R, x �→ y = ynom+aT ·(x−μ)+(x− μ)T ·BBB ·(x−μ) (2.92)

a and BBB are an m-dimensional real vector and an m×m real-valued symmetric
matrix, respectively. This special case offers the opportunity to determine the
moments of a performance variable Y = h(X) in an easy way if X is a N(μ ,Σ)
multivariate normally distributed random vector. The idea behind is to transform h
in such a manner that Y is the sum of independent random variables. We will briefly
figure out how this transformation can be carried out.
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If we use the representation X = μ+GGG ·Z where Σ = GGG ·GGGT and Z is N (0, IIIm)

distributed (see (2.40))3, we get

Y = ynom + aT ·GGG ·Z+ZT ·GGGT ·BBB ·GGG ·Z. (2.93)

GGGT ·BBB ·GGG is also a symmetric matrix with a rank r ≤ m. A spectral decomposition
delivers GGGT ·BBB ·GGG = PPP ·DDD ·PPPT , where DDD = diag(λ1, · · · ,λr,0, · · · ,0) ∈ R

m×m is a
diagonal matrix that contains the eigenvalues. PPP ·PPPT = IIIm with PPP∈Rm×m. is built up
by all normalized eigenvectors that are pairwise orthogonal. We can now introduce
the substitutions Z̃ =PPPT ·Z and Z = PPP · Z̃ and get with ã= PPPT ·GGGT ·a and completing
the square sum expressions in (2.95)

Y = ynom + ãT · Z̃+ Z̃T ·DDD · Z̃ (2.94)

Y = ynom +
r

∑
i=1

(ãi · Z̃i +λi · Z̃i
2
)+

m

∑
i=r+1

ãi · Z̃i (2.95)

Y = ynom−
r

∑
i=1

ã2
i

4λi
+

r

∑
i=1
λi ·

(
Z̃i +

ãi

2λi

)2

+
m

∑
i=r+1

ãi · Z̃i. (2.96)

The random vector Z̃ = PPPT · Z is also normal distributed with mean value

E [X ] = 0 and covariance matrix E
[
Z̃ · Z̃T

]
= E

[
PPPT Z · (PPPT Z)

T
]
= PPPT · IIIm ·PPP = IIIm.

That means Z̃ is also N(0, IIIm) distributed. As a consequence, it follows that Z̃ is built
up by a constant and a sum of independent random variables. This makes it easy to
determine not only E [Y ] = ynom +∑r

i=1λi but also higher order moments of Y .
This characteristic can be used to determine marginal probabilities at the tail of

a distribution using the saddle-point method [66].

2.2.7.4 Higher-Order Polynomial Models and Central Moment
Calculation Method

Knowing a polynomial relationship between the performance parameter Y and the
process parameters X1,X2, . . . ,Xn in the circumference of a working point x0.

Model Assumptions

The probability density function of each process parameter is assumed to be
symmetrically with respect to the x0. Therefore,

EXi = xi = x0i. (2.97)

3PCA can be applied in the same manner.
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The symmetry causes that the central moments for each Xi of odd order are

μk(Xi) = 0, k = 1,3,5, . . . , (2.98)

and the knowledge of the second, fourth, . . . , central moments (the even ordered)
is assumed, as well as the independence of the process parameters, e.g., there is
no correlation between Xi and Xj, i = j. The central moments of odd order are
especially zero for normal distributed random variables (see also Table 2.5).

Then the corresponding moments of Y given by

EY k = E

(
a0 +

m

∑
i=1

ai(xi− xi)+
m

∑
i=1

m

∑
j=i

bi j(xi− xi)(x j− x j)

)k

, (2.99)

can be calculated explicitly applying the relations recapitulated in Sect. 2.2.2.

Example.

y = a0 +
m

∑
i=1

ai(xi− xi)+
m

∑
i=1

m

∑
j=i

bi j(xi− xi)(x j− x j) (2.100)

leads to

EY = a0 +
m

∑
i=1

bii μ2(Xi), (2.101)

EY 2 = a2
0 +

m

∑
i=1

(
2a0bii + a2

i

)
μ2(Xi)+

m−1

∑
i=1

m

∑
j=i+1

b2
i j μ2(Xi)μ2(Xj)+

m

∑
i=1

b2
ii μ4(Xi).

(2.102)

Analogously, the higher moments of Y can be calculated. This approach can be
made for higher order polynomials equivalently. If a relationship y = h(x) and the
moments of the process parameters Xi are known, the central moment calculation
method allows a simple evaluation of the moments of the performance parameter Y ,
see Zhang et al. [67].

2.2.7.5 Analyzing Models by Numerical Calculations

Knowing the joint probability density function of the process parameters
fX (x1,x2, . . .xm) and the relationship describing the response surface y =
h(x1,x2, . . . ,xm), we need to determine the distributional characteristics of the
process parameter Y .
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The CDF is given by the integral formula

FY (y0) = P(Y < y0) =

+∞∫
−∞
· · ·

+∞∫
−∞︸ ︷︷ ︸

h(x)<y0, m integrals

fX (x1,x2, . . . ,xm)dx1dx2 . . .dxm, (2.103)

or transforming the integral by use of the Jacobian

|J|=
∣∣∣∣ ∂ (x1, . . . ,xm)

∂ (x1, . . . ,xi−1,y,xi+1, . . . ,xm)

∣∣∣∣=
∣∣∣∣∂xi

∂y

∣∣∣∣ , (2.104)

FY (y0)=

y0∫
−∞

+∞∫
−∞
· · ·

+∞∫
−∞︸ ︷︷ ︸

m−1 integrals

fX (x1, . . .,xi−1,xi(y),xi+1, . . .,xm) |J| dx1. . .dxi−1dxi+1. . .dxmdy,

(2.105)

and analogously the corresponding PDF

fY (y0) =

+∞∫
−∞
· · ·

+∞∫
−∞︸ ︷︷ ︸

m−1 integrals

fX (x1, . . . ,xi−1,xi(y0),xi+1, . . . ,xm) |J|y=y0

×dx1 . . .dxi−1dxi+1 . . .dxm, (2.106)

which can be evaluated by numerical integration. For a fast and efficient numerical
evaluation, the Gauss integration procedure is suggested.

If there is a large number of process parameters, the numerical calculation will
be more and more time expensive and inaccurate.

A further possibility is an imitation of the Monte Carlo simulation. Knowing
the relationship y = h(x), we can calculate the values y j corresponding to the
configurations x1, j,x2, j, . . . ,xm, j, j = 1,2, . . . ,n without a simulation run for a large
number n. Knowing the residual variance σ2

Res of the response surface, the value y j

can be adapted by addition of a normal distributed random variable Z ∼ N(0,σRes).

2.2.8 Transformation of Random Variables by Numerical
Methods

2.2.8.1 Basic Concepts of Monte Carlo Simulation

The Monte Carlo simulation is a method for uncertainty propagation, where the
goal is to determine how random variations, lack of knowledge, or errors affects
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the sensitivity, performance, or reliability of a circuit, cell, chip or system that is
modeled. Monte Carlo simulation is categorized as a sampling method because
the inputs are randomly generated from probability distributions to simulate the
process of sampling from an actual population. So we try to choose a distribution
for the input data that best represents our current state of knowledge. Practical hints
how to generate random number for several distributions can be found in [68] and
the Appendices B.1 and B.2. The results generated from the simulation can be
represented as probability distributions (or histograms) or converted to error bars,
reliability predictions, tolerance zones, etc.

Monte Carlo simulation is a random experiment, applied if an analytical
description of the system seems to be hardly or not possible. Simulations of
integrated circuits (transistors, library cells, chips, etc.) are among this category.

To obtain sufficiently many values yi = h
(
xi
)

for the performance value of
interest, a great number n of simulations has to be made via suitable software tools,
where the process parameters xi are random samples considering their probability
distribution. The determined values yi impact an impression on the probability
distribution of the random variable Y . To carry out an appropriate number n of
simulation runs, we check the confidence of the simulation results.

As a result of the Monte Carlo simulation runs, we can estimate the expected
value of Y by (2.35).

The estimated μ̂ value is itself a sample of a random variable M̂. This random
variable is the nth part of the sum of n independent random variables Yi with the
same distribution as Y . Thus, the mean value of M̂ is E [Y ]. If we know the standard

deviation σ of Y , then the standard deviation of M̂ equals
√

n·σ2

n = σ√
n
.

The precision of the sample means improves with the square root of the sample
size. This is called “Square-Root Law.”

Because of the Central Limit Theorem, the sum and also the nth part of the sum
will converge against a normal distribution. Thus, based on (2.30), we get (z > 0)

Prob

(∣∣∣∣∣
μ̂−E [Y ]

σ√
n

∣∣∣∣∣≤ z1−α/2

)
=Φ

(
z1−α/2

)−Φ (−z1−α/2
)
= erf

(
z1−α/2√

2

)
=1−α

(2.107)

with the CDF of the N(0,1) distribution is Φ . α is called significance level:

μ̂− z1−α/2 ·
σ√

n
≤ E [Y ]≤ μ̂+ z1−α/2 ·

σ√
n
. (2.108)

E [Y ] belongs with the probability 1− α to the confidence interval given by
(2.108). The so-called 1−α/2 quantiles or percentiles Φ (1−α/2) = z1−α/2(= c)
of the standard normal distribution and 1−α probability values that correspond
can be found in Table 2.4 and also in appropriate references. We get for instance
z1−α/2 = 1.959 . . . and 1−α = 0.95.
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Fig. 2.12 z1−α/2 (dashed line) and t1−α/2;n−1 values depending on n for 1−α = 0.95 (left) and
1−α = 0.99

If the standard deviation σ is unknown, it can be estimated using (see (2.36))

σ̂2 =
1

n− 1

n

∑
i=1

(yi− μ̂)2. (2.109)

Substituting Φ in (2.107) by the CDF of Student’s t distribution with n− 1
degrees of freedom it can be shown that

Prob

(∣∣∣∣∣
μ̂−E [Y ]

σ̂√
n

∣∣∣∣∣≤ t1−α/2;N−1

)
= I

(
t2
1−α/2;n−1

n− 1+ t2
1−α/2;n−1

;
1
2
,

n− 1
2

)
= 1−α,

(2.110)

where I(z;a,b) is the regularized Beta function. t1−α/2;n−1 is also known as the 1−
α/2 (one-sided) quantile of Student’s t distribution with n− 1 degrees of freedom.
Thus, E [Y ] belongs with the probability 1−α to the interval given by

μ̂− t1−α/2;n−1 ·
σ̂√

n
≤ E [Y ]≤ μ̂+ t1−α/2;n−1 ·

σ̂√
n
. (2.111)

For the probabilities 1−α = 0.95 and 1−α = 0.99, the Fig. 2.12 represents
z1−α/2 and t1−α/2;n−1 values depending on the number n of simulation runs.

It follows from (2.107) and (2.110) that for a given significance level the number
n of required simulation runs only depends on the standard deviation of the observed
random performance variable Y and not of the number of random parameters Xi. For
values greater than 30 . . .100, there is only a small difference between the z and the
t curves. That means for greater values (2.108) describes the confidence interval for
known as well as for the estimated standard deviation of Y . To check the confidence
interval using (2.108) the evaluated samples yi must be generated independently.
If this is not the case, other methods to determine the confidence interval must be
applied. Bootstrap methods are, for instance, recommended in such cases. They are
especially of interest, when the characteristic under investigation depends on the
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probability distribution of Y . We assume that the results of s simulation runs can be
used to determine one value of such a characteristic. The standard bootstrapping
technique bases on a resampling of the results yi of the simulation runs. The
elements of b bootstrap samples (y∗k1,y

∗
k2, . . . ,y

∗
ks) with k = 1, . . . ,b are obtained

by random sampling of the original yi with replacement. Based on the b bootstrap
samples, the expected value of the characteristic and the associated confidence
interval are estimated [69].

Example. Let us apply (2.108) to a simple example. The domain of Y shall be
the set of the values 0 and 1. The last value shall announce that a performance
variable (for instance the delay) is behind its limit. We are interested in the
probability p that the specification limit is violated. Assuming n simulation runs
are carried out. We observe n1 times the value 1. We estimate p̂ = n1

n and σ̂2

n =

n1·(1− n1
n )

2
+(n−n1)·(0− n1

n )
2

n·(n−1) =
n1−

n2
1
n

n·(n−1) ≈ p̂·(1− p̂)
n . Thus, it follows that the number of

Monte Carlo simulations runs to assure that the probability p belongs to the 95%

confidence interval [p̂−ν p̂, p̂+ν p̂] must meet the inequality 1.959
√

p̂·(1− p̂)
n ≤ ν p̂.

Therefore, it must be required n ≥ 1.9592

ν2 · 1−p
p ≈ 4

ν2 · 1−p
p . If we accept a value

ν = 0.1 = 10% and expect, for instance a marginal probability p of 10−4 = 0.1
promille it follows n must be greater about 4 · 106. Thus, more than a million
simulation runs are required. This shows the limitations of the method.

The Monte Carlo simulation is a simple and ubiquitous applicable utility in the
investigation of complex systems, if there is any uncertainty of the behavior of the
process parameters. However, the Monte Carlo simulation may reach its limits in
some application case because of the computational effort and/or the accuracy of
the results. That is the reason, why more efficient approaches must be investigated
[70]. Special strategies have been developed to reduce the number of simulation
runs such as stratified sampling, importance sampling or Latin hypercube sampling
(LHS). For instance, Latin hypercube sampling generates a characteristic collection
of parameter values from a multidimensional distribution. These methods are
especially of interest in cases, where small probabilities have to be determined with
a high accuracy. Yield analysis requires such methods. This will be discussed in
more detail in Sect. 4.6.

2.2.8.2 The ANOVA Method

ANalysis Of VAriance (ANOVA) is a method to detect significant differences
between samples. It can be thought as a generalization of the simple t-test. The
ratio of the mean square between different samples and the mean square within a
sample is calculated. The exceedance of a critical value given by the F-distribution
indicates significant differences inside the data set. It allows to distinct between
random and systematical differences. The assumptions for ANOVA are



2 Physical and Mathematical Fundamentals 59

– Independence of the cases
– Normality (distributions of the residuals are normal)
– Equality (variance of data in groups should be the same).

2.2.8.3 Variance Reduced Monte Carlo Approaches: Importance Sampling

As shown in the last example the standard Monte Carlo approach requires a huge
number of simulation runs to estimate small probabilities with an appropriate
accuracy. However, the accuracy can also be increased if an estimator with a lower
variance can be applied. This is the basic idea behind variance reduction methods as
stratified sampling and others [70].

One of the methods that is aimed at the same objective is importance sampling.
Instead of the original probability density function, a modified function is used
to generate random samples of parameters. Broadly speaking, it is tried to apply
a modified function that delivers more performance values in the critical region
of interest than the original one. That is, values are sampled with respect to their
importance. We will try to figure out the basics.

We assume that the parameters can be described by a multivariate random
vector X with the PDF fX . The relation between parameters and the (univariate)
performance value under investigation is given by a function h : D ⊂ R

m −→ R.
Thus, the performance value Y = h(X) is also a random variable with a PDF fY . We
are now interested in the probability I = Prob(Y > ywc) that the performance value
is greater than ywc ∈ R. For instance, to determine small values of I is a typical
task if yield shall be investigated. We will now figure out some basic steps using
importance sampling. The wanted probability is given by

I =
∫ ∞

ywc
fY (y)dy. (2.112)

The idea is now to evaluate the equation

I =
∫ ∞

ywc

fY (y)
gY (y)

·gY (y)dy, (2.113)

where gY is used instead of fY as trial distribution. To estimate I, random values
distributed with the probability density function g are generated. Thus after n
simulation runs, I can be estimated by

Î =
∑n

i=1 δ (yi) · fY (yi)
gY (yi)

∑n
i=1

fY (yi)
gY (yi)

≈ 1
n

n

∑
i=1

δ (yi) · fY (yi)

gY (yi)
(2.114)
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with

δ (yi) =

{
0 for yi ≤ ywc

1 for yi > ywc
. (2.115)

The standard deviation σÎ of the estimator Î can be determined by (see for
instance [72])

σÎ

I
=

1√
n

(
I2

I2 − 1

) 1
2

(2.116)

with I2 =
∫ ∞

ywc
fY 2(x)
gY (x)

dx and I given by (2.112).
The main and difficult task is to find a good distribution gY that can be applied in

importance sampling. In theory, the best distribution is given by [73]

bestgY (y) =
δ (y) · fY (y)∫ ∞
ywc fY (y)dy

. (2.117)

Looking at (2.116), this probability density distribution would be indeed the “best”
choice and deliver an estimator with standard deviation zero. However, this is
of little practical interest because the value I we want to estimate is needed as
denominator in (2.117). But what we see is that the shape of gY should be near
δ (y) · fY (y).

Importance sampling by scaling and translation are widely used with the density
functions

gY (y) =
1
a
· fY

( y
a

)
(2.118)

and
gY (y) = fY (y− c), (2.119)

respectively. Of practical importance is the usage of a mixed density function using
the original distribution fY and r (at least one) other distribution hiY [74]

gY (y) =

(
1−

r

∑
i=1

λi

)
· fY (y)+

r

∑
i=1

λi ·hiY (y) (2.120)

with ∑r
i=1λi ≤ 1 and ∀1≤i≤r λi ≥ 0.

Nevertheless, the choice of an adequate trial function gY for importance sampling
remains a critical task. If the performance value Y depends on a random parameter
value X , practical experience show that importance sampling often only can be
applied if a low number of parameters has to be considered.

Example: A typical case is the case where Y is normal distributed. We try to use
a translated function (2.119) as trial function for the importance sampling analysis
of (2.112). It can be shown that in this case the standard deviation of the estimator
(given by (2.116)) is a minimum when c≈ ywc. If Y depends on random parameters
X with a multivariate normal distribution fX with mean value μ , then the mean
value of an appropriate trial function should be the associated worst case point xwc.
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Fig. 2.13 Example for using standard Monte Carlo approach and importance sampling

This is the point of the acceptance region’s border with the greatest probability.
Thus, a possible choice for the mixed density function is

gX(x) = (1−λ ) · fX(x)+λ · fX(x− (xwc− μ)) (2.121)

with a λ between 0 and less than 1, for instance λ = 0.5. Then the I value can be
estimated by

Î ≈ 1
n

n

∑
i=1

δ (h(xi)) ·
fX (xi)

gX(xi)
. (2.122)

Figure 2.13 demonstrates the procedure.

2.2.9 Evaluation of Results

2.2.9.1 Statistical Tests

To check the distributional properties of some performance parameters the following
statistical tests can be useful

– χ2-test of goodness of fit
– Kolmogorov-Smirnov test.
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They allow to compare the CDF FY of a random variable Y with that of a
theoretical one F∗, or even two CDF’s FY1 and FY1 of Y1 and Y2.

Furthermore, the independency of Y1 and Y2 can be checked by the χ2-test of
independency.

2.2.9.2 Discussion to the Extreme Value Behavior

The extreme value theory is a very promising application area for an evaluation of
the quality of integrated circuits. There are manifold methods to investigate the so-
called tail behavior, to evaluate probabilities P(Y > ythr) for great differences of a
performance parameter from the working point.

One of them is the peak over threshold (POT) method.
Its basic idea is the approximation of the sample by a generalized Pareto

distribution (GPD) function

Gξ ,β (y) =

⎧⎨
⎩

1−
(

1+ ξy
β

)−1/ξ
, ξ = 0

1− exp
(
−y
β

)
, ξ = 0,

(2.123)

where the parameters ξ and β are estimated from the sample by a maximum
likelihood method, being the solution of

ξ k =
k

∑
i=1

log

(
1+

ξ y(i)

β

)
, (2.124)

k

∑
i=1

y(i)

β + ξ y(i)
=

k
1+ ξ

, (2.125)

where k is the number of excesses y(1),y(2), . . . ,y(k) of a threshold value ythr in the
sample y1,y2, . . . ,yn.

For basics in extreme value theory see [75–77]. Applications in the field of
microelectronics do not seem to appear in the related literature so far.

2.2.9.3 Projection from Cell to Full Chip

Knowing performance characteristics of a single cell, extrapolation methods to more
complicated structures are desired. An example is the extrapolation of the leakage
from a single cell to a full chip.

In the traditional cell leakage analysis, the leakage of a cell is given by

log(ICell) = a0 +
m

∑
i=1

ai xi, (2.126)
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where the xi are ΔVth,ΔTox,ΔL, . . . and a0,a1,a2,a3, . . . real coefficients and the
leakage of a full chip is given by the sum of the particular cells

IChip =
n

∑
i=1

ICell,i, (2.127)

where n is the number of cells in the chip.
An extended leakage analysis (cf. [78]) is that basing on a quadratic response

surface
log(IChip) = xT Ax+ bT x+ c, (2.128)

where A means a full rank (n · n)-matrix, n ≈ 106, a vector b ∈ R
n and a real

constant c.
To reduce the costs of the calculation of a full matrix, a low rank matrix Ã is

determined, Ã is a sum of dominant eigenvalues and eigenvectors of the matrix A,
where the difference

∥∥A− Ã
∥∥

F is minimized, ‖·‖F denotes the Frobenius norm.
This step reduces the modeling costs by a factor of approximately 102 . . .104.

A further extension , the so-called incremental leakage analysis facilitates a quick
update on the leakage distributions after local changes to a circuit. The change of a
few terms is much cheaper than a full new calculation. Simple replacements of IOld

Cell
by INew

Cell , allow to update the calculation of IChip.
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Chapter 3
Examination of Process Parameter Variations

Emrah Acar, Hendrik Mau, Andy Heinig, Bing Li, and Ulf Schlichtmann

Chapter 3 presents an overview on the sources of variations in the manufacturing
process. Section 3.1 deals with the so-called Front-End Of Line (FEOL) variations
that refer to the variations on the device level. Besides the extrinsic variability that
is caused by the imperfections of the manufacturing process, the intrinsic variability
due to atomic-level differences is gaining importance. At the nanoscale level, even
an uncertainty of a few atoms may adversely affect the parameters and the behavior
of microelectronic devices. Some details are going to be figured out in the first
section of this chapter.

Besides transistors, the interconnections of devices play a decisive role in the
determination of the time and energy behavior of a circuit. Aspects of the intercon-
nect lines on a wafer are the subject of the Sect. 3.2 of this chapter. Back-End Of
Line (BEOL) variations impact these interconnect lines. Sources of variations will
be classified in the second section. Environmental and manufacturing factors will
be compared as well as spatial and temporal variations. The sources of variability in
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the basic Cu-damascene process steps are going to be presented. Essential variations
result from physical (e.g. interferences of light) and technological (asymmetry
caused by the Chemical Mechanical Polishing Process CMP) reasons. Mainly, the
interconnect lines are characterized by their resistances and capacitances to ground
and between lines. These characteristics depend on the width and thickness of the
wires, the distance between neighbouring wires, and the height of the dielectric
layers. The dependency of the resulting variations of resistances and capacitances
on process steps will be discussed.

Mathematical models to consider process variations will be presented in Sect.
3.3. Process variations have to be modeled in a way that allows for considering
them in simulation and analysis methods used in the design process. Therefore,
methodologies that reduce the complexity of problems, break occurring dependen-
cies of parameters down and try to eliminate them have been developed. Because
of the huge number of components and complex interconnections, it is important to
distinguish between important variations and less important ones in order to achieve
a result with reasonable computational effort. This requires a compromise between
precision and clarity for the designer. Time behavior is one of the most important
characteristics of digital circuits. For that reason, the last section specifically deals
with the delays of basic logic components and examines how variations affect time
behavior. In this context, different time constraints will be considered.

Emrah Acar wrote Sect. 3.1. Hendrik Mau and Andy Heinig are the authors of the
Sect. 3.2. The last Sect. 3.3 of the third chapter was prepared by Bing Li and Ulf
Schlichtmann.

3.1 Parameter Variations in the Manufacturing Process

During this decade, the experts were hotly debating about the end of device scaling,
which is still the major driving force of the contemporary electronics industry.
Since 1990s, we can see in many circles, the scaling had been claimed dead, as
late as 2005 on a major design automation conference by one of the most famous
technology company head expert. What was claimed was not about the end of the
ever-shrinking device sizes, printability of smaller feature sizes or smaller feature
size printability with the existing manufacturing capabilities, but more about an
admission of the end of the performance gains obtained by device scaling. One
of the major reasons for this misfortune is the existence of parameter variations
within the manufacturing process that are inevitable when the devices are shrunk all
the way to their, respectively, feasible limits with imperfect lithographic equipment
operations and material processing systems.

In this section, we will discuss the contributors to variability in CMOS devices.
In this section, we will categorize, outline, and discuss about the front-end of the
line variations, also referred to as device variations. These variations are physics
based and represent themselves as parametric variations in the device models, which
represent the physical behavior of the device and its interaction with the rest of
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Table 3.1 Categories for device variations c©IBM 2006

Proximity Spatial Temporal reversible
Temporal
irreversible

Variation of chip
mean

Parameter means,
Lgate,Vth, tox

Environmental,
operating
temperature

Hot-electron effect,
NBTI shift

Within-chip
mean

Pattern density,
layout-induced
transconductance

On-die hotspots Hot-spot-enhanced
NBTI

Device-to-device
variations

Atomistic dopant
variation, line-edge
roughness,
parameter std. dev.

SOI body history,
self-heating

NBTI-induced Vth
variation

the systems. The parameter variations for the devices are major contributors to
variability issues in power, delay, temperature, and reliability of current integrated
circuits and must be assessed properly during the design stages.

Device variability, also known as Front-End Of Line (FEOL) variability mainly
refers to the variations at the device level. This affects the response of the most
active electrical components such as transistor devices fabricated in the silicon. As
previously discussed, the device performance is heavily influenced by the effective
channel length, poly gate length, spacer widths, gate-oxide thickness, and device
edge variations. Furthermore, there are other types of variations that affect the
device performance including atomistic dopant variations, self-heating, hot-electron
effect, negative bias temperature instability (NBTI), and history body effect for
SOI devices. When devices are fabricated and put in operation, these variations
can be observed by the corresponding device metrics including channel current,
threshold voltage, gate-leakage current, subthreshold current, etc. The variations in
these performance metrics are mainly caused by the parametric variations in the
device internals.

3.1.1 Categorizing Variability

An effective way of describing device variability is by utilizing a categoric approach
as shown in Table 3.1 [1]. This table is particularly useful to differentiate different
variation mechanisms and the domains in which they represent themselves. For
example, each row indicates variations that display according to their spatial
domains, that is, the variations of the chip mean statistics, and variations displayed
within-chip (also referred to as within-die), and finally variations displayed device-
to-device randomly. The temporal columns are variations displayed during the
operation of the device, some of which are reversible variations, meaning they
are transient in nature and have a reverse possibility by time. These are typically
reliability and aging variations concerning the life-time of the device and chip.
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Fig. 3.1 Random dopants in
a device c©A. Brown et al.,
IEEE Nanotechnology

3.1.1.1 Intrinsic Variability

Alternatively, we can categorize the device variations in terms of their physical
domains. [1] talks about intrinsic and extrinsic device variabilities, along with
placement-induced device variation, wear-out- and use-induced circuit variations.
In this categorization, intrinsic variations are due to the atomic-level differences
between devices even at the same layout geometries and operating/manufacturing
environments. Such differences exist in device dopant profiles, film thicknesses, and
line-edge roughness parameters due to the manufacturing process and equipment.
The random dopant profiles that are intrinsic in nature are very random and can
display major variations in threshold voltage especially beyond 65 nm technology
nodes. The causes for these variations are the implant and annealing process that
goes in a rather random positioning within the channel area. This has been a
hot topic area for quite some time [2]. By device scaling and decrease in the
dopant counts, the dopant variability within the channel area is highly emphasized.
Quantum-mechanical effects within the channel also increase the threshold voltage
variability along with doping in the gate [3]. Especially for small size devices, such
as SRAMs, this variation is highly significant and must be assessed carefully for
robustness and performance. Atomic-scale fluctuations in doping levels, and the
dopants positions also cause variations in source/drain areas, affecting the overlap
capacitance and source resistance. Figure 3.1 shows the randomly placed dopant
atoms in a top view of a device indicating the fluctuations in doping level causing
uncertainty in the source/drain edges.

Similarly, line-edge roughness (LER) effects further exacerbate the device
variations. LER is, an intrinsic device variation, mainly a product of lithographic
exposure process and uncertainties in photon counts and molecular composition of
the photoresist. Due to the LER, the line edge for the gate shows a noisy pattern
creating device length and edge variations.

Intrinsic device variations also include thickness variations for gate-oxide.
Currently, the gate-oxide thicknesses are less than 1 nm, in the range of a few inter-
atomic spacing. The variation in formation of the gate-oxide is quite significant for
tunneling leakage current, which varies exponentially. These intrinsic variations are
random for each device and are slated to increase for upcoming technology nodes
(Figs. 3.2 and 3.3).
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Fig. 3.2 Line-edge
roughness example from
a SEM camera

Fig. 3.3 Gate oxide
variations reported in
c©Momose et al., IEEE

Trans. ED, 45(3) 1998

3.1.1.2 Extrinsic Variability

Extrinsic variation is caused by the imperfections in the contemporary manufactur-
ing conditions. Unlike internal problems, it is not related to atomistic nature of the
device.

Extrinsic variation can represent themselves as sets of wafers, positional errors,
lens aberration, etc.

3.1.2 Variations from a Perspective for Model Parameters

[4] also discusses this topic in an introductory chapter and considered the device
variations within, categories more related to device model parameter terms, such
as short-channel effects, across–chip length variations, threshold voltage variations,
hot carriers, negative bias temperature instability, and body effect. [5] also shares
this perspective when the authors describe device variations in terms of model
parameters, such as device length, device width, and threshold voltage.
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Fig. 3.4 Schematic
cross-section of an
interconnect stack
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3.2 Variation of Interconnect Parameters

3.2.1 State-of-the Art Interconnect Stacks

Todays interconnect stacks are characterized by

• Up to 11 metal layers
• Use of low k material as dielectric
• Use of copper as interconnect
• Aspect ratio (h/w) of up to 2
• CD below λ/2 of litho wave length

Figure 3.4 shows a schematic cross-section of an interconnect stack as used in
MPU designs [6].

Despite the replacement of Aluminium with Copper and the introduction of
low-k material as dielectric to allow further decreasing size of interconnect wire
dimensions, the resistance and capacitance have increased such that the interconnect
delay dominates over the gate delay as shown in Fig. 3.5.
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Fig. 3.5 Delay of interconnect and gate versus feature size

This domination of the interconnect delay made it necessary to model the
nominal values of parasitic capacitance and resistance but also their variability with
increasing accuracy to predict design performance and check functionality prior to
tapeout.

Although variations of interconnect stack parameters were always occurring,
with the increase of the interconnect delay this variability is now impacting the
parametric performance of modern designs increasingly, regardless whether looked
at Analog Mixed Signal or Digital routed designs.

3.2.2 Sources of Interconnect Variation

3.2.2.1 Classification Schemes

Before discussing the sources of variability for interconnects, it is helpful to recall
some of the main classification schemes for variations and variability factors briefly.
Since they are discussed elsewhere in much greater detail, a short overview will be
given only.
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Table 3.2 Comparison between systematic and random variations

Systematic variations Random variations

Variations in data due to factors causing
the parameter of interest to be shifted
away from the expected value in a
given direction

Variations in data due to factors affecting
the value in a random manner. The
variation can be described by
distributions.

e.g., lithography, pattern proximity e.g., line-edge roughness

Table 3.3 Comparison
between environmental and
intrinsic variability factors

Environmental factors Intrinsic factors

Occurring during the
operation of a
circuit

Process variations and limitations
causing variations in geometry
and material parameters

e.g., temperature of the
environment

e.g., variation in metal line thickness

Table 3.4 Comparison
between spatial and temporal
variations

Spatial variations Temporal variations

Variation in space Variation in time
e.g., variation of line

resistivity across a
wafer

e.g., degradation of conductivity due
to electromigration

Variations can be divided into systematic and random as shown in Table 3.2.
Depending on the level of understanding of underlying causes and the capability
to model those variations accordingly, often systematic variations are considered as
random due to their complex nature and difficulty to describe.

Another scheme is to separate variation based on environmental and intrinsic
factors causing them as shown in Table 3.3.

A third and quite often used scheme is dividing up variations into spatial and
temporal as Table 3.4 shows.

Spatial variations are occurring on very different scales. While intra-cell varia-
tions can be described on a scale of nanometer up to several microns, intrawafer
variations are on a scale of many millimeters. Figure 3.6 depicts the different scales
with their respective factors.

The large ratio of the spatial scales has important consequences when modeling
variability. For instance, the variability of the line thickness caused by changes in
the surrounding metal density can be modeled as a systematic way. However, while
this is true at the wafer level and downward to the die level, it is not valid anymore
at the standard cell level. At the time of designing those cells, the metal density
of the neighborhood is not known and the metal thickness cannot be modeled as
systematic but only as random. This affects the post-layout verification as well as
the formulation of models for the electrical behavior.
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Fig. 3.6 Subdivision of spatial variations and their respective scaling factors

3.2.2.2 Source of Variability in the Cu Damascene Process

The basic Cu-damascene process steps are

• Lithography
• Etch
• Cu Deposition
• Chemical Mechanical Polishing Process (CMP)

and causing random and deterministic variations. Random variations in the resis-
tance of the interconnect, for instance, can be caused by the grain structure of
the deposited Cu film as well as by the line-edge roughness of the trench caused
by the etching and deposition processes. Deterministic variations in the electrical
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Fig. 3.7 caption

Table 3.5 Measures of the metal interconnect and their variability with causing
process steps

Variation Cause Impact Relevance

Trench CD or wire width Lithography, etch R,C High
Trench height or wire height Etch depth, CMP removal R,C High
Trench depth ILD thickness variations,

etch depth
C High

Barrier thickness Liner R Medium
Trench bottom shape Liner etch C, (R) Medium
ILD thickness Etch depth C High

parameters can be caused by dishing and erosion caused by the CMP process as
it is dependent on the metal density in the neighborhood of the interconnect line.
Figure 3.7 shows a schematic cross-section of a damascene Cu interconnect line.
The geometrical parameters used there are explained in Table 3.5 together with their
variability impact (Relevance).

3.2.3 Modeling of Variation of Electrical Parameters
of Interconnects

Table 3.5 lists the most relevant geometrical parameters determining the intercon-
nect variation. In a simplified model, those parameters can be used to model the
electrical parameter variation. Figure 3.8 shows the width w and the thickness t
of the trench, the height h of the dielectric layer, and the distance between the
neighboring wires.

With those parameters and the model as described in [7], the total capacitance
per unit length C

′
and resistance per unit length can be determined by
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Fig. 3.8 Geometrical parameters for modeling of electrical parameters

C
′a
couple =

t
s

(
1− 1.5e

t
2.5s e−

h
0.31s + 1.5e−

h
0.08s − 0.13e−

t
1.3s

)
(3.1)

C
′ f r
couple =

(
h
s

)0.2 (
1.53− 0.98e−

w
0.35h

)
· e− s

0.65h + 0.01 (3.2)

C
′a
self =

w
h

(3.3)

C
′ f r
self =

(
1.05+ 0.63e−

t
s − e−

s
1.2h

)
·
(

s
s+ 2h

)0.05( t
h

)0.25
+ 0.063 (3.4)

C
′
= ε

(
2 ·C′acouple+ 2 ·C′ f r

couple+ 2 ·C′aself+ 2 ·C′ f r
self

)
(3.5)

R
′
= ρ

1
wt

. (3.6)

Using a Monte Carlo approach, the RC-curve as shown in Fig. 3.9 can be
obtained which is in good agreement with measured data.

The correlation plots in Fig. 3.10 show the impact of the variation of t, w, and
h assuming constant pitch s+w = constant on the electrical parameters. As can
be seen from the plots, the resistance depends strongly on the thickness of the line
and slightly on the width. The height of the dielectric does not have an impact as
expected. For the capacitance variation, it can be seen that the width and thickness
impact dominates in comparison with the height.



80 E. Acar et al.

Fig. 3.9 Resistance vs. capacitance scatter plot

Fig. 3.10 Correlationsplots
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3.2.4 Modeling of Variation in Post Layout Functional
Verification

When performing post-layout functional verification of electrical circuits, it is
necessary to check not only the correct function at nominal values, but also under
variation of the electrical parameters of transistor and interconnect parasitics.

The most common way is to determine the variability of height, width, and
thickness of the interconnect parameters used in Fig. 3.8 from electrical mea-
surements and then to derive special backend corners based three sigma values
of the parameters. By doing this corners with maximum and minimum coupling
capacitance, maximum and minimal resistance as well as maximum and minimum
RC product can be derived resulting in a least seven corners.

Since this approach requires multiple post-layout extractions and resulting files
(SPEF, SPF, DSPF) contain data only of one particular corner, there have been
efforts to combine all into one extraction run and result file providing so-called
sensitivity extraction. This sensitivity extraction adds sensitivity data to the ex-
tracted parasitics about by how much a value will change based due to variation
of an interconnect parameter such as width.

3.3 Mathematical Modeling of Process Variations

Parameter variations can be classified based on whether the variation occurs within
one die (intra-die variations) or between different dies (inter-die variations). The
latter variation can further be classified into die-to-die, wafer-to-wafer, and lot-to-
lot, which however usually does not have a significant influence on analysis and
optimization approaches for the design. Process parameter variations are modeled
in parameters for transistor level simulation, which in turn are the foundation for
modeling on gate level. Gate-level models are typically employed for statistical
analysis and optimization during the design process. The timing and power behavior
of gates can be modeled in linear or higher-order dependency on the process
parameters. A linear model, commonly called the canonical model, has emerged as a
de-facto standard in research. Models also differ in how they account for systematic
vs. purely random variation, and how they incorporate correlation (both spatial and
resulting from the circuit structure). In the following, we will use gate delay as an
example to demonstrate the modeling of process variations. Other properties of a
gate, e.g., power consumption, may be modeled similarly.

3.3.1 Decomposition of Process Variations

Process variations are usually classified into different categories [8], as shown in
Fig. 3.11. Systematic variations can be determined before manufacturing. Once
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Fig. 3.11 Variation classification, adapted from [8]

physical synthesis is finished, these variations can be measured and modeled with
fixed values. A typical example of systematic variations is the randomness of
interconnect metal thickness. After layout and routing, the patterns of interconnects
can be accurately analyzed. Therefore, the layout-related metal thickness variations
in different areas can be predicted. With this information, the resistance and
capacitance of interconnects can be modeled more accurately in sign-off analysis.
Regarding active devices, gate length is affected by variations in lithography for
mask optimization. These variations can be determined by computing the post-
OPC gate lengths on the critical path to achieve more accurate timing analysis
results [9]. In both cases, systematic variations are represented using fixed values
instead of statistical variables. This is more accurate than simply analyzing circuit
performance assuming random variations in metal thickness and from lithography.
Both effects, however, can be incorporated only after physical synthesis. During the
first iteration of logic synthesis, the circuit can only be optimized corresponding to
the performance by modeling systematic variations as random variables.

Unlike systematic variations, nonsystematic variations cannot be determined
before manufacturing. These variations result from the inaccuracy of process control
and are independent of circuit design. Therefore, they can only be modeled with
random variables in the complete design flow. Examples are variations in doping
density and in layout-independent metal thickness of interconnects.

According to their spatial characteristics, nonsystematic variations are further
partitioned into inter-die and intra-die variations. Inter-die variations affect all
devices and interconnects on a die equally, i.e., all devices and interconnects have
fully correlated random components. On a wafer, inter-die variations come from
the nonuniformity of process control across the wafer surface. Therefore, chips at
different positions have different performances. For example, the chips in the center
of a wafer are normally faster than the chips near the periphery of the wafer. This
type of variation is also called die-to-die variation. Similarly, wafer-to-wafer and
lot-to-lot variations exist because of process control between wafers and lots.

Intra-die variations affect devices or interconnects inside a die differently. The
physical parameters of two devices can shift in different directions, i.e. they are not
fully correlated. Intra-die variations come from the inaccuracy of process control
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across the surface of the die. For example, there is still a variation residue after
modeling the systematic and inter-die variations of critical dimension (CD).

Furthermore, intra-die variations can be partitioned into a correlated part and
an independent part. Although intra-die variations on devices or interconnects are
not fully correlated, they still show a similar trend to some degree. This trend can
be modeled by sharing the same variables as a part of intra-die variations, or by
establishing correlation between these variations directly. Besides the correlated
variation component, intra-die variations still exhibit a purely random effect. The
purely random variations come from the random fluctuation during manufacturing
processes, which thus imposes its effect on each device without correlation. Because
of the inaccuracy of manufacturing equipments and process control, purely random
variations exist in nearly every processing step. Examples are the random distortion
of the lens used during the photolithography step and the purely random variation
of the doping.

3.3.2 Correlation Modeling

Process variations are normally measured as a lumped distribution. Thereafter,
the measured data are decomposed into different components [10]. The overall
variations are then modeled as sums of these decomposed variables. Inter-die vari-
ations are shared by all devices or interconnects on the chip and cause correlation
between their physical parameters, called global correlation or inter-die correlation.
Because the uncertainties during manufacturing process vary continuously, intra-die
variations exhibit proximity correlation. This correlation depends on the distance
between two devices on the die [11]. The larger the distance is, the smaller the
correlation becomes. For convenience, the correlation from intra-die variation is
called local correlation.

Different methods are proposed to model correlation between process parame-
ters. The quadtree model in [12, 13] uses different grid layers to model correlation
between process parameters, as illustrated in Fig. 3.12. For a process parameter,
a variable is assigned to each grid cell at each level. The process parameter of a
device is modeled as the sum of all the variables of the grid cells directly above
this device. The correlation between process parameters is established by sharing
the same variables of the corresponding levels. Because the variable at level 0 is
shared by all devices, it models the correlation from inter-die variation. The local
correlation is modeled by sharing the variables with higher level numbers. If two
devices are nearby on the die, they share more variables so that they have more
correlation. If two devices are near enough to be located in the same grid cell at
level 2, they become fully correlated. By increasing the number of grid, the accuracy
of correlation modeling can be increased. However, this model can not represent the
local correlation uniformly. For example, the distances from (2,4) to (2,1) and from
(2,4) to (2,13) are equal. From this model, the parameters in (2,4) and (2,1) share
the same variable at layer 1, but the same parameters in (2,4) and (2,13) do not
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Fig. 3.12 Quadtree correlation model, adapted from [12, 13]

Fig. 3.13 Uniform grid
correlation model [14]
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share such variable. Consequently, correlations between parameters with the same
distance may be modeled differently in this model. This contradicts the fact that
intra-die correlation depends on distance between devices because of the proximity
effect during manufacturing process.

Another correlation model is proposed in [14]. In this model, the die area is
partitioned into a uniform grid, as shown in Fig. 3.13. For each grid cell, a random
variable is assigned. The correlations between these random variables are computed
or identified from the characterization of manufacturing technology, for example
with the method in [15]. For n grid cells on the die, in total n variables are assigned.
For the convenience of statistical timing analysis algorithms, the n correlated vari-
ables are decomposed into linear combinations of independent random variables,
using an algorithm such as principal component analysis (PCA) [16]. After this
decomposition, only the independent variables with large coefficients are kept in
the linear combinations, so that the number of variables modeling correlation can
be drastically reduced. This correlation model is very flexible because it can handle
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any correlation between process parameters. The only reason to partition the die
area to grid is to reduce the number of variables. For better modeling accuracy, a
smaller cell size can be used, at the expense of a larger number of variables and
larger correlation matrix. A similar correlation model is proposed in [17], where
hexagonal grid cells are used to partition the die area. The advantage of such a model
is that a grid cell in the partition has only one type of neighboring cell. Additionally,
the distances from the neighbors of a cell to it are equal. This makes the hexagonal
partition a better approximation in modeling proximity-related correlations.

Additionally, a correlation model is proposed in [18]. In this model, the die
area is partitioned into grid with square cells. A process parameter in a grid cell
is modeled as the sum of independent variables assigned to the corners of the grid
cell. That is, each process parameter is decomposed into a linear combination of
four independent random variables. This method can generate simple parameter
decomposition, but no theoretical proof is provided for accuracy. Additionally, the
method to map correlation data to the proposed model is not explained.

The correlations in the discussed models are all first-order. This is only enough to
model the dependency between Gaussian random variables. To incorporate higher
order dependency, methods such as independent component analysis [19] can be
used, e.g., in [20, 21].

3.3.3 Process Parameter Modeling

The first step of statistical timing analysis is to model process variations in a form
that can simplify modeling of gate delays and arrival time propagation. A process
parameter is a sum of components modeling inter-die variations, intra-die variations,
and purely random variations. The additive form of a process parameter p is
written as

p = p0 + pg + pl + pr, (3.7)

where p0 is the nominal value of the parameter. pg models the inter-die variation
and is shared by all gates. pl is the intra-die variation specific to each gate and
is correlated with each other. pr is an independent variable modeling the purely
random effect in manufacturing processes.

The parameter p for a device may have Gaussian or non-Gaussian variations. In
[14, 22, 23], all process variations are assumed as Gaussian in order to reduce the
complexity of timing analysis. The Gaussian assumption, however, cannot provide
enough accuracy because only the first two moments of process parameters are
captured. To improve modeling accuracy, non-Gaussian variables are used in [24].
Additionally, the independent component analysis based non-Gaussian model is
proposed in [20, 21]. In both methods, the random variables representing process
variations can be in any form in addition to Gaussian.
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3.3.4 Gate Delay Representation

Statistical timing analysis uses abstracted gate delays to evaluate circuit per-
formance. A gate delay is defined as the time difference between points of
measurement of the input and output waveforms. For a given input waveform,
the output waveform of a gate depends on transistor parameters of the gate. For
example, the effective gate length affects the gate delay dominantly. Assuming that
all process parameters are denoted as a vector p, a gate delay W is expressed as

W = f (p), (3.8)

where f denotes the mapping function from process parameters to the gate delay.
The mapping function is theoretically very complex. Therefore, SPICE simulation
is often used to obtain accurate samples of gate delays.

With process variations considered, a gate delay becomes a random variable.
Because of the correlation between process variations, gate delays are correlated
with each other. For example, the delays of two gates vary in a similar way when
these gates are near on the die. When their distance is large, both gate delays exhibit
more randomness. In order to incorporate the correlation from process variations,
gate delays are described as simplified functions of process parameters, instead of
identifying the numeric characteristics, e.g., means and standard deviations, of their
distributions directly. In other words, the mapping function f in (3.8) is replaced
with a simpler form at the expense of accuracy.

The canonical delay model in [14, 23] uses linear mapping functions. A gate
delay in this method is expressed as

W = kp, (3.9)

where k is the coefficient vector and can be computed by sensitivity analysis [13],
or identified by linear regression [25] from the results of SPICE-based Monte Carlo
simulation.

According to (3.7), a parameter is partitioned into different parts. If each variable
in (3.9) is replaced into the form of (3.7), the gate delay is transformed as

W = kp0 +kpg +kpl +kpr =W0 +kpg +kpl + pτ . (3.10)

In (3.10), p0 represents nominal values of parameters and all its elements are
fixed, so that kp0 can be merged into a constant W0. Because the first-order moments
are merged into W0, the means of pg, pl and pr are all zero. Representing inter-die
variations, pg is shared by all gate delays. pr models purely random manufacturing
effects, so that it is merged into one random variable pτ . Unlike the other vectors in
(3.10), pl models correlated intra-die variations and needs further processing.

As discussed in Sect. 3.3.2, proximity correlation exists between within-die
variables. Consider two gate delays Wa and Wb,
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Wa =W0,a +kapg +kapl,a + pτ,a (3.11)

Wb =W0,b +kbpg +kbpl,b + pτ,b, (3.12)

where pl,a and pl,b are correlated random variables. During arrival time propagation,
these random variables cannot be merged because of their correlation. Additionally,
the correlation between pl,a and pl,b causes the computation of the correlation
between Wa and Wb to be very slow, as will be explained later.

In order to reduce the runtime of timing analysis, PCA [16] is used to decompose
correlated random variables. Assume that variable vector pl with m elements is the
vector containing all the correlated random variables modeling within-die process
variations, so that pl,a and pl,b both are parts of pl. The correlation matrix of pl is
denoted as C. Under Gaussian assumption, each element in pl can be expressed as
a linear combination of a set of independent components after applying PCA.

pl = Ax≈ Arxr, (3.13)

where A is the orthogonal transformation matrix formed by the eigenvectors of
C. x = [x1,x2, . . .xm]

T is a vector of independent Gaussian random variables with
zero mean. The standard deviation vector of x is formed by the square root of
eigenvalues of C corresponding to the eigenvectors in A. If there are eigenvalues
which are very small compared to other larger eigenvalues, the corresponding
variables in x contribute relatively less than other variables in (3.13). Therefore,
these variables can be discarded to reduce the number of the independent variables.
Assume x is truncated to xr with nr variables. The original intra-die variations can
be approximated by linear combinations of the nr independent random variables xr.
Ar is a column truncated matrix of A.

Because any random variable from pl can be approximated by a linear combina-
tion of xr by selecting the row of Ar corresponding to the random variable, as shown
in (3.13), the gate delay in (3.10) can be written as

W =W0 +kpg +kAr
sxr + pτ (3.14)

= c0 +
n

∑
i=1

civi + crvr, (3.15)

where Ar
s is formed by the rows of Ar corresponding to the variables of pl in (3.10).

The gate delay in (3.14) is generalized into the canonical linear delay form [23] as
in (3.15), where vi are independent random variables and shared by all gate delays.
vr is the purely random variably specific for each delay. c0 is the nominal value of
the delay. ci and cr are the coefficients of the random variables. The correlations
between gate delays are represented by sharing the same set of random variables vi.

In the canonical delay model (3.15), the mapping function f from parameters
to delays is assumed as linear. With such linear delay form, arrival times can be
propagated very fast with simple computations [23]. The expense of this simple
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assumption is the loss of accuracy [26,27]. To improve the approximation accuracy,
quadratic timing models are proposed in [18, 27, 28], where a gate delay is
mapped as a second-order function of process parameters. If PCA is still used
to decompose correlated random variables, a parameter in the quadratic form is
replaced by a linear combination of uncorrelated random variables. For a second-
order term, this replacement results in many cross terms, which make timing
analysis complex and slow. To reduce the number of cross terms in a quadratic
model, orthogonalization method is used in [27]. In addition to quadratic models, a
gate delay is mapped as a linear function of independent Gaussian and non-Gaussian
variables in [20, 21]. A more general delay mapping method is proposed in [24]. In
this model, a gate delay is mapped as a sum of linear and nonlinear functions of
Gaussian and non-Gaussian random variables. Therefore, it can handle any delay
functions without limitation. Using non-Gaussian random variables can improve the
modeling accuracy of process variations; using nonlinear functions can improve the
accuracy of approximating the mapping from process parameters to gate delays and
interconnect delays. Both methods, however, increase complexity in the following
steps of statistical timing analysis.
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Chapter 4
Methods of Parameter Variations

Christoph Knoth, Ulf Schlichtmann, Bing Li, Min Zhang,
Markus Olbrich, Emrah Acar, Uwe Eichler, Joachim Haase,
André Lange, and Michael Pronath

Chapter 4 presents various dedicated methods that support variability handling in
the design process. Using these methods, the designer can analyze the effect of
variations on his design and identify possible improvements.

An important requirement for modeling digital circuits is a precise characteriza-
tion of the used library cells. The first two sections are devoted to this task. In Sect.
4.1, models will be described which characterize the timing behavior of digital logic
cells. In addition, different approaches to model the timing will be explained. These
approaches will be evaluated with respect to their efficiency. The main part of the
section is dedicated to current source models (CSMs) which represent the frontier
of academic research. Their structure will be explained and an efficient concept
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for characterizing them will be shown. The first section draws the conclusion that
CSMs are well-suited to deal with the requirements of advanced nanometer process
technologies.

In Sect. 4.2 of this chapter, methods to generate individual cell models adapted to
the accuracy requirements will be presented. The approach is based on rapid higher-
order polynomial modeling. The developed methods enable an automation of the
characterization of huge libraries. The effectiveness of the approach will be shown
by experiments on industrial standard cell libraries which will demonstrate gate
level leakage characterization. However, this approach is not restricted to a special
circuit performance.

Statistical Static Timing Analysis (SSTA) is one of the advanced approaches that
handles variations of gate and interconnect delays in the design of digital circuits.
Therefore, Sect. 4.3 describes how SSTA works and which results can be expected.

Besides time performance, energy consumption is the second most important
constraint for the design of digital circuits. The static as well as the dynamic
energy consumption are going to be demonstrated in Sects. 4.4 and 4.5. Recently,
leakage power has become a more and more dominant performance limiter in
integrated circuit technologies resulting in limitations of downscaling. Thus, plan-
ning, estimation, and optimization of leakage power have become a major design
objective. Different types of leakage current are described in Sect. 4.4. In addition,
leakage models for logic cells and circuits will be introduced. Methods for leakage
estimation for a device will be described and generalized to larger circuit blocks.
Finally, parametric variability of leakage is also going to be discussed.

In Sect. 4.5, two aspects of dynamic power consumption are going to be covered:
first, a probabilistic method for the analysis of glitches and the additional power
caused by them, and second, a new digital simulation method for precise statistical
power estimation. The second approach uses cell libraries extended by additional
process parameter data which are accessed directly by the cell model during digital
gate-level simulation. This enables a process-dependent analysis of timing and
power as well as an increased simulation accuracy by direct consideration of signal
slope times, which is also suitable for advanced glitch detection.

Section 4.6 introduces the basics of a commercial tool that considers the
operating range and variations of the manufacturing process in order to increase
the yield especially for basic building blocks given on the transistor level. To this
end, the concepts of worst-case point and worst-case distance will be introduced
and applied on nominal optimization and a design centering procedure. The main
optimization steps will be explained with the help of an example.

Section 4.7 deals with concepts for robustness analysis. Robustness analysis aims
at determining the contributors to circuit performance variability. A measure for
cell robustness will be defined that takes into account the variability of different
performance parameters. Such a measure allows for evaluating and comparing
different realizations of a cell or a cell library with respect to their robustness. By
using different kinds of examples, the section provides several hints for the usage of
the robustness analysis.
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In summary, this chapter gives an overview on different aspects and current
possibilities that allow for investigating circuits with regard to manufacturing
variations and for reducing the influence of these variations on the final design.

Christoph Knoth and Bing Li are the authors of Sects. 4.1 and 4.3 respectively.
Ulf Schlichtmann delivered contributions to both sections. Min Zhang and Markus
Olbrich are the authors of Sect. 4.3. Emrah Acar wrote Sect. 4.4. The Sect. 4.5 was
written by Markus Olbrich, Uwe Eichler and Joachim Haase. Authors of the Sects.
4.6 and 4.7 are Michael Pronath and André Lange respectively.

4.1 Characterization of Standard Cells

In industrial design flows, library standard cells today are represented in Nonlinear
Delay Models (NLDMs). This model and its limitations are described here. It has
been recognized since a number of years that this model appears to be increasingly
incapable of dealing with the requirements of advanced process technologies.
Almost a decade ago, the Scalable Polynomial Delay Model (SPDM) was proposed
as an alternative, but failed to catch on in industry. Today, the focus is on current
source models (CSMs). EDA companies have proposed two types of CSM, and
there is also much academic research on CSMs. Unfortunately, the term CSM
refers to significantly different approaches in the commercial realm (used by
EDA companies) and in academic research. The concepts and shortcomings of
commercial CSMs will be explained as well in the following as an overview of
current academic research on CSMs will be given. We will also describe how the
required CSM parameters can be determined by efficient characterization methods.

4.1.1 Introduction

Digital integrated circuits are typically implemented using at least partly a semi-
custom design methodology based on standard cells. These standard cells have been
designed, sized, and layouted individually. They are provided as libraries to the
design teams, which then use these cells to create logic functions. The important
information to describe a standard cell are logic function, area, power consumption,
driver strength, and timing. In this section, the focus is on timing information of
standard cells. Different delay models at gate level are reviewed. The approaches
are sorted by increasing accuracy, which also reflects the chronological order in
which they were introduced.

In the following, a logic stage is defined to span from the input of a logic
cell to the input of subsequent logic cells while including polysilicon and metallic
interconnect. With this definition, the total signal delay of a stage is given as

dstage = dintrinsic + dload + dic. (4.1)
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Hereby dintrinsic denotes the intra-cell delay contribution for switching transistor
capacitances and charging internal nets. dload accounts for the time needed to charge
the attached interconnect and input capacitances of connected logic cells. dic finally
models the propagation delay along the passive interconnect. Despite the formal
separation in (4.1), stage delays are definitely nonlinear functions and these three
influences cannot be distinguished so clearly. On the other hand, at the time of
generating the timing library for the standard cells, nothing is known about the
loads and interconnects which have to be driven. The only basis for all timing
models is the SPICE subcircuit file. It may include parasitic resistors and capacitors
from the layout extraction. By performing transient simulations with the individual
subcircuits, timing information is obtained and can be used to create a timing model.

4.1.2 Fixed and Bounded Delay Model

In the early days of IC design, power consumption was of minor interest and also
the potential for delay optimization on gate level was neglected. In fact, gates for
driving different loads have been sized to match a fixed, globally common, delay
value [1]. Since feature sizes were large, interconnect resistivity was small and thus
interconnect delay negligible. Hence, the total delay of a combinatorial block was
known before placement and routing as the number of stages in the longest path.

To meet the demand for more area and power efficiency while raising operating
frequencies, standard cells have been designed to have different delay values. Hence,
instead of a globally common delay value, each cell was described by an individual
fixed cell delay dintrinsic. A variant of the fixed delay model is the bounded delay
model, which states a minimum and a maximum delay value for each cell. Despite
their limited accuracy, such models are still valid in early design phases for quickly
providing delay estimates.

4.1.3 Load-Slew-Models

With exponentially decreasing VLSI feature sizes and increasing instance count,
capacitive interconnect load and interconnect delay became significant. Since the
actual workload of a cell is unknown before place and route, delay models must
be parametric in terms of the capacitive output load. The continued shrinking of
feature sizes also involved lowering the supply voltage to reduce field strength
and leakage currents in MOS transistors. The reduced voltage swing required more
accurate signal models than the step function [2]. The new waveform model used
the transition time trin, also named slew or slope, to describe the finite time needed
for switching logic values. Avoiding ambiguous tails at the beginning and end of
transitions, slew refers to a voltage span from typically 10–90% or 30–70% of the
total voltage swing.
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Fig. 4.1 NLDM cell delay
lookup table

trin Cload

delay

4.1.3.1 Nonlinear Delay Model (NLDM)

The nonlinear delay model (NLDM) is widely used in industry. It provides values
for output slew and cell delay as a function of capacitive output load Cload and
input transition time trin. These values are stored in lookup tables and are provided
for every timing arc, i.e., form every input pin to every output pin and for all
combinations of other input pins that make the cell sensitive to the switching input
pin. Figure 4.1 depicts the tabulated delay values for a buffer cell. The values of
Cload and trin are usually stored together with the lookup table.

Generating NLDMs is done by attaching capacitors of different values to the
output of the cell and applying input signals with different transition times. Usually,
the waveforms are smoothed ramp waveforms which represent typical waveforms.
For each of these combinations the delay values and output slew are measured. The
values are stored using one of different industry standard timing formats: Synopsys’
Liberty format (.lib), its extended version Advanced Library Format (ALF), or
Cadence’s Timing Library Format (TLF).

4.1.3.2 Handling Parameter Variation

The cell delay obviously is also a function of process parameters such as oxide
thickness as well as the environmental parameters supply voltage and temperature.
To account for their impact, cell performances are analyzed at different points of the
parameter space, denoted as Process-Voltage-Temperature (PVT) corners (see also
Sect. 2.2 and [3]). The PVT corners are obtained by enumerating all permutations of
parameters being set to their bounds or three sigma values. Since the delay is usually
monotonic in a parameter, the PVT corners are the parameter vectors for which the
cells have extreme delay values.1 PVT corners are derived for the whole library and

1Finding corner cases is nontrivial not only because of the large number of parameters. For some
parameters, such as temperature, nonlinear dependencies have been observed [4].
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not for individual cells or designs. Since PMOS and NMOS transistors, and hence
rising and falling delay, are affected differently by parameters, four different corners
are distinguished: fast–fast, fast–slow, slow–fast, and slow–slow. The whole cell
library is characterized at each of these four PVT corners. Static timing analysis is
then performed for the different PVT corners using the corresponding timing library.

In addition to global variation which affects the entire chip and is modeled by
PVT corners, there is also local variation of process parameters, supply voltage
and temperature. Each cell instance will therefore have an individual delay, which
slightly differs from the value stored in the library. This complicates timing
validation since it is possible that although the chip is generally slower than expected
(slow–slow PVT corner), signal propagation along individual paths might be not
as bad. This could result in violating the hold time constraint if such a path is
the clock path to the registers at the end of a combinatorial block. To account
for such scenarios, the individual variations of supply voltage and temperature are
estimated by power and IR drop analysis. Their impact on cell delay around the
defined extreme PVT corners is then modeled by applying linear scaling factors
to the cell delay, known as “k-factors”. These k-factors are also used in when a
chip is to be designed with a slightly different supply voltage and/or operating
temperature profile than the cell library was characterized for, to avoid the costly
effort of recharacterizing an entire cell library.

Similarly, the derating factors for on-chip variation (OCV) account for local
variation of process parameters. Hence, for the above-mentioned scenario different
OCV derating factors might be set to decrease signal delay along the clock path to
the capture registers while increasing delay values of cells in data paths [5]. Note
however that derating factors have no physical meaning. They are used to artificially
worsen the timing behavior but cannot be related to particular parameters.

Newer approaches refine this concept to reduce pessimism which is introduced
by assigning one derating factor for all data paths and one to all clock paths. Since
OCV models statistical variation of cell delays, both the number of cells in a path
and its geometrical footprint after placement should influence the derating factor.

This methodology is hence denoted as level-based and location-based OCV [6].
Foundries provide lookup tables with derating factors in terms of total number of
cells in the path and length of the diagonal of the enclosing rectangle. An example
is given in Fig. 4.2. The more cells in a path, the smaller the derating factor to
account for statistical averaging of faster and slower cells. If the placement is already
known, also the distance can be used to further adjust derating factors. Note also that
the clock paths begin at the branching point. This is done to reduce the so-called
common path pessimism; cells like the first buffer might be slow or fast, but they
contribute the same delay to both paths.

4.1.3.3 Scalable Polynomial Delay Model (SPDM)

NLDM standard cell libraries might require a significant amount of memory (see
also Sect. 4.1.6). For every timing arc separate lookup tables of delay values and
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Fig. 4.2 Advanced on-chip
variation based on levels and
location

FF FF

clock generator

Distance Level

1 2 4 8 16
0 1.14 1.13 1.13 1.12 1.09

1000 1.15 1.14 1.14 1.12 1.10
2000 1.17 1.16 1.14 1.13 1.12
4000 1.19 1.17 1.16 1.15 1.14

output transition times are generated for rising and falling transitions. Since the
whole timing library must be kept in memory during timing analysis, it is desirable
to express cell delays more compactly.

It can be seen in Fig. 4.1 that for small transition times trin the cell delay of this
buffer is almost linearly dependent on the output load CL. For large values of trin

a square root function fits better. Hence, the superposition of different functions of
output load CL and transition time trin can be used to provide characteristic delay
equations such as

d = k1 + k2 ·CL + k3 ·C3
L +(k4 · k5 ·CL) · trin. (4.2)

These templates of delay equation are fitted to the delay values measured during
simulation by adjusting the coefficients ki. Still the selection of adequate template
functions is nontrivial. The most general approach for delay approximation is the
scalable polynomial delay model (SPDM). The model consists of a sum of base
functions φ , weighted by model coefficients ki.

d =
nk

∑
i

kiφi(x) =
nk

∑
i

ki

nx

∏
j=0

x ji
j with ji ≤ mx. (4.3)

These base functions are polynomials in terms of the nx model parameters x j

with a maximum order of mx. This framework of (4.3) also allows to model the
delay dependence on process parameters by including them into the vector of
model parameters. This unified delay equation therefore has two major advantages
compared to NLDM. The first is a much more compact library representation.
Typical NLDMs use 7×7 lookup tables indexed by output load and transition time.
To provide delay values for three different supply voltage, three temperatures, and
three process parameters, already 3 ·3 ·3 ·49= 1,323 entries have to stored. On the
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other hand, the SPDM uses a much smaller number of coefficients. Furthermore, this
SPDM yet provides more information. While NLDM accounts for small parameter
changes by applying linear derating factors to all values in the lookup table, SPDM
also captures higher order effects and cross term dependencies of parameters, output
load, and input transition time. Nonetheless, SPDM is not widely used in industry.
One reason might be the higher complexity in library generation. The polynomial
order must be chosen with care to trade between required accuracy and number
of coefficients. On the other hand, while polynomials of high order are needed for
accuracy at the measured points, this might lead to severe errors elsewhere due
to oscillation. Library generation therefore not only requires additional time and
manpower to fit the models but also to verify library consistency and quality.

Finally, since the introduction of SPDM in 2000 the amount of available memory
and hard disks space has continuously increased and eased at least NLDM’s size
drawbacks.

4.1.3.4 Receiver Modeling

The presented NLDM and SPDM timing models provide cell delays as functions
of the transition time of the input signal and the capacitive load. This output load
represents the interconnect and the receiver models of all attached logic cells.
Hence, besides the timing information output slew and delay, every cell provides
at least one value describing its input capacitance. This capacitance represents the
amount of charges that flows into the cell’s input pin and will be stored on parasitic
capacitances and gate capacitances of the transistors during a signal transition (see
Fig. 4.6 on page 103). It is therefore characterized by attaching a ramp voltage
source at the input pin and integrating current through this voltage source.

Cin =
ΔQ
ΔV

=
1
ΔV
·
∫

iVIN(t)dt. (4.4)

Note, however, that a cell’s input capacitance is not independent of its output load.
The transition at the input might result in an output transition. Due to capacitive
coupling inside a cell and the nonlinearity of the transistor capacitances, the input
capacitance further depends on the input slew. Nonetheless, output load and input
slew have significantly less impact on input capacitance than on the cell delay.
Therefore, only minimum and maximum values are provided in the libraries.

4.1.3.5 Resistive Interconnects

Load-slew models are based on the assumptions that signal waveforms are suf-
ficiently described by linear ramps and that the output load is purely capacitive.
Due to high integration and reduced feature sizes, interconnect resistance became
notable, being the source of three major challenges. First, modeling interconnect
delay became imperative since it accounts for significant fractions of the total path
delay (see also Sect. 3.2). Second, voltage waveforms at the output of the driver
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Fig. 4.3 ECSM stores output
voltage waveforms for
different combinations of
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and the input of the receivers are different due to the low pass characteristics.
Furthermore, the impact of the transition tails on cell delay became significant.
Third, logic cells have been characterized using purely capacitive loads. However,
a driver’s load is not just the sum of attached receiver input capacitances plus
interconnect loading. Resistive shielding reduces the load “seen” by a driver and
therefore decreases the cell delay. The concept of effective capacitances account
for the last two effects [7]. It matches the average current injection into the output
net such that the crossing points of the delay voltage threshold coincide. However,
effective capacitance and driver waveform are mutually dependent resulting in an
iterative process to determine stage delays and output waveforms. More detailed
descriptions are given in [7, 8].

4.1.3.6 Effective Current Source Model (ECSM) and Composite Current
Source Model (CCS)

EDA vendors introduced new delay models named ECSM [9] and CCS [10]
to account for the growing influence of resistive interconnect loads. Both are
compatible with the existing library formats for NLDM. Values for cell delay and
output slew are still tabulated in terms of input slew and capacitive output load.
The real improvements are more accurate driver and receiver models. For every
combination of output load and input slew, additionally the output voltage waveform
(ECSM) or the current waveform (CCS) is stored. Figure 4.3 illustrates the ECSM-
lookup table. Note that there is no difference between the two models since one can
be converted to the other through

iout ≈Cload · V (tn+1)−V(tn)
tn+1− tn

. (4.5)

This transient information is used for driver modeling. The current flowing into
a particular load is obtained by interpolating between different waveforms that are
stored in the lookup table. It is finally integrated over time to obtain output waveform
and stage delay.

The receiver model for CCS are two time-wise defined capacitances. This is
conceptionally similar to (4.4). Only the voltage difference is not the complete
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Fig. 4.4 Current source
model characterization setup
to measure port currents
instead of cell delays

logic
cell

swing. Instead, a transition is split at the timepoint when the delay threshold voltage
is crossed. The first capacitance models the average current during the first part
of the transition, the second the latter. CCS receiver capacitances can be modeled
as lookup tables in terms of transition time, or in timing arc notation in terms of
transition time and output load.

4.1.3.7 Analytical Cell Delay Models

Some approaches have been published for cell delay prediction based on analytical
expressions. The principle is to derive a formula (4.6) and solve it for the cell
delay d.

|Vout(tarrival)−Vout(tarrival + d)|= 1
2

VDD =

tarrival+d∫
tarrival

f (Cload, trin,p)dt. (4.6)

The model parameters p are obtained through SPICE simulations. The principle of
most approaches is to model the voltage trajectory across the cell’s output current.
Usually, the coefficients of simple MOS transistor current equations based on a
power law are fitted to the cell under consideration [11]. Provided there is a linear
ramp input signal and a purely capacitive load, explicit delay equations can be
derived. Nonetheless, these approaches usually only work for simple cells such as
inverters without parasitics. More complex cells have to be mapped to an effective
inverter [12].

Analytical cell delay models never gained much popularity in industry. This
is due to their complexity, limited applicability to industrial cells, and additional
inaccuracy compared to NLDM.

4.1.4 Waveform Independent Model (Current Source Model)

Current source models (CSMs) are fundamentally different from NLDM, ECSM,
and CCS. They do not provide output waveforms or delay values as functions of
parameters such as input slew or output load. Instead, they provide a cell’s output
current as a function of port voltages. Figure 4.4 depicts the general characterization
setup in which the port currents are measured for a set of SPICE simulations.
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Fig. 4.5 Typical CSM with voltage-controlled current source and voltage-controlled charges

The cell delay is obtained during analysis through a SPICE-like simulation, in
which the CSM provides the voltage-dependent port current that is flowing into
the load model. Since this method does not impose restrictions on signal shapes or
load models, arbitrary input waveforms and an arbitrary loads are supported [13].
However, this generality is usually traded for simulation performance. If the load
is restricted or converted to single capacitors or CRC-Π -structures, closed-form
expressions can be used to avoid iterative output waveform calculation [14–16].
Another technique for faster simulation of circuits with current source drivers
with arbitrary resistive-capacitive loads is described in [17]. It applies matrix
diagonalization to efficiently solve the equation systems.

Figure 4.5 depicts the typical structure of a CSM comprising a receiver and a
driver model. In almost every CSM approach, the transient output current is modeled
as the composite of a static current I(v) and an additional dynamic contribution
Idyn(v,v′). The voltage vector v usually contains the port voltages and v′ their time
derivatives. For complex cells, also important internal nodes might be included [18].

The voltage-controlled current source models the DC output current of a logic
cell for every combination of port voltages. Its values are obtained either from
lookup tables using interpolation or from approximation functions. To correctly
predict cell delay and output waveforms, additional components are required. They
account for cell internal dynamic effects such as the finite time for transistors to
charge or discharge the channels or the reduced output current due to charging
internal nodes. Different implementations use either voltage-controlled charges or
(non)linear capacitors. In one of the first CSMs, only a linear output capacitor
is used to reshape the output waveform [14]. An additional delay value is added
afterward to match the total cell delay. In later approaches, low-pass filters were
used to partially account for the cell delay [13, 19]. Voltage-controlled nonlinear
capacitors or charges have been introduced to improve accuracy and to provide a
receiver model [19, 20, 22]. Additional nonlinear capacitors are used to explicitly
model capacitive coupling between driver and receiver (Miller Effect) [22, 23].
Some approaches follow a very general methodology and use the driver model
consisting of static current source and dynamic element for every port of the cell
[18,24], although the static input currents are significantly smaller than the dynamic
ones (see Sect. 4.1.5). Nonetheless, these approaches provide CSM for simultaneous
switching of all inputs, whereas other CSMs are provided for every timing arc.
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The model characterization usually is a two-step process. First, the function for
the static port current is obtained. As shown in Fig. 4.4, DC voltage sources are
attached to the ports. Their values are swept from vSS to vDD to cover the whole
range of port voltages. The measured currents are then stored as lookup tables or
are approximated by fitting functions. The latter requires less data to be stored and
hence increases simulation performance.

Thereafter dynamic elements are characterized which requires more effort.
These elements are either obtained by error minimization to a set of typical input
waveforms [14, 24] or by special simulations with step or ramp functions [19, 20].
Here, the principle is to identify additional current contributions in case of voltage
changes. The difference of observed transient current when applying step functions
to the already known static current is related to charges or capacitors.

In the approaches of [18,25,26], the logic cell is treated as multi-port system. Its
admittance matrix Y =G+ jωC is linearized at all combinations of port voltages to
account for nonlinearity. Based upon the susceptance matrix C, nonlinear voltage-
dependent capacitors are derived to connect all ports [18].

4.1.5 Physically Motivated CSM

Despite their obvious benefits, at the time of writing this book CSMs are more
research topics than industrial reality. The higher accuracy provided by them comes
with significantly lower simulation performance compared to STA using NLDM,
ECSM, or CCS. Further, commercial EDA tools currently do not support CSMs
and there exists no standardized format. Finally, library generation is much more
complex compared to the current standards. As discussed in the previous subsection,
most CSM approaches only try to match the observable port currents but treat
the cell as a black box model. CSM generation therefore requires a large number
of simulations. An alternative approach has been proposed in [13]. The CSM
components are not artificial circuit elements for error minimization but are related
to the original netlist elements of a logic cell. This approach for physically motivated
CSMs is described in more detail since it visualizes the principles of CSM modeling.

The inverter subcircuit in Fig. 4.6 is used throughout this description. The aim of
every CSM is to produce output voltage waveforms that are identical to those of the
cell’s transistor netlist description for any given input signal and any attached load.
This will be realized when the CSM output current î(t) always equals the original
current i(t).

i(v(t),v′(t)) = î(v̂(t), v̂′(t)). (4.7)

While accuracy is one requirement, simulation performance is another. Evaluating
the right-hand side of (4.7) must be significantly faster than computing the transistor
currents in the left-hand side. Only if this is provided, CSMs are applicable to
complex digital circuits. The first step of complexity reduction is in reducing the
number of model parameters. The voltage vector v̂(t) only contains port voltages
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Fig. 4.7 Proposed CSM for logic cells with parasitic elements

but no cell internal nodes. The next step is to select a model topology to fulfill (4.7).
Obviously, a static current source Î is required to handle the special case

i(v,0) = î(v̂,0) = Î(v̂). (4.8)

In cases of voltage changes of port nodes a and z, additional dynamic currents result
from charging the parasitic capacitors and transistor capacitances. This dynamic
current is modeled by an associated port charge Q̂.

î(v̂(t), v̂′(t)) = Î(v̂(t))+
d
dt

Q̂(v̂(t)). (4.9)

Finally in very large cells the passive parasitic network causes a notable signal delay
at the input. A low-pass filter is therefore inserted into the CSM, which produces a
delayed input voltage in v̂∗ = [v∗a,vz]

T . The final topology of the CSM is shown in
Fig. 4.7.

i(v,v′(t)) = Î(v̂∗(t))+
d
dt

Q̂(v̂∗(t)). (4.10)
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Once the CSM structure has been derived, the next step is to define the functions
of Î and Q̂. This is done by a topology analysis of the given subcircuit in which the
contributions of every netlist element to the port components are identified. Starting
at the port node, all resistively connected nodes are visited. At each node, symbolic
expressions for node charge and static current contributions are derived. The sum
of these charges is denoted as the associated port charge. Similarly, the sum of all
current contributions defines the total port current. For the example of Fig. 4.6, the
resulting expressions are listed below.

Q̂a = Q
Mp
g (vz1 ,va2 ,vDD)+QMn

g (vz1 ,va3 ,vSS)+C1 · (va1 − vDD)

+C2 · (va1− vSS)+C3 · (va2− vz1)+C4(va3 − vz1) (4.11)

Q̂z = Q
Mp
d (vz1 ,va2 ,vDD)+QMn

d (vz1 ,va3 ,vSS)+C5 · (vz1 − vDD)

+C6 · (vz1− vSS)+C3 · (vz1− va2)+C4 · (vz1− va3) (4.12)

Îa = I
Mp
g (vz1 ,va2 ,vDD)+ IMn

g (vz1 ,va3 ,vSS) (4.13)

Îz = I
Mp
d (vz1 ,va2 ,vDD)+ IMn

d (vz1 ,va3 ,vSS). (4.14)

Qg denotes the charges located at the gate pin of a transistor. In (4.13), only the static
gate currents contribute to the static port current. Since these are magnitudes smaller
than dynamic or output currents, they can be neglected without loss of accuracy.

The symbolic expressions for the model components are expressed as SPICE
measurement statements. Their numerical values are obtained by DC simulations.
This is possible because all node potentials in (4.11)–(4.14) have fairly small time
constants. Consequently, these node potentials are almost in algebraic relationship to
the port voltages. Hence, the circuit elements are mostly controlled by the absolute
values of port voltages and not by their time derivatives or internal states of node
potentials. Hence, to characterize port charges and output current, DC voltages
sources are attached to input and output port and swept from vSS to vDD. For each
combination of port voltages, the measurements (4.11), 4.12), (4.14) are executed,
and the values are stored in lookup tables.

The above-mentioned algebraic dependency does not hold for cells consisting
of more than one stage such as buffers or ANDS. These cells are split into channel
connected blocks which are then modeled individually. It is further problematic for
large cells with a long parasitics network. Here, the low-pass filter is used to account
for the additional delay. It is sized to match the average cutoff frequency of the
transistor gate pins.

The functions for the port elements of the inverter cell are shown in Fig. 4.8.
While the output current is strongly nonlinear, the charges are fairly linear and
might be approximated by a first-order polynomial. However, for more complex
cells also the charges show significant nonlinearities. Therefore, all elements might
be implemented as voltage-controlled elements which perform bilinear interpolation
on lookup tables. For efficiency, a separate CSM is provided for each timing arc,
which limits the dimension of lookup tables to two.
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Fig. 4.8 Functions for static output current (top left), input charge (top right), and output charge
(bottom left)

4.1.5.1 Parameter Variation Analysis with CSMs

Process variation affects not only cell delays but also the resulting output wave-
forms. These, in turn, affect the delay of the next logic stage. First academic
approaches have been proposed to use CSMs in statistical static timing analysis
considering waveform variations [22, 27, 28]. The timepoints when voltage thresh-
olds are crossed are modeled as random variables instead of fixed values.

4.1.6 Memory Issues

The required accuracy improvements in timing analysis and timing modeling result
in increasing library sizes. Using the bounded delay model, only two values must
be stored per cell. A refinement of this model stores two delay values per pin or per
timing arc.

Using a slew-load-model such as NLDM or SPDM, additionally input capaci-
tances and output slews must be provided. Most data must be available for rising
and for falling transitions. Typical NLDM lookup tables provide timing information
for 7×7 combinations of input transition and output load. These are 2 ·2 ·49 = 196
values for one timing arc of a cell at one PVT corner. CCS and ECSM additional
require to store the current or voltage waveforms for each combination of transition
time and output load. When modeling a signal at 10 timepoints, these are additional



106 C. Knoth et al.

2 ·20 ·49= 1,960 entries per timing arc. Finally, these models provide the DC output
current for at least 10× 10 voltage combinations per cell. CCS libraries tend to be
larger than ECSM libraries due to differences in the format.

The large differences of current source models complicate the size estimation.
For most approaches, one CSM is required for one timing arc but captures rising and
falling transitions. To provide some degree of accuracy at least 10×10 combinations
of input and output voltage are required. Since there are three to four nonlinear
elements in a CSM, these are 300 data points. However, since CSMs are mostly
defined to channel connected blocks, this number must be multiplied by the number
of stages in a cell.

4.2 Library Characterization

In statistical analysis, modeling circuit performance for nonlinear problems de-
mands high computational effort. In semicustom design, statistical leakage library
characterization is a highly complex yet fundamental task. The linear model
provides an unacceptable accuracy in modeling a large number of standard cells.
Instead of assuming one model for the entire library beforehand, we developed an
approach generating models individually. In our approach, the statistical learning
theory is utilized. The key contribution is the use of a cross term matrix and
an active sampling scheme, which significantly reduces model size and model
generation time. The effectiveness of our approach is clearly shown by experiments
on industrial standard cell libraries. For quasilinear problems, a small amount of
additional effort is required to verify the linear dependency. For strong nonlinear
problems, our approach reaches high accuracy with affordable computational effort.
As we regard the circuit block as a black box, our approach is suitable for modeling
various circuit performances.

4.2.1 Motivation

In today’s ICs, leakage current is an essential part of power consumption. At
the 65 nm technology node, leakage current can exceed 50% of total power
[29, 30]. Consequently, leakage variability arising from variations in Process-
Voltage-Temperature (PVT) conditions has gained importance in the last decade.
For instance, it has been reported in [79] that a 10% variation in the effective
channel length results in a 3X difference in subthreshold leakage. A 10% oxide
thickness variation even contributes to a 15X difference in gate leakage current.
Our experiments on industrial standard cell libraries show that a 10% temperature
variation leads to a 4X difference in cell leakage.

To address the leakage variation issue in semicustom design, building a statistical
library at gate level is a highly complex yet fundamental task for statistical analysis.
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A typical BSIM-model based industrial library has more than 500 standard cells.
Every state of each logic cell must be separately characterized. In our experiments,
12 varying process parameters were considered in the analysis. Variation in supply
voltage and temperature also has a significant impact.

Considering this complexity the traditional corner case analysis and Monte Carlo
simulation are too expensive. Diverse analytical and numerical approaches have
recently been proposed to model the cell leakage as a function of the underlying
process parameters. In analytical approaches, empirical equations are applied to
model the leakage components separately [32, 33, 79].

Numeric approaches regard the logic cell as a black box responding (in leakage
value) to stimuli (i.e., the process parameter values). The approximation of the
black box is often described as a response surface model. Most existing approaches
assume that the leakage current has a log-normal distribution. Consequently, the
logarithm of leakage, log(I), is expressed as a linear function of the process
parameters. However, our experiments show that the linear model provides an
unacceptable poor accuracy in modeling a large number of standard cells. For
nonlinear problems, high-order models are needed to improve modeling accuracy.
Certainly, this leads to a rapidly increasing computation effort for high-dimensional
problems, as the number of coefficients to be determined rises significantly. To
overcome this problem, reduced rank regression techniques have been employed on
a quadratic model [34–37]. It is yet not clear how these methods can be efficiently
extended to higher order models.

In terms of library characterization, a pre-assumed model is either inaccurate
(e.g., the linear model) or too computing intensive (e.g., the high-order models).
Our experiments on several standard cell libraries show that the log(I)s of many
cells can be accurately modeled by the linear model. At the same time, there are a
large number of cells whose log(I)s are strongly nonlinear, and even not compatible
with the quadratic model.

Another important aspect of statistical modeling is the selection of samples. In
most existing approaches, the simulation samples used for coefficient calculation
are randomly generated. The samples’ representativeness for the entire parameter
space is rarely discussed.

In this section, we present an approach based on statistical learning theory. The
algorithms developed generate the response surface model for each cell individually.
Its main contributions are fourfold: (1) the order of each process parameter is
estimated based on the real dependency of the leakage current on this parameter;
(2) the structure of each model (i.e., which terms should be included in the model)
is decided by a sensitivity analysis-based method; (3) to avoid reliance on random
simulation samples, a sampling scheme is proposed, taking into account both the
sample location and its impact on leakage current, and (4) the accuracy of models is
validated by cross validation.

The remainder of this section is organized as follows: in Sect. 4.2.2 the basis of
statistical learning theory is introduced. Section 4.2.3 describes our algorithms in
detail. The results of the experiments on typical industrial library cells are presented
and discussed in Sect. 4.2.4. Section 4.2.5 provides a short conclusion.
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4.2.2 Background

4.2.2.1 Problem Formulation

In the context of statistical modeling, a logic cell is regarded as a black box. For each
of its logic states, the observations are formulated as input–output pairs generated
by an unknown deterministic mapping function:

F : X �→ Y, (4.15)

where X = [X1,X2, · · ·,Xn]
T represents a set of process parameter values and Y the

leakage value.
We assume that a true underlying polynomial function g(x) exists, so (4.15) can

be formulated as:
F(x) = g(x)+Φ, (4.16)

where the noise Φ is negligible.
The target, then, is to construct an estimator of g(x), based on the dataset D with

a minimum error:

fD(x) =
P1

∑
p1=0

· · ·
Pn

∑
pn=0

βp1,···,pn

n

∏
i=1

xpi
i . (4.17)

In (4.17), x represents the process parameters, Pi represents the highest order of

the parameter xi,
n
∏
i=1

xpi
i denotes one term of the polynomial, and βp1,...,pn is the

coefficient of this term. A term with at least two parameters is defined as a cross
term. A term with one parameter is defined as a single term. In statistical learning,
the error of fD(x) is defined by the loss function (see Sect. 4.2.2.2).

4.2.2.2 Statistical Learning

Statistical learning methods are broadly employed in diverse fields of science and
industry. The objective of statistical learning is to explore the underlying knowledge
from a given set of data (learning from data). The most important categories are
regression, classification, and data clustering [38]. The statistical modeling of circuit
performance is a typical regression task, which can be roughly divided into three
phases: model selection, model fitting, and model validation.

The objective of model selection is to decide which terms (i.e.,
n
∏
i=1

xpi
i in

(4.17)) should be included in the model. In building high-order models for high-
dimensional problems, the large amount of additional terms leads to a run time
explosion. First, significantly more simulations are needed to determine the coef-
ficients. Moreover, the run time of the model fitting process itself also increases
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exponentially with the sample size as well as with the number of terms. At the same
time, the sample density in high-dimensional problems is normally very low. This
phenomenon is commonly referred to as the curse of dimensionality [39].

Modeling a logic cell with 12 varying process parameters, for example, the
quadratic model requires 91 terms. Using the cubic model, i.e., Pi = 3 and ∑ pi ≤ 3
for each term in (4.17), the number of terms increases to 455. Obviously, most of
these terms (418 of 455) are cross terms having at least two parameters.

The key idea of our approach uses a sensitivity analysis-based technique to
decide the selection of cross terms. This technique is described in detail in
Sect. 4.2.3.

Model fitting is the procedure determining the coefficients of (4.17). This
procedure is also denoted as the training process. As mentioned, the function
characterizing the error of fD(x) is often denoted as the loss function. The most
frequently used loss function is the squared error, measuring the square of the
deviation between fD(X) and Y for each sample. Using the ordinary least square
method (OLSM), the coefficients are determined ensuring minimization of the
expectation value of the squared error (also MSE: Mean Squared Error):

β = argmin
β

i

{E[(Y − fD(x))
2]}; (4.18)

MSE = E[(Y − fD(x))
2] =

∫
Ω
(Y − fD(x))

2PDF(x)dx. (4.19)

PDF(x) is the joint probability density function of x and Ω denotes the entire
parameter space.

Substituting Y with (4.16), the MSE can be deconstructed into three parts [43]:

MSE = Bias2 +Variance+Noise; (4.20)

Bias = E[g(x)]−ED[ fD(x)]; (4.21)

Variance = ED[( fD(x)−ED[ fD(x)])
2]; (4.22)

Noise = E[(g(x)−F(x))2]. (4.23)

The notation ED[.] represents the expectation value with respect to dataset D. (4.23)
indicates that Noise depends neither on the dataset D nor on the estimator fD(x).
This is thus an uncontrollable factor in improving the effectiveness of estimator
fD(x).

Bias measures the average accuracy of the estimate and indicates the discrepancy
between the true polynomial g(x) and fD(x). If the model is properly chosen, Bias
will be minimized by OLSM. Where the model is misspecified, OLSM does not
minimize Bias even with an infinite number of samples [41]. Variance shows the
degree of variability in fD(x) between datasets [42]. Due to the Bias–Variance
Dilemma [38, 41–44], a compromise between Bias and Variance must be reached
during model selection.
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In OLSM, the simulation samples used to determine the coefficients (the training
samples) are normally randomly chosen. As a rule of thumb, the number of samples
needed is twice the number of the model terms. The quality of the parameter space
representation has been rarely discussed previously. We have developed a scheme
for more active selection of training samples.

Model validation is utilized to verify the accuracy of the model with independent
samples not used in the training process. The average error of these samples is
defined as the prediction error:

Errpred =
1
N

N

∑
j=1

(
Yj− f

(
X j

))2
, (4.24)

where (X j,Yj) are the prediction samples.
In a data-rich situation, the training sample set and the prediction sample set

should be completely disjoint. As the simulation cost for a large number of samples
is prohibitively high in process variation analysis, cross validation is applied [38].

4.2.3 Dynamic Model Generation

4.2.3.1 Model Selection Using Cross Term Matrix

In our approach, the existence of terms,
n
∏
i=1

xpi
i in (4.17), is represented in the cross

term matrix MCT. The cross term matrix is a square matrix of order n, where n is the
number of process parameters. The key concept of generating MCT is described in
Algorithm 1. Given PDF(x) and a circuit block (e.g., one logic cell), we first execute
a sensitivity analysis at the nominal point P0, where the value of each parameter
equals the mean value of its distribution. The most significant parameters (MS
parameters) in the center area of the parameter space are identified from the first
order sensitivity vector S. They are then stored in the list L0

MS:

L0
MS =

{
xi

∣∣∣ABS

(
∂F
∂xi

∣∣∣
P0

)
≥ λ1ε

}
, (4.25)

where ABS(.) denotes the absolute value, λ1 ∈ (0,1) is a tuning parameter, and ε
can be either a pre-defined value or the greatest value in S.

Following the identification of the MS parameters in the center area of the
parameter space, the black box function can be formulated as:

F(x) = h(xI)+ SIIx
T
II +Φ. (4.26)

Here, xI denotes the MS parameters in the center area. The remaining parameters
are included in xII , and their first-order sensitivities are represented in SII . As in
(4.16), Φ is the noise that can be ignored.
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Input : PDF(x): Joint Probability Density Function of Process Parameters;
CB: Circuit Block

Output: MCT: Cross Term Matrix

GenerateCrossTermMatrix(PDF(x), CB) begin

S← SensitivityAnalysis([μ1 , · · ·,μn]
T, CB);

L0
MS ← InitialiseMostSignificantParameter(S);

LMS = L0
MS;

foreach (xi ∈ LMS) do

Si← SensitivityAnalysis([μ1 , · · ·,μi±3σi, · · ·,μn]
T, CB);

LCT← IdentifyCrossTermParameter(xi ,S,Si);

MCT← FillMatrix(xi ,LCT);

LMS← UpdateMostSignificantParameter(LMS ,LCT);
end
return MCT;

end
Algorithm 1: Generation of cross term matrix

For each parameter xi in xI (i.e., each parameter stored in LMS), a sensitivity
analysis is executed at its μi±3σi points (P+

i and P−i ), while the values of the other
parameters are kept on nominal values. The changes in first-order sensitivities of all
parameters are explored to select the cross term parameter for xi. The parameter x j

is defined as a cross term parameter of xi, if the change in its first order sensitivity
on the point P+

i or P−i exceeds the threshold λ2ε , where λ2 ∈ (0,1) is another tuning
parameter.

Li
CT =

{
x j, j =i

∣∣∣ ABS

(
∂F
∂x j

∣∣∣
P0
− ∂F
∂x j

∣∣∣
P+

i

)
≥ λ2ε or

ABS

(
∂F
∂x j

∣∣∣
P0
− ∂F
∂x j

∣∣∣
P−i

)
≥ λ2ε

}
. (4.27)

A numerical example shall demonstrate the algorithm. In the following, we suppose
that the unknown h(xI) to be approximated in (4.26) is

h(xI) = x1 + x3 + x5 + x2
2 + x3

4

+x2
1x2 + ex3+x4 + sin(x4x6)+ x2x4

5x2
6. (4.28)

As xI and xII are disjoint, for each MS parameter (i.e., xi in xI) it is true that ∂F(x)
∂xi

=
∂h(xI)
∂xi

. Applying this to (4.26) and (4.28), the first-order sensitivity of x4 obviously
varies with the value of x3:

∂F(x)
∂x4

=
∂h(xI)

∂x4
= 3x2

4 + ex3+x4 + x6cos(x4x6). (4.29)
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Fig. 4.9 A cross term matrix x1 x2 x3 x4 x5 x6

x1
x2
x3

x4
x5
x6

A =

1 1 0 0 0 0
1 1 0 0 1 1
0 0 1 1 0 0
0 0 1 1 0 1
0 1 0 0 1 1
0 1 0 1 1 1

Fig. 4.10 Illustration of the
cross term matrix: the cross
terms are suggested by the
maximum possible submatrix
populated exclusively by 1 s

x1 x4 x3 x2 x5 x6

x1
x4
x3

x2
x5
x6

x1 x4 x6 x2 x5 x3

x1
x4
x6

x2
x5
x3

1 0 0 1 0 0
0 1 1 0 0 1
0 1 1 0 0 0
1 0 0 1 1 1
0 0 0 1 1 1
0 1 0 1 1 1

1 0 0 1 0 0
0 1 1 0 0 1
0 1 1 1 1 0
1 0 1 1 1 0
0 0 1 1 1 0
0 1 0 0 0 1

a b

Setting λ2 to zero, x4 is identified as a cross term parameter of x3. The polynomial
model (4.17) must, therefore, include terms containing x3 and x4 to model the
dependency of ∂F(x)

∂x4
on x3.

By contrast, x j ( j = 1,2,5,6) is not a cross term parameter of x3 as its first-order
sensitivity is not dependent on x3. Terms containing x j and x3 should, therefore,
not be included. A considerable number of unnecessary cross terms are thereby
excluded from the polynomial model.

Figure 4.9 illustrates the cross term matrix A for (4.28). Both the rows and the
columns represent the process parameters x1− x6. The entry akl is set to 1, when
xl is a cross term parameter of xk, otherwise it is set to 0. In most applications,
the cross term matrix is sparsely occupied. The cross terms are identified based on
the maximum possible square submatrix populated exclusively by 1 s. In Fig. 4.9,
two 2× 2 submatrices are highlighted, which indicate the existence of cross terms
{xp1

1 xp2
2 |0 < p1,2 ≤ P1,2} and {xp3

3 xp4
4 |0 < p3,4 ≤ P3,4}. The highest power of each

parameter, Pi, remains to be estimated. In Fig. 4.9, the 2×2 submatrix A[5,6;5,6] =(
a55 a56

a65 a66

)
. cannot suggest cross terms as it is part of the 3×3 matrix A[2,5,6;2,5,6].

In Fig. 4.10a, this is illustrated by exchanging the rows and columns of x2 and x4.
Similarly, another submatrix A[4,6;4,6] has been highlighted in Fig. 4.10b.

In summary, the cross term matrix (Fig. 4.9) suggests the following cross terms:

{
xp1

1 xp2
2 ,xp3

3 xp4
4 ,xp2

2 xp5
5 xp6

6 ,xp4
4 xp6

6

∣∣0 < pi ≤ Pi
}
, (4.30)

where i indicates the process parameter index and Pi is the highest power of
the parameter. The number of terms is enormously reduced in comparison with
comprehensive high order polynomial models.

Pi is determined by sweeping the ith parameter along one line in the multidimen-
sional parameter space, where xi varies and the other parameters are constant. On
this sweep line, (4.26) becomes:
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Input : PDF(x): Joint Probability Density Function of Process Parameters;
Ntr: Training Sample Size

Output: Ltr: Training Sample List

GenerateTrainingSamples(PDF(x), Ntr) begin

Ltr← ImportSamplesFromModelSelection();

while (Size(Ltr)≤Ntr) do

Lm← GenerateRandomSamples(PDF(x), m);

X← SelectTrainingSample(Lm);

Ltr← AddNewTrainingSample(Ltr , X);
end
return Ltr;

end
Algorithm 2: Generation of training samples

F̃xi(x) =
Ni

∑
pi=1

Cpix
pi
i +Φ. (4.31)

The sweep points selected are equidistant and the OLSM is used to determine the
coefficients Cpi . The highest power Pi is defined as:

Pi = max{pi|Cpi >Θ}, (4.32)

where Θ is a threshold. As, on the sweep line, the single terms of xi in (4.26)
are mapped into (4.31), Pi also indicates the highest power of the single terms.
Combining (4.32) with (4.30), the terms to be included in the model are determined.

4.2.3.2 Model Fitting Using Active Sampling

Conventionally, the training samples used to determine the term coefficients are
randomly generated. In contrast, our approach chooses the training samples in a
more active manner. Algorithm 2 provides an overview of the sampling scheme.

The first training sample set is acquired from the model selection. Reusing these
samples ensures that the edge area of the parameter space, which is critical in
nonlinear problems, is always accounted for.

The second training sample set is pseudorandomly selected. To choose one
new training sample, m samples (m > 1) are randomly generated. Among these,
m samples the one with the greatest distance from the set of existing samples
is selected:

X = argmax
X j

[D(X j,Ltr)], X j ∈ Lm. (4.33)
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Fig. 4.11 3-Input NAND gate at 135◦C

The distance is defined as:

D(X j,Ltr) = ∑
Ptr,n∈Ltr

||X j,Ptr,n||2, (4.34)

where ||.|| denotes the euclidean distance between two points.

4.2.4 Experimental Results

Our approach was applied to typical CMOS standard cells from three industrial
90 nm leakage libraries. The results of several typical cases are presented here. In
the experiments, the logarithm of leakage was modeled. The accuracy of various
models and the computation time required to generate such models are compared.
To calculate the leakage, an industrial in-house analog simulator was used, in which
the adjoint network method is employed to determine first-order sensitivities.

For each test case, 10,000 randomly generated test samples were used to verify
the accuracy of various models. The deviation of Modeli at sample point X is

Deviationi(X) =

∣∣∣∣∣
Modeli(X)− Simulation(X)

Simulation(X)

∣∣∣∣∣. (4.35)

As tail region of leakage distribution is particularly important in statistical leakage
library characterization, each model’s error in 99%-quantile has been compared.

The first example is a 3-Input NAND gate with 12 varying process parameters at
135◦C. Figure 4.11 illustrates the model accuracy comparison between the linear
model and the model generated by our approach. Applying the linear model,
the majority of the testing samples have negative deviations (Fig. 4.11a). This
indicates a negative bias in the model, which means that systematic errors have
occurred in the modeling process. Our model, however, shows relatively balanced
sample deviations along the 0% line, as shown in Fig. 4.11. Table 4.1 describes
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Table 4.1 Results
comparison for a 3-input
NAND at 135 and 60◦C

Temperature 135◦C 60◦C
Fit model LM DGM LM DGM
Number of terms 13 26 13 36
Run time ∼ 10 s ∼40 s ∼10 s ∼90 s

Deviation
Group A: 0–4% 78.0% 90.8% 10.4% 90.6%
Group B: 4–8% 12.2% 8.1% 27.0% 7.9%
Group C: Above 8% 9.8% 1.1% 62.6% 1.5%

Error in quantile
99%-Quantile 28.0% 5.8% 12.2% 2.5%

LM linear model, DGM dynamically generated model

Fig. 4.12 3-Input NAND gate at 60◦C

the comparison more precisely. There are 13 coefficients to be determined in the
linear model. The run time is 10 s. The testing samples are divided into three groups,
according to the definition in (4.35). Group A contains the samples with a deviation
rate of less than 4%; group B, those with 4–8% and group C, those above 8%. For
the linear model, for example, 78.0% of all 10,000 samples fall into group A.

Our approach includes 26 terms in the model. Forty seconds were spent
generating this model. The computational effort primarily consists of the simulation
time spent computing leakage values and the training time necessary to determine
the coefficients by OLSM. The results show visible improvements in accuracy:
90.8% of the testing samples now fall into group A. The error in 99%-quantile is
reduced from 28% to 5.8%.

In the first example, the linear model shows an acceptable deviation level in cen-
ter region of leakage distribution. Our experiments on the library characterization,
however, show the linear model to be entirely unsuitable in a large number of cases.
In the next example, the same experiment is applied to the same NAND gate, with
the temperature adjusted to 60 ◦C. Figure 4.12a clearly indicates that the Bias of the
linear model is substantially more than 0%.

Table 4.1 shows the results at 60◦C. For the linear model, 62.6% of the testing
samples have a deviation greater than 8%. Our approach includes 36 terms in the
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Table 4.2 Results comparison for a full adder

Fit model LM QM2 CM QM4 DGM

Number of terms 13 91 455 1,820 42
Number of simulations 1 sens. 182 910 3,640 8 sens. +76
Run time ∼6 s ∼11 min ∼15 h – ∼2 min

Deviation
Group A: 0–4% 0.6% 51.4% 83.2% Aborted 74.6%
Group B: 4–8% 0.8% 35.7% 12.7% Aborted 19.2%
Group C: Above 8% 98.6% 12.9% 4.1% Aborted 6.2%

Error in quantile
99%-Quantile 32.5% 8.2% 3.1% Aborted 4.5%

LM linear model, QM2 quadratic model, CM cubic model, QM4 quartic model,
DGM dynamically generated model

model, which is more complex than that in Example 1. The run time now is 90 s.
The accuracy is, however, enormously improved: 90.6% of testing samples have a
deviation smaller than 4% and the 99%-quantile error is 2.5%.

A more detailed comparison can be seen in the third example. The experiment
is applied to a full adder with 12 varying process parameters. Again, 10,000 testing
samples were divided into three groups for each model. Table 4.2 shows that the
number of terms rapidly increases with the model order. The linear model has only
13 terms. This rises to 91 for the quadratic model, 455 for the cubic model and 1,820
for the quartic model (i.e., with a model order of 4). Linear modeling uses the first
order sensitivities of each parameter at the nominal point, calculated directly by the
analog simulator. For higher order models, the OLSM is employed to determine the
coefficients. The number of training samples needed is twice as much as the number
of terms included in the model. As mentioned, the two major run time contributions
are simulation time and training time. Our experiments show that the training time
of OLSM grows exponentially with the number of terms, and with the number of
training samples. For this example, the quadratic model needs 11 min and the cubic
model 15 h. Modeling with the quartic model was aborted due to the prohibitive
computation effort. Creating and analyzing the cross term matrix resulted in the
inclusion of only 42 terms in our model. The run time is 2 min, which is considerably
less than that required for the quadratic model.

The benefit of our approach, regarding accuracy, is obvious. Using the linear
model, only 0.6% of the testing samples fall into group A. Accompanied by highly
increased computation cost, the quadratic model has 51.4% group A testing samples
and the cubic model 83.2%. Modeling with the quartic model was aborted. Applying
our approach results in 74.6% group A testing samples. This represents an over 20%
improvement compared to the quadratic model. It is also worth noting that for the
high deviation group (Group C) the dynamic model shows similar results as the
cubic model (6.2 and 4.1%), despite a radically reduced run time. The improvement
in 99%-quantile error has been shown clearly: 32.5% for the linear model, 8.2% for
the quadratic model, 3.1% for the cubic model, and 4.5% for the dynamic model.
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4.2.5 Conclusion

In this section, we have presented an approach for rapid high-order polynomial-
based statistical modeling. Instead of assuming the model type beforehand, our
approach dynamically generates a model for each individual case. The complexity
of the model is decided by the dependency of the circuit performance on the process
parameters. We developed a sensitivity-guided method to generate a cross term
matrix. Exploring the cross term matrix allows unnecessary terms to be excluded
from the model for nonlinear problems. For linear problems, the cross term matrix
becomes almost a zero matrix.

To determine the coefficients of the model, our approach selects training samples
in a more active way. First, the samples in the model selection phase are reused,
so that the edge area of the sampling space can always be accounted for. Second,
we integrate the sample distance into the sampling scheme, resulting in relatively
broadly populated training samples.

The benefits of the approach were clearly shown by experiments in gate level
leakage library characterization, in which both quasilinear cases and strongly
nonlinear cases exist. For quasilinear cases, a small amount of extracomputational
effort was required to verify the linear dependency. For strong nonlinear cases, our
approach addresses the modeling challenge with a high degree of accuracy and with
affordable computational effort. Finally, it should be mentioned that, because our
approach regards the circuit block as a black box, it is suitable for modeling various
circuit performances.

4.3 Statistical Static Timing Analysis

In recent years, academic and industrial research has produced a multitude of
approaches to address SSTA (statistical static timing analysis). They differ primarily
in whether they take a block-based or path-based approach, whether they use a linear
or higher order dependency of gate delay on process variations, whether they assume
Gaussian variations or allow arbitrary variations, and to which degree they consider
spatial correlations. An overview of these approaches is presented in the following.

4.3.1 Background of Timing Analysis

Most of the circuits used in industry are sequential circuits. The typical structure
of a digital circuit is shown in Fig. 4.13. The input combinational logic generates
the data for the registers and the output logic for the primary outputs. The outputs
of registers are connected back to the input logic, forming combinational paths
between registers. The registers store the data at their inputs when the triggering
signal, called clock, is valid.
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Fig. 4.13 Sequential circuit structure
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Because of the simplicity of design and verification, flip-flop-based circuits are
the most popular circuit type, where all registers are implemented by flip-flops. A
flip-flop transfers the data at its input to its output only when the predefined clock
edge appears. Without losing generality, all flip-flops are assumed to be triggered at
the rising clock edge in the following.

In order to work correctly, a flip-flop has special requirements to the data at its
input. Assuming the valid clock edge is at time tc, the data at the input of the flip-flop
should be stable between (tc− si) and (tc + hi), where si is called setup time and hi

hold time. During this time period, any data change at the input of the flip-flop may
cause it to enter metastability state with a certain probability [45]. In this state, the
output of the register stays between 0 and 1, and is considered as a circuit failure.
A hold time constraint violation happens when the signal from a register propagates
to the next stage too fast. It can be corrected easily, e.g., by delay insertion and
padding [46]. Setup time constraints determine the maximum clock frequency and
should be checked when verifying a circuit against different clock frequencies. To
correct violations of setup time constraints further circuit optimization is required.
This optimization usually enlarges the die size and increases design time. In the
following, only setup time constraints will be discussed.

For convenience to explain timing specifications of sequential circuits, reduced
timing graphs [47] are used to represent the structural connections between flip-
flops. An example of the reduced timing graph is illustrated in Fig. 4.14. In a
reduced timing graph, a node represents a register, a primary input of the circuit, or
a primary output. An edge represents the maximum delay between a pair of nodes,
denoted Δi j.

To compute these delays, combinational circuits between flip-flops are traversed.
For this type of circuits, the timing graph is used to represent its structural timing
properties. Figure 4.15 shows an example of the timing graph of the circuit c17 from
ISCAS85 benchmarks. A node in a timing graph corresponds to a pin of a gate if
interconnects are considered. Otherwise, a node corresponds to a net in the circuit,
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Fig. 4.15 c17 Benchmark circuit and timing graph

e.g., in Fig. 4.15. Additionally, primary inputs and outputs are also represented by
nodes. An edge represents the delay Wi j between two nodes in the timing graph.

At the time of the nth active clock edge tc,n, a signal starts to propagate to the
output of a flip-flop i and further to the input of flip-flop j at the next stage. The latest
time that this signal reaches j is tc,n + qi +Δi j, where qi denotes the propagation
delay of the flip-flop. This time is the arrival time of the signal at the input of j
through i, denoted as Ai j. The data change at the input of j must meet its setup time
constraint, so that

Ai j = tc,n + qi+Δi j ≤ tc,n+1− s j. (4.36)

Normally, flip-flop j has more than one fanin node in the reduced timing graph.
After a valid clock edge, data signals propagate from all these fanin nodes to j.
Each arrival time must meet the setup constraint described in (4.36). Consequently,
the maximum of these arrival times should meet the setup time constraint, i.e.,

max
i∈ψ j
{Ai j}= max

i∈ψ j
{tc,n + qi +Δi j} ≤ tc,n+1− s j⇐⇒ (4.37)

tc,n +max
i∈ψ j
{qi +Δi j}+ s j ≤ tc,n+1⇐⇒ (4.38)

max
i∈ψ j
{qi+Δi j}+ s j ≤ tc,n+1− tc,n = T, (4.39)

where ψ j is the set of all fanin nodes of j in the reduced timing graph. Clock skew
is not considered in (4.39) for simplicity. The constraint (4.39) should be met at all
flip-flops in the circuit. With ϕ defined as the set of all flip-flops, the setup time
constraint for the circuit is

max
j∈ϕ
{max

i∈ψ j
{qi +Δi j}+ s j} ≤ T. (4.40)
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The constraint (4.40) defines that the arrival time from any flip-flop node in the
reduced timing graph to each of its sink nodes should meet the setup time constraint.
Therefore, the constraint (4.40) can be written as

max
(i, j)∈φ

{qi +Δi j + s j} ≤ T, (4.41)

where φ is defined as the set of flip-flop pairs between each of which there is at least
one combinational path in the original circuit.

The timing performance of a sequential circuit is represented by the maximum
clock frequency. This clock frequency is determined by the minimum clock
period, which can meet the timing constraint described in (4.41). To verify these
constraints, the maximum delays Δi j used in (4.41) should be computed first from
the combinational circuit between flip-flops.

In contrast to sequential circuits, a combinational circuit consists of no storage
components but only combinational gates. If a signal reaches an input of such a
gate, it continues to propagate instantly and reaches the output of this gate after
the time equal to the delay of the gate. To compute Δi j for i and j in the reduced
timing graph, the timing graph of the combinational circuit between them should be
traversed. Two types of traversal methods exist to compute the maximum delay of
a combinational circuit: path-based and block-based. In a path-based method, the
paths from inputs to outputs of the timing graph are enumerated [48–50]. The delay
of a path is computed by summing up the edge delays on the path. Although this path
enumeration method is feasible to evaluate small designs, it cannot handle all paths
in large ones, since the number of paths increases exponentially with circuit size.

The second method is the block-based method, or block-oriented method
[51–53]. This method visits each node in the timing graph no more than once to
compute the maximum delay from inputs to outputs. For each node, the arrival time
represents the maximum delay from all the inputs to it. The arrival time of a node is
updated just after all its fanin nodes are updated. As the first step of this computation,
the arrival times from fanin nodes and the edge delays are added. Thereafter, the
arrival time of the current node is computed by the maximum of the results from the
previous step. This iterative computation stops after all outputs are visited.

Instead of computing the maximum delay Δi j between flip-flop i and j indi-
vidually for all pairs of flip-flops, the inner maximum in (4.40) is computed by
one arrival time traversal, resulting in the desired maximum circuit delay. This
approach significantly reduces the computational effort. For this purpose, a virtual
combinational circuit is formed. All outputs of flip-flops are considered as primary
inputs of the virtual circuit, and all inputs of flip-flops as primary outputs. All the
combinational components between flip-flops together form the combinational logic
in between. The arrival times at primary inputs of the virtual circuit are set to the
propagation delays of the corresponding registers. The resulting arrival times at the
primary outputs of the virtual circuit are maximum arrival times from all primary
inputs. In other words, it is the maximum delay from all fanin flip-flops to the input
of a flip-flop, equal to the result of the inner maximum in (4.40). Thereafter, the left
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Fig. 4.16 Graphic
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side of (4.40) is computed by the maximum of the sums of the arrival time and the
setup time at all flip-flops. This maximum specifies the minimum clock period for
the flip-flop-based circuit without timing violation.

4.3.2 Statistical Timing Analysis

With process random variations modeled as variables, all gate delays become
random variables. The static timing analysis algorithms described in the previous
section can be adapted to compute the minimum clock period of a circuit similarly.
The resulting clock period, however, is a random variable, denoted as Tmin. For a
given clock period T , the timing yield of a circuit is evaluated by computing the
probability that Tmin is smaller than T , i.e.,

yield = Prob{Tmin ≤ T}, 0 < T < ∞, (4.42)

where Prob{·} denotes the probability.
Because all gate delays are positive, the computed minimum clock period Tmin

is also positive. According to probability theory [56], yield computation in (4.42) is
equivalent to the definition of cumulative distribution function (CDF) of the random
variable Tmin. The graphic representation of (4.42) is illustrated in Fig. 4.16, where
circuit yield approximates 0 when T approximates 0, and 1 when T is large enough.
The latter case indicates that a sequential circuit can work properly at a reasonably
low clock frequency, if no hold time constraint is violated.

In statistical timing analysis, the timing graph traversal is completely the same
as in static timing analysis. The two computations, maximum and sum, however,
must be adapted to handle random gate delays. In order to use the same sum and
maximum computations at all nodes, arrival times in statistical timing analysis are
usually represented in the same form as gate delays. When an arrival time and a
gate delay are added, corresponding coefficients of different variables are summed
directly, whether linear or quadratic gate delays are used. Because of the complexity
in computing the maximum of two random variables and the requirement that the
result of the maximum should have the same form as a gate delay, such computation
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is always approximated in statistical timing analysis. In the following, only the sum
and maximum computations of two random variables are discussed because other
cases involving more than two random variables can be processed by applying these
two computations iteratively.

Using the canonical delay model (3.15) described in Sect. 3.3.4, [55] introduces
an arrival time propagation method, which can process the maximum computation
efficiently, meanwhile keeping the correlations between arrival times accurately.
Consider two random variables A and B

A = a0 +
n

∑
i=1

aivi + arvra (4.43)

B = b0 +
n

∑
i=1

bivi + brvrb . (4.44)

The sum of A and B is computed as

A+B = (a0 + b0)+
n

∑
i=1

(ai + bi)vi +(arvra + brvrb) (4.45)

= s0 +
n

∑
i=1

sivi + srvrs , (4.46)

where sr is identified by matching the variances of srvrs and arvra+brvrb .
To compute the maximum of A and B, denoted as max{A,B}, the tightness

probability (TP) [55] is first computed. In [55], TP is defined as the probability that
A is larger than B. If A and B are both Gaussian, TP is computed by

TP = Prob{A≥ B}=Φ
(

a0− b0

θ

)
, (4.47)

where Φ is the cumulative distribution function of the standard Gaussian distribu-
tion. θ =

√
σ2

A +σ2
B− 2Cov(A,B), where σ2

A and σ2
B are the variances of A and

B, respectively. Cov(A,B) is the covariance between A and B, and is computed
according to [56] as

Cov(A,B) =
n

∑
i=1

n

∑
j=1

aib jCov(vi,v j)+
n

∑
i=1

aibrCov(vi,vrb)

+
n

∑
i=1

biarCov(vi,vra)+ arbrCov(vra ,vrb). (4.48)

Because the random variables vra , vrb and vi in (4.43) and (4.44) are independent of
each other, (4.48) is simplified to
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Fig. 4.17 Correlation
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Cov(A,B) =
n

∑
i=1

aibiCov(vi,vi) =
n

∑
i=1

aibiσ2
vi
. (4.49)

Comparing (4.48) and (4.49), the computation is drastically simplified because the
random variables are uncorrelated. This is the motivation that the correlated random
variables in Sect. 3.3.4 are decomposed.

According to [65], the mean (μ) and variance (σ2) of max{A,B} are computed by

μ =TPa0 +(1−TP)b0 +θφ
(

a0− b0

θ

)
(4.50)

σ2 =TP(σ2
A + a2

0)+ (1−TP)(σ2
B + b2

0)

+ (a0 + b0)θφ
(

a0− b0

θ

)
− μ2, (4.51)

where φ is the probability density function of the standard Gaussian distribution. In
order to apply the sum and maximum computations iteratively to propagate arrival
times, max{A,B} is approximated in the same form of (3.15) as

max{A,B} ≈MA,B = m0 +
n

∑
i=1

mivi +mrvrm , (4.52)

where m0 is equal to μ . mi is computed by mi = TPai +(1−TP)bi. mr is computed
by matching the variance of the linear form (4.52) and σ2 in (4.51).

The sum and maximum computations discussed till now process correlation
between arrival times implicitly. This will be discussed in the following in more
detail. An example of such correlation is illustrated in Fig. 4.17, where all ede delays
are correlated, e.g., due to manufacturing variations. The arrival times from nodes 2
and 3 to 5 respectively, denoted as A25 and A35, can be expressed as

A25 = A2 +W25 (4.53)

A35 = max{A1 +W13,A4 +W43}+W35, (4.54)
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where A1, A2, and A4 are arrival times at node 1, 2, and 4, respectively. In the method
from [55], the computation of the maximum of A25 and A35 requires the covariance
between them. This covariance is computed as

Cov(A25,A35) =Cov(A2 +W25,max{A1 +W13,A4 +W43}+W35) (4.55)

=Cov(A2,max{A1 +W13,A4 +W43})

+Cov(W25,max{A1 +W13,A4 +W43})

+Cov(A2,W35)+Cov(W25,W35) (4.56)

In [55], the maximum in the first two terms in (4.56) is approximated by a linear
form. In order to compute the covariance correctly, the covariance computed by
this linear form approximation should be equal to the covariance computed with the
original maximum. This requirement is met in [55] by guaranteeing that the linear
approximation has the same covariance to any other random variable. That is, for a
third random variable C in linear form, written as

C = c0 +
n

∑
i=1

civi + crvrc (4.57)

the maximum and its linear approximation MA,B in (4.52) of two random variables
A and B defined in (4.43) and (4.44) should meet

Cov(max{A,B},C) = Cov(MA,B,C). (4.58)

According to [65], the left side of (4.58) can be computed by

Cov(max{A,B},C) = TpCov(A,C)+ (1−Tp)Cov(B,C) (4.59)

= Tp

n

∑
i=1

aiciσ2
vi
+(1−Tp)

n

∑
i=1

biciσ2
vi
. (4.60)

Similar to (4.48) and (4.49), the right side of (4.58) can be computed by

Cov(MA,B,C) =
n

∑
i=1

miciσ2
vi
= Tp

n

∑
i=1

aiciσ2
vi
+(1−Tp)

n

∑
i=1

biciσ2
vi
. (4.61)

From (4.59) to (4.61), (4.58) is proved, so that the arrival time computation of the
method in [55] can handle correlation correctly.

The property (4.58) guarantees that the linear approximation in the maximum
computation of [55] can preserve the correlation of the maximum to any random
variable. Therefore, the correlation of the maximum to any independent variable vi
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is also preserved. This is the basis of the method proposed in [58]. The advantage of
the method in [55] is that the correlation is handled implicitly and the computation
of (4.47) and (4.49)–(4.51) needs only to be done once in a maximum computation.
Therefore, this method is more efficient than [58].

In addition to the correlation between gate delays, reconvergent structures in the
circuit cause further correlation. In Fig. 4.17, the arrival time A4 at node 4 has a
purely random variable vr4 . The two arrival times from 3 to 5 and from 4 to 5
are partially correlated because vr4 becomes a part of the arrival time of node 3
after the maximum computation at node 3. This correlation, however, is discarded
in [55], because the purely random variables are merged into one variable in the
maximum computation. At node 5, all the random parts of the incoming arrival
times are assumed as independent. This assumption is not true because a purely
random part may converge from different paths at following nodes, thus causing
structural correlation [59, 60]. To solve this reconvergence problem, the canonical
delay model (3.15) in [55] is extended in [61]. Instead of merging the initial purely
random variables of gate delays, these variables are kept separately in arrival times
during propagation. Therefore, the correlation from these random variables can be
incorporated.

The linear timing analysis methods require that gate delays are approximated by
linear combinations of Gaussian random variables. As in modeling gate delays, sta-
tistical timing analysis methods using nonlinear or non-Gaussian gate delays or both
are proposed to improve timing accuracy. In [62], gate delays and arrival times are
represented as quadratic functions of independent Gaussian random variables. The
maximum computation is performed in a way similar to [58], where the covariances
between the maximum and each term in the quadratic form are matched. As in [58],
the first-order correlation between the maximum and other variables are preserved.
The disadvantage of this method is that numerical integration is needed for each
coefficient identification, which makes the proposed method slow. In order to reduce
the runtime of [62], a parameter dimension reduction technique is proposed in
[63]. Another method with a quadratic model is proposed in [64]. This method
still uses the tightness probability from [55], but only when the maximum of two
quadratic variables is Gaussian. This Gaussian property is evaluated by computing
the skewness of the maximum using the formula in [65]. If the skewness is smaller
than a threshold, the maximum is assumed to be Gaussian and is approximated
by a linear combination of the two quadratic inputs. If the skewness is larger
than the threshold, the maximum is not computed and the corresponding arrival
times are directly propagated as a collection of quadratic forms. At each maximum
computation, the skewness is evaluated so that the collections of quadratic forms
can be compressed as soon as possible.

Representing gate delays as linear combinations of non-Gaussian variables, the
method in [66,67] approximates the maximum of two variables also using tightness
probability. The difference from [55] is that the tightness probability is computed
from two non-Gaussian random variables, with the formulas proposed in [68].
This method has high efficiency, but the correlation between random variables is
compromised during the maximum approximation. In the nonlinear non-Gaussian
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case, the method in [69] samples the nonlinear non-Gaussian parts of the variables,
so that the rest part of the arrival times are linear combinations of Gaussian
variables, which can therefore be processed with the method in [55]. The accuracy
of this sampling-based method depends heavily on the number of samples. If the
distributions of non-Gaussian variables are very complex and the number of them is
large, this method faces runtime problem for moderate accuracy.

From the discussion above, correlation handling is always the source of com-
plexity for statistical timing analysis. To avoid this complexity, correlation is simply
discarded in [70], where it is proved that the result without considering correlation
is an upper bound of the result with correlation after the maximum computation.
Without considering correlation, the statistical bounds in [70] are very loose.
Therefore, selective enumeration is deployed in [59, 71] to improve the bounding
accuracy.

The algorithms discussed above are all block-based. Similar to static timing
analysis, path-based methods are also explored to process statistical gate delays,
e.g., in [72, 73]. To apply these methods, critical paths should be first identified.
However, without a statistical timing method, the critical paths identified from static
timing analysis can not be guaranteed to be critical [74]. Additionally, any path
in the circuit contributes to the circuit delay distribution with certain probability.
Consequently, it is not very clear how many paths should be selected for path-based
methods to cover the paths which are statistically critical. Furthermore, it is very
hard to implement incremental timing analysis with path-based methods, because
any revision in the circuit can change the critical paths. Given these disadvantages,
path-based methods are currently limited to specific areas of application.

In summary, timing analysis of flip-flop-based circuits is similar to the method for
static timing analysis. The delays between flip-flops are computed with a statistical
timing engine described above. The minimum clock period is computed using (4.40)
with the maximum and sum replaced by the statistical computations. The result Tmin

is a random variable, whose properties define the performance distribution of the
circuit. The clock feeding to all flip-flops must have a period larger than Tmin to
guarantee the proper behavior of the circuit. Therefore, timing yield of a flip-flop-
based circuit at clock period T , defined as the probability that the circuit works
correctly with clock period T , can be computed by (4.42).

4.4 Leakage Analysis

Leakage power is an important challenge to downscaling of the CMOS semicon-
ductor technology. The transistor device leakage currents grow exponentially with
scaling device sizes and threshold voltages. Starting with 90 nm technology and
beyond, leakage current became a significant performance variable limiting scaling,
and it is expected to grow as much as 3x until 2012, and further reach to 5x by 2016
[105]. As seen in current techologies, leakage has further gained emphasis since it
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displays significantly higher variability, as much as orders of magnitude with respect
to frequency/delay variability [106].

In this section, we will discuss the increasing importance of leakage power in
integrated circuit design, describe major leakage current mechanisms, and ways to
model leakage for CMOS circuits. We will also touch on statistical modeling of the
leakage power and describe techniques to analyze leakage variations.

4.4.1 Background

Technology scaling enables supply voltages go down for better performance at
similar power densities. However, the desired transistor threshold voltage Vt scaling
factor cannot be maintained at the same rate due to increase in leakage power and
related reliability issues such as various short channel effects. Hence, the current
state-of-art integrated circuits push their limits with Vt to achieve fast switching
performance at the cost of increased the leakage and dynamic power, especially for
technology nodes after 90 nm. To solve the short channel effects, and to compensate
the relatively slow scaling threshold voltages, engineers develop thinner gate oxide
devices to enhance the gate drive currents, but this also increases the tunneling
current across the gate and results in higher gate leakage currents. Furthermore,
the physical limits of the channel engineering, the existence of fewer dopant atoms
in the device channel, sophisticated halo designs and higher manufacturing and
operating environment variabilities all contribute to the significance of leakage
power for high performance integrated circuits.

Current design methodologies often include planning, estimation, and optimiza-
tion for leakage power as a major design objective none less important than dynamic
power. As we approach the fierce frequency wall and limits of device scaling,
where the circuit and system performances are more and more limited to power
consumption of various products such as ubiquitous handheld mobile products and
multicore microprocessor chips, the leakage power has rightfully gained its own
importance for semiconductor manufacturers.

4.4.2 Types of Leakage Current

Leakage phenomenon in CMOS and SOI transistor devices is studied extensively.
The term leakage stems from the current that is undesirable and not functionally
useful, since the CMOS device is intended to be at the off state, and is expected not
to leak, therefore hold state indefinitely. The non-existence, or negligible quantities
of leakage current of CMOS devices before 130 nm technology node was a big
force for moving integrated circuit designs from BJT analog transistors to CMOS
technology. But for current deep sub-micron technologies, leakage current, that is
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Fig. 4.18 Various types of
leakages for an Nfet transistor

the undesired current flowing through the device channel at their non-operational
behavior is no longer negligible, and causes excess power dissipation.

The major contributors of the transistor device leakage are subthreshold leakage,
gate oxide leakage and band-to-band tunneling leakage.

The transistor device leakage can be modeled with the governing device topol-
ogy. The subthreshold current flows from drain to source nodes, the gate leakage
flows from the gate node to source, drain and substrate nodes, and the band-to-band
tunneling current is divided into its drain and source components, both flowing to the
substrate node. For SOI devices, we don’t have tunneling current due to the insulator
layer and hence it can be ignored. The leakage currents are all voltage controlled
current sources and functions of gate, source and drain voltages. The figure below
depicts these types of leakage currents in a nfet CMOS transistor (Fig. 4.18).

Next section, we will model these types of leakage currents in more detail.

4.4.2.1 Subthreshold Leakage

Subthreshold current, Ioff, is the drain current of a transistor in the subthreshold
region and can be expressed as

Isub = I010(Vgs−Vt)/S(T), (4.62)

where I0 is the drain current with Vgs = Vt , and S(T ) is the subthreshold slope at
the requested temperature. Subthreshold leakage is caused by the minority carriers
drifting across the channel from drain to source when the transistor device operates
when Vgs <Vt . To calculate I0, device models can be used for subthreshold operating
regime of the device that is often implemented in BSIM device models. For
simplicity, we could model I0 as

I0 = μ0Cox(Weff/Leff)(kT/q)2(1− e(Vds/Vt)), (4.63)
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Fig. 4.19 Subthreshold
leakage trend for VLSI
technology nodes [30]

where Weff and Leff are effective device width and lengths, μ0 is the mobility,
Cox is the gate capacitance, k is the Boltzmann constant. More advance models
introduce short channel effects, body effect, and narrow channel effects. Further
studies also accounted for quantum mechanical confinement of electron/holes in
the depletion/inversion regions of the device. Such extensions impact the threshold
voltage of the device that significantly impacts the subthreshold leakage of the
device [75].

Previous projections show that in the 90 nm process node, the subthreshold
leakage power can contribute as much as 40% of the total power [76]. Hence, it is
imperative to model the subthreshold current as accurate as possible. Subthreshold
current is exponentially dependent on the threshold voltage, and hence accurate
models should account for threshold voltage variation effects (Fig. 4.19).

4.4.2.2 Gate Oxide Leakage

Gate oxide leakage is due to the tunneling of electrons from the bulk silicon and
drain/source overlap region through the gate oxide barrier into the gate area. Gate
oxide leakage increases exponentially with the decrease in the oxide thickness and
the increase in the potential drop across the oxide. It has been considered as the
sum of gate oxide leakage components, including the source/drain overlap region
current, gate to channel current, and gate to substrate leakage currents (Fig. 4.20).

Igate = Igc + Igod + Igos. (4.64)

Equations for Igate, Igos, and Igod have same functional form, with the difference
of being dependent on Vgs and Vgd, respectively. These variables are functions
of effective gate length Leff, terminal voltages, oxide thickness, and temperature.
A simplified gate oxide leakage model can be provided as:
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Fig. 4.20 Components for gate oxide leakage phenomenon

Igate = (AC)WeffLeff exp(−BToxα/Vgs). (4.65)

As seen, Igate is strongly influenced by the gate voltage and the oxide thickness.

4.4.2.3 Tunneling Leakage

In an nfet device, when the drain or source is biased higher than the device
substrate, a significant tunneling current flows through the drain-substrate and
source-substrate junctions. For SOI, this current is negligible. The classical diode
models can be applied to estimate the tunneling leakage for large scale circuits.
For such band-to-band tunneling leakage (BTBT), [75] explains a highly accurate
numerical model that integrates the sum of the currents flowing through the drain-
substrate and source-substrate junctions.

4.4.3 Leakage Model for Logic Cells and Circuits

Using the models for leakage currents, one can use a detailed device model to
be used with a transistor simulation environment. For this, one can use controlled
current sources across the device terminals to build the required numerical model
[75]. The overall leakage is then analyzed using this controlled current source model
as shown in Fig. 4.21.

For circuits composed of multiple devices, the current source models can all be
integrated and analyzed via a circuit simulation engine that honors universal current
and voltage preservation laws. Note that the characterization of the leakage of a cell
requires calculation of the leakage currents for each input vector of the gate. Since
leakage is calculated for a steady-state condition, a DC analysis can be performed
via the circuit simulator for the requested circuit inputs.
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Fig. 4.21 Controlled current source model for leakage analysis

Fig. 4.22 Leakage currents for each input for 3-input NAND gate

Since leakage is a strong function of the terminal voltages, we see significant
variations within different inputs. Figure 4.22 depicts this for a 3-input NAND gate,
and table displays the leakage for each input vector. Here, we performed device
models from a state-of-art process technology node.

Most generally, dynamic evaluation of the leakage for all possible input combi-
nations is quite costly and inefficient. In a large logic circuit, not all the cells are
generally at their high leakage states. The balancing of high and low leakage states
for various cells implies an averaging effect for each cell. Hence for more efficient
leakage estimation, static (input-independent) analysis techniques are preferred
within the design methodologies. Over a long period of circuit operation, the
cells in the logic circuit may be at numerous states, and assuming all input states
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are equi-probable, we can characterize the leakage by its mean statistic. If the
probabilities of each cell input are known either by designer intuition, known
primary input characteristics or via logic simulation results, we could model the
mean cell leakage as:

Icell = ∑
statek

Prob(statek)Istatek . (4.66)

For the logic circuit consisting of many cells, we could simply add the individual
cell leakages due to the near-perfect isolation between the logic boundaries, and
therefore the mean circuit leakage can be derived as:

Icircuit = ∑
celli

Icelli (4.67)

4.4.4 Static Leakage Estimation

When the operating environment and the technology are kept constant, it is desirable
to develop a static (input-independent) method for predicting the average leakage
under possible input conditions. As technology requires smaller and faster logic
stages and more radical design styles, the leakage becomes more dependent on the
input states. This is also true with the existence of control inputs as for the case
of header/footer designs, or special inputs which can turn off some sections of the
circuit. Therefore in this section, we will introduce a probabilistic static leakage
estimation method. We will focus on combinational circuit as the core building
blocks of conventional digital integrated circuits.

The logic circuits often hold full logic values at the cell boundaries and the total
leakage of the logic circuit is mainly the sum of leakages coming from all the cells
combined. Let us assume, the leakage for each cell type is pre-characterized for all
its input states, i.e., Istatei . This can be done once with an accurate circuit simulator
during library generation step.

Using a concept of occurrence probability that describes the likelihood of a
circuit boundary node (input or output) holding a full logic value, we define the node
occurrence probability of node n, as the likelihood of observing the node n at a logic
value 1: πn = Prob(n = 1). Hence, the probability of observing n at value of 0 would
be 1−πn. We can further define the state occurrence probability Prob(statei(x)), as
the probability of observing the cell i at state x. If the cell inputs are independent,
computation of Prob(statei(x)) is simply the multiplication of the associated node
occurrence probabilities. Furthermore, one can simply propagate node occurrence
probabilities from cell inputs to cell outputs via following the logic functionality of
the cell as described in [77].

Using the node and state occurrence probabilities, we can evaluate the average
leakage of the logic circuit as the weighted sum of the leakage for all cells in each
state. The weights are simply the state occurrence probabilities. Moreover, same
weights can be applied for leakage components, i.e., gate and subthreshold leakages.
These values can also be pre-characterized in the library creation step.
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Fig. 4.23 Accuracy for probabilistic simulation for leakage analysis

This approach was experimented for ISCAS combinational circuits that are
synthesized using a library of basic gates with delay constraints. The total leakage of
each circuit for a given input vector is estimated via circuit simulator at nominal con-
ditions. Each primary input is assumed to have binary node occurrence probability
of 0.5. The results shown in Fig. 4.23 validates accuracy of the average relative error
for the probabilistic technique. Compared to total-width-based leakage estimate,
which totally ignores the probabilities of the logic states and averages out all the
devices, the probabilistic simulation-based techniques have accuracy within 2%
versus 20–30%. This is achieved by accurately capturing the high and low leakage
states of the circuit cells from the state occurrence probabilities and accounting their
leakage estimates accurately in the total circuit leakage power estimate.

4.4.5 Stack Factor-Based Leakage Estimation

The models mentioned above are useful when the logic cells are fully characterized.
When such libraries do not exist and the logic circuits are more custom designed
with arbitrary circuit topologies, empirical models for leakage are often used. These
models simply accumulate leakages of each transistor in the circuit. Since leakage is
dominated by the subthreshold leakage component, overall model quality depends
on the accuracy of the subthreshold leakage.

The most simplest approach for subthreshold leakage estimation is area or
total width based. However to properly account for leakage of channel-connected
devices, we must consider the stacking effect for leakage.
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Fig. 4.24 Stacked transistor
device

Figure 4.24 demonstrates a stack of transistors. The upper device has an internal
source node causing a lower Vgs and therefore a higher threshold voltage. Hence,
it would generate a lower subthreshold current than its nonstacked version. We can
also explain this by the bottom device with a lower Vds, compared to its nonstacked
version that sees the full supply voltage level VDD. Since subthreshold current for the
stack of transistors will be limited by these factors, the total leakage of the stack of
devices is considerably lower than the sum of their nonstacked versions. The same
applies to higher stack sizes, and can be generalized [78].

In today’s microprocessors and high-performance circuits, the stack depth is
often less than 4 for performance constraints. Hence from the characterization point
of view, we can build models for various stack sizes and build models for leakage
estimation [78].

Like stacking, body biasing also reduces subthreshold leakage exponentially.
Also, the leakage is also modulated by DIBL effect, as Vds increases, the channel
energy barrier between the drain and source is lowered. Hence, this effect also
exponentially increases the subthreshold leakage. The derivation of the stacking
factors could include all these physical effects.

One could model the stacking effect using the original device model equation
(4.62) but this can be too time consuming for chip-level analysis. To overcome this,
the following empirical model can be used:

Isub,stacked = IsubWtot/XS, (4.68)

where Isub is the subthreshold leakage for a device with no stacking, Wtot is the total
transistor width, and XS is the empirical stacking factor. XS is the de-rating factor
for the reduction in the subthreshold leakage due to the stacking effects. [78] studies
the derivation of XS for various stack topologies and concludes that typical values
of 2 and 3 are used for cache and core circuits for high-performance microprocessor
designs.

For more accuracy, certain blocks of circuits can be pre-characterized to deter-
mine the best stacking factor. Such primitive cells can use basic, domino, complex
gates with standardized stacks. Once the proper stacking factors are found, it can be
used in full-chip level leakage analysis.
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4.4.6 Leakage Current Estimation Under Variability

Leakage current components, subthreshold and gate in particular, are super-linearly
dependent on effective device length and threshold voltages. For gate oxide leakage,
we also have a similar dependence on the oxide thickness. In technologies for
90 nm and beyond, we do see significant variability of these device parameters
due to imperfect manufacturing conditions and tool, fab limitations. Moreover, the
operating environment for the integrated circuit may present significant variations
in temperature and supply voltage. Under such variability, leakage performance is
amenable to show large amount of variability. This motivates us to model leakage
current within the existence of parametric variabilities.

Lets assume the threshold voltage of a device, Vt as a Gaussian distribution
with mean Vt0 and standard deviation σVt . If we convolve this distribution with
the subthreshold leakage model with respect to Vt , the result is that leakage is
not distributed as Gaussian and the mean leakage is skewed due to the nonlinear
relationship between the subthreshold leakage and Vt . Similar study could be done
on channel length variability, δL. Therefore, the average leakage estimate under
parametric variations need a more careful study.

Our new leakage model that considers parametric variability will be based on the
average leakage estimate and will contain a multiplier that reflects the uplift resulted
in the variability of the underlying parameter. This could be formalized as:

Ileakage = Inominal ∗ f (ΔP), (4.69)

where P is the process parameter that impacts the leakage current. Like in BSIM
models, the typical functions for f () is quite nonlinear and complex. Hence, more
efficient analysis can be performed by accurate empirical equations valid within the
operation and manufacturability regions.

The formalism in parameter P also allows the decomposition of global and local
variability, i.e.,

ΔP = ΔPglobal +ΔPlocal, (4.70)

where ΔPglobal and ΔPlocal models the die-to-die variability (a.k.a. global) and
within-die variability (a.k.a. local), respectively.

We illustrate the method using a single parameter on gate leakage. The oxide
thickness is reduced to increase device mobility and speed, but this increases gate
leakage current significantly leading to nonlinear relationship between variations in
ΔTox and Igate. Other parameters do not affect gate leakage at the same magnitude
and can be ignored.

Hence, we can write, with significant variability in oxide thickness, ΔTox, the
gate leakage term can be written as:

Igate = Igate,nom exp( f (ΔTox)). (4.71)
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For simplicity, let us express the f (ΔTox) as a linear function as −Tox/β1. Tox

can also be decomposed into global and local components as:

Tox = Tox,g +Tox,l . (4.72)

Hence, the gate leakage with variability due to Tox can be written as:

Igate = Igate,nom exp(−ΔTox,g/β1)exp(−ΔTox,l/β1). (4.73)

We denote the gate leakage current of a single device with unit width as Igate and
its nominal term Igate,nom is modeled when no variations in Tox. We further assume
that ΔTox,g and ΔTox,l are both zero-mean normal random variabilities. The model
in (4.73) leads to the estimate for the average Igate as:

E[Igate] = SΔTox,l Igate,ΔTox,g , (4.74)

where the uplift factor due to the within-die variations in Tox is

SΔTox,l = exp(σ2
ΔTox,l

/2β 2
1 ) (4.75)

and, the baseline gate leakage estimate for the global chip-mean δTox,g is:

Igate,ΔTox,g = Igate,nom exp(−ΔTox,g/β1). (4.76)

The uplift factor is based on the standard deviation of the local component in
Tox variability, and the baseline leakage estimate can be found by the known global
variation in ΔTox,g for all the devices. By using (4.74), one can assess the average
gate leakage under various global and local combinations in Tox variability. The
uplift factor SΔTox,l is responsible for the within-die variations and exponentially
increase with its standard deviation.

The same model can be extended to the subthreshold leakage Isub. As previously
noted, the subthreshold leakage has an exponential relation with its major contribu-
tor, Vth which leads to:

Isub = Isub,nom exp(ΔVth). (4.77)

This exponential relationship is the cause of significant uplift of the average
leakage under parametric variations in Vth, as much as a few orders of magnitude.
Similar important parameters that impact device leakage and performance are
channel length Leff, oxide thickness Tox, dopant concentration Nsub. Most of
these parameters may have interrelated and can be represented via their principal
components. In similar manner, we can model threshold voltage variations as a sum
of variability due to channel length, and dopant concentrations, as:

f (ΔVth) = f (ΔLeff)+ f (ΔNsub). (4.78)

This is simply the generalization of the model derived for gate leakage term with
ΔTox variations. As derived in [79], it leads to a similar model of subthreshold
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leakage as a function of global and local variations in channel length and dopant
concentrations, as:

E]Isub] = SΔLeff,l
SΔNSUB,l Isub,ΔLeff,g

,ΔNSUB,g , (4.79)

where SΔLeff,l
and SΔNSUB,l are uplift factors for variability in channel length and

dopant concentration affecting threshold voltage variations. For more details on this
derivation, the reader may refer to [79].

For total leakage of a chip, we simply sum the subthreshold and gate leakage
currents for all the devices using the uplift factors derived from the within-die
variation statistics. The result would give average leakage estimate under various
combinations of global and local parametric variability and gives very useful yield
assessments when coupled with frequency estimates.

4.4.7 Conclusion

Leakage analysis has become a key topic for recent integrated circuit technologies,
as power especially leakage power became a more dominant performance limiter.
In this section, we outlined the leakage current phenomenon, and discussed details
on subthreshold and gate leakage types in general. We discussed modeling leakage
for a device and circuit, and its generalization to larger circuit blocks, all the way to
chip-level. We presented the issues on static and probabilistic estimation of leakage
power and the model extensions that cover parametric variability.

Leakage analysis is a key component in circuit design, optimization, and
manufacturing. It is an essential topic in design verification for years to come.

4.5 Dynamic Power Analysis

Since leakage analysis is described in Sect. 4.4 in detail, this section focuses on
statistical analysis methods for dynamic power.

The dynamic power of a gate cell is caused by two different effects: (1) the
charging and discharging of gate-internal and external parasitic capacitances and
(2) short-circuit currents through the gate during switching. The short-circuit power
depends on the amount of time where the input voltage is in a range between
the thresholds of both, the nMOS and pMOS transistors, so that both are open
during that time resulting in a current flow from Vdd to ground. This effect mainly
depends on the input slope time and usually counts for a smaller part of the
total dynamic power. The dominant part is caused by charging and discharging
of parasitic capacitances, which can be divided into gate-internal capacitances and
capacitive loads of wires and driven gates connected to the gate output. Usually,
these are combined to an effective load capacitance Cload, which is charged at each
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switching event of the gate output. Because both effects directly depend on signal
transition rates, the calculation of switching activities for each net in the circuit is
an important task.

In this section, two aspects of dynamic power are covered: (1) Glitch power
and how it can be determined by probabilistic methods and (2) the influence of
process variations on timing and power and how to consider them in digital gate-
level simulation.

4.5.1 Probabilistic Glitch Power Analysis

The dynamic power caused by net n can be calculated by

Pn =
1

2TC
V 2

ddCloadαn, (4.80)

where TC is the clock frequency, Vdd equals the supply voltage, and αn is the
switching probability of net n, which is also called transition density. Cload is the
effective load capacitance that is switched by the driving gate cell of net n.

Several approaches have been presented to determine signal transition densities.
Since simulation-based methods are very time consuming, faster approaches have
been developed based on probabilistic methods. In this section, an overview of these
methods will be given. It is crucial to consider delays precisely when estimating
transition rates. Methods will be shown that use pattern- and slope-dependent delay
models, taking into account process variations.

We define glitches as the functionally unnecessary portion of the total signal
transitions. They are caused by unbalanced paths from throwing latches to the inputs
of a logic gate. This results in different signal arrival times that unnecessarily forces
a gate to switch and switch back during one clock cycle. These glitches are also
propagated through the circuit. However, if the difference Δt between the arrival
times is below a gate-specific delay, then no glitch occurs at the output. This
phenomenon is called hazard filtering and it is used to leverage the constraints
for a glitch-free design. In order to determine glitches at gate level, the delay
model must be sufficiently accurate (see [80]). A simple method to distinguish
between glitches and functional transitions is to determine transition rates in two
different ways. Functional transition rates αi,func are obtained by using a zero delay
model. Using a more precise delay model considering hazard filtering leads to αi,all

which includes both functional transitions and glitches. Glitch rate then equals the
difference αi,glitch = αi,all−αi,func.

Monte Carlo simulation results are very accurate if an appropriate number of
samples is used. Since this is very time consuming, other methods have been
developed to overcome this problem. Najm et al. proposed a probabilistic simulation
method, which was implemented in the early power estimation tool CREST [81].
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Table 4.3 Extended
probabilistic waveform table

P(00,00) P(10,00)

P(00,01) P(10,01)

P(11,10) P(01,10)

P(00,11) P(01,11)

4.5.1.1 Probabilistic Simulation

In contrast to ordinary digital simulations, probabilistic simulation methods use
signal and transition probabilities as signal values. Each gate maps the input signal
combination probabilities to output probabilities. These probabilities are propagated
starting at the primary inputs through the whole combinational part of the circuit
only once.

Using probabilistic waveforms, a signal is defined by a tupel of four probabilities
at any time: the probability that the signal remains low (P00), transitions from low to
high (P01), transitions from high to low (P10), and that the signal remains high (P11).
The sum of these probabilities always equals one.

Output signals of a gate can be derived from the input probabilities by using
lookup tables. Efficient probabilistic waveform simulation can be performed using
an event-driven mechanism, which allows to consider transport delays easily.

4.5.1.2 Extensions for Hazard Filtering

Using the formulation from above, it is not possible to take hazard filtering
into account. The reason is that no information on temporal correlation between
different events exists. In order to determine glitch power more precisely, probability
waveforms were reformulated as presented in [82].

The idea is to separate the probabilities for different cases. Probability tupels
allow to describe different signal histories given by the previous event. Doing so an
event is characterized by 8 probabilities instead of 4 probabilities. Table 4.3 shows
the events that can occur. P(ep,ec) denotes the probability for the combination
of the current event ec with the previous event ep. An event can be 00, 11 for
keeping low and high or 01, 10 for transitions from low to high or from high to
low, respectively.

This concept can also be extended to represent more previous events. Although
the number of separate probabilities strongly increases with the number of previous
events that are considered. Therefore, a trade-off must be chosen. In the following,
we use the formulation from Table 4.3. By observing an inertial delay window, the
extensions allow to identify glitches, which are not propagated due to inertial gate
delay (see [82]).
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Table 4.4 Results of
transition density
determination

Monte Carlo
simulation

Extended probabilistic
simulation [82]

Runtime 0.364μs 0.011μs
Speedup 33
Max. error 24.30%
Avg. error 5.97%

4.5.1.3 Experimental Results

A 1-bit full adder was chosen as an example to investigate both speedup and
error compared to Monte Carlo simulation. Table 4.4 shows the averaged transition
density results for all nets.

The speedup of 33 is payed by an average error of nearly 6%. The example
circuit has several reconverged paths where the signals are correlated. The error of
the probabilistic simulation is caused by neglecting these correlations between the
input signals of the reconverging gates and by a limited consideration of temporal
correlation.

4.5.2 Monte Carlo Digital Power Simulation

In simulation-based power estimation approaches, transition densities are deter-
mined in a digital gate-level simulation and then fed to the actual power estimation
tool. This is done for certain interesting input patterns resulting in quite accurate,
testcase-specific power measures. One methodology to estimate the influence of
process variations on dynamic power and also on timing behavior of a digital
circuit is Monte Carlo simulation, which can be very accurate regarding the effects
of variations but time consuming if the single simulation run takes longer time.
Transistor-level models such as SPICE netlists provide the advantage that they
support to map many of the interesting process parameters directly to parameters
of the used transistor models such as BSIM, but they have the disadvantage that
they need too much computational effort for larger circuits. This makes them less
suitable for the Monte Carlo approach. A huge acceleration can be achieved when
moving from transistor level to behavioral models as used in digital gate-level cell
libraries. Here, the process variations have to be mapped to parameters of the cell
models which are usually the input slope times and output load capacitances. This
section describes such an approach for a statistical gate-level simulation flow based
on parameter sensitivities and generated VHDL cell models. The solution provides
a good speed/accuracy tradeoff by using the event-driven digital simulation domain
together with an extended consideration of signal slope times directly in the cell
model.
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4.5.2.1 Modeling Approach

The characterization of digital components using the nonlinear delay and power
model (NLDM, NLPM) is widely used as an industry standard. Input-to-output
delays, slope times of the output signals, and the consumed energy of a switching
event are characterized with respect to the slope time of the input signals and the
output load capacitance considering the logic state and the direction of signal edges
(compare Sect. 4.1).

delay = f (slopein,Cload)

slopeout = g(slopein,Cload)

energysw = h(slopein,Cload). (4.81)

For N nominal parameters pnom ∈ R
N , the functions f , g, and h are represented

by two-dimensional lookup tables determined by SPICE simulations for each
combination of typical input slope and output load values during cell library
characterization. In the nominal case, the standard cell library will not contain any
parameter data and is valid only for the PVT corner it was characterized for.

In the case of statistical analysis, the parameters can vary and are characterized
by random variables. The dependency of delay, slope, and switching energy on the
parameters can be expressed in the simplest way by first-order (linear) sensitivities
∂ f
∂ pi

, ∂g
∂ pi

, and ∂h
∂ pi

for each parameter pi. The functions f , g, and h are then extended
by a variable part:

delay = f (slopein,Cload)+
N

∑
i=1

∂ f
∂ pi

(slopein,Cload) ·Δ pi

slopeout = g(slopein,Cload)+
N

∑
i=1

∂g
∂ pi

(slopein,Cload) ·Δ pi

energysw = h(slopein,Cload)+
N

∑
i=1

∂h
∂ pi

(slopein,Cload) ·Δ pi. (4.82)

The parameters pi shall describe statistically independent variations and can be
derived from the usually correlated, technology-specific device parameters by statis-
tical methods such as principal component analysis (PCA) for Gaussian-distributed
variables. The linear sensitivities with respect to these independent parameters have
to be determined once by the cell characterization step, too. For that purpose, some
SPICE simulators provide special analyses for single-run sensitivity calculation to
reduce the characterization effort [83]. Special consideration needs the distinction
between intra-die (local) and inter-die (global) variations. For the application on
gate-level netlists, it turned out to be more practical to introduce separate variables
for the local components of parameters because separate, instance-specific random
values have to be calculated for them during simulation. This additionally provides
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the possibility of further abstraction by combining these local components to a
single new parameter describing all local variations of a gate cell instance.

The linear approach provides valid results only as long as the dependencies of
the cell quantities f , g, and h on the technology parameters are approximately linear
in the interesting range. In many practical cases, this has been proven for the timing
and dynamic power quantities. However, as shown in [83], the method may also
be applied to nonlinear problems when a transformation to a new, linear-dependent
quantity can be found as it is possible for leakage current variations. Furthermore,
general nonlinear functions f , g, and h are possible as they are, for instance, used in
[69] for statistical static timing analysis (SSTA).

In the rest of this section, process parameters are assumed to be Gaussian
distributed. In general, this has the advantage that all quantities that are linear-
dependent on these parameters are also Gaussian, which eases the prediction of their
probability distribution by mean and variance. At cell level, this is always the case
for the quantities f , g, and h because of the linear sensitivity approach. At chip level,
quantities such as path delays or mean dynamic power may have a more nonlinear
dependency because of the complexity of possible paths through the netlist and the
occurrence of glitches. But in many cases, some of these chip-level quantities show
Gaussian distribution too.

For analysis and modeling of parameter variations and correlations, also compare
Sects. 2.2 and 3.3.

4.5.2.2 VHDL Modeling and Design Flow Aspects

Because the active power of a larger circuit strongly depends on the applied stimuli,
the toggle activity at each node of the digital circuit has to be determined before any
realistic power estimation. Conventional tools typically can use either a given mean
activity at the circuit’s input pins or the result of a prior functional digital simulation,
e.g., in VCD format. These two steps can be joined into a common simulation of
timing behavior and power consumption when the cell model directly accesses the
timing and energy tables of the cell library and considers the signal slope times
dynamically as described below. This results in a slightly increased simulation effort
but has two advantages. First, there is no static timing analysis (STA) step needed
like in standard digital gate-level simulation with back-annotated static delays (e.g.,
in SDF format). Second, by evaluating the slopes dynamically during simulation,
delays and the shape of signal edges can be modeled more exactly which enables
further analyses, e.g., of glitches and the portion of dynamic power caused by them.

As a prerequisite for the statistical simulation, the parameter sensitivities have
to be characterized and provided as additional tables in the cell library. This can be
realized either by a user-defined extension of the commonly used Liberty format
which allows such extensions by its syntax or by a full proprietary format, e.g.,
based on a scripting language such as Perl to ease further processing. (Sect. A.3
contains an example listing from a Liberty file with such extensions.) From this
extended library, the delay, slope, energy, and sensitivity tables can then be extracted
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Fig. 4.25 Buffer cell with ports A and Z of type LOGIC TYPE

library VHDL_UTILITY;
use VHDL_UTILITY.STATISTICS.all;

package INTER_CELL_PKG is
...
-- calc. gauss. random value with mean 0.0 and std.dev. 1.0
constant D_TOX_THIN : REAL := NORMAL(0.0, -1.0, 1.0, FALSE,

1.0);
...

end package INTER_CELL_PKG;
Listing 4.1 Package to determine random parameter variations Δ pi

and written to corresponding VHDL array variables. As far as the cell library also
contains sufficient information about the logical function of each cell type, the
complete VHDL cell models can also be generated automatically.

The cell model has the task to calculate cell delay, output slope time, and
switching energy for each transition at one of its input signals based on (4.82). The
required arguments slopein and Cload are provided in different ways: the effective
load capacitance can be assumed to be constant over time and is therefore passed as a
generic parameter to the cell model instance; the input slope time, however, depends
on the output slope time of the driving cell and is therefore carried together with
the logic value from cell to cell using a two-valued signal data type (see Fig. 4.25)
replacing the standard logic data type STD ULOGIC.

The independent random parameter values Δ pi for the global variations can
be determined once during the elaboration phase of each simulation run using
functions of the VHDL-AMS standard package SAE J2748 for different probability
density functions [84, 85]. To avoid an additional scaling of the calculated random
numbers to the individual range of each parameter, all parameter and sensitivity
values are normalized to a mean of 0.0 and a standard deviation of 1.0. Listing 4.1
demonstrates how a global variation of the normalized parameter oxide thickness
D TOX THIN is determined. Using a local file to remember the last random number
and taking it as seed for the next call, the function NORMAL delivers a new random
value for each simulator start.

This is done for each parameter, and then (4.82) are applied by multiplications of
the Δ pi values with the tabulated sensitivities and a summation of all these variation
portions with each of the three nominal tables resulting in a set of three varied tables
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{entity R_SBUF is
generic ( Z_LOAD : REAL := 0.0 );
port ( A : in LOGIC_TYPE;

Z : out LOGIC_TYPE );
end entity R_SBUF;

architecture behav of R_SBUF is
-- first, look up values for the given eff.
-- load capacitance Z_LOAD for arc A->Z
constant Z_A_DELAY_VEC := LOOKUP_2D_CUT(Z_LOAD,

LOAD_INDICES,
SLOPE_INDICES,
DELAY_TABLE);

constant Z_A_SLOPE_OUT_VEC := LOOKUP_2D_CUT(Z_LOAD,
LOAD_INDICES,
SLOPE_INDICES,
SLOPE_TABLE);

...
begin

...
process (A.DATA)
begin
Z_NEW := A.DATA; -- logic function
Z_DELAY := LOOKUP_1D(A.SLOPE,

SLOPE_INDICES,
Z_A_DELAY_VEC) * (1 ns);

Z_SLOPE := LOOKUP_1D(A.SLOPE,
SLOPE_INDICES,
Z_A_SLOPE_OUT_VEC);

Z.DATA <= A.DATA after Z_DELAY;
Z.SLOPE <= Z_SLOPE after Z_DELAY;
...

end process;
end architecture;}
Listing 4.2 Essential parts of the VHDL cell model for the buffer example

for delay, slope, and energy. During simulation, the cell model then looks up values
only from these modified tables. Listing 4.2 shows essential parts of the cell model’s
VHDL code of the buffer example from Fig. 4.25.

User-Defined Functions for Importance Sampling

In the case of standard Monte Carlo simulation, a huge number of simulation runs
are needed if marginal probabilities are estimated. One method to overcome this
problem is importance sampling (see also Sect. 2.2.8). The samples are generated
in a special way that reduces the variance of the estimator of a probability
compared to standard Monte Carlo simulation for the same number of runs. The
presented simulation approach also allows to declare special distribution functions
for importance sampling in addition to the functions provided by SAE J2748 [84].
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Fig. 4.26 Possible simplified
glitch shape for an XOR gate
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Power Analysis

Like in standard tools, the active power calculation is based on counting of switching
events at cell outputs. For each such switching event, a corresponding energy value
is taken from the cell library and can then be added up to a total average power or
traced to a discrete power signal over time. Beyond that, the direct consideration
of slope times by the model as described above allows a much more precise
estimation of the real, analog waveforms of the output signals than in standard
digital simulation.

This is very helpful when analyzing the occurrence and scale of single glitches.
Figure 4.26 shows an example where the peak voltage of the glitch is less than half
of the full swing, caused by different delays of the two timing arcs through the gate.
This small glitch should not cause the subsequent gates to toggle and should not be
visible with standard digital simulators because of the inertial delay model of the cell
model, which ignores pulses that are shorter than the cell delay. But it will consume
energy in the driving gate cell itself, which would also be ignored in a conventional
power estimation flow. However, using the slope information, the glitch can be
recorded into a file and considered for power calculations in a postprocessing
step. Longer glitches are visible also during simulation and can thus be considered
also for online calculations. Nevertheless, a calculation in the postprocessing step
provides better accuracy because information on the glitch peak voltage is not
available until the second edge of the pulse has occurred so that an appropriate
downscaling of the corresponding energy values of the two signal transitions cannot
really be done in real time. In a conventional power estimation flow, both transitions
would count as complete transitions, which lead to inaccuracies.

Besides the mean power results for certain application scenarios, a time-based
power analysis can help to estimate power peaks due to high switching activity when
they occur. This is needed, e.g., for dimensioning of the supply network, where
larger currents may lead to an unwanted drop of the supply voltage. Thus, a fast
estimation of a circuit’s total current consumption would be desirable in addition to
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Fig. 4.27 Switching current
modeling using a triangular
current waveform shape
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the time-based power analysis. One possibility to do so is to assume a fixed current
waveform during the toggling time of the gate cell. This waveform can then be
scaled for each switching event such that its integral matches the quotient of the
looked-up energy value and the nominal supply voltage (see Fig. 4.27, (4.83)).

E
U

=

∫
t

I dt U = const. (4.83)

By an additive superposition of the currents of all cell instances in the netlist,
an overall current waveform can be calculated that is an estimate for the case of an
ideal supply net because the supply voltage was assumed to be constant (Fig. 4.29).
The accuracy of the current estimation can be improved by choosing appropriate
waveform shapes, by adjusting the points in time when the waveform should begin
and end (begin, middle, or end of the slope time) and by a proper consideration
of special cases such as glitches and events where only input signals but no output
signals change.

Interconnect Wires

Although power is drawn in the gate cells per definition, their behavior is sig-
nificantly influenced by the wiring between them. On the one hand, the parasitic
capacitances of wires increase the effective load capacitance and thus usually
increase cell delay and switching energy. On the other hand, wires introduce
additional delays and change slope times, which influences the appearance of
glitches and the behavior of subsequent gates. Because the presented simulation
approach directly calculates delays and power using the cell library data, no back-
annotation of delays from a static timing analysis is needed for the cell instances.
For the wires, however, it is still required because they are design specific and thus
cannot easily be pre-characterized like the elements of a standard cell library. At
least the effective load capacitances for each cell output and the nominal static
delays of the wire instances have to be calculated, e.g., by a timing analysis tool
such as PrimeTime [86]. The results can be written to VHDL packages using cell
instance names as identifiers to make them available to the cell model.
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introduce a new characterization port to the entity of the netlist;

foreach input slope characterization value do
apply slope value to characterization port;

foreach wire in the netlist do
connect an input signal of the driving cell to the characterization port;

run delay calculation for the wire;

write resulting input slope of the wire, wire delay and wire output slope to a VHDL
package which can be used by the cell model to look up values;

end
end

Algorithm 3: High-level wire delay characterization

This is the level of accuracy also used in standard flows. However, using the slope
information, it is additionally possible to include the dependency of the wire’s delay
and output slope time on its input slope time. To determine these dependencies for a
whole design within an acceptable time, a high-level characterization can be applied
using the delay calculation algorithms of PrimeTime using Algorithm 3.

Further effects such as the nonlinear dependency of the gate input pin capaci-
tance, which contributes to the effective load capacitance of the driving cell, on the
slope time cannot really be considered in an event-driven simulation because this
would lead to a mutual dependency of slope and load and would require network
analysis methods to be solved; here, constant, mean pin capacitances from the cell
library have to be used.

Simulation Flow

The general flow for postlayout gate-level simulation is sketched in Fig. 4.28. It
requires three main parts of input data: the cell library with additional sensitivities
for the process parameters, a wire model with extracted parasitic elements, e.g., in
the common SPEF format, which is needed by the STA tool to calculate the effective
load capacitances and wire delays, and the corresponding postlayout netlist, which
has to be adapted to the new signal data type and the additional generic parameters
of the cell models. From these inputs, the VHDL model can then be generated in
single pre-processing steps – once for the cell-specific files and once for the circuit-
specific data. This leads to a compound model that can be used for a simultaneous
simulation of timing and power behavior and also for both, nominal cases without
process dependency and for full statistical analysis using the sensitivity data.

4.5.2.3 Application of the Approach

The performance of the described approach depends on several conditions such
as the number of considered parameters, the portion of local parameters, the
implementation of table access and interpolation, the consideration of glitches, or
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Fig. 4.28 Simulation flow for gate-level digital Monte Carlo analysis

Fig. 4.29 Comparison of VHDL current model with SPICE simulation

the number of oversampling points for the calculation of the current waveforms. In
general, however, the performance should stay in the same order of magnitude like
with conventional digital gate-level simulation. For an example design with about
1,000 cells and 15 parameters a simulation time increase by a factor of about 5 was
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Fig. 4.30 Probability distribution function for path delay, mean power, and maximum current for
inverter chain example

found compared to the corresponding standard Verilog model with back-annotated
SDF data, but compared with the SPICE reference model it is still faster by a factor
of about 12,000 [87]. This should make the described gate-level approach suitable
for Monte Carlo analyses of medium-sized full designs or subcircuits of larger ones.

For good accuracy, a seamless integration of the sensitivity analysis regarding
the process parameters into the library characterization flow is needed. Especially
the used SPICE models have to be parameterized in a way that in case of nominal
values for all considered process parameters the resulting cell library contains
identical values like in the standard characterization flow for that PVT corner
without sensitivity analysis. In the mentioned example, a maximum deviation of
4% for the total number of toggles and of 7% for the mean power could be reached.

Besides the analysis of process variations, the introduced model can be used for
a more accurate calculation of delays and slope times, which may increase the accu-
racy of timing and power analysis and enables a reasonable investigation of glitches.

The current estimation – as an additional feature – should be done during
postprocessing for accuracy reasons like it was mentioned above for glitch power
estimation too. This needs further time – but has to be done only once for all
simulation runs. Figure 4.29 shows a comparison of the calculated total currents for



150 C. Knoth et al.

Fig. 4.31 Probability
distribution function for the
number of toggles for
multiplication circuit example

Fig. 4.32 Probability distribution function for global parameter TOX THIN and dependency of
path delay on TOX THIN for inverter chain example

the VHDL and the SPICE reference model. The VHDL result is based on a nominal
simulation with a triangle shape for single transitions as shown in Fig. 4.27. In the
simulation scenario, both input vectors of a multiplication unit were inverted at the
same time to cause high switching activity.

Several different statistical analyses may be applied to the results of a Monte
Carlo simulation depending on the quantities of interest. As a common way for
the visualization of results, histogram plots for selected quantities are shown in
Fig. 4.30. These are based on 10,000 simulation runs using an inverter chain
test design. Figure 4.31 shows the number of toggles during 1,000 runs of the
multiplication circuit example and illustrates the influence of the process variations
on the number of glitches. Finally, Fig. 4.32 demonstrates the analysis for a single
process parameter. In the right plot, the dependency of the circuit-level quantity path
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delay on the global parameter TOX THIN is shown. As expected, it shows a linear
dependency because it is always the sum of the same single inverter delays. The
remaining noise is caused by the local variations.

4.6 Methods for Analysis and Optimization of Parametric Yield

Based on statistical transistor models, statistical SPICE circuit simulation is ex-
plained. Higher-level analysis (Monte Carlo analysis, worst-case analysis, Mis-
match analysis and sensitivities) is explained. Optimization of performance and
robustness is then explained.

4.6.1 Statistical Analysis

In order to simulate statistical variation and device degradation, model parameters
of the transistor model are varied, e.g., the long-channel zero body bias threshold
voltage Vth0, or mobility μ0.2 All such variable model parameters are collected in
the parameter vector s.

After production, model parameters are assumed to be Gaussian distributed with
a mean vector s0 and a covariance matrix C.

A specification is a lower bound on a performance, for example slew rate
SR ≥ 3Vμs−1. One manufactured instance of a circuit is considered OK if it
fulfills all specifications at all required operating conditions (e.g., temperature
range). Including the worst-case operating conditions into the statistical analysis is
important for a realistic yield estimate. In the following, we do not include them
explicitly in the formalism, but keep in mind that fulfillment of a specification
always means that it has to be fulfilled at its respective worst-case operating
condition.

If we denote each individual specification with fi(s)≥ bi, then the set of process
parameters that fulfills a specifications i is

Ai = {s| fi(s)≥ bi}, (4.84)

with a similar definition for upper bounds. The partial parametric yield Yi of a
circuit regarding one specification i is then simply the probability that its process
parameters are inside Ai:

Yi = P{s ∈ Ai}, (4.85)

2Note that electrical characteristics such as Isat or transconductance gm are simulation results, but
not parameters of a transistor model like BSIM3.
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while the total yield is the probability that all specifications are fulfilled:

Y = P{s ∈
⋂

i

Ai}. (4.86)

4.6.1.1 Monte Carlo Analysis

Monte Carlo simulation is an integration method based on random sampling. A
sample of size N is taken from the distribution of process parameters, so that
there are N vectors s(1), s(2), . . . , s(N). For all of them, the performance values are
simulated, which results in one vector of simulation results f (s(1)), . . . , f (s(N)).

Monte Carlo simulation is used to estimate the parametric yields of a given
circuit:

Ŷi =
1
N∑j

δ j with δ j =

{
1 if f (s( j))≥ bi

0 else
. (4.87)

Monte Carlo simulation is also used to estimate the mean values and standard
deviations of a performance:

f̄ = μ̂ f =
1
N∑j

f
(

s( j)
)

(4.88)

s2
f = σ̂

2
f =

1
N− 1∑j

(
f
(

s( j)
)
− f̄

)2
. (4.89)

The accuracy and effort (required sample size N) of Monte Carlo simulation
is a popular discussion topic and deserves attention. It depends on the observed
statistics:

• Mean value: Accuracy grows with the square root of the sample size N. Accuracy
can be improved by latin hypercube sampling (LHS). But for most specifications,
the mean value can be estimated with one simulation at the typical (tt) corner
anyway. Hence, the mean is usually among the least interesting results of Monte
Carlo.

• Standard deviation σ or variance σ2: Accuracy improves with the square root of
sample number N, too. LHS does not significantly improve the accuracy.

• Partial parametric yield Y : The variance of yield estimation is Y · (1−Y )/N. In
the range of up to a yield of 90%, a small sample number such as N = 50 is quite
sufficient to see that there is a low yield issue. If the yield approaches 100%,
usually the failure rate 1−Y is considered in ppm, and the (unsymmetrical) 95%
confidence interval is calculated. To statistically “prove” to a 95% confidence
that the failure rate is less than 1,350 ppm (equivalent to a Gaussian distance
of 3 sigma from mean to spec limit), the sample number has to exceed 3/(1−
Y )= 3/1,350 ppm= 2,200. For a 4σ Gaussian distance, it is 3/32 ppm= 95,000,
and for a 6σ Gaussian distance (1−Y = 10−9), the sample size has to exceed
3 ·109 (Fig. 4.33).
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Fig. 4.33 Monte Carlo result
histogram. Arithmetic mean
and empiric standard
deviation are shown

It is these prohibitively high simulation counts for estimating high yields that
gave Monte Carlo a bad reputation for being too expensive. But let us consider that
this method of estimating the failure rate by counting failed samples is so expensive
because it makes no assumptions on the distribution shape. It is a robust method for
estimating the failure rate in the presence of extreme outliers, long-tail distributions
and multimodal distributions. We will see below that methods that are based on
robustness distances (like sigma-to-spec) require a lot fewer simulation runs.

Unfortunately, there is no sampling trick that reduces the required sample size
significantly and is still equally robust as standard Monte Carlo for estimating
the parametric yield. There are adaptive sampling strategies that can theoretically
reduce the required sample number dramatically for certain problems, but unfor-
tunately not far enough for widespread practical applications in parametric yield
estimation. Typical sample sizes for adaptive importance sampling lie in the range of
several ten thousands, while the methods do not scale down well and tend to become
unstable for smaller sample sizes. For many applications of Monte Carlo circuit
simulation, a feasible sample size is a factor 10–100 smaller than what adaptive
importance sampling needs; hence, it has not found widespread application in
circuit simulation, despite its popularity in other fields such as finance or theoretical
physics. Particularly for large circuits with long simulation times, even N = 100 can
be challenging. In this situation, reducing the sample size from 108 to 104.5 has little
practical meaning.

Given these problems, for many practical applications, the estimated distance
from mean value to specification bound in multiples of standard deviations is a better
robustness measure than the estimated failure rate. In Fig. 4.34, we would consider
spec 2 to be more robust than spec 1, although the shapes of the distributions may
not be exactly Gaussian and the sample size is only N = 150.

If the performance distribution shape were known to be exactly Gaussian, then
we could verify high robustness with surprisingly little effort: A simulated distance
of 4 s in a sample size of only N = 45 is already sufficient to accept a > 3σ
robustness with 95% confidence.

We can collect the required minimum distance for 95% confidence in Table 4.5.
As an example, Table 4.5 is read as follows: If you want to verify that the distance

of the mean from spec of a performance that has a normal distribution is more than
4σ , then run a Monte Carlo simulation with a sample size of N = 50. If the distance
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Fig. 4.34 Robustness estimates from Monte Carlo

Table 4.5 Required sigma
distance by sample number

3σ 4σ 5σ
N = 50 3.66 4.85 6.04
N = 100 3.44 4.57 5.70
N = 300 3.24 4.31 5.38
N = 1,000 3.13 4.16 5.20

of the mean from the spec in the sample is larger than 4.85σ , then it is OK because
you may safely assume that it will not drop below 4.0 even if you increased the
sample size to infinity. If the distance in your N = 50 sample is only a little less than
4.85σ , then increase the sample size for more accuracy. Else, accept that the design
is not robust enough and fix it.

For non-Gaussian distributed performances with long tails, the rule is not so
simple anymore. One extreme example is the log-normal distribution. A one-sided
yield of 99.87% on the long-tail side does not require a 3σ distance like a perfect
Gaussian distribution would, but 8.6σ . In a sample of size N = 300, the spec-to-
mean distance has to be larger than 11.9σ to verify this yield with 95% confidence.
These numbers look high, but they are not since reaching 11.9σ is much more likely
in a log-normal distribution than in a Gaussian distribution.

For performances that are known to be close to a log-normal distribution, like
leakage current or certain timing measurements in logic, it is more robust to check
the distribution of their logarithm. Performances such as CMRR of an amplifier
should be analyzed not in dB but in the linear signed domain, where they show a
much more linear behavior.

4.6.1.2 Worst-Case Analysis

Figure 4.35 shows the mean value, covariance ellipsis and one specification bound in
process parameter space. Of all process parameter sets which violate a specification,
the point that is closest to the mean value is called the worst-case point swc. It
marks the position in the process parameter space where the probability density of
parametric faults has its maximum. The Mahalanobis distance between swc and s0

is the worst-case distance βwc.
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Fig. 4.35 Definition of
worst-case point

Spec fulfilled

Spec violated

swc
s2

bwc

s0

s1

Fig. 4.36 Process drift or
device degradation

s1

s2

dC(x,y) =
√
(x− y)TC−1(x− y) (4.90)

βwc =±dC(swc,s0). (4.91)

There is a sign convention for βwc: if the specification is fulfilled at the nominal
point, then βwc is positive, else it is negative. In this way, the yield estimate from
βwc is equal to the Gaussian cumulative density function (see (4.94)).

Due to device degradation during operation, the mean value and the covariance
matrix of the circuits change with time t: s0(t), C(t). The initial values after
production at t = t0 are s0(t0) and C(t0). Therefore, the percentage of circuits that
still fulfill their specification at time t is

Y (p, t) =
∫

A(p)

|2πC(t)|− 1
2 exp

(
−1

2
dC(t)(s,s0(t))

2
)

ds. (4.92)

If we consider the influence of process variation on the sensitivity toward stress-
induced degradation as a second-order effect, then we may assume C(t) to be
constant. The effect of degradation during operation on the yield is then formally
similar to a process drift during manufacturing (see Fig. 4.36).
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For small changes in the position of the mean value, the change of worst-case
distance over time is

βwc(t) = βwc(t0)−
(
s0(t)− s0(t0)

)TC−1
(
swc(t0)− s0(t0)

)
βwc(t0)

. (4.93)

This change can be positive or negative, i.e., a performance can become better or
worse by device degradation.

The worst-case distance can be used to estimate the partial yield for the
performance:

Ŷ (βwc) =
1√
2π

βwc∫
−∞

e−ξ
2/2dξ . (4.94)

4.6.2 Optimization for Robustness

In order to resist process drift and device degradation, it is not sufficient to optimize
only the yield figure Y (p,0), because this value goes into saturation at 100%.
Standard methods for the estimation of Y , which means counting Monte Carlo
samples, are not accurate enough to estimate the worst-case distance. A robust and
a nonrobust design may show the same yield value Y (p,0), but different worst-
case distances, which means different sensitivities toward process drift or device
degradation. Optimization for yield and robustness, therefore, has to focus on the
worst-case distances as the primary targets for optimization of robustness and
yield [88].

As a result, this advantage of worst-case distance optimization in contrast to
optimization of Y becomes even more important for the design of robust and reliable
analog circuits. The combination of worst-case distance optimization and SOAs is
the basis of our approach. The SOAs can be formalized as functions of the design
parameters, which impose further constraints on the optimization problem:

c(p)≥ 0. (4.95)

During the worst-case distance optimization, design points are accepted as valid,
only if they fulfill all such constraints. The solution has to show high worst-case
distances for each performance fi, while satisfying all constraints c≥ 0.

The optimization consists of three main steps (cf. Fig. 4.37). First, the operating
points of basic structures, e.g., differential pairs, are optimized using a constraint
matrix concept. Then the circuit performance is improved regarding operating range,
such as supply voltage and temperature. Finally, design centering is carried out to
maximize the yield.
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- improve circuit performance for
- operating range and at
- nominal process

- design centering over
- operating range and
- deviation of the process

feasibility
optimization

nominal
optimization

backannotation to
design environment

yield
optimization

- initial setup of the WiCkeD tool 
- design parameters
- device structure constraints 
- performance parameters and specification

- reuse of the following data
- design data: circuit topology, testbench
- simulator settings
- mesurements

- find a solution to fulfil 
- operating conditions of the devices
- no focus to circuit’s performance parameters

configure
interface

design environment
data

- set solution into the design environment

Fig. 4.37 WiCkeD’s main optimizations steps

4.6.2.1 Structural Constraints

Analog circuits are composed of basic building blocks such as current mirrors or
differential pairs. Unlike digital gates, the analog ones depend on their geometries
and operating point to operate correctly. Usually, being in saturation is an important
constraint on many analog transistors, as well as current symmetries or certain
nodes being at the same potential. Since these constraints are related neither to
the specification, nor to the layout level like design rules are, but come from the
structure of the circuit, they are called “structural constraints.” We distinguish four
types of constraints:

1. Geometric equality, like “equal lengths l1 = l2 in a current mirror”
2. Geometric inequality, like “w1l1 > 6L2

min”
3. Electrical equality, like “I1 = I2” in a current mirror
4. Electrical inequality, like “Vgs−Vth > 50mV” (strong inversion).

The geometric constraints can be guaranteed by construction. To check the electrical
inequality constraints, a simulation has to be done that shows by which amount ck

each constraint k is over-fulfilled (ck > 0) or is violated (ck < 0).
Like design rules on layout level, structural constraints on schematic level do

not at all guarantee that the circuit fulfills the specification, but a violation indicates
a structural problem that may result in a low yield but remains undetected when
simulating a rather high-level circuit specification.

For a typical analog circuit consisting of 100 transistors, more than 400
constraints may be created. Since many structural constraints can be derived from
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requirements on basic structures such as current mirrors, generation of many of
these constraints can be performed automatically [89].

4.6.2.2 Feasibility Optimization (FO)

Structural constraints are useful to automatically find a good initial sizing and
to ensure that tools for automatic nominal optimization and design centering
provide technically feasible results [90]. For that purpose, FO modifies the vector
d = (d1, . . . ,dnd ) of design parameters (such as transistor geometries and resistor
values) so that all constraints are fulfilled, i.e., c(d)≥ 0. Usually, a reasonable initial
sizing dinit is available and a solution close to it is preferred:

min
d
‖d − dinit‖

c(d) ≥ 0 . (4.96)

The number of independent design parameters nd grows with the number of
elements to be sized and is reduced by geometric equality constraints. For typical
analog, circuits nd can be expected to be between 15 and 30, while complex designs,
e.g., the OTA presented in [91], can have up to 100 degrees of freedom.

4.6.2.3 Nominal Optimization (NO)

Analog circuits are characterized by performance measures, for example, gain A0,
slew rate SR, and noise figure NF. The specification requires the values of these
measures not to exceed certain upper and/or lower bounds, for example A0 ≥ 80dB.

We denote the performance measures by the vector f = ( f1, . . . , fn f ), with the
vectors of lower bounds fL and upper bounds fU . The performance measures depend
on design parameters: f(d), and the specification is

c(d)≥ 0 ∧ fL ≤ f(d)≤ fU . (4.97)

The goal of nominal optimization is finding values for d that satisfy (4.97).
Moreover, this must be achieved for a defined range of operating parameters

such as temperature or Vdd. We denote the operating parameters by the vector θθθ =
(θ1, . . . ,θnθ ) with lower and upper bounds θθθL and θθθU . Then f depends also on the
operating conditions: f(d,θθθ ), and the specification is

c(d)≥ 0 ∧ ∀
θθθL≤θθθ≤θθθU

fL ≤ f(d,θθθ )≤ fU . (4.98)

The goal of nominal optimization with operating conditions is finding values for d
that satisfy (4.98).
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Two types of algorithms are available for nominal optimization in WiCkeD:
gradient-based optimization with parameter distances [92] and stochastic (global)
optimization. The nature of most analog sizing problems is optimization of per-
formance functions that show strong trade-offs, are expensive to evaluate in terms
of simulation time, but are monotonous or convex – not in the full design space
but in the small feasible design space that is restricted by the large number of
structural inequality constraints. Gradient-based methods can be adapted to this
type of problem very efficiently. Therefore, it is reasonable to run these methods
first, and to resort to stochastic optimizers only when simulation results and design
knowledge indicate that multiple local optima actually exist.

4.6.2.4 Design Centering

Process variation and mismatch have a large influence on the performance measures
of analog circuits. For simulation, this effect is modeled by varying randomly a
few standard Gaussian distributed model parameters, for example tox or Vth. The
vector of random model parameters is denoted by s = (s1, . . . ,sns) with the null
vector 0 as mean and unity covariance matrix. Process variation and mismatch are
both contained in s, so for a typical analog circuit consisting of 100 transistors, ns

can be expected to be between 200 and 250.
One standard method for estimating the distributions of performance measures

is Monte Carlo simulation. A sample of size N of s is generated and simulated,
yielding N result vectors f(i) = f(d,θθθ ,s(i)), i = 1 . . .N. The parametric yield Y is
estimated as the percentage of samples that lie within the specification bounds
(fL, fU). Monte Carlo is only an analysis method, but does not vary d and hence
shows little information on how to improve the yield by changing d.

Yield improvement can be accomplished by worst-case distance methods. A de-
sign that satisfies (4.98), i.e., that fulfills the specification for the typical process and
no mismatch (s = 0) and for all required operating conditions, could still violate
the specification for some s = 0. If process conditions s causing violations are close
to the mean value (i.e., fi(d,θθθ ,s) < f L

i for some θθθ and small ‖s‖), then there will
be severe parametric yield loss. Therefore, an important measure for a performance

fi is the worst-case distance β (i)
wc, which is the shortest distance between the mean

value and a process condition that causes fi(d,θθθ ,s) to fail its specification. For a
lower bound f L

i of a spec that satisfies (4.98),

β (i)
wc = min

θθθ ,s
|β |

fi

(
d,θθθ ,β

s
‖s‖

)
= f L

i

θθθL ≤ θθθ ≤ θθθU . (4.99)
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Transistor

Power Down Circuitry

Fig. 4.38 Schematic of an OpAmp

The worst-case distance for an upper bound is similarly defined.
A worst-case distance is a function of the design parameters. They are useful

goals to maximize over d and thereby achieve a design that is centered in the process
space regarding the specification bounds [88, 93].

4.6.2.5 Example

In this section, some of the concepts discussed above are shown on an example
circuit, see Fig. 4.38. This kind of operational amplifiers are basic building blocks
of many analog and mixed-signal circuits. For certain applications, the performance
of the operational amplifier is critical for the performance of the whole system.

Table 4.6 shows the Monte Carlo simulation results for the circuit specifications
after initial nominal circuit design. As can be seen from the row “Yield estimate Ŷi,”
many specs already have a large yield, but transit frequency Ft and phase margin φM

still need improvement.
Table 4.7 compares yield estimation results from Monte Carlo simulation

(see Sect. 4.6.1.1) and worst-case analysis (see Sect. 4.6.1.2). The worst-case dis-
tance for specification φM is negative, which corresponds to a yield estimate <50%.

Table 4.8 shows one of the worst-case points in terms of the threshold voltages
of the devices. The most dominant parameter is the threshold voltage of transistor
MMN1, but MMP3 and MMP1 influence the transit frequency significantly, too.
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Table 4.7 Comparison of estimates of the partial yield from Monte Carlo analysis and
worst-case analysis

Spec
Ŷi from Monte
Carlo (%)

95%
confidence
interval from
Monte Carlo

Worst-case
distance

Ŷi from worst-case
analysis (%)

A0 100 [0.9891,1] >7.556 100
Ft 93.41 [0.8978,0.9605] 1.463 92.83
phm 20.51 [0.1588,0.2580] −0.677 24.912
CMRR 100 [0.9891,1] 4.315 100
Slew 100 [0.9891,1] 4.179 100
Power 100 [0.9891,1] >9.380 100

Table 4.8 The worst-case
point of the performance Ft

Device wi Device wi

MMN1 −1.227 MMP9 −0.008
MMP3 −0.496 MMN2 −0.005
MMP1 0.481 MMN12 0.002
MMN5 0.266 MMN10 −0.002
MMN3 0.182 MMN6 0.001
MMN11 0.140 MMP8 −0.001
MMN9 −0.138 MMP6 0.001
MMP5 0.100 MMN4 0.001
MMP2 0.048 MMN8 0.001
MMP4 −0.048 MMP10 −0.001
MMP7 −0.016 MMN7 0.001

4.7 Robustness Analysis for Semiconductor Blocks

Fluctuations in the manufacturing process introduce steady variations in the elec-
trical properties of semiconductor devices and interconnects. As a result, the
performance parameters of integrated circuits are subject to variation as well
and hence they can be treated as random variables following certain probability
distributions. By quantifying them robustness analysis figures out critical blocks or
circuits in terms of variability.

It refers to two problems. On the one hand, the performance parameter distri-
butions need to be quantified to measure variability and to compare performance
characteristics in different physical domains. Summarizing these partial results leads
to an overall performance robustness of the circuit under investigation. On the
other hand, the major contributors to variability need to be known. This enables
identifying critical process parameters and estimating their impact which is of
particular importance in case of parameter drifts.

This section proposes solutions to both issues by presenting methods and figures
of merit to rate performance parameter distributions and to account for performance
parameter shifts.
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4.7.1 Motivation and Goals

Fluctuations in manufacturing cause variations in device and interconnect parame-
ters and may lead to circuit performance degradation or malfunctions. To account for
this issue, two important aspects for circuit analysis are discussed in the following.
While we focus on transistor-level circuits, the principles may also be applied to
higher levels of abstraction assuming proper statistical modeling.

To counteract degradation, it is essential to know the major contributors to
circuit performance variability. Therefore, two methods to determine significantly
influencing variables are presented, whereas we focus on transistor circuits and
outline the pros and cons.

Furthermore, we need to rate circuit performance variability. Techniques to
estimate the parametric yield have already been proposed in Sect. 4.6. But since this
figure of merit also has some disadvantages, we discuss some alternatives whereas
we keep track of single performance characteristics and overall circuit performance.

In summary, robustness analysis is intended to contribute to answering the
following questions.

• How can we determine the contributors to circuit performance variability?
• What are the feasible figures of merit to rate performance parameter fluctuations?

Is there a way to combine the characteristics to rate overall circuit robustness?

Targeting these problems some methodologies are presented considering the
example performance parameter

y1 = x1 + x2
2. (4.100)

The random parameters X1 and X2 are assumed to be statistically independent
standard Gaussian variables, Xi∼N(0,1) so that the nominal point is x0=0.

4.7.2 Contributors to Variability and Their Impact

There are several methods to determine influential parameters xi with respect to
an arbitrary performance characteristic y j. They assume that the variables xi are
uncorrelated. Although this assumption may not necessarily be true, it can be
achieved by applying principal component analysis, see Sect. 2.2.

4.7.2.1 Sensitivity Analysis

Linear sensitivities

S(1)i, j =
∂y j

∂xi

∣∣∣∣
x0

, (4.101)
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Table 4.9 Example for full-factorial experiments. The nominal value is shown for
completeness

x1 x2 y1 i ȳ1(xi = 1) ȳ1(xi =−1) Effect (4.102)

0 0 0 =⇒ 1 2 0 1
−1 −1 0 2 1 1 0
−1 1 0
1 −1 2
1 1 2

the first derivatives of a performance parameter y j with respect to the variables xi

at the nominal point x0, measure the first-order impact of the variables. Large ab-
solute values outline significant contributors to variability, whereas small quantities
indicate less influential variables.

Linear sensitivity data may be directly computed by the circuit simulator.
Applying the one-factor-at-a-time approach [94] and the approximation using finite
differences,

S(1)i, j ≈
Δy j

Δxi

∣∣∣∣
x0

=
y j(x0,xi = x0,i + h)− y j(x0,xi = x0,i− h)

2h
(4.102)

with the deviation parameter h, is an alternative. For the example performance

parameter in (4.100), we determine S(1)1 = 1 and S(1)2 = 0 using an arbitrary
parameter h > 0.

Design of Experiments (DoE) considering n variables with k levels each is a more
effective alternative to the one-factor-at-a-time approach [94]. Multiple variables are
deflected concurrently to decrease the simulation effort and to additionally enable
analyzing cross-correlations. In comparison with the one-factor-at-a-time analyses,
the efficiency increases with a rising number of variables. Full factorial experiments
and fractional factorial experiments are distinguished. While the former consider all
cross-correlations, the latter ignore higher-order interactions but decrease simulation
costs. The full-factorial analysis of the example performance parameter in (4.100)
is summarized in Table 4.9. Both variables take the values ±1.

Beneath statistical analyses and response surface modeling, effect analysis is a
possibility for evaluating the experiment results. The main effect of a variable xi is
the change in a performance parameter y j when changing the variable between its
levels ak. In analogy to (4.102), it is defined by the difference in the corresponding
mean performance parameter values ȳ j(xi = ak) and the variable deflection Δak.
Two variables xi and x j interact if the effect of one variable depends on the level of
the other one. In our example, the DoE results and the one-factor-at-a-time method
are identical. Additionally, the values in Table 4.9 indicate that the variables x1 and
x2 do not interact.

If a sample of data is created, for instance during a Monte Carlo analysis, it
can be used to fit response surface models that we have introduced in Sect. 2.2.
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In the vicinity of the nominal point x0, the first-order Taylor approximation of the
performance parameter y j contains the linear sensitivities defined in (4.101).

In our example, the quadratic influence of the variable x2 cannot be detected due
to the linear approach. This drawback may be overcome by increasing the model
complexity, that is by increasing the order of the sensitivity by generalizing (4.101),

S(n)i, j =
∂ ny j

∂xn
i

∣∣∣∣
x0

. (4.103)

While the simulation effort rises with the model order, we gain accuracy. Finding
a trade-off between reliable results and runtime is a major task when performing
sensitivity analyses, which is directly influenced by the circuit topology.

An application of higher-order sensitivity data is proposed in [95] to calculate
the probability P of critical performance parameter values. Simulation data is
fitted to a second-order polynomial response surface model that is the input to an
analytical evaluation. Principal component analysis of the coefficient matrix of the
second-order variable impacts and a subsequent saddle point approximation enables
estimating the cumulative distribution functions of the performance characteristics
y j. Numerical methods additionally estimate the sensitivity of the probability P to
the variables xi.

Assuming a properly chosen model complexity, sensitivity analysis provides
reasonable results. The contributors to variability are outlined qualitatively and
quantitatively, which is often applied in circuit optimization [96].

4.7.2.2 The Chi-Square Test as a Statistical Approach

Statistical tests may be an alternative for sensitivity analysis to determine significant
contributors to circuit performance variability. Their input is a sample of the size N,
which may be created by Monte Carlo simulations that are alternative sampling
approaches.

In particular, the chi-square test [97] may be of interest. It is a test for statistical
independence that checks the null hypothesis, the random variables X and Y are
statistically independent, against its alternative, X and Y are statistically dependent.
To find contributors to circuit performance fluctuations, the random variable X
represents an arbitrary circuit variable xi, whereas the performance parameter under
investigation y j is described by Y .

Usually, device parameters and performance characteristics are continuous ran-
dom variables. Using partitions of equal width or probability, both random variables
have to be classified into nx and ny categories to build up an nx x ny contingency
table.

The test statistic χ2 measures the deviation of the data in the contingency
table from its expected distribution in case X and Y are statistically independent.
Under this assumption, the test statistic follows a chi-square distribution with
(nx− 1)(ny− 1) degrees of freedom. If it exceeds a threshold value that is given
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Fig. 4.39 Example
performance parameter
distribution, histogram plot,
and Gaussian approximation
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by the desired significance level, the null hypothesis will have to be rejected and a
statistical dependence has to be assumed.

The chi-square test has to be performed sequentially for all combinations of
variables xi and performance parameters y j to qualitatively separate significant
and less influential variables. To avoid misinterpreting, the variables xi have to
be uncorrelated. In contrast to sensitivity analysis, a quantitative ranking is not
possible.

4.7.3 Performance Parameter and Circuit Robustness

Let us consider our performance parameter y1 in (4.100) for which the upper
specification limit USL1=6 defines the tolerance region. It may be represented by
the random variable Y1 with its mean value E[Y1]=1 and variance VarY1 =σ2

1 =1.
The histogram plot in Fig. 4.39 indicates that a Gaussian approximation does not fit
the data. In the following sections, figures of merit to rate the performance parameter
distributions will be presented.

4.7.3.1 Parametric Yield and Worst-Case Distances

In Sect. 4.6, the parametric yield Y has been defined as the percentage of samples
within the specification limits. While being very intuitive, it is very costly to estimate
high values of this figure of merit with sufficient accuracy. Furthermore, the tails
of performance parameter distributions are of particular importance. But they may
be inaccurate due to the lack of measurement data when modeling extreme device
behavior. As an alternative, the worst-case distance βwc has been introduced.
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Fig. 4.40 Worst-case
distance example

In our example, we have Y = 0.983. That is, 98.3% of all circuits will meet the
performance requirements for y1. The worst-case point (0.5,

√
5.5) results in the

worst-case distance βwc=5.75 as it is illustrated in Fig. 4.40.

4.7.3.2 Process Capability Indices

As we have seen in Sect. 4.6, it is hard to estimate high parametric yield values with
sufficient accuracy.

Beneath worst-case distances βwc, process capability indices may be an alter-
native [98, 99]. Since they do not exhibit this disadvantage of parametric yield
estimation, they have been widely used in process monitoring and statistical quality
control. Additionally, they have been successfully applied in circuit optimization
[100].

The two most important indices are Cp and Cpk. They are defined by lower
and upper specification limits (LSLj and USLj), mean values E [Yj], and standard
deviations σ j,

Cp(y j) =
USLj−LSLj

6 ·σ j
(4.104)

Cpk(y j) =
min

{
USB j−E [Yj] ,E [Yj]−LSB j

}
3 ·σ j

, (4.105)

in case of Gaussian-distributed performance parameters. While index Cp solely
relates the width of the tolerance region to the distribution spread, the measure
Cpk additionally considers the distribution location with respect to the nearer spec-
ification limit. The definitions show that high values indicate robust performance
characteristics. Due to the assumed Gaussian distribution, process capability indices
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Table 4.10 Transformation
of process capability indices
and yield for Gaussian
performance characteristics

Cp Maximum yield Cpk Minimum yield

2/3 0.9544997 2/3 0.9544997
1 0.9973002 1 0.9973002
4/3 0.9999367 4/3 0.9999367
5/3 0.9999994 5/3 0.9999994

provide an estimate for the parametric yield,

2φ(3 ·Cpk)− 1≤ Y ≤ 2φ(3 ·Cp)− 1, (4.106)

whereas φ(.) is the cumulative distribution function (CDF) of the standard normal
distribution. Providing some characteristic values for process capability indices
and corresponding parametric yield, Table 4.10 shows an increased discriminatory
power of the process capability indices compared to yield in the high-yield regime.
Furthermore, since only mean values and standard deviations need to be determined,
the indices are easy to use.

Since our performance characteristic y1 is not bounded below, we have to use an
infinite lower specification limit, LSL1=−∞, in the calculations. Applying (4.104)–
(4.106), we obtain

Cp(y1) = ∞ ,

Cpk(y1) =
5
9

√
3≈ 0.962 and

0.996 ≤ Y ≤ 1.

Using the process capability indices, we overestimate the parametric yield in
comparison with Sect. 4.7.3.1. The reason is that the Gaussian approximation is not
accurate as it neglects the upper distribution tail that we can see in Fig. 4.39.

To counteract, a more general definition for the process capability indices has
been standardized [101],

Cp(y j) =
USB j−LSB j

Q j(0.99865)−Q j(0.00135)
(4.107)

Cpk(y j) = min

{
USB j−Q j(0.5)

Q j(0.99865)−Q j(0.5)
,

Q j(0.5)−LSB j

Q j(0.5)−Q j(0.00135)

}
, (4.108)

where Q j(.) is the quantile function. Since these definitions can be applied to ar-
bitrary performance parameter distributions, a transformation into parametric yield
estimates is difficult or even impossible. Additionally, determining the 0.00135–
and 0.99685–quantiles may be very costly in terms of the required sample size N
and hence in terms of analysis runtime. The values

Q1(0.5) = 0.738 , Q1(0.99865) = 10.520 =⇒ Cpk(y1) = 0.538
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Fig. 4.41 Although their mean values E [Yj ] = 100, standard deviations σ j = 10 and hence the
coefficients of variation CVj = 0.1 are identical, performance parameter distributions may differ
due to their shape

show a 44% lower process capability index Cpk(y1) than the one determined by the
approximation in (4.105). This underlines that using the Gaussian approximation is
inaccurate in our example and overestimates the parametric yield.

In circuit analysis, mean values and standard deviations or quantiles have to
be estimated applying an arbitrary sampling technique, see (2.35) and (2.36) for
Monte Carlo analyses. Since the characteristics can only be estimated, the process
capability indexes are estimators as well. Methods to define confidence intervals
account for this limitation.

Since multiple performance parameters usually contribute to circuit performance,
process capability indices for single performance characteristics need to be com-
bined. Multivariate extensions have been developed for this purpose [98].

4.7.3.3 Coefficient of Variation

The coefficient of variation,

CVj =
σ j

E [Yj]
, (4.109)

also known as the relative variation of the performance parameter y j, is a unit-
free measure. High values imply a large spread in the distribution, which may be
interpreted as a low robustness. The coefficient of variation can only be applied to
distributions with positive mean values.

The value CV1 =
√

3= 1.732 expresses that the standard deviation σ1 is about
73% larger than the mean E[Y1], which appears quite high. But since the coefficient
of variation does not consider specification boundaries and a reference performance
parameter for comparison is not available, an interpretation is difficult. Nevertheless,
constructing confidence intervals will increase the significance of the analysis
results.
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As the process capability indexes for Gaussian distributions in (4.104) and
(4.105), the definition in (4.109) does not pay attention to the shape of the
distribution so that distributions may differ, although their coefficients of variation
are identical, see Fig. 4.41. To rate multiple performance parameters y j, multivariate
coefficients of variation have been proposed [102].

4.7.3.4 Taguchi

In manufacturing, Taguchi methods aim at improving quality [94]. The loss
function,

L = k ·
(

y(i)j −T
)2

, (4.110)

with the constant k rates a manufactured item y(i)j according to its deviation from its
target value T . In general, minimizing the loss function in (4.110) achieves a quality
improvement. It does not consider specification limits because it focuses on-target
operation.

In circuit analysis, the item may be an arbitrary performance characteristic y j and
the target may be the nominal value or mean E [Yj]. Estimating the sample variance
σ j for Monte Carlo simulations using (2.36) corresponds to determining the mean
loss function with respect to the sample mean.

To rate performance parameter distributions, signal-to-noise ratios have been
proposed. The used definition has to be chosen according to the scope of optimiza-
tion [94], and it has to be aimed at high values.

S/NT (y j) = 10 · log

(
E [Yj]

2

σ2
j

)
minimize variation (4.111)

S/NL(y j) =−10 · log

⎛
⎝ 1

N∑
1

(y(i)j )2

⎞
⎠ maximize y j (4.112)

S/NS(y j) =−10 · log

(
1
N∑(y(i)j )2

)
minimize y j. (4.113)

Robustness analysis requires (4.111) because it considers the distribution spread
and location. But as the coefficient of variation in Sect. 4.7.3.3, the signal-to-noise
ratio S/NT (y j) does not pay attention to the shape of the performance parameter
distribution.

We can determine the value

S/NT (y1) =−4.77

for our example performance parameter y1 in (4.100). The measure is negative
because the sample standard deviation is larger than the mean value. As the
coefficient of variation, the signal-to-noise ratio indicates a large spread in the
distribution of performance parameter y1.
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Table 4.11 Summary of measures for robustness analysis

Definition Specification Shape of
Name Symbol (equation) required distribution

Parametric yield Y Yes Considered
Worst-case distance βwc Yes Considered
Process capability Cp / Cpk (4.104) and (4.105) Yes Not considered
Indices (4.107) and (4.108) Yes Considered
Coefficient of variation CV (4.109) No Not considered
Signal-to noise ratio S/NT (4.111) No Not considered

4.7.3.5 Summary

We have discussed several figures of merit for robustness analysis which are
summarized in Table 4.11. When choosing one of the measures, the availability
of specification boundaries, the importance of the distribution shapes and the
interpretability have to be considered. We have to take into account that the
presented figures of merit can only be estimated during the practical application.
Determining confidence intervals will be necessary to increase the significance of
the analysis results.

The parametric yield appears most intuitive since it is directly linked with the
manufacturing process outcome. Due to the potential lack of reference values,
the alternative figures of merit mainly fit circuit comparison purposes. While high
process capability indices and signal-to-noise ratios according to Taguchi indicate
robust circuits or blocks, the coefficient of variation should be minimized.

Currently, process capability indices are quite uncommon in integrated circuit
design and analysis. By increasing the discriminatory power in the high-yield
regime, they are an alternative for the parametric yield. A transformation is possible
when the type of the performance parameter distribution is known.

Specification boundaries do not necessarily have to be defined. Then, the
coefficient of variation and Taguchi’s signal-to-noise ratio may be used to abstract
performance parameter variability. As a disadvantage, both figures of merit do not
take into account the distribution shape. We will present an alternative approach in
the subsequent section and apply it to a sample set of standard cells.

4.7.4 Standard Cell Robustness Analysis

In Sect. 4.7.3.3, we have presented the coefficient of variation as a potential figure
of merit for robustness analysis. Since it does not take into account the distribution
shape, further information needs to be considered.

We propose to additionally use the interquartile range,

IQR j = Q j(0.75)−Q j(0.25), (4.114)
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Fig. 4.42 The quotient IQR j/σ j indicates heavy-tailed distributions

that is known from the Cumulative distribution function (CDF). If the quo-
tient IQR j/σ j (=1.349 for Gaussian distributions) is small, the distribution of the
performance parameter y j is heavy-tailed [97]. Figure 4.42, referring to Fig. 4.41,
illustrates this fact.

Since the increased probability of extreme values, heavy-tailed distributions are
considered less robust. In combination with the coefficient of variation, we define
the performance parameter robustness [103],

R j =
IQR j/σ j

CVj
=

IQR j ·E[Yj]

σ2
j

. (4.115)

To account for multiple performance parameters y j, we additionally have to combine
their robustness measures. All performance parameters contribute to cell variability
so that a cell cannot be more robust than any performance characteristics. Hence,
we define the cell robustness

1
Rcell

=∑
j

1
R j

. (4.116)

Equation (4.116) may be adapted to different processes targets, for instance high
performance or low power, by inserting weights according to the importance of
performance parameters.

In Sect. 2.2, we have introduced that the sample mean and the sample standard
deviation only approximate the true distribution parameters. This also holds for the
inter-quartile range so that the performance parameter robustness R j in (4.115) and
the cell robustness Rcell in (4.116) can only be estimated as well. Since it is hard to
analytically derive the distributions and confidence intervals of our robustness, we
apply a bootstrapping approach [104].
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Table 4.12 Standard cells
for robustness analysis

Cell Name

2x buffer bufx2
1x inverter invx1
2x inverter invx2

Table 4.13 Performance parameters for standard cell robustness analysis

j Performance parameter Identifier j Performance parameter Identifier

1 Cell delay Delay 4 Leakage power Leakage
2 Output transition Transition 5 Noise immunity Noise
3 Active power Power 6 Setup/hold time Setup/hold

Fig. 4.43 Estimated performance parameter robustness for 2x buffer. Note the logarithmic scale

For every performance characteristic y j, we determine the distributions of
the estimators for mean, standard deviation, and inter-quartile range applying a
Monte Carlo analysis, see Sect. 2.2 and [97]. Assuming that these distributions are
independent, we draw sets of estimated means, standard deviations and inter-quartile
ranges and calculate a sample of performance parameter robustness measures R j

using (4.115). After repeating the procedure for all performance characteristics,
(4.116) combines the performance parameter robustness values to cell robustness
estimators. As a result, we obtain the distributions of the performance parameter and
cell robustness estimators. While we transform them into boxplots for visualization
here, we are also able to read off confidence intervals to numerically evaluate our
analysis results.

While we apply the approach in (4.115) and (4.116) to the standard cells in
Table 4.12, we focus on the performance parameters in Table 4.13.

With a sample size N = 1,000, we obtain the results in Figs. 4.43 and 4.44.
Since setup and hold constraints are not of concern in combinational logic, this
performance parameter has an infinite robustness, Rsetup/hold=∞.
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Fig. 4.44 Cell robustness estimation

Figure 4.43 shows the boxplots for the estimated robustness values of the 2x
buffer, which are representative for all examined cells. Leakage power is the most
critical performance parameter, followed by cell delay. Fluctuations of the output
transition time and noise immunity can be neglected because they contribute only
marginally to the cell variability.

The comparison of cell robustness in Fig. 4.44 shows that the 2x buffer is most
robust. The two inverters cannot be classified because the confidence intervals of the
robustness estimators overlap. To reduce variability, the inverters should primarily
be optimized.

4.7.5 Conclusion

Robustness analysis aims at determining the contributors to circuit performance
variability and to abstract performance fluctuations by feasible figures of merit.

In the first part, we have outlined methods to determine significant variables,
which effect variability. Sensitivity analysis has been discussed as a well-known and
widely used approach. By choosing model orders and a simulation methodologies,
users may tune the analysis efficiency and accuracy. As a result, influential variables
are outlined and their impact can directly be read off. Although they are not
frequently used in circuit analysis, statistical tests may be an alternative approach.
The chi-square test has been briefly introduced. While significant contributors to
variability are outlined, the impact of variables cannot be quantitatively determined.

In addition to the parametric yield, which has been presented in Sect. 4.6, figures
of merit to abstract performance parameter and cell variability have been proposed.
They have to be chosen depending on the availability of specification boundaries
and the importance of the distribution shapes. An enhancement to the coefficient of
variation and its application to standard cell comparison have been shown.
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Nevertheless, some enhancements to robustness analyses will be required. While
reducing the analysis effort will be the major task, ensuring sufficient accuracy
and providing robustness characteristics suitable to analyses on higher levels of
abstraction are also topics for further investigations.
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Chapter 5
Consequences for Circuit Design
and Case Studies

Alyssa C. Bonnoit and Reimund Wittmann

The previous chapters introduced various methods to analyze the influence of
variations of the manufacturing process on the performance of devices and circuits.
These methods can be applied to evaluate designs for manufacturability. Variations
imply negative effects in most cases that shall be reduced. However, there exist also
applications where the variations bring an advantage into the design process. The
consequences of both aspects regarding special design requirements will be figured
out in this chapter.

Section 5.1 presents circuit techniques for the reduction of parameter variations.
The section provides an overview on techniques to tolerate variability and to
reduce variablity. One of these techniques is body biasing. Body biasing does
not only influence leakage and timing by modifying the threshold voltage of
a transistor. There is also a potential of this technique to control variability in
foregoing technologies. This first section discusses properties of various body
biasing schemes.

While body biasing is explored in the first section of this chapter by sim-
ple chip designs, Sect. 5.2 demonstrates the implications of this technique in
high-performance microprocessors. The processors use dynamic voltage/frequency
scaling. The effectiveness of five body biasing schemes at ages of zero and five years
will be compared. The simulation infrastructure and workload examples for these
tests will be described.

Section 5.3 demonstrates that variations of the manufacturing process can also
improve the accuracy of a design. The basic idea will be demonstrated realizing a
required value of a resistance by structures of small resistors. In this case, random
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values of the small resistors are uncorrelated. Thereby, the variance of the random
resistance of the structure of small resistors is much smaller than the variance of
the resistance of one appropriate complex resistor. This approach can be applied to
design high-precise digital-to-analog converters (DACs). The corresponding theory
will be explained as well as some details of the structures involved. The presented
approach offers a wide spectrum of applications for the design of high-precise
integrated resistances and capacitances.

The first two sections of this chapter were prepared by Alyssa C. Bonnoit, Reimund
Wittmann wrote Sect. 5.3.

5.1 Circuit Techniques for Reduction of Parameter Variations

As technology scales, circuit designers are confronted with increasing body biasing.
We present an overview of a number of techniques for both dealing with and
reducing this increasing variability. In particular, adaptive body biasing has been
demonstrated to be effective at addressing variability. We examine the sensitivity
to body biases in highly scaled technologies, and look at implementations of body
biasing in a wide range of chip applications.

5.1.1 Background

Process variability increases significantly as transistor geometry is scaled because
precise control of electrical parameters becomes increasingly difficult. Process
variations can be further categorized into inter-die (between dies) or intra-die
(within a die). Inter-die variability includes die-to-die, wafer-to-wafer, and lot-to-
lot variations. For example, a source of die-to-die variations is fluctuation in resist
thickness from wafer to wafer [1]. As a result of inter-die variability, some dies
do not fall into any acceptable bin due to either high power or low frequency [2].
Intra-die variability affects transistors on the same die differently, and is further
divided into those that are random and those that are systematic. Random variations
are caused predominantly by random dopant fluctuations (RDFs) and line-edge
roughness (LER). Random variations increase static power (since the leakage is
dominated by the leakiest transistors), but have little impact on the frequency due to
averaging over transistors along a path. As random variability increases, circuits that
rely on matching between devices, such as SRAMs and analog differential pairs,
require larger margins to ensure proper operation. Systematic variations include
layout effects, for example, transistors in a region with a higher average pitch may
print different from transistors in another region of the die, as well as process effects,
such as a gradient across the exposure area of a reticle field. Systematic variability
increases the amount of frequency margin required to ensure that the chip can
operate, since the critical path may fall in a slow region. This, in turn, increases
static power because the majority of the transistors on the chip are faster and leakier
than required to meet the operating frequency.
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Process variability is further compounded at run-time by thermal variability, be-
cause the temperature of the die fluctuates with the workload being run. Frequency
of a path decreases as temperature increases because the mobility of the transistors
decreases [3]. Static power increases exponentially with temperature, but to first
order, dynamic power is independent of temperature. The speed binning and power
limits must therefore be assessed at the highest (i.e., worst-case) temperature.

Finally, long-range temporal variability occurs because transistor performance
degrades over time due to mechanisms such as negative-bias temperature instability
(NBTI) and hot-carrier injection (HCI). Similarly, long-range temporal variability
increases the frequency margin required. In turn, this increases the amount of static
power wasted at low ages (since the frequency can still be met when the threshold
voltage increases with age).

Process engineers are pursuing a significant number of approaches to reduce
variability. Lithography uses resolution-enhancement techniques to ensure that the
printed shapes look like the design shapes even when the wavelength of light is
equal to (or smaller than) the wavelength of light used [4]. Amorphous Silicon
can be used for gates in order to reduce line-edge roughness [5]. While these
process techniques are necessary and reduce variability, they will not eliminate
variability. As a result, designers are confronted with increasing variability. The
designers can either tolerate variability by designing circuits with increased margin
or flexibility, or reduce variability post-Silicon manufacturing by modulating the
transistor characteristics.

5.1.2 Overview of Techniques to Tolerate Variability

Several design techniques have been proposed to reduce the sensitivity to variability.
Liang and Brooks proposed variable-latency register file in which the slowest 20%
of read accesses are done in two clock cycles instead of one, which allows the
frequency margin to be reduced [6]. This results in a mean frequency improvement
of 12%. They argue that the variations affecting logic and SRAM are different, and
thus extend this work to include a time-borrowing floating point unit that translates
slack in the SRAM read accesses to margin in the timing of the floating point unit.

Tiwari et al. proposed ReCycle, a flexible pipeline clocking scheme that uses
time-borrowing between stages to increase clock frequency by reducing the margin
required [7]. They also suggested inserting dummy “donor” pipeline stages to
provide additional timing slack.

5.1.3 Overview of Techniques to Reduce Variability

Circuit designers can reduce variability using technology-aware layout with regular
fabrics and logic bricks [8]. Standard library elements (inverter, NAND, NOR) are
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grouped into a set of logic primitives, such as a buffer chain or a flip-flop. The
set of logic primitives is significantly smaller than a standard cell library. Each
of the logic primitives is translated to a logic brick layout, which consists only of
lithography-friendly patterns. Because there are fewer logic bricks than standard cell
library elements, extensive lithography simulations of each brick can be performed.
With a larger number of bricks, the circuit designer has more flexibility, but the
setup overhead increases. The regular fabric methodology reduces variability due to
lithography because there are a small and finite number of possible patterns, all of
which are designed to be lithography-friendly.

5.1.4 Body Biasing

Body biasing has been proposed as a means of addressing variations [9]. After
fabrication, the threshold voltage (VTH) of transistors can be modulated by changing
the body-to-source voltage. In bulk MOSFETs, the VTH is given by:

VTH =VTH0 + γ
(√
|2ΦF−VBS|−

√
|2ΦF|

)
, (5.1)

where VTH0 is the device threshold voltage with no body bias applied, 2ΦF is the
surface potential at strong inversion, and γ is the body effect coefficient [10]. For
simplicity, we examine this equation for the case of an NFET with the source tied
to ground. If a negative voltage is applied to the body, then the depletion width
increases, which means that a higher gate voltage is required to form an inversion
layer and thus the VTH increases; this is known as a reverse body bias (RBB).
Similarly, if a positive voltage is applied to the body while the source is grounded,
then the depletion width decreases, and thus the VTH decreases; this is known as a
forward body bias (FBB). Throughout this work, VBSn and VBSp will represent the
body to source voltage of NFETs and PFETs, respectively. Negative values of these
parameters will indicate RBB and a positive one FBB, regardless of which direction
the body-to-source voltage must actually be shifted.

There are several technology issues with body biasing in bulk MOSFETs.
RBB increases short-channel effects, which increases variability within devices
sharing a bias. This is especially problematic in circuits that are sensitive to device
matching, such as SRAMs. FBB not only improves short-channel effects, but
also increases junction leakage, potentially to the point where the source-to-bulk
junction is forward biased. Additionally, an analog signal, the body bias, must
be distributed a significant distance – in the extreme, across the entire die. This
becomes increasingly problematic with scaling because cross-talk between wires
worsens. Finally, the sensitivity of VTH to the body bias decreases with scaling,
because the channel doping increases.

Body biasing is limited in the magnitude of the VTH shift that can be induced. The
maximum forward-bias is limited by current flows across the P–N junction formed
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between the n-well and p-well. A thyristor-like device is formed in the substrate
by the two bipolar transistors. Oowaki et al. found that there was no latch-up effect
with up to 0.5 V forward bias [11] (assumed by Miyazaki et al. [12], Tachibana et al.
[13], and Narendra et al. [14]). The maximum reverse-bias is limited by high leakage
and possible break-down across the reverse-biased drain-body junction, particularly
during burn-in [14].

The sensitivity of threshold voltage to the body bias for NFETs and PFETs is
shown in Fig. 5.1 for the 90, 45, and 22 nm predictive technologies [15]. While the
sensitivity of VTH to the body biases does decrease as technology scales, the decrease
from 90 to 22 nm (4 technology generations) is only 12% for the NFET and 10%
for the PFET. This indicates that body biasing will continue to be a viable solution
to control variability in technologies going forward.

Figure 5.2 shows the impact of body biasing on these three metrics for a
13-stage ring oscillator implemented in a 22 nm high performance high-K metal
gate predictive technology [15]. The NFET body bias was varied between 500 mV
RBB and 500 mV FBB, while the PFET body bias was adjusted to keep the output
of an I/O-connected inverter at Vdd

2 , maintaining the inverter beta ratio at its nominal
value. Full RBB is seen to reduce frequency by 32%, energy per switching event by
4.4%, and leakage power by 90%. Full FBB, on the other hand, increases frequency
by 29%, energy per switching event by 5.6%, and leakage power by 1,300%.

A variety of body biasing schemes have been proposed for a wide range of
chip applications. Intel’s Xscale processor used reverse body biases (RBBs) during
standby mode to reduce leakage [16]. Transmeta’s Efficeon applied reverse body
biasing on a per-chip basis to reduce power by a factor of 2.5 [17]. Narendra et al.
implemented a communication router chip in 150 nm technology with a constant
450 mV FBB applied during active operation to achieve equivalent speed to no
body biasing at lower supply voltage [18]. Borkar et al. suggest selecting body
biases at test for high-performance microprocessors [19]. A simple general purpose
microprocessor was implemented in 0.2 μm technology with adaptive body biasing,
and reduced variation in the speed of a single workload by 18% [12, 20].

Three temporal granularities for computing the body biases have been considered
on simple chips. First, the NFET and PFET body biases can be determined at
test-time to address process variability. Tschanz et al. found a 7x reduction in the
variation in die frequency by selecting body biases at test, improving yield from
50 to 100% in a 150 nm test chip [2]. Second, the body biases can be computed
when the chip powers on to address long-term temporal variability (for example,
NBTI) as well as process variability. Finally, the body biases can be computed
continuously to address temperature variations as well as temporal and process
variability. Teodorescu et al. found that continuously computing the body biases
offered a 35% reduction in power and an 8% increase in frequency over choosing the
body biases at test [21]. There has been considerable work on a circuit to adaptively
determine the body biases [2, 12, 20, 22].
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Fig. 5.1 Sensitivity of VTH to body biasing for 90, 45, and 22 nm predictive technologies [15]

5.2 Microprocessor Design Example

In the previous section, we explored the applications of body biasing in a variety
of simple chip designs. However, high-performance microprocessors use dynamic
voltage/frequency scaling, which has significant implications for the use of body
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Fig. 5.2 Impact of body biasing on ring oscillator frequency, energy per switch, and leakage power

biasing. Every time the voltage and frequency of the microprocessor change, the
body biases must be adjusted in order to ensure that the new frequency is met with
the current body biases. In this section, we look at the implementation of body
biasing in a 16-core chip-multiprocessor implemented in a high-performance 22 nm
technology.

5.2.1 Dynamic Voltage/Frequency Scaling

Dynamic voltage/frequency scaling (DVFS) is implemented on virtually all micro-
processors. With DVFS, the voltage and frequency are lowered during frequency-
insensitive application phases, such as times when the system performance is limited
by memory accesses. Thus, DVFS is able to achieve significant reductions in power
for a modest reduction in performance.

Changing the V/F level leads to an abrupt change in the body biases required to
meet frequency and balance the strength of the NFETs and PFETs, which changes
the implementation costs. One possible implementation is to compute the body
biases continuously. Alternatively, a single set of body biases can be found to meet
the required frequency at all V/F levels. Four implementations arise from computing
the body biases at test-time or at power-on, and computing a single set of body
biases for all V/F levels or unique body biases for each V/F level. Instead of the
three implementations of body biasing reviewed in the previous section, there are
five possible implementations on modern high-performance microprocessors.
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Table 5.1 Processor
parameters

Parameter Value

Technology 22 nm high-performance [15]
# of cores 16
Available VDDs 0.5, 0.575, 0.65, 0.725, 0.8 V
DVFS interval 50 μs

L1-I/D caches 64 KB, 64 B blocks, 2-way,
2-cycle load-to-use, LRU, 4R/W

L2 cache 16 × 1 MB, 64 B blocks, 16-way,
20-cycle hit, LRU, 1R+1W per bank

Main memory 60 ns random access, 64 GB s−1 peak
bandwidth

Pipeline Eight stages deep, four instructions wide
ROB LSQ size 160
Store buffer size 64

5.2.2 System Architecture

A chip-multiprocessor with the parameters in Table 5.1 is divided into voltage/fre-
quency islands (VFIs). The voltage/frequency levels for the core VFIs are chosen
by the DVFS controller. There is one VFI for the L2 cache, network, and memory
controller, which always runs at the nominal VDD and the chip’s speed bin frequency.
On-chip voltage regulators [23] enable fast voltage transitions taking 5 ns. An
interval of 50 μs is assumed for DVFS decisions. DVFS uses a threshold-based
control algorithm, which keeps the retire slot utilization within given bounds [24].
The utilization is compared to the up threshold (Tup) and the down threshold (Tdown)
at every interval, and the V/F level is raised if U > Tup, lowered if U < Tdown, and
held constant while U ∈ [

Tdown,Tup
]
. An algorithm that directly considers power

was not used because it would result in different performances for dies in the same
speed bin, which presents marketing difficulties.

In order to determine speed bins, two million dies were generated via simulation.
Extrapolating from recent trends in commercial microprocessor prices, body biasing
is used to improve the performance of the speed bins (instead of lowering power
at the same speed bins). Therefore, separate speed bins were created for no body
biasing and body biasing (300 mV FBB was applied to the dies for the body biasing
speed bins), each with a yield of 97%. The maximum frequency of the dies was
computed at both an age of zero and five years, at the nominal VDD of 0.8 V
and worst-case temperature of 100◦C. The speed bins were determined from the
frequency at 0 years of age plus a fixed margin, equal to the maximum delta between
the 0- and 5-year frequencies. The ZBB speed bins are located at 2.53, 2.8, 3.07,
3.33, and 3.60 GHz, and contain 26, 33, 20, 9, and 9% of dies. The BB speed bins
are located at 2.93, 3.33, 3.73, 4.13, and 4.4 GHz, and contain 22, 31, 22, 12, and
10% of dies. This translates to an average frequency increase of 22% with body
biasing.
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Table 5.2 Workloads
evaluated

Workload Notes

Online transaction processing (TPC-C)
tpcc-db2 DB2, 100 warehouses, 64 clients,

450 MB buffer pool
tpcc-oracle Oracle, 100 warehouses, 16

clients, 1.4 GB SGA

Decision support systems (TPC-H on DB2)
tpch-qry1 450 MB buffer pool,

scan-dominated
tpch-qry2 450 MB buffer pool,

join-dominated

Web server (SPECweb99)
apache 16K connections, FastCGI, worker

threading model
zeus 16K connections, FastCGI

5.2.3 Workloads Evaluated

The multi-threaded workloads in Table 5.2 were evaluated. The online transaction
processing workloads consist of TPC-C v3.0 on both IBM DB2 v8 ESE and Oracle
10g Enterprise Database Server. The Decision Support Systems (DSS) workloads
are two queries from TPC-H, both on DB2. Apache HTTP Server v2.0 and Zeus
Web Server v4.3 are evaluated on SPECweb99 under saturation by requests.

5.2.4 Simulation Infrastructure

Extraction of the workload parameters was performed using Flexus CMPFlex.OoO,
a microarchitecture-level simulator for chip-multiprocessors [25]. Flexus runs real
workloads on real operating systems and model processors, main memory, disks,
and all other components of a computer system. The power and thermal modeling
extensions released by Herbert and Marculescu [24] were used to gather power
statistics while accounting for the impact of temperature.

It is simple to determine throughput in the high-level model because all dies
within a speed bin have identical performance. The first workload-specific param-
eter is Ti, j, the throughput of workload i running on a die from speed bin j. Ti, j is
obtained by recording the number of non-spin user-mode instructions retired during
a Flexus run, representing the amount of progress made by the application.

The power drawn when running a given workload in a given speed bin is
more complex. Workload-specific factors affect the utilization metric used in DVFS
control (e.g., cache miss rates), so different workloads have different distributions
of runtime over the V/F levels. The benefit of a body biasing scheme depends on
the V/F level, so this must be accounted for when computing the average power
drawn by a particular sample die running a particular workload. This is handled in
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the high-level model by computing the power draw at each distinct V/F level and
then weighting each power value by Li, j,k, the portion of time workload i running
on a die from speed bin j spends at V/F level k.

The power is split into dynamic and static components; both must be computed
per V/F level. Detailed simulation is used to extract Pdynamic

i, j,k and Pstatic
i, j,k , the dynamic

and static power drawn when running workload i on a baseline die from speed bin
j at V/F level k. The choice of baseline die is arbitrary, and a die matching the
mean leakage of all dies in the speed bin was used. To obtain the dynamic and
static power for a sample die, Pdynamic

i, j,k and Pstatic
i, j,k are scaled using the circuit-level

dynamic energy per switching operation and static power models. This is done by
multiplying the baseline value by the average model output across all variation map
grid points on the sample die and dividing by the average model output across the
baseline die.

For each workload, 50,000 dies were generated from the variation model. The
frequency, static power, and energy per switch models were combined with the
Flexus results to determine the throughput and power of each core. The HotSpot
thermal simulator [26] was used to account for the dependence of power on
temperature; simulations were iterated until the power and temperature values
converged.

5.2.5 Schemes Evaluated

The baseline is a traditional DVFS scheme with no body biasing, referred to as ZBB.
Five implementations of body biasing are considered, designated by a name starting
with BB. Body biases are applied at the per-core level. In BB-Cont., the body biases
were continuously computed. The remaining body bias schemes are denoted BB-x-
y, where x specifies the time when the body biases were computed (“T” for at test or
“P” for at power-on), and y specifies whether a single set of body biases is used for
all V/F levels (“S”) or unique body biases are calculated for each V/F level (“A”).
For example, BB-T-A indicates that the body biases were chosen at test, with unique
body biases for each V/F level.

5.2.6 Results

Figure 5.3 compares the effectiveness of the five body biasing schemes at ages
of zero and five years. Their effectiveness is measured by power over throughput
squared (P/T2), which is equal to the product of energy per instruction and time per
instruction. The results are averaged across the workloads and the results of each
bin are weighted by the percentage of dies in the bin. Each bar is normalized to the
power of ZBB on the same hardware at the same age.
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Fig. 5.3 P/T 2 by age, averaged across workloads and speed bins

The implementation of body biasing has a large effect on the improvement in
P/T 2. The schemes that assign a single set of body biases for all V/F levels show
little benefit over ZBB at both ages, while the three schemes that assign unique body
biases per V/F level show significant improvements. The improvement decreases
for all of the schemes between zero and five years. This is because static power
decreases with aging and static power is much more sensitive to body biasing than
dynamic power (static power is exponentially dependent on Vth; body biasing only
modulates dynamic power through capacitance). The power-on schemes show 3.8%
improvement over the test-time schemes at zero years. The power-on schemes still
show a slight benefit over the test-time schemes at five years because the test-time
scheme margins against worst-case (instead of typical) aging. BB-Cont. achieves
7% better P/T2 than BB-P-A at 0 years. The delta between BB-Cont. and BB-P-A
is larger at five years than at zero years because the power is lower at five years and
thus the delta between the maximum temperature and the operating temperature is
larger.

5.3 A Yield Prediction and Layout Optimization Technique
for Digital Potentiometer IP cores

Fabrication nonidealities introduced by increasing the degree of integration have
made analog IP design a challenging task. The design process for engineering
reliable analog IP in selected nanoscale target processes has become very complex
and time consuming. Design automation in this area is required urgently. In the
following chapter, a method for yield prediction calculation of a configurable
Digital Controlled Potentiometer (DCP) IP core has been worked out. This method
comes along with a novel, mainly automated IP integration and characterization
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process with excellent design migration capabilities. The presented DCP IP core
is optimized to be used as a DAC and a SAR ADC in a wide specification range.
The architecture is made robust against resistor parameter variations. It even takes
advantage of them by applying a statistical averaging approach. By arranging
raw unit devices in the layout in a compound way, the overall accuracy of these
compound devices can be increased significantly depending on the number of used
unit devices.

The behavioral model of the DCP topology includes all relevant realistic
performance degradation parameters. The optimization potential in terms of yield
is analyzed taking systematic and statistical properties of the DCP topology into
account. An analytic yield-over-tolerance function is determined by mean value,
standard deviation, and correlation matrix of the used unit resistors. Behavioral
modeling and yield optimization of resistor string based architecture (potentiometer)
Digital-to-Analog Converters (DACs) is presented to improve its reliability and area
efficiency with focus on nanoscale CMOS processes, which suffer from large device
tolerances. The optimization potential in terms of yield is analyzed taking systematic
and statistical properties into account. Background mathematics is illustrated, and a
comparison with corresponding Monte Carlo simulation is given.

The presented optimization technique is able to support resolutions up to 14 bit
with guaranteed monotony and high linearity. The design optimization process
can be mapped to individual process profiles and takes various parasitic effects
into account. An accurate yield estimation algorithm detects the critical fabrication
influence to IP performance in advance. Based on given IP specification and process
selection, all design views (schematic, layout, behavioral model and verification
testbenches) are generated automatically by using executable design descriptions.
Measurement results of rapid integrations in different process technologies will be
presented and discussed.

5.3.1 Limiting Matching Effects for Resistors in Analog Circuits

IC technology process scaling introduces increasing nonidealities. Manufacturing
parameter variation is one of these. This work has already shown that predictable
parameter variations help to design robust circuits, but in addition they can be
utilized even to improve quality and reliability of analog circuit design beyond
known limits. Recently, it has been found that regularity, which enables statistical
averaging, is one of the keys for accurate and reliable analog circuit design
in nanoscale process technologies. The mathematical background for applying
statistical averaging is introduced in this section.

Exemplary the matching behavior of resistors is discussed here in detail. In
principle, an analog discussion is possible also for capacitor arrays and transistor
arrays (current mirrors, reference generation).
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The matching behavior of resistors in analog circuits is influenced by several
important parameters. These parameters are the spread in sheet resistance, lithog-
raphy and etching errors, bend effects, contact resistance, and alignment errors.
Lithography and etching errors lead to statistical and deterministic deviations of
resistor ratios from the desired value. The precision of analog circuits based on
the string principle (e.g., digital-to-analog converter, analog-to-digital converter)
is usually independent of the design’s center resistance value, which is defined
as the averaged resistance of all matched resistors in one converter. The absolute
value can fluctuate in a range of about 30% from one wafer to another. Statistical
deviations from this value are large for small structures and become smaller if
structure size increases. Increasing the resistor size, however, must be carried out
with care because of the increasing influence of deterministic deviations for larger
structures. Thus, gradient errors with respect to the resistor core depend on height,
orientation, and slope of the spread in sheet resistance. An optimal geometry for
resistor layout has to be found, which reduces the statistical errors to minimum,
assuming the statistical errors still dominate when compared with gradient errors.

In hand-crafted analog design, it is usual to design well-matched resistors
without any bends. In a flexible layout generator for different resolutions (2 in.
resistors), the resistors must contain bends or the area requirements would become
excessive. Effects that decrease matching due to deterministic errors caused by
bends, lithography, and etching are minimized by using an identical basic resistor
cell for all matched resistors.

Another critical problem stems from contacts interconnecting the array resistors.
Their resistance varies widely and can degrade matching behavior. Especially in
data converters featuring higher resolution in which low-valued resistors (<10Ω )
are used, contact resistance can easily dominate over the string resistance. Also,
mask tolerances can lead to contact alignment errors. To avoid these problems, the
resistors can be arranged in groups in which no contacts are used in the current path.

The resistors are interconnected without leaving the resistor layer. At the end of
each resistor chain, where contacts are unavoidable, arrays of contacts are used for
interconnection.

5.3.2 Modeling of Statistical Averaging Principle

Statistical averaging can be utilized to increase the overall accuracy of an ar-
rangement of inaccurate unit devices, resulting in an improved yield [27]. The
yield function, which depends on the tolerance of the single unit elements, is
found typically by extensive use of Monte Carlo simulation. An alternative analytic
yield calculation approach is presented here, which is in line with Monte Carlo
simulation results, providing useful insight into yield properties and showing
accuracy improvement potential of compound devices, exploiting the statistical
average principle.
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5.3.2.1 Mathematical Fundamentals

A normally distributed random variable X has an expectation μ , a variance σ2 and
can be written as X = N(μ ,σ2). The density function of X is:

f (x) =
1√

2πσ
e

(
− 1

2 (
x−μ
σ )

2
)
.

For the multivariate case, an m-dimensional random variable has an m-
dimensional normal distribution if it has the following joint density function:

fX1X2···Xm(x1,x2, · · · ,xm) =
1

(2π)m/2√det(Σ)
e(−

1
2 (x−μ)TΣ−1(x−μ)). (5.2)

Σ is the symmetric, positive definite (m,m)-covariance matrix, xT =
(x1,x2, · · · ,xm) and μT = (μ1,μ2, · · · ,μm). Σ can be expressed taking the
diagonal matrix DDD containing the standard deviations of the m components of
the random vector X = (X1,X2, · · · ,Xm)

T and its correlation matrix PPP into account
(compare (2.71)):

Σ = DDD ·PPP ·DDD.

Distribution of the ratio of two normally distributed random variables.
In a note on page 48 in Sect. 2.2.7, we have shown how to describe the sum of

a number of uncorrelated normally distributed random variables. For instance, this
is important to characterize a series connection of resistors where its probability
distributions are uncorrelated.

If we are interested in the behavior of a voltage divider for instance, this kind
of description will be useful but is not sufficient. We need to describe the ratio of
correlated normally distributed random variables X and Y . How to describe the PDF
of this ratio will be derived in the following.

At first, we shortly recapitulate the result already presented by equation (2.42)
in Sect. 2.2.3. Let X and Y be normal random variables with X = N(μX ,σX

2) and
Y = N(μY ,σY

2). X and Y shall be correlated with each other, represented by the
correlation coefficient ρ . The covariance matrix is (see also (2.41) on page 36)

Σ =

(
σX

2 ρσXσY

ρσXσY σY
2

)
=

(
σX 0
0 σY

)
·
(

1 ρ
ρ 1

)
·
(
σX 0
0 σY

)
. (5.3)

Using (5.2) and (5.3), the bivariate density function fX ,Y (x,y) of X and Y can be
calculated as follows [28]:

fX ,Y (x,y) =

exp

[
−

(
x−μX
σX

)2−2ρ
(

x−μX
σX

)(
y−μY
σY

)
+
(

y−μY
σY

)2

2(1−ρ2)

]

2πσXσY

√
1−ρ2

. (5.4)
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By using the following substitution:

w =
x
y
⇔ x = w · y, (5.5)

the bivariate probability density function (PDF) of (5.4) can be utilized to calculate
the probability density function of the ratio of X and Y :

f X
Y
(w) =

∞∫
−∞
|y| · fX ,Y (w · y,y)dy. (5.6)

The argument of the exponential function in fX ,Y (w ·y,y) of (5.4) is a polynomial
of second order in y. Solving the integral of (5.6) leads to the following equation
[29]:

f X
Y
(w)=

b(w) ·d(w)√
2πσXσY a(w)3

[
2 ·Φ

(
b(w)√

1−ρ2a(w)

)
− 1

]
+

√
1−ρ2

πσXσY a(w)2 e
− c

2(1−ρ2) ,

(5.7)
where:

a(w) =

√
w2

σX
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2ρ ·w
σXσY
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1
σY

2
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μX w
σX

2 −
ρ(μX + μY ·w)
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+
μY

σY
2
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2
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2ρ ·μXμY

σXσY
+
μY

2
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2

d(w) = exp

(
b(w)2− c ·a(w)2

2(1−ρ2) ·a(w)2

)
.

ϕ and Φ are the PDF and CDF, respectively, of the standard normal distribution
(see also (2.32) and (2.33)). The ratio of two normal distributed random variables,
shown in equation (5.7) is not normal distributed anymore, having a median value
instead of an expectation value and no standard deviation. Nevertheless, the PDF of
(5.7) is similar to a normally distributed PDF but having longer tails.

5.3.2.2 Yield Calculation

Resistive Voltage Divider

Figure 5.4 shows the resistor string topology for a resistive voltage divider,
consisting of 2 (case A), 4 (case B), and m (case C) normally distributed unit
resistors.
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Fig. 5.4 Resistor string topologies

Let Rk be the kth resistor of a resistor string. All resistors are N(μR,σR
2)

distributed and uncorrelated. The voltage at the center tap VCT of the resistive voltage
divider is the ratio of two correlated normal random variables X and Y depending
on the resistors that have to be considered:

VCT =

m/2

∑
k=1

Rk

m
∑

k=1
Rk

=

2
m ·

m/2

∑
k=1

Rk

2
m ·

m
∑

k=1
Rk

=
X
Y
. (5.8)

As X and Y are the sums of normally distributed random variables, they
are themselves N(μX ,σX

2) and N(μY ,σY
2), respectively, normally distributed.

Considering the relations from Sect. 2.2.2 and the fact that they are built up by a
sum of uncorrelated random variables (see note on page 29), we can determine
their expected values and variances. We get E [X ] = μX = 2

m · m
2 · μR = μR and

varX = σX
2 =

( 2
m

)2 · m
2 ·σR

2 = 2
m ·σR

2. Y is described by E [Y ] = μY = 2
m ·m ·μR =

2 ·μR = 2 ·μX and VarY = σY
2 =

(
2
m

)2 ·m ·σR
2 = 4

m ·σR
2 = 2 ·σX

2.
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Fig. 5.5 Yield function for center tap: Monte Carlo vs. analytic results

m
2 resistors belong to X as well as to Y . Thus, both random variables are

correlated. The correlation coefficient can be determined by

ρX ,Y =

cov

(
2
m ·

m/2

∑
k=1

Rk,
2
m ·

m
∑

k=1
Rk

)

σX ·σY
=

σX
2

σX ·σY
=
σX

σY
. (5.9)

Thus, the correlation coefficient for the center tap voltage divider case is ρ = 1√
2

as the resistive sum below the center tap is always half the overall resistive sum,
leading to σY =

√
2 ·σX . With the knowledge of the correlation coefficient, (5.7)

can be applied to describe the PDF fVCT of the center tap voltage.
The yield-over-tolerance function for the center tap voltage divider can be

calculated by integrating the PDF of (5.7) in the following way:

Yield =

VCT,ideal+LSB/2∫
VCT,ideal−LSB/2

fVCT(w)dw

∞∫
−∞

f X
Y
(w)dw

=

1
2+LSB/2∫

1
2−LSB/2

fVCT(w)dw (5.10)
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Figure 5.5 shows the yield function for the center tap of several resistive voltage
dividers as function of the tolerance of the single unit resistor elements. The number
of resistors m in the voltage divider is parameterizable and set to 2, 16, and 128.
The resolution criteria res for the yield function is set to 8 bit (Least significant bit
= LSB = 1/28) and 11 bit (LSB = 1/211), respectively. The calculated yield results
based on integration of the probability density function (5.7) according to (5.10) and
the statistical simulated results using Monte Carlo Analysis (10,000 simulations per
yield point) show excellent matching.

By quadrupling the number of unit resistor elements, the accuracy can be
increased by 1 bit without changing the yield function. This principle is shown in
Fig. 5.5, where the yield functions for [m = 2 and res = 8] and for [m = 2 ·43 = 128
and res = 8+ 3 = 11] are identical. This result is in line with the square-root law
of information theory (the accuracy of information is equal to the square-root of the
volume of information [30]). The complex probability density function of (5.7) can
be rearranged for the center tap voltage divider case using μY = 2 ·μX , σY =

√
2 ·σX

and ρ = 1√
2

to:

fVCT(w) =
μX ·Erf μX

σX
√

2K
· exp

(−μX
2(2K−1)

2σX
2K

)
√

2π ·σX ·K3/2
+

exp
(
− μX

2

σX
2

)
π ·K , (5.11)

where K = (1− 2w + 2w2). The probability density of VCT is asymmetric and
depends on w, defined in (5.5), expectation value μX and standard deviation σX .

By increasing the number m of unit resistors σX =
√

2
m ·σR can be reduced.

The slope of the VCT yield function (5.10) is independent of the number of used
unit resistor elements, because of the fixed relationship between σX and σY . By
choosing the relevant correlation coefficient p the yield function of any single tap
of a resistor string can be calculated analytically, being in line with the square-root
law1 of information theory and leading to the same results as the corresponding
Monte Carlo simulations.

Simple Potentiometer DAC

Figure 5.4 (case D) shows the resistor string used as voltage reference for a
potentiometer DAC. For the case of a DAC, every tap of the resistor string has
to fulfill the accuracy requirements, leading to a worse yield function with steeper
slopes compared to a resistive voltage divider and leading to the fact that the square-
root law of information is not valid anymore, meaning quadrupling the number of
unit resistors by four increases the DAC accuracy by less than 1 bit. Both matters of
facts are shown in Fig. 5.6.

1For more information, see note concerning “Square-Root Law” on page 56.



5 Consequences for Circuit Design and Case Studies 199

Fig. 5.6 Yield comparison: DAC vs. voltage divider

To calculate the yield function for a DAC consisting of m elements, an (m− 1)-
dimensional probability density function, covering all (m− 1) node voltages has
to be integrated numerically, instead of solving only a one-dimensional integral
(5.10) for the bivariate case of the voltage divider. The calculation effort for the
multivariate case is growing drastically for higher numbers of unit resistor elements,
restricting the usability of this approach for DACs with m≤ 8. For DACs containing
a larger amount of unit elements, the Monte Carlo simulation method has to be used
for yield analysis, as it can be simulated much faster, providing the same results.
Figure 5.7 compares the yield functions of analytical approach and corresponding
Monte Carlo result for a DAC consisting of four unit elements (m = 4), proving
the matching of both methods. Furthermore, it is shown that an assumption of
independent DAC voltage nodes (correlation matrix PPP equal to unit matrix) leads to
a too pessimistic yield plot, especially for higher number of unit resistor elements.
In other words, the inherent correlation between the different DAC voltage taps is
an improving factor in terms of yield.

The analytical approach can be used efficiently for the calculation of the voltage
probability density function for any single tap of an R-String DAC to localize the
critical taps, gaining more insight into the DAC topology. Figure 5.8 shows the
relative width of the probability density functions of all taps (measured at the point,
where the probability density is 1% of the maximum value at the corresponding
median position) for R-Strings consisting of 8, 16, 32, and 64 of unit elements. The
center tap of an R-String (zero position in Fig. 5.8) is the most critical node, where
the probability density function has the largest width and this PDF width is getting
smaller symmetrically in direction to the edges of the R-String.
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Fig. 5.7 Yield comparison: analytic vs. Monte Carlo vs. independent PDFs

Fig. 5.8 Relative voltage PDF width of DAC taps
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Fig. 5.9 Relative Sigma: measured vs. ideal

5.3.2.3 Comparison with Measurement Results

A 12-bit potentiometer DAC consisting of 32 coarse resistors and fine resistor
strings (consisting of 128 serial unit resistors) in parallel to each coarse resistor has
been designed using a 65 nm CMOS technology. The 15 measured samples show an
average integral nonlinearity of 0.45 LSB and a differential nonlinearity of 0.1 LSB.
The number of samples was too small for a statistical yield analysis, but as every
DAC consists of 128 fine resistor chains, these data could be used to evaluate the
accuracy of the square root law of information theory for a state-of-the-art CMOS
process. Figure 5.9 shows the relative standard deviation of the average unit resistor
value, calculated out of 480 bunches of serially connected unit resistors consisting
of 21 up to 25 resistors. Each doubling of the number of unit resistors leads ideally to
a decrease of the standard deviation by a factor of 1/

√
2 related to the average unit

resistor value. Figure 5.9 shows good agreement between measured and ideal curve.

5.3.2.4 Yield-Aware Analog Circuit Design

A general analytical yield calculation method has been applied to circuit topologies,
based on unit resistor strings. The calculated yield-over-tolerance functions are in
line with corresponding statistical Monte Carlo simulations. Measurements show
that the square root law of information theory is valid even for current nanoscale
process technologies. By arranging raw unit devices with poor standard deviation in
the described way, the overall accuracy of these compound devices can be increased
arbitrarily, depending on the number of used unit devices. The knowledge about
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Fig. 5.10 Structure of an M bit potentiometer DAC

yield property and yield optimization in combination with the statistical averaging
principle is the enabling factor to create competitive analog circuits for mass
production using latest nanoscale processes.

5.3.3 Yield Model for Intermeshed R-String Architecture

Digital-to-Analog Converters (DACs) and their counterparts are vital in every
modern transmission system by providing the interface between analog and digital
domains. The focus in the following section is set on DACs, consisting of two
resistor chains, built up by regularly resistive unit elements. Analog passive devices
in nanoscale processes suffer from large device tolerances, which make it difficult
to fulfill given accuracy requirements. The technology-related possibilities for
accuracy improvement are restricted, as the processes have to be price-competitive.
Alternatively, the statistical averaging approach can be utilized to increase the
overall accuracy of an arrangement of raw unit devices with poor standard deviation,
leading to improved yield and reliability. This enables the creation of competitive
analog circuits for mass production using latest nanoscale processes [31].

5.3.3.1 Potentiometer DAC Topology

Figure 5.10 shows the block diagram of an M bit potentiometer DAC. R-String1
consists of N high-precision resistors, providing high-accurate reference node
voltages. This R-String determines the overall accuracy of the potentiometer DAC.
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Therefore, the area of each single unit resistor is large to achieve a small standard
deviation. Furthermore, R-String1 has low impedance, determining the driving
capability of the overall DAC. R-String2 consists of N subchains of 2M−N serial
low-precision unit resistors (M unit resistors in total). Each of the single R-String2
subchains is attached to one R-String1 resistor. The area efficiency of R-String2 can
be increased strongly using small unit resistors with poor standard deviation, as they
only have to meet an accuracy criterion of (M−N) bits. This DAC topology enables
an area- and power-efficient design, as one R-String of the DAC is fully in charge of
overall accuracy and driving capability utilizing large low-impedance unit resistors,
and the other R-String has relaxed accuracy requirements and provides the needed
voltage nodes using very small unit resistors.

5.3.3.2 Behavioral DAC Model

The resistive string of the potentiometer DAC is modeled using Matlab. The
following performance degradation effects are modeled:

Systematic errors: The gradient effect is modeled as well as effects of additional
impedances at the connection points between R-String1 and R-String2 and at the
reversal point of each R-String2 subchain, which are leading to INL2 and DNL3

discontinuities. These systematic errors can be reduced by proper layout.
Statistical errors, based on the normally distributed unit resistors of R-String1

and R-String2. This type of error can be reduced utilizing the statistical averaging
principle. In other words, by using unit resistors in a compound way the overall
accuracy of the compound resistor can be increased. It is therefore possible to buy
accuracy (in terms of smaller standard deviation) at the cost of an increase of layout
area.

Figure 5.11 shows the intermeshed resistor string used as voltage reference for
a potentiometer DAC. For the case of a DAC, every node of the resistor string has
to fulfill the given accuracy requirements. All DAC unit resistors are assumed to be
normally distributed as discussed in the previous section.

The statistical averaging principle makes use of the square-root law. Related to a
resistor string consisting of unit resistors this means: Each doubling of the number
of unit resistors leads ideally to a decrease of the standard deviation by a factor
of 1/

√
2 related to the overall average unit resistor value. Figure 5.12 shows an

example: The overall resistance shown in Fig. 5.12b has the same expectation value
μR like the resistance of Fig. 5.12a, but the standard deviation is halved, as it consists
of 4 unit resistor elements.

Resistance gradients in any direction over the chip layout cause DAC perfor-
mance degradation. This incident is called gradient effect. Main cause for the

2Integral nonlinearity
3Differential nonlinearity
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Fig. 5.11 Structure of a intermeshed R-String

Fig. 5.12 Example of statistical averaging principle

gradient effect is the local variation of the square resistance, which depends on
the thickness of the resistive material, on the doping profile, etc. Only gradients in
direction along the R-String1 (vertical direction in Fig. 5.11) are critical, as the R-
String1 determines the overall DAC accuracy. A gradient along the R-String2 can be
neglected, as R-String2 has relaxed accuracy requirements. The following general
formula is used for calculating the resistor values according to the gradient effect:

RString1(i) = Rμ +(i− 1) ·G ·Rμ , (5.12)
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Fig. 5.13 Gradient effect, 12 bit DAC (180 nm)

where G is the resistance gradient from one unit resistor of R-String1 to the
adjacent unit resistor, and Rμ is the expectation value of the R-String1 unit resistors.
Figure 5.13 shows the INL performance comparison between measurement and
model (G = 5 ·10−5) of a 12-bit DAC using 180 nm CMOS process. The resistance
gradient modeling shows good agreement with measurement results.

Besides the wanted unit resistor elements, layout-related additional resistances
are unavoidable which decrease the overall DAC performance. Contact resistances
RC and wiring resistances RW (see Fig. 5.11) are the dominating error sources for the
DNL performance of the discussed DAC topologies. These additional resistances
are not normally distributed and are set to constant values in the DAC model as
a first-order approximation. Figure 5.14 shows the modeled and measured (12-bit
DAC, 65 nm) INL results visualizing the degradation effect caused by additional
resistances RC = RW = 1Ω . Good agreement between measurement and model is
visible.

Figure 5.15 shows the modeled yield function of the 12-bit potentiometer DAC
(65 nm) as function of the unit resistor tolerances of R-String1 and R-String2, based
on extensive Monte Carlo simulations. The black square in the plots shows the
indirectly measured yield point based on estimations of the standard deviations of
the measured unit resistors of both R-Strings. This result shows the optimization
potential of the DAC in terms of area efficiency, as the unit resistor tolerances of
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Fig. 5.14 Effects of RC and RW, 12-bit DAC (65 nm)

Fig. 5.15 Yield as function of σR−String1 and σR−String2
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Fig. 5.16 Design flow extension that enables IP retargeting and design porting [32]

both R-Strings could be smaller without degrading the yield performance of 100%,
leading to a smaller physical size of the DAC layout area. Of course, a safety margin
is necessary to take all other technology-related variations into account.

5.3.4 Executable Engineering Models

The benefits of Executable Engineering Descriptions have been successfully
demonstrated for different design examples recently [32]. Excellent results were
achieved with respect to the increased engineering efficiency and reuse capability.
A language-based design entry for analog circuit design, in addition to the
established graphical one, offers the required flexibility to realize complex full
custom designs, especially for the portable and configurable DCP architecture
considered in this section. Main idea is to pay special attention to the IP engineering
process itself instead of looking mainly to the result of it. Design parameters,
PDK selections, and even design frameworks can be exchanged easily during the
IP engineering process. Figure 5.16 shows the professional development platform
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Fig. 5.17 INL and DNL of 12 bit DAC (65 nm CMOS)

1Stone� (IPGEN) as a valuable extension to a Mentor or Cadence-based design
framework. The generic engineering model (GEM) design approach can be followed
without exiting or shortening the already qualified design flows and by supporting
the original PDKs from the process vendors. The graphical design entry stays
available. A compiling process allows to execute the structured design descriptions
and to compile the result into the database of the design framework. This includes
schematics, layout, and testbenches. The GEM design flow supports decoupling of
design and process-related data and is therefore an enabler to process portability.

1STONE� allows to organize engineering steps for hierarchical designs in an
efficient, reliable manner and enables to execute it automatically. The design stays
a full custom design since no common circuit synthesis takes place. Each action has
to be defined, like in handcrafted design. But it can be done independently from a
process technology and with a remaining high variability of the design parameters
for an unlimited number of circuit hierarchies. In addition, new algorithm-based
approaches can be addressed to optimize yield and reliability of the circuit design.

5.3.5 Measurement Results

Figure 5.17 shows the INL and DNL performance of a 12-bit DAC with 32-unit
resistors for R-String1 using 65 nm CMOS technology [31]. The 15 measured
samples show an average INL of 0.45 LSB and a DNL of 0.1 LSB.

Figure 5.18 shows the INL and DNL performance of one R-String2 subchain
and the corresponding node numbers. The first and the last unit resistor of each
R-String2 subchain is directly connected to the R-String1, leading to visible INL
discontinuities and to sharp DNL peaks. These discontinuities are systematic errors,
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Fig. 5.18 INL and DNL of R-String2 sub-chain

being in a range of 0.1 LSB and therefore not dominating the INL performance.
Nevertheless, these discontinuities are dominating the DNL performance, which is
still superior, but could be even better. This optimization potential can be utilized to
enable high performance potentiometer DACs with up to 16-bit resolution in near
future.

Figure 5.19 shows the automatically generated layout of the 12-bit resistor chain
DAC (65 nm), consisting of the resistor matrix covering R-String1 and R-String2,
X- and Y-decoder logic and the additional wiring. Table 5.3 provides a summary
about all three processed and measured DACs.

The tolerances σ of the unit resistors of R-String1 and R-String2 have been
estimated out of the measured node voltages, assuming a constant current through
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Fig. 5.19 Layout of 12bit DAC (65 nm)

R-String1 and R-String2. Comparing the DAC areas shows a factor of 4 from 12-bit
to 14-bit and a factor of approx. 8 from 12 bit/65 nm to 12 bit/180 nm, which is
in line with technology scaling principles. The measured standard deviation of R-
String2 for the 14-bit DAC case is about 3%. This is not critical in this architecture
for related INL and DNL values. Comparing the 12-bit DAC accuracy in terms
of INL and DNL between 65 and 180 nm shows an accuracy improvement after
downscaling, taking the LSB size into account.

To reduce the gradient effect, the design of the critical R-String1 should be
made as compact as possible. Alternatively also a linear error compensated layout
approach can be applied [33]. As the intensity of the DNL peaks depends on the
resistor ratio between unit resistors and RC or RW, this degradation effect can be
reduced in two ways:

• Reduction of the contact impedances at the connection point of R-String1 and
R-String2 by placing a sufficient amount of contact holes in parallel.

• Reduction of the wiring impedance at the reversal point of each substring of
R-String2, e.g., by increasing the width of the wire.

• Increase of the resistive value of the unit resistor elements.
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Table 5.3 DAC performance summary

Digital-to-analog-converter

CMOS-process 65 nm 180 nm
Vendor 1 Vendor 2

Resolution n (bit) 12 14 12
States m=2n 4,096 16,384 4,096
LSB=VDD/m (μV) 293 73 610
INLmaxaverage ±0.446 ±0.95 ±0.332
DNLmaxaverage 0.100 0.15 0.073
DAC-area (mm2) 0.095 0.38 0.72
Power (μW) 665 296 740
@VDD @ 1.2 V @ 1.2 V @ 2.5 V
R� (Ω) 8.5 9 6.5
RString1 : Number of unit resistors 32 128 32
RString1 (Ω) 70 38.75 326
RString2 : Number of unit resistors 32×128 128×128 32×128
RString2 (Ω) 15.2 15 10.5
σ (%) of RString1 unit resistors 0.073 0.069 0.0358
σ (%) of RString2 unit resistors 0.541 ≈3 0.387

The statistical averaging principle has to be utilized in a reasonable way. It does
not make sense to build unit resistors (especially of R-String2) more accurate than
needed for meeting a required overall accuracy performance. One pre-condition
to achieve accuracy and area-effective potentiometer DAC designs is accurate
knowledge about the statistical properties of the relevant resistor material, provided
by the technology vendor. The technology vendor has to characterize its process
variability by using unit resistor matrices to find out realistic standard deviation
behavior of resistor material in dependence of the unit resistor area. The discussed
DAC topology can be very well used as testing structure for accurate process
characterization of upcoming state-of-the-art nanoscale processes. The use of design
automation is highly recommended: As the potentiometer DAC has a regular
structure, script-driven design generation for schematic and layout can be applied
efficiently. The complete layout of the DAC can be generated automatically in a
few minutes using the Generic Engineering Model (GEM) approach enabling the
possibility to optimize DAC accuracy by setting up the values and physical sizes of
the unit resistor elements in a flexible and fast way.

5.3.6 Conclusion

We presented an approach to improve the reliability of potentiometer DACs
consisting of unit resistors by using a combination of behavioral modeling and
the knowledge about the statistical properties of the DAC topology. All qualitative
results can be applied also to ADCs consisting of regular sets of unit elements.
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The data converter reliability is optimized to effectively balance the tradeoff
between DAC yield and DAC layout area, taking all relevant statistical and
systematic error sources into account. This approach in combination with the
generic engineering methodology gives full design flexibility and reduces the time
to market significantly enabling fast creation of competitive analog circuits for
mass production using latest nanoscale processes. The potentiometer DAC topology
is also well suited as testing structure for accurate process characterization of
upcoming state-of-the-art nanoscale processes.
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Chapter 6
Conclusion

Manfred Dietrich

6.1 Application of Statistical Methods in Design

A two step process has dominated the digital design flow a long time. That means, a
design was fixed and afterwards it was checked whether it is signoff clean regarding
the manufacturing issues and operating conditions. The nominal values of the design
parameters are chosen in a way such that the design goals are achieved with these
values. Extreme deviations between actual and nominal design parameters and
limits of operating conditions are described by corners. These corners characterize
Process, Voltage and Temperature (PVT) limits. The signoff step of the design flow
checks whether or not the design goals are violated by applying extreme values.

To carry out this step, the semiconductor foundries provide slow, typical, and
fast device models. These limits define slow, typical and high speed nMOS and
pMOS transistors that are used for the corner analysis. The transistor parameters
are in general based on limits of the Id saturation currents. Corners of interconnects
can also be described. With these parameter sets, digital cells and cell libraries can
be described for typical temperatures and supply voltages and their corners. Based
on these libraries, typical PVT corners can be checked. Thus for instance, a slow
process together with the lowest supply voltage at the highest temperature delivers
the worst-case slow behavior in traditional CMOS designs. Assuming a fast process
at highest voltage and temperature gives the maximal leakage. If all of such checks
are successful the design is accepted.

Design margins assure that the temperature range in which a circuit is to be used
and the fluctuations of supply voltages are considered. This approach has proven
itself over many years. However, it might meet its limits if local fluctuations have
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Fig. 6.1 Contributions to path delay in sub 100 nm CMOS digital circuits [3]

a greater impact than global ones and besides delay times and the dynamic power
consumption of a circuit other properties such as leakage currents and slopes shall be
optimized. Moreover, the demands of the manufacturing process have to be taken
into account at any point of the the digital design process. The number of coners
increases if different operating modes as full power, reduce power, and stand-by
have to be checked.

There have been worries that in the context of the transition to smaller feature
sizes the ratings obtained from corner analysis in digital design would become too
pessimistic. It was expected that full statistical properties of fluctuations have to
be taken into consideration as to avoid too pessimistic statements. In particular,
rejecting designs that would be suitable or making insufficient use of the advances
of new technologies should be avoided. Therefore, it was expected that instead
of corner-based methods novel design approaches that make use of full statistical
analysis techniques were necessarily going along with the transition to smaller
feature sizes.

Although many academic publications emphasize a significant increase in
process related fluctuation, in particular many industry publications do not report
a significant increase of process variations up to the 32/28 nm technology node
(see in this context for instance [3]). Rather, a constant or slightly increasing
range of relative variation has been observed. A deeper understanding of the
causes of variations in conjunction with improved process control and well-directed
monitoring allows for mastering scaling up to the 28 nm CMOS node.

Figure 6.1 shows the influence of process and environment related variations
on the path delay of clocked digital circuits. It becomes apparent that in particular
operational variations such as variations of the supply voltage VDD and the
temperature T have the largest portion of delay variations in such CMOS digital
circuits. It seems that process fluctation do not dominate path delay variations
compared to the influence of environment.
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Fig. 6.2 Methodology for quantification and compensation of variation induced delay varia-
tions [3]

The process variations are not new effects in principle. When designing analog
circuits they have been considered for a long time. A challenge in digital design is
the accurate quantification of the scaling behavior of the variation effects. However,
design techniques may help to reduce the influence of variations. This includes
improvements and new techniques in digital design such as deeper pipelining and
parallel super scalable processors for instance. Figure 6.2 shows various aspects in
this context.

For a robust design, the interactions between technology, circuits and micro
architectures have been considered. The reduction of static and dynamic power
losses and the achievement of the desired performance are partially contradictory
objectives if variations and reliability requirements have to be considered. Thus, a
compromise has to be made.

The design and optimization of the basic components of digital circuits increas-
ingly requires the use of sophisticated statistical analysis techniques. However, the
evaluation of the system behavior is often affected by pragmatic solutions in order
to keep the effort to analyze the effects of parameter variations within limits.

Thus, for instance, the efforts to use the Advanced On Cip Variation AOCV
method for assessing critical path delay variations with sufficient accuracy can be
significantly lower than the surplus of using SSTA instead of STA [2, 3]. However,

In order to evaluate the effects of variations at the level of basic logic elements,
a number of approaches has been presented in Chapter 4. The application of these
approaches requires both the availability of sufficiently accurate models and also
the characterization of the relevant design parameters, their nominal values and
a description of their statistical properties. This is often a difficulty that should
not be underestimated. The higher costs of preparing the application of statistical
methods are another problem. For example, the characterization of cell libraries
for the application of the Statistical Static Timing Analysis SSTA is much more
expensive than providing Non-Linear Delay Model NLDM libraries.
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it must be still expected that this approach comes quickly to its limits when
approaching even smaller structures. Only the boundaries have been moved to a
different location than it was expected a few years ago.

After all these more or less problematic sounding remarks, a slightly more
optimistic comment should be added: Process variations are a relevant challenge
in design. However, they also open possible alternatives to existing procedures in
some cases. The fact that the effects of independent fluctuations may cancel out
each other has already been mentioned in the introductory Chap. 1. As with the
joining of many individual components the overall error of an arrangement can be
reduced has been shown in Sect. 5.3.

6.2 Forecast

The detection of manufacturing variations has to be outlined on different levels
to develop high quality circuits in future applications. Different experts are going
to reduce the influence of the variations, and several ways of handling are to be
pursued.

6.2.1 Technological Development

Looking forward, the miniaturization will continue. The latest 20 nm technology
node is going to be implemented quite soon. The planning for the next technology
nodes has been made and first concrete ideas are considered. While the structures
shrink down, new causes of variations arise. The following questions are just
examples for what could be asked for:

• Will the variations sensitivity keep on increasing?
• Are new dependencies going to be detected?
• Can we disregard present dependencies?

Another important aspect is the introduction of the 450 mm-Wafer. The larger the
wafer, the more difficult the consistent development on the whole face. Bending and
other mechanical loadings could influence the structure. For example, gas flows are
not consequently equal over the whole wafer. Tiny rotators above the wafer might
affect it negatively. Thus local variances could gain importance.

Otherwise, new ideas and developments work against this process. Present
procedures and equipment are being kept up to date and external influences on the
production are reduced. A main step for the production is lithography, which is
the most important procedure for structuring. To perform exact exposures with the
193 nm-lithography far below the wave length, the immersion lithography has been
established. For the first time, ultrapure water is being used as working substance for
light instead of air. In the next step, double lithography is established. By using twice
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Fig. 6.3 FinFET

as much exposure in one level, the distances between the exposure areas expand
whereby the interferences and exposure variances decrease. This results in exact
angles and their roughness becomes minimized. The masks are improved constantly,
so fewer variances are fabricated while picturing structures.

Besides, new developments are able to do qualitative switches. Concerning the
lithography, it is the EUV lithography, which is near its introduction. A 13 nm wave
length is used to allow a seriously advanced and exact structuring. This might cause
a better angle roughness within the connections.

Using the miniaturization, the doping areas decrease. This causes a reduction
of the number of doping atoms per doping area. If there are just 10–20 atoms for
doping instead of several hundred, then the loss of few atoms is able to significantly
influence the features and performance of the doping area. Another approach is
focused on the use of new materials. Among the other things, it includes the usage
of a new oxide (hafnium-oxide) for isolation. Hafnium-oxide responds less sensitive
to variations of the layer thickness, because it is much more resistant to carrier
tunneling. Low-key-materials decrease the capacitances between the connections
and with it the influence of the roughness behavior of the connections.

6.2.2 New Devices

New active devices such as new production variations transistors will be developed
to protect rightly operating of the integrated circuits. This new devices are more
robust against, and the miniaturization can continue. One topic is the use of isolator
materials to avoid high leakage currents. In the future, two advanced device are the
favorite (Figs. 6.3 and 6.4, see also [4]).

In addition to the evolutionary development, there are some revolutionary
approaches. The use of carbon with its different crystal structure delivers huge
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Fig. 6.4 FDSOI

number of possibilities to design new devices. Another approach is the integration
of special devices such as mechanical, optical sensors (more than Moore). This
approach opens the integration of big electronic systems on the chip. The placement
of III/V semiconductor blocks on silicon is a possibility to generate new features
and new applications.

6.2.3 New Circuits Techniques and Future Architecture

The circuit designers deliver a large input to reduce the influence of the production
variations. They develop new approaches of circuit architectures. Two methods will
be followed:

• Development of architectures which are robust against variations and avoid
faults;

• Development of systems which can live with variations and hence resulting
faults.

The use of these two approaches depends on the special application. Safety critical
systems have to avoid faults and will use the first method (fault avoiding). Single
mistakes during the image processing can be accepted (fault toleration). That means
in the future the special requirements of the application will get more important
during the design process. The designer will use techniques like:

• Usage of redundancy
• Self-repairing architectures
• Use of so-called added control bits.
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The adoption of these techniques has to consider the technology possibilities and
the integration of the integrated circuit in the entire system.

In addition, advanced approaches will be introduced besides the reduction of the
variances, e.g., ultra low power technology. But the variation of the production will
stay in consideration. New modeling and design methods have to be developed for
these mentioned design approaches.

6.3 Future Tasks

The dealing with variations will involve in future design methods too. The in-
troduction of new production methods and new technology nodes will change
the approaches. It is necessary to analyze the new problems and to ask the right
questions. New causes of variations can appear and already existed causes can
disappear. In addition, new methods of circuit production (e.g. carbon technique,
optical signal transmission on chip) will deliver a review of the well-known design
methods.

Another aspect is the functions of the integrated circuits over the whole lifetime.
During the operation, the internal and external influences change the characteristic
of the circuit (aging of the circuit). This aging has to integrate in the design flow to
get the best solution over the whole lifespan. The regard of the variations and of the
reliability has to be merged to one design goal.

The short forecast demonstrates that the statistical methods will get more
importance for the design of electronic circuits and systems. There will be a lot
of tasks, which are waiting for a solution.

A variation aware design will play a central role in this context. Smaller
structures, 3D orientation, more layers, ... - All these aspects are going to affect
fluctuations of electrical and physical parameters even further. Therefore, one goal
is to make the dependencies between the variations of design, component and
process parameters easier to manage and better to handle. In this context, the
interdependence of the variations of design parameters and performance parameters
has to be captured. They have to be described in an appropriate manner, for instance
with multi-dimensional composite probabilities. In addition to known sources of
variations associated with further shrinking of structural widths, the effect of
fluctuations due to the atomic structure of dopants has to be taken into account.
The lower the average number of atoms the greater is the effect of fluctuations on
the relative error. The relative error increases significantly with each missing and
each needless atom.

Last but not least, it is of general interest to investigate how process-related
fluctuations can be transferred to descriptions at the system level and thus affect
the yield. Such methods are increasingly required for the comparison of system
design alternatives, the optimization regarding contradictory design goals and the
determination of safety margins for a Design for Manufacturability DFM. These
requirements are also key issues that are addressed in the International Technology
Roadmap for Semiconductors ITRS.
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Manufacturing and designing are increasingly no longer performed within the
same company. Production requirements already have to be considered in the
design and they should be described using appropriate interfaces. The development
of appropriate standards, such as extensions of the OpenDFM of the Design for
Manufacturability Coalition DFMC of the Silicon Integration Initiative Si2 [1] is an
approach that goes into this direction.
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Appendix A
Standard Formats for Circuit Characterization

A.1 Standard Parasitic Exchange Format SPEF

Standard Parasitic Exchange Format (SPEF) is an ASCII format that represents data
of wires in a chip. The latest definition of the format is given by the IEEE Std 1481–
2009 [1]. It defines syntactical forms to describe resistances (*RES), capacitances
(*CAP), and inductances (*INDUC) of wires that are considered as parasitics. SPEF
information can also capture dependency of parasitics on technology parameters
(*VARIATION PARAMETERS). The data can be determined by layout parasitic
extraction or package/board extraction tools. These tools evaluate the floorplanning
information. They can consider sheet resistances of each interconnect layers and
contact resistances of each via cell. Usually, capacitance tables are used to determine
the area capacitances of nets to substrate, the fringe or side-wall capacitances to
substrate and the cross-coupling capacitances between nets.

Based on SPEF data, parasitic information can be exchanged between different
tools. A general SPEF description is structured into

• Header definition
• Name map definition
• Power and ground net definition
• External definition
• Hierarchical SPEF (entities) definition
• Process and temperature variation definition
• Internal definition

Header and internal definitions are mandatory.
The header definition describes administrative issues as used SPEF version

(*SPEF), design name (*DESIGN) and others. It contains information about used
lexical elements (*DIVIDER, *DELIMITER) and scaling factors and units for time
(*T UNIT) and capacitances (*C UNIT), resistances (*R UNIT), and inductance
(*L UNIT). The name map (*NAME MAP) allows to map a positive integer
number to a name that may be used multiple times in an SPEF file. The power
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and the ground net definitions (*POWER NETS, *GROUND NETS) may specify
references to power and ground nets.

The hierarchical SPEF definition (*DEFINE, *PDEFINE) can be used to refer-
ence entity instances within the current SPEF file. This allows merging multiple
SPEF files.

The external definition defines external logical ports (*PORTS) and physical-
only ports (*PHYSICAL PORTS) of the nets that are described.

The internal definition of the nets that represent the wires can be done in detailed
(*D NET, *D PNET) or reduced form (*R NET, *R PNET). The connection
section (*CONN) of a detailed net describes the external (*P) and internal (*I)
connection points of a net and capacitances, resistances, and inductances that built
up the net. The reduced form is based on a pi-model that consists of two capacitances
and a resistance (*C2 R1 C1). Distributed models are reduced to equivalent reduced
models by asymptotic waveform evaluation (AWE). The reduced models represent
an admittance model seen by the driving cell. The description of a reduced net
requires information on the driver (*DRIVER, *CELL).

The SPEF data can be used for circuit simulation, power calculation, and
crosstalk analysis for instance. In digital circuit verification, delays are determined
based on these data. SPEF information can be used to do postlayout Static Timing
Analysis. Rule checks and power calculation are other areas of application.

Example:

// Header definition

*SPEF "IEEE 1481-2009"

*DESIGN "Sample"

*DATE "Monday December 18, 1995"

*VENDOR "Sample Tool"

*PROGRAM "Sample Generator"

*VERSION "1.1.0"

*DESIGN_FLOW "Sample Flow"

*DIVIDER /

*DELIMITER :

*BUS_DELIMITER [ ]

*T_UNIT 1 NS

*C_UNIT 1 PF

*R_UNIT 1 OHM

*L_UNIT 1 HENRY

// Name map definition

*NAME_MAP

*1 in1
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*2 out1

*3 net1

*4 net2

*5 net3

*6 net4

// External ports

*PORTS

*1 I

*2 O

// Detailed of one net description

*D_NET *4 0.287695

*CONN

*I *5:Z O *D DRIVER_CELL_1

*I *6:A I *D DRIVER_CELL_1

*CAP
1 *5:Z 0.189802
2 *6:A 0.097893

*RES
1 *5:Z *6:A 1.054678

*END

...
Listing A.1 Part of a SPEF file based on [1]

The detailed net net2 (identified by *4) connects point Z of net3 with point A of
net4. The parameters are determined for a connection with DRIVER CELL 1. The
letters I and O in the definition of ports and connection points of nets characterize
inputs and outputs.

The variation definition (*VARIATION PARAMETERS) is new in the IEEE
Std 1481–2009 compared to older versions of the standard. It defines the process
parameters that affect capacitances, inductances, and resistances of interconnects.
Furthermore, first-order and second-order coefficients (CRT1, CRT2) for the tem-
perature dependencies of resistances are defined as well as the nominal temperature
for the extraction. The variation effects are described by
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C
(

p
)
= C0 ·

1+∑ j cn j · v j

1+∑i cdi · vi
(A.1)

L
(

p
)
= L0 ·

1+∑ j ln j · v j

1+∑i ldi · vi
(A.2)

R
(

p,T
)
= R0 ·

(
1+ a · (T−T0)+ b · (T−T0)

2
)
· 1+∑ j rn j · v j

1+∑i rdi · vi
. (A.3)

p is a vector of process parameters. pi is a component of this vector. T0 is
the nominal temperature for the extraction of the parameters. T is the current
temperature. C0,L0,T0 are capacitance, inductance, and resistance values at nominal
values of the process parameters and nominal temperature.

cn j =
1

C0
· ∂C(p)
∂ p j
·NF(p j), ln j =

1
L0
· ∂L(p)
∂ p j
·NF(p j), rn j =

1
R0
· ∂R(p)
∂ p j
·NF(p j)

are sensitivity coefficients for so-called N-type variation parameters. These coeffi-
cients characterize the numerators in the expressions that describe the parameter
dependencies of capacitance, inductance, and resistance. NF(p j) is an optional
normalization factor of the process parameter p j.

cdi =C0 · ∂C−1(p)
∂ pi

·NF(pi), ldi = L0 · ∂L−1(p)
∂ pi

·NF(pi), rdi = R0 · ∂R−1(p)
∂ pi

·NF(pi)
are sensitivity coefficients for so-called D-type variation parameters. These coeffi-
cients characterize the denumerators in the expressions that describe the parameter
dependencies of capacitance, inductance, and resistance. A process parameter
is either a N type or an D-type parameter for the description of capacitances,
inductances, and resistances resp. It is also possible that a variation of a process
parameter does not influence neither numerator nor denumerator. Then it is called
X-type variation parameter.

a = 1
R0
· ∂R
∂T and b = 1

R0
· ∂ 2R
∂T 2 are sensitivity coefficients that characterize the

temperature dependency of resistances (CRT1, CRT2).
The worst case variation Δvi =VC(pi) ·V M(pi) of a process parameter is given

by its variation coefficient VC(pi) and the variation multiplier VM(pi). Nominal
values of the variation parameters pi are assumed to equal the mean values μ(pi)

of the associated probability distribution. The relation VC(pi) =
σ(pi)

NF(pi)
gives the

standard deviation σ of the distribution.

Example:

The subsequent example is taken from [1]. The variation definition is given by

*VARIATION_PARAMETERS
0 "field_oxide_T" D X X 0.080 1
1 "poly_T" D X X 0.030 1
2 "poly_W" D X X 0.023 1
3 "Diel1_T" X X D 0.050 1
4 "metal1_T" X N X 0.050 1
5 "metal1_W" X N X 0.030 1
6 CRT1
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7 CRT2
27.0000
Listing A.2 Variation parameters definition in a SPEF file [1]

The first lines characterize process parameters as thickness, width, and permittiv-
ity of dielectric layers by its parameter index i, a string and the variation parameters
types (N, D, or X) for capacitance, resistance, and inductance followed by the
variation coefficient (VC(pi)) and the normalization factor (NF(pi)). Afterward, the
parameter indices for first- and second-order temperature sensitivities of resistances
are given. The last value is the nominal temperature.

The characterization of capacitances, inductances, and resistances can now be
extended by its sensitivities. The variation description follows after *SC. It is given
by pairs of parameter index and then associated sensitivity coefficient.

*CAP
1 *5:Z 0.189802 *SC 0:-0.005 1:0.029 2:0.026
...

*RES
1 *5:Z *6:A 1.054678 *SC 4:0.900 5:0.531 6:0.00321
7:-0.00021
Listing A.3 Sensitivity description in an SPEF file based on [1]

A.2 Standard Delay Format (SDF)

The Standard Delay Format (SDF) is a standardized format to describe delay
and timing information of a digital design [2]. It describes path delays, timing
constraint values, interconnect delays, and high level technology parameters in
a tool independent way. It is commonly used to calculate data from postlayout
information. However, it can also provide constraints for a prelayout design step.
One of the original intentions of this development was to provide delay information
for the digital simulation, for instance, using Verilog.

The SDF file is an ASCII file. It starts with a header section where some
administrative information as SDFVERSION, DESIGN name, DATE, VENDOR
and the name of the PROGRAM name that created the file are given. PROCESS,
VOLTAGE, and TEMPERATURE in degrees Celsius are specified. All these values
do not affect the meaning of the data. Thus, this part of the header section is often
used to characterize the Process-Voltage-Temperature (PVT) conditions. They are
provided for documentation purposes The TIMESCALE defines the unit of timing
information.

IOPATH delays characterize the input–output path delays of a device (CELL). An
IOPATH is defined by an input (or bidirectional) port and an output (or bidirectional)
port of a device followed by a list of delays. The delay values are given in general
by triples characterizing the minimum, typical, and maximum value of a delay.
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The list of delays contains either one, two, three, six, or twelve elements. Each
token corresponds to a special output transition (see [2, Table 1]). The delay is
applied when the output port (for IOPATH or INTERCONNECT) or in the case of
two elements, the first element describes the 0→ 1 transition. The second element
characterizes the 1→ 0 transition. The delay is considered at the end of the path.
Furthermore, it is possible to specify delays regarding special conditions (COND)
at the input port of a device. On the opposite side, all delays of a device can be
described by only one list that starts with the keyword DEVICE. Delays can be given
by ABSOLUTE or INCREMENT values. Incremental delays are added to existing
values in the same SDF file whereas absolute values replace old values. This may
be used to characterize several instances (INSTANCE) of the same CELLTYPE by
describing the differences between the instances.

Interconnect delays characterize the wires between outputs and inputs of devices.
They can be given as PORT delays, NETDELAYs, or INTERCONNECT delays.
Port delays are considered as delays at input (or bidirectional) ports of a device. Net
delays specify the delays from all drivers to all loads of a net in the same way. A
more detailed description is given by INTERCONNECT delays. In this case, the
first port is a driver port (output or bidirectional port) and the second port is an input
(or bidirectional) port of a driven device.

Furthermore, SDF files can contain statements considering timing constraints of
pulses as setup and hold times, pulse width, period and others.

Example:

(DELAYFILE
(SDFVERSION "4.0")
(DESIGN "Test")
(DATE "Tue Sep 16 15:45:26 2008")
(VENDOR "Test vendor")
(PROGRAM "Test Tool")
(VERSION "1.0")
(DIVIDER /)
(VOLTAGE 1.00::1.00)
(PROCESS "typical")
(TEMPERATURE 25.00::25.00)
(TIMESCALE 1ns)
(CELL

(CELLTYPE "SYSTEM")
(INSTANCE)
(DELAY

(ABSOLUTE
(INTERCONNECT a0 c1/a (0.004::0.005)
(0.004::0.005))

(INTERCONNECT c1/z c2/a (0.002::0.003)
(0.002::0.003))
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(INTERCONNECT c2/z b0 (0.001::0.001)
(0.001::0.001))

)
)

)

(CELL
(CELLTYPE "INV")
(INSTANCE c1)
(DELAY

(ABSOLUTE
(IOPATH A Z (0.143::0.167) (0.032::0.152))

)
)

)

(CELL
(CELLTYPE "INV")
(INSTANCE c2)
(DELAY

(ABSOLUTE
(IOPATH A Z (0.129::0.157) (0.122::0.142))

)
)

)

)
Listing A.4 Principal structure of an SDF file

The SDF information can be used to specify delay times of digital models used
in VHDL or Verilog simulations. It can also be used to investigate critical paths
applying STA tools.

The current version of the file format [2] does not support dependencies of delays
on process parameters as well as dependencies on supply voltages of a cell. It
only considers worst-case conditions. Using minimal and maximal delay times, the
estimation of delays of interesting paths of a design may be either too optimistic or
too pessimistic if inter-die variations have to be taken into account. The “engineering
approach” to solve this problem is to provide derating tables that correct worst-case
values. This approach is known as On-Chip Variation (OCV) analysis. The improved
version is called Advanced On-Chip Variation (AOCV) that uses variable derating
factors based on the digital levels and location of a cell [3].
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A.3 Nonlinear Delay Model NLDM

The nonlinear delay model is widely used to characterize the propagation delay
through digital cells and blocks to their outputs depending on the load capacitances
and input rise and fall times. It also describes how output rise and fall times depend
on these values (see also Sect. 4.1). NLDM was introduced in the early 1990s [4].
The model characterizes the propagation delay through a cell and the rise and fall
times at the output ports.

The general model description is part of the Liberty format specification that is an
industry’s used library modeling standard [5, 6]. Members of the Liberty Technical
Advisory Board (LTAB) are EDA vendors such as Magma Design Automation,
Mentor Graphics and Synopsys and semiconductor companies such as AMD, IBM,
Infineon and Texas Instruments.

The Liberty description starts with library-level attributes as, for instance, the
technology, the delay model, the units of pulling resistances, currents, time,
voltages, and capacitances. The nonlinear delay model is a table lookupmodel.
Information is given concerning the operating conditions. Different library files
can be created for best and worst cases. Default values for pin attributes as
default inout pin cap are provided. The wire load group information
may be used to estimate interconnect parameters depending on the fanout of a cell.

Furthermore, the threshold levels of the input (input threshold pct rise,
input threshold pct fall) and output signals (output threshold
pct rise, output threshold pct fall) are given and are used to
determine delays provided by the library. The level of the threshold points
that are used to determine rise and fall times is also given by slew lower
threshold pct rise and slew upper threshold pct rise for a rising
edge and slew upper threshold pct fall andslew lower threshold
pct fall, resp.

The cell descriptions characterize electrical properties of input and output
pins as well as timing conditions. The rise capacitance and the
fall capacitance attributes allow to specify different capacitance values
for input or inout pins for rising and falling waveforms, resp. The capacitances for
output pins are not specified if their effects are considered in the timing information
of a cell. The electrical configuration at the output (for instance, pull-up or pull-
down resistances) can be described by the driver type attribute. The nominal
relations of the NLDM model are given by tables that characterize the delays
in the case of rising and falling edges at outputs (cell rise, cell fall.
rise transition and fall transition tables describe the dependencies
of rising and falling times at output pins on input slopes and load capacitances. The
tables allow to describe nonlinear relations by selected points.

New attributes can be created using the define statement. This property can be
used to characterize first-order sensitivities of dependent table values on process pa-
rameters as for instance cell rise sensitivity (see also Sect. 4.5.2.2). This
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offers the opportunity to consider parameter variations in the analysis. However, the
accuracy is limited if only first-order sensitivities are used.

The delay information can be extended by a Nonlinear Power Model (NLPM)
that was introduced in 1995 [7]. It describes the leakage power per state
(cell leakage power). The power that is dissipated within a cell if the signal
of an output port changes is considered as internal power. Dependencies on
process parameters can be taken into account by first-order sensitivities for instance
(see also Sect. 4.5.2).

Examples of libraries are provided in [8].

Example:

library (MyCellLibrary) {

/* general */
technology(cmos);
delay_model : table_lookup;
in_place_swap_mode : match_footprint;
library_features(report_delay_calculation,report_power_calculation);

/* units */
time_unit : "1ns";
leakage_power_unit : "1nW";
voltage_unit : "1V";
current_unit : "1uA";
pulling_resistance_unit : "1kohm";
capacitive_load_unit (1,pf);
/* internal power unit is 1pJ */

/* operating conditions */
nom_process : 1.0;
nom_temperature : 25.0;
nom_voltage : 1.1;

operating_conditions (typical) {
process : 1.00;
voltage : 1.10;
temperature : 25.00;
tree_type : balanced_tree;

}
default_operating_conditions : typical;

/* thresholds */
slew_lower_threshold_pct_fall : 30.0;
slew_lower_threshold_pct_rise : 30.0;
slew_upper_threshold_pct_fall : 70.0;
slew_upper_threshold_pct_rise : 70.0;
slew_derate_from_library : 1.0;
input_threshold_pct_fall : 50.0;
input_threshold_pct_rise : 50.0;
output_threshold_pct_fall : 50.0;
output_threshold_pct_rise : 50.0;

/* leakage */
default_leakage_power_density : 0.0;
default_cell_leakage_power : 0.0;

/* pin capacitances */
default_inout_pin_cap : 1.0;
default_input_pin_cap : 1.0;
default_output_pin_cap : 0.0;
default_fanout_load : 1.0;

/* wire loads */
default_wire_load_capacitance : 0.000177;
default_wire_load_resistance : 0.0036;

power_lut_template (slp_load_pwr) {
variable_1 : input_transition_time;
variable_2 : total_output_net_capacitance;
index_1 ("0.0060, 0.0200, 0.0400, 0.0800, 0.1400, 0.2800, 0.5600")
index_2 ("0.0004, 0.0008, 0.0016, 0.0032, 0.0064, 0.0128, 0.0256")

}

lu_table_template (slp_load_tmg) {
variable_1 : input_net_transition;
variable_2 : total_output_net_capacitance;
index_1 ("0.0060, 0.0200, 0.0400, 0.0800, 0.1400, 0.2800, 0.5600")
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index_2 ("0.0004, 0.0008, 0.0016, 0.0032, 0.0064, 0.0128, 0.0256")
}

/**************************************************************************
BEGIN Additional Definitions for Process Parameters and Sensitivities */

power_lut_template (slp_load_pwr_sensitivity) {
variable_1 : input_transition_time;
variable_2 : total_output_net_capacitance;
index_1 ("0.0060, 0.0200, 0.0400, 0.0800, 0.1400, 0.2800, 0.5600")
index_2 ("0.0004, 0.0008, 0.0016, 0.0032, 0.0064, 0.0128, 0.0256")

}

lu_table_template (slp_load_tmg_sensitivity) {
variable_1 : input_net_transition;
variable_2 : total_output_net_capacitance;
index_1 ("0.0060, 0.0200, 0.0400, 0.0800, 0.1400, 0.2800, 0.5600")
index_2 ("0.0004, 0.0008, 0.0016, 0.0032, 0.0064, 0.0128, 0.0256")

}

define_group(cell_fall_sensitivity, timing);
define_group(cell_rise_sensitivity, timing);
define_group(fall_transition_sensitivity, timing);
define_group(rise_transition_sensitivity, timing);
define_group(fall_power_sensitivity, internal_power);
define_group(rise_power_sensitivity, internal_power);

define(param_name, cell_fall_sensitivity, string);
define(values, cell_fall_sensitivity, string);
define(param_name, cell_rise_sensitivity, string);
define(values, cell_rise_sensitivity, string);
define(param_name, fall_transition_sensitivity, string);
define(values, fall_transition_sensitivity, string);
define(param_name, rise_transition_sensitivity, string);
define(values, rise_transition_sensitivity, string);
define(param_name, fall_power_sensitivity, string);
define(values, fall_power_sensitivity, string);
define(param_name, rise_power_sensitivity, string);
define(values, rise_power_sensitivity, string);

define_group(process_parameter, library);
define(parameter_type, process_parameter, string);
define(distribution_type, process_parameter, string);
define(nominal_value, process_parameter, float);
define(sigma, process_parameter, float);

/* process parameters used */
process_parameter (NMOS_THKOX) {
parameter_type : inter_cell;
distribution_type : normal;
nominal_value : 0.0;
sigma : 1.0;

}

process_parameter (NMOS_VTH) {
parameter_type : inter_cell;
distribution_type : normal;
nominal_value : 0.0;
sigma : 1.0;

}

/* END Additional Definitions for Process Parameters and Sensitivities

**************************************************************************/

cell (INV1) {
cell_leakage_power : 2.75;

leakage_power () {
when : "!A";
value : 2.0;

}
leakage_power () {
when : "A";
value : 3.5;

}

pin (A) {
direction : input;
capacitance : 0.00046;
fall_capacitance : 0.00045;
rise_capacitance : 0.00048;
fall_capacitance_range(0.00042, 0.00054);
rise_capacitance_range(0.00043, 0.00057);
max_transition : 0.56;

}

pin (Z) {
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direction : output;
max_capacitance : 0.0256;
min_capacitance : 0.0;
function : "(!A)";

timing () {
related_pin : "A";
timing_sense : negative_unate;

cell_fall(slp_load_tmg) {
values ("0.01041, 0.01289, 0.01753, 0.02698, 0.04588, 0.08364, 0.15914", \

"0.01393, 0.01721, 0.02261, 0.03201, 0.05085, 0.08869, 0.16405", \
"0.01637, 0.02087, 0.02837, 0.04026, 0.05933, 0.09693, 0.17235", \
"0.01755, 0.02363, 0.03386, 0.05022, 0.07531, 0.11409, 0.18905", \
"0.01514, 0.02325, 0.03705, 0.05922, 0.09361, 0.14526, 0.22330", \
"0.00347, 0.01465, 0.03324, 0.06311, 0.10955, 0.18021, 0.28516", \
"-0.02680, -0.01241, 0.01189, 0.05177, 0.11436, 0.21013, 0.35336");

}
cell_rise(slp_load_tmg) {

values ("0.01745, 0.02223, 0.03174, 0.05069, 0.08852, 0.16404, 0.31499", \
"0.02353, 0.02814, 0.03748, 0.05631, 0.09405, 0.16957, 0.32059", \
"0.03144, 0.03757, 0.04776, 0.06620, 0.10366, 0.17900, 0.32979", \
"0.04235, 0.05055, 0.06446, 0.08673, 0.12380, 0.19840, 0.34891", \
"0.05863, 0.06915, 0.08730, 0.11734, 0.16420, 0.23887, 0.38794", \
"0.08429, 0.09789, 0.12103, 0.15989, 0.22266, 0.31893, 0.46917", \
"0.12912, 0.14531, 0.17433, 0.22362, 0.30471, 0.43312, 0.62828");

}
fall_transition(slp_load_tmg) {

values ("0.00526, 0.00721, 0.01131, 0.01951, 0.03587, 0.06863, 0.13408", \
"0.00815, 0.00989, 0.01242, 0.01955, 0.03590, 0.06864, 0.13404", \
"0.01219, 0.01424, 0.01767, 0.02282, 0.03620, 0.06870, 0.13418", \
"0.01903, 0.02161, 0.02578, 0.03285, 0.04392, 0.06965, 0.13433", \
"0.03093, 0.03414, 0.03944, 0.04859, 0.06346, 0.08612, 0.13645", \
"0.05212, 0.05624, 0.06353, 0.07526, 0.09402, 0.12459, 0.17059", \
"0.09276, 0.09723, 0.10614, 0.12155, 0.14593, 0.18511, 0.24687");

}
rise_transition(slp_load_tmg) {

values ("0.01144, 0.01602, 0.02496, 0.04296, 0.07869, 0.15051, 0.29392", \
"0.01269, 0.01636, 0.02502, 0.04293, 0.07873, 0.15055, 0.29330", \
"0.01752, 0.02062, 0.02692, 0.04298, 0.07884, 0.15062, 0.29354", \
"0.02490, 0.02926, 0.03639, 0.04850, 0.07920, 0.15058, 0.29353", \
"0.03628, 0.04177, 0.05146, 0.06731, 0.09168, 0.15170, 0.29424", \
"0.05622, 0.06231, 0.07444, 0.09537, 0.12874, 0.17894, 0.29695", \
"0.09468, 0.10007, 0.11377, 0.13889, 0.18245, 0.25140, 0.35281");

}
/* Additional Sensitivity Tables for Timing */
cell_fall_sensitivity (slp_load_tmg_sensitivity) {

param_name : NMOS_VTH;
values : " 0.00042152, 0.00061292, 0.00082434, 0.00123816, 0.00195448, 0.00344520, 0.00667040, \

0.00081422, 0.00095084, 0.00108636, 0.00144650, 0.00214434, 0.00355960, 0.00667260, \
0.00194458, 0.00219032, 0.00246400, 0.00277860, 0.00332640, 0.00454740, 0.00736340, \
0.00353100, 0.00379060, 0.00386320, 0.00464420, 0.00524260, 0.00627000, 0.00869220, \
0.00646360, 0.00691240, 0.00724460, 0.00771100, 0.00869880, 0.01028940, 0.01232440, \
0.00911680, 0.00953040, 0.01027400, 0.01072060, 0.01156980, 0.01416360, 0.01634160, \
0.01423840, 0.01553860, 0.01612600, 0.01684980, 0.01824020, 0.01956240, 0.02402400";

}
cell_rise_sensitivity (slp_load_tmg_sensitivity) {

param_name : NMOS_VTH;
values : " 0.00003597, 0.00003012, 0.00002226, 0.00001047,-0.00000152,-0.00001102,-0.00001727, \

-0.00000290, 0.00001552, 0.00002130, 0.00002171, 0.00001459, 0.00000237,-0.00000820, \
-0.00047982,-0.00030338,-0.00020211,-0.00011458,-0.00005896,-0.00002807,-0.00001761, \
-0.00160600,-0.00111320,-0.00086636,-0.00059796,-0.00033418,-0.00017963,-0.00010384, \
-0.00372900,-0.00317240,-0.00272140,-0.00203962,-0.00137918,-0.00078716,-0.00043274, \
-0.00603460,-0.00533500,-0.00481580,-0.00389620,-0.00286220,-0.00174218,-0.00096470, \
-0.01102860,-0.00999460,-0.00937640,-0.00815320,-0.00630300,-0.00442860,-0.00259380";

}
fall_transition_sensitivity (slp_load_tmg_sensitivity) {

param_name : NMOS_VTH;
values : " 0.00005903, 0.00013996, 0.00024926, 0.00039578, 0.00076626, 0.00143066, 0.00218460, \

0.00004536, 0.00017648, 0.00019587, 0.00043164, 0.00073766, 0.00128304, 0.00267300, \
0.00000655, 0.00028688, 0.00021424, 0.00014293, 0.00060676, 0.00120560, 0.00256300, \
0.00015235, 0.00000940, 0.00013138, 0.00047872, 0.00043626, 0.00106128, 0.00258060, \
0.00013605, 0.00010076, 0.00014863,-0.00007583, 0.00093104, 0.00073040, 0.00226820, \
0.00002886, 0.00021371, 0.00008452, 0.00039446, 0.00053548, 0.00152218, 0.00108592, \
0.00021074, 0.00000191,-0.00001433,-0.00004354, 0.00005460, 0.00122914, 0.00221760";

}
rise_transition_sensitivity (slp_load_tmg_sensitivity) {

param_name : NMOS_VTH;
values : "-0.00000002,-0.00000033,-0.00000080,-0.00000015,-0.00000009,-0.00000013,-0.00000032, \

0.00000040,-0.00000148,-0.00000045, 0.00000003,-0.00000024,-0.00000020,-0.00000044, \
0.00009423, 0.00004180, 0.00003696, 0.00001804, 0.00000135,-0.00000039,-0.00000002, \
0.00011414, 0.00014032, 0.00010179, 0.00010369, 0.00006039, 0.00000881, 0.00000013, \
0.00009821, 0.00025454, 0.00027346, 0.00028336, 0.00024398, 0.00013671, 0.00002798, \
0.00006888, 0.00033220, 0.00030118, 0.00052910, 0.00034628, 0.00031262, 0.00013435, \

-0.00032978, 0.00027896, 0.00052360, 0.00069344, 0.00080300, 0.00063184, 0.00058080";
}

...
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}

internal_power () {
related_pin : "A";
fall_power(slp_load_pwr) {

values ("0.00025, 0.00025, 0.00025, 0.00026, 0.00026, 0.00026, 0.00026", \
"0.00025, 0.00025, 0.00025, 0.00026, 0.00026, 0.00026, 0.00026", \
"0.00028, 0.00028, 0.00027, 0.00027, 0.00026, 0.00026, 0.00026", \
"0.00041, 0.00038, 0.00038, 0.00032, 0.00020, 0.00028, 0.00028", \
"0.00075, 0.00058, 0.00059, 0.00049, 0.00040, 0.00036, 0.00035", \
"0.00155, 0.00122, 0.00127, 0.00103, 0.00075, 0.00062, 0.00049", \
"0.00322, 0.00307, 0.00258, 0.00245, 0.00194, 0.00142, 0.00105");

}
rise_power(slp_load_pwr) {

values ("0.00081, 0.00082, 0.00083, 0.00084, 0.00085, 0.00087, 0.00091", \
"0.00083, 0.00083, 0.00083, 0.00084, 0.00085, 0.00087, 0.00091", \
"0.00088, 0.00088, 0.00087, 0.00086, 0.00086, 0.00087, 0.00091", \
"0.00102, 0.00100, 0.00098, 0.00095, 0.00092, 0.00091, 0.00093", \
"0.00136, 0.00131, 0.00125, 0.00118, 0.00111, 0.00104, 0.00100", \
"0.00212, 0.00203, 0.00191, 0.00177, 0.00160, 0.00144, 0.00129", \
"0.00377, 0.00363, 0.00343, 0.00313, 0.00279, 0.00244, 0.00210");

}
/* Additional Sensitivity Tables for Dynamic Power */
fall_power_sensitivity (slp_load_pwr_sensitivity) {

param_name : NMOS_VTH;
values : "-0.00000651,-0.00000314,-0.00000182,-0.00000097,-0.00000051,-0.00000026,-0.00000019, \

-0.00001711,-0.00001179,-0.00000882,-0.00000586,-0.00000341,-0.00000183,-0.00000107, \
-0.00006404,-0.00005019,-0.00004244,-0.00003198,-0.00002252,-0.00001430,-0.00000796, \
-0.00014674,-0.00012408,-0.00010868,-0.00008862,-0.00006475,-0.00004446,-0.00002727, \
-0.00030833,-0.00028468,-0.00026037,-0.00022770,-0.00017974,-0.00013266,-0.00008698, \
-0.00047267,-0.00044638,-0.00042537,-0.00037345,-0.00031603,-0.00024046,-0.00017006, \
-0.00080839,-0.00078749,-0.00075537,-0.00070235,-0.00061336,-0.00050006,-0.00036784";

}
rise_power_sensitivity (slp_load_pwr_sensitivity) {

param_name : NMOS_VTH;
values : "-0.00005020,-0.00005173,-0.00005377,-0.00005647,-0.00005915,-0.00006109,-0.00006223, \

-0.00005887,-0.00005519,-0.00005397,-0.00005392,-0.00005544,-0.00005806,-0.00006019, \
-0.00010746,-0.00009569,-0.00008856,-0.00007933,-0.00007048,-0.00006470,-0.00006202, \
-0.00018711,-0.00016786,-0.00015543,-0.00013706,-0.00011660,-0.00009611,-0.00007959, \
-0.00035024,-0.00032615,-0.00030701,-0.00027775,-0.00023694,-0.00019118,-0.00014619, \
-0.00052173,-0.00049181,-0.00046541,-0.00042779,-0.00037543,-0.00030789,-0.00023694, \
-0.00085954,-0.00082379,-0.00079651,-0.00074745,-0.00067078,-0.00057354,-0.00045628";

}

...

}
}

}

Listing A.5 Liberty standard cell library example with extensions for process parameter sensitiv-
ities based on [5, 9]
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Appendix B
Standard Formats for Simulation Purposes

B.1 VHDL/VHDL-AMS Statistical Analysis Package

VHDL is a well-known behavioral modeling language for digital circuits and
systems. It is extended to VHDL-AMS to model also analog and mixed-signal
systems. In VHDL(-AMS) applications, it becomes interesting to make Monte Carlo
features available where the following requirements should be fulfilled

• Usage of the same model for nominal and Monte Carlo analysis
• Assignment of different statistical distributions that are parameterizable to each

constant
• Support of continuous and discrete distributions
• Possibility to specify correlation between constants

From a practical point of view, the following points should also be mentioned

• Independent random number generation for any constant
• Reproducibility of Monte Carlo simulation within the same simulation tool

The SAE J2748 Statistical Analysis Package [1] provides VHDL-AMS func-
tions that can be used for describing the random behavior of parameters in a
VHDL/VHDL-AMS description. At the beginning of each simulation run, the
parameters are initialized using random values distributed in accordance with the
associated probability density or cumulative density function (PDF or CDF re-
spectively).

The fundamental function described by the SAE J2748 standard is a random
number generator STD UNIFORM that delivers (0, 1) distributed uniform numbers.
The uniform random numbers can be transformed with respect to the required
distribution function. The idea behind STD UNIFORM is to access a random
number generator for uniform values as it is given in the MATH REAL package
of the IEEE library by the UNIFORM procedure. The SEED values of this
procedure UNIFORM must be handled using a global storage place. Without
further requirements, this place can be a read/write position in a file. The function

M. Dietrich and J. Haase (eds.), Process Variations and Probabilistic
Integrated Circuit Design, DOI 10.1007/978-1-4419-6621-6,
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Table B.1 Pre-defined functions in the statistical analysis package

Function name Comment

STD UNIFORM Delivers a random value between 0 and 1
STD NORMAL Delivers a N(0,1) distributed random value
NORMAL Delivers a Gaussian distributed random value with

given mean value and standard deviation de-
scribed by tolerances of min/max limits

BERNOULLI Delivers Bernoulli distributed random numbers
PDF Delivers a random value described by a piecewise

linear description of a PDF
CDF Delivers a random value described by a piecewise

linear description of a CDF

STD UNIFORM reads the SEED values from this file and determines the next (0, 1)
distributed value calling the UNIFORM procedure that also delivers new SEED
values. These new SEED values are written to the file and are used during the next
activation of STD UNIFORM.

Thus, every VHDL-AMS/VHDL simulator that allows for multiple runs can be
used for setting up standard Monte Carlo experiments. It is also possible to replace
the file by handling the administration of global SEED places inside a simulator.

The package is named STATISTICS and compiled into the VHDL UTILITY
library.

Example:

As an example, one of the regular distribution functions implementing the normal
(or Gaussian) distribution for type REAL is declared as follows:

impure function NORMAL (
NOMINAL: REAL; -- Nominal value
TOL: REAL; -- Tolerance > 0.0
TRUNCATE: BOOLEAN := TRUE;
ZSCORE: REAL := 3.0;
MODE: STAT_MODE_TYPE := STAT_MODE
) return REAL;

Listing B.1 Declaration of function NORMAL in the STATISTICS package

In nominal mode, the function returns the nominal value. In statistical mode,
and if TRUNCATE is FALSE, the function returns random values with a normal
distribution with mean μ = NOMINAL and standard deviation σ = |NOMINAL|·TOL

ZSCORE
Thus, ZSCORE describes how many standard deviations correspond to the absolute
tolerance of the parameter. The default is 3, which means that 99.7% of all random
values returned by the function will be within the limits of the tolerance range. If the
value of TRUNCATE is TRUE, the normal distribution is truncated to the interval
defined by the bounds of the tolerance range.
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The function can be used to assign a value to a parameter during instantiation:

library VHDL_UTILITY, SPICE2VHD;
use VHDL_UTILITY.STATISTICS.all;

...

C1: entity SPICE2VHD.CAPACITOR(SPICE)
generic map (C => NORMAL(NOMINAL => 1.0E-9, TOL => 0.15)
port map (P => N1, N => N2);

Listing B.2 Instantiation of a capacitor with a normal distributed value

Example Package: STATISTICAL CORRELATED

The real-valued one-dimensional function STD UNIFORM of the package STATIS-
TICS allows also the declaration of user-specific functions. In this way, correlated
random numbers can be generated. In the following, the basic functions of a package
STATISTICS CORELATED are explained.

Function STD NORMAL:

The function creates a real vector with correlated normal distributed random
numbers. The same identifier as in the one-dimensional case can be used because
VHDL allows to overload functions and use the correct one regarding its arguments.
The correlation is given by the correlation matrix PPP. The correlation coefficients of
two random variables are defined by the covariance of the two variables divided
by the product of their standard deviations (Pearson’s correlation coefficient, see
(2.27)).

The function checks whether its parameter matrix CORR fulfills the characteris-
tics of a correlation matrix PPP. The diagonal elements of the matrix must be 1 and
the others between −1 and 1. The correlation matrix must be a symmetric matrix.
However, the fulfillment of these requirements does not guarantee that the matrix
is positive-semidefinite. This is an additional condition that has to be fulfilled by
a correlation matrix. The function STD NORMAL only supports positive-definite
correlation matrices CORR. Therefore, the correlation matrix can be decomposed
using a Cholesky decomposition:

PPP = LLL ·LLLT , (B.1)

where LLL is a lower triangular matrix (see function CHOLESKY of the package
body). Afterward, a vector Z that consists of uncorrelated N(0,1) normal distributed
variables is generated. The function STD NORMAL of the STATISTICS package
is used for this purpose. The multiplication of LLL and Z delivers the vector X that
contains correlated standard normal distributed random variables

X = LLL ·Z. (B.2)
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Function STD UNIFORM:

The function creates a real vector with correlated uniform distributed random
numbers. The correlation is given by the rank correlation matrix CORR = PPP

′
.

The elements of the rank correlation matrix are the Spearman’s rank correlation
coefficients.

The Spearman’s correlation coefficient ρ ′ is often explained as being the
Pearson’s correlation coefficient between the ranked variables. Rank means an
integer number that characterizes the position of a value in an ordered sequence
of the values. The “winner” is the smallest value. Thus, the rank 1 is assigned to
the smallest value (rg(smallestvalue) = 1). The rank of identical values (so-called
“ties”) is the mean of the ranks that could be given to the equal values. Let (xi,yi)
be pairs of n given values then the Spearman’s rank correlation coefficient can be
determined by

ρ ′ =

n
∑

i=1
(rg(xi)−mrgx) ·

(
rg(yi)−mrgy

)
√

n
∑

i=1
(rg(xi)−mrgx)

2 ·
√

n
∑

i=1

(
rg(yi)−mrgy

)2
, (B.3)

where mrgx =
1
n

n
∑

i=1
rg(xi) and mrgy =

1
n

n
∑

i=1
rg(yi) are the mean values of the ranks

of the x and y values, resp. The formula can be simplified if there are no tie ranks.

Using
n
∑

i=1
i = n·(n+1)

2 and
n
∑

i=1
i2 = n·(n+1)·(2n+1)

6 , we get

ρ ′ = 1−
6 ·

n
∑

i=1
(rg(xi)− rg(yi))

2

n · (n2− 1)
. (B.4)

For two normal distributed random variables, the following relation between the
Spearman’s rank correlation coefficient S′ and the Pearson’s correlation coefficient
ρ is valid [2]

ρ = 2 · sin
(π

6
·ρ ′

)
. (B.5)

The transformation of Spearman’s correlation coefficients to Pearson’s correla-
tion coefficients is done by the function STD UNIFORM. The possible infrequent
problem that the target matrix of this transformation might not be positive definite is
not considered at this place. It is obvious that rank correlation does not change using
a monoton increasing transformation G : R −→ R between two random variables.
Each cumulative distribution function F : R −→ [0,1] ⊂ R is monotonically
increasing. Thus, the rank correlation of two random variables X and Y is the same
as the rank correlation of F(X) and F(Y ). Therefore,

ρ ′F(X),F(Y ) = ρ
′
X ,Y . (B.6)

This leads to the implemented approach. The matrix PPP′ with Spearman’s rank
correlation coefficients is transformed into a matrix PPP with Pearson’s correlation
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coefficients using (B.5). Afterward, a vector X of correlated standard normal
distributed random variables N(0,PPP) is created using the function STD NORMAL.
The components of X are transformed to uniform distributed components of Y using
the CDF of the standard normal distribution. That means

Yi =Φ (Xi) . (B.7)

Φ is approximated based on [3, Algorithm 26.2.17]. The mapping is realized by the
function STD NORMAL CDF ROUND of the package body.
library IEEE, VHDL_UTILITY;
use IEEE.MATH_REAL.all;
use VHDL_UTILITY.all;

package STATISTICS_CORRELATED is

--/**
-- Declaration of a real-valued matrix.
--*/
type REAL_MATRIX is array (NATURAL range <>, NATURAL range <>) of REAL;

--/**
-- Correlated standard normal distributed random numbers.
--*/

impure function STD_NORMAL (CORR : REAL_MATRIX)
return REAL_VECTOR;

--/**
-- Correlated uniform distributed random numbers.
--*/

impure function STD_UNIFORM (CORR : REAL_MATRIX)
return REAL_VECTOR;

end package STATISTICS_CORRELATED;

Listing B.3 Package header of STATISTCS CORRELATED

package body STATISTICS_CORRELATED is

--/**
-- Cholesky decomposition.
--*/

function CHOLESKY (A : REAL_MATRIX)
return REAL_MATRIX is

constant N : INTEGER := A’LENGTH(1) - 1;
variable SUM : REAL;
variable L : REAL_MATRIX (0 to N, 0 to N) := A;

begin

for I in 0 to N loop
for K in I to N loop

SUM := L(I,K);
for J in I-1 downto 0 loop

SUM := SUM - L(K,J)*L(I,J);
end loop;
if I = K then

if SUM <= 0.0 then
report "A not positive definite.";

else
L(I,I) := SQRT(SUM);

end if;
else

L(K,I) := SUM/L(I,I);
end if;

end loop;
end loop;

for I in 0 to N loop
if I+1 <= N then

for J in I+1 to N loop
L(I, J) := 0.0;

end loop;
end if;

end loop;

return L;
end function CHOLESKY;
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--/**
-- Approximated real-valued CDF of standard normal distribution.
--*/

function STD_NORMAL_CDF_ROUND (X : REAL)
return REAL is

constant A : REAL := 1.0/SQRT(MATH_2_PI);
constant B0 : REAL := 0.2316419;
constant B : REAL_VECTOR (1 to 5) := (

0.319381530,
-0.356563782,
1.781477937,

-1.821255978,
1.330274429);

variable T : REAL;
variable RESULT : REAL;

begin
T := 1.0/(1.0 + B0*ABS(X));
RESULT := B(5);
for I in 4 downto 1 loop

RESULT := RESULT*T + B(I);
end loop;
if X >= 0.0 then

RESULT := 1.0 - A*EXP(-X*X/2.0)*T*RESULT;
else

RESULT := A*EXP(-X*X/2.0)*T*RESULT;
end if;

return RESULT;
end function STD_NORMAL_CDF_ROUND;

--/**
-- Correlated standard normal distributed random numbers.
--*/

impure function STD_NORMAL (CORR : REAL_MATRIX)
return REAL_VECTOR is

constant CORR0 : INTEGER := CORR’LEFT(1);
constant CORR1 : INTEGER := CORR’LEFT(2);
constant N : INTEGER := CORR’LENGTH(1) - 1;
variable SUM : REAL;
variable VALUE_1 : REAL;
variable VALUE_2 : REAL;
variable L : REAL_MATRIX (0 to N, 0 to N);
variable STD_NORMAL_UNCORRELATED : REAL_VECTOR (0 to N);
variable STD_NORMAL_CORRELATED : REAL_VECTOR (0 to N);

begin
assert N = CORR’LENGTH(2) - 1

report "Matrix CORR not quadratic."
severity ERROR;

-- Special case (1-dimensional)

if N = 0 then
assert CORR(CORR0,CORR1) = 1.0

report "In the one-dimensional case CORR must be 1.0"
severity ERROR;

STD_NORMAL_CORRELATED (0) := VHDL_UTILITY.STATISTICS.STD_NORMAL;
return STD_NORMAL_CORRELATED;

end if;

-- Test correlation matrix

for I in 0 to N loop
for J in 0 to I loop

VALUE_1 := CORR (CORR0 + I, CORR1 + J);

if I = J then
if VALUE_1 /= 1.0 then

report "CORR(" & INTEGER’IMAGE (I) & ","
& INTEGER’IMAGE (J) & ") = "
& REAL’IMAGE(VALUE_1) & " unequal 1.0."

severity ERROR;
end if;

else
if abs(VALUE_1) > 1.0 then

report "CORR coefficient not correct (|" & REAL’IMAGE(VALUE_1) & "| > 1.0)"
severity ERROR;

end if;

VALUE_2 := CORR (CORR0 + J, CORR1 + I);

if VALUE_1 /= VALUE_2 then
report "CORR matrix not symmetric ["

& "CORR (" & INTEGER’IMAGE(I) & "," & INTEGER’IMAGE(J) &") = " & REAL’IMAGE(VALUE_1)
& " /= "

& "CORR (" & INTEGER’IMAGE(J) & "," & INTEGER’IMAGE(I) &") = " & REAL’IMAGE(VALUE_2)
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& "]."
severity ERROR;

end if;

end if;
end loop;

end loop;

-- Cholesky algorithm to determine lower tiangle matrix

L := CHOLESKY (CORR);

-- Test of result CORR = L * LˆT required

if NOW = 0.0 then
for I in 0 to N loop

for J in 0 to N loop
SUM := 0.0;
for K in 0 to N loop

SUM := SUM + L(I,K)*L(J,K);
end loop;

VALUE_1 := SUM;
VALUE_2 := CORR(CORR0+I, CORR1+J);

if abs(VALUE_1 - VALUE_2) > 1.0E-9 then
report "Difference in Cholesky results ["

& "L*Trans(L) (" & INTEGER’IMAGE(I) & "," & INTEGER’IMAGE(J) &") = "
& REAL’IMAGE(VALUE_1) & " /= "

& "CORR (" & INTEGER’IMAGE(I) & "," & INTEGER’IMAGE(J) &") = " & REAL’IMAGE(VALUE_2)
& "]."

severity WARNING;

report "Cholesky result is not correct."
severity WARNING;

end if;
end loop;

end loop;
end if;

-- Uncorrelated STD normal distributed random values

for I in 0 to N loop
STD_NORMAL_UNCORRELATED (I) := VHDL_UTILITY.STATISTICS.STD_NORMAL;

end loop;

-- Correlated STD normal distributed random values

for I in 0 to N loop
SUM := 0.0;
for J in 0 to I loop

SUM := SUM + L (I,J)*STD_NORMAL_UNCORRELATED (J);
end loop;
STD_NORMAL_CORRELATED (I) := SUM;

end loop;

return STD_NORMAL_CORRELATED;
end function STD_NORMAL;

--/**
-- Correlated uniform distributed random numbers.
--*/

impure function STD_UNIFORM (CORR : REAL_MATRIX)
return REAL_VECTOR is

constant CORR0 : INTEGER := CORR’LEFT(1);
constant CORR1 : INTEGER := CORR’LEFT(2);
constant N : INTEGER := CORR’LENGTH(1) - 1;
variable CORR_NORMAL : REAL_MATRIX (0 to N, 0 to N);
variable RESULT : REAL_VECTOR (0 to N);

begin
assert N = CORR’LENGTH(2) - 1

report "Matrix CORR not quadratic."
severity ERROR;

-- Special case (1-dimensional)

if N = 0 then
assert CORR(CORR0,CORR1) = 1.0

report "In the one-dimensional case CORR must be 1.0"
severity ERROR;

RESULT (0) := VHDL_UTILITY.STATISTICS.STD_UNIFORM;
return RESULT;

end if;
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-- Transformation of Spearman correlation matrix to Pearson correlation matrix
-- Reason: Spearman correlation will be preserved by strictly monoton transformation.

for I in 0 to N loop
for J in 0 to N loop

if I = J then
CORR_NORMAL (I,J) := CORR(CORR0+I, CORR1+J);

else
CORR_NORMAL (I,J) := 2.0*SIN(MATH_PI/6.0*CORR(CORR0+I, CORR1+J));

end if;
end loop;

end loop;

RESULT := STD_NORMAL (CORR_NORMAL);

for I in 0 to N loop
RESULT (I) := STD_NORMAL_CDF_ROUND(RESULT(I));

end loop;

return RESULT;
end function STD_UNIFORM;

end package body STATISTICS_CORRELATED;

Listing B.4 Package body of STATISTICS CORRELATED

B.2 Probalistic Distribution Functions in Verilog-AMS

Verilog-AMS is another behavioral modeling language to describe digital, analog,
and mixed-signal circuits. The language provides built-in probabilistic distribution
functions to describe the random behavior of parameters [4].

The function $random returns a 32-bit signed integer number each time it is
called, 32-bit signed integers are between −2.147.483.648 and 2.147.483.647.
Thus, the generation of a random integer value between for example−100 and 100
is given by the following code fragment

integer rand_int;
...
rand_int = $random % 101;

U(0,1) uniformly distributed random numbers can be generated by

real rand_real;
...
rand_real = ($random + 2147483648.0)/4294967295.0;

Verilog-AMS defines a set of predefined random number generator that can be
used to initialize parameters. The functions are supported in digital and analog
context. Table B.2 gives an overview on the real-valued versions of these function.

All these functions provide an additional string parameter. Its value can be
“global” or “instance.” This allows to characterize several instances of the same
model considering global and local variations. If the value is “global,” then in a
Monte Carlo simulation run only one value is created that is used by different
instances. If the value is “instance,” then a new value is generated each instance
that references the associated parameter.

The paramset statements in Verilog-AMS that is used in a similar manner as the
model card in Spice-like simulation engines supports in this way the description
of global and local varying technology parameters (see [4, Sect. 6.4.1] Paramsets
statements).
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Table B.2 Probabilistic distribution functions in Verilog-AMS

Function name C function in
Verilog-AMS Verilog HDL Comment

$rdist uniform uniform Delivers a uniformly random value in the interval from
start and end

$rdist normal normal Delivers a Gaussian distributed random value defined
by mean value and standard deviation (see
(2.29))

$rdist exponential exponential The PDF fX(x) =
1
μ ·e−

x
μ for x≥ 0 (otherwise 0) is given

by the mean value μ . See also notes on page 38. The
exponential function is often used to characterize the
time between failures.

$rdist poisson poisson The function shall deliver the integer value k (here
represented by a real number) with the probability

P(X = k) = μk

k! · e−μ with k ≥ 0. It is defined by the
mean value μ . In reliability analysis, it is often used
to characterize the number of failures in a given time.

$rdist chi square chi square The chi-square distribution is defined by its
degree of freedom d f . It is the distribution
of the sum of squares of d f independent standard
N(0,1) normal distributed random variables. It is
widely used in statistical theory for hypothesis testing
(see also page 34 and Sect. 4.7.2.2). The PDF of
values less than 0 is 0.

$rdist t t The Student’s t distribution is defined by its
degree of freedom d f . It is the distribution
of the quotient built up by a standard normal
distributed random variable and the square root of
a chi-square distributed random variable divided by
the degrees of freedom (see also [5]). The Student’s
t distribution is used in statistical theory to describe
confidence intervals for instance (see also page 57).

$rdist erlang erlang The Erlang distribution is a special case of the gamma
distribution. It can be used to describe queueing
systems. Details can be found in [68].
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Glossary

Analysis of variance (ANOVA) A method to detect significant differences be-
tween more than two samples (a generalization of the simple t-test).

Corner-case point A corner-case point is characterized by a combination of
extreme values of parameters. Parameters or environmental conditions at their
limits are applied to investigate the extreme behavior of a system.

Design flow Design flows are the explicit combination of electronic design automa-
tion tools to accomplish the design of an integrated circuit.

Design reuse The ability to reuse previously designed building blocks or cores on
a chip for a new design as a means of meeting time-to-market or cost reduction
goals.

Differential nonlinearity (DNL) The DNL is a measure to characterize the accu-
racy of a digital-to-analog converter. It is the maximum deviation between the
analog values that belong to two consecutive digital input values and the ideal
Least Significant Bit (LSB) value.

EDA Electronic design automation (also known as EDA or ECAD) is a category of
software tools for designing electronic systems such as printed circuit boards and
integrated circuits. The tools work together in a design flow that chip designers
use to design and analyze entire semiconductor chips.

Generic engineering model (GEM) Description of a step-by-step circuit design
creation process, considers different design views (specification, model,
schematic, layout), executable within an EDA-Design-Framework, enables
efficient design reuse principles for analog circuit design.

Integral nonlinearity (INL) The INL measures the maximum deviation between
the actual output of a digital-to-analog-converter and the output of an ideal
converter.

Intellectual property core (IP-Core) Reusable unit of logic, cell, or chip layout
design that is the intellectual property of one party. IP cores are used as building
blocks within chip designs.

IC layout Integrated circuit layout, also known IC layout, IC mask layout, or mask
design, is the representation of an integrated circuit in terms of planar geometric
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shapes, which correspond to the patterns of metal, oxide, or semiconductor layers
that make up the components of the integrated circuit.

Monte Carlo (MC) methods/Monte Carlo simulation A random experiment,
applied if an analytical description of the system seems to be hardly or not
possible, (simulations of integrated circuits, e.g., transistors, library cells, chips).
To investigate the behavior of a performance value y of interest, a great number
n of simulations have to be made, where the process parameters xi were changed
at random following a given probability distribution.

Potentiometer A potentiometer is a three-terminal resistor with a sliding contact
that forms an adjustable voltage divider. If only two terminals are used (one side
and the wiper), it acts as a variable resistor.

Principal component analysis (PCA) A method to reduce the complexity. It
transforms a number of possibly correlated random variables into a smaller
number of uncorrelated random variables. These uncorrelated variables, called
principal components. They are linear combinations of the original variables.

Response surface methods (RSM) A method to find relationships between per-
formance and process characteristics y = h(x), which allows easy predictions of
y for given parameter configuration x.

Statistical error Statistical or random errors are caused by unknown or unpre-
dictable changes in parameters of a system.

Safe operating area (SOA) The SOA is defined as the region of voltages and
currents or power where a device can safely operate over its lifetime without
self-damage. The SOA has to consider degradation of parameters.

Systematic error Systematic errors result in deviations between expected and
observed results that can be predicted.

Worst-case point The worst-case point is the parameter set of highest probability
density that a parametric fault occurs under worst-case operating conditions..

Worst-case analysis Worst-Case Analysis determines, for every specification sep-
arately, the most likely process parameter set (i.e., the process parameter set
“closest” to the nominal process parameter set), at which the value of the
performance of interest is exactly the specification value under worst-case
operating conditions.
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A
ACM model, 19
ADC, 192, 211

SAR ADC, 192
Analog-to-Digital Converter see also ADC 193
Application Specific Integrated Circuit see also

ASIC 2
Approximation

probability density function see also PDF
37

ASIC, 2

B
Berkley short-channel IGFET model see also

BSIM model 135
BSIM model, 8, 19

BSIM3, 8, 12, 14, 15, 151
BSIM4, 8, 14, 15

C
Capacitance, 3

coupling capacitance, 81
line capacitance, 4
load capacitance, 19, 137, 138, 140, 230

CCS, 99
CDF, xvi, 31, 35, 56, 57, 121, 195, 235
Chemical-mechanical polishing see also CMP

77, 78
CMOS, 2, 4, 192, 201, 208
Composite current source model see also CCS

100, 102, 105
CSM, 101
Cumulative distribution function see also CDF

29, 62, 121, 235, 236
Current

gate-oxide leakage, 3
subthreshold leakage current, 3, 4

Current source model see also CSM 93, 100,
102, 105

D
DAC, 192, 198–212
DCP, 191, 192, 207
Delay

cell delay, 26, 95, 97, 100, 101, 105, 173,
174

Depletion region, 18
Design centering, 156, 158, 159
Device matching, 184
Differential nonlinearity see also DNL 203,

208, 245
Digital-to-Analog Converter see also DAC 193
DNL, 203, 205, 208–210
Dopants, 16, 17, 72
Doping, 5, 15, 16, 20, 72, 82, 83, 184, 204, 219
Drain-induced barrier lowering see also DIBL

20, 28, 134

E
ECSM, 99
Effective current cource model see also ECSM

99, 100, 106
EKV model, 19
Electron mobility, 21
Enz-Krummenacher-Vittoz model see also

EKV model 14

F
FET, 17
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G
Gate-induced drain leakage current see also

GIDL 20, 28
GEM, 208

H
High-K dielectrics, 185
Hiroshima university STARC IGFET Model

see also HiSIM model 15
HiSIM model, 19
Hold time, 118
Hot carrier injection see also HCI 27, 73

I
IC, 2
IGFET, 8, 17
Importance sampling, 59–61, 144
INL, 203, 205, 208–210
Integral nonlinearity see also INL 203, 208,

245
International Technology Roadmap for

Semiconductors see also ITRS 2
Interpolation, 147
IP core, 191, 192
ITRS, 2

J
JFET, 17

K
Kurtosis, 37, 39, 42

L
Latin Hypercube Sampling, 58, 152
Leakage, 4
Libertysee also Cell library 142
LSB, 198, 201, 208–210

M
Matrix

Jacobian, 55
Mean value, 6, 31, 33, 36, 43–47, 53
Mismatch, 23, 24, 159
Mobility, 5, 12
Monte Carlo simulation, 6, 55–58
MOSFET, 8, 17, 18
MPU, 2
Multi Processor Unit see also MPU 2

N
NLDM, 95, 141, 230
NLPM, 141, 231
Non-Linear Delay Model see also NLDM 93,

97, 98, 100, 230
Non-Linear Power Model see also NLPM 231

O
OCV, 96
On-chip variation see also OCV 96, 229

P
Parasitics

parasitic capacitance, 19, 75, 98, 137, 146
PCA, 36, 43–46, 53, 84–88, 141
PDF, xvi, 33, 51, 59, 194, 195, 197, 199, 200,

235
PDK, 207, 208
Penn-State Philips CMOS transistor model see

also PSP model 15
Polysilicon, 2, 18, 93
Power

glitch power, 138, 145
Power analysis, 145
Principal Component Analysis see also PCA 8,

12, 43–46, 84–88, 163–165, 246
Probability distribution

cumulative distribution function see also
CDF 31

Gaussian or normal distribution, 8
Probality density function see also PDF 29, 32,

59, 109, 111, 194, 195, 235, 243
Process Design Kit see also PDK 207, 208
Process variation, 81

canonical delay model, 86
quadratic timing model, 88
global correlation, 83
local correlation, 83
proximity correlation, 83, 86
principal component analysis, 84
quadtree model, 83
uniform grid model, 84
systematic variation, 81
non-systematic variation, 82

inter-die variation, 82
intra-die variation, 82

Process Voltage Temperature see also PVT 95,
106, 227

PSP model, 19
PVT, 95, 141
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R
Reduced timing graph, 118
Response Surface Method, 48, 49, 164, 165

S
SAE, 143, 144
SAR, see ADC
Scalable Polynomial Delay Model see also

SPDM 97, 98, 105
SDF, 142, 149, 227
Sequential circuits, 117
Setup time, 118
Silicon on insulator see also SOI 20, 23, 71,

128, 130
Skewness, 37, 39, 42, 125
SPDM, 97
SPEF, 147, 223
SPICE, 149
SSTA, 9, 117, 142
STA, 7, 142, 147
Standard Delay Format see also SDF 227
Standard Parasitic Exchange Format see also

SPEF 81, 223
Statistical static timing analysis see also SSTA

9, 117

T
Threshold voltage, 3, 4, 8
Tightness probability, 122
Timing analysis

block-based method, 120
path-based method, 126

Timing graph, 118
Transistor models

EKV see also EKV model 14
PSP see also PSP model 8

V
Variation

process variation, 3, 20, 81, 110, 155, 182
VCD, 142
VHDL, 142 ff.
VLSI, 3
Voltage drop, 145–146

Y
Yield, 3, 20, 24, 35, 50, 58, 121, 152–154, 157,

159, 166, 167, 188, 191–193, 198,
202, 205, 208
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