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Preface

Continued advances in semiconductor technology play a fundamental role in fueling
every aspect of innovation in those industries in which electronics is used. In
particular, one cannot fail to appreciate the benefits these advances offer in either
reducing the dimensions into which an electronic system can be built or increasing
the sheer complexity and overall functionality of the individual circuits. In general,
industry tends more to take advantage of the opportunity of offering additional
features and capability within a given space that reducing the overall size.

Whereas the manufacturing industry has matched the advances in the semicon-
ductor industry so that failure rates during fabrication at each stage have been
maintained at the same rate per element, the number of elements has increased
astronomically. As a result, unless measures are not taken, the overall failure rates
during production will increase dramatically. There are certain factors that will
compound this trend, for example the fact that semiconductor technology yields may
be a function of factors other than simple manufacturing ability and may become
unacceptable as functional density increases.

It is thus essential to investigate which parameters of the various manufacturing
processes are the most sensitive in the production failure equation, and to explore
how their influence can be reduced.

If one focuses on the integrated circuit itself, one might consider either address-
ing the parameters associated with the silicon processing, the disciplines involved
in the design activity flow, or better still, both! In fact they are combined in a new
design approach referred to as statistical analysis. This is heralded by many as the
next-generation

EDA technology and is currently oriented specifically at addressing timing
analysis and power sign-off. Research into this field commenced about five years
ago and saw significant activity during the period since that start, although there are
indications of reduced interest of late. This decline in activity may be partly due
to the fact that the results of the work have been slow to find application. Perhaps
the key direction identified during this period has been the need to develop and
optimize statistical models for integrated circuit library components, and it is in this
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area that effort will probably concentrate in the near future. This book will present
some results from research into this area and demonstrate how the manufacturing
parameter variations impact the design flow.

On the one hand, it is the objective of this book to provide designers with a
qualitative understanding of how process variations influence circuit behavior and to
indicate the most dominant parameters. On the other hand, from a practical point of
view, it must also acknowledge that designers need appropriate tools and strategies
to evaluate process variants and extract the modeling parameters.

It is true that certain modeling methods have been employed over the years
and constitute the framework under which submicron integrated circuits have been
developed to date. These have concentrated on evaluating a myriad of electrical
model parameters and their variation. This has led to an accurate determination of
the inter-dependence of these parameters under given conditions and does provide
the circuit developer with certain design information. For example, the designer can
determine whether the leakage current of a given cell or circuit is greater than a key
threshold specification, and similar determinations of power and delay can be made.
In fact, this modeling approach can include many parameters of low order effect yet
can be defined in such a way that many may be easily monitored and optimized in
the fabrication technology.

However, this specific case and corner analysis cannot assess such key factors
as yield and is too pessimistic and still too inaccurate to describe all variation
effects, particularly those than involve parameters with non-linear models and non-
Gaussian distributions. It is only from an appreciation of these current problems that
one can understand that the benefits of advanced technologies can only be realized
using an alternative approach such an advanced statistical design. It is an initial
insight into these new methods that the editors wish to present in these pages. It
is not the objective to look at the ultimate potential that will be achieved using
these methods, rather to present information on the research already complete. The
start-point is the presentation of key mathematical and physical fundamentals, an
essential basis for an appreciation of the subsequent chapters. It is also important
that the reader understand the main causes of parameter variations during production
and to appreciate that appropriate statistical methods must be accommodated in the
design flow.

This discussion leads into an overview of the current statistical methods and
methodologies which are presented from the designer’s perspective. Thus the text
leans towards the forms of analysis and their use rather than a derivation of the
underlying algorithms. This discussion is supported by some examples in which the
methods are used to improve circuit designs

Above all, through presenting the subject of process variation in the present form,
the editors wish to stimulate further discussion and recapture the earlier interest and
momentum in academic research. Without such activity, the strides made to date
towards developing methods to estimate such factors as yield and quality at the
design stage will be lost, and realizing the potential advantages of future technology
nodes may escape our grasp. To engender this interest in such a broad field, the core
of the book will limit its scope to:
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» exploring the impact of production variations from various points of view,
including manufacturing, EDA methods and circuit design techniques
 explaining the impact through simple reproducible examples.

Within this framework, the editors aim to present material that emphasizes the
problems that arise because of intrinsic parameter variations, illustrates the differ-
ences between the various methods used to address the variations, and indicates the
direction in which one must set course to find general solutions.

The core material for the book came from many sources — from consultation
with many experts in the semiconductor and EDA industries, from research centers,
and from university staff. It is only from such a wide canvas that the book could
genuinely represent the broad spectrum of views that surround this subject. The
heart of the book is thus that of these contributors, experts in the field who have
embodied their frustrations and practical experience in each page.

Certain chapters of the book use results obtained during two German re-
search projects which received funding from the German Federal Ministry of
Education and Research (BMBF). These projects are entitled ”Sigma 65: Tech-
nologiebasierte Modellierung und Analyseverfahren unter Bercksichtigung von
Streuungen im 65nm-Knoten” (Technology based modeling and analyzing meth-
ods considering variations within 65nm technology) and "ENERGIE: Technolo-
gien fr energieeffiziente Computing-Plattformen” (Technologies for energy-efficient
computing platforms; the subproject is part of the the Leading-Edge Cluster
CoolSilicon) '. Both projects address technology nodes beyond 65nm.

All contributors would like to thank the Springer Publishing Company for giving
them the opportunity to write this book and have it published. Special thanks go
to our Editor, Charles Glaser, for his understanding, encouragement, and support
during the conception and composition of this book. We also thank very much
Elizabeth Dougherty and Pasupathy Rathika for their assistance, efforts and patience
during the preparation of the print version.

Last but not least, we cannot close without thanking also the management and
our colleagues at the Fraunhofer-Gesellschaft (Design Automation Division of the
Institute for Integrated Circuits) without whose support this book would not have
been possible. Being able to work within the infrastructure of that organization
and the having available a willing staff to prepare illustrations, tables, and overall
structure have been invaluable.

Manfred Dietrich
Joachim Haase

IThese activities were supported by the German Federal Ministry of Education and Research
(BMBF). The corresponding content is the sole responsibility of the authors. Funding initials are
01 M 3080 (Sigma65) and 13 N 10183 (ENERGIE).
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Chapter 1
Introduction

Joachim Haase and Manfred Dietrich

During the last years, the field of microelectronics has been moving to nanoelec-
tronics. This development provides opportunities for new products and applications.
However, development is no longer possible by simply downscaling technical
parameters as used in the past. Approaching the physical and technological limits of
electronic devices, new effects appear and have to be considered in the design pro-
cess. Due to the extreme miniaturization in microelectronics, even small variations
in the manufacturing process may lead to parameter variations which can make a
circuit unusable. A new aspect for digital designers is the occurrence of essential
variations not only from die to die but also within a die. Therefore, inter-die and
intra-die variations have to be taken into account not only in the design of analog
circuits as already done, but also in the digital design process. The great challenge is
to assure the functionality of high complex digital circuits with respect to physical,
technological, and economic boundary conditions. In order to evaluate design
solutions within an acceptable time and with acceptable efforts the methods applied
in the design process must support the analysis of design solutions as accurate as
necessary and as simple as possible. As a result, the expected yield will be achieved
and circuits can be manufactured economically. In this context, CMOS technology
will remain the most important driving force for microelectronics over the next years
and will be responsible for most of the innovations and new applications. For this
reason, the subsequent paragraph will focus on this technology. The first chapter
provides an introduction to the outlined problems.
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2 J. Haase and M. Dietrich
1.1 Development of CMOS Semiconductor Technology

Technology progress in IC design and semiconductor manufacturing has resulted in
circuits with more functionality at lower prices for the last decades. The number of
components on a chip especially in digital CMOS circuits doubled roughly every 24
months as predicted by Moore’s Law. This trend was mostly driven by decreasing
the minimum feature sizes used in the fabrication process. The requirements in the
context of this development have been summarized in the International Technology
Roadmap for Semiconductors (ITRS) for years [1]. For a long time, the progress has
been expressed by moving from one technology node to the next. The technology
nodes were characterized by the half pitch item of DRAM staggered-contacted
metal bit lines as shown in Fig. 1.1. The 2009 ITRS document adds new criteria
for further developments. Nevertheless, the half-pitch definition anymore indicates
the direction of the expected future progress. In the case of MPUs and ASICs it
measures the half-pitch of M1 lines. For flash memories, it is the half-pitch of un-
conducted polysilicon lines.

In this way, the 130 nm-, 90 nm-, 65 nm-, 45 nm-nodes, and so on were defined.
The half-pitch is scaled by a factor S ~ 0.7 ~ 1/v/2 = 1 /& moving from one node
to the next. Over two cycles, the scaling factor is 0.5. In accordance with this devel-
opment, the device parameters, line parameters, and electrical operating conditions
were scaled. The result was a decrease of the delay time of digital components with
simultaneous decrease of the their sizes. Thus, faster chips with more components
could be developed that enabled a higher functionality. For more than 35 years, the
fundamental paper by Robert H. Dennard and others [2] could be used as a compass
for research and development in this area (see Tables 1.1 and 1.2, o = \/5).

Pitch of metal bit lines
with staggered contacts

<

<]

Fig. 1.1 2009 Definition of
pitches [1]
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Table 1.1 Scaling of device

Parameter Scaling factor
parameters [2, 3]

Channel length L /o

Channel width W 1/a

Oxide thickness #,x 1/a

Body doping concentration N, o

Threshold voltage Vip ()1

Gate capacitance Cy ~ 72 W - L 1/o

Table 1.2 Scaling for

; ) N Parameter Scaling factor
interconnection lines [2, 3] —

Wire pitch 1/a

Wire spacing sy, 1/a

Wire width W, /o

Wire length Ly 1/

Wire thickness ty 1/Va

Line resistance Ry, ~ WLWW,“ o

Line response time ~R.C 1

Wire-to-wire capacitance ~ K‘S‘;l\’:‘,“"“ twLw 1
Table 1.3 Scaling for circuit — p, oo Scaling factor
performance [2,3]

Supply voltage 1/a

Depending voltages V 1/a

Current / 1/a

Delay time (of a component) 1/a

Power dissipation ~VI (of a component) 1/0?

Power density ~VI/A ~ % 1

Normalized voltage drop of lines ~IRy,/V o

Line current density Nﬁ Increasing with o

The scaling rules assured not only the functional progress. Performance was
increased while reducing power per circuit components. The power density retained
stable (see Table 1.3).

However, for instance downscaling the threshold voltage V4, and oxide thickness
tox results in higher subthreshold leakage and gate leakage currents resp. [4]. Thus,
power consumption became more and more a problem. “Dennard’s Law” could no
longer be followed [5]. To overcome the limits, new materials, new devices, and
new design concepts have been investigated [6]. In parallel, process variations have
to be considered in order to predict performance and yield of VLSI designs.

Further trends include, on the one hand, geometrical and equivalent scaling and,
on the other hand, a functional diversification. The first trend is announced as “More
Moore” while the second is discussed as “More than Moore” [1]. At the end, system-
level performance has to be improved [7]. In order to compare different solutions,
reliable methods to predict the system behavior are becoming necessary.
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1.2 Consequences of Silicon Technology Challenges

Reducing the channel length of the CMOS devices, short-channel effects such as
velocity saturation and drain-induced barrier lowering have to be considered. The
threshold voltage Vi strongly depends on the effective channel length L.g and the
operational voltages. These and other effects have to be considered in the transistor
models in order to predict performance and power consumption sufficiently exact.

Scaling of the threshold voltage Vi, leads to a point where the subthreshold
Vi

leakage current Igy, ~ efﬁ with slope factor n ~ 1.5 and thermal voltage V1 ~
temperature T becomes a dominant factor for the power consumption of a circuit.
Thus, a further scaling of the threshold voltage is difficult. Furthermore, the signal
swing given by the difference of gate source voltage Vgs and Vi, cannot be decreased
under a critical limit without compromising the robust circuit behavior. This fact
furthermore limits the scaling of the supply voltage.

Further contributions to the transistor leakage are the band-to-band-tunneling

1

leakage and the gate leakage current Ige ~ eif%f , where f3; is a fitting coefficient.
The value strongly depends on the gate thickness #,x. The gate leakage results from
tunneling of electrons through the gate dielectric [8]. The gate capacitance must
be maintained over a limit while shrinking the geometry in order to assure the
controllability of the channel current. Thus, shrinking of the gate thickness could be
avoided by a gate material with high permittivity known as high-k material. “High”
notes that the permittivity is greater than that of silicon oxide SiO;.

Shrinking the geometry also influences the interconnection of components. The
delay of local wires between gates remains constant (see Table 1.2). However, global
wires such as busses and clock networks tend to follow the chip dimensions. Wires
can be considered as distributed RC lines. The delay depends on the product of line
resistance times line capacitance. Thus in order to reduce the delay, interconnect
materials with lower resistance and dielectrics with lower permittivity (low-k
materials) have been investigated. For instance, a lower resistance can be achieved
by using copper instead of aluminium for interconnect lines. A lower permittivity
reduces also the parasitic wire-to-wire capacitance. However, it is suspected that
modifications of the dielectric material could lead to an inacceptable leakage.
Looking at the RC product, it follows that the delay of the interconnect lines
increases quadratically with its length. Thus, splitting the long interconnect lines and
inserting repeaters is a reasonable strategy to reduce the overall delay [9]. However,
this is paid by higher energy costs per transition because of the inserted drivers.
There is a tradeoff between speed and energy consumption. Reducing the signal
swing is an effective method to save energy. However, the robustness of the signal
transmission against supply noise, crosstalk, and variations of the line parameters
must be assured.

With scaling also the impact of the variations increases. It can be distinguished
between those that are coming from the manufacturing process as, for instance,
the lithography and those that are due to fundamental physical limitations as, for
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instance, given by energy quantization. The variations are classified into different
manners. Front-end variability is variability that impacts the devices. Back-end
variability results from steps creating the interconnects. Furthermore, it should be
distinguished between variations from die-to-die and variations within a die. They
are called inter-die and intra-die variations, respectively. The inter-die variations
impact all devices and interconnects of a die in (nearly) the same way. We will try
to describe them using correlated random variables, whereas intra-die variations
can be described by uncorrelated or weak spatial correlated random variables.
Downscaling the CMOS technology intra-die variations become more important.
The parameter P can be represented by a sum of its nominal value P,op, as well as
random variables characterizing the inter-die variation Py, and intra-die variation
P.nta contributions [10]

P = Pyom + Pnter + Pintra- (1-1)

Besides these variations, changes of the environment a circuit operates in must
also be considered. The temperature, supply voltages, and input signals have
an impact on the circuit performance. These variations are called environmental
variations. The functionality of a circuit must be guaranteed within specified limits.
Last but not least the functionality over time must be assured. Aging effects such
as electromigration and negative bias temperature instability are further sources of
variations.

Furthermore, shrinking device geometry while scaling device parameters and
operating conditions in accordance makes the transistor performance more sensitive
to variations. This trend due to short-channel effects can be noticed for leakage
currents and speed. For instance, the sensitivity of the I,, current that depends on the
effective channel length L., the supply voltage, and the effective carrier mobility
Uegr that depends on the channel doping N, increases over technology generations
[11] and makes the delay times more sensitive against parameter variations.

In order to reduce the consequences of these developments, new technology
innovations and device architectures as strained silicon, silicon-on-insulator, very
high mobility devices, and for instance trigate transistors have been developed (see
more information, for instance, in [6,9, 12]).

1.3 Impact on the Design Process

1.3.1 An Example Concerning Inter-Die and Intra-Die Variations

Let us discuss the impact of parameter variations on the design process with the help
of a simple example. The map between a performance value y and the parameter
values x; shall be given by a function f

SR SR, (xg,x0,+ ,Xn) > ). (1.2)
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Let X; be a random variable that describes variations of the ith parameter and Y
describes the associated variation of the performance value

Y=7F(X1,X2, -, Xn). (1.3)

Knowledge of the map f and the probability distributions of the X; would allow to
determine the probability distribution of ¥ with the help of Monte Carlo simulation
studies. Using a simplified approach, expected tolerances of the performance
parameter can be estimated. f is replaced by its first-order Taylor series at the
operating point. The parameters shall be Gaussian distributed, where L; is the mean
or nominal value of the ith parameter and o; is its standard deviation. Thus for
“small” parameter variations, Y can be approximated by a first-order Taylor series

n
Y%ynom+zai'(xi*ﬂi)v (1.4)
i=1

where ypom is the nominal value of the investigated performance parameter and a; =
% are the first-order derivatives or parameter sensitivities at the nominal values
of the parameters. Then Y is also Gaussian distributed with mean value yyom and

standard deviation oy where 36y measures the tolerance. The variance is given by

n n o n
2 2.2
Oy :Zai O; —|—2-Z 2 pi,jaia;jo;o;, (1.5)
-1 i=1j=it1

where p; ; is the correlation coefficient of the ith and jth parameter.
Let us now built up the sum of n parameters with the same Gaussian distribution
N(u,0) and defining in this way a special performance variable ¥*:

n
Ye=> X" (1.6)
i=1

Y* can for instance be interpreted as the delay time of a chain of n gates with same
delay distribution. If all delay times of the individual gates are strongly correlated
(all correlation coefficients p; ; equal 1), it follows from (1.5)

(n—-1)

n
GY*,conelated—\/n'Gz+2' 3 -02=n-o0. (L.7)

If all delay times of the individual gates are strongly uncorrelated (all correlation
coefficients p; ; equal 0), it follows from (1.5)

Oy* uncorrelated = \/ﬁ Oo. (1.8)
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Standard deviation of sun of n variables / Standard deviation of one variable

18 T T T T T T T T

only inter-die variations r=1,0 ——

r=0,7 —

9| r=e.3

only intra-die variations r=8.0 ——
B b= -
7
6
5
4
3
2
- §
8 L L L L I L L L

1 2 3 4 5 6 7 8 9 18

Ou(r)

Fig. 1.2 0, of a sum of n variables divided by the standard deviation ¢ of one variable ==

Let us now assume that the variations of the parameters result from strongly cor-
related inter-die variations with variance r - % and uncorrelated intra-die variations
with variance (1 —r) - 6. The intra-die and inter-die variations are also uncorrelated.
Thus, the overall variance of an individual parameter retains 6. Then we get

Ov* mixed = On(r) =\/n?-r+n-(1—r)-0 (1.9)

Static timing analysis (STA) is widely used in the design flow for timing
verification. It assumes a full correlation of process parameters within a die. Thus,
it neglects the characteristics of intra-die variations and only considers inter-die
variations. The behavior is checked for “corner cases.” “Worst case,” “typical case,”
and “best case” are investigated for associated parameter sets of the transistor
models [13].

However, Fig. 1.2 shows that, for instance, the delay time may be overestimated
in this way. The procedure brings to much pessimism into the design flow. The
more intra-die variations have to be taken into account, the more improvements on

analysis methods are necessary.
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1.3.2 Consequences for Methods to Analyze Designs

Design methods for nanoscale CMOS have to consider the variability and uncer-
tainty of parameters predicting the behavior of a circuit. There is an impact of
challenges in nanoscale technology on EDA tool development [14]. A number of
methods are available to take variability into consideration.

The compact device models represent a link between the characteristics of the
manufacturing process and the methods that shall predict the behavior of a semi-
conductor circuit. Interactions that are understood can be expressed in a systematic
way by deterministic mathematical models. Phenomena that are poorly understood
are often described by stochastic models. Thus, the choice of an appropriate model is
essential for the subsequent conclusions. The Berkeley Short-channel IGFET Mod-
els are state-of-the-art compact MOS models. BSIM3 was a first industry-wide used
model. It was extended to the BSIM4 model in order to describe MOSFET physical
effects in the sub-100nm regime. These models are based on threshold voltage
formulations. The new PSP model is a surface-potential based model. It promises
an accurate description of the moderate inversion region that becomes a larger part
of the voltage swing as the supply voltage is scaled down [15]. The behavior in the
time domain as well as the leakage behavior must be covered by the models in use.

Several methods have been developed and implemented to extract parameters of
compact models either from measurement or based on device simulations [16]. For
statistical design methods, the knowledge of the probability characteristics of the
parameters is necessary. Various methods have been developed to determine these
characteristics of the transistor parameters [17]. Important sources of variations
of the transistor behavior in the 65-nm process are, for instance, variations of
gate length, threshold voltage, and mobility [18]. The determination may base
on TCAD approaches or measurements of process variations using test chips or
circuits. Transistor arrays and ring oscillators are typical test structures for this
purpose [19]. However, there are only a few publications on real data concerning
process variations [20]. For future technology nodes, predictive transistor models
have been developed [11,21,22]. They enable to study future developments in a very
early stage. To map random process variability onto designer-controllable variables,
simple approaches have been investigated [23].

Several mathematical methods can be applied in order to describe the parameter
variations. In most cases, it can be and is assumed that the parameters are Gaussian
distributed. The dependency of the parameters can be expressed in these cases by
correlation matrices. However, if these parameters are not linearly mapped on the
performance variables, these variables are in general not Gaussian distributed. This
is for instance possible if the map (1.4) cannot be applied. Thus, it is also necessary
to consider methods for describing non-Gaussian random variables. Basic relations
between parameters and performance variables can be investigated using techniques
that analyze variances. In the case of Gaussian distributed parameters, principal
component analysis can be used to reduce the number of basic random variables.
Correlated non-Gaussian parameters can be transformed to statistically independent
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variables using independent component analysis for instance. Furthermore, appro-
priate methods for describing spatial correlation of parameters of a die must be
available if necessary.

A main task consists in mapping the probabilistic characteristics of process or
transistor parameters onto performance variables of components and circuits. In
principle, this can be done by numerical and analytical methods. Handling the
complexity arising in the IC design flow is a major problem. Thus, special methods
as, for instance, statistical static timing analysis (SSTA) [24] have been developed.
These methods require, on the one hand, an additional effort in a preparation phase —
for instance for library characterization. On the other hand, they assume some
simplifications as for instance linear mapping in order to handle the complexity.
Thus, in order to check their advantages and limitations it is necessary to the check
the results of these approaches against a “golden” model at least in the introduction
phase. A golden reference can often be established by Monte Carlo studies.

The objectives of the design process are often contradictory. Short delay times,
low leakage and dynamic power, high yield, and high robustness are requirements.
From the mathematical point of view, this is a multicriteria optimization problem.
A cost function built up by a weighted sum delivers only one solution. A set of
optimal solutions can be determined as a Pareto frontier [25]. Based on the proposed
optimal solution points, it can be decided which one should be preferred.

The following chapter describes fundamentals of transistor modeling and
mathematical methods to handle statistical design tasks. Chapter 3 gives a
description of the sources of variability and their representations. Chapter 4
demonstrates typical methods used for the investigations of the impact of variations
on the performance of a design. In Chap. 5, some application examples will show
how to make a good choice under the available methods and apply them for
special designs. The chapters give an overview on the current state of the art in the
different fields and go into more detail when discussing special experiences of the
contributors with some of the presented approaches.
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Chapter 2
Physical and Mathematical Fundamentals

Bernd Lemaitre, Christoph Sohrmann, Lutz Muche, and Joachim Haase

This chapter provides a short overview on the basics of CMOS transistor modeling
with respect to deep submicron requirements and mathematical approaches to
analyze variations in the design process. Technical terms are going to be defined
and explained; physical processes and mathematical theories will be illustrated.

The most important component in today’s microelectronics is the transistor.
Section 2.1 focuses on the MOSFET transistor and its modeling. The effects of
variations in different technology parameters on the transistors behavior will be
analyzed. The subsequent chapters build upon this background and deduce the
influence of the device level on the circuit level. MOSFET transistors are designed
as pMOS and nMOS transistors.

These complementary MOSFET transistors form the foundation of the imple-
mentation of low-energy CMOS circuits. Today more than 90% of all digital circuits
are designed and manufactured using this technology. The functionality of these
transistors will be briefly described in the first section of the chapter. In addition,
the effects of different technology parameters on their behavior will be examined
and effects of technology progress on the development of transistor modeling ap-
proaches will be discussed. Moreover, the relation between technological variations,
parameter sensitivities, and variations of model parameters will be investigated.

In addition, this section will outline the impact of variations of transistor
parameters on the variations of delay times and energy consumption of a circuit.

Section 2.2 introduces statistical methods for describing and analyzing variations
which are important for an understanding of approaches used in the design process.
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The section is going to explain how to describe univariate and multivariate
normal distributed random variables as well as non-Gaussian distributions.
Additionally, concepts to determine parameters of non-Gaussian distributions are
presented. Furthermore, methods that reduce the complexity of random variables
using principal component analysis and singular value decomposition will be
shown. There are different ways to transform random variables using analytical
and numerical methods. Underlying assumptions, limitations, and application
possibilities of these statistical methods will be discussed. Moreover, approaches
that allow for analyzing not only linear models but also second-order and special
polynomial higher-order models will be introduced. A short outlook on importance
sampling as a way to determine small probabilities and on the evaluation of results
by statistical tests concludes the chapter.

Bernd Lemaitre and Christoph Sohrmann are the authors of Sect. 2.1. Lutz Muche
and Joachim Haase prepared Sect. 2.2.

2.1 Modeling of CMOS Transistors

Physical, manufacturing, environmental, and operational conditions influence
strongly the CMOS transistor characteristics. When scaled into the deep submicron
regime, their influence on leakage and time domain behavior has to be evaluated
anew. The section describes the physical background behind different effects that
have to be considered by the digital designer as well as the impact of variations
on the behavior. Spatial and temporal correlations of parameters are considered.
The main objective is to separate first- and second-order effects that are important
for the static and dynamic behavior. The principles that determine the threshold
voltage and in this way the subthreshold leakage are discussed. This considers the
impact of channel length, drain-induced barrier lowering and body-biasing effect
among others. Furthermore, the mechanisms (Fowler—Nordheim and direct-oxide
tunneling) that are the source of gate leakage are presented. In order to keep the
gate leakage under control, high-x materials are introduced. It is described how the
impact of the velocity-saturation effect on reducing the current drive for a given gate
voltage in the DSM regime influences the characteristic of the CMOS transistor.
Device and technology innovations such as strained silicon, dual-gated devices, and
very high mobility devices are briefly explained. In this chapter, various compact
transistor models also will be described with main focus on the BSIM model. An
overview of the various leakage mechanisms and an insight view into the leakage
modeling of those transistor models will be done. Also, aspects of variability
modeling will be discussed.

2.1.1 General Types of MOSFET Models

During the 1970s, the nMOS technology was the major technology for highly com-
plex, digital circuits. Because of the advantages of the CMOS technology, including
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low static power consumption, simple scalability laws, and stability of operation,
the CMOS technology became the general-purpose technology in the 1980s. The
use of electrical simulators, such as SPICE, allows a quick evaluation of the circuit
performance before high costly prototypes. However, the quality and accuracy of
the simulation results by a simulator depends on the quality and accuracy of the
circuit element model. Therefore, the used MOSFET model for circuit simulation
plays a crucial role in chip design productivity. One has to differentiate between two
main types of device models, the numerical device model and the compact model.
Numerical device models are used to study the device physics and to predict the
electrical and thermal behavior of a semiconductor device. These models solve a
set of partial differential equations, describing the physics of the device. Because
of their high computational effort and huge amount of memory, numerical device
models are not suited for use in circuit simulators. Compact models describe the
terminal properties of the device by using of a simplified set of equations, or by an
equivalent subcircuit model. The purpose of a compact model is to obtain simple,
fast, and accurate representations of the device behavior. Compact models are suited
to evaluate the performance of integrated circuits with large quantity of transistors.
In general, compact device models can be divided into three categories:

* Physical models (based on device physics)

* Table lookup models (with tables containing device data for different bias points)

* Empirical models (where the device characteristics are represented by equations
that fit the data)

2.1.2 A Brief History of Transistor Models

The first MOSFET model for SPICE-like circuit simulators, the LEVEL 1 model,
often called Shichman-Hodges model [1], is a simplified first-order model only for
long channel transistors. The simple model describes the current dependence on
voltages for a gate voltage greater than the threshold voltage. The subthreshold
behavior and current is assumed as zero. The terminal capacitances, which are
described by the Meyer model [2], are not charge-conserving. The LEVEL 2 model
addresses in addition second-order, small-geometry effects. The subthreshold cur-
rent is not equal to zero and the capacitive model can be either the Meyer model [2]
or the Ward-Dutton model [3], where the charge is conserved. In practice, the Level
2 model is computationally very complex. One of the main drawbacks of Level 2 are
the often observed convergence problems during circuit simulation. The drawbacks
are extensively discussed in [4]. The LEVEL 3 model is a semi-empirical model that
addresses the shortcomings of LEVEL 2. It uses the Ward-Dutton capacitive model
and convergence problems are rarely observed. The main drawbacks of the Level
3 model are the non-ideal modeling of the subthreshold current and the failure of
correct modeling of the output conductance gqs, which is defined as

aIds

=S @.1)

8ds
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Especially the failure of the g4s modeling makes the simulation of analog circuits
critical; because gqs is one of the main transistor attributes that affect the gain of an
operational amplifier, or in general analog circuits.

The growing demand of the market in the 1980s for CMOS digital and Mixed
Signal Chips and the higher pressure on the design groups pushes the development
of new model types of the second model generation. Obviously, the Level 1, 2, and 3
models had too many shortcomings in practice to simulate circuits with ever-larger
number of transistors and ever smaller dimensions. A different modeling approach
compared to the first model generation (LEVEL 1, 2, and 3) had to be chosen to
overcome especially the functional complexity and the shortcomings for smaller
transistors (short channel effects).

At the University of Berkeley, the so-called BSIM models [5] (Berkeley Short-
Channel IGFET Model) were developed with main emphasis on faster and more
robust mathematics for circuit simulation, but less effort in the developing physical
modeling approach. For analog circuit simulation, the main problems with the
first BSIM generation were again a poor and sometimes negative modeling of
the output conductance ggs. Also, convergence problems occur within the SPICE
simulation. Some of these problems were enhanced by modifications within BSIM2
and a HSPICE version Level28 [6]. During practical use of these models, the
main shortcomings of the second model generation were their more empirical
modeling approach and therefore the need to implement more fitting parameter
without a clear physical meaning [7]. In the 1990s, the third model generation
was introduced by BSIM3 and its extension BSIM4, but also with MOS Model
9, that was brought in by Philips into the public domain. By formulation of the third
model generation, the modeling groups tried to come back to a more physical-based
modeling approach. This should allow a more physical assignment of the model
parameter to real physical measured effects and its values. Also, the introduction
of smoothing functions especially at the transition between two operation regions
of the transistor, which could not be modeled by one continuous equation, helps to
prevent the output conductance and convergence problems. All models up to now
uses formulations with the Drain-Source voltage as reference. The EKV model [8]
uses the Bulk voltage as reference and is therefore full symmetrical formulated
related to the Drain and the Source voltage. The mentioned MOSFET models are
only the well-known models, which are available in the public domain. A lot of
company proprietary models were developed by large semiconductor companies for
internal use, which are implemented in popular SPICE like simulators, e.g., [6].

In August 1996, the Compact Model Council (CMC) [9] was formed, by large
semiconductor, EDA companies and Foundries. The main purpose of the CMC was
the promotion and standardization of compact models, and the implementation into
commercial available SPICE-like simulators. The vision of the CMC was to promote
the international, nonexclusive standardization of compact model formulations,
and the model interfaces. One major push for forming the CMC, as industry-
driven organization, was the problem that many proprietary models were in use.
The interface between companies in cooperation or the interface working together
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with design houses was too complex. Therefore, there was the need to standardize
compact models for all major technologies in a way that customer communication
and efficiency can be enhanced. Within the CMC, some models were standardized,
e.g., BSIM3 and BSIM4 models for use down to 90 nm technologies.

In 2004 after many discussions in the modeling community, there was a widely-
agreed-upon understanding that traditional threshold-voltage compact models, as
used up to now, have to be replaced by more advanced surface-potential, or
inversion charge-based models. Besides the need to rework the short and narrow
channel effects, non-uniform lateral and vertical doping, and the introduction of
quantum-mechanical corrections for the new technology generations, the new fourth
model generation should have one continuous formulation over all regions of MOS
operation. In 2004, the CMC calls for the next generation of industrial compact
models, useful for 90 nm, 65 nm, 45 nm CMOS Technology nodes and below. Two
new modeling approaches were developed were a continuous formulation of the
MOS device behavior were described, based on the solution of the surface-potential
in the channel y; or the inversion charge Q. The University of Berkeley developed
the BSIM 5 model [10] with an iterative solution of the inversion charge Qjpy.
The Pennsylvania State University and Philips developed together the PSP model
[12, 13] as a common modeling activity based on Philips MOS 11 (successor of
MOS 9) and the PS model from the Pennsylvania State University. The PSP model
based on a explicit solution on the surface-potential ;. As third model, the HISIM
model [11, 14], which was formulated years before, from the Hiroshima University,
was investigated by the CMC for a new modeling standard. The HISIM model bases
on an iterative solution of the surface-potential y; (see also Table 2.1).

In 2006, the CMC has standardized, the PSP model for standard CMOS tech-
nologies and in 2007 the HISIM model for high-voltage, high power applications.

In Table 2.1, an overview of the main MOSFET models with the technology,
nodes, where these models are mainly in practical use, is given. The transition from
one model to another, pushed by the introduction of new technology generations
could only be done step by step. The new model will be tested and verified on
the data of the new technology. To start design activity in the new technology, the
technology characterization starts with the old model. If the new model is verified,
the new model is introduced in one of the next design packages. Also, for mature
technologies, such as 130nm, Foundries will mostly use BSIM3 models today,
because a new re-characterization of the technology on the basis of the latest models
is too expensive. Therefore in practice all models of the 3rd generation are more or
less in use for active design, depending on the used technology node (Table 2.1).

2.1.3 MOS Physics and Modelling

The current section shall provide a brief introduction to MOS transistor physics
and its modeling. It is not supposed to be a comprehensive guide to semiconductor
physics, which would require a solid mathematical background. The goal is rather to
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Table 2.1 Overview of transistor models and respective technology nodes

MOSFET

Technology model MOSFET CMC Model type
node generation model standard based on
>1um 1st generation Level 1 Vin

Level 2 Vin

Level 3 Vin
>1um 2nd generation BSIM 1 Vin

BSIM 2 Vin
350 nm HSPICE level 28 Vih
250 nm 3rd generation BSIM 3.x X(1996) Vih
180 nm BSIM 4.x X(2000) Vin

MOS 9, MOS 11 Vin
130 nm EKV Qiny (iterative)
90 nm 4th generation BSIM 5 QOiny (iterative)
65 nm PSP X(2006) W (explicit)
45nm HISIM X(2007) VY (iterative)

32 nm

learn some ideas leading to current modeling strategies and additionally learn about
some causes of variations. The interested and the expert reader shall be referred to
the appropriate literature for further study [3, 15]. Nevertheless, some fundamental
concepts will be required for understanding the operation of a transistor. Therefore,
we start this section with some basic concepts of semiconductor physics.

It is well known that the most widely used material in microelectronics today
is silicon. Unfortunately, the properties of pure silicon are far from adequate for
use in cutting edge applications. Therefore, the material requires some radical
manipulation before it may be applied. It turns out that introducing impurity atoms
into the silicon crystal, a process known as doping, provides such a handle. Doping
allows the electronic properties of silicon to be tweaked as desired. The reason
for this becomes clearer by revisiting silicon’s atomic structure. As a Group IV
element, each atom has four valence electrons. In the condensed state, silicon forms
a diamond cubic lattice with four covalent bonds at each lattice site. Four electrons
per site are involved in these bonds and no carriers are left for contributing to the
conduction process. Therefore, pure silicon is an inadequate material for electronic
applications. However, doping silicon with impurity atoms having either less or
more than the four electrons required for perfect bonding between neighboring
atoms introduces additional free carriers into the crystal. The main concept now is
that charge will not only be carried by the abundant electrons which are not involved
in the bonding process but also by so-called electron holes, a conceptual, positively
charged particle, describing the absence of a valence electron in the bonding process.
Electron holes are quasiparticles which behave like real particles and which may
therefore be modeled similarly. The concept of electrons and holes leads to the
following nomenclature. Group III elements are called p-type dopants since they



2 Physical and Mathematical Fundamentals 17

Unipolar transistors

MISFET
(IGFET) drr
p-type n-type
Enhancement type Depletion type Enhancement type Depletion type p-type n-type

D D D D D D
G G
B GJEB G |=B GJ B 4.'3‘ . ~>’£‘ .
I—| s s I_| s
Fig. 2.1 Existing types of MOSFETSs

have less than four valence electrons and therefore introduce positively charged
holes into the silicon. Group V elements, on the other hand, are called n-type
dopants for the fact that they add abundant electrons to the lattice. Additionally, the
former are called acceptors for they are accepting electrons from the silicon crystal,
whereas the latter are called donors, atoms which donate electrons to the crystal.
In fact, a doped semiconductor at the same time contains both, electrons and holes.
Depending on the ratio of the two species, they are labeled as minority and majority
charge carriers. In n-type semiconductors, electrons are the majority and holes the
minority carriers. Vice versa for p-type semiconductors. The number of free carriers
in the crystal depends on the concentration of the doping atoms. The same applies
to the conductivity.

Depending on those physical properties, transistors may be categorized into a
variety of classes. The most fundamental two classes are the unipolar and the
bipolar devices. As the name suggests, in the former case, only one kind of carriers
contributes to the transport, whereas in the latter case both species may participate.
In the context of CMOS design, one is mainly concerned with unipolar devices,
also called field-effect transistors (FETs). Within the class of FETs, there are again
two main categories, the insulating gate type (IGFET) and the junction gate type
(JFET). The former type is most widely used and best known as its prominent
representative, the metal-oxide-semiconductor type (MOSFET). Transistors are
further distinguished by the type of terminal doping which can be either n-rype
or p-type, as explained above. Depending on the doping type, a transistor can
now be either conducting or insulating at zero voltage between gate and source,
called bias. For the case of JFETS, both types are conducting. Applying a gate-
source voltage to either of the two suppresses possible current flow in the channel.
In case of MOSFETsS, those two types are denoted as depletion or enhancement
type, depending on whether applying voltage between gate and source enhances or
suppresses the current in the channel, respectively. A schematic summary of FET-
types is given in Fig. 2.1.
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Fig. 2.2 Schematic cross-sectional cut of an n-type MOSFET structure

After having introduced some fundamental physical ideas and types of transis-
tors, the following explanations focus on the structure and operation of MOSFETs.
Figure 2.2 schematically shows a cross-sectional view of a n-type MOSFET. The
base material, i.e., the substrate, is a slightly p-doped silicon crystal. Two heavily
n-doped regions are implanted as the source and the drain electrodes. Since substrate
remains in between, this forms an NPN-structure. Thus, no conduction is possible
in the off-state. The remaining p-substrate forms the channel of the transistor. An
insulating dielectric layer of silicon dioxide (SiO») is then deposited right above the
channel, which separates the channel from the gate electrode. The gate material
is n- or p-doped polysilicon. The stacking of bulk, dielectric, and gate forms a
capacitor, which is loaded upon applying a voltage difference between bulk and
gate. As the naming MOSFET implies, the current-voltage-characteristics of the
channel can be manipulated by the electric field in the “bulk-gate-capacitor.” For
an n-type MOSFET, the source terminal is in general connected to the bulk and is
used as the voltage reference point. Therefore, the quantity Vs equally refers to the
gate-bulk-voltage. Depending on the applied Vs and Vg, three modes of operation
can be distinguished:

* Subthreshold or weak inversion regime: Vs < Vi
* Linear regime: Vs > Vi, and Vys < (Vg5 — Vin)
* Saturation or strong-inversion regime: Vs > Vi, and Vyg > (Vgs — Vi)

The operation of the transistor is best understood by first letting Vg = 0 and slowly
raising V5. This process will be exemplarily described in the following using the
already discussed n-type device. By applying a positive voltage to the gate, Vs > 0,
and entering the subthreshold or weak inversion regime, the majority carriers within
the p-type substrate will be repelled from the insulating SiO, layer, thereby forming
a region depleted of majority carriers — the depletion region. This region contains
less positive carriers than the remaining bulk and thus is less positively charged.
Further increasing Vg leads to fully majority-carriers-deprived SiO, surface, leaving
a neutrally charged layer close to the insulator. This is observed when Vg5 = V.
Here, the transistor switches to the linear regime. Beyond this point, a layer of
negatively charged carriers begins to accumulate at the insulator surface, forming an
oppositely charged layer within the positive p-type bulk background — the so-called
inversion layer.
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Table 2.2 Classification of transistor models

Vin-based models  Charge-based models  Surface potential-based models

LEVEL 1-3 EKV PSP
BSIM1-4 ACM HiSIM
Philips-MM9 BSIMS5 Philips MM11

In the subthreshold regime, where Vg lies in between flat-band-voltage and Vi,
the channel between source and drain is said to be in weak inversion. There are
very few free carriers available for charge transport. The current flows mainly by
diffusion rather than drift. As the name suggest, this regime is often made use of in
analog circuits. The source-drain current behaves similarly to the collector-emitter
current of a bipolar transistor. Below threshold, there is an exponential dependence
between drain-source current and gate-source voltage. This is the reason why the
subthreshold regime is important for low-voltage and low-power analog circuits.

Ves—Vin

Igo<e T . (2.2)

For a few years now, this technique is more and more applied to digital circuits as
well [17]. Objectives are a low power-consumption, e.g., in sensor networks, or high
performance by achieving very low delays. However, in the subthreshold regime,
parameter variations are a much more severe challenge for the design because of the
strongly nonlinear behavior of delays and current as a function of input slew or load
capacitance.

The available transistor models may be classified by how the integral for the
drain current is evaluated. There are three common approaches: Vy, based, charge
based, and surface potential based. This classification and its realization in transistor
models is shown in Table 2.2.

2.1.4 Physical Effects in Transistor Models

The growth in integrated circuit density and speed is the heart of the rapid growth
of the semiconductor industry. The transistor saturation current is an important
parameter because the transistor current determines the time needed to charge
and discharge the capacitive loads on a chip, and thus impacts the product speed
more than any other transistor parameter. The goal of MOSFET scaling could be
understood by two general topics.

First, the increase of transistor current (speed) for charging and discharging par-
asitic capacitances and second the reduced size (density). The increased transistor
current requires a short channel and high gate oxide field because the inversion layer
charge density is proportional to the oxide field. The reduced size of the device
requires a short channel length and smaller channel width. Therefore, the planar
CMOS devices were scaled in the past mainly by shrinking the dimensions and the
voltages [80] (Fig. 2.3).
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Fig. 2.3 Main trends in CMOS scaling

Table 2.3 Major effects to be modeled within 4th generation CMOS models for simulation down

to 45/32 nm

* Gate to body, gate to inversion, gate to
S/D oxide tunneling currents

» Stress effect as a function of layout

¢ Impact Ionization current

» Flicker Noise and thermal noise at all
terminals, all biases, all temperatures

* Nonuniform vertical doping

¢ Nonuniform lateral doping

* Short channel effect

* Drain-induced barrier lowering
(DIBL)

¢ Channel length modulation

* Substrate current induced body effect

*  Velocity saturation including velocity
overshoot, source end velocity limit

e Well proximity effect on Vth

* Poly gate depletion

Narrow-width effect

Bulk-charge effect

Field-dependent mobility

Finite inversion layer thickness (quan-
tum mechanical effect)
Non-quasi-static (NQS) effect

Diode IV forward and reverse model
Diode reverse breakdown

Diode CV forward and reverse, includ-
ing temperature

Gate resistance model

Substrate resistance network
GIDL/GISL
Asymmetric  and
source/drain resistance

bias-dependent

As process technology scales beyond 100-nm feature sizes, for functional and

high-yielding silicon the traditional design approach needs to be modified to cope
with the increased process variation, interconnect processing difficulties, and other
novel physical effects [81] (Table 2.3).

The scaling of gate oxide in the nano-CMOS regime results in a significant
increase in gate direct tunneling current. The subthreshold leakage and gate direct
tunneling current are no longer second-order effects. The effect of gate-induced
drain leakage (GIDL/GISL) will be felt in designs, such as DRAM and low-power
SRAM, where the gate voltage is driven negative with respect to the source. Scaling
planar CMOS will face significant challenges. Introduction of new material systems,
e.g., strained Si/SOI, high-x and metal gates were used to scale devices down to
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Fig. 2.4 Evaluation of the numbers of model parameter with the model complexity [79]

32nm and 22nm. In addition, new device architectures, e.g., multigates and 3D
devices were needed to break the scaling barriers in future beyond 22 nm technology
range.

The term high-x dielectric refers to a material with a high dielectric constant k¥
(as compared to silicon dioxide) used in semiconductor manufacturing processes,
which replaces the silicon dioxide gate dielectric.

As the thickness scales below 2 nm, leakage currents due to tunneling increase
drastically, leading to unwieldy power consumption and reduced device reliability.
Replacing the silicon dioxide gate dielectric with a high-k material allows increased
gate capacitance without the unwanted leakage effects [82].

Strained silicon and strain engineering refers to a strategy employed in semi-
conductor manufacturing to enhance device performance. Performance benefits are
achieved by modulating strain in the transistor channel, which enhances electron
mobility (or hole mobility) and thereby conductivity through the channel [83].

In order to shrink down beyond 22 nm (see Fig.2.4), 3D devices or multigate
devices which incorporate more than one gate into a single device are in devel-
opment. The multiple gates may be controlled by a single gate electrode, wherein
the multiple gate surfaces act electrically as a single gate, or as independent gate
electrodes. Multigate transistors are one of several strategies being developed by
CMOS semiconductor manufacturers to create ever-smaller microprocessors and
memory cells, colloquially referred to as extending Moore’s Law [84, 85].

Compact models describe the terminal properties of the scaled devices by using a
simplified set of equations, or by an equivalent subcircuit model. As a consequence
of the ongoing scaling activities and changing of device architecture, the compact
models have to follow by including the main new effects into the model equations.
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Also approximations needed for simplified modeling have to be adjusted. Second-
order effects in today’s technologies could change to first-order effects in the next
technology node, e.g., the subthreshold currents and the effect of gate-induced drain
leakage (GIDL/GISL).

Unfortunately for the first chip designs in a new technology, the designer has to
cope with available models, which were developed for older technology nodes.

The modeling and the availability of new models within commercial circuit
simulators, including all novel effects, will follow the technology development and
ramp up in a Manufacturing Line approximately 1-3 years later.

Also, the complexity of the models and the number of parameter will increase
with time, following the changes and the complexity of the scaled technologies.
The number of parameters of the most commonly used circuit simulation models
achieves an order of 1,000 parameter (see Fig.2.4). Starting within the 1980,
some models were developed including geometry scaling models that increases the
number of model parameter extensively.

2.1.5 Impact of Variations and Model Sensitivity

After the previous short summary of various nominal effects occurring in today’s
technology, this section focuses on how process variations affect performance upon
the continuing scaling.

2.1.5.1 Variations and Scaling

During the last decades, MOS technology was constantly scaled down with a
rate approximately predicted by Moore’s law as easly as in 1965 [18]. The rate
at which the integration density increased over the years remained surprisingly
constant. This can be mainly attributed to the concept of constant field scaling,
where transistor parameters are scaled down such that the internal electric field
remains constant and thus the physical behavior is preserved. This has first been
proposed in the seminal work by Dennard et al. [19]. However, in order to maintain
or even increase circuit performance, the device threshold voltages need to be scaled
in proportion to the supply voltage [4]. This in turn has a severe side-effect on
the subthreshold leakage current, which depends exponentially on the difference
between Vs and Vip,. Therefore not only will nominal leakage increase drastically,
but also the sensitivity to threshold voltage fluctuations increases exponentially.
Since Vi-fluctuations are easily seen to increase with shrinking device dimensions
and decreasing dopant number, old-fashioned shrinking by scaling soon crosses
a point where reliability becomes a serious issue. Ever since, process variations
occurred within semiconductor fabrication. However, this point marked a new kind
of hurdle to be taken and its disturbing arrival in technology was anticipated long
before. Fortunately, the topic of process variations became strongly popular and
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much research had been done in order to prevent the sudden death of Moore’s Law.
Eventually, new strategies were introduced such as high-x dielectrica, metal gates,
strained silicon, fully depleted SOI (FD-SOI), or multi-gate devices, coming to the
rescue of Moore’s prediction.

On the other hand, there is a constantly increasing variety of effects leading to an
increase of variability with the continuation of scaling. Kenyon et al. [21] recently
provided an excellent summary of challenges in terms of variability for the 45nm
technology. One can summarize the most important sources of fluctuations, which
sooner or later require adequate modeling:

* Random dopant fluctuations [22]

* Line-edge roughness [23]

e Variations of oxide thickness [24]

* Nonuniform threshold voltage by fixed charge [25]
* Defects and traps [26]

* Patterning proximity effects [27]

e Polish [28]

¢ Strain-induced variation [29]

e Variations in implant and anneal processes [30]
e Variation of temperature in operation

* Ageing and wear-out

* Signal coupling and cross-talk

* Supply voltage and package noise

These unwieldy and mostly nonlinear effects need to be tackled and controlled by
process engineers and designers currently but even more so in the years to come.

2.1.5.2 Parameter Correlations

Generally, all fluctuations across devices, circuits, dies, wafers, or wafer lots are
correlated in a certain way. Only the correlation strength varies depending on
the source of the variation (which process step, environmental influences, and so
on). Considering a single parameter fluctuation, one may think of a temporal or
spatial correlation length within the manufacturing process. This length determines
whether the variation of a parameter can be modeled independently across different
entities or whether the coherence needs to be taken into account. For simplicity,
engineers usually take the binary approach by setting the correlation coefficient to
either zero or one, respectively. Although this is far from realistic, the usual lack of
detailed measurements renders any attempt of a more detailed modeling pointless.
One therefore retracts to such a simplified description which additionally offers two
major simplifications: First, each varying parameter can be statistically described by
as little as two numbers. Secondly, the binary correlation approach gives rise to the
appealingly simple notion of local and global fluctuations. Local fluctuations are
also known to analog designers as mismatch, the single most important statistical
design parameter for matching pair transistors. Since effects resulting from global
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fluctuations are usually taken into account by a corner-based analysis, they are of
lesser importance. However, as the number of corners increases exponentially with
each technology node, such guardbanding leads to a significant design pessimism,
strongly diminishing yield. The binary correlation description may be sufficient for
most modeling purposes. However, it is important to realize that a truly realistic and
physical variability model on circuit or system level requires a fully multivariate
stochastic description. This is rather involved since any fluctuating parameter needs
to be included as an additional dimension of a multivariate distribution function.
However, such methodology becomes especially important in hierarchical system
modeling with uncertain input [31-33].

2.1.5.3 Local Fluctuations and Pelgrom’s Mismatch Model

The importance of local parameter fluctuations has been emphasized previously.
Although analog design suffers strongly under local fluctuations, any circuit
involving matching transistor pairs, for instance an SRAM cell [34], is severely
affected. Apart from the transistor mismatch, nonuniform behavior throughout the
circuit is a result from local fluctuations. The first work to describe a model for local
fluctuations was the seminal paper by Pelgrom et al. [35]. Their mismatch model
was based on very few but fundamental assumptions and has general validity. The
model proposes a spatially varying parameter p(x,y) and defines the mismatch as the
difference of this parameter over two different rectangles, {2 and €2,, representing
the areas of two devices. The model shall predict the difference of the expected
value of the parameter for each area, which reads as

Apoia, = (P(x.) g, — (P(x.¥))q, - (2.3)

After parameterizing the distance by D and setting the area to |Q| = W - L, the
variance of Ap can be computed, yielding

A
2 _A4p 2
Oxp= WL+SA”D , 2.4)
where A, and S,, are process- and device-dependent parameters. This model
predicts in a simple form the local fluctuations under scaling and may be applied
to any parameter such as Vi, or Tox. The fluctuation, i.e., standard deviation, of a
parameter as a function of device area can thus be estimated as

1
poc ——. 2.5)
12|

loc

Fluctuations of device dimensions scale according to the equations AL o< 1//W
and AW o< 1/+/L. Pelgrom’s law is commonly used in analog design, where
increasing the device area is a well-established means of reducing local fluctuations.



2 Physical and Mathematical Fundamentals 25

2.1.5.4 Mathematical Description of Fluctuations

This section looks at some mathematical aspects regarding the modeling of fluctu-
ations in circuit simulation. Any strategy leading to a continuation of the shrinking
process whilst improving performance must necessarily involve one of the two
following techniques: Reduction of the fluctuations themselves, for instance AVy,,
ATyx, or ALgg, or reduction of the responsiveness of the circuit to fluctuations.
Strong fluctuations alone do not necessarily imply a strong impact on the circuit’s
performance. If the circuit is insensitive to or even independent from this very
parameter, the range of variation becomes less significant for the design process.
The amount of impact is called sensitivity. Thus, the effect of a variation on a
performance quantity, in the following called y, depends equally on the parameter
fluctuation and the sensitivity of the measured quantity on the parameter. This fact
is also easily derived from a mathematical viewpoint and can be motivated by a
Taylor expansion of the usually complicated and unknown parameter dependence,
y = y(p), which up to first order reads as'

dy
Y~YO+$(P*P0)- (2.6)

The parameter p usually varies according to a distribution within a range charac-
terized by its variance, 62. The performance deviation from its nominal value y,
is henceforth called Ay. Since this quantity is dimensionful, one usually introduces
a normalization. Care has to be taken which normalization is used when reusing
sensitivity information from commercial simulators in an external context. In the
following, we define the sensitivity as

Ay = QA_p’ 2.7
y dpy
where Ap is the deviation of the parameter from its nominal value. Although being
just a low-order polynomial approximation, this model has quite a compelling
advantage: Even with a single sensitivity value in a single point of parameter
space, the device behavior with respect to many effects such as process variations,
degradation and aging can be approximated albeit in a qualitative fashion. This
model has proven to work remarkably well in practice. Additionally, the sensitivity
coefficient is a very handy ballpark number for a quick-and-dirty estimation of how
much the performance of a design is affected by the parameter. In many cases, the
sensitivity is readily determined by a finite-difference approach. If such a naive
approach is computationally too expensive, there is a great deal of literature dealing
with efficiently solving this problem [36—38]. At this point, however, we will not go
further into detail and investigate some model sensitivities analytically instead.

IWhether the symbol y refers to the value or to the function should be evident from the context.
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In summary, the overall variability of a device, circuit, or system, is equally
affected by both, the variance of the parameters and the sensitivity against this
parameter. For physical parameters, the former is usually a technological artifact and
solely determined by the fabrication precision. The latter, however, may be adjusted
through circuit and system design. In the following, we will primarily focus on the
sensitivity of MOS transistors with respect to fluctuating parameters by reviewing
established leakage and timing models.

2.1.5.5 Delay Sensitivity

There are a number of analytically tractable models attempting to predict the
cell delay [16,39-41] by approximating the drain current behavior. Such models
are usually of low complexity compared to full transistor models and contain
many assumption, for instance, regarding saturation velocity or gate voltage. The
simplification is achieved by introducing fit parameters which strongly depend on
the dimensions and technology used. However, this also means that they do not
predict the current correctly in all regimes. But such accuracy is not required for
a first-order manual analysis. Especially the Alpha Power Law Model by Sakurai
et al. [39] focuses only on the correct description of the cell delay. The authors
approximate the delay as a sum of two components: An input slope dependent part
and the time to charge or discharge the following cell. The input slope-dependent
component becomes less significant with enhanced velocity saturation. Under this
assumption, the estimated cell delay reads as

CLV,
Teell o« =% (2.8)

dsat

where Cp, is the output capacitance to be driven by the cell. The saturation current is
defined by the o--model as

w
asa = 57 HCox (Vs — Vi) %, (2.9)

where « lies in between 1 and 1.5. In the constant field scaling picture with
a scaling factor S, the parameter scale according to W,L,Vyq,Vin,Cp o< 1/S and
Cox o< S, and Vg at saturation should be proportional to Vy4. For constant mobility,
we conclude that

(2.10)
which decreases with increasing S. The cell delay can thus be assumed to scale as

1

oa—3
Teell o< S ~ ?

@2.11)
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The same analysis can be carried out for the sensitivity. By applying the chain rule
to the delay dependence on Vi, we find

Ateenl _ 0Tl AVin _ 0 Teett Masat AVin _ AV 2.12)
Teell d Vih  Teell aIdsat aVth Teell Vgs — Vi

Ignoring the scaling of AVy,, this essentially leads to a scaling of the relative delay
fluctuations proportional to S. Thus, this simple model has shown that the impact
of fluctuations on the delay becomes worse in a simple scaling scenario. Therefore,
new technological concepts and devices are required in order to push Moore’s law
further. An equivalent reduction can only be achieved by introducing entirely new
models or by a reduction of the fluctuation itself, AVy,. Until today, simulations
concluded that AVy, remained almost a constant [42, 43]. However, this picture
will not hold for sub-45nm technologies where a strong increase in variability is
predicted. The above analysis is meant as an exemplary calculation and may also
be carried out for more realistic drain current and timing models as well for other
parameters such as L, Vyq, or Cox.

2.1.5.6 Leakage Current Sensitivity

Modern MOS transistors exhibit a variety of different leakage mechanisms. A
comprehensive analysis of their nominal and sensitivity behavior is an involved
task. In order to demonstrate the multitude of leakage effects, we have summarized
significant sources of static leakage currents [44]:

* Reverse-bias pn junction leakage

* Subthreshold leakage current

* Gate oxide leakage current

* Gate induced drain/source leakage

* Gate current due to hot carrier injection
¢ Channel punchthrough current [45]

¢ Dielectric breakdown [16]

Additionally, there is a dynamic leakage component resulting from cell switching
and shorting the supply to the ground. The most pronounced leakage currents,
such as subthreshold leakage, shows a very strong sensitivity to Vi. In general,
the threshold voltage is one of the most important parameters regarding variability.
Much work has been done to compute scaling properties of Vi, -fluctuations [42,43].
The formula for the threshold voltage can be written as [46]

A
Vin = Viv + |20p| + C—b \/2ch}185(|2¢;>| + Vi) — AaVas, (2.13)
(0).4
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where Ay and Aq4 are parameters for the drain-induced barrier lowering (DIBL) and
body-biasing effect. Then one can write the subthreshold leakage (drain leakage)
[46] as

w ’ Vas—Vin _ Vs
Iy = .ueffcoxf(m —1)Vie ™ [1—e "1 |, (2.14)
the gate oxide leakage [46] as
Vad 2 T:

Toate = WA, | — —B, =), 2.15
ate g < T > exp < SV > ( )

and the GIDL (junction leakage) [47,48] as

&i a4 Ey

I =AWAL Eg; —-—— . 2.16
GIDL EoNg CSi exp ( ESi) (2.16)

The GIDL is usually orders of magnitude larger in NMOS than in PMOS devices,
but overall negligible compared to other leakage mechanisms [4]. In deriving a
sensitivity expression, we therefore focus on subthreshold leakage variations under
varying Vin and compute the derivative of (2.14). One thus obtains

Al o aIsub AV o Isup AV _ 7AVth

= = 2.17)
Isub thh Isub

mVT Isub mVT '
Regarding the exponential dependence between the nominal current and the nominal
voltage, this result might come somewhat as a surprising. However, one has to bear
in mind that the nominal leakage current still grows exponentially with a Vi-swing.
The above sensitivity is only relative to this nominal dependence. In summary, when
scaling the technology, relative variations in the subthreshold leakage scale in a
similar fashion as AVy,.

2.2 Methods to Describe and Analyse Parameter Variations

2.2.1 Introduction

We are interested in the statistical behavior of characteristics describing the quality
of a micro- or nanoelectronic structural element, such as leakage, delay or transition
time, say performance, output or response characteristics, denoted by y.

In particular, the values of these characteristics depend on numerous process
parameters (input variables) such as threshold voltage, oxide layer thickness or gate
lengths, e.g., Vin, Tox, AL, ..., denoted by X1,X3,...,X, in the following. In other
terms, the performance characteristics y can be described by functional relationships
y=h(x1,x2,...,%n). Call X the vector of process parameters X’ = {X1,X,..., X}
of length m. Call Y a performance parameter. X;,X>,...,X,, as well as Y are real
valued random variables. This is represented in Fig. 2.5.
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Fig. 2.5 Relation between
random input variables X and

X, —
random output performance
variable ¥ Xz »

Xn ———»

In the following, we will consider several mathematical methods that are
provided to analyze the interaction between input and performance variables. This
gives an impression of the power and the limitations of the different approaches and
the related problems.

We assume the knowledge of the joint probability density function (PDF) fx (x)
of the process parameter vector X, or the PDF’s fx, (x1), fx, (x2), ..., fx,,(Xm) of the
process parameters X1,X5, ..., Xy, in particular.

Our goal is the evaluation of the cumulative distribution function (CDF) Fy (y),
PDF fy(y), and the moments EY* of the performance characteristic Y.

Starting point are the different possibilities to characterize random variables. The
process parameters can often be characterized by a normal distribution. However,
in a lot of cases nonnormal distributions are also of interest. This may concern
the description of process parameters but more often the performance variables.
Handling the variability of a huge number of parameters methods to reduce the
complexity is required. More details will follow in Sects. 2.2.3-2.2.6.

The characteristics of the performance variable can be investigated by analytical
methods if special requirements are fulfilled for the random characteristics of the
input variables and the function 4. This is the content of Sect.2.2.7. In general, the
dependency can be investigated by numerical methods. The interesting task is to
reduce the computational effort in this case. Related problems will be discussed in
Sect.2.2.8.

At the end, we have to check the results by appropriate methods. This will be
discussed in Sect.2.2.9.

2.2.2 Characterization of Random Variables

We want to refresh some terms that will be used to describe real-valued continuous
random variables. To simplify the representation, it is restricted to the one-
dimensional case. Generalizations for the multivariate case can be carried out.

The expected value of a random variable X with probability density function
fx(x) is given by

EX] = [ fila)dr = . 2.18)

—oo
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The moment of order k is defined by
Ex] = / - fe () dx. (2.19)
The central moment of order k is defined by

E|(x -] = ] (r— )" fe (x)dx. (2.20)

The second-order central moment is called variance

oo

var(X) = E[(X — i )?] = /(xf/.ix)2~fx(x)dx:c7x2, 2.21)

—oo

where the square root oy of the variance is the standard deviation of the random
variable. Let g be a mapping g : R — R then we can generalize and determine the
expected value of the random variable given by g(X)

E[g00] = [ 800 fx(x)dx (2.22)

Some general rules for handling the expected values can be derived. The expected
value of the random variable a - X, where a is a constant is

Ela-X]=a-E[X]. (2.23)
Its variance is given by
var(a-X)=E |a*- (X — /.LX)Z} =a* -var(X). (2.24)

The expected value of the sum of two random variables X and Y is always the
sum of the expected values

EX+Y]=E[X]+EY]. (2.25)

If two random variables X and Y are given, their covariance can be defined as
follows

cov(X,Y) = E[(X —pix) - (Y —uy)] = E[X - Y] — px - lty

= [ [0 om0 @26)
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The correlation coefficient pyy of two random variables is a normalized
covariance with values between —1 and 1

pX,Y = — (227)

This correlation coefficient is also known as Pearson’s correlation coefficient.
Because of (2.27), the covariance of two random variables can be expressed by
cov(X,Y) = p - 0x - oy. Two random variables are uncorrelated if their correlation
coefficient equals 0. Two random variables X and Y are independent if for all R — R
maps g and &

Elg(X)-h(Y)] = E[g(X)]- E[n(Y)]. (2.28)

It follows from (2.28) that for independent random variables X and Y and con-
stants m and n the following relations are correct: E [X"-Y"] = E[X"]- E [Y"] and
also E[(X —ux)™- (Y —uy)"] = E[(X — uy)™] - E[(Y — uy)"]. Thus, independent
random variables are always uncorrelated. The opposite conclusion is in general not
right. Further conditions have to be fulfilled. If X and Y are jointly normal distributed
(see the following section) and uncorrelated, then they are also independent and
(2.28) can be applied.

2.2.3 Normal Distribution

2.2.3.1 Univariate Normal Distribution

The normal or Gaussian distribution often characterizes simple random variables
that are given around a mean u. The samples of the random variable are real
numbers. Its special importance results from the central limit theorem. It indicates
that the sum of a sufficiently large number of independent and identically distributed
random variables with finite mean and variance will be approximately normally
distributed. The graph of the density function describes a bell-shaped curve. The
PDF of a normal distribution N(u,0?) with mean u and variance 62, (6 > 0) is
given by

1 —(x—u)?
fx(x) = 2M€XP< 202 ) (2.29)

The CDF describes the probability that the random variable X is less or equal to
x. The subsequent formula describes the CDF of the normal distribution N (u, 62)

Fx (x) = Prob(X < x) = /xfx(t)dt - % (1 +erf<)i/__7§)) (2.30)
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Table 2.4 Interval limits and probabilities of N(u, 52) distribution

Factor ¢ Probability Prob(u —c-0 <X <p+c-0)in%
1.0 68.26894921

2.0 95.44997361

3.0 99.73002039

6.0 99.99999980

1.6448536270 90.0

1.9599639845 95.0

2.5758293035 99.0

3.2905267304 99.9

X
with the Gauss error function erf(x) = \/iﬁ J e~"*dt. Thus, the probability that the
0

simple N (i, 6?) distributed random variable X belongs to the interval (1 —c- o,y +

c¢- o] equals
X—Uu)- (X—u
Prob (% < cz) —erf <%> (2.31)

Some typical values are summarized in Table 2.4
2.2.3.2 Standard Normal Distribution

The special case = 0,0 = 1 is called standard normal distribution N (0, 1). Its PDF
is denoted by

(x) = LI (‘—xz) (2.32)
considering (2.29) and using (2.30) its CDF by
D (x) —Z Q(t)dt = % <1 +erf<%>) : (2.33)

Generation of Normal Distributed Random Variables
A N(u,0?) normally distributed random variable X can be constructed by
X=u+o0-Z2, (2.34)

where Z ~ N(0, 1). This relation can be applied to create normal distributed random
numbers that are used, for instance, in Monte Carlo simulations. Standard normal
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distributed random number generators can be derived from uniform U (0, 1) random
variables using the Box—Muller transformation or are available in appropriate
simulation tools.

Assuming that a random variable X is described by a normal distribution, the
parameters 1 and 6 can be estimated based on independently distributed observed
values x,x»,- - ,X,. Maximum-likelihood estimation is an estimation method that
determines the parameters of the distribution function in such a way that the sample
values have the greatest joint likelihood [49]. Maximum-likelihood estimators are

p==-Yx and = 12 (x;— )% (2.35)
n:

S| =
I

Because the estimated mean value f is used in (2.35) to estimate the variance,
the estimation of the variance is not unbiased. An unbiased estimator of the variance
based on Bessel’s correction is

1

a2
o™ =
n—1

Y (ri— )% = nﬁl-sz. (2.36)
i=1

This version is more frequently used.

2.2.3.3 Multivariate Normal Distribution

Let us now consider a m dimensional random vector X7 = (X1,X3,- - ,Xpn) instead
of a simple random variable X. The components X; of the random vector X are
simple random variables. We will discuss the case where the vector X is jointly
normally distributed. That means, each component X; is normally distributed and
(1) arbitrary linear combinations of its components are also normally distributed.
However, the components are in general not independent. The vector of the mean
values of the components is 4’ = (i, s, , tn). The dependency of the random
components is described by the covariance matrix X. The elements of the covariance
matrix are

X j = cov(Xi,X;) = E[(Xi — W) (Xj — u;)] = pij - 0i- 05, (2.37)

where E determines the expected value of a random variable, o; is the standard
deviation of X;, o} is the standard deviation of X;. p;; (—1 < p;; < 1) is the
correlation coefficient of the random variables X; and X;. Thus, the PDF of the m
dimensional multivariate normal distribution is given by

*;ex fl~x7 Ty—lx—
fx(x)—(m)m ) p< 5 ) I (x g)). (2.38)

It is obvious that (2.29) is in accordance with (2.38) for the one-dimensional case.
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Fig. 2.6 Contour of a 3-ellipsoid with ET =(0,0,0), 01 =0y =03=1, p1» =03, p13=05
p23=—0.2and c =3.7625

In the case of the univariate normal distribution, we were interested in the
probability that the samples of the random variable belong to the interval
(W —c-o,u+c-o]. The equivalent question in the multivariate case consists in
determining the probability that the samples of the random vector X belong to the
m-ellipsoid with the contour (x — )" ! (x — ) = ¢2. It should be mentioned that
considering (2.38) the probability density of all points of this contour is the same
(Fig. 2.6).

The probability that the N, (i, X) multivariate distributed vector X belongs to the
m-ellipsoid described above is given by [49, 50]

2
y(m, 2 9
Prob(X — )/ =7 (X~ p) < F = Fpp (&) = 2—2)> .y (% %) . (2.39)
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Fig. 2.7 ¢ depending on dimension m = 1,--- 10 and Probability given by (2.39)

where Fxr% is the CDF of the chi-square distribution with m independent variables,
v and I denote the lower incomplete gamma and gamma functions resp. and & is
known as lower regularized gamma function [51]. Equation (2.39) corresponds to
(2.31) in the one-dimensional case.?

The dependency of ¢, dimension m and probability Prob used in (2.39) is
represented in Fig.2.7. For m = 1, the associated ¢ and Prob values are certainly
in accordance with Table 2.4. Furthermore, if for instance parameters are jointly
normally distributed and a performance value is within its specification limits for
all parameter samples inside of an ellipsoid, around the nominal values then this
specification is fulfilled at least with the probability given by (2.39). The greater the
distance ¢ between contour and mean of the ellipsoid for a fixed m the greater is this
probability. This circumstance and its consequences will be discussed in more detail
in Sect. 4.6 on yield analysis methods.

A Nyu(i,X) multivariate distributed random vector can be constructed by

X=u+GZ (2.40)

where the covariance matrix is expressed by X = G - G" and Z consists of un-
correlated N(0, 1) distributed normal random variables. That means Z is N,,(0,1,,)

%0

)

=

2 # ~xl andel‘f(%) = 3”(

).
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distributed. Equation (2.40) is the multidimensional version of (2.34). The covari-
ance matrix X (det(X) # 0) is a symmetric positive definite matrix. Thus, Cholesky
decomposition can be used to determine the matrix elements of G. G is a lower
triangular matrix.

2.2.3.4 Bivariate Normal Distributed Random Numbers

For instance, in the bivariate case where X is N> (i, X) are jointly distributed with

2
2_< %i pcm) (2.41)

2
poO102 (o)

using (2.38) we get the joint PDF

1

fa@) = frn) = s

_ 2 _ _ . 2
X exp (_ 1 i ((X1 21-11) 2p (e — ) (2 — o) N (x2 éuz) ))
2(1—p?) oj 0102 05
(2.42)
o 0 o 0 !
Because in this case X = ! ) . ( ! ) the bivariate
(poz V1-p20,) \po, \/1—p?c,

normally distributed correlated random variables can be expressed as follows

X1 15 o1 0 Z
()= () o vma) () o9
where Z; and Z, are N(0, 1) distributed uncorrelated random numbers.

We mention that using this approach in general m uncorrelated random numbers
are necessary to describe a m dimensional multivariate random vector. To avoid
problems when m is a huge number, methods as principal component analysis (PCA)
can be applied to decrease the complexity.

As in the case of the univariate normal distribution, the vector of the mean
values and the covariance matrix can be estimated based on observed samples. The
formulas correspond to (2.35) and (2.36). However, it should be mentioned that if
each variable X; in X is univariate normal, it can happen that the joint distribution is
not a multivariate normal distribution [52].
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2.2.4 Nonnormal Distributions

2.2.4.1 Moments of the Distribution of a Random Variable

The approximation of a given sample {y;,y2,...y,} to a PDF fy(y) is a well-studied
matter. Most of the methods base on the knowledge of the empirical moments
EY,EY2,EY?, ..., (also the notation m; (Y),my(Y),m3(Y), ... or even my,my,ms, ...
is usual) or the central moments (Y ), us3(Y), .. ., likewise.

Further important characteristics used for an evaluation are the skewness y; and
the kurtosis 7> (also known as excess kurtosis)

n="tn p=t-s (2.44)
My )

Special location measures of CDFs are called quantiles. A p-quantile Q,, (0 <
p < 1) gives value, where the cumulative distribution function of a random variable
Y equals p. Special quantiles are the quartiles Qg 25 (lower quartile or first quartile),
Qo.s0 (middle quartile, also called median or second quartile), Qg 75 (upper quartile
or third quartile), where the distribution takes the values 0.25, 0.50, and 0.75, resp.
Further quantiles are Qgos, Qo.99, Where p = 0.95, p = 0.99, respectively. For
instance y = Qp 95 means the probability for ¥ not to exceed the threshold y is 0.95,
P(Y <y)=0.95. Instead of the quantiles, also percentiles may be used where p is
given by a percentage.

Quantile quantile plots (QQ plots) are standard tools in the explorative data anal-
ysis. They allow to compare samples of data jointly or a sample with a theoretical
distribution. An important special case is the normal quantile plot, where the values
of a normal distribution are drawn on the abscissa. If both distributions coincide, the
graph is approximately on the bisecting line. An S-like curve indicates a distribution
with a stronger kurtosis, an inverse S-like curve a distribution with smaller kurtosis.
A right skew (left skew) distribution generates a concave (convex) curve, resp.

2.2.4.2 Parameterization of Special Distributions Based on Moments

An approximation of the PDF of a performance characteristic ¥ of a sample can be
made by parameter fitting if a type of distribution function is assumed.

This method requires to specify a type of CDF Fy(y), which can be a more
or less suited approximation only. The analytical known moments of Fy(y) and
these obtained from the sample are identified, which allows an evaluation of the
parameters of Fy(y).

Example. We assume the sample is Pearson type V distributed (inversed gamma
distribution). The PDF is

Pl P
fr(y)= T(q)yr 1 &P <;> ; y=0 (2.45)
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with
g—1 (¢—=1)*(¢—-2)
which immediately gives the real parameters p and ¢
(EY)* (EY)*
szY(l—i—— , =2+ ; (2.47)
2(Y) 12(Y)
where EY and u,(Y) can be estimated from the sample
—~ _ 1 — = J - —\2
EY =y=—3i, oY) =— (i7" (248)

i=1 i=1

The so-called method of moments is only based on the sample moments. It does
not consider the sample elements in particular.

Another approach of parameter fitting taking into account all sample values
Y1,Y2,---,¥n 1s the maximum likelihood (ML) approach. To estimate the wanted
parameters, the maximum likelihood function

I = ilog(fy i) (2.49)

i=1

is to maximize, which implies the disappearance of the partial derivatives of /
with respect to parameters of fy(y). For the above example (inverted gamma
distribution), the conditions

al  dl
% = a_q = (2.50)
lead to
1 i J
bw—nZMwl ; (el (@), qz;Z—. (2.51)

In general, the maximum likelihood approach leads to equation systems, which
can be solved by an iteration procedure, but not explicitly.

Suitable standard distributions to approximate of the distributional behavior of
performance characteristics such as leakage or delay times are unimodal right
skewed distributions defined for y > 0. Good candidates are lognormal, Weibull,
skew #, skew normal and the wide class of Pearson distributions.

The Pearson distributions represents a wide class of distribution functions,
introduced by Pearson around 1895. All of them represent solutions of an ordinary
differential equation with seven real coefficients. According to the sizes of these
coefficients, the solutions are among others beta, Cauchy, xz, inverse xz, expo-
nential, Fisher, gamma, inverse gamma, normal, Pareto, ¢ (Student), and uniform
distribution.
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The best approximation for a particular sample can be selected according to the
skewness 7 and the kurtosis 9, see [53].

2.2.4.3 Relationship Between Normal and Lognormal Distribution
The close relationships between normal and lognormal distribution can be applied

to investigate the logarithm log(Y) instead of the performance Y itself. Since Y is
lognormal distributed with PDF

1 logy — 11)?
fry) = Ty (—(ngyaz“) ) (2.52)

(y>0,0>0),Y ~LN(uy, O'LZN), log(Y) ~ N(uy, 0'1%,) with the relationships

12
Hy = log | ———— (2.53)
\/ My T Oin

2 2

o3 = log (M) (2.54)
Min
and conversely

N
Uiy =exp | Uy + o (2.55)
ofy = exp (2un +03) (expoi —1). (2.56)

2.2.4.4 The Skew Normal Distribution

A further promising candidate to describe performance parameters is the skew
normal distribution. Its PDF is given by

-2 (2)oh ()

1 (y—=b) y=b
r exp <— 22 > <1+e}f (a ﬂc))’ (2.57)

with —ee <y < 4-e0,¢ > 0, see Figs. 2.8-2.10. Its moments are given in Table 2.5.




40 B. Lemaitre et al.

=2 =1 1 2 3 4 3

Fig. 2.8 The probability density function of skew normal distribution for » = ¢ = 1 and various a

=2 2 4 6 8

Fig. 2.9 The probability density function of skew normal distribution for a = ¢ = 1 and various b
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Fig. 2.10 The probability density function of skew normal distribution for a = b = 1 and various ¢

2.2.4.5 General Approximations of the Distribution Based on Moments

Further suitable families of distribution functions are the generalized A-distribution
(GLD) and the generalized -distribution (GBD), cf. [54]. They are characterized
by four parameters. An approximation requires no further assumptions than the
knowledge of the first four moments (Table 2.6).

For the GLD, the probability density function is

_ X
C Ayl A (1 — )l

fr(2) atz=Q(y), (2.58)

for A3, A4 > — %, where Q(y) denotes the quantile function

Y —(1—y)h

o) =4+ 7 , 0<y<I, (2.59)
2

that means fy (z) is not given explicitly. Iteratively solving a nonlinear equation sys-
tem containing integral expressions of Euler’s beta function yields an approximation
for the GLD()L],AQ,A&)M).

Its broad variety is the essential advantage of the GLD that can approximate
many different distributions.

Disadvantages of the GLD consists in the disability of solutions for

1
Aa,ha < —7 and 1+ 7 <p+3<1.8(1+7). (2.60)
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Table 2.6 Several standard distribution functions approximated by the GLD, cf. [54]

Distribution M A A3 A4

Normal N(0, 1) 0 0.1975 0.1349 0.1349
Lognormal, u =0,0 = % 0.8451 0.1085 0.01017 0.03422
xz, 0=3 0.8596 0.0095443 0.002058 0.02300
Exponential, 6 = 1 0.006862 —0.0010805 —4.072-107° —0.001076

A further suitable class of distributions is the generalized Beta distribution
(GBD(1, B2, B3, B4)). Its PDF is given by

(y—B)P (B + o —y)P
fY(y): ﬁ(ﬁ3+1’ﬁ4+1)ﬁ2ﬁz+ﬁ4+l’ Bl SySBmLﬂz 2.61)
0, otherwise,

where f3(a,b) denotes Euler’s beta function.

Knowing the sample moments EY, t(Y), us(Y), us(Y), the parameters
B1, ..., Bs are obtained by iterative solving a nonlinear equation system.

The introduced methods describe the distributional behavior of the performance
parameters only, they do not incorporate the importance of the process parameters.

2.2.5 Methods to Reduce the Complexity

2.2.5.1 Principal Component Analysis (PCA)

The principal component analysis (PCA) is traditionally based on the spectral
decomposition of the covariance matrix X of a random vector. The objective of
the PCA is to transform a number of possibly correlated random variables into a
smaller number of uncorrelated random variables. These uncorrelated variables are
called principal components. This shall be shortly figured out.

We assume that an m-dimensional random vector X is given with mean value
E [X] = p and the symmetric covariance matrix

T
Z_E[()_(E)-()_(E) } (2.62)
Let A1,A2,- -+, Ay denote the eigenvalues of X. In general, X is positive semidef-
inite, that means, the A;, i = 1,2,...,m are nonnegative real numbers. X can be

decomposed by use of eigendecomposition as follows

S=U-A-UT, (2.63)
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where U is the square matrix of orthonormalized eigenvectors of £ with U -U” =1,,
and A = diag(A1,A2,--,Ax) is a diagonal matrix with positive eigenvalues A; >
Ay > -+ > Ay > 0 of the covariance matrix. Equal values A; = ;| and zeros A; =0
are theoretically possible.

Thus, the random vector X can be represented by

X=p+U-A?Z (2.64)

where Z = (Z1,Z;- -~ ,Zm)T is an m-dimensional random vector that is built up
by uncorrelated random variables Z; with mean value 0 and variance 1 and the

matrix A2 = diag(v/A1,v A2, -+ ,v/Am). It can easily be shown that mean value and
applying (2.62) the covariance matrix of the random vector given by (2.64) equal u
and X, resp. -

If we now only consider the first dominant 7’ eigenvalues, we can approximate
X by

~ o~ L1 _
X~X=p+U-47 2, (2.65)

where Z = (21,72, - ,Zm/)T is an m'-dimensional random vector that is built up

by uncorrelated random variables Z; with mean value 0 and variance 1. 11% =
diag(\/l_l VTR \/l_mf ) is a diagonal matrix and U the matrix of the associated
eigenvectors with m rows and m’ columns. Thus, we approximate X with a fewer
number m’ of random variables. We only consider the principal contributors to the
variances of the components of X. However, the variance of the components of X is
nearly the same as the variance of the components of X depending on the number
m’ of eigenvalues that are taken into consideration.

That means, the PCA is a method to project an m-dimensional space to a smaller
m’-dimensional one, m’ < m. The vector

NI—

Y=A2-Z (2.66)
in (2.64) forms the principal components. Thus, knowing the matrix U of normal-
ized eigenvectors of the covariance matrix X, the components Y; of the transformed
random variable ¥ = UT - (X — u) are denoted as principal components. In other
terms, the principal components are linear combinations of the original random
variables, for instance the process parameters. Based on the properties of the
Euclidian norm, it can be shown that the total variance of the original and
transformed variables are equal,

i&®=2&%) (2.67)
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Considering (2.66), the eigenvalues of the covariance matrix of the original variables
indicate the contribution of the principal component ¥; to the total variance, e.g.,

i c?(X;). (2.68)

The principal components are orthogonal among themselves, that means, they are
uncorrelated at all. There is no determination regarding the number m’ of principal
components, it can be chosen individually. The signal-to-noise ratio is given by :

2
Ogignal _ GZ(YI) +...+ GZ(Ym/)
o2 02(Yya1)+...+02(Yy)’

noise

SNR = (2.69)

where Y7,...,Y,, denotes the significant principal components and Y. ,...,Y,
the neglected. A great ratio SNR > 1 means a good accuracy. Thus, the PCA is
a simple method to reduce the number of relevant dimensions of a relationship with
a minimum loss of information, in other terms, a simplification by reducing the
number of variables. The Cholesky decomposition of the covariance matrix does
not offer this opportunity.

If the variances of the components of the random vector X differ much, the PCA
should be carried based on the standardized random vector X’. Its components are
standardized to means of O and standard deviations of 1 at first. This can be done by
the transformation

X =D". (}_( _ E) , (2.70)

where the matrix D is a diagonal matrix that contains the standard deviations of
the components of X. The covariance matrix of the standardized random vector
X’ equals its correlation matrix and is the same as the correlation matrix P of X.
Therefore, there is the following relation between the correlation and the covariance
matrix of X

P=D'.x.D7" (2.71)

If the PCA is based on the standardized random variables, a scaling or shifting
of the process parameters does not change the results of the PCA. Therefore, PCA
based on the correlation matrix is sometimes preferred.

For a simple introduction to PCA, see [55] for further details [56,57].

It has to be mentioned that the PCA by eigendecomposition and singular value
decomposition (SVD) provides (only) a representation by uncorrelated random
variables. If X is a multivariate normal distributed random vector, this is also a
decomposition into independent random variables. In this case, the components of
the random vectors Z in (2.65) and (2.75) are uncorrelated (and independent) N(0, 1)
distributed random variables. A decomposition of a random vector where several
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components are far away from a normal distribution into independent random
variables can be carried out by Independent Component Analysis (ICA) [58].

2.2.5.2 Complexity Reduction Based on Samples

We assume that n samples of an m-dimensional random vector are given by
{(xi1, %12, - ,x,'m)T},i =1,---,n. Using the estimated mean values fI; = ﬁz;lex,'j,
we can built up a data matrix with m rows and n columns that contains the zero

centered samples corrected by their mean values.

xi—M xo = o X —fy
xio—fly xp—fb - xXp—fb

M=| . b 2.72)
xlmf.am x2m*ﬂm xnm*.am

The matrix M can be used to estimate the covariance matrix of the associated
random vector X
1

n—1

3= M-M". (2.73)

Q

Two disadvantages are

¢ The occurrence of outliers, which can distort the results,
* Nonlinear relationships, which often cannot be identified.

Furthermore, for higher dimensions m, it can be difficult to calculate and store
an eigendecomposition for boj Moving over to normalized components based on
a division of the components of M by the associated standard deviation may also be
recommended.

2.2.5.3 The Singular Value Decomposition (SVD)

A method in close relationship to the PCAbased on the eigendecomposition is the
SVD [59]. The SVD is based on a segmentation of the m x n matrix A=U - S - vT,
where U is am x m matrix with U -U” =1,,, V an x n matrix with V- V' =I,, and
S a rectangular matrix with the same dimension as A. Only the diagonal entries s;;
(i < min(m,n)) of § may be nonzero elements and they can be arranged in an order
of decreasing magnitude s1; > s22,.... The positive diagonal elements are called
singular values. Let us now decompose

1

n—1

A= -M=U-S-VT. (2.74)
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Then we can approximate the random vector X by using only the greatest m’ singular
values by o
X~u+U-§-Z (2.75)

where u = (fiy,flz, -, )7, U is a m x m’ matrix, § is a m’ x m’ matrix, and Z =

(Z1,Zy -+ Zpy )T is an m’-dimensional random vector that is built up by uncorrelated
random variables Z; with mean value 0 and variance 1. For details to SVD see [57].

2.2.6 Special Problems Describing Random Variables

2.2.6.1 Inter-Die and Intra-Die Variations

We distinguish between inter-die variations and intra-die variations. Inter-die
variations are constant inside a die, but variable from die to die. Intra-die variations
are variable inside a die.

Inter-die variations cause a shifting of the mean values, whereas intra-die
variations are spatial correlated random variables or even location invariant random
variables on a die.

Differences of process parameters are caused in the fabrication process (pollu-
tion, material, and lithography defects), the environment (changes in temperature
and power supply) as well as physical effects (local focused temperature fluctua-
tions, electromigration).

With more and more shrinking structures, the intra-die variations increase.

The inter-die variation of a given process parameter can be described by

X; = Xnom + AXinter, (2.76)

where xpom denotes the nominal value and AX is a random variation being constant
for all elements of this die.
The intra-die variation of a process parameter is

Xi = Xnom + AXinter + AX(‘;: ) 77), (2.77)

where (&,7) means the spatial position on the die.

An easy mathematical model is given by [60]. The intra-die variation is an
uncorrelated random variable plus a spatial correlated random variable (both of them
are normal distributed).

Rao et al. [71] suggest a model for leakage estimation accounting for both inter-
and intra-die variations, basing on relationships (exponential function like) between
leakage current and gate length. The gate length of device can be described by

Ltotal,i = Lnom + ALinter + ALintra,ja (278)
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where the leakage is given by a sum of lognormal distributed random variables. This
relationship allows a split-up into the fractions of inter-die and intra-die variations.
In particular, increasing intra-die variations effects a strong increasing leakage.

2.2.7 Transformation of Random Variables by Analytical
Methods

2.2.7.1 Response Surface Methods

The Response Surface Method (RSM) was introduced by Box and Wilson [61].
A response surface can be thought to be a description of a physical relationship
by a mathematical model. Aim of response surface techniques is to find a good
approximation to describe dependencies y = h(x). To construct such functions 4 in
an optimal way, a sequence of so-called designed experiments has to be carried out.
Also, simulation runs are of that kind.

To investigate and visualize response surfaces, so-called contour diagrams are
suitable (parts of response surfaces, where one or two parameters are changed and
all other are kept constant). Kinds of applications of response surfaces are

* Approximate mapping within a limited region
* Choice of operating conditions to achieve desired specifications
* Search for optimal conditions.

Candidates for response surface models are any analytical functions as for instance
polynomial approximations. For a first step, linear relationships (first-order designs)
often are satisfactory, for more detailed studies higher order polynomial (higher
order designs), transcendental, or other special approaches can be made.

As mentioned before, model building is based on experiments in order to
approximate the mapping between input and output variables of a system. Output
values are determined for special sets of input values. In our case, outputs may
be performance values as delay, leakage currents, and power dissipations, whereas
inputs may be process parameters or temperature and supply voltages. We would
like to briefly discuss the procedure how to set up and evaluate these experiments.

The objective of a designed experiment is to describe changes of the performance
parameter y in relationship to changes of the process parameter vector x. To
investigate those relationships, all process parameters must be varied, otherwise
relationships can be distorted by unrecorded hidden process parameters. A norming
of input parameters guarantees an equal treatment of all process parameters.
Transformations of the process parameters have the effect to changing the scale,
expanding it on one part, contracting it on the other. They cause changes of
the variances and further characteristics, which can be compensated by adequate
weightings.
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A factorial design calls a design, which is running over all combinations. With n;
levels of values of x;, i = 1,2, ...,m, the number of test runs of the factorial design
isny -ny---ny. In general, factorial designs estimate the response surface with great
accuracy with a minimum of residual variance. Optimal designs are described for
multiple response surface approaches. In many cases, an optimal design is a regular
rotatable (rotational symmetric) operating design, e.g., for a first-order design (linear
function) a regular m-dimensional simplex with m+ 1 vertices and for a second order
design (quadratic function) an m-dimensional cube with 2 vertices.

With increasing number m of input parameters response surface approaches will
be more and more expensive. A possibility of simplification is the reduction of the
number of process parameters that considerably influence the result by a correlation
analysis. Let p(Z;,Z,) be the linear correlation coefficient between two random
variables Z; and Z,, all those process parameters x; can be omitted, where the
absolute value of p(X;,Y) does not exceed a given threshold value.

In order to make all process parameters X; equitable, a standardization is useful:

_Xi— i
O'i’

X/

1

(2.79)

where ; and o; are mean and standard deviation of the original unstandardized
random variable X;. From now, all X/ are of mean ] = 0 and standard deviation 6] =
1. If they are normally distributed, 99.73% of X; are inside the interval [—3,+3],
called the 30-limit.

To compare different response surface approaches, an iterative approach is
suggested. It helps to select an appropriate approximation — linear functions,
nonlinear with or without coupled terms, or more complicated analytical functions.
The coefficients are determined via the least square method by minimizing the
quadratical errors. The empirical residual variance

ORes = - 3 (i —hix)? (2.80)

n—m—1%4

shows the goodness of different approaches. The relationship with the smallest Oyes
will be the best.

Extensions and special cases are studied in many papers.

The so-called “black-box model,” its meaning and working techniques for
polynomial approaches with noncoupled or coupled terms are introduced in [62].

A weighted least square method, which calculates sensitivities additionally to the
response surface is studied in [63].

An optimal design via response surface analysis by discussion of coupled terms,
orthogonality and rotatability is introduced in [64].

An extension to nonnormally distributed and coupled characteristics, including
the calculation of higher order moments is made in [65].

Response surface techniques are basic tools to investigate the statistical behavior
of any performance parameter y.
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2.2.7.2 Linear Models

Let us assume that the RSM delivers us a linear (more exact affine) dependency
between the input parameters x and the performance value y. That means,

m
h:2 CR" — R, )ﬁ’_)y:ynom‘i’QT ) ()_C*E) :ynom+zai'(xi*.ui)-
i=1
2.81)

Equation (2.81) is similar to a Taylor series expansion around x,,,, = U € & C
R™ with the function value ymom. The components of a can be determined by the
parameter sensitivities at the operating point. However, it might often be better to
determine them via the difference of the performance values for different x values.
This might give a better approximation for the whole domain & of the function A.

The linear approach (2.81) offers the opportunity to study the random characteris-
tics of the performance variable Y = h(X) in special cases by analytical methods. We
assume that X is N(u,X) multivariate normally distributed as described by (2.38).
Thus, it follows o

E[Y]=yoom=a" - p. (2.82)

If we use the representation X = it + G- Z, where ¥ = G- G! is segmented by a

Cholesky decomposition and Z is N (0,1,,) distributed (see (2.40)) we get
E[(¥ =yum)’| =0} =E[(a"-6-2)"| =a" -G 1,,-G"-a=d"Za. (283)
That means, Y is N (ynom,gTZg) distributed.

Sum of n Uncorrelated Normal Distributed Random Variables

The last relation was already used in the Sect.1.3.1 in order to discuss the
consequences of inter-die and intra-die variations. Let X be a n dimensional
N((t, 1, u)T, o?-1,) distributed random vector. Its 7 components are uncor-
related and N(u,c?) distributed. Using (2.82) and (2.83) and a” = (1,1,--- ,1)2,
we see that the sum of n uncorrelated and N(u,c?) variables is N(n - u,n - 6?)
distributed. This fundamental result will also be used in Sect. 5.3.2.2 to characterize
strings of resistors. The situation is more complicated if 4 is not a linear map.
Sophisticated solutions can be found for special cases. Let y = h(x) = ;"lel.z
and X; independent standard normal distributed variables X; ~ N(0,1). Then Y
is y2-distributed with m degrees of freedom. Further rules can be established for
products and other complicated relationships. The distribution of the ratio of random
variables will be discussed in Sect. 5.3.2.
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Determination of the Worst Case Point in the Case of Linear Models

A worst case point x*¢ is the most likely parameter set at which the performance
of interest is exactly at the specification limit y¥° under worst-case operating
conditions. Let i describe the relation between performance values and process
parameters under worst case operating conditions and fy the PDF of X. The
following relations have to be fulfilled

fx (™) — max (2.84)
h(x™) = y™©. (2.85)

For the linear model using (2.81), we can also analytically determine the worst case
points. Considering the PDF of the multivariate normal distribution (2.38), the worst
case point x™° has to fulfill the following conditions

T
()_cwc - E) s (EWC - E) — min (2.86)
Ynom +QT : ()_CWC - E) =y (2.87)
Using the substitution x™* = u + G- 2", we can formulate the equivalent problem

(2¥)T . 2% — min (2.88)
a" - G-2% =y — yuom. (2.89)

The second equation (2.89) represents a line and the first one (2.88) measures the
shortest distance between the origin of the coordinate system and the line. Thus, z%¢
must be a multiple of (a” - G)T = G” - 4. Finally, we get

WC
Y~ — Ynom >.a (2.90)

wC __

for the worst case point. The norm of the vector x*© — u is called worst case distance.

Figure 2.11 demonstrates the situation described by (2.86)-(2.90). We can give a
geometric interpretation for this figure. The worst case point is that point where the
line in the domain region of / that belongs to the specification limit y" touches an
m-ellipsoid given by (2.39).

We have to distinguish between a worst case point and a corner case point. The
corner case point is usually determined by deflecting all components of the random
vector X by an arbitrary fraction of the respective standard deviation toward the
specification limit. That means, a corner case point is given by

X=p+v- VE. sign(a) - sign(y** — Ynom), (2.91)

where £ is the matrix that only contains the diagonal elements of the covariance
matrix X. All other elements are zero.
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Fig. 2.11 Example of the position of a worst point x*¢ for a linear model

2.2.7.3 Second-Order Models

Another special case is the description of the response surface by a quadratic
function. Such a function can be represented by

h:ZCR"—R,  x—=y=ypom+d @—p)+x—pw) B (x—p) (2.92)

a and B are an m-dimensional real vector and an m X m real-valued symmetric
matrix, respectively. This special case offers the opportunity to determine the
moments of a performance variable Y = A(X) in an easy way if X is a N(u,X)
multivariate normally distributed random vector. The idea behind is to transform A
in such a manner that Y is the sum of independent random variables. We will briefly
figure out how this transformation can be carried out.
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If we use the representation X = i + G -Z where £ = G- GT and Z is N(0,1,)
distributed (see (2.40))°, we get

Y =Yom+a -G-Z+Z"-G"-B-G-Z. (2.93)

G" -B- G is also a symmetric matrix with a rank r < m. A spectral decomposition
delivers GT -B-G = P-D - P”, where D = diag(A;,--- ,A,,0,---,0) e R"™" is a
diagonal matrix that contains the eigenvalues. P- PT = I, with P € R"™ ™ is built up
by all normalized eigenvectors that are pairwise orthogonal. We can now introduce
the substitutions Z = PT -Zand Z= P-Z and getwithd = P".G" -gand completing
the square sum expressions in (2.95)

Y =yoom+a' -Z+2 -D-Z (2.94)
r . -5 m .
Y:ynom'i‘z(di'z,"i‘)bi'z,‘ )+ 2 ai-Z; (2.95)
i=1 i=r+1
r dz r B di 2 m 5
Y:)’nomfzzt—iﬁLzli' (Zi+ﬁ> + Y ai-Z; (2.96)
1M ia i i=rt1

The random vector Z = PT - Z is also normal distributed with mean value
E [X] = 0 and covariance matrix E {ZZT} =E [PTZ~ (PTZ)T} =P'.I1,-P=1,.
That means Z is also N (0,1,,) distributed. As a consequence, it follows that Z is built
up by a constant and a sum of independent random variables. This makes it easy to
determine not only E [Y] = ynom + X/_; A; but also higher order moments of Y.

This characteristic can be used to determine marginal probabilities at the tail of
a distribution using the saddle-point method [66].

2.2.7.4 Higher-Order Polynomial Models and Central Moment

Calculation Method
Knowing a polynomial relationship between the performance parameter Y and the
process parameters X;,X»,...,X, in the circumference of a working point x;.
Model Assumptions

The probability density function of each process parameter is assumed to be
symmetrically with respect to the x;. Therefore,

EX,' = )_Ci = Xo;- (297)

3PCA can be applied in the same manner.
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The symmetry causes that the central moments for each X; of odd order are
W(X;) =0, k=1,3,5,..., (2.98)

and the knowledge of the second, fourth, ..., central moments (the even ordered)
is assumed, as well as the independence of the process parameters, e.g., there is
no correlation between X; and X;, i # j. The central moments of odd order are
especially zero for normal distributed random variables (see also Table 2.5).

Then the corresponding moments of Y given by

k
m
EY"_E<a0+Zai X; — Xj +22b,, X; xjx,-)> , (2.99)
i=1

i=1j=i

can be calculated explicitly applying the relations recapitulated in Sect. 2.2.2.

Example.
m
y:ao—i—za[ X; —X; +22le —%;)(xj —X;) (2.100)
j= i=1j=i
leads to
m
EY =ap+ Y biiha(Xi), (2.101)
i=1
m m
EY? —a%—i—z(Zaobl,—i-a )[.Lz )+ 2 2 blj‘uz j)+2bi2i“4(xi)-
i=1 i=1 j=i+1 i=1
(2.102)

Analogously, the higher moments of Y can be calculated. This approach can be
made for higher order polynomials equivalently. If a relationship y = h(x) and the
moments of the process parameters X; are known, the central moment calculation
method allows a simple evaluation of the moments of the performance parameter Y,
see Zhang et al. [67].

2.2.7.5 Analyzing Models by Numerical Calculations

Knowing the joint probability density function of the process parameters
Sx(x1,x2,...x,) and the relationship describing the response surface y =
h(x1,x2,...,Xm), we need to determine the distributional characteristics of the
process parameter Y.
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The CDF is given by the integral formula

Foo oo
Fy(yo)ZP(Y<y0)= // fx(xl,xz,...,xm)dxldxz...dxm, (2.103)
oo oo

h(x)<yo, m integrals

or transforming the integral by use of the Jacobian

d(xi,... ox;
|]| _ ’ (-xla axm) _ i , (2.104)
a(xl;"'vxl'*layaxljrlv"'axm) ay
Yo oo Aoo
Fy(yo):/ /"'/fx(xl,---,xifl,xi()’),xiﬂv---,Xm) || dxy...dx; 1dxiyg. . .dx,dy,
Joo Joo oo
m—1 integrals
(2.105)
and analogously the corresponding PDF
+oo oo
fr(vo) = // Tx ety i 15X (90) X 1+ Xm) =y
Jeo oo
m—1 integrals
XMI...Mi,IMi+1...dxm, (2106)

which can be evaluated by numerical integration. For a fast and efficient numerical
evaluation, the Gauss integration procedure is suggested.

If there is a large number of process parameters, the numerical calculation will
be more and more time expensive and inaccurate.

A further possibility is an imitation of the Monte Carlo simulation. Knowing
the relationship y = h(x), we can calculate the values y; corresponding to the
configurations x1 j, X2 j,...,%n,j, j = 1,2,...,n without a simulation run for a large
number n. Knowing the residual variance 03, of the response surface, the value y;
can be adapted by addition of a normal distributed random variable Z ~ N(0, Ores)-

2.2.8 Transformation of Random Variables by Numerical
Methods

2.2.8.1 Basic Concepts of Monte Carlo Simulation

The Monte Carlo simulation is a method for uncertainty propagation, where the
goal is to determine how random variations, lack of knowledge, or errors affects
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the sensitivity, performance, or reliability of a circuit, cell, chip or system that is
modeled. Monte Carlo simulation is categorized as a sampling method because
the inputs are randomly generated from probability distributions to simulate the
process of sampling from an actual population. So we try to choose a distribution
for the input data that best represents our current state of knowledge. Practical hints
how to generate random number for several distributions can be found in [68] and
the Appendices B.1 and B.2. The results generated from the simulation can be
represented as probability distributions (or histograms) or converted to error bars,
reliability predictions, tolerance zones, etc.

Monte Carlo simulation is a random experiment, applied if an analytical
description of the system seems to be hardly or not possible. Simulations of
integrated circuits (transistors, library cells, chips, etc.) are among this category.

To obtain sufficiently many values y; = h (&) for the performance value of
interest, a great number n of simulations has to be made via suitable software tools,
where the process parameters x; are random samples considering their probability
distribution. The determined values y; impact an impression on the probability
distribution of the random variable Y. To carry out an appropriate number n of
simulation runs, we check the confidence of the simulation results.

As a result of the Monte Carlo simulation runs, we can estimate the expected
value of Y by (2.35).

The estimated fi value is itself a sample of a random variable M. This random
variable is the nth part of the sum of n independent random variables Y; with the

same distribution as Y. Thus, the mean value of M is E [Y]. If we know the standard
Yig? ol _ o

The precision of the sample means improves with the square rog of the sample
size. This is called “Square-Root Law.”

Because of the Central Limit Theorem, the sum and also the nth part of the sum
will converge against a normal distribution. Thus, based on (2.30), we get (z > 0)

deviation ¢ of Y, then the standard deviation of M equals Y-9-

p—E[Y —a/2
PI‘Ob( T[] S Zloc/Z) = (Zlfa/z) - (*Zlfa/z) = erf( \/Oi/ > =l-«
v 2
(2.107)
with the CDF of the N(0, 1) distribution is @. o is called significance level:
N (& N (o
H—Zlfa/z'%SE[Y]S[J—FZFO{/Z-%. (2.108)

E[Y] belongs with the probability 1 — & to the confidence interval given by
(2.108). The so-called 1 — /2 quantiles or percentiles @ (1 — ¢ /2) = z)_y2(=¢)
of the standard normal distribution and 1 — ¢ probability values that correspond
can be found in Table 2.4 and also in appropriate references. We get for instance
21— =1.959...and 1 — o =0.95.
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Fig. 2.12 z;_,; (dashed line) and t,_ 5,,1 values depending on n for 1 — o = 0.95 (left) and
1-a=0.99

If the standard deviation o is unknown, it can be estimated using (see (2.36))

62 =

1 n
n—15

(i —)*. (2.109)

Substituting @ in (2.107) by the CDF of Student’s t distribution with n — 1
degrees of freedom it can be shown that

2
i—E[Y a2 1 n-1
Prob( HT[] Stla/z;N1> :1< 1 oc/22,n 1 ;_,n )zl—a,
T n_1+t170¢/2;n71 2° 2

(2.110)

where I(z;a,D) is the regularized Beta function. #;_, /2:n—1 18 also known as the 1 —
/2 (one-sided) quantile of Student’s t distribution with n — 1 degrees of freedom.
Thus, E [Y] belongs with the probability 1 — o to the interval given by

A A

~ (o) R o
“_tlftx/z;nfl'% <E[Y] S“""tlfa/z;nfl'%- (2.111)

For the probabilities 1 —a = 0.95 and 1 — o = 0.99, the Fig.2.12 represents
Z1—q/2 and f1_g /3,1 values depending on the number n of simulation runs.

It follows from (2.107) and (2.110) that for a given significance level the number
n of required simulation runs only depends on the standard deviation of the observed
random performance variable Y and not of the number of random parameters X;. For
values greater than 30... 100, there is only a small difference between the z and the
t curves. That means for greater values (2.108) describes the confidence interval for
known as well as for the estimated standard deviation of Y. To check the confidence
interval using (2.108) the evaluated samples y; must be generated independently.
If this is not the case, other methods to determine the confidence interval must be
applied. Bootstrap methods are, for instance, recommended in such cases. They are
especially of interest, when the characteristic under investigation depends on the
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probability distribution of Y. We assume that the results of s simulation runs can be
used to determine one value of such a characteristic. The standard bootstrapping
technique bases on a resampling of the results y; of the simulation runs. The
elements of b bootstrap samples (y;;,;,,---,Yj,) With k = 1,...,b are obtained
by random sampling of the original y; with replacement. Based on the b bootstrap
samples, the expected value of the characteristic and the associated confidence
interval are estimated [69].

Example. Let us apply (2.108) to a simple example. The domain of Y shall be
the set of the values 0 and 1. The last value shall announce that a performance
variable (for instance the delay) is behind its limit. We are interested in the
probability p that the specification limit is violated. Assuming n simulation runs
are carried out. We observe n; times the value 1. We estimate p = ’—:ll and "72 =
nl-(lf%l)er(nfnl)-(Of%l)z ”l,ﬁ

1) = n_(nfl) ~ ﬁ'(lr:ﬁ). Thus, it follows that the number of

Monte Carlo simulations runs to assure that the probability p belongs to the 95%

confidence interval [p — v, p+ v p] must meet the inequality 1.959 M <vp.

> %5292 . I’T” ~ % . 177”. If we accept a value
v = 0.1 = 10% and expect, for instance a marginal probability p of 10~* = 0.1
promille it follows n must be greater about 4 - 10°. Thus, more than a million

simulation runs are required. This shows the limitations of the method.

Therefore, it must be required n

The Monte Carlo simulation is a simple and ubiquitous applicable utility in the
investigation of complex systems, if there is any uncertainty of the behavior of the
process parameters. However, the Monte Carlo simulation may reach its limits in
some application case because of the computational effort and/or the accuracy of
the results. That is the reason, why more efficient approaches must be investigated
[70]. Special strategies have been developed to reduce the number of simulation
runs such as stratified sampling, importance sampling or Latin hypercube sampling
(LHS). For instance, Latin hypercube sampling generates a characteristic collection
of parameter values from a multidimensional distribution. These methods are
especially of interest in cases, where small probabilities have to be determined with
a high accuracy. Yield analysis requires such methods. This will be discussed in
more detail in Sect. 4.6.

2.2.8.2 The ANOVA Method

ANalysis Of VAriance (ANOVA) is a method to detect significant differences
between samples. It can be thought as a generalization of the simple #-test. The
ratio of the mean square between different samples and the mean square within a
sample is calculated. The exceedance of a critical value given by the F-distribution
indicates significant differences inside the data set. It allows to distinct between
random and systematical differences. The assumptions for ANOVA are
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Independence of the cases
Normality (distributions of the residuals are normal)
— Equality (variance of data in groups should be the same).

2.2.8.3 Variance Reduced Monte Carlo Approaches: Importance Sampling

As shown in the last example the standard Monte Carlo approach requires a huge
number of simulation runs to estimate small probabilities with an appropriate
accuracy. However, the accuracy can also be increased if an estimator with a lower
variance can be applied. This is the basic idea behind variance reduction methods as
stratified sampling and others [70].

One of the methods that is aimed at the same objective is importance sampling.
Instead of the original probability density function, a modified function is used
to generate random samples of parameters. Broadly speaking, it is tried to apply
a modified function that delivers more performance values in the critical region
of interest than the original one. That is, values are sampled with respect to their
importance. We will try to figure out the basics.

We assume that the parameters can be described by a multivariate random
vector X with the PDF fx. The relation between parameters and the (univariate)
performance value under investigation is given by a function #: 2 C R" — R.
Thus, the performance value ¥ = 2(X) is also a random variable with a PDF fy. We
are now interested in the probability I = Prob(Y > y"°) that the performance value
is greater than y"¢ € R. For instance, to determine small values of [ is a typical
task if yield shall be investigated. We will now figure out some basic steps using
importance sampling. The wanted probability is given by

1= [ s @.112)
JyWe

The idea is now to evaluate the equation

- [ fr(y)

= gy (y)dy, 2.113
e ar(y) ST (2.113)

where gy is used instead of fy as trial distribution. To estimate I, random values
distributed with the probability density function g are generated. Thus after n
simulation runs, / can be estimated by

"8y Lo L o)

~o
I
=g
= |
|~
g
Q
S| =
VM:
=4
—
=
~—

(2.114)
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with

0 f . < WC
8(yi) = o=y (2.115)
1 fory; >y%*

The standard deviation o; of the estimator I can be determined by (see for

instance [72])
1
o; 1 (DL 2
—~=—|=-1 2.116

I n (IZ > ( )

with I = [ fY dx and I given by (2.112).
The main and dlfﬁcult task is to find a good distribution gy that can be applied in
importance sampling. In theory, the best distribution is given by [73]

80 fr(v)
Jyve fr (v)dy’

Looking at (2.116), this probability density distribution would be indeed the “best”
choice and deliver an estimator with standard deviation zero. However, this is
of little practical interest because the value / we want to estimate is needed as
denominator in (2.117). But what we see is that the shape of gy should be near
() fr(v).

Importance sampling by scaling and translation are widely used with the density
functions

bestoy (y) = (2.117)

gr(y) zéfy (5) (2.118)

and

gr(y) =fr(y—o), (2.119)

respectively. Of practical importance is the usage of a mixed density function using
the original distribution fy and r (at least one) other distribution h;,, [74]

<1Z)L> +ZA hiy (y (2.120)

with 2{:1 Ai<landVi<i<, A;>0.

Nevertheless, the choice of an adequate trial function gy for importance sampling
remains a critical task. If the performance value Y depends on a random parameter
value X, practical experience show that importance sampling often only can be
applied if a low number of parameters has to be considered.

Example: A typical case is the case where Y is normal distributed. We try to use
a translated function (2.119) as trial function for the importance sampling analysis
of (2.112). It can be shown that in this case the standard deviation of the estimator
(given by (2.116)) is a minimum when ¢ =~ y¥°. If Y depends on random parameters
X with a multivariate normal distribution fx with mean value y, then the mean
value of an appropriate trial function should be the associated worst case point x™°
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Fig. 2.13 Example for using standard Monte Carlo approach and importance sampling

This is the point of the acceptance region’s border with the greatest probability.
Thus, a possible choice for the mixed density function is

gx(x) =(1-2) fx(x) + A fx(x— (" —p)) (2.121)

with a A between 0 and less than 1, for instance A = 0.5. Then the I value can be
estimated by

I~ % ig (h(x,))- Jx(x7)

i gx(x)

Figure 2.13 demonstrates the procedure.

(2.122)

2.2.9 Evaluation of Results

2.2.9.1 Statistical Tests
To check the distributional properties of some performance parameters the following
statistical tests can be useful

— x%-test of goodness of fit
— Kolmogorov-Smirnov test.
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They allow to compare the CDF Fy of a random variable ¥ with that of a
theoretical one F*, or even two CDF’s Fy, and Fy, of Y} and Y>.

Furthermore, the independency of Y| and ¥, can be checked by the y>-test of
independency.

2.2.9.2 Discussion to the Extreme Value Behavior

The extreme value theory is a very promising application area for an evaluation of
the quality of integrated circuits. There are manifold methods to investigate the so-
called tail behavior, to evaluate probabilities P(Y > yg,) for great differences of a
performance parameter from the working point.

One of them is the peak over threshold (POT) method.

Its basic idea is the approximation of the sample by a generalized Pareto
distribution (GPD) function

- 1—(1+Q)71/5, §#0
Geplr) = 1exp(%), £E=0,

where the parameters & and 3 are estimated from the sample by a maximum
likelihood method, being the solution of

zlog (1 +%> (2.124)

ko0 ok
EB+&H  1+8&

(2.123)

(2.125)

where k is the number of excesses y(1>,y(2), . ,y(k) of a threshold value yy, in the

sample yi,y2,..., V.
For basics in extreme value theory see [75-77]. Applications in the field of
microelectronics do not seem to appear in the related literature so far.

2.2.9.3 Projection from Cell to Full Chip

Knowing performance characteristics of a single cell, extrapolation methods to more
complicated structures are desired. An example is the extrapolation of the leakage
from a single cell to a full chip.

In the traditional cell leakage analysis, the leakage of a cell is given by

m

log(lcen) = ao+ Y, aixi, (2.126)
i=1
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where the x; are AV, ATk, AL, ... and ag,a;,as,as, ... real coefficients and the
leakage of a full chip is given by the sum of the particular cells

n
Ichip = X Icen,i, (2.127)
i=1

where 7 is the number of cells in the chip.
An extended leakage analysis (cf. [78]) is that basing on a quadratic response
surface
log(Ichip) = x" Ax+b"x +c, (2.128)

where A means a full rank (n-n)-matrix, n ~ 10°, a vector b € R" and a real
constant c.

To reduce the costs of the calculation of a full matrix, a low rank matrix A is
determined, A is a sum of dominant eigenvalues and eigenvectors of the matrix A,
where the difference HAf;&H 7 is minimized, [|-|| denotes the Frobenius norm.
This step reduces the modeling costs by a factor of approximately 10?...10%.

A further extension , the so-called incremental leakage analysis facilitates a quick
update on the leakage distributions after local changes to a circuit. The change of a
few terms is much cheaper than a full new calculation. Simple replacements of Igel‘lil

by Ig;‘l", allow to update the calculation of Icp;p.
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Chapter 3
Examination of Process Parameter Variations

Emrah Acar, Hendrik Mau, Andy Heinig, Bing Li, and Ulf Schlichtmann

Chapter 3 presents an overview on the sources of variations in the manufacturing
process. Section 3.1 deals with the so-called Front-End Of Line (FEOL) variations
that refer to the variations on the device level. Besides the extrinsic variability that
is caused by the imperfections of the manufacturing process, the intrinsic variability
due to atomic-level differences is gaining importance. At the nanoscale level, even
an uncertainty of a few atoms may adversely affect the parameters and the behavior
of microelectronic devices. Some details are going to be figured out in the first
section of this chapter.

Besides transistors, the interconnections of devices play a decisive role in the
determination of the time and energy behavior of a circuit. Aspects of the intercon-
nect lines on a wafer are the subject of the Sect. 3.2 of this chapter. Back-End Of
Line (BEOL) variations impact these interconnect lines. Sources of variations will
be classified in the second section. Environmental and manufacturing factors will
be compared as well as spatial and temporal variations. The sources of variability in
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the basic Cu-damascene process steps are going to be presented. Essential variations
result from physical (e.g. interferences of light) and technological (asymmetry
caused by the Chemical Mechanical Polishing Process CMP) reasons. Mainly, the
interconnect lines are characterized by their resistances and capacitances to ground
and between lines. These characteristics depend on the width and thickness of the
wires, the distance between neighbouring wires, and the height of the dielectric
layers. The dependency of the resulting variations of resistances and capacitances
on process steps will be discussed.

Mathematical models to consider process variations will be presented in Sect.
3.3. Process variations have to be modeled in a way that allows for considering
them in simulation and analysis methods used in the design process. Therefore,
methodologies that reduce the complexity of problems, break occurring dependen-
cies of parameters down and try to eliminate them have been developed. Because
of the huge number of components and complex interconnections, it is important to
distinguish between important variations and less important ones in order to achieve
a result with reasonable computational effort. This requires a compromise between
precision and clarity for the designer. Time behavior is one of the most important
characteristics of digital circuits. For that reason, the last section specifically deals
with the delays of basic logic components and examines how variations affect time
behavior. In this context, different time constraints will be considered.

Emrah Acar wrote Sect. 3.1. Hendrik Mau and Andy Heinig are the authors of the
Sect. 3.2. The last Sect. 3.3 of the third chapter was prepared by Bing Li and Ulf
Schlichtmann.

3.1 Parameter Variations in the Manufacturing Process

During this decade, the experts were hotly debating about the end of device scaling,
which is still the major driving force of the contemporary electronics industry.
Since 1990s, we can see in many circles, the scaling had been claimed dead, as
late as 2005 on a major design automation conference by one of the most famous
technology company head expert. What was claimed was not about the end of the
ever-shrinking device sizes, printability of smaller feature sizes or smaller feature
size printability with the existing manufacturing capabilities, but more about an
admission of the end of the performance gains obtained by device scaling. One
of the major reasons for this misfortune is the existence of parameter variations
within the manufacturing process that are inevitable when the devices are shrunk all
the way to their, respectively, feasible limits with imperfect lithographic equipment
operations and material processing systems.

In this section, we will discuss the contributors to variability in CMOS devices.
In this section, we will categorize, outline, and discuss about the front-end of the
line variations, also referred to as device variations. These variations are physics
based and represent themselves as parametric variations in the device models, which
represent the physical behavior of the device and its interaction with the rest of
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Table 3.1 Categories for device variations ©IBM 2006

Temporal
Proximity Spatial Temporal reversible irreversible
Variation of chip Parameter means, Environmental, Hot-electron effect,
mean Lgate, Vin, fox operating NBTI shift
temperature
Within-chip Pattern density, On-die hotspots Hot-spot-enhanced
mean layout-induced NBTI
transconductance
Device-to-device Atomistic dopant SOI body history, NBTI-induced Vi
variations variation, line-edge self-heating variation
roughness,

parameter std. dev.

the systems. The parameter variations for the devices are major contributors to
variability issues in power, delay, temperature, and reliability of current integrated
circuits and must be assessed properly during the design stages.

Device variability, also known as Front-End Of Line (FEOL) variability mainly
refers to the variations at the device level. This affects the response of the most
active electrical components such as transistor devices fabricated in the silicon. As
previously discussed, the device performance is heavily influenced by the effective
channel length, poly gate length, spacer widths, gate-oxide thickness, and device
edge variations. Furthermore, there are other types of variations that affect the
device performance including atomistic dopant variations, self-heating, hot-electron
effect, negative bias temperature instability (NBTI), and history body effect for
SOI devices. When devices are fabricated and put in operation, these variations
can be observed by the corresponding device metrics including channel current,
threshold voltage, gate-leakage current, subthreshold current, etc. The variations in
these performance metrics are mainly caused by the parametric variations in the
device internals.

3.1.1 Categorizing Variability

An effective way of describing device variability is by utilizing a categoric approach
as shown in Table 3.1 [1]. This table is particularly useful to differentiate different
variation mechanisms and the domains in which they represent themselves. For
example, each row indicates variations that display according to their spatial
domains, that is, the variations of the chip mean statistics, and variations displayed
within-chip (also referred to as within-die), and finally variations displayed device-
to-device randomly. The temporal columns are variations displayed during the
operation of the device, some of which are reversible variations, meaning they
are transient in nature and have a reverse possibility by time. These are typically
reliability and aging variations concerning the life-time of the device and chip.
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Fig. 3.1 Random dopants in
a device ©A. Brown et al.,
IEEE Nanotechnology

3.1.1.1 Intrinsic Variability

Alternatively, we can categorize the device variations in terms of their physical
domains. [1] talks about intrinsic and extrinsic device variabilities, along with
placement-induced device variation, wear-out- and use-induced circuit variations.
In this categorization, intrinsic variations are due to the atomic-level differences
between devices even at the same layout geometries and operating/manufacturing
environments. Such differences exist in device dopant profiles, film thicknesses, and
line-edge roughness parameters due to the manufacturing process and equipment.
The random dopant profiles that are intrinsic in nature are very random and can
display major variations in threshold voltage especially beyond 65 nm technology
nodes. The causes for these variations are the implant and annealing process that
goes in a rather random positioning within the channel area. This has been a
hot topic area for quite some time [2]. By device scaling and decrease in the
dopant counts, the dopant variability within the channel area is highly emphasized.
Quantum-mechanical effects within the channel also increase the threshold voltage
variability along with doping in the gate [3]. Especially for small size devices, such
as SRAMs, this variation is highly significant and must be assessed carefully for
robustness and performance. Atomic-scale fluctuations in doping levels, and the
dopants positions also cause variations in source/drain areas, affecting the overlap
capacitance and source resistance. Figure 3.1 shows the randomly placed dopant
atoms in a top view of a device indicating the fluctuations in doping level causing
uncertainty in the source/drain edges.

Similarly, line-edge roughness (LER) effects further exacerbate the device
variations. LER is, an intrinsic device variation, mainly a product of lithographic
exposure process and uncertainties in photon counts and molecular composition of
the photoresist. Due to the LER, the line edge for the gate shows a noisy pattern
creating device length and edge variations.

Intrinsic device variations also include thickness variations for gate-oxide.
Currently, the gate-oxide thicknesses are less than 1 nm, in the range of a few inter-
atomic spacing. The variation in formation of the gate-oxide is quite significant for
tunneling leakage current, which varies exponentially. These intrinsic variations are
random for each device and are slated to increase for upcoming technology nodes
(Figs.3.2 and 3.3).
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Fig. 3.2 Line-edge
roughness example from
a SEM camera

Fig. 3.3 Gate oxide
variations reported in
©Momose et al., IEEE
Trans. ED, 45(3) 1998

3.1.1.2 Extrinsic Variability

Extrinsic variation is caused by the imperfections in the contemporary manufactur-
ing conditions. Unlike internal problems, it is not related to atomistic nature of the
device.

Extrinsic variation can represent themselves as sets of wafers, positional errors,
lens aberration, etc.

3.1.2 Variations from a Perspective for Model Parameters

[4] also discusses this topic in an introductory chapter and considered the device
variations within, categories more related to device model parameter terms, such
as short-channel effects, across—chip length variations, threshold voltage variations,
hot carriers, negative bias temperature instability, and body effect. [5] also shares
this perspective when the authors describe device variations in terms of model
parameters, such as device length, device width, and threshold voltage.
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Fig. 3.4 Schematic
cross-section of an
interconnect stack

global interconnect

intermediate interconnect

local interconnect

3.2 Variation of Interconnect Parameters

3.2.1 State-of-the Art Interconnect Stacks

Todays interconnect stacks are characterized by

* Up to 11 metal layers

¢ Use of low k material as dielectric
¢ Use of copper as interconnect

e Aspect ratio (h/w) of up to 2

* CD below A /2 of litho wave length

Figure 3.4 shows a schematic cross-section of an interconnect stack as used in
MPU designs [6].

Despite the replacement of Aluminium with Copper and the introduction of
low-k material as dielectric to allow further decreasing size of interconnect wire
dimensions, the resistance and capacitance have increased such that the interconnect
delay dominates over the gate delay as shown in Fig. 3.5.
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Fig. 3.5 Delay of interconnect and gate versus feature size

This domination of the interconnect delay made it necessary to model the
nominal values of parasitic capacitance and resistance but also their variability with
increasing accuracy to predict design performance and check functionality prior to
tapeout.

Although variations of interconnect stack parameters were always occurring,
with the increase of the interconnect delay this variability is now impacting the
parametric performance of modern designs increasingly, regardless whether looked
at Analog Mixed Signal or Digital routed designs.

3.2.2 Sources of Interconnect Variation

3.2.2.1 Classification Schemes

Before discussing the sources of variability for interconnects, it is helpful to recall
some of the main classification schemes for variations and variability factors briefly.
Since they are discussed elsewhere in much greater detail, a short overview will be
given only.
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Table 3.2 Comparison between systematic and random variations

Systematic variations Random variations

Variations in data due to factors causing Variations in data due to factors affecting
the parameter of interest to be shifted the value in a random manner. The
away from the expected value in a variation can be described by
given direction distributions.

e.g., lithography, pattern proximity e.g., line-edge roughness

Table 3.3 Comparison

- Environmental factors Intrinsic factors
between environmental and

intrinsic variability factors Occurring during the Process variations and limitations
operation of a causing variations in geometry
circuit and material parameters
e.g., temperature of the  e.g., variation in metal line thickness
environment
Table 3.4 Cpmpanson Spatial variations Temporal variations
between spatial and temporal — —
variations Variation in space Variation in time
e.g., variation of line e.g., degradation of conductivity due
resistivity across a to electromigration
wafer

Variations can be divided into systematic and random as shown in Table 3.2.
Depending on the level of understanding of underlying causes and the capability
to model those variations accordingly, often systematic variations are considered as
random due to their complex nature and difficulty to describe.

Another scheme is to separate variation based on environmental and intrinsic
factors causing them as shown in Table 3.3.

A third and quite often used scheme is dividing up variations into spatial and
temporal as Table 3.4 shows.

Spatial variations are occurring on very different scales. While intra-cell varia-
tions can be described on a scale of nanometer up to several microns, intrawafer
variations are on a scale of many millimeters. Figure 3.6 depicts the different scales
with their respective factors.

The large ratio of the spatial scales has important consequences when modeling
variability. For instance, the variability of the line thickness caused by changes in
the surrounding metal density can be modeled as a systematic way. However, while
this is true at the wafer level and downward to the die level, it is not valid anymore
at the standard cell level. At the time of designing those cells, the metal density
of the neighborhood is not known and the metal thickness cannot be modeled as
systematic but only as random. This affects the post-layout verification as well as
the formulation of models for the electrical behavior.
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Fig. 3.6 Subdivision of spatial variations and their respective scaling factors

3.2.2.2 Source of Variability in the Cu Damascene Process

The basic Cu-damascene process steps are

» Lithography
* Etch
e Cu Deposition

* Chemical Mechanical Polishing Process (CMP)

and causing random and deterministic variations. Random variations in the resis-
tance of the interconnect, for instance, can be caused by the grain structure of
the deposited Cu film as well as by the line-edge roughness of the trench caused
by the etching and deposition processes. Deterministic variations in the electrical
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Table 3.5 Measures of the metal interconnect and their variability with causing

process steps

Variation Cause Impact  Relevance
Trench CD or wire width Lithography, etch R,C High
Trench height or wire height ~ Etch depth, CMP removal R,C High
Trench depth ILD thickness variations, C High
etch depth

Barrier thickness Liner R Medium
Trench bottom shape Liner etch C,(R) Medium
ILD thickness Etch depth C High

parameters can be caused by dishing and erosion caused by the CMP process as
it is dependent on the metal density in the neighborhood of the interconnect line.
Figure 3.7 shows a schematic cross-section of a damascene Cu interconnect line.
The geometrical parameters used there are explained in Table 3.5 together with their

variability impact (Relevance).

3.2.3 Modeling of Variation of Electrical Parameters

of Interconnects

Table 3.5 lists the most relevant geometrical parameters determining the intercon-
nect variation. In a simplified model, those parameters can be used to model the
electrical parameter variation. Figure 3.8 shows the width w and the thickness ¢
of the trench, the height & of the dielectric layer, and the distance between the

neighboring wires.

With those parameters and the model as described in [7], the total capacitance
per unit length C' and resistance per unit length can be determined by
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Using a Monte Carlo approach, the RC-curve as shown in Fig.3.9 can be
obtained which is in good agreement with measured data.

The correlation plots in Fig. 3.10 show the impact of the variation of ¢, w, and
h assuming constant pitch s +w = constant on the electrical parameters. As can
be seen from the plots, the resistance depends strongly on the thickness of the line
and slightly on the width. The height of the dielectric does not have an impact as
expected. For the capacitance variation, it can be seen that the width and thickness
impact dominates in comparison with the height.
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3.2.4 Modeling of Variation in Post Layout Functional
Verification

When performing post-layout functional verification of electrical circuits, it is
necessary to check not only the correct function at nominal values, but also under
variation of the electrical parameters of transistor and interconnect parasitics.

The most common way is to determine the variability of height, width, and
thickness of the interconnect parameters used in Fig.3.8 from electrical mea-
surements and then to derive special backend corners based three sigma values
of the parameters. By doing this corners with maximum and minimum coupling
capacitance, maximum and minimal resistance as well as maximum and minimum
RC product can be derived resulting in a least seven corners.

Since this approach requires multiple post-layout extractions and resulting files
(SPEF, SPF, DSPF) contain data only of one particular corner, there have been
efforts to combine all into one extraction run and result file providing so-called
sensitivity extraction. This sensitivity extraction adds sensitivity data to the ex-
tracted parasitics about by how much a value will change based due to variation
of an interconnect parameter such as width.

3.3 Mathematical Modeling of Process Variations

Parameter variations can be classified based on whether the variation occurs within
one die (intra-die variations) or between different dies (inter-die variations). The
latter variation can further be classified into die-to-die, wafer-to-wafer, and lot-to-
lot, which however usually does not have a significant influence on analysis and
optimization approaches for the design. Process parameter variations are modeled
in parameters for transistor level simulation, which in turn are the foundation for
modeling on gate level. Gate-level models are typically employed for statistical
analysis and optimization during the design process. The timing and power behavior
of gates can be modeled in linear or higher-order dependency on the process
parameters. A linear model, commonly called the canonical model, has emerged as a
de-facto standard in research. Models also differ in how they account for systematic
vs. purely random variation, and how they incorporate correlation (both spatial and
resulting from the circuit structure). In the following, we will use gate delay as an
example to demonstrate the modeling of process variations. Other properties of a
gate, e.g., power consumption, may be modeled similarly.

3.3.1 Decomposition of Process Variations

Process variations are usually classified into different categories [8], as shown in
Fig.3.11. Systematic variations can be determined before manufacturing. Once
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Fig. 3.11 Variation classification, adapted from [8]

physical synthesis is finished, these variations can be measured and modeled with
fixed values. A typical example of systematic variations is the randomness of
interconnect metal thickness. After layout and routing, the patterns of interconnects
can be accurately analyzed. Therefore, the layout-related metal thickness variations
in different areas can be predicted. With this information, the resistance and
capacitance of interconnects can be modeled more accurately in sign-off analysis.
Regarding active devices, gate length is affected by variations in lithography for
mask optimization. These variations can be determined by computing the post-
OPC gate lengths on the critical path to achieve more accurate timing analysis
results [9]. In both cases, systematic variations are represented using fixed values
instead of statistical variables. This is more accurate than simply analyzing circuit
performance assuming random variations in metal thickness and from lithography.
Both effects, however, can be incorporated only after physical synthesis. During the
first iteration of logic synthesis, the circuit can only be optimized corresponding to
the performance by modeling systematic variations as random variables.

Unlike systematic variations, nonsystematic variations cannot be determined
before manufacturing. These variations result from the inaccuracy of process control
and are independent of circuit design. Therefore, they can only be modeled with
random variables in the complete design flow. Examples are variations in doping
density and in layout-independent metal thickness of interconnects.

According to their spatial characteristics, nonsystematic variations are further
partitioned into inter-die and intra-die variations. Inter-die variations affect all
devices and interconnects on a die equally, i.e., all devices and interconnects have
fully correlated random components. On a wafer, inter-die variations come from
the nonuniformity of process control across the wafer surface. Therefore, chips at
different positions have different performances. For example, the chips in the center
of a wafer are normally faster than the chips near the periphery of the wafer. This
type of variation is also called die-to-die variation. Similarly, wafer-to-wafer and
lot-to-lot variations exist because of process control between wafers and lots.

Intra-die variations affect devices or interconnects inside a die differently. The
physical parameters of two devices can shift in different directions, i.e. they are not
fully correlated. Intra-die variations come from the inaccuracy of process control
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across the surface of the die. For example, there is still a variation residue after
modeling the systematic and inter-die variations of critical dimension (CD).

Furthermore, intra-die variations can be partitioned into a correlated part and
an independent part. Although intra-die variations on devices or interconnects are
not fully correlated, they still show a similar trend to some degree. This trend can
be modeled by sharing the same variables as a part of intra-die variations, or by
establishing correlation between these variations directly. Besides the correlated
variation component, intra-die variations still exhibit a purely random effect. The
purely random variations come from the random fluctuation during manufacturing
processes, which thus imposes its effect on each device without correlation. Because
of the inaccuracy of manufacturing equipments and process control, purely random
variations exist in nearly every processing step. Examples are the random distortion
of the lens used during the photolithography step and the purely random variation
of the doping.

3.3.2 Correlation Modeling

Process variations are normally measured as a lumped distribution. Thereafter,
the measured data are decomposed into different components [10]. The overall
variations are then modeled as sums of these decomposed variables. Inter-die vari-
ations are shared by all devices or interconnects on the chip and cause correlation
between their physical parameters, called global correlation or inter-die correlation.
Because the uncertainties during manufacturing process vary continuously, intra-die
variations exhibit proximity correlation. This correlation depends on the distance
between two devices on the die [11]. The larger the distance is, the smaller the
correlation becomes. For convenience, the correlation from intra-die variation is
called local correlation.

Different methods are proposed to model correlation between process parame-
ters. The quadtree model in [12, 13] uses different grid layers to model correlation
between process parameters, as illustrated in Fig.3.12. For a process parameter,
a variable is assigned to each grid cell at each level. The process parameter of a
device is modeled as the sum of all the variables of the grid cells directly above
this device. The correlation between process parameters is established by sharing
the same variables of the corresponding levels. Because the variable at level O is
shared by all devices, it models the correlation from inter-die variation. The local
correlation is modeled by sharing the variables with higher level numbers. If two
devices are nearby on the die, they share more variables so that they have more
correlation. If two devices are near enough to be located in the same grid cell at
level 2, they become fully correlated. By increasing the number of grid, the accuracy
of correlation modeling can be increased. However, this model can not represent the
local correlation uniformly. For example, the distances from (2,4) to (2,1) and from
(2,4) to (2,13) are equal. From this model, the parameters in (2,4) and (2,1) share
the same variable at layer 1, but the same parameters in (2,4) and (2,13) do not
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share such variable. Consequently, correlations between parameters with the same
distance may be modeled differently in this model. This contradicts the fact that
intra-die correlation depends on distance between devices because of the proximity
effect during manufacturing process.

Another correlation model is proposed in [14]. In this model, the die area is
partitioned into a uniform grid, as shown in Fig. 3.13. For each grid cell, a random
variable is assigned. The correlations between these random variables are computed
or identified from the characterization of manufacturing technology, for example
with the method in [15]. For n grid cells on the die, in total n variables are assigned.
For the convenience of statistical timing analysis algorithms, the # correlated vari-
ables are decomposed into linear combinations of independent random variables,
using an algorithm such as principal component analysis (PCA) [16]. After this
decomposition, only the independent variables with large coefficients are kept in
the linear combinations, so that the number of variables modeling correlation can
be drastically reduced. This correlation model is very flexible because it can handle
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any correlation between process parameters. The only reason to partition the die
area to grid is to reduce the number of variables. For better modeling accuracy, a
smaller cell size can be used, at the expense of a larger number of variables and
larger correlation matrix. A similar correlation model is proposed in [17], where
hexagonal grid cells are used to partition the die area. The advantage of such a model
is that a grid cell in the partition has only one type of neighboring cell. Additionally,
the distances from the neighbors of a cell to it are equal. This makes the hexagonal
partition a better approximation in modeling proximity-related correlations.

Additionally, a correlation model is proposed in [18]. In this model, the die
area is partitioned into grid with square cells. A process parameter in a grid cell
is modeled as the sum of independent variables assigned to the corners of the grid
cell. That is, each process parameter is decomposed into a linear combination of
four independent random variables. This method can generate simple parameter
decomposition, but no theoretical proof is provided for accuracy. Additionally, the
method to map correlation data to the proposed model is not explained.

The correlations in the discussed models are all first-order. This is only enough to
model the dependency between Gaussian random variables. To incorporate higher
order dependency, methods such as independent component analysis [19] can be
used, e.g., in [20,21].

3.3.3 Process Parameter Modeling

The first step of statistical timing analysis is to model process variations in a form
that can simplify modeling of gate delays and arrival time propagation. A process
parameter is a sum of components modeling inter-die variations, intra-die variations,
and purely random variations. The additive form of a process parameter p is
written as

D = po+pg+pi+pr, 3.7

where pg is the nominal value of the parameter. p, models the inter-die variation
and is shared by all gates. p; is the intra-die variation specific to each gate and
is correlated with each other. p, is an independent variable modeling the purely
random effect in manufacturing processes.

The parameter p for a device may have Gaussian or non-Gaussian variations. In
[14,22,23], all process variations are assumed as Gaussian in order to reduce the
complexity of timing analysis. The Gaussian assumption, however, cannot provide
enough accuracy because only the first two moments of process parameters are
captured. To improve modeling accuracy, non-Gaussian variables are used in [24].
Additionally, the independent component analysis based non-Gaussian model is
proposed in [20, 21]. In both methods, the random variables representing process
variations can be in any form in addition to Gaussian.
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3.3.4 Gate Delay Representation

Statistical timing analysis uses abstracted gate delays to evaluate circuit per-
formance. A gate delay is defined as the time difference between points of
measurement of the input and output waveforms. For a given input waveform,
the output waveform of a gate depends on transistor parameters of the gate. For
example, the effective gate length affects the gate delay dominantly. Assuming that
all process parameters are denoted as a vector p, a gate delay W is expressed as

W= f(p), (3-8)

where f denotes the mapping function from process parameters to the gate delay.
The mapping function is theoretically very complex. Therefore, SPICE simulation
is often used to obtain accurate samples of gate delays.

With process variations considered, a gate delay becomes a random variable.
Because of the correlation between process variations, gate delays are correlated
with each other. For example, the delays of two gates vary in a similar way when
these gates are near on the die. When their distance is large, both gate delays exhibit
more randomness. In order to incorporate the correlation from process variations,
gate delays are described as simplified functions of process parameters, instead of
identifying the numeric characteristics, e.g., means and standard deviations, of their
distributions directly. In other words, the mapping function f in (3.8) is replaced
with a simpler form at the expense of accuracy.

The canonical delay model in [14, 23] uses linear mapping functions. A gate
delay in this method is expressed as

W = kp, 3.9)

where Kk is the coefficient vector and can be computed by sensitivity analysis [13],
or identified by linear regression [25] from the results of SPICE-based Monte Carlo
simulation.

According to (3.7), a parameter is partitioned into different parts. If each variable
in (3.9) is replaced into the form of (3.7), the gate delay is transformed as

W =kp, +kp, +kp; +kp, = Wo +kp, + kp; + pz. (3.10)

In (3.10), po represents nominal values of parameters and all its elements are
fixed, so that kp, can be merged into a constant Wj. Because the first-order moments
are merged into Wy, the means of p,, p; and p, are all zero. Representing inter-die
variations, p, is shared by all gate delays. p, models purely random manufacturing
effects, so that it is merged into one random variable p;. Unlike the other vectors in
(3.10), p; models correlated intra-die variations and needs further processing.

As discussed in Sect.3.3.2, proximity correlation exists between within-die
variables. Consider two gate delays W, and W,
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W, = WO,a+kapg+kapl,a +Pra (3.11)
Wy = Wop +KpPg +KpPrp + Prps (3.12)

where p; , and p; 5, are correlated random variables. During arrival time propagation,
these random variables cannot be merged because of their correlation. Additionally,
the correlation between p;, and p;; causes the computation of the correlation
between W, and W, to be very slow, as will be explained later.

In order to reduce the runtime of timing analysis, PCA [16] is used to decompose
correlated random variables. Assume that variable vector p; with m elements is the
vector containing all the correlated random variables modeling within-die process
variations, so that p; , and p;; both are parts of p. The correlation matrix of py is
denoted as C. Under Gaussian assumption, each element in p; can be expressed as
a linear combination of a set of independent components after applying PCA.

p=Ax=~A'X, (3.13)

where A is the orthogonal transformation matrix formed by the eigenvectors of
C. x = [x1,x2,.. .xm]T is a vector of independent Gaussian random variables with
zero mean. The standard deviation vector of x is formed by the square root of
eigenvalues of C corresponding to the eigenvectors in A. If there are eigenvalues
which are very small compared to other larger eigenvalues, the corresponding
variables in x contribute relatively less than other variables in (3.13). Therefore,
these variables can be discarded to reduce the number of the independent variables.
Assume X is truncated to x” with n, variables. The original intra-die variations can
be approximated by linear combinations of the n, independent random variables x".
A" is a column truncated matrix of A.

Because any random variable from pj can be approximated by a linear combina-
tion of X" by selecting the row of A" corresponding to the random variable, as shown
in (3.13), the gate delay in (3.10) can be written as

W =Wy +kp, + kA" + pr (3.14)

n
= co—i—zcivi—i—crv,, (3.15)
i=1

where A{ is formed by the rows of A" corresponding to the variables of p; in (3.10).
The gate delay in (3.14) is generalized into the canonical linear delay form [23] as
in (3.15), where v; are independent random variables and shared by all gate delays.
v, is the purely random variably specific for each delay. ¢ is the nominal value of
the delay. ¢; and ¢, are the coefficients of the random variables. The correlations
between gate delays are represented by sharing the same set of random variables v;.

In the canonical delay model (3.15), the mapping function f from parameters
to delays is assumed as linear. With such linear delay form, arrival times can be
propagated very fast with simple computations [23]. The expense of this simple
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assumption is the loss of accuracy [26,27]. To improve the approximation accuracy,
quadratic timing models are proposed in [18, 27, 28], where a gate delay is
mapped as a second-order function of process parameters. If PCA is still used
to decompose correlated random variables, a parameter in the quadratic form is
replaced by a linear combination of uncorrelated random variables. For a second-
order term, this replacement results in many cross terms, which make timing
analysis complex and slow. To reduce the number of cross terms in a quadratic
model, orthogonalization method is used in [27]. In addition to quadratic models, a
gate delay is mapped as a linear function of independent Gaussian and non-Gaussian
variables in [20,21]. A more general delay mapping method is proposed in [24]. In
this model, a gate delay is mapped as a sum of linear and nonlinear functions of
Gaussian and non-Gaussian random variables. Therefore, it can handle any delay
functions without limitation. Using non-Gaussian random variables can improve the
modeling accuracy of process variations; using nonlinear functions can improve the
accuracy of approximating the mapping from process parameters to gate delays and
interconnect delays. Both methods, however, increase complexity in the following
steps of statistical timing analysis.
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Chapter 4
Methods of Parameter Variations
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Chapter 4 presents various dedicated methods that support variability handling in
the design process. Using these methods, the designer can analyze the effect of
variations on his design and identify possible improvements.

An important requirement for modeling digital circuits is a precise characteriza-
tion of the used library cells. The first two sections are devoted to this task. In Sect.
4.1, models will be described which characterize the timing behavior of digital logic
cells. In addition, different approaches to model the timing will be explained. These
approaches will be evaluated with respect to their efficiency. The main part of the
section is dedicated to current source models (CSMs) which represent the frontier
of academic research. Their structure will be explained and an efficient concept
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for characterizing them will be shown. The first section draws the conclusion that
CSMs are well-suited to deal with the requirements of advanced nanometer process
technologies.

In Sect. 4.2 of this chapter, methods to generate individual cell models adapted to
the accuracy requirements will be presented. The approach is based on rapid higher-
order polynomial modeling. The developed methods enable an automation of the
characterization of huge libraries. The effectiveness of the approach will be shown
by experiments on industrial standard cell libraries which will demonstrate gate
level leakage characterization. However, this approach is not restricted to a special
circuit performance.

Statistical Static Timing Analysis (SSTA) is one of the advanced approaches that
handles variations of gate and interconnect delays in the design of digital circuits.
Therefore, Sect. 4.3 describes how SSTA works and which results can be expected.

Besides time performance, energy consumption is the second most important
constraint for the design of digital circuits. The static as well as the dynamic
energy consumption are going to be demonstrated in Sects. 4.4 and 4.5. Recently,
leakage power has become a more and more dominant performance limiter in
integrated circuit technologies resulting in limitations of downscaling. Thus, plan-
ning, estimation, and optimization of leakage power have become a major design
objective. Different types of leakage current are described in Sect. 4.4. In addition,
leakage models for logic cells and circuits will be introduced. Methods for leakage
estimation for a device will be described and generalized to larger circuit blocks.
Finally, parametric variability of leakage is also going to be discussed.

In Sect. 4.5, two aspects of dynamic power consumption are going to be covered:
first, a probabilistic method for the analysis of glitches and the additional power
caused by them, and second, a new digital simulation method for precise statistical
power estimation. The second approach uses cell libraries extended by additional
process parameter data which are accessed directly by the cell model during digital
gate-level simulation. This enables a process-dependent analysis of timing and
power as well as an increased simulation accuracy by direct consideration of signal
slope times, which is also suitable for advanced glitch detection.

Section 4.6 introduces the basics of a commercial tool that considers the
operating range and variations of the manufacturing process in order to increase
the yield especially for basic building blocks given on the transistor level. To this
end, the concepts of worst-case point and worst-case distance will be introduced
and applied on nominal optimization and a design centering procedure. The main
optimization steps will be explained with the help of an example.

Section 4.7 deals with concepts for robustness analysis. Robustness analysis aims
at determining the contributors to circuit performance variability. A measure for
cell robustness will be defined that takes into account the variability of different
performance parameters. Such a measure allows for evaluating and comparing
different realizations of a cell or a cell library with respect to their robustness. By
using different kinds of examples, the section provides several hints for the usage of
the robustness analysis.
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In summary, this chapter gives an overview on different aspects and current
possibilities that allow for investigating circuits with regard to manufacturing
variations and for reducing the influence of these variations on the final design.

Christoph Knoth and Bing Li are the authors of Sects. 4.1 and 4.3 respectively.
UIf Schlichtmann delivered contributions to both sections. Min Zhang and Markus
Olbrich are the authors of Sect. 4.3. Emrah Acar wrote Sect. 4.4. The Sect. 4.5 was
written by Markus Olbrich, Uwe Eichler and Joachim Haase. Authors of the Sects.
4.6 and 4.7 are Michael Pronath and André Lange respectively.

4.1 Characterization of Standard Cells

In industrial design flows, library standard cells today are represented in Nonlinear
Delay Models (NLDMs). This model and its limitations are described here. It has
been recognized since a number of years that this model appears to be increasingly
incapable of dealing with the requirements of advanced process technologies.
Almost a decade ago, the Scalable Polynomial Delay Model (SPDM) was proposed
as an alternative, but failed to catch on in industry. Today, the focus is on current
source models (CSMs). EDA companies have proposed two types of CSM, and
there is also much academic research on CSMs. Unfortunately, the term CSM
refers to significantly different approaches in the commercial realm (used by
EDA companies) and in academic research. The concepts and shortcomings of
commercial CSMs will be explained as well in the following as an overview of
current academic research on CSMs will be given. We will also describe how the
required CSM parameters can be determined by efficient characterization methods.

4.1.1 Introduction

Digital integrated circuits are typically implemented using at least partly a semi-
custom design methodology based on standard cells. These standard cells have been
designed, sized, and layouted individually. They are provided as libraries to the
design teams, which then use these cells to create logic functions. The important
information to describe a standard cell are logic function, area, power consumption,
driver strength, and timing. In this section, the focus is on timing information of
standard cells. Different delay models at gate level are reviewed. The approaches
are sorted by increasing accuracy, which also reflects the chronological order in
which they were introduced.

In the following, a logic stage is defined to span from the input of a logic
cell to the input of subsequent logic cells while including polysilicon and metallic
interconnect. With this definition, the total signal delay of a stage is given as

dstage = dintinsic + dioad + dic. 4.1)
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Hereby dinuinsic denotes the intra-cell delay contribution for switching transistor
capacitances and charging internal nets. dj,ag accounts for the time needed to charge
the attached interconnect and input capacitances of connected logic cells. dj. finally
models the propagation delay along the passive interconnect. Despite the formal
separation in (4.1), stage delays are definitely nonlinear functions and these three
influences cannot be distinguished so clearly. On the other hand, at the time of
generating the timing library for the standard cells, nothing is known about the
loads and interconnects which have to be driven. The only basis for all timing
models is the SPICE subcircuit file. It may include parasitic resistors and capacitors
from the layout extraction. By performing transient simulations with the individual
subcircuits, timing information is obtained and can be used to create a timing model.

4.1.2 Fixed and Bounded Delay Model

In the early days of IC design, power consumption was of minor interest and also
the potential for delay optimization on gate level was neglected. In fact, gates for
driving different loads have been sized to match a fixed, globally common, delay
value [1]. Since feature sizes were large, interconnect resistivity was small and thus
interconnect delay negligible. Hence, the total delay of a combinatorial block was
known before placement and routing as the number of stages in the longest path.

To meet the demand for more area and power efficiency while raising operating
frequencies, standard cells have been designed to have different delay values. Hence,
instead of a globally common delay value, each cell was described by an individual
fixed cell delay dipginsic- A variant of the fixed delay model is the bounded delay
model, which states a minimum and a maximum delay value for each cell. Despite
their limited accuracy, such models are still valid in early design phases for quickly
providing delay estimates.

4.1.3 Load-Slew-Models

With exponentially decreasing VLSI feature sizes and increasing instance count,
capacitive interconnect load and interconnect delay became significant. Since the
actual workload of a cell is unknown before place and route, delay models must
be parametric in terms of the capacitive output load. The continued shrinking of
feature sizes also involved lowering the supply voltage to reduce field strength
and leakage currents in MOS transistors. The reduced voltage swing required more
accurate signal models than the step function [2]. The new waveform model used
the transition time ¢rj,, also named slew or slope, to describe the finite time needed
for switching logic values. Avoiding ambiguous tails at the beginning and end of
transitions, slew refers to a voltage span from typically 10-90% or 30-70% of the
total voltage swing.
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Fig. 4.1 NLDM cell delay
lookup table

4.1.3.1 Nonlinear Delay Model (NLDM)

The nonlinear delay model (NLDM) is widely used in industry. It provides values
for output slew and cell delay as a function of capacitive output load Cipyq and
input transition time ¢ri,. These values are stored in lookup tables and are provided
for every timing arc, i.e., form every input pin to every output pin and for all
combinations of other input pins that make the cell sensitive to the switching input
pin. Figure 4.1 depicts the tabulated delay values for a buffer cell. The values of
Cload and try, are usually stored together with the lookup table.

Generating NLDMs is done by attaching capacitors of different values to the
output of the cell and applying input signals with different transition times. Usually,
the waveforms are smoothed ramp waveforms which represent typical waveforms.
For each of these combinations the delay values and output slew are measured. The
values are stored using one of different industry standard timing formats: Synopsys’
Liberty format (.lib), its extended version Advanced Library Format (ALF), or
Cadence’s Timing Library Format (TLF).

4.1.3.2 Handling Parameter Variation

The cell delay obviously is also a function of process parameters such as oxide
thickness as well as the environmental parameters supply voltage and temperature.
To account for their impact, cell performances are analyzed at different points of the
parameter space, denoted as Process-Voltage-Temperature (PVT) corners (see also
Sect. 2.2 and [3]). The PVT corners are obtained by enumerating all permutations of
parameters being set to their bounds or three sigma values. Since the delay is usually
monotonic in a parameter, the PVT corners are the parameter vectors for which the
cells have extreme delay values.! PVT corners are derived for the whole library and

Finding corner cases is nontrivial not only because of the large number of parameters. For some
parameters, such as temperature, nonlinear dependencies have been observed [4].
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not for individual cells or designs. Since PMOS and NMOS transistors, and hence
rising and falling delay, are affected differently by parameters, four different corners
are distinguished: fast—fast, fast—slow, slow—fast, and slow—slow. The whole cell
library is characterized at each of these four PVT corners. Static timing analysis is
then performed for the different PVT corners using the corresponding timing library.

In addition to global variation which affects the entire chip and is modeled by
PVT corners, there is also local variation of process parameters, supply voltage
and temperature. Each cell instance will therefore have an individual delay, which
slightly differs from the value stored in the library. This complicates timing
validation since it is possible that although the chip is generally slower than expected
(slow—slow PVT corner), signal propagation along individual paths might be not
as bad. This could result in violating the hold time constraint if such a path is
the clock path to the registers at the end of a combinatorial block. To account
for such scenarios, the individual variations of supply voltage and temperature are
estimated by power and IR drop analysis. Their impact on cell delay around the
defined extreme PVT corners is then modeled by applying linear scaling factors
to the cell delay, known as “k-factors”. These k-factors are also used in when a
chip is to be designed with a slightly different supply voltage and/or operating
temperature profile than the cell library was characterized for, to avoid the costly
effort of recharacterizing an entire cell library.

Similarly, the derating factors for on-chip variation (OCV) account for local
variation of process parameters. Hence, for the above-mentioned scenario different
OCYV derating factors might be set to decrease signal delay along the clock path to
the capture registers while increasing delay values of cells in data paths [5]. Note
however that derating factors have no physical meaning. They are used to artificially
worsen the timing behavior but cannot be related to particular parameters.

Newer approaches refine this concept to reduce pessimism which is introduced
by assigning one derating factor for all data paths and one to all clock paths. Since
OCV models statistical variation of cell delays, both the number of cells in a path
and its geometrical footprint after placement should influence the derating factor.

This methodology is hence denoted as level-based and location-based OCV [6].
Foundries provide lookup tables with derating factors in terms of total number of
cells in the path and length of the diagonal of the enclosing rectangle. An example
is given in Fig.4.2. The more cells in a path, the smaller the derating factor to
account for statistical averaging of faster and slower cells. If the placement is already
known, also the distance can be used to further adjust derating factors. Note also that
the clock paths begin at the branching point. This is done to reduce the so-called
common path pessimism; cells like the first buffer might be slow or fast, but they
contribute the same delay to both paths.

4.1.3.3 Scalable Polynomial Delay Model (SPDM)

NLDM standard cell libraries might require a significant amount of memory (see
also Sect.4.1.6). For every timing arc separate lookup tables of delay values and
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Fig. 4.2 Advanced Ol’l—Chip clock generator
variation based on levels and
location

Distance Level
1 2 4 8 16
0 1.14 1.13 1.13 1.12 1.09
1000 1.151.14 1.14 1.12 1.10
2000 1.17 1.16 1.14 1.13 1.12
4000 1.19 1.17 1.16 1.15 1.14

output transition times are generated for rising and falling transitions. Since the
whole timing library must be kept in memory during timing analysis, it is desirable
to express cell delays more compactly.

It can be seen in Fig. 4.1 that for small transition times #rj, the cell delay of this
buffer is almost linearly dependent on the output load Cy.. For large values of trj,
a square root function fits better. Hence, the superposition of different functions of
output load (i, and transition time ¢r;, can be used to provide characteristic delay
equations such as

d=k1+k2-CL+k3-CE+(k4-k5-CL)-trin. “4.2)

These templates of delay equation are fitted to the delay values measured during
simulation by adjusting the coefficients k;. Still the selection of adequate template
functions is nontrivial. The most general approach for delay approximation is the
scalable polynomial delay model (SPDM). The model consists of a sum of base
functions ¢, weighted by model coefficients ;.

ng ny n .
d= Zk,»q),»(x) =Y ki H)xjf with j; < m,. (4.3)
1 j=

i

These base functions are polynomials in terms of the n, model parameters x;
with a maximum order of m,. This framework of (4.3) also allows to model the
delay dependence on process parameters by including them into the vector of
model parameters. This unified delay equation therefore has two major advantages
compared to NLDM. The first is a much more compact library representation.
Typical NLDMs use 7 x 7 lookup tables indexed by output load and transition time.
To provide delay values for three different supply voltage, three temperatures, and
three process parameters, already 3 -3 -3 -49 = 1,323 entries have to stored. On the
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other hand, the SPDM uses a much smaller number of coefficients. Furthermore, this
SPDM yet provides more information. While NLDM accounts for small parameter
changes by applying linear derating factors to all values in the lookup table, SPDM
also captures higher order effects and cross term dependencies of parameters, output
load, and input transition time. Nonetheless, SPDM is not widely used in industry.
One reason might be the higher complexity in library generation. The polynomial
order must be chosen with care to trade between required accuracy and number
of coefficients. On the other hand, while polynomials of high order are needed for
accuracy at the measured points, this might lead to severe errors elsewhere due
to oscillation. Library generation therefore not only requires additional time and
manpower to fit the models but also to verify library consistency and quality.

Finally, since the introduction of SPDM in 2000 the amount of available memory
and hard disks space has continuously increased and eased at least NLDM'’s size
drawbacks.

4.1.3.4 Receiver Modeling

The presented NLDM and SPDM timing models provide cell delays as functions
of the transition time of the input signal and the capacitive load. This output load
represents the interconnect and the receiver models of all attached logic cells.
Hence, besides the timing information output slew and delay, every cell provides
at least one value describing its input capacitance. This capacitance represents the
amount of charges that flows into the cell’s input pin and will be stored on parasitic
capacitances and gate capacitances of the transistors during a signal transition (see
Fig.4.6 on page 103). It is therefore characterized by attaching a ramp voltage
source at the input pin and integrating current through this voltage source.

A0 1.
Cin= H = H : /ZVIN (t)dt. “4.4)

Note, however, that a cell’s input capacitance is not independent of its output load.
The transition at the input might result in an output transition. Due to capacitive
coupling inside a cell and the nonlinearity of the transistor capacitances, the input
capacitance further depends on the input slew. Nonetheless, output load and input
slew have significantly less impact on input capacitance than on the cell delay.
Therefore, only minimum and maximum values are provided in the libraries.

4.1.3.5 Resistive Interconnects

Load-slew models are based on the assumptions that signal waveforms are suf-
ficiently described by linear ramps and that the output load is purely capacitive.
Due to high integration and reduced feature sizes, interconnect resistance became
notable, being the source of three major challenges. First, modeling interconnect
delay became imperative since it accounts for significant fractions of the total path
delay (see also Sect.3.2). Second, voltage waveforms at the output of the driver
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Fig. 4.3 ECSM stores output
voltage waveforms for
different combinations of
input slew and output load

! :£l()ad

|

and the input of the receivers are different due to the low pass characteristics.
Furthermore, the impact of the transition tails on cell delay became significant.
Third, logic cells have been characterized using purely capacitive loads. However,
a driver’s load is not just the sum of attached receiver input capacitances plus
interconnect loading. Resistive shielding reduces the load “seen” by a driver and
therefore decreases the cell delay. The concept of effective capacitances account
for the last two effects [7]. It matches the average current injection into the output
net such that the crossing points of the delay voltage threshold coincide. However,
effective capacitance and driver waveform are mutually dependent resulting in an
iterative process to determine stage delays and output waveforms. More detailed
descriptions are given in [7, 8].

4.1.3.6 Effective Current Source Model (ECSM) and Composite Current
Source Model (CCS)

EDA vendors introduced new delay models named ECSM [9] and CCS [10]
to account for the growing influence of resistive interconnect loads. Both are
compatible with the existing library formats for NLDM. Values for cell delay and
output slew are still tabulated in terms of input slew and capacitive output load.
The real improvements are more accurate driver and receiver models. For every
combination of output load and input slew, additionally the output voltage waveform
(ECSM) or the current waveform (CCS) is stored. Figure 4.3 illustrates the ECSM-
lookup table. Note that there is no difference between the two models since one can
be converted to the other through

. Vit — VIt
iout ~ Cload - % (4.5)
n+1"tn

This transient information is used for driver modeling. The current flowing into
a particular load is obtained by interpolating between different waveforms that are
stored in the lookup table. It is finally integrated over time to obtain output waveform
and stage delay.

The receiver model for CCS are two time-wise defined capacitances. This is
conceptionally similar to (4.4). Only the voltage difference is not the complete
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Fig. 4.4 Current source

model characterization setup A {>C A

to measure port currents
instead of cell delays

logic
cell

swing. Instead, a transition is split at the timepoint when the delay threshold voltage
is crossed. The first capacitance models the average current during the first part
of the transition, the second the latter. CCS receiver capacitances can be modeled
as lookup tables in terms of transition time, or in timing arc notation in terms of
transition time and output load.

4.1.3.7 Analytical Cell Delay Models

Some approaches have been published for cell delay prediction based on analytical
expressions. The principle is to derive a formula (4.6) and solve it for the cell
delay d.

larrival+d
1
|V0ut(tarrival) - Vout(tarrival + d)| = EVDD = / f (Cloadvtrin; P)dt- (4-6)

Larrival

The model parameters p are obtained through SPICE simulations. The principle of
most approaches is to model the voltage trajectory across the cell’s output current.
Usually, the coefficients of simple MOS transistor current equations based on a
power law are fitted to the cell under consideration [11]. Provided there is a linear
ramp input signal and a purely capacitive load, explicit delay equations can be
derived. Nonetheless, these approaches usually only work for simple cells such as
inverters without parasitics. More complex cells have to be mapped to an effective
inverter [12].

Analytical cell delay models never gained much popularity in industry. This
is due to their complexity, limited applicability to industrial cells, and additional
inaccuracy compared to NLDM.

4.1.4 Waveform Independent Model (Current Source Model)

Current source models (CSMs) are fundamentally different from NLDM, ECSM,
and CCS. They do not provide output waveforms or delay values as functions of
parameters such as input slew or output load. Instead, they provide a cell’s output
current as a function of port voltages. Figure 4.4 depicts the general characterization
setup in which the port currents are measured for a set of SPICE simulations.
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Fig. 4.5 Typical CSM with voltage-controlled current source and voltage-controlled charges

The cell delay is obtained during analysis through a SPICE-like simulation, in
which the CSM provides the voltage-dependent port current that is flowing into
the load model. Since this method does not impose restrictions on signal shapes or
load models, arbitrary input waveforms and an arbitrary loads are supported [13].
However, this generality is usually traded for simulation performance. If the load
is restricted or converted to single capacitors or CRC-II-structures, closed-form
expressions can be used to avoid iterative output waveform calculation [14—16].
Another technique for faster simulation of circuits with current source drivers
with arbitrary resistive-capacitive loads is described in [17]. It applies matrix
diagonalization to efficiently solve the equation systems.

Figure 4.5 depicts the typical structure of a CSM comprising a receiver and a
driver model. In almost every CSM approach, the transient output current is modeled
as the composite of a static current I(v) and an additional dynamic contribution
Iayn(v,V'). The voltage vector v usually contains the port voltages and v’ their time
derivatives. For complex cells, also important internal nodes might be included [18].

The voltage-controlled current source models the DC output current of a logic
cell for every combination of port voltages. Its values are obtained either from
lookup tables using interpolation or from approximation functions. To correctly
predict cell delay and output waveforms, additional components are required. They
account for cell internal dynamic effects such as the finite time for transistors to
charge or discharge the channels or the reduced output current due to charging
internal nodes. Different implementations use either voltage-controlled charges or
(non)linear capacitors. In one of the first CSMs, only a linear output capacitor
is used to reshape the output waveform [14]. An additional delay value is added
afterward to match the total cell delay. In later approaches, low-pass filters were
used to partially account for the cell delay [13, 19]. Voltage-controlled nonlinear
capacitors or charges have been introduced to improve accuracy and to provide a
receiver model [19, 20, 22]. Additional nonlinear capacitors are used to explicitly
model capacitive coupling between driver and receiver (Miller Effect) [22, 23].
Some approaches follow a very general methodology and use the driver model
consisting of static current source and dynamic element for every port of the cell
[18,24], although the static input currents are significantly smaller than the dynamic
ones (see Sect. 4.1.5). Nonetheless, these approaches provide CSM for simultaneous
switching of all inputs, whereas other CSMs are provided for every timing arc.
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The model characterization usually is a two-step process. First, the function for
the static port current is obtained. As shown in Fig. 4.4, DC voltage sources are
attached to the ports. Their values are swept from vsg to vpp to cover the whole
range of port voltages. The measured currents are then stored as lookup tables or
are approximated by fitting functions. The latter requires less data to be stored and
hence increases simulation performance.

Thereafter dynamic elements are characterized which requires more effort.
These elements are either obtained by error minimization to a set of typical input
waveforms [14, 24] or by special simulations with step or ramp functions [19, 20].
Here, the principle is to identify additional current contributions in case of voltage
changes. The difference of observed transient current when applying step functions
to the already known static current is related to charges or capacitors.

In the approaches of [18,25,26], the logic cell is treated as multi-port system. Its
admittance matrix Y = G+ joC is linearized at all combinations of port voltages to
account for nonlinearity. Based upon the susceptance matrix C, nonlinear voltage-
dependent capacitors are derived to connect all ports [18].

4.1.5 Physically Motivated CSM

Despite their obvious benefits, at the time of writing this book CSMs are more
research topics than industrial reality. The higher accuracy provided by them comes
with significantly lower simulation performance compared to STA using NLDM,
ECSM, or CCS. Further, commercial EDA tools currently do not support CSMs
and there exists no standardized format. Finally, library generation is much more
complex compared to the current standards. As discussed in the previous subsection,
most CSM approaches only try to match the observable port currents but treat
the cell as a black box model. CSM generation therefore requires a large number
of simulations. An alternative approach has been proposed in [13]. The CSM
components are not artificial circuit elements for error minimization but are related
to the original netlist elements of a logic cell. This approach for physically motivated
CSMs is described in more detail since it visualizes the principles of CSM modeling.

The inverter subcircuit in Fig. 4.6 is used throughout this description. The aim of
every CSM is to produce output voltage waveforms that are identical to those of the
cell’s transistor netlist description for any given input signal and any attached load.
This will be realized when the CSM output current i(¢) always equals the original
current i(f).

i(v(0),V'(1)) = i(¥(1), ¥/ (1)) 4.7)

While accuracy is one requirement, simulation performance is another. Evaluating
the right-hand side of (4.7) must be significantly faster than computing the transistor
currents in the left-hand side. Only if this is provided, CSMs are applicable to
complex digital circuits. The first step of complexity reduction is in reducing the
number of model parameters. The voltage vector ¥(¢) only contains port voltages
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Fig. 4.7 Proposed CSM for logic cells with parasitic elements

but no cell internal nodes. The next step is to select a model topology to fulfill (4.7).
Obviously, a static current source / is required to handle the special case

i(v,0) = i(¥,0) = [(¥). (4.8)

In cases of voltage changes of port nodes a and z, additional dynamic currents result
from charging the parasitic capacitors and transistor capacitances. This dynamic
current is modeled by an associated port charge Q.

i(¥(0),¥' (1)) =1(%()) + = Q(¥ (1)) (4.9)

Finally in very large cells the passive parasitic network causes a notable signal delay
at the input. A low-pass filter is therefore inserted into the CSM, which produces a
delayed input voltage in ¥* = [v¥,v.]”. The final topology of the CSM is shown in
Fig.4.7.

i(v,V(0) =1 (1)) + - 0¥ (1)). (4.10)
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Once the CSM structure has been derived, the next step is to define the functions
of [ and Q. This is done by a topology analysis of the given subcircuit in which the
contributions of every netlist element to the port components are identified. Starting
at the port node, all resistively connected nodes are visited. At each node, symbolic
expressions for node charge and static current contributions are derived. The sum
of these charges is denoted as the associated port charge. Similarly, the sum of all
current contributions defines the total port current. For the example of Fig. 4.6, the
resulting expressions are listed below.

A M
Qu = Qg " (vy,Vay,vbD) + Q" (V2 Vs, vss) + C1 - (Vay — Vo)
+Cy- (vay —vss) +C3- (Vay — V) +Ca(Vay — v) 4.11)

A M
Q.= 04" (v ,Vay,vDD) + fo”(vzl +Vas;Vss) +Cs - (vz; —vpp)

+Ce+ (v —ss) +C3+ (Vg —Vay) +Ca+ (vz; — Vay) (4.12)
A M
I, = Ig p(VzlaVapVDD) +I§/[n (Vz1 7Va3;VSS) (4.13)
N M, .
7= Id ! (Vzl avazavDD) +I[11V[ (VZI avaj”vSS)- (4‘14)

O, denotes the charges located at the gate pin of a transistor. In (4.13), only the static
gate currents contribute to the static port current. Since these are magnitudes smaller
than dynamic or output currents, they can be neglected without loss of accuracy.

The symbolic expressions for the model components are expressed as SPICE
measurement statements. Their numerical values are obtained by DC simulations.
This is possible because all node potentials in (4.11)—(4.14) have fairly small time
constants. Consequently, these node potentials are almost in algebraic relationship to
the port voltages. Hence, the circuit elements are mostly controlled by the absolute
values of port voltages and not by their time derivatives or internal states of node
potentials. Hence, to characterize port charges and output current, DC voltages
sources are attached to input and output port and swept from vgs to vpp. For each
combination of port voltages, the measurements (4.11), 4.12), (4.14) are executed,
and the values are stored in lookup tables.

The above-mentioned algebraic dependency does not hold for cells consisting
of more than one stage such as buffers or ANDS. These cells are split into channel
connected blocks which are then modeled individually. It is further problematic for
large cells with a long parasitics network. Here, the low-pass filter is used to account
for the additional delay. It is sized to match the average cutoff frequency of the
transistor gate pins.

The functions for the port elements of the inverter cell are shown in Fig.4.8.
While the output current is strongly nonlinear, the charges are fairly linear and
might be approximated by a first-order polynomial. However, for more complex
cells also the charges show significant nonlinearities. Therefore, all elements might
be implemented as voltage-controlled elements which perform bilinear interpolation
on lookup tables. For efficiency, a separate CSM is provided for each timing arc,
which limits the dimension of lookup tables to two.
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Fig. 4.8 Functions for static output current (fop left), input charge (fop right), and output charge
(bottom left)

4.1.5.1 Parameter Variation Analysis with CSMs

Process variation affects not only cell delays but also the resulting output wave-
forms. These, in turn, affect the delay of the next logic stage. First academic
approaches have been proposed to use CSMs in statistical static timing analysis
considering waveform variations [22,27,28]. The timepoints when voltage thresh-
olds are crossed are modeled as random variables instead of fixed values.

4.1.6 Memory Issues

The required accuracy improvements in timing analysis and timing modeling result
in increasing library sizes. Using the bounded delay model, only two values must
be stored per cell. A refinement of this model stores two delay values per pin or per
timing arc.

Using a slew-load-model such as NLDM or SPDM, additionally input capaci-
tances and output slews must be provided. Most data must be available for rising
and for falling transitions. Typical NLDM lookup tables provide timing information
for 7 x 7 combinations of input transition and output load. These are 2-2-49 = 196
values for one timing arc of a cell at one PVT corner. CCS and ECSM additional
require to store the current or voltage waveforms for each combination of transition
time and output load. When modeling a signal at 10 timepoints, these are additional
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2-20-49 = 1,960 entries per timing arc. Finally, these models provide the DC output
current for at least 10 x 10 voltage combinations per cell. CCS libraries tend to be
larger than ECSM libraries due to differences in the format.

The large differences of current source models complicate the size estimation.
For most approaches, one CSM is required for one timing arc but captures rising and
falling transitions. To provide some degree of accuracy at least 10 x 10 combinations
of input and output voltage are required. Since there are three to four nonlinear
elements in a CSM, these are 300 data points. However, since CSMs are mostly
defined to channel connected blocks, this number must be multiplied by the number
of stages in a cell.

4.2 Library Characterization

In statistical analysis, modeling circuit performance for nonlinear problems de-
mands high computational effort. In semicustom design, statistical leakage library
characterization is a highly complex yet fundamental task. The linear model
provides an unacceptable accuracy in modeling a large number of standard cells.
Instead of assuming one model for the entire library beforehand, we developed an
approach generating models individually. In our approach, the statistical learning
theory is utilized. The key contribution is the use of a cross term matrix and
an active sampling scheme, which significantly reduces model size and model
generation time. The effectiveness of our approach is clearly shown by experiments
on industrial standard cell libraries. For quasilinear problems, a small amount of
additional effort is required to verify the linear dependency. For strong nonlinear
problems, our approach reaches high accuracy with affordable computational effort.
As we regard the circuit block as a black box, our approach is suitable for modeling
various circuit performances.

4.2.1 Motivation

In today’s ICs, leakage current is an essential part of power consumption. At
the 65nm technology node, leakage current can exceed 50% of total power
[29, 30]. Consequently, leakage variability arising from variations in Process-
Voltage-Temperature (PVT) conditions has gained importance in the last decade.
For instance, it has been reported in [79] that a 10% variation in the effective
channel length results in a 3X difference in subthreshold leakage. A 10% oxide
thickness variation even contributes to a 15X difference in gate leakage current.
Our experiments on industrial standard cell libraries show that a 10% temperature
variation leads to a 4X difference in cell leakage.

To address the leakage variation issue in semicustom design, building a statistical
library at gate level is a highly complex yet fundamental task for statistical analysis.
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A typical BSIM-model based industrial library has more than 500 standard cells.
Every state of each logic cell must be separately characterized. In our experiments,
12 varying process parameters were considered in the analysis. Variation in supply
voltage and temperature also has a significant impact.

Considering this complexity the traditional corner case analysis and Monte Carlo
simulation are too expensive. Diverse analytical and numerical approaches have
recently been proposed to model the cell leakage as a function of the underlying
process parameters. In analytical approaches, empirical equations are applied to
model the leakage components separately [32,33,79].

Numeric approaches regard the logic cell as a black box responding (in leakage
value) to stimuli (i.e., the process parameter values). The approximation of the
black box is often described as a response surface model. Most existing approaches
assume that the leakage current has a log-normal distribution. Consequently, the
logarithm of leakage, log(I), is expressed as a linear function of the process
parameters. However, our experiments show that the linear model provides an
unacceptable poor accuracy in modeling a large number of standard cells. For
nonlinear problems, high-order models are needed to improve modeling accuracy.
Certainly, this leads to a rapidly increasing computation effort for high-dimensional
problems, as the number of coefficients to be determined rises significantly. To
overcome this problem, reduced rank regression techniques have been employed on
a quadratic model [34-37]. It is yet not clear how these methods can be efficiently
extended to higher order models.

In terms of library characterization, a pre-assumed model is either inaccurate
(e.g., the linear model) or too computing intensive (e.g., the high-order models).
Our experiments on several standard cell libraries show that the log(/)s of many
cells can be accurately modeled by the linear model. At the same time, there are a
large number of cells whose log(I)s are strongly nonlinear, and even not compatible
with the quadratic model.

Another important aspect of statistical modeling is the selection of samples. In
most existing approaches, the simulation samples used for coefficient calculation
are randomly generated. The samples’ representativeness for the entire parameter
space is rarely discussed.

In this section, we present an approach based on statistical learning theory. The
algorithms developed generate the response surface model for each cell individually.
Its main contributions are fourfold: (1) the order of each process parameter is
estimated based on the real dependency of the leakage current on this parameter;
(2) the structure of each model (i.e., which terms should be included in the model)
is decided by a sensitivity analysis-based method; (3) to avoid reliance on random
simulation samples, a sampling scheme is proposed, taking into account both the
sample location and its impact on leakage current, and (4) the accuracy of models is
validated by cross validation.

The remainder of this section is organized as follows: in Sect. 4.2.2 the basis of
statistical learning theory is introduced. Section 4.2.3 describes our algorithms in
detail. The results of the experiments on typical industrial library cells are presented
and discussed in Sect. 4.2.4. Section 4.2.5 provides a short conclusion.
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4.2.2 Background

4.2.2.1 Problem Formulation

In the context of statistical modeling, a logic cell is regarded as a black box. For each
of its logic states, the observations are formulated as input—output pairs generated
by an unknown deterministic mapping function:

F:X—Y, (4.15)

where X = [X1,Xa,---,X,]7 represents a set of process parameter values and Y the
leakage value.
We assume that a true underlying polynomial function g(x) exists, so (4.15) can
be formulated as:
F(x) =g(x) + @, (4.16)

where the noise @ is negligible.
The target, then, is to construct an estimator of g(x), based on the dataset D with
a minimum error:

2 Zﬁm anxp’ 4.17)

r1=0  pp=

In (4.17), x represents the process parameters, P, represents the highest order of

the parameter x;, H x" denotes one term of the polynomial, and B, . p, is the

Pn

coefficient of this term A term with at least two parameters is defined as a cross
term. A term with one parameter is defined as a single term. In statistical learning,
the error of fp(x) is defined by the loss function (see Sect.4.2.2.2).

4.2.2.2 Statistical Learning

Statistical learning methods are broadly employed in diverse fields of science and
industry. The objective of statistical learning is to explore the underlying knowledge
from a given set of data (learning from data). The most important categories are
regression, classification, and data clustering [38]. The statistical modeling of circuit
performance is a typical regression task, which can be roughly divided into three
phases: model selection, model fitting, and model validation.

The objective of model selection is to decide which terms (i.e., Hx i

(4.17)) should be included in the model. In building high-order models f0r high-
dimensional problems, the large amount of additional terms leads to a run time
explosion. First, significantly more simulations are needed to determine the coef-
ficients. Moreover, the run time of the model fitting process itself also increases



4 Methods of Parameter Variations 109

exponentially with the sample size as well as with the number of terms. At the same
time, the sample density in high-dimensional problems is normally very low. This
phenomenon is commonly referred to as the curse of dimensionality [39].

Modeling a logic cell with 12 varying process parameters, for example, the
quadratic model requires 91 terms. Using the cubic model, i.e., P, =3 and Y, p; < 3
for each term in (4.17), the number of terms increases to 455. Obviously, most of
these terms (418 of 455) are cross terms having at least two parameters.

The key idea of our approach uses a sensitivity analysis-based technique to
decide the selection of cross terms. This technique is described in detail in
Sect. 4.2.3.

Model fitting is the procedure determining the coefficients of (4.17). This
procedure is also denoted as the training process. As mentioned, the function
characterizing the error of fp(x) is often denoted as the loss function. The most
frequently used loss function is the squared error, measuring the square of the
deviation between fp(X) and Y for each sample. Using the ordinary least square
method (OLSM), the coefficients are determined ensuring minimization of the
expectation value of the squared error (also MSE: Mean Squared Error):

B = argmin{E[(¥Y — o)} (4.18)
MSE = EI(Y = fo@))?] = | (¥ = fow) *PDF (x)dx. (4.19)

PDF(x) is the joint probability density function of x and £ denotes the entire
parameter space.
Substituting ¥ with (4.16), the MSE can be deconstructed into three parts [43]:

MSE = Bias® + Variance + Noise; (4.20)
Bias = Elg(x)] — Eplfo()]; (421)
Variance = Ep|(fp(x) — Eplfp(x)])?]; (4.22)
Noise = E[(g(x) — F(x))*]. (4.23)

The notation Ep|.] represents the expectation value with respect to dataset D. (4.23)
indicates that Noise depends neither on the dataset D nor on the estimator fp(x).
This is thus an uncontrollable factor in improving the effectiveness of estimator
Jp(x).

Bias measures the average accuracy of the estimate and indicates the discrepancy
between the true polynomial g(x) and fp(x). If the model is properly chosen, Bias
will be minimized by OLSM. Where the model is misspecified, OLSM does not
minimize Bias even with an infinite number of samples [41]. Variance shows the
degree of variability in fp(x) between datasets [42]. Due to the Bias—Variance
Dilemma [38,41-44], a compromise between Bias and Variance must be reached
during model selection.
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In OLSM, the simulation samples used to determine the coefficients (the training
samples) are normally randomly chosen. As a rule of thumb, the number of samples
needed is twice the number of the model terms. The quality of the parameter space
representation has been rarely discussed previously. We have developed a scheme
for more active selection of training samples.

Model validation is utilized to verify the accuracy of the model with independent
samples not used in the training process. The average error of these samples is
defined as the prediction error:

N

1
Errpredzﬁ.zl(yj_f()_(j))za (424)
J=

where (X ;,Y;) are the prediction samples.

In a data-rich situation, the training sample set and the prediction sample set
should be completely disjoint. As the simulation cost for a large number of samples
is prohibitively high in process variation analysis, cross validation is applied [38].

4.2.3 Dynamic Model Generation
4.2.3.1 Model Selection Using Cross Term Matrix

In our approach, the existence of terms, ﬁ xf’ "in (4.17), is represented in the cross
term matrix Mct. The cross term matrix is 11 square matrix of order n, where # is the
number of process parameters. The key concept of generating Mcr is described in
Algorithm 1. Given PDF (x) and a circuit block (e.g., one logic cell), we first execute
a sensitivity analysis at the nominal point Py, where the value of each parameter
equals the mean value of its distribution. The most significant parameters (MS
parameters) in the center area of the parameter space are identified from the first
order sensitivity vector S. They are then stored in the list L&S:

LY = {xi ABS (a—F . ) > Ale}, (4.25)
0

ax,'
where ABS(.) denotes the absolute value, A; € (0,1) is a tuning parameter, and &
can be either a pre-defined value or the greatest value in S.
Following the identification of the MS parameters in the center area of the
parameter space, the black box function can be formulated as:

F(x) = h(x;) + Syxj; + . (4.26)

Here, x; denotes the MS parameters in the center area. The remaining parameters
are included in x;, and their first-order sensitivities are represented in Sy;. As in
(4.16), @ is the noise that can be ignored.
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Input : PDF(x): Joint Probability Density Function of Process Parameters;
CB: Circuit Block
Output: Mcr: Cross Term Matrix

GenerateCrossTermMatrix (PDF(x), CB) begin

S« SensitivityAnalysis ([ug, -, tn]%, CB);

LOMS < InitialiseMostSignificantParameter(S);

Lys = L0M5§

foreach (x; € Lyg) do
S; < SensitivityAnalysis ([u1, -, 4i+30i, -, ta]T, CB);
Lcr < IdentifyCrossTermParameter (x;,S,S;);
Mcr ¢~ FillMatrix (xj,Ler)

Lys < UpdateMostSignificantParameter (Lys,Ler);
end
return Mcr;

end
Algorithm 1: Generation of cross term matrix

For each parameter x; in x; (i.e., each parameter stored in Lys), a sensitivity
analysis is executed at its ; == 30; points (P;r and P;"), while the values of the other
parameters are kept on nominal values. The changes in first-order sensitivities of all
parameters are explored to select the cross term parameter for x;. The parameter x;
is defined as a cross term parameter of x;, if the change in its first order sensitivity
on the point P;" or P, exceeds the threshold A€, where A, € (0, 1) is another tuning

parameter.
; dF|  OF
LCT = § Xj j£i ABS (a—xj R — a—xj Pl+> > /’\‘28 or
JoF JoF
ABS (— - ) > o€ p. 4.27)
axj‘ Py axj‘ P

A numerical example shall demonstrate the algorithm. In the following, we suppose
that the unknown A(x;) to be approximated in (4.26) is

h(x;) = x1 +x3+ x5 +x%+x2

+x%x2 + e 4 gin(xyxg) + xzx;‘xé. (4.28)

As x; and x;; are disjoint, for each MS parameter (i.e., x; in x;) it is true that % =

%{Q. Applying this to (4.26) and (4.28), the first-order sensitivity of x4 obviously
varies with the value of x3:

JF (x) _ dh(x;) 2.2 g
o om 3x;+e + X608 (X456 ). (4.29)




112 C. Knoth et al.

Fig. 4.9 A cross term matrix X Xy X3 X4 X5 Xg
I 1100 0 0)\x
11 O () 1 1]x
0o 0 0]%3
A= 00 0 1 [x4
01001 1]xs
01011 1/%
Fig. 4.10 Illustration of the a b
cross term matrix: the cross X| X4 X3 X X5 Xg X] X4 Xg Xp X5 X3
terms are suggested by the /100100 /100100
maximum possible submatrix (011001 x0T 110 0 1
populated exclusively by 1s 30011000 xg|lof1 11110
1 001 11 101110
xs{0 0 0l 11 xs{0 01 110
X¢ \O 1 0 [1 1 1 Xx3\0 1 0 0 01

Setting A, to zero, x4 is identified as a cross term parameter of x3. The polynomial
model (4.17) must, therefore, include terms containing x3 and x4 to model the
95)55) on x3.

By contrast, x; (j = 1,2,5,6) is not a cross term parameter of x3 as its first-order
sensitivity is not dependent on x3. Terms containing x; and x3 should, therefore,
not be included. A considerable number of unnecessary cross terms are thereby
excluded from the polynomial model.

Figure 4.9 illustrates the cross term matrix A for (4.28). Both the rows and the
columns represent the process parameters x; — x¢. The entry ay; is set to 1, when
Xy is a cross term parameter of x;, otherwise it is set to 0. In most applications,
the cross term matrix is sparsely occupied. The cross terms are identified based on
the maximum possible square submatrix populated exclusively by 1s. In Fig.4.9,
two 2 x 2 submatrices are highlighted, which indicate the existence of cross terms
{x'x8%10 < p12 < Pi o} and {x{3x4*|0 < p34 < P34}. The highest power of each
parameter, P;, remains to be estimated. In Fig. 4.9, the 2 x 2 submatrix A[5,6;5,6] =

ags des
In Fig. 4.10a, this is illustrated by exchanging the rows and columns of x; and x;4.

Similarly, another submatrix A[4,6;4,6] has been highlighted in Fig. 4.10b.
In summary, the cross term matrix (Fig.4.9) suggests the following cross terms:

(’155 a“) . cannot suggest cross terms as it is part of the 3 x 3 matrix A[2,5,6;2,5,6].

{x1xh? B3l a2 x5 xlo x4 xpo |0 <pi<P}, (4.30)

where i indicates the process parameter index and P, is the highest power of
the parameter. The number of terms is enormously reduced in comparison with
comprehensive high order polynomial models.

P, is determined by sweeping the ith parameter along one line in the multidimen-
sional parameter space, where x; varies and the other parameters are constant. On
this sweep line, (4.26) becomes:
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Input : PDF(x): Joint Probability Density Function of Process Parameters;
Nir: Training Sample Size
Output: Ly, Training Sample List
GenerateTrainingSamples (PDF(x), Ni.) begin
L¢ < ImportSamplesFromModelSelection ();
while (Size(Ly) < N) do
Ly < GenerateRandomSamples (PDF(x), m);
X < SelectTrainingSample (Ly);

L < AddNewTrainingSample (Lg, X);
end
return Ly ;

end
Algorithm 2: Generation of training samples

Ni
Fox)= Y Cpxl' + @. (4.31)
pi=1

The sweep points selected are equidistant and the OLSM is used to determine the
coefficients Cp,. The highest power P; is defined as:

P, = max{p;|Cp, > O}, (4.32)

where O is a threshold. As, on the sweep line, the single terms of x; in (4.26)
are mapped into (4.31), P; also indicates the highest power of the single terms.
Combining (4.32) with (4.30), the terms to be included in the model are determined.

4.2.3.2 Model Fitting Using Active Sampling

Conventionally, the training samples used to determine the term coefficients are
randomly generated. In contrast, our approach chooses the training samples in a
more active manner. Algorithm 2 provides an overview of the sampling scheme.

The first training sample set is acquired from the model selection. Reusing these
samples ensures that the edge area of the parameter space, which is critical in
nonlinear problems, is always accounted for.

The second training sample set is pseudorandomly selected. To choose one
new training sample, m samples (m > 1) are randomly generated. Among these,
m samples the one with the greatest distance from the set of existing samples
is selected:

X = argn)lfax[D()_(j,L,,)], X; €Ln. (4.33)
X;
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Fig. 4.11 3-Input NAND gate at 135°C
The distance is defined as:
DX, Ly)= Y |IX;Prall (4.34)

Ptnn eLtr

where ||.|| denotes the euclidean distance between two points.

4.2.4 Experimental Results

Our approach was applied to typical CMOS standard cells from three industrial
90 nm leakage libraries. The results of several typical cases are presented here. In
the experiments, the logarithm of leakage was modeled. The accuracy of various
models and the computation time required to generate such models are compared.
To calculate the leakage, an industrial in-house analog simulator was used, in which
the adjoint network method is employed to determine first-order sensitivities.

For each test case, 10,000 randomly generated test samples were used to verify
the accuracy of various models. The deviation of Model; at sample point X is

L Model;(X) — Simulation(X
Deviation;(X) = I;im)ulation(X) = ' (4.35)

As tail region of leakage distribution is particularly important in statistical leakage
library characterization, each model’s error in 99%-quantile has been compared.
The first example is a 3-Input NAND gate with 12 varying process parameters at
135°C. Figure 4.11 illustrates the model accuracy comparison between the linear
model and the model generated by our approach. Applying the linear model,
the majority of the testing samples have negative deviations (Fig.4.11a). This
indicates a negative bias in the model, which means that systematic errors have
occurred in the modeling process. Our model, however, shows relatively balanced
sample deviations along the 0% line, as shown in Fig.4.11. Table 4.1 describes
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Table 4.1 Results

l . Temperature 135°C 60°C

comparison for a 3-input -

NAND at 135 and 60°C Fit model LM DGM LM DGM
Number of terms 13 26 13 36
Run time ~10s ~40s ~10s ~90s
Deviation
Group A: 0-4% 78.0% 90.8% 10.4%  90.6%
Group B: 4-8% 122%  8.1% 27.0% 7.9%

Group C: Above 8%  9.8% 1.1% 62.6% 1.5%
Error in quantile
99%-Quantile 28.0% 5.8% 122%  2.5%

LM linear model, DGM dynamically generated model
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Fig. 4.12 3-Input NAND gate at 60o0C

the comparison more precisely. There are 13 coefficients to be determined in the
linear model. The run time is 10 s. The testing samples are divided into three groups,
according to the definition in (4.35). Group A contains the samples with a deviation
rate of less than 4%; group B, those with 4-8% and group C, those above 8%. For
the linear model, for example, 78.0% of all 10,000 samples fall into group A.

Our approach includes 26 terms in the model. Forty seconds were spent
generating this model. The computational effort primarily consists of the simulation
time spent computing leakage values and the training time necessary to determine
the coefficients by OLSM. The results show visible improvements in accuracy:
90.8% of the testing samples now fall into group A. The error in 99%-quantile is
reduced from 28% to 5.8%.

In the first example, the linear model shows an acceptable deviation level in cen-
ter region of leakage distribution. Our experiments on the library characterization,
however, show the linear model to be entirely unsuitable in a large number of cases.
In the next example, the same experiment is applied to the same NAND gate, with
the temperature adjusted to 60 °C. Figure 4.12a clearly indicates that the Bias of the
linear model is substantially more than 0%.

Table 4.1 shows the results at 60°C. For the linear model, 62.6% of the testing
samples have a deviation greater than 8%. Our approach includes 36 terms in the
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Table 4.2 Results comparison for a full adder

Fit model LM QM2 CM QM4 DGM
Number of terms 13 91 455 1,820 42

Number of simulations 1 sens. 182 910 3,640 8 sens. +76
Run time ~6s ~1lmin ~15h - ~2 min
Deviation

Group A: 04% 0.6% 51.4% 83.2%  Aborted 74.6%
Group B: 4-8% 0.8% 35.7% 127%  Aborted 19.2%

Group C: Above 8% 98.6%  12.9% 4.1% Aborted  6.2%

Error in quantile
99%-Quantile 325% 8.2% 3.1% Aborted  4.5%

LM linear model, QM2 quadratic model, CM cubic model, QM4 quartic model,
DGM dynamically generated model

model, which is more complex than that in Example 1. The run time now is 90s.
The accuracy is, however, enormously improved: 90.6% of testing samples have a
deviation smaller than 4% and the 99%-quantile error is 2.5%.

A more detailed comparison can be seen in the third example. The experiment
is applied to a full adder with 12 varying process parameters. Again, 10,000 testing
samples were divided into three groups for each model. Table 4.2 shows that the
number of terms rapidly increases with the model order. The linear model has only
13 terms. This rises to 91 for the quadratic model, 455 for the cubic model and 1,820
for the quartic model (i.e., with a model order of 4). Linear modeling uses the first
order sensitivities of each parameter at the nominal point, calculated directly by the
analog simulator. For higher order models, the OLSM is employed to determine the
coefficients. The number of training samples needed is twice as much as the number
of terms included in the model. As mentioned, the two major run time contributions
are simulation time and training time. Our experiments show that the training time
of OLSM grows exponentially with the number of terms, and with the number of
training samples. For this example, the quadratic model needs 11 min and the cubic
model 15h. Modeling with the quartic model was aborted due to the prohibitive
computation effort. Creating and analyzing the cross term matrix resulted in the
inclusion of only 42 terms in our model. The run time is 2 min, which is considerably
less than that required for the quadratic model.

The benefit of our approach, regarding accuracy, is obvious. Using the linear
model, only 0.6% of the testing samples fall into group A. Accompanied by highly
increased computation cost, the quadratic model has 51.4% group A testing samples
and the cubic model 83.2%. Modeling with the quartic model was aborted. Applying
our approach results in 74.6% group A testing samples. This represents an over 20%
improvement compared to the quadratic model. It is also worth noting that for the
high deviation group (Group C) the dynamic model shows similar results as the
cubic model (6.2 and 4.1%), despite a radically reduced run time. The improvement
in 99%-quantile error has been shown clearly: 32.5% for the linear model, 8.2% for
the quadratic model, 3.1% for the cubic model, and 4.5% for the dynamic model.
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4.2.5 Conclusion

In this section, we have presented an approach for rapid high-order polynomial-
based statistical modeling. Instead of assuming the model type beforehand, our
approach dynamically generates a model for each individual case. The complexity
of the model is decided by the dependency of the circuit performance on the process
parameters. We developed a sensitivity-guided method to generate a cross term
matrix. Exploring the cross term matrix allows unnecessary terms to be excluded
from the model for nonlinear problems. For linear problems, the cross term matrix
becomes almost a zero matrix.

To determine the coefficients of the model, our approach selects training samples
in a more active way. First, the samples in the model selection phase are reused,
so that the edge area of the sampling space can always be accounted for. Second,
we integrate the sample distance into the sampling scheme, resulting in relatively
broadly populated training samples.

The benefits of the approach were clearly shown by experiments in gate level
leakage library characterization, in which both quasilinear cases and strongly
nonlinear cases exist. For quasilinear cases, a small amount of extracomputational
effort was required to verify the linear dependency. For strong nonlinear cases, our
approach addresses the modeling challenge with a high degree of accuracy and with
affordable computational effort. Finally, it should be mentioned that, because our
approach regards the circuit block as a black box, it is suitable for modeling various
circuit performances.

4.3 Statistical Static Timing Analysis

In recent years, academic and industrial research has produced a multitude of
approaches to address SSTA (statistical static timing analysis). They differ primarily
in whether they take a block-based or path-based approach, whether they use a linear
or higher order dependency of gate delay on process variations, whether they assume
Gaussian variations or allow arbitrary variations, and to which degree they consider
spatial correlations. An overview of these approaches is presented in the following.

4.3.1 Background of Timing Analysis

Most of the circuits used in industry are sequential circuits. The typical structure
of a digital circuit is shown in Fig.4.13. The input combinational logic generates
the data for the registers and the output logic for the primary outputs. The outputs
of registers are connected back to the input logic, forming combinational paths
between registers. The registers store the data at their inputs when the triggering
signal, called clock, is valid.
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Because of the simplicity of design and verification, flip-flop-based circuits are
the most popular circuit type, where all registers are implemented by flip-flops. A
flip-flop transfers the data at its input to its output only when the predefined clock
edge appears. Without losing generality, all flip-flops are assumed to be triggered at
the rising clock edge in the following.

In order to work correctly, a flip-flop has special requirements to the data at its
input. Assuming the valid clock edge is at time ¢, the data at the input of the flip-flop
should be stable between (7. —s;) and (¢, + h;), where s; is called setup time and A;
hold time. During this time period, any data change at the input of the flip-flop may
cause it to enter metastability state with a certain probability [45]. In this state, the
output of the register stays between 0 and 1, and is considered as a circuit failure.
A hold time constraint violation happens when the signal from a register propagates
to the next stage too fast. It can be corrected easily, e.g., by delay insertion and
padding [46]. Setup time constraints determine the maximum clock frequency and
should be checked when verifying a circuit against different clock frequencies. To
correct violations of setup time constraints further circuit optimization is required.
This optimization usually enlarges the die size and increases design time. In the
following, only setup time constraints will be discussed.

For convenience to explain timing specifications of sequential circuits, reduced
timing graphs [47] are used to represent the structural connections between flip-
flops. An example of the reduced timing graph is illustrated in Fig.4.14. In a
reduced timing graph, a node represents a register, a primary input of the circuit, or
a primary output. An edge represents the maximum delay between a pair of nodes,
denoted A;;.

To compute these delays, combinational circuits between flip-flops are traversed.
For this type of circuits, the timing graph is used to represent its structural timing
properties. Figure 4.15 shows an example of the timing graph of the circuit c17 from
ISCASS8S benchmarks. A node in a timing graph corresponds to a pin of a gate if
interconnects are considered. Otherwise, a node corresponds to a net in the circuit,
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Fig. 4.15 c17 Benchmark circuit and timing graph

e.g., in Fig. 4.15. Additionally, primary inputs and outputs are also represented by
nodes. An edge represents the delay W;; between two nodes in the timing graph.

At the time of the nth active clock edge f. ,, a signal starts to propagate to the
output of a flip-flop i and further to the input of flip-flop j at the next stage. The latest
time that this signal reaches j is t., + g; + A;;, where g; denotes the propagation
delay of the flip-flop. This time is the arrival time of the signal at the input of j
through i, denoted as A;;. The data change at the input of j must meet its setup time
constraint, so that

Al‘j =len+ qi+Aij < fent+1 —Sj- (4.36)

Normally, flip-flop j has more than one fanin node in the reduced timing graph.
After a valid clock edge, data signals propagate from all these fanin nodes to j.
Each arrival time must meet the setup constraint described in (4.36). Consequently,
the maximum of these arrival times should meet the setup time constraint, i.e.,

I.nax{A,'j} = r.nax{tq,, +qi +A,’j} < fepnt1 —8j < 4.37)
Iey; 1eY;
ten+ nelillx{qi + A,’j} +5; <tepr1 (4.38)
eyj
I_Ielax{q,-—i—Aij} +5j <tept1 —ten =T, (4.39)
1 Wj

where y; is the set of all fanin nodes of j in the reduced timing graph. Clock skew
is not considered in (4.39) for simplicity. The constraint (4.39) should be met at all
flip-flops in the circuit. With ¢ defined as the set of all flip-flops, the setup time
constraint for the circuit is

max{max{q; + A;;j} +s;} <T. (4.40)
JEQ icy; ’ ’
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The constraint (4.40) defines that the arrival time from any flip-flop node in the
reduced timing graph to each of its sink nodes should meet the setup time constraint.
Therefore, the constraint (4.40) can be written as

max {g;+A;j+s;} <T, (4.41)
(i.j)€d

where ¢ is defined as the set of flip-flop pairs between each of which there is at least
one combinational path in the original circuit.

The timing performance of a sequential circuit is represented by the maximum
clock frequency. This clock frequency is determined by the minimum clock
period, which can meet the timing constraint described in (4.41). To verify these
constraints, the maximum delays A;; used in (4.41) should be computed first from
the combinational circuit between flip-flops.

In contrast to sequential circuits, a combinational circuit consists of no storage
components but only combinational gates. If a signal reaches an input of such a
gate, it continues to propagate instantly and reaches the output of this gate after
the time equal to the delay of the gate. To compute A;; for i and j in the reduced
timing graph, the timing graph of the combinational circuit between them should be
traversed. Two types of traversal methods exist to compute the maximum delay of
a combinational circuit: path-based and block-based. In a path-based method, the
paths from inputs to outputs of the timing graph are enumerated [48—50]. The delay
of a path is computed by summing up the edge delays on the path. Although this path
enumeration method is feasible to evaluate small designs, it cannot handle all paths
in large ones, since the number of paths increases exponentially with circuit size.

The second method is the block-based method, or block-oriented method
[51-53]. This method visits each node in the timing graph no more than once to
compute the maximum delay from inputs to outputs. For each node, the arrival time
represents the maximum delay from all the inputs to it. The arrival time of a node is
updated just after all its fanin nodes are updated. As the first step of this computation,
the arrival times from fanin nodes and the edge delays are added. Thereafter, the
arrival time of the current node is computed by the maximum of the results from the
previous step. This iterative computation stops after all outputs are visited.

Instead of computing the maximum delay A;; between flip-flop i and j indi-
vidually for all pairs of flip-flops, the inner maximum in (4.40) is computed by
one arrival time traversal, resulting in the desired maximum circuit delay. This
approach significantly reduces the computational effort. For this purpose, a virtual
combinational circuit is formed. All outputs of flip-flops are considered as primary
inputs of the virtual circuit, and all inputs of flip-flops as primary outputs. All the
combinational components between flip-flops together form the combinational logic
in between. The arrival times at primary inputs of the virtual circuit are set to the
propagation delays of the corresponding registers. The resulting arrival times at the
primary outputs of the virtual circuit are maximum arrival times from all primary
inputs. In other words, it is the maximum delay from all fanin flip-flops to the input
of a flip-flop, equal to the result of the inner maximum in (4.40). Thereafter, the left
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Fig. 4.16 Graphic A
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side of (4.40) is computed by the maximum of the sums of the arrival time and the
setup time at all flip-flops. This maximum specifies the minimum clock period for
the flip-flop-based circuit without timing violation.

4.3.2 Statistical Timing Analysis

With process random variations modeled as variables, all gate delays become
random variables. The static timing analysis algorithms described in the previous
section can be adapted to compute the minimum clock period of a circuit similarly.
The resulting clock period, however, is a random variable, denoted as T,,. For a
given clock period 7', the timing yield of a circuit is evaluated by computing the
probability that Tp;, is smaller than 7', i.e.,

yield = Prob{Tin <T}, 0<T <oo, (4.42)

where Prob{-} denotes the probability.

Because all gate delays are positive, the computed minimum clock period Tiin
is also positive. According to probability theory [56], yield computation in (4.42) is
equivalent to the definition of cumulative distribution function (CDF) of the random
variable Ty,. The graphic representation of (4.42) is illustrated in Fig. 4.16, where
circuit yield approximates 0 when T approximates 0, and 1 when T is large enough.
The latter case indicates that a sequential circuit can work properly at a reasonably
low clock frequency, if no hold time constraint is violated.

In statistical timing analysis, the timing graph traversal is completely the same
as in static timing analysis. The two computations, maximum and sum, however,
must be adapted to handle random gate delays. In order to use the same sum and
maximum computations at all nodes, arrival times in statistical timing analysis are
usually represented in the same form as gate delays. When an arrival time and a
gate delay are added, corresponding coefficients of different variables are summed
directly, whether linear or quadratic gate delays are used. Because of the complexity
in computing the maximum of two random variables and the requirement that the
result of the maximum should have the same form as a gate delay, such computation
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is always approximated in statistical timing analysis. In the following, only the sum
and maximum computations of two random variables are discussed because other
cases involving more than two random variables can be processed by applying these
two computations iteratively.

Using the canonical delay model (3.15) described in Sect. 3.3.4, [55] introduces
an arrival time propagation method, which can process the maximum computation
efficiently, meanwhile keeping the correlations between arrival times accurately.
Consider two random variables A and B

n
A=ag+ 2 aivi+ayvy, (4.43)
i=1
n
B=bo+ Y, bvi+bvy,. (4.44)
i=1

The sum of A and B is computed as

n

A+ B=(ap+bo)+ 2 (ai+bi)vi+ (arvy, +brvy,) (4.45)
i=1

n
=50+ 2 SiVi+ SyVr,, (4.46)
i=1

where s, is identified by matching the variances of s,v,, and a,v,,+b,v,,.

To compute the maximum of A and B, denoted as max{A,B}, the tightness
probability (7p) [55] is first computed. In [55], 7p is defined as the probability that
A is larger than B. If A and B are both Gaussian, 7p is computed by

—b
To = Prob{A > B} = @ <“° . °> , (4.47)

where @ is the cumulative distribution function of the standard Gaussian distribu-
tion. 8 = \/ 02+ 0% —2Cov(A,B), where 03 and o} are the variances of A and

B, respectively. Cov(A,B) is the covariance between A and B, and is computed
according to [56] as

n n n
Cov(A,B) =Y, Y aibjCov(vi,v;)+ Y, aib,Cov(vi,vy,)
i—1

i=1j=1 i

n
+ Y bia,Cov(vi,vy,) + arb,Cov(vs,, vy, ). (4.48)
i=1

Because the random variables v,,, v,, and v; in (4.43) and (4.44) are independent of
each other, (4.48) is simplified to
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Fig. 4.17 Correlation
example in statistical arrival
time propagation
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Comparing (4.48) and (4.49), the computation is drastically simplified because the
random variables are uncorrelated. This is the motivation that the correlated random
variables in Sect. 3.3.4 are decomposed.

According to [65], the mean (1) and variance (62%) of max{A, B} are computed by

—b
1 =Tpao+ (1— Tp)bo + 60 (“0 5 0) (4.50)

0% =Tp(03 +a3) + (1 —Tp) (05 + bF)

+ (ag+b0)0¢ <a0gbo> —u?, 4.51)

where ¢ is the probability density function of the standard Gaussian distribution. In
order to apply the sum and maximum computations iteratively to propagate arrival
times, max{A, B} is approximated in the same form of (3.15) as

n
max{A,B} ~ My p = mo+ Y, mivi+myv,,, (4.52)
i=1

where my is equal to i. m; is computed by m; = Tpa; + (1 — Tp)b;. m, is computed
by matching the variance of the linear form (4.52) and o2 in (4.51).

The sum and maximum computations discussed till now process correlation
between arrival times implicitly. This will be discussed in the following in more
detail. An example of such correlation is illustrated in Fig. 4.17, where all ede delays
are correlated, e.g., due to manufacturing variations. The arrival times from nodes 2
and 3 to 5 respectively, denoted as A5 and A3zs, can be expressed as

Axs =Ar+Was (4.53)
Ass = max{A| + Wi3,As + Wiz} + Wis, (4.54)
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where Ay, Ay, and A4 are arrival times at node 1, 2, and 4, respectively. In the method
from [55], the computation of the maximum of A5 and A35 requires the covariance
between them. This covariance is computed as

Cov(Ass,Ass) =Cov(As + Was, max{A; + Wiz, A4+ Wiz} + Wss)  (4.55)
=Cov(Ay, max{A; + Wy3,A4 + Wy3})
+ Cov(Wss, max{A| + Wi3,A4 + Wi3})
+ Cov(Ay,Wss) 4+ Cov(Was, Was) (4.56)

In [55], the maximum in the first two terms in (4.56) is approximated by a linear
form. In order to compute the covariance correctly, the covariance computed by
this linear form approximation should be equal to the covariance computed with the
original maximum. This requirement is met in [55] by guaranteeing that the linear
approximation has the same covariance to any other random variable. That is, for a
third random variable C in linear form, written as

n
C=co+ 2 civi+crvy, 4.57)
i=1

the maximum and its linear approximation My g in (4.52) of two random variables
A and B defined in (4.43) and (4.44) should meet

Cov(max{A,B},C) = Cov(My 5,C). (4.58)
According to [65], the left side of (4.58) can be computed by
Cov(max{A,B},C) = T,Cov(A,C) + (1 — T, )Cov(B,C) (4.59)

n n
=T, Y aicio, + (1 - T,) Y. bicio;,. (4.60)
i=1 i=1

= 1=

Similar to (4.48) and (4.49), the right side of (4.58) can be computed by

1

L

n
Cov(My 3,C) = zmicicfi =T,
i—1

n
aiCiO'V%. +(1-1p)
i =1

n
bicio;,. (4.61)
=1

From (4.59) to (4.61), (4.58) is proved, so that the arrival time computation of the
method in [55] can handle correlation correctly.

The property (4.58) guarantees that the linear approximation in the maximum
computation of [55] can preserve the correlation of the maximum to any random
variable. Therefore, the correlation of the maximum to any independent variable v;
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is also preserved. This is the basis of the method proposed in [58]. The advantage of
the method in [55] is that the correlation is handled implicitly and the computation
of (4.47) and (4.49)—(4.51) needs only to be done once in a maximum computation.
Therefore, this method is more efficient than [58].

In addition to the correlation between gate delays, reconvergent structures in the
circuit cause further correlation. In Fig.4.17, the arrival time A4 at node 4 has a
purely random variable v,,. The two arrival times from 3 to 5 and from 4 to 5
are partially correlated because v, becomes a part of the arrival time of node 3
after the maximum computation at node 3. This correlation, however, is discarded
in [55], because the purely random variables are merged into one variable in the
maximum computation. At node 5, all the random parts of the incoming arrival
times are assumed as independent. This assumption is not true because a purely
random part may converge from different paths at following nodes, thus causing
structural correlation [59, 60]. To solve this reconvergence problem, the canonical
delay model (3.15) in [55] is extended in [61]. Instead of merging the initial purely
random variables of gate delays, these variables are kept separately in arrival times
during propagation. Therefore, the correlation from these random variables can be
incorporated.

The linear timing analysis methods require that gate delays are approximated by
linear combinations of Gaussian random variables. As in modeling gate delays, sta-
tistical timing analysis methods using nonlinear or non-Gaussian gate delays or both
are proposed to improve timing accuracy. In [62], gate delays and arrival times are
represented as quadratic functions of independent Gaussian random variables. The
maximum computation is performed in a way similar to [58], where the covariances
between the maximum and each term in the quadratic form are matched. As in [58],
the first-order correlation between the maximum and other variables are preserved.
The disadvantage of this method is that numerical integration is needed for each
coefficient identification, which makes the proposed method slow. In order to reduce
the runtime of [62], a parameter dimension reduction technique is proposed in
[63]. Another method with a quadratic model is proposed in [64]. This method
still uses the tightness probability from [55], but only when the maximum of two
quadratic variables is Gaussian. This Gaussian property is evaluated by computing
the skewness of the maximum using the formula in [65]. If the skewness is smaller
than a threshold, the maximum is assumed to be Gaussian and is approximated
by a linear combination of the two quadratic inputs. If the skewness is larger
than the threshold, the maximum is not computed and the corresponding arrival
times are directly propagated as a collection of quadratic forms. At each maximum
computation, the skewness is evaluated so that the collections of quadratic forms
can be compressed as soon as possible.

Representing gate delays as linear combinations of non-Gaussian variables, the
method in [66,67] approximates the maximum of two variables also using tightness
probability. The difference from [55] is that the tightness probability is computed
from two non-Gaussian random variables, with the formulas proposed in [68].
This method has high efficiency, but the correlation between random variables is
compromised during the maximum approximation. In the nonlinear non-Gaussian
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case, the method in [69] samples the nonlinear non-Gaussian parts of the variables,
so that the rest part of the arrival times are linear combinations of Gaussian
variables, which can therefore be processed with the method in [55]. The accuracy
of this sampling-based method depends heavily on the number of samples. If the
distributions of non-Gaussian variables are very complex and the number of them is
large, this method faces runtime problem for moderate accuracy.

From the discussion above, correlation handling is always the source of com-
plexity for statistical timing analysis. To avoid this complexity, correlation is simply
discarded in [70], where it is proved that the result without considering correlation
is an upper bound of the result with correlation after the maximum computation.
Without considering correlation, the statistical bounds in [70] are very loose.
Therefore, selective enumeration is deployed in [59, 71] to improve the bounding
accuracy.

The algorithms discussed above are all block-based. Similar to static timing
analysis, path-based methods are also explored to process statistical gate delays,
e.g., in [72,73]. To apply these methods, critical paths should be first identified.
However, without a statistical timing method, the critical paths identified from static
timing analysis can not be guaranteed to be critical [74]. Additionally, any path
in the circuit contributes to the circuit delay distribution with certain probability.
Consequently, it is not very clear how many paths should be selected for path-based
methods to cover the paths which are statistically critical. Furthermore, it is very
hard to implement incremental timing analysis with path-based methods, because
any revision in the circuit can change the critical paths. Given these disadvantages,
path-based methods are currently limited to specific areas of application.

In summary, timing analysis of flip-flop-based circuits is similar to the method for
static timing analysis. The delays between flip-flops are computed with a statistical
timing engine described above. The minimum clock period is computed using (4.40)
with the maximum and sum replaced by the statistical computations. The result 7iyi,
is a random variable, whose properties define the performance distribution of the
circuit. The clock feeding to all flip-flops must have a period larger than T, to
guarantee the proper behavior of the circuit. Therefore, timing yield of a flip-flop-
based circuit at clock period T, defined as the probability that the circuit works
correctly with clock period T, can be computed by (4.42).

4.4 Leakage Analysis

Leakage power is an important challenge to downscaling of the CMOS semicon-
ductor technology. The transistor device leakage currents grow exponentially with
scaling device sizes and threshold voltages. Starting with 90 nm technology and
beyond, leakage current became a significant performance variable limiting scaling,
and it is expected to grow as much as 3x until 2012, and further reach to 5x by 2016
[105]. As seen in current techologies, leakage has further gained emphasis since it
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displays significantly higher variability, as much as orders of magnitude with respect
to frequency/delay variability [106].

In this section, we will discuss the increasing importance of leakage power in
integrated circuit design, describe major leakage current mechanisms, and ways to
model leakage for CMOS circuits. We will also touch on statistical modeling of the
leakage power and describe techniques to analyze leakage variations.

4.4.1 Background

Technology scaling enables supply voltages go down for better performance at
similar power densities. However, the desired transistor threshold voltage V; scaling
factor cannot be maintained at the same rate due to increase in leakage power and
related reliability issues such as various short channel effects. Hence, the current
state-of-art integrated circuits push their limits with V; to achieve fast switching
performance at the cost of increased the leakage and dynamic power, especially for
technology nodes after 90 nm. To solve the short channel effects, and to compensate
the relatively slow scaling threshold voltages, engineers develop thinner gate oxide
devices to enhance the gate drive currents, but this also increases the tunneling
current across the gate and results in higher gate leakage currents. Furthermore,
the physical limits of the channel engineering, the existence of fewer dopant atoms
in the device channel, sophisticated halo designs and higher manufacturing and
operating environment variabilities all contribute to the significance of leakage
power for high performance integrated circuits.

Current design methodologies often include planning, estimation, and optimiza-
tion for leakage power as a major design objective none less important than dynamic
power. As we approach the fierce frequency wall and limits of device scaling,
where the circuit and system performances are more and more limited to power
consumption of various products such as ubiquitous handheld mobile products and
multicore microprocessor chips, the leakage power has rightfully gained its own
importance for semiconductor manufacturers.

4.4.2 Types of Leakage Current

Leakage phenomenon in CMOS and SOI transistor devices is studied extensively.
The term leakage stems from the current that is undesirable and not functionally
useful, since the CMOS device is intended to be at the off state, and is expected not
to leak, therefore hold state indefinitely. The non-existence, or negligible quantities
of leakage current of CMOS devices before 130 nm technology node was a big
force for moving integrated circuit designs from BJT analog transistors to CMOS
technology. But for current deep sub-micron technologies, leakage current, that is
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the undesired current flowing through the device channel at their non-operational
behavior is no longer negligible, and causes excess power dissipation.

The major contributors of the transistor device leakage are subthreshold leakage,
gate oxide leakage and band-to-band tunneling leakage.

The transistor device leakage can be modeled with the governing device topol-
ogy. The subthreshold current flows from drain to source nodes, the gate leakage
flows from the gate node to source, drain and substrate nodes, and the band-to-band
tunneling current is divided into its drain and source components, both flowing to the
substrate node. For SOI devices, we don’t have tunneling current due to the insulator
layer and hence it can be ignored. The leakage currents are all voltage controlled
current sources and functions of gate, source and drain voltages. The figure below
depicts these types of leakage currents in a nfet CMOS transistor (Fig. 4.18).

Next section, we will model these types of leakage currents in more detail.

4.4.2.1 Subthreshold Leakage

Subthreshold current, I, is the drain current of a transistor in the subthreshold
region and can be expressed as

Top = Iolo(Vgs*Vt)/S(T)’ (4.62)

where Iy is the drain current with Ves = V;, and § (T) is the subthreshold slope at
the requested temperature. Subthreshold leakage is caused by the minority carriers
drifting across the channel from drain to source when the transistor device operates
when Vs < V;. To calculate Iy, device models can be used for subthreshold operating
regime of the device that is often implemented in BSIM device models. For
simplicity, we could model [y as

Ip = poCox (Weff/Leff) (kT/q)z(l - e(vds/vl))a (4.63)
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where Wegr and Lo are effective device width and lengths, g is the mobility,
Cox 1s the gate capacitance, k is the Boltzmann constant. More advance models
introduce short channel effects, body effect, and narrow channel effects. Further
studies also accounted for quantum mechanical confinement of electron/holes in
the depletion/inversion regions of the device. Such extensions impact the threshold
voltage of the device that significantly impacts the subthreshold leakage of the
device [75].

Previous projections show that in the 90 nm process node, the subthreshold
leakage power can contribute as much as 40% of the total power [76]. Hence, it is
imperative to model the subthreshold current as accurate as possible. Subthreshold
current is exponentially dependent on the threshold voltage, and hence accurate
models should account for threshold voltage variation effects (Fig.4.19).

4.4.2.2 Gate Oxide Leakage

Gate oxide leakage is due to the tunneling of electrons from the bulk silicon and
drain/source overlap region through the gate oxide barrier into the gate area. Gate
oxide leakage increases exponentially with the decrease in the oxide thickness and
the increase in the potential drop across the oxide. It has been considered as the
sum of gate oxide leakage components, including the source/drain overlap region
current, gate to channel current, and gate to substrate leakage currents (Fig. 4.20).

Igate = Igc + Igod + Igos- (4~64)

Equations for Igate, Igos, and Iyoq have same functional form, with the difference
of being dependent on Vg5 and Vg4, respectively. These variables are functions
of effective gate length L.g, terminal voltages, oxide thickness, and temperature.
A simplified gate oxide leakage model can be provided as:
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Fig. 4.20 Components for gate oxide leakage phenomenon

Isate = (AC)WegtLefrexp (—BTox 0t [ V). (4.65)

As seen, Igae is strongly influenced by the gate voltage and the oxide thickness.

4.4.2.3 Tunneling Leakage

In an nfet device, when the drain or source is biased higher than the device
substrate, a significant tunneling current flows through the drain-substrate and
source-substrate junctions. For SOI, this current is negligible. The classical diode
models can be applied to estimate the tunneling leakage for large scale circuits.
For such band-to-band tunneling leakage (BTBT), [75] explains a highly accurate
numerical model that integrates the sum of the currents flowing through the drain-
substrate and source-substrate junctions.

4.4.3 Leakage Model for Logic Cells and Circuits

Using the models for leakage currents, one can use a detailed device model to
be used with a transistor simulation environment. For this, one can use controlled
current sources across the device terminals to build the required numerical model
[75]. The overall leakage is then analyzed using this controlled current source model
as shown in Fig.4.21.

For circuits composed of multiple devices, the current source models can all be
integrated and analyzed via a circuit simulation engine that honors universal current
and voltage preservation laws. Note that the characterization of the leakage of a cell
requires calculation of the leakage currents for each input vector of the gate. Since
leakage is calculated for a steady-state condition, a DC analysis can be performed
via the circuit simulator for the requested circuit inputs.
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Fig. 4.22 Leakage currents for each input for 3-input NAND gate

Since leakage is a strong function of the terminal voltages, we see significant
variations within different inputs. Figure 4.22 depicts this for a 3-input NAND gate,
and table displays the leakage for each input vector. Here, we performed device
models from a state-of-art process technology node.

Most generally, dynamic evaluation of the leakage for all possible input combi-
nations is quite costly and inefficient. In a large logic circuit, not all the cells are
generally at their high leakage states. The balancing of high and low leakage states
for various cells implies an averaging effect for each cell. Hence for more efficient
leakage estimation, static (input-independent) analysis techniques are preferred
within the design methodologies. Over a long period of circuit operation, the
cells in the logic circuit may be at numerous states, and assuming all input states
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are equi-probable, we can characterize the leakage by its mean statistic. If the
probabilities of each cell input are known either by designer intuition, known
primary input characteristics or via logic simulation results, we could model the
mean cell leakage as:

Ieen = Y, Prob(state;) fsiae, - (4.66)

statey,

For the logic circuit consisting of many cells, we could simply add the individual
cell leakages due to the near-perfect isolation between the logic boundaries, and
therefore the mean circuit leakage can be derived as:

Lircuit = 2 Icell,- (4.67)

cell;

4.4.4 Static Leakage Estimation

When the operating environment and the technology are kept constant, it is desirable
to develop a static (input-independent) method for predicting the average leakage
under possible input conditions. As technology requires smaller and faster logic
stages and more radical design styles, the leakage becomes more dependent on the
input states. This is also true with the existence of control inputs as for the case
of header/footer designs, or special inputs which can turn off some sections of the
circuit. Therefore in this section, we will introduce a probabilistic static leakage
estimation method. We will focus on combinational circuit as the core building
blocks of conventional digital integrated circuits.

The logic circuits often hold full logic values at the cell boundaries and the total
leakage of the logic circuit is mainly the sum of leakages coming from all the cells
combined. Let us assume, the leakage for each cell type is pre-characterized for all
its input states, i.€., Isuate; - This can be done once with an accurate circuit simulator
during library generation step.

Using a concept of occurrence probability that describes the likelihood of a
circuit boundary node (input or output) holding a full logic value, we define the node
occurrence probability of node n, as the likelihood of observing the node n at a logic
value 1: 7, = Prob(n = 1). Hence, the probability of observing n at value of 0 would
be 1 — m,. We can further define the state occurrence probability Prob(state;(x)), as
the probability of observing the cell i at state x. If the cell inputs are independent,
computation of Prob(state;(x)) is simply the multiplication of the associated node
occurrence probabilities. Furthermore, one can simply propagate node occurrence
probabilities from cell inputs to cell outputs via following the logic functionality of
the cell as described in [77].

Using the node and state occurrence probabilities, we can evaluate the average
leakage of the logic circuit as the weighted sum of the leakage for all cells in each
state. The weights are simply the state occurrence probabilities. Moreover, same
weights can be applied for leakage components, i.e., gate and subthreshold leakages.
These values can also be pre-characterized in the library creation step.
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Fig. 4.23 Accuracy for probabilistic simulation for leakage analysis

This approach was experimented for ISCAS combinational circuits that are
synthesized using a library of basic gates with delay constraints. The total leakage of
each circuit for a given input vector is estimated via circuit simulator at nominal con-
ditions. Each primary input is assumed to have binary node occurrence probability
of 0.5. The results shown in Fig. 4.23 validates accuracy of the average relative error
for the probabilistic technique. Compared to total-width-based leakage estimate,
which totally ignores the probabilities of the logic states and averages out all the
devices, the probabilistic simulation-based techniques have accuracy within 2%
versus 20-30%. This is achieved by accurately capturing the high and low leakage
states of the circuit cells from the state occurrence probabilities and accounting their
leakage estimates accurately in the total circuit leakage power estimate.

4.4.5 Stack Factor-Based Leakage Estimation

The models mentioned above are useful when the logic cells are fully characterized.
When such libraries do not exist and the logic circuits are more custom designed
with arbitrary circuit topologies, empirical models for leakage are often used. These
models simply accumulate leakages of each transistor in the circuit. Since leakage is
dominated by the subthreshold leakage component, overall model quality depends
on the accuracy of the subthreshold leakage.

The most simplest approach for subthreshold leakage estimation is area or
total width based. However to properly account for leakage of channel-connected
devices, we must consider the stacking effect for leakage.
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Fig. 4.24 Stacked transistor vV d
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Figure 4.24 demonstrates a stack of transistors. The upper device has an internal
source node causing a lower Vg5 and therefore a higher threshold voltage. Hence,
it would generate a lower subthreshold current than its nonstacked version. We can
also explain this by the bottom device with a lower Vs, compared to its nonstacked
version that sees the full supply voltage level Vpp. Since subthreshold current for the
stack of transistors will be limited by these factors, the total leakage of the stack of
devices is considerably lower than the sum of their nonstacked versions. The same
applies to higher stack sizes, and can be generalized [78].

In today’s microprocessors and high-performance circuits, the stack depth is
often less than 4 for performance constraints. Hence from the characterization point
of view, we can build models for various stack sizes and build models for leakage
estimation [78].

Like stacking, body biasing also reduces subthreshold leakage exponentially.
Also, the leakage is also modulated by DIBL effect, as Vg increases, the channel
energy barrier between the drain and source is lowered. Hence, this effect also
exponentially increases the subthreshold leakage. The derivation of the stacking
factors could include all these physical effects.

One could model the stacking effect using the original device model equation
(4.62) but this can be too time consuming for chip-level analysis. To overcome this,
the following empirical model can be used:

Isub,stacked = Isubvvtot/XS; (4-68)

where I is the subthreshold leakage for a device with no stacking, W, is the total
transistor width, and Xg is the empirical stacking factor. Xg is the de-rating factor
for the reduction in the subthreshold leakage due to the stacking effects. [78] studies
the derivation of Xg for various stack topologies and concludes that typical values
of 2 and 3 are used for cache and core circuits for high-performance microprocessor
designs.

For more accuracy, certain blocks of circuits can be pre-characterized to deter-
mine the best stacking factor. Such primitive cells can use basic, domino, complex
gates with standardized stacks. Once the proper stacking factors are found, it can be
used in full-chip level leakage analysis.
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4.4.6 Leakage Current Estimation Under Variability

Leakage current components, subthreshold and gate in particular, are super-linearly
dependent on effective device length and threshold voltages. For gate oxide leakage,
we also have a similar dependence on the oxide thickness. In technologies for
90nm and beyond, we do see significant variability of these device parameters
due to imperfect manufacturing conditions and tool, fab limitations. Moreover, the
operating environment for the integrated circuit may present significant variations
in temperature and supply voltage. Under such variability, leakage performance is
amenable to show large amount of variability. This motivates us to model leakage
current within the existence of parametric variabilities.

Lets assume the threshold voltage of a device, V; as a Gaussian distribution
with mean V;p and standard deviation oy,. If we convolve this distribution with
the subthreshold leakage model with respect to V;, the result is that leakage is
not distributed as Gaussian and the mean leakage is skewed due to the nonlinear
relationship between the subthreshold leakage and V;. Similar study could be done
on channel length variability, 6. Therefore, the average leakage estimate under
parametric variations need a more careful study.

Our new leakage model that considers parametric variability will be based on the
average leakage estimate and will contain a multiplier that reflects the uplift resulted
in the variability of the underlying parameter. This could be formalized as:

Ileakage = Inominal *f(AP), (4.69)

where P is the process parameter that impacts the leakage current. Like in BSIM
models, the typical functions for f() is quite nonlinear and complex. Hence, more
efficient analysis can be performed by accurate empirical equations valid within the
operation and manufacturability regions.

The formalism in parameter P also allows the decomposition of global and local
variability, i.e.,

AP = APglobal + APocal, (4.70)

where APgobat and APoc models the die-to-die variability (a.k.a. global) and
within-die variability (a.k.a. local), respectively.

We illustrate the method using a single parameter on gate leakage. The oxide
thickness is reduced to increase device mobility and speed, but this increases gate
leakage current significantly leading to nonlinear relationship between variations in
ATox and Igae. Other parameters do not affect gate leakage at the same magnitude
and can be ignored.

Hence, we can write, with significant variability in oxide thickness, ATy, the
gate leakage term can be written as:

Igate = Igate nom exp(f(ATox))- (4.71)
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For simplicity, let us express the f(ATy) as a linear function as —Tox/B1. Tox
can also be decomposed into global and local components as:

Tox = lox,g + Tox,l- (472)
Hence, the gate leakage with variability due to T« can be written as:

Igate = Igate,nom eXp(—A Tox,g/ﬁl) eXp(—A Tox,l/ﬁl ) (4.73)

We denote the gate leakage current of a single device with unit width as Jgae and
its nominal term Igate nom is modeled when no variations in Tox. We further assume
that ATox ¢ and AT,y ; are both zero-mean normal random variabilities. The model
in (4.73) leads to the estimate for the average Iy as:

E[Igate] = SATOXJIgate,ATOX‘gv 4.74)

where the uplift factor due to the within-die variations in Toy is
Sat,, = exp(0iz,, ,/2B7) (4.75)

and, the baseline gate leakage estimate for the global chip-mean 07 ¢ is:

Igate,ATox,g = Igate,nom eXP(—A Tox,g/ﬁl)- (4.76)

The uplift factor is based on the standard deviation of the local component in
Tox variability, and the baseline leakage estimate can be found by the known global
variation in AT , for all the devices. By using (4.74), one can assess the average
gate leakage under various global and local combinations in T,x variability. The
uplift factor Sa7, , is responsible for the within-die variations and exponentially
increase with its standard deviation.

The same model can be extended to the subthreshold leakage I;,;,. As previously
noted, the subthreshold leakage has an exponential relation with its major contribu-
tor, Vi, which leads to:

Isub = Lsub,nom exp(AVin). 4.77)

This exponential relationship is the cause of significant uplift of the average
leakage under parametric variations in Vi, as much as a few orders of magnitude.
Similar important parameters that impact device leakage and performance are
channel length L., oxide thickness Tyx, dopant concentration Ngp. Most of
these parameters may have interrelated and can be represented via their principal
components. In similar manner, we can model threshold voltage variations as a sum
of variability due to channel length, and dopant concentrations, as:

f(AVin) = f(ALetr) + f(ANgup). (4.78)

This is simply the generalization of the model derived for gate leakage term with
ATy variations. As derived in [79], it leads to a similar model of subthreshold
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leakage as a function of global and local variations in channel length and dopant
concentrations, as:

E|lyp] = SALeﬂ-‘, SANSUB,IISUb-ALeff,g JANSUB,g? (4.79)

where Sp, . and Sy, are uplift factors for variability in channel length and

dopant concentration affecting threshold voltage variations. For more details on this
derivation, the reader may refer to [79].

For total leakage of a chip, we simply sum the subthreshold and gate leakage
currents for all the devices using the uplift factors derived from the within-die
variation statistics. The result would give average leakage estimate under various
combinations of global and local parametric variability and gives very useful yield
assessments when coupled with frequency estimates.

4.4.7 Conclusion

Leakage analysis has become a key topic for recent integrated circuit technologies,
as power especially leakage power became a more dominant performance limiter.
In this section, we outlined the leakage current phenomenon, and discussed details
on subthreshold and gate leakage types in general. We discussed modeling leakage
for a device and circuit, and its generalization to larger circuit blocks, all the way to
chip-level. We presented the issues on static and probabilistic estimation of leakage
power and the model extensions that cover parametric variability.

Leakage analysis is a key component in circuit design, optimization, and
manufacturing. It is an essential topic in design verification for years to come.

4.5 Dynamic Power Analysis

Since leakage analysis is described in Sect.4.4 in detail, this section focuses on
statistical analysis methods for dynamic power.

The dynamic power of a gate cell is caused by two different effects: (1) the
charging and discharging of gate-internal and external parasitic capacitances and
(2) short-circuit currents through the gate during switching. The short-circuit power
depends on the amount of time where the input voltage is in a range between
the thresholds of both, the nMOS and pMOS transistors, so that both are open
during that time resulting in a current flow from Vyq4 to ground. This effect mainly
depends on the input slope time and usually counts for a smaller part of the
total dynamic power. The dominant part is caused by charging and discharging
of parasitic capacitances, which can be divided into gate-internal capacitances and
capacitive loads of wires and driven gates connected to the gate output. Usually,
these are combined to an effective load capacitance Cjaq, Which is charged at each
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switching event of the gate output. Because both effects directly depend on signal
transition rates, the calculation of switching activities for each net in the circuit is
an important task.

In this section, two aspects of dynamic power are covered: (1) Glitch power
and how it can be determined by probabilistic methods and (2) the influence of
process variations on timing and power and how to consider them in digital gate-
level simulation.

4.5.1 Probabilistic Glitch Power Analysis

The dynamic power caused by net n can be calculated by

1
Prz = Evdzdcloadam (480)

where T¢ is the clock frequency, Vyq equals the supply voltage, and o, is the
switching probability of net n, which is also called transition density. Cyyq is the
effective load capacitance that is switched by the driving gate cell of net n.

Several approaches have been presented to determine signal transition densities.
Since simulation-based methods are very time consuming, faster approaches have
been developed based on probabilistic methods. In this section, an overview of these
methods will be given. It is crucial to consider delays precisely when estimating
transition rates. Methods will be shown that use pattern- and slope-dependent delay
models, taking into account process variations.

We define glitches as the functionally unnecessary portion of the total signal
transitions. They are caused by unbalanced paths from throwing latches to the inputs
of a logic gate. This results in different signal arrival times that unnecessarily forces
a gate to switch and switch back during one clock cycle. These glitches are also
propagated through the circuit. However, if the difference A; between the arrival
times is below a gate-specific delay, then no glitch occurs at the output. This
phenomenon is called hazard filtering and it is used to leverage the constraints
for a glitch-free design. In order to determine glitches at gate level, the delay
model must be sufficiently accurate (see [80]). A simple method to distinguish
between glitches and functional transitions is to determine transition rates in two
different ways. Functional transition rates o; fync are obtained by using a zero delay
model. Using a more precise delay model considering hazard filtering leads to o; 4y
which includes both functional transitions and glitches. Glitch rate then equals the
difference o glitch = O,all — % func-

Monte Carlo simulation results are very accurate if an appropriate number of
samples is used. Since this is very time consuming, other methods have been
developed to overcome this problem. Najm et al. proposed a probabilistic simulation
method, which was implemented in the early power estimation tool CREST [81].
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Table 4.3 Extended

P P,
probabilistic waveform table (00,00) (10,00
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4.5.1.1 Probabilistic Simulation

In contrast to ordinary digital simulations, probabilistic simulation methods use
signal and transition probabilities as signal values. Each gate maps the input signal
combination probabilities to output probabilities. These probabilities are propagated
starting at the primary inputs through the whole combinational part of the circuit
only once.

Using probabilistic waveforms, a signal is defined by a tupel of four probabilities
at any time: the probability that the signal remains low (Pyg), transitions from low to
high (Fy1), transitions from high to low (Pjg), and that the signal remains high (P1).
The sum of these probabilities always equals one.

Output signals of a gate can be derived from the input probabilities by using
lookup tables. Efficient probabilistic waveform simulation can be performed using
an event-driven mechanism, which allows to consider transport delays easily.

4.5.1.2 Extensions for Hazard Filtering

Using the formulation from above, it is not possible to take hazard filtering
into account. The reason is that no information on temporal correlation between
different events exists. In order to determine glitch power more precisely, probability
waveforms were reformulated as presented in [82].

The idea is to separate the probabilities for different cases. Probability tupels
allow to describe different signal histories given by the previous event. Doing so an
event is characterized by 8 probabilities instead of 4 probabilities. Table 4.3 shows
the events that can occur. P(ep,e.) denotes the probability for the combination
of the current event e. with the previous event e,. An event can be 00, 11 for
keeping low and high or 01, 10 for transitions from low to high or from high to
low, respectively.

This concept can also be extended to represent more previous events. Although
the number of separate probabilities strongly increases with the number of previous
events that are considered. Therefore, a trade-off must be chosen. In the following,
we use the formulation from Table 4.3. By observing an inertial delay window, the
extensions allow to identify glitches, which are not propagated due to inertial gate
delay (see [82]).
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Table 4.4 Results of

.. . Monte Carlo  Extended probabilistic
transition density

e simulation simulation [82]
determination -
Runtime 0.364 s 0.011 ps
Speedup 33
Max. error 24.30%
Avg. error 5.97%

4.5.1.3 Experimental Results

A 1-bit full adder was chosen as an example to investigate both speedup and
error compared to Monte Carlo simulation. Table 4.4 shows the averaged transition
density results for all nets.

The speedup of 33 is payed by an average error of nearly 6%. The example
circuit has several reconverged paths where the signals are correlated. The error of
the probabilistic simulation is caused by neglecting these correlations between the
input signals of the reconverging gates and by a limited consideration of temporal
correlation.

4.5.2 Monte Carlo Digital Power Simulation

In simulation-based power estimation approaches, transition densities are deter-
mined in a digital gate-level simulation and then fed to the actual power estimation
tool. This is done for certain interesting input patterns resulting in quite accurate,
testcase-specific power measures. One methodology to estimate the influence of
process variations on dynamic power and also on timing behavior of a digital
circuit is Monte Carlo simulation, which can be very accurate regarding the effects
of variations but time consuming if the single simulation run takes longer time.
Transistor-level models such as SPICE netlists provide the advantage that they
support to map many of the interesting process parameters directly to parameters
of the used transistor models such as BSIM, but they have the disadvantage that
they need too much computational effort for larger circuits. This makes them less
suitable for the Monte Carlo approach. A huge acceleration can be achieved when
moving from transistor level to behavioral models as used in digital gate-level cell
libraries. Here, the process variations have to be mapped to parameters of the cell
models which are usually the input slope times and output load capacitances. This
section describes such an approach for a statistical gate-level simulation flow based
on parameter sensitivities and generated VHDL cell models. The solution provides
a good speed/accuracy tradeoff by using the event-driven digital simulation domain
together with an extended consideration of signal slope times directly in the cell
model.
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4.5.2.1 Modeling Approach

The characterization of digital components using the nonlinear delay and power
model (NLDM, NLPM) is widely used as an industry standard. Input-to-output
delays, slope times of the output signals, and the consumed energy of a switching
event are characterized with respect to the slope time of the input signals and the
output load capacitance considering the logic state and the direction of signal edges
(compare Sect. 4.1).

delay = f(slope;,,Cioad)
SlOpeout = g(Sk)peinvCload)
energy,,, = h(slope;,,Cioad)- (4.81)

For N nominal parameters ppom € RY, the functions f, g, and h are represented
by two-dimensional lookup tables determined by SPICE simulations for each
combination of typical input slope and output load values during cell library
characterization. In the nominal case, the standard cell library will not contain any
parameter data and is valid only for the PVT corner it was characterized for.

In the case of statistical analysis, the parameters can vary and are characterized
by random variables. The dependency of delay, slope, and switching energy on the
parameters can be expressed in the simplest way by first-order (linear) sensitivities
9L 98 and g—;‘l for each parameter p;. The functions f, g, and & are then extended

Jdp;’ Ip;’
by a variable part:

N

0
delay = f(slope;,,Cioad) + 2, a—lj:(slopein, Cioad) - Api
i=19Pi

N9
slope,,: = g(slopei,, Cioad) + Z a—g(slopein, Cload) - Api

i=1 t

N oh
energy,,, = h(slopei,, Cioad) + Z a—p(slopein, Cioad) - Api- (4.82)
i=1 9Pi

The parameters p; shall describe statistically independent variations and can be
derived from the usually correlated, technology-specific device parameters by statis-
tical methods such as principal component analysis (PCA) for Gaussian-distributed
variables. The linear sensitivities with respect to these independent parameters have
to be determined once by the cell characterization step, too. For that purpose, some
SPICE simulators provide special analyses for single-run sensitivity calculation to
reduce the characterization effort [83]. Special consideration needs the distinction
between intra-die (local) and inter-die (global) variations. For the application on
gate-level netlists, it turned out to be more practical to introduce separate variables
for the local components of parameters because separate, instance-specific random
values have to be calculated for them during simulation. This additionally provides
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the possibility of further abstraction by combining these local components to a
single new parameter describing all local variations of a gate cell instance.

The linear approach provides valid results only as long as the dependencies of
the cell quantities f, g, and & on the technology parameters are approximately linear
in the interesting range. In many practical cases, this has been proven for the timing
and dynamic power quantities. However, as shown in [83], the method may also
be applied to nonlinear problems when a transformation to a new, linear-dependent
quantity can be found as it is possible for leakage current variations. Furthermore,
general nonlinear functions f, g, and & are possible as they are, for instance, used in
[69] for statistical static timing analysis (SSTA).

In the rest of this section, process parameters are assumed to be Gaussian
distributed. In general, this has the advantage that all quantities that are linear-
dependent on these parameters are also Gaussian, which eases the prediction of their
probability distribution by mean and variance. At cell level, this is always the case
for the quantities f, g, and & because of the linear sensitivity approach. At chip level,
quantities such as path delays or mean dynamic power may have a more nonlinear
dependency because of the complexity of possible paths through the netlist and the
occurrence of glitches. But in many cases, some of these chip-level quantities show
Gaussian distribution too.

For analysis and modeling of parameter variations and correlations, also compare
Sects. 2.2 and 3.3.

4.5.2.2 VHDL Modeling and Design Flow Aspects

Because the active power of a larger circuit strongly depends on the applied stimuli,
the toggle activity at each node of the digital circuit has to be determined before any
realistic power estimation. Conventional tools typically can use either a given mean
activity at the circuit’s input pins or the result of a prior functional digital simulation,
e.g., in VCD format. These two steps can be joined into a common simulation of
timing behavior and power consumption when the cell model directly accesses the
timing and energy tables of the cell library and considers the signal slope times
dynamically as described below. This results in a slightly increased simulation effort
but has two advantages. First, there is no static timing analysis (STA) step needed
like in standard digital gate-level simulation with back-annotated static delays (e.g.,
in SDF format). Second, by evaluating the slopes dynamically during simulation,
delays and the shape of signal edges can be modeled more exactly which enables
further analyses, e.g., of glitches and the portion of dynamic power caused by them.

As a prerequisite for the statistical simulation, the parameter sensitivities have
to be characterized and provided as additional tables in the cell library. This can be
realized either by a user-defined extension of the commonly used Liberty format
which allows such extensions by its syntax or by a full proprietary format, e.g.,
based on a scripting language such as Perl to ease further processing. (Sect. A.3
contains an example listing from a Liberty file with such extensions.) From this
extended library, the delay, slope, energy, and sensitivity tables can then be extracted
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LOGIC_TYPE is
record

ﬁL' A V4 %» DATA : STD_ULOGIC;
SLOPE : REAL;

end record;

Fig. 4.25 Buffer cell with ports A and Z of type LOGIC_TYPE

library VHDL UTILITY;
use VHDL UTILITY.STATISTICS.all;

package INTER CELL_PKG is

-- calc. gauss. random value with mean 0.0 and std.dev. 1.0
constant D TOX THIN : REAL := NORMAL(0.0, -1.0, 1.0, FALSE,
1.0);

end package INTER_CELL_ PKG;
Listing 4.1 Package to determine random parameter variations A p;

and written to corresponding VHDL array variables. As far as the cell library also
contains sufficient information about the logical function of each cell type, the
complete VHDL cell models can also be generated automatically.

The cell model has the task to calculate cell delay, output slope time, and
switching energy for each transition at one of its input signals based on (4.82). The
required arguments slopei, and Cjy,q are provided in different ways: the effective
load capacitance can be assumed to be constant over time and is therefore passed as a
generic parameter to the cell model instance; the input slope time, however, depends
on the output slope time of the driving cell and is therefore carried together with
the logic value from cell to cell using a two-valued signal data type (see Fig. 4.25)
replacing the standard logic data type STD_ULOGIC.

The independent random parameter values Ap; for the global variations can
be determined once during the elaboration phase of each simulation run using
functions of the VHDL-AMS standard package SAE J2748 for different probability
density functions [84, 85]. To avoid an additional scaling of the calculated random
numbers to the individual range of each parameter, all parameter and sensitivity
values are normalized to a mean of 0.0 and a standard deviation of 1.0. Listing 4.1
demonstrates how a global variation of the normalized parameter oxide thickness
D_TOX_THIN is determined. Using a local file to remember the last random number
and taking it as seed for the next call, the function NORMAL delivers a new random
value for each simulator start.

This is done for each parameter, and then (4.82) are applied by multiplications of
the A p; values with the tabulated sensitivities and a summation of all these variation
portions with each of the three nominal tables resulting in a set of three varied tables
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{entity R SBUF is
generic ( Z LOAD : REAL := 0.0 );
port (A : in LOGIC TYPE;
Z : out LOGIC TYPE );
end entity R _SBUF;

architecture behav of R_SBUF is

-- first, look up values for the given eff.

-- load capacitance Z LOAD for arc A->Z

constant Z A DELAY VEC := LOOKUP_2D_CUT (Z_LOAD,
LOAD_INDICES,
SLOPE_INDICES,
DELAY TABLE) ;

constant Z A SLOPE OUT VEC := LOOKUP 2D CUT (Z_LOAD,
LOAD_INDICES,
SLOPE_INDICES,
SLOPE_TABLE) ;

begin

process (A.DATA)

begin
Z_NEW := A.DATA; -- logic function
7 DELAY := LOOKUP_1D (A.SLOPE,

SLOPE_INDICES,

Z A DELAY VEC) % (1 ns);
Z SLOPE := LOOKUP_ 1D (A.SLOPE,

SLOPE_INDICES,

7 A SLOPE OUT VEC) ;
7.DATA <= A.DATA after Z DELAY;
Z.SLOPE <= Z SLOPE after Z DELAY;

end process;
end architecture;}
Listing 4.2 Essential parts of the VHDL cell model for the buffer example

for delay, slope, and energy. During simulation, the cell model then looks up values
only from these modified tables. Listing 4.2 shows essential parts of the cell model’s
VHDL code of the buffer example from Fig. 4.25.

User-Defined Functions for Importance Sampling

In the case of standard Monte Carlo simulation, a huge number of simulation runs
are needed if marginal probabilities are estimated. One method to overcome this
problem is importance sampling (see also Sect.2.2.8). The samples are generated
in a special way that reduces the variance of the estimator of a probability
compared to standard Monte Carlo simulation for the same number of runs. The
presented simulation approach also allows to declare special distribution functions
for importance sampling in addition to the functions provided by SAE J2748 [84].
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Fig. 4.26 Possible simplified —

glitch shape for an XOR gate O—A N

(not to scale) 21 Zr—O
o—B_ A

delayaz sai,

Power Analysis

Like in standard tools, the active power calculation is based on counting of switching
events at cell outputs. For each such switching event, a corresponding energy value
is taken from the cell library and can then be added up to a total average power or
traced to a discrete power signal over time. Beyond that, the direct consideration
of slope times by the model as described above allows a much more precise
estimation of the real, analog waveforms of the output signals than in standard
digital simulation.

This is very helpful when analyzing the occurrence and scale of single glitches.
Figure 4.26 shows an example where the peak voltage of the glitch is less than half
of the full swing, caused by different delays of the two timing arcs through the gate.
This small glitch should not cause the subsequent gates to toggle and should not be
visible with standard digital simulators because of the inertial delay model of the cell
model, which ignores pulses that are shorter than the cell delay. But it will consume
energy in the driving gate cell itself, which would also be ignored in a conventional
power estimation flow. However, using the slope information, the glitch can be
recorded into a file and considered for power calculations in a postprocessing
step. Longer glitches are visible also during simulation and can thus be considered
also for online calculations. Nevertheless, a calculation in the postprocessing step
provides better accuracy because information on the glitch peak voltage is not
available until the second edge of the pulse has occurred so that an appropriate
downscaling of the corresponding energy values of the two signal transitions cannot
really be done in real time. In a conventional power estimation flow, both transitions
would count as complete transitions, which lead to inaccuracies.

Besides the mean power results for certain application scenarios, a time-based
power analysis can help to estimate power peaks due to high switching activity when
they occur. This is needed, e.g., for dimensioning of the supply network, where
larger currents may lead to an unwanted drop of the supply voltage. Thus, a fast
estimation of a circuit’s total current consumption would be desirable in addition to
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Fig. 4.27 Switching current slopej,

modeling using a triangular
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the time-based power analysis. One possibility to do so is to assume a fixed current
waveform during the toggling time of the gate cell. This waveform can then be
scaled for each switching event such that its integral matches the quotient of the
looked-up energy value and the nominal supply voltage (see Fig. 4.27, (4.83)).

g = /Idt U = const. (4.83)
t

By an additive superposition of the currents of all cell instances in the netlist,
an overall current waveform can be calculated that is an estimate for the case of an
ideal supply net because the supply voltage was assumed to be constant (Fig. 4.29).
The accuracy of the current estimation can be improved by choosing appropriate
waveform shapes, by adjusting the points in time when the waveform should begin
and end (begin, middle, or end of the slope time) and by a proper consideration
of special cases such as glitches and events where only input signals but no output
signals change.

Interconnect Wires

Although power is drawn in the gate cells per definition, their behavior is sig-
nificantly influenced by the wiring between them. On the one hand, the parasitic
capacitances of wires increase the effective load capacitance and thus usually
increase cell delay and switching energy. On the other hand, wires introduce
additional delays and change slope times, which influences the appearance of
glitches and the behavior of subsequent gates. Because the presented simulation
approach directly calculates delays and power using the cell library data, no back-
annotation of delays from a static timing analysis is needed for the cell instances.
For the wires, however, it is still required because they are design specific and thus
cannot easily be pre-characterized like the elements of a standard cell library. At
least the effective load capacitances for each cell output and the nominal static
delays of the wire instances have to be calculated, e.g., by a timing analysis tool
such as PrimeTime [86]. The results can be written to VHDL packages using cell
instance names as identifiers to make them available to the cell model.
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introduce a new characterization port to the entity of the netlist;

foreach input slope characterization value do

apply slope value to characterization port;

foreach wire in the netlist do
connect an input signal of the driving cell to the characterization port;
run delay calculation for the wire;

write resulting input slope of the wire, wire delay and wire output slope to a VHDL
package which can be used by the cell model to look up values;
end

end
Algorithm 3: High-level wire delay characterization

This is the level of accuracy also used in standard flows. However, using the slope
information, it is additionally possible to include the dependency of the wire’s delay
and output slope time on its input slope time. To determine these dependencies for a
whole design within an acceptable time, a high-level characterization can be applied
using the delay calculation algorithms of PrimeTime using Algorithm 3.

Further effects such as the nonlinear dependency of the gate input pin capaci-
tance, which contributes to the effective load capacitance of the driving cell, on the
slope time cannot really be considered in an event-driven simulation because this
would lead to a mutual dependency of slope and load and would require network
analysis methods to be solved; here, constant, mean pin capacitances from the cell
library have to be used.

Simulation Flow

The general flow for postlayout gate-level simulation is sketched in Fig.4.28. It
requires three main parts of input data: the cell library with additional sensitivities
for the process parameters, a wire model with extracted parasitic elements, e.g., in
the common SPEF format, which is needed by the STA tool to calculate the effective
load capacitances and wire delays, and the corresponding postlayout netlist, which
has to be adapted to the new signal data type and the additional generic parameters
of the cell models. From these inputs, the VHDL model can then be generated in
single pre-processing steps — once for the cell-specific files and once for the circuit-
specific data. This leads to a compound model that can be used for a simultaneous
simulation of timing and power behavior and also for both, nominal cases without
process dependency and for full statistical analysis using the sensitivity data.

4.5.2.3 Application of the Approach
The performance of the described approach depends on several conditions such

as the number of considered parameters, the portion of local parameters, the
implementation of table access and interpolation, the consideration of glitches, or
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Fig. 4.29 Comparison of VHDL current model with SPICE simulation

the number of oversampling points for the calculation of the current waveforms. In
general, however, the performance should stay in the same order of magnitude like
with conventional digital gate-level simulation. For an example design with about
1,000 cells and 15 parameters a simulation time increase by a factor of about 5 was
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inverter chain example

found compared to the corresponding standard Verilog model with back-annotated
SDF data, but compared with the SPICE reference model it is still faster by a factor
of about 12,000 [87]. This should make the described gate-level approach suitable
for Monte Carlo analyses of medium-sized full designs or subcircuits of larger ones.

For good accuracy, a seamless integration of the sensitivity analysis regarding
the process parameters into the library characterization flow is needed. Especially
the used SPICE models have to be parameterized in a way that in case of nominal
values for all considered process parameters the resulting cell library contains
identical values like in the standard characterization flow for that PVT corner
without sensitivity analysis. In the mentioned example, a maximum deviation of
4% for the total number of toggles and of 7% for the mean power could be reached.

Besides the analysis of process variations, the introduced model can be used for
a more accurate calculation of delays and slope times, which may increase the accu-
racy of timing and power analysis and enables a reasonable investigation of glitches.

The current estimation — as an additional feature — should be done during
postprocessing for accuracy reasons like it was mentioned above for glitch power
estimation too. This needs further time — but has to be done only once for all
simulation runs. Figure 4.29 shows a comparison of the calculated total currents for
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Fig. 4.31 Probability
distribution function for the
number of toggles for
multiplication circuit example

Histogram Number of Toggles
70 - : - :

incidence

1440 1460 1480 1500
number of toggles

TOX_THIN (normalized), mean=-0.0027183, stddev=1.0036 x 10"

500 k-

400

incidence
@
2
)

D00 fessiiadiasiin

2 2 L]
value TOX_THIN

Fig. 4.32 Probability distribution function for global parameter TOX_THIN and dependency of
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the VHDL and the SPICE reference model. The VHDL result is based on a nominal
simulation with a triangle shape for single transitions as shown in Fig. 4.27. In the
simulation scenario, both input vectors of a multiplication unit were inverted at the
same time to cause high switching activity.

Several different statistical analyses may be applied to the results of a Monte
Carlo simulation depending on the quantities of interest. As a common way for
the visualization of results, histogram plots for selected quantities are shown in
Fig.4.30. These are based on 10,000 simulation runs using an inverter chain
test design. Figure 4.31 shows the number of toggles during 1,000 runs of the
multiplication circuit example and illustrates the influence of the process variations
on the number of glitches. Finally, Fig. 4.32 demonstrates the analysis for a single
process parameter. In the right plot, the dependency of the circuit-level quantity path
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delay on the global parameter TOX_THIN is shown. As expected, it shows a linear
dependency because it is always the sum of the same single inverter delays. The
remaining noise is caused by the local variations.

4.6 Methods for Analysis and Optimization of Parametric Yield

Based on statistical transistor models, statistical SPICE circuit simulation is ex-
plained. Higher-level analysis (Monte Carlo analysis, worst-case analysis, Mis-
match analysis and sensitivities) is explained. Optimization of performance and
robustness is then explained.

4.6.1 Statistical Analysis

In order to simulate statistical variation and device degradation, model parameters
of the transistor model are varied, e.g., the long-channel zero body bias threshold
voltage Vino, or mobility po.> All such variable model parameters are collected in
the parameter vector s.

After production, model parameters are assumed to be Gaussian distributed with
a mean vector s and a covariance matrix C.

A specification is a lower bound on a performance, for example slew rate
SR > 3Vus~!'. One manufactured instance of a circuit is considered OK if it
fulfills all specifications at all required operating conditions (e.g., temperature
range). Including the worst-case operating conditions into the statistical analysis is
important for a realistic yield estimate. In the following, we do not include them
explicitly in the formalism, but keep in mind that fulfillment of a specification
always means that it has to be fulfilled at its respective worst-case operating
condition.

If we denote each individual specification with f;(s) > b;, then the set of process
parameters that fulfills a specifications i is

A; = {s[fi(s) = bi}, (4.84)

with a similar definition for upper bounds. The partial parametric yield Y; of a
circuit regarding one specification i is then simply the probability that its process
parameters are inside A;:

Yi=P{s€A;}, (4.85)

2Note that electrical characteristics such as Isat or transconductance gm are simulation results, but
not parameters of a transistor model like BSIM3.
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while the total yield is the probability that all specifications are fulfilled:

Y =P{sc()A}. (4.86)

4.6.1.1 Monte Carlo Analysis

Monte Carlo simulation is an integration method based on random sampling. A

sample of size N is taken from the distribution of process parameters, so that

there are N vectors s(1>, s(z), ceey s™). For all of them, the performance values are

simulated, which results in one vector of simulation results £(s(1)), ..., f(s™)).
Monte Carlo simulation is used to estimate the parametric yields of a given

circuit:

Lif f(sY) > by

0 else

. 1
Y= NZ‘S" with  §; = { (4.87)
J
Monte Carlo simulation is also used to estimate the mean values and standard
deviations of a performance:

F=fy— %Zf (s) (4.88)
Gy ST e

The accuracy and effort (required sample size N) of Monte Carlo simulation
is a popular discussion topic and deserves attention. It depends on the observed
statistics:

* Mean value: Accuracy grows with the square root of the sample size N. Accuracy
can be improved by latin hypercube sampling (LHS). But for most specifications,
the mean value can be estimated with one simulation at the typical (tt) corner
anyway. Hence, the mean is usually among the least interesting results of Monte
Carlo.

s Standard deviation ¢ or variance 6*: Accuracy improves with the square root of
sample number N, too. LHS does not significantly improve the accuracy.

* Partial parametric yield Y: The variance of yield estimationis Y - (1 —Y)/N. In
the range of up to a yield of 90%, a small sample number such as N = 50 is quite
sufficient to see that there is a low yield issue. If the yield approaches 100%,
usually the failure rate 1 —Y is considered in ppm, and the (unsymmetrical) 95%
confidence interval is calculated. To statistically “prove” to a 95% confidence
that the failure rate is less than 1,350 ppm (equivalent to a Gaussian distance
of 3 sigma from mean to spec limit), the sample number has to exceed 3/(1 —
Y) =3/1,350 ppm = 2,200. For a 46 Gaussian distance, it is 3/32 ppm = 95,000,
and for a 66 Gaussian distance (1 —Y = 10~?), the sample size has to exceed
3.10° (Fig.4.33).
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It is these prohibitively high simulation counts for estimating high yields that
gave Monte Carlo a bad reputation for being too expensive. But let us consider that
this method of estimating the failure rate by counting failed samples is so expensive
because it makes no assumptions on the distribution shape. It is a robust method for
estimating the failure rate in the presence of extreme outliers, long-tail distributions
and multimodal distributions. We will see below that methods that are based on
robustness distances (like sigma-to-spec) require a lot fewer simulation runs.

Unfortunately, there is no sampling trick that reduces the required sample size
significantly and is still equally robust as standard Monte Carlo for estimating
the parametric yield. There are adaptive sampling strategies that can theoretically
reduce the required sample number dramatically for certain problems, but unfor-
tunately not far enough for widespread practical applications in parametric yield
estimation. Typical sample sizes for adaptive importance sampling lie in the range of
several ten thousands, while the methods do not scale down well and tend to become
unstable for smaller sample sizes. For many applications of Monte Carlo circuit
simulation, a feasible sample size is a factor 10-100 smaller than what adaptive
importance sampling needs; hence, it has not found widespread application in
circuit simulation, despite its popularity in other fields such as finance or theoretical
physics. Particularly for large circuits with long simulation times, even N = 100 can
be challenging. In this situation, reducing the sample size from 10% to 10*> has little
practical meaning.

Given these problems, for many practical applications, the estimated distance
from mean value to specification bound in multiples of standard deviations is a better
robustness measure than the estimated failure rate. In Fig. 4.34, we would consider
spec 2 to be more robust than spec 1, although the shapes of the distributions may
not be exactly Gaussian and the sample size is only N = 150.

If the performance distribution shape were known to be exactly Gaussian, then
we could verify high robustness with surprisingly little effort: A simulated distance
of 4s in a sample size of only N = 45 is already sufficient to accept a > 30
robustness with 95% confidence.

We can collect the required minimum distance for 95% confidence in Table 4.5.

As an example, Table 4.5 is read as follows: If you want to verify that the distance
of the mean from spec of a performance that has a normal distribution is more than
40, then run a Monte Carlo simulation with a sample size of N = 50. If the distance
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Fig. 4.34 Robustness estimates from Monte Carlo

Table 4.5 Required sigma

. 30 40 50
distance by sample number

N =50 3.66 485 6.04
N =100 344 457 570
N =300 324 431 538
N=1,000 313 416 5.20

of the mean from the spec in the sample is larger than 4.850, then it is OK because
you may safely assume that it will not drop below 4.0 even if you increased the
sample size to infinity. If the distance in your N = 50 sample is only a little less than
4.850, then increase the sample size for more accuracy. Else, accept that the design
is not robust enough and fix it.

For non-Gaussian distributed performances with long tails, the rule is not so
simple anymore. One extreme example is the log-normal distribution. A one-sided
yield of 99.87% on the long-tail side does not require a 3¢ distance like a perfect
Gaussian distribution would, but 8.66. In a sample of size N = 300, the spec-to-
mean distance has to be larger than 11.96 to verify this yield with 95% confidence.
These numbers look high, but they are not since reaching 11.90 is much more likely
in a log-normal distribution than in a Gaussian distribution.

For performances that are known to be close to a log-normal distribution, like
leakage current or certain timing measurements in logic, it is more robust to check
the distribution of their logarithm. Performances such as CMRR of an amplifier
should be analyzed not in dB but in the linear signed domain, where they show a
much more linear behavior.

4.6.1.2 Worst-Case Analysis

Figure 4.35 shows the mean value, covariance ellipsis and one specification bound in
process parameter space. Of all process parameter sets which violate a specification,
the point that is closest to the mean value is called the worst-case point sy.. It
marks the position in the process parameter space where the probability density of
parametric faults has its maximum. The Mahalanobis distance between sy and sg
is the worst-case distance Byc.
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There is a sign convention for PByc: if the specification is fulfilled at the nominal
point, then By, is positive, else it is negative. In this way, the yield estimate from
Bwe is equal to the Gaussian cumulative density function (see (4.94)).

Due to device degradation during operation, the mean value and the covariance
matrix of the circuits change with time 7: so(¢), C(¢). The initial values after
production at ¢ =y are so(fp) and C(f). Therefore, the percentage of circuits that
still fulfill their specification at time 7 is

1
(o) = [ 2RO exp (- de (5500 ) a5 4o
A(p)

If we consider the influence of process variation on the sensitivity toward stress-
induced degradation as a second-order effect, then we may assume C(z) to be
constant. The effect of degradation during operation on the yield is then formally
similar to a process drift during manufacturing (see Fig. 4.36).
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For small changes in the position of the mean value, the change of worst-case
distance over time is

(s0(1) —50(10)) "€ (swe 0) — 80 (t0))
Buwe(to) '

This change can be positive or negative, i.e., a performance can become better or
worse by device degradation.

The worst-case distance can be used to estimate the partial yield for the
performance:

Buwe (1) = Bue(to) —

(4.93)

Bwe
A 1
Y(ﬁwc)ZE /6752/2(15_ (4.94)

4.6.2 Optimization for Robustness

In order to resist process drift and device degradation, it is not sufficient to optimize
only the yield figure Y (p,0), because this value goes into saturation at 100%.
Standard methods for the estimation of Y, which means counting Monte Carlo
samples, are not accurate enough to estimate the worst-case distance. A robust and
a nonrobust design may show the same yield value Y (p,0), but different worst-
case distances, which means different sensitivities toward process drift or device
degradation. Optimization for yield and robustness, therefore, has to focus on the
worst-case distances as the primary targets for optimization of robustness and
yield [88].

As a result, this advantage of worst-case distance optimization in contrast to
optimization of Y becomes even more important for the design of robust and reliable
analog circuits. The combination of worst-case distance optimization and SOAs is
the basis of our approach. The SOAs can be formalized as functions of the design
parameters, which impose further constraints on the optimization problem:

c(p) > 0. (4.95)

During the worst-case distance optimization, design points are accepted as valid,
only if they fulfill all such constraints. The solution has to show high worst-case
distances for each performance f;, while satisfying all constraints ¢ > 0.

The optimization consists of three main steps (cf. Fig. 4.37). First, the operating
points of basic structures, e.g., differential pairs, are optimized using a constraint
matrix concept. Then the circuit performance is improved regarding operating range,
such as supply voltage and temperature. Finally, design centering is carried out to
maximize the yield.
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Fig. 4.37 WiCkeD’s main optimizations steps

4.6.2.1 Structural Constraints

Analog circuits are composed of basic building blocks such as current mirrors or
differential pairs. Unlike digital gates, the analog ones depend on their geometries
and operating point to operate correctly. Usually, being in saturation is an important
constraint on many analog transistors, as well as current symmetries or certain
nodes being at the same potential. Since these constraints are related neither to
the specification, nor to the layout level like design rules are, but come from the
structure of the circuit, they are called “structural constraints.” We distinguish four
types of constraints:

1. Geometric equality, like “equal lengths /| = /; in a current mirror”
2. Geometric inequality, like “wyl; > 6L2, "~

3. Electrical equality, like “I} = I” in a current mirror

4. Electrical inequality, like “Vys — Vi, > 50mV” (strong inversion).

The geometric constraints can be guaranteed by construction. To check the electrical
inequality constraints, a simulation has to be done that shows by which amount ¢y
each constraint & is over-fulfilled (¢ > 0) or is violated (¢ < 0).

Like design rules on layout level, structural constraints on schematic level do
not at all guarantee that the circuit fulfills the specification, but a violation indicates
a structural problem that may result in a low yield but remains undetected when
simulating a rather high-level circuit specification.

For a typical analog circuit consisting of 100 transistors, more than 400
constraints may be created. Since many structural constraints can be derived from
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requirements on basic structures such as current mirrors, generation of many of
these constraints can be performed automatically [89].

4.6.2.2 Feasibility Optimization (FO)

Structural constraints are useful to automatically find a good initial sizing and
to ensure that tools for automatic nominal optimization and design centering
provide technically feasible results [90]. For that purpose, FO modifies the vector
d=(di,...,ds,) of design parameters (such as transistor geometries and resistor
values) so that all constraints are fulfilled, i.e., ¢(d) > 0. Usually, a reasonable initial
sizing djp; is available and a solution close to it is preferred:

H}iln”d — dipi¢|
c(d) > 0. (4.96)

The number of independent design parameters n; grows with the number of
elements to be sized and is reduced by geometric equality constraints. For typical
analog, circuits n; can be expected to be between 15 and 30, while complex designs,
e.g., the OTA presented in [91], can have up to 100 degrees of freedom.

4.6.2.3 Nominal Optimization (NO)

Analog circuits are characterized by performance measures, for example, gain Ao,
slew rate SR, and noise figure NF. The specification requires the values of these
measures not to exceed certain upper and/or lower bounds, for example Ag > 80dB.

We denote the performance measures by the vector f = (fi,...,f» f), with the
vectors of lower bounds f* and upper bounds fU. The performance measures depend
on design parameters: f(d), and the specification is

cd)>0 A fL<fd)<tY. (4.97)

The goal of nominal optimization is finding values for d that satisfy (4.97).

Moreover, this must be achieved for a defined range of operating parameters
such as temperature or Vdd. We denote the operating parameters by the vector 8 =
(61,...,0,,) with lower and upper bounds 0% and @Y. Then f depends also on the
operating conditions: f(d, @), and the specification is

c(d)>0 A vV f<fde) <t (4.98)

- ol<o<eV

The goal of nominal optimization with operating conditions is finding values for d
that satisfy (4.98).
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Two types of algorithms are available for nominal optimization in WiCkeD:
gradient-based optimization with parameter distances [92] and stochastic (global)
optimization. The nature of most analog sizing problems is optimization of per-
formance functions that show strong trade-offs, are expensive to evaluate in terms
of simulation time, but are monotonous or convex — not in the full design space
but in the small feasible design space that is restricted by the large number of
structural inequality constraints. Gradient-based methods can be adapted to this
type of problem very efficiently. Therefore, it is reasonable to run these methods
first, and to resort to stochastic optimizers only when simulation results and design
knowledge indicate that multiple local optima actually exist.

4.6.2.4 Design Centering

Process variation and mismatch have a large influence on the performance measures
of analog circuits. For simulation, this effect is modeled by varying randomly a
few standard Gaussian distributed model parameters, for example tox or Vth. The
vector of random model parameters is denoted by s = (sy,...,s,,) With the null
vector 0 as mean and unity covariance matrix. Process variation and mismatch are
both contained in s, so for a typical analog circuit consisting of 100 transistors, n;
can be expected to be between 200 and 250.

One standard method for estimating the distributions of performance measures
is Monte Carlo simulation. A sample of size N of s is generated and simulated,
yielding N result vectors £ = f(d, G,S(i)), i =1...N. The parametric yield Y is
estimated as the percentage of samples that lie within the specification bounds
(f-,£V). Monte Carlo is only an analysis method, but does not vary d and hence
shows little information on how to improve the yield by changing d.

Yield improvement can be accomplished by worst-case distance methods. A de-
sign that satisfies (4.98), i.e., that fulfills the specification for the typical process and
no mismatch (s = 0) and for all required operating conditions, could still violate
the specification for some s # 0. If process conditions s causing violations are close
to the mean value (i.e., f;(d,0,s) < fL for some 6 and small ||s|)), then there will
be severe parametric yield loss. Therefore, an important measure for a performance

fi is the worst-case distance BV(V’C), which is the shortest distance between the mean
value and a process condition that causes f;(d, 8,s) to fail its specification. For a
lower bound fiL of a spec that satisfies (4.98),

B = min B|

S
i daoa M- :lL
f( B|s||) /

et <o <0v. (4.99)
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Fig. 4.38 Schematic of an OpAmp

The worst-case distance for an upper bound is similarly defined.

A worst-case distance is a function of the design parameters. They are useful
goals to maximize over d and thereby achieve a design that is centered in the process
space regarding the specification bounds [88,93].

4.6.2.5 Example

In this section, some of the concepts discussed above are shown on an example
circuit, see Fig.4.38. This kind of operational amplifiers are basic building blocks
of many analog and mixed-signal circuits. For certain applications, the performance
of the operational amplifier is critical for the performance of the whole system.

Table 4.6 shows the Monte Carlo simulation results for the circuit specifications
after initial nominal circuit design. As can be seen from the row “Yield estimate f/i,”
many specs already have a large yield, but transit frequency F; and phase margin @,
still need improvement.

Table 4.7 compares yield estimation results from Monte Carlo simulation
(see Sect.4.6.1.1) and worst-case analysis (see Sect.4.6.1.2). The worst-case dis-
tance for specification ¢, is negative, which corresponds to a yield estimate <50%.

Table 4.8 shows one of the worst-case points in terms of the threshold voltages
of the devices. The most dominant parameter is the threshold voltage of transistor
MMNI1, but MMP3 and MMP1 influence the transit frequency significantly, too.
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Table 4.7 Comparison of estima