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Preface

The main goal in writing this book was to help organisations improve their effort

estimates and their effort estimation processes by providing a step-by-step method-

ology that takes them through the building and validation of models that are based

on their own knowledge and experience. Such models, once validated, can be used

to obtain predictions, carry out risk analyses, help organisations with their decision-

making when estimating effort for new projects and set a pathway to making those

organisations into learning organisations.

This methodology, called expert-based knowledge engineering of Bayesian

networks (EKEBNs), has been adapted by the author as a result of several collabo-

rations with six different companies in New Zealand and Brazil. Domain experts from

each company participated in the elicitation of bespoke models for effort estimation.

The building of suchmodels led those companies to change their estimation processes

and to also improve their estimates. Their stories are detailed in Chaps. 7–12. Note

that the methodology detailed in this book can also be employed to build models

aiming at different goals other than effort estimation (e.g., quality prediction, risk

management, resource management and prediction).

All models were built using a single tool, called Netica. This tool was chosen

since it provided simplicity and the functionality that was needed to carry out the

work. The example model that is used in some parts of this book was also created

using this same tool. This model is available for download, and the tool is also free

to use with models that do not contain more than 15 factors. We hope that making

the example model available will encourage companies to run the model and see the

value in using such models for decision-making.

Writing this book was made possible due to the participation of several

companies in New Zealand and Brazil with which I had the privilege to collaborate

and research funding from the Royal Society of New Zealand and from the

Brazilian Government (CAPES/PVE).

Karlskrona, Sweden Emilia Mendes

October 2013
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Introduction to Knowledge Management 1

Introduction

At the heart of an organisation’s ability to sustain its competitive advantage and to

innovate are the knowledge it holds and its capability to learn and utilise such

knowledge [1, 2]. This idea is supported by a growing number of publications in

areas such as knowledge management, knowledge-creating companies and learning

organisation (e.g., [3–5]). Garvin defines a learning organisation as follows [2]:

“A learning organisation is an organisation skilled at creating, acquiring, and transferring

knowledge, and at modifying its behaviour to reflect new knowledge and insights”.

Clearly, sustainable organisational improvement requires a “commitment to

learning” [6, 7].

If we consider software organisations, regardless of whether they manage

Web-based or software projects, the core of what they do is knowledge intensive

[4, 7, 8]. However, their use of knowledge management activities is often still

lacking, and is far from changing them into learning organisations [8]. A recent

systematic literature review on knowledge management in software engineering

presented the following gaps in this area [5]:

1. Software engineering has predominantly only addressed the storage and retrieval

of knowledge, and has ignored other important aspects such as knowledge

creation, transfer and application;

2. There has been no identification to date of success factors for knowledge

management in software engineering;

3. There is a siloed view of knowledge management by organisations as they tend

to use solely tacit or explicit knowledge, rather than to combine both as part of a

continuous process;

4. There has been a focus of agile software development mainly on tacit

knowledge-driven management activities, and a focus of traditional software

development mainly on explicit knowledge-driven management activities.

E. Mendes, Practitioner’s Knowledge Representation, DOI 10.1007/978-3-642-54157-5_1,
# Springer-Verlag Berlin Heidelberg 2014
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Knowledge management and decision making are intrinsically related, given

that the quality of the decisions taken is extremely likely to be influenced by the

usefulness and effective representation of the knowledge used in those decisions.

Whenever decisions are carried out within the scope of a complex knowledge

domain (e.g., software project/product management), they present an uncertain

nature. Note that herein uncertain means that the knowledge is based on beliefs

and therefore cannot be assumed to be absolute with deterministic outcomes [9].

The literature in the field of decision-making advocates that a suitable solution to

support decision-making under uncertainty is to build models that make explicit

decision makers’ mental models [10], as such models can be used to compare

different decision scenarios and hence provide better understanding of the situation

at hand [10, 11]. This means that any knowledge management activities being

employed by an organisation must include the building of explicit models

representing experts’ mental models (tacit knowledge). In addition, decisions

(how one sees, thinks or acts in the world) are influenced by decision makers’

mental models [10]; therefore, updating and enriching these mental models leads to

improved decision-making processes [6, 10]. Mental models (a.k.a. representations

and cognitive maps [11]) are enhanced through the use of a knowledge creation

process [2, 6, 12], which is discussed next.

Knowledge creation is one of the three different processes (knowledge creation,

transfer and application) embedded into the theory of organisational knowledge

creation by Nonaka and Toyama [6]. This theory is the basis for all the improve-

ment actions that are detailed throughout this book, and is introduced next.

Nonaka and Toyama’s theory is cited in numerous knowledge management

studies (e.g., [1, 2, 7]), and has also been used to guide improvement activities in

software process improvement studies, with extremely promising results [3, 4]. It

organises the knowledge process into four different stages [6] (see Fig. 1.1):

1. Tacit to tacit, where experiences, skills and expertise are shared between

individuals. A typical example is that of a carpenter teaching carpentry to a

helper. The carpenter explains and shows how to accomplish the tasks; however,

all the knowledge transferring that takes place is done via socialisation only,

without any written manuals or guides. The end result of such type of sharing is

a change in the helper’s mental model due to the tacit knowledge transferring

that took place. In other words, when knowledge is transferred on a tacit to tacit

level the end result is not a concrete, tangible representation of that knowledge.

Another example, however, now in the area of software engineering, is the

following: two senior project managers explain verbally to a junior project

manager the approach they use when estimating the effort (person-hours) for a

new project. This approach is based on expert knowledge only. In a similar way

to the previous example, this scenario also describes a situation in which

knowledge is transferred but does not result in a tangible knowledge representa-

tion (e.g., a sketch, a manual) that details the tacit knowledge that is used (and

how it is used) in order to achieve a particular goal. Both examples illustrate

knowledge being transmitted solely via discussions (socialisation), which leads

2 1 Introduction to Knowledge Management



to learned skills and shared mental models. In other words, knowledge is being

transmitted at the tacit level only, without any documentation/model/tangible

representation making explicit the tacit knowledge that the carpenter and the two

senior project managers have relating to their experiences and knowledge in

carpentry and project management, respectively;

2. Tacit to explicit, where tacit knowledge is “translated” by an individual or by a

group into an explicit (tangible) representation. If we revisit the two examples

presented in (1), they could read as follows: a carpenter is writing a manual

documenting how to build several furniture items (e.g., chair, table) using

explanations and examples in natural language; the second example could be

as follows: two senior project managers are working together preparing a

detailed set of training material (slides) and guidelines (booklet), all written in

natural language, to be used to explain to junior project managers the approach

those senior managers employ when estimating effort for new projects. Both

scenarios provide examples of some of the possible ways in which tacit knowl-

edge can be made explicit. Note that in both scenarios the end result is a tangible

representation of tacit knowledge—a manual, slides and a booklet. These tangi-

ble representations all use natural language as a way to explicitly characterise

experts’ tacit knowledge; however, the choice of whether to use natural language

or an alternative choice for knowledge representation should be driven by the

main goal that motivated the explicitation of tacit knowledge. Note that the

explicitation of tacit knowledge has numerous advantages, including wider

sharing of existing expert knowledge within an organisation;

3. Explicit to explicit, where explicit knowledge from different groups is gathered,

combined, edited and diffused. An example is to combine carpentry manuals

written by different experienced carpenters/groups of carpenters, and also to
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combine training material and guidelines previously prepared by senior project

managers. Here all the knowledge being combined represents tangible knowl-

edge that was previously represented explicitly from tacit knowledge. There are

numerous advantages to an organisation in combing explicit knowledge, which

include the creation of a common understanding about a particular practice/

process, etc. This common understanding can be used as the basis for best-

practice standards to be disseminated and followed throughout the organisation.

Such aggregation of knowledge should also be complemented with explicit

knowledge of the state of the art and the state of the practice, thereby enabling

an organisation to learn not only from its own existing expertise, but also from

that of others.

4. Explicit to tacit, where explicit knowledge is absorbed by individuals in groups

within the organisation via action and practice, thus enhancing those individuals’

mental models. Using the examples already given, we could have a junior

carpenter reading the carpentry manuals and applying what is prescribed in the

manual step by step, and as a result internalising the tacit knowledge via

experiencing the process. In terms of our other example, we could have a junior

project manager who has just participated in project-management training simu-

late a scenario prepared by a senior project manager, in which effort has to be

estimated for a new project.

Knowledge creation is meant to be a continuous process that, as an integral part,

traverses all four stages, i.e., to be a knowledge spiral.

Once the explicitation of a mental model (or several mental models combined)

has taken place via the use of a knowledge creation process, this explicitated model

can be employed as part of a decision-making process. Let’s look at an example that

brings together the concepts of knowledge management and decision making.

In this example we consider a consulting company that provides Web-based

solutions to clients. This company has three project managers who are responsible

for all the effort estimates prepared for their new projects. These three project

managers attended a seminar by a researcher who has collaborated with other

companies in order to help them improve their decision making relating to effort

estimation. As a consequence of attending the seminar, these three project

managers decided to collaborate with the researcher (called here a knowledge

engineer, KE) in order to improve their decision making relating to the effort

estimated for each of their new projects. This collaboration took place via weekly

meetings, which were attended by the three project managers and the KE and where

a knowledge creation process was employed, led to the model presented in Fig. 1.2.

This model, which is a tangible representation of the combined mental models

from the three project managers based on their experience managing Web projects

and estimating effort, shows what these managers believe to be the fundamental

factors affecting effort estimates, how these factors are inter-related, and also

their quantification of the uncertainty that is inherent to the domain of effort

estimation (all the bars and numbers listed with each of the factors). We refer to

this as an example model, EM, henceforth. Note that a step-by-step description of

4 1 Introduction to Knowledge Management



the type of model that is presented herein and the process used to build such

tangible model are provided in Chaps. 5 and 6, respectively. The factors that are

included in the EM are detailed in Table 1.1.

Figure 1.2 shows that, based upon the three projects managers’ past experience,

40 % of the past Web projects had a medium number of static Web pages, 35 % had

a large number of scripts and 40 % had a medium number of multimedia files. It

also shows that the effort of the combined sizes was very high 52.9 % of the time,

and so on.

How can such a model be used for decision making?

Let’s consider three different decision-making scenarios, and also assume that

the categories that are chosen for some of the Factors are based on the results from

requirements elicitation meetings with clients.

Scenario 1: After attending a few requirements elicitation meetings with a client,

one of the project managers has estimated categories for six different Factors,

as follows:

Factor Category selected

Total number of static Web pages Medium

Total number of scripts Very large

Total number of multimedia files Medium

Average team’s expertise Average

Technological diversity High

Project planning overhead High

Fig. 1.2 Example model for effort estimation decision making
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Table 1.1 Factors, their relationships and the uncertainty inherent to effort estimation as per the

three project managers

Factor Description

Total number of static

Web pages

This factor represents the estimated number of new Web pages that

need to be created. These are not dynamically-generated pages, and

include any type of page such as .htm, .html, .php. Figure 1.2 also

shows that the total number of static Web pages is measured using five

different categories (very large, large, medium, small and very small).

This means that when project managers use the model, they have these

five categories to choose from, and the choice will depend on the set of

requirements they have gathered from the client for whom this

application is to be developed. Within the context of the example model

(EM), these categories are detailed as follows:

Very small number of Web pages! 1–5 Web pages

Small number of Web pages! 6–15 Web pages

Medium number of Web pages! 16–25 Web pages

Large number of Web pages! 26–30 Web pages

Very large number of Web pages! 31+ Web pages

Total number of scripts This factor represents the estimated sum of any types of scripts that are

likely to be created for the Web application. Such scripts can be made

using a client-side scripting technique (e.g., XML, Ajax techniques,

Flash ActionScript), or server-side scripting languages (ASP, JSP, Perl,

PHP, Python). It also includes files written using cascading style sheets

(css). Figure 1.2 also shows that the total number of scripts is measured

using five different categories (very large, large, medium, small and

very small). Within the context of the EM, these categories are detailed

as follows:

Very small number of scripts/css files! 0–7 scripts/css files

Small number of scripts/css files! 8–20 scripts/css files

Medium number of scripts/css files! 21–25 scripts/css files

Large number of scripts/css files! 26–35 scripts/css files

Very large number of scripts/css files! 36+ scripts/css files

Total number of

multimedia files

This factor represents the total estimated number of any multimedia

content, such as images and videos. Figure 1.2 shows that the total

number of multimedia files is measured using five different categories

(very large, large, medium, small and very small). Within the context of

the EM, these categories are detailed as follows:

Very small number of multimedia content! 0–3 multimedia content

Small number of multimedia content! 4–8 multimedia content

Medium number of multimedia content! 9–20 multimedia content

Large number of multimedia content! 21–30 multimedia content

Very large number of multimedia content! 31+ multimedia content

Combined size’s effort This factor represents the estimated amount of effort (person-hours)

needed to create Web pages, scripts/css files and multimedia files. Note

that the effort changes depending on which categories are selected for

each factor. Such selection takes place as part of a decision-making

scenario, and examples are given later on (see Figs. 1.3, 1.4, and 1.5).

Figure 1.2 shows that combined size’s effort is measured using five

different categories (very high, high, average, low and very low).

Within the context of the EM, these categories are detailed as follows:

Very low effort! 1–40 person-hours

Low effort! 40+ to 80 person-hours

(continued)
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Table 1.1 (continued)

Factor Description

Average effort! 80+ to 160 person-hours

High effort! 160+ to 320 person-hours

Very high effort! 320+ person-hours

Average team’s

expertise

This factor measures team expertise as the average number of years of

experience that the development team has with Web development. The

estimation within this context relates to tentative decision as to who will

likely be allocated to the team that will develop the Web application for

which total effort is being estimated

Figure 1.2 shows that five different categories (very high, high, average,

low and very low) are used to measure the average team’s expertise.

Within the context of the EM, these categories are detailed as follows:

Very low team’s expertise! 1 year of experience

Low team’s expertise! 2–3 years of experience

Average team’s expertise! 4–8 years of experience

High team’s expertise! 9–12 years of experience

Very high team’s expertise! 13+ years of experience

Technological diversity This factor represents the estimated amount of diversity as far as the use

of technology is concerned. It is measured using a surrogate measure,

represented by the number of different technologies that are being

employed in order to develop a Web application. Examples of

technologies are MySQL, PHP, HTML, CSS, Python, ASP and JSP.

Five categories are employed to measure technological diversity.

Within the context of the EM, these categories are detailed as follows:

Very low technological diversity! 1 type of technology is being used

in the Web application

Low technological diversity! 2 different types of technology are

being used in the Web application

Average technological diversity! 3–4 different types of technology

are being used in the Web application

High technological diversity! 5–7 different types of technology are

being used in the Web application

Very high technological diversity! 8+ different types of technology

are being used in the Web application

Combined cost factors’

effort

This factor represents the estimated amount of effort (person-hours)

when taking into account technological diversity and average team’s

expertise. Note that the effort changes depending on which categories

are selected for each factor. Such selection takes place as part of a

decision-making scenario, and examples are given later on (see

Figs. 1.3, 1.4 and 1.5). Figure 1.2 shows that the combined cost factors’

effort is measured using five different categories (very high, high,

average, low and very low). Within the context of the EM, these

categories are detailed as follows:

Very low effort! 1–80 person-hours

Low effort! 80+ to 200 person-hours

Average effort! 200+ to 400 person-hours

High effort! 400+ to 800 person-hours

Very high effort! 800+ person-hours

Project planning

overhead

This factor represents the degree of participation needed by the project

manager in order to ensure the project is managed adequately and is

ideally completed within time and on budget. This includes, but is not

(continued)
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Such choices are also shown in Fig. 1.3.

Once these categories were selected, the model suggested that the total estimated

effort was 63.6 % likely to be very high. However, there was also a 31.5 % chance

that total effort could be high and a 4.92 % chance that it could be average.

However, despite the strong suggestion by the model that total effort was very

likely to be very high, the project manager decided to try a different scenario

(Scenario 2) as he was not sure whether the team available to work on the project

would have average expertise.

Scenario 2: Except for the factor “Average Team’s Expertise” this scenario is

mostly the same as Scenario 1. Here the EM also suggests that the total estimated

effort is very likely to be very high; however, now with a certainty of 76 %, as

opposed to 63.6 % (see Fig. 1.4).

Factor Category selected

Total number of static Web pages Medium

Total number of scripts Very large

Total number of multimedia files Medium

Average team’s expertise Very low

Technological diversity High

Project planning overhead High

Table 1.1 (continued)

Factor Description

limited to, status reports; communication; implementation plan (for

large projects), which includes the tasks to be done and their estimated

completion dates; risk analysis; data analysis; planning (project

execution plan)

Figure 1.2 shows that the project planning overhead is measured in our

EM using five different categories (very high, high, average, low and

very low), which are detailed as follows:

Very low project overhead! 5 % of estimated effort

Low project overhead! 15 % of estimated effort

Average project overhead! 20 % of estimated effort

High project overhead! 30 % of estimated effort

Very high project overhead! 40 % of estimated effort

Total development effort This factor represents the total estimated effort to develop a Web

application. The three factors that have a direct effect upon total effort

are: combined cost factors’ effort, project planning overhead and

combined size’s effort. Figure 1.2 shows that the total development

effort is also measured in our EM using five different categories (very

high, high, average, low and very low), which are detailed as follows:

Very low effort! 1–126 person-hours

Low effort! 126+ to 320 person-hours

Average effort! 320+ to 670 person-hours

High effort! 670+ to 1,400 person-hours

Very high effort! 1,400+ person-hours
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Both scenarios strongly suggest that total effort is likely to be very high. Such

scenarios, also known as what-if scenarios, provide the means to estimate effort

using as basis the knowledge and experience from the project managers; therefore,

such scenarios can provide support for decisions relating to effort estimates for new

projects. Both scenarios show the use of the EM for predictive reasoning, i.e., to

make predictions using as basis the existing knowledge already embedded in the

Fig. 1.3 Example model for scenario 1

Fig. 1.4 Example model for scenario 2
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model itself, in combination with additional knowledge obtained via, for example,

requirements elicitation meetings.

Once several what-if scenarios are run and compared, the project manager

can use the suggested effort estimate from one of these scenarios (or a combination),

without any further modification, as the effort estimate for the new project, or she

can also compare the output from the model with her own independently prepared

subjective effort estimate (at least for a number of new projects). The choice

between relying solely on the model or to also use experts’ subjective knowledge

for some time depends on the amount of validation that took place when building the

model. Further details are provided in Chap. 6.

There is no limitation on the number of scenarios that can be created (see

Scenario 3 and Fig. 1.5), and they can also be readily used in discussions between

the project manager(s) and the prospective development team(s). In addition, such

models can also be used by junior project managers, thereby enabling them to

understand the factors that were previously chosen by more experienced managers

and to also run scenarios to be discussed with more experienced managers. These

activities will lead to tacit knowledge learning, which is also an important aspect of

a learning organisation.

Scenario 3: This scenario represents the following choice of categories:

Fig. 1.5 Example model for scenario 3
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Factor Category selected

Total number of static Web pages Very small

Total number of scripts Very large

Total number of multimedia files Large

Average team’s expertise Low

Technological diversity Low

Project planning overhead Average

The EM and the different scenarios presented in this chapter illustrate the use of

a knowledge creation process where tacit knowledge is explicitated and represented

as a model that can then be used via what-if scenarios to support decision making

and tacit knowledge learning.

The core of this book is to explain how such models can be created via the

elicitation of tacit knowledge from domain experts. There are 14 chapters in this

book, which are briefly introduced below:

Chapter 1 provides an introduction to knowledge management, how its

principles can be used when building explicit mental models and how such models

can be used for decision making.

Chapter 2 provides a discussion relating to differences between Web and software

applications and development processes. This is done in order to provide a clear

motivation for why effort estimation within the scope of Web development is needed

and how Web applications differ from traditional software applications.

Chapter 3 provides an introduction to effort estimation to provide all readers with

an understanding of this fundamental process that is part of any Web and software

project management.We also include this chapter in the book in order to improve the

understanding of the case studies detailed in Chaps. 7–12, which are aimed at

building effort estimation models.

Chapter 4 provides an overview of the state of the art in the area of Web effort

estimation, based on the findings from a recent systematic literature review on Web

resource estimation.

Chapter 5 provides an introduction to Bayesian networks, which are employed in

all the case studies discussed in this book.

Chapter 6 details the step-by-step methodology that was used in all six case studies

on building effort estimation models, presented in Chaps. 7–12.

Chapters 7–12 each present a separate case study where effort estimation models

were built in collaboration with domain experts from different companies in

Auckland, New Zealand and Rio de Janeiro, Brazil.

Chapter 13 elaborates on the many different ways a company can use models

such as those that are the focus of this book. It also discusses the issue of

aggregating different models and provides a suggestion on how to aggregate.

Chapter 14 provides conclusions to the book and summarises the main messages

that were presented throughout the previous 13 chapters.

Introduction 11

http://dx.doi.org/10.1007/978-3-642-54157-5_1
http://dx.doi.org/10.1007/978-3-642-54157-5_2
http://dx.doi.org/10.1007/978-3-642-54157-5_3
http://dx.doi.org/10.1007/978-3-642-54157-5_7
http://dx.doi.org/10.1007/978-3-642-54157-5_12
http://dx.doi.org/10.1007/978-3-642-54157-5_4
http://dx.doi.org/10.1007/978-3-642-54157-5_5
http://dx.doi.org/10.1007/978-3-642-54157-5_6
http://dx.doi.org/10.1007/978-3-642-54157-5_7
http://dx.doi.org/10.1007/978-3-642-54157-5_12
http://dx.doi.org/10.1007/978-3-642-54157-5_7
http://dx.doi.org/10.1007/978-3-642-54157-5_12
http://dx.doi.org/10.1007/978-3-642-54157-5_13
http://dx.doi.org/10.1007/978-3-642-54157-5_14


Conclusions

This chapter introduced the principles behind knowledge management and

knowledge organisation, and discussed how such principles can be incorporated

into explicit expert-based models (mental models). We stressed in particular that

knowledge creation is an iterative process as proposed by Nonaka and Toyama

[6]. It provides a pathway for building expert-based mental models, which can

also be used for decision making at the group, division, department and even

organisation level. We ended the chapter with an overview of the remaining

chapters of this book.

References

1. Dyba T (2003) A dynamic model for software engineering knowledge creation. In: Aurum A,

Jeffery R, Wohlin C, Handzic M (eds) Managing software engineering knowledge. Springer,

Berlin, pp 95–114

2. Garvin DA (1998) Building a learning organization. In: Harvard business review on knowl-

edge management. Harvard Business Publishing, Boston, MA

3. Arent J, Nørbjerg J (2000) Software process improvement as organizational knowledge

creation: a multiple case analysis. In: Proceedings of the 33rd HICSS conference, pp 1–11

4. Aurum A, Jeffery R, Wohlin C, Handzic M (eds) (2003) Managing software engineering

knowledge. Springer, Berlin

5. Bjørson FO, Dingsøyr T (2008) Knowledge management in software engineering: a systematic

review of studied concepts, findings and research methods used. Inf Softw Technol 50(11):

1055–1068

6. Nonaka I, Toyama R (2003) The knowledge-creating theory revisited: knowledge creation as a

synthesizing process. Knowl Manag Res Pract 1:2–10

7. Schneider K (2009) Experience and knowledgemanagement in software engineering. Springer,

Berlin

8. Dingsøyr T, Bjørson FO, Shull F (2009) What do we know about knowledge management?

Practical implications for software engineering. IEEE Softw 26(3):100–103

9. Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann, San Francisco, CA

10. Steiger DM (2010) Decision support as knowledge creation: a business intelligence design theory.

Int J Bus Intell Res 1:29–47

11. Chermack TJ (2003) Mental models in decision making and implications for human resource

development. Adv Dev Hum Resour 5:408–422

12. Lempert R, Nakicenovic N, Sarewitz D, Schlesinger M (2004) Characterizing climate-change

uncertainties for decision-makers. An editorial essay. Clim Chang 65:1–9

12 1 Introduction to Knowledge Management



Web Development Versus Software
Development 2

Introduction

The World Wide Web (Web) was originally conceived in 1989 as an environment

to allow for the sharing of information (e.g., research reports, databases, user

manuals) amongst geographically dispersed individuals. The information itself

was stored on different servers and was retrieved by means of a single user interface

(Web browser). The information consisted primarily of text documents inter-linked

using a hypertext metaphor (http://www.zeltser.com/web-history/) [1].

Since its original inception, the Web has changed into an environment employed

for the delivery of many different types of applications. Such applications range

from small-scale information-dissemination-like applications, typically developed

by writers and artists, to large-scale commercial, enterprise-planning and schedul-

ing, collaborative-work applications. The latter are developed by multidisciplinary

teams of people with diverse skills and backgrounds using cutting-edge, diverse

technologies [1–3]. The increase in the use of the Web to provide commercial

applications has been motivated by several factors, such as the possible increase of

an organisation’s competitive position, and the opportunity for small organisations

to project their corporate presence in the same way as that of larger organisations

[4]. Numerous current Web applications are fully functional systems that provide

business-to-customer and business-to-business e-commerce, and numerous services

to numerous users [1].

Industries such as travel and hospitality, manufacturing, banking, education and

government utilised Web-based applications to improve and increase their

operations [3]. In addition, the Web allows for the development of corporate

intranet Web applications, for use within the boundaries of individual organisations

[5]. The remarkable spread of Web applications into areas of communication and

commerce makes it one of the leading and most important branches of the software

industry [1].

Web development is a relatively new and rapidly growing industry, with

e-commerce alone weathering the recession and growing 11 % in the United States

E. Mendes, Practitioner’s Knowledge Representation, DOI 10.1007/978-3-642-54157-5_2,
# Springer-Verlag Berlin Heidelberg 2014
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in 2009, with similar growth in 2010.1 This continued growth makes it worthwhile

to conduct research that enables Web development companies to make more

efficient managerial decisions [6].

To date, the development of Web applications has generally been ad hoc,

resulting in poor-quality applications, which are difficult to maintain [1]. The

main reasons for such problems are unsuitable design and development processes,

and poor project management practices [3]. A survey on Web-based projects,

published by the Cutter Consortium in 2000, revealed a number of problems with

outsourced large Web-based projects [3]:

• 84 % of surveyed delivered projects did not meet business needs.

• 53 % of surveyed delivered projects did not provide the required functionality.

• 79 % of surveyed projects presented schedule delays.

• 63 % of surveyed projects exceeded their budget.

As the reliance on larger and more complex Web applications increases, so does

the need for using methodologies and best practice guidelines to develop

applications that are delivered on time, within budget, have a high level of quality

and are easy to maintain [7–9]. To develop such applications Web development

teams need to use sound methodologies, systematic techniques, quality assurance,

rigorous, disciplined and repeatable processes, better tools, and baselines. Web

engineering2 aims to meet such needs [11].

Web engineering is described as [12]:

the use of scientific, engineering, and management principles and systematic approaches

with the aim of successfully developing, deploying and maintaining high quality

Web-based systems and applications.

This is a similar definition to that used to describe software engineering;

however, both disciplines differ in many ways. Such differences are discussed next.

Web Applications Versus Conventional Software

An overview of differences betweenWeb and software development with respect to

their development processes, technologies, quality factors, and measures is

presented here. In addition, this section also provides definitions and terms used

throughout the book (e.g., Web application).

1 http://blogs.wsj.com/digits/2010/03/08/e-commerce-growth-slows-but-still-out-paces-retail/
2 The term “Web engineering” was first published in 1996 in a conference paper by Gellersen

et al. [10]. Since then this term has been cited in numerous publications, and numerous activities

devoted to discussing Web engineering have taken place (e.g., workshops, conference tracks,

entire conferences).
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Web Hypermedia, Web Software or Web Application?

The Web is the best-known example of a hypermedia system. To date, numerous

organisations world-wide have developed a vast array of commercial and/or edu-

cational Web applications. The Web literature uses numerous synonyms for a Web

application, such as Web site, Web system, Internet application. The IEEE Std

2001–2002 uses the term Web site defined as [13]:

“A collection of logically connected Web pages managed as a single entity.”

However, using Web site and Web application interchangeably does not allow

one to differentiate between the physical storage of Web pages and their application

domains.

The Web has been used as the delivery platform for three types of applications:

Web hypermedia applications,Web software applications, andWeb applications [14].

• Web hypermedia application—a nonconventional application characterised by

the authoring of information using nodes (chunks of information), links

(relations between nodes), anchors, access structures (for navigation), and deliv-

ery over the Web. Technologies commonly used for developing such

applications are HTML, XML, JavaScript and multimedia. In addition, typical

developers are writers, artists and organisations who wish to publish information

on the Web and/or CD-ROMs without the need to know programming languages

such as Java. These applications have unlimited potential in areas such as

software engineering, literature, education and training.

• Web software application—a conventional software application that relies on

the Web or uses the Web’s infrastructure for execution. Typical applications

include legacy information systems such as databases, booking systems, knowl-

edge bases, etc. Many e-commerce applications fall into this category. Typically

they employ development technologies (e.g., DCOM, ActiveX, etc.), database

systems, and development solutions (e.g., J2EE). Developers are in general

young programmers fresh from a Computer Science or Software Engineering

degree course, managed by a few more senior staff.

• Web application—an application delivered over the Web that combines

characteristics of both Web hypermedia and Web software applications.

Web Development Versus Software Development

Web development and software development differ in a number of areas, which

will be detailed later. However, of these, three such areas seem to provide the

greatest differences and to affect the entire Web development and maintenance

processes. These areas encompass the people involved in development, the intrinsic

characteristics of Web applications and the audience for which they are developed.

The development of conventional software remains dominated largely by IT

professionals, where a sound knowledge of programming, database design, and

project management is necessary. In contrast, Web development encompasses a
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much wider variety of developers, such as amateurs with no programming skills,

graphics designers, writers, database experts and IT professionals, to name but a

few. This is possible as Web pages can be created by anyone without the necessity

for programming knowledge [15].

Web applications by default use communications technology and have multi-

platform accessibility. In addition, since they employ a hypermedia paradigm, they

are non-sequential by nature, using hyperlinks to interrelate Web pages and other

documents. Therefore, navigation and pluralistic design become important aspects

to take into account. Finally, the multitude of technologies available for developing

Web applications means that developers can build a full spectrum of applications,

from a static simple Web application using HTML to a fully-fledged distributed

e-commerce application [7]. Conventional software can be developed using several

programming languages running on a specific platform, components off the shelf

(COTS), etc. It can also use communications technology to connect to and use a

database system. However, the speed of implementing new technology is faster for

Web development relative to non-Web-based applications.

Web applications are aimed at wide-ranging groups of users. Such groups may

be known ahead of time (e.g., applications available within the boundaries of an

intranet). However, it is more often the case that Web applications are devised for

an unknown group of users, making the development of aesthetically pleasing

applications more challenging [16]. In contrast, conventional software applications

are generally developed for a known user group (e.g., department, organisation)

making the explicit identification of target users an easier task.

For the purpose of our discussion, we have grouped the differences between

Web and software development into 12 areas, which are as follows:

1. Application characteristics

2. Primary technologies used

3. Approach to quality delivered

4. Development process drivers

5. Availability of the application

6. Customers (stakeholders)

7. Update rate (maintenance cycles)

8. People involved in development

9. Architecture and network

10. Disciplines involved

11. Legal, social and ethical issues

12. Information structuring and design

(1) Application Characteristics
Web applications are created by integrating numerous distinct elements, such

as fine-grained components (e.g., DCOM, OLE, ActiveX), interpreted scripting

languages, components off the shelf (COTS, e.g., customised applications,

library components, third-party products), multimedia files (e.g., audio, video,

3D objects), HTML/SGML/XML files, graphical images, mixtures of HTML

and programs, and databases [16–18]. Components may be integrated in many
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different ways and present different quality attributes. In addition, their source

code may be proprietary or unavailable, and may reside on and/or be executed

from different remote computers [17]. Web applications are, for the large part,

platform-independent (although there are exceptions, e.g., OLE, ActiveX), and

Web browsers in general provide similar user interfaces with similar function-

ality, freeing users from having to learn distinct interfaces [16]. Finally, a

noticeable difference between Web applications and conventional software

applications is in the use of navigational structures. Web applications use a

hypermedia paradigm where content is structured and presented using

hyperlinks. Navigational structures may also need to be customised, i.e., by

the dynamic adaptation of content structure, atomic hypermedia components,

and presentation styles [10].

Despite the initial attempt by the hypermedia community to develop con-

ventional applications with a hypermedia-like interface, largely conventional

software applications do not employ this technique.

Again in contrast, conventional software applications can also be developed

using a wide variety of components (e.g., COTS), generally developed using

conventional programming languages such as C++, Visual Basic, and Delphi.

These applications may also use multimedia files, graphical images and

databases. It is common that user interfaces are customised depending on the

hardware, operating system, software in use and the target audience [16]. There

are programming languages on the market (e.g., Java) that are intentionally

cross-platform; however, the majority of conventional software applications

tend to be monolithic, running on a single operating system.

(2) Primary Technologies Used
Web applications are developed using a wide range of diverse technologies,

such as the many flavoured Java solutions (Java servlets, Enterprise JavaBeans,

applets, and JavaServer Pages), HTML, JavaScript, XML, UML, databases and

much more. In addition, there is an increasing use of third-party components

and middleware. Since Web technology is an area that changes quickly, some

authors suggest it may be difficult for developers and organisations to keep up

with what is currently available [17].

The primary technology used to develop conventional software applications

is mostly represented by object-oriented methods, generators and languages,

relational databases, and CASE tools [18]. The pace with which new techno-

logies are proposed is slower than that for Web applications.

(3) Approach to Quality Delivered
Web companies that operate their business on the Web rely heavily on

providing applications and services of high quality so that customers return to

do repeat business. As such, these companies only see a return on investment if

customers’ needs have been fulfilled. Customers who use the Web for obtaining

services have very little loyalty to the companies they do business with. This

suggests that new companies providing Web applications of a higher quality

will most likely displace customers from previously established businesses.

Further, that quality is the principal factor that brings repeated business. For
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Web development, quality is often considered a higher priority than time to

market, with the mantra “later and better” as the mission statement for Web

companies who wish to remain competitive [17].

Within the context of conventional software development, software

contractors are often paid for their delivered application regardless of its quality.

Return on investment is immediate. Ironically, they are also often paid for fixing

defects in the delivered application, where these failures principally exist

because the developer did not test the application thoroughly. This has the

knock-on effect that a customer may end up paying at least twice (release and

fixing defects) the initial bid in order to make the application functional. Here

time to market takes priority over quality, since it can be more lucrative to

deliver applications with plenty of defects sooner than high-quality applications

later. For these companies the “sooner but worse” rule applies [17].

Another popular mechanism employed by software companies is to fix

defects and make the updated version into a new release, which is then resold

to customers, bringing in additional revenue.

(4) Development Process Drivers
The dominant development process drivers for Web companies have three

quality criteria [17]:

• reliability,

• usability and

• security,

followed by:

• availability,

• scalability,

• maintainability and

• time to market.

Reliability: applications that work well, do no crash, do not provide incorrect

data, etc.

Usability: an application that is simple to use. If a customer wants to use a Web

application to buy a product on-line, the application should be as simple to use as

the process of physically purchasing that product in a shop. Many existing Web

applications present poor usability despite the extensive range of Web usability

guidelines that have been published. A Web application with poor usability will

quickly be replaced by another more usable application as soon as its existence

becomes known to the target audience [17].

Security: the handling of customer data and other information securely so that

problems such as financial loss, legal consequences and loss of credibility can be

avoided [17].

With regards to conventional software development, the development process

driver is time to market and not quality criteria [17].
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(5) Availability of the Application
Customers who use theWeb expect applications to be operational throughout

the whole year (24/7/365). Any downtime, no matter how short, can be

detrimental [17].

Except for a few application domains (e.g., security, safety critical, military,

banking) customers of conventional software applications do not expect these

applications to be available 24/7/365.

(6) Customers (Stakeholders)
Web applications can be developed for use within the boundaries of a single

organisation (intranet), a number of organisations (extranets) or for use by

people anywhere in the world. The implications are that stakeholders may

come from a wide range of groups where some may be clearly identified

(e.g., employees within an organisation) and some may remain unknown,

which is often the case [4, 16, 17, 19]. As a consequence, Web developers

are regularly faced with the challenge of developing applications for unknown

users, whose expectations (requirements) and behaviour patterns are also

unknown at development time [16]. In this case new approaches and guidelines

must be devised to better understand prospective and unknown users such that

quality requirements can be determined beforehand to deliver high-quality

applications [19]. Whenever users are unknown it also becomes more difficult

to provide aesthetically pleasing user interfaces, which are necessary to be

successful and stand out from the competition [16].

Some stakeholders can reside locally, in another state/province/county, or

overseas. Those who reside overseas may present different social and linguistic

backgrounds, which increases the challenge of developing successful

applications [4, 16]. Whenever stakeholders are unknown it is also difficult to

estimate the number of users an application will service, so applications must

also be scalable [17].

With regards to conventional software applications, it is usual for stake-

holders be explicitly identified prior to development. These stakeholders often

represent groups confined within the boundaries of departments, divisions, or

organisations [16].

(7) Update Rate (Maintenance Cycles)
Web applications are updated frequently without specific releases and with

maintenance cycles of days or even hours [17]. In addition, their content and

functionality may also change significantly from one moment to another, and so

the concept of project completion may seem unsuitable in such circumstances.

Some organisations also allow non-information-systems experts to develop and

modify Web applications, and in such environments it is often necessary to

provide an overall management of the delivery and modification of applications

to avoid confusion [4].

The maintenance cycle for conventional software applications complies with

a more rigorous process. Upon a product’s release, software organisations

usually initiate a cycle whereby a list of requested changes, adjustments or
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improvements (either from customers or from its own development team) is

prepared over a set period of time, and later incorporated as a specific version or

release for distribution to all customers simultaneously. This cycle can be as

short as a week and as long as several years. It requires more planning as it often

entails other, possibly expensive activities such as marketing, sales, product

shipping and occasionally personal installation at a customer’s site [11, 17].

(8) People involved in Development
The Web provides a broad spectrum of different types of Web applications,

varying in quality, size, complexity and technology. This variation is also

applicable to the range of skills represented by those involved in Web develop-

ment projects. Web applications can be created, for example, by artists and

writers using simple HTML code or, more likely, one of the many commer-

cially available Web authoring tools (e.g., Macromedia Dreamweaver,

Microsoft Frontpage), making the authoring process available to those with

no prior programming experience [4]. However, Web applications can also be

very large and complex, requiring a team of people with diverse skills and

experience. Such teams consist of Web designers and programmers, graphic

designers, librarians, database designers, project managers, network security

experts, and usability experts [17].

Web designers and programmers are necessary to implement the appli-

cation’s functionality using the necessary programming languages and techno-

logy. In particular, they also decide on the application’s architecture and

applicable technologies, and to design the application taking into account its

documents and links [16]. Graphic designers, usability experts and librarians

provide applications that are pleasing to the eye, easy to navigate and provide

good search mechanisms to obtain the required information. This is often the

case where such expertise is outsourced, and used on a project-by-project basis.

Large Web applications most likely use database systems for data storage,

making it important to have team members with expertise in database design

and the necessary queries to manipulate the data. Project managers are respon-

sible for managing the project in a timely manner and allocating resources

adequately such that applications are developed on time, within budget and are

of high quality. Finally, network security experts provide solutions for various

security aspects [3].

Conversely, the development of conventional software remains dominated

by IT professionals, where a sound knowledge of programming, database

design, and project management is necessary.

(9) Architecture and Network
Web applications are typically developed using a simple client–server archi-

tecture (two-tier), represented byWeb browsers on client computers connecting

to a Web server hosting the Web application, to more sophisticated

configurations such as three-tier or even n-tier architectures [17]. The servers

and clients within these architectures represent computers that may have

different operating systems, software, hardware configurations, and may be

connected to each other using different network settings and bandwidth.
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The introduction of more than two tiers was motivated by limitations of the

two-tier model (e.g., implementation of an application’s business logic on the

client machine, increased network load as any data processing is only carried

out on the client machine). In such architectures the business logic is moved to a

separate server (middle-tier), which services client requests for data and func-

tionality. The middle-tier then requests and sends data to and from a (usually)

separate database server. In addition, the type of networks used by the numer-

ous stakeholders may be unknown, so assumptions have to be made while

developing these Web applications [16].

Conventional software applications either run in isolation on a client

machine or use a two-tier architecture whenever applications use data from

database systems installed on a separate server. The type of networks used by

the stakeholders is usually known in advance since most conventional software

applications are limited to specific places and organisations [16].

(10) Disciplines Involved
A team of people with a wide range of skills and expertise in different areas

is required to develop large and complex Web applications adequately. These

areas reflect distinct disciplines such as software engineering (development

methodologies, project management, tools), hypermedia engineering (linking,

navigation), requirements engineering, usability engineering, information

engineering, graphics design and network management (performance mea-

surement and tuning) [3, 11, 19].

Building a conventional software application involves contributions from a

smaller number of disciplines than those used for developingWeb applications;

these include software engineering, requirements engineering and usability

engineering.

(11) Legal, Social, and Ethical Issues
The Web as a distributed environment enables a vast amount of structured

(e.g., database records) and unstructured (e.g., text, images, audio) content to

be easily available to a multitude of users worldwide. This is often cited as one

of the greatest advantages of using the Web. However, this environment is

also used for the purpose of dishonest actions, such as copying content from

Web applications without acknowledging the source, distributing information

about customers without their consent, infringing copyright and intellectual

property rights, and even, in some instances, identity theft [16]. The

consequences that follow from the unlawful use of the Web are that Web

companies, customers, entities (e.g., W3C), and government agencies must

apply a similar paradigm to the Web as those applied to publishing, where

legal, social and ethical issues are taken into consideration [19].

Issues referring to accessibility offered by Web applications should also

take into account special user groups such as the handicapped [16].

Conventional software applications also share a similar fate to that of Web

applications, although to a smaller extent, since these applications are not so

readily available for such a large community of users, compared to Web

applications.
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(12) Information Structuring and Design
As previously mentioned, Web applications have structured and unstruc-

tured content, which may be distributed over multiple sites and use different

systems (e.g., database systems, file systems, multimedia storage devices)

[10]. In addition, the design of a Web application, unlike that of conventional

software applications, includes the organisation of content into navigational

structures by means of hyperlinks. These structures provide users with easily

navigable Web applications. Well-designed applications should allow for

suitable navigation structures [19], as well as the structuring of content,

which should take into account its efficient and reliable management [16].

Another difference between Web and conventional applications is that Web

applications often contain a variety of specific file formats for multimedia

content (e.g., graphics, sound and animation). These files must be integrated

into any current configuration management system, and their maintenance

routines also need to be organised, as is likely that they will differ from the

maintenance routines used for text-based documents [15]. Conventional soft-

ware applications present structured content that uses file or database systems.

The structuring of such content has been addressed by software engineering in

the past so the methods employed here for information structuring and design

are well known by IT professionals [16].

Reifer [18] presents a comparison between Web-based and traditional

approaches that takes into account measurement challenges for project manage-

ment (Table 2.1). Table 2.2 summarises the differences between Web-based

and conventional development contexts.

As we have seen, there are several differences between Web development

and applications and conventional development and applications. However,

there are also similarities that are more evident if we focus on the development

of large and complex applications. Both need quality assurance mechanisms,

Table 2.1 Comparison between Web-based and traditional approaches

Web-based approach Traditional approach

Estimating

process

Ad hoc costing of work, centred on input

from the developers

More formal costing of work based on

past experience from similar projects and

expert opinion

Size

estimation

No agreement upon a standard size

measure for Web applications within the

community

Lines of code or function points are the

standard size measures used

Effort

estimation

Effort is estimated using a bottom-up

approach based on input from

developers. Hardly any historical data is

available from past projects

Effort is estimated using equations built

taking into account project characteristics

and historical data from past projects

Quality

estimation

Quality is difficult to measure. Need for

new quality measures specific for

Web-based projects

Quality is measurable using known

quality measures (e.g., defect rates,

system properties)
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Table 2.2 Web-based versus traditional approaches to development

Web-based approach Traditional approach

Application

characteristics

Integration of numerous distinct

components (e.g., fine-grained,

interpreted scripting languages, COTS,

multimedia files, HTML/SGML/XML

files, databases, graphical images),

distributed, cross-platform applications

and structuring of content using

navigational structures with hyperlinks

Integration of distinct components (e.g.,

COTS, databases, graphical images),

monolithic single-platform applications

Primary

technologies

used

Variety of Java solutions (Java servlets,

Enterprise JavaBeans, applets, and

JavaServer Pages), HTML, JavaScript,

XML, UML, databases, third-party

components and middleware, etc.

Object-oriented methods, generators,

and languages, relational databases, and

CASE tools

Approach to

quality

delivered

Quality is a higher priority than time to

market

Time to market takes priority over

quality

Development

process

drivers

Reliability, usability and security Time to market

Availability

of the

application

Throughout the whole year (24/7/365) Except for a few application domains,

no need for availability 24/7/365

Customers

(stakeholders)

Wide range of groups, known and

unknown, residing locally or overseas

Generally groups confined within the

boundaries of departments, divisions, or

organizations

Update rate

(maintenance

cycles)

Frequently without specific releases,

maintenance cycles of days or even

hours

Specific releases, maintenance cycles

ranging from a week to several years

People

involved in

development

Web designers and programmers,

graphic designers, librarians, database

designers, project managers, network

security experts, usability experts,

artists, writers

IT professionals with knowledge of

programming, database design and

project management

Architecture

and Network

Two-tier to n-tier clients and servers

with different network settings and

bandwidth, sometimes unknown

One- to two-tier architecture, network

settings and bandwidth are likely to be

known in advance

Disciplines

involved

Software engineering, hypermedia

engineering, requirements engineering,

usability engineering, information

engineering, graphics design and

network management

Software engineering, requirements

engineering, and usability engineering

Legal, social,

and ethical

issues

Content can be easily copied and

distributed without permission or

acknowledgement of copyright and

intellectual property rights.

Applications should take into account

all groups of users including those

handicapped

Content can also be copied infringing

privacy, copyright, and IP issues, albeit

to a smaller extent

Information

structuring

and design

Structured and unstructured content, use

of hyperlinks to build navigational

structures

Structured content, infrequent use of

hyperlinks

Web Applications Versus Conventional Software 23



development methodologies, tools, processes, techniques for requirements

elicitation, effective testing and maintenance methods, and tools [19].

Conclusions

This chapter discussed differences between Web and software applications, and

their development processes based on the following 12 areas:

1. Application characteristics

2. Primary technologies used

3. Approach to quality delivered

4. Development process drivers

5. Availability of the application

6. Customers (stakeholders)

7. Update rate (maintenance cycles)

8. People involved in development

9. Architecture and network

10. Disciplines involved

11. Legal, social, and ethical issues

12. Information structuring and design
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Introduction to Effort Estimation 3

Introduction

Web development is a relatively new but rapidly growing industry where numerous

companies use the Web as a delivery platform for a diverse range of applications,

from complex e-commerce solutions with back-end databases to on-line personal

static Web pages and blogs. With the sheer diversity relating to both the types of

Web applications and the technologies employed to develop them, there is an ever-

growing number of companies bidding for as many Web projects as they can

accommodate. As usual, in order to win the bids, companies opt to estimate

unrealistic schedules, leading to applications that are rarely developed on time

and within budget.

Many reasons can lead to unrealistic estimates and schedules; these include the

lack of understanding about the basic building blocks that are part of an effort

estimation process. Therefore, in this chapter we introduce and detail these building

blocks, using Web development and project characteristics as examples.

It should be noted that cost and effort are often used interchangeably within the

context of existing literature in effort estimation as effort is often taken by project

managers as the main component of project costs. However, given that project costs

also take into account other factors such as contingency and profit [1], we use the

word “effort” and not “cost” throughout this chapter and book, in order to solely

represent the amount of effort in person-hours that is needed in order to develop a

Web application.

An Overview of the Effort Estimation Process

The purpose of estimating effort as part of managing a project is to predict the

amount of effort required to accomplish the set of tasks needed as part of a project’s

life cycle, based on a set of inputs such as the knowledge/data of previous “similar”

E. Mendes, Practitioner’s Knowledge Representation, DOI 10.1007/978-3-642-54157-5_3,
# Springer-Verlag Berlin Heidelberg 2014
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projects and other application and project characteristics that are believed to be

related to effort.

Using a black box metaphor, application and project characteristics (indepen-

dent variables) and data/knowledge from past projects are the input into an effort

estimation process, and an effort estimate (dependent variable) is the output we

wish to predict. Figure 3.1 shows an extended view of an effort estimation process

comprising not only direct inputs into and output from the process, but also some

other related input and outputs. Each of these parts is detailed next:

1. Application’s requirements: represents any set of requirements—functional and

non-functional—that were obtained from elicitation meetings with clients. They

may be detailed using natural language or some other notation such as UML use

cases.

2. Estimated size: represents an estimate relating to the size of the “problem” to be

solved, which once implemented will represent a delivered application. Possible

examples are an estimated number of new Web pages and a number of functions/
features (e.g., shopping cart) to be offered by the new Web application.

3. Cost factors: represent factors that are not size-related but that are believed to be

associated with effort in the sense that they have an effect upon the total amount

of effort necessary to develop a Web application. Possible examples are the total
number of team members who will participate in the development of the new
Web application, developers’ average number of years of experience with the
development tools that will be employed to implement the Web application,
the project manager’s previous experience managing a similar project and

the nature of the client who requested the Web application (e.g., grumpy,
not grumpy).

4. Data and/or knowledge on past finished projects: represents either or both of

(a) hard data on past finished projects gathered by the company, (b) expert

knowledge from project managers and developers for previous projects that

are somewhat similar to the one for which effort needs to be estimated.

5. Effort estimate: the total estimated effort (generally measured in person-hours)

that is needed to complete the project and deliver the Web application.

Effort es-
�mate

Data and/or 
knowledge on 

past finished pro-
jects 

Deriving an 
effort esti-

mate

Applica�on’s 
require-
ments

Es�mated 
size

Cost fac-
tors

+

Resource alloca�on
Dura�on es�mate
Cost es�mate

Fig. 3.1 Effort estimation process
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6. Resource allocation: represents the process of deciding upon the resources (e.g.,

developers, testers, tools) that need to be allocated to the project as a result of the

effort that was estimated. This also needs to take into account other existing

projects being currently managed (project portfolio).

7. Duration estimate: represents an estimate of the duration (calendar periods) by

when the project will be completed. This also needs to take into account other

existing projects being currently managed (project portfolio).

8. Cost estimate: estimated cost of the project that is based on the estimated effort,

plus contingency and profit costs.

The process of deriving an effort estimate can be described as follows:

1. Data relating to the new application for which effort is to be estimated (estimated

size and cost factors) is used as input to the process.

2. Data and/or knowledge on past finished projects, for which actual effort is

known, are used by project managers and developers in order to identify any

similarities between applications developed previously and the new application

described in (1) above. Whenever a company does not have either data or

experience on similar projects and corresponding applications, they use instead

an “educated guess” based on prior experience with dissimilar projects.

3. The output of this process is an effort estimate (dependent variable), which is

then used to allocate resources and to estimate project duration and costs.

Regardless of the type of application for which effort is to be estimated, a

general rule is that the one consistent input (independent variable) believed to

have the strongest influence on effort is size (i.e., the total number of Web

pages), with cost drivers coming second but also playing an influential role. Finally,

each of the tasks to be estimated can be as simple as developing a single function

(e.g., creating a Web form with ten fields) or as complex as developing a script to

communicate with a back-end relational database system.

Several techniques for effort estimation have been proposed over the past

30 years in software engineering, and over the past 12 years in Web engineering.

These fall into three broad categories [2]: expert-based effort estimation, algorith-

mic models and artificial intelligence techniques. Each category is described in the

next sections.

Expert-Based Effort Estimation

Expert-based effort estimation is the process of estimating effort by subjective

means, and is often based on previous experience with developing and/or managing

similar projects. This is by far the most commonly used technique for Web effort

estimation, with the attainment of accurate effort estimates being directly propor-

tional to the competence and experience of the individuals involved (e.g., project

manager, developer). Within the context of Web development, our experience
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suggests that expert-based effort estimates are obtained using one of the following

mechanisms:

• An estimate that is based on a detailed effort breakdown that takes into account

all of the lowest-level parts of an application and the functional tasks necessary

to develop this application. Each task attributed with effort estimates is repeat-

edly combined into higher-level estimates until we finally obtain one estimate

that is considered as the sum of all lower-level estimate parts. This type of

estimation is called bottom-up. Each estimate can be an educated guess or can be

based on sound previous experience with similar projects.

• An estimate representing an overall process to be used to produce an application,

as well as knowledge about the application to be developed, i.e., the product. A

total estimate is suggested and used to calculate estimates for the component parts

(tasks), relative portions of the whole. This type of estimation is called top-down.

Estimates can be suggested by a project manager, or by a group of people mixing

project manager(s) and developers, usually by means of a brainstorming session.

A survey of 32 Web companies in New Zealand conducted in 2004 [3] showed

that 32 % prepared effort estimates during the requirements gathering phase, 62 %

prepared an estimates during their design phase, while 6 % did not have to provide

any effort estimates to their customers since they were happy to pay for the

development costs without the need for a quote.

Of the 32 companies surveyed, 38 % did not refine their effort estimate, and

62 % did refine their estimates but not often. For the companies surveyed, this

indicates that for the majority of companies, the initial effort estimate was used as

their “final” estimate, and work was adjusted to fit this initial quote. These results

corroborated those published in [4].

Sometimes Web companies gather data on effort for past Web projects believing

this data is sufficient to help obtain accurate estimates for new projects. However,

without understanding the factors that influence effort within the context of a

specific company, effort data alone is unlikely to be sufficient to warrant successful

results.

The drawbacks of expert-based estimation can be identified as follows:

1. It is very difficult to quantify and to clearly determine the factors that have been

used to derive an estimate, making it difficult to apply the same reasoning to

other projects (repeatability);

2. When a company finally builds up its expertise with developing Web

applications, using a given set of technologies, other technologies appear and

are rapidly adopted (mostly due to hype), thus leaving behind valuable knowl-

edge from the past.

3. Obtaining an effort estimate based on experience with past similar projects can

be misleading when projects vary in their characteristics. For example, knowing

that a Web application containing ten new static HTML, ten new images with a

development time of 40 person-hours does not mean that a similar application

developed by two people will also consume 40 person-hours to complete the
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task. Two people may need additional time to communicate, and may also have

different experience with using HTML. In addition, another application eight

times its size is unlikely to take exactly eight times longer to complete. This

suggests that experience alone is not enough to identify the underlying relation-

ship between effort and size/cost drivers (e.g., linear or exponential).

4. Developers and project managers are known for providing optimistic effort

estimates [5] for tasks that they have to carry out themselves. Optimistic

estimates lead to underestimated effort with the direct consequence of projects

being over budget and over time.

To cope with underestimation, it is suggested that experts provide three different

estimates [6]: an optimistic estimate o, a realistic estimate r, and a pessimistic

estimate p. Based on a beta distribution, the estimated effort E is then calculated as:

E ¼ oþ 4r þ pð Þ=6 ð3:1Þ
This measure is likely to be better than a simple average of o and p; however,

caution is still necessary.

Although there are problems related to using expert-based estimations, few

studies have reported that when used in combination with other less subjective

techniques (e.g., algorithmic models) expert-based effort estimation can be an

effective estimating tool [7, 8].

Expert-based effort estimation is a process that has not been objectively detailed;

however, it can still be represented in terms of the diagram presented in Fig. 3.1,

where the order of steps that take place to obtain an expert-based effort estimate are

as follows:

Step 1. An expert/group of developers implicitly look(s) at the estimated size and

cost drivers related to a new project for which effort needs to be estimated.

Step 2. Based on the data obtained in Step 1, they/(s)he remember(s) or retrieve(s)

data/knowledge on past finished projects for which actual effort is known.

Step 3. Based on the data from Steps 1 and 2, they/(s)he subjectively estimate(s)

effort for the new project.

In summary, when employing an expert-based approach to effort estimation, the

knowledge regarding the characteristics of a new project is used to retrieve, from

either memory or a database, knowledge on finished similar projects. Once this

knowledge is retrieved, effort can be estimated.

It is important to stress that within a context where estimates are obtained via

expert-based opinion, deriving a good effort estimate is much more likely to occur

when the previous knowledge/data about completed projects relates to projects that

are very similar to the one having its effort estimated. Here we use the principle

“similar problems have similar solutions”. Note that for this assumption to be

correct we also need to guarantee that the productivity of the team working on
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the new project is similar to the productivity of the team(s) for the past similar

projects.

The problems aforementioned related to expert-based effort estimation led to the

proposal of techniques aimed to formalise the effort estimation process. Such

techniques are presented in the next sections.

Algorithmic Techniques

Algorithmic techniques are the most popular techniques described in the Web and

software effort estimation literature. Such techniques attempt to build models that

precisely represent the relationship between effort and one or more project

characteristics via the use of algorithmic models. Such models assume that appli-

cation size is the main contributor to effort; thus in any algorithmic model the

central project characteristic used is usually taken to be some notion of application

size (e.g., the number of lines of source code, function points, number of Web

pages, number of new images). The relationship between size and effort is often

translated into an equation shown by Eq. (3.2), where a and b are constants, S is the
estimated size of an application, and E is the estimated effort required to develop an

application of size S.

E ¼ a Sb ð3:2Þ
In Eq. (3.2), when b< 1 we have economies of scale, i.e., larger projects use less

effort, comparatively, than smaller projects. The opposite situation (b> 1) gives

diseconomies of scale, i.e., larger projects use more effort, comparatively, than

smaller projects. When b is either> or< 1, the relationship between S and E is

nonlinear. Conversely, when b¼ 1 the relationship is linear.

However, size alone is unlikely to be the only contributor to effort. Other project

characteristics, such as developer’s programming experience, tools used to imple-

ment an application and maximum or average team size are also believed to

influence the amount of effort required to develop an application. As previously

said, these variables are known in the literature as cost drivers. Therefore, an
algorithmic model should include not only size but also the cost drivers believed

to influence effort. Thus effort is determined mainly by size; however, its value can

also be adjusted by taking into account cost drivers (Eq. 3.3).

E ¼ a SbCostDrivers ð3:3Þ
Different proposals have been made in an attempt to define the exact form such

algorithmic models should take. The most popular are presented next.
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COCOMO

One of the first algorithmic models to be proposed in the literature was the

Constructive COst MOdel (COCOMO) [9]. COCOMO aimed to be a generic

algorithmic model that could be applied by any organisation to estimate effort at

three different stages in the development life cycle of a software project: early on in

the development life cycle, when requirements have not yet been fully specified

(Basic COCOMO); once detailed requirements have been specified (Intermediate

COCOMO); and when the application’s design has been finalised (Advanced

COCOMO). Each stage corresponds to a different model, and all three models

take the same form (Eq. 3.3):

EstimatedEffort ¼ a EstSizeNewprojb EAF ð3:4Þ
where:

• EstimatedEffort is the estimated effort, measured in person-months, to develop

an application;

• EstSizeNewproj is the size of an application measured in thousands of delivered

source instructions (KDSI);

• a and b are constants which are determined by the class of project to be

developed. The three possible classes are:

• Organic: The organic class incorporates small, noncomplicated software

projects, developed by teams that have a great deal of experience with similar

projects, and where software requirements are not strict.

• Semidetached: The semidetached class incorporates software projects that are
halfway between small-to-easy and large-to-complex. Development teams

show a mix of experiences, and requirements also present a mix of strict and

slightly vague requirements.

• Embedded: The embedded class incorporates projects that must be developed

within a context where there are rigid hardware, software and operational

restrictions.

• EAF is an effort adjustment factor, calculated from cost drivers (e.g., developers,

experience, tools).

The COCOMOmodel makes it clear that size is the main component of an effort

estimate. Constants a and b, and the adjustment factor EAF all vary depending on

the model used, and in the following ways:

The Basic COCOMO uses an value EAF of 1; a and b differ depending on a

project’s class (Table 3.1).

The Intermediate COCOMO calculates EAF based on 15 cost drivers, grouped

into four categories: product, computer, personnel and project (Table 3.2). Each

cost driver is rated on a 6-point ordinal scale ranging from “very low importance” to

“extra high importance”. Each scale rating determines an effort multiplier, and the

product of all 15 effort multipliers is taken as the EAF.
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The Advanced COCOMO uses the same 15 cost drivers as the Intermediate

COCOMO; however, they are all weighted according to each phase of the develop-

ment lifecycle, i.e., each cost driver is broken down by development phase (see

example in Table 3.3). This model therefore enables the same cost driver to be rated

differently depending on the development phase. In addition, it views a software

application as a composition of modules and subsystems to which the Intermediate

COCOMO model is applied.

The four development phases used in the Advanced COCOMO model are

requirements planning and product design (RPD), detailed design (DD), coding

and unit test (CUT), and integration and test (IT). An overall project estimate is

Table 3.1 Parameter

values for basic and

intermediate COCOMO

Class a b

Basic Organic 2.4 1.05

Semidetached 3.0 1.12

Embedded 3.6 1.20

Intermediate Organic 3.2 1.05

Semidetached 3.0 1.12

Embedded 2.8 1.20

Table 3.2 Cost drivers

used in the intermediate

and advanced COCOMO

Cost driver

Personnel Analyst capability

Applications experience

Programmer capability

Virtual machine experience

Language experience

Project Modern programming practices

Software tools

Development schedule

Product Required software reliability

Database size

Product complexity

Computer Execution time constraint

Main storage constraint

Virtual machine volatility

Computer turnaround time

Table 3.3 Example of rating in the advanced COCOMO

Cost driver Rating RPD DD CUT IT

ACAP (analyst CAPability) Very low 1.8 1.35 1.35 1.5

Low 0.85 0.85 0.85 1.2

Nominal 1 1 1 1

High 0.75 0.9 0.9 0.85

Very high 0.55 0.75 0.75 0.7
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obtained by aggregating estimates obtained for subsystems, which themselves were

obtained by combining estimates made for each module.

The original COCOMO model was radically improved 15 years later and

renamed as COCOMO II model, which incorporates knowledge of changes that

have occurred in software development environments and practices over the previ-

ous 15 years [10]. COCOMO II is not detailed in this book; however, interested

readers are referred to [10, 11].

The COCOMO model is an example of a general purpose model, where it is

assumed that it is not compulsory for ratings and parameters to be adjusted

(calibrated) to specific companies in order for the model to be used effectively.

Despite the existence of general purpose models, such as COCOMO, the effort

estimation literature has numerous examples of specialised algorithmic models that

were built using applied regression analysis techniques [12] on data sets of past

completed projects. Specialised and regression-based algorithmic models are most

suitable to local circumstances, such as “in-house” analysis, as they are derived

from past data that often represents projects from the company itself. Regression

analysis, used to generate regression-based algorithmic models, provides a proce-

dure for determining the “best” straight-line fit (Fig. 3.2) to a set of project data that

represents the relationship between effort (response or dependent variable) and cost

drivers (predictor or independent variables) [12].

Figure 3.2 shows, using real data on Web projects, an example of a regression

line that describes the relationship between log(Effort) and log(totalWebPages). It
should be noted that the original variables Effort and totalWebPages have been

transformed using the natural logarithmic scale to comply more closely with the

assumptions of the regression analysis techniques.

The equation represented by the regression line in Fig. 3.3 is as follows:

logEffort ¼ logaþ blogtotalWebPages ð3:5Þ
where log a is the point in which the regression line intercepts the Y-axis, known
simply as the intercept, and b represents the slope of the regression line, i.e., its

inclination, generically represented by the form,
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Fig. 3.2 Expert-based effort estimation
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y ¼ mxþ c ð3:6Þ
Equation (3.5) shows a linear relationship between log(Effort) and log

(totalWebPages). However, since the original variables have been transformed

before the regression technique was employed, this equation needs to be

transformed back such that it uses the original variables. The resultant equation is:

Effort ¼ a totalWebPagesb ð3:7Þ
Other examples of equations representing regression lines are given in Eqs. (3.8)

and (3.9):

EstimatedEffort ¼ Cþ a0EstSizeNewprojþ a1CD1 þ � � � þ anCDn ð3:8Þ
EstimatedEffort ¼ C EstSizeNewproja0 CD1

a1 � � �CDn
an ð3:9Þ

where C is the regression line’s intercept, a constant denoting the initial estimated

effort (assuming size and cost drivers to be zero), a0 . . . an are constants derived

from past data, and CD1. . .CDn are cost drivers that have an impact on effort.

Regarding the regression analysis itself, two of the most widely used techniques

are multiple regression (MR) and stepwise regression (SWR). The difference

between these two techniques is that MR obtains a regression line using all the

independent variables at the same time, whereas SWR is a technique that examines

different combinations of independent variables, looking for the best grouping to

explain the greatest amount of variation in effort. Both use least-squares regression,

where the regression line selected is the one that reflects the minimum values of the

log a

slope b

Fig. 3.3 Example of a

regression line
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sum of the squared errors. Errors are calculated as the difference between actual and

estimated effort and are known as “residuals” [12].

In terms of the diagram presented in Fig. 3.4, an algorithmic model uses constant

scalar values based on past project data; however, for anyone wishing to use this

model, the steps to use are 1, 2, 3 and 4.

A general purpose algorithmic model tends to use Step 2 once, and use the

values obtained for all its constants, estimated size and cost drivers to derive effort

estimates. It is common for such models to be used by companies without recali-

bration of values for the constants. Within the context of a specialised algorithmic

model, Step 2 is used whenever it is necessary to recalibrate the model. This can

occur after several new projects are finished and incorporated to the company’s

database of data on past finished projects. However, a company may also decide to

recalibrate a model after every new project is finished, or to use the initial model for

a longer time period. If the development team remains unchanged (and assuming

that the team does not have an excessive learning curve for each new project) and

new projects are similar to past projects, there is no pressing need to recalibrate an

algorithmic model too often.

The sequence of steps (Fig. 3.4) is as follows:

Step 1. Past data is used to generate an algorithmic model.

Step 2. An algorithmic model is built from past data obtained in Step 1.

Step 3. The model created in Step 2 then receives, as input, values for the estimated

size and cost drivers relative to the new project for which effort is to be

estimated.

Step 4. The model generates an estimated effort.

The above-mentioned sequence differs from that for expert opinion, shown in

Fig. 3.2.
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In summary, when employing an algorithmic technique to estimating effort, an

effort estimate for a new project can only be obtained after building an algorithmic

model from past data, and using it with the estimated size and cost drivers.

Artificial Intelligence Techniques

Artificial intelligence techniques have, in the past 20 years been used as a comple-

ment to, or as an alternative to, the previous two categories. Examples include fuzzy

logic [13], regression trees [14], neural networks [15] and case-based reasoning

[2]. We will cover case-based reasoning (CBR) and regression trees (CART) in

more detail as these have been to date the most popular machine learning

techniques employed for Web effort estimation. A useful summary of numerous

machine learning techniques can also be found in [16]. Note that there is yet another

machine learning technique that will not be covered in this chapter, as it will be

detailed separately in Chap. 5, given this is the technique focus of this book.

Case-based reasoning (CBR): CBR uses the assumption that similar problems
provide similar solutions. It provides estimates by comparing the characteristics of

the current project to be estimated, against a library of historical information from

completed projects with known effort (case base).

Using CBR involves [17]:

1. Characterising a new project p, for which an estimate is required, with variables

(features) common to those completed projects stored in the case base. In terms

of Web and software effort estimation, features represent size measures and cost

drivers that have a bearing on effort. This means that, if a Web company has

stored data on past projects where, for example, the data represents the features

effort, size, development team size and tools used, the data used as input to

obtaining an effort estimate will also need to include these same features.

2. Use of this characterisation as a basis for finding similar (analogous) completed

projects, for which effort is known. This process can be achieved by measuring

the “distance” between two projects at a time (project p and one finished

project), based on the features’ values, for all features (k) characterising these

projects. Each finished project is compared to project p, and the finished project

presenting the shortest distance overall is the “most similar project” to project p.
Although numerous techniques can be used to measure similarity, nearest

neighbour algorithms using the unweighted Euclidean distance measure have

been the most widely used to date in Web and software engineering.

3. Generation of a predicted value of effort for project p based on the effort for

those completed projects that are similar to p. The number of similar projects

taken into account to obtain an effort estimate will depend on the size of the case

base. For small case bases (e.g., up to 90 cases), typical values use the most

similar finished project, or the two or three most similar finished projects (1, 2

and 3 closest neighbours/analogues). For larger case bases no conclusions have

been reached regarding the best number of similar projects to use. The calcula-

tion of estimated effort is obtained using the same effort value as the closest
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neighbour, or the mean effort for two or more closest neighbours. This is the

common choice in Web and software engineering.

Figure 3.5 shows the sequence of steps used with CBR in order to obtain an

effort estimate:

Step 1. The estimated size and cost drivers relating to a new project p are used as

input to retrieve similar projects from the case base, for which actual effort is

known.

Step 2. Using the data from Step 1, a suitable CBR tool retrieves similar projects to

project p, and ranks these similar projects in ascending order of similarity, i.e.,

from “most similar” to “least similar”.

Step 3. A suitable CBR tool calculates estimated effort for project p.

The sequence just described is similar to the one employed when obtaining

estimated effort using expert opinion. Both require that the characteristics of a new

project be known in order to retrieve similar finished projects. Once similar projects

are retrieved, effort can be estimated.

When using CBR there are six parameters that need to be considered, which are

as follows [18]:

Feature Subset Selection

Feature subset selection involves determining the optimum subset of features that

yields the most accurate estimation. Some existing CBR tools, e.g., ANGEL [2],

optionally offer this functionality using a brute force algorithm, searching for all

possible feature subsets. Other CBR tools (e.g., CBR-Works from tec:inno) have no
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such functionality, and therefore to obtain estimated effort, we must use all of the

known features of a new project to retrieve the most similar finished projects.

Similarity Measure

The similarity measure records the level of similarity between different cases.

Several similarity measures have been proposed in the literature to date; the three

most popular currently used in the Web and software engineering literature [17–19]

are the unweighted Euclidean distance, the weighted Euclidean distance and the

maximum distance. However, there are also other similarity measures available,

which are presented in [17]. Each of the three similarity afore-mentioned measures

is described below.

Unweighted Euclidean Distance The unweighted Euclidean distance measures

the Euclidean (straight-line) distance d between two cases, where each case has

n features. The equation used to calculate the distance between two cases x and y is
the following:

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 � y0j j2 þ x1 � y1j j2 þ . . .þ xn�1 � yn�1j j2 þ xn � ynj j2

q
ð3:10Þ

where x0 to xn represent features 0 to n of case x; y0 to yn represent features 0 to n of
case y.

This measure has a geometrical meaning as the shortest distance between two

points in an n-dimensional Euclidean space [17] (Fig. 3.6).

Figure 3.6 illustrates the unweighted Euclidean distance by representing

coordinates in a two-dimensional space, E2 as the number of features employed

determines the number of dimensions, En.

x0 x1

totalImages

totalWebPages

Y1

d

0

Fig. 3.6 Euclidean distance

using two size features (n¼ 2)
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Given the following example:

Project totalWebPages totalImages

1 (new) 100 20

2 350 12

3 220 25

The unweighted Euclidean distance between the new project 1 and finished

project 2 would be calculated using the following equation:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100� 350j j2 þ 20� 12j j2

q
¼ 250:128 ð3:11Þ

The unweighted Euclidean distance between the new project 1 and finished

project 3 would be calculated using the following equation:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100� 220j j2 þ 20� 25j j2

q
¼ 120:104 ð3:12Þ

Using the weighted Euclidean distance, the distance between projects 1 and 3 is

smaller than the distance between projects 1 and 2; thus project 3 is more similar

than project 2 to project 1.

Weighted Euclidean Distance The weighted Euclidean distance is used when

features are given weights that reflect the relative importance of each feature. The

weighted Euclidean distance measures the Euclidean distance d between two cases,
where each case has n features and each feature has a weight w. The equation used

to calculate the distance between two cases x and y is the following:

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0 x0 � y0j j2 þ w1 x1 � y1j j2 þ . . .þ wn�1 xn�1 � yn�1j j2 þ wn xn � ynj j2

q
ð3:13Þ

where x0 to xn represent features 0 to n of case x; y0 to yn represent features 0 to n of
case y; w0 to wn are the weights for features 0 to n.

Maximum Distance The maximum distance computes the highest feature simi-

larity, i.e., the one to define the closest analogy. For two points (x0,y0) and (x1,y1),
the maximum measure d is equivalent to the equation:
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d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max x0 � y0ð Þ2; x1 � y1ð Þ2

� �r
ð3:14Þ

This effectively reduces the similarity measure down to a single feature,

although this feature may differ for each retrieval episode. So, for a given “new”

project Pnew, the closest project in the case will be the one that has at least one size

feature with the most similar value to the same feature in project Pnew.

Scaling

Scaling (also known as standardisation) represents the transformation of a feature’s

values according to a defined rule, such that all features present values within the

same range and as a consequence have the same degree of influence on the result

[17]. A common method of scaling is to assign 0 to the observed minimum value

and 1 to the maximum observed value [20], a strategy used by ANGEL and

CBR-Works. Original feature values are normalised (between 0 and 1) by case-

based reasoning tools to guarantee that they all influence the results in a similar

fashion.

Number of Analogies

The number of analogies refers to the number of most similar cases that will be used

to generate an effort estimate. With small sets of data, it is reasonable to consider

only a small number of the most similar analogues [17]. Several studies in Web and

software engineering have used only the closest case/analogue (k¼ 1) to obtain an

estimated effort for a new project [21, 22], while others have also used the two

closest and the three closest analogues [17, 19, 23–28].

Analogy Adaptation

Once the most similar cases have been selected the next step is to identify how to

generate (adapt) an effort estimate for project Pnew. Choices of analogy adaptation

techniques presented in the literature vary from the nearest neighbour [21, 24], the

mean of the closest analogues [2, 29], the median of the closest analogues [17], the

inverse distance-weighted mean and inverse rank weighted-mean [20], to illustrate

just a few. The adaptations used to date for Web engineering are the nearest

neighbour, mean of the closest analogues [19, 25] and the inverse rank-weighted

mean [22, 26, 27, 30].
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Each adaptation is explained below:

Nearest Neighbour For the estimated effort Pnew, this type of adaptation uses the

same effort of its closest analogue.

Mean Effort For the estimated effort Pnew, this type of adaptation uses the average

of its closest k analogues, when k> 1. This is a typical measure of central tendency,

often used in the Web and software engineering literature. It treats all analogues as

being equally important towards the outcome—the estimated effort.

Median Effort For the estimated effort Pnew, this type of adaptation uses the

median of the closest k analogues, when k> 2. This is also a measure of central

tendency, and has been used in the literature when the number of selected closest

projects is >2 [17].

Inverse Rank Weighted Mean This type of adaptation allows higher ranked

analogues to have more influence over the outcome than lower ones. For example,

if we use three analogues, then the closest analogue (CA) would have weight¼ 3,

the second-closest analogue (SC) would have weight¼ 2 and the third closest

analogue (LA) would have weight¼ 1. The estimated effort would then be calcu-

lated as:

InverseRankWeighedMean ¼ 3CAþ 2SCþ LA

6
ð3:15Þ

Adaptation Rules

Adaptation rules are used to adapt the estimated effort, according to a given

criterion, such that it reflects the characteristics of the target project (new project)

more closely. For example, in the context of effort prediction, the estimated effort

to develop an application a would be adapted such that it would also take into

consideration the size value of application a. The adaptation rule that has been

employed to date in Web engineering is based on the linear size adjustment to the

estimated effort [26, 27], obtained as follows:

• Once the most similar analogue in the case base has been retrieved, its effort

value is adjusted and used as the effort estimate for the target project (new

project).

• A linear extrapolation is performed along the dimension of a single measure,

which is a size measure strongly correlated with effort. The linear size adjust-

ment is calculated using the equation presented below.
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EffortnewProject ¼ EffortfinishedProject
SizefinishedProject

SizenewProject ð3:16Þ

Given the following example:

Project totalWebPages (size) totalEffort (effort)

Target (new) 100 (estimated value) 20 (estimated and adapted value)

Closest analogue 350 (actual value) 70 (actual value)

The estimated effort for the target project will be calculated as:

EffortnewProject ¼ 70

350
100 ¼ 20 ð3:17Þ

When we use more than one size measure as feature, the equation changes to:

Eest:P ¼ 1

q

Xq¼x

q¼1

EactSest:q

Sact:q
��
>0

 !
ð3:18Þ

where:

q is the number of size measures used as features.

Eest. P is the total effort estimated for the new Web project P.
Eact is the total effort for the closest analogue obtained from the case base.

Sest. q is the estimated value for the size measure q, which is obtained from the

client.

Sact. q is the actual value for the size measure q, for the closest analogue obtained
from the case base.

This type of adaptation assumes that all projects present similar productivity;

however, it may not necessarily represent the Web development context of numer-

ous Web companies worldwide.

Classification and Regression Trees
Classification and Regression Trees (CART) [31] use independent variables

(predictors) to build binary trees, where each leaf node represents either a category

to which an estimate belongs, or a value for an estimate. The former situation

occurs with classification trees, and the latter occurs with regression trees, i.e.,
whenever predictors are categorical (e.g., Yes/No) the CART tree is called a

classification tree, and whenever predictors are numerical the CART tree is called

a regression tree.
In order to obtain an estimate one has to traverse tree nodes from root to leaf by

selecting the nodes that represent the category or value for the independent

variables associated with the project to be estimated.
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For example, assume we wish to obtain an effort estimate for a new Web project

using as its basis the simple regression tree structure presented in Fig. 3.7. This

regression tree was generated from data obtained from past completed Web

applications, taking into account their existing values of effort and independent

variables (e.g., new Web pages (NWP), new images (NIM), and new features/

functions (NFN)). The data used to build a CART model is called a learning
sample, and once a tree has been built it can be used to estimate effort for new

projects. Assuming that the estimated values for NWP, NIM and NFN for a new

Web project are 25, 15 and 3, respectively, we would obtain an estimated effort of

45 person-hours after navigating the tree from its root down to leaf “Effort¼ 45”.

If we now assume that the estimated values for NWP, NIM and NFN for a new

Web project are 56, 34 and 22, respectively, we would obtain an estimated effort of

110 person-hours after navigating the tree from its root down to leaf “Effort¼ 110”.

A simple example of a classification tree for Web effort estimation is depicted in

Fig. 3.8. It uses the same variable names as those shown in Fig. 3.7, however, these

variables are now all categorical, where possible categories (classes) are “Yes” and

“No”. The effort estimate obtained using this classification tree is also categorical,

where possible categories are “High effort” and “Low effort”.

A CART model constructs a binary tree by recursively partitioning the predictor

space (set of all values or categories for the independent variables judged relevant)

into subsets where the distribution of values or categories for the dependent variable

(e.g., effort) is successively more uniform. The partition (split) of a subset S1 is

decided on the basis that the data in each of the descendant subsets should be

“purer” than the data in S1. Thus node “impurity” is directly related to the amount

of different values or classes in a node, i.e., the greater the mix of classes or values,

the higher the node “impurity”. A “pure” node means that all the cases (e.g., Web

projects) belong to the same class, or have the same value. The partition of subsets

continues until a node contains only one class or value. Note that it is not

NWP

NIM NIM

NFNEffort = 25

Effort = 65Effort = 45

Effort = 110Effort = 75

NWP < = 50 NWP > 50

NIM > = 10NIM < 10 NIM > 20NIM < = 20

NFN > = 5NFN < 5

Fig. 3.7 Example of a regression tree for Web effort estimation
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necessarily the case that all the initial independent variables are used to build a

CART model; rather, only those variables that are related to the dependent variable

are selected by the model. This means that a CART model can be used not only to

produce a model that can be applicable for effort prediction, but also to obtain

insight and understanding of the factors relevant to estimate a given dependent

variable.

The sequence of steps (Fig. 3.9) followed here are as follows:

Large number of NWP?

Large number of NIM?

Large number of NFN?

High effort

Low effortHigh effort

Low effortHigh effort

Yes No

NoYes NoYes

NoYes

Large number of NIM?

Fig. 3.8 Example of a classification tree for Web effort estimation
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building

1
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4

Fig. 3.9 Using CART for effort estimation
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Step 1. Past data is used to generate a CART model.

Step 2. A CART model is built based on the past data obtained in Step 1.

Step 3. The model created in Step 2 then receives, as input, values/categories for the

estimated size and cost drivers relative to the new project to which effort is to be

estimated.

Step 4. The model generates a value/category for estimated effort.

The sequence of steps described above corresponds to the same sequence used

with the algorithmic techniques. In both situations, data is used to either build an

equation that represents an effort model, or to build a binary tree, which is later used

to obtain effort estimates for new projects. This sequence of steps contrasts to the

different sequence of steps used for expert opinion and CBR, where knowledge

about a new project is used to select similar projects.

What Technique to Employ?

This chapter has introduced numerous techniques for obtaining effort estimates for

a new project. These techniques were selected because they are the ones used the

most in the Web effort estimation literature [32, 33], and to some extent also in the

software effort estimation literature, each with a varying degree of success. There-

fore the question that is often asked is: Which of the techniques provides the most

accurate prediction for Web effort estimation?

To date, the answer to this question has been simply “it depends” [33–35].

Algorithmic and CART models have some advantages over CBR and expert

opinion, such as:

• They allow users to see how a model derives its conclusions, an important factor

for verification as well as theory building and understanding of the process being

modelled [16].

• They often need to be specialised relative to the local environment in which they

are used [36]. This means that the estimations that are obtained take full

advantage of using models that have been calibrated to local circumstances.

Despite these advantages, no convergence for which effort estimation technique

has the best predictive power has yet been reached, even though comparative

studies have been carried out for nearly 20 years (e.g., [16, 17, 20–24, 26, 28, 30,

35, 37–42]).

One justification is that these studies often use data sets with differing number of

characteristics (e.g., number of outliers, amount of collinearity, number of variables

and number of projects) and different comparative designs. Note, an outlier is a

value which is far from the others, and collinearity represents the existence of a

linear relationship between two or more independent variables.

Shepperd and Kadoda [2] presented evidence showing there is a relationship

between the success of a particular technique and factors such as training set size

(size of the subset used to derive a model), nature of the “effort estimation” function
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(e.g., continuous or discontinuous) and characteristics of the data set. They

concluded that the “best” prediction technique that can work on any type of data

set may be impossible to obtain. Note, a continuous function is one in which “small

changes in the input produce small changes in the output” (http://e.wikipedia.org/

wiki/Continuous_function). If small changes in the input “can produce a broken

jump in the changes of the output, the function is said to be discontinuous (or to

have a discontinuity)” (http://e.wikipedia.org/wiki/Continuous_function).

Stepwise regression, CART and CBR have been applied to Web effort estima-

tion, and have also had their prediction accuracy compared (Mendes et al. [22]).

Mendes et al. [22] showed that stepwise regression provided the best results overall,

and this trend has also been confirmed using a different data set of Web projects.

However, the data sets employed in both studies presented a very strong linear

relationship between size and cost drivers with effort, and as such it comes as no

surprise that, of the three techniques, stepwise regression presented the best predic-

tion accuracy. A more recent study presented contradictory findings, where in some

situations Bayesian networks presented superior predictions [42].

What Datasets of Past Project Data to Use?

Most research in effort estimation has to date focused on solving companies’

inaccurate effort predictions via investigating techniques that are used to build

formal effort estimation models, in the hope that such formalization will improve

the accuracy of estimates [33]. They do so by assessing, and often also comparing,

the prediction accuracy obtained from applying numerous statistical and artificial

intelligence techniques to datasets of completed industrial software/Web projects.

Recent literature reviews of software and Web effort estimation studies are given in

[43] and in [33], respectively.

Except for expert opinion, all the techniques detailed in this chapter require the

use of a dataset containing past data on finished projects in order to provide an effort

estimate for a new project. In regard to the type of dataset employed in previous

studies, results suggest that datasets built using data from a single company, in

particular when the data characterises Web projects, are more likely to provide

superior estimation accuracy when compared to datasets that contain project data

volunteered by different companies [44].

However, there are several issues that a company faces that are associated with

building its own dataset of past projects, such as [44]:

• The time required to accumulate enough data on past projects from a single

company may be prohibitive.

• By the time the dataset is large enough to be of use, technologies employed by

the company may have changed, and older projects may no longer be represen-

tative of current practices.

• Care is necessary as data needs to be collected in a consistent manner.
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Such issues have motivated previous studies to investigate to what extent effort

estimation models built using cross-company (CC) datasets, i.e., datasets that

contain project data coming from several different companies, can provide more

accurate effort estimates for projects belonging to another company, when com-

pared to effort estimates obtained using that company’s own data (single-company

(SC) dataset) [44]. To date 17 studies have looked at this issue, where only five used

datasets of Web projects, and of these just three were independent studies. No

overall consensus has been reached as to the merits of using CC datasets.

Practical Implications

The variables characterizing the types of datasets discussed above are determined in

different ways, such as via surveys [3], interviews with experts [28], expertise from

companies [45], a combination of research findings [25] or even a researcher’s own

consulting experience [46]. In all of these instances, once variables are defined, a

data-gathering exercise takes place, obtaining data (ideally) from industrial projects

volunteered by companies. Except when using research findings to inform variables’

identification, invariably the mechanism employed to determine variables relies on

experts’ recalling, where the recalling time given to experts is short, and the

subjective measure of an expert’s certainty is often their amount of experience

estimating effort. In other words, experts are expected to recall quickly and with a

high level of certainty, without any checks and balances to validate their answer.

However, in addition to eliciting the size measures and cost factors believed to

have an effect upon effort, such a mechanism does not provide the means to identify

the cause and effect relationships between factors, and most of all, to quantify the

uncertainty associated with these relationships and to validate the knowledge

obtained. Why should these be important?

Our experience developing and validating several single-company expert-based

Web effort prediction models that use a knowledge management methodology to

incorporate the uncertainty inherent in this domain [47] showed that the use of a

structured iterative process in which factors and relationships are identified,

quantified and validated [48–51] leads the participating companies to a much

more thorough and deep understanding of their mental processes and their decisions

when estimating effort, when compared to just recalling factors and their

relationships. The iterative process we use employs Bayesian inference, which is

one of the techniques employed in root cause analysis [17]; therefore it aims at a

detailed analysis and understanding of a particular phenomenon of interest.

In all the case studies we conducted, the original set of factors and relationships

initially elicited was always modified as the model evolved; this occurred as a result

of applying a root cause analysis approach comprising a Bayesian inference

mechanism and feedback into the analysis process via a model validation. In

addition, post-mortem interviews with the participating companies showed that

the understanding companies gained by being actively engaged in building those

models led to both improved estimates and estimation processes [48–51].

Practical Implications 49



The next chapter will detail the technique that we have employed when building

the expert-based Web effort prediction models, such that other companies can also

employ this same technique as means to improve their current effort estimates and

understanding regarding their effort estimation processes.

Conclusions

Effort estimation enables companies to know beforehand and before

implementing an application, the amount of effort required to develop the

application on time and within budget. To estimate effort, it is necessary to

understand the project variables that may affect effort prediction and how they

are interrelated. These variables represent an application’s size (e.g., number of
New web pages and Images, the number of functions/features (e.g., shopping

cart) to be offered by the newWeb application) and also include other factors that
may contribute to effort (e.g., total number of developers who will help develop
the new Web application, developers’ average number of years of experience
with the development tools employed, main programming language used).

The mechanisms used to obtain an effort estimate are generally classified as:

Expert-Based Estimation Expert-based effort estimation represents the process

of estimating effort by subjective means, and is often based on previous experience

with developing and/or managing similar projects. This is by far the most widely

used technique for Web effort estimation.

Algorithmic-Based Estimation Algorithmic-based effort estimation attempts to

build models (equations) that precisely represent the relationship between effort

and one or more project characteristics via the use of algorithmic models (statistical

methods that are used to build equations). These techniques have been to date the

most popular techniques used in the Web and software effort estimation literature.

Estimation Using Artificial Intelligence Techniques Finally, artificial intelli-

gence (AI) techniques are also used to obtain effort estimates, although not neces-

sarily via a model, such as the ones created with algorithmic-based techniques. AI

techniques include fuzzy logic [13], regression trees [14], neural networks [15] and

case-based reasoning [2].

This chapter has detailed the use of case-based reasoning (CBR) and regres-

sion trees (CART), the two AI techniques that have been employed in the

literature for Web effort estimation, and has also provided a discussion about

the practical implications of using such techniques and projects’ datasets.
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Introduction to Web Resource Estimation 4

Introduction

Effort estimation, the process by which effort is forecasted and used as basis to

predict costs and to allocate resources effectively, is one of the main pillars of sound

project management, given that its accuracy can affect significantly whether

projects will be delivered on time and within budget [1]. However, because it is a

complex domain where corresponding decisions and predictions require reasoning

with uncertainty, there are countless examples of companies that underestimate

effort. Jørgensen and Grimstad [2] reported that such estimation error can be 30–

40 % on average, thus leading to serious project management problems.

Similarly to software effort estimation, most research in Web effort estimation

has to date focused on solving companies’ inaccurate effort predictions via

investigating techniques that are used to build formal effort estimation models, in

the hope that such formalization will improve the accuracy of estimates. They do so

by assessing, and often also comparing, the prediction accuracy obtained from

applying numerous statistical and artificial intelligence techniques to datasets of

completed Web projects developed by industry, and sometimes also developed by

students. Details relating to previous studies inWeb effort estimation are given next.

Systematic Literature Review on Web Resource Estimation

To understand effort estimation for Web projects, previous studies have developed

models that use as input factors such as the size of a Web application and cost

drivers (e.g., tools, developer’s quality, team size), and provide an effort estimate as

output. The differences between these studies were the number and type of size

measures used, choice of cost drivers, and occasionally the techniques employed to

build resource estimation models.

Mendes and Counsell [3] were the first, back in 2000, to investigate this field by

using machine-learning techniques with data from student-based Web projects, and

E. Mendes, Practitioner’s Knowledge Representation, DOI 10.1007/978-3-642-54157-5_4,
# Springer-Verlag Berlin Heidelberg 2014
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size measures harvested late in the project’s life cycle. Mendes and collaborators

also carried out a series of consecutive studies (e.g., [1, 4–6]) where models were

built using multivariate regression and machine-learning techniques using data on

industrial Web projects. They also proposed and validated size measures harvested

early in the project’s life cycle, and therefore that were better suited to resource

estimation [6].

Other researchers have also investigated resource estimation for Web projects,

and some examples follows. Reifer [7] proposed an extension of the COCOMO

model, and a single size measure harvested late in the project’s life cycle. None

were validated empirically. This size measure was later used by Ruhe et al. [8], who

further extended a software engineering hybrid estimation technique to Web

projects, using a small data set of industrial projects, mixing expert judgement

and multivariate regression. Later, Baresi et al. [9], and Mangia and Paiano [10]

investigated effort estimation models and size measures for Web projects based on

a specific Web development method, namely the W2000. Finally, Costagliola

et al. [11] compared two types of Web-based size measures for effort estimation.

Given that Web development is a rapidly growing industry [12], it is important

to obtain a detailed account of the state of the art in this field in order to inform

interested practitioners and researchers. Motivated by such need, Azhar et al. [12]

have recently carried out a systematic literature review of Web resource estimation.

This section therefore provides a detailed summary of the above-mentioned

systematic literature review on Web resource estimation [12]. The large majority

of studies reported in this review (85.7 %) focused solely on Web effort estimation;

therefore we assume that the results presented here represent the state of the art in

the field of Web effort estimation.

A systematic review is a method that enables the evaluation and interpretation of

all accessible research relevant to a research question, subject matter or event of

interest [13]. There are numerous motivations for carrying out a systematic litera-

ture review, amongst which the most common are [13]:

• to review the existing evidence regarding a treatment of technology, for exam-

ple, to review existing empirical evidence of the benefits and limitations of a

specific Web development method;

• to identify gaps in the existing research that will lead to topics for further

investigation; and

• to provide a context/framework so as to properly place new research activities.

A systematic review generally comprises the following steps [13]:

• formulation of a focused review question;

• identification of the need for carrying out a systematic review;

• a comprehensive, exhaustive search and inclusion of primary studies;

• quality assessment of included studies;

• data extraction;

• summary and synthesis of study results (meta-analysis);

• interpretation of the results to determine their applicability; and

• report-writing.
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Prior to the review, it is desirable to develop a protocol that specifies the plan that

the systematic review will follow to identify, assess and collate evidence.

A well-formulated question generally has four parts [13], identified as PICO

(population, intervention, comparison, outcome):

• the population (e.g., the disease group, or a spectrum of the healthy population);

• the study factor (e.g., the intervention, diagnostic test or exposure);

• the comparison intervention (if applicable);

• the outcome.

The question should be sufficiently broad to allow examination of variation in

the study factor and across populations [13].

The research questions addressed in the systematic literature review by Azhar

et al. were the following:

Question 1: What methods and techniques have been used for Web resource

estimation?

Question 1a: What metrics have been used to measure estimation accuracy?

Question 1b: What (numerical) accuracy did these various methods/techniques

achieve?

Question 2: What resource facets (e.g., effort, quality, size) have been investigated

in research on Web resource estimation?

Question 2a: What resource predictors have been used in the estimation process?

Question 2b: At what stage are these resource predictors gathered?

Question 3: What are the characteristics (single/cross-company, student/industry

projects) of the datasets used for Web resource estimation?

These research questions address three main areas relating to Web resource

estimation research, as follows:

1. The techniques used for Web resource estimation.

2. The resource facets that have been investigated and the predictors considered.

3. The characteristics of the datasets used in the empirical research.

A total of 84 studies were selected, after employing 11 different databases/

search engines to search for related literature in Web resource estimation.

Tables 4.1, 4.2, and 4.3 provide summaries respectively for each of the main

areas mentioned above. Please refer to Azhar et al. [12] for more detailed tables and

results.

A range of techniques have been used, which include expert judgment, various

algorithmic and machine learning techniques, as well as those that fall into more

than one category. Estimation accuracy forms the basis for evaluating these

techniques, and a number of numerical and graphical measures of accuracy were

employed most of which using as basis the absolute residual [4].
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Results showed that within the domain of Web resource estimation, work has

been done on effort/cost, design, quality, maintenance and size estimation, where

the main focus has been on development effort/cost estimation with only 14.4 % of

the primary studies centring on other resource facets. In addition, out of the three

studies focusing on quality estimation and out of the five studies dealing with

maintenance estimation, only one and two provided an accuracy assessment,

respectively. Such lack of accuracy assessment limits the usefulness of these studies

for practitioners looking to undertake quality or maintenance estimation.

Table 4.1 Estimation

method/technique used for

Web resource estimation

Estimation method/technique %

Case-based reasoning (CBR) 34.5

Stepwise regression 34.5

Linear regression 23.8

Bayesian networks 10.7

Classification and regression trees (CART) 6.0

Support vector regression 6.0

Expert judgment 4.8

Web-COBRA 4.8

Custom 13.1

Mean estimation 20.2

Median estimation 22.6

Other 16.7

No estimation method/technique 6.0

Table 4.2 Resource facets and predictors investigated in the studies

Resource facet investigated % Resource predictors %

Design 3.6 Size: Length 50.0

Quality 3.6 Size: Functionality 32.1

Maintenance 6.0 Size: Reusability 21.4

Size 1.2 Complexity 34.5

Cost/effort 85.7 Cost drivers 19.0

Tukutukua 32.1

Other 4.8

No predictors investigated 1.2

aThe Tukutuku database is part of the Tukutuku project, which aimed to collect data from

completed Web projects, to be used to develop Web cost estimation models and to benchmark

productivity across and within Web Companies [6]

Table 4.3 Domain and

type of dataset used in the

studies

Domain % Type %

Industry 69.0 Cross-company 53.4

Academia 33.3 Single-company 50.0

Not specified 1.2
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Size measures have historically been considered as key predictors of effort. This

still holds true with length, reusability and functionality size measures being seen in

69 % of the selected primary studies. In addition, given that size measures are

included amongst the Tukutuku variables [6], results show that, except for one

study, every primary study that investigates resource predictors considered size

measures as predictors of resource estimation.

Most of the research done to date in Web resource estimation employed

predictors that presented an association with the resource facet being estimated,

without assuming that this association was of the type cause and effect. However,

there were some exceptions (studies using Bayesian nets and Web-COBRA), which

used predictors that had a cause and effect relationship with the resource facet being

estimated. These predictors were usually expert-based.

The review also showed that industry datasets were more frequently used than

academic datasets, where such industry datasets contained either data from a single

company (single company dataset), or from numerous companies (cross-company

dataset). Estimates fromsingle company datasets appeared to be superior to those from

cross-company datasets, which corresponds to findings from prior research that has

been done on single versus cross-company estimates, in both Web and general

software resource estimation [14]. Single company datasets are smaller than their

cross-company counterparts, of which the Tukutuku database is the largest and most

often used.

The results from the systematic review showed that several estimation techniques

have been employed, with no single technique providing the best accuracy results

overall. In addition, most work focused on development effort/cost estimation, with

little done on areas such as quality or maintenance effort estimation.

The lack of consensus on the best Web resource estimation techniques could be

due to a number of reasons, such as [12]: choice of resource predictors and accuracy

measures, dataset characteristics, and type of cross-validation employed, to name

a few.

Overall, none of the previous studies used data gathered by any form of root cause

analysis mechanism to build their predictions models. The very few studies that

represented in someway or the other the uncertainty inherent to effort estimation did

not do so based on experts’ tacit knowledge. These two points are two of the main

drivers for the research detailed herein.

Conclusions

This chapter presented the main findings relating to Web effort estimation based

on the results from a systematic literature review on Web resource estimation

[12]. Overall results showed that previous techniques did not employ root cause

analysis methods or tacit knowledge from experts. This represents a gap in the

state of the art in this area, which is partially filled by the six different case

studies that are described in this book.
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Introduction to Bayesian Networks 5

Introduction

There are numerous knowledge management techniques available (e.g., [1, 2]) that

can be used by practitioners to support decision making where reasoning takes

place under uncertainty. This chapter presents one of these knowledge management

techniques, which is also the technique employed in all the six case studies detailed

in Chaps. 7–12.

Note that within the context of this book reasoning under uncertainty means that

there is no deterministic solution to a decision being discussed. This is a typical

situation in complex domains such as effort estimation. For example, assuming

there is a relationship between an application’s development effort and this

application’s size (e.g., number of Web pages, functionality), it is not necessarily

true that an increase in an application’s size will always lead to an increase in this

application’s development effort. However, as an application’s size grows there is

the probability that its development effort is also likely to increase. This therefore

means that any decisions relating to a development effort estimate for an applica-

tion where this application’s size has been identified as large will likely also lead to

a high development effort.

The technique described herein is called Bayesian network (BN) [3]. Bayesian

networks have been successfully employed for decision-making under uncertainty

in several complex domains (e.g., genetics, speech recognition, medical diagnosis,

software project management) [4]. This technique was chosen within the context of

this book for three main reasons:

1. It supports reasoning under uncertainty given the way it incorporates knowledge

of a complex domain [3].

2. It incorporates three of the four stages of a knowledge creation process [1, 5].
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3. We have previously applied this technique successfully to support decision-

making under uncertainty in three complex domains—software resource estima-

tion, software risk management and software requirements prediction—all

collaborations with numerous industry partners worldwide [4, 6–9].1

Bayesian Network

A Bayesian network (BN) is a technique that enables the construction of a model

(BN model) that supports reasoning with uncertainty due to the way in which it

incorporates existing knowledge of a complex domain [3]. Its main components

will be explained using an example model that is first shown and detailed in Fig. 5.1

and in Table 5.1, respectively. This is the same example model used in Chaps. 1–6,

and it is meant to be an example of a BN model for estimating development effort

for Web applications.

Knowledge is represented in a BN model using two parts. The first, the qualita-

tive part, represents the structure of a BN model (Fig. 5.1). This structure includes

the relevant factors in the domain being modelled (e.g., project planning overhead,

average team’s expertise) and their causal relationships [3]. A BNmodel’s structure

can be elicited from experts, learned from data, or created using a combination of

both. Within the context of this book, all structures were elicited from experts.

The second, quantitative part, quantifies probabilistically all the causal

relationships that were identified in the qualitative part, using tables called condi-

tional probability tables (CPTs). Each table describes a probability distribution.

Similarly to a BN’s structure, CPTs can be elicited from experts, learned from data,

or created using a combination of both. Within the context of this book, all CPTs

were elicited from experts.

Figures 5.2, 5.3 and 5.5 show the CPTs for factors “Average Team’s Expertise”,

“Technological diversity”, and “Combined Cost Factors’ Effort”, respectively.

Figure 5.2 shows the conditional probability table for factor “Average Team’s

Expertise”. This factor is measured using five categories (further details about this

are given in Chap. 6)—very high, high, average, low and very low. Each category

has a number underneath, all adding to 100 [3]. Within the context of this example,

each of these numbers represents the frequency of occurrence of a given category,

given a set of past projects. Such sets of past projects may represent projects that

were managed over the past year, over the past 3 years, all the projects managed by

a company and so on. Figure 5.2 shows that 35 % of past projects presented very

high “Average Team’s Expertise”; 25 % of past projects presented high “Average

Team’s Expertise”; 25 % of past projects presented average “Average Team’s

1 This work was funded by the Royal Society of New Zealand (Marsden Fast Start research grant

06-UOA-201), and a Research Fellowship by the Brazilian Agency for Scientific Improvement.

Professor Mendes was the first female in CS in NZ to obtain a Marsden FS as sole investigator.
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Expertise”; 10 % of past projects presented low “average team’s expertise”; and

5 % of past projects presented very low “Average Team’s Expertise”.

Figure 5.3 shows the conditional probability table for another factor—“Techno-

logical diversity”. This factor is also being measured using five categories (further

details about this are given in Chap. 6)—Very High, High, Average, Low and Very

Low. Each category has a number underneath, all adding to 100 [3]. Within the

context of this example, each of these numbers represents the frequency of occur-

rence of a given category given a set of past projects. Figure 5.3 shows that 35 % of

past projects presented very high “Technological diversity”; 30 % of past projects

presented high “Technological diversity”; 20 % of past projects presented average

“Technological diversity”; 10 % of past projects presented low “Technological

diversity”; and 5 % of past projects presented very low “Technological diversity”.

These two CPTs are relatively easy to quantify as their probabilities do not

depend on any existing causal relationships with other factors part of the same BN

model. However, the quantification of categories for the next CPT is much more

challenging given that factor “Combined Cost Factors’ Effort” is affected by two

other factors (causes): “Average Team’s Expertise” and “Technological diversity”

(Fig. 5.4). Note that this factor is also characterised using five categories (very high,

high, average, low, very low).

As a result, all the quantifications that are provided for the categories

characterising factor “Combined Cost Factors’ Effort” need to take into account

the categories for factors “Average Team’s Expertise” and “Technological diver-

sity” using decision scenarios. Two of these decision scenarios are highlighted in

red in Fig. 5.5. The first one relates to a decision where past projects presented very

high “Technological diversity” and very high “Average Team’s Expertise”. In such

scenario, there is a probability of 75 % that “Combined Cost Factors’ Effort” will be

Fig. 5.1 Example Bayesian network model
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very low, and a 25 % probability that “Combined Cost Factors’ Effort” will be low.

This quantification should reflect experts’ past experience with that specific deci-

sion scenario, taking into account the set of projects that are being considered

Table 5.1 Description of the factors used in the example Bayesian network model

Factor Description

Total number of static

Web pages

This factor represents the estimated number of new Web pages that

need to be created. These are not dynamically-generated pages, and

include any types of page such as .htm, .html, .php

Total number of scripts This factor represents the estimated sum of any types of scripts that are

likely to be created for the Web application. Such scripts can be made

using a client-side scripting technique (e.g., xml, Ajax techniques,

Flash ActionScript), or server-side scripting languages (ASP, JSP, Perl,

PHP, Python). It also includes files written using Cascading Style

Sheets (CSS)

Total number of

multimedia files

This factor represents the total estimated number of any multimedia

content, such as images and videos

Average team’s

expertise

This factor measures team expertise as the average number of years of

experience that the development team has with Web development. The

estimation within this context relates to tentative decisions as to who

will likely be allocated to the team that will develop the Web

application for which total effort is being estimated

Technological diversity This factor represents the estimated amount of diversity as far as the use

of technology is concerned. It is measured using a surrogate measure,

represented by the number of different technologies that are being

employed in order to develop a Web application. Examples of

technologies are MySQL, PHP, HTML, CSS, Python, ASP and JSP

Project planning

overhead

This factor represents the degree of participation needed by the project

manager in order to ensure the project is managed adequately and is

ideally completed within time and on budget. This includes, but is not

limited to status reports; communication; implementation plan (more

for large projects) which includes the tasks to be done and their

estimated completion dates; risk analysis; data analysis; planning

(project execution plan)

Total development effort This factor represents the total estimated effort to develop a Web

application. The three factors that have a direct effect upon total effort

are: combined cost factors’ effort, project planning overhead and

combined size’s effort

Combined size’s effort This factor represents the estimated amount of effort (person-hours)

needed to create Web pages, scripts/CSS files and multimedia files.

Note that the effort will change depending on which categories are

selected for each factor. Such selection will take place as part of a

decision making scenario, and examples will be given later on (See

Figs. 5.6 and 5.7)

Combined cost factors’

effort

This factor represents the estimated amount of effort (person-hours)

when taking into account technological diversity and average team’s

expertise. Note that the effort will change depending on which

categories are selected for each factor. As previously stated, such

selection will take place as part of a decision making scenario, and

examples will be given later on
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during the quantification (e.g., all projects, projects completed over the past year,

etc.). The second scenario relates to a decision where past projects presented very

high “Technological diversity” and low “Average Team’s Expertise”. In such

scenario, there is a probability of 85 % that “Combined Cost Factors’ Effort” will

be very high, and a 15 % probability that “Combined Cost Factors’ Effort” will be

Fig. 5.2 CPT for factor “team’s expertise”

Fig. 5.3 CPT for factor “technological diversity”

Average Team's Expertise Technological diversity

Combined Cost Factors' Effort

Fig. 5.4 Part of the BN model’s structure showing three factors
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high. Each scenario represents a combination of every category for every factor that

affects the target factor (in this example, “Combined Cost Factors’ Effort”). In

summary, the CPT “Combined Cost Factors’ Effort” describes the relative proba-

bility of each category, conditional on every combination of categories of its

parents (factors that affect “Combined Cost Factors’ Effort” directly).

The outcome from applying this technique is the creation of a BN model

(Fig. 5.6), which can then be used to run “what-if” scenarios that are used for

reasoning and decision-making under uncertainty. One example of a what-if sce-

nario is shown in Fig. 5.7. This scenario shows a change in factor “Project Planning

Overhead”, where from a situation where there was a probability distribution

associated with all of its categories, it changes into a state where a probability of

100 % is associated with its category “Very Low” (Fig. 5.8). Such a change where a

single category is associated with a 100 % probability is called to enter evidence,

i.e., data about a factor (where data is represented in a categorical form) that has

become known to (has been observed by) those who are using the model. Once such

evidence is entered in the model, it triggers a change in the probabilities for all the

Fig. 5.5 CPT for factor “combined cost factors’ effort”
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categories categorising factor “Total Development Effort”. This is the outcome

from applying a theorem that describes the relationship between the probability of a

hypothesis given some evidence and the probability of that evidence given the

hypothesis [3], i.e., a theorem that defines the relation between a conditional

probability and its inverse form. This theorem is called Bayes’ theorem [3], and a

Fig. 5.6 Example Bayesian network model

Fig. 5.7 “What-if” scenario
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small example is given next in order to explain how probabilities are calculated

using it.

Understanding Bayes’ Theorem

The equation representing Bayes’ theorem (also known as Bayes’ rule) is as follows

[3]:

p X
�
�Y

� � ¼ p Y
�
�X

� �

p Xð Þ
p Yð Þ ð5:1Þ

where:

• p(X) is called the prior probability distribution or marginal probability distribu-

tion of X. It represents the probability distribution for X without taking into

account any knowledge relating to the evidence Y.
• p(X|Y ) is called the posterior probability distribution of X as its values are

dependent upon the value given for evidence Y. It represents the conditional

probability of X given Y.
• p(Y|X) is the conditional probability of Y given X. It is also called the likelihood

function.

• p(Y ) is the prior or marginal probability distribution of evidence Y, and is used

as a normalising constant.

Let’s look at a very simple BN model and corresponding CPTs (Fig. 5.9) to

understand how Bayes’ theorem works.

This model shows a causal relationship between “Application size” and “Devel-

opment Effort”. The CPT for “Application size” shows that 40 % of past projects

presented a large application size, and 60 % a small size. The CPT for “Develop-

ment Effort” shows that if “Application size” is large, there is a 90 % chance that

development effort will be high, and a 10 % chance that development effort will be

Project Planning Overhead
Very High
High
Average
Low
Very Low

   0
   0
   0
   0

 100

Project Planning Overhead
Very High
High
Average
Low
Very Low

10.0
25.0
45.0
15.0
5.00

Total Development Effort
Very High
High
Average
Low
Very Low

57.8
15.4
24.2
2.09
0.49

Total Development Effort
Very High
High
Average
Low
Very Low

34.7
23.5
35.6
5.42
0.84

Fig. 5.8 Entering evidence and updated probabilities in the target factor
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low. On the other hand, if “Application size” is small there is a 20 % chance that

development effort will be high, and an 80 % chance that development effort will

be low.

Now let’s focus upon two events:

Application size being large—event X
Development effort being high—event Y

Given these two events, we can assert the following:

• p(X)¼ 0.40¼ Probability of application size being large.

• p(~X)¼ 0.60¼ Probability of application size being small.

• p(Y|X)¼ 0.90¼ Probability of development effort being high, if application size

is large.

• p(~Y|X)¼ 0.10¼ Probability of development effort being low, if application size

is large.

• p(Y| ~X)¼ 0.20¼ Probability of development effort being high, if application

size is small.

• p(~Y| ~X)¼ 0.80¼ Probability of development effort being low, if application

size is small.

Given such scenarios, let’s first determine the probability that development

effort is high. This is obtained by adding the probability of application size being

large and development effort being high to the probability of application size being

small and development effort being high, as follows:

Fig. 5.9 Very small Bayesian network model and corresponding CPTs
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40:90ð Þ þ 60:20ð Þ ¼ 3, 600þ 1, 200 ¼ 4, 800 ¼ 48 %

This result is shown in Fig. 5.9; i.e., there is a 48 % chance that development

effort will be high.

Let’s now look at another scenario, in which development effort is known to be

high. Given this evidence, what is the probability that application size will be large?

The outcome is shown in Fig. 5.10; however, we will use Bayes’ theorem to show

how the probability was obtained. Bayes’ theorem enables us to compute the

probability of an earlier event given existing knowledge (evidence) about a later

event.

We have already shown Bayes’ theorem as Eq. (5.1); X represents the event

application size being large, and Y represents the event development effort being

high. Therefore, we have:

• P(Y|X)¼ 90¼ Probability of development effort being high, if application size is

large.

• P(X)¼ 40¼ Probability of application size being large.

• P(Y )¼ 48¼ Probability of development effort being high.

Therefore, to compute the probability of application size being large given that

development effort is high, we have the following equation:

p X
�
�Y

� � ¼ 90 : 40

48
ð5:2Þ

Thus, this probability is equal to 75 (75 %), as shown in Fig. 5.10.

In summary, once a BN model is specified, evidence (e.g., values for categories)

can be entered into any factor, and probabilities for the remaining factors are

automatically calculated using Bayes’ theorem [3]. Therefore BN models can be

Fig. 5.10 Probability that

application size is large given

the evidence that

development effort is high
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used for different types of reasoning, such as predictive, diagnostic, in combination

with what-if scenarios or to investigate the impact that changes on some factors

have upon others.

Note that without tool support it is not possible to employ such models for

decision making.

Conclusions

This chapter has provided an introduction to Bayesian network models by

detailing and explaining their two main parts—qualitative and quantitative.

It also provided an introduction to Bayes’ theorem and two simple examples

so to provide the reader with a more detailed understanding of what happens

when we use a Bayesian network model for decision making under uncertainty.
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Expert-Based Knowledge Engineering
of Bayesian Networks 6

Introduction

The previous chapter provided an introduction to Bayesian network models, which

are models that can be built solely from expert domain knowledge, solely from data,

or by employing a combination of knowledge and data (hybrid models). However,

within the context of Web effort estimation there are issues with building data-

driven or hybrid Bayesian network models, as follows:

1. Any dataset used to build a Bayesian network model should be large enough to

provide sufficient data capturing all (or most) relevant combinations of values

for all the categories characterising factors such that probabilities can be learned

from data, rather than elicited manually. Under such circumstance, it is very

unlikely that the dataset would contain project data volunteered by only a single

company (single-company dataset). As far as we know, the largest dataset of

Web projects available is the Tukutuku dataset (195 projects) [1]. This dataset

has been used to build data-driven and hybrid Bayesian network models; how-

ever, results have not been encouraging overall, and we believe one of the

reasons is due to the small size of this dataset.

2. Even when a large dataset is available, the next issue relates to the set of factors

part of the dataset. It is unlikely that the factors identified represent all those

within a given domain (e.g., Web effort estimation) that are important for

companies that use the data-driven or hybrid model created from this dataset.

This was the case with the Tukutuku dataset, even though the selection of which

factors to use had been informed by two surveys [1]. However, one could argue

that if the model being created is hybrid, then new factors can be added to, and

existing factors can be removed from the model. The problem is that every new

factor added to the model represents a set of probabilities that need to be elicited

from scratch, which may be a hugely time-consuming task.

3. Different structure and probability learning algorithms can lead to different

prediction accuracy [2]; therefore one may need to use different models and

E. Mendes, Practitioner’s Knowledge Representation, DOI 10.1007/978-3-642-54157-5_6,
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compare their accuracy, which may also be a very time-consuming task, in

particular for companies willing to use such models.

4. When using a hybrid model, the Bayesian network’s structure should ideally be

jointly elicited by more than one domain expert, preferably from more than one

company; otherwise the model built may not be general enough to cater for a

wide range of companies [2]. There are situations, however, where it is not

feasible to have several experts from different companies cooperatively working

on a single Bayesian network structure. One such situation is when the

companies involved are all consulting companies potentially sharing the same

market. This was the case within the context of the research that motivated the

writing of this book.

5. Ideally the probabilities used by the data-driven or hybrid Bayesian network

models should be revisited by at least one domain expert, once they have been

automatically learned using the learning algorithms available in Bayesian net-

work tools. However, depending on the complexity of the Bayesian network

model, this may represent having to check thousands of probabilities, which may

not be feasible. One way to alleviate this problem is to add additional factors to

the Bayesian network model in order to reduce the number of causal

relationships reaching factors; however, all probabilities for the additional

factors would still need to be elicited from domain experts.

6. The choice of factor discretisation, structure learning algorithms, probability

estimation algorithms and the number of categories used in the discretisation all

affect the accuracy of the results, and there are no clear-cut guidelines on what

would be the best choice to employ. It may simply be dependent on the dataset

being used, the amount of data available and trial and error to find the best

solution [2].

Therefore, given the above-mentioned constraints, this chapter details a process

that targets building expert-based Bayesian network models. This is also the

process employed when building all the models that are detailed in Chaps. 7–12.

Note that we are not suggesting that data-driven and hybrid Bayesian network

models should not be used. On the contrary, they have been successfully employed

in numerous domains [3–5]; however, the specific domain context of this paper—

that of Web effort estimation—provides other challenges (described above) that

lead to the development of solely expert-driven Bayesian network models.

Introducing the Expert-Based Knowledge Engineering
of Bayesian Networks Process

The process that we have followed in order to build all the expert-based Bayesian

network models detailed in Chaps. 7–12 is shown in Fig. 6.1. It has been adapted

from Woodberry et al. [3] in order to provide a set of steps that are achievable and

meaningful to the practitioners participating in the process. In Fig. 6.1 arrows

represent flows through the different subprocesses, which are depicted by
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rectangles. These subprocesses are executed by people—the knowledge engineer

and the domain experts (dark grey rectangles), by automatic algorithms (white

rectangles), or via a combination of people and automatic algorithms (dark grey

rectangle with bottom-left white triangle). Within the context of this book the

author was the knowledge engineer, and Web project managers, Web designers

and developers from companies in Auckland (New Zealand) and Rio de Janeiro

(Brazil) were the domain experts.

The three main steps within the Expert-based Knowledge Engineering of Bayes-

ian Networks process (EKEBN) are the structure building, uncertainty quantifica-

tion, and model validation. This process iterates over these steps until a complete

Bayesian network model is built and validated. Each of these three steps is briefly

introduced next, followed by a step-by-step description of how to apply each one in

practice.

Structure Building

The structure building step represents the qualitative component of a Bayesian

network model, which results in a graphical structure that represents the

explicitation of the tacit knowledge from one or more domain experts. This

explicitation leads to a single or combined mental model (depending on the number

of domain experts participating in the structure building step) that includes, in our

case, the factors and causal relationships identified as fundamental for effort

estimation of Web projects. In addition to identifying factors and causal

relationships, this step also includes the decision of how each factor will be

measured, i.e., each of the categories that a factor should take (e.g., very high,

very low).

This step explicitates a mental model that is refined iteratively through the

sub-processes “identify factors”, “identify categories”, “identify relationships”,

and evaluation. Such iteration takes place by means of several knowledge elicita-

tion and representation meetings, attended by the knowledge engineer and domain

expert(s). This type of structure construction process has been validated in previous

studies [6] and uses the principles of problem solving employed in data modelling

and software development [4]. As will be detailed later in this chapter, existing

literature in Web effort estimation is also included as part of this step.

In addition, throughout this step the knowledge engineer evaluates the Bayesian

network’s structure in two stages. The first entails checking whether: factors and

their categories have a clear meaning, all relevant factors have been included,

factors are named conveniently, all categories are appropriate (exhaustive and

exclusive), and a check for any categories that can be combined. The second

stage entails reviewing the Bayesian network’s structure in order to check whether

the cause and effect relationships that were identified by the domain expert

(s) genuinely correspond to their mental models. Once the Bayesian network’s

structure is assumed by the domain expert(s) to be close to final, the knowledge

engineers may still need to optimise this structure to reduce the number of
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probabilities that need to be elicited. As will be detailed later on, if an optimisation

is needed, the knowledge engineer and the domain expert(s) discuss possible

choices and jointly propose new factors that are solely created in order to optimise

the structure.

Note that it is important that two distinct roles are represented by those

participating in the creation of a Bayesian network model—knowledge engineer

and domain expert. We would suggest that someone who has expertise with

eliciting requirements from clients to be chosen as the knowledge engineer, simply

because they will have some experience in how to elicit tacit knowledge even if

such knowledge has a different nature to the one being represented in the Bayesian

network model. It is also important to stress herein that the knowledge engineer is a

facilitator, and therefore they should be neutral and completely refrain from also

taking the role of a domain expert.

Uncertainty Quantification

The uncertainty quantification step represents the quantitative component of a

Bayesian network, where conditional probabilities corresponding to the quantifica-

tion of the relationships between factors [7] are obtained. Such probabilities can be

attained via expert elicitation, automatically from data, from existing literature or

by using a combination of these. However, within the context of this book we will

only discuss probabilities that are obtained via expert elicitation.

Model Validation

The model validation step, as the names implies, validates the Bayesian network

model that results from the two previous steps, and determines whether it is

necessary to revisit any of those steps. Two different validation methods are

generally used, model walk-through and predictive accuracy. These two validation

methods are briefly presented below, and will be detailed later in this chapter, as

both were used by the author when building all the Bayesian network models that

are detailed in Chaps. 7–12.

Model walk-through represents the use of real case scenarios that are prepared

and used by the domain expert(s) to assess whether the predictions provided by a

Bayesian network model presenting the highest probability correspond to the

predictions that the domain expert(s) would have chosen based on their own

expertise. Success is measured as the frequency with which the Bayesian network

model’s predictions correspond to the experts’ own assessment.

Predictive accuracy uses data from past finished projects (which within our

context are Web projects), rather than scenarios, to obtain predictions. Data (evi-

dence) corresponding to categories from existing factors are entered on the Bayesian
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network model, and success is measured as the frequency with which the Bayesian

network model’s category for a target factor (e.g., effort) showing the highest

probability corresponds to the actual past data.

Detailing the EKEBN Process

This section revisits the EKEBN steps discussed above and provides a detailed

explanation of what to do in each of its steps. Although all the details and

discussions presented herein will focus on the domain of effort estimation for

Web projects, note that the methodology described relating to the building of

Bayesian network models using the EKEBN process can equally be used when

building models in any other domains (e.g., quality prediction, risk assessment,

ecology or sustainability prediction).

Before detailing the EKEBN process, it is important to understand that the three

steps that are part of that process all represent mechanisms used to achieve the

externalisation, combination (optional) and internalisation of knowledge, as per

Nonaka and Toyama’s theory of organisational knowledge creation [8] (Fig. 6.2).

As discussed in Chap. 1, this is the theory that has been adopted by the author within

the context of this book, given that this theory was used as the basis when building

all the expert-based Web effort estimation Bayesian network models that are

detailed in Chaps. 7–12.

How Does the Externalisation of Knowledge Occur During
the EKEBN Process?

Whenever we plan to build an expert-based Bayesian network model we need at

least two people to take part in such a process, representing respectively the roles of

knowledge engineer and domain expert. The knowledge engineer is responsible for

eliciting the tacit knowledge from the domain expert. In addition, in order for this

elicitation to be effective it is important that the domain expert explains as much as

possible how they estimate effort for new projects. Of course, the knowledge

engineer does not have a passive role during the elicitation meetings, as their goal

is to actively facilitate the immersion of the domain expert(s) into the effort

estimation process (which is generally done using decision making scenarios and

case studies) such that all the fundamental factors, relationships and uncertainty

quantifications are obtained. At the very start of the elicitation process, as will be

detailed next, a whiteboard (or any other means that allows one to display the

factors that are to be discussed) is used as a working surface on which factors,

relationships and categories are recorded until all the domain experts participating

in the elicitation process agree that an acceptable draft has been attained. Such

factors and relationships represent explicit knowledge, and all the discussions that

take place during elicitation meetings are focused on making as explicit as possible

the domain expert(s)’ tacit knowledge (knowledge explicitation/externalisation).
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How Can the Combination of Knowledge Occur During
the EKEBN Process?

All the Bayesian network models that are detailed in Chaps. 7–12 employ two of the

knowledge creation steps, as per the theory of organisational knowledge creation—

externalisation and internalisation of knowledge (Fig. 6.3). However, the combina-

tion of knowledge can also occur, as detailed next.

When it comes to combining different Bayesian network models, to date there is

no universal automatic solution to merge diverse Bayesian network models, in

particular if such models vary in the number of factors, corresponding categories

and relationships. Some work has been done to create a semiautomatic approach to

aggregating structures (factors and relationships) from different Bayesian network

models [6]. However, this aggregation approach does not tackle the combination of

probabilities and diverse categories, so further work needs to be done in order to

aggregate complete Bayesian network models.

Given our experience building several expert-based Bayesian network models,

we suggest that companies that are willing to also combine their models in a

pragmatic and effective way should employ the following adaptation of the

EKEBN process (Fig. 6.4), which is also represented in Fig. 6.5 using the theory

of organisational knowledge creation.

Figure 6.4 shows an additional step called “structure combination”. This step

represents the merging of all the factors, and their corresponding categories and

relationships that were previously identified by different groups in a company or

organisation. The participants should include at least one domain expert from each

group and also the knowledge engineer(s) who have participated in the structure
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building step. The tangible outcome from this step should be a single Bayesian

network model that embeds all the factors, categories and relationships that were

identified as fundamental by the groups. It is important that agreement be reached

by consensus so to guarantee that the aggregated model represents all the views

from the different groups.

We suggest that the structure combination step be carried out prior to the

uncertainty quantification step, and that both uncertainty quantification and model

validation be conducted as a team effort with the participation of at least one

domain expert from each group and also the knowledge engineer(s) who

participated in the structure building and structure combination steps. This is

suggested in order to prevent the need to also aggregate different conditional

probability tables, which could lead to a major headache and the need to spend an

enormous amount of time trying to reach consensus on every decision scenario.

How Does the Internalisation of Knowledge Occur During
the EKEBN Process?

Whenever there are at least two domain experts they engage in very detailed

discussions as the goal of all the elicitation meetings is to always reach a consensus

amongst its members relating to factors, relationships, categories and, later on, also

probabilities. As they discuss, and keeping in mind that from the start the knowl-

edge engineer does not use a “blank slate”, they use as basis the knowledge that has

been explicitated. Such knowledge can be solely their own, or based on results from

Fig. 6.3 The two different

stages of the theory of

organisational knowledge

creation that were used when

building expert-based

Bayesian network models

presented in Chaps. 7–12
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existing research and/or practice, or a combination of both. As this explicit knowl-

edge is manipulated via discussions between the domain experts, it can be revisited,

but it can also lead to some level of learning. Learning during the EKEBN process

occurs more often when there is at least a slight difference in experiences between

the participating domain experts. Whenever learning occurs within this context it

represents an internationalisation of knowledge.

How Does the Internalisation of Knowledge Occur After Employing
the EKEBN Process?

Once the Bayesian network model is built and validated, which generally happens

after several iterations through the three-step part of the EKEBN process, it is used

by different practitioners, such as:

• Project managers individually;

• Project managers working as a team;

• A project manager and other project team members (e.g., software developers);

and

• Project managers and other project team members (e.g., software developers).

Such combination(s) of practitioners is not meant to be an exhaustive list. It

simply reflects the combinations that took place when this book’s author carried out

the case studies detailed in Chaps. 7–12.

Whenever the organisation has practitioners who will use the effort estimation

model despite not participating in the elicitation meetings used to build this model,

Fig. 6.5 The three different

stages of the theory of

organisational knowledge

creation that are used when

building expert-based

Bayesian network models. In

this figure, I stands for

Individual, G for group and O

for Organisation
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they will need to be trained and to understand the combined mental model embed-

ded in the Bayesian network model. This process also represents an internalisation

of knowledge as the explicit knowledge incorporated in the Bayesian network

model will need to be understood so it can be employed to obtain effort estimates

for new projects.

In summary, the theory of organisational knowledge creation prescribes four

different stages of knowledge creation; two of these are employed (and a third one

can also be employed whenever needed) when building expert-based Bayesian

network models (Fig. 6.4).

Note that a very important aspect when employing the EKEBN process is

continuity and focus. In all the case studies detailed in Chaps. 7–12 we held weekly

meetings, each lasting for 3 h. They were all held at the participating companies’

premises; however, we made it clear to all of these companies that any model was

only as good as their commitment and also their experience. Participants therefore

were asked to refrain from leaving the meeting room to deal with any other work-

related issues.

Detailed Structure Building

The focus of this step is to elicit the factors and the relationships that the domain

expert(s) participating in the elicitation sessions identify as important for effort

estimation. As previously mentioned, it is important to start from somewhere, i.e.,

using some explicit knowledge as basis for the discussions. At the time when this

book’s author was collaborating with companies and helping them building effort

prediction models using Bayesian networks, the only comprehensive research

providing a detailed set of factors that were identified as suitable effort predictors

for Web projects was the Tukutuku project [1]. We will also use the same factors

herein, however, nowadays there is also a systematic literature review on Web

resource estimation (presented in Chap. 4) that suggests a greater number of factors

identified as suitable effort predictors; therefore any companies following our

process can either use the same Tukutuku factors we will use in this book, or use

the entire set of factors detailed in Chap. 4. The most important aspect is that an

initial and relevant set of factors be used, rather than to initiate the work using a

“blank slate”.

In essence, in order to identify the fundamental factors that the domain expert(s)

take into account when preparing a project quote we recommend that the set of

variables from the Tukutuku dataset [1] be used as a starting point (Table 6.1).

Therefore the following phases should be followed when identifying the funda-

mental factors:
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Phase 1

Sketch the Tukukutu variables on a whiteboard (or any other medium that enables

the display of these variables), each one inside an oval shape, leaving space in

between them (example given in Fig. 6.6). Any tool (whiteboard or other) that

enables the easy drawing and redrawing of factors helps keep the elicitation

sessions flowing. It also helps with visualising very clearly the set of factors that

are being selected, which is important when making tacit knowledge explicit. Our

previous experience eliciting Bayesian network models in other domains (e.g.,

ecology) suggested that it was best to start with a few factors (even if they were

not to be reused by the domain expert(s)), rather than to start from a blank canvas.

Phase 2

Once the variable have been sketched out, each factor should be explained to the

participants. Their meaning is bound by what they represent within the context of

the Tukutuku project.

Table 6.1 The Tukutuku variables

Variable

name Description

Project Data TypeProj Type of project (new or enhancement)

nLang Number of different development languages used

DocProc If project followed defined and documented process

ProImpr If project team involved in a process improvement programme

Metrics If project team part of a software metrics programme

DevTeam Size of a project’s development team

TeamExp Average team experience with the development language(s)

employed

Web
application

TotWP Total number of Web pages (new and reused)

NewWP Total number of new Web pages

TotImg Total number of images (new and reused)

NewImg Total number of new images created

Num_Fots Number of features reused without any adaptation

HFotsA Number of reused high-effort features/functions adapted

Hnew Number of new high-effort features/functions

TotHigh Total number of high-effort features/functions

Num_FotsA Number of reused low-effort features adapted

New Number of new low-effort features/functions

TotNHigh Total number of low-effort features/functions
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Phase 3

Once the Tukutuku variables had been sketched out and explained, the next phase is

to remove all variables that the domain expert(s) do not consider relevant (example

given in Fig. 6.7).

However, how to make this happen? Eliciting tacit knowledge is not an easy task

as one needs to provide the means for the participants to “go deep” into the

estimation process such that what they suggest does indeed reflect the factors

they believe to be fundamental for effort estimation. In addition, there is also the

issue when several domain experts are participating as there will be differences in

their personalities (and also seniority in the company), and it is often the case that

one wants to dominate the discussion and the decisions.

So let’s take one step at a time.

In order to facilitate a fruitful elicitation exercise, ask the domain experts to

think about their most recent effort estimation activity, and start from there. Doing

it this way will take them back to a real and tangible scenario, which is important to

ask suggest tangible and important factors, relationships and uncertainty

quantifications (the latter is detailed later on). Once they are all there, focus on

one of the Tukutuku factors at a time, and use a round robin style to get each of the

domain experts to speak and voice their opinion on whether the factor under focus

should be kept or not. Listen but also keep taking them back to their estimation

scenario by consistently asking them to justify their opinion. In other words, it is

very important to persistently ask “Why” so domain experts can clearly ground

their suggestions. This also serves another purpose, which is to share their detailed

tacit knowledge with the other domain experts who are also present.

Fig. 6.6 The Tukutuku

variables sketched out
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Phase 4

Once Phase 3 is completed, the next phase comprises adding to the white board any

additional variables (factors) suggested by the domain expert(s). The same

approach of asking them to justify every decision should also be carried out here,

so to get them grounded on the choices of factors being put forward. It is our

experience that this step is occasionally slightly mixed with Phase 3, as domain

experts may end up also suggesting new factors while they are considering whether

to remove or not a Tukutuku factor, given that they are immersed thinking about

their most recent effort estimation activity.

It is also very important to document the descriptions for each of the factors

suggested. In addition, some of the initial meetings could also be recorded so to

keep a memory of all the decisions taken. Such recording can also be used in case

there are decision points that need further clarification. We have recorded all of our

elicitation meetings with all the companies we collaborated with, and feel it is

indeed a good practice to follow.

Let’s suppose that the result of Phase 4 is the set of factors shown in Fig. 6.8.

They have been grouped, whenever applicable, so to make it simpler to see how

they relate to one another. The factors in light blue represent size-related effort

predictors, and the ones in light purple represent cost drivers relating to people and

the technology employed. Their description is given in Table 6.2.

These are the same factors previously used in the example model presented

throughout Chap. 1, and their description and further details are presented again

herein in order to help the reader follow the details presented herein.

Fig. 6.7 Example showing the removal of several Tukutuku factors
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Fig. 6.8 Factors that were decided upon by the domain experts

Table 6.2 Description of the factors used in the example model

Factor Description

Total number of static

Web pages

This factor represents the estimated number of new Web pages that

need to be created. These are not dynamically-generated pages, and

include any types of page such as .htm, .html, .php

Total number of scripts This factor represents the estimated sum of any types of scripts that are

likely to be created for the Web application. Such scripts can be made

using a client-side scripting technique (e.g., XML, Ajax techniques,

Flash ActionScript), or server-side scripting languages (ASP, JSP, Perl,

PHP, Python). It also includes files written using cascading style sheets

(CSS)

Total number of

multimedia files

This factor represents the total estimated number of any multimedia

content, such as images and videos

Average team’s

expertise

This factor measures team expertise as the average number of years of

experience that the development team has with Web development. The

estimation within this context relates to tentative decision as to who will

likely be allocated to the team that will develop the Web application for

which total effort is being estimated

Technological diversity This factor represents the estimated amount of diversity as far as the use

of technology is concerned. It is measured using a surrogate measure,

represented by the number of different technologies that are being

employed in order to develop a Web application. Examples of

technologies are MySQL, PHP, HTML, CSS, Python, ASP and JSP

Project planning

overhead

This factor represents the degree of participation needed by the project

manager in order to ensure the project is managed adequately and is

ideally completed within time and on budget. This includes, but is not

limited to status reports, communication, implementation plan (more

for large projects) which includes the tasks to be done and their

estimated completion dates, risk analysis, data analysis, planning

(project execution plan)

Total development effort This factor represents the total estimated effort to develop a Web

application
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Phase 5

This phase entails the definition of how each factor will be measured, i.e., how

many and which categories are to be used to measure each of the factors. Of course,

this decision will have an effect upon the number of probabilities to elicit during the

uncertainty quantification step; however, such considerations should not constrain

the choice of how best to measure each factor, as per the domain expert

(s) participating in the Bayesian model building. All the categories must also be

documented, using a template similar to that presented in Table 6.3. Note that in this

example all the factors were measured using five categories; however, this is simply

an example. Chapters 7–12 present real industrial Bayesian models and clearly

show that the number of categories employed can vary quite widely within and

across models.

Once all the categories are identified and documented, it is time to move on to

the next phase, which is to elicit the cause and effect relationships between the

factors.

Phase 6

As a starting point to this phase it is a good idea to use a simple example that

explains in a simple way what is meant by a cause and effect relationship. When

eliciting Bayesian network models with companies we have always used a simple

medical example from Jensen [7] (Fig. 6.9). This simple model shows that there is a

causal link between smoking and lung cancer (those who smoke are more likely to

have lung cancer when compared to those who do not smoke) and the same in

relation to lung cancer and coughing, and lung cancer and a positive x-ray for lung

cancer. It also introduces one of the most important points to consider when

identifying cause and effect relationships—the timeline of events. If smoking is

to be a possible cause of lung cancer, it is important that the cause precedes the

effect. This may sound obvious with regard to the example used; however, it is our

view that the use of this simple example significantly helped the domain experts we

have collaborated with understand the notion of cause and effect, and how this

related to Web effort estimation and the Bayesian network models being elicited.

With regard to the factors shown in Fig. 6.8, their cause and effect relationships

are shown in Fig. 6.10.

Figure 6.10 shows that all the factors affect “total development effort” directly;

however, this is an issue when we think about the next step—uncertainty

quantification.

Why would it be a problem? If we leave the model as is, the conditional

probability table associated with the factor “total development effort” will contain

5� 5� 5� 5� 5� 5� 5 probabilities. This means eliciting 78,125 probabilities

manually, as there are not yet general solutions to generating probabilities

semiautomatically, which can be readily incorporated to any Bayesian

network tool.
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Table 6.3 Description of the factors used in the example model and their corresponding

categories

Factor Description

Total number of static

Web pages

This factor represents the estimated number of new Web pages that

need to be created. These are not dynamically-generated pages, and

include any types of page such as .htm, .html, .php. The total number of

static Web pages is measured using five different categories (very large,

large, medium, small and very small). This means that when a project

manager is using the model, they have these five categories to choose

from, and the choice will depend on the set of requirements they have

gathered from the client to whom this application is to be developed.

Within the context of the example model, these categories are detailed

as follows:

Very small number of Web pages! 0–5 Web pages

Small number of Web pages! 6–15 Web pages

Medium number of Web pages! 16–25 Web pages

Large number of Web pages! 26–30 Web pages

Very large number of Web pages! 31+ Web pages

Total number of scripts This factor represents the estimated sum of any types of scripts that are

likely to be created for the Web application. Such scripts can be made

using a client-side scripting technique (e.g., XML, Ajax techniques,

Flash ActionScript), or server-side scripting languages (ASP, JSP, Perl,

PHP, Python). It also includes files written using cascading style sheets.

The total number of scripts is measured using five different categories

(very large, large, medium, small and very small). Within the context of

the example model, these categories are detailed as follows:

Very small number of scripts/css files! 0–7 scripts/css files

Small number of scripts/css files! 8–20 scripts/css files

Medium number of scripts/css files! 21–25 scripts/css files

Large number of scripts/css files! 26–35 scripts/css files

Very large number of scripts/css files! 36+ scripts/css files

Total number of

multimedia files

This factor represents the total estimated number of any multimedia

content, such as images and videos. The total number of multimedia

files is measured using five different categories (very large, large,

medium, small and very small). Within the context of the example

model, these categories are detailed as follows:

Very small number of multimedia content! 0–3 multimedia content

Small number of multimedia content! 4–8 multimedia content

Medium number of multimedia content! 9–20 multimedia content

Large number of multimedia content! 21–30 multimedia content

Very large number of multimedia content! 31+ multimedia content

Average team’s

expertise

This factor measures team expertise as the average number of years of

experience that the development team has with Web development. The

estimation within this context relates to tentative decision as to who will

likely be allocated to the team that will develop the Web application for

which total effort is being estimated

Five different categories (very high, high, average, low and very low)

are used to measure average team’s expertise. Within the context of the

example model, these categories are detailed as follows:

Very low team’s expertise! 1 year of experience

Low team’s expertise! 2–3 years of experience

Average team’s expertise! 4–8 years of experience

High team’s expertise! 9–12 years of experience

Very high team’s expertise! 13+ years of experience

(continued)
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Is there another solution to this issue? Yes, there is. We need to create interme-

diate factors which goal is simply to reduce the number of relationships targeting a

particular factor. The factor that is the focus herein is “total development effort”.

We name these intermediate factors Optimisation factors. Figure 6.11 shows the

Table 6.3 (continued)

Factor Description

Technological diversity This factor represents the estimated amount of diversity as far as the use

of technology is concerned. It is measured using a surrogate measure,

represented by the number of different technologies that are being

employed in order to develop a Web application. Examples of

technologies are MySQL, PHP, HTML, CSS, Python, ASP and JSP.

The five categories employed to measure Technological diversity are

Within the context of the example model, these categories are detailed

as follows:

Very low technological diversity! 1 type of technology is being used

in the Web application

Low technological diversity! 2 different types of technology are

being used in the Web application

Average technological diversity! 3–4 different types of technology

are being used in the Web application

High technological diversity! 5–7 different types of technology are

being used in the Web application

Very high technological diversity! 8+ different types of technology

are being used in the Web application

Project planning

overhead

This factor represents the degree of participation needed by the project

manager in order to ensure the project is managed adequately and is

ideally completed within time and on budget. This includes, but is not

limited to, status reports, communication, implementation plan (more

for large projects) which includes the tasks to be done and their

estimated completion dates, risk analysis, data analysis, planning

(project execution plan)

The project planning overhead is measured in our example model using

five different categories (very high, high, average, low and very low),

which are detailed as follows:

Very low project overhead! 5 % of estimated effort

Low project overhead! 15 % of estimated effort

Average project overhead! 20 % of estimated effort

High project overhead! 30 % of estimated effort

Very high project overhead! 40 % of estimated effort

Total development effort This factor represents the total estimated effort to develop a Web

application. The three factors that have a direct effect upon total effort

are: combined cost factors’ effort, project planning overhead and

combined size’s effort. The total development effort is also measured in

our example model using five different categories (very high, high,

average, low and very low), which are detailed as follows:

Very low effort! 1–126 person-hours

Low effort! 126+ to 320 person-hours

Average effort! 320+ to 670 person-hours

High effort! 670+ to 1,400 person-hours

Very high effort! 1,400+ person-hours
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Fig. 6.9 A simple example illustrating cause and effect relationships
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Fig. 6.11 Final structure for the example model
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final structure of our example model, which contains two optimisation factors—

combined size’s effort and combined cost factors’ effort.

Note that whenever new factors are included in the model, we also need to define

how they are to be measured, and document this. Table 6.4 describes the two

optimization factors in terms of their meaning and also their associated categories.

Once all the categories have been defined to each of the factors, it is time to use

any available Bayesian network tool that a company has access to, so an initial

model can be created containing factors, their relationships and their corresponding

categories. Figure 6.12 shows the same model shown in Fig. 6.11, now created with

an existing Bayesian network tool.

We are now ready to move on to the next step—uncertainty quantification.

Detailed Structure Combination

This step relates to the merging of different Bayesian network structures in readi-

ness for the next step. It only applies to companies or organisations that have

different groups building their separate Bayesian network model structures and

Table 6.4 Description of the two optimisation factors used in the example model and their

corresponding categories

Factor Description

Combined size’s

effort

This factor represents the estimated amount of effort (person-hours)

needed to create Web pages, scripts/css files and multimedia files. Note

that the effort will change depending on which categories are selected for

each factor. Such selection will take place as part of a decision making

scenario, and examples will be given later on in this chapter. The

combined size’s effort is measured using five different categories (very

high, high, average, low and very low). Within the context of the example

model, these categories are detailed as follows:

Very low effort! 1–40 person-hours

Low effort! 40+ to 80 person-hours

Average effort! 80+ to 160 person-hours

High effort! 160+ to 320 person-hours

Very high effort! 320+ person-hours

Combined cost

factors’ effort

This factor represents the estimated amount of effort (person-hours) when

taking into account technological diversity and average team’s expertise.

Note that the effort will change depending on which categories are

selected for each factor. As previously stated, such selection will take

place as part of a decision making scenario, and examples will be given

later on in this chapter. The combined cost factors’ effort is measured

using five different categories (very high, high, average, low and very

low). Within the context of the example model, these categories are

detailed as follows:

Very low effort! 1–80 person-hours

Low effort! 80+ to 200 person-hours

Average effort! 200+ to 400 person-hours

High effort! 400+ to 800 person-hours

Very high effort! 800+ person-hours
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who are willing to combine these structures into a single, company/organisation-

wide model structure, in order to obtain a common model.

Each of the model structures will contain factors, the categories used to measure

each of them and how they relate to one another. These factors and categories

should also have been documented by the teams working on each of the separate

model structures. Therefore, the very first task to be carried out is to do the semantic

mapping across all factors and categories. This is important in order to identify

which factors are common across different model structures.

We suggest the use of a table where rows represent factors and columns

represent model structures. Model structures can be labelled as MS1. . . MSn,
where n corresponds to the total number of model structures being combined.

Whenever the same factor is represented in different model structures by different

names it is important to agree upon which name to use. This is the name to be

included in a row. We would also suggest that a document is kept recording all the

decisions that are made while combining the different model structures. For exam-

ple, all the alternative names that were used for a factor, how each of those was

measured in terms of categories and which one was selected to be used in the

combined model structure (and corresponding categories).

Once all factors are entered as rows and mapped to all the model structures they

originally came from, it is time to work through each of the factors and decide how

the factor will be measured, based on the choice of categories that were put forward

by the different groups. We do not have a suggestion as to the ideal number of

categories to use in order to measure a factor. This will really depend on what is

considered most important for the company or organisation. Some want more

precision, so they use at least seven categories to measure a factor; others are

happy with measuring factors using three to five categories only. Once all

Fig. 6.12 Final structure for the example model
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categories are defined for each of the factors listed in the table, it is time to decide

upon the relationships.

We suggest first targeting the relationships and corresponding factors directly

affecting the factor that is to be estimated. Within the context of this book this factor

is total effort. Using as an example the model structure shown in Fig. 6.12, the three

factors directly affecting effort are those originating from factors “combined size’s

effort”, “combined cost factors’ effort”, and “project planning overhead” and

directly targeting the factor “total development effort”. This is to be done with

one model structure at a time, where one should only change to another model

structure once the previous one has been dealt with completely. So this means that

this task needs to be carried out sequentially, working through one model structure

at a time.

Once all the factors and relationships directly pointing to effort have been

defined, it is time to move to those factors that directly affect the factors that

directly affect effort. In terms of the model structure shown in Fig. 6.12, they

would correspond to factors “total number of static Web pages”, “total number of

scripts”, and “total number of multimedia files”. The idea is to move each time

further and further away from the target factor being estimated.

During this process there may be situations where two different relationships

contradict themselves (e.g., using the model structure in Fig. 6.12 as an example, in

one model structure (MS1) factor “total number of multimedia files” has only a

relationship to factor “total number of static Web pages”, and in another model

structure (MS10) factor “total number of multimedia files” has only a relationship

to factor “combined size’s effort”). Whenever this happens, the team working on

the combination of model structures will have to decide which relationship to keep,

or whether all the relationships should be represented in the combined model

structure. It is also very important to remove any possible cycles in the combined

model (e.g., factor A has a relationship to factor B, and factor B has a relationship

back to factor A) as Bayesian network models cannot present cycles due to the

causal nature of their relationships.

Detailed Uncertainty Quantification

This step relates to the quantification of the uncertainty inherent to the complex

domain being modelled, which is done using probabilistic reasoning. All

quantifications are provided using the conditional probability tables that are

associated with every factor part of a Bayesian network model; however, the

mechanism used to reason about the probabilities for the “parent” factors (factors

that are not directly affected by any others) differs slightly from the mechanism

applied to the other factors (those that are affected directly by at least another

factor). Let’s see how this works by explaining how to quantify the probabilities for

two different factors part of our example model—total number of static Web pages

and combined cost factors’ effort.
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Total number of static Web pages—this factor is measured using five categories

(very large, large, medium, small and very small), so when eliciting the

probabilities from the participating domain experts, we need to ask them questions

such as the following:

• If you consider all the past projects you managed as a pie, what slice of this pie

(what percentage of projects) presented a very large number of static Web pages

(31+ Web pages)? Why?

• If you consider all the past projects you managed as a pie, what slice of this pie

(what percentage of projects) presented a large number of static Web pages (26–

30 Web pages)? Why?

• If you consider all the past projects you managed as a pie, what slice of this pie

(what percentage of projects) presented a medium number of static Web pages

(16–25 Web pages)? Why?

• If you consider all the past projects you managed as a pie, what slice of this pie

(what percentage of projects) presented a small number of static Web pages (6–

15 Web pages)? Why?

• If you consider all the past projects you managed as a pie, what slice of this pie

(what percentage of projects) presented a very small number of static Web pages

(1–5 Web pages)? Why?

It is clear that these questions are all asking for the frequency of occurrence of

projects with a particular number of static Web pages. This will always be the case

when quantifying uncertainty relating to parent factors. Let’s assume that the

answers to these questions are respectively 10, 30, 40, 10 and 10. The conditional

probability table relating to the factor total number of static Web pages will

therefore look like the one shown in Fig. 6.13.

Note that after every question asked we also added a “Why?” question. This is

done in order to motivate domain experts to explain their reasoning. Our experience

shows that whenever further explanations (more detailed explanations) need to be

provided, domain experts may change their answers as a result of having to explain

in detail the reasoning behind the answer that was provided.

Now, let’s look at the other type of factor using as example the factor “combined

cost factors’ effort”.

Combined cost factors’ effort—this factor is measured using five categories

(very large, large, medium, small and very small), and is directly affected by

another two factors—average team’s expertise and technological diversity. This

means that in order to reason about any quantification relating to “combined cost

factors’ effort”, we need to also take into account the other two factors that are

affecting it. Therefore, the conditional probability table associated with “combined

cost factors’ effort” will look similar to the one shown in Fig. 6.14. Note that the

conditional probability table shown in Fig. 6.14 already presents example

probabilities. In a real situation this table would be empty, and the domain experts

would fill it out with the uncertainty quantifications.
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This time, when eliciting the probabilities from the participating domain experts,

we would need to ask them questions such as the following:

• Please only consider past projects for which the “technological diversity” was

very high and the “average team’s expertise” was very high. Assume this to be

your only set of projects to think about. If this set of projects was a pie, what

percentage of this pie would correspond to a very high “combined cost factors’

effort”? Why?

• Please only consider past projects for which the “technological diversity” was

very high and the “average team’s expertise” was very high. Assume this to be

your only set of projects to think about. If this set of projects was a pie, what

percentage of this pie would correspond to a high “combined cost factors’

effort”? Why?

• Please only consider past projects for which the “technological diversity” was

very high and the “average team’s expertise” was very high. Assume this to be

Fig. 6.13 Conditional probability table for factor “total number of static Web pages”

Fig. 6.14 Conditional probability table for factor “combined cost factors’ effort”
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your only set of projects to think about. If this set of projects was a pie, what

percentage of this pie would correspond to a average “combined cost factors’

effort”? Why?

• Please only consider past projects for which the “technological diversity” was

very high and the “average team’s expertise” was very high. Assume this to be

your only set of projects to think about. If this set of projects was a pie, what

percentage of this pie would correspond to a low “combined cost factors’

effort”? Why?

• Please only consider past projects for which the “technological diversity” was

very high and the “average team’s expertise” was very high. Assume this to be

your only set of projects to think about. If this set of projects was a pie, what

percentage of this pie would correspond to a very low “combined cost factors’

effort”? Why?

Each of these questions has to take the domain expert(s) to a decision scenario
corresponding to the specific combination of categories from the two factors that

are affecting “combined cost factors’ effort”.

It is also very important here to ask domain experts to explain why they believe a
given combination of categories (from the factors that are affecting “combined cost

factors’ effort”) will have a particular probability of causing an effect over “com-

bined cost factors’ effort”. As they explain, they are working on their tacit level, and

by listening to their own explanations they may revisit the probabilities that were

initially suggested. We have witnessed this numerous times during our experience

building several Bayesian network models in collaboration with companies. We

also tend to use a pie as a metaphor for reasoning as it has been previously

suggested in the literature as a good technique to employ [9].

Important

What happens when there are certain combinations of categories that do not

make any sense in practice? For example, very low “technological diversity”

and very low “average team’s expertise” representing a decision scenario that

never happens for a given company. Our proposed solution would be to add

an extra category to factor “combined cost factors’ effort”, where this cate-

gory would only be used to deal with “impossible” scenarios. Such category

could be called “Never”, “Nil”, or whichever name the domain expert(s) feel

best represents an impossible scenario.

Once all the quantifications for all the conditional probability tables have been

elicited, the model is ready to be validated. Figure 6.15 shows our example model

with factors also displaying the bars corresponding to all the probability

quantifications that were done.
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Detailed Model Validation

This step represents the validation of the Bayesian model that was built via the two

steps previously detailed. It generally comprises two activities—model walk-

through and predictive accuracy—where both aim to check how well calibrated

the Bayesian model is.

Model walk-through is a calibration that is done subjectively, where domain

experts use several hypothetical scenarios to check, for each of these scenarios,

whether the effort category that the model shows with the highest probability

matches the category they would have selected if estimating effort subjectively.

We see this activity as a way to enable domain experts to get a feel for the model,

and therefore we do not recommend that companies rely solely on this activity in

order to decide whether the model is ready for use.

Predictive accuracy entails the use of past data from completed projects, for

which total development effort is known, in order to check the model’s calibration.

We recommend that most of these completed projects—called the validation set—

be representative of the typical projects developed by the company. Table 6.5

provides an example, which will be used herein, showing past data for three

projects. This data will be used next to validate our example model. Note that we

are showing the hypothetical data for each of the projects based on the same

categories used in the example model just to keep this discussion focused. In reality,

there could already be some existing data from past projects stored as numbers. In

that case each number would need to be “translated” into one of the categories used

Fig. 6.15 Example model ready for validation
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by the same corresponding factor in the Bayesian model, prior to carrying out the

predictive accuracy activity.

For each project, evidence needs to be entered in the example model. Figure 6.16

shows the model after the known data from project 1 was entered. Note that

“entering data” represents clicking on the category that corresponds to the project

data available. By doing so, we are also acknowledging that within the context of

that scenario we are “certain” about the category that was selected. This is

represented in the model by a change to 100 (100 %) associated with the selected

category, and a change to 0 for all the other categories that are part of that same

factor.

Figure 6.16 shows that “very high” is the category for factor “total development

effort” that presents the highest probability (75.6 %). Does this result match the

actual data for this same project, which is displayed in Table 6.5?

Table 6.5 shows that for project 1, the total development effort was “very high”,

which matches the category suggested by the example model. This means the

model is in line with the data from that past project, which translates as being

calibrated, given that particular decision scenario.

Let’s now enter evidence from project 2 in the example model (Fig. 6.17).

Figure 6.17 shows that “average” is the category for factor “total development

effort” that presents the highest probability (66 %). Does this result match the actual

data for this same project, which is displayed in Table 6.5?

Table 6.5 shows that for project 2, the total development effort was “average”,

which matches the category suggested by the example model. Again, this means

that the model is in line with the data from that past project, which also translates as

being calibrated given that particular decision scenario.

Fig. 6.16 Evidence from project 1 entered in the example model
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Finally, let’s enter evidence for the last project detailed in Table 6.5—project

3 (Fig. 6.18).

Figure 6.18 shows that the category “high” for factor “total development effort”

presents the highest probability (49.3 %). However, the model also shows that there

is still quite a large uncertainty in relation to this choice, given that the category

Fig. 6.18 Evidence from project 3 entered in the example model

Fig. 6.17 Evidence from project 2 entered in the example model
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“average” presents a very similar probability (48.2 %). This suggests that there is no

clear “winning” category. In addition, how does this result compare with the actual

data for this same project, which is displayed in Table 6.5?

Table 6.5 shows that for project 3, the total development effort was “average”,

which differs from the category suggested by the example model. What this means

is that the model is not in line with the data from project 3; thus it needs to be

calibrated for that particular decision scenario, and any others that the domain

experts feel that should also be revisited.

How to Calibrate the Model?

The conditional probability table for factor “total development effort” contains

125 different decision scenarios, so how can we know exactly which ones to look in

order to calibrate the model according to the specific scenario shown in Fig. 6.18?

The red oval shapes in Fig. 6.19 highlight the categories and factors we need to

focus on in order to carry out the model calibration—the three factors that are

affecting “total development effort” directly, and their corresponding categories

presenting the highest (and optionally, also the second-highest) probabilities.

These will correspond to the decision scenarios in the conditional probability

table for factor “total development effort” shown in Fig. 6.20, highlighted with

red rectangles.

Figure 6.20 shows that the first two decision scenarios highlighted in red present

the highest probabilities for the effort category “high” (90 and 75); the last two

decision scenarios highlighted in red present the highest probabilities to the effort

category “average”, so already matching the actual effort data for project 3. This

Fig. 6.19 How to identify which decision scenarios to change in the conditional probability table
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means that only the first two decision scenarios need to be calibrated, leading to the

conditional probability table shown in Fig. 6.21.

Now, when we run the same decision scenario again, the category that shows the

highest probability for “total development effort” matches the actual effort for

project 3 (Fig. 6.22).

Fig. 6.20 Decision scenarios in the conditional probability table for factor “total development

effort”

Fig. 6.21 Calibrated decision scenarios in the conditional probability table for factor “total

development effort”
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Whenever a calibration occurs, it is recommended that the model be rechecked

again for all the projects that were already used for validation, just to ensure that the

calibration did not have a negative knock-on effect.

When to stop validating a model? The decision when to stop validating a model

is really dependent on the amount of past project data available, and also on how

confident domain experts are that the choice and range of projects used to validate a

model are enough. We have dealt with companies where domain experts were

happy with using data from only 8 past projects, to companies where domain

experts used data from 22 past projects.

In our opinion the more data is used for validation the better; however, this is

also clearly dependent on how much data is available. If a model is large and

complex (e.g., more than 30 factors) we believe it is very important to use a

reasonable number of past data to start with (data from at least 20 or so projects),

and to carry on validating the model as new projects are completed. This is more

pressing for larger models; however, this practice can equally apply to smaller

projects too.

Models such as the example model are not meant to be stagnant once validated.

Current practices, types of projects and applications can change over time and

therefore it is important to revisit the model so to keep it up to date with those

changes.

Conclusions

This chapter has detailed the steps that are part of the expert-based knowledge

engineering of Bayesian networks process, and has also related these steps with

the theory of organisational knowledge creation.

Fig. 6.22 Example model after calibration
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The three main steps within the expert-based knowledge engineering of

Bayesian networks process (EKEBN) are the structure building, uncertainty

quantification, and model validation. This process iterates over these steps

until a complete Bayesian network model is built and validated. Structure

building represents the identification of factors, relationships and how each

factor is going to be measured, i.e., its categories. Uncertainty quantification

relates to populating all the conditional probability tables associated with each of

the factors previously identified. Finally, model validation represents the valida-

tion of the model using scenarios and also past data.
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Effort and Risk Prediction for Healthcare
Software Projects Delivered on the Web 7

Introduction

This chapter revisits the expert-based knowledge engineering of Bayesian networks

(EKEBN) process that was detailed in Chap. 6 (Fig. 7.1), describing the tasks

carried out for each of the three main steps that form part of that process. Before

starting the elicitation of the healthcare effort and risk-prediction BN model, the

domain experts (DEs) participating were presented with an overview of Bayesian

network models, and examples of “what-if” scenarios using a made-up BN. This,

we believe, facilitated the entire process as the use of an example, and the brief

explanation of each of the steps in the EKEBN process, provided a concrete

understanding of what to expect. We also made it clear that the knowledge engineer

was a facilitator of the process, and that the healthcare company’s commitment was

paramount for the success of the process.

The entire process took 324 person-hours to complete, with seven people

participating in twelve 3-h slots, and two people participating in other twelve 3-h slots.

The DEs who took part in this case study were project managers of a well-

established healthcare company in Auckland (New Zealand). This company

represents one of the several branches worldwide that are part of a larger healthcare

organization, which headquarters in Japan. The company had ~70 employees. The

project managers had each worked in healthcare software development for more

than 10 years. In addition, this company developed a wide range of healthcare

software applications, using different types of technology.

Detailed Structure Building and Uncertainty Quantification

In order to identify the fundamental factors that the DEs took into account when

preparing a project quote, we used the set of variables from the Tukutuku dataset [1]

as a starting point (Table 7.1). We first sketched them out on a whiteboard, each one

inside an oval shape, and then explained what each one meant within the context of

E. Mendes, Practitioner’s Knowledge Representation, DOI 10.1007/978-3-642-54157-5_7,
# Springer-Verlag Berlin Heidelberg 2014
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the Tukutuku project. Our previous experience eliciting BNs in other domains (e.g.,

ecology) suggested that it was best to start with a few factors (even if they were not

to be reused by the DE), rather than to use a “blank canvas” as a starting point.

Within the context of the Tukutuku project, a new high-effort feature/function

requires at least 15 h to be developed by one experienced developer, and a high-

effort adapted feature/function requires at least 4 h to be adapted by one experi-

enced developer. These values are based on collected data.

Once the Tukutuku variables had been sketched out and explained, the next step

was to remove all variables that were not relevant for the DEs, followed by adding to

the whiteboard any additional variables (factors) suggested by them. We also

documented descriptions for each of the factors suggested. Next, we identified the

states that each factor would take. All states were discrete. Whenever a factor

represented a measure of effort (e.g., total effort), we also documented the effort

range corresponding to each state, to avoid any future ambiguity. For example, “very

low” total effort corresponded to 4+ to 10 person-hours, etc. Once all states were

identified and documented, it was time to elicit the cause and effect relationships. As

a starting point to this task we used a simple medical example from [2] (Fig. 7.2).

This example clearly introduces one of the most important points to consider

when identifying cause and effect relationships—the timeline of events. If smoking

is to be a cause of lung cancer, it is important that the cause precedes the effect. This

may sound obvious with regard to the example used; however, it is our view that the

Table 7.1 Tukutuku variables

Variable

name Description

Project data TypeProj Type of project (new or enhancement)

nLang Number of different development languages used

DocProc If project followed defined and documented process

ProImpr If project team involved in a process improvement programme

Metrics If project team part of a software metrics programme

DevTeam Size of a project’s development team

TeamExp Average team experience with the development language(s)

employed

Web
application

TotWP Total number of Web pages (new and reused)

NewWP Total number of new Web pages

TotImg Total number of images (new and reused)

NewImg Total number of new images created

Num_Fots Number of features reused without any adaptation

HFotsA Number of reused high-effort features/functions adapted

Hnew Number of new high-effort features/functions

TotHigh Total number of high-effort features/functions

Num_FotsA Number of reused low-effort features adapted

New Number of new low-effort features/functions

TotNHigh Total number of low-effort features/functions
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use of this simple example significantly helped the DEs understand the notion of

cause and effect, and how this related to software effort and risk estimation and the

BN being elicited.

Once the cause and effect relationships were identified, the healthcare software

effort and risk BN’s causal structure was as follows (Fig. 7.3). Note that Fig. 7.3 is

not a BN based directly on Table 7.1. During this process several factors were each

reached by a large number of relationships; therefore the model’s initially proposed

structure needed to be simplified in order to reduce the number of probabilities to be

elicited. New factors were suggested by the KE (factor names ending in “(O)”, see

Fig. 7.3), and validated by the DEs. This is the final structure presented in Fig. 7.3.

It contains 38 factors and 37 corresponding relationships that were identified by the

DEs as fundamental for software effort and risk prediction.

The description of each of the factors used in the healthcare software effort and

risk estimation BN model is given in Table 7.2.

Smoking

Lung cancer

Cough X-Ray

Fig. 7.2 A small BN causal structure

Fig. 7.3 Expert-based healthcare software causal structure
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Table 7.2 Description of all the factors elicited from the DEs

Factor Categories Description, observation

Actual presales effort Low (0+ to 10 person-

hours)

Medium (10+ to

20 person-hours)

High (20+ person-hours)

Contract signing (optional),

requirements elicitation (prepared

before preparation of quote) + quote

preparation, user requirements

specification (optional), programming

specification (aka technical spec,

functional spec)

Number of technologies Small (1 technology)

Medium (2–3

technologies)

Large (4 and above)

Examples of internal technologies:

Cobol, Web (ASP, .NET, C#),

Windows, Lotus Notes, Oracle, SQL

Application testing effort None

Low (0+ to 10 person-

hours)

Medium (10+ to

30 person-hours)

High (30+ to 150 person-

hours)

Very high (150+ person-

hours)

Testing throughout the project, but only

inside the company

Testing environment setup Low (0+ to 1 person-

hours)

Medium (1+ to 4 person-

hours)

High (4+ person-hours)

Number of person-hours to set up the

testing environment

High risk programs effort None

Low (0+ to 5 person-

hours)

Medium (5+ to 10 person-

hours)

High (10+ to 20 person-

hours)

Very high (20+ person-

hours)

Programs used by only a few customers,

and difficult to test; programs that are

historically difficult to manage or

change (e.g., nondocumented features,

COBOL legacy)

Estimated third-party effort None

Low (0+ to 10 person-

hours)

Medium (10+ to

30 person-hours)

High (30+ to 60 person-

hours)

Very high (60+ person-

hours)

Estimated effort to third party-related

issues (number and risk factor)

Effort adapting items None

Very low (0+ to

10 person-hours)

Low (10+ to 20 person-

hours)

Medium (20+ to

Number of person-hours adapting items

(continued)
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Table 7.2 (continued)

Factor Categories Description, observation

40 person-hours)

High (40+ to 80 person-

hours)

Very high (80+ person-

hours)

Effort creating new items None

Low (0+ to 40 person-

hours)

Medium (40+ to

80 person-hours)

High (80+ to 150 person-

hours)

Very high (150+ to 1,000

person-hours)

Extremely high (1,000+

person-hours)

Number of person-hours creating new

items

Effort to create and

package product

None

Low (0+ to 1 person-hour)

Medium (1+ to 4 person-

hours)

High (4+ person-hours)

Effort to create and package a product

(includes paperwork, burning a CD,

printing and binding the manuals,

issuing the product (send the CD to the

customer, or uploading into a FTP site));

also includes maintaining internal

source code repository, and patches

Writing of user

documentation effort

None

Low (0+ to 10 person-

hours)

Medium (10+ to

50 person-hours)

High (50+ to 200 person-

hours)

Very high (200+ person-

hours)

Estimate of the number of hours writing

the user documentation (aka product

documentation, user manual)

Estimated testing effort Low (0+ to 10 person-

hours)

Medium (10+ to

30 person-hours)

High (30+ to 150 person-

hours)

Very high (150+ to

450 person-hours)

Extremely high (450+

person-hours)

Total estimated testing effort from

environment set up and application

testing

Estimated development

effort

None

Very Low (0+ to

20 person-hours)

Low (20+ to 80 person-

hours)

Medium (80+ to

150 person-hours)

Total estimated development effort from

the items

(continued)
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Table 7.2 (continued)

Factor Categories Description, observation

High (150+ to 450 person-

hours)

Very high (450+ to 1,000

person-hours)

Extremely high (1,000+

person-hours)

Total product development

effort

None

Very low (0+ to

20 person-hours)

Low (20+ to 80 person-

hours)

Medium (80+ to

150 person-hours)

High (150+ to 450 person-

hours)

Very high (450+ to 2,500

person-hours)

Exceptionally high (2,500+

person-hours)

Customer environment

effort

Low (0+ to 1 person-hour)

Medium (1+ to 5 person-

hours)

High (5+ person-hours)

Time zone, system access; these are

tangible points

Customer risk factors effort

(generally represented as

an effort %)

None

Low (0+ to 5 person-

hours)

Medium (5+ to 10 person-

hours)

High (10+ person-hours)

Personality, capabilities, expectations,

involvement, track record, language

barrier, language difficulties, size

customer representation/team

Customer support effort None

Low (0+ to 8 person-

hours)

Medium (8+ to 40 person-

hours)

High (40+ person-hours)

Pre- and post-go live support

Customer training effort None

Low (0+ to 8 person-

hours)

Medium (8+ to 40 person-

hours)

High (40+ person-hours)

Amount of training (includes

preparation)

Estimated customer effort None

Low (0+ to 20 person-

hours)

Medium (20+ to

85 person-hours)

High (85+ person-hours)

Estimated effort for customer-related

items (environment, support, training)

(continued)
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Table 7.2 (continued)

Factor Categories Description, observation

Involved in software

process improvement (SPI)

Yes

No

Part of the project management

Number of adapted high

effort (20+) items off-the-

shelf

None

Small (1 item)

Medium (2 items)

High (3+ items)

Number of hours that represent high and

low effort need to be defined (excludes

testing). One adaptation can incur

several changes. High effort here means

the use of 20+ person-hours to adapt a

single item

Number of adapted

medium effort (5+ to 20)

items off-the-shelf

None

Small (1 item)

Medium (2–4 items)

High (5+ items)

Number of hours that represent high and

low effort need to be defined (excludes

testing). One adaptation can incur

several changes. Medium effort here

means the use of 5+ to 20 person-hours

to adapt a single item

Number of adapted low

effort (1!5) items off-the-

shelf

None

Small (1–3 items)

Medium (4–6 items)

High (7+ items)

(Excludes testing) One adaptation can

incur several changes. Low effort here

means the use of up to 5 person-hours to

adapt a single item

Number of new high effort

(80+) items

None

Small (1 item)

Medium (2–4 items)

High (5+ items)

(Excludes testing) High effort here

means the use of 80+ person-hours to

develop a single item

Number of new low effort

items

None

Small (1 item)

Medium (2–4 items)

High (5+ items)

(Excludes testing) Low effort here

means the use of up to 20 person-hours

to develop a single item

Number of new medium

effort items

None

Small (1 item)

Medium (2–4 items)

High (5+ items)

(Excludes testing) Medium effort here

means the use of 20+ to 80 person-hours

to develop a single item

Overall effort configuration

items

None

Very low (0+ to 1 person-

hours)

Low (1+ to 5 person-

hours)

Medium (5+ to 15 person-

hours)

High (15+ to 40 person-

hours)

Very high (40+ person-

hours)

Effort to configure an installed system

for use as per customer requirements

Overall effort installation

items

None

Low (0+ to 5 person-

hours)

Medium (5+ to 15 person-

hours)

High (15+ person-hours)

Items are interpreted as an area, program

or module. Items have hour figures next

to them. (Either it’s only development,

or pure training, CD sent to client for

them to install)

(continued)
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Table 7.2 (continued)

Factor Categories Description, observation

Total implementation

effort

None

Very low (0+ to 2 person-

hours)

Low (2+ to 5 person-

hours)

Medium (5+ to 20 person-

hours)

High (20+ to 80 person-

hours)

Very high (80+ person-

hours)

Project management effort None

Low (15 % of estimated

effort)

Medium (20–30 % of

estimated effort)

High (30+ % of estimated

effort)

Project management overhead,

including status reports;

communication; implementation plan

(more for large projects) which includes

the tasks to be done and their estimated

completion dates; risk analysis; data

analysis; planning (project execution

plan)

Size of project team Small (2–5 people)

Medium (6–8 people)

Large (9+ people)

Only the team internally to the company

Estimated analysis and

design effort (post-sales)

None

Low (0+ to 5 person-

hours)

Medium (5+ to 20 person-

hours)

High (20+ to 70 person-

hours)

Very high (70+ person-

hours)

Requirements elicitation, user

requirements specification,

programming specification (aka

technical spec, functional spec)

Specification effort None

Low (0+ to 3 person-

hours)

Medium (3+ to 10 person-

hours)

High (10+ person-hours)

Set-up plan, cut-over plan (steps

required to move changes into

production), customer test specification

Total analysis and

specification effort

None

Low (0+ to 8 person-

hours)

Medium (8+ to 30 person-

hours)

High (30+ to 80 person-

hours)

Very high (80+ person-

hours)

(continued)
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Table 7.2 (continued)

Factor Categories Description, observation

Team competency impact Very low (0 % of the team

have low competency)

Low (0 %+ to 25 % of the

team have low

competency)

Medium (25 %+ to 40 %

of the team have low

competency)

High (40 %+ to 70 % of

the team have low

competency)

Very high (70 %+ to

100 % of the team have

low competency)

Definition to be considered when rating:

– years of experience with the domain

(e.g., hematology),

– years of experience with programming

language, technical skill

– knowledge of the product, (Y/N)

– training (not charged to the customer),

– technology (development technology

and target technology, e.g., virtual

environment),

– non-SNZ team members (Y/N)

– English as a second language (Y/N)

– software development lifecycle role

– proven past performance

– customer/market knowledge (e.g.,

when writing specifications)

– personality (e.g., attention to detail,

easily distracted, note: this is often

only known after the project)

– experience in development and

implementation of beta products

Third-party risk effort None

Low (0+ to 5 person-

hours)

Medium (5+ to 10 person-

hours)

High (10+ person-hours)

Not company’s customers (for example,

emailing third party, phone calls,

finalising specs, reading their

documentation, communication plan,

messages)

Number of third parties None

Small (1 third party)

Medium (2–3 third

parties)

High (4 or more third

parties)

Number of external systems (sw, hw) or

organisations (people, third parties

company has no control over)

Estimated effort None

Very low (0+ to

15 person-hours)

Low (15+ to 40 person-

hours)

Medium (40+ to

150 person-hours)

High (150+ to 1,000

person-hours)

Very high (1,000+ to

3,000 person-hours)

Exceptionally high

(3,000+ person-hours)

Estimated effort to develop a project,

excluding project management

(continued)
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At this point the DEs seemed happy with the BN’s causal structure and the work

on eliciting the probabilities was initiated. All probabilities were created from

scratch, and the probabilities elicitation took 72 h (one DE and one KE). The

complete BN, including its probabilities, is shown in Fig. 7.4. Figure 7.4 shows

the BN using belief bars rather than labelled factors, so readers can see the

probabilities that were elicited.

Detailed Model Validation

Both modelwalk-through and predictive accuracywere used to validate the healthcare

software effort and risk prediction BN model, where the former was the first type of

validation to be employed. The DE used ten different scenarios to check whether the

factor “total estimated effort” would provide the highest probability to the effort state

that corresponded to the DE’s own suggestions. All scenarios were run successfully;

however, it was also necessary to use data frompast projects, for which total effort was

known, in order to check the model’s calibration. A validation set containing data on

22 projects was used. The DE selected a range of projects presenting different sizes

and levels of complexity, where all 22 projects were representative of the types and

sizes of projects developed by the healthcare company.

For each project, evidence was entered in the BN model (an example is given in

Fig. 7.5, where evidence is characterised by dark grey factors with probabilities equal

to 100% (1. . .)), and the effort range corresponding to the highest probability provided
for “total estimated effort” was compared to that project’s actual effort. For example,

in Fig. 7.6, this would correspond to “total estimated effort”¼ high. The company had

also defined the range of effort values associated with each of the categories used to

measure “total estimated effort”. In the case of the company described herein, high

effort corresponded to 150–1,500 person-hours. Whenever actual effort did not fall

within the effort range associated with the category with the highest probability, there

Table 7.2 (continued)

Factor Categories Description, observation

Total estimated effort None

Very low (0+ to

15 person-hours)

Low (15+ to 40 person-

hours)

Medium (40+ to

150 person-hours)

High (150+ to 1,500

person-hours)

Very high (1,500+ to

4,000 person-hours)

Exceptionally high

(4,000+ person-hours)

Total estimated effort to develop a

project, including project management
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was a mismatch; this meant that some probabilities needed to be adjusted. Within the

context of this work, hardly any calibration was needed.

Whenever probabilities were adjusted, we re-entered the evidence for each of the

projects in the validation set that had already been used in the validation step to ensure

that the calibration already carried out had not affected. This was done to ensure that

each calibration would always be an improvement upon the previous one. Within the

scope of the model presented herein, of the 22 projects used for validation, only one

required themodel to be recalibrated. Thismeans that for all the 21 projects remaining,

the BN model presented the highest probability to the effort range that contained the

actual effort for the project being used for validation. Once all 22 projects were used to

validate the model the DE assumed that the validation step was complete.

In terms of the use of this BN model, it can also be employed for diagnostic

reasoning, and to run numerous “what-if” scenarios. Figure 7.6 shows an example

of a model being used for diagnostic reasoning, where the evidence was entered for

total estimated effort, and used to assess the highest probabilities for each of the

other factors.

The BN model was completed in February 2010, and has been successfully used

to estimate effort and risks for new healthcare software projects developed by the

company. In addition, the DE who participated in the causal structure and

probabilities’ elicitation completely changed her approach to estimating effort as

follows: she presented the BN model to all of her development team, and asked that

from that point onwards every estimate for any task would need to be based on the

factors that had been elicited. This means that the entire team started to use the

factors that were elicited, as well as the BN model, as basis for their effort and risk-

estimation sessions. In addition, the DE presented the model at a meeting with other

branches, so to detail how the Auckland branch was estimating effort and risk for

their healthcare projects. The other branches were so impressed, in particular the

one from the US, that they increased the number of healthcare software projects

outsourced to the NZ branch, as they recognized the benefits of using a model that

represented factors and uncertainties. Overall, such change in approach provided

extremely beneficial to the company.

We believe that the successful development of this healthcare software effort

and risk estimation BN model was greatly influenced by the commitment of the

company, and also by the DEs’ exceptional experience estimating effort.

Conclusions

This chapter has presented a case study where a Bayesian model for effort and

risk estimation of healthcare projects was built using solely knowledge of six

domain experts from a well-established healthcare company in Auckland, New

Zealand. This model was developed using the expert-based knowledge engi-

neering for Bayesian networks process (Fig. 7.4). Each session with the DEs

lasted for no longer than 3 h. The final BN model was calibrated using data on

22 past projects. These projects represented typical projects developed by the

company, and believed by the experts to provide enough data for model

calibration.
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Since the model’s adoption, it has been successfully used to provide effort

quotes for the new projects managed by the company.

The entire process used to build and validate the BN model took 324 person-

hours, used as follows: 252 person-hours for the first 12 weeks (6 DEs + 1 KE);

72 h for the last 12 weeks (1 DE+ 1 KE).

The elicitation process enables experts to think deeply about their effort and

risk estimation process and the factors taken into account during that process,

which in itself is already advantageous to a company. This has been pointed out

to us not only by the DEs whose model is presented herein, but also by other

companies with which we worked on model elicitations.
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Effort Prediction for Multimedia Projects
Delivered on the Web 8

Introduction

This chapter revisits the expert-based knowledge engineering of Bayesian networks

(EKEBN) process that was detailed in Chap. 6 (Fig. 8.1), describing the tasks

carried out for each of the three main steps that form part of that process. Before

starting the elicitation of the Multimedia-based BN model, the domain experts

(DEs) participating were presented with an overview of Bayesian network models,

and examples of “what-if” scenarios using a made-up BN. This, we believe,

facilitated the entire process as the use of an example, and the brief explanation

of each of the steps in the EKEBN process, provided a concrete understanding of

what to expect. We also made it clear that the knowledge engineer was a facilitator

of the process, and that the company’s commitment was paramount for the success

of the process.

The entire process took 66 person-hours to be completed, with two people

participating in eleven 3-h slots.

The domain expert who took part in this case study was the project manager of a

well-established Web company in Auckland (New Zealand). At the time the model

was built, the company had ~20 employees. The project manager had worked in

multimedia and Web development for more than 15 years. In addition, this com-

pany also developed a wide range of kiosk software applications, using different

types of technology.

Detailed Structure Building and Uncertainty Quantification

In order to identify the fundamental factors that the DEs took into account when

preparing a project quote, we used the set of variables from the Tukutuku dataset [1]

as a starting point (Table 8.1). We first sketched them out on a board, each one

inside an oval shape, and then explained what each one meant within the context of

the Tukutuku project. Our previous experience eliciting BNs in other domains (e.g.,

E. Mendes, Practitioner’s Knowledge Representation, DOI 10.1007/978-3-642-54157-5_8,
# Springer-Verlag Berlin Heidelberg 2014
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Fig. 8.1 Expert-based knowledge engineering of Bayesian networks process
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ecology) suggested that it was best to start with a few factors (even if they were not

to be reused by the DE), rather than to use a “blank canvas” as a starting point.

Within the context of the Tukutuku project, a new high-effort feature/function

requires at least 15 h to be developed by one experienced developer, and a high-

effort adapted feature/function requires at least 4 h to be adapted by one experi-

enced developer. These values are based on collected data.

Once the Tukutuku variables had been sketched out and explained, the next step

was to remove all variables that were not relevant for the DEs, followed by adding

to the whiteboard any additional variables (factors) suggested by them. We also

documented descriptions for each of the factors suggested. Next, we identified the

states that each factor would take. All states were discrete. Whenever a factor

represented a measure of effort (e.g., total effort), we also documented the effort

range corresponding to each state, to avoid any future ambiguity. For example,

“low level 1” total effort corresponded to 18–40 person-hours, etc. Once all states

were identified and documented, it was time to elicit the cause and effect

relationships. As a starting point to this task we used a simple medical example

from [2] (Fig. 8.2).

This example clearly introduces one of the most important points to consider

when identifying cause and effect relationships—the timeline of events. If smoking

is to be a cause of lung cancer, it is important that the cause precedes the effect. This

may sound obvious with regard to the example used; however, it is our view that the

Table 8.1 Tukutuku variables

Variable name Description

Project data TypeProj Type of project (new or enhancement)

nLang Number of different development languages used

DocProc If project followed defined and documented process

ProImpr If project team involved in a process improvement programme

Metrics If project team part of a software metrics programme

DevTeam Size of a project’s development team

TeamExp Average team experience with the development

language(s) employed

Web application TotWP Total number of Web pages (new and reused)

NewWP Total number of new Web page

TotImg Total number of images (new and reused)

NewImg Total number of new images created

Num_Fots Number of features reused without any adaptation

HFotsA Number of reused high-effort features/functions adapted

Hnew Number of new high-effort features/functions

TotHigh Total number of high-effort features/functions

Num_FotsA Number of reused low-effort features adapted

New Number of new low-effort features/functions

TotNHigh Total number of low-effort features/functions

Detailed Structure Building and Uncertainty Quantification 125



use of this simple example significantly helped the DEs understand the notion of

cause and effect, and how this related to software effort and risk estimation and the

BN being elicited.

Once the cause and effect relationships were identified, the Web effort BN’s

causal structure was as shown in Fig. 8.3. Note that Fig. 8.3 is not a BN based

directly on Table 8.1. During this process the factors “final effort estimate” and

“total effort estimate” were each reached by a large number of relationships;

therefore this structure needed to be simplified in order to reduce the number of

probabilities to be elicited. New factors were suggested by the KE (factor names

ending in “(O)”, see Fig. 8.3), and validated by the DE. This is the final structure

presented in Fig. 8.3. A total of 31 factors and 55 corresponding relationships were

identified as influential to effort estimation.

Each of the factors used in the Web effort estimation Multimedia-based BN

model is presented in Table 8.2. Whenever a description is missing, this is because

the factor’s name is already self-explanatory.

At this point the DE seemed happy with the BN’s causal structure, and the work

on eliciting the probabilities was initiated. Most of the probabilities were created

from scratch; however, some were also obtained from existing data on past finished

Web projects. The probabilities elicitation subprocess took 36 h (one DE and one

Smoking

Lung cancer

Cough X-Ray

Fig. 8.2 A small BN illustrating cause and effect relationships
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Fig. 8.3 Expert-based Web effort causal structure

126 8 Effort Prediction for Multimedia Projects Delivered on the Web



Table 8.2 Factors identified by the domain experts

Factor Categories Description, observation

Template production effort Very low (8+ to

16 person-hours)

Low (16+ to

24 person-hours)

Medium (24+ to

40 person-hours)

Medium high (40+

to 60 person-hours)

High (60+ to

90 person-hours)

Very high (90+ to

120 person-hours)

Super high (120+

person-hours)

Effort making (producing) all the

different templates for all the different

pages

Artwork production effort Very low (0+ to

8 person-hours)

Low (8+ to

16 person-hours)

Medium (16+ to

24 person-hours)

Medium high (24+

to 40 person-hours)

High (40+ to

60 person-hours)

Very high (60+ to

80 person-hours)

Super high (80+

person-hours)

Effort making (producing) all the

artwork for all the different pages

Team experience 25 %

50 %

75 %

100 %

Percentage of team members with

optimal experience

Tight deadline Yes, no

Unknown technology risk Yes, no

External hosting Yes, no

Overall risk Low, medium, high

Content design effort Very low (0+ to

8 person-hours)

Low (8+ to

24 person-hours)

Medium (24+ to

40 person-hours)

Medium-high (40+

to 60 person-hours)

High (60+ person-

hours)

Visual quality/uniqueness Template standard,

Template high,

Uniqueness of the application’s visual

quality

(continued)
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Table 8.2 (continued)

Factor Categories Description, observation

custom-medium,

custom-high

Site complexity and size Small (1 audience

group/topic)

Medium (2 audience

groups/topics)

Medium-large

(3 audience groups/

topics)

Large (4 audience

groups/topics)

Very large (5+

audience groups/

topics)

Number of different types of sections

(content areas/types of functionality;

different audience groups). The greater

the number of different types of users,

the greater the care with providing

functionality and content areas that are

suitable to each type of user. It involves

identifying how each part of the site will

suit its audience, but making it all

cohesive

Strategy and architecture effort Very low (0+ to

8 person-hours)

Low (8+ to

16 person-hours)

Medium (16+ to

24 person-hours)

High (24+ to

40 person-hours)

Very high (40+ to

60 person-hours)

Super high (60+

person-hours)

How to make sure a user doesn’t get

lost; how do you make sure you give

your audience what they want, that they

will find what they need. The

architecture represents the navigation

(providing landscape points to enable

people to navigate without getting lost).

The strategy represents deciding on the

best mechanisms to enable users to find

what they need quickly

Look and feel effort Very low (0+ to

8 person-hours)

Low (8+ to

24 person-hours)

Medium-low (24+

to 40 person-hours)

Medium (40+ to

60 person-hours)

High (60+ person-

hours)

Web branding design and art direction

Design effort Very low (0+ to

16 person-hours)

Low (16+ to

40 person-hours)

Medium (40+ to

80 person-hours)

Medium-high (80+

to 124 person-

hours)

High (124+ to

160 person-hours)

Very high (160+

person-hours)

(continued)
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Table 8.2 (continued)

Factor Categories Description, observation

Site visual effort Very low (0+ to

24 person-hours)

Low (24+ to

56 person-hours)

Medium (56+ to

104 person-hours)

Medium-high (104+

to 164 person-

hours)

High (164+ to

220 person-hours)

Very high (220+

person-hours)

Total content pages (assumes that

the client has provided the

content and images)

1 to10 pages

11–20 pages

20–35 pages

35–50 pages

51–75 pages

76–100 pages

101–125 pages

126–250+ pages

Programming effort Very, very Low

(1.5–4 person-

hours)

Very low (4+ to

12 person-hours)

Low (12+ to

20 person-hours)

Medium-low (20+

to 40 person-hours)

Medium (40+ to

80 person-hours)

Medium-high (80+

to 120 person-

hours)

High (120+ to

200 person-hours)

Very high (200+ to

400 person-hours)

Very, very high

(400+ to

600 person-hours)

Represents the effort used to implement

or adapt the features that will be part of

a Web application (e.g., forum, gallery,

shopping cart)

Production effort Super, very low (8+

to 24 person-hours)

Low (24+ to

40 person-hours)

Medium (40+ to

64 person-hours)

Medium-high (64+

to 100 person-

(continued)
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Table 8.2 (continued)

Factor Categories Description, observation

hours)

High (100+ to

150 person-hours)

Very high (150+ to

200 person-hours)

Super high (200+

person-hours)

Documentation effort Little (0+ to

10 person-hours)

Medium (10+ to

20 person-hours)

High (20–60

person-hours)

New sort (60+

person-hours)

Applies to when some documentation

needs to be created for the client

Animation None

Very low (0+ to

8 person-hours)

Low (8+ to

16 person-hours)

Medium (16+ to

24 person-hours)

Medium-high (24+

to 40 person-hours)

High (40+ to

60 person-hours)

Very high (60+ to

100 person-hours)

Super high (100+

person-hours)

Final prelaunch and post-launch

testing effort

Low (0+ to

12 person-hours)

Medium low (12+ to

20 person-hours)

Medium (20+ to

80 person-hours)

High (80+ to

140 person-hours)

Extremely high

(140+ person-hours)

Client approvals and

communications

Yes, no Client difficulty

Features styling (additional effort

styling the features)

Very low (0+ to

4 person-hours)

Low (4+ to

12 person-hours)

Medium (12+ to

30 person-hours)

High (30+ to

It represents the effort needed to adapt,

for example, style sheets to take all the

widgets of a particular feature (e.g.,

shopping cart) into account. A

simplistic example would be if site is to

be pink, then styling represents to

ensure that all the features added to the

(continued)
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Table 8.2 (continued)

Factor Categories Description, observation

64 person-hours)

Very high (64+ to

120 person-hours)

Very, very high

(120+ to

160 person-hours)

site comply with this requirement—

being pink

Implementation effort Very low (11+ to

48 person-hours)

Low (48+ to

80 person-hours)

Medium-low (80+

to 130 person-

hours)

Medium (130+ to

224 person-hours)

Medium-high (224+

to 340 person-

hours)

High (340+ to

550 person-hours)

Very high (550+ to

1,000 person-hours)

Very, very high

(1,000+ to 1,400

person-hours)

Super high (1,400+

person-hours)

Represents the effort to adapt features.

If a given feature needs to be developed

from scratch they will estimate it

outside this model

Project management effort Very low (0+ to

10 person-hours)

Low (10+ to

15 person-hours)

Medium low (15+ to

30 person-hours)

Medium (30+ to

40 person-hours)

Medium high (40+

to 50 person-hours)

High (50+ to

70 person-hours)

Very high (70+

person-hours)

Final effort estimate Low level 1 (18+ to

40 person-hours),

Low level 2 (40+ to

80 person-hours),

Medium level 1

(80+ to 140 person-

hours),

Medium level

2 (140+ to

(continued)
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Table 8.2 (continued)

Factor Categories Description, observation

200 person-hours)

Medium level

3 (200+ to

300 person-hours)

Medium-high level

1 (300+ to

500 person-hours)

Medium-high level

2 (500+ to

800 person-hours),

High level 1 (800+

to 1,000 person-

hours),

High level 2 (1,000+

to 1,300 person-

hours),

High level 3 (1,300+

to 1,500 person-

hours),

High level 4 (1,500+

to 1,700 person-

hours),

High level 5 (1,700+

person-hours)

Total effort estimate Low level 1 (18+ to

40 person-hours)

Low level 2 (40+ to

80 person-hours)

Medium level 1

(80+ to 140 person-

hours)

Medium level

2 (140+ to

200 person-hours)

Medium level

3 (200+ to

300 person-hours)

Medium-high level

1 (300+ to

500 person-hours)

Medium-high level

2 (500+ to

800 person-hours)

High level 1 (800+

to 1,000 person-

hours)

High level 2 (1,000+

to 1,300 person-

hours)

High level 3 (1,300+

(continued)
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Table 8.2 (continued)

Factor Categories Description, observation

to 1,500 person-

hours)

High level 4 (1,500+

to 1,700 person-

hours)

High level 5 (1,700+

person-hours)

Final effort estimate with risk Low level 1 (18+ to

43 person-hours)

Low level 2 (43+ to

87 person-hours)

Medium level 1

(87+ to 150 person-

hours)

Medium level

2 (150+ to

215 person-hours)

Medium level

3 (215+ to

320 person-hours)

Medium-high level

1 (320+ to

530 person-hours)

Medium-high level

2 (530+ to

840 person-hours)

High level 1 (840+

to 1,040 person-

hours)

High level 2 (1,040+

to 1,350 person-

hours)

High level 3 (1,350+

to 1,570 person-

hours)

High level 4 (1,570+

to 2,000 person-

hours)

High level 5 (2,000+

person-hours)

UserSignup Yes, no Users can sign up to the website and

create their own accounts

Forum Yes, no

Auction system Yes, no

Listing (classified ads, etc.,

property listings)

None

One

Two

Three

(continued)
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KE). The complete BN, including its probabilities, is shown in Fig. 8.4. Figure 8.4

shows the BN using belief bars rather than labelled factors, so readers can see the

probabilities that were elicited.

Detailed Model Validation

Both model walk-through and predictive accuracy were used to validate the Web

effort estimation BN model, where the former was the first type of validation to be

employed. The DE used ten different scenarios to check whether the factor “final

effort estimate” would provide the highest probability to the effort state that

corresponded to the DE’s own suggestions. All scenarios were run successfully;

however, it was also necessary to use data from past projects, for which total effort

was known, in order to check the model’s calibration. A validation set containing

data on 22 projects was used. The DE selected a range of projects presenting

different sizes and levels of complexity, where all 22 projects were representative

of the types and sizes of projects developed by the Web company.

For each project, evidence was entered in the BN model (an example is given in

Fig. 8.5, where evidence is characterised by dark grey factors with probabilities

equal to 100 % (1. . .)), and the effort range corresponding to the highest probability
provided for “final effort estimate” was compared to that project’s actual effort. For

example, in Fig. 8.5, this would correspond to “final effort estimate”¼medium

level 3. The company had also defined the range of effort values associated with

each of the categories used to measure “final effort estimate”. In the case of the

company described herein, medium level 3 corresponded to 200+ to 300 person

hours. Whenever actual effort did not fall within the effort range associated with the

category with the highest probability, there was a mismatch; this meant that some

Table 8.2 (continued)

Factor Categories Description, observation

Gallery None

One

Two

Three

Shopping cart Yes, no

Event calendar Yes, no Displays a calendar control on the

website; events can be added to it

Blogs (same as news) None

One

Two

Three

Poll None

One

Two

Mailing List Yes, no
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probabilities needed to be adjusted. Within the context of this work, hardly any

calibration was needed.

Whenever probabilities were adjusted, we re-entered the evidence for each of the

projects in the validation set that had already been used in the validation step to

ensure that the calibration already carried out had not been affected. This was done

to ensure that each calibration would always be an improvement upon the previous

one. Within the scope of the model presented herein, of the 22 projects used for

validation, only one required the model to be recalibrated. This means that for all

the 21 projects remaining, the BN model presented the highest probability to the

effort range that contained the actual effort for the project being used for validation.

Once all 22 projects were used to validate the model the DE assumed that the

validation step was complete.

In terms of the use of this BN model, it can also be employed for diagnostic

reasoning, and to run numerous “what-if” scenarios. Figure 8.6 shows an example

of a model being used for diagnostic reasoning, where the evidence was entered for

“final effort estimate”, and used to assess the highest probabilities for each of the

other factors.

The BN model was completed in March 2010, and has been successfully used to

estimate effort for new Web projects developed by the company. Prior to using the

model, the company that is the focus of this chapter did not even know what set of

factors they considered fundamental when estimating effort for their new projects;

therefore the elicitation of factors and their causal relationships alone was already

considered very helpful to them. In addition, they found it extremely useful to be

able to run numerous “what-if” scenarios to help with their decision making, and in

addition, to also be able to obtain a range of possible effort values and their

associated uncertainty. These were very useful in order to negotiate project costs

with clients, given that the effort estimates were based on much more solid

knowledge than simply their tacit knowledge.

The factors that were identified by the DE did not include any of the factors used

when applying a function points methodology to measuring size, because this

company did not measure size using function points. However, the methodology

that has been presented herein would equally apply to companies that employ

function points.

We believe that the successful development of this Web effort estimation BN

model was greatly influenced by the commitment of the company, and also by the

DE’s experience estimating effort.

Conclusions

This chapter has presented a case study where a Bayesian model for Web effort

estimation was built using knowledge from a domain expert and also data on past

finished Web projects developed by the company. This model was developed

using the knowledge engineering for Bayesian networks process (see Fig. 8.1).

Each session with the DE lasted for no longer than 3 h. The final BN model was

calibrated using data on 22 past projects. These projects represented typical Web

projects developed by the company, and were believed by the expert to provide
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enough data for model calibration. Since the model’s adoption, it has been

successfully used to provide effort quotes for the new Web projects managed

by the company.

We have developed other BN models that were validated using data ranging

from 8 to 12 past projects only. According to our experience building BNs for

effort estimation, the most important aspect to obtain a sound model relates to

the domain experts’ knowledge of the effort estimation domain. Experienced

experts will build models that require very little validation.

The entire process used to build and validate the BN model took 66 person-

hours, used as follows: 24 person-hours for the first 4 weeks (1 DE+ 1 KE);

42 person-hours for the last 7 weeks (1 DE+ 1 KE).

The elicitation process enables experts to think deeply about their effort

estimation process and the factors taken into account during that process,

which in itself is already advantageous to a company. This has been pointed

out to us not only by the domain expert whose model is presented herein, but also

by other companies with which we worked on model elicitations.
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Effort Prediction for Dynamic Web
Applications Developed Using a Content
Management System

9

Introduction

This chapter revisits the expert-based knowledge engineering of Bayesian networks

process that was detailed in Chap. 6 (Fig. 9.1), describing the tasks carried out for

each of the three main steps that form part of that process. Before starting the

elicitation of the Dynamic Web applications effort estimation BN model, the

domain experts participating were presented with an overview of Bayesian network

models, and examples of “what-if” scenarios using a made-up BN. This, we

believe, facilitated the entire process as the use of an example, and the brief

explanation of each of the steps in the expert-based knowledge engineering of

Bayesian networks process, provided a concrete understanding of what to expect.

We also made it clear that the knowledge engineer was a facilitator of the process,

and that the company’s commitment was paramount for the success of the process.

The entire process took 54 person-hours to be completed, corresponding to nine

3-h slots.

The domain experts (DEs) who took part in this case study were project

managers of a well-established Web company in Auckland (New Zealand). The

company had ~20 employees, and branches overseas. The project managers had

each worked in Web development for more than 10 years. In addition, this company

developed a wide range of Web applications, from static and multimedia like to

very large e-commerce solutions. They also used a wide range ofWeb technologies,

thus enabling the development of Web 2.0 applications. Previous to using the BN

model created, the effort estimates provided to clients deviated from actual effort

within the range of 20–60 %.

E. Mendes, Practitioner’s Knowledge Representation, DOI 10.1007/978-3-642-54157-5_9,
# Springer-Verlag Berlin Heidelberg 2014
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Detailed Structure Building and Uncertainty Quantification

In order to identify the fundamental factors that the DEs took into account when

preparing a project quote, we used the set of variables from the Tukutuku dataset [1]

as a starting point (Table 9.1). We first sketched them out on a whiteboard, each one

inside an oval shape, and then explained what each one meant within the context of

the Tukutuku project. Our previous experience eliciting BNs in other domains (e.g.,

ecology) suggested that it was best to start with a few factors (even if they were not

to be reused by the DE), rather than to use a “blank canvas” as a starting point.

Within the context of the Tukutuku project, a new high-effort feature/function

requires at least 15 h to be developed by one experienced developer, and a high-

effort adapted feature/function requires at least 4 h to be adapted by one experi-

enced developer. These values are based on collected data.

Once the Tukutuku variables had been sketched out and explained, the next step

was to remove all variables that were not relevant for the DEs, followed by adding

to the whiteboard any additional variables (factors) suggested by them. We also

documented descriptions for each of the factors suggested. Next, we identified the

states that each factor would take. All states were discrete. Whenever a factor

represented a measure of effort (e.g., total effort), we also documented the effort

range corresponding to each state, to avoid any future ambiguity. For example, “low

level 1” total effort corresponded to 4–10 person-hours, etc. Once all states were

identified and documented, it was time to elicit the cause and effect relationships.

As a starting point to this task we used a simple medical example from [2] (Fig. 9.2).

This example clearly introduces one of the most important points to consider

when identifying cause and effect relationships—the timeline of events. If smoking

is to be a cause of lung cancer, it is important that the cause precedes the effect. This

may sound obvious with regard to the example used; however, it is our view that the

use of this simple example significantly helped the DEs understand the notion of

cause and effect, and how this related to software effort and risk-estimation and the

BN being elicited.

Once the cause and effect relationships were identified, the DEs seemed happy

with the BN’s causal structure, and the work on eliciting the probabilities was

initiated. All probabilities were created from scratch, and the probabilities elicita-

tion took ~24 h. While entering the probabilities, the DEs decided to revisit the

BN’s causal structure after revisiting their effort estimation process; therefore a

new iteration of the structure building and uncertainty quantification took place.

The final BN causal structure is shown in Fig. 9.3. Note that Fig. 9.3 is not a BN

based directly on Table 9.1. Here we present the BN using belief bars rather than

labelled factors, so readers can see the probabilities that were elicited. Note that this

BN corresponds to the current model being used by the Web company (also

validated, to be detailed next). It contains 37 factors and 43 relationships identified

by the 2 DEs as fundamental for Web effort estimation.

Each of the factors used in the Dynamic Web applications effort estimation BN

model is presented in Table 9.2. Whenever a description is missing, this is because

the factor’s name is already self-explanatory.
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Detailed Model Validation

Both model walk-through and predictive accuracy were used to validate the Web

effort BN model, where the former was the first type of validation to be employed.

The DEs used four different scenarios to check whether the factor tot_effort would

provide the highest probability to the effort state that corresponded to the DEs’ own

suggestions. All scenarios were run successfully; however, it was also necessary to

use data from past projects, for which total effort was known, in order to check the

model’s calibration. A validation set containing data on 11 projects was used. The

DEs selected a range of projects presenting different sizes and levels of complexity,

Table 9.1 Tukutuku variables

Variable

name Description

Project data TypeProj Type of project (new or enhancement)

nLang Number of different development languages used

DocProc If project followed defined and documented process

ProImpr If project team involved in a process improvement programme

Metrics If project team part of a software metrics programme

DevTeam Size of a project’s development team

TeamExp Average team experience with the development language(s)

employed

Web
application

TotWP Total number of Web pages (new and reused)

NewWP Total number of new Web pages

TotImg Total number of images (new and reused)

NewImg Total number of new images created

Num_Fots Number of features reused without any adaptation

HFotsA Number of reused high-effort features/functions adapted

Hnew Number of new high-effort features/functions

TotHigh Total number of high-effort features/functions

Num_FotsA Number of reused low-effort features adapted

New Number of new low-effort features/functions

TotNHigh Total number of low-effort features/functions

Smoking

Lung cancer

Cough X-Ray

Fig. 9.2 A small BN

illustrating cause and effect

relationships
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Table 9.2 Description of factors identified by the domain experts

Factor Categories Description, observation

Number of languages

used in the content

–1, 2, 3+ Real languages (e.g., English,

Chinese), not programming

languages

Client’s personality Good, normal, bad Strong ideas, control freak,

unfocused

Description for each category:

good (have done part of the

planning even before the project

starts, willing to listen to

alternatives), normal (average, no

real effect, not proactive but also

doesn’t hinder), bad (totally

unfocused, inconsistent)

Client’s knowledge of

the application domain

Low, medium, high Clear idea of what they want to

achieve, what the application

needs to do

Number of stakeholders

involved

Single, low, high Number of stakeholders

involved—number of companies/

people (client-side) involved in the

process: single (1 person), low (2–

3), high (4+)

Similarity to previous

projects

High, medium, low Similarity of domain/functionality/

design

Quality of existing code

being adapted/

integrated

Known, unknown Applies to both code developed in

house, and to third party code

Number of featuresa off

the shelf being used

(4–6), (7–9), (10+) Here each feature requires a very

low/low effort to be adapted

(30 min up to 6, then 1 h total up to

9; 10+ would take 1½ h, average of

5 min per feature)

Number of features off

the shelf being used that

require adaptation

None, 1, 2, 3, 4, 5 Here each feature requires medium

effort (~2 h) to be adapted.

Number of high-effort

new features that need

developing

None, 1, 2, 3, 4, 5 Here each feature requires ~15+

(more like 20 h) to be developed

Number of medium

effort new features that

need developing

None, 1, 2, 3, 4, 5 Here each feature requires ~10–15

(more like 12 h) to be developed

Number of low effort

new features that need

developing

None, 1, 2, 3, 4, 5 Here each feature requires ~5 h to

be developed

Deployment

environment

Us, others If this company is hosting the Web

application, or if a third party will

get involved

Existing online

presence

None, small, extensive Existing domain names, email

addresses, websites that the client

already has

(continued)
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Table 9.2 (continued)

Factor Categories Description, observation

Number of different

page types

(1–2) (3–6) (7+) Different page layouts

Amount of interaction

in the application

None, low, medium, high E.g., interaction in the application

(to give immediate feedback on

forms, how to present Google

maps, etc.)

Level of integration None, low, medium, high Relates to the level of coupling

(interaction) between features),

and how much this will impact

testing

Deployment time Short, normal If the client wants the site deployed

quickly, generally results in more

post-deployment work to optimise

it

Quality of project

management

Abysmal, low, normal, high Degree of involvement of the

project manager, and also their

skills (inexperience)

Team inexperience None, low, medium, high Team’s average experience with

designing websites, experience

with the languages used,

experience with using the Web

(browsing and awareness of what’s

possible)

Number of third parties

involved

None, 1, 2, 3+ E.g., subcontractors, printing, SMS

gateways, hosting providers,

domain registration, payment

providers

Third party

inexperience

None, low, medium, high E.g., subcontractors (including

own designers), SMS gateways,

hosting providers, domain

registration, payment providers

Total inexperience None, low, medium, high Optimisation factor

Proposal scoping effort Low (0+ to 1 person-hour),

medium (1+ to 2 person-hours),

high (2+ to 5 person-hours), very

high (5+ person-hours)

Identify what the site is going to

do—(technical requirements,

marketing requirements (what the

site owner will get out of it), user

requirements (what the visitors

will get out of it); should be a scope

that complies with the available

budget. No tangible specification

document is generated; the scope is

worked out inside the two project

managers’ minds

Technical scoping

effort

None, low (2–5 % of the

implementation effort), medium

(5 %+ to 7 % of the

implementation effort), high (7 %

+ to 10 % of the implementation

effort)

Identify how the site is going to do

what it has to do (technical

requirements); should be a scope

that complies with the available

budget. A tangible specification

should be generated

(continued)
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Table 9.2 (continued)

Factor Categories Description, observation

Level of technical

scoping

Low, normal, high Level of project planning,

technical requirements

Legacy browser support Yes, no Ensure back compatibility with

IE6 etc. If Yes, then it’s 50 % of

presentation code effort

Presentation code effort Easy (4–6 person-hours), normal

(6+ to 10 person-hours), above

average (10+ to 15 person-hours),

complex (15+ to 20 person-hours),

highly complex (20+ to 30 person-

hours), very highly complex (30+

person-hours)

Amount of effort to write html,

javascript and css

Compliance effort None, normal (0+ to 7.5 person-

hours), high (7.5+ to 20 person-

hours), very high (20+ person-

hours)

Compliance None, o (1–50 % of presentation

code effort), t (2–75 % of

presentation code effort)

Government websites have to

comply with standard accessibility

guidelines/etc., accessibility

Risk Factor None, low, medium, high, very

high

Risk of increasing effort compared

to the ideal effort

Total effort Very low (4+ to 10 person-hours),

low (10+ to 25 person-hours),

medium (25+ to 40 person-hours),

high (40+ to 80 person-hours),

very high (80+ to 150 person-

hours), extremely high (150+

person-hours)

Implementation effort Very low (4+ to 7 person-hours),

low (7+ to 15 person-hours),

medium (15+ to 30 person-hours),

high (30+ to 60 person-hours),

very high (60+ to 120 person-

hours), extremely high (120+

person-hours)

Project management

factor

Low (10 % to 15 % of

implementation effort), medium

(15 +% to 20 % of implementation

effort), high (20 +% to 25 % of

implementation effort), very high

(25 +% of implementation effort)

Also includes the planning of the

application, and any training that

needs to be done so staff can get up

to speed

Integration effort None, low (0+ to 2 person-hours),

medium (2+ to 8 person-hours),

high (8+ person-hours)

(continued)
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where all 11 projects were representative of the types of projects developed by the

Web company: 5 were small projects; 2 were medium, 2 large, and 1 very large.

For each project, evidence was entered in the BN model, and the effort range

corresponding to the highest probability provided for “tot_effort” was compared to

that project’s actual effort (see an example in Fig. 9.4). The company had also

defined the range of effort values associated with each of the categories used to

measure “tot_effort”. In the case of the company described herein, medium effort

corresponds to 25–40 person-hours. Whenever actual effort did not fall within the

effort range associated with the category with the highest probability, there was a

mismatch; this meant that some probabilities needed to be adjusted.

Whenever probabilities were adjusted, we re-entered the evidence for each of the

projects in the validation set that had already been used in the validation step to ensure

that the calibration already carried out had not been affected. This was done to ensure

that each calibration would always be an improvement upon the previous one. Within

the scope of the model presented herein, of the 11 projects used for validation, only

1 required the model to be recalibrated. This means that for all the ten projects

remaining, the BN model presented the highest probability to the effort range that

contained the actual effort for the project being used for validation.Once all 11 projects

were used to validate themodel theDEs assumed that the validation stepwas complete.

The BNmodel was completed in September 2009, and has been successfully used

to estimate effort for new projects developed by the company. In addition, the twoDEs

changed their approach to estimating effort as follows: prior to using the BN model,

these DEs had to elicit requirements using very short meetings with clients, given that

these clients assumed that short meetings were enough in order to understand what the

applications needed to provide once delivered. The DEs were also not fully aware of

the factors that they subjectively took into account when preparing an effort estimate;

therefore many times they ended up providing unrealistic estimates to clients.

Table 9.2 (continued)

Factor Categories Description, observation

Feature code effort Very low (0+ to 1 person-hour),

low (1+ to 4 person-hours),

medium (4+ to 12 person-hours),

high (12+ to 30 person-hours),

very high (30+ to 80 person-

hours), extremely high (80+

person-hours)

Total new features

effort

None, low (5+ to 12 person-hours),

medium (12+ to 25 person-hours),

high (25+ to 80 person-hours),

very high (80+ person-hours)

Optimisation factor

Communication

overhead

Low overhead, normal, high

overhead, very high overhead

Optimisation factor (not quantified

as #person-hours)

aNote: Features apply to features developed in-house and also by third-parties. Features within this

context mean functionality (here they include the testing to work on each feature, but not the

integration testing looking at the coupling between features)
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Once the BN model was validated, the DEs started to use the model not only to

obtain better estimates than the ones previously prepared by subjectivemeans, but also

as means to guide their requirements elicitation meetings with prospective clients.

They targeted their questions at obtaining evidence to be entered in the model as the

requirements meetings took place; by doing so, they basically had effort estimates that

were practically ready to use for costing the projects, even whenmeetings with clients

had short durations. Such changes in approach provided extremely beneficial to the

company, given that all estimates provided using the model turned out to be more

accurate on average than the ones previously obtained by subjective means.

Clients were not presented the model due to its complexity; however, by entering

evidence while a requirements elicitation meeting took place, the DEs were able to

optimize their elicitation process by being focused and factor-driven.

We believe that the successful development of this Web effort BN model was

greatly influenced by the commitment of the company, and also by the DEs’

experience estimating effort.

Conclusions

This chapter has presented a case study where a Bayesian model for Web effort

estimation was built using solely knowledge of two DEs from a well-established

Web company in Auckland, New Zealand. This model was developed using an

adaptation of the knowledge engineering for Bayesian networks process. Its

causal structure went through three versions, because as the work progressed

the experts’ views on which factors were fundamental when they estimated

effort also matured. Each session with the DEs lasted for no longer than 3 h.

The final BN model was calibrated using data on the 11 past projects. These

projects represented typical projects developed by the company, and were

believed by the experts to provide enough data for model calibration.

Since the model’s adoption, it has been successfully used to provide effort

quotes for the new Web projects managed by the company.

The entire process used to build and validate the BN model took 54 person-

hours, where the largest amount of time was spent eliciting the probabilities.

This is an issue to those building BN models from domain expertise only, and is

currently the focus of our future work.

The elicitation process enables experts to think deeply about their effort

estimation process and the factors taken into account during that process,

which in itself is advantageous to a company. This has been pointed out to us

not only by the domain experts whose model is presented herein, but also by

other companies with which we worked on model elicitations.
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Effort Prediction to Manage Outsourcing
Projects for the Development of Web
Hypermedia and Web Software
Applications

10

Introduction

This chapter revisits the expert-based knowledge engineering of Bayesian networks

(EKEBN) process that was detailed in Chap. 6 (Fig. 10.1), describing the tasks

carried out for each of the three main steps that form part of that process. Before

starting the elicitation of the Web hypermedia and software effort Bayesian net-

work model, the domain expert participating was presented with an overview of

Bayesian network models, and examples of “what-if” scenarios using a made-up

Bayesian network. This, we believe, facilitated the entire process as the use of an

example, and the brief explanation of each of the steps in the EKEBN process,

provided a concrete understanding of what to expect. We also made it clear that the

knowledge engineer was a facilitator of the process, and that the Web company’s

commitment was paramount for the success of the process.

The entire process took 18 h to be completed, corresponding to 36 person-hours

in six 3-h slots.

The domain expert (DE) who took part in this case study is the project manager

(and owner) of a well-established Web company in Auckland (New Zealand). The

company has one project manager, two developers employed by the company, and

several subcontractors. The project manager has worked in Web development for

more than 10 years (back in 2008), and his company develops a wide range of Web

applications, from static and multimedia-like to very large e-commerce solutions.

They also use a wide range of Web technologies, thus enabling the development of

Web 2.0 applications. Previous to using the BN model created, the effort estimates

provided to clients would deviate from actual effort within the range of 10–40 %.

E. Mendes, Practitioner’s Knowledge Representation, DOI 10.1007/978-3-642-54157-5_10,
# Springer-Verlag Berlin Heidelberg 2014
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Detailed Structure Building and Uncertainty Quantification

In order to identify the fundamental factors that the DEs took into account when

preparing a project quote, we used the set of variables from the Tukutuku dataset [1]

as a starting point (Table 10.1). We first sketched them out on a whiteboard, each

one inside an oval shape, and then explained what each one meant within the context

of the Tukutuku project. Our previous experience eliciting BNs in other domains

(e.g., ecology) suggested that it was best to start with a few factors (even if they were

not to be reused by the DE), rather than to use a “blank canvas” as a starting point.

Within the context of the Tukutuku project, a new high-effort feature/function

requires at least 15 h to be developed by one experienced developer, and a high-

effort adapted feature/function requires at least 4 h to be adapted by one experi-

enced developer. These values are based on collected data.

Once the Tukutuku variables had been sketched out and explained, the next step

was to remove all variables that were not relevant for the DE, followed by adding to

the whiteboard any additional variables (factors) suggested by them. We also

documented descriptions for each of the factors suggested. Next, we identified the

states that each factor would take. All states were discrete. Whenever a factor

represented a measure of effort (e.g., total effort), we also documented the effort

range corresponding to each state, to avoid any future ambiguity. For example,

Table 10.1 Tukutuku variables

Variable name Description

Project data TypeProj Type of project (new or enhancement)

nLang Number of different development languages used

DocProc If project followed defined and documented process

ProImpr If project team involved in a process improvement programme

Metrics If project team part of a software metrics programme

DevTeam Size of a project’s development team

TeamExp Average team experience with the development

language(s) employed

Web application TotWP Total number of Web pages (new and reused)

NewWP Total number of new Web pages

TotImg Total number of images (new and reused)

NewImg Total number of new images created

Num_Fots Number of features reused without any adaptation

HFotsA Number of reused high-effort features/functions adapted

Hnew Number of new high-effort features/functions

TotHigh Total number of high-effort features/functions

Num_FotsA Number of reused low-effort features adapted

New Number of new low-effort features/functions

TotNHigh Total number of low-effort features/functions
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“very low” total effort corresponded to 0+ to 8 person-hours, etc. Once all states

were identified and documented, it was time to elicit the cause and effect

relationships. As a starting point to this task we used a simple medical example

from [2] (Fig. 10.2).

This example clearly introduces one of the most important points to consider

when identifying cause and effect relationships—the timeline of events. If smoking

is to be a cause of lung cancer, it is important that the cause precedes the effect. This

may sound obvious with regard to the example used; however, it is our view that the

use of this simple example significantly helped the DEs understand the notion of

cause and effect, and how this related to software effort and risk-estimation and the

BN being elicited.

Once the cause and effect relationships were identified the Web effort estimation

causal structure was as follows (Fig. 10.3). Note that Fig. 10.3 is not a BN based

directly on Table 10.1.

The two factors “total effort” and “overall complexity” were each reached by a

large number of relationships; therefore this structure needed to be simplified in

order to reduce the number of probabilities to be elicited. New factors were

suggested by the knowledge engineer (names ending in “_N”; see Fig. 10.4), and

validated by the DE. Note that the extension _N, which stands for neutral, was

chosen by the DE. The DE also made a few more changes to some of the

relationships, leading to the BN causal structure presented in Fig. 10.4.

At this point the DE seemed happy with the BN’s causal structure, and the work

on eliciting the probabilities was initiated. All probabilities were created from

scratch, a very time-consuming task (~8 to 10 h).

While entering the probabilities, the DE decided to revisit the BN’s causal

structure after revisiting the effort estimation process; therefore a new iteration of

the structure building step took place. The final BN causal structure is shown in

Fig. 10.5. Here we present the BN using belief bars rather than labelled factors, so

readers can see the probabilities that were elicited. Note that this BN corresponds to

the current model used by the Web company. This model contains 15 factors and

14 relationships identified by the DE as fundamental for Web effort estimation.

The description of each of the factors used in the Web hypermedia and software

effort Bayesian network model is given in Table 10.2.

Smoking

Lung cancer

Cough X-Ray

Fig. 10.2 An example of

cause and effect relationships
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Fig. 10.3 First version of the model’s causal structure

Fig. 10.4 An updated version of the model’s causal structure

Fig. 10.5 Final version of the model’s causal structure
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Table 10.2 Description of factors elicited from the domain expert

Factor Categories Description, observation

Total_Web_Pages Small, medium, large Amount of Web pages

Overall risk factor Low, medium, high Is it a good customer? Easy going,

average, difficult

Type_Project New, enhancement, enhancement

new

New, enhancement (developed by

the company), enhancement and

new (enhancement to a project that

was developed by a third party)

Num_developers Low, medium Low (1 person), medium (2+)

Developer experience Low, medium, high Based on the number years if solo,

or as a combination of skills if

there is more than one developer

Programming_Style Conventional, extreme How well the client knows the

requirements; conventional (means

that the client knows the

requirements well), extreme (the

client doesn’t know enough and

keeps changing requirements)

Num_Fots Small (0–5), medium (6–15), large

(16+)

Total number of new features/

functions being developed from

scratch for the application

Num_FotsA Small (0–5), medium (6–15), large

(16+)

Total number of features/functions

that are being reused with some

level of adaptation

Adaptation_Complexity Low, medium, high Complexity associated with

adapting a feature

New_complexity Low, medium, high Complexity associated with all the

new features/functions to be

developed from scratch

Documented_Process Yes, no Yes, no (they document most of

the time, for large projects, at the

start of the project so they have a

plan, but also at the end of the

project so it becomes easier to

adapt features/functions on past

projects)

Total_Effort Very low (0+ to 8 person-hours),

low (8+ to 25 person-hours),

medium (25+ to 50 person-hours),

high (50+ to 100 person-hours),

very high (100+ person-hours)

Overall_Complexity Low, medium, high (effort)

Complexity_N Low, medium, high (effort)

App_Components_N Small, medium, large Combined number of components
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Detailed Model Validation

Both model walk-through and predictive accuracy were used to validate the Web

effort estimation BN model, where the former was the first type of validation to be

employed. The DE used four different scenarios to check whether the factor

Total_Effort would provide the highest probability to the effort state that

corresponded to the DE’s own suggestion.

All scenarios were run successfully; however, it was also necessary to use data

from past projects, for which total effort was known, in order to check the model’s

calibration.

A validation set containing data on eight projects was used. The DE selected a

range of projects presenting different sizes and levels of complexity, where all eight

projects were representative of the types of projects developed by the Web com-

pany: four were small projects; three were medium and one was large.

For each project, evidence was entered in the BN model (an example is given in

Fig. 10.6b, where evidence is characterised by dark grey factors with probabilities

equal to 100 % (1. . .)), and the effort range corresponding to the highest probability
provided for “total effort” was compared to that project’s actual effort. For exam-

ple, in Fig. 10.6b, this would correspond to “total effort”¼medium. The company

had also defined the range of effort values associated with each of the categories

used to measure “total estimated effort”. In the case of the company described

herein, medium effort corresponded to 25–50 person-hours. Whenever actual effort

did not fall within the effort range associated with the category with the highest

probability, there was a mismatch; this meant that some probabilities needed to be

adjusted. However, within the context of this work, hardly any calibration was

needed.

Whenever probabilities were adjusted, we re-entered the evidence for each of the

projects in the validation set that had already been used in the validation step to

ensure that the calibration already carried out had not been affected. This was done

to ensure that each calibration would always be an improvement upon the previous

one. Once all eight projects were used to calibrate the model, the domain expert

assumed that the validation step was complete.

Figure 10.6 shows two scenarios of use for the Web effort estimation BN. The

first (Fig. 10.6a) shows the likely probabilities for all factors in the BN given an

expected Total_effort¼ very high (grey factor in Fig. 10.6a); conversely, the

second scenario shows the likely probabilities for Total_effort when evidence is

entered along the BN (grey factors).

This BN model has been in production since 2008 and has been successfully

used to estimate effort for numerous projects. The domain expert uses solely the

model to obtain effort estimates, rather than to combine their tacit knowledge of

previous projects with the model’s proposed effort estimate.

We believe that the successful development of this Web effort estimation

Bayesian network model was greatly influenced by the commitment of the com-

pany, and also by the DE’s exceptional experience estimating effort.
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Conclusions

This chapter has presented a case study where a Bayesian model for Web effort

estimation was built using solely knowledge of one domain expert from a well-

established Web company in Auckland, New Zealand. This model was devel-

oped using the expert-based knowledge engineering for Bayesian networks

process (Fig. 10.1).

Each session with the DE lasted for no longer than 3 h. The final Bayesian

network model was calibrated using data on eight past projects. These projects

represented typical projects developed by the company, and believed by the

experts to provide enough data for model calibration.

Since the model’s adoption, it has been successfully used to provide effort

quotes for the new projects managed by the company. The entire process used to

build and validate the Bayesian network model took 36 person-hours.

The elicitation process enables experts to think deeply about their effort

estimation process and the factors taken into account during that process,

which in itself is advantageous to a company. This has been pointed out to us

not only by the domain expert whose model is presented herein, but also by other

companies with which we worked on model elicitations.

Fig. 10.6 Diagnostic and predictive scenarios using the Web effort BN model
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Effort Prediction for Game Applications
Delivered on the Web 11

Introduction

This chapter revisits the expert-based knowledge engineering of Bayesian networks

(EKEBN) process that was detailed in Chap. 6 (Fig. 11.1), describing the tasks

carried out for each of the three main steps that form part of that process. Before

starting the elicitation of the Web-based Games effort Bayesian network model, the

domain expert (DE) participating was presented with an overview of Bayesian

network models, and examples of “what-if” scenarios using a made-up Bayesian

network. This, we believe, facilitated the entire process as the use of an example,

and the brief explanation of each of the steps in the EKEBN process, provided a

concrete understanding of what to expect. We also made it clear that the knowledge

engineer was a facilitator of the process, and that the Web company’s commitment

was paramount for the success of the process.

The entire process took 126 person-hours to be completed, corresponding to

twenty-one 3-h slots.

The domain expert who took part in this case study is the project manager (and

owner) of a well-established Web company in Auckland (New Zealand). The

company had five employees, and also outsourced work. The project manager

had worked in Web development for more than 10 years. In addition, this company

developed a wide range of Web software applications, from heavy multimedia-like

to very large e-commerce solutions. They also used a wide range of Web techno-

logies, thus enabling the development of Web 2.0 applications. Previous to using

the BN model created, the effort estimates provided to clients deviated from actual

effort within the range of 30–60 %.

E. Mendes, Practitioner’s Knowledge Representation, DOI 10.1007/978-3-642-54157-5_11,
# Springer-Verlag Berlin Heidelberg 2014
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Detailed Structure Building and Uncertainty Quantification

In order to identify the fundamental factors that the DEs took into account when

preparing a project quote, we used the set of variables from the Tukutuku dataset [1]

as a starting point (Table 11.1). We first sketched them out on a whiteboard, each

one inside an oval shape, and then explained what each one meant within the

context of the Tukutuku project. Our previous experience eliciting BNs in other

domains (e.g. ecology) suggested that it was best to start with a few factors (even if

they were not to be reused by the DE), rather than to use a “blank canvas” as a

starting point.

Once the Tukutuku variables had been sketched out and explained, the next step

was to remove all variables that were not relevant for the DE, followed by adding to

the whiteboard any additional variables (factors) suggested by the DE. We also

documented descriptions for each of the factors suggested. Next, we identified the

states that each factor would take. All states were discrete. Whenever a factor

represented a measure of effort (e.g. total effort), we also documented the effort

range corresponding to each state, to avoid any future ambiguity. For example,

“extremely low” total effort corresponded to 0+ to 8 person hours, etc.

Within the context of the Tukutuku project, a new high-effort feature/function

requires at least 15 h to be developed by one experienced developer, and a high-

Table 11.1 Tukutuku variables

Variable name Description

Project data TypeProj Type of project (new or enhancement)

nLang Number of different development languages used

DocProc If project followed defined and documented process

ProImpr If project team involved in a process improvement programme

Metrics If project team part of a software metrics programme

DevTeam Size of a project’s development team

TeamExp Average team experience with the development

language(s) employed

Web application TotWP Total number of Web pages (new and reused)

NewWP Total number of new Web pages

TotImg Total number of images (new and reused)

NewImg Total number of new images created

Num_Fots Number of features reused without any adaptation

HFotsA Number of reused high-effort features/functions adapted

Hnew Number of new high-effort features/functions

TotHigh Total number of high-effort features/functions

Num_FotsA Number of reused low-effort features adapted

New Number of new low-effort features/functions

TotNHigh Total number of low-effort features/functions
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effort adapted feature/function requires at least 4 h to be adapted by one experi-

enced developer. These values are based on collected data.

Once all states were identified and documented, it was time to elicit the cause

and effect relationships. As a starting point to this task we used a simple medical

example from [2] (Fig. 11.2).

This example clearly introduces one of the most important points to consider

when identifying cause and effect relationships—the timeline of events. If smoking

is to be a cause of lung cancer, it is important that the cause precedes the effect. This

may sound obvious with regard to the example used; however, it is our view that the

use of this simple example significantly helped the DE understand the notion of

cause and effect, and how this related to Web effort estimation and the BN being

elicited.

Once the cause and effect relationships were identified, the Web effort esti-

mation causal structure was as follows (Fig. 11.3). Note that Fig. 11.3 is not a BN

based directly on Table 10.1; however, it contains many of the factors that were part

of the Tukutuku database.

The two factors “Total_Effort” and “Quality_Control” were each reached by a

large number of relationships; therefore this structure needed to be simplified in

order to reduce the number of probabilities to be elicited. New factors were

suggested by the knowledge engineer (names ending in “_O”, see Fig. 11.4), and

validated by the domain expert. The DE also made a few more changes to some of

the relationships, leading to the BN causal structure presented in Fig. 11.4.

At this point the DE seemed happy with the BN’s causal structure and the work

on eliciting the probabilities was initiated. While entering the probabilities, the DE

decided to revisit the BNs causal structure; therefore a new iteration of the structure

building step took place. The final BN causal structure is shown in Fig. 11.5. This

same model is also shown in Fig. 11.6 using belief bars rather than labelled factors,

so readers can see the probabilities that were elicited. Note that this model is the one

used by the Web company. It contains 16 factors and 16 relationships identified by

the domain expert as fundamental for Web effort estimation.

The description of each of the factors used in the Web-based Games effort

Bayesian network model is given in Table 11.2.

Smoking

Lung cancer

Cough X-Ray

Fig. 11.2 An example of

cause and effect relationships
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Table 11.2 Description of all the factors elicited from the domain expert

Factor Categories Description, observation

Graphic design Low (0+ to 4), medium (4+ to 8), high

(8+ to 16), very high (16+)

Effort to develop the interface, look

and feel of the interface, mock-up of

the interface

Front-end

build

low—0+ to 8 person-hours; medium—

8+ to 16 person-hours; high—16+ to

24 person-hours; very high—24+

person-hours

Effort to translate the graphic design

into html

Front end

Design_O

Low—0+ to 16 person-hours;

medium—16+ to 32 person-hours;

high—32+ to 40 person-hours; very

high—40+ to 60 person-hours; super

high—60+ person-hours

Animation

graphics

Low—0+ to 8 person-hours; medium—

8+ to 16 person-hours; high—16+ to

24 person-hours; very high—24+

person-hours

Effort working on animations using an

animation software

High-

complexity

images

Small—0–1 images; medium—2–4

images; large—4+ images

Herein an image takes between 30+

min and 2 h to be created

Medium-

complexity

images

Small—0–3 images; medium—4–6

images; large—6+ images

Herein an image takes between 10 min

and 30 min to be created

Low-

complexity

images

Small—0–10 images; medium—11–20

images; large—20+ images

Herein an image takes between 0+ and

10 min to be created

Num brochure

pages

Small—1–10 brochure pages;

medium—11–25 brochure pages;

large—25+ brochure pages

Counting the number of pages that are

of type brochure. A brochure page

takes around 15 min to be created

Features

programming

Low—0+ to 8 person-hours; medium—

8+ to 16 person-hours; high—16+ to

40 person-hours; very high—40+ to

80 person-hours; super high—80+ to

120 person-hours; extremely high—

120+ person-hours

The amount of effort needed to

implement (program) the features that

the Web application will have

Overall

Complexity

Features_O

Very low—0+ to 8 person-hours;

low—8+ to 16 person-hours;

medium—16+ to 32 person-hours;

high—32+ to 48 person-hours; very

high—48+ to 160 person-hours;

extremely high—160+ person-hours

The joint amount of effort needed to

implement (program) the features and

animations that the Web application

will have

Project

Documentation

Very low—0+ to 4 person-hours;

low—4+ to 16 person-hours;

medium—16+ to 32 person-hours;

high—32+ person-hours

Effort that refers to the amount of

documentation in terms of specification

documents, user manuals, etc., that

needs to be generated

Project

management

Very low—0+ to 4 person-hours;

low—4+ to 8 person-hours; medium—

8+ to 16 person-hours; high—16+ to

Aspects to consider: quality control,

client communication, follow up with

clients, project deadlines

(continued)
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Detailed Model Validation

Both model walk-through and predictive accuracy were used to validate the Web

effort estimation BN model, where the former was the first type of validation to be

employed. The DE used six different scenarios to check whether the factor

Total_Effort would provide the highest probability to the effort state that

corresponded to the DE’s own suggestion. All scenarios run successfully; however,

it was also necessary to use data from past projects, for which total effort was

known, in order to check the model’s calibration.

A validation set containing data on 22 projects was used. The DE selected a

range of projects presenting different sizes and levels of complexity, where all

22 projects were representative of the types of projects developed by the Web

company.

For each project, evidence was entered in the BN model (an example is given in

Fig. 11.7, where evidence is characterised by dark grey factors with probabilities

equal to 100 % (1. . .)), and the effort range corresponding to the highest probability
provided for “Total_Effort” was compared to that project’s actual effort. For

example, in Fig. 11.7, this would correspond to “Total_Effort”¼VL (very large).

The company had also defined the range of effort values associated with each of the

Table 11.2 (continued)

Factor Categories Description, observation

24 person-hours; very high—24+

person-hours

Complexity

pages_O

Low—1+ to 8 person-hours; medium—

8+ to 16 person-hours; high—16+ to

24 person-hours; very high—24+

person-hours

The joint amount of effort needed to

construct the Web pages

Overall

Complexity

Images_O

Low—1+ to 4 person-hours; medium—

4+ to 8 person-hours; high—8+ to

16 person-hours; very high—16+

person-hours

The joint amount of effort needed to

create the images to be used in the Web

application

Total effort Extremely low—0+ to 8 person-hours;

very very low—8+ to 24 person-hours;

very low—24+ to 40 person-hours;

low—40+ to 80 person-hours;

medium—80+ to 120 person-hours;

high—120+ to 200 person-hours; very

high—200+ to 300 person-hours;

extremely high—300+ to person-hours

Animation

programming

Low—0+ to 8 person-hours; medium—

8+ to 16 person-hours; high—16+

person-hours

Effort working on animations by

programming their movement
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categories used to measure “Total_Effort”. In the case of the company described

herein, VL effort corresponded to 24+ to 40 person-hours. Whenever actual effort

did not fall within the effort range associated with the category with the highest

probability, there was a mismatch; this meant that some probabilities needed to be

adjusted. Within the context of this work, 15 recalibrations were needed.

Whenever probabilities were adjusted, we re-entered the evidence for each of the

projects in the validation set that had already been used in the validation step to

ensure that the calibration already carried out was not affected. This was done to

ensure that each calibration would always be an improvement upon the previous

one. Once all 22 projects were used to calibrate the model the domain expert

assumed that the validation step was complete.

This BN model has been in production since late 2009 and has been successfully

used to estimate effort for numerous projects. The domain expert uses solely the

model to obtain effort estimates, rather than to combine their tacit knowledge of

previous projects with the model’s proposed effort estimate.

Conclusions

This chapter has presented a case study where a Bayesian model for Web effort

estimation was built using solely knowledge of one domain expert from a well-

established Web company in Auckland, New Zealand. This model was devel-

oped using the Expert-based knowledge engineering for Bayesian networks

process (Fig. 11.1).

Each session with the DE lasted for no longer than 3 h. The final Bayesian

network model was calibrated using data on 22 past projects. These projects

represented typical projects developed by the company, and were believed by

the expert to provide enough data for model calibration.

Since the model’s adoption, it has been successfully used to provide effort

quotes for the new projects managed by the company. The entire process used to

build and validate the Bayesian network model took 126 person hours.

The elicitation process enables experts to think deeply about their effort

estimation process and the factors taken into account during that process,

which in itself is already advantageous to a company. This has been pointed

out to us not only by the domain expert whose model is presented herein, but also

by other companies with which we worked on model elicitations.
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Effort Prediction for Static and
Dynamic Web Applications 12

Introduction

This chapter revisits the expert-based knowledge engineering of Bayesian networks

(EKEBN) process that was detailed in Chap. 6 (Fig. 12.1), describing the tasks

carried out for each of the three main steps that form part of that process. Before

starting the elicitation of the Web static and dynamic effort Bayesian network

model, the domain expert participating was presented with an overview of Bayesian

network models and examples of “what-if” scenarios using a made-up Bayesian

network. This, we believe, facilitated the entire process as the use of an example, and

the brief explanation of each of the steps in the EKEBN process, provided a concrete

understanding of what to expect. We also made it clear that the knowledge engineer

was a facilitator of the process, and that the Web company’s commitment was

paramount for the success of the process.

The entire process took 120 person-hours to be completed, corresponding to

twenty 3-h slots.

The domain expert (DE) who took part in this case study is the project manager

of a well-established medium-size software company in Rio de Janeiro (Brazil).

The company had ~30 employees working in Web projects. The project manager

had worked in Web development for more than 10 years. In addition, this company

developed a wide range of Web software applications using a content management

system. Previous to using the BN model created, the effort estimates provided to

clients would deviate from actual effort within the range of 40–50 %.

Detailed Structure Building and Uncertainty Quantification

In order to identify the fundamental factors that the DE took into account when

preparing a project quote, we used the set of variables from the Tukutuku dataset [1]

as a starting point (Table 12.1). We first sketched them out on a white-board, each

one inside an oval shape, and then explained what each one meant within the

E. Mendes, Practitioner’s Knowledge Representation, DOI 10.1007/978-3-642-54157-5_12,
# Springer-Verlag Berlin Heidelberg 2014
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Fig. 12.1 Expert-based knowledge engineering of Bayesian networks process
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context of the Tukutuku project. Our previous experience eliciting BNs in other

domains (e.g. ecology) suggested that it was best to start with a few factors (even if

they were not to be reused by the DE), rather than to use a “blank canvas” as a

starting point.

Once the Tukutuku variables had been sketched out and explained, the next step

was to remove all variables that were not relevant for the DE, followed by adding to

the whiteboard any additional variables (factors) suggested by them. We also

documented descriptions for each of the factors suggested. Next, we identified the

states that each factor would take. All states were discrete. Whenever a factor

represented a measure of effort (e.g., total effort), we also documented the effort

range corresponding to each state, to avoid any future ambiguity. For example,

“maximum allocation/complex application” total effort corresponded to 801+ to

1,120 person-hours, etc.

Within the context of the Tukutuku project, a new high-effort feature/function

requires at least 15 h to be developed by one experienced developer, and a high-

effort adapted feature/function requires at least 4 h to be adapted by one experi-

enced developer. These values are based on collected data.

Once all states were identified and documented, it was time to elicit the cause

and effect relationships. As a starting point to this task we used a simple medical

example from [2] (Fig. 12.2).

This example clearly introduces one of the most important points to consider

when identifying cause and effect relationships—the timeline of events. If smoking

Table 12.1 Tukutuku variables

Variable

name Description

Project data TypeProj Type of project (new or enhancement)

nLang Number of different development languages used

DocProc If project followed defined and documented process

ProImpr If project team involved in a process improvement programme

Metrics If project team part of a software metrics programme

DevTeam Size of a project’s development team

TeamExp Average team experience with the development language(s)

employed

Web
application

TotWP Total number of Web pages (new and reused)

NewWP Total number of new Web pages

TotImg Total number of images (new and reused)

NewImg Total number of new images created

Num_Fots Number of features reused without any adaptation

HFotsA Number of reused high-effort features/functions adapted

Hnew Number of new high-effort features/functions

TotHigh Total number of high-effort features/functions

Num_FotsA Number of reused low-effort features adapted

New Number of new low-effort features/functions

TotNHigh Total number of low-effort features/functions
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is to be a cause of lung cancer, it is important that the cause precedes the effect. This

may sound obvious with regard to the example used; however, it is our view that the

use of this simple example significantly helped the DE understand the notion of

cause and effect, and how this related to Web effort estimation and the BN being

elicited.

Once the cause and effect relationships were identified, theWeb effort estimation

causal structure was as follows (Fig. 12.3). Note that Fig. 12.3 is not a BN based

directly on Table 12.1; however, it contains many of the factors that were part of the

Tukutuku database. Note that the English translation of the factors’ names is given

in Fig. 12.4 and also in Table 12.2.

The final Bayesian network model contains 19 factors and 37 causal relation-

ships identified by the domain expert as fundamental for Web effort estimation.

In addition, it differs from all the previous models in that it did not include any

made-up factors, i.e., factors that are not part of the original Bayesian network

structure but that are included in order to reduce the amount of probabilities to elicit

for a given factor.

This same model is also shown in Fig. 12.6 using belief bars rather than labelled

factors, so readers can see the probabilities that were elicited.

The description of each of the factors used in the Web static and dynamic effort

estimation BN model is given in Table 12.2.

Detailed Model Validation

Both model walk-through and predictive accuracy were used to validate the Web

effort estimation BN model, where the former was the first type of validation to be

employed. The DE used seven different scenarios to check whether the factor “total

development effort” would provide the highest probability to the effort state that

corresponded to the DE’s own suggestion. All scenarios run successfully; however,

Smoking

Lung cancer

Cough X-Ray

Fig. 12.2 An example of

cause and effect relationships
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Table 12.2 Description of all the factors elicited from the domain expert

Factor Categories Description, observation

Total development effort

(hh esforço total)

Very small effort (alocacao

muito pequena) (0+ to

32 person-hours)

Small effort (alocacao

pequena) (32+ to 60 person-

hours)

Effort small website (alocacao

site pequeno) (61+ to

120 person-hours)

Effort medium website

(alocacao site medio)(120+ to

200 person-hours)

Effort large website (alocacao

site grande) (200+ to

320 person-hours)

Maximum effort website

(alocacao maxima site) (320+

to 640 person-hours)

Effort simple/common system

(alocacao sistema simples/

comum) (640+ to 800 person-

hours)

Maximum effort complex

system (alocacao maxima

sistema complexo) (800+ to

1,120 person-hours)

This company differentiates

between static Web

applications, which they call

websites, and Web applications

with part of the content

generated dynamically, which

they call a system

Effort graphical design of the

application (hh designer)

Help (apoio) (0+ to 5 person-

hours)

Banner (banner) (5+ to

10 person-hours)

Hot site (hot site) (10+ to

20 person-hours)

Website (site) (20+ to

50 person-hours)

Complex website (site

complicado) (50+ person-

hours)

Effort to code in flash

(hh Flash)

Very small effort (alocacao

muito pequena) (0 + to

4 person-hours)

Small allocation (alocacao

pequena) (4+ to 9 person-

hours)

Reasonable effort (alocacao

razoavel) (9+ to 15 person-

hours)

Considerable effort (alocacao

consideravel) (15+ to

25 person-hours)

High effort (alocacao grande)

(continued)
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Table 12.2 (continued)

Factor Categories Description, observation

(25+ to 40 person-hours)

Very high effort (alocacao

muito grande) (40+ to

70 person-hours)

Abnormal (anormal) (70+ to

100 person-hours)

Absurd (absurdo) (100+

person-hours)

Effort to code in html

(hh htmler)

Very small effort (alocacao

muito pequena) (0+ to

4 person-hours)

Small allocation (alocacao

pequena) (4+ to 9 person-

hours)

Reasonable effort (alocacao

razoavel) (9+ to 15 person-

hours)

Considerable effort (alocacao

consideravel) (15+ to

25 person-hours)

High effort (alocacao grande)

(25+ to 40 person-hours)

Very high effort (alocacao

muito grande) (40+ to

70 person-hours)

Abnormal (anormal) (70+ to

100 person-hours)

Absurd (absurdo) (100+

person-hours)

Effort working on animations

using an animation software

Effort business analyst

(hh analista)

Zero (zero) (0 person-hours)

Minimum effort (alocacao

minima) (0+ to 4 person-hours)

Effort small website (alocacao

site pequeno) (4+ to 9 person-

hours)

Effort medium website

(alocacao site medio) (9+ to

20 person-hours)

Maximum effort website

(alocacao maxima site) (20+ to

45 person-hours)

Maximum effort simple system

(alocacao maxima sistema

simples) (45+ to 60 person-

hours)

Maximum effort complex

system (alocacao maxima

sistema complexo) (60+ to

75 person-hours)

This company differentiates

between static Web

applications, which they call

websites, and Web applications

with part of the content

generated dynamically, which

they call a system

(continued)
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Table 12.2 (continued)

Factor Categories Description, observation

Effort to test the html

(hh testador html)

Typical effort (alocacao tı́pica)

(0+ to 4 person-hours)

High effort (alocacao grande)

(4+ person-hours)

Here to test means to check the

quality of the html that was

written

Effort to test the application

(hh testador desenvolvimento)

Zero (zero) (0 person-hours)

Minimum effort (alocacao

minima) (0+ to 4 person-hours)

Effort small website (alocacao

site pequeno) (4+ to 9 person-

hours)

Effort medium website

(alocacao site medio) (9+ to

20 person-hours)

Maximum effort website

(alocacao maxima site) (20+ to

45 person-hours)

Maximum effort simple system

(alocacao maxima sistema

simples) (45+ to 60 person-

hours)

Maximum effort complex

system (alocacao maxima

sistema complexo) (60+ to

75 person-hours)

Herein to test means to check

whether the application has

good quality (e.g., usability).

This company differentiates

between static Web

applications, which they call

websites, and Web applications

with part of the content

generated dynamically, which

they call a system

Effort designer (hh projetista) Very small effort (alocacao

muito pequena) (0+ to

8 person-hours)

Small effort (alocacao

pequena) (8+ to 16 person-

hours)

Maximum effort website

(alocacao maxima site) (16+ to

40 person-hours)

Effort very small system

(alocacao sistema muito

pequeno) (40+ to 80 person-

hours)

Effort small system (alocacao

sistema pequeno) (80+ to

120 person-hours)

Effort usual system (alocacao

sistema comum) (120+ to

240 person-hours)

Effort complex system

(alocacao sistema complexo)

(240+ person-hours)

This company differentiates

between static Web

applications, which they call

websites, and Web applications

with part of the content

generated dynamically, which

they call a system

Number of application

modules to link with legacy

code (num modulos com

integracao com legado)

Zero (zero) (0 person-hours)

Very small (muito pequeno)

(1 application module)

Small (pequeno) (2 application

Modules here represent the

code that embeds the business

logic. It complements the code

that is partially generated, and

(continued)
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Table 12.2 (continued)

Factor Categories Description, observation

modules)

Medium (medio) (3 application

modules)

Large (grande) (4 application

modules)

Very large (muito grande) (5+

application modules)

also includes the code that

manipulates the data stored on

a database

Number of application

modules of high complexity

(num modulos do sistema de

complexidade alta)

Zero (zero) (0 application

modules)

Very small (muito pequeno)

(1–2 application modules)

Small (pequeno) (3–4

application modules)

Medium (medio) (5–6

application modules)

Large (grande) (7–

8 application modules)

Very large (muito grande) (9–

10 application modules)

Modules here represent the

code that embeds the business

logic. It complements the code

that is partially generated, and

also includes the code that

manipulates the data stored on

a database

Number of application

modules of medium

complexity (num modulos do

sistema de complexidade

media)

Zero (zero) (0 person-hours)

Small (pequeno) (1–

2 application modules)

Unlikely (improvavel) (3–11

application modules)

Expected (normal) (12+

application modules)

Modules here represent the

code that embeds the business

logic. It complements the code

that is partially generated, and

also includes the code that

manipulates the data stored on

a database

Number of dynamic features of

low complexity (num itens

dinamicos de complexidade

simples)

Zero (zero) (0 dynamic

features)

Very small (muito pequeno)

(1–2 dynamic features)

Small (pequeno) (3–5 dynamic

features)

Medium (medio) (6–8 dynamic

features)

High (grande) (9–11 dynamic

features)

Very high (muito grande) (12+

dynamic features)

A dynamic feature represents

any sort of animation that is

provided in the application

(e.g. flash animation)

Number of dynamic features of

high complexity (num itens

dinamicos de complexidade

alta)

Zero (zero) (0 dynamic

features)

Very small (muito pequeno)

(1–2 dynamic features)

Small (pequeno) (3–5 dynamic

features)

Medium (medio) (6–8 dynamic

features)

High (grande) (9–11 dynamic

features)

Very high (muito grande) (12+

dynamic features)

(continued)
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Table 12.2 (continued)

Factor Categories Description, observation

Amount of extra content

(quantidade de conteudo extra)

Zero (zero) (0 extra pages)

Large (grande) (0+ to 4 extra

pages)

Very large (muito grande) (5–6

extra pages)

Absurd (absurdo) (7+ extra

pages)

Content herein represents

pages of text

Number of static features of

high complexity (num itens

estaticos de complexidade alta)

Zero (zero) (0 static features)

Very small (muito pequeno)

(1–2 static features)

Small (pequeno) (3–5 static

features)

Medium (medio) (6–8 static

features)

High (grande) (9–11 static

features)

Very high (muito grande) (12+

static features)

Features that do not present any

animation (e.g., photo album,

images)

Number of static features of

low complexity (num itens

estaticos de complexidade

baixa)

Zero (zero) (0 static features)

Very small (muito pequeno)

(1–5 static features)

Small (pequeno) (6–9 static

features)

Medium (medio) (10–25 static

features)

High (grande) (26–30 static

features)

Very high (muito grande) (31+

static features)

Features that do not present any

animation (e.g., photo album,

images)

Number of languages (num

idiomas)

1

2 & 3

4

Effort to implement the

application (hh desenvolvedor)

Zero (zero) (0 person-hours)

Very small effort (alocacao

muito pequena) (0+ to

12 person-hours)

Small effort (alocacao

pequena) (12+ to 24 person-

hours)

Effort small website (alocacao

site pequeno) (24+ to

60 person-hours)

Effort medium website

(alocacao site medio) (60+ to

130 person-hours)

Maximum effort website

(alocacao maxima site) (130+

to 300 person-hours)

Maximum effort simple system

(alocacao maxima sistema

This company differentiates

between static Web

applications, which they call

websites, and Web applications

with part of the content

generated dynamically, which

they call a system

(continued)
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it was also necessary to use data from past projects, for which total effort was

known, in order to check the model’s calibration (Fig. 12.5).

A validation set containing data on nine projects was used. The DE selected a

range of projects presenting different sizes and levels of complexity, where all

nine projects were representative of the types of projects developed by the Web

company. For each project, evidence was entered in the BN model (an example is

given in Fig. 12.6, where evidence is characterised by dark grey factors with

probabilities equal to 100 % (1. . .)), and the effort range corresponding to the

highest probability provided for “total development effort” was compared to that

project’s actual effort. For example, in Fig. 12.6, this would correspond to “total

development effort”¼ small (alocacao pequena). The company had also defined the

range of effort values associated with each of the categories used to measure “total

development effort”. In the case of the company described herein, small effort

corresponded to 33+ to 60 person-hours.

Whenever actual effort did not fall within the effort range associated with the

category with the highest probability, there was a mismatch; this meant that

some probabilities needed to be adjusted. Within the context of this work, five

recalibrations were needed.

Whenever probabilities were adjusted, we re-entered the evidence for each of the

projects in the validation set that had already been used in the validation step to

ensure that the calibration already carried out was not affected. This was done to

ensure that each calibration would always be an improvement upon the previous

one. Once all nine projects were used to calibrate the model, the domain expert

assumed that the validation step was complete.

This BNmodel has been in production since July 2011 and has been successfully

used to estimate effort for numerous projects. The domain expert uses solely the

model to obtain effort estimates, rather than to combine their tacit knowledge of

previous projects with the model’s proposed effort estimate.

Table 12.2 (continued)

Factor Categories Description, observation

simples) (300+ to 400 person-

hours)

Maximum allocation complex

system (alocacao maxima

sistema complexo) (400+ to

500 person-hours)

Effort in project management

(hh gerencia projetos)

10 (1 month) (1 mes)

20 (2 months) (2 meses)

30 (3 months) (3 meses)

40 (4 months) (4 meses)

50 (5 months) (5 meses)

60 (6 months) (6 meses)

80 (complex projects) (projetos

complexos)

10 h for each month for which a

project lasts
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Conclusions

This chapter has presented a case study where a Bayesian model for Web effort

estimation was built using solely knowledge of one domain expert from a well-

established Web company in Rio de Janeiro, Brazil. This model was developed

using the expert-based knowledge engineering for Bayesian networks process

(Fig. 12.1).

Each session with the DE lasted for no longer than 3 h. The final Bayesian

network model was calibrated using data on nine past projects. These projects

represented typical projects developed by the company, and believed by the

expert to provide enough data for model calibration.

Since the model’s adoption, it has been successfully used to provide effort

quotes for the new projects managed by the company. The entire process used to

build and validate the Bayesian network model took 120 person-hours.

The elicitation process enables experts to think deeply about their effort

estimation process and the factors taken into account during that process,

which in itself is already advantageous to a company. This has been pointed

out to us not only by the domain expert whose model is presented herein, but also

by other companies with which we worked on model elicitations.
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Ways in Which to Use Bayesian Network
Models Within a Company 13

Introduction

This book has detailed in Chaps. 7–12 how six different expert-based effort

estimation BN models were built for several software companies in New Zealand

and Brazil. Each of these companies employed their BN models in different ways,

thus providing a wide range of scenarios of use that, in our view, can also be useful

to other companies that wish to build and employ such models. This chapter

therefore presents suggestions of how such estimation models can be employed,

which are based on the scenarios implemented by the participating companies. Note

that our suggestions are based on post-mortem meetings with the companies.

Using BNs as Part of a Wider Strategy for a Learning Organisation

Once a BNmodel has been built and validated, it is important that it does not remain

within the boundaries of just a single development team and project manager

(assuming the company has several development teams and project managers).

Our anecdotal evidence from post-mortem interviews with some of the

companies with whom we collaborated building such models provided us with a

range of concrete and industry-informed choices that will be detailed next. We

believe that such suggestions can also be beneficial to other companies who are

willing to use such models effectively as part of wider learning organisation

strategies:

Process Improvement

A company can engage in improving their current effort estimation process using

the steps detailed next:

E. Mendes, Practitioner’s Knowledge Representation, DOI 10.1007/978-3-642-54157-5_13,
# Springer-Verlag Berlin Heidelberg 2014
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• Presenting a seminar to all developers and project managers who participate in

the development and management of the types of applications that were the

focus of the expert-based model built. One of the goals of this seminar is to

elaborate on the value that the entire company can gain from using such models.

We suggest that the seminar focuses on presenting and detailing the model and

various “what-if” scenarios based on their most recent projects for which effort

was estimated using the model. This provides concrete examples of how the

model is being used in the company. It is, in our view, also important to detail all

the factors and categories that were defined by the domain experts who

participated in building the model, such that all those attending the seminar

become familiar with the terminology.

• Once the seminar takes place, the documentation relating to the model (descrip-

tion of factors and how to use the model) should become available for all the

participants. The tool that is used to run the model and the model itself should

also be made available to all development teams, so they can all run “what-if”

scenarios using the model, as means for decision making relating to all effort

estimates that need to be prepared.

• The nomenclature that was defined in the model should also become a common

vocabulary for all teams, to be used whenever they need to discuss anything

relating to effort estimates. This is quite important as it guarantees the model’s

uptake by all relevant developers and managers. Note that the effort estimates

herein only relate to the types of applications and projects that were used as basis

for building the model.

• As developers and managers are using the model, it is important to obtain

feedback on its use, as it may need to be updated at some point. Those who

have participated in building the model should ideally be the ones engaged in

any model updates that take place.

Discussions with the Development Team(s)

Even if the company is small and most estimates are prepared by the company

owner and/or project manager, we suggest that developers be presented with the

model, its value, its detailed description and nomenclature, so a common vocabu-

lary can be used between developers and manager whenever discussions relating to

effort estimation take place.

Decision Making Between Project Managers

Project managers can use the model for decision making, where such discussions

can involve the more experienced managers who participated in the model building

process, and also more junior managers, who can not only participate in the

decisions and discussions, but who can also learn via an internalisation process

(explicit model driving changes to their tacit knowledge).
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Checks and Balances for Effort Estimates Provided by Contractors

The model can be used to check whether the effort estimates suggested by

contractors working on parts of a project are reasonable or not. This can be a

very useful approach as the model can even be presented to the contractors as part

of the discussion relating to their estimates (in case they have overestimated their

estimates a great deal).

Discussions with Clients

The model can be shown to clients as a way to provide them reassurance that the

effort estimates being put forward are not simply educated guesses. The effort

ranges associated with the highest probability for the development effort factor can

also be used in order to discuss different costs and also durations for delivering the

application.

Meetings with Clients

Project managers and/or requirements analysts can take the model to requirements

elicitation meetings and use it as a guide in order to obtain some of the evidence to

be entered in the model, so to get an effort estimate. Such an approach can be

effective and help make the elicitation meetings focused, in particular whenever

clients want quick cost estimates based on very short elicitation meetings.

Seminar to Other Branches and/or Events on Best Practices

The model can be shown to other departments, divisions or branches within the

same company as part of a wider strategy to use such a modelling approach to

improve effort estimates, and other aspects too (e.g., quality prediction). In addi-

tion, such a model, or experiences from using it, can also be presented at industry

events as examples of best practice.

Conclusion

This chapter has presented a few suggestions on how Bayesian network models

can be used by companies to improve their effort estimation processes. All the

suggestions given are based on post-mortem meetings with project managers

from companies with which we collaborated in building effort estimation

Bayesian network models.
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Conclusions 14

Introduction

A cornerstone of Web project management is effort estimation, the process by

which effort is forecasted and used as basis to predict costs and allocate resources

effectively, so enabling projects to be delivered on time and within budget. Effort

estimation is a very complex domain where the relationship between factors is

nondeterministic and has an inherently uncertain nature. For example, assuming

there is a relationship between development effort and an application’s size (e.g.,

number of Web pages, functionality), it is not necessarily true that increased effort

will lead to larger size. However, as effort increases so does the probability of

larger size. Effort estimation is a complex domain where corresponding decisions

and predictions require reasoning with uncertainty.

Within the context of Web effort estimation, numerous studies investigated

the use of effort prediction techniques. However, to date, only Mendes [1–6]

investigated the explicit inclusion and use of uncertainty, inherent to effort esti-

mation, into models for Web effort estimation. Mendes [1–3] built a hybrid

Bayesian network (BN) model (structure expert-driven and probabilities data-

driven), which presented significantly superior predictions than the mean- and

median-based effort [2], multivariate regression [1–3], case-based reasoning and

classification, and regression trees [3]. Mendes [4], and Mendes and Mosley [6]

extended their previous work by building respectively four and eight BN models

(combinations of hybrid and data-driven). These models were not optimised, as

previously done in Mendes [1–3], which might have been the reason why they

presented significantly worse accuracy than regression-based models. Finally,

Mendes et al. [7], and Mendes [5, 8, 9] describe case studies where an expert-

based Web effort estimation BN model was successfully built and used to estimate

effort for projects developed by Web companies in Auckland, New Zealand. This

chapter combines the experience and findings resulting from these four case studies,

plus another two (yet to be published), revisits the process employed to build and

validate the BN models, and discusses lessons learned.
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As presented in Chap. 6, a BN is a model that supports reasoning with uncer-

tainty due to the way in which it incorporates existing complex domain knowledge

[10]. It represents knowledge using two parts. The first, the qualitative part,

represents the structure of a BN as depicted by a directed acyclic graph (digraph)

(Fig. 14.1). The digraph’s nodes represent the relevant variables (factors) in the

domain being modelled, which can be of different types (e.g., observable or latent,

categorical). The digraph’s arcs represent the causal relationships between

variables, where relationships are quantified probabilistically. The second, the

quantitative part, associates a node conditional probability table (CPT) to each

node, its probability distribution. A parent node’s CPT describes the relative

probability of each state (value); a child node’s CPT describes the relative proba-

bility of each state conditional on every combination of states of its parents (e.g., in

Fig. 14.1, the relative probability of total effort (TE) being “low” conditional on

size (new Web pages) (SNWP) being “low” is 0.8). Each column in a CPT

represents a conditional probability distribution and therefore its values sum up to

1 (or 100, depending on how this is set when entering the probabilities in the CPTs)

[10]. Once a BN is specified, evidence (e.g., values) can be entered into any node,

and probabilities for the remaining nodes are automatically calculated using Bayes’

rule [11]. Therefore BNs can be used for different types of reasoning, such as

predictive and “what-if” analyses to investigate the impact that changes on some

nodes have on others [12].

Within the context of Web effort estimation there are issues with building data-

driven or hybrid Bayesian models, as follows:

1. Any dataset used to build a BN model should be large enough to provide

sufficient data capturing all (or most) relevant combinations of states amongst

variables such that probabilities can be learnt from data, rather than elicited

manually. Under such circumstances, it is very unlikely that the dataset would

contain project data volunteered by only a single company (single-company

dataset). As far as we know, the largest dataset of Web projects available is the

Tukutuku dataset (195 projects) [13]. This dataset has been used to build data-

driven and hybrid BN models; however, results have not been encouraging

overall, and we believe one of the reasons is due to the small size of this dataset.

CPT for node size (new Web pages) 
Low 0.2

Medium 0.3
High 0.5

CPT for node total effort (TE) 
Size (new Web pages) Low Medium High

Low 0.8 0.2 0.1
Medium 0.1 0.6 0.2

High 0.1 0.2 0.7

Fig. 14.1 Example of a BN

model and two CPTs
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2. Even when a large dataset is available, the next issue relates to the set of

variables part of the dataset. It is unlikely that the variables identified represent

all the factors within a given domain (e.g., Web effort estimation) that are

important for companies that are to use the data-driven or hybrid model created

using this dataset. This was the case with the Tukutuku dataset, even though the

selection of which variables to use had been informed by two surveys [13]. How-

ever, one could argue that if the model being created is hybrid, then new

variables (factors) can be added to, and existing variables can be removed

from the model. The problem is that every new variable added to the model

represents a set of probabilities that need to be elicited from scratch, which may

be a hugely time consuming task.

3. Different structure and probability learning algorithms can lead to different

prediction accuracy [6]; therefore one may need to use different models and

compare their accuracy, which may also be a very time consuming task.

4. When using a hybrid model, the BN’s structure should ideally be jointly elicited

by more than one domain expert, preferably from more than one company;

otherwise the model built may not be general enough to cater for a wide range

of companies [6]. There are situations, however, where it is not feasible to have

several experts from different companies cooperatively working on a single BN

structure. One such situation is when the companies involved are all consulting

companies potentially sharing the same market. This was the case within the

context of this research.

5. Ideally the probabilities used by the data-driven or hybrid models should be

revisited by at least one domain expert, once they have been automatically

learned using the learning algorithms available in BN tools. However,

depending on the complexity of the BN model, this may represent having to

check thousands of probabilities, which may not be feasible. One way to alle-

viate this problem is to add additional factors to the BN model in order to reduce

the number of causal relationships reaching child nodes; however, all probabi-

lities for the additional factors would still need to be elicited from domain

experts.

6. The choice of variable discretisation, structure learning algorithms, parameter

estimation algorithms and the number of categories used in the discretisation all

affect the accuracy of the results, and there are no clear-cut guidelines on what

would be the best choice to employ. It may simply be dependent on the dataset

being used, the amount of data available, and trial and error to find the best

solution [6].

Therefore, given the abovementioned constraints, as part of two government-

funded projects on using Bayesian networks toWeb effort estimation (New Zealand

and Brazilian governments), several expert-based company-specific Web effort BN

models were built and validated, with the participation of five Web companies in

New Zealand, and one company in Brazil. The development and successful deploy-

ment of these six models is the subject and contribution of this book.
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Note that we are not suggesting that data-driven and hybrid BN models should

not be used. On the contrary, they have been successfully employed in numerous

domains [14]; however, the specific domain context of this paper—that of Web

effort estimation, provides other challenges (described above) that lead to the

development of solely expert-driven BN models.

We would also like to point out that we have explicitly emphasised that the

models focus on Web effort estimation because, in our view, Web and software

development differ in a number of areas, such as: application characteristics,

primary technologies used, approach to quality delivered, development process

drivers, availability of the application, customers (stakeholders), update rate (main-

tenance cycles), people involved in development, architecture and network,

disciplines involved, legal, social, and ethical issues, and information structuring

and design. A detailed discussion on this issue is provided in [15]. However, despite

the differences between Web and software development, we believe that our

contribution goes beyond the area of Web engineering, given that the process

presented herein can also be used to build BN models for any IT company that

estimates development effort for their projects.

General Process Employed to Build BNs

As detailed in Chap. 6, the BNs that are the focus of this book were built and

validated using an adaptation of the expert-based knowledge engineering of Bayesian

networks (EKEBN) process proposed in [14] (Fig. 14.2). Within the context of this

work the author was the knowledge engineer (KE), and Web project managers from

several well-established Web companies in either New Zealand or Brazil were the

domain experts (DEs).

The three main steps within the adapted KEBN process are the structure build-

ing, uncertainty quantification, and model validation. This process iterates over

these steps until a complete BN is built and validated. Each of these three steps is

detailed next, and is presented in Fig. 14.2.

Structure Building This step represents the qualitative component of a BN, which

results in a graphical structure comprised of, in our case, the factors (nodes,

variables) and causal relationships identified as fundamental for effort estimation

of Web projects. In addition to identifying variables and causal relationships, this

step also comprises the identification of the states (values) that each variable should

take, and if they are discrete or continuous. In practice, currently available BN tools

require that continuous variables be discretised by converting them into multi-

nomial variables, which is also the case with the BN software used in this study.

The BN’s structure is refined through an iterative process. This structure construc-

tion process has been validated in previous studies [12, 14, 16–18] and uses the

principles of problem solving employed in data modelling and software develop-

ment [19]. As will be detailed later in this chapter, existing literature in Web effort

estimation, and knowledge from the DEs were employed to elicit the Web effort
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Structure Building

Uncertainty Quantification

Identify
Relationships

Yes

No

Yes

Begin

Model Validation

Identify 
Factors
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Further 
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No

No

Yes

Accept?

Domain expert
Model 

Walkthrough

Data-driven
Predictive 
Accuracy

Accept?

Expert 
Elicitation

Automated 
Learning

Next 
Stage

Fig. 14.2 EKEBN process
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BNs’ structures. Throughout this step the KE also evaluates the structure of the BN,

done in two stages. The first entails checking whether variables and their values

have a clear meaning, all relevant variables have been included, variables are

named conveniently, all states are appropriate (exhaustive and exclusive) and

includes a check for any states that can be combined. The second stage entails

reviewing the BN’s graph structure (causal structure) to ensure that any identified

d-separation dependencies comply with the types of variables used and causality

assumptions. D-separation dependencies are used to identify variables influenced

by evidence coming from other variables in the BN [10, 11]. Once the BN structure

is assumed to be close to final, the KE may still need to optimise this structure to

reduce the number of probabilities that need to be elicited or learnt for the network.

If optimisation is needed, techniques that change the causal structure (e.g., divorc-

ing [10]) are employed.

Uncertainty Quantification This step represents the quantitative component of a

BN, where conditional probabilities corresponding to the quantification of the

relationships between variables [10, 11] are obtained. Such probabilities can be

attained via expert elicitation, automatically from data, from existing literature, or

using a combination of these. When probabilities are elicited from scratch, or even

if they only need to be revisited, this step can be very time consuming. In order to

minimise the number of probabilities to be elicited, some techniques have been

proposed in the literature [16, 20, 21]. In addition, we have also recently proposed a

technique to reduce the time needed for probability elicitation, to be discussed later.

Model Validation This step validates the BN resulting from the two previous steps,

and determines whether it is necessary to revisit any of those steps. Two different

validation methods are generally used—model walk-through and predictive accu-

racy. Model walk-through represents the use of real case scenarios that are prepared

and used by DEs to assess if the predictions provided by a BN correspond to the

predictions experts would have chosen based on their own expertise. Success is

measured as the frequency with which the BN’s predicted value for a target variable

(e.g., quality, effort) that has the highest probability corresponds to the experts’ own

assessment.

Predictive accuracy uses past data (e.g., past project data), rather than scenarios,

to obtain predictions. Data (evidence) is entered on the BN model, and success is

measured as the frequency with which the BN’s predicted value for a target variable

(e.g., quality, effort) showing the highest probability corresponds to the actual value

from past data.
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Process Used to Build the Expert-Based BNs

This subsection revisits the adapted EKEBN process (Fig. 14.2), detailing the tasks

carried out for each of the three main steps that form part of that process. Before

starting the elicitation of the Web effort BN models, the domain experts (DEs) from

all participating Web companies were presented with an overview of Bayesian

network models, and examples of “what-if” scenarios, using a made-up BN. This,

we believe, facilitated the entire process as the use of an example, and the brief

explanation of each of the steps in the KEBN process, provided a concrete under-

standing of what to expect. We also made it clear that the KE was a facilitator of the

process, and that the Web companies’ commitment was paramount for the success

of the collaboration. The effort required by each company to have their BN models

created and the characteristics of each model are detailed in Table 14.1.

The DEs who took part in the case studies were all project managers of well-

established Web companies in either Auckland (New Zealand), or Rio de Janeiro

(Brazil), each with at least 10 years of experience in project management. These

companies varied in their size, measured as the total number of employees.

In addition, all six companies were consulting companies and as such, developed

a wide range of Web applications, from static and multimedia-like to very large

e-commerce solutions. All six companies employed a wide range of Web techno-

logies, thus also enabling the development of Web 2.0 and Web 3.0 applications.

Finally, when approached, they were all looking at improving their current effort

estimates, and agreed to participate for two main reasons: (1) because the models

being created were single-company models geared towards their specific needs;

(2) and also because their expertise and participation were acknowledged as

essential to eliciting the models.

Detailed Structural Development and Parameter Estimation In order to identify

the fundamental factors that the DEs took into account when preparing a project

quote we used the set of variables from the Tukutuku dataset [13] as a starting point

(Table 14.2). We first sketched them out on a whiteboard, each one inside an oval

shape, and then explained what each one meant within the context of the Tukutuku

project. Our previous experience eliciting BNs in other domains (e.g., ecology,

resource estimation) suggested that it was best to start with a few factors (even if

they were not to be reused by the DE), rather than to use a “blank canvas” as a

starting point [7].

Within the context of the Tukutuku project, based on collected data, a new high-

effort feature/function and a high-effort adapted feature/function require respec-

tively at least 15 and 4 h to be developed by one experienced developer.

Once the Tukutuku variables had been sketched out and explained, the next step

was to remove all variables that were not relevant for the DEs, followed by adding

to the white board any additional variables (factors) suggested by them. This entire

process was documented using digital voice recorders and also text editors. We also

documented descriptions and rationale for each factor proposed by the DEs.

Process Used to Build the Expert-Based BNs 199



The factors proposed were indeed influenced by DEs’ hunches and insights;

however, DEs’ decisions and choices were also very much influenced by their

solid previous experience managing Web projects, and estimating development

effort.

Next, we identified the possible states that each factor would take. All states

were discrete. Whenever a factor represented a measure of effort (e.g., total effort),

we also documented the effort range corresponding to each state, to avoid any

Table 14.1 Characteristics of the Bayesian network models and number of DEs

Characteristics

Companies (country: New Zealand (NZ) or Brazil

(BR))

A

(NZ)

B

(NZ)

C

(NZ)

D

(NZ)

E

(NZ)

F

(BR)

Number of DEs 1 1 2 2 7/2 1

Number of employees ~5 ~5 ~20 ~30 ~100 ~30

Number of 3-h elicitation sessions 12 6 8 12 12/12 20

Total hours to elicit and validate model 36 18 24 36 98 60

Effort to elicit and validate model (person-

hours)

72 36 72 108 324 120

Number of factors 14 13 34 33 38 19

Number of relationships 18 12 41 60 50 37

Number of past projects used as validation set 22 8 11 22 22 9

Table 14.2 Tukutuku variables

Variable

name Description

Project data TypeProj Type of project (new or enhancement)

nLang Number of different development languages used

DocProc If project followed defined and documented process

ProImpr If project team involved in a process improvement programme

Metrics If project team part of a software metrics programme

DevTeam Size of a project’s development team

TeamExp Average team experience with the development language

(s) employed

Web
application

TotWP Total number of Web pages (new and reused)

NewWP Total number of new Web pages

TotImg Total number of images (new and reused)

NewImg Total number of new images created

Num_Fots Number of features reused without any adaptation

HFotsA Number of reused high-effort features/functions adapted

Hnew Number of new high-effort features/functions

TotHigh Total number of high-effort features/functions

Num_FotsA Number of reused low-effort features adapted

New Number of new low-effort features/functions

TotNHigh Total number of low-effort features/functions
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future ambiguity. For example, to one of the participating Web companies,

“very low” total effort corresponded to 4+ to 10 person-hours, etc. Once all states

were identified and thoroughly documented, it was time to elicit the cause and

effect relationships. As a starting point to this task we used a simple medical

example from [14] (Fig. 14.3).

This example clearly introduces one of the most important points to consider

when identifying cause and effect relationships—the timeline of events. If smoking

is to be a cause of lung cancer, it is important that the cause precedes the effect. This

may sound obvious with regard to the example used; however, it is our view that the

use of this simple example significantly helped the DEs understand the notion of

cause and effect, and how this related to Web effort estimation and the BNs being

elicited. Once the cause and effect relationships were identified, we worked on the

elicitation of probabilities to quantify each of the cause and effect relationships

previously identified. In all four cases, there was an iterative process between the

structural development and parameter elicitation steps.

Detailed Model Validation Both model walkthrough and predictive accuracy were

used to validate all six Web effort BN models, where the former was the first type of

validation to be employed in all cases. DEs used different scenarios to check

whether the node total_effort would provide the highest probability to the effort

state that corresponded to the DE’s own suggestion. However, it was also necessary

to use data from past projects, for which total effort was known, in order to check

the model’s calibration. Table 14.1 details the number of projects used by each

company as validation set. In all cases, DEs were asked to use as validation set a

range of projects presenting different sizes and levels of complexity, and being

representative of the types of projects developed by their Web company.

For each project in a validation set, evidence was entered in the BN model, and

the effort range corresponding to the highest probability provided for “total effort”

was compared to that project’s actual effort. Whenever actual effort did not fall

within the effort range associated with the category with the highest probability,

there was a mismatch; this meant that some probabilities needed to be adjusted.

In order to know which nodes to target first we used a sensitivity analysis report,

Smoking

Lung cancer

Cough X-Ray

Fig. 14.3 An example of a

cause and effect relationship
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which provided the effect of each parent node upon a given query node. Within our

context, the query node was “total effort”.

Whenever probabilities were adjusted, we re-entered the evidence for each of the

projects in the validation set that had already been used in the validation step to

ensure that the calibration already carried out had not been affected. This was done

to ensure that each calibration would always be an improvement upon the previous

one. Once all projects were used to calibrate a model, the DE(s) assumed that the

validation step was complete.

Each of the five New Zealand BNs has been in production for at least 18 months,

and the Brazilian BN has been in production since May 2011.

Common Patterns

All six models were BNs targeting at the estimation of effort for new projects;

therefore, we also looked at combining part of results from the six different case

studies focusing at two specific points: (1) to identify the total set of factors selected

by the Web companies; (2) to identify the amount of overlap between companies,

measured using a vote counting approach. In order to identify the total set of factors

using a common terminology, we employed a methodology that we have previously

proposed, which uses the contextual meaning of each factor in order to match

factors across different BN models. The details relating to this methodology are

outside the scope of this chapter and book; however, for those interested, they are

documented in [22].

Apart from total effort, which was identified by all participating companies,

there were three factors that were chosen by five of the six Web companies:

• Average project team experience with technology

• Effort to program features

• Project management effort

All five BN models showed these factors affecting total effort. This includes

project management, shown to be affected by other factors such as the number of

features to develop, or project risk.

The next set of factors selected by four Web companies were the following:

• Adaptation effort of features off the shelf

• Development effort of new features

• Effort to develop user interface

• Project risk factor

• Effort production testing (Table 14.3)

Except for project risk factor and average project team experience with techno-

logy, all the remaining factors related to the effort to accomplish certain tasks,

such as adapting or developing a new feature, testing and interface design. Note that

these factors are very much related to more dynamic Web applications, which offer
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Table 14.3 Common factors amongst companies

Factor Scale

No. of

companies

Total effort Person-hours 6

Average project team

experience with technology

Years 5

Effort to program features Person-hours 5

Project management effort Person-hours 5

Adaptation effort of features off

the shelf

Person-hours 4

Development effort of new

features

Person-hours 4

Effort to develop user interface Person-hours 4

Project risk factor UD (e.g., low, medium, high) 4

Effort production testing Person-hours 4

Client personality difficulty UD (e.g., low, medium, high; good, normal, bad) 3

Effort producing animations

using software

Person-hours 3

Effort to implement the Web

application

Person-hours 3

Effort to produce requirements

documentation

Person-hours 3

Effort to produce template

mock-up

Person-hours 3

Effort to produce Web pages Person-hours 3

How much technical planning UD (e.g., low, normal, high) 3

Number of features off the shelf Integer 3

Number of features off the shelf

adapted

Integer 3

Number of new Web pages Integer 3

Effort post-release testing Person-hours 3

Deployment time UD (e.g., short, normal) 3

Development team size Integer 3

Effort images manipulation Person-hours 3

Effort to integrate new and

reused features

Person-hours 3

Quality of project management UD (e.g., abysmal, low, normal, high) 3

Technical planning effort Person-hours 3

Level of integration between

features

UD (e.g., low, medium, high) 3

Effort to design content Person-hours 3

Effort programming animations Person-hours 2

Effort template look and feel Person-hours 2

Web company’s hosting control UD (e.g., client in-house, shared, dedicated,

in-house)

2

Is development process

documented?

Yes/no 2

(continued)

Common Patterns 203



Table 14.3 (continued)

Factor Scale

No. of

companies

Number of features requiring

high effort to create

Integer 2

Number of features requiring

low effort to create

Integer 2

Number of features requiring

medium effort to create

Integer 2

Number of key client’s people Integer 2

Number of reused Web pages Integer 2

Number of third parties

involved

Integer (e.g., subcontractors, printing, SMS

gateways, hosting providers, domain registration,

payment providers)

2

Quality of in-house existing

code

UD (e.g., low, normal, high) 2

Quality of third-party

deliverables

UD (e.g., low, high) 2

Type of project UD (e.g., new, enhancement) 2

Number of natural languages

used

Integer 2

Total third-party inexperience UD (e.g., low, medium, high) 2

Unknown technology risk UD (boolean) 2

Amount of text per application UD (e.g., low, medium, High) 1

Client application domain

literacy

UD (e.g., low, medium, High) 1

Client’s existing online

presence

UD (e.g., small, extensive, none) 1

Development process model UD (e.g., conventional, waterfall, extreme) 1

Number of images requiring

high effort to manipulate

Integer 1

Number of images requiring

low effort to manipulate

Integer 1

Number of images requiring

medium effort to manipulate

Integer 1

Number of Web page templates Integer 1

Level of usability UD (e.g., low, medium, high) 1

Similarity to previous projects UD (similarity of domain/functionality/design; e.g.,

low, medium, high)

1

Legacy browser support UD (e.g., yes, no) 1

Effort to implement

accessibility

Person-hours 1

Forum feature UD (Boolean) 1

User sign-up feature UD (Boolean) 1

Auction system feature UD (Boolean) 1

Types of listing features UD categories 1

(continued)
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a large set of features (this requiring more detailed testing). It is also interesting that

the effort to develop the user interface was also chosen by four of the six companies.

Nowadays, with the plethora of Web technologies and possibilities available,

good interface design and usability can also add very much so to a company’s

competitive advantage on the global market.

All six BNs presented several effort-related factors as predictors of total effort.

We believe that this occurred because all models also reflected the specific effort

estimation workflows employed by each of the participating companies.

Lessons Learned

The work that was detailed in Chaps. 7–12 has provided numerous lessons,

as follows:

First: Engaging with industry. At the start of this research, in order to reach out to

industry, we invited the local NZ IT industry to attend a seminar about Web effort

estimation and how to improve their estimates. The seminar provided an intro-

duction to using expert-based BNs, their value as estimation tools and their capabil-

ity for running “what-if” scenarios. Many of the participating companies saw the

immediate value in such an approach, in particular because it enabled the very close

and fundamental participation of in-house domain experts while building and

validating the company-specific model. Several companies signed up to collaborate.

Second: Time constraints. Depending on the complexity of the BN model, the

elicitation of probabilities can be very time consuming and last several months. At

the start of the research project we did not have the means to provide the automatic

generation of probabilities, so all probabilities had to be elicited manually based on

expert knowledge. This was a drawback, given that the time needed to develop a

full-fledged model became prohibitive to some companies. As a consequence, out

Table 14.3 (continued)

Factor Scale

No. of

companies

Gallery feature (number of

controls)

UD (number of widgets) 1

Shopping cart feature UD (Boolean) 1

Event calendar feature UD (Boolean) 1

Number of blogs Integer 1

Number of poll Integer 1

Mailing list feature UD (Boolean) 1

Effort to produce user

documentation

Person-hours 1

Tight schedule Boolean 1

Template design uniqueness UD (e.g., template standard, template high, custom-

medium, custom-high

1

Effort to implement the

template

Person-hours 1
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of the initial set of ten NZ participating companies, only five remained until the full

completion of their BN models. Motivated by this issue, we also investigated

mechanisms to enable the automatic generation of probability tables. A solution

was devised and used with two NZ companies that participated more recently in this

research. This solution comprised the comparison between different probability

generation algorithms and expert-driven probabilities. Therefore we needed first to

have completed the probability elicitation and validation of several BN models so

to have a basis for comparison with the proposed algorithms. A tool was

implemented as a result of this work; further details can be found in [23, 24].

Third: Value for a company. Except for the company in Brazil, the other

participating companies were contacted for post-mortem interviews. The main

points highlighted were the following:

• The elicitation process enabled experts to think deeply about their effort estima-

tion process and the factors taken into account during that process, which in itself

was considered advantageous to the companies. This has been pointed out to us

by all the DEs interviewed.

• Once a BN model was validated, DEs started to use their model not only for

obtaining better estimates than the ones previously prepared by subjective

means, but also sometimes as means to guide their requirements elicitation

meetings with prospective clients. They targeted their questions at obtaining

evidence to be entered in the model as the requirements meetings took place; by

doing so they basically had effort estimates that were practically ready to use for

costing the projects, even when meetings with clients had short durations. Such

change in approach proved to be extremely beneficial to the companies given

that all estimates provided using the models turned out to be more accurate on

average than the ones previously obtained by subjective means.

• Clients were not presented the models due to their complexity; however, by

entering evidence while a requirements elicitation meeting took place the DEs

were able to optimize their elicitation process by being focused and factor-

driven.

• One of the participating companies, the largest company in total number of

employees, and also the one that built the largest BN model, provided the

following feedback: The DEs who participated in the causal structure and

probabilities’ elicitation completely changed their approach to estimating effort.

These DEs presented the BN model to all of their development teams, and asked

that from that point onwards every estimate for any task should be based on the

factors that had been elicited. This means that an entire team started to use the

factors that have been elicited, as well as the BN model, as basis for their effort

and risk-estimation sessions. In addition, the DEs presented the model at a

meeting with other company branches, so to detail how the Auckland branch

was estimating effort and risk for their healthcare projects. The other branches

were so impressed, in particular the one from the US, that they increased the

number of healthcare software projects outsourced to the NZ branch, as they

recognised the benefits of using a model that represented factors and uncertainties.

Overall, such change in approach provided extremely beneficial to the company.
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All the companies remained positive and very satisfied with the results. We

believe that the successful development of these six Web effort BN models was

greatly influenced by the commitment of the participating companies, and also by

the DEs’ experience estimating effort.
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