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Preface

This book focuses on the dynamics of the ocean being influenced by the Earth’s rota-
tion and density stratification. Fluids in motion are a difficult subject of study that
traditionally requires advanced knowledge of analytical mathematics, in particularly
matrix algebra, differential and integral calculus, and complex analysis. Hence, this
fascinating field of science, known as geophysical fluid dynamics, is accessible only
to a limited number of students – those who either are naturally geniuses or those
who underwent tough years of intense University study.

Fluid processes are inherently complex and analytical solutions describing fluid
dynamics exist only in a few instances and only under highly simplified assump-
tions. Computer-based numerical models are required to approximate fluid behav-
ior in more realistic situations. Because of its complexity, universities tend to offer
subjects in computational modelling of fluid dynamics only at postgraduate level.
This is a pity given that fluid processes are truly fascinating in nature and given that
the oceans play a significant role in shaping life on Earth.

The approach I pursue in this book is different from the traditional approach.
Here, numerical models are gradually built up and refined with the objective to
illustrate and explore various dynamical processes occurring in fluids. Little mathe-
matical background knowledge is required, and the focus is placed where it should
be, namely on the physics inherent with fluids in motion. This book is a combination
of a textbook and a workbook including more than 20 computer-based exercises,
written in FORTRAN 95. Analytical solutions of certain fluid phenomena are used
as invaluable benchmarks for verification of these model simulations. In parallel to
this book, the reader is encouraged to consult textbooks by Cushman-Roisin (1994),
Pond and Pickard (1983) and Gill (1982).

The modelling-based approach has many advantages over the traditional analyt-
ical approach and, in the author’s belief, will open the field of geophysical fluid
dynamics to a much broader audience. Obvious advantages are that (a) complex
fluid processes such as barotropic or baroclinic instabilities, otherwise exclusively
reserved to experts, can be studied by a lay person, (b) instead of still pictures of
results, the reader can create animations of processes, and (c) the reader can adopt
computer codes, provided in this book, in a modified form for own independent
studies. Without doubt, learning is greatly enhanced by playing and this book pro-
vides the reader with the tools (or toys) to achieve this.
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vi Preface

Access to a standard computer is the only requirement for the completion of exer-
cises. All computer software suites required are open-source programs being freely
available for download from the Internet. This book is designed such as to keep
financial burden for the interested reader at a minimum. Background knowledge in
scientific computing is an advantage but not a requirement.

This book introduces the reader to conservation principles obeyed by fluids in
motion, the finite-difference formulation of these principles, and provides the reader
with a step-to-step guide to so-called finite-difference layer modelling. This book
details numerical methods including a flooding algorithm, semi-implicit treatments
of both the Coriolis force and bottom friction, and total-variation diminishing (TVD)
advection schemes that are absolute minimum requirements for adequate modelling
of fluid processes. Further simplification seems not possible, but there are cer-
tainly more accurate (but also mathematically more difficult) methods available.
A description of higher-order, more complex methods is beyond the scope of this
book.

I dedicate this book to my doctorfather Professor Jan O. Backhaus for his cre-
ativity and overwhelming enthusiasm which have been the prime motivation for me
to pursue a career in the field of physical oceanography. Many of Jan’s suggestions
and approaches to numerical modelling are implemented in this book.

Other invaluable sources of motivation behind this work are the classical books
of Henry Stommel, namely “An Introduction to the Coriolis Force” published in
1989 and co-authored by Dennis Moore, and “A View of the Sea”, published in
1987. Similar to the approach I take here, Stommel’s work underpinned theory with
computer programs, written in BASIC, that can be run by the reader for independent
studies.

Adelaide, Australia,
January 2009 J. Kämpf
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Chapter 1
Requirements

Abstract This chapter lists the software packages required including download
links. FORTRAN 95 will be employed as the main programming language. SciLab
will be used for graphical display and animations of results. Some useful tips are
given on how the reader should organise his/her work.

1.1 Software Overview

The following classes of software are required for this book:

• a suitable programming language including compiler to create executable pro-
grams of your codes

• an advanced scientific data visualisation program to produce graphs and anima-
tions

• a text editor to write model codes.

There are many excellent professional software packages on the market, but they
typically come at a fairly high cost. Luckily, there are so-called open-source pro-
grams, being free of charge and running on most computer platforms. Exercises of
this book are exclusively based on such open-source software. Hence, apart from
having access to a personal computer, there are no additional financial burdens that
could prevent the reader from becoming an experienced fluid modeller!

1.2 Programming Language and Compiler

Exercises of this book use the FORTRAN 95 programming language. Although this
language is relatively old (the first version was produced in 1957), it is still com-
monly used by the scientific community, in particular for large model applications
run on the world’s biggest computer platforms, so-called Supercomputers.

Model codes of this book have been tested with the FORTRAN compiler G95
(Version 0.91) that can be downloaded from:

http://www.g95.org/
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2 1 Requirements

Microsoft Windows Operation systems, for instance, this compiler is accessi-
ble from the Command Window, found under Start/All programs/Accessories. The
compiler is called by entering the command:

g95 filename.f95 <enter>

If free of errors, this produces an executable file of standard name “a.exe”, that,
once executed, does hopefully the tasks it was designed for. Consult the G95 user
manual (available from the above Web page) for more advanced compiler options.
Enter “dir” in the Command Prompt window for a list of all subfolders and files
contained in a folder. Enter “cd name” to move to another subdirectory. Use “cd ..”
to move back one level.

1.3 Data-Visualisation Software

To produce graphs and animations of model outputs, I can highly recommend the
open-source software SciLab that can be downloaded from:

http://www.scilab.org/

I have used Version 4.1 for Windows. This software is also available for GNU/
Linux platforms. The good thing about this software is that it comes for free and that
its commands resemble those in MATLAB, being used by many scientists. SciLab
also comes with a text editor that the reader can use to write FORTRAN codes.

Some of the SciLab commands used in the scripts of this book are obsolete in the
newest SciLab 5.x versions. Updated scripts can be requested from the author per
email.

SciLab allows for export of graphics to several formats including POSTSCRIPT
and GIF. The software suite ImageMagick, downloadable at:

http://www.imagemagick.org/

can be used to read, convert and write images in a variety of formats (about 100)
including GIF, JPEG, JPEG-2000, PDF, PhotoCD, PNG, Postscript, and TIFF.
ImageMagick can also be used to produce GIF animations that can be watched on
many internet browsers. An option is the open-source Firefox Web browser devel-
oped by MOZILLA found at:

http://www.mozilla.org/

1.4 Text Editor

Any basic text editor such as Notepad or Wordpad will do for the writing of
FORTRAN programs. The open-source editor VIM can be downloaded at:



1.6 Structure of this Book 3

http://www.vim.org/

SciLab has also a text editor that can also be used to write FORTRAN codes.

1.5 Organisation of Work

After installation of all software suites required, the reader should create a folder
called “EXERCISES” as an archive for all exercises that follow. During the progress
of work, a number of subfolders should be created within this folder each of
which refers to a certain exercise. All files belonging to a certain exercise (such
as FORTRAN 95 codes and SciLab scripts) should be kept in a single subfolder.

1.6 Structure of this Book

The book describes a variety of dynamical processes occurring in this ocean accom-
panied by practical exercises. During the course of progress, the level of complexity
of processes will increase and so will the length of numerical codes. Consequently,
the reader should study exercises in consecutive order. In order to improve the learn-
ing outcome, I strongly recommend that the reader attempts to write own model
codes from scratch. If this leads to unsatisfactory results, the reader is invited to
employ numerical codes that are supplied on the CD-ROM to this book.



Chapter 2
Motivation

Abstract This chapter introduces the reader to the “world” of numerical modelling
using the decay problem as a first benchmark. Discussed are finite differences,
explicit and implicit schemes, and conditions of consistency, accuracy, stability, and
efficiency. FORTRAN codes and SciLab scripts are used to create a first numerical
prediction model and graphical display of results.

2.1 The Decay Problem

2.1.1 The Problem

The so-called decay problem is chosen as a first example to demonstrate what
numerical modelling is. In mathematical terms, this problem can be expressed as:

dC

dt
= −κ · C (2.1)

where C is concentration of a substance, t is time, and κ (the Greek symbol “kappa”)
is a positive constant parameter. The d symbol refers to a change of a variable with
respect to some other parameter such as time as in the above equation.

2.1.2 Physical Interpretation

The term on the left-hand side of Eq. (2.1) refers to the temporal change of concen-
tration per time unit. The right-hand side specifies this temporal change. For κ = 0,
there will no change and C remains unchanged at its initial value. With κ �= 0, on the
other hand, the right-hand side is negative since concentration is always a positive
quantity. Accordingly, C will gradually decrease with time at a rate in proportion to
concentration itself at any time instance.

J. Kämpf, Ocean Modelling for Beginners,
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6 2 Motivation

In mathematics, Eq. (2.1) is termed a first-order ordinary differential equation
and, as it requires an initial value for C , it is also referred to as an initial-value
problem.

2.1.3 Example

Grandma used to keep a 10-litre carton of red wine in a storage room. I could not
resist and crept every night to this room to get myself 1 litre of wine. To avoid
grandma noticing the fast disappearance of the wine, each night, I topped up the car-
ton with tab water. However, I was caught soon or do you really think that grandma
would not notice changes in the wine’s taste and color owing to dilution with water?
Anyway, the reader can easily work out how the concentration of wine changed with
every day of my early-year drinking habit. All that needs to be done is to take away
10% of the wine concentration on a daily basis. The following table shows the result
of this.

Day Wine content (l) Wine concentration (%)

0 10 100
1 9.0 90.0
2 8.1 81.0
3 7.29 72.9
4 6.56 65.6
5 5.9 59.0
6 5.31 53.1
7 4.78 47.8
8 4.3 43.0
9 3.87 38.7

10 3.49 34.9
11 3.14 31.4
12 2.82 28.2
13 2.54 25.4
14 2.29 22.9
15 2.06 20.6
16 1.85 18.5
17 1.67 16.7
18 1.5 15.0
19 1.35 13.5
20 1.22 12.2
21 1.09 10.9
22 0.98 9.8

Figure 2.1 shows a graph of the outcome of this first numerical prediction model,
only using a piece of paper and a pen. As expected, there is a decrease of wine
content as the days go past. In fact, this decrease is approximately exponential.



2.1 The Decay Problem 7

Fig. 2.1 Evolution of wine content

2.1.4 How to Produce a Simple Graph with SciLab

This exercise explains how to use SciLab to produce Fig. 2.1.

Step1: Open a suitable text editor and insert and save the three rows of the
above table (without header) in a file called, for instance, “winethief.txt”.

Step 2: Fire up SciLab and change to the folder containing this file.
Step 3: Enter the following commands (each followed by <return>):

x=read(“winethief.txt”,-1,3);
plot(x(:,1),x(:,2));
xtitle(“ ”,“Time (days)”, “Wine content (litres)”,“ ”)

The “read” command imports data from the file. The parameter “−1” is used
if the number of rows is unknown. “3” means: read the first three columns,
“−1” does not work for columns. The above plot command plots values of
row 2 against those of row 1. The last line adds axis labels. The semicolon
“;” suppresses output to the SciLab command window.

Step 4: Change line width, font size, etc. in the graphics window by selecting
“Edit Figure Properties” in the “File” menu or by clicking “GED” in the
graphics window. The reader is encouraged to “play around” with all options
available.

Step 5: Export the graph using a suitable format. I often selected the PostScript
format and converted images into Portable Network Graphics files (PNG)
with ImageMagick.
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2.2 First Steps with Finite Differences

2.2.1 Finite Time Step and Time Level

With the use of a discrete time step Δt , we may formulate (2.1) as:

Cn+1 − Cn

Δt
= −κCn (2.2)

where the integer n refers to a certain time level. This time index must not be con-
fused with “to the power of”. Conventionally, n = 0 gives the concentration at start
time of your simulation, n = 1 refers to the concentration after one time step (of Δt
in duration), n = 2 refers to the concentration after two time steps, and so on.

2.2.2 Explicit Time-Forward Iteration

It is convenient to move the unknown variable in (2.2) to the left-hand side of the
equation and shuffle all known terms to the right-hand side. This gives:

Cn+1 = Cn − Δt · κ · Cn = (1 − Δt · κ) Cn (2.3)

where Cn=0 refers to the initial concentration that needs to be prescribed together
with values of κ and Δt . This iterative method uses values known at a certain time
level n to predict the value of C at the next time level n + 1 and is therefore called
explicit time-forward iteration.

2.2.3 Condition of Numerical Stability for Explicit Scheme

As can be seen from (2.3), with every time step, the concentration becomes dec-
imated by a certain fraction in an iterative manner. This fraction is given by the
product κ · Δt . It is at hand to request that this product be less than unity, other-
wise the predicted concentration would become negative, which would not make
sense. For κ · Δt > 2, the magnitude of concentration would even increase. The
corresponding condition:

Δt <
1

κ
(2.4)

is called a condition of numerical stability. Hence, the prediction of (2.3) is only sta-
ble when (2.4) is satisfied. Accordingly, the maximum time step that can be chosen
depends on the value of κ .
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2.2.4 Implicit Time-Forward Iteration

Alternatively, Eq. (2.1) can be formulated in finite-difference form as:

Cn+1 − Cn

Δt
= −κ · Cn+1 (2.5)

where the concentration on the right-hand side is evaluated at the next time level
n + 1. This approach might sound strange to some readers, but if we reorganize this
equation, we yield a clear separation of known and unknown terms of the form:

Cn+1 = Cn

(1 + Δt · κ)
(2.6)

The clear advantage of this implicit scheme over the explicit approach is that
it is numerically stable for any value of Δt . The denominator in the later equation
always exceeds unity, so that concentration gradually decreases with time (and never
changes sign).

2.2.5 Hybrid Schemes

One could also use a mix between the explicit and the implicit scheme, which can
be formulated as:

Cn+1 − Cn

Δt
= −α · κ · Cn+1 − (1 − α) κ · Cn (2.7)

where the weighting factor α (the Greek symbol “alpha”) has to be chosen from a
range between zero and unity. The choice of α = 1 gives the fully implicit scheme,
whereas α = 0 leads to the fully explicit scheme. With α = 0.5, we obtain a
so-called semi-implicit scheme.

2.2.6 Other Schemes

There are more advanced schemes such as the “Runge-Kutta scheme” or the
“Adams-Bashforth scheme”, not discussed here, that in addition to current and
future time level consider a number of sub-time steps. The accuracy and efficiency
of the prediction model can be significantly improved with such schemes.
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2.2.7 Condition of Consistency

The exact analytical solution of the decay problem (2.1) for an initial concentration
of Co is given by:

C(t) = Co exp(−κ · t) (2.8)

where “exp” is the exponential function. A numerical model is said to be consistent
if its finite-difference solution converges toward the solution of the governing dif-
ferential equation when the numerical time step (or grid size) is made vanishingly
small. This implies that the concentration predicted by our model should get the
closer to the true solution for a decrease of the time step Δt .

2.2.8 Condition of Accuracy

A certain error referred to as truncation error is made when using finite differences.
Round-off errors are another source of error, being related to the fact that computers
can represent numbers only with a finite number of digits. Both errors should stay
reasonably small over the duration of a simulation.

2.2.9 Condition of Efficiency

Large programs may require substantial computer space for data output and storage,
and completion of model runs may take a long time. Hence, model codes have to
be written in an efficient manner such that the task is completed within a reasonable
time span and without “stuffing up” the computer with enormous amounts of data.

2.2.10 How Model Codes Work

The compiler translates the FORTRAN 95 code line by line and from top to bottom.
This implies that parameters must be declared and specified before they can be
manipulated. Declaration means specification of the type of the parameter. There
are integers, real numbers, arrays, characters and logical parameters.

Specification means allocation of values to parameters. In principle, each line of a
computer code can only have a single unknown on the left-hand side of an equation,
such as “x = b + c”, where b and c have to be declared and assigned values farther
up in the code, and x has to be at least declared.
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2.2.11 The First FORTRAN Code

Write a first FORTRAN code that prints “Hello World” on the display. This is an
old tradition among modellers. The solution is the code:

PROGRAM first
write(6,∗)“Hello World”
END PROGRAM first

FORTRAN programs start with a PROGRAM name statement and finish with a
END PROGRAM name statement. My program is called “first”, but the reader is
free to choose a different name. Save this file as “first.f95”.

2.2.12 How to Compile and Run FORTRAN Codes

Open the Command Prompt window (on Windows systems this is found under
Start => All Programs => Accessories => Command Prompt) and move to the
folder containing your FORTRAN source file.

Step 1: Compile the program by entering the command:

g95 -o first.exe first.f95

where “-o” specifies the name of the executable program.
Step 2: Correct errors until the compiler does not return any error messages.
Step 3: If the compiling process was successful, the newly created file “first.exe”

can be executed by simply double-clicking its icon in a file window or by
entering “first” <return> in the Command Prompt window.

The result of this will be the display of “Hello World” in the Command Prompt
window. Congratulations!

2.2.13 A Quick Start to FORTRAN

All constants, parameters, variables and arrays have to declared before use. Hereby,
full numbers called “integer” (−3, 0, 1, 3, etc.) are distinguished from decimal num-
bers called “real” (1.2, 4.2, −5.23, etc.). Other options are logical expressions (true
or false) and text (characters). Constant parameters are declared at the beginning of
the code with:

INTEGER, PARAMETER :: nx = 11 ! horizontal dimension
INTEGER, PARAMETER :: nz = 5 ! vertical dimension
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REAL, PARAMETER :: G = 9.81 ! acceleration due to gravity
REAL, PARAMETER :: RHOREF = 1028.0 ! reference density
REAL, PARAMETER :: PI = 3.14159265359 ! pi

Text after a pronunciation mark is treated as a comment and ignored by the com-
piler. Although not required, comments are very useful aids to highlight the structure
of the program and as reminders for future uses. Parameters that are allowed to
change values during the program’s execution are declared with:

REAL :: wspeed ! wind speed
INTEGER :: k ! grid index
CHARACTER(3) :: txt

In this example, “txt” is a character with three letters. One-dimensional and two-
dimensional arrays are declared with:

REAL :: eta(0:nx+1) ! sea-level elevation
REAL :: w(0:nz+1,0:nx+1) ! vertical velocity

With nx=11 and nz = 5, for instance, “eta” obtains 11+2=13 so-far unassigned
elements: eta(0), eta(1), · · · ..., eta(11), eta(12), and “w” is a two-dimensional array
of 13 columns and 7 rows. After the declaration section, values can be assigned to
these arrays using DO loops such as:

DO k = 0,nx+1
IF(k > 50) THEN

eta(k) = 1.0
ELSE

eta(k) = 0.0
END IF

END DO

This DO-loop repeats certain calculations for the index “k” running from 0 at
steps of 1 to nx+1. If the reader wants to do it the other way around, the solution is:

DO k = nx+1,0,−1
IF(k > 50) THEN

eta(k) = 1.0
ELSE

eta(k) = 0.0
END IF

END DO

This example also includes an IF statement. Options are “>” (greater than), “<”
(less than), “==” (equal to), “>=” (greater or equal), “<=” (less or equal), and “/=”
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(not equal). If there is only one line in an IF-statement, the “ELSE” and closing
“END IF” statements can be dropped, such as in the following example:

DO k = nx+1,0,−1
eta(k) = 0.0
IF(k > 50) eta(k) = 1.0

END DO

Files for output can be opened with the statement:

OPEN(10, file = ‘Ex1a.txt’, form = ‘formatted’, status = ‘unknown’)

The first entry (10) is a reference unit number for subsequent WRITE or READ
statements. The “file” entry specifies the desired filename. The “form” entry spec-
ifies whether to have ASCII numbers or binary numbers as output. I chose ASCII
output. The status entry “unknown” implies new creation of a file if this does not
exist, otherwise an existing file will be overwritten. Be careful not to overwrite files
that might be needed in the future. Other status options are “new” or “old”.

Output of data is done via “WRITE” statements such as

WRITE(10,∗) G

where the unit number (10 here) refers to a file opened before, and the “*” symbol
creates a standard format. Note that the unit number 6 is reserved for output to the
screen as in our first FORTRAN code. Similarly, “READ(5,*)” reads input from the
keyboard. Several outputs at once can be produced with:

WRITE(10,∗) eta(10), eta(20), eta(30)

Doing this repeatedly, there will be three columns of data. Output of an entire
row of an array is done with:

WRITE(10,∗) (eta(k), k = 1,nx)

Files no longer needed for output should be closed with the statement:

CLOSE(10)

2.3 Exercise 1: The Decay Problem

2.3.1 Aim

The aim of this exercise is to predict the decay of a substance according to (2.1)
using a FORTRAN code based on either the explicit or the implicit scheme.
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2.3.2 Task Description

Consider a substance that has an initial concentration of 100% and use a decay
constant of κ = 0.0001 per second (or κ = 10−4 s−1). Choose different values of
the time step to verify whether the prediction becomes more accurate for a finer
temporal resolution. Explore both the explicit and the implicit scheme.

2.3.3 Instructions

Use any text editor to write the FORTRAN code and save the file under the name
“Exercise1.f95”. Blanks or other unusual symbols are not permitted here. Other
filenames may be used, but the reader should make sure that the filename is not
too long and that it has something to do with the exercise. The file extension “f95”
identifies this file as a FORTRAN 95 source code.

2.3.4 Sample Code

The Fortran code for this exercise, called “winethief.f95” can be found in the folder
“Exercise 1” on the CD-ROM accompanying this book.

2.3.5 Results

As a result of the model run, the data output files “output1.txt” or “output2.txt”
should appear in the file list. The MODE parameter in the code switches between
the explicit and the implicit schemes. To avoid the recompiling procedure, values
for “mode” could be alternatively read from the keyboard with “READ(5,*) mode”.

Figure 2.2 shows model results for a time step of Δt = 3600 s using either
the explicit scheme (2.3) or the implicit scheme (2.6). As can be seen, the explicit
scheme slightly underestimates the correct concentration, whereas the implicit
scheme slightly overestimates concentration. A semi-implicit approach would prob-
ably give the best solution, but this remains to be verified by the reader.

With a time step of 3600 s, completion of the model run took only a few seconds
on my computer. The accuracy of the prediction can be substantially improved with
choice of a much finer temporal resolution with a time step of, say, Δt = 1s , which
the reader can easily verify.

2.3.6 Additional Exercise for the Reader

Repeat this exercise with use of the hybrid scheme (2.7) and explore the solutions
for α = 0.25, 0.5 and 0.75.
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Fig. 2.2 Evolution of concentration (%) as a function of time. The upper and lower curves show
results using the implicit and the explicit schemes, respectively. The middle curve displays the
analytical solution according to Eq. 2.8

2.4 Detection and Elimination of Errors

2.4.1 Error Messages

If a FORTRAN code contains errors, the compiler will return one or more error
messages. There are a few important steps to follow for successful detection and
elimination of errors.

2.4.2 Correct Errors One by One

Only correct one error at a time with reference to the first error message. Often other
errors are just followers of the first one. Similarly, an important rule is that the code
should be compiled after each single alteration made. It can be tedious to locate
errors after a dozen changes have been implemented without verification. Errors are
often the result of a lack of concentration.

2.4.3 Ignore Error Message Text

Occasionally, the compiler’s error messages are confusing and misleading. There-
fore, I recommend to ignore message text and rather focus on the line number this
message refers to.
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2.4.4 Frequent Errors

Errors are frequently associated with misspelling such as “0” (zero) instead of the
letter “o” or vice versa, or mistaking “1” (one) as the letter “l”. Often an ENDDO,
ENDIF or a bracket is just missing.

2.4.5 Trust Your Compiler

Important is to always trust the compiler. If there is an error message then there is an
error in your code. The error message text might be misleading, but the presence of
at least one error is a fact. In a state of frustration after endless unsuccessful search
after errors, the reader should take a good rest, perhaps a walk or a sleep. Breaks are
always important!

2.4.6 Display Warnings

Warnings can be displayed with addition of “-Wall” (display all warnings) in the
compiling command. For Exercise 1, for example, this command reads:

g95 -Wall -o winethief.exe winethief.f95

Warning messages should be explored for potential errors in the code.



Chapter 3
Basics of Geophysical Fluid Dynamics

Abstract This chapter introduces the reader to scalars and vectors, Newton’s laws
of motion, waves and steady-state flows, the buoyancy force, the Coriolis force, a
number of conservation principles, turbulence, and, finally, to the Navier–Stokes
equations of fluid motion. Practical exercises focus on the interference of waves,
movement of a buoyant object in a stratified water column, and movement of objects
under the sole influence of the Coriolis force.

3.1 Units

The International System of Units will be used in most instances. Distances are
expressed in metres (m), time lapse in seconds (s), and mass in kilograms (kg).
For convenience, temperatures are expressed in degrees Celsius (◦C), which is the
thermodynamic temperature in Kelvin (K) plus a constant of 273.16. Time lapse is
translated into more convenient units such as minutes, hours, days, weeks, months,
years, etc. Other units can be derived from the above base units. For example, vol-
ume is expressed in cubic metres (m3). Often, we also use symbols for multipliers
such as:

micro (μ) = 10−6 = 0.00001
milli (m) = 10−3 = 0.001
centi (c) = 10−2 = 0.01
kilo (k) = 103 = 1000

3.2 Scalars and Vectors

3.2.1 Difference Between Scalars and Vectors

A scalar is a physical quantity without directional information. Temperature and
pressure are examples of this. A vector, on the other hand, carries information of
both magnitude and direction. Velocity is an example of this. A car moves at a
certain speed into a certain direction.

J. Kämpf, Ocean Modelling for Beginners,
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3.2.2 Contours and Contour Interval

If a scalar varies spatially, this implies that it exhibits certain direction-dependent
gradients. Gradients in the spatial distribution of a scalar therefore constitutes a
vector field. To avoid confusion, consider the following example: A mountain can
be characterised in terms of elevation of the ground above sea level. A map of this
mountain can be produced by connecting points of the same elevation. These lines
are called contours and the interval chosen between adjacent contour lines is called
contour interval (Fig. 3.1). If one walks along elevation contours, there will be no
change in elevation and it is impossible to climb or descent the mountain. In order to
do so, contours have to be crossed at a certain angle. The steepest ascent or descent
will be the one perpendicular to contour lines. The associated gradient, called bot-
tom inclination or bottom slope, depends on direction and it is therefore a vector.
The mountain is steepest where the spacing between contour lines is the closest.

Fig. 3.1 Contours of elevation (m) above sea level of a mountain. The contour interval chosen is
500 m. Where are the steepest parts of the mountain? Can you climb the mountain by following a
contour line?

3.3 Location and Velocity

3.3.1 Location and Distance

For horizontal distances of up to 100 km, or so, the spherical shape of the Earth’s
surface can be ignored and a plane rectangular coordinate system can be used.
Fig. 3.2 shows such a so-called Cartesian coordinate system. The z-axis points
upward and the coordinate surface at z = 0 m defines the (undisturbed) sea surface.
With reference to the point-of-origin, defined by the coordinates x = 0, y = 0, and
z = 0, any location can now by specified.

For convenience, specific locations are written in the form of (x1, y1, z1). The
location (10 m, 23 m, −10 m) is an example, where z = −10 m refers to a positive
depth of 10 m below the undisturbed sea surface. The distance of a certain location
from the point-of-origin is given by:
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Fig. 3.2 The Cartesian coordinate system

D1 =
√

x2
1 + y2

1 + z2
1

The nice thing about vectors is that they can easily be appended by adding up the
individual vector components. For instance, the sum of the location vectors (0, 5 m,
−3 m) and (−2 m, −5 m, −2 m) gives a new location vector (−2 m, 0, −5 m).
The distance between two locations (x1, y1, z1) and (x2, y2, z2) is given by:

D2−1 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

In summary, location is specified by a vector that points from the point-of-origin
to a certain spot in space. The magnitude of this vector is distance.

3.3.2 Calculation of Distances with SciLab

In the following example, we calculate the distance of the location (4.1 m, 2.6 m,
−5.3 m) from the point-of-origin. Start SciLab and enter the following commands
in the main control window:

x=4.1; y=2.6; z=−5.3; d1 = sqrt(x*x+y*y+z*z)

The square-root function is called “sqrt”. Since no semicolon is used in the last line,
the result of the calculation appears on the screen. The result (in metres) is:

d1 = 7.1874891

3.3.3 Velocity

Velocity is often expressed in terms of speed and direction of a solid or fluid parcel.
Wind forecasts in local newspapers are an example of this. Instead of this, we will
express velocity in component form in the x-, y- and z-directions. For convenience,
we write this as (u, v, w). Since velocity is change of location of a moving parcel
with time, we can also write:
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u = dx∗

dt

v = dy∗

dt
(3.1)

w = dz∗

dt

where (x∗, y∗, z∗) is the location of a parcel. Speed is the magnitude of velocity and
is given by:

Speed =
√

u2 + v2 + w2

For example (u, v, w) = (0.0, −10.0 m/s, 0.0) refers to a parcel moving at a
speed of 10 m/s into the negative y-direction; whereas (u,v,w) = (2 m/s, 2 m/s, 0.0)
describes movement at a speed of

√
8 ≈ 2.83 m/s diagonally across the x-y plane.

3.4 Types of Motion

3.4.1 Steady-State Motions

A steady state is a situation in which currents do not show any time variations.
This implies that there is a balance between all forces involved. Considerations of
steady-state force balances are useful tools in geophysical fluid dynamics, leading
to important relations such as the geostrophic balance, the thermal-wind relations or
the Sverdrup balance, to be discussed below.

3.4.2 Waves

Waves are another type of motion being oscillations in time and space. Individual
waves can be classified in terms of a period T (don not confuse this with temper-
ature) and a wavelength λ (using the Greek symbol “lambda”). The wave period
is the time lapse between successive peaks of a wave, whereas the wavelength is
the distance between these peaks. One could measure the wave period with a stop
watch, whereas the wavelength can be derived from instant photographs of the wave
shape.

3.4.3 The Sinusoidal Waveform

It is convenient to use the sinusoidal function to describe waves in a mathematical
manner. This function is based on radians and a complete cycle relates to a change of
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its argument by 2π (the Greek symbol “pi”), where π is about 3.1415. Accordingly,
we can express a wave travelling in the x-direction as:

A(x, t) = Ao sin

[
2π

(
x

λ
− t

T

)]
(3.2)

where A is a property experiencing oscillations such as sea level, Ao is the constant
wave amplitude, being half the difference between maximum and minimum values
of A, λ is wavelength, and T is wave period. This wave displays sinusoidal varia-
tions both in time and space. Equation (3.2) describes a wave void of variation in the
y direction. Accordingly, wavefronts (crests and troughs) are parallel to each other.
A wave like this is called a plane wave.

3.5 Visualisation of a Wave Using SciLab

3.5.1 A Simple Wave Made of Vertically Moving Bars

In order to visualise a wave, we consider a number of vertical bars sitting in a row
next to each other. Bars rise or sink in a systematic pattern. The first bar gives the
rhythm by moving up and down in a sinusoidal fashion. Any neighboring bar does
the same but slightly delayed in time. Whenever a bar is above a certain horizon, it
turns blue. When it is below this horizon, it turns red.

Figure 3.3 shows a snapshot of this wave. There is no lateral motion of any of the
bars, but the pattern seems to move toward the right. The speed at which the pattern
moves is called phase speed of a wave.

3.5.2 Sample Script

The SciLab script for this wave demonstration, called “WaveSim.sce”, can be found
in the folder “Miscellaneous” on the CD-ROM of this book. Before using this script,
however, the reader should read the following brief introduction to SciLab scripting.

Fig. 3.3 Snapshot of organised wave motions by bars
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3.5.3 The First SciLab Script

The following SciLab script displays the traditional message “Hello World” on the
display.

// My first SciLab script
printf(“Hello world”);

The text editor within SciLab can be used to write this script, but make sure
that file has the extension “.sce”. Once opened in SciLab, the script is executed by
clicking on “Execute” of the top menu of the editor window. Alternatively, SciLab
scripts can be run by entering “exec(‘c:\Folder\filename.sce’)” in the SciLab com-
mand window with reference to name and location of your script.

3.5.4 A Quick-Start to SciLab

SciLab programming commands are similar to those in FORTRAN, but there are
some differences that are outlined in the following. In contrast to FORTRAN,
SciLab programming is case sensitive. This implies that internal functions have to be
called in lower case. FORTRAN “PROGRAM” and “END PROGRAM” statements
are not needed in SciLab, and “ENDDO” and “ENDIF” statements are just called
“end” statements in SciLab. Repetitive loops are called “for” loops in SciLab and
an example is:

for i = 1:30; a(i) = i; end; // a simple “for” loop

Text after two forward slashes (//) are treated as comments. Values are allocated
to arrays in two different ways. The following statement, for instance, defines a
one-dimensional array with 30 elements each of a value of 10.0:

b(1:30) = 10.0;

Another option is the statement:

c = (0:1:30);

which produces a row vector of 31 elements with values c(0) = 0, c(1) = 1, . . .,
c(30) = 30. A column vector can be produced by adding an apostrophe; that is,

c = (0:1:30)’;

Without use of a semicolon, the result will be displayed in the SciLab command
window. If statements in SciLab are written as:

if g > 0; f = sqrt(g); end;
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SciLab can be used to write short simulation codes. Larger model codes, how-
ever, would take too long to run in SciLab and the preference in these cases should
be FORTRAN. Specific SciLab plotting commands are explained in due course of
this book.

3.5.5 The First GIF Animation

To produce a GIF animation watchable in most Web browsers, each picture frame
produced in the SciLab script needs to be converted to an individual numbered GIF
image. To this end, the script needs two additions. The following line needs to be
added directly after the start of the animation loop:

scf(0); //set ID for graphic window

This allocates an identification number (0 here) to the graphics window. Within
the animation loop, content of the graphics window can then be converted to a GIF
file with:

if n < 10 then // n is the loop counter
xs2gif(0,‘MyFirst100’+string(n)+‘.gif’)

else
if n < 100 then

xs2gif(0,‘MyFirst10’+string(n)+‘.gif’)
else

xs2gif(0,‘MyFirst1’+string(n)+‘.gif’)
end

end

The “string()” command converts a number into a string. Several string variables
can be combined via simple addition. The “xs2gif(id,‘name’)” command saves the
content of the graphics window with identification number “id” to a GIF file called
‘name’. Instead of using running numbers of 1, 2, 3, 4, . . ., which can lead to some
problems in the order of GIF files, we rather choose a sequence 1001, 1002, 1003,
1004, . . .

3.5.6 Modified Animation Script

The SciLab script including conversion of frames to GIF files, called “WaveS-
imGif.sce” can be found in the folder “Miscellaneous/Waves” on the CD-ROM
accompanying this book.
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3.5.7 Creation of an Animated GIF File

The “convert” program of ImageMagick can be used to convert the sequence of GIF
files into a single animated GIF file. For example, a sequence of GIF files named
img1001.gif, img1002.gif, img1003.gif, etc. can be composed in an animated GIF
file (named anim.gif) by entering:

convert -delay 10 img*.gif anim.gif

in the Command Prompt window. The “-delay” option specifies the time lapse
between frames in milliseconds. After moving the resultant animated GIF file to
another safe location, individual GIF frame files should be immediately deleted to
free up space on the computer.

3.5.8 Phase Speed

The phase speed of a wave is given by the ratio between wavelength and wave
period:

c = λ

T
(3.3)

With this phase speed, Eq. (3.2) can be rewritten as:

A(x, t) = Ao sin

[
2π

λ
(x − ct)

]
. (3.4)

A positive c makes the wave propagating into the positive x-direction, whereas a
negative c makes it running into the opposite direction.

3.5.9 Dispersion Relation

The length and period of waves in fluids are in general not independent of each
other. Instead of this, there is a relation between wave period and wavelength called
the dispersion relation. The form of this relation varies with the situation. Waves
of a wavelength long compared with the fluid depth behave much differently from
waves of a wavelength short compared with the fluid depth. Section 4.2.5 presents
the dispersion relation for long surface-gravity waves.
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3.5.10 Superposition of Waves

The superposition of two or more waves of different period and/or wavelength can
lead to various interference patterns such as a standing wave, being a wave of vir-
tually zero phase speed. Interfering wave patterns travel with a certain speed, called
group speed that can be different to the phase speeds of the contributing individual
waves. Interference of storm-generated waves in the ocean can result in waves of
gigantic wave heights (wave height is twice the wave amplitude) of >20 m, known
as freak waves.

3.6 Exercise 2: Wave Interference

3.6.1 Aim

The aim of this exercise is to explore interferences that result from the superpo-
sition of two linear waves. To this end, SciLab will be used to calculate possible
interferences pattern and to produce animations thereof.

3.6.2 Task Description

Consider the interference of two waves of the same amplitude of Ao = 1 m. The
resultant wave can be described by:

A(x, t) = Ao

{
sin

[
2π

(
x

λ1
− t

T1

)]
+ sin

[
2π

(
x

λ2
− t

T2

)]}

Using SciLab, the reader is asked to produce animations considering the follow-
ing interference scenarios. In all scenarios, wave 1 has a period of T1 = 60 s and
a wavelength of λ1 = 100 m. Choose period and wavelength of wave 2 from the
following list:

Scenario 1: wavelength = 100 m; wave period = 50 s
Scenario 2: wavelength = 90 m; wave period = 60 s
Scenario 3: wavelength = 90 m; wave period = 50 s
Scenario 4: wavelength = 100 m; wave period = −60 s
Scenario 5: wavelength = 50 m; wave period = −30 s
Scenario 6: wavelength = 95 m; wave period = −30 s.

These scenarios describe a variety of interference patterns. Scenario 4, for
instance, leads to a standing wave, being the result of two identical waves travelling
in opposite directions. This is achieved by prescribing a negative value of the wave
period for wave 2. Is this surprising how many different interference patterns can be
created by superposition of just two waves. The reader is encouraged to experiment
with other scenarios!
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3.6.3 Sample Script

The SciLab script for this exercise, called “interference.sce” can be found in the
folder “Exercise 2” on the CD-ROM.

3.6.4 A Glimpse of Results

Figure 3.4 shows a snapshot result for the last scenario. It took me a while to achieve
what I wanted in terms of graphical display and, perhaps, the reader will come up
with a better solution. It can be seen that, at some locations, wave disturbances add
up to create a signal of doubled amplitude, whereas, in other regions, the waves
compensate each other such that the resultant wave signal almost vanishes.

Fig. 3.4 Snapshot results of Scenario 6

3.6.5 A Rule of Thumb

The wave period should be resolved by at least 10 time steps. Otherwise details of
the wave evolution can get lost. In the following SciLab script, I used 20 time steps
in a period. Adequate choices of time steps and grid spacings play an important role
in the modelling of dynamical processes in fluids.
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3.7 Forces

3.7.1 What Forces Do

A non-zero force operates to change the speed and/or the direction of motion of a
fluid parcel. In geophysical fluid dynamics, forces are conventionally expressed as
forces per unit mass, being directly proportional to acceleration or deceleration of
a fluid parcel. So, whenever the term “force” appears in the following, this actually
should mean “force per unit mass”.

In component form, a temporal change of the velocity vector can be formally
written as:

du

dt
= F x

dv

dt
= F y

dw

dt
= Fz

where (F x ,F y ,Fz) are the vector components of a force of certain magnitude and
direction. For example, (0, 0, −9.81 m/s2) is a force operating into the nega-
tive z-direction (downward). With two forces involved, the latter equations can be
written as:

du

dt
= F x

1 + F x
2

dv

dt
= F y

1 + F y
2

dw

dt
= Fz

1 + Fz
2

Acceleration or deceleration results if any component of the resultant net force is
different from zero. In the general case, the sum symbol “

∑
” can be used to write:

du

dt
=

m∑
i=1

F x
i

dv

dt
=

m∑
i=1

F y
i , (3.5)

dw

dt
=

m∑
i=1

Fz
i

where m is the number of forces involved in a process, and the index i points to a
certain force.
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3.7.2 Newton’s Laws of Motion

Equations (3.5) already state the first two of Newton’s laws of motion (Newton,
1687). Newton’s first law of motion states that, in an absolute coordinate system
void of any rotation or translation, both speed and direction of motion of a body
remain unchanged in the absence of forces. If there is a force, on the other hand,
there will be a certain change in motion. This is known as Newton’s second law of
motion.

3.7.3 Apparent Forces

Apparent forces come into play in a rotating coordinate system such as our Earth.
One of these apparent forces is the Coriolis force that gives rise to circular weather
patterns in the atmosphere, eddies in the ocean, or Jupiter’s Red Spot.

3.7.4 Lagrangian Trajectories

Imagine that you sit on a fluid parcel of a certain temperature moving with the flow.
The path along which you move is called a Lagrangian trajectory, based on work by
Lagrange (1788). Without any heat exchange with the ambient fluid, the temperature
of your fluid parcel remains constant and this feature can be formulated as:

dT

dt
= 0 (3.6)

where “T” is temperature and the “d” symbol now refers to a change of temperature
along the pathway of motion.

3.7.5 Eulerian Frame of Reference and Advection

Instead of moving with the flow, you could stand still at a fixed location and measure
changes in temperatures as the fluid moves past. This perspective is called the Eule-
rian system, based on work by Euler (1736). In this case, you would notice a change
in temperature if a flow exists that carries differences (gradients) in temperature
towards you. This process is called advection. In Cartesian coordinates, the effect
of temperature advection can be expressed as:

∂T

∂t
= −u

∂T

∂x
− v

∂T

∂y
− w

∂T

∂z
(3.7)

This advection equation constitutes a partial differential equation.
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3.7.6 Interpretation of the Advection Equation

The existence of both a flow and temperature gradients are essential ingredients in
the advection process. The left-hand side of (3.7) is the temporal change in temper-
ature measured at a fixed location. The appearance of minus signs on the right-hand
side of (3.7) is not that difficult to understand. For simplicity, consider a flow running
parallel to the x-direction. Recall that, per definition, u is positive if this flow com-
ponent runs into the positive x-direction. Warming over time (∂T/∂t > 0) occurs
with an increase of T in the x-direction in conjunction with a negative u. Warming
also occurs with a positive u but a decrease of T in the x-direction. I am sure that
the reader can work out scenarios leading to a local cooling.

In the absence of either flow or temperature gradients, Eq. (3.7) turns into:

∂T

∂t
= 0 (3.8)

This equation simply means that temperature does not show changes at a certain
location. The important difference with respect to (3.6) is that this relation holds for
a fixed location, whereas the other one was for an observer moving with the flow.
Most ocean models use the Eulerian frame of reference.

3.7.7 The Nonlinear Terms

Flow can advect different properties such as gradients in temperature, salinity and
nutrients, but also momentum; that is, the components of velocity itself. The resul-
tant terms are called the nonlinear terms. These terms are included in Newton’s
second law of motion, if we express this in an Eulerian frame of reference, yielding:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

m∑
i=1

F x
i

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
=

m∑
i=1

F y
i (3.9)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
=

m∑
i=1

Fz
i

The nonlinear terms are traditionally written on the left-hand side of the momen-
tum conservation equations for they are no true forces.
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3.7.8 Impacts of the Nonlinear Terms

The nonlinear terms are important in the dynamics of many processes. For instance,
these terms are the reason for the existence of turbulence which makes mixing a soup
with a spoon much more efficient than just waiting until the soup has mixed itself.
The reader can also blame these terms for the unreliability of weather forecasts for
longer than 5 days ahead.

3.8 Fundamental Conservation Principles

3.8.1 A List of Principles

There are several conservation principles that need to be considered when studying
fluid motions. These are:

1. Conservation of momentum (Newton’s laws of motion)
2. Conservation of mass
3. Conservation of interal energy (heat)
4. Conservation of salt.

In addition to this comes the so-called equation of state that links the field vari-
ables such as temperature and salinity to the density of the fluid. All these equations
are coupled with each other, which makes the equations describing fluid motions a
coupled system of partial differential equations.

3.8.2 Conservation of Momentum

Conservation of momentum is an expression of changes in flow speed and/or direc-
tion as a result of forces. The frictional stress imposed by winds along the sea surface
acts as a boundary source term in the momentum equations. Friction at the sea flow
acts as a sink term in these equations. Forces of relevance to fluids are explored in
the next sections.

3.8.3 Conservation of Volume – The Continuity Equation

Water is largely incompressible, so that the mass of a given water volume cannot
change much under compression. Conservation of mass can therefore be expressed
in terms of conservation of volume. To understand this important concept, consider
a virtual volume element (Fig. 3.5). For simplicity, we orientate this element in such
a way that its face normals are parallel to the directions of the Cartesian coordinate
system. The side-lengths of this box are δx , δy and δz, and the volume is δV =
δx · δy · δz.
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Fig. 3.5 A virtual control volume in a Cartesian coordinate system

Flow can enter or escape through any face of this volume element. Incompress-
ibility of a fluid implies that all these individual inflows and outflows have to be
balanced. Volume inflow or outflow is the product of the area of a face of our volume
element and the flow component normal to it. The eastern and western faces span
an area of δy · δz each and the relative volume change is given by δu · δy · δz, where
δu is the difference of flow speed between both faces. This relative volume change
can be reformulated as:

δu(δyδz) = δu

δx
δxδyδz = δu

δx
δV

Adding the contributions of the three pairs of opposite faces of the volume ele-
ment and requesting this sum to be zero yields:

0 =
(

δu

δx
+ δv

δy
+ δw

δz

)
δV

Since δV is a positive and non-zero quantity, the final equation reads:

δu

δx
+ δv

δy
+ δw

δz
= 0

The equation is valid for any finite volume and, accordingly, for a vanishingly
small volume, which can be expressed by the partial differential equation

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (3.10)

being called the continuity equation. This equation constitutes the local form of
volume conservation. One shortcoming when assuming an incompressible fluid is
that acoustic waves in the fluid can no longer be described.
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3.8.4 Vertically Integrated Form of the Continuity Equation

Small control volumes can be stocked on top of each other so that they extend the
entire fluid column (Fig. 3.6). This vertical integration of (3.10) leads to a prognostic
equation for the freely moving surface of the fluid, typically symbolized by the
Greek letter η (spoken “eta”). The fluid surface will move up (or down) if there is a
convergence (or divergence) of the depth-integrated horizontal flow.

In the absence of external sources or sinks of volume, such as precipitation (rain-
fall) or evaporation at the sea surface, the prognostic equation for η reads:

∂η

∂t
= −∂(h 〈u〉)

∂x
− ∂(h 〈v〉)

∂y
(3.11)

where h is total fluid depth, and 〈u〉 and 〈v〉 are depth-averaged components of
horizontal velocity. This equation is the vertically integrated form of the continu-
ity equation for an incompressible fluid. The products h 〈u〉 and h 〈v〉 are depth-
integrated lateral volume transports per unit width of the flow. Hence, the fluid level
will change if the fluid column experiences a net lateral inflow or outflow of volume.

3.8.5 Divergence or Convergence?

There are two contributions that, if unbalanced, can change the surface level of the
fluid. The first is associated with lateral variation of horizontal velocity, the other
comes from flow in interaction with a sloping seafloor. These contributions can be
quantified by applying the product rule for differentiation to the right-hand side
terms of (3.11). In the x-direction, for instance, this rule gives:

∂(h 〈u〉)
∂x

= h
∂ 〈u〉
∂x

+ 〈u〉 ∂h

∂x

Fig. 3.6 A control volume in a Cartesian coordinate system extending from the bottom to the free
surface of the fluid. Total fluid depth is h
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Fig. 3.7 Sketches of different flow fields leading to either lateral convergence or divergence of
depth-averaged horizontal flow. Vertical arrows indicate the instant response of the sea surface

Each term is associated with either convergence or divergence of depth-averaged
flow (Fig. 3.7), but it is the net effect of both terms that triggers the surface level to
change.

3.8.6 The Continuity Equation for Streamflows

The continuity equation can also be applied to river flows or streamflows. Under the
assumption of steady-state conditions, integration of the continuity equation over a
cross-sectional area A of a river gives:

〈u〉 · A = 〈u〉 · 〈h〉 · W = constant

where 〈u〉 is average flow speed, 〈h〉 is average depth, and W is width. Knowledge of
the flow speed in a single transect of a river together with knowledge of river depth
and width give the distribution of u along the full length of a river! The flow speed
will increase in narrower river sections, if this is not compensated by a deepening of
the river. Figure 3.8 illustrates this principle.

Fig. 3.8 Sketch of volume conservation in river flows. The flow speed increases in sections where
the cross-sectional area of the river decreases
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3.8.7 Density

Density, symbolised by the Greek letter ρ (“rho”), is the ratio of mass M over vol-
ume V :

ρ = M

V
(3.12)

Density has units of kilograms per cubic metres (kg/m3). Density of seawater
is in a range of 1025–1028 kg/m3. Density variations are generally small (< 0.5%)
compared with the mean value. Freshwater has densities around 1000 kg/m3. The
density of seawater can be estimated by collecting a bucket of fluid and measure its
weight over volume ratio.

3.8.8 The Equation of State for Seawater

Density of seawater depends on temperature, salinity and pressure. Pressure effects
can be eliminated by converting the in-situ (on-site) temperature to that a water
parcel would have when being moved adiabatically (without heat exchange with
ambient fluid) to a certain reference pressure level.

Salinity is the mass concentration of dissolved salts in the water column. Seawater
has typical salinities of 34–35 g/kg. Note that, in modern oceanography, salinity
does not carry a unit, for it is defined and measured in terms of a dimensionless
conductivity ratio. Numerical values of this practical salinity, however, are close to
salt mass concentrations in g/kg.

To first-order approximation, it is often sufficient to calculate seawater density
from a simple linear equation of state:

ρ(T, S) = ρo [1 − α(T − To) + β(S − So)] (3.13)

where mean density ρo refers to seawater density at reference temperature To and
reference salinity So. The parameter α (“alpha”) is the thermal expansion coefficient
that attains a value of 2.5×10−4◦C−1 at a temperature of 20◦C. The salinity coeffi-
cient β (“beta”) has values of 8 × 10−4 (no units). Oceanographers frequently use a
quantity called σt (“sigma-t”). This is just the true density minus 1000 kg/m3.

3.9 Gravity and the Buoyancy Force

3.9.1 Archimedes’ Principle

Gravity is the gravitational pull toward the centre of Earth that a body would feel in
the absence of a surrounding medium; that is, in a vacuum. Gravity acts downward
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in the Cartesian coordinate system and has vector components (0, 0, −g), where g =
9.81 m/s2 is called acceleration due to gravity.

If an object of a certain mass Mobj and volume Vobj is released in the water col-
umn, instead of the full gravity force, it will experience only a reduced gravity force,
called buoyancy force, that makes it sink at a slower rate or even rise in dependence
of the density of the ambient medium. Imagine an air-filled plastic ball that will pop
up if released in water.

According to Archimedes’ Principle, the resultant buoyancy force is proportional
to the difference between the object’s mass with the mass of the fluid replaced by the
object’s volume. See Stein (1999) for a biography of Archimedes. The constant of
proportionality is acceleration due to gravity. Accordingly, the resultant buoyancy
force (per unit mass of the object) is given by:

Buoyancy force = −g
(Mobj − Mamb)

Mobj

where Mamb is the mass of the ambient fluid replaced by the object. After a few
manipulations, this formula can be expressed in terms of densities, yielding:

Buoyancy force = −g
(ρobj − ρamb)

ρobj
(3.14)

where ρamb is the density of the ambient fluid. Note that the buoyancy force has a
negative sign and is directed downward if the object’s density exceeds that of the
surrounding fluid. Now it will be not that difficult for the reader to tell why ships
made from steel usually stay at the sea surface (unless capsizing).

3.9.2 Reduced Gravity

In physical oceanography, the negative of the buoyancy force (per unit mass) is
commonly termed reduced gravity. This quantity carries the symbol g′ and is given
by:

g′ = g
(ρobj − ρamb)

ρobj
(3.15)

It should be noted that buoyancy is not only restricted to objects of a solid skin.
The object of interest can be a fluid parcel itself.

3.9.3 Stability Frequency

Vertical density gradients can be expressed in terms of the stability frequency N ,
traditionally called Brunt – Väisälä frequency with appreciation of early works by
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Brunt (1927) and Väisälä (1925), that is defined by:

N 2 = − g

ρo

∂ρ

∂z
(3.16)

where ρo is mean density. Linear density stratification can therefore be expressed
as:

ρ(z) = ρo

(
1 + N 2

g
|z|
)

(3.17)

where ρo is surface density.

3.9.4 Stable, Neutral and Unstable Conditions

The situation of N 2 > 0 refers to a stably stratified fluid column. Neutral conditions
are given for N 2 = 0. The fluid column is statically unstable (dense fluid above light
fluid) with N 2 < 0. This situation cannot exist for long as it triggers convection
operating to stir the water column. Convection is involved in the motion of bubbles
arising when heating a pot of water or soup from below.

3.10 Exercise 3: Oscillations of a Buoyant Object

3.10.1 Aim

The aim of this exercise is to predict the pathway of a buoyant parcel in a stratified
water column using FORTRAN for the prediction and SciLab for visualisation of
the result.

3.10.2 Task Description

For the following exercise, we assume that density in a 100-m deep water column
increases linearly with depth. The surface density is 1025 kg/m3 and the stability
frequency squared is taken as N 2 = 10−4 s−2, so that density increases to 1026
kg/m3 at the bottom. The task for the reader is now to predict the motion path of an
object of 1025.5 kg/m3 in density when released at a depth of, say, 80 m.

3.10.3 Momentum Equations

For simplicity, we assume that there is only motion in the vertical. Accordingly, the
momentum equations (3.9) reduce to a single equation:
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dwobj

dt
= −g

(ρobj − ρamb)

ρobj
(3.18)

The buoyancy force on the right-hand side of the latter equation varies in magni-
tude and sign in dependence of the object’s location. On the other hand, the location
of the object, zobj, changes owing to its vertical speed wobj according to:

dzobj

dt
= wobj (3.19)

The latter two equations are coupled with each other, for the object’s location
determines the density found in the ambient fluid and, hence, the magnitude of the
buoyancy force.

3.10.4 Code Structure

The code has three parts:

1. a predictor for vertical speed wobj

2. a predictor for the new location zobj

3. a calculator of the ambient oceanic density with respect to the object’s location.

3.10.5 Finite-Difference Equations

In finite-difference form, Eq. (3.18) can be written as:

wn+1
obj = wn

obj − Δt g (ρobj − ρamb)/ρobj (3.20)

where n is the time level and Δt is the time step chosen. Equation (3.19) can be
written as:

zn+1
obj = zn

obj + Δt · wn+1
obj (3.21)

The use of time level (n + 1) for vertical speed wobj in the latter equation just
means that input into this equation comes from the predicted value of wobj from the
previous equation. In other words, step (3.20) has to come before step (3.21). The
time step is set to Δt = 1 s.

3.10.6 Initial and Boundary Conditions

The initial location of the object set to z0
obj = −80 m. The initial vertical speed w0

obj
is set to zero. Boundary conditions need to be specified in addition to this to avoid
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that the objects digs into the seafloor or pops out of the water column. The easiest
solution is to make these boundaries impermeable.

3.10.7 Sample Code and Animation Script

The FORTRAN 95 source code for this exercise, called “buoyant.f95”, and the
SciLab animation script, called “buoyant.sce” can be found in the folder “Exercise
3” on the CD-ROM. The file “info.txt” contains additional information.

3.10.8 Discussion of Results

Figure 3.9 displays the numerical solution to Exercise 3. Initially, the object is
lighter compared with the ambient fluid and experiences a positive (upward) buoy-
ancy force. Hence, the object becomes subject to upward acceleration and its vertical
speed increases until the object reaches its equilibrium level at a depth of 50 m. This
takes about 2.5 h.

It overshoots this level, for it takes some time before deceleration has reduced the
object’s speed again to zero. When this occurs, however, the object finds itself at a
depth horizon of around 20 m in a less dense environment. It experiences a negative
buoyancy force and, accordingly, is subject to downward acceleration. Again, it
moves past its equilibrium density level. This overshooting is a form of inertia and
the resultant movement of the object is a vertical oscillation about its equilibrium
density level. The period of this oscillation is slightly above 10 min.

Fig. 3.9 Location of the buoyant object as a function of time. The 50-m depth corresponds to the
equilibrium density horizon of the object
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3.10.9 Analytical Solution

Equations (3.18) and (3.19) can be combined to yield a single equation with the
argument zobj. This equation reads:

dwobj

dt
= d2zobj

dt2
= −g

(ρobj − ρamb)

ρobj
(3.22)

For convenience, we define z∗ as the distance of the object from its equilibrium
density level. The buoyancy force is proportional to the distance from this equilib-
rium level, and, with aid of (3.17), we can write the latter equation as:

d2z∗

dt2
= −N 2 z∗ (3.23)

Accordingly, we seek a function whose second temporal derivative gives the
same function times a constant N 2 and a sign reversal. Only one particular type
of functions does this – the sinusoidal function – and the solution is:

z∗(t) = z∗
o cos(Nt) (3.24)

where z∗
o is the initial distance from the equilibrium level. The period of this wave is

related to the stability frequency as T = 2π/N . We yield T = 628.3 s = 10.47 mins
for settings of Exercise 3. The prediction is close to this analytical result. The
reader is encouraged to test the solution (3.24) for other choices of stability fre-
quency N , object densities or initial displacement distances. Vertical speed evolves
according to:

wobj = dz∗

dt
= z∗

o N sin(Nt) = wo sin(Nt)

where wo = z∗
o N is the maximum speed that the object attains as it crosses its den-

sity equilibrium level. In our example, z∗
o = 30 m and N = 0.01 s−1 give a maximum

vertical speed of around 30 cm/s.

3.10.10 Inclusion of Friction

Under the assumption that the object is subject to friction in proportion to its speed,
Eq. (3.18) can be expanded as:

dwobj

dt
= −g

(ρobj − ρamb)

ρobj
− Rwobj (3.25)
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where the friction coefficient R has units of 1/s. Using an implicit approach for this
term, the finite difference form of this equation reads:

wn+1
obj − wn

obj

Δt
= −g

ρobj − ρamb

ρobj
− Rwn+1

obj (3.26)

which can be reorganised to yield:

wn+1
obj =

[
wn

obj − Δt · g (ρobj − ρamb)/ρobj

]
/(1 + RΔt) (3.27)

Figure 3.10 shows the solution for R = 0.002 s−1 describing a damped oscillation.
Only a few changes are required in the FORTRAN code to achieve this. First, the
friction parameter needs to be added in the declaration section:

REAL :: R ! friction parameter

Second, this parameter is specified with:

R = 0.002 ! value of friction parameter

Last, the friction force is added in the momentum equation with:

WOBJN=(WOBJ+dt*BF)/(1.+R*dt) ! predict new vertical speed

Fig. 3.10 Same as Fig. 3.9, but with inclusion of friction
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3.10.11 Additional Exercises for the Reader

Repeat this exercise with the inclusion of friction and vary the friction coefficient in
a range between 0.001 s−1 and 0.5 s−1. Advanced readers can also try to implement
a quadratic friction term of the form −R | W | W , where R has now units of 1/m.
Use a semi-implicit approach for this term; that is −R | W n | W n+1, and choose
different values of R. Use the FORTRAN function “ABS()” to calculate the absolute
value | W n |.

3.11 The Pressure-Gradient Force

3.11.1 The Hydrostatic Balance

For a fluid at rest, the downward acting gravity force is balanced by an upward acting
pressure-gradient force. This balance, called the hydrostatic balance or hydrostatic
approximation, can be written as:

0 = − 1

ρ

∂ P

∂z
− g (3.28)

where P is pressure, z is vertical coordinate, ρ is local density, and g is acceleration
due to gravity. The minus sign in the pressure-gradient terms arises to make this
term positive if pressure decreases with height.

3.11.2 Which Processes are Hydrostatic?

It can be shown that processes of a horizontal scale large compared with their ver-
tical scale are hydrostatic. Otherwise the dynamics are said to be nonhydrostatic,
which implies that the pressure field is modified by the flow. This book exclusively
deals with hydrostatic processes.

3.11.3 The Hydrostatic Pressure Field in the Ocean

Hydrostatic pressure in the ocean has three contributions: atmospheric pressure,
pressure excess or deficit owing to elevated or lowered sea level, and pressure owing
to the density stratification in the ocean itself. Atmospheric pressure has no impact,
for the sea surface tends to adjust instantaneously to atmospheric pressure varia-
tions, such that the pressure below the sea surface remains virtually the same. This
is known as the inverted barometer effect. The pressure field associated with the
mean density and a plane sea level has no dynamical consequences for it is void of
horizontal gradients.
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3.11.4 Dynamic Pressure in the Ocean

Dynamic pressure is the pressure that remains if we exclude pressure contributions
void of dynamical consequences. The vertical distribution of dynamic (hydrostatic)
pressure in the ocean is given by:

P(z∗) = ρo g η + g
∫ η

z∗
ρ ′dz (3.29)

where z∗ is vertical location in the water column, η is sea level elevation, and ρ ′ is
density anomaly compared with mean density ρo. The integral in the latter equation
is proportional to the weight anomaly of the water column above location z∗. With
exclusion of inactive pressure contributions, the hydrostatic relation takes the form:

0 = −∂ P

∂z
− ρ ′g

It is rather reduced gravity than gravity that makes up dynamically relevant
pressure-gradients in the fluid’s interior.

3.11.5 The Horizontal Pressure-Gradient Force

One of the dominant forces producing fluid motion is the horizontal pressure-
gradient force. This force arises from a slanting surface of the fluid and/or horizontal
gradients in density. The pressure-gradient force (per unit mass) has horizontal vec-
tor components of:

− 1

ρ

∂ P

∂x
and − 1

ρ

∂ P

∂y
(3.30)

Minus signs are required because the pressure-gradient force acts from high to
low pressure.

3.11.6 The Boussinesq Approximation

Density variations in the ocean are <1% compared with mean density. Hence, the
horizontal pressure-gradient force can be approximated by:

− 1

ρo

∂ P

∂x
and − 1

ρo

∂ P

∂y

where ρo is a constant mean density, and the hydrostatic balance can be rewritten
as:

0 = − 1

ρo

∂ P

∂z
− g′
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where reduced gravity is given by g′ = ρ ′/ρog. This simplification is known as the
Boussinesq approximation in appreciation of early work by Boussinesq (1903).

3.11.7 The Case of Uniform Density

In a fluid of uniform density, the horizontal pressure-gradient force turns into:

−g
∂η

∂x
and −g

∂η

∂y

which is yielded when inserting (3.29) with ρ ′ = 0 into (3.30). In the absence of
density variations, this force is the same throughout the fluid column. We can there-
fore expect that the resultant flow is also depth-independent, a feature referred to as
barotropic flow. In contrast to this, pressure gradients associated with lateral density
difference in the ocean interior triggers horizontal flow that changes with depth.
Such a flow is called baroclinic flow. Figure 3.11 shows sketches of barotropic and
baroclinic flows.

Fig. 3.11 Examples of barotropic and baroclinic flows

3.12 The Coriolis Force

3.12.1 Apparent Forces

Newton’s laws of motion are valid in a fixed coordinate system, that is one that
doesn’t rotate or translate. These laws imply that in the absence of forces, objects
follow a straight path with unchanged speed. In a rotating coordinate system, how-
ever, straight paths appear as curved paths (Fig. 3.12). If we want to apply Newton’s
laws of motion in rotating coordinates, this implies the existence of apparent forces.

There are two different apparent forces involved in the observed curved path of
the object, namely the centrifugal force and the Coriolis force (Coriolis, 1835). In
order to understand the Coriolis force, we need to understand the centrifugal force
first.



44 3 Basics of Geophysical Fluid Dynamics

Fig. 3.12 Appearance of straight path (white line) of an object (ball) for an observer on a rotating
turntable. The inner end of the white line shows the starting position of the object. The SciLab
script “Straight Path.sce” in the folder “Miscellaneous/Coriolis Force” of the CD-ROM produces
an animation

3.12.2 The Centripetal Force and the Centrifugal Force

Consider an object attached to the end of a rope and spinning around with a rotating
turntable. In the fixed coordinate system, the object’s path is a circle (Fig. 3.13) and
the force that deflects the object from a straight path is called the centripetal force.
This force is directed toward the centre of rotation (parallel to the rope) and, hence,

Fig. 3.13 Left panel In the fixed frame of reference, an object attached to a rope and rotating
at the same rate as the turntable experiences only the centripetal force. Right panel: The object
appears stationary in the rotating frame of reference, which implies a balance between the cen-
tripetal force and the centrifugal force. The SciLab script “Centripetal Force.sce” in the folder
“Miscellaneous/Coriolis Force” of the CD-ROM produces an animation
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operates perpendicular to the object’s direction of motion. The centripetal force (per
unit mass), which is a true force, is given by:

Centripetal force = −Ω2 r (3.31)

where r is the object’s distance from the centre of the turntable, and Ω = 2π/T
is the rotation rate with T being the rotation period. Per definition, the rotation rate
Ω is positive for anticlockwise rotation and negative for clockwise rotation. When
releasing the object, it will fly away on a straight path with reference to the fixed
frame of reference.

In the rotating frame of reference, on the other hand, the object remains at the
same location and is therefore not moving at all. Consequently, the centripetal force
must be balanced by another force of the same magnitude but acting in the opposite
direction. This apparent force – the centrifugal force – is directed away from the
centre of rotation. Accordingly, the centrifugal force is given by:

Centrifugal force = +Ω2 r (3.32)

When releasing the object, an observer in the rotating frame of reference will see
the object flying away on a curved path – similar to that shown in Fig. 3.12.

3.12.3 Derivation of the Centripetal Force

The speed of any object attached to the turntable is the distance travelled over a time
span. Paths are circles with a circumference of 2πr , where r is the distance from the
centre of rotation, and the time span to complete this circle is the rotation period.
Accordingly, the speed of motion is given by:

v = 2π

T
r = Ωr. (3.33)

During rotation, the speed of parcels remains the same, but the direction of
motion and thus the velocity changes (Fig. 3.14). The similar triangles in Fig. 3.14
give the relation δv/v = δL/r . Since δL is given by speed multiplied by time span,
this relation can be rearranged to yield the centripetal force (per unit mass):

dv

dt
= −v2

r
, (3.34)

where the minus sign has been included since this force points toward the centre of
rotation. Equation (3.31) follows, if we finally insert (3.33) into the latter equation.
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Fig. 3.14 Changes of location and velocity of a parcel on a turntable

3.12.4 The Centrifugal Force in a Rotating Fluid

Consider a circular tank filled with fluid on a rotating turntable. Letting the tank
rotate at a constant rate for a long time, all fluid will eventually rotate at the same
rate as the tank. In this steady-state situation, the fluid surface attains a noneven
shape, as sketched in Fig. 3.15. The final shape of the fluid surface is determined by
a balance between the centrifugal force and a centripetal force, that, in our rotating
fluid, is provided by a horizontal pressure-gradient force provided by a slanting fluid
surface. This balance of forces reads:

− g
∂η

∂r
= −Ω2 r (3.35)

where r is the radial distance from the centre of the tank.
The analytical solution of the latter equation is:

η(r ) = 1

2

Ω2

g
r2 − ηo, (3.36)

Fig. 3.15 Sketch of the steady-state force balance between centrifugal force (CF) and pressure-
gradient force (PGF) in a rotating fluid. The dashed line shows the equilibrium surface level for
the nonrotating case
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where the constant ηo can be determined from the requirement that the total volume
of fluid contained in the tank has to be conserved (if the tank is void of leaks). The
tank’s rotation leads to a parabolic shape of the fluid surface and it is essentially
gravity (via the hydrostatic balance) that operates to balance out the centrifugal
force. The latter balance is valid for all fluid parcels in the tank. The pathways of
fluid parcels are circles in the fixed frame of reference. The observer in the rotating
system, however, will not spot any movement at all.

3.12.5 Motion in a Rotating Fluid as Seen in the Fixed Frame
of Reference

With reference to a fixed frame of reference, fluid parcels in the rotating tank
exclusively feel the centripetal force provided by the pressure-gradient force. In
the absence of relative motion, fluid parcels describe circular paths. How does the
trajectory of a fluid parcel look like, if we give it initially a push of a certain
speed into a certain direction? The momentum equations governing this problem are
given by:

dU

dt
= −Ω2 X and

dV

dt
= −Ω2Y (3.37)

where (X, Y ) refers to a location and (U, V ) to a velocity in the fixed coordi-
nate system. On the other hand, the location of our fluid parcel simply changes
according to:

d X

dt
= U and

dY

dt
= V (3.38)

Owing to rotation, velocities in the fixed and rotating reference systems are not
the same. Instead of this, it can be shown that they are related according to:

U = u − Ω y and V = v + Ω x (3.39)

where (x, y) refers to a location and (u, v) to a velocity in the rotating coordinate
system.

3.12.6 Parcel Trajectory

Before reviewing the analytical solution, we employ a numerical code (see below)
to predict the pathway of a fluid parcel in a rotating fluid tank as appearing in the
fixed frame of reference. To this end, we consider a fluid tank, 20 km in diameter,
rotating at a rate of Ω = −0.727×10−5 s−1, which corresponds to clockwise rotation
with a period of 24 h.
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At location X = x = 0 and Y = y = 5 km, a disturbance is introduced such that
the fluid parcel obtains a relative speed of uo = 0.5 m/s and vo = 0.5 m/s. In the fixed
coordinate frame, the initial velocity is Uo = 0.864 m/s and Vo = 0.5 m/s.

The results show that the resultant path of the fluid parcel is elliptical (Fig. 3.16).
With a closer inspection of selected snapshots of the animation (Fig. 3.17), we can
also see that the fluid parcel comes closest to the rim of the tank twice during
one full revolution of the fluid tank. This finding, which is simply the result of
the elliptical path, is the important clue to understand why so-called inertial oscilla-
tions, described below, have periods half that associated with the rotating coordinate
system.

Fig. 3.16 Trajectory of motion (white line) for one complete revolution of a clockwise rotating
fluid tank as seen in the fixed frame of reference. The SciLab script “Traject” in the folder “Mis-
cellaneous/Coriolis Force” of the CD-ROM produces an animation

Fig. 3.17 Same as Fig. 3.16, but shown for different time instances of the simulation. The tank
rotates in a clockwise sense. The star denotes a fixed location at the rim of the rotation tank

3.12.7 Numerical Code

In finite-difference form, the momentum equations (3.37) can be written as:

U n+1 = U n − Δt · Ω2 Xn and V n+1 = V n − Δt · Ω2Y n (3.40)
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where n is time level and Δt is time step. The trajectory of our fluid parcel can be
predicted with:

Xn+1 = Xn + Δt · U n+1 and Y n+1 = Y n + Δt · V n+1 (3.41)

Again, predictions from the momentum equations are inserted into the latter
equations as to yield an update of the locations. I decided to tackle this problem
entirely with SciLab without writing a FORTRAN simulation code.

3.12.8 Analytical Solution

Equations (3.37) and (3.38) can be combined to yield:

d2 X

dt2
= −Ω2 X and

d2Y

dt2
= −Ω2Y (3.42)

The solution of these equations that satisfies initial conditions in terms of location
and velocity are given by:

X (t) = Xo cos(Ωt) + Uo

Ω
sin(Ωt) (3.43)

Y (t) = Yo cos(Ωt) + Vo

Ω
sin(Ωt) (3.44)

This solution describes the trajectory of a parcel along an elliptical path. In the
absence of an initial disturbance (u = 0 and v = 0), and using (3.39), the latter
equations turn into:

X (t) = Xo cos(Ωt) − Yo sin(Ωt)

Y (t) = Yo cos(Ωt) + Xo sin(Ωt)

which is the trajectory along a circle of radius
√

X2
o + Y 2

o , as expected.

3.12.9 The Coriolis Force

We can now reveal the Coriolis force by translating the trajectory seen in the fixed
frame of reference (see Fig. 3.16), described by (3.43) and (3.44), into coordinates
of the rotating frame of reference. The corresponding transformation reads:

x = X cos(Ωt) + Y sin(Ωt) (3.45)

y = Y cos(Ωt) − X sin(Ωt). (3.46)

Figure 3.18 shows the resultant flow path as seen by an observer in the rotating frame
of reference. Interestingly, the fluid parcel follows a circular path and completes the
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Fig. 3.18 Pathway of an object that experiences the Coriolis force in a clockwise rotating fluid.
The SciLab script “Coriolis Force Revealed.sce” in the folder “Miscellaneous/Coriolis Force” of
the CD-ROM produces an animation

circle twice while the tank revolves only once about its centre. Accordingly, the
period of this so-called inertial oscillation is 0.5 T , known as inertial period, with
T being the rotation period of the fluid tank.

Rather than working in a fixed coordinate system, it is more convenient to for-
mulate the Coriolis force from the viewpoint of an observer in the rotating frame of
reference. In the absence of other forces, it can be shown that inertial oscillations
are governed by the momentum equations:

∂u

∂t
= +2Ω v and

∂v

∂t
= −2Ω u (3.47)

The Coriolis force acts perpendicular to the direction of motion and the factor
of 2 reflects the fact that inertial oscillations have a period half that of the rotating
frame of reference. If a parcel is pushed with an initial speed of uo into a certain
direction, it can also be shown that its resultant path is a circle of radius uo/(2 |Ω)|).
With an initial speed of about 0.7 m/s and |Ω| = 0.727×10−5 s−1, as in the above
example, this inertial radius is about 4.8 km.

3.13 The Coriolis Force on Earth

3.13.1 The Local Vertical

In rotating fluids at rest, the centrifugal force is compensated by pressure-gradient
forces associated with slight modification of the shape of the fluid surface. On the
rotating Earth, this leads to a minor variation of the gravity force by less than 0.4%.
The local vertical at any geographical location is now defined as the coordinate
axis aligned at right angle to the equilibrium sea surface. This implies that, for a



3.13 The Coriolis Force on Earth 51

Fig. 3.19 Balances of forces on a rotating Earth fully covered with seawater in a state at rest. The
gravity force (GF) is directed toward the Earth’s centre. The centrifugal force (CF) acts perpendic-
ular to the rotation axis. The pressure-gradient force (PGF) balances the combined effects of GF
and CF. The local vertical is parallel to PGF

state at rest, the pressure-gradient force along this local vertical perfectly balances
the combined effect of the gravity force and the centrifugal force (Fig. 3.19).

3.13.2 The Coriolis Parameter

Owing to a discrepancy between the orientations of the rotation axis of Earth and
the local vertical, the magnitude of the Coriolis force becomes dependent on geo-
graphical latitude and Eqs. (3.47) turn into:

∂u

∂t
= + f v and

∂v

∂t
= − f u (3.48)

where f = 2Ω sin(ϕ), with ϕ being geographical latitude, is called the Coriolis
parameter. The Coriolis parameter changes sign between the northern and southern
hemisphere and vanishes at the equator. This variation of the Coriolis parameter can
be explained by a modification of the centripetal force in dependence of the orienta-
tion of the local vertical (Fig. 3.20). Consequently, the period of inertial oscillations
is T = 2π/ | f | and it depends exclusively on geographical latitude. It is 12 hours at
the poles and goes to infinity near the equator. The radius of inertial circles is given
by uo/ | f |. Inertial oscillations attain a clockwise sense of rotation in the northern
hemisphere and describe counterclockwise paths in the southern hemisphere.
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Fig. 3.20 The centripetal force for a variation of the orientation of local vertical

3.13.3 The f -Plane Approximation

The curvature of the Earth’s surface can be ignored on spatial scales of 100 km, to
first-order approximation. Hence, on this scale, we can place our Cartesian coordi-
nate system somewhere at the sea surface with the z-axis pointing into the direction
of the local vertical and use a constant Coriolis parameter (Fig. 3.21). The constant
value of f is defined with respect to the point-of-origin of our coordinate system.
This configuration is called the f-plane approximation.

3.13.4 The Beta-Plane Approximation

The curved nature of the sea surface can still be ignored on spatial scales of up to
a 1000 km (spans about 10◦ in latitude), if the Coriolis parameter is described by a
constant value plus a linear change according to:

f = fo + β y (3.49)

Fig. 3.21 The sketch gives an example of a f-plane. The Coriolis parameter is given by
f = 2Ω sin(ϕ), where ϕ is geographical latitude of the centre of the plane
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In this approximation, β is the meridional variation of the Coriolis parameter
with a value of β = 2.2 × 10−11m−1s−1 at mid-latitudes, and y is the distance in
metres with respect to the centre of the Cartesian coordinates system defining fo.
Note that y becomes negative for locations south of this centre. Equation (3.49) is
known as the beta-plane approximation.

A spherical coordinate system is required to study dynamical processes of length-
scales greater than 1000 km. A discussion of such processes, however, is beyond the
scope of this book.

3.14 Exercise 4: The Coriolis Force in Action

3.14.1 Aim

The aim of this exercise is to predict the pathway of a non-buoyant fluid parcel in a
rotating fluid subject to the Coriolis force.

3.14.2 First Attempt

With the settings detailed in Sect. 3.12.6, we can now try to simulate the Coriolis
force in a rotating fluid by formulating (3.48) in finite-difference form as:

un+1 = un + Δt f vn and vn+1 = vn − Δt f un

Locations of our fluid parcel are predicted with:

xn+1 = xn + Δt un+1, and yn+1 = yn + Δt vn+1

The result of this scheme is disappointing and, instead of the expected circular path,
shows a spiralling trajectory (Fig. 3.22). Obviously, there is something wrong here.
The problem here is that the velocity change vector is perpendicular to the actual
velocity at any time instance, so that the parcel ends up outside the inertial circle
(Fig. 3.23). This error grows with each time step of the simulation and the speed
of the parcel increases gradually over time, which is in conflict with the analytical
solution. This explicit numerical scheme is therefore numerically unstable and must
not be used.

3.14.3 Improved Scheme 1: the Semi-Implicit Approach

Circular motion is achieved by formulating (3.48) in terms of a semi-implicit
scheme:

un+1 = un + 0.5 α(vn + vn+1) and vn+1 = vn − 0.5 α(un + un+1) (3.50)
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Fig. 3.22 First attempt to simulate the Coriolis force

Fig. 3.23 Illustration of the error inherent with the explicit scheme

where α = Δt f . A cross-combination of the latter equations gives:

un+1 = [
(1 − β)un + αvn

]
/(1 + β) (3.51)

vn+1 = [
(1 − β)vn − αun

]
/(1 + β) (3.52)

where β = 0.25 α2. This scheme requires numerical time steps small compared
with the rotation period; that is, |α| << 1, otherwise the period of the parcel’s
circular motion will differ from the true value. This semi-implicit scheme is widely
used by modellers. It is worth noting that a fully-implicit scheme would lead to
inward spiralling of trajectories and a gradual decrease in speed, which is certainly
not intended.
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3.14.4 Improved Scheme 2: The Local-Rotation Approach

The Coriolis force operates at a right angle to velocity and does not change the
speed of motion, only the direction. Hence, this feature can be simulated by a local
rotation of the velocity vector; that is,

un+1 = cos(α)un + sin(α)vn, (3.53)

vn+1 = cos(α)vn − sin(α)un (3.54)

From geometric considerations, the rotation angle can be determined at α = 2
arcsin (0.5Δt f ). For Δt | f | << 1, this can be approximated by α ≈ Δt f .

3.14.5 Yes!

Figure 3.24 shows the results using the semi-implicit scheme demonstrating that we
are now able to successfully simulate inertial oscillations in a rotating fluid. With
this code, the reader is encouraged to explore inertial oscillations for a variety of
situations, such as for different geographical locations and different initial locations
and speeds. The code also includes a formulation of the local-rotation approach with
α ≈ Δt f that can be selected via the parameter “mode”.

3.14.6 Sample Code and Animation Script

The FORTRAN code for this exercise, called “Coriolis.f95”, and the SciLab script,
“Coriolis.sce” can be found in the folder “Exercise 4” on the CD-ROM. The file
“info.txt” contains additional information.

Fig. 3.24 Snapshots of the trajectory (white line) of a water parcel subject to the Coriolis force as
predicted with the semi-implicit approach. The star denotes a reference location in the fixed frame
of reference
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3.14.7 Inertial Oscillations

The aim of this section is to predict the pathway of a non-buoyant parcel floating
with an ambient uniform flow (Uo, Vo) subject to a series of abrupt wind events. The
momentum equations governing this problem can be formally written as:

∂u

∂t
= + f v + ∂u f

∂t
(3.55)

∂v

∂t
= − f u + ∂v f

∂t
(3.56)

where u f and v f are forcing terms assumed to be uniform in space. The pathway of
the fluid parcel can then be calculated from:

dx

dt
= Uo + u and

dy

dt
= Vo + v (3.57)

To illustrate this process, we consider an ambient flow with velocity components
of (Uo, Vo) = (5 cm/s, 5 cm/s), corresponding a uniform northeastward flow. In addi-
tion to this, we consider three abrupt events in which the relative flow changes speed
and direction. For a total simulation time of 6 days, the first event occurs at time zero
and produces a change of the relative flow of (Δu f ,Δv f ) = (10 cm/s, 0 cm/s). The
second event takes place at day 2 and produces a flow change of (Δu f ,Δv f ) =

Fig. 3.25 Pathway of a fluid parcel carried by an ambient flow and subject to inertial oscillations
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(10 cm/s, 0 cm/s). The last event happens at day 4 with (Δu f ,Δv f ) = (0.0 cm/s,
10.0 cm/s).

Figure 3.25 shows the resultant flow path of a water parcel starting from the
point-of-origin. As you can see, the parcel is carried by the ambient flow into a
northeastward direction. Superimposed are inertial oscillations. If you play around
with the intensity and direction of abrupt flow disturbances, you will learn that these
disturbances can either destroy or amplify pre-existing inertial oscillations.

3.14.8 Sample Code and Animation Script

The modified FORTRAN code, called “InerOsci.f95”, and the SciLab script,
“InerOsci.sce”, can be found in the folder “Miscellaneous/Inertial Oscillations” on
the CD-ROM.

3.15 Turbulence

3.15.1 Laminar and Turbulent Flow

Laminar flow is a smooth flow that doesn’t exhibit a great deal of irregular motions.
We can test whether a flow is laminar by throwing a stick into the water. If the stick
does not swirl around much, the flow is said to be laminar. Conversely, if the stick
shows irregular movements or even flips over, the flow is obviously turbulent.

3.15.2 The Reynolds Approach

Fluctuations of a physical property, such as temperature, are the trace of turbulence.
Accordingly, we can express an observed quantity that we call ψ (the Greek symbol
“psi”) in terms of a mean value plus fluctuations (Fig. 3.26):

ψ = 〈ψ〉 + ψ ′ (3.58)

Fig. 3.26 Observed values of a physical property (wiggly line) can be expressed in terms of a mean
value (smooth line), averaged over a certain time and/or space interval, plus fluctuations (difference
between both lines)



58 3 Basics of Geophysical Fluid Dynamics

where 〈ψ〉 is a mean value and ψ ′ are fluctuations. This approach, proposed by
Osborne Reynolds (1895), is the key ingredient in the theory of turbulence.

3.15.3 What Causes Turbulence?

There are two principle causes of turbulence in a fluid. One source of turbulence are
shear flows. Shear flow is a flow that displays speed variations perpendicular to its
movement direction. Figure 3.27 gives examples of shear flows. Owing to frictional
effects, strong shear flows establish in the vicinity of fluid boundaries. The other
cause of turbulence is convective mixing that occurs in case of unstable vertical
density stratification. A stable density stratification, on the other hand, can weaken
or even suppress turbulence.

Fig. 3.27 Examples of shear flows

3.15.4 The Richardson Number

The transition between laminar and turbulent flow in a stratified, vertical shear flow
can be characterised by means of a nondimensional number – the Richardson num-
ber. This number compares turbulent energy production/dissipation associated with
vertical density stratification and turbulent energy production associated with verti-
cal shear of a mean horizontal flow. For a mean flow 〈u〉 running into the x-direction,
for example, this number is given by:

Ri = N 2

(∂ 〈u〉 /∂z)2
(3.59)

where N 2 is the stability frequency of the ambient (mean) density field. Theory and
experimental studies suggest that turbulence is created whenever Ri falls below a
threshold value of around 1/4 = 0.25. Richardson (1920) was the first to derive this
instability criterion.
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3.15.5 Turbulence Closure and Turbulent Diffusion

A turbulence closure is a mathematical expression that relates fluctuations of a vari-
able to properties of the mean flow. Some sort of turbulence closure is required in a
finite-difference model, for we cannot resolve processes of periods shorter than the
time step or lengthscales smaller than the grid spacing.

A conventional approach is the assumption that turbulence operates as a mixing
agent to smooth sharp gradients in a property field and to describe the effect of this
by means of a diffusion equation, written as:

∂ψ

∂t
= ∂

∂x

(
Kx

∂ψ

∂x

)
+ ∂

∂y

(
Ky

∂ψ

∂y

)
+ ∂

∂z

(
Kz

∂ψ

∂z

)
(3.60)

where ψ is a property of interest, such as temperature, and Kx , Ky , and Kz are
certain coefficients parameterising the effect of turbulence. These coefficients can
carry different values in the case of direction-dependent turbulence. For instance,
you can stir a soup such that the cream added mixes horizontally rather than in
the vertical. For scalar fields, such as temperature or salinity, the coefficients are
called eddy diffusivities. In the case of momentum diffusion, they are called eddy
viscosities.

3.15.6 Prandtl’s Mixing Length

Vertical velocity shear is a source of turbulence in a fluid. In the absence of density
stratification, vertical eddy viscosity Az is in proportion to the magnitude of velocity
shear via the relationship:

Az = L2

∣∣∣∣
∂u

∂z

∣∣∣∣ (3.61)

where the lengthscale L – Prandtl’s mixing length – (Prandtl, 1925) is a measure of
the diameter of turbulent elements, also called vortices. The latter equation, being
a simplified turbulence closure, requires information on the size of vortices. More
advanced turbulence closures, not detailed here, include effects of density stratifica-
tion via some dependency on the Richardson number.

3.15.7 Interpretation of the Diffusion Equation

To understand the process of diffusion, we consider a depth-varying temperature
field subject to turbulent diffusion in the vertical represented by a constant eddy
diffusivity. Then, Eq. (3.60) can be written as:

∂T

∂t
= Kz

∂2T

∂z2
(3.62)
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This equation implies that the temperature will locally change as long as the tem-
perature profile is curved. In other words, the temperature distribution approaches
a steady state once the a uniform vertical gradient in temperature is established
in the fluid column. The value of turbulent diffusivity Kz determines the time it
takes for this steady state to establish. Obviously, the resultant vertical temperature
gradient depends crucially on heat fluxes across boundaries. In the absence of such
heat fluxes, the steady-state temperature field can only be uniform (well-mixed)
throughout the fluid.

3.16 The Navier–Stokes Equations

3.16.1 Complete Set of Equations

The Navier–Stokes equations (Navier, 1822; Stokes, 1845) comprise a set of coupled
conservation equations required to describe motions in fluids. These equations con-
sist of the momentum equations, the continuity equation (expressing conservation
of volume), advection-diffusion equations for field variables such as temperature
and salinity, and the equation of state. The momentum equations can be expressed
by:

∂u

∂t
+ Adv(u) − f v = − 1

ρo

∂ P

∂x
+ Diff(u)

∂v

∂t
+ Adv(v) + f u = − 1

ρo

∂ P

∂y
+ Diff(v)

∂w

∂t
+ Adv(w) = − 1

ρo

∂ P

∂z
− ρ ′

ρo
g + Diff(w)

(3.63)

where (u, v, w) is the velocity vector, t is time, (x, y, z) is the location vector in the
Cartesian coordinate system, f is the Coriolis parameter, P is dynamic pressure, g′

is reduced gravity, the operator Adv() denotes the nonlinear terms, and Diff() refers
to the diffusion terms.

The continuity equation in its local form is given by:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (3.64)

For a linear equation of state and the assumption that eddy diffusivities are the
same for temperature and salinity, we can formulate an advection-diffusion equa-
tion for density anomalies, called the density conservation equation, that can be
formulated as:

∂ρ ′

∂t
+ Adv(ρ ′) = Diff(ρ ′) (3.65)
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3.16.2 Boundary Conditions for Oceanic Applications

Wind stress operates as a frictional force at the sea surface. The associated boundary
condition is given by:

(
Az

∂u

∂z

)

z=0

= τwind
x

ρo
and

(
Az

∂v

∂z

)

z=0

= τwind
y

ρo
(3.66)

where ρo is surface density. The components of the wind-stress vector are given by:

τwind
x = ρairCd U

√
U 2 + V 2 and τwind

y = ρairCd V
√

U 2 + V 2 (3.67)

where ρair is air density, Cd is the nondimensional wind-drag coefficient with values
of the order of 1.1–1.5×10−3, and U and V are horizontal components of the wind
vector measured at a height of 10 m above sea level.

Bottom friction is usually treated by either a linear or a quadratic approach. The
linear approach reads:

τ bot
x

ρo
=
(

Az
∂u

∂z

)

z=−H

= rlin u and
τ bot

y

ρo
=
(

Az
∂v

∂z

)

z=−H

= rlin v (3.68)

where H is total depth of the water column, the friction parameter rlin has units
of metres per second, and (u, v) is the lateral flow in vicinity of the seafloor. The
quadratic bottom-friction law is given by:

τ bot
x

ρo
= r u

√
u2 + v2 and

τ bot
y

ρo
= r v

√
u2 + v2 (3.69)

where r is a nondimensional bottom-drag coefficient. Other boundary conditions
include the vertically integrated form of the continuity equation (3.11) that we need
to predict sea-level elevation and associated barotropic pressure gradients. Source
and sink boundary terms associated with volume changes such as precipitation need
to be added to this equation, if required. Also required are boundary conditions
describing density changes owing to surface density fluxes.

3.17 Scaling

3.17.1 The Idea

The idea behind the scaling theory is that we can estimate the relative significance
of terms in the Navier–Stokes equations by using typical magnitudes or scales of
flow variables. For instance, take a surface wave in the ocean that has a certain
period T and wavelength λ. If we want to model this wave, an obvious question
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to ask is whether we need to include the nonlinear terms and the Coriolis force in
the momentum equations, or can either or both of these terms be neglected under
certain circumstances?

3.17.2 Example of Scaling

Consider a wave propagating into the x-direction of a flow speed u described by the
momentum equation:

∂u

∂t
+ u

∂u

∂x
− f v = − 1

ρo

∂ P

∂x
(3.70)

Notice that a number of terms have already been dropped from the full equation
under the assumption they are small compared with the remaining terms. What is
the relative magnitude of terms listed in this equation? Which term is large and
which one is small? Scales will help here. For a wave, the characteristic scales of
motion are flow speed (Uo), wave period T , and wavelength λ. Hence, the order of
magnitude of the first term in the above equation can be estimated at:

∂u

∂t
∝ Uo

T
(3.71)

The magnitude of the second term – the nonlinear term – can be estimated at:

u
∂u

∂x
∝ Uo

Uo

λ
= U 2

o

λ
(3.72)

The ratio between these estimates gives the Froude number, introduced by
William Froude (1874):

U 2
o /λ

Uo/T
= UoT

λ
= Uo

c
(3.73)

where c is the phase speed of the wave, which is different from the horizontal speed
that a fluid parcel experiences. The conclusion is that nonlinear terms can be ignored
in wave problems if the phase speed of the wave exceeds by far the lateral speed of
fluid parcels.

With a similar approach, we can estimate the relative importance of the Coriolis
force that has a scale of f Uo. A comparison between this scale with that of the
temporal change (3.71) gives:

Uo/T

f Uo
= 1

f T
= Ti

T
(3.74)
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where Ti is the inertial period, which is the temporal Rossby number. Consequently,
we can neglect the Coriolis force for waves of a period much shorter compared with
the inertial period. If we now deal with a wave of T << Ti and c >> Uo, the
governing momentum equation reduces to:

∂u

∂t
= − 1

ρo

∂ P

∂x
(3.75)

It is obvious that scaling considerations can lead to substantail simplification of the
dynamical equations governing a certain process. It is also fascinating that the nature
of the Navier–Stokes equations varies in dependence on the scales of a dynamical
process.



Chapter 4
Long Waves in a Channel

Abstract This chapter introduces the reader to the modelling of layered flows in
one-dimensional channel applications including a simple flooding algorithm. Prac-
tical exercises address a variety of processes including shallow-water surface waves,
tsunamis and interfacial waves in a multi-layer fluid.

4.1 More on Finite Differences

4.1.1 Taylor Series

The value of a function in vicinity of given location x can be expressed in form of a
Taylor series (Taylor, 1715) as:

f (x + Δx) = f (x) + Δx
∂ f

∂x
+ Δx2

1 · 2

∂2 f

∂x2
+ Δx3

1 · 2 · 3

∂3 f

∂x3
+ · · · (4.1)

The essence of this series is that the neighboring value can be reconstructed by
means of the value at x plus a linear correction using the slope of f at location x plus
a higher-order correction involving the curvature of f at x and so on. Accordingly,
the first derivative of a function can be approximated by:

∂ f

∂x
≈ f (x + Δx) − f (x)

Δx
(4.2)

but we have to admit that this expression is not 100% accurate owing to neglection
of higher-order terms. Alternatively, the Taylor series can be written as:

f (x − Δx) = f (x) − Δx
∂ f

∂x
+ Δx2

1 · 2

∂2 f

∂x2
− Δx3

1 · 2 · 3

∂3 f

∂x3
+ · · · (4.3)
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On the basis of this, another approximation of the first derivative of a function is:

∂ f

∂x
≈ f (x) − f (x − Δx)

Δx
(4.4)

The third option is to take the sum of both Taylor series, yielding:

∂ f

∂x
≈ f (x + Δx) − f (x − Δx)

2Δx
(4.5)

There are three different options of expressing the first derivative of a function in
terms of a finite difference.

Fig. 4.1 Example of equidistant grid spacing. Distance is given by k ·Δx , where k is the cell index
and Δx is grid spacing

4.1.2 Forward, Backward and Centred Differences

With the choice of equidistant grid spacing and index notation (Fig. 4.1), we can
formulate the different finite-difference forms of the first derivative of a function as:

∂ f

∂x
≈ fk+1 − fk

Δx
(4.6)

called forward difference, or

∂ f

∂x
≈ fk − fk−1

Δx
(4.7)

called backward difference, or

∂ f

∂x
≈ fk+1 − fk−1

2Δx
(4.8)

called centred difference.

4.1.3 Scheme for the Second Derivative

The sum of the Taylor series (4.1) and (4.3) gives an approximation of the second
derivative of a function:
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∂2 f

∂x2
≈ f (x + Δx) − 2 f (x) + f (x − Δx)

(Δx)2
= fk+1 − 2 fk + fk−1

(Δx)2
(4.9)

4.1.4 Truncation Error

The following example specifies the truncation error made when using finite differ-
ences. Consider the function:

f (x) = A sin (2πx/λ) (4.10)

where A is a constant amplitude and λ is a certain wavelength. The derivative of this
function is given by:

d f

dx
= 2π A/λ cos (2πx/λ) (4.11)

If we use the centred difference as a proxy for the first derivative, we obtain:

f (x + Δx) − f (x − Δx)

2Δx
= A sin [2π (x + Δx)/λ] − A sin [2π (x − Δx)/λ]

2Δx

With some mathematical manipulation, the latter equation can be formulated as:

f (x + Δx) − f (x − Δx)

2Δx
= 2π A/λ cos (2πx/λ) · [1 − ε]

where the relative error with respect to the true solution – the truncation error – is
given by:

ε (Δx) = 1 − sin (2πΔx/λ)

2πΔx/λ

Fig. 4.2 Relative error (%) inherent with use of the centred scheme for (4.11) as a function of
Δx/λ
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The truncation error becomes reasonably small if we resolve the wavelength by
more than 10 grid points (Fig. 4.2). In other words, when using finite differences,
only waves with a wavelength greater than tenfold the grid spacing are resolved
accurately. Similar conclusion can be drawn for time step requirements to resolve a
given wave period.

4.2 Long Surface Gravity Waves

4.2.1 Extraction of Individual Processes

The Navier–Stokes equations describe a great variety of processes that can occur
simultaneously in fluids on different time scales and lengthscales. Nevertheless,
under certain assumptions, we can extract individual processes from these equations
to study them in isolation from other processes. For instance, waves of a period short
compared with the inertial period are unaffected by the Coriolis force and we can
ignore the Coriolis force for such waves, which simplifies the governing equations.
By making certain assumptions, we will progressively learn more about a variety of
physical processes existing in fluids.

4.2.2 Shallow-Water Processes

From scaling considerations, it can be shown that the hydrostatic relation holds for
processes of horizontal lengthscale exceeding by far the vertical lengthscale. These
processes are referred to as shallow-water processes, even if they occur in the atmo-
sphere or in deep portions of the ocean. It is the ratio between horizontal and vertical
lengthscales that matters here!

4.2.3 The Shallow-Water Model

We consider a fluid layer of uniform density with a freely moving surface to
study long surface waves of a wavelength long compared with the fluid depth
(Fig. 4.3). We assume wave periods short compared with the inertial period, so
that the Coriolis force can be neglected, and we simply ignore frictional effects
to first-order approximation. We neglect the nonlinear terms (advection of momen-
tum), which implies that the phase speed of waves exceeds by far the speed of water
parcels. As another simplification, we consider waves that propagate exclusively
along a channel aligned with the x-direction and being void of variations in the
y-direction.



4.2 Long Surface Gravity Waves 69

Fig. 4.3 Configuration of the one-dimensional shallow-water model. Undisturbed water depth
is ho

4.2.4 The Governing Equations

With the above simplifications, the equations governing the dynamics of long sur-
face waves can be written as:

∂u

∂t
= −g

∂η

∂x
(4.12)

∂η

∂t
= −∂ (u h)

∂x
(4.13)

where u is speed in the x-direction, t is time, g is acceleration due to gravity, η is
sea-level elevation, and h is total water depth.

The first equation is an expression of Newton’s laws of motions and states that a
slope in the sea surface operates to change the lateral velocity. The second equation –
the vertically integrated form of the continuity equation – relates temporal changes
in sea level to convergence/divergence of the depth-integrated lateral flow.

4.2.5 Analytical Wave Solution

Total water depth h can be approximated as constant for a flat seafloor together
with wave amplitudes small compared with total water depth. In this case, the wave
solution of the above equations is:

η(t, x) = ηo sin (2π x/λ − 2π t/T ) (4.14)

u(t, x) = uo sin (2π x/λ − 2π t/T ) (4.15)

where ηo is wave amplitude, λ is wavelength, T is wave period, and the magnitude
of u is given by:

uo = ηo

√
g

h
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It can also be shown (Cushman-Roisin, 1994) that these waves are governed by
the well-known dispersion relation:

c = λ

T
=
√

gh (4.16)

implying that the phase speed of a long surface gravity wave exclusively depends on
total water depth. Consequently, it follows that the ratio between horizontal speed
of a water parcel and phase speed is very small:

uo

c
= η

h
<< 1

which is justification for neglection of the nonlinear terms. For instance, a long wave
of 1 m in amplitude in a 100 m deep ocean propagates with a phase speed of about
c = 30 m/s, while water parcels attain maximum lateral displacement speeds of only
uo = 0.3 m/s.

Horizontal flow under a long surface wave is depth-independent and so are hori-
zontal gradients of u. On the basis of the local form of the continuity equation, given
for our channel by:

∂w

∂z
= −∂u

∂x

we can derive the solution for vertical speed of a fluid parcel as a function of depth:

w(t, x, z∗) = −2π uo z∗/λ cos (2π x/λ − 2π t/T )

where z∗ is (positive) distance from the seafloor. Vertical speed vanishes at the plane
seafloor (per definition) and approaches an oscillating maximum at the sea surface.
The ratio between vertical and horizontal speeds of water parcels is 2πh/λ. This
ratio is small compared with unity for shallow-water waves (λ >> h). Accordingly,
motions of water parcels in a shallow-water wave are largely horizontal. Another
important feature inherent with long waves is that they reach the seafloor and are
capable of stirring up sediment from the seafloor, if energetic enough. Figure 4.4
shows a snapshot of the analytical solution of a shallow-water wave.

4.2.6 Animation Script

A SciLab script, called “AnalWaveSol.sce”, can be found in the folder “Miscel-
laneous/Waves” on the CD-ROM accompanying this book. This script creates an
animation of the analytical wave solution.
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Fig. 4.4 Snapshot of a shallow-water wave of 1 m in amplitude and 500 m in wavelength in a 20 m
deep ocean. Shown are sea-level elevation and vertical displacements of fluid parcels at selected
depths

4.2.7 Numerical Grid

We use a spatial grid of constant grid spacing in which velocity grid points are
located halfway between adjacent sea-level grid points (Fig. 4.5).

Fig. 4.5 The staggered grid. The cell index k refers to a certain grid cell. Water depth is calculated
at sea-level grid points

4.2.8 Finite-Difference Scheme

On the basis of the staggered grid (see Fig. 4.5), the momentum equation (4.12) can
be written in finite-difference form as:

un+1
k = un

k − Δt g
(
ηn

k+1 − ηn
k

)
/Δx (4.17)

where n is time level, k is grid index, Δt is time step, and Δx is grid spacing. A
control volume (Fig. 4.6) is used to discretise equation (4.3). Accordingly, we can
write this equation as:

η∗
k = ηn

k − Δt
(
un+1

k he − un+1
k−1 hw

)
/Δx (4.18)
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Fig. 4.6 The control-volume approach. A control volume of length Δx is centred around a water-
depth grid point hk . Temporal sea-level changes are computed from volume fluxes through the left
and right-hand faces of the control volume using the upstream approach

where hw and he, respectively, are the layer thicknesses at the western and eastern
faces of the control volume. Input to this equation are prognostic values of u calcu-
lated a step earlier from (4.17). The final prediction for η will be slightly smoothed
by applying a filter (see below) to η∗.

Here, the choices for hw and he are made dependent of the flow direction at the
respected face in an upstream sense. For example, we take hw = hn

k−1 for un+1
k−1 > 0,

but hw = hn
k for un+1

k−1 < 0. This can be elegantly formulated by means of:

η∗
k = ηn

k − Δt/Δx
(
u+

k hn
k + u−

k hn
k+1 − u+

k−1 hn
k−1 − u−

k−1 hn
k

)
(4.19)

where

u+
k = 0.5

(
un+1

k + ∣∣un+1
k

∣∣) and u−
k = 0.5

(
un+1

k − ∣∣un+1
k

∣∣)

This control-volume approach is numerically diffusive, but conserves volume of
the water column.

4.2.9 Stability Criterion

The stability criterion for the above equations, known as Courant-Friedrichs-Lewy
condition or CFL condition (Courant et al., 1928), is:

λ = Δt

Δx

√
g hmax ≤ 1 (4.20)

where hmax is the maximum water depth encountered in the model domain. In other
words, the time step is limited by:

Δt ≤ Δx√
g hmax

which can be a problem for deep-ocean applications if a fine lateral grid spacing is
required.
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4.2.10 First-Order Shapiro Filter

As will be shown below, the finite-difference equation presented above are subject
to oscillations developing on wavelengths of 2Δx . Some of these oscillations might
represent true physics, others might be artificial numerical waves. To remove these
small-scale oscillations, the following first-order Shapiro filter (Shapiro, 1970) can
be used:

ηn+1
k = (1 − ε)η∗

k + 0.5ε(η∗
k−1 + η∗

k+1) (4.21)

where η∗
k are predicted from (4.19) and ε is a smoothing parameter. This method

removes curvatures in distributions to a certain degree. The smoothing parameter in
this scheme should be chosen as small as possible.

4.2.11 Land and Coastlines

Land grid points are realised by requesting absence of flow on land. In addition
to this, no flow is allowed across coastlines unless a special flooding algorithm is
implemented (see Sect. 4.4). The layer thickness h can be used as a control as to
whether grid cells are “dry” or “wet” . Then, we can set uk to zero in grid cells
where hk ≤ 0. Owing to the staggered nature of the grid (see Fig. 4.5), coastlines
require the additional condition that uk has to be zero if hk+1 ≤ 0.

4.2.12 Lateral Boundary Conditions

The model domain is defined such that the prediction ranges from k = 1 to k = nx .
Values have to be allocated to the first and last grid cells of the model domain; that
is, to k = 0 and k = nx+1 (Fig. 4.7). One option is to treat these boundaries as closed.
Advective lateral fluxes of any property are eliminated via the statements:

un
0 = 0

un
nx = 0

Fig. 4.7 The boundary grid cells of the model domain used for implementation of lateral boundary
conditions
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Zero-gradient boundary conditions are used to eliminate lateral diffusive fluxes
of a property C . These conditions read:

Cn
0 = Cn

1

Cn
nx+1 = Cn

nx

Some applications justify the use of so-called cyclic boundary conditions that for
a property C read:

Cn
0 = Cn

nx

Cn
nx+1 = Cn

1

Here, both ends of the model domain are connected to form a channel of infinite
length.

4.2.13 Modular FORTRAN Scripting

It makes sense to split longer FORTRAN codes into several files containing different
parts of the code containing the main code and separate modules. An example of a
main code and two modules is given in the following. In this example, the main code
is linked with two external modules via the command “USE”.

The first module contains declarations of parameters and variables. The second
module includes two subroutines. The statement CONTAINS is used if a module
contains more than one subroutine or function. The first subroutine allocates initial
values to parameters and the second one does a simple calculation. Subroutines are
called with a CALL statement. The main code is given by:

PROGRAM main
USE decla
USE calcu
CALL init
CALL squaresum
z = z+c ! final calculation
write(6,*)“x = ”,x ! print result on screen
END PROGRAM main

The “decla” module reads:

MODULE decla
REAL, PARAMETER :: c = 1.0
REAL :: x,y,z
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END MODULE decla

The module “calcu” reads:

MODULE calcu
USE decla
CONTAINS
!+++++++++++++++++++++++++++++++++++++++++++
SUBROUTINE init
x = 2.0
y = 1.0
RETURN
END SUBROUTINE init
!+++++++++++++++++++++++++++++++++++++++++++
SUBROUTINE squaresum
real :: sum ! declaration of local variable
sum = x+y
z = sum∗sum
RETURN
END SUBROUTINE squaresum
END MODULE calcu

As the reader learns from this example, modules can be used to share parameters,
variables and subroutines. With sound use of modules, subroutines, and functions,
FORTRAN codes can attain a much clearer structure.

4.2.14 Structure of the Following FORTRAN Codes

FORTRAN codes of the following exercises consist of three files: a main code,
one module for declarations and another module comprising subroutines (Fig. 4.8).
Compiling a FORTRAN code that contains modules consists of two steps. The mod-
ules are compiled first with:

g95 -c file2.f95 file3.f95

Then, the module files can be linked with the main code via:

g95 -o run.exe file1.f95 file2.o file3.o

The code can then be executed by entering “run.exe” in the Command Prompt
window.



76 4 Long Waves in a Channel

Fig. 4.8 Structure of the FORTRAN code for the following exercises

4.3 Exercise 5: Long Waves in a Channel

4.3.1 Aim

The aim of this exercise is to simulate the progression of shallow-water surface
gravity waves in a channel of uniform water depth.

4.3.2 Instructions

We employ the finite-difference Eqs. (4.17), (4.19) and (4.21) for a one-dimensional
channel with closed ends under a variety of initial and forcing conditions. In the
following applications, the channel has a length of 1000 m being resolved by a grid
spacing of Δx = 10 m. We choose 101 grid cells in the x-direction plus another
grid cell on each end of the channel as boundary grid points. With the choice of an
uneven number of grid points, the centre of the channel is defined by a single grid
cell.

Undisturbed water depth is set to 10 m. Dry boundary cells are assigned a water
depth of zero. Two different forcing scenarios are considered (Fig. 4.9). In Scenario
1, we commence the simulation with a 110-m wide region centred in the channel in
which sea level is initially 1 m higher than elsewhere. This scenario is referred to as
“dam-break simulation”.

In Scenario 2, we place a wave paddle in the middle of the channel and let the sea
level oscillate with an amplitude of 1 m and a period of 20 s. In both scenarios, the
solutions are explored for different values of the parameter ε in the Shapiro filter.
The choice of ε = 0 switches off this filter. The time step is set to Δt = 0.1 s, which
satisfies the CFL stability criterion.



4.4 Exercise 6: The Flooding Algorithm 77

Fig. 4.9 Two different scenarios considered in Exercise 5

4.3.3 Sample Code and Animation Script

The folder “Exercise 5” on the CD-ROM contains the computer codes for this exer-
cise. The file “info.txt” contains additional information.

4.3.4 Results

The initial sea-level anomaly, prescribed in the dam-break simulation, disintegrates
into two separate wave bulges propagating toward opposite ends of the channel.
Each of these waves is reflected at the respective boundary, and both waves meet
again after some time in the centre of the channel. Without use of the Shapiro filter
(ε = 0), unwanted irregularities appear in sea-level elevations and, consequently, in
the flow field (Fig. 4.10).

With the choice of ε = 0.05, the output fields are much smoother (Fig. 4.11),
but, apparently, the Shapiro filter has introduced some numerical diffusion. The
reader is encouraged to “play around” with different values of ε until the result looks
“reasonable”. Wave paddle forcing (Scenario 2) creates surface gravity waves that
propagate toward both ends of the channel (not shown). Reflection at boundaries
triggers wave interference.

4.4 Exercise 6: The Flooding Algorithm

4.4.1 Aim

We want to be able to simulate transient flooding of dry regions (land) of the model
domain. There are several applications of this, such as transient flooding of coast-
lines caused by tides or tsunamis. This requires special numerical treatment not
included in the previous code.
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Fig. 4.10 Exercise 5. Scenario 1. Model output after 24 s of simulation for the right half of the
channel for ε = 0. The top panel shows sea-level elevation (m), the middle panel horizontal
velocity (m/s), and the bottom panel velocity vectors (stickplots). Stickplots are strongly deformed
owing to the axis ratio chosen

Fig. 4.11 Exercise 5. Scenario 1. Same as Fig. 4.9, but with ε = 0.05
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4.4.2 Redefinition of Wet and Dry

From now on, wet grid cells are defined as cells of total water depths h exceeding
a certain threshold value, hmin, typically set to a few centimetres. This threshold
is required to avoid that fluid retreating from a wet region produces negative layer
thicknesses that will cause the model to crash. Accordingly, dry grid cells are defined
as cells where h ≤ hmin.

4.4.3 Enabling Flooding of Dry Grid Cells

Flooding of dry grid cells is implemented in the code via calculation of the hor-
izontal speed at the interface between wet and dry grid cells. This calculation is
performed whenever the pressure-gradient force is directed toward the dry cell.
Otherwise, velocity at this grid point is kept at zero value. With a nonzero inflow,
the water level in the dry cell will rise and this cells eventually turns into a wet grid
cell once the layer thickness exceeds hmin.

4.4.4 Flooding of Sloping Beaches

The pressure-gradient force is evaluated from the slope of the sea-level elevation
with respect to an undisturbed state. Flooding of a sloping beach has to be treated
the same way. Here, the sea-level elevation has to be defined as the distance of the
sea surface from the undisturbed sea level, and not from the beach surface. Imple-
mentation of this flooding is done with the following steps, with reference to the
illustration shown in Fig. 4.12.

1. Starting point is a certain distribution of bathymetry ho with positive values refer-
ring to the ocean and negative values referring to elevated land surfaces.

2. Initial sea-level elevations η are assigned zero values in ocean regions, but follow
land elevations with positive values there.

Fig. 4.12 Definitions for the flooding algorithm. Bathymetry (ho) refers to (positive) total water
depth in “wet” regions and (negative) land elevation in “dry” regions of the model domain.
Elevation (η) is either sea-level elevation or land elevation. True layer thickness is the sum of
ho and η
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3. True layer thickness is defined as the sum h = ho + η. This true layer thickness
is used for the classification of wet/dry grid cells on the basis of a threshold layer
thickness hmin.

4.4.5 Ultimate Crash Tests

The following scenarios can be regarded as ultimate crash tests of the flooding
algorithm (Fig. 4.13). Scenario 1 considers a tsunami wave spilling over an island
whose tip is located just 0.5 m above undisturbed sea level. The tsunami is created
by prescription of region, 200 m in width, in which sea level is initially elevated by
1 m. Lateral boundaries are closed. Will the model be able to describe the dynamics
of this tsunami as it spills over the tip of the island?

The second scenario is even more extreme. This scenario considers a hillside of
a certain slope and including a depression. The task is to simulate the dynamics
of a plume of water, initially 1 m thick and 200 m in horizontal extent, cascading
downward on the hillside. Zero-gradient conditions are imposed for all variables at
lateral boundaries. Will the model be able to cope with this task? After passage of
the plume, will there be water left over in the depression?

Fig. 4.13 Exercise 6. Ultimate crash tests of the flooding algorithm

4.4.6 Sample Code and Animation Script

FORTRAN simulation codes and Scilab animation scripts for both scenarios can be
found in the folder “Exercise 6” of the CD-ROM. Several changes of the FORTRAN
code for Exercise 5 are required for implementation of the flooding algorithm. The
file “info.txt” outlines these changes.
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Fig. 4.14 Exercise 6. Scenario 1. Snapshots of sea-level elevation after 80, 100, 120 and 140 s of
simulation. The dotted line indicates the location of undisturbed sea level

4.4.7 Results

The model can successfully simulate tsunami-caused flooding of an island (Fig. 4.14).
A couple of features should be highlighted. First, the amplitude of the wave
increases as it approaches shallower water. This happens in a similar fashion for
wind waves approaching a beach. Secondly, only a fraction of water passes the
island creating a smaller tsunami in the lee of the island. A fraction of water is
blocked by the island and becomes reflected to form a tsunami propagating into the
opposite direction. In the end, the island is void of water again, except for a thin
inactive layer of thickness hmin.

The model is also capable of simulating a plume cascading avalanche-like down-
ward on a hillside and filling a depression in the ground (Fig. 4.15). All this takes
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place well above sea level! The plume dynamics are influenced by the steepness of
the hill, which the reader can easily verify.

Fig. 4.15 Exercise 6. Scenario 2. Snapshots of sea-level elevation after 60, 90, 120 and 180 s of
simulation

4.5 The Multi-Layer Shallow-Water Model

4.5.1 Basics

Under the shallow-water assumption, we can formulate a dynamical model for a
water column consisting of multiple layers each of a certain density. Figure 4.16
gives the configuration of a multi-layer model. Layers are numbered from top to
bottom and the surface layer carries the index 1. The momentum equation for a
layer i is given by:

∂ui

∂t
= − 1

ρi

∂ Pi

∂x
(4.22)

where i is the layer index. Dynamic pressure in the layers is given by:

P1 = ρ1 g η1

P2 = P1 + (ρ2 − ρ1) g η2
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Fig. 4.16 Configuration of a multi-layer shallow-water model. The total number of layers is nz

P3 = P2 + (ρ3 − ρ2) g η3

...

Pnz−1 = Pnz−2 + (ρnz−1 − ρnz−2) g ηnz−1

Pnz = Pnz−1 + (ρnz − ρnz−1) g ηnz

which can be written in generalised form as:

Pi = Pi−1 − (ρi − ρi−1) g ηi for i = 1, 2, 3, . . . , nz (4.23)

where i is the layer index and ηi are interface displacements with reference to certain
equilibrium levels. The latter equations require iteration from top to bottom with the
boundary setting P0 = 0 and ρ0 = 0, which disables atmospheric pressure and sets
air density to zero.

Conservation of volume in each layer corresponds to the prognostic equations
for layer-thickness:

∂hi

∂t
= −∂ (ui hi )

∂x
(4.24)

Layer thicknesses are given by:

hi = hi,o + ηi − ηi+1 (4.25)
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where hi,o are undisturbed thicknesses for a fluid at rest and ηnz+1 = 0 represents a
rigid seafloor. With use of the latter relations, the layer-thickness equations turn into
prognostic equations for interface displacements, given by:

∂ηnz

∂t
= −∂ (unz hnz)

∂x
∂ηnz−1

∂t
= −∂ (unz−1 hnz−1)

∂x
+ ∂ηnz

∂t
...

∂η2

∂t
= −∂ (u2 h2)

∂x
+ ∂η3

∂t
∂η1

∂t
= −∂ (u1 h1)

∂x
+ ∂η2

∂t

These equations can be written in the generalised form:

∂ηi

∂t
= −∂ (ui hi )

∂x
+ ∂ηi+1

∂t
for i = nz, nz − 1, . . . , 1 (4.26)

with ηnz+1 = 0 representing the rigid seafloor. Note that, in contrast to the pressure
iteration, this interaction goes from bottom to top.

4.6 Exercise 7: Long Waves in a Layered Fluid

4.6.1 Aim

The aim of this exercise is to simulate the progression of long gravity waves in a
fluid consisting of multiple layers of different densities.

4.6.2 Task Description

We consider a stratified fluid consisting of ten layers of an initial thickness of
10 m each. The density of the top layer is 1025 kg/m3 and density increases from
1026 kg/m3 to 1026.5 kg/m3 from the second layer to the bottom layer. In addition
to this, we add a simple bathymetry including a riff (Fig. 4.17) to test the multi-layer
flooding algorithm. The model is forced by prescribing sinusoidal oscillations of
surface and interface displacements of an amplitude of 1m near the western bound-
ary. Lateral boundaries are closed.

Two different forcing periods are considered. The first experiment uses a forcing
period of 10 s. The forcing period in the second experiment is 2 h. Simulations run
over 10 times the respective forcing period and data outputs are produced at intervals
of a tenth of the forcing period. The time step is set to Δt = 0.25 s in both cases.
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Fig. 4.17 Configuration for Exercise 7

4.6.3 Sample Code and Animation Script

The folder “Exercise 7” on the CD-ROM contains the computer codes for this exer-
cise. The “info.txt” gives additional information.

4.6.4 Results

A relatively short forcing period of 10 s creates barotropic surface gravity waves
(Fig. 4.18). Density interfaces oscillate in unison with the sea surface. The phase
speed of the wave is c ≈ √

gH , where H is total depth of the water column. Waves
approaching the riff pile up while their wavelength decreases. The wave therefore
becomes steeper aiming to break. Indeed, wave breaking cannot be simulated with
a layer model. Notice that waves continue to propagate eastward on the lee side of
the riff.

When watching the real sea patiently, riffs or sandbars can be identified as the
regions with locally increased wave heights and wave breaking. This process is
known as wave shoaling.

Fig. 4.18 Exercise 7. Snapshot of surface and interface displacements for a forcing period of 10 s.
Only the top 40 m of the water column are shown
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Fig. 4.19 Exercise 7. Snapshot of surface and interface displacements for a forcing period of 2 h

In contrast to this, a longer forcing period of 2 h creates internal waves, largely
blocked by the riff, of wave heights >10 m (Fig. 4.19). Although all layers oscillate
the same way near the forcing location, interfaces oscillate in a complex stretching
and shrinking pattern near the riff.

4.6.5 Phase Speed of Long Internal Waves

In a two-layer fluid, it can be shown that the phase speed of long interfacial waves
is given by (see Pond and Pickard, 1983):

ciw =
√

g′h∗ (4.27)

where g′ is reduced gravity, and h∗ = h1h2/(h1 + h2) is a reduced depth scale with
h1 and h2 being the undisturbed thicknesses of the top and bottom layers, respec-
tively. For h2 >> h1, we yield h∗ ≈ h1. Internal gravity waves propagate much
slower compared with surface gravity waves. Their periods and amplitudes are much
greater and, like surface waves, internal waves can break under certain conditions.
Indeed, breaking of internal waves cannot by simulated with a hydrostatic layer
model.

4.6.6 Natural Oscillations in Closed Bodies of Fluid

Closed water bodies such as a lake or a fish tank are subtle to natural oscillations.
Wave nodes are the locations at which the fluid only experiences horizontal but no
vertical motions. In contrast to this, anti-nodes are locations that experience maxi-
mum vertical motion, but no or only little horizontal motions. Natural oscillations
are standing waves (phase speed is virtually zero) that display anti-nodes of maxi-
mum vertical displacements of the surface (or density interfaces) at the ends of the
basin.
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Fig. 4.20 Examples of natural oscillations that occur in a closed channel

For example, consider a long, shallow and closed channel of constant water depth
H and length L . The basic natural oscillation consists of a single node in the chan-
nel’s centre and anti-nodes at both ends (Fig. 4.20). The next higher-order natural
oscillation is one with two nodes in the channel, the next one comes with three
nodes, and so on. A systematic analysis reveals that natural oscillations occur for
L = m/2λ, where m = 1, 2, 3, . . . is the number of wave nodes establishing in the
channel, and λ is wavelength. In general forms, we can write the latter resonance
conditions as:

T = λ

c
= 2

m

L

c
for m = 1, 2, 3, . . . (4.28)

where T is wave period (or forcing period of a wave paddle) and c is the phase speed
of waves, which can be either surface or interfacial waves.

4.6.7 Merian’s Formula

With the dispersion relation for long surface gravity waves, c = √
gH , forcing

periods triggering a so-called resonance response in a closed channel, are given by:

T ≈ 2

m

L√
gH

for m = 1, 2, 3, . . . (4.29)

This is known as Merian’s formula (Merian, 1828). Resonance of internal waves
occurs the same way, but for much longer forcing periods (since the phase speed of
internal waves is much smaller compared with surface gravity waves).
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4.6.8 Co-oscillations in Bays

Semi-enclosed oceanic regions, such as bays or long gulfs, do not exhibit free
natural oscillations as they are connected with the ambient ocean. Nevertheless,
these regions can experience co-oscillations forced by sea-level oscillations near
the entrance. Co-oscillations of large amplitudes are exited if a wave node is located
in vicinity of the entrance, such that water is pumped into and out of the bay in an
oscillatory fashion. Figure 4.21 illustrates such co-oscillations that occur for forcing
periods of:

T ≈ λ

c
≈ 4

m

L

c
for m = 1, 3, 5, . . . (4.30)

where c is the phase speed of surface or internal gravity waves.

Fig. 4.21 Examples of co-oscillations in a semi-enclosed channel

4.6.9 Additional Exercise for the Reader

The task is to employ the shallow-water model with two layers to explore co-
oscillations in a semi-enclosed bay. Figure 4.22 displays the physical settings. As
in Exercise 5, forcing is provided by placing a wave paddle near the left end of the
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Fig. 4.22 Configuration of the additional exercise

model domain. The reader should try forcing periods of around 5.4 h for stimulation
of large-amplitude internal co-oscillations in the bay.



Chapter 5
2D Shallow-Water Modelling

Abstract This chapter applies the two-dimensional shallow-water equations to
study various processes such as surface gravity waves, the wind-driven circulation
in a lake, the formation of turbulent island wakes, and the barotropic instability
mechanism. The reader is introduced to various advection schemes simulating the
movement of Eulerian tracer and describing the nonlinear terms in the momentum
equations.

5.1 Long Waves in a Shallow Lake

5.1.1 The 2D Shallow-Water Wave Equations

We assume a lake of uniform water density and allow for variable bathymetry. For
simplicity, frictional effects and the coriolis force are ignored and so are the nonlin-
ear terms. This implies that our waves have a period short compared with the inertial
period and that the phase speed of waves exceeds flow speeds by far. Under these
assumptions, the momentum equations can be formulated as:

∂u
∂t

= −g
∂η

∂x
∂v
∂t

= −g
∂η

∂y
(5.1)

∂η

∂t
= −∂ (u h)

∂x
− ∂ (v h)

∂y

where u and v are components of horizontal velocity, t is time, g is acceleration due
to gravity, η is sea-level elevation, and h is total water depth.

5.1.2 Arakawa C-grid

The Arakawa C-grid (Arakawa and Lamb, 1977) is a staggered numerical grid in
which the components of velocity are found between adjacent sea-level grid points

J. Kämpf, Ocean Modelling for Beginners,
DOI 10.1007/978-3-642-00820-7 5, C© Springer-Verlag Berlin Heidelberg 2009
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Fig. 5.1 Configuration of the horizontal version of the Arakawa C-grid. The grid cell with the grid
index j = 3 and k = 2 is highlighted the doted rectangle highlights the grid cell with index

(Fig. 5.1). This grid, being widely used by the oceanographic modelling commu-
nity, will be the basis of the following model codes. Note that u and v velocity
components are not located at the same grid points.

5.1.3 Finite-Difference Equations

We need to have two cell indices in this two-dimensional application with j being
the cell index in the y-direction and k being the cell index in the x-direction. With
reference to the Arakawa C-grid, the governing equations can be written in finite-
difference form as:

un+1
j,k = un

j,k − Δt g
(
ηn

j,k+1 − ηn
j,k

)
/Δx

vn+1
j,k = vn

j,k − Δt g
(
ηn

j+1,k − ηn
j,k

)
/Δy (5.2)

η∗
j,k = ηn

j,k − Δt
{(

un+1
j,k he − un+1

j,k−1 hw

)
/Δx −

(
vn+1

j,k hn − vn+1
j−1,k hs

)
/Δy

}

where hw and he are layer thicknesses at the western and eastern faces of the control
volume, and hs and hn are layer thicknesses at the southern and northern faces of
the control volume. Again, the upstream scheme is used to specify the grid indices
used for of these thicknesses (see Sect. 4.2).
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In addition to this, sea-level elevations are slightly smoothed with use of the two-
dimensional version of the first-order Shapiro filter. To this end, values of sea-level
elevation for the next time level follow from:

ηn+1
j,k = (1 − ε)η∗

j,k + 0.25ε
(
η∗

j,k−1 + η∗
j,k+1 + η∗

j−1,k + η∗
j+1,k

)
(5.3)

The parameter ε determines the degree of smoothing.

5.1.4 Inclusion of Land and Coastlines

As in the 1D shallow water model, water-depth values determine whether gridpoints
belong to the ocean or to the land and also the location of coastlines. Land is here
defined as zero or negative values of water depth and velocity components are kept
at zero values in these “dry” grid cells during a simulation. Coastlines are implicitly
defined by setting the flow component normal to a coastline to zero. Owing to the
staggered nature of the Arakawa-C grid (see Fig. 5.1), this implies that u values are
set to zero if there is land in the adjacent grid cell to the east. Accordingly, v values
are set to zero in case of land in the adjacent grid cell to the north. Figure 5.2 gives
an example of the shape of land and coastlines in the Arakawa-C grid. The flooding
algorithm can be implemented in analog to the 1D application (see Sect. 4.4).

Fig. 5.2 Example of land and coastlines in the Arakawa C-grid
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5.1.5 Stability Criterion

The CFL criterion for the two-dimensional shallow-water equations is given by:

Δt ≤ min (Δx,Δy)√
2ghmax

(5.4)

where hmax is the maximum water depth encountered in the model domain.

5.2 Exercise 8: Long Waves in a Shallow Lake

5.2.1 Aim

The aim of this exercise is to simulate the progression of long circular surface grav-
ity waves in a two-dimensional domain.

5.2.2 Task Description

We consider a square lake of 500 m× 500 m in areal extent and 10 m in depth
using equidistant lateral grid spacings of Δx = Δy = 10 m. Lateral boundaries
are closed. The flooding algorithm is included. Lake water is of uniform density.
Forcing consists of an initial sea-level elevation of 1 m in the central grid cell that,
when released, will create a tsunami-type wave spreading out in all directions. Such
waves, created by a point-source disturbance, are called circular waves. The time
step is chosen at Δt = 0.1 s, which satisfies the CFL stability criterion. The simula-
tion is run for 100 s with data outputs at every 0.5 s.

5.2.3 Sample Code and Animation Script

The two-dimensional shallow-water model is a straight-forward extension of the 1D
channel model used in Exercise 6. Model variables are now two-dimensional arrays
such as “eta(j,k)” where “j” and “k” are grid cell pointers. The folder “Exercise 8”
of the CD-ROM contains the computer codes for this exercise. The file “info.txt”
contains additional information. Note that SciLab animation scripts can be run while
the FORTRAN code is executed in the background. This is useful for long simula-
tions to check whether the results are reasonable. If not, the FORTRAN run can
be stopped by simultaneously pressing <Ctrl> and <c> in the Command Prompt
window.
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Fig. 5.3 Exercise 8. Sea-level elevations at selected times of the simulation

5.2.4 Snapshot Results

Figure 5.3 shows snapshot results of sea-surface elevation fields at selected times.
As the reader can see, the model appears to be able to simulate the evolution and
propagation of shallow-water waves in a two-dimensional domain.

5.2.5 Additional Exercise for the Reader

Add one or more islands or submerged seamounts to the model domain, and explore
how long surface gravity waves deal with such obstacles.

5.3 Exercise 9: Wave Refraction

5.3.1 Aim

The aim of this exercise is to predict the dynamical behaviour of long, plane surface
gravity waves as they approach shallower water in a coastal region.

5.3.2 Background

Why do plane surface gravity waves usually align their crests parallel to the beach
as they approach the coast? The reason for this wave refraction is that all surface
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gravity waves eventually become long waves as they approach shallower water.
The phase speed of long surface gravity waves depends exclusively on the total
water depth. Portions of a wave located in deeper water travel faster than those in
shallower water. Accordingly, the wave pattern experiences a gradual change of its
orientation, such that wave crests become more and more aligned with topographic
contours.

5.3.3 Task Description

The model domain is 2 km long and 500 m wide, resolved by grid spacings of
Δx = Δy = 10 m (Fig. 5.4). The total water depth gradually decreases from 30 m
at the western boundary to zero at the coast. The beach has a gentle slope of 10 cm
per 10 m. Bathymetric contours and the coastline are rotated by 30◦ with respect
to the y direction. A separate FORTRAN code is used to create this bathymetry as
input for the simulation code.

Plane waves are waves whose wavefronts (crests and troughs) are straight and
parallel to each other. Propagation occurs in a direction normal to wavefronts and
can be described by means of a phase velocity vector. Such plane waves are gener-
ated at the western open boundary via prescription of sinusoidal sea-level oscilla-
tions (uniform along this boundary) of a period of 20 s.

In a water depth of 30 m, the forcing applied creates plane shallow-water waves
of a wavelength (λ = T

√
gh) of approximately 340 m. The amplitude of oscillations

is 20 cm. The northern and southern boundaries are open boundaries. The numerical
time step is set to Δt = 0.2 s. The total simulation time is 200 s.

5.3.4 Lateral Boundary Conditions

If the prediction loop is performed from j = 1 to j = ny, the finite-difference
equations (5.2) require a boundary condition for ηny+1,k at the northern open bound-
ary and for v0,k at the southern open boundary (Fig. 5.5). To make these boundary
conditions more consistent, v0,k can be included in the prediction, so that in analog
to the northern boundary, a boundary condition for η0,k is now required. Note that

Fig. 5.4 Model configuration for Exercise 9
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Fig. 5.5 Boundary points that need to be specified in the numerical code. In (a) v is predicted from
j = 1 to j = ny, whereas in (b) the prediction loop includes j = 0

boundary values of u at the northern and southern open boundaries are not required
since the finite-difference equations do not access these values.

In this model application, we include j = 0 in the prediction of v and assume
that the second spatial derivative of η normal to the open boundary vanishes; that is:

ηn
0,k = 2ηn

1,k − ηn
2,k

ηn
ny+1,k = 2ηn

ny,k − ηn
ny−1,k

This condition induces a bias of the phase speed of waves in vicinity of the
boundary and can lead to severe misrepresentation of the dynamics in certain appli-
cations. This condition works reasonably well for the configuration of this exercise.
Advanced methods are available for the numerical treatment of waves approach-
ing an open boundary such as radiation conditions first suggested by Sommerfeld
(1949). The basis of radiation conditions is that the phase speed normal to an open
boundary is the carrier of sea-level gradients across this boundary. This can be for-
mulated by an advection equation reading:

∂η

∂t
+ cy

∂η

∂y
= 0 (5.5)

where cy is the phase speed normal to the boundary. For processes of variable phase
speed, Orlanski (1976) proposed to compute cy using a diagnostic version of (5.5);
that is;

cy = − ∂η/∂t

∂η/∂y
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where the partial derivatives are evaluated at previous time steps and from interior
values. The computed phase speed is then used in (5.5) to predict variations of the
boundary value of η. This numerical scheme, called Orlanksi radiation condition, is
widespreadly used by ocean modellers. Implementation of this scheme remains for
the advanced reader.

5.3.5 Sample Code and Animation Script

The folder “Exercise 9” of the CD-ROM contains the FORTRAN simulation code,
a SciLab animation script, and a FORTRAN code called “topo.f95” that creates the
bathymetry. The file “info.txt” gives additional information.

5.3.6 Results

The boundary forcing generates long surface gravity waves propagating into the
model domain (Fig. 5.6). The wavelength becomes shorter in shallower water, which
results in gradual alignments of the wave crests parallel to the coastline. Lateral
boundary conditions do not lead to noticeable problems. The reason for wave steep-
ening is that the phase speed under a wave crest exceed that under a wave trough
according to (4.16).

5.3.7 Additional Exercise for the Reader

Repeat this exercise with forcing periods of 10 and 40 s. The advanced reader is
encouraged to run this exercise with a modified bathymetry.

Fig. 5.6 Exercise 9. Snapshot of long waves being subject to refraction. The blue surface displays
sea-level elevation. The red surface shows bathymetry
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5.4 The Wind-Forced Shallow-Water Model

5.4.1 The Governing Equations

The shallow-water equations including wind-stress forcing and bottom friction read:

∂u
∂t

= −g
∂η

∂x
+ τwind

x − τ bot
x

ρoh

∂v
∂t

= −g
∂η

∂y
+ τwind

y − τ bot
y

ρoh
(5.6)

∂η

∂t
= −∂ (u h)

∂x
− ∂ (v h)

∂y

where (τwind
x , τwind

y ) is the wind-stress vector, and (τ bot
x , τ bot

y ) is the frictional bottom-
stress vector. For simplicity, lateral friction, the nonlinear terms, and the Coriolis
force are not included yet in the momentum equations. This model only describes
depth-averaged effects of wind forcing and bottom friction.

5.4.2 Semi-implicit Approach for Bottom Friction

Under the exclusive action of bottom friction and using a quadratic bottom-friction
law, the momentum equation can be written as:

∂u
∂t

= −ru
√

(u2 + v2)/h (5.7)

∂v
∂t

= −rv
√

(u2 + v2)/h (5.8)

where r is a non-dimensional bottom-drag coefficient. Under the assumption that
the initial flow runs into the x-direction, an explicit approach of the bottom-friction
term would lead to the finite-difference equation:

un+1
j,k = un

j,k (1 − ε) with ε = rΔt
∣∣un

j,k

∣∣ /hu

where hu is thickness of the water column at the u-grid point. The problem now are
instances of ε > 1, which can happen in shallow parts of a model domain, trigger-
ing unwanted acceleration of the flow. Bottom friction cannot do such things. This
problem can be avoided when using a semi-implicit approach for bottom friction,
leading to the equations:

un+1
j,k = un

j,k − rΔt un+1
j,k

√(
un

j,k

)2
+ (

vn
u

)2
/hu (5.9)
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vn+1
j,k = vn

j,k − rΔt vn+1
j,k

√(
un

v

)2 +
(
vn

j,k

)2
/hv (5.10)

where the subscripts u and v indicate the location at which a variable is calculated.
This is necessary because u, v and h are not evaluated at the same grid point in the
Arakawa C-grid (see Fig. 5.1). Reorganisation of these equations gives:

un+1
j,k = un

j,k/ (1 + Rx ) (5.11)

vn+1
j,k = vn

j,k/
(
1 + Ry

)
(5.12)

The parameters Rx and Ry are given by:

Rx = rΔt

√(
un

j,k

)2
+ (

vn
u

)2
/hu (5.13)

Ry = rΔt

√(
un

v

)2 +
(
vn

j,k

)2
/hv (5.14)

are always positive quantities, so that bottom friction will gradually decrease speed,
as required. Hence, a semi-implicit approach for bottom friction should always be
employed in layer models.

5.4.3 Finite-Difference Equations

Using a semi-implicit approach for bottom friction, the finite-difference equations
stating momentum conservation are given by:

un+1
j,k = (

un
j,k + Δun

j,k

)
/ (1 + Rx ) (5.15)

vn+1
j,k = (

vn
j,k + Δvn

j,k

)
/
(
1 + Ry

)
(5.16)

where Rx and Ry are given by (5.13) and (5.14), and

Δun
j,k = Δt

{
τwind

x / (ρohu) − g
(
ηn

j,k+1 − ηn
j,k

)
/Δx

}
(5.17)

Δvn
j,k = Δt

{
τwind

y / (ρohv) − g
(
ηn

j+1,k − ηn
j,k

)
/Δy

}
(5.18)
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5.5 Exercise 10: Wind-Driven Flow in a Lake

5.5.1 Aim

The aim of this exercise is to simulate the wind-driven water circulation in a shallow
lake with variable bottom topography.

5.5.2 Creation of Variable Bathymetry

Before simulating the wind-driven circulation in a shallow lake, I want to show the
reader a simple way to create variable bottom topography without using complex
analytical functions. The trick is to start with a coarse block-type bathymetry and to
employ the diffusion equation for subsequent smoothing. The diffusion equation is
given by:

∂h
∂t

= Ah

(
∂2h
∂x2

+ ∂2h
∂y2

)
(5.19)

where the diffusion coefficient Ah and the duration of smoothing are adjusted such
that the result is acceptable. Coastlines and land should not disappear during the pro-
cess. This can be implemented in the code via the choice of zero-gradient conditions
at the borders between dry and wet grid cells.

5.5.3 Sample Code

The FORTRAN 95 bathymetry creator, named “BathCreator.f95” is included in the
folder “Miscellaneous/2D Bathymetry Creator” of the CD-ROM. The result is writ-
ten to a file named “topo.dat”. This file is required as input file for the simulation
code. Included is also a SciLab script, called “Bath.sce”, creating Figure 5.7.

5.5.4 Task Description

Consider a lake of 5 km×5 km in horizontal extent, being resolved by equidis-
tant horizontal grid spacings of Δx = Δy = 100 m, and variable bathymetry.
Figure 5.7 shows the lake’s bathymetry used by the author. Consider a uniform
southerly wind stress of τwind

y = 0.2 Pa in strength being linearly adjusted from zero
to its final value over 2 days to avoid unwanted inertial and gravity waves. Simu-
late the steady-state circulation resulting from the wind-stress forcing applied. Five
days of simulation should be sufficient for this. Set the bottom-friction coefficient
to r = 0.001. I used a time step of Δt = 3 s, which satisfies the CFL stability
criterion.
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Fig. 5.7 Bathymetry for Exercise 10

5.5.5 Tricks for Long Model Simulations

This lake simulation might take a bit longer to complete. SciLab can be used to
inspect preliminary results while the model is running in the background. If these
results are unsatisfactory, simulations can be cancelled at any time by entering
“<Ctrl> c” in the Command Prompt window.

5.5.6 Results

Flow speeds tend to be much swifter in shallow than in deeper regions of the domain:
For graphical display purposes, circulations should be visualised by means of verti-
cally integrated velocity components; that is, lateral volume transport. This removes
the strong effect of water depth on flow speed and reveals the circulation pattern in
deeper parts of the domain.

A steady-state circulation is established in the lake after 4 days of simulation
(Fig. 5.8). Although the wind forcing is uniform, the circulation is quite complex.
Owing to confinement by the lake’s banks, not all of the flow can go into the wind
direction. Instead of this, a return flow establishes moving water from the northwest-
ern corner to the southeastern corner against the wind direction. This return flow is
driven by (southeastward) pressure gradients associated with a slanting sea level.
The island operates as a divider of the flow and strong lateral flow shear is found on
the western side of the island. A counterclockwise “eddy” establishes northwest of
the island. Maximum current speed is 0.7 m/s.
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Fig. 5.8 Exercise 10. Steady-state currents in a shallow lake resulting from a southerly wind of a
wind stress of 0.2 Pa. Black lines show bathymetric contours. Arrows are volume transport vectors
(u h,v h) being averaged over 3×3 grid cells

5.5.7 Sample Code and Animation Script

The folder “Exercise 10” of the CD-ROM contains the computer codes. The file
“info.txt” gives additional information. Note that the output flow field is needed as
input data for Exercises 11 and 12.

5.5.8 Caution

The reader will notice that the simulation takes several minutes to complete. With
the choice of finer grid spacings, the simulation time will significantly increase.
Using half the grid spacing, for instance, has two consequences. First, the number
of grid cells increases fourfold and so does the time to complete each simulation
loop. Second, smaller time steps are required to match the CFL stability criterion.
Both features together, will lead to an eightfold increase in total simulation time.
Also the frequency of data outputs needs to be carefully chosen. I used outputs
at every second hour of iteration, yielding 12 × 5 = 60 outputs per variable. The
resultant size of each data file is >1.8 MByte. Keep the frequency of data outputs
as low as possible to avoid storage space problems.
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5.5.9 Additional Exercise for the Reader

The reader is encouraged to create a different bathymetry and to explore the lake’s
circulation for a variety of wind directions.

5.6 Movement of Tracers

5.6.1 Lagrangian Versus Eulerian Tracers

Lagrangian tracers are non-buoyant fluid parcels that move passively with the flow.
In practice, the trajectory of Lagrangian floats are predicted by means of displace-
ment distances per time step derived from the velocity at float locations. Eulerian
tracers, on the other hand, are concentration fields being subject to advection and
mixing by currents.

5.6.2 A Difficult Task

The numerical simulation of advection of Eulerian concentration fields is a chal-
lenging and difficult task and there are many potential sources of errors that can
occur. Some numerical advection schemes trigger unwanted numerical diffusion,
while other schemes lead to unwanted numerical oscillations.

5.6.3 Eulerian Advection Schemes

The advection equation for depth-averaged tracer concentration B in the presence
of depth-averaged horizontal flow with components u and v is given by:

∂B
∂t

= −u
∂B
∂x

− v
∂B
∂y

(5.20)

Using the product rule of differentiation, this equation can be reformulated as:

∂B
∂t

= −∂(uB )

∂x
− ∂(vB )

∂y
+ B

(
∂u
∂x

+ ∂v
∂y

)
(5.21)

The temporal change of B can be discretised using a simple time-forward iter-
ation. Also the last term can be formulated in a straight-forward explicit manner.
Several options are available for the treatment of the remaining terms. These options
are described in the following for the x-direction. Analog recipes apply for the
y-direction.
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In all schemes, the first term on the right-hand side of the latter equation can be
formulated as:

− Δt
∂(uB )

∂x
= Cw Bw − Ce Be (5.22)

where the indices “w” and “e” refer to east and west faces of the control volume
and:

Cw = un
k−1Δt/Δx and Ce = un

kΔt/Δx (5.23)

are so-called Courant numbers. In a next step, we can split the u component into
positive and negative components:

u+ = 0.5(u + |u|) and u− = 0.5(u − |u|) (5.24)

and rewrite (5.21) in the form:

− Δt
∂(uB )

∂x
= C+

w B+
w + C−

w B−
w − C+

e B+
e − C−

e B−
e (5.25)

The objective of any finite-difference Eulerian advection scheme is to interpolate
the volume-averaged values of B to obtain the effective face values Be and Bw.
Here we use so-called Total Variation Diminishing schemes or TVD schemes that
are based on the requirement:

∑
k

∣∣Bn+1
k+1 − Bn+1

k

∣∣ ≤
∑

k

∣∣Bn
k+1 − Bn

k

∣∣ (5.26)

For the TVD schemes used here, described by Fringer et al. (2005), the face
values of B are computed with the upwind values plus the addition of a higher order
term with:

B+
e = Bn

k + 0.5Ψ
(
r+

k

) (
1 − C+

e

) (
Bn

k+1 − Bn
k

)

B−
e = Bn

k+1 − 0.5Ψ
(
r−

k

) (
1 + C−

e

) (
Bn

k+1 − Bn
k

)

B+
w = Bn

k−1 + 0.5Ψ
(
r+

k−1

) (
1 − C+

w

) (
Bn

k − Bn
k−1

)

B−
w = Bn

k − 0.5Ψ
(
r−

k−1

) (
1 + C−

w

) (
Bn

k − Bn
k−1

)

where the r parameters are given by:

r+
k = Bn

k − Bn
k−1

Bn
k+1 − Bn

k

and r−
k = Bn

k+2 − Bn
k+1

Bn
k+1 − Bn

k

The limiting function Ψ defines the particular scheme that is used. A few selected
options are given in the following.
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• The upstream scheme follows from Ψ = 0. We have used this scheme in the
prediction of sea-level elevation in previous exercises.

• Ψ = 1 gives the Lax-Wendroff scheme.
• Ψ(r ) = max {0, min(2r, 1), min(r, 2)} defines the so-called Superbee scheme.

In addition to this, we consider the Super-C scheme that is boundless by using
the Courant number in the denominator. This scheme is defined by:

Ψ(r, |C |) =
⎧
⎨
⎩

min (2r/ |C | , 1) : 0 ≤ r ≤ 1
min (r/2/(1 − |C |), r ) : r > 1

0 : otherwise

where the Courant number C is calculated at the right-hand face of a control volume.

5.6.4 Stability Criterion for the Advection Equation

The stability criterion for the above explicit forms of the advection equation is:

C = Δt

Δx
u ≤ 1 (5.27)

where C is the Courant number, and u is the flow speed. Accordingly, time steps
have to satisfy the condition:

Δt ≤ Δx

u
(5.28)

Note that this is also a CFL condition, but this time based on flow speed instead
of phase speed of waves. Conditions of C < 1 will always lead to a certain level of
numerical diffusion. This is because the displacement distance per time step is less
the grid spacing, so that some averaging will take place. Nevertheless, a particular
advection scheme might perform better than others, which will be investigated in
the following.

5.7 Exercise 11: Eulerian Advection

5.7.1 Aim

The aim of this exercise is to simulate the movement of non-buoyant Eulerian tracer
subject to the steady-state lake’s circulation predicted in Exercise 10. Different TVD
advection schemes will be tested.
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5.7.2 Task Description

We use the steady-state flow field computed in Exercise 10 to predict the movement
pattern of Eulerian tracer being introduced at a concentration of unity in a certain
region of the model domain. In this exercise, tracer is released in the northwestern
part of the lake in a quadratic box with side lengths of 0.5 km. With an inspection
of the steady-state circulation established in the lake (see Fig. 5.8), we expect that
this tracer is initially advected southward and separates into westward and eastward
flowing branches near the southern boundary. With “frozen” dynamics, a time step
much greater compared with that in Exercise 10 can be used. I used Δt = 200 s,
which satisfies the CFL condition (5.4). Advection schemes being tested are the
upstream scheme, the Lax-Wendroff scheme, the Superbee scheme and the Super-C
scheme.

5.7.3 Results

Figure 5.9 shows results employing the upstream scheme. This scheme is extremely
numerically diffusive and triggers substantial artificial decrease of the maximum
concentration by 85% after 9 h of simulation corresponding to 162 simulation steps.
Owing to this numerical diffusion, tracer concentration is vigorously mixed hori-
zontally.

The Lax-Wendroff scheme appears to be less diffusive (Fig. 5.10), but has other
disadvantages. This scheme produces numerical oscillations, leading to slightly
negative concentrations in some regions and concentrations exceeding the initial
concentration in other regions.

The Superbee scheme produces more convincing results (Fig. 5.11) void of
numerical oscillations and far less diffusive compared with the upstream scheme.

Fig. 5.9 Exercise 11. Snapshots of contours of tracer concentration (coloured lines) using the
upstream scheme. The contour interval is maximum tracer concentration divided by 10. The header
displays maximum concentration relative to initial concentration in per cent. Thin black lines are
bathymetric contours. The square indicates the release area of the tracer
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Fig. 5.10 Exercise 11. Same as Fig. 5.9, but with use of the Lax-Wendroff scheme

Fig. 5.11 Exercise 11. Same as Fig. 5.9, but with use of the Superbee limiter

After 9 h of simulation, the initial concentration has reduced by 39%, which is half
the diffusion rate produced by the upstream scheme.

The Super-C scheme produces results similar to the Superbee scheme (Fig. 5.12).
It induces only little diffusion and is largely void of numerical oscillations. After 9 h
of simulation, the initial concentration has reduced by only 19%.

Fig. 5.12 Exercise 11. Same as Fig. 5.9, but with use of the Super-C scheme
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5.7.4 Recommendation

Use either the Superbee limiter or the Super-C scheme for advection of Eulerian
tracer. Either of these schemes should also be used in replacement of the upstream
scheme in the volume-conservation equation.

5.7.5 Sample Code and Animation Script

The folder “Exercise 11” of the CD-ROM contains the computer codes for this
exercise. The “MODE” switch allows for selection of any of the above flux limiters.

5.8 Exercise 12: Trajectories

5.8.1 Aim

The aim of this exercise is to predict the pathways of individual non-buoyant
Lagrangian floats subject to the lake’s steady-state circulation circulation.

5.8.2 Task Description

Using the steady-state flow field predicted in Exercise 10, a large number (3000)
of Lagrangian floats is introduced at random locations in the lake to predict their
pathways over a day. The horizontal displacement of a float is calculated from:

Xn+1
m = Xn

m + Δt U n
m

Y n+1
m = Y n

m + Δt V n
m

where m is the float number, X and Y specifies the location of a float, and U and
V is the ambient lateral flow interpolated to the float location. To make this task
easier, instead of interpolating velocity to the precise location of a float, we use the
velocity interpolated to the nearest “h” grid point as a proxy. Zones within a distance
of 500 m from the lake’s banks are initially kept free of floats to avoid that floats
become trapped in zones of little or zero flow.

5.8.3 Results

Both the animation movie of float locations (Fig. 5.13 shows a snapshot) and tra-
jectories (Fig. 5.14) nicely reveal the circulation pattern established in the lake. The
southerly wind drives northward flows on the western and eastern sides of the lake.
In interaction with bathymetry, the resultant pattern in sea-level gradients creates a
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Fig. 5.13 Exercise 12. Snapshot of the locations of 3000 Lagrangian floats after 6 h of simulation

Fig. 5.14 Exercise 12. Trajectories of 500 Lagrangian floats over 12 h of simulation
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return flow running from the northwestern corner to the southeastern corner of the
lake. This return flow disintegrates into two separate “gyres” as it approaches the
southern bank of the lake. Obviously, the island forms an obstacle for the eastern
gyre.

5.8.4 Sample Code and Animation Script

The computer codes for this exercise can be found in the folder “Exercise 12” of
the CD-ROM. The code includes a random-number generator, taken from Press
et al. (1989), for allocation of initial float locations. One Scilab script produces an
animation of the drift of floats, whereas the other script produces a single graph
displaying trajectories of a selected number of floats (see Fig. 5.14).

5.9 Exercise 13: Inclusion of Nonlinear Terms

5.9.1 Aim

The aim of this exercise is to include the nonlinear terms (advection of momentum)
in the shallow-water equations.

5.9.2 Formulation of the Nonlinear Terms

Using the product rule of differentiation, the (horizontal) nonlinear terms in our
shallow-water model can be written as:

Advh(ξ ) = u
∂ξ

∂x
+ v

∂ξ

∂y
= ∂(uξ )

∂x
+ ∂(vξ )

∂y
− ξ

(
∂u
∂x

+ ∂v
∂y

)
(5.29)

where ξ is either u or v. The first two terms on the right-hand side of this equation
can be discretised using the TVD advection schemes for a control volume as in
Exercise 11. The remaining term can be formulated in an explicit manner.

5.9.3 Sample Code

Due to its multiple use, it make sense to formulate the advection scheme in gen-
eralised form as a subroutine. This subroutine can then be used for calculations of
the nonlinear terms and advection of Eulerian tracer, and also as a solver of the
vertically integrated form of the continuity equation. In this exercise, the Superbee
scheme is used for the sea-level predictor and different flux limiters are tested for
the nonlinear terms. The folder “Exercise 13” of the CD-ROM contains the amended
simulation code.
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5.9.4 Results

Inclusion of the nonlinear terms modifies the lake’s circulation (Fig. 5.15). A clock-
wise eddy establishes in the northwestern corner of the lake and the eddy northwest
of the island has largely disappeared. The upstream scheme is highly diffusive and
therefore triggers rapid establishment of a steady-state circulation in the lake. In
contrast to this, less diffusive TVD advection schemes based on either the Superbee
or the Super-C limiters lead to slight oscillations of the circulation pattern presum-
ably triggered by the initial adjustment of the wind field. Due to reduced numerical
diffusion, either of these schemes should be applied for the nonlinear terms. Use
of the Lax-Wendroff scheme for the nonlinear terms did not lead to satisfactory
results.

Fig. 5.15 Exercise 13. Same as Fig. 5.8, but with inclusion of nonlinear terms in the momentum
equations using the TVD Superbee scheme

5.10 Exercise 14: Island Wakes

5.10.1 Aim

The aim of this exercise is to simulate turbulent wakes produced by horizontal flows
around an island. This includes implementations of both lateral friction and lateral
momentum diffusion in the shallow-water model.
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5.10.2 The Reynolds Number

Flow around an obstacle such as an island becomes dynamically unstable under
certain circumstances and breaks up into a irregular turbulent wake. The transition
of laminar flow into turbulence can be described by means of the ratio between
the nonlinear terms and diffusion of momentum. This ratio is called the Reynolds
number (Reynolds, 1883) and can be defined by:

Re = U L

Ah
(5.30)

where U is the speed of the incident flow, L is the diameter of the obstacle, and Ah

is ambient horizontal eddy viscosity.
A variety of flow regimes can develop in dependence on the magnitude of the

Reynolds number. For Re ≈ 1 the flow is typically laminar and smoothly surrounds
the obstacle. A stationary vortex pair with central return flow develops for Re ≈ 10.
Larger values of Re ≈ 100 leads to the formation of a turbulent wake in the lee
of the obstacle. Re >> 100 triggers a turbulent wake of organised vortices called
von Kármán vortex shedding in appreciation of pioneering work by Theodore von
Kármán (1911).

Vortex shedding occurs at a certain frequency f . The dimensioness number:

St = f L

U
(5.31)

is known as the Strouhal number and is named after the Czech physicist Vincenc
Strouhal (1850–1922), who first investigated the steady humming (or singing)
of telegraph wiring. There exist relationships (not replicated here) between the
Strouhal number and the Reynolds number that can be experimentally derived. It
should be noted that this Strouhal instability is believed to be the reason for collapse
of the Tacoma Narrows Bridge, Washington, on November 7, 1940.

5.10.3 Inclusion of Lateral Friction and Momentum Diffusion

Lateral friction and diffusion of momentum is required in the momentum equations
in order to simulate the development of turbulent wakes in the lee of an obstacle.
Under the assumption of uniform values of lateral eddy viscosity Ah , the depth-
averaged version of the lateral momentum diffusion can be formulated as:

divh(u) = Ah

h

{
∂

∂x

(
h

∂u
∂x

)
+ ∂

∂y

(
h

∂u
∂y

)}
(5.32)

divh(v) = Ah

h

{
∂

∂x

(
h

∂v
∂x

)
+ ∂

∂y

(
h

∂v
∂y

)}
(5.33)
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where h is layer thickness. The discretised form of the diffusion term for u has the
components:

Ah

h

∂

∂x

(
h

∂u
∂x

)
= Ah

huΔx

⎡
⎣he

(
un

j,k+1 − un
j,k

)

Δx
−

hw

(
un

j,k − un
j,k−1

)

Δx

⎤
⎦ (5.34)

Ah

h

∂

∂y

(
h

∂u
∂y

)
= Ah

huΔy

⎡
⎣hn

(
un

j+1,k − un
j,k

)

Δy
−

hs

(
un

j,k − un
j−1,k

)

Δy

⎤
⎦ (5.35)

where layer thicknesses of the faces of the control volume (see Fig. 5.16) are given
by:

hu = 0.5
(
hn

j,k + hn
j,k+1

)

he = hn
j,k+1

hw = hn
j,k

hn = 0.25
(
hn

j,k + hn
j,k+1 + hn

j+1,k + hn
j+1,k+1

)

hs = 0.25
(
hn

j,k + hn
j,k+1 + hn

j−1,k + hn
j−1,k+1

)

The diffusion terms for v are constructed in a similar fashion.

Fig. 5.16 Illustration of locations of layer-thickness h and u grid points for the discretisation of
the horizontal diffusion terms for u
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5.10.4 Stability Criterion for Diffusion Terms

The one-dimensional diffusion equation for a variable ψ can be written as:

∂ψ

∂t
= Ah

∂2ψ

∂x2
(5.36)

where Ah is a diffusivity assumed constant. Using an explicit finite-difference for-
mulation of diffusion term leads to the stability criterion:

Δt ≤ (Δx)2

Ah
(5.37)

Although the diffusion terms (5.31) and (5.31) in the momentum equations are
slightly more complex than assumed here, the latter condition gives a useful upper
bound for permitted time steps. If problems persist, the time step should be further
reduced.

5.10.5 Full-Slip, Semi-Slip and No-Slip Conditions

Frictional effects on flow running parallel to coastlines can be implemented via
specification of the velocity shear near the coast. For, instance, with the choice
of zero-gradient conditions for this velocity component, there is no shear of flow
parallel to the coast and, accordingly, there is no frictional stress imposed on the
flow. This is called the full-slip condition.

As another option, flow vanishes at the coastline under the assumption that the
flow at the grid point on the other side of the coastline is anti-parallel to the coastal
flow, so that the average value vanishes directly at the coast. This is known as the

Fig. 5.17 Illustration of the full-slip, semi-slip and no-slip conditions used for flow parallel to
coastlines
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zero-slip condition. The semi-slip condition gives half the velocity shear compared
with the no-slip condition and it is realised by setting flow at land grid points to
zero. Figure 5.17 illustrates these conditions.

5.10.6 Task Description

Employ the bathymetry creator for construction of a bathymetry similar to that in
Fig. 5.18. The western and eastern boundaries of the model domain are open and
a small island is located near the western boundary. Use nx = 101 grid cells in the
x-direction and ny = 51 grid points in the y direction together with equidistant grid
spacings of Δx = Δy = 100 m. Use a numerical time step of Δt = 3 s.

Add the horizontal diffusion terms to the momentum equations and choose a
no-slip condition. The model is forced by prescription of a westerly (eastward) wind
stress of τwind

x = 0.2 Pa. The TVD Superbee scheme is used for advection of any
property. All other parameters are the same as in Exercise 13. In this exercise, the
eastern and western boundaries are cyclic boundaries. This means that fluid escaping
through the eastern boundary enters the western boundary and vice versa.

In anticipation of eastward flow, a point source of Eulerian tracer concentration
is introduced at the western boundary for visualisation of the flow dynamics. In
contrast to the dynamical variables, Eulerian tracer is allowed to disappear through
the eastern boundary using zero-gradient conditions at this boundary.

The wind-forcing imposed will create an incident flow of about 0.5 m/s in speed.
The diameter of the island is 300 m. Consider the following cases. Case 1 uses
Ah = 2.5 m2/s, giving Re = 60. Case 2 uses Ah = 1 m2/s, yielding Re = 300. Run
these two cases over 2 days with data outputs at hourly interval.

Fig. 5.18 Bathymetry for Exercise 14
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5.10.7 Sample Code

The folder “Exercise 14” contains the computer code including implementations
of lateral momentum diffusion and lateral friction with coastlines. Different slip
conditions can be selected by means of a switch called “slip”.

5.10.8 Results

In case of a relatively low Reynolds number of Re = 60 (Case 1), the flow around
the island is relatively smooth (Fig. 5.19). A return flow is created behind the island
with a speed of 8 cm/s. Note that the averaging procedure used in the SciLab script
has removed this return flow in Fig. 5.19. The flow develops some slight meandering
in the lee of the island toward the end of the simulation, but a turbulent wake is not
created. It should be noted that numerical diffusion, being difficult to quantify, also
contributes to lateral diffusion of momentum. This can hinder the formation of a
turbulent wake.

A turbulent wake in form of a von Kármán vortex street forms for a higher
Reynolds number of Re = 300 (Case 2) (Fig. 5.20). Vortices attain a lengthscale
of the order of the island’s diameter and produce lateral mixing in the lee of the
island. This model application captures well the transition of largely laminar flow
for small Reynolds numbers into a vortex street for Re > 100.

The generation mechanism of this process can be described as follows. The
flow is forced around the island by pushing water against the island. This pro-
duces elevated sea level and associated pressure gradients divert the flow around
the island. Similarly, movement of water away from the island in its lee leads to a
local drop of the sea level. For weak flows, this low-pressure centre forces the flow
smoothly around the island. For stronger flows, this low pressure centre intensifies

Fig. 5.19 Exercise 14. Case 1 (Re = 60). Flow vectors (averaged over 5×5 grid cells) and Eulerian
tracer concentration (lines, contour interval is 0.04) after 2 days of iteration
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Fig. 5.20 Exercise 14. Same as Fig. 5.19, but for Case 2 (Re = 300) and after 1.5 days of simula-
tion

and produces a return flow toward the island and an associated counter-rotating
vortex pair. With a further intensification of the flow incident on the island, the vor-
tex pair becomes unstable owing to nonlinear effects. This creates flow meadering
and the formation of a vortex street. The role of lateral momentum diffusion in this
process is the suppression of flow disturbances which fails when the ambient flow
exceeds a certain threshold speed.

5.10.9 Additional Exercises for the Reader

Explore changes in the dynamics when using either the semi-slip or the full-slip
condition. Experiment with different island shapes and sizes. Place two or more
islands in the model domain to study interference patterns of adjacent turbulent
wakes.



Chapter 6
Rotational Effects

Abstract This chapter applies the shallow-water equations to study a variety of
hydrodynamic processes being influenced or even controlled by the Coriolis force.
The reader is introduced to quasi-geostrophic flows and the concept of vorticity.
Exercises address a rich variety of processes including coastal Kelvin waves, topo-
graphic steering of barotropic quasi-geostrophic flows, topographic Rossby waves,
the general wind-driven circulation of the ocean, western boundary currents, baro-
clinic compensation, geostrophic adjustment of density fronts, the baroclinic insta-
bility mechanism, and reduced-gravity plumes.

6.1 The Complete Shallow-Water Equations

6.1.1 Description

Exercises in this chapter employ the single-layer shallow-water equations in their
complete form including nonlinear terms, wind-stress forcing, the Coriolis force,
the pressure-gradient force, bottom friction and lateral diffusion of momentum. The
momentum equations take the form:

∂u

∂t
+ Advh(u) − f v = −g

∂η

∂x
+ τwind

x −τ bot
x

ρoh
+ Diffh(u) (6.1)

∂v

∂t
+ Advh(v) + f u = −g

∂η

∂y
+ τwind

y − τ bot
y

ρoh
+ Diffh(v) (6.2)

where Advh denotes the nonlinear terms, given by (5.29), and Diffh the lateral fric-
tion terms, being of the form of (5.31). The Coriolis force appears as a new force in
these equations.

6.1.2 Implementation of the Coriolis Force

The shallow-water equations are solved in the following steps.

J. Kämpf, Ocean Modelling for Beginners,
DOI 10.1007/978-3-642-00820-7 6, C© Springer-Verlag Berlin Heidelberg 2009
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Step 1: Predict a first-guess velocity (u∗
j,k, v

∗
j,k) without the Coriolis force but

a semi-implicit approach for bottom friction, as done in Exercise 10.
Step 2: Apply the semi-implicit approach for the Coriolis force, which leads to

the equations:

un+1
j,k = [

u∗
j,k − βun

j,k + αvn
j,k

]
/(1 + β)

vn+1
j,k = [

v∗
j,k − βvn

j,k − αun
j,k

]
/(1 + β)

where α = Δt f and β = 0.25 α2. To be able to use the flooding algorithm
of previous exercises, velocity changes are calculated from:

Δu j,k = un+1
j,k − un

j,k

Δv j,k = vn+1
j,k − vn

j,k

before update of the velocity field is updated. As in previous model codes, the
predicted velocity components are used as input for the sea-level predictor.

6.2 Coastal Kelvin Waves

6.2.1 Theory

Coastal Kelvin waves are of the form of surface or interfacial gravity waves that
under the influence of the Coriolis force travel along a coastline with maximum
amplitudes at the coast. The description of such waves can be traced back to Sir
William Thomson (later to become Lord Kelvin) (Thomson, 1879). The simplest
way to analytically describe the dynamics of Kelvin waves is to consider a constant-
density coastal ocean of constant depth H , bounded by a straight coastline aligned
with the x-direction, and to request absence of any onshore or offshore flow. In this
case, the linear, frictionless shallow-water equations take the form:

∂u

∂t
= −g

∂η

∂x

f u = −g
∂η

∂y
(6.3)

∂η

∂t
= −∂(u H )

∂x

where x is the alongshore direction and positive y denotes the offshore direction.
The wave solutions of these equations for small-amplitude disturbances (η << H )
are given by:
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η(x, y, t) = ηo exp (−y/R) sin (kx − ωt) (6.4)

u(x, y, t) =
√

g

H
ηo exp (−y/R) sin (kx − ωt) (6.5)

where k = 2π/λ (λ is wavelength), ω = 2π/T (T is wave period), and R is the
Rossby radius of deformation, defined by:

R =
√

gH

| f | (6.6)

It can also be shown that these waves travel with a phase speed of long surface
gravity waves of c = √

gH along the coast with the coast on their right in the
northern hemisphere and on their left in the southern hemisphere. Their amplitude
is maximum at the coast and decreases exponentially away from the coast on a
lengthscale of the deformation radius.

6.3 Exercise 15: Coastal Kelvin Waves

6.3.1 Aim

The aim of this exercise is to simulate the structure and dynamics of coastal Kelvin
waves.

6.3.2 Task Description

Consider a rectangular model domain with a length of 400 km, a width of 100 km,
and a depth of 10 m. Lateral grid spacing is set to Δx = Δy = 2 km. The time step
is set to Δt = 10 s. All boundaries are treated as coasts. An unrealistically high value
of the Coriolis parameter of f = +5×10−4 s−1 is chosen to reduce the deformation
radius to R ≈ 20 km and to keep the total simulation time within a reasonable limit.
The associated inertial period is 3.5 h. The smart reader will jump on the table and
claim that the minimum inertial period on Earth is 12 hours. This is true, but with a
model we can do a little bit of science fiction, can’t we?

A wave paddle is located near the lower left corner of the model domain oscil-
lating the sea level with an amplitude of 1 m and a period of 2 hours. This period is
not far away from the fictional inertial period, so that an influence by the Coriolis
force can be anticipated. The task is to simulate the resultant wave field over half a
day (or 3.4 inertial periods) with outputs of sea-level elevation and velocity fields at
every 10 mins.

The first-order Shapiro filter with a smoothing parameter of ε = 0.05 should be
applied. For simplicity, wind-stress forcing, bottom friction and lateral momentum
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diffusion are disabled. The TDV Superbee advection scheme is used for both the
nonlinear terms and in the vertically integrated continuity equation.

6.3.3 Results

Figure 6.1 shows the propagation of a coastal Kelvin wave attaining maximal
amplitude at the coast and showing an exponential decrease in amplitude away from
the coast. Numerical diffusion is apparent resulting in a decrease of wave amplitude
along the coast. Storm surges can stimulate such coastal Kelvin waves in shelf seas
of horizontal dimensions exceeding the Rossby radius of deformation. The North
Sea is one example of this.

Fig. 6.1 Exercise 15. Snapshot of the deformation of the sea surface caused by a coastal Kelvin
wave in the northern hemisphere

6.3.4 Sample Codes and Animation Script

The folder “Exercise 15” on the CD-ROM contains the computer codes for this
exercise.

6.3.5 Additional Exercise for the Reader

Repeat this exercise with different values of the Coriolis parameter and total water
depth and explore the resultant wave patterns. The reader might also introduce some
bottom friction.

6.4 Geostrophic Flow

6.4.1 Scaling

If we use the Coriolis force for reference, we can define various force ratios
that essentially compare different time scales. The temporal Rossby number (see
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Sect. 3.17) compares the inertial period with the time scale of a process. The Coriolis
force influences or even controls processes that have time scales of or exceeding the
inertial period. On the other hand, the ratio between the nonlinear terms and the
Coriolis force is called the Rossby number and is defined by:

Ro = U

f L
(6.7)

where U is a typical speed, f is the inertial period, and L is the lengthscale of a
process. Again, this is a comparison of time scales, whereby L/U is the time it
takes for a flow of speed U to travel a distance of L . For small Rossby numbers
(Ro << 1), nonlinear terms are negligibly small compared with the Coriolis force
and therefore can be ignored.

6.4.2 The Geostrophic Balance

For Rot << 1, Ro << 1 and negligence of frictional effects, the Coriolis force
and the horizontal pressure-gradient force are the only remaining large terms in the
horizontal momentum equations to make up a force balance called the geostrophic
balance.

6.4.3 Geostrophic Equations

The momentum equations for pure geostrophic flow are given by:

− f vgeo = − 1

ρo

∂ P

∂x
(6.8)

+ f ugeo = − 1

ρo

∂ P

∂y
(6.9)

Accordingly, geostrophic flows run along lines of constant pressure, called iso-
bars. With inclusion of the hydrostatic balance, which is valid for shallow-water
processes, the latter equations can be formulated as:

∂vgeo

∂z
= + g

ρ f

∂ρ

∂x
(6.10)

∂ugeo

∂z
= − g

ρ f

∂ρ

∂y
(6.11)

These relations are known as the thermal-wind equations. According to these
equations, the speed of geostrophic flow changes vertically in the presence of lat-
eral density gradients. In oceanography, application of the thermal-wind equations
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is called the geostrophic method, being commonly used to derive the relative
geostrophic flow field from measurements of density. See Pond and Pickard (1983)
for a detailed description of the geostrophic method.

For an ocean uniform in density, the geostrophic balance reads:

− f vgeo = −g
∂η

∂x
(6.12)

+ f ugeo = −g
∂η

∂y
(6.13)

The resultant geostrophic flow runs along lines of constant pressure, provided by
sea-level elevations, and is independent of depth. Sea-level contours are therefore
the streamlines of surface geostrophic flow. Such barotropic flow cannot produce
much horizontal divergence and therefore tends to follow bathymetric contours
(see Cushman-Roisin (1994)). Inspection of bathymetry maps provides first hints
on the likely path of geostrophic currents! The geostrophic circulation around a
low-pressure centre is referred to as cyclonic, whereas the circulation around a high-
pressure centre is called anticyclonic.

Horizontal divergence of geostrophic flow is given by:

∂ugeo

∂x
+ ∂vgeo

∂y
= −β

f
vgeo (6.14)

where β is the meridional variation of the Coriolis parameter. This flow
divergence/convergence occurs for equatorward or poleward flow and it can be
typically ignored in regional studies on spatial scales <100 km. On larger scales,
however, flow divergence associated with the beta effect is an important contributor
to the steady-state wind-driven circulation in the ocean, being discussed in Sect. 6.9.

6.4.4 Vorticity

Vorticity is the ability of a flow to produce rotation. Imagine you throw a stick into
the sea. If this imaginary stick starts to spin around, there must be some non-zero
vorticity! A useful dynamical statement – conservation of potential vorticity – can
be derived from consideration of the equations governing the dynamics of depth-
independent, nonfrictional horizontal flows given by:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v = −g

∂η

∂x
(6.15)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u = −g

∂η

∂y
(6.16)

∂η

∂t
+ ∂(uh)

∂x
+ ∂(vh)

∂y
= 0 (6.17)
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Fig. 6.2 Examples of horizontal flow fields exhibiting positive or negative relative vorticity

On the f -plane ( f = constant), a combination of the momentum equations (6.15)
and (6.16) yields:

∂ξ

∂t
+ u

∂ξ

∂x
+ v

∂ξ

∂y
= − ( f + ξ )

(
∂u

∂x
+ ∂v

∂y

)
(6.18)

where relative vorticity ξ (usually denoted by the Greek letter “xi”) is defined by:

ξ = ∂v

∂x
− ∂u

∂y
(6.19)

Figure 6.2 shows examples of horizontal flow fields exhibiting either positive
or negative relative vorticity. Alternatively, Eq. (6.18) can be written in Lagrangian
form as:

dξ

dt
= − ( f + ξ )

(
∂u

∂x
+ ∂v

∂y

)
(6.20)

where the “d” symbol refers to a temporal change along the trajectory of the flow.
On the beta plane ( f = fo + βy), on the other hand, the equation for relative

vorticity can be written as:

d(ξ + f )

dt
= − ( f + ξ )

(
∂u

∂x
+ ∂v

∂y

)
(6.21)

The only additional term appearing in this equation is d f/dt = βv associated
with convergence/divergence inherent with meridional flow on the beta plane (as
described by Eq. 6.14).

The Lagrangian version of the vertically integrated continuity equation (6.17)
reads:

dh

dt
= −h

(
∂u

∂x
+ ∂v

∂y

)
(6.22)

Accordingly, divergence/convergence of lateral flow experienced along the path-
way will change the thickness of the water column and also produce relative vortic-
ity. Equations (6.21) and (6.22) can be combined to yield:
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d(PV )

dt
= 0 (6.23)

where the quantity PV, called potential vorticity, is defined by:

PV = f + ξ

h
(6.24)

In the context of vorticity, the Coriolis parameter (or inertial frequency) f is
called planetary vorticity, and f + ς is called absolute vorticity.

6.4.5 Conservation of Potential Vorticity

The conservation principle of potential vorticity (6.23) in the ocean is akin to that
of angular momentum for an isolated system. The best example is that of a ballerina
spinning on her toes. With her arms stretched out, she spins slowly, but with her
arms close to her body, she spins more rapidly. The important difference to the bal-
lerina example is that a water column being initially at rest already exhibits potential
vorticity owing to the rotation of Earth. Vertical squashing or stretching of this water
column will produce relative vorticity and motion will appear (Fig. 6.3).

Fig. 6.3 Change of absolute vorticity associated with convergence or divergence of lateral flow
(both for the northern hemisphere)
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In a multi-layer non-frictional ocean, it can be shown (see Cushman-Roisin
(1994)) that the conservation principle of potential vorticity applies to each layer
separately; that is,

d(PVi )

dt
= 0

where i is the layer index, and:

PVi = f + ξi

hi

is the potential vorticity of a layer.

6.4.6 Topographic Steering

The ratio between relative vorticity and planetary vorticity scales as the Rossby
number; that is;

ξ

f
≈ U/L

f
= U

f L
= Ro (6.25)

Quasi-geostrophic flows are flows characterised by a small Rossby number
Ro << 1. For such flows, the conservation statement for potential vorticity turns
into:

d(PV )

dt
≈ d( f/h)

dt
= 0 ⇒ f

h
= constant (6.26)

On the f -plane, this relation suggests that steady-state flows tend to follow bathy-
metric contours, a feature being referred to as topographic steering.

6.4.7 Rossby Waves

Relative vorticity is created by moving the water column to a different geograph-
ical latitude or by stretching or shrinking the water column through divergence/
convergence of lateral flow. Waves created by disturbances of f are called plane-
tary Rossby waves. Waves associated with disturbances of the thickness of the water
column are referred to as topographic Rossby waves.

It can be shown that the dispersion relation of topographic Rossby waves in a
fluid of uniform density is given by (Cushman-Roisin, 1994):

T = f λx

αg

[
1 + (2π )2 (R/λ)2

]
(6.27)
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where T is wave period, λ is the true wavelength, λx is the apparent wavelength
measured along bathymetric contours, α is the bottom slope, and R is the Rossby
radius of deformation, given by (6.6). Consequently, the phase speed of wave prop-
agation along topographic contours is given by:

cx = λx

T
= αg

f
[
1 + (2π )2 (R/λ)2

] (6.28)

which implies that topographic Rossby waves propagate with shallower water on
their right (left) in the northern (southern) hemisphere.

The following example gives an estimate of the phase speed of these waves.
The deformation radius is R = 100 km for a depth of 100 m at mid-latitudes
( f = 10−4 s−1). Given a wavelength of λ = 10 km and a bottom slope of α = 0.01
(corresponding to bathymetric variation of 10 m over 1 km), the phase speed of topo-
graphic Rossby waves is about 0.25 m/s or 22 km per day.

Planetary Rossby waves in a fluid of uniform density follow the dispersion rela-
tion (Cushman-Roisin, 1994):

T = λx

β R2

[
1 + (2π )2 (R/λ)2

]
(6.29)

where λx is the apparent wavelength measured in the zonal direction. Here, the zonal
phase speed of wave propagation is given by:

cx = − β R2

[
1 + (2π )2 (R/λ)2

] (6.30)

This zonal phase speed is always negative, implying a phase propagation with
a westward component. The deformation radius is R = 2200 km for a deep-ocean
depth of 5000 m at mid latitudes ( f = 10−4 s−1). With a wavelength of λ = 100 km
and β = 2.2 × 10−11 m−1 s−1, we yield a phase speed of 5.5 mm/s corresponding to
a distance of 175 km per year. Hence, planetary Rossby waves usually propagate at a
much slower speed compared with topographic Rossby waves found predominantly
at continental margins.

For relatively short waves, λ << R, the latter equation reduces to:

cx = − βλ2

(2π )2
(6.31)

which implies that the zonal phase speed increases for larger wavelengths.
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6.5 Exercise 16: Topographic Steering

6.5.1 Aim

The aim of this exercise is to explore the dynamics of barotropic quasi-geostrophic
flow encountering variable bottom topography.

6.5.2 Model Equations

Consider an initially uniform zonal geostrophic flow Ugeo that encounters a vari-
able bottom topography. Since this background flow is uniform, we can predict the
dynamics relative to this ambient flow from the horizontal momentum equations:

∂u

∂t
+ (u + Ugeo)

∂u

∂x
+ v

∂u

∂y
− f v = −g

∂η

∂x
(6.32)

∂v

∂t
+ (u + Ugeo)

∂v

∂x
+ v

∂v

∂y
+ f u = −g

∂η

∂y
(6.33)

where η is a sea-level anomaly with reference to that driving the ambient geostrophic
flow. The true flow has a velocity of (Ugeo + u, v). The vertically integrated conti-
nuity equation turns into:

∂η

∂t
+ ∂(uh)

∂x
+ Ugeo

∂h

∂x
+ ∂(vh)

∂y
= 0 (6.34)

Forcing appears in the continuity equation and is provided by interaction of the
ambient geostrophic flow with variable bottom topography.

6.5.3 Task Description

Figure 6.4 shows the bathymetry used in this exercise. The model domain has a
length of 150 km and a width of 50 km, resolved by lateral grid spacings of Δx =
Δy = 1 km. The time step is set to Δt = 20 s. The ambient seafloor slopes downward
in the y direction at a rate of 1 m per 1 km. The deepest part of the model domain is
100 m. The incident geostrophic flow of speed has to negotiate a bottom escarpment
of 10 m in height variation over a distance of W = 10 km. The speed of the ambient
geostrophic flow is set to Ugeo = +0.1 m/s. All lateral boundaries are open.

Two scenarios are considered. The first scenario uses a Coriolis parameter of
f = −1 × 10−4 s−1 (southern hemisphere), whereas the second scenario has f =
1×10−4 s−1 (northern hemisphere). A pseudo Rossby number can be constructed
on the basis of ambient parameters yielding Ro = Ugeo/(W | f |) = 0.1 for both
scenarios. This number, however, is not a true Rossby number, since it is not based
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Fig. 6.4 Bathymetry for Exercise 16

on the velocity scale and lengthscale of dynamical perturbations that develop in
interaction with variable bathymetry.

The total simulation time of experiments is 20 days with data outputs at every
6 h. A narrow source of Eulerian tracer concentration of unity is prescribed at the
western boundary to visualise the structure of the flow. Wind-stress forcing and
lateral momentum diffusion are ignored. Zero-gradient conditions are employed for
all variables at open boundaries. Additional smoothing algorithms are implemented
near the western and eastern open boundaries to avoid reflection of topographic
Rossby waves.

6.5.4 Caution

The first-order Shapiro filter does not work well for processes dominated by the
geostrophic balance. This filter operates to gradually decrease sea-level gradients,
hence diminishing the barotropic horizontal pressure-gradient force that is the prin-
cipal driver of geostrophic flows in the ocean. For this reason, the Shapiro filter is
disabled in this and most of the subsequent model applications, if not stated other-
wise.

6.5.5 Sample Code

The folder “Exercise 16” of the CD-ROM contains the computer codes for this
exercise. The file “info.txt” gives additional information.

6.5.6 Results

In Scenario 1, the flow largely follows bathymetric contours and the topographic
steering mechanism appears to work (Fig. 6.5). Given that the flow enters the model
domain through the upstream boundary with zero relative vorticity, the conservation
principle of potential vorticity (6.23) has the solution:
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Fig. 6.5 Exercise 16. Scenario 1. Snapshot of flow field (arrows, averaged over 5×5 grid cells) and
Eulerian tracer concentration (crowded lines) after 20 days of simulation. Bathymetric contours are
overlaid

ξ = f

(
ho + Δh

ho
− 1

)
(6.35)

where ho is the initial thickness of the water column, and Δh is the change in thick-
ness of the water column along the flow trajectory.

In Scenario 1, water-column squeezing over the bottom escarpment leads to a
flow whose relative vorticity matches the curvature of bathymetric contours. The
propagation direction of topographic Rossby waves is the same as that of the ambi-
ent flow, so that these waves propagate rapidly away from their generation zone.

Surprisingly, something different happens in Scenario 2 (Fig. 6.6). Here, water-
column squeezing over the bottom escarpment creates relative vorticity of opposite
sign to that of Scenario 1. In response to this, the flow crosses bathymetric contours
into deeper water. This initiates a standing topographic Rossby wave of a wave-
length such that its phase speed (given by Eq. 6.28) is compensated by the speed
of the ambient flow. For the configuration of this exercise, the resultant wave pat-
tern attains a horizontal amplitude of 20 km and a wavelength of 50 km. Obviously,
situations in which the ambient flow runs opposite to the propagation direction of
topographic Rossby waves support the creation of such standing waves. Despite the

Fig. 6.6 Exercise 16. Same as Fig. 6.5, but for Scenario 2
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appearance of these waves, the flow still tends to follow bathymetric contours, at
least, on average.

6.5.7 Additional Exercise for the Reader

Repeat this exercise with a reduced speed of the ambient geostrophic flow of
Ugeo = 0.05 m/s. This setting corresponds to a pseudo Rossby number, based on
the width of the bottom-escarpment zone, of Ro = 0.05, which is half that used
before. Explore the topographic steering mechanism for this modified situation and
verify whether the wavelength of standing topographic Rossby waves increases or
decreases. Because of weaker ambient flow, the reader should double the total sim-
ulation time.

6.6 Instability of Lateral Shear Flows

6.6.1 Theory

Under certain conditions, lateral shear flows in a homogeneous fluid become dynam-
ically unstable, start to meander and eventually break up into turbulent eddies. This
process is called barotropic instability. Consider a purely zonal frictionless flow
u(y) on the beta plane of a speed that varies in the transverse direction, such as the
flow shown in Fig. 6.7. In the absence of disturbances and in a steady state, this flow
is perfectly in geostrophic balance; that is,

f u = −g
dη

dy

Fig. 6.7 A shear-flow profile on the f plane used in Exercise 17 that is unstable to long waves
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With addition of small perturbations; that is u = u + u′, v = v′, and η = η + η′, the
momentum equations can be written as (see Cushman-Roisin, 1994):

∂u′

∂t
+ u

∂u′

∂x
+ v′ ∂u

∂y
− f v′ = −g

∂η′

∂x

∂v′

∂t
+ u

∂v′

∂x
+ f u′ = −g

∂η′

∂y

Based on scaling arguments and with a focus on the initial appearance of dis-
turbances, the smallest terms such as u′∂u′/∂x have been dropped in the above
equations. In addition to this, vertical velocity is assumed negligibly small, so that
the continuity equation can be expressed as:

∂u′

∂x
+ ∂v′

∂y
= 0

Accordingly, sea surface pressure is not directly calculated from these equations,
but rather appears implicitly as a requirement to produce a horizontal flow void of
lateral divergence/convergence. The flow follows the contours of a certain stream-
function, called streamlines. Here, a streamfunction can be constructed from:

u′ = −∂ψ

∂y
and v′ = +∂ψ

∂x

which satisfies the previous continuity equation. By use of this streamfunction, the
linearised equations can be combined to yield a single equation for the stream-
function:

(
∂

∂t
+ u

∂

∂x

)
∇2ψ +

(
β − d2u

∂y2

)
∂ψ

∂x
= 0

where β is the meridional variation of the Coriolis parameter. The solution of this
equation depends on the specific form of u. It can be shown that a necessary condi-
tion for barotropic instability to occur is that the function:

β − d2u

dy2
(6.36)

vanishes at least once within the model domain. This result was first derived by Kuo
(1949).
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6.6.2 Instability to Long Waves

On the f -plane (β = 0), the shear-flow profile shown in Fig. 6.7 satisfies the con-
ditions necessary for instability to develop. It can be shown that initial disturbances
of a wavelength greater than 9.8 L , where L is the half-width of the shear zone,
are subtle to instability and grow rapidly. This wave does not travel but amplifies
with time. Disturbances of a shorter wavelength travel with the flow without growth
(Cushman-Roisin, 1994). Hence, the barotropic instability process discriminates
disturbances according to their wavelength.

6.7 Exercise 17: Barotropic Instability

6.7.1 Aim

The aim of this exercise is to simulate dynamic instabilities produced by horizontal
shear flows.

6.7.2 Model Equations

Under the assumption of a steady zonal geostrophic background flow, Ugeo, the
equations governing the problem can be written as:

∂u

∂t
+ (u + Ugeo)

∂u

∂x
+ v

∂(u + Ugeo)

∂y
− f v = −g

∂η

∂x
(6.37)

∂v

∂t
+ (u + Ugeo)

∂v

∂x
+ v

∂v

∂y
+ f u = −g

∂η

∂y
(6.38)

∂η

∂t
+ ∂(uh)

∂x
+ Ugeo

∂h

∂x
+ ∂(vh)

∂y
= 0 (6.39)

where u, v and η are flow and sea level disturbances with respect to the ambient
flow. These equations are identical to those in Exercise 16, with the addition that the
geostrophic background flow is allowed to vary in the y-direction. The reason why
the full equations rather than simplified equations of the previous section are used
here is that we want to be able to simulate the entire instability process and not only
its initial phase.

6.7.3 Task Description

The model domain of this exercise is an open channel of 10 km in length and 5 km
in width, bounded by coasts along the northern and southern boundaries. Lateral
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grid spacings are set to Δx = Δy = 100 m. The time step is Δt = 3 s. Open
boundaries are treated as cyclic boundaries. Total water depth is set to a uniform
value of 10 m. Random disturbances of 0.1 m in amplitude are added to support the
onset of dynamical instabilities.

Wind-stress forcing, lateral momentum diffusion and bottom friction are dis-
abled. The Coriolis parameter is set to a mid-latitude value of f = 1 × 10−4 s−1

(northern hemisphere). The model is forced by prescription of an ambient geo-
strophic lateral shear flow of a speed of U = ±0.2 m/s with a shear zone of 800 m
in width (see Fig. 6.7).

The barotropic instability mechanism is visualised by addition of Eulerian tracer
concentration to the model domain with values of unity in the northern half of the
channel and zero values in the southern half. The total simulation time is 36 h with
outputs of variables at every 30 min.

6.7.4 Results

The shallow-water model is able to simulate the barotropic instability process. Insta-
bilities appear after 18 h of simulation on wavelengths of 5 km (Fig. 6.8). This
exceeds fivefold the width of the shear zone and therefore agrees with theory. The
limited size of the model domain and the use of cyclic boundary conditions, how-
ever, modify the wavelength such that the wave pattern fits into the model domain.
Disturbances grow rapidly with time. After 1 day of simulation, wave disturbances
appear to break and form clockwise vortices of about 3 km in diameter (Fig. 6.9).
These eddies induce vigorous horizontal stirring.

The Earth’s rotation does not play a role in the perturbations simulated here that
are characterised by values of both the temporal Rossby number and the Rossby

Fig. 6.8 Exercise 17. Development of wavy disturbances on a shear-flow profile. Shown are tracer
concentration (contours) and flow vectors (arrows) after 18 h of simulation. Flow vectors are aver-
aged over 3×3 grid cells
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Fig. 6.9 Exercise 17. Same as Fig. 6.8, but after 24 h of simulation

number exceed unity in this application, so that the Earth’s rotation does not influ-
ence the perturbations simulated here. It is worth mentioning that similar dynamics
will result with use of the shear flow as initial condition rather than background
flow. The reader is encouraged to verify the latter statement. A much larger model
domain would be required to avoid influences of the open and closed boundaries.

6.7.5 Sample Code and Animation Script

The folder “Exercise 17” on the CD-ROM contains the computer codes. The file
“info.txt” contains additional information.

Fig. 6.10 Ambient shear flow for additional exercise
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6.7.6 Additional Exercise for the Reader

Explore whether the ambient flow field shown in Fig. 6.10 is subtle to the barotropic
instability process. Use L = 500 m and U = 0.2 m/s together with a constant Coriolis
parameter.

6.8 The Wind-Driven Circulation of the Ocean

6.8.1 The Dynamical Structure of the Ocean

Frictional effects are only significant in thin frictional boundary layers, called
Ekman layers, establishing near the sea surface and the seafloor of the ocean and
along coastlines. Larger-scale flow in the ocean interior is essentially void if friction
and is therefore governed by a balance between the horizontal pressure-gradient
force and the Coriolis force – the geostrophic balance. The ocean’s dynamics can
therefore be classified by two distinct dynamic regimes: frictional boundary layers
and the geostrophic interior (Fig. 6.11).

6.8.2 Steady-State Dynamics and Volume Transport

Steady-state dynamics reflect a state in which the surface pressure field that drives
geostrophic flow has reached an equilibrium. This equilibrium implies that this
flow, when averaged over the entire water column, is void of lateral divergence/
convergence. This can be expressed by the balance:

∂ Qx

∂x
+ ∂ Qy

∂y
= 0 (6.40)

Fig. 6.11 The dynamical structure of the ocean
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where Qx and Qy are components of a vector called volume transport that is yielded
from vertical integration of the lateral flow over the entire water column. Volume
transport carries units of m3/s per unit width of the flow. In recognition of Har-
ald Sverdrup’s work (e.g., Sverdrup, 1947), oceanographers often express volume
transports in units of Sverdrups (Sv) with 1 Sv being equivalent to 1×106 m3/s. The
net volume transport is composed of several contributions that compensate each
other in order to achieve a steady-state sea level. The details of this compensation is
discussed in the following.

6.8.3 A Simplified Model of the Wind-driven Circulation

A simplified model of the wind-driven circulation can be constructed when con-
sidering an ocean of uniform water depth ho being void of density stratification.
Large-scale oceanic flows are associated with very small Rossby numbers. The
nonlinear terms can therefore be ignored. For simplicity, we also neglect horizontal
momentum diffusion. Accordingly, the vertically integrated momentum equations
(6.1) and (6.2) can be written as:

∂ Qx

∂t
− f Qy = −gho

∂η

∂x
+ τwind

x − τ bot
x

ρo

∂ Qy

∂t
+ f Qx = −gho

∂η

∂y
+ τwind

y − τ bot
y

ρo

In a steady state, the latter equations turn into:

− f Qy = −gho
∂η

∂x
+ τwind

x − τ bot
x

ρo
(6.41)

+ f Qx = −gho
∂η

∂y
+ τwind

y − τ bot
y

ρo
(6.42)

These are linear equations and each of the “forces” on the right-hand side can be
attributed to a certain contribution to the net volume transport. To this end, volume
transport can be disintegrated into three individual components:

Qx = Qek,s
x + Qgeo

x + Qek,b
x

Qy = Qek,s
y + Qgeo

y + Qek,b
y

where the first term denotes the wind-driven component, the second term the
geostrophic component, and the last term the component attributed to bottom
friction.
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6.8.4 The Surface Ekman Layer

Winds impose a tangential frictional stress to the sea surface that transfers momen-
tum into the ocean by means of vertical diffusion of momentum. This friction only
plays a role in a surface layer of finite depth, the so-called surface Ekman layer. It
can be shown (see Cushman-Roisin, 1994) that the thickness of this layer is given
by:

δek =
√

2Az

f
(6.43)

where Az is vertical eddy viscosity and f is the Coriolis parameter. Typical
thicknesses are 50–150 m with increasing values towards the equator. The vertical
lengthscale D associated with the Ekman layer can also be derived from scaling
considerations. The ratio between the friction force and the Coriolis force can be
expressed by means of the so-called Ekman number given by:

Ek = Az

D2 f

The surface Ekman layer establishes on a lengthscale corresponding to Ek ≈ 1,
or:

D =
√

Az

f

which is of the order of the right-hand-side of Eq. (6.43).

6.8.5 Ekman-layer Transport

According to Eqs. (6.41) and (6.42), the net volume transport in the surface Ekman
layer (also called Ekman drift) is given by:

Qek,s
x = +τwind

y

f ρo
and Qek,s

y = −τwind
x

f ρo
(6.44)

This Ekman drift, corresponding to the vertically-averaged flow in this layer, is
directed at right angle with respect to the wind direction, 90◦ to the right in the
northern hemisphere and 90◦ to the left in the southern hemisphere. Figure 6.12
shows an example of wind-induced Ekman transports at mid-latitudes in the north-
ern hemisphere.
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Fig. 6.12 Sketch of mean wind pattern and associated Ekman-layer transports at mid-latitudes in
the northern hemisphere

6.8.6 Ekman Pumping

Wind stresses are the principle driver of the general geostrophic circulation in the
ocean. The way by which wind stresses drive geostrophic flow is indirect via diver-
gence or convergence of lateral flow in the surface Ekman layer. From (6.44), the
latter can be specified as:

∂ Qek,s
x

∂x
+ ∂ Qek,s

y

∂y
= 1

ρo f

{
∂τwind

y

∂x
− ∂τwind

x

∂y

}
+ β

f 2

τwind
x

ρo
(6.45)

where the last term is small compared with the others and can be ignored.
The resultant stretching or squeezing of the surface Ekman layer is called Ekman

pumping. In the absence of other processes, this Ekman pumping would initiate a
rise or drop of the sea level. Lateral pressure gradients associated with resultant
sea-level anomalies are the principle driver of deep-reaching geostrophic flow in the
ocean. Ekman pumping is interpreted by some authors as a vertical velocity at the
base of the surface mixed layer that leads to deformation of isopycnals in the ocean
interior. This interpretation is misleading and incorrect given that flow divergence in
a layer of incompressible fluid can only lift the surface level of this layer, but never
its bottom level.



6.8 The Wind-Driven Circulation of the Ocean 141

6.8.7 The Sverdrup Balance

On the β plane, the divergence of lateral volume transport inherent with geostrophic
flow is given by:

∂ Qgeo
x

∂x
+ ∂ Qgeo

y

∂y
= −β

f
Qgeo

y (6.46)

On the large scale, this divergence (or convergence) of the geostrophic flow bal-
ances the convergence (or divergence) of the drift in the surface Ekman layer. Effects
associated with bottom friction are irrelevant here. Under the assumption of purely
zonal wind (τwind

y = 0), the steady-state balance leading to an equilibrium sea-level
distribution is given by:

βQgeo
y ≈ − 1

ρo

∂τwind
x

∂y
(6.47)

This balance is called the Sverdrup relation (Sverdrup, 1947) and allows for
calculation of the meridional geostrophic volume transport (also called Sverdrup
transport) from knowledge of the average zonal wind-stress distribution. The corre-
sponding zonal volume transport can be estimated from:

∂ Qgeo
x

∂x
+ ∂ Qgeo

y

∂y
≈ 0 (6.48)

where the β effect can be ignored since this equation is used for diagnostic pur-
poses only. It is important to note that the Sverdrup balance can only establish with
existence of a meridional boundary. The dynamics of unbounded flows, such as the
Antarctic Circumpolar Current, is more complex.

6.8.8 Interpretation of the Sverdrup Relation

First and foremost, the Sverdrup relation implies that latitudes of vanishing wind-
stress curl (∂τwind

x /∂y = 0) coincide with regions of vanishing meridional geo-
strophic flow. Hence, these regions form natural boundaries that, for instance,
separate subtropical from subpolar gyres in the ocean.

In the midlatitude ocean of the northern hemisphere, the main wind pattern con-
sists of trades to the south and westerlies to the north. This wind pattern provides
∂τwind

x /∂y > 0 and produces a convergence of volume transport in the surface
Ekman layer. Hence, equatorward Sverdrup transport is required to balance this
convergence.

Since no geostrophic flow is possible across the natural boundaries marked by
the maximum trade winds and the maximum westerlies, this equatorward flow must
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Fig. 6.13 Sketch of geostrophic circulation at mid-latitudes in the northern hemisphere. Sea-level
contours are the streamlines of barotropic geostrophic flows

be compensated by a poleward return flow. This return flow occurs in a narrow
zone along the western boundary in which the Sverdrup relation loses its validity.
The wind-driven geostrophic circulation takes the form of an asymmetric gyre, with
a slow equatorward flow occupying most of the domain and swift boundary-layer
current on the western side returning water masses northward (Fig. 6.13).

6.8.9 The Bottom Ekman Layer

Ekman layers, 10–25 m in thickness, can establish in vicinity of the seafloor. For
simplicity, we can approximate bottom friction by a linear bottom-drag law, given
by:

τ bot
x

ρo
= r

Qgeo
x

ho
and

τ bot
y

ρo
= r

Qgeo
y

ho
(6.49)

where r is a friction parameter carrying units of m/s. According to (6.41) and (6.42),
the resultant divergence of lateral volume transport in the bottom Ekman layer is
given by:

∂ Qek,b
x

∂x
+ ∂ Qek,b

y

∂y
= r

ho f

(
∂ Qgeo

y

∂x
− ∂ Qgeo

x

∂y

)
− β

f

r

ho
Qgeo

y (6.50)

where the last term is negligibly small compared with the other terms. The latter
equation implies that it is the relative vorticity of the geostrophic flow that produces
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a flow convergence/divergence in the bottom Ekman layer. For consistency with the
analytical solution of the Ekman-layer equations (see Cushman-Roisin, 1994), the
linear friction parameter has to be chosen according to:

r = 0.5 δek f (6.51)

where the Ekman-layer thickness is given by (6.43).

6.8.10 Western Boundary Currents

Western boundary currents are regions in which the Sverdrup relation is not valid
and where frictional forces come into play. Western boundary currents are found
at the western continental rise of all oceans. The mechanism that leads to these
currents is called westward intensification, first described by Stommel (1948). The
typical width of western boundary currents is 20–50 km and their speed can exceed
1 m/s. On these scales, the direct impact of wind-driven Ekman pumping can be
ignored and the dynamical equations of our simplified model governing this regime
are given by:

−β

f
Qgeo

y = r

ho f

(
∂ Qgeo

y

∂x
− ∂ Qgeo

x

∂y

)

Since the velocity shear is much larger across the stream than along it; that is,∣∣∂ Qgeo
y /∂x

∣∣ >>
∣∣∂ Qgeo

x /∂y
∣∣, the latter equation can be approximated as:

∂ Qgeo
y

∂x
= −αQgeo

y (6.52)

where α = βho/r or, with (6.51), α = 2βho/( f δek). The solution of the latter
equation is:

Qgeo
y = Qo(y) exp (−αx) (6.53)

where x is distance from the western coast, and Qo(y) is the maximal value of
volume transport occuring at x = 0. This maximum can be derived from the con-
ditions that the boundary solution has to match the Sverdrup solution outside the
western boundary. Cushman-Roisin (1994) details the full mathematical procedure.
Figure 6.14 shows the final structure of the meridional geostrophic flow component.

The width of the western boundary current can be estimated from the distance
from the coast at which the volume transport according to (6.53) has decreased to
fraction of exp (−π ) (4.3%) of the coastal value. Using (6.53), this distance L is
given by:

L = 0.5π
f δek

βho
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Fig. 6.14 Sketch of the structure of the meridional geostrophic flow component vgeo

Using typical values ( f = 1×10−4s−1, δek =10 m, β = 2×10−11m−1 s−1, and
ho = 4000 m), we yield L ≈ 20 km.

6.8.11 The Role of Lateral Momentum Diffusion

Bottom friction is irrelevant for the Sverdup regime that occupies most of the
domain. Therefore, the Sverdup relation is also valied in a stratified ocean in which
the flow does not extend to the seafloor. In this case, the above geostrophic vol-
ume transports represent the vertical integral of the baroclinic geostrophic flow and
the vertical structure of this flow is irrelevant for the resultant steady-state surface
pressure field.

In our simplified model, the western boundary current arises exclusively due to
bottom friction and the model fails in the absence of near-bottom flows. The use of
lateral momentum diffusion instead of bottom friction in the governing equations
overcomes this problem and enables the analytical description of western boundary
currents detached from the seafloor. The equations governing this problem are more
complex and therefore not included in this book. The interested reader is referred to
the work by Munk (1950).

6.9 Exercise 18: The Wind-Driven Circulation

6.9.1 Aim

The aim of this exercise is to reveal the wind-driven circulation of the ocean at
midlatitudes consisting of subtropical gyres and western boundary currents.

6.9.2 Task Description

In this exercise, we apply the shallow-water equations to study the wind-driven
circulation in a closed rectangular ocean basin of 1000 km in length and 500 km
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Fig. 6.15 Wind-stress forcing for Exercise 18

in width, resolved by a grid spacing of Δx = Δy = 10 km. The depth of this basin
is set to 1000 m and the time step is set to Δt = 20 s. The ocean is assumed to be
uniform in density.

The circulation is driven by a simplified zonal wind-stress forcing (Fig. 6.15)
mimicking the general atmospheric wind pattern at mid-latitudes of the northern
hemisphere. Indeed, the dimensions used are different from the real situation and
serve for demonstration purposes only. The wind-stress field is slowly introduced
over an adjustment period of 50 days to avoid appearance of initial disturbances.
The total simulation time is 100 days with data outputs at every 2.5 days.

Three different scenarios are considered. In the first scenario, the Coriolis param-
eter is set to a constant value of f = 1×10−4 s−1. Lateral diffusion and the nonlin-
ear terms are disabled. In this case, the wind-stress forcing produces a continuous
Ekman pumping that can only be compensated by frictional effects in the entire
model domain. To achieve reasonable current speeds, the bottom-friction parameter
has to be set to an unrealistically high value of r = 0.1 m/s corresponding to an
enormous bottom Ekman layer that, according to (6.51), extends the entire water
column.

In the second scenario, the Coriolis parameter is assumed to vary with the merid-
ional distance y according to the beta-plane approximation; that is, f = fo + βy,
where f = 1×10−4 s−1 at the southern boundary, y is distance to the north, and β is
chosen at = 4×10−11 m−1 s−1. Note that β is twice the real value. A smaller value of
r = 0.01 m/s is chosen, implying a bottom Ekman layer of 200 m in thickness, which
overestimates the real situation by one order of magnitude. Both lateral momentum
diffusion and the nonlinear terms are disabled.

The third scenario includes a variable Coriolis parameter, the nonlinear terms,
lateral momentum diffusion with no-slip lateral boundary conditions (see Sect. 5.10)
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and uniform lateral eddy viscosity with a value of Ah = 500 m2/s. Bottom friction
is disabled.

6.9.3 Results

For a flat Earth (Scenario 1), the wind-stress forcing imposed creates a symmetrical
clockwise oceanic gyre with elevated sea level in its high-pressure centre (Fig. 6.16).
Recall that sea-level contours are the streamlines of surface geostrophic flow and
that the spacing between adjacent contours is a measure of the speed of this flow.
The apparent slight asymmetry of streamlines is caused by the sea-level effects in
the divergence terms of the vertically integrated continuity (6.17).

Fig. 6.16 Exercise 18. Scenario 1. Flow field (arrows, averaged over 5×5 grid cells) and contours
of sea-level elevation (solid lines) after 100 days of simulation. Maximum sea-level elevation is
3 cm. Maximum flow speed is 4 cm/s

Fig. 6.17 Exercise 18. Same as Fig. 6.16, but for Scenario 2. Maximum sea-level elevation is 7 cm.
Maximum flow speed is 20 cm/s
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Fig. 6.18 Exercise 18. Same as Fig. 6.16, but for Scenario 3. The maximum sea-level elevation is
14 cm. The maximum flow speed is 20 cm/s

On a spherical Earth approximated by the β-plane approximation (Scenario 2),
a swift western boundary current establishes (Fig. 6.17). Compared with Scenario 1,
the high-pressure centre is moved closer to the western boundary. Hence, existence
of western boundary currents is the definite scientific proof that the Earth is not flat.

With the inclusion of lateral momentum diffusion and coastal friction (instead
of bottom friction) together with the nonlinear terms (Scenario 3), an equatorward
countercurrent establishes next to the western boundary current (Fig. 6.18), first
mathematically described by Munk (1950).

In contrast to our closed-basin case, real western boundary currents reach farther
poleward due to inertia and can therefore trigger substantial poleward heat transports
influencing climate in adjacent countries. Owing to this heat transport, northern
Europe is on average 9◦ Celsius warmer than elsewhere for the same geographical
latitude.

6.9.4 Sample Code and Animation Script

The folder “Exercise 18” on the CD-ROM contains the computer codes for this
exercise. The file “info.txt” gives additional information.

6.9.5 Additional Exercises for the Reader

Using the bathymetry creator of previous exercises, include a mid-ocean ridge to
the bathymetry and explore resultant changes in the dynamical response of the
ocean. Explore changes in the circulation for different values of lateral eddy vis-
cosity.
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6.10 Exercise 19: Baroclinic Compensation

6.10.1 Background

Adjustment toward a steady state is in our previous model of the wind-driven mid-
latitude circulation only possible if flow convergence in the upper ocean is compen-
sated by flow divergence in deeper layers of the ocean. Whereas the convergence of
Ekman drift leads to establishment of a centre of elevated sea level, it is obvious the
flow divergence in the ocean interior leads to downward displacements of density
interfaces. Hence, density interfaces in the ocean interior tend to be an amplified
mirror image of the shape of the sea surface. The process that leads to this structure
is sometimes referred to as baroclinic compensation.

Baroclinic compensation implies that the horizontal pressure-gradient force
becomes weaker with depth and so do the associated geostrophic flows. Conse-
quently, large-scale wind-driven geostrophic flows tend to becomes vanishingly
small below depths of 1500–3000 m. Whereas the sea level can approach an equi-
librium state, as described by the Sverdrup relation (Eqs. 6.47 and 6.48), density
interfaces in the ocean interior reach an equilibrium only in the presence of addi-
tional ageostrophic effects such as provided by lateral momentum diffusion.

6.10.2 Aim

The real ocean has a density stratification. Excess of solar heating at tropical and
subtropical latitudes produces a warm surface layer that is separated from the cold
abyss by a temperature transition zone, called the permanent thermocline. Depen-
dent on location, the permanent thermocline extends to depths of 500–2000 m.
The simplest model of this stratification is a two-layer ocean in which the density
interface represents the thermocline. The aim of this exercise to explore the wind-
driven circulation of the ocean in a fluid of two superimposed layers of different
densities.

6.10.3 Task Description

The exercise is a repeat of Exercise 18 (Scenario 3), but with consideration of a
two-layer ocean. The top layer has an initial thickness of 200 m and a density of
1025 kg/m3. The bottom layer has an initial thickness of 800 m and a density of
1030 kg/m3. The nonlinear terms are enabled. Horizontal eddy viscosity is set to
500 m2/s and the bottom-friction coefficient is chosen as r = 0.001 m/s. The total
simulation time is 100 days with data outputs at every 2.5 days. The time step is set
to Δt = 20 s.
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6.10.4 Results

The effect of bottom friction results in the anticipated overall downward displace-
ment of the density interface owing to baroclinic compensation (Fig. 6.19). Maxi-
mum speeds of 75 cm/s are created in the top layer in the western boundary current.
Speeds in the bottom layer rarely exceed 3 cm/s during the simulation. The maxi-
mum vertical displacement of the density interface is 85 m. A cyclonic eddy forms
in the eastward return path of the western boundary current being accompanied by
an upward displacement of the density interface.

Fig. 6.19 Exercise 19. Shape of the density interface (thermocline) after 70 days of simulation

6.10.5 Sample Code and Scilab Animation Script

This exercise employs an extended version of the multi-layer shallow-water model,
described in Sect. 4.5. The folder “Exercise 19” of the CD-ROM contains a full
version of this code including wind forcing, bottom friction, the nonlinear terms,
lateral momentum diffusion, lateral friction and the beta-plane approximation. The
file “info.txt” gives additional information.

6.10.6 Additional Exercise for the Reader

Include a mid-ocean ridge in the bathymetry and study how the wind-driven circu-
lation of a two-layer ocean responds to this. Experiment with different ridge heights
and widths. Does the ridge have an impact on the shape of the density interface?

6.11 The Reduced-Gravity Concept

6.11.1 Background

Perfect baroclinic compensation in the ocean implies the absence of horizontal pres-
sure gradients below a certain depth level, called the level-of-no-motion. Under this
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assumption, sea-level elevations can be derived from vertical displacements of den-
sity interfaces.

6.11.2 The Rigid-lid Approximation

The essence of the rigid-lid approximation is the assumption that the density surface
of the bottom-nearest model layer always adjusts such that there is no flow in this
layer after each finite time step. In a two-layer ocean, for instance, this assumption
implies that:

P2 = 0 = ρ1 g η1 + (ρ2 − ρ1) g η2 (6.54)

leading to the relation between sea-level elevations and interface displacements:

η1 = −ρ2 − ρ1

ρ1
η2 (6.55)

Oceanographers use this relation to estimate slopes of the sea level, driving the
surface geostrophic flow, from the slope of the permanent thermocline. With the
settings of Exercise 19, for instance, the latter relation suggests an interface dis-
placement of 20.5 m per 10 cm of sea-level elevation. The reader is encouraged to
verify this against the simulation results.

Using (6.55), the reduced-gravity version of the shallow-water wave equations
for a one-dimensional channel is given by:

∂u1

∂t
= +g′ ∂η2

∂x
(6.56)

∂η2

∂t
= +ρ2

ρ1

∂ (u1 h1)

∂x
(6.57)

where reduced gravity is defined by g′ = (ρ2 − ρ1)/ρ1 g. Equation (6.57) can be
derived from volume conservation of the upper layer; that is,

∂h1

∂t
= ∂(η1 − η2)

∂t
= −∂ (u1 h1)

∂x
(6.58)

with insertion of (6.55). Under the assumption that interface displacements attain
much larger amplitudes than the sea surface, |η2| >> |η1|, the thickness of the
upper layer can be approximated as h1 ≈ h1,o − η2 with h1,o being the undis-
turbed thickness of the surface layer (this approximation justifies the term “rigid-lid
approximation”), and Eqs. (6.56) and (6.57) can be written as:

∂u1

∂t
= −g′ ∂h1

∂x
(6.59)
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∂h1

∂t
= −∂ (u1 h1)

∂x
(6.60)

where the Boussinesq approximation, ρ2/ρ1 ≈ 1, has also been applied. These
equations are formally identical to those governing surface gravity waves (Eqs. 4.12
and 4.13). Under the assumption that interface displacements are small compared
with the thickness of the top layer, it can be shown that the wave solution of the
two-layer reduced-gravity model are interfacial waves of a phase speed of (e.g.,
Gill, 1982):

ciw = √
g′h1,o (6.61)

which is much smaller than the phase speed of long surface gravity waves. Note
that this is the same result that (4.27) gives for h2 >> h1. Obviously, applica-
tion of the reduced-gravity concept to the two-layer shallow-water wave equations
has filtered away fast propagating surface gravity waves. Since the phase speed of
internal waves is much smaller compared with that of surface gravity waves, the
reduced-gravity model allows for much longer time steps than the full two-layer
model, which makes this model attractive for studies of internal-wave propagation.
The CFL stability criterion for the resultant finite-difference wave equations is:

Δt ≤ Δx/ciw (6.62)

Derivation of the reduced-gravity equations for more than two layers remains for
the reader. FORTRAN codes of reduced-gravity layer models are not included in
this book.

6.12 Geostrophic Adjustment of a Density Front

6.12.1 Background

Density fronts are narrow zones in the ocean across which the density of seawater
changes rapidly. Almost uniform densities are found on either side of the frontal
zone. A variety of processes create density fronts, such a freshwater runoff from
rivers into the ocean. Once a density contrast is established, adjustment toward a
geostrophic steady-state circulation follows. To explore this geostrophic adjustment,
first described by Rossby (1938), we consider the initial situation of a cylindrical
patch of low-density surface water surrounded by a denser ocean of uniform density
(Fig. 6.20).
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Fig. 6.20 Illustration for the description of the geostrophic adjustment process

6.12.2 How Does It Work?

Initially, lateral pressure gradients associated with the slope of the density interface
creates bottom flow directed radially inward (Fig. 6.21). Consequently, the sea level
will start to rise in the centre of this patch owing to the resultant flow convergence
in the bottom layer. Pressure-gradients owing to a tilted sea level, on the other hand,
creates surface flow directed radially outward. On time scales of the inertial period
and beyond, the Coriolis force comes into play and deflects these flows. The initial
radial spreading turns into circular geostrophic motion. Water-column squeezing
produces a geostrophic eddy of cyclonic vorticity in the low-density surface patch.
Water-column stretching produces a clockwise rotating eddy in the ocean under-
neath.

Fig. 6.21 Illustration of the geostrophic adjustment process in a 2-layer ocean and resultant
geostrophic eddies for the northern hemisphere
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6.12.3 Theory

The geostrophic balance governs the steady-state dynamics of the geostrophic
adjustment problem. The corresponding momentum equations in cylinder coordi-
nates read:

f v1 = g
∂η

∂r
(6.63)

f v2 = g
ρ1

ρ2

∂η

∂r
− g′ ∂h

∂r
(6.64)

where the index 1 refers to the top layer, the index 2 refers to the bottom layer, f is
the Coriolis parameter, r is the radial coordinate, v is the speed of the frontal flow, η1

is sea-surface elevation, h is the interface displacement with reference to the initial
depth level H1 (see Fig. 6.21), and reduced gravity is g′ = (ρ2 − ρ1)/ρ2 g. Positive
speeds correspond to counterclockwise flow.

With use of the reduced-gravity concept, which implies vanishing flow in the bot-
tom layer, and the Boussinesq approximation (ρ1/ρ2 ≈ 1), the momentum equation
for the surface layer can be written as:

f v1 = −g′ ∂h

∂r
(6.65)

The reduced-gravity concept is valid if the bottom layer is much thicker than the
surface layer (H2 >> H1). Potential vorticity is conserved during the geostrophic
adjustment process. Consequently, the initial and final states have the same potential
vorticity, which can be expressed as:

f + ξ1

H1 − h
= f

H1

where relative vorticity in the top layer is defined by ξ1 = ∂v1/∂r . This equation
can be rewritten as:

ξ1 = − h

H1
f (6.66)

Equations (6.65) and (6.66) can be combined to yield an equation in the single
variable h; that is,

∂2 h

∂r2
= h

R2
(6.67)

where the internal Rossby radius of deformation is given by:

R =
√

g′ H1

| f | (6.68)
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The solution of (6.67) is (e.g., Cushman-Roisin, 1994):

h(r ) = H1 exp

(
r − ro − R

R

)
(6.69)

where ro is the initial radius of the low-density patch with ro >> R. The internal
Rossby radius of deformation gives an estimate of the frontal width. The solution
for geostrophic flow in the surface layer (northern hemisphere) follows from (6.65)
and is given by:

v1(r ) = −
√

g′ H1 exp

(
r − ro − R

R

)
(6.70)

The flow direction is reversed for the southern hemisphere. In this analytical
solution, frontal flows attain the swiftest speeds at the location where the density
interface outcrops at the sea surface, whereas there are no flows just outside this
front. Such a discontinuity cannot exist in the real world. Instead of this, lateral
friction produces a transition zone across the front and frontal flow speeds tend to
be smaller than predicted by theory. Interestingly, although the steady-state frontal
flow is purely geostrophic, its magnitude is independent of the Coriolis parameter. It
should also be noted that the maximum frontal speed equals the phase speed of long
internal waves. Typical oceanic values of v1 and R, respectively, are 0.1–0.5 m/s and
1–5 km. Geostrophic adjustment can be expected to occur on a time scale exceeding
several inertial periods.

An isolated layer of dense water on the seafloor also becomes subject to the
geostrophic adjustment process (Fig. 6.22). Under the assumptions that there are no
flows outside this layer and absence of frictional effects, the steady-state momentum
equation for the bottom layer can be written as:

f v2 = −g′ ∂h

∂r

where h is the downward displacement of the density interface with reference to the
initial thickness H2. Conservation of potential vorticity can be expressed as:

Fig. 6.22 Illustration of geostrophic adjustment of a dense bottom layer
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ξ2 = − h

H2
f

where relative vorticity in the bottom layer is defined by ξ = ∂v2/∂r . The latter
two equations can be combined to yield an equation of the same form as (6.67). The
solution for the northern hemisphere is:

h(r ) = H2 exp

(
r − ro − R

R

)

v2(r ) = −
√

g′ H2 exp

(
r − ro − R

R

)

where ro is the initial radius, and the internal Rossby radius of deformation is now
given by:

R =
√

g′ H2

| f |

The geostrophic adjustment process is mathematically more difficult to describe
for situations in which both layers have comparable thicknesses and therefore not
included in this book. Generally, geostrophic flows in the top and bottom layers are
opposite to each other and the ratio of speeds depends on the initial thicknesses of
layers involved. The frontal width is again given by the internal deformation radius:

R =
√

g′ H∗

| f | (6.71)

where the “equivalent” thickness is given by H∗ = H1 H2/(H1 + H2). Note that the
numerator in the latter relation is the phase speed of long internal gravity waves for
a two-layer fluid (4.27).

6.13 Exercise 20: Geostrophic Adjustment

6.13.1 Aim

The aim of this exercise is to explore the geostrophic adjustment process for an
ocean of two superimposed layers of different densities.

6.13.2 Task Description

The model domain is 200 m deep and has equal sidelengths of 50 km. The surface
patch of lower-density water has a density of 1027 km m−3, a thickness of 100 m
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and a radius of 15 km (see Fig. 6.20). The ambient ocean has a density of 1028 km
m−3. The Coriolis parameter is set to f = 1×10−4 s−1. The task is to employ the
two-layer shallow-water model to simulate the geostrophic adjustment process over
5 days with horizontal grid spacings of Δx = Δy = 1 km. The time step is set to
Δt = 2 s. After (6.68), the expected width of the frontal zone can be estimated at
about 10 km. The horizontal grid spacing chosen just resolves this scale.

This exercise ignores wind-stress-forcing, the nonlinear terms, and horizontal
and vertical friction. All lateral boundaries are kept open using zero-gradient condi-
tions for all variables. To avoid the appearance of unwanted gravity waves and iner-
tial oscillations, the density anomaly in the surface layer is slowly linearly adjusted
from zero to its final value over the first 2 days of the simulation. Non-buoyant
Lagrangian floats are included to visualise the resultant flow paths.

6.13.3 Results

Figure 6.23 reveals that, owing to geostrophic adjustment, the low-density surface
patch still exists after 5 days of simulation. In fact, in the absence of friction,
the lifetime of such an eddy is unlimited. The maximum thickness of this patch
decreases from the initial 100 m to a steady-state value of about 50 m within the first
2 days of simulation. This decrease in thickness is associated with the generation of
a sequence of internal waves propagating energy radially outward during the initial
adjustment phase.

In agreement with the principle of conservation of potential vorticity, an anticy-
clonic (clockwise-rotating) geostrophic eddy establishes in the surface layer with
frontal flow speeds of 33 cm/s (Fig. 6.24a). A cyclonic geostrophic eddy of a max-
imum speed of 10 cm/s establishes in the bottom layer (Fig. 6.24b). Note that the
surface and bottom eddies rotate in opposite directions in agreement with expecta-
tions (see Fig. 6.21).

Fig. 6.23 Exercise 20. Shape of the density interface after 5 days of simulation. The steady-state
maximum thickness of the upper layer is 50 m
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Fig. 6.24 Exercise 20. Flow field (arrows) in the (a) surface and (b) bottom layers after 5 days
of simulation. Maximum flow speed in the surface layer is 33 cm/s and in the bottom layer this
is 10 cm/s. Velocity vectors are averaged over 2×2 grid cells. Curves are trajectories of 400
Lagrangian floats predicted over the last 3 days of simulation

With reference to the equilibrium state with H1 ≈ 50 m in the centre of the eddy,
Eqs. (6.68) and (6.70) give a frontal width R ≈ 7 km and a frontal speed of 70 cm/s,
which is different from the model predictions. The analytical solutions, however,
assume vanishing flow in the bottom layer, which does not reflect the situation con-
sidered in this exercise. It should be highlighted that the flooding algorithm does not
lead to significant problems in this exercise.

6.13.4 Sample Code and Animation Script

The folder “Exercise 20” of the CD-ROM contains the computer codes for this
exercise. The file “info.txt” gives additional information.

6.13.5 Additional Exercise for the Reader

Repeat this exercise for the southern hemisphere situation with f = −1×10−4 s−1.
Does the model prediction agree with your expectations?

6.14 Baroclinic Instability

6.14.1 Brief Description

In addition to the barotropic instability mechanism (see Sect. 6.6), quasi-geostrophic
flow can become subject to another form of instability, called baroclinic instability,
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first analytically described by Eady (1949). The source of this instability is a depth-
variation of horizontal geostrophic flow in a stratified ocean associated with tilted
density interfaces. Disturbances in such a baroclinic geostrophic flow leads to water-
column stretching and squeezing at different locations of the disturbance. This gen-
erates self-enforcing patterns of relative vorticity and disturbances grow in time.
It can be shown that perturbations of a wavelength of about fourfold the internal
deformation radius have the greatest initial growth rate. Cushman-Roisin (1994)
presents the theory describing this instability process.

The baroclinic instability mechanism is the origin of the large mid-latitude
cyclones and anticyclones that make our weather so variable and creates eddies in
the ocean. Geostrophic frontal flows, such as those inherent with western boundary
currents, exhibit the steepest slopes of density interfaces and are therefore subtle to
the baroclinic instability mechanism. In the real situation, frontal flows can become
unstable to both barotropic instability owing to lateral current shear and baroclinic
instability owing to vertical current shear. It is often difficult to tell which mecha-
nism was the major cause of instability development.

Is has been long thought that flows in the deep ocean are generally weak. This,
however, is not always the case. Frontal instabilities of western boundary currents,
for instance, trigger mesoscale eddies that produce swift flow in the abyssal ocean,
referred to as benthic storms, first observed by Rowe and Menzies (1968). Benthic
storms can attain speeds >50 cm/s on timescales of 20 days and are capable of
eroding sediment from the abyssal seafloor. Hence, the hypothesis that the deep
oceans are quiescent, as suggested by the baroclinic compensation process, is not
valid in these frontal regions.

The theory behind the baroclinic instability process is complex and therefore not
included in this book. Nevertheless, we can employ the multi-layer model, devel-
oped in previous exercises, to investigate this process.

6.15 Exercise 21: Frontal Instability

6.15.1 Aim

The aim of this exercise is to explore frontal instabilities of quasi-geostrophic flows
in an ocean of two superimposed layers of different densities.

6.15.2 Task Description

The model domain has a length of 200 km, a width of 100 km, and a depth of 500 m
with closed boundaries in the north and in the south. Cyclic boundary conditions
are used at the western and eastern boundaries of the model domain. Lateral grid
spacings are set to Δx = Δy = 2 km. The ocean is approximated by a two-layer
system. Density of the top layer is chosen at ρ1 = 1027.25 kg m−3. Density of the
bottom layer is set to ρ2 = 1028 kg m−3.
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Fig. 6.25 Exercise 21. Initial distributions across the front of (top panel) sea-level elevation (cm),
(middle panel) interface displacement, and (bottom panel) and geostrophic frontal flow

The frontal flow is initiated by prescription of sea-level variations in the y-
direction (Fig. 6.25) using a sine function for the frontal transition zone. Random
noise of an amplitude of 5 mm is added to sea-level elevations to facilitate the inital
growth of disturbances.

The initial elevation of the density interface is calculated from (6.54), which
implies that, initially, the bottom layer is at rest. In this exercise, the depth of the
density interface varies by ±73 m across the front. The Coriolis parameter is set to
f = 1×10−4 s−1. The internal deformation radius associated with the initial config-
uration is about 7.5 km, so that we expect disturbances to grow on a lengthscale of
30 km.

Initial speeds of the upper-layer frontal flow are calculated from the geostrophic
balance (Eq. 6.13). The frontal flow in the upper layer attains maximum speeds of
80 cm/s and a width of the frontal zone is 20 km. The total simulation time is 20
days with data outputs at every 6 h. The time step is set to Δt = 2 s.

Eulerian tracer concentration is added to visualise cross-frontal disturbances. To
this end, tracer concentration of unity is added initially to the southern half of
the channel, whereas the other hand is initialised with zero values. The nonlinear
terms are essential in the instability process and need to be included in this exercise.
Bottom friction, lateral momentum diffusion and lateral friction can be ignored to
first-order approximation.

6.15.3 Results

Flow disturbances start to grow on wavelengths of 40 km after 8 days of simulation
and manifest themselves in disturbances in the density interface (Fig. 6.26). The
wavelength of predominant disturbances of 2̃0 km agrees with theory. As a result
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Fig. 6.26 Exercise 21. Shape of the density interface after 10 days of simulation

Fig. 6.27 Exercise 21. Currents (arrows, averaged over 2×2 grid cells) and Eulerian tracer concen-
tration (contours) in the top layer after 10 and 12.5 days of simulation. Cross-frontal flow attains
speeds of 50 cm/s

of this instability, the front starts to meander forming alternating zones of positive
and negative relative vorticity (Fig. 6.27). Baroclinic eddies appear soon after this
mixing whereby cyclonic eddies remain centered along the axis of the front while
anticyclonic eddies are moved away from the frontal axis. The diameter of eddies
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Fig. 6.28 Exercise 21. Currents (arrows, averaged over 2×2 grid cells) and pressure anomalies
(solid contours emphasise low pressure centres) in the bottom layer after 10 and 17 days of simu-
lation. Deep cyclones attain maximum flow speeds of 20 cm/s

is 10–20 km. Later in the simulation (not shown), eddies interact with each other
and produce vigorous lateral mixing in the entire model domain. Surface eddies are
associated with swift currents of speeds exceeding 50 cm/s.

Bottom currents of noticeable speed (benthic storms) start to develop from day
10 of the simulation onward and approach values of >20 cm/s by the end of the
simulation (Fig. 6.28). Interestingly, the structure of disturbances in the bottom layer
is different from those in the upper layer. Here it is exclusively the cyclonic eddies
that trigger the growth of instabilities. This process leading to the preferred creation
of cyclonic eddies is called cyclogenesis.

6.15.4 Sample Code and Animation Script

The folder “Exercise 21” of the CD-ROM contains the computer codes for this
exercise. The “info.txt” file gives more information.
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6.15.5 Additional Exercise for the Reader

Repeat this exercise for an ocean uniform in density (ρ1 = ρ2 = 1028 kg m−3) to
explore whether the barotropic instability process alone can produce a similar form
of frontal instability. The two-layer version of the shallow-water equations can be
adopted for this task, but the reader should avoid division by zero. . .

6.16 Density-Driven Flows

6.16.1 Background

Density-driven flows are bodies of dense water that cascade downward on the con-
tinental slope to a depth where they meet ambient water of the same density. At
this equilibrium density level, these flows tend to flow along topographic contours
of the continental slope. Detachment from the seafloor and injection into the ambi-
ent ocean is also possible. Numerical modelling of gravity plumes started with the
“streamtube model” of Smith (1975). This model considers a laterally integrated
streamtube with a variable cross-sectional area and, under the assumption of sta-
tionarity, it produces the path and laterally averaged properties (density contrast,
velocity) of the plume on a given slope.

With an advanced method describing the dynamics of such reduced-gravity
plumes, Jungclaus and Backhaus (1994) employed the shallow-water equations for
a two-layer fluid with an upper layer at rest. Without exchange of fluid across the
“skin” of the plume, the dynamic governing this model can be written as:

∂u2

∂t
+ u2

∂u2

∂x
+ v2

∂u2

∂y
− f v2 = −g′ ∂η2

∂x
− τ bot

x

h2ρ2

∂v2

∂t
+ u2

∂v2

∂x
+ v2

∂v2

∂y
+ f u2 = −g′ ∂η2

∂y
− τ bot

y

h2ρ2
(6.72)

∂η2

∂t
+ ∂(u2h2)

∂x
+ ∂(v2h2)

∂y
= 0

where g′ = (ρ2 − ρ1)/ρ2 g is reduced gravity, and (τ bot
x , τ bot

y ) represents the fric-
tional stress at the seafloor. These equations are known as the reduced-gravity plume
model. Interface displacements η2 are defined with respect to a certain reference
level. When formulated in finite differences, the CFL stability criterion in such a
model is given by:

Δt ≤ min(Δx,Δy)√
2g′hmax

where hmax is maximum plume thickness.
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Fig. 6.29 Definition of interface displacement and layer thickness for the reduced-gravity plume
model

For simplicity, we assume that the plume is denser than any ambient water, so
that the deepest part of the model domain can be chosen as reference level. The tilt
of the surface of the plume is then calculated with reference to this level (Fig. 6.29).
This implies that with initial absence of a plume, interface displacements η2,o have
to follow the shape of the bathymetry. This is similar to treatment of sloping coasts
in the flooding algorithm (see Sect. 4.4).

6.17 Exercise 22: Reduced-Gravity Plumes

6.17.1 Aim

The aim of this exercise is to explore the dynamics inherent with the descent of a
reduced-gravity plume on a sloping seafloor.

6.17.2 Task Description

We consider a model domain of 200 km in length and 100 km in width (Fig. 6.30),
resolved by lateral grid spacings of Δx = Δy = 2 km. The seafloor has a mild uni-
form upward slope of 200 m per 100 km in the y-direction. Since the surface ocean
is at rest in this reduced-gravity plume model, the total water depth is irrelevant
here. Frictional stresses at the seafloor are described by a quadratic bottom-friction
law.

An artificial coastline is placed along the shallow side of the model domain,
except for a narrow opening of 6 km in width used as a source for the reduced-
gravity plume to enter the model domain. The initial thickness of the plume is set to
100 m in this opening. The density excess of the plume is set to 0.5 kg m−3. Density
of ambient water is ρ1 = 1027 kg m−3. Zero-gradient conditions are used at open
boundaries for all variables.
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Fig. 6.30 Bathymetry for Exercise 22 (Scenario 2)

Two different scenarios are considered. The Coriolis force is ignored in the first
scenario. Case studies consider variations of bottom drag coefficient. The total sim-
ulation time is one day with data outputs at every hour. Because we expect a sym-
metric shape of the plume, the forcing region is placed in the centre of the otherwise
closed boundary that cuts along shallower regions of the model domain.

The second scenario includes the Coriolis force with f = +1×10−4 s−1 (northern
hemisphere). Again, case studies consider variations of values of the bottom-drag
coefficient. The total simulation time is 5 days with one-hourly data outputs. In
anticipation of rotational effects imposed by the Coriolis force, the forcing region is
moved some distance. This is why the forcing region has been moved some distance
upstream, as is shown in Fig. 6.30. The time step is set to Δt = 6 s in all experiments.

6.17.3 Write a New Simulation Code?

There is no need to formulate a new FORTRAN simulation code for this exercise.
Instead, the two-layer of this, the two-layer version of the shallow-water equations,
used in Exercises 20 and 21, can be applied with the constraint that the surface layer
is at rest.

6.17.4 Results

As anticipated, the forcing applied creates a gravity current moving denser water
away from the source. First, we consider the situation without the Coriolis force
(Scenario 1). On an even seafloor, the spreading of dense water would be radially
symmetric. On the other hand, a sloping seafloor supports a net downslope pressure-
gradient force, so that, in addition to radial spreading, the plume moves downslope
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Fig. 6.31 Exercise 22. Scenario 1. Snapshots of the horizontal distribution of plume thickness
(shading) for different values of the bottom-friction parameter r . The range shown is h2 = 0 (black
shading) to h2 = 50 m (white shading). Superimposed are horizontal flow vectors (arrows, averaged
over 5×5 grid cells) and contours of η2

(Fig. 6.31). A distinctive plume head develops for relatively small values of bottom
friction. This plume head is the result of the rapid gravitational adjustment taking
place during the initial phase of the simulation. Increased values of the bottom-
friction parameter lead to both disappearance of the plume head and overall weaker
flows.

The dynamical behaviour of reduced-gravity plumes is turned “upside down”
with inclusion of the Coriolis force. With relatively low levels of bottom fric-
tion, the plume rather follows bathymetric contours with only little tendency of
downslope motion (Fig. 6.32). With presence of the Coriolis force, it is increased
levels of bottom friction that induce an enhanced angle of downslope motion. Con-
sideration of simple steady-state dynamical balances between the reduced-gravity
force, the Coriolis force and the frictional force explains this interesting feature
(Fig. 6.33).
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Fig. 6.32 Same as Fig. 6.31, but for Scenario 2

Fig. 6.33 Steady-state force balances of reduced-gravity plumes for various levels of bottom fric-
tion on the northern hemisphere. The reduced-gravity force (RGF) acts downward on the sloping
seafloor. The Coriolis force (CF) acts at a right angle with respect to the flow direction. Bottom
friction (BF) acts opposite to the flow direction

6.17.5 Sample Code and Animation Script

The folder “Exercise 22” of the CD-ROM contains the computer codes for this
exercise. See the file “info.txt” for more information.
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6.17.6 Additional Exercise for the Reader

Add a topographic obstacle such as a seamount or a seafloor depression to the
bathymetry and explore how reduced-gravity plumes deal with irregular bathymetry.

6.18 Technical Information

This book has been written in LATEX using TeXnicCenter, downloadable at

http://www.toolscenter.org/

in conjunction with MikTeX (Version 2.5) – a LATEX implementation for the Win-
dows platform, which can be downloaded at:

http://miktex.org/

Most graphs of this book were created with SciLab. GIMP has been used for
the manipulation of some images. GIMP is a cost-free alternative to commercial
graphical manipulation programs such as Adobe Photoshop. This software is freely
downloadable at:

http://www.gimp.org/

Most sketches were made in Microsoft Word. Figure 3.21 was produced with
BLENDER (Version 2.43) – a three-dimensional animation suite (and game engine)
available at:

http://www.blender.org/
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