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Preface

Until two-and-a-half years ago I had done no astronomy for 30 years. I had messed

about with a home-made telescope as a kid, and taken an astrophysics class which

barely mentioned the Solar System as part of my physics major, but that was it.

This course inspired me enough that I thought about studying astrophysics in

graduate school, but I chickened out, figuring I would never get a job. So I did a

PhD in semiconductor theory instead, only to find that there were no jobs in that

either; so I washed up in medical device development, and pretty well forgot about

astronomy.

In January 2006, my wife offered to buy me a 6-in. reflecting telescope. I knew so

little about it that for almost a year I had the equatorial mount pointing south

instead of toward Polaris. The “local” astronomy club met 70 miles away, so I rarely

went, and in desperation I founded one locally. At last I had some friends to teach

me the basics.

Gradually I noticed that although these folk knew much more about constella-

tions, telescopes, and photography than me, I did look at the planets in a different

way from them. I got little flashes of insight such as noticing that if Venus is at half

phase, the angle between us, it, and the Sun must be a right angle, so the Sun, the

Earth, and the Venus at that time made a right angle triangle, from which you can

work out the distance to Venus. I do not think they were quite sure what to make of

me and my mad ideas. One or two were unreceptive, but most club members

seemed interested. I began to realize that I had a slightly different story to tell. This

book is it.

You do not need a PhD in physics or astronomy to understand the Solar System.

You can work out the basic layout of the Solar System from your backyard, even if

you live in a brightly lit town like me.
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At one level, this book is my collection of astronomy “war stories.” I make no

bones about having learnt a few lessons the hard way, and having discovered

occasionally that I had been doing silly things. It is also the story of a journey

from beginner to halfway competent astronomer. I have written the book like this to

emphasize that you do not need to be any kind of expert to carry out the projects I

suggest here.

A key message I want to get across is that I had no master plan to map out the

Solar System. I quite deliberately leapt in where angels feared to tread, and some-

times took photos to see if I could detect any planetary or satellite movement at all.

For example I knew from my early observations that Saturn does not move much. I

was not at all sure I would see any movement, but I did. My activities gradually

evolved from messing about toward more systematic study. To some extent I began

to think that I had seen Jupiter often enough; and was looking for new things to do.

My journey through the Solar System is also incomplete. From England, Jupiter

is practically on the horizon this year; and I have barely scratched the surface of

what I could learn about it. So Jupiter will have to wait. Because the local light

pollution is too great, I could not find Uranus nor Neptune reliably. Next autumn, I

should be able to look for the larger asteroids.

There is another thing: my equipment is nothing special. I have a beat-up second

hand 8-in. Newtonian reflector on a dual-axis driven EQ5 mount, as well as the 6-

in. telescope my wife gave me. I have two Philips SPC900NC webcams, and a laptop

PC. All the software I used is available for free, or an equivalent is, except K3CCD

ToolsTM, which cost me US $50, and the software driver for my webcams, which of

course came with them. Your equipment does not need to be fancy either.

To follow this book, you will undoubtedly need to know some high school

geometry. Ideally you have done freshman year math in North America as part of

a science or engineering course; or A-level maths or the Scottish or Irish equivalent

in Europe. (I gave up on whether to write “math” or “maths” and will stick to

mathematics.) If you picked up some basic calculus and geometry at night school

on an apprenticeship of some kind, that should suffice. I have deliberately avoided

using mathematical methods that require professional level skills: my methods are

quite deliberately rather basic and downhome. This book is emphatically not for

professional astronomers. Although I started out intending to write a book requir-

ing basic calculus, I ended up using much less of it than I expected to. At a pinch

you could skip those parts where I do use it.

I have, however, assumed that your mathematics are very rusty. Mathematical

skills are not like swimming. You can do no swimming for years, and yet get straight

in the water and swim again. A better analogy to mathematics is like letting your

arm go numb if you lie in an awkward position. As the arm comes back to life, you

will get pins and needles, which are no fun at all, but once they go away you will be

fine. I think mathematics is a bit like that. At the start of the book, you may find the

calculations uncomfortable, but once you find your stride they will get easier. Please

allow a little time for this to happen; and do not worry. Almost every other reader

will experience the same. Do not expect to read the book all in one go like an airport

paperback. Take your time, think about it, take lots of breaks, and be prepared to
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have a pencil and paper handy to work through the calculations. Real calculations

do not come in neatly packaged, same-size chunks like school textbook problems.

They may only use textbook concepts, but some can be lengthier than simple

textbook examples.

I have added Appendices A and B to help you get started. These are not primers:

they are necessarily minimalist, and are there because most of you will not live in a

house with a dozen mathematics texts. I am supposed to be writing a book about

astronomy here, not mathematics. What I have tried to do is to provide all the

algebraic manipulation. Most people (me included) hate seeing calculation steps

missed out, or worse yet left as an exercise for the reader. It is like having to navigate

in the pre-GPS era with one missing road sign at a busy intersection. You are

stymied.

I am a great believer in the evidence-based approach. That is a key part of the

ethos of this book. You can look up the distances of the planets from the Sun on the

Internet in 10 min. But how do you know that these distances are close to right?

What I want to show you is how you can check the approximate truth of the

planetary distances that every astronomer “knows.” I find it much more satisfying

to know where a fact comes from. In the first instance, the thing is to get a rough

idea. That is what I aim to give you. It is good science to get a rough idea before you

look for a detailed one. If you want to send a rocket to Mars though, you will need

more sophisticated methods than I offer.

Where did I get my methods from? I looked in many books, notably those by

French; Danby; Murray and Dermot; Ferguson and Tatum1 listed in the bibliogra-

phy. Some I knew from my college days, notably my freshman mechanics course. I

concluded that the methods given in the celestial mechanics texts would be beyond

most amateurs, because they focus on elliptical rather than circular orbits. The only

one who treats circular orbits is Tatum, who points out that for most planets the

orbits are almost circular. Even his treatment is not suitable for our purposes. First,

he leaves most of the analysis as an exercise for the reader (see above). Second, his

method for obtaining planetary distances requires knowing things you have no

hope of measuring. I do not think he has tried his method in anger, or he too would

have found this out. I only noticed because I did try his method. So in the end, I

made the methods up. I do not believe for one second that I am the first person to

analyze circular orbits. I am sure many others have, but I could not find where they

wrote up their analyses. I was proud of my cleverness in one or two places, but

mostly I think I was just doing my job as a physicist.

I have seen “Monte Carlo” statistical methods used for many things, e.g., in Wall

and Jenkins’ Practical Statistics for Astronomers or the find_orb orbit determining

software (http://www.projectpluto.com). I did not copy my method for performing

least squares analysis from anywhere. It is a technique a professional physicist like

me ought to be able to apply, just like a dentist should know how to drill teeth. I

think Monte Carlo methods are accepted to be a last resource of the mathematically
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desperate, a state in which I most certainly was. In the sense that they require a lot

of number crunching, they are not very efficient; but for our purposes their

inefficiency is of little consequence. Your PC should handle these methods easily.

They may take up to an hour each per planet on a 10-year-old computer, and much

less on a newer one, but what is the big deal about that? You can spend a lot more

time than that sitting by your telescope waiting for clouds to clear. The key

advantage of Monte Carlo methods is that they are simple and easy to understand.

I firmly believe that if you do not understand a statistical method, you should

not be using it. For example, in business school, we were taught a technique for

hypothesis testing (the chi-square method) without being told how it works. That is

outrageous: to proclaim the truth or otherwise of a hypothesis without knowing

why is no better than to assert that retrograde planetary motion causes bad karma. I

have provided an appendix deriving the statistical methods I use from first princi-

ples. You will definitely need calculus to follow it. If that is beyond you, you will

survive by skipping this appendix. However, you will have to accept that random

scatter in measurements tends to be distributed in a “bell curve” with most

measurements near the average. You will also have to take my word for it that

when fitting lines to data, this implies that you should use the method of least

squares. Your high school geometry and algebra will enable you to implement this

method even if you do not understand where it comes from.

Since I work in new product development, I am now also a qualified engineer,

and have freely borrowed ideas from that world. In particular, I have never seen or

heard of anyone using Computer-Aided Drafting (CAD) software to make mea-

surements from astronomical photographs. You can download CAD software for

free. This software usually allows you to import digital images, and has dimension-

ing tools to allow lengths and angles to be very quickly and accurately added to

engineering drawings. What I did was to use the software to draft circles, and

occasionally ellipses, freehand around the celestial objects, and use the dimension-

ing tools to make the measurements. There is professional astronomical software

around with not dissimilar capabilities, but it only runs on computers with Unix or

Linux operating systems. There is a package called Astro Art (http://www.msb-

astroart.com) which does it all for you, but as far as I can make out it is a “black

box” that does not tell you what it did. By now you should be able to guess whether I

approve of that.

If you enjoy this book I will have been successful, though I would not of course

know it. The thing is to have a go. Although my recipes have all been tested, and I

report how good they are, you need not follow them precisely if you do not want to.

I primarily want to feed you a few ideas.

If someone is inspired to contact me at john.clark@finerandd.com with ideas

about observing the Solar System, or even write a book, showing how they learned

lots of fun stuff about Solar System objects, I would be delighted.

King’s Lynn, UK John D. Clark
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CHAPTER ONE

How Do We
Know That Venus
Orbits The Sun?

Venus exhibits phases like the Moon. It is a lot further away, so it looks a lot smaller
than the Moon. The phases are not visible to the naked eye, except to a very few
sharp-eyed people; and were unknown until the advent of the telescope about 400
years ago.

You cannot see the phases very well in 10 � 50 binoculars, but my 6 in. f/5
Newtonian telescope shows them very nicely. At least it did in late winter 2006. The
crescent phase was unmistakable. But when it first appeared in the evening sky
around January 2007, I was very puzzled because I had seen the phases so easily the
previous winter just before sunrise. I could not see any phases. The darn thing was
just a bright blob even at maximum magnification.

I told my wife, not very confidently, that it must be much further away than a year
ago. Was I right?

It was about this time that I first tried my hand at photography with a webcam.
My first photos were not a pretty sight. It took me a couple of months to get around
to photographing Venus (Fig. 1.1). By this time I had bought an 8 in. f/6 telescope
through e-Bay, which was a big improvement on the 6 in., mainly because it has an
electric focuser and an EQ5 mount, which is much stiffer than the EQ2 on the 6 in.
model. The better optics and the dual axis drive certainly do not hurt, but to me they
are secondary benefits for photography. Anyway, it was April 10th by the time I first
had a go at photographing Venus. I could now resolve its shape. It was gibbous.

I cannot claim to have been very systematic about my photography. The weather
was not helpful. Nor, at this point, was my rather variable photographic technique.
Nevertheless I watched it grow bigger, and watched the phase wane. By late May it
had reached half-phase.

J.D. Clark, Measure Solar System Objects and Their Movements for Yourself!,
Patrick Moore’s Practical Astronomy Series,
DOI: 10.1007/978-0-387-89561-1_1, © Springer Science + Business Media, LLC 2009
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At this point I had a brainwave. If the planet was at half-phase, the angle between
the Earth-to-Venus line and the Venus-to-Sun line must be a right angle.
‘‘So what?’’ you ask.
Well, from Fig. 1.2 we see that the Earth, the Sun, and the Venus make the right-

angle triangle SVE, where S, E, and V mean ‘‘Sun,’’ ‘‘Earth,’’ and ‘‘Venus,’’ respectively.
The right angle is at V, as shown in Fig. 1.2. The properties of right angle triangles
are well documented. I can use them to estimate the distances EV and VS if
I know the distance ES. To a first approximation, the distance ES is known as one

Fig. 1.1. The
author’s own
photographs of the
phases of Venus, taken
with the same
telescope at the same
magnification, over a
7-week period.

Fig. 1.2. If Venus is
at half-phase, the Earth-
to-Venus line must be at
right angles to the Sun-
to-Venus line. Together
with the Sun-to-Earth
line, these lines form a
right-angle triangle.
We shall call the
vertices of this triangle
S, E, and V. When the
angle SVE is a right
angle and Venus’
phase is waning, the
configuration of the
planets is known as the
Greatest Eastern
Elongation of Venus.
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astronomical unit (AU). More accurately, 1 AU is an average Earth-Sun distance: the
orbit is of course not a perfect circle.

Not quite: I need one more piece of information – I need to know the angle A in
Fig. 1.2. This means I need to measure it. I tried using rulers and a protractor, but got
nowhere. It was time for a bit of second childhood while I made a measuring device.

Figure 1.3 hows the offending item. It consists of a cardboard backing onto which
is fastened an angle scale drawn with computer-aided drafting (CAD) software.
Thumb tacks are used to attach two cardboard coat hanger inserts of the type dry
cleaners use.

The trick was to wait until just before sunset, when the Sun was not blinding, and
place my eye where the two cardboard inserts met. I pointed one cardboard insert at
the Sun, the other at Venus. The v-shaped nature of the inserts made the pointing a
little easier. I managed this twice on the evening of 29 May, and recorded angles
of 46� and 47�. Although my device worked, it was not exactly user-friendly –
measurement was difficult.

Incidentally, the planetary arrangement shown in Fig. 1.2 is known as the ‘‘Great-
est Eastern Elongation’’ of Venus. This is because if the angle Awere to get any bigger
than this, the line EV would miss the orbit of Venus completely. Therefore angle A
cannot get any bigger than at Greatest Eastern Elongation.

Fig. 1.3. My home-made device for measuring the angle between heavenly bodies. It
consists of a cardboard backing onto which is fastened an angle scale drawn with
computer-aided drafting (CAD) software. Thumb tacks are used to attach two cardboard
coat hanger inserts of the type dry cleaners use to hold long pants in place.
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We now do some simple trigonometry. Taking the angle A in Fig. 1.2,

sin A ¼ SV

SE
: ð1:1Þ

But we have measured A to be about 46.5�. So (1.1) becomes

sinA ¼ sin 46:5 ¼ SV

SE
¼ 0:725;

;SV ¼ 0:725 SE � 0:73 AU:
ð1:2Þ

In (1.2), the symbol ‘‘�’’ means ‘‘is approximately equal to.’’ I now have a distance
estimate: the distance from the Sun to Venus is between 0.72 and 0.73 AU. Bakich2

reports values between 0.7184 and 0.7282 AU, with an average of 0.7233. Given the
crudity of my measurement, I did better than I deserve. One of the weaknesses of the
scientific measurement is that it gets awfully tempting to stop experimenting when
you find the answer you were looking for.
Far from falling into this trap, I will show you later how I double-checked my

measurement. I waited until Venus was next at half-phase, but waxing instead of
waning. This is called the ‘‘Greatest Western Elongation’’ of Venus. If I could predict
the time at which this happened, I would have understood the relative orbits of Earth
and Venus correctly. In particular, a prediction of the time at which the planet is next
at half-phase can be checked with my telescope.
To make this prediction, I need to show you a little bit about how planetary orbits

work. Since neither the Earth nor Venus has a very elliptical orbit,2 I can get away
with assuming that these two planets have circular orbits. This assumption simplifies
the calculations from graduate-school level to freshman year science or engineering
(A-level mathematics or physics in Britain).

Circular Motion
The physics of circular motion was first solved by Christiaan Huyghens in 1688.3

First, I will show you how to work out this physics in a way that uses no calculus.
Imagine a point which goes around a circle of radius r with constant speed v. Such

a point is shown in Fig. 1.4. Just as the radius r keeps its magnitude but goes around
in a circle, so does the direction of v.
I am going to define a unit of angular measure called a ‘‘radian.’’ Figure 1.5 shows

how the angle is one radian when the length of the arc between two radii is equal to
the length r of the radius. Since the length of the entire circumference is 2pr, one
complete circle contains 2p radians. In other words, 2p radians = 360�, or 1 radian
� 57.296�.
If in Fig. 1.4 the time taken to complete one revolution is T, then the time to

complete one radian is T/2p. We therefore say that the angular velocity of the
rotating point is

o ¼ 2p
T

; ð1:3Þ

where the Greek letter o (lower case omega) is the traditional symbol for angular
velocity in radians per second.
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What is the value of T ? Speed is the distance traveled in unit time.

Speed ¼ Distance

Time
;

;Time ¼ Distance

Speed
;

i:e:; T ¼ 2pr
v

:

ð1:4Þ

We can also write T in terms of o. Substituting (1.3) into (1.4) gives

Fig. 1.4. A point on
the circumference of a
circle of radius r rotates
around it with uniform
speed v. Since the
velocity is always
perpendicular to the
moving radius, it too
goes around in a
circle.

Fig. 1.5. If the length
of the arc between two
radii is equal to the
length r of the radius,
the angle A is said to
be equal to one
radian. Since the
length of the entire
circumference is 2pr,
one complete circle
contains 2p radians. In
other words,
2p radians = 360�.
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T

2p
¼ 1

o
¼ 2pr

2pv
¼ r

v
: ð1:5Þ

There is a striking analogy between the circles of Figs. 1.4 and 1.6. In both cases, the
time to complete once circumference is T. By direct analogy with (1.4),

Acceleration ¼ Speed change

Time
;

Time ¼ Speed change

Acceleration
;

i:e:; T ¼ 2pv
a

:

ð1:6Þ

By analogy with (1.5)

T

2p
¼ 1

o
¼ 2pv

2pa
¼ v

a
: ð1:7Þ

Why did I do this? Because I can use (1.7) and (1.5) to figure out what the
acceleration of a point going around in a circle is. Watch this. First I use (1.7) to
get one formula for the acceleration, then I use (1.5) to get rid of the velocity term,
which I do not really want.

a ¼ ov ¼ oðorÞ ¼ o2r: ð1:8Þ
A very important law in dynamics is Isaac Newton’s second law of motion. This law
is given in his book ‘‘Mathematical Principles of Natural Philosophy,’’ 4 although
even the English translations of this Latin work look very old fashioned and strange
to our eyes. In more modern language, Newton’s second Law states that

F ¼ ma; ð1:9Þ

Fig. 1.6. The speed
of the rotating point
does not change, but
its velocity does. This is
because velocity has
direction as well as
magnitude. It is
possible to imagine the
velocity as the
‘‘radius’’ of a ‘‘circle of
velocity.’’
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or Force =Mass� Acceleration. Mass is measured in such units as tons, pounds, and
kilograms.

When I worked out (1.8), I just talked about a geometric point. I never said that
there was anything there. Now, I am going to imagine that there is something there.
It will be just a small something, with mass m. In particular, let us imagine that its
size is small compared to the radius r. Then I combine (1.8) and (1.9) to give

F ¼ ma ¼ mo2r: ð1:10Þ
This is the force that must be applied to the mass m to get it to go around in a circle.
It is known as the ‘‘centripetal force’’ because ‘‘centrum’’ means center and ‘‘petere’’
means ‘‘to move toward’’ in Latin. I am sure the Romans talked about petering
toward the centrum all the time. What else was there to do back then? However, we
got the last laugh: it is Latin that has ‘‘petered’’ out.

Why must a centripetal force be applied? Because Newton’s law, (1.9), would give
zero acceleration without a force, and zero acceleration means going at the same
speed in a straight line forever. This ‘‘natural’’ state of unforced motion was so
surprising in Newton’s time that he made it a separate law of motion, which we now
call Newton’s first law of motion: ‘‘a body continues at rest or in uniformmotion in a
straight line unless it is acted upon by an external force.’’

When I first learned to calculate the acceleration this way, at the age of about 15, I
have to confess that the argument did not impress me. So I am going to show you
how to derive (1.8) with calculus, just to show you how much easier calculus makes
your life.

Consider the point P in Fig. 1.7. It has coordinates (x, y) = (r cos[A], r sin[A]).
However, if the point P is going round with angular velocity o, then it follows that

A ¼ ot ; ð1:11Þ
So that

ðx; yÞ ¼ ðr cosðotÞ; r sinðotÞÞ: ð1:12Þ
If you differentiate position with respect to time, you get velocity, which you can
think of as ‘‘rate of change of position with respect to time.’’ Also, if you differentiate
velocity with respect to time, you get acceleration, which you can think of as ‘‘rate of
change of velocity with respect to time.’’ Therefore if you differentiate position with
respect to time twice, that is tantamount to differentiating first position then velocity
with respect to time, so you end up with acceleration.

In case you have forgotten, the formulae for differentiating sines and cosines are

d sinðotÞ
dt

¼ or cosðotÞ

and x
d cosðotÞ

dt
¼ �or sinðotÞ;

ð1:13Þ

provided that o is in radians per second. If you use degrees, the formulae become
more complicated. This is a major benefit of using radians.
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The velocity coordinates are therefore

dx

dt
;
dy

dt

� �
¼ ð�or sinðotÞ;or cosðotÞÞ; ð1:14Þ

and the acceleration coordinates are

d2x

dt2
;
d2y

dt2

� �
¼ ð�o2r cosðotÞ;�o2r sinðotÞÞ

¼ �o2ðr cosðotÞ; r sinðotÞÞ
¼ �o2ðx; yÞ:

ð1:15Þ

In the last step, (1.12) has been used. There are no appeals to you to imagine a circle
whose radius is not a distance but a velocity. You just have to know how to
differentiate.
Also, in Equation (1.15) a minus sign has appeared. This is not wrong: it indicates

that the acceleration is from the circumference toward the center, whereas the radius
goes from the center toward the edge. This is another benefit to using calculus – it
gives a way to keep track of direction.
Actually, I have snuck another mathematical concept in. By using coordinates, I

wrote the radius in such a way that its direction is accounted for as well as its
magnitude. To cut a long story short, radius, velocity, and acceleration each have
direction as well as magnitude, and satisfy certain of other conditions, which need
not concern us, to make them ‘‘vector’’ quantities. Writing things in coordinates is
just about the easiest way to handle vectors.

Fig. 1.7. The point
P has coordinates
(x, y) ¼
(r cos(A), r sin(A)).

Measure Solar System Objects and Their Movements for Yourself!8



Newton’s Law of Gravity
In his ‘‘Mathematical Principles’’4 Newton also showed how one law of gravity
describes the behavior of both celestial and earthly bodies. Imagine two bodies of
masses M and m, separated by a distance r. They attract one another with a force F
given by

F ¼ GMm

r2
: ð1:16Þ

When orbiting, the two bodies of masses M and m actually orbit about their center
of mass. If M is vastly greater than m, this center of mass is approximately at the
center of the massM. The Sun is a third of a million times more massive than either
Earth or Venus, so I am going to assume that both planets orbit about the center of
the Sun.

By the way, M has to be an awful lot greater than m for this approximation to
work. For example, even though the mass of Jupiter is just under a thousandth that
of the Sun, the center of mass of the Sun and the Jupiter is outside the photosphere
of the Sun. If you are interested, the relevant formulae can be found in Murray and
Dermott’s book ‘‘Solar System Dynamics’’.5

If you want to write (1.16) in vector form, you can. You have to insert a vector of
unit magnitude (see Appendix A) that points along the line joining M and m, and
insert a minus sign to indicate that the force is attractive, i.e., it points toward the
coordinate system origin at the center of mass.

Application to Circular Orbits
The centripetal force required to keep the planet in an orbit of radius r is provided by
gravity. It is as simple as that. The orbit is stable if the forces in (1.8) and (1.16) are
one and the same:

F ¼ GMm

r2
¼ mo2r: ð1:17Þ

This equation can be rearranged. First, the mass m cancels out. Second, we combine
the radii:

GM

r3
¼ o2 ¼ 2p

T

� �2

: ð1:18Þ

Therefore

GM

4p2
¼ r3

T 2
¼ constant: ð1:19Þ

Equation (1.19) is a way to test whether a given heavenly body is in fact in an orbit.
This law, which was discovered by Johannes Kepler,6 works for elliptical as well as
circular orbits, provided r is replaced with a suitable quantity. It is known in the
scientific literature as Kepler’s third law of planetary motion.

How Do We Know That Venus Orbits The Sun? 9



Back to Venus and the Earth
In (1.2), I gave my measured value of r for Venus:

rVenus ¼ 0:73 AU: ð1:20Þ
By definition

rEarth ¼ 1AU: ð1:21Þ
Now I am going to substitute these values into (1.19):

r3Earth
T 2
Earth

¼ r3Venus
T 2
Venus

¼ constant: ð1:22Þ

Hence

r3Earth
r3Venus

¼ T2
Earth

T2
Venus

¼ 13

0:733
¼ 1

0:389017
: ð1:23Þ

Rearranging

0:389017

T 2
Venus

¼ 1

T 2
Earth

; 0:389017T 2
Earth ¼ T 2

Venus ¼ 0:389017� 12 ¼ 0:389017;

;TVenus ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:389017

p
¼ 0:623 years ¼ 227:8 days:

ð1:24Þ

The published value of the time for Venus to orbit is 0.615 years or 224.7 days.2

My measured value is accurate to within 1.3%. The approximation that the orbits of
Earth and Venus are circular is not looking too bad. Let us see if I can actually
measure the orbital period.
Before I try to predict the time of the Greatest Western Elongation of Venus, I have

a confession to make. As Fig. 1.8 shows, I jumped the gun when I assumed that the

Fig. 1.8. The
author’s own
photographs of the
phases of Venus taken
around the time of
Greatest Eastern
Elongation.
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Greatest Eastern Elongation of Venus had already occurred by May 29, 2007.
Subsequent photos showed that it probably occurred between May 31 and June
10. I cannot tell more precisely than that. The main reason I did not have a daily
photo was poor weather, although my evening diary was not without nonastronom-
ical engagements that week, not least my daughter’s birthday on June 8. I will
therefore assume that the actual date was June 5 2007 � 5 days.

How to Predict the Greatest
Western Elongation Date

First, let me convert (1.23) from orbital periods into angular velocities using (1.5)

oVenus

oEarth

¼ 2p=TVenus

2p=TEarth

¼ TEarth

TVenus

¼ 1

0:624
¼ 1:603: ð1:25Þ

But we know that oEarth = (2p/365.25) radians per day.
Let us define a coordinate system with its origin at the center of the Sun. Angles

are measured from the x-axis, with the positive direction being anticlockwise toward
the y-axis. There is no reason for defining angles this way: it is merely the custom.
We need to think a little bit about how this coordinate system is moving. After all,
the planets orbit, and the Sun rotates about its own axis roughly once a month, with
some parts rotating faster than others. What’s more, the Sun is traveling in an orbit
about the center of our Galaxy. Clearly our coordinate system needs to move around
the Galaxy with the Sun. But we want it not to rotate. This begs the rather awkward
question: relative to what might this coordinate system rotate? For the few months
that I want to follow the motion of planets, it will be good enough to postulate that
this coordinate system does not rotate relative to the stars, ignoring the few closest
neighbors that have large proper motions. If we try to define a better standard of
nonrotation, we will open a Pandora’s Box.

If a planet, be it Earth, Venus, or any other, is orbiting the Sun with angular
velocity o, then the angle from the x-axis to it is o(t�t0), where t0 is a time at which
the planet crossed the x-axis. t0 is different for each planet. One of the curious
features of the Newtonian system of mechanics is that there is no ‘‘time zero.’’ We
must arbitrarily choose one. You can do this with a stop watch. It is a very mundane
thing to do. You start the stop watch at the time you want to be ‘‘time zero.’’ The
smart thing to do is to choose the zero time that makes your life as simple as
possible. Sometimes you only know this time after you have tried the calculation,
and end up redoing the mathematics. I could not possibly comment on whether this
happened here.

Anyway, a good time zero is the last time before late May 2007 that the Earth and
Venus were at the same angle with respect to the x-axis. This situation is shown in
Fig. 1.9.
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From Fig. 1.11 we see that at Greatest Eastern Elongation

AngleC ¼ AngleD � ð90� 46:5Þ� or

oVenustGEE ¼ oEarthtGEE � ð90� 46:5Þ�; ð1:26Þ

where t is time and the subscript GEE means Greatest Eastern Elongation. We are
using the idea that the angle through which a planet has orbited since time zero is
given by

Angle ¼ ot : ð1:27Þ
At Greatest Western Elongation

oVenustGWE ¼ oEarthtGWE þ ð90� 46:5Þ�; ð1:28Þ
where the subscript GWE means Greatest Western Elongation. This situation is
shown in Fig. 1.10.
Substituting for oVenus from (1.25) gives

1:603oEarthtGEE ¼ oEarthtGEE � ð90� 46:5Þ� ð1:29Þ
and

1:603oEarthtGWE ¼ oEarthtGWE þ ð90� 46:5Þ�: ð1:30Þ
Equations (1.29) and (1.30) can be rearranged and subtracted from one another as
follows. First let me rearrange them:

ð1:603� 1ÞoEarthtGEE ¼ 0:603oEarthtGEE ¼ �ð90� 46:5Þ� ð1:31Þ

Fig. 1.9. The last
time before May
2007 that Venus and
the Earth were at the
same angle with re-
spect to the x-axis, in
other words when
Angle C = Angle D.
This time is called an
inferior conjunction2

in astronomical jar-
gon. This will be our
time zero. All times
will be measured
from this point.
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and

ð1:603� 1ÞoEarthtGWE ¼ 0:603oEarthtGWE ¼ þð90� 46:5Þ�: ð1:32Þ
Now let me subtract (1.31) from (1.32):

0:603oEarthðtGWE � tGEEÞ ¼ ð90� 46:5Þ� þ ð90� 46:5Þ� ¼ ð180� 93Þ�

¼ 87� ¼ 87� � p
180

radians
ð1:33Þ

I can substitute the value oEarth = (2p/365.25) radians per day into (1.33) to give

0:603oEarthðtGWE � tGEEÞ ¼ 0:603
2p

365:25
ðtGWE � tGEEÞ

¼ 87� � p
180

radians: ð1:34Þ

Therefore

87� � p
180

radians ¼ 0:603
2p

365:25
ðtGWE � tGEEÞ

;ðtGWE � tGEEÞ ¼ 365:25� 87� p
0:603� 2� p� 180

¼ 146:3 days:

ð1:35Þ

If GEE was on June 5 2007 � 5 days, (1.35) implies that

tGWE ¼ October 29 2007� 5 days: ð1:36Þ
At this time, Venus would again be at half-phase, but waxing not waning.

Fig. 1.10. By the
time Venus has
reached its Greatest
Western Elongation,
both it and the Earth
have moved along
their orbits compared
to Fig. 1.11. Venus
moves the faster,
being nearer to the
Sun, and therefore
experiencing stron-
ger solar gravity. This
diagram shows how
the angle SVE is once
again a right angle,
and Venus is at half-
phase, albeit waxing
this time.
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Checking the Date of Greatest
Western Elongation

So what actually happened? Figure 1.12 shows the sequence of photos I took. All the
waning ones up to July 6 were taken in the evening, and all the waxing ones from
September 9 were taken in the morning. I did not get any in between because Venus
was very low in the sky. My backyard is surrounded by trees. The view to the north-
west is particularly blocked, so the waning crescent was particularly hard to capture
on a summer evening. The main block to the south-east is the houses opposite. But
worse, much worse than that was the weather. The inferior conjunction, when Venus
was between the Earth and the Sun, would have taken place halfway between GEE
and GWE, on about August 17. From then until September 9 there were very few
clear mornings. I remember one morning when I took my second-ever photo of
Mars through thin cloud. That was about all I got during those 23 days.
Figure 1.13 shows that the actual date of Greatest Western Elongation was after

October 22 but before November 6. In fact careful examination of the November 3
photo (Fig. 1.14) shows that Venus was already barely gibbous. The nearest photo to
the actual Greatest Western Elongation was that of October 31. This is completely
consistent with the prediction of (1.36).
Incidentally, whenever I tell anyone what time I took the morning photos, even

astronomers give me horrified looks. Dragging yourself out of bed for pre-dawn
photography has obvious drawbacks, but it does have one advantage. Astronomy
was off the menu in June for my daughter’s birthday. But at 5 A.M. on October 22, my
wife’s birthday, she did not care what I was doing. And later that day, I got to enjoy
the party without thinking about missing key photo opportunities for my project.

Fig. 1.11. The situation at Greatest Eastern Elongation (GEE). All angles are measured
anticlockwise from the x-axis. Let the time of GEE be tGEE. Then the angle C can be written
as p�B.
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On 30 October, the weather was good enough for me to repeat my angle-
measurement experiment. This time I managed three measurements, of 47�, 48�,
and 48� again. If I repeat the calculation from (1.26) through (1.36), using the
average of my five values 46�, 47�, 47�, 48�, and 48�, viz., 47.2�, I estimate the date of
Greatest Western Elongation to be October 26 2007 � 5 days. This is still consistent
with it being known to be after October 22 but before November 3.

Alternative Hypothesis: Venus
Orbits Earth

In ancient times, various theories were produced in which the planets, the Moon and
the Sun all orbited the Earth. The most noted proponent of such a theory was
Ptolemy,7 who lived around 100 C.E. I will now show how such a theory is rendered
implausible by telescopic observations, which of course were not available to
Ptolemy.

Fig. 1.13. Detail
from Fig. 1.12
showing that Greatest
Western Elongation
happened after
October 22 and
before November 6.

Fig. 1.14. Detail
from Fig. 1.13
showing that Greatest
Western Elongation
had already
happened by
November 3.
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If, as in Fig. 1.15, Venus and the Sun were to travel in circles around the Earth, we
would observe the following. The phases of Venus could be either crescent or gibbous,
as Fig. 1.15 shows. We observe this. Venus would always be about the same size. We
do not observe this – my own photographs shown in Fig. 1.12 disprove it. There
would also be no angles of Greatest Eastern or Western Elongation: Venus might be
visible at any time of the night. In practice it is only visible within about 2 h of sunset
or sunrise. Hence the scenario of Fig. 1.15 is not consistent with what we observe.

The technique I am using here is called ‘‘proof by counter-example.’’ The idea is
that if a given scenario is shown to ‘‘predict’’ at least one disprovable observation,
that one counterexample is enough to disprove the whole scenario. It is a very
elegant technique.

There is only one problem: it only works perfectly in mathematics, where things
can be proved or disproved beyond reasonable doubt; and proofs can be repeated
and checked ad nauseam. In experimental science, it is always possible to dispute the
validity of the counterexample. It could be claimed, for example, that the leftmost
photo of Venus in Fig. 1.12 is much smaller; so that in fact I had photographed
Mercury by mistake. I cannot turn the clock back and check this, though I can look
in tables and find that Mercury was a morning star on April 10 2007. In real research
problems, there may not be a set of tables I can look in, because by definition real
research has never been done before. This difficulty of proof by counterexample is
acute in such fields as Cosmology and Evolutionary Biology, where we have no way
to turn the clock back and see if our theories are right or wrong. Sadly there is much
misunderstanding of this point.

Sometimes, an idea takes an awful lot of killing by counterexample. Percival
Lowell’s ‘‘discovery’’ of canals on Mars was a classic example. This idea was not
taken seriously by scientists for long, but it was not expelled from public conscious-
ness until the first space probes actually went to Mars and sent back close-up
photographs showing that the landscape was all arid deserts. You cannot see the
Suez Canal or even the Nile River in Fig. 3.4, a photo taken of the earth from inside a
spacecraft, so why should anyone expect to see canals on photos of Mars taken from
tens of million miles away through our atmosphere? But I digress.

Fig. 1.15. Venus
and the Sun travel in
circles around the
Earth.

How Do We Know That Venus Orbits The Sun? 17



Nevertheless, I do not think that there is much room for doubt about what I saw
through my telescope. No-one from Galileo on down has ever reported any different.
Ptolemy knew about the elongation problem. He proposed that Venus actually

orbits the Earth in a circle going around a circle, known as an epicycle. Cunningly, the
epicycle and the sun’s motion are supposed to be synchronized in such a way that the
angle SEV is never more than the greatest eastern or western elongation, about 47�.
In the scenario, shown in Fig. 1.16, in which Venus is closer to the Earth than the

Sun, Venus can never have a gibbous phase when viewed from Earth. What happens
if Venus is further away than the Sun? This is the scenario shown in Fig. 1.17.
Now, Venus is always gibbous as seen from the Earth.

Fig. 1.16. The
Sun travels in circles
around the Earth.
Venus orbits within
the Sun, going in an
epicycle: a circle that
itself goes around a
circle.

Fig. 1.17. The
Sun travels in circles
around the Earth.
Venus orbits beyond
the Sun, going in an
epicycle: a circle that
itself goes around a
circle.
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But I have seen for myself, and reported in Fig. 1.12, that Venus can show both
crescent and gibbous phases frommy backyard, which is most definitely on the same
planet as you are, dear Reader.

Sorry, Ptolemy, you were just plain wrong. Does this mean you were a dummy?
Mostly it means you never got to look through a telescope. I think you would have
been very surprised.

When Can You Try This
for Yourself?

Inferior conjunctions of Venus occur every 584 � 4 days, which is every 19 months
and a few days. Greatest elongations occur 71 � 1 days beforehand for Eastern
elongations and 71 � 1 days afterward for Western elongations.

Table 1.1 gives dates of future events. If you read this in many years’ time, you can
use the above formulae to estimate suitable dates.

A rare event will occur on June 6 2012: a transit of Venus, when it will actually
cross the Sun’s disc. This will be visible from the British Isles just after sunrise, from
the USA late in the day, and from Australia and New Zealand, except that it will start
before the Western Australian sunrise. Please bear in mind that the best place to view
this phenomenon is close to the International Date Line, so the date may be a day
out for you.

The other dates carry a similar health warning – they may be a day out for you.
Indeed, different sources sometimes vary by up to 2 days. That is one reason why I
have cited two sources per date. The other reason is that tables do sometimes contain
errors. The sources themselves often do not quote their own sources or say how they
verified their claims. Since I wish they would be more careful about evidence, I can
hardly look people in the eye if I am less careful.

Conclusion
I have shown how the size, phase, and timing of what I have observed about Venus
are all consistent with the hypothesis that both the Venus and the Earth orbit the Sun
in approximately circular orbits; that they obey Newton’s laws of motion and of

Table 1.1. Venus’ Inferior Conjunctions and Greatest Elongations

Greatest Eastern Elongation Inferior Conjunction Greatest Western Elongation

January 15 20092,8 March 27 20092,8, June 5 20092,8

August 19 20102,8 October 29 20102,8 January 8 20118,9

March 27 20129,10 June 6 201210,11 August 15 20129,10
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gravity; and that Venus orbits the Sun at a distance of approximately 0.73 AU taking
approximately 228 days to complete one orbit.
I have also shown that the alternative hypothesis, favored in ancient times, that

both the Venus and the Sun orbit the Earth, is utterly inconsistent with the telescopic
evidence of the sizes and phases of Venus.
Finally, I have given some dates when you can check for yourself whether I am full

of . . . you know what.
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CHAPTER TWO

How Big is the
Earth?

Ways to Measure the Earth’s Size
The Flat Earth Society prospered in Britain in my youth. People traveled a lot less in
those days. Since the whole country has about the land area of Colorado, and the
populated part is smaller still, we never had to deal with time zones or climate zones.
Hence you never had to face up to the Earth’s roundness. Since we live on an island,
we never drove into other countries before the Channel Tunnel opened in 1994.

On my first intercontinental journey, at the age of 22, it never occurred to me to
reset my watch as the air stewardesses suggested; and to see broad daylight in
Toronto at midnight jolted me into experiencing the roundness of the Earth. The
effect was reinforced by the fact that Toronto is so much further South than England.
It is at the same latitude as the South coast of France, a good thousand miles from
here. The Sun was higher in the sky than I had ever seen it; and it got really dark early
in the August evening.

Two years later I went to the United States as a postdoctoral researcher at Case
Western Reserve University. Nobody in England had heard any Cleveland jokes, so I
did not know any better. I turned down a job offer at Colorado State in beautiful Fort
Collins to go there – can you believe it? No matter: I had a great time in Ohio, and met
my wife, so to heck with Cleveland’s detractors. While there I made a Greyhound bus
trip to Phoenix, 2000 miles to the southwest of Cleveland. The day before leaving, I
happened to notice the sunset time in Cleveland – 6 P.M. Three days later, with my
watch unadjusted, I could see the Sun still quite high in the sky in Phoenix at 6 P.M.
That impressed me: you cannot take a bus trip across time zones in England.

In essence, there are two effects of traveling large distances: the sunrise and the
sunset times change, and things get higher or lower in the sky. You can use either one
to quantify the size of the Earth.

J.D. Clark, Measure Solar System Objects and Their Movements for Yourself!,
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It is a bit difficult to verify the number of miles you travel in an airliner: you have
to take the airline’s word for it that they are not diddling you over air miles. In a car it
is different. You have an odometer, which you can calibrate against freeway mile-
posts, and otherwise generally learn to trust.
Various challenges face the amateur measurer of the Earth’s size. Most of us are

unlikely to own specialist equipment. That particularly makes measuring latitude
difficult. You can buy a cardboard model sextant for less than £50 ($100), which
claims to be good to 5 min of arc. You then have to travel a long way North-South to
detect an effect.
These days we all own very accurate clocks and watches. It therefore seemed to me

that going east-to-west was likely to be a more accurate way to detect an effect of the
Earth’s roundness.
In either case, your next problem is to find a road that goes due east or due west

for a long distance. In North America that’s easier than in Europe. The only really
long straight North-South road I found using Google Maps was in Argentina! The
publisher’s advance was never going to fund a ride along that. In Spain you can go
more or less straight from North to South; and you can drive more or less East-West
from Amsterdam to Warsaw. I considered all of these possibilities, but they seemed
to be an expensive gamble in both time and cash when you cannot rely on the
weather being clear. I even thought about going to Israel, where there is a long
North-South road from the Lebanese border to the Red Sea with a high probability
of clear skies. The trouble is that it does not go due North-South. Eilat is some way
to the West of Kiryat Shemona.

What Johnny Did Next
I live close to the widest part of the island of Great Britain. There is actually a 25-min
difference in sunset times between the East and West coasts at my latitude. Three
months I waited for the weather to be clear right across the country; and I gave up. It
just was not likely to happen before the publisher’s deadline. Instead I settled for a
140-mile journey West, which would give me about a 12-min sunset time difference.
My wife stayed here. She used a cardboard solar projecting telescope, which we

bought back in 1999 to view a total solar eclipse in Hungary. She was accompanied
by our teenage daughter, who rather thought we were wasting her time.
Me, I headed off in the car with a borrowed 4-in. Newtonian with a solar filter and

my 6-in. Newtonian.
The date we chose was going to be the last one before a short spell of fine weather

broke and another Atlantic weather system blew in. ‘‘System’’ is of course a euphe-
mism for horrible weather. It had already crossed Wales and was heading for
England as I left.
It was the journey from Hell. The satellite navigator got lost – it obviously knew I

had to get somewhere before sunset. If truth be told I think it knew where it was
going, until it and I encountered a road closed for repair. It could not deal with the
diversion. The other thing that made the going tough was that, in order to go as due
west as possible, I had to go through every town center and avoid all the bypasses. So
I caught a bad case of evening rush hour. The detour ruined my odometer reading.
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So instead of returning home via the best roads, I had to retrace my route along
some rather second rate roads chosen for their directness not their quality, in the
dark. I will NEVER follow that route again!!!

That was a curtain raiser for what happened near sunset. I had carefully staked out
a region of flat land, but the weather system came in faster than forecast. I was in
somewhat hilly country, which is not the best place to time a sunset. In the end I
stopped at a road junction just outside the village of Haughton in Staffordshire,
where there was a good view of the sun, a reasonably flat view toward the horizon,
and a grass verge where I could set up shop. This was eight miles short of my planned
stop, but there was nothing I could do. The cloud was thickening by the mile.

Wife and daughter, meanwhile, had moved six miles North to get a better view of
the horizon. They had no problems with cloud, but this did complicate my calcula-
tion slightly.

The cunning plan had been to record the times of first contact between Sun and
horizon, the mid-point of the sunset, and the last view of the sinking Sun. This
would give us three times to compare. There is a function in Microsoft Excel called
‘‘Now’’ which you can use to capture times. You press enter, then immediately copy
the cell and go Paste Special -> Values to enter this time permanently in another cell.
It all worked magnificently on the dry run. It worked a bit less well when I did it for
real. It is a bit harder to do when you are holding a cell phone as someone talks you
through the sunset back home. They saw the middle and final points of the sunset,
and reported this to me. I could still just about see the Sun through cloud, so that felt
a little bit weird.

Meanwhile, chez moi, the Sun became invisible before it reached the horizon. I
was reduced to three ways to detect the sunset time. First, I had abandoned the
borrowed telescope with a solar filter, and had aligned my motor driven 6-incher on
the Sun. I had enough time to correct the alignment of the finder scope, and
thereafter used that. So one measure of sunset time was when the cross-hairs of
the finder scope reached the horizon. Fortunately I was able to make a pretty good
guess which way North was, since I have an equatorial mount.

The second measure was that most of the sky was still clear. It was just the west
that was cloudy. The clouds here were low; and there was some higher cloud, some of
which was caused by aircraft vapor trails. At sunset, clouds often change color from
white to pink to dark blue. They are pink right at sunset, because for a few seconds,
the sun’s rays are illuminating them from below. It happens to low clouds before
high ones at any given location. I was able to watch all this, and make a second guess
about the sunset time.

Third, my satellite navigator, which at this point was in the dog house, has a
screen which switches from white to black at sunset. This gave me another measure.

Figure 2.1 shows the route I took. It was not very direct: English roads never are.
I later used three atlases to compare the distance I drove with the as-the-crow-flies

distance between family and self. Two of them gave more or less the same distance;
and one did not. Since our latitude is more or less halfway up England, my route was
either going to be at the top of the Southern England page or at the bottom of the
Northern England one. Either way, the projection was unlikely to be optimum.

The results are shown in Table 2.1.
If I used atlases to get the mileage, why did I bother to drive? For two reasons: first,

to verify the map mileage, and second, the experiment was more powerful because
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we experienced the sunsets at different times 3 h drive apart. The whole idea was to
see for ourselves how big the Earth is.
The car odometer read 131.9 miles for the journey back; and the satellite navigator

read 133.6 miles. Google Maps said I drove 133 miles. You pays your money and you
takes your choice. My route was about 18% longer than the constant-latitude
distance. From the map in Fig. 2.1, that looks reasonable.
Figure 2.2 shows how to calculate the circumference of the circle of constant

latitude along which the measurements were taken. The circumference of a circle at
latitude L is 2pR sin(L).
From the diary of events listed in Table 2.2, I concluded that the difference in

observed sunset times was 11 � 1 minutes. Since there are 24 � 60 = 1,440 min in a
day, I traveled (11 � 1)/1,440 = 0.00764 � 0.00069 of the way around the Earth.

Table 2.1. Constant-Latitude East-West Distance Between the Two Observers

Constant-Latitude
Mileages from Atlases

Measured
with Digital
Calipers (mm)

Scale Measured with
Digital Calipers Miles/mm Miles

Collins double atlas 194.3 65.25 mm = 60 km 0.571 111.02
Philips University atlas 196 50 mm = 50 km 0.621 121.79
Collins Europe atlas 178.76 30 miles = 47.17 mm 0.636 113.69

Average the two Collins results, reject the
Philips one

112.35

Fig. 2.1 The route taken.
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We know that the mean latitude of the observation points was 52.815� or 0.9218
radians. This can be checked against the angle the pole star makes to the ground in
my backyard. I approximately do this every time I polar-align.
Therefore

2pR cosð0:9218Þ ¼ 112:35

0:00764� 0:00069
;

R ¼ 112:35

2pcosð0:9218Þð0:00764� 0:00069Þ
¼ 3;873� 352miles:

ð2:1Þ

This in turn gives a circumference of

2pð3;873� 352milesÞ ¼ 24;336� 2;212miles: ð2:2Þ

I am very impressed by the astronomical data in the online encyclopedia Wiki-
pedia (http://en.wikipedia.org/wiki/Main_Page). Particularly during school vaca-
tions, Wikipedia articles are sometimes vandalized, so be a little careful.
Converting the Wikipedia values (http://en.wikipedia.org/wiki/Earth) into miles
gives a mean radius of 3,959 miles and a mean circumference of 24,881 miles.

Fig. 2.2 Showing how to calculate the radius of the circle of constant latitude L. The
radius is R sin(L). The circumference of this circle is therefore 2pR sin(L).
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Conclusion
My mean values of the Earth’s radius and circumference are a bit low (2.2%), but the
published answer is well within my error range. My error actually represents just
over 9%, with which I am not terribly satisfied.

What would I do differently? I think the first thing is that I would use sunrises.
There is an inherent problemwith sunsets, especially as far north as England. It starts
to cool down in the evening before sunset, a phenomenon much less noticeable in
my wife’s native Seattle, which is a good 5� of latitude further South, even though the
climates are somewhat similar. This in turn makes it no great surprise that clouds
often form just before sunset.

There is no analogous phenomenon before sunrises, so I would use a sunrise to
repeat the measurement. Sunrises here in June are around 4:30 A.M. Summer Time,
which means (a) I would need a very willing accomplice and (b) there would not be
much traffic to ruin my experiment.
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CHAPTER THREE

How Far Away
and How Big is
the Moon?

First Attempt
The story of this measurement is a classic example of the way in which the most
important piece of equipment owned by an astronomer is his or her wit. This was
not a planned measurement at all. I noticed something that surprised me, and
followed it up.

One night in February 2007 I happened to notice that the Moon and Saturn were
quite close together. If you know from a star chart roughly where Saturn is, you can
easily identify it with the naked eye – not by its rings which require about 30x
magnification – but by its creamy color. Like Mercury, Venus, Mars, and Jupiter, it is
bright. These planets, unlike stars, do not twinkle.

Anyway, that night, I went to visit my parents. When I left, I looked up and saw the
Moon again, but no Saturn. Puzzled, I got the telescope out and could then see
Saturn right next to the Moon. This looked so cute it just had to be photographed
with my brand new webcam.

The result was a disaster. Either the Moon was overexposed or Saturn was
invisible. To make matters worse, they moved apart a lot faster than I expected. I
went to try and find an old camera tripod to steady the webcam, which I had been
hand-holding behind the eyepiece. By the time I got back, they were almost too far
apart to see through the telescope even at minimum magnification.

Morale plummeted. Would I ever learn how to take astrophotographs?
Slowly, over the next day, it dawned on me that if I had been wider awake, I could

have taken two photos showing both objects, and measured how far the Moon had
moved; for it was the Moon that did most of the moving. It traverses the heavens
once a month as it orbits our Earth. Saturn takes 29.46 years (353 and-a-bit months)
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to orbit the sun and reappears in roughly the same place relative to the stars.
(Saturn’s motion is analyzed in Chap. 6.) It is therefore accurate to better than one
part in 350 (99.7%) to assign all the relative motion to the Moon.
I looked. . .yes, I had enough pictures to do this.
Figure 3.1 shows what I had. Esthetically they are nonstarters. But they do contain

usable information. They show the relative positions of the two celestial bodies as
seen from my backyard. Figure 3.1b contains enough information to detect the
orientation of the Moon. Figure 3.1a does not. Fortunately my bad technique saved
me! The camera used, a webcam, shoots video clips, which of course consist of
frames. Figure 3.2 shows what I got two frames earlier than Fig. 3.1a. The brightness
of the image falls off big time if the camera and telescope eyepiece are not perfectly
aligned. Because at this stage I was hand-holding the camera, the brightness was
going up and down like a yo-yo. So bad was this effect that in two frames the pictures
have gone from being exposed almost correctly for the Moon to being exposed about
right for Saturn.
So I could use Fig. 3.2 to orient Fig. 3.1a. I printed Figs. 3.1a, b, and 3.2 onto

transparent sheets of the type used for overhead projectors, overlaid them and
tacked them together with adhesive tape. I then measured the ‘‘distance’’ between
the two Saturns very carefully. Failing all else, you could do this with a ruler, but I
actually used a set of calipers, Fig. 3.3, which are accurate to 0.01 mm.
I did my sums, and got a value for the Moon’s diameter about 25% higher than

the commonly published value of 3,476 km or 2,160 miles.

Fig. 3.1. Two terrible photos, but you can see that the Moon and the Saturn have moved
apart in 38 min.
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Morale was restored. I had not wasted my time. The following month, weather
permitting, I would have a go at repeating the experiment in a more planned fashion.

By the way, I take most of my published astronomical data from the Cambridge
Planetary Handbook.12 Another good source of scientific data is Kaye & Laby’s
Tables of Physical and Chemical Constants.13 Google is also a good way to find
data, and I have mentioned Wikipedia.

Calculations Using no more than High
School Mathematics

Measuring the movement of the Moon against the heavens eliminates the effect of
the Earth’s rotation. What I really wanted was a ‘‘fixed’’ star to define the position of
the heavens. The difficulty is that the Moon is so much brighter than most stars that
you cannot see them in the telescope at the same time. This is because, unless your
telescope is much better than mine, stray moonlight reflects off the interior walls of

Fig. 3.2. Two
frames earlier than
Fig. 3.1a, this
frame shows some
features to enable
me to orient
the Moon in the
picture.

Fig. 3.3. Digital calipers.
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the telescope and eyepiece causing a ‘‘whiteout.’’ Stars are not bright enough to
outshine the stray moonlight. Planets work better because they are bright. Saturn
moves sufficiently slowly through the heavens to benchmark lunar motion.
From such photos as Fig. 3.1, you can work out the speed of the Moon’s motion in

lunar diameters per hour. By using some general knowledge and a bit of cunning,
I separately worked out the orbital speed of the moon in miles per hour. If I know
the speed in miles per hour and diameters per hour, then it is dead easy to work out
the numbers of miles per diameter.
Hold on! The number of miles per diameter is the diameter. That is what I wanted

in the first place.
At this point I have a terrible confession to make. I always do calculations in

metric units, because that is what I was brought up with. I will then happily convert
kilometers to miles, because like most native English speakers, I think in miles. It
does not matter one bit what units you use. They are all as good as one another. In
my experience, you make fewer errors if you stick to the units you know.
How did I get the Moon’s speed in miles per hour? By using a simplified version of

what Isaac Newton did.
His great contribution to our knowledge of gravity was to prove that the Moon is

kept in orbit by the same force that pulls terrestrial objects to the ground.
All the formulae relating to gravity and orbital motion that I have used can be

found in textbooks. I did not invent any of them; and since my ancestors in the 1600s
were not exactly big shots, I doubt if I would have had the necessary education to
participate in science even had I been alive. In 34 years, I have not found one I like
better than the one by Tony French. I once met him briefly. He is very friendly and
down to earth; and it shows in his book.14

According to Newton, a circular orbit around the Earth is stable when the
gravitational force on the satellite is exactly enough to provide the ‘‘centripetal’’
force required to keep pulling it to the center of the Earth as it undergoes circular
motion.
His law of gravity states that the force F attracting two point masses

F ¼ Gm1m2

r2
; ð3:1Þ

wherem1 is the mass of the first point mass;m2 is the mass of the second point mass;
r is the distance between the two point masses; and G is a constant called the
universal gravitational constant, often called ‘‘Big G.’’
Big G is the number that tells you how strong gravity is. Not how strong it is

locally, but how strong it is throughout the Solar System. The bigger it is, the
stronger gravity is. Whether it has always had the value it has today; and whether
that value is the same everywhere, is still not known. Another way of describing
Newton’s great achievement is to say that he found that throughout the then known
Solar System, Big G has the same value.
Equation (3.1) applies to point masses but the Earth andMoon are, to an excellent

approximation, spheres rather than point masses. What set Newton apart from his
contemporaries was that he found a way of dealing with this difficulty, and they did
not. He proved the remarkable fact that spheres gravitationally attract exactly as if
they were point masses located at their own centers. Newton’s proof does not require
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more than an elementary knowledge of calculus, but it is a little more difficult than
most of the mathematics presented here. It is such a fundamental result to planetary
science that I have included Newton’s proof in modern mathematical language later
in this chapter. Less mathematically confident readers may skip that section.

For now, please let me treat the Earth’s gravity as if it were generated by a point
mass at the center. Then I could calculate the weight – the force due to gravity – of an
object at ground level from (3.1) if I knew the relevant quantities.

Actually, weights are easy to measure – every household has the requisite equip-
ment. It would be more useful to use that knowledge to back-calculate some other
quantities in (3.1), which we cannot measure on the kitchen scales.

In order to apply it to a body of mass m2 on the Earth’s surface, acted on by the
Earth’s gravity, I am going to rewrite (3.1) as

F ¼ GMEm2

r2E
¼ GME

r2E
m2 ¼ gm2; ð3:2Þ

where the subscript E means ‘‘Earth’’ and body 2 is on the Earth’s surface, and

g ¼ GME

r2E
ð3:3Þ

is called the acceleration due to gravity. It is also known is ‘‘little g.’’ We know that it
is acceleration because according to Newton’s second law of motion,

Force F ¼ acceleration�mass ¼ am: ð3:4Þ
If the mass is m2, comparison of (3.2) with (3.4) gives

F ¼ gm2 ¼ am2: ð3:5Þ
Therefore little g, like a, is an acceleration. Its value is easily measured, and is well

known to be

g ¼ 9:81m s�2: ð3:6Þ
This value is good in London and Washington, DC. It is a little higher at the poles
and lower at the equator (Fig. 3.4).

We also need to know the Earth’s radius, rE. We noted the published value in
Chap. 2 to be

rE ¼ 3;959miles: ð3:7Þ
Why are we doing all these mathematical gymnastics? In the short term, our
objective is to avoid having to measure either Big G or ME. G is hard to measure
because the gravitational attraction between lumps of stuff in a lab is incredibly
weak. To know the Earth’s mass, we need to know all sorts of information about how
dense it is 1,5363=4 miles below the surface, which we would rather not have to worry
about or we would be here forever. Indeed, the only realistic way to measure the
Earth’s mass is to measure G in a laboratory and use (3.2).

I am now going to rearrange (3.3) and substitute the result of (3.7) for the Earth’s
radius rE. I then find that

GME ¼ gr2E ¼ 9:81� ð6:373� 106Þ2 ¼ 3:984� 1014 m3 s�2: ð3:8Þ
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This may have been a struggle, but we have used our brains here to save our brawn,
because we have worked out the value of Big G times ME without having to know
either of these difficult-to-measure quantities.
This completes the extraction of information from ground-level gravity.
I am now going to go back up to the Moon, so to speak, and use my ground-level

information to help me work out what is happening with the Moon’s orbit.
In order to do this, I am going to make a simplification. As Kepler taught us back

in the early 1600s, orbits are really ellipses not circles.
A circle is a special case of an ellipse, where the major and minor axes are equal

(Fig. 3.5). For those interested, the most readable book I have ever found about
ellipses is the one by Thomas,15 which I stole from my wife. One measure of the
deviation of an ellipse from circularity is its eccentricity, defined by

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� minor axis

major axis

� �2
s

: ð3:9Þ

Fig. 3.4. Most adults from developed countries have now traveled enough to know that
the Earth is round, even if we did not experience the wonderful views seen by the Apollo
astronauts. Notice how tiny all the nonspherical effects are. The continents do not look
higher than the oceans. They could almost have been painted on. There are mountainous
regions not covered by cloud in Antarctica and Saudi Arabia. These do not look raised.
The Earth does not look any flatter at the South Pole.
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When the minor axis and major axis are equal, e = 0. For the Moon’s orbit, e =
0.0549.2 Back substituting into (3.9) gives

e ¼ 0:0549 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� minor axis

major axis

� �2
s

;

;
minor axis

major axis
¼ 0:998:

ð3:10Þ

In other words, the major and minor axes of the Moon’s orbits are the same to
within 0.2%. We therefore treat the Moon’s orbit as circular.

The centripetal force pulling a body into circular motion is given by

FCIRC ¼ mmoonv
2
moon

rorbit
; ð3:11Þ

Wheremmoon is the mass of the Moon, vMoon is the velocity of the Moon as it travels
in its orbit, and rorbit is the distance from the earth’s center to the Moon’s center.
French’s book gives a noncalculus derivation of this formula, which takes a page. (I
have another book which uses calculus and gets there in three lines. That is why it is
worth learning calculus.)

The time taken for a complete orbit Torbit is the time taken to complete one
circumference. Since speed � time = distance,

vmoonTorbit ¼ 2prorbit;

; vmoon ¼ 2prorbit
Torbit

;
ð3:12Þ

since circumference = 2p � radius. Substituting (3.12) for vmoon into (3.11) gives

FCIRC ¼ mmoon4p2r2orbit
rorbitT

2
orbit

¼ 4p2mmoonrorbit

T 2
orbit:

ð3:13Þ

Minor Axis

Major Axis

Fig. 3.5. A circle can be thought of as an ellipse whose major and minor axes are
equal.
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As we have stated, what we need to do is to equate FCIRC to the gravitational force
exerted by the Earth on the Moon, i.e., the weight of the Moon. Using (3.1),

FGRAV ¼ GMEmmoon

r2orbit
¼ FCIRC ¼ 4p2mmoonrorbit

T 2
orbit

: 3:14

We can cancel the mass of the Moon out of (3.14) and do a little bit of algebra:

GMEmmoon

r2orbit
¼ 4p2mmoonrorbit

T 2
orbit

;
GME

r2orbit
¼ 4p2rorbit

T 2
orbit

;GMET
2
orbit ¼ 4p2r3orbit

;
GMET

2
orbit

4p2
¼ r3orbit

;rorbit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMET

2
orbit

4p2
3

r

: ð3:15Þ

We already know the value of GME from (3.8). Therefore if we know Torbit, we know
rorbit. The time taken for one lunar orbit is of course 1 month.
Well, almost. There is a slight subtlety. Figure 3.6 shows that the orbital period is

slightly less than the time from New Moon to New Moon (or Full Moon to Full
Moon). Due more to good luck than good judgment, I was treated to a dramatic
confirmation of this when I repeated the experiment the following month. I was
blessed with clear weather when the Moon next passed Saturn. On 3 February 2007,
when Figs. 3.1 and 3.2 were shot, the Moon was about 17 h past full. In the early
hours of March 2 2007, when the next close encounter with Saturn occurred, it was
not quite full. This was very dramatically proved around midnight of 3–4 March
2007, two nights later, because there was a total lunar eclipse, which means that the
Moon must have been full then, not on 2 March. (All times are Greenwich Mean
Times.)
An additional subtlety, which we have neglected, is that the Earth and the Moon

actually orbit around their common center of mass.
Using Saturn as a benchmark, I found Torbit to be about 27.1 days, from 3min past

midnight on 3 February to 02:31 on 2 March. The published value is 27.322 days or
2.3606� 106 s; the discrepancy between the measured value and the published value
is about 0.8%.
We are now in a position to work out rorbit. From (3.8) and (3.15), using the

measured lunar orbital time of 27.1 days,

rorbit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMET

2
orbit

4p2
3

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:984� 1014 m3 s�2 � ð27:1� 24� 3;600 sÞ2

4p2
3

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:1842� 1027 m3

39:478

3

r
¼ 3:810� 108 m: ð3:16Þ

This is my distance to the Moon. As a sanity check, (3.16) can again be compared
against published values. The half-major axis is published16 to be 3.844 � 108 m.
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From (3.10), this implies a half-minor axis of 3.836 � 108 m. The discrepancy
between the average of these and my result, (3.16), is about 0.8%.

Thus, I have a very good answer to the first of the two questions posed by the
chapter title. Let us move on to the second question.

Advanced Topic: A Sphere Attracts
Like a Point Mass

In this section, I carry out my threat to give Newton’s proof that a sphere gravita-
tionally attracts like a point mass. You will need some elementary calculus to follow
this, but nothing advanced. I am using the lowest-tech proof I know of. If you do not
want to read this now, you can skip to the next section without loss of continuity.

Orbit of Centre-of-Mass of

Orbit of     about Centre-of-Mass

and

and

Moon (  )

Sun

B

A

C

of and
Orbit of   about Centre-of-Mass

Earth (   )
of

Fig. 3.6. Exactly what is the time taken to complete one orbit? New Moons occur at A
and C. This is because the Moon is in the same direction as the Sun when viewed from the
Earth. In the meantime, the Earth has moved about one-twelfth of the way around the Sun.
(This movement is exaggerated in the figure for clarity.) By the time it is at C, the Moon has
completed more then one orbit since it was at A. It completed this orbit at B. Therefore the
orbital period is slightly less than the New-Moon-to-New-Moon time.
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You break the sphere down into manageable chunks and analyze their gravita-
tional attraction. First, suppose that the planet is perfectly spherical: this is out by
about 0.33% for the Earth,17 so it is a good enough approximation. Now imagine a
thin sphere within our planet like the one in Fig. 3.7, which is centered on the center
of the planet.
I actually want you to imagine that this sphere-within-a-sphere is infinitesimally

thin. Suppose that our planet has radius RP, and that the internal sphere has radius R.
What we are going to do is to work out the gravitational attraction of this sphere

on a point mass m outside the planet. I agree that ‘‘point mass’’ is an oxymoron, but
we will see that this does not matter. Figure 3.8 shows how the sphere-within-a-
sphere is further broken down into infinitesimally thin rings.
Let each element of the ring shown in Fig. 3.8 be at a distance l from the point

mass m. Suppose further that our sphere has uniform density r. By elementary
geometry, the volume of the ring is

V ring ¼ ðcircumferenceÞðheightÞðthicknessÞ ¼ ð2pR sinðyÞÞðR dyÞðdRÞ: ð3:17Þ
Hence the mass of the ring is

mring ¼ ð2pR sinðyÞÞðR dyÞðdRÞr ¼ 2prR2sinðyÞdy dR: ð3:18Þ
It is easier to re-express this mass as a fraction of the mass of the shell, which I will
call dM.

dM ¼ 4prR2dR; ð3:19Þ
since the surface area of the shell is 4pR2, and its thickness is dR. Now,

mring ¼ 2prR2sinðyÞdy dR ¼ 1

2
dM sinðyÞdy: ð3:20Þ

Fig. 3.7. Imagine a
thin sphere of material
within our planet,
centered on the
planet’s center.
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The force this ring exerts on the point mass is therefore, by Newton’s law of gravity
(1.16),

dF ¼ �Gmmring

l2
¼ �Gm dM sinðyÞdy

2l2
: ð3:21Þ

The minus sign indicates that m is being pulled toward the planet.
There is actually an error in (3.21). Some of the forces I counted in (3.21) cancel

out. All those components that act perpendicular to the line from the planet’s center
to the point mass m cancel. The parts that do not cancel are those from each point
on the ring that act parallel to the line from the planet’s center tom. Equation (3.21)
should therefore read

dF ¼ Gm dM sinðyÞdy
2l2

cosð’Þ: ð3:22Þ

To get the gravitational force due to the whole thin shell shown in Fig. 3.7, we need
to integrate (3.22) over all values of y. This is not quite as easy as it looks because l
and ’ also depend on y.

I need to do a little bit of geometry to simplify (3.22). I use the cosine rule (A.44)
to do this. I need to apply this rule twice. The first time I get

cosðyÞ ¼ r2 þ R2 � l2

2rR
; ð3:23Þ

and the second time I get

cosðfÞ ¼ r2 þ l2 � R2

2rl
: ð3:24Þ

m

j
J

l

dJ

R

r

Fig. 3.8. Our
internal shell of matter
acts gravitationally on
a point mass m at a
distance r from the
center of the planet.
For analysis, the shell is
to be further divided
into infinitesimally thin
rings, each of whose
centers is coincident
with the line from the
planet’s center to the
point mass m. Each of
the also rings lies in a
plane normal to the line
from the planet’s center
to the point mass m.
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From (3.23)

d cosðyÞ
dl

¼ d cosðyÞ
dy

dy
dl

¼ �2l

2rR
¼ �l

rR

; sinðyÞdy ¼ l dl

rR
; ð3:25Þ

dF ¼ Gm dM sinðyÞdy
2l2Rr

cosðyÞ

¼ Gm dM sinðyÞdy
2l2Rr

r2 þ l2 � R2

2rl

� �

¼ Gm dM l dl

2l2Rr

r2 þ l2 � R2

2rl

� �

¼ Gm dM dl

4r2R

r2 þ l2 � R2

l2

� �

¼ Gm dM dl

4r2R
1þ r2 � R2

l2

� �
:

ð3:26Þ

F ¼
ZrþR

r�R

dl ðdFÞ

¼
ZrþR

r�R

dl
Gm dM

4r2R

� �
1þ r2 � R2

l2

� �

¼ Gm dM

4r2R

� � ZrþR

r�R

dl 1þ r2 � R2

l2

� �

¼ Gm dM

4r2R

ZrþR

r�R

dl þ
ZrþR

r�R

dl
r2 � R2

l2

� �8<
:

9=
;

¼ Gm dM

4r2R
l½ �rþR
r�Rþ �ðr2 � R2Þ

l

� �rþR

r�R

( )

¼ Gm dM

4r2R
fr þ R � r þ Rg þ � ðr þ RÞðr � RÞ

l

� �rþR

r�R

( )

¼ Gm dM

4r2R
2R � ðr þ RÞðr � RÞ

ðr þ RÞ � ðr þ RÞðr � RÞ
ðr � RÞ

� �� �

¼ Gm dM

4r2R
f2R � ½ðr � RÞ � ðr þ RÞ�g

¼ Gm dM

4r2R
f2R � ½�2R�g

¼ Gm dM

r2
:

ð3:27Þ
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So, after a few pages of calculation, we see that the gravitational attraction of the shell
is the same as that of a point mass dM acting at its center. It does not depend on the
value of R. Isn’t that amazing?

We still do not have the gravitational attraction of the whole planet on m. Now, I
want to point out something else remarkable. If we imagine a second concentric
shell, with a different radius, and with a density fr, where f is a factor which may or
may not equal one, we have just proved that it too will attract m as if it were a point
mass at the planet’s center. Therefore, the shells do not have to have the same density.
Each shell has to have a constant density, but the shells themselves can vary in
density. This is an important result, because we hear that the earth has an iron core,
and iron is much denser than the rocks and soil we see at ground level.

Strictly speaking, F is still an infinitesimal force, which we need to integrate from
the planet’s center to its surface to get the total force. The answer is

FP ¼ Gm

r2

ZRP

0

dM

¼ Gm

r2

ZRP

0

4pR2rðRÞdR

¼ GmMP

r2
;

ð3:28Þ

where FP is the gravitational force due to the whole planet, andMP is the mass of the
planet, obtained by integrating over the shells at each radius R, each of which has
volume 4pR2dR and density r(R). r(R)can depend or R but not on any angle.

The small massm does not have to be a point mass either. It too can have spherical
symmetry about its center; and it can even be large. The theorem we have just used
still holds, so long as both bodies are spherically symmetric about their centers.

Ok, you object, what about the oceans? They are not as dense as the seabed or it
would float! Does not that ruin the spherical symmetry of the Earth? Good question.
I think the answer is that they are, on a global scale, very shallow. Their average depth
is only a couple of miles.18

Second Experiment
To get a better estimate of the size of the Moon, I carried out my threat to repeat the
experiment of 3 February.

There was actually an ‘‘occultation’’ of Saturn on 2 March 2007. This means that,
from my location, the Moon passed right in front of Saturn. This did not make too
much difference to the quality of my measurement, but it was fun to watch.

The first thing I did different was to take lots of photos. Remembering my earlier
experience, I exposed the photos in pairs, one to catch Saturn, one for the features
on the Moon. This turned out not to be necessary, but this did not matter: I was not
taking any chances. As Fig. 3.9 shows, I was able to use a pair of mountains along the
terminator to orient the Moon.
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The sequence of pictures I shot is shown in Fig. 3.10.
I could have used the same method as before: to overlay transparent images to

measure the movement of Saturn relative to the Moon. This would have been
cumbersome. Necessity became the mother of invention, and I tried a new idea.
CAD (Computer Aided Drafting) software is normally used for producing engi-

neering drawings. I used a package called TurboCADTM (http://www.turbocad.
com). I used the professional version from work, but I am sure the entry level
version would have done. Indeed, there is plenty of free CAD software available. I
have tried Alibre ExpressTM (http://www.alibre.com/xpress/?source = LTFRB2006).
It can do what is required here, and is free.
I imported the photos from Fig. 3.10 into TurboCAD, and then used the features

common to CAD systems to overlay circles and lines. Three points uniquely define a
circle. Most CAD systems enable you to draw the circle that passes through three
points. By choosing points on the edge of the Moon (but not on the terminator), I
produced circles which coincided with the Moon. The CAD software can start a line
from the exact center of this circle. This I did, and ended the line at the middle of
Saturn, as accurately as I could estimate it. The zoom facility in the CAD system
enabled me to place the line in the center of the brightest pixel in the middle of the
image of Saturn. The CAD software enables you to measure the length of this line,
and the diameter of the circle very accurately. (I chose three significant figures.) I
then put another line from the center of my circle to the top of the benchmark
mountain, which I was using to orient the Moon. Again, the CAD software told me
the angle this line made with the line to Saturn to my chosen accuracy, 0.01�. On
each photo in the sequence, I repeated this procedure three times, to give me a
handle on the level of error I was making when guessing positions of things.
An example of this process is shown in Fig. 3.11.
Now I had a sequence of angles and distances from the center of the Moon to

Saturn. I turned these into distances in x and y coordinates, using the line from the
Moon’s center to the reference mountain as my x-axis. These are plotted in Fig. 3.12.

Fig. 3.9. Photo of
the Moon and Saturn
taken on 2nd March
2007 at 01:22
GMT. The Moon
was not quite full.
Mountains could be
seen along the ‘‘ter-
minator’’, the line of
sunrise. Two of these
were big enough to
enable accurate
orientation of the
Moon in the
pictures.
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Fig. 3.10.
Sequence of pictures
of the Moon and the
Saturn. The white
arrows indicate the
position of the
orientation feature.
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Fig. 3.11. Example of measurements made using the CAD software. It can be seen that
there is a little bit of scatter in the data. In this case I found Moon diameters of 1.40, 1.42,
and 1.43 in.; Moon-to-Saturn distances of 3.77, 3.77, and 3.79 in., and angles relative
to the reference mountain of 27.10�, 27.46�, and 27.80�.
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Fig. 3.12. Graph showing the position of the Saturn relative to the Moon at various
times. The distance units are Lunar radii, as measured per the process shown in
Fig. 3.11.
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Extracting the Moon’s Speed in Radii per
Second Using only High School Mathematics

Unfortunately, the information presented in Fig. 3.12 is not in a very useful form.
What we really need is to find the direction in which the Moon and Saturn travel
toward each other. The information is there: it needs to be extracted.

I will do this in a way that minimizes the amount of mathematics needed. For the
first step, a little trigonometry is unavoidable. The positions of Saturn relative to the
center the Moon in Fig. 3.12 have to be re-expressed as x and y coordinates. The x-
axis will be the line from the Moon’s center to my reference mountain. Of course, it
is best to do the analysis in a spreadsheet package like Microsoft ExcelTM or Open-
Office.org CalcTM. The formulae to convert each data point are

xi ¼ ri cos
p’i

180

	 

;

yi ¼ ri sin
p’i

180

	 

;

ð3:29Þ

where ’ is the Greek letter phi and the subscript i refers to the ith measurement. The
factor p/180 is to convert the units of the angle from degrees to radians. Most
spreadsheets require this. Everyone knows what degrees are: they are what you get
when you divide a complete circle into 360 equal angles. Radians are merely another
unit. There are 2p radians in a circle. This is not a whole number, but who cares?
Anyway, the conversion factor is

1� ¼ 2p
360

radians ¼ p
180

radians: ð3:30Þ

Next, we get Microsoft Excel 2003 and our CAD system to do the mathematics
for us.

In Fig. 3.13, I have added a ‘‘trendline’’ to those points which were measured
between 900 and 3,060 s after the start of the experiment. I rejected the others
because I could not reproducibly guess where the Moon’s surface was on the photos.
To add a trendline in Excel 2003, click with your secondary mouse button (the one
under your third finger) with the cursor over blank white area, and it will appear in
the menu as an option.

Incidentally, I did not say ‘‘right click’’ because I am in the left-handed 10% of the
population, and have my mouse buttons set the opposite way to most people.

I have finished with Excel for now. I made a screen dump of the graph in Fig. 3.13,
and saved it in a form that I can download into TurboCAD. I actually installed one of
the many free PDF creators that you can get, and ‘‘printed’’ the graph to a pdf file,
from which I copied and pasted the graph into TurboCAD. You can also save the
graph as a jpeg or a png using one of the picture editor programs, and then insert it
into the CAD package.

First, I stretched the graph vertically until the x and y scales were the same. Having
one lunar radius equal to 2.097 in. one way and 2.109 in. the other way is close
enough for our purposes. The average is one lunar radius = 2.103 in. The inches are
relative to the CAD software’s internal scale.
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Next, I drew a straight line over the trendline fitted by Excel, and extended it to
beyond the left-hand end of the graph. It is shown in Fig. 3.14. I drew another line
along the grid line at y = 1 lunar radius, which intersects the line I just drew. The
CAD software then tells me that the angle between these two lines is 6.58�.
Next comes the slightly clever bit. All the relative motion of the Moon is along this

line at 6.58� to the horizontal. Between 900 and 3,060 s, the relative motion is from
one end of the trendline to the other. This is a distance of 2.33 in. Since we know that
one lunar radius is 2.103 in., we can use the well-known formula that speed is
distance divided by time to give

Speed ¼ ð2:33=2:103Þ
3;060� 900ð Þ ¼

1:1079

2;160
¼ 5:13� 10�4 lunar radii s�1; ð3:31Þ

where in the usual way, s�1 means ‘‘per second.’’

Extracting the Moon’s Speed in Radii per
Second Using Some College Mathematics

If you know a little more mathematics, you can obtain the result of (3.31) with a
little more knowledge of what you have done.
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Fig. 3.13. The data shown in Fig. 3.12 re-expressed as distance from the Moon to the
Saturn in xy coordinates.

Measure Solar System Objects and Their Movements for Yourself!46



First, you can use linear regression formulae for yourself to fit a line through the
data points in Fig. 3.14. Linear regression is described and derived in the updated
edition of Spiegel’s book on statistics19; and a justification for using least-squares fit
is given in the Statistical Appendix.

A straight line is fitted through n points (xi, yi), namely

y ¼ a þ bx; ð3:32Þ
where a and b are fitted constants.

I will now show you how values for a and b in (3.32) can be worked out. I am
going to use the principle of least squares. First, the fitted value yf of y at x = xi is

yf ¼ a þ bxi: ð3:33Þ
Therefore the difference between the fitted and measured values of y at the ith data
point is

yf � yi ¼ a þ bxi � yi: ð3:34Þ
Minimizing these differences is desirable. The trouble is that some will be positive
and some negative. This messes up the minimization exercise. Let us use a bit of
cunning: the quickest way to get a set of numbers that are all positive, but represent
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Fig. 3.14. The graph of Fig. 3.13 after processing it in TurboCAD.
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the differences between fitted and measured values, is simply to square the little
sons-of-bitches. When you do this, you find that (3.34) gives you

ðyf � yiÞ2 ¼ ða þ bxi � yiÞ2: ð3:35Þ
If we add all the terms in (3.35), we get

Xn
i¼1

ðyf � yiÞ2 ¼
Xn
i¼1

ða þ bxi � yiÞ2: ð3:36Þ

The left-hand side of (3.36) is the sum of the squares of the differences between the
fitted and the measured values of y at each of the i points. Minimizing the sum of the
squares of the differences gives a good fit to (3.34).
There is one assumption which I have made but not told you about. I have

assumed that the error in the values of x is much less than that in the values of y.
In this case, there is no reason to believe that we know the xi any better or any worse
than they yi. I ask you to hold this thought for a while, and permit me to deal with it
later.
Meanwhile, please do not worry too much about the details of the following

calculation: an overview of the principles is all you will need.
Equation (3.36) is a minimum with respect to a when

@

@a

Xn
i¼1

ðyf � yiÞ2 ¼ @

@a

Xn
i¼1

ða þ bxi � yiÞ2

¼
Xn
i¼1

2ða þ bxi � yiÞ ¼ 0:

ð3:37Þ

Similarly, (3.36) is minimum with respect to b when

@

@b

Xn
i¼1

ðyf � yiÞ2 ¼ @

@b

Xn
i¼1

ða þ bxi � yiÞ2

¼
Xn
i¼1

2xiða þ bxi � yiÞ ¼ 0:

ð3:38Þ

Many textbooks, such as Spiegel’s, lay out the mathematical manipulation to solve
(3.37) and (3.38). The solutions for a and b are

a ¼
Pn
i¼1

x2i

� � Pn
i¼1

yi

� �� �
� Pn

i¼1

xiyi

� � Pn
i¼1

xi

� �� �

n
Pn
i¼1

x2i

� �� �
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i¼1

xi

� �2
" # ;

b ¼
n

Pn
i¼1

xiyi

� �� �
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i¼1
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� � Pn
i¼1

xi

� �� �

n
Pn
i¼1

x2i

� �� �
� Pn

i¼1

xi

� �2
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ð3:39Þ
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The key point is that the fitted line, (3.33), only allows for errors in the yi, not the xi.
it is possible to derive a line-fitting formula that treats errors in the yi and xi equally.
The conceptual method is the same, but the mathematical manipulation is lengthy.
A quick and dirty way to estimate the effect is to see if we obtain the same answer
when the axes are reversed.

You can either do this using (3.39) with x and y the original way round, then with
them reversed; or you can repeat the CADmethod described in the previous section.

Wait a minute. . .reversing x and y is not bright. It is smarter to rotate the
coordinates by 90� to avoid making a mirror-image coordinate system.

I rotated the coordinates clockwise by 90�. The usual convention in coordinate
geometry is that clockwise angles are negative, and anticlockwise ones are positive. I
therefore subtracted 90� from every angle I had measured. My new y-axis points to
the reference mountain, e.g., in Fig. 3.9 and my new x-axis points downward at right
angles to it.

In this coordinate system, I repeated the method described in the previous
section, and obtained the result as shown in Fig. 3.15.

From Fig. 3.15 I find a travel of 1.095 lunar radii. Comparison with the value,
which I found before, in (3.31), shows that

Speed ¼ 1:095

2;160
¼ 5:07� 10�4 lunar radii s�1: ð3:40Þ

This is not the same value that I obtained before. Then, in (3.31) I obtained a value
of 5.13 � 10�4 lunar radii s�1. I propose to average the two values, to obtain a value

Speed ¼ 5:07� 10�4 þ 5:13� 10�4

2

¼ 5:10� 10�4 lunar radii s�1

¼ 2:55� 10�4 lunar diameter s�1:

ð3:41Þ

Please note in passing that the approximate error introduced at this point can be
worked out by comparing 5.13 � 10�4 lunar radii s�1 and 5.10 � 10�4 lunar radii
s�1. The ratio of these two is 1.006, suggesting an error of 0.6%.

How to Create Axes Parallel to Lunar Motion
Mathematically

If, like my wife, you do not enjoy playing around with CAD systems, but do enjoy
doing calculations, here is a way to find coordinate axis parallel to the direction of
motion.

Having fit a line

y ¼ ax þ b;

per (3.32), through the data in Figs. 3.14 or 3.15, using the method above, you note
that the gradient of the line in (3.32) is a. It makes an angle arctan(a) with the x-axis.
Let us call the new x-axis x 0 and the new y-axis y 0.
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Then for the ith point

x 0
i ¼ xi cosð arctanðaÞÞ þ yi sinð arctanðaÞÞ and

y 0
i ¼ �xi sinð arctanðaÞÞ þ yi cosð arctanðaÞÞ;

ð3:42Þ

where the term ‘‘arctan’’ means ‘‘angle whose tangent is.’’ ‘‘Arctan(a)’’ is sometimes
written ‘‘tan�1(a).’’
These well-known formulae are derived in elementary texts on calculus such as

that by Richard Courant.20

y vs. x in chosen co-ordinates
where y  axis is from centre of Moon

through reference mountain
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Fig. 3.15. Reversal of coordinates gives the following curve fit. 5.77 in. is the amount
of relative movement from the first to the last point, over an interval from t = 900 s to t =
3,060 s, along an axis parallel to the direction of motion. Since the average of 4.21 and
4.22 in. corresponds to 0.8 lunar radii, my fitting exercise leads me to calculate a relative
travel of 1.095 lunar radii.
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Back to the Diameter Calculation: College
Mathematics no Longer Required

Way back at (3.12) there was an expression for orbital speed:

vmoon ¼ 2prorbit
Torbit

¼ 2p� 3:810� 108 m

27:1� 24� 3;600 s

¼ 1:0225� 103 m s�1;

ð3:43Þ

where I have used the observed value of 27.1 days for Torbit and (3.16) for rorbit.
Comparison of (3.41) and (3.43) gives

2:55� 10�4 diameters s�1 ¼ 1:0225� 103 m s�1

;2:55� 10�4 diameters ¼ 1:0225� 103 m

;1 diameter ¼ 1:0225� 103

2:55� 10�4 m
¼ 4:010� 106 m

¼ 4:01� 103 km ¼ 2:47� 103 miles:

ð3:44Þ

How does this compare to published values? The equatorial diameter is 3,476 km or
3.476 � 103 km.

Measured diameter

Published diameter
¼ 4:01� 103 km

3:476� 103 km
¼ 1:154 � 1:15: ð3:45Þ

Another way to express (3.45) is to say that the measured value is about 15% above
the published value.

Well, there is no use denying the discrepancy. Instead, I am going to work
my way through the method I used, and winkle out the simplifications and
approximations.

Discussion of Quality of Results

Random Errors (Scatter) in Data of Figs. 3.14
and 3.15

The error in the line fitting formula is too tiny to worry about, being about 2.5 �
10�6%. Interested readers can find out how I calculated this from a statistics book by
Box, Hunter, and Hunter.21
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The Moon’s Orbit is Really Elliptical

This actually turns out to be the biggest single source of error. While it is true, (3.10),
that the orbital ellipse is very nearly circular, the Earth–Moon center of mass does
not orbit around the center, but around one focus as Kepler discovered all those
centuries ago. The distances from the focus to the nearest and furthest points in the
orbit are

d pericenter ¼ að1� eÞ ¼ að1� 0:0549Þ ¼ 0:9451a;

d apocenter ¼ að1þ eÞ ¼ að1þ 0:0549Þ ¼ 1:0549a;

;
d apocenter

d pericenter

¼ 1:116:

ð3:46Þ

In (3.46), a is half the major axis. In other words, the distance to the Moon, rorbit, has
an uncertainty of �6%, taking 11.6% to be approximately 12%.

The Telescope is not at Earth’s Center

The Earth’s radius was taken to be rE = 3,963 km = 3.963 � 106 m. The distance to
the Moon, rorbit, was worked out to be 3.810 � 108 m (3.15). The ratio of these two
numbers

rE

rorbit
¼ 3:963� 106

3:810� 108
¼ 1:04� 10�2 � 1%: ð3:47Þ

This is roughly the error introduced. A full calculation, involving the tilt of the
Earth’s axis, the plane of the Moon’s orbit, the time, etc., would be more complex.
The effort would not justify the extra precision. This error is of the order of 1%.

The Earth–Moon Center of Mass is not
at the Center of the Earth

Using the usual formula for center of mass

�z ¼ zEmE þ zmoonmmoon

mE þmmoon

; ð3:48Þ

where z is the distance along the line from the Earth to the Moon, and figures for the
masses of the Earth and the Moon, I deduce that the center of mass of this system
must be roughly 4.6 � 106 m from the Earth’s center. (There is a slight technical
point here. Where should you choose your zero point along the z-axis? It actually
does not matter. Whatever point you choose, you get the same answer. So choose a
convenient point such as the earth’s center. zE is then zero.)
As a fraction of rorbit, this is

�z

rorbit
¼ 4:6� 106

3:810� 108
¼ 1:2� 10�2 � 1%: ð3:49Þ

Measure Solar System Objects and Their Movements for Yourself!52



Whiteout due to Photographic Overexposure
Makes Moon’s Surface Uncertain

In particular, the location of the surface is uncertain. Values of the Moon’s diameter
are compared in two photographs in Fig. 3.16. In one case, the Moon has to be
overexposed or Saturn is invisible. The other photograph the Moon is correctly
exposed. The apparent lunar diameter is larger when it is overexposed.

The uncertainty is compounded by the fact that in neither the upper nor the lower
picture in Fig. 3.16 is the edge of the Moon unambiguously defined. Figure 3.17

Fig. 3.16. Two photographs taken 1 minute apart. The upper photograph is correctly
exposed for the Moon. In the lower photograph, the Moon is overexposed to make the
Saturn visible. It can be seen that the apparent diameter of the Moon is larger when it is
overexposed.
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shows a close-up of the Moon’s surface in the nonoverexposed photograph. In this
case the surface is diffuse, forcing me to guess where it actually is. The reason for this
is probably poor focusing on my part. The method chosen was to use the CAD
system to fit circles through three points. The diameters of these circles were then
read off.
Figure 3.18 shows a close-up of the Moon’s surface in the lower photograph of Fig.

3.16. The surface is much less diffuse in Fig. 3.18 than in Fig. 3.17. The limitation on
knowing its position is the size of the pixels.
I estimated the error as follows. The scatter in values of lunar diameter in the

nonoverexposed picture in Fig. 3.16 is �0.01 in 2.01 or �0.5%. The corresponding
figure for the scatter in values of lunar diameter in the overexposed image in
Fig. 3.16 is �0.03 in 2.04 or approximately �1.5%. Finally, the ratio of medians of
overexposed to nonoverexposed diameters is 2.04/2.01 = 1.015. The overestimate is
thus 1.5%.

Fig. 3.17.
Closeup from the
photograph in Fig.
3.16 in which the
Moon is correctly ex-
posed. It can be seen
that the Moon’s sur-
face is diffuse, forc-
ing us to estimate
where it is.

Fig. 3.18.
Closeup from the
photograph in Fig.
3.16 in which the
Moon is overex-
posed. The surface is
now sharp. The limi-
tation on resolving it
is the pixel size.
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Variation of Earth’s Radius and Gravitational
Acceleration

The gravitational acceleration little g varies by about 0.5% from Equator to Poles,
according to the International Union of Geodesy and Geophysics (http://www.iugg.
org). The variation in the earth’s radius is about 0.3% according to French. It is
partially double-counting to claim these as separate uncertainties, because part of
the reason for the weaker gravity at the equator is that the Earth bulges slightly. The
remaining difference is due to the centrifugal effect. We therefore expect a 0.5%
error.

Combination of Uncertainties

You can usually get one over on your friends by asking them if they know the
difference between accuracy and precision. Not many people know. Figure 3.19
shows the difference. Most of the errors discussed above are errors of accuracy.
The only exception is the scatter in the two measured lunar diameters. While there
are formulae for dealing with the combination of errors of precision, these do not
apply to systematic errors of accuracy. Strictly speaking, since the theories underly-
ing the systematic errors such as the noncircularity of the Moon’s orbit are well
understood, we should be able to calculate the error introduced.

Such an approach is too complex to fall within the scope of this chapter. Instead, I
rather cheekily add the percentage estimates of error to give

Fig. 3.19. Showing
the difference between
accuracy and
precision. High
precision implies high
reproducibility. High
accuracy implies high
‘‘correctness’’ or
conformity to some
accepted true value. In
real research
situations, we often
only know the
precision.
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ErrorTotal ¼ ErrorEllipticity þ Errorcenter-to-surface þ Errorcenter-of-mass

þ ErrorVariable g þ ErrorLunar Diameter þ ErrorLine Fitting

¼ 6%þ 1%þ 1%þ 0:5%þ ð0:5%þ 1:5%þ 1:5%Þ þ 0:6%

¼ 12:6%:

ð3:50Þ
Substitution of this error into (3.44) gives

Lunar Diameter ¼ 4:01� 103 km� 12:6%

¼ ð4:1� 0:5Þ � 103 km

¼ ð2:5� 0:3Þ � 103 miles:

ð3:51Þ

The range covered by (3.51) lies 15 � 12.6% above the published value. There is still
a discrepancy. It is therefore not sensible to report the result to a higher number of
significant figures.
I am afraid cannot explain the discrepancy away. Furthermore, I am not losing any

sleep about it. Too many people tell their story as if everything works smoothly all
the time. In my backyard, the telescope goes out of alignment; the computer ‘‘freezes
up’’ and stops capturing webcam images just when the sky clears; and I trip over
everything in the dark. A certain amount of failure and imperfection is part of the
game. If you expect your Solar System projects to work perfectly every time, you will
be disappointed, and end up throwing your kit into a dark corner of your garage,
only to re-emerge next time you move house. Getting within 15% � 13% is a cause
for celebration, not misery. After all, Hubble’s great achievement in proving that
Andromeda is a separate galaxy was based on a measurement that was over 100%
out.22 My nonastronomer friends are amazed when I tell them I worked out roughly
the size of the Moon without leaving home.
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CHAPTER FOUR

Jupiter’s Moons:
Where You Can
Watch Gravity Do

Its Thing

Why the Jovian System is a Good
‘Gravity Laboratory’
Most of the gravitationally driven phenomena in the Solar System are slow. The
Moon takes a month to go through its phases; the planets take anywhere from
3 months to 164 years to complete an orbit; and the known Kuiper Belt objects take
anywhere from about 250 to over 11,000 years to complete an orbit. You sure cannot
see them do much in a night’s observing.

Not so the Galilean Moons of Jupiter. With binoculars you can see that they are in
very different positions every night. With a telescope and a webcam, you can detect
movement of the inner moons in 20 min. Eclipses occur more than once every
2 days, although not necessarily at night from a given position on Earth. Over an
evening you can often watch the paths of a pair of moons cross. The one that was
nearer to Jupiter ends up being the further.

Some of the Saturn’s moons are also fast movers, but they are twice as far away and
therefore much harder to see. They are at the limit of what I can photograph with my
8 in. telescope. The Galilean Moons of Jupiter are much easier to observe.

The names of the moons, in order of distance from Jupiter, are Io, Europa,
Ganymede, and Callisto.

The Galilean Moons are thus a wonderful ‘‘laboratory’’ in which to see whether
Newton’s laws of gravity and motion are obeyed. In this chapter, I will show you how
you can demonstrate that the Galilean Moons’ orbits are very nearly circular and
that their orbits are indeed governed by Newtonian mechanics.

J.D. Clark, Measure Solar System Objects and Their Movements for Yourself!,
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I will also show you the amazing fact that the innermost three have orbital periods
in the ratio of 1:2:4. To within experimental error, this ratio is exact. In other words,
for every orbit Ganymede makes, Europa makes exactly two orbits and Io makes
exactly four.
We will barely have scratched the surface of what amateur astronomers could do

to study this system of Moons. I will suggest some other measurements that you
could make.

My Equipment
I used my 8 in. Newtonian reflector with the webcam of the moment, a Philips
SPC900NCTM.
I hesitate to recommend a webcam because it may well be obsolete by tomorrow

afternoon, but this particular one has served me well. It is only suitable for the Moon
and planets, but I knew that when I bought it. Almost any laptop computer is
suitable. I do not use the video capture software that came with the camera. It
produces ‘‘.mov’’ files, which at the time of reading cannot be read by the stacking
software I use, RegistaxTM. Translating these to ‘‘.avi’’ files reduces the quality.
Registax can be downloaded for free from http://www.astronomie.be/registax/.
For video capture I use a package called K3CCD ToolsTM. This can be downloaded

from http://www.pk3.org/Astro. It cost me $50, which I do not regret spending. The
output is in ‘‘.avi’’ format, which goes straight into Registax. K3CCD Tools will do
the same postprocessing job as Registax, but when I compared them I got better
results with Registax. I have learnt a lot about astrophotography since then, so my
opinion could well be premature.
My setup is shown in Plate 4.1. I use a flat-packed assemble-it-yourself clear-

plastic-coated miniature greenhouse for shelving, because it keeps the dew off my
kit, and is fairly mobile. I did learn the hard way to add some guy ropes and tent pegs
to combat the wind. Fortunately no lenses broke as it toppled.
Another worthwhile antiwind investment is a stainless steel tripod. It is much

stiffer than its aluminum predecessor, not least because that had jointed legs.

Observing in theRain (Well, Almost)
The month I chose for this project, July 2007, looked like a good idea because I could
observe at a fairly civilized time of the night. What I did not bank on was the
weather. Most of England had the wettest July since Noah sold his ark for scrap. At
one point, large parts of the country ground to a halt because of floods. Nevertheless
I got photos on all but two of the 16 nights I needed for the project.
If I had been a little less fastidious about setting up, I would have got photos on

one of those two cloudiest nights. The lesson I learned was to have the webcam
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recording while I did the setting up, in case it was the only footage I got that night.
A few nights later that is exactly what happened.

It is surprising how well the image of Jupiter will penetrate clouds. My 8 in.
telescope could detect it well enough to adjust the tracking manually for quite long
periods when I could not see it with my naked, or at any rate bespectacled, eye.
Indeed the whole exercise was a bit like what I imagine fishing to be: you spend most
of your time waiting.

Plate 4.1 The author and his telescope. The laptop computer and other accessories are
kept on shelving in a flat-pack miniature greenhouse. This keeps the dew and rain off the
equipment. The guy ropes keep it stable. You can barely see the trolley under the
greenhouse. I move the set-up around my backyard depending on the direction in which
I wish to look, and put it in the garage when the weather is bad. The brief case is an old
one I use to move the laptop: I never leave that outside! (Picture: Darren Sprunt, used with
permission).
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When I was able to take pictures, I would take some shots of Jupiter so that I could
use the bands to orient the Moons, and then overexpose the planets in order to see
the Moons. With an equatorial mount, in theory the orientation on your computer
screen will be preserved all evening until you remove the webcam. With an Alt-Az
mount, you would need to take an orientation shot for every picture of the Moons.
This little project led me to a new theory of the Great Red Spot. This is because red

spots are what I got covered in from mosquito bites. On all those warm evenings I
had to cover my body more thoroughly than in winter. The beginner’s astronomy
books do not warn you about that. Eventually in a hardware store I found a little
gizmo for small fishing boats that scares off the insects so long as there is not too
much wind. I can report that inside my little faux-greenhouse it was quite good at
keeping insects away from my luminous computer screen, which did rather attract
them. A traditional Insect-o-CutorTM type bug zapper is totally unsuitable for
astronomy because the bluish light destroys whatever dark-adapted vision is left
after your laptop has dazzled you.
K3CCD Tools turns your PC screen from color to varied hues of dark red.

Unfortunately Registax still shows large areas of white even trough this. I am a
great believer in processing the image as soon as possible in case you need to take
another, but the software does not do your dark adjustment any good. When I
politely complained to the Registax team about this, within a couple of hours I got a
very helpful reply about their plans for the next version, and asking me to show them
in detail what I mean. You cannot ask for more than that.
A typical photo I took looks like Fig. 4.1. With practice it is easy to recognize the

outer two Moons, Ganymede and Callisto. Ganymede is much the brightest; and

2007-July-10 22:59 GMT
Jupiter

Europa

Callisto

Ganymede

Io

Fig. 4.1. Jupiter’s Moons, taken from a typical photo. To make the picture cheaper to
print, I turned the photo into a negative and turned the contrast right up so that there are no
shades of gray. The apparent size of the Moons is an illusion. They are much smaller than
they appear. What you see is the effect of limitations in both optics and webcam. I also
tilted the webcam to put the Moons across the diagonal. Otherwise I would have had to
make a montage of two photos. When the outermost Moon, Callisto, was at its widest
apparent separation from Jupiter, I had to do this anyway.
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Callisto is the least bright of the four. By playing with the exposure level on your
webcam, you can soon figure out which these are. Most of the time, they are further
away from Jupiter, which helps.

The inner two, Io and Europa, are much harder to tell apart. Io has the higher
angular velocity as it orbits, so it moves faster than Europa, enabling you to guess
which is which on sequences of photographs; but it is not always easy. You can
always cheat and look in the astronomy magazines. Many of them publish monthly
charts of the positions of Jupiter’s Moons’ movements when they are visible at night.
Sky and TelescopeTM even publish an ‘‘applet’’ on their Web site, which can be found
by clicking on the ‘‘observing celestial objects’’ link on http://www.skyandtelescope.
com. As usual withWeb sites, it could get moved in a future update of the site, so you
may need to hunt for it.

Measuring Angular Separations
on Photos

Once again, I used computer-aided drafting (CAD) software to make measurements
from the photographs. The result for the photo in Fig. 4.1 is shown in Fig. 4.2.

The measurements are in inches. This is an arbitrary measurement: I could choose
what size I pasted the photograph into the CAD file. What I really want, though, is to
convert the size into arcminutes, i.e., the angular separation.

To provide a rigorous calculation of the angular separation in all cases from the
simplest convex objective lens to a Schmidt-Cassegrain telescope with its complex
corrector and twin mirrors would be the subject of a book in its own right. For a
simple convex objective lens, the calculation is relatively simple, and runs as follows.

An objective lens works by collecting rays of light from an object at the point such
as A in Fig. 4.3 and focusing them to the point B in Fig. 4.3. Of course, the planet and
its satellites shown are much, much further from the lens than the focal point at B.
Indeed, they are about a trillion times as far, but showing that would make a
properly scaled diagram slightly too big for the page. All the rays going from A to
B are bent (i.e., refracted) except one. The ray going through the center of the lens
travels in a straight line.

It is obviously easier to follow the geometric behavior of straight lines than ones
bent by refraction. Therefore, I am going to analyze the rays which pass through the
center of the lens.

In Fig. 4.4 the object is assumed to be in the middle of the view field. You can
always point the lens so that this is true, so it is not a restrictive assumption. The
tangent of y/2 is given by

tan
y
2

� �
¼ ðw=2Þ

f
¼ w

2f
; ð4:1Þ

since tangent = opposite/adjacent. In practice y is likely to be a very small angle. The
largest-looking Solar System objects in the sky, the Sun and Moon, are only about
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half a degree across. If we measure y in radians, an approximation (see Appendix A)
can be used:

tanðxÞ � x if x � 0:1 radians: ð4:2Þ
For x = 0.1 radians, the error in (4.2) is no more than three parts in a thousand.
Substituting (4.2) into (4.1) gives

Fig. 4.2. How I used CAD software to make measurements. First, I superimposed my
orientation shot. In this case, I only managed one picture all night, but had two nonover-
exposed orientation photos. I ‘‘eyeballed’’ one of them for orientation. This procedure
proved to be accurate to 1�. I then used the rectangular box to line up the edges of the
overexposed Jupiter. The CAD software provided the means to place the lines through the
midpoints of the rectangle. These lines then passed through the center of the over-exposed
white blob representing Jupiter. I drew horizontal lines from this mid-line to each of the
Moons, making full use of the zoom capability of the CAD software to place these lines as
close to the centers of the Moons as I could estimate. For clarity, only the line to Callisto is
shown. The CAD software measured all the distances in inches. I measured the size of the
whole photo, because I knew the size of the photo in arcminutes. This gave me my
conversion factor from inches to arcminutes.
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tan
y
2

� �
� y

2
¼ w

2f
;

;y ¼ w

f
;

;w ¼ f y:

ð4:3Þ

In other words, if we know two of w, f or y, we can work out the third from (4.3). It is
more common to express the angular separations of Jupiter’s Moons in minutes of
arc than in radians. Remembering that there are 60 min (or 600) in 1�; and 360� or
2p radians in a complete circle, we can work out that

2p radians ¼ 360� � 600 ¼ 21; 6000:

;10 ¼ 2p
21;600

radians ¼ 2:909� 10�4 radians; and

1 radian ¼ 21;600

2p

� �0
¼ 3;4380:

ð4:4Þ

Fig. 4.3. An objective lens works by collecting rays of light from an object at the point A
and focusing them to the point B. Of course, the planet and its satellites shown are much,
much further from the lens than the focal point at B. All the rays going from A to B are bent
(i.e., refracted) except one. The ray going through the center of the lens travels in a straight
line.

Fig. 4.4. In this diagram, rays from the extremities of the object being viewed are
followed. The rays shown are the ones that go through the center of the lens. The
size of the focused image of the object is w. The focal length of the lens is f. The angle
subtended by the viewed object is y.
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Therefore the correct version of (4.3) in minutes of arc is

y ¼ 3;438w

f

� �0
: ð4:5Þ

It does not matter what the units of f and w are, as long as they are in the same units.
The reason I worked out (4.5) was so that I would know how to convert the

‘‘inches’’ of my CAD software (Fig. 4.2) into arcminutes.
In Fig. 4.2, the image size was 20 � 15 in. From the data sheet for the Sony

ICX098BQ chip in my Philips SPC900NC webcam,23 I can get values of w in mm.
The chip has 640 � 480 pixels, each 0.0056 mm apart, according to the data sheet.
Multiplying up, the sensor chip has a size of 3.584 mm� 2.688 mm. The focal length
f of my telescope’s primary mirror is 1,200 mm. Substituting into (4.5) gives me an
area of

ywidth ¼ 3;438� 3:584

1; 200

� �0
¼ 10:270 and

yheight ¼ 3;438� 2:688

1;200

� �0
¼ 7:700:

ð4:6Þ

Fortunately, there is a utility in K3CCD Tools which works out (4.6) for you. It has
preprogrammed values for my camera, and will even work out the angles if you have
a Barlow lens between the primary mirror and the webcam. A 4� Barlow lens acts as
if it quadruples the focal length and so on. You obviously have to tell it about your
telescope. You have to tell K3CCD Tools about your webcam in any event to get it to
capture the images.
Anyway, my CAD system measured a field of view of 10.270 � 7.700 as 20 � 15 in.

That works out as 0.513 in. per minute of arc

10 ¼ 10:270

20
¼ 7:700

15
¼ 0:513 in: arcmin�1: ð4:7Þ

In theory, (4.7) has to be worked out for each image. In practice, when you paste the
photographs into the CAD system, you can usually use the ‘‘grid’’ features in your
CAD system to make sure the photos are always pasted in the same size.
Equation (4.7) can be used to convert the distances of the Moons from Jupiter

into arcminutes. For example, in Fig. 4.2, the 14.63 in. from Jupiter to Callisto
corresponds to an angular separation of 14.63/0.513 = 28.500.
Why does the above optical analysis not work for any but the simplest objective

lenses?
Achromatic and apochromatic refractors have compound lenses. Any off axis light

rays that pass through the center of the first part of the lens will not quite pass
through the center of the second and subsequent elements of the lens. Therefore they
will experience at least some refraction. The analysis is thus only approximately
correct. That does not make it invalid. All scientific theories and analyses are inexact
to some extent. There is a fine art to choosing useful approximations to gain insight.
Rays of light never reach the center of the primary mirror in any kind of reflecting

or catadioptric telescope, because the center is obscured by a secondary mirror.
Hence the analogous analysis for a mirror needs to be done more carefully. It is easy
to convince yourself that (4.5) must be right by imagining that by some miracle the
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secondary mirror lets light into the telescope unmolested, but reflects light from the
primary mirror. Easier yet, you could imagine that there is no secondary mirror, and
that instead the image is captured on a perfectly transparent chip in a perfectly
transparent webcam on the primary optical axis.

Figure 4.5 shows how a primary mirror works by collecting rays of light from an
object at the point A and focusing them to the point B. Of course, the planet and its
satellites shown are much, much further from the mirror than the focal point at B.
All the rays going from A to B have equal incident and reflected angles. If the mirror
is aberration free, the rays will converge precisely onto the point B. Otherwise, they
will approximately converge on Point B. Now consider (Fig. 4.6) the ray that passes
from A to B in Fig. 4.5 via the center of the mirror. Its geometry is the easiest to
analyze. Its incident and reflected angles are y/2. Trigonometric analysis gives
tan(y/2) = (1/2)w/f as in the case of an objective lens.

How do we generalize the argument to a real Newtonian telescope? Even if the ray
from A to B is interrupted by a secondary mirror, all the other rays shown in Fig. 4.5
approximately converge on the point B. So the image B will be at the same place
whether or not there is a secondary mirror which blocks the rays which would have
landed closest to the center of the primary mirror. Therefore the value of w is
unaffected by the presence of a blocking secondary mirror.

If the rays are reflected sideways by the secondary mirror, as is the case with
Newtonian and Dobsonian telescopes, the length f from the center of the primary
mirror to the focal plane is not changed. Nor is the value of w. Hence (4.1) is also
valid for Newtonian telescopes.

Catadioptric telescopes are unfortunately more complex to analyze.

Fig. 4.5. A primary mirror works by collecting rays of light from an object at the point A
and focusing them to the point B. Of course, the planet and its satellites shown are much,
much further from the mirror than the focal point at B. All the rays going from A to B have
equal incident and reflected angles.
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Making Sense of the Moon’s
Positions

Looking at these data, it is easy to ‘‘eyeball’’ and imagine a sine or cosine curve
through the positions of Callisto (Fig. 4.10). It is a little less easy, but still not difficult
to do this for Ganymede (Fig. 4.9). For Europa (Fig. 4.8), it is getting quite hard to
imagine such a curve, but for Io (Fig. 4.7) it is virtually impossible.
The generic name for sine and cosine curves is ‘‘sinusoidal curves.’’
The reason for the sinusoidal curves is that they are what you would expect if you

were looking edge-on at circular motion. Figure 4.11 shows how circular motion can
be resolved.
The distance along the x-axis of the point P from the center is

x ¼ rcosðAÞ: ð4:8Þ
But if P is rotating about the center with constant angular velocity o, then (4.8)
becomes

x ¼ r cosðoðt � t0ÞÞ ¼ r cosðot � ’Þ; ð4:9Þ
where t0 is a time in the past at which the angle Awas zero, and the Greek lower case
letter phi (’) has the meaning

Fig. 4.6. Now consider the ray that passes from A to B in Fig. 4.5 via the center
of the mirror. Its geometry is the easiest to analyze. Its incident and reflected angles are
y/2. Trigonometric analysis gives tan(y/2)= (1/2)w/f as in the case of an objective lens.
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’ ¼ ot0: ð4:10Þ
My objective will be to find a curve like (4.9) for each moon, which fits the orbital
data shown in Figs. 4.7–4.10. Once I have done this, I will know the values of r, o,
and ’ for each of the Galilean satellites. That is enough to specify a circular orbit
completely (Fig. 4.11).

−10

−8

−6

−4

−2

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18

Equatorial Distance from 
Jovian Center
Arc Minutes

Days since 00:00 2007-07-06

Fig. 4.8. Data collected from 6 to 20 July 2007 of measurements of the positions of
Europa, measured in arcminutes from the center of Jupiter along lines parallel to Jupiter’s
equator.
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Fig. 4.7. Data collected from 6 to 20 July 2007 of measurements of the positions of Io,
measured in arcminutes from the center of Jupiter along lines parallel to Jupiter’s equator.
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If the orbits deviate significantly from circularity, the method will not work, and
I will not get good fits to (4.9).
So let us see how well I do.
I could not find a method in any of my textbooks or on the Internet for fitting sine

curves, so I had a go at inventing one for myself. My wife was unimpressed by my
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Fig. 4.9. Data collected from 6 to 20 July 2007 of measurements of the positions of
Ganymede, measured in arcminutes from the center of Jupiter along lines parallel to
Jupiter’s equator.
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Fig. 4.10. Data collected from 6 to 20 July 2007 of measurements of the positions of
Callisto, measured in arcminutes from the center of Jupiter along lines parallel to Jupiter’s
equator.
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method. At first she called it ‘‘cack-handed.’’ In Britain, that is a derogatory term for
left-handers. She being American did not know that, but I, being both English and
left-handed, certainly did, and was suitably miffed. My dander was up. Somebody
needed to be proved wrong, and I hoped it was not going to be me.

As mentioned in Chap. 3, the traditional way to fit straight lines, i.e., mathematical
functions y(t) of the form

yðtÞ ¼ at þ b; ð4:11Þ
where a and b are constants, through data is the ‘‘least squares method.’’ y(t) means
that the value of y depends on the value of t. We may think of t as ‘‘time’’ for present
purposes. Then y(t) means that the value of y depends on the time.

Figure 4.12 shows how a variable such as y(t) increases uniformly with time.
Figure 4.13 shows what might happen if I do not know y(t) perfectly, due to the
limitations of my measurement technique. In contradistinction, I know the time at
which the measurement was taken very accurately. For example, K3CCD tools logs
the time at which webcam sequences are recorded; and the laptop regularly updates
its time over the Internet whenever it is connected.

Let me call the uncertainty in the ith measurement of y, taken at time ti, Dyi.
Methods that minimize the sum of the squares of Dyi, (see Appendix B) so thatX

Dy2i
� � ¼ min; ð4:12Þ

are called ‘‘least squares’’ methods. The idea is to calculate or estimate the straight
line in Fig. 4.13 that satisfies (4.12).

The formulae for doing this for the case where y(t) increases, or is thought to
increase, linearly with time, are widely published. You can find them in many
elementary statistics textbooks, such as the one by Spiegel, Schiller, and others.24

Fig. 4.11. The
point P has co-ordi-
nates (x,y) ¼
(r cos (A), r sin(A)).
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As an undergraduate, I was troubled by this choice of least squares as a criterion
for ‘‘fitting’’ or averaging a line. It was apparently first suggested by the great
mathematician C. F. Gauss (1777-1855),25 who seems to have dreamt it up as a
teenager. Gauss proved that the least squares procedure is tantamount to assuming
that the errors Dyi are distributed like a ‘‘normal’’ of ‘‘Gaussian’’ distribution
(Fig. 4.14); and I show this in Appendix B.
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Fig. 4.12. A straight line of the form y(t) = at + b, like 4.11. y(t) increases uniformly with
time.

Time t

T
im

e-
D

ep
en

d
en

t 
V

ar
ia

b
le

 y

Δy i

Fig. 4.13. A straight line of the form y(t) = at + b, like (4.11). y(t) increases uniformly with
time. But there are now apparently ‘‘random errors’’ in the values of y(t) due to imperfec-
tions in the measurement technique.
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This is emphatically an assumption, not a fact. I show in Appendix B that
normally distributed errors are the most likely state of affairs, assuming that there
are no systematic errors present in the data. This is what Gauss showed.

What I wanted was an analogous method to calculate a least-squares cosine, per
(4.9), rather than a least squares line.

I drew a complete blank trying to adapt the procedure given by Spiegel, Schiller,
and colleagues24 to sinusoidal curves. Maybe I am not smart enough. Instead, I
invented a procedure to guess the answer. It is illustrated in Appendix B. Well, I did
not completely invent the method – it is one of a class of methods known to
mathematicians as ‘‘Monte Carlo’’ methods.26 Monte Carlo methods take advantage
of computer-generated random numbers to simulate a phenomenon subject to
variation. What you do is to rerun several thousand instances of the simulation,
and see if you tend to get the same answer. If you do, you conclude that the
simulation has done a good job of estimating the answer.

There are weaknesses of Monte Carlo methods. First, there is no guarantee that
they get the right answer. They represent the triumph of optimism over certainty.
Second, you have to run thousands upon thousands of simulations before the
output ‘‘converges’’ to a fairly constant answer. In other words, they are inefficient
methods. However, it is a computer doing the drudgery, not me, so what do I care if
it takes a while? All I care about is that the time the computer takes is not hard on my
patience. Modern computers are not exactly slow.

What I did was to take (4.9) and modify it as follows.

x ¼ ðrtrial þ rrandomÞcosððotrial þ orandomÞt � ð’trial þ ’randomÞÞ: ð4:13Þ
In other words, I modified each of the three unknown variables r, o, and ’ by

starting with a trial value and adding a random number to it. The random number
could have been positive or negative.
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Figure 4.14. A normal distribution of values of Dyi, which are said to be ‘‘normally’’
distributed.
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I actually did the Monte Carlo runs of (4.13) in Microsoft ExcelTM. This
package has a random number function rand( ) which generates a random number
between 0 and 1. I have in the past run checks to see how evenly distributed
the random numbers are. I would check the distribution of 30,000 or so values of
rand( ), and could find no evidence of a systematic bias. To use this function in Excel,
you simply type ‘‘= rand( )’’ into the cell. You will find that every time you do a
calculation anywhere else in that Excel file, your value of rand( ) resets itself. You can
also make every instance of rand( ) in the file reset itself by hitting your ‘‘F9’’ key.
This takes some getting used to.
First, however, let me show you how I wrote formulae to randomize r,o, and ’. In

the case of the orbital radius r, I would write formulae like

ðrtrial þ rrandomÞ ¼ rtrialð0:95þ 0:2 randð ÞÞ or

ðrtrial þ rrandomÞ ¼ rtrialð0:995þ 0:02 randð ÞÞ: ð4:14Þ

In the top line of (4.14) I have allowed r to vary by �5% about its trial value; and in
the second lone I have allowed it to vary by �0.5% about its trial value. I did not
know how much it would have to vary, so I played around to see what would
happen.
Similarly, the variables o and ’ were varied like this:

ðotrial þ orandomÞ ¼ otrialð0:95þ 0:2 randð ÞÞ or

ðotrial þ orandomÞ ¼ otrialð0:995þ 0:02 randð ÞÞ: ð4:15Þ

ð’trial þ ’randomÞ ¼ ’trialð0:95þ 0:2 randð ÞÞ or

ð’trial þ ’randomÞ ¼ ’trialð0:995þ 0:02 randð ÞÞ: ð4:16Þ

From (4.13), the squares of the differences at any given time are

ðxobserved � xfittedÞ2 ¼ ðxobserved � ðrtrial þ rrandomÞcosððotrial þ orandomÞt
� ð’trial þ ’randomÞÞÞ2: ð4:17Þ

What we are aiming to do is to find the fits that minimize the sum of these squares of
differencesX

ðxobserved � xfittedÞ2 ¼
X

ðxobserved � ðrtrial þ rrandomÞcosððotrial þ orandomÞt
� ð’trial þ ’randomÞÞÞ2 ¼ lowest possible value:

ð4:18Þ
What you do is to calculate the difference equation (4.17) at every point you have
observed, square it and add them all up, as in (4.18). You do this several thousand
times, store the results; and note which one gives the lowest sum of squares of
differences.
If you do this in Microsoft Excel, you will find that as you search for the run that

gives the minimum, the rand( ) function keeps recalculating. You can then never find
what you want. There is a simple workaround. Select the whole worksheet, copy it and
paste it into cell A1of a blankworksheet. But donotusenormal paste. Insteaduse ‘‘Paste
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Special’’ and select ‘‘Values.’’ You can then immediately do a second paste special and
select ‘‘Formats,’’ and the formatting from the copied sheet will be transferred. The
new sheet will contain only numbers, not functions, so it will never recalculate itself.
You can then search it for the smallest sum of squares of differences.

How many times do you have to run the Monte Carlo simulation? A lot. I kept
doubling the number until I got reproducible best fits. Previous experience with
other Monte Carlo simulations told me that I was going to need somewhere around
214 = 16,384 repeats. I actually settled on 215 = 32,768 repeats.

Because of the recalculating problem in Excel, the way I ran my 32,768 repeats was
to run 213 = 8,192 runs in one worksheet, copy and ‘‘paste-special’’ into another; and
repeat four times, so that my results were ‘‘paste-specialled’’ as values into four
worksheets. This cut down the waiting time while the wretched rand( ) kept
recalculating itself in several cells.

There was no one ‘‘correct’’ or ‘‘best’’ percentage by which to vary all of these
variables. I played it by ear. I started with trial values, and used those to repeat the
process, each time reducing the percentages of r, o, and ’ which were allowed to
vary randomly. In the case of Callisto, I found that I had good fits to o and ’, but a
poor fit to r. So I held o and ’ constant and reran the Monte Carlo simulation with
only r randomized.

How did I choose my starting values of r, o, and ’? I set up a spreadsheet where I
could change the starting values and look at what happened to the sinusoidal curve
with my data showing. By the time I had collected the data, I had already seen for
myself that the published orbital periods were at the very least about right. After all I
had been watching these moons closely for 20 days; and had been observing them
haphazardly for several months before that. So I used the published orbital periods
from Wikipedia,27 and the formula o = T/2p to relate orbital period to angular
velocity.

The values of r are not often published in arcminutes. However, I did use the Sky
and Telescope Internet applet referred to earlier to work out when the moons would
be at maximum amplitude. I got lucky with the weather and managed to get
photographs not actually at peak amplitude, but close enough for me to measure
starting values of r for each moon (Figs. 4.15 and 4.16).

The starting values of ’ for each moon I guessed by fiddling around in Microsoft
Excel until I could ‘‘eyeball’’ good values by looking at plots made with various
assumed values.

The answers I got seemed to be reproducible: it did not matter much what I chose
as starting values for r,o, and ’. The method would find very similar final values. As
with all trial-and-error mathematical methods, you keep going until you are happy
with your result. This is always a subjective decision. Do not let anyone ever
bamboozle you into thinking otherwise!

Figure 4.17 is evidence that my curve fitting method works; and that my wife’s
insulting remark about it should be diplomatically forgotten in the interest of
marital harmony. Successful husbands do not do gloating. Nor do I.

This same figure can also be used to look for noncircularity in the orbits. If there
were significant ellipticity, we would expect the sine curves to be poor fits, and to see
systematic evidence of faster travel in the orbit when the moon is closer to Jupiter,
and slower travel when it is further away. I cannot see any such bias in Fig. 4.17.
From this I conclude that the accuracy of the approximation of circular orbits is at
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Fig. 4.15. In this photo, shown as a negative, Io, Ganymede, and Europa are all at
almost their maximum angular separations from Jupiter. This gives us trial values for r for
each of these Moons. Incidentally, the little ‘‘tufts’’ sticking out of the moons are a sign that
my telescope was out of collimation. A key principle of experimental science is that you
should always report what you actually observed, not what you should have observed,
however, embarrassing this may be.

Fig. 4.16. In this photo, shown as a negative, Callisto is at almost its maximum angular
separations from Jupiter. This gives us trial values for r for each of these Moons. Inciden-
tally, Io is beginning to cross in front of Jupiter. A few nights earlier, I had witnessed the
eclipse end as Io came out from behind Jupiter’s shadow on that side of the planet. Sadly I
did not capture this event as webcam footage. But it is the reason why I know that Io is in
front of Jupiter at this time, not behind it.
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least as good as the accuracy of my measurements. In other words, if the orbits are
elliptical, my measurements did not detect this.

Close examination of Fig. 4.17 and Table 4.1 shows that the orbits of Io, Europa,
and Ganymede appear to be related, but that the orbit of Callisto is not obviously
‘‘tracking’’ those of the other three.

The orbits of Io, Europa, and Ganymede have periods in the ratio 1:2:4. Their
phases are also related: when Ganymede is at maximum separation from Jupiter, so
are the other two. Furthermore, they are never all on the same side of Jupiter when
their apparent angular separations from it maximize. I have observed for myself that
all the above is at the very least approximately true.

I am of course not even almost the first person to notice that these three moons’
orbits track one another. This phenomenon is known as a ‘‘Laplace resonance.’’28

Another question in which I was much interested was: could I use my data to test
Kepler’s third law of planetary motion, that

Table 4.1 Values of r, o, and ’ Used to Plot Fig. 4.17

Moon

Fitted Amplitude
i.e., Orbital
Radius (arcmin)

Fitted
Angular
Velocity
(radians/
day)

Predicted
Orbital
Period
(days)

Published
Orbital
Period27

(days)

Fitted
Phase
Angle ’
(radians)

Io 2.139 3.544 1.77 1.77 �7.557
Europa 3.354 1.770 3.55 3.55 �3.667
Ganymede 5.399 0.878 7.16 7.16 �3.237
Callisto 9.379 0.382 16.47 16.69 0.609

Orbits of Jupiter's Moons
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Fig. 4.17. The fitted curves from (4.13) compared against the measured positions of the
Galilean Moons of Jupiter.
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ðOrbital RadiusÞ3 / ðOrbital PeriodÞ2
or r3 / T 2:

ð4:19Þ

Equation (4.19) implies that
log r3 / logT 2 or

3log r / 2logT

i:e:; logT / 3

2
log r:

ð4:20Þ

Figure 4.18 shows what happens when (4.20) is tested. The gradient of log T, which
(4.20) predicts to be exactly 1.5, is found to be 1.504 � 0.002.
The discrepancy is 0.27%. This is a very good fit indeed. We showed in Chap. 1 that

Kepler’s third law, (4.19), is a consequence of Newton’s law of gravity and his second
law of motion; and of assuming that the gravity provides the centripetal force to
maintain an orbit.
My ‘‘model’’ of Jupiter’s Galilean Moons is that they obey Newton’s laws of

motion and of gravity, and that they orbit in circles. A necessary condition that all
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Fig. 4.18. A plot
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Measure Solar System Objects and Their Movements for Yourself!76



this be (approximately) true is that Kepler’s third law, (4.19), be valid when my
values of r are used. To within 0.27%, it is.

This does not prove that my model is right; but it does strongly suggest that it is a
good model. That is about as good as scientific proof ever gets.

Why do the moons of Jupiter not lie on a straight line as we look at them?
This question had been puzzling me for some months before I undertook my

project to track these moons. I did not particularly expect to discover the answer, but
I did. There is in fact a very simple explanation.

If we were looking at the orbital plane from the poles of Jupiter, the orbits would
describe the paths shown in Fig. 4.19.

If in July 2007, we on Earth were looking exactly toward the plane of the equator,
the moons would all be collinear with Jupiter’s equator. But we were not. Figure 4.20
shows the orbits approximately as I observed them at that time. I mainly estimated
this from the positions of the outer moon Callisto on my photos over the time of the
project.

This explains why the moons of Jupiter do not appear to be collinear. We are
looking at their orbital plane almost but not quite edge-on.

Fig. 4.19. The orbits of Jupiter’s Moons as seen from one of Jupiter’s poles. The orbital
radii are to scale, as is Jupiter itself, but the sizes of the moons have been exaggerated to
make them visible.
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Strictly speaking I have assumed that they all orbit in the same plane.
For a start, you could check my assumption that the moons all orbit in the plane

of Jupiter’s equator.

Other Jupiter Projects You
Could Try

In Chap. 5 and 6, I will show how to follow the motion of planets against the
background of stars, and use this information to calculate the distance to the planet
in Astronomical Units.
Unfortunately Jupiter will not be around and easily visible from England for me to

do this in time to meet my publication deadline, but it is an eminently feasible
project.
Another thing that could be done is to use the fact that the distance to Jupiter

varies because the Earth is in orbit around the Sun; and to time the satellite move-
ments. Knowing the speed of light, you can then get a distance in miles. This
phenomenon was first investigated by Ole Roemer in the seventeenth century.29

How do you estimate the speed of light? You can do this with a microwave oven
full of marshmallows.30 No, I am not writing this on April 1st. You really can. First,
remove the turntable. Then spread marshmallows around a square dish that almost
fills the floor of the oven. The microwaves travel at the speed of light. (They are in
fact just low-frequency light, to which our eyes are not sensitive.) In a microwave
oven, you get ‘‘standing waves’’ of microwave radiation. The amplitude at any point
varies from zero to a maximum. That is why the darn things cook so unevenly. What
you will find is that some of your marshmallows will melt first, after only a few
seconds. The distance between neighboring pairs of melted marshmallows is half a
wavelength of microwave radiation. You can look up the frequency of the ‘‘magne-
tron,’’ the device that makes the microwaves, on the label on the back of the oven.
Then you use the formula

Speed of Light ¼ Speed of Microwaves ¼ Frequency �Wavelength: ð4:21Þ
Please be sure to follow the manufacturer’s instructions for the microwave oven.
If you cannot find them, read one of the many Internet articles on the safe use of
microwave ovens.
We could then use (1.16) of Chap. 1 to obtain the mass of Jupiter. You would need

to know G. The well-known way to measure the mass G is the experiment of

Fig. 4.20. The orbits of Jupiter’s Moons approximately as seen from my back yard in July
2007. The orbital radii are to scale, as is Jupiter itself, but the sizes of the moons have
been exaggerated to make them visible.
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Cavendish, in which a very fine torsional balance is used to measure the movement
of balls of a dense metal a few inches in diameter due to each others’ gravitational
attraction. A version of this experiment can now be bought at a price which, while
beyond most individuals, would be within the scope of an established astronomy
club.31 The apparatus is shown in Fig. 4.21.

Fig. 4.21. The PascoTM version of Cavendish’s experiment to measure the universal
gravitational constant G. The principle is that the small balls are held by an extremely thin
wire, and can swing toward the large balls because of the tiny mutual gravitational
interaction.
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Conclusion
The Galilean Moons of Jupiter go around their host planet in approximately circular
orbits, obeying Newton’s laws of motion and Newton’s law of gravity. I have laid out
the evidence for this, all of which I collected myself, using amateur equipment.
This satellite system provides a very rich opportunity for exploration. In this

chapter, I have only scratched the surface of what determined amateurs could
discover for themselves, whether alone or in groups.
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CHAPTER FIVE

Sunrise, Sunset

It is remarkable what you can learn from sunrises and sunsets if you keep your wits
about you.

First, I will show you how I measured the length of a day on Mars. My webcam,
8-in. f/6 telescope, and a 4� Barlow lens that turned out to be 3.4�, were quite good
enough to tackle this problem close to the 2007 opposition.

Then I will take you in search of the Sun. Except at total solar eclipses, once the
Sun rises, it very quickly dawns on you that you cannot see where the Sun is relative
to the stars, so you have to use indirect methods. I had not planned to use the
method I did. In fact, I was a bit slow to realize that you need to know where the Sun
is to work out the orbits of superior planets.

You have to track the motion of the superior planets relative to the stars for a
period of time, and do some calculations. You sure as heck cannot do this without
making some decisions about how you describe the positions of the stars. The
middle part of this chapter gives an account of the coordinate systems I used. If
you have forgotten – or never knew – about Cartesian and spherical polar coordi-
nates, there is a guide in the Appendix A.

The second part shows how you can work out where the ecliptic is. The definition
of the ecliptic makes this look easy. The ecliptic is the imaginary line along which the
Sun appears to move as the Earth orbits it.

I read somewhere that one of the tricks the early astronomers used to solve this
problem was to see what was diametrically opposite the sun at sunrise and sunset,
and use the position of that object to back-calculate the track of the Sun. Not in my
backyard, you cannot. I cannot see the horizon in my suburban environment. Great!
Now what!?

Pause three weeks while I think what to do about this. Inspiration eventually
struck; and I will show you how I found out where the ecliptic is.

But first let us have a look at Mars.

J.D. Clark, Measure Solar System Objects and Their Movements for Yourself!,
Patrick Moore’s Practical Astronomy Series,
DOI: 10.1007/978-0-387-89561-1_5, © Springer Science + Business Media, LLC 2009
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A Mars Day for Work, Rest,
and Play

Mars rotates. This is one of the first things you notice when observing it. Although
the Moon also rotates, it always points much the same face at us. In contradistinc-
tion, Mars does not always show the same face to us. From two observations as little
as an hour apart, the west-to-east rotation is detectable. A typical amateur telescope
is enough to show Mars’ rotation, although digital photography with image
enhancement makes it a lot easier to see what is there.
Astronomers of past generations, not least Percival Lowell inMars and its Canals,

Macmillan, 1906, have seriously, and notoriously, overestimated their ability to see
what is on Mars (see Chap. 1). The reality is that you will see only the very largest
features, and even these are a lot clearer when Mars is close to the Earth. Your view
will be much as if you could just about make out the continents on Earth. The
weather on both Earth and Mars can sometimes obscure the view, so be prepared to
observe patiently.
A Martian day is called a ‘‘sol.’’ In what follows, I will show you how to measure

the duration of a sol. Strictly speaking, I am going to measure a sidereal sol.
The easiest feature to find on Mars is Syrtis Major (see Fig. 5.1. This was

discovered in the early years of telescope astronomy by Christiaan Huyghens. No

Fig. 5.1. At these two times, Mars presents approximately the same face to us. The two
times are 1,065,285 s apart. The difference in seeing is striking: the photographs were
taken and processed very similarly.
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one really knew what it was until the planet was visited by space probes. It turned out
to be a shield volcano. An account of Martian observation is given in The Planet
Mars: A History of Observation and Discovery by William Sheehan.32 It is interesting
to note that the observers credited with the first great systematic survey of Mars, Beer
and Maedler in 1828, used a 3.75-in. (95-mm) refracting telescope. By today’s
standards, that would be a very modest amateur instrument.

If you see the same face of Mars on two separate occasions, the number of
rotations it has completed is a whole number. This is certainly not rocket science.

On the night of 22/23 December 2007, I took the sequence of pictures shown
in Fig. 5.2. In these, the rotation of Syrtis Major is very evident. They are shown in
Fig. 5.2.

At these two times, Mars presents approximately the same face to us. The two
times are 1,065,285 s apart. The difference in seeing is striking: the photographs were
taken and processed very similarly.

The North Polar ice cap is visible at the top of these pictures. This enables us to
estimate the direction of North, not desperately accurately, but accurately enough as
it will turn out.

If we take the line of longitude directly in front of the Martian axis to be zero, we
can calculate the longitude by the method shown in Fig. 5.3.

Fig. 5.2. A
sequence of
photographs of Mars
over a 4½-h period in
the early hours of 23
December 2007. The
rotation of Syrtis Major
is very evident. It is also
noteworthy that the
seeing was not
constant through the
night. In addition, the
color sensitivity of my
webcam seems to be
inconsistent. Some of
this may have been my
technique. Between
01:08 and 01:56
and between 02:56
and 03:41, I reset the
camera to take pictures
of Saturn and Titan,
which are of course
much fainter than
Mars. Perhaps I could
have done a better job
of resetting the camera
afterward.

Sunrise, Sunset 83



From Figs. 5.3 and 5.4, the longitude is the angle whose sine is the ratio of the
semi-minor axis of the ellipse shown in Fig. 5.4 to the radius of Mars (or, if you
prefer, the ratio of the minor axis to the diameter). I actually averaged the nine radii I
measured. Figure 5.5 shows examples of this method being put into practice,
measuring the ellipse of Fig. 5.4 on actual photographs. The distances in ‘‘inches’’
came from a computer-aided graphics (CAD) software package used to draw the
ellipses and the circles outlining Mars. The tools in the CAD software were used to
draw a circle around the planet to measure its diameter, a line through both the
center of this circle and through the North Pole, and an ellipse, concentric with the
circle, whose major axis goes from pole to pole. The ellipse is also made to go
through the center of the northernmost point on Syrtis Major.
Figure 5.6 shows a plot of longitude of Syrtis Major vs. time generated from the

nine photographs shown in Fig. 5.2. The units of longitude are radians. I could
equally easily have used degrees. It does not matter.
The black line in Fig. 5.6 is a straight line fitted through these points, whose

equation is shown in the caption at the top of the graph, where y is the longitude and
x is the time.
The other lines show what the longitude change vs. time would look like if I assume

that the number of sols between the two photos shown in Fig. 5.1 is 11, 12, and 13
respectively. If I assume 11 sols, the longitude changes too fast. If I assume 13, it changes
too slowly. If I assume 12 sols, the rate of longitude change is almost exactly what was
observed. I conclude that there were indeed 12 sols during this time interval.
The straight line fit, which assumes that longitude grows at 6.99118 � 10�5

radians per second, corresponds to a rotation period of 24 h 57.9 min:

Longitude ¼ 6:99118� 10�5t � 0:8702030 radians, ð5:1Þ
from Fig. 5.6, where t is in seconds.

Fig. 5.3. Showing
how to calculate the
longitude of a point on
Mars. The view is
looking down onto the
Martian North Pole.
The Longitude is the
angle L. By elementary
trigonometry the
distance from the Zero
Longitude line to the
point where of the
ellipse crosses the
Martian equator is R
sin(L), since the ratio
R sin(L)/R = sin(L).
Remember that the sine
of an angle in a right-
angle triangle is
defined as ‘‘opposite
over hypotenuse.’’
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Fig. 5.5. Showing
how to estimate the
longitudes of features
on Mars relative to a
meridian which is
directly in front of the
planet’s axis as we see
it on Earth. Great
circles through other
lines of longitudes are
seen from Earth as
ellipses. The ellipses
have been chosen to
go through the center
of the northern limit of
Syrtis major, as
accurately as I can
estimate it. The
distances in ‘‘inches’’
come from a computer-
aided graphics (CAD)
software package
used to draw the
ellipses and circles
outlining Mars.

Fig. 5.4. The great
Circle of Longitude in
Fig. 5.3 appears as a
straight line when
viewed from above the
poles. When viewed
from above the
equator, it is an ellipse,
as shown here. The
Earth is roughly above
the Martian Equator,
but only roughly. In
December 2007 we
can see the North Pole
more clearly than the
South Pole. The semi-
minor axis of the
apparent ellipse
shown has length R sin
(L), where R is the
radius of the planet.
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The two photographs of Fig. 5.1, taken 1,065,285 s apart, imply a rotation period
of 1,065,285/12 = 88,773.75 s or 24 h 39 min 34 s, if we assume that the two
photographs were taken exactly 12 sols apart. In fact, the photo in Fig. 5.2, from
which the second photo in Fig. 5.1 (22/23 December) was chosen, were taken at
roughly 30-min intervals. Strictly speaking, therefore, we only know that the end of
the 12th sol occurred between 04:11 and 04:41. This 30-min uncertainty in the
duration of 12 sols corresponds to an uncertainty of 2.5 min per sol.

Longitude of North Centre of
Syrtis Major vs. time

Fitted Latitude = 6.99118E-05 t - 8.72030E-01
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Fig. 5.6. Plot of longitude of Syrtis Major vs. time generated from the nine photographs
shown in Fig. 3. The units of longitude are radians. I could equally easily have used
degrees. It does not matter. The solid line is the best fit straight line fitted through these points,
whose equation is shown in the caption at the top of the graph, where t is the time in
seconds. Theother lines showwhat the longitude change vs. time would look like if I assume
that the number of Martian days (‘‘sols’’) between the two photos shown in Fig. 5.1 is 11,
12, or 13, respectively.
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Thus

1 sol ¼ 24 h 39min 34 s� 2min 30 s: ð5:2Þ
Can we do better? In Table 5.1, I show the results of a series of repeat measurements,
as well as the original measurements. For the later measurements, unfortunately,
there is a joker in the deck. The further Mars is from opposition, the further it is
from full. The further after January 25, 2008, the more difficult it was to make my
measurements.

From Table 5.1, it is noticeable that if the December 10th observation is one of the
pair, the rotation periods are somewhat scattered. If that observation is rejected, the
mean and standard deviations of the remaining three pairs of observations give

1 sol ¼ 24 h 37min 36� 5 s: ð5:3Þ
The published value,33

1 sol ¼ 24 h 37min 26 s; ð5:4Þ
lies almost within this range, as does the Wikipedia (http://en.wikipedia.org/wiki/
Mars) value at the time of writing,

1 sol ¼ 24 h 37min 23 s: ð5:5Þ
The reason why the measurement taken over several days is so much more accurate
than the one made purely on the night of 22/23 December is simple. Counting, in
this case counting days, is an exact process. It does not involve any of the kind of
guesswork involved in estimating longitudes of Syrtis major in Figs. 5.2 and 5.5.
Furthermore, the uncertainty in the measurement of the longitudes is shared over
several sols.

The difference between (5.3) and (5.5) is a remarkable 0.01%.
My measurements were made with an 8-in. telescope, a webcam, and the clock in

my laptop. It is well within the scope of a typical amateur astronomer to make
accurate measurements of the rotation of Mars. The same method can be used for
Jupiter, because its great red spot makes an easy target. Other planets are not so easy
because of the difficulty of seeing their surfaces. The very best amateur astrophoto-
graphers can just about observe the rotation of Jupiter’s moons (see e.g., http://www.
damianpeach.com/images/articles/peachfeature/%5B80-81%5DDamian%20Peach
%20dec06.pdf) although this requires much better instruments than most of us
can afford.

The Celestial Sphere
Figure 5.7 shows what the celestial sphere is. It is an imaginary sphere much bigger
than the Earth, through which we look at the heavenly bodies. It co-moves with the
Earth, except that it does not rotate about the Earth’s axis. Hence the stars, which are
so far away that parallax effects are extremely hard to detect, each appear to occupy a
very nearly constant location with respect to the celestial sphere. We give these
locations a kind of polar coordinates. The units of these in the north–south direction
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are simply degrees, just like the degrees of latitude on the Earth’s surface. The
celestial equator is at 0�; the celestial North Pole is at +90�; and the celestial South
Pole is at �90�. These north-south angles are called declinations.

The units in the East–West Direction are called right ascension. This is an unhelp-
ful, rather counterintuitive name, but we are stuck with it. Its units are equally
irksome: right ascensions are measured in hours, minutes, and seconds from the
point where the ecliptic crosses the celestial equator at the March equinox (see Fig.
5.7). They go from 0 to 24 h, increasing as you go eastward.

This zero point in right ascension is sometimes called the ‘‘First Point of Aries.’’
Never mind that it is not even in the constellation of Aries, but is in fact in Pisces. Of
course, due to the precession of the equinoxes, this position drifts on a timescale of
centuries, but that is of no practical interest when measuring distances to planets,
except that every half-century or so, the star catalogs get updated to allow for this.
They quote coordinates relative to an ‘‘epoch’’ such as J2000, which effectively means
‘‘updated in the year 2000.’’

Fig. 5.7. The celestial coordinate system is conceptually simple. We imagine an
enormous sphere of radius R, whose value does not matter so long is it is much bigger
than that of the Earth. We imagine a sort of transparent sphere which has two poles
above the Earth’s poles, and an equator above that of the earth. This sphere does not
rotate with the earth, but it does move so that its center is always at the center of the
earth. The ecliptic is a circle with the same center and radius as the celestial sphere,
along which the Sun appears to move throughout the year. It is known to be at an angle
of about 23.4� to the celestial equator.
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I do not intend to stick with these archaic units. Instead, Iwill normally quote right
ascensions and declinations in radians, because it will make doing the trigonometry
a whole lot easier. I use spreadsheets a lot for my calculations, and the most common
spreadsheets use radians for their trigonometric functions like sines. So, if it comes to
that, do languages like FORTRAN and C++ if you prefer to do your calculations by
writing programs.

Three-Dimensional Coordinates

I wish to define a Cartesian coordinate system for the Celestial Sphere, to make it
easier to transform into a coordinate system based on the ecliptic.
I am going to make x point toward the First Point of Aries, where the ecliptic

crosses the celestial equator in March; and z point toward the North Celestial Pole. In
Chap. 6, I will make the right ascension radians of Leo negative. This was done to
make the graph come out the right way round, not as a mirror image. For this to
happen, my y-axis has to point to the West, giving positive right ascensions (in
radians) to the West of the First Point of Aries, and negative ones to its east. Leo is
east of the First Point of Aries.
This in turn means that my coordinate system is left-handed.
To change right ascensions from hours, minutes, and seconds to radians, I used

the formula

Radians ¼ � 2pðhoursþ ðminutes=60Þ þ ðseconds=3;600ÞÞ
24

: ð5:6Þ

I then used (A.13)–(A.15) in the Appendix A to turn my right ascensions and
declinations into (x, y, z) coordinates, remembering that y = (p/2)�D, where D is
the declination.
Next, I want to know where the ecliptic is.

Let Now the Sun Go Down Along
Its Path

First, I found one point on the ecliptic. I had a photo of Saturn and its neighboring
stars taken within a few hours of Saturn’s opposition, i.e., the time at which the Sun,
the Earth, and the Saturn lie in a straight line (or at least they would if the orbits were
exactly coplanar). The sun would therefore have been diametrically opposite to the
Saturn (from the Earth).
In particular, if, at opposition, the x- and y- coordinates of Saturn on the celestial

sphere are (xSO, ySO), then the x- and y- coordinates of the Sun on the celestial sphere
at that time must be (�xSO, �ySO).
The other key piece of information is sunrise and sunset times. Most amateur

astronomers, myself included, follow these times with some care because we all want
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to know when it will be dark. Therefore, at the very least, most of us will have a
rough idea when the sun rises and sets at our own locations throughout the year.

It can pay to think carefully about what you know, because you might know more
than you think. I do not apply this principle to my bank account. I prefer to be in
denial about the size of the overdraft, but thinking about astronomy is a much less
stressful pastime.

In particular, if you know when the sun rose and when it sets, you know that the
solar midday on that day was exactly halfway between them. That gives you a time
for the solar midday. It drifts from mean time by up to 15 min because the Earth’s
orbit is a little bit elliptical, not a perfect circle, and because the ecliptic is not parallel
to the celestial equator, so you do need to know when the solar midday is.

You also know that the Earth rotates at a very nearly constant rate. If you are an
astronomer, you know that the rotation period is called a sidereal day, and it is 23 h,
56.1 min or 0.99727 days.33 All amateur astronomers experience the way in which a
given star rises about 4 min earlier each day. Of course, the reason why the earth does
not rotate in exactly 24 h is that, as it orbits the Sun, the orientation of the Sun
relative to the stars keeps changing. The Earth actually completes 366¼ revolutions
in a year.

From the rotation rate, my solar middays plus my Saturnian opposition, I was able
to work out the orientation of the Sun at midday on every day of the year from 30
August 2007 to the same time in 2008. I chose this particular year because 30 August
2007 was the date when I began to track Mars. That gave me the (x, y) coordinates of
the Sun on the celestial sphere at every Solar midday.

What about the z coordinates? The variation in z of the solar position is of course
what gives us our seasons, our long nights in Winter and our long days in Summer.
That is the key: if at any point on the earth it is sunrise or sunset, the
sun is perpendicular to the zenith. This never happens at any other times at that
location. During the day, the Sun is above the horizon, so the angle it makes with the
zenith is acute. At night, it is below the horizon, so the angle with the zenith is
obtuse.

I will now go through this calculation in detail.

w Noon

During a 90-s photographic exposure starting at 00:08:07 GMTon 25 February 2008,
I measured the right ascension and declination of Saturn near opposition to be 10 h
29 m 45 s and 11�5 m 9 s, respectively, or RA = �2.7478 radians and Dec = 0.1935
radians. The method I used will be described in Chap. 6.

I now convert these into my Cartesian coordinates using the formulae

x ¼ r cos ð’ÞsinðyÞ; y ¼ r sin ð’ÞsinðyÞ; and z ¼ r cos ðyÞ; ð5:7Þ
where ’ is the right ascension in radians, y= ((p/2)�declination) in radians, and r is
the radius of our celestial sphere. These formulae are derived in Appendix A. The
results are
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x ¼ r cosð�2:7478Þsin p
2

� �
� 0:1935

� �
¼ �0:9062r and

y ¼ r sinð� 2:7478Þsin p
2

� �
� 0:1935

� �
¼ �0:3765r:

ð5:8Þ

Hence the (x, y) coordinates of the Sun at this time must have been

ðx; yÞ ¼ ð0:9062; 0:3765Þr: ð5:9Þ
I need to declare an approximation here: I assumed the Sun’s right ascension did not
change in the 12 h between midnight and noon on 25 February. This introduces an
error of half a part in 365.25, or about 0.14%. I will live with that.
Next, I choose the day on which I wish to know the (x, y) coordinates of the Sun.

Since there will be many such days, this calculation is best done in a spreadsheet,
such as Microsoft Excel or OpenOffice Calc.
I actually got my sunrise and sunset data from the US Naval Observatory’s Web

site http://aa.usno.navy.mil. This is by no means unpatriotic of me: their Almanac is
compiled jointly with the British Navy. Was this cheating? Well, sort of. I use this site
routinely, e.g., when I was tracking Venus and Jupiter over much of 2007, so I know
that it is at the very least approximately correct, although I have not verified it by
careful daily timing. It is not easy to spot sunrises and sunsets, especially the latter,
because you have to look through a lot of atmosphere to see the horizon. At English
latitudes, it cools down in the evening before sunset, so clouds often form around
sunset; and you do not see it.
In fact, nowadays you can get a measure of these times in all weathers. The screen

of my car’s satellite navigation system changes its background color from black to
white at sunrise, and back again at sunset. I know from experience that when it
decides to change color, it corrects for position as I drive around.
Anyway, let us take the day on which I am writing this as my example: May 31,

2008. According to Uncle Sam, sunrise was 03:41 GMT and sunset was 20:12
GMT. They are both in the past: I am writing this on a laptop wired up to my
webcam as I wait for the clouds to clear so I can photograph Saturn. The early
sunrises mess up my sleep patterns, so I certainly know that they happen. The
time of Solar noon was midway between these, 11:56. It is convenient to express
this time as a fraction of the day: 0.4975 days. In Microsoft Excel, you only need
to convert the time format in the data cell to a number format and this happens
automatically.
It is 96 days from February 26 to May 31 in a leap year like 2008. 96 days is equal to

96

0:99727
¼ 96:2628 sideral days; ð5:10Þ

and therefore from noon GMT to noon GMT, the earth rotated 96.2628 times.
The 4-min difference between solar noon and noon GMT corresponds to�0.0024

sidereal days. The corresponding figure on February 25 was similarly calculated to be
+0.00836 sidereal days: solar noon that day was at 12:11.
Now I know enough to work out how many times the Earth rotated between 25

February and 31 May: 96.2628–0.0024�(+0.00836) = 96.252 times. It has therefore
changed its orientation relative to the celestial sphere by 0.252 revolutions, or
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2p� 0:252 ¼ 1:584 radians: ð5:11Þ
On 25 February, The Sun’s right ascension was

Saturn’s RA@opposition þ p ¼ �2:7478þ p radians: ð5:12Þ
Therefore on 31 May it would have been

’Noon ¼ Saturn’s RA@oppositionþ p� 1:584

¼ �2:7478þ p� 1:584 radians

¼ �1:190 radians:

ð5:13Þ

On the u Front

To continue with my example, I need to tell you my latitude. It is 52�46 m 19 s
North. (My longitude is 0�26 m 02 s East, but that is less relevant.) I got these data
from the internet map http://www.multimap.com. The same Web site also works in
the United States: it gives the coordinates of my wife’s childhood home in Seattle as
47� 34 m 27 s North and 122� 18 m 23 s West. I cannot remember the Zip Code: all I
did was type in the address.

Anyway, I have already told you the sunrise, noon, and sunset times. To get the
Sun’s declination from these requires a little bit of low cunning. Indeed, as stated
earlier, at these times, the Sun is low: so low it is at right angles to the zenith.

I can exploit that fact! I know the coordinates of my positions on the Earth at
these times relative to those at noon; or at least I can easily work them out. I then
extrapolate a line from the Earth’s center through my backyard out as far as I like. I
then assume that the Sun is so far away that its direction is the same from any point
on Earth; and I neglect the apparent motion of the Sun along the ecliptic during May
31. I imagine a line from the Earth’s center toward the Sun. It does not have to go all
the way to the Sun. It can go further, or less far. It does not matter; this vector will
still be perpendicular to my zenith vector at sunrise and sunset.

Let us call these lines my zenith vector U (for ‘‘up’’) and the solar vector S. I show
in the Appendix A, how the scalar or ‘‘dot’’ product of two vectors is equal to zero if
the two vectors are at right angles to one another. I further show that the dot product
is equal to UxSx + UySy + UzSz, where Ux, Uy, and Uz are the x-, y- and z-components
of U, and Sx, Sy, and Sz are the x-, y- and z-components of S. Therefore

UxSx þ UySy þ UzSz ¼ 0: ð5:14Þ
This gives me an equation to solve for Sz. I can do it, because in principle I know all
the other components, even if I have not yet worked them out in detail.

I cannot translate my value of ’Noon for May 31st into the x- and y-coordinates on
the celestial sphere using (5.7), because I do not yet know the declination ys.
However, I do know that the values are
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Sx ¼ r cosð� 1:190ÞsinðysÞ and Sy ¼ r sinð� 1:190ÞsinðysÞ; or

Sx ¼ ½r sinðysÞ�cosð� 1:190Þ and Sy ¼ ½r sinðysÞ�sinð� 1:190Þ: ð5:15Þ

I have taken the value of ’Noon from (5.13). As long as I am careful to make my
value of Sz be

Sz ¼ ½r sinðysÞ�cosðysÞ ð5:16Þ
I have not cheated. The distance along S is not r, the distance to the celestial sphere,
but r sin(ys).
What about little me here on Earth? Well, I know from the sidereal rate of

terrestrial rotation and from the times of solar noon and of sunset that I have
rotated around the Earth’s axis by an amount determined as follows: The solar
noon was at 11:56. Sunrise was at 03:41. I have made a slight correction because the
almanac definition of sunrise is the appearance of the top of the Sun above the
horizon. Very crudely, and a bit wildly, I have said that, from the well-known fact
that the sun occupies half a degree of arc in the sky and from the fact that it does not
rise vertically, the midpoint of sunrise was 1/720 of a day later, or at 03:44. That is 8 h
12 min, or 8.2 h, or (8.2/24) � 0.9972 = 34.17% of a sidereal day before noon. This
corresponds to a rotation of 2.152 radians.
At solar noon, my zenith vector will have the same right ascension as the Sun,

though of course a different declination. So at sunrise I simply add my 2.152 radians
to the right ascension of the noon solar vector, and I have the right ascension of
my zenith vector. I add rather than subtract in moving backward from noon to
sunrise, because my zenith vector moves eastward, and I set eastward ’ to be
negative when I converted to radians. I know the declination of my zenith vector:
it is simply my latitude. In spherical polar coordinates, the zenith vector at sunrise
was therefore

U ¼ ðRbirtrary;fNoon þ cNoon�Sunrise; ðp=2Þ � lÞ
¼ ðRbirtrary;fZenith@Sunrise; yZenith@SunriseÞ; ð5:17Þ

where cNoon-Sunrise is the Earth’s rotation between sunrise and noon, l is my latitude,
and Rbitrary is the arbitrary (R-bitrary: geddit?) length of the zenith vector. All I care
about with U is that it is at right angles to S at sunrise. I am not worried how long
it is.
I now collect up what I have worked out and substitute (5.7), (5.15), (5.16), and

(5.17) into (5.14). Then

UxSx þUySy þUzSz ¼ ½r sinys�Rbitrary

�
cosð’sÞcosð’Zenith@SunriseÞsinððp=2Þ � lÞ
þ sin ð’sÞ sin ð’Zenith@SunriseÞsinððp=2Þ � lÞ
þ cosðysÞcosððp=2Þ � l

0
B@

1
CA

¼ 0 ð5:18Þ
I can cancel the factor ½r sin ys�Rbitrary in (5.18). I can also simplify the latitude

terms using (A.2) in the Appendix A: sinððp=2Þ � lÞ ¼ cosðlÞ and vice versa. Then
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cosð’sÞcosð’Zenith@SunriseÞcosðlÞ
þ sin ð’sÞ sin ð’Zenith@SunriseÞ cos ðlÞ
þ cosð’sÞsinðlÞ

0
@

1
A ¼ 0: ð5:19Þ

The only unknown in (5.19) is cos(ys). You can solve it for this. I actually used a
simplification based on knowing that

cosð’sÞcosð’Zenith@SunriseÞ þ sinð’sÞ sin ð’Zenith@SunriseÞ
¼ cosð’s � ’Zenith@SunriseÞ ð5:20Þ

but if (5.20) looks like black magic to you, do not worry. I only mention it in case
some wit accuses me of not noticing this and writes a bad review. You do not need to
use (5.20); and its derivation is not the world’s easiest.

Without (5.20), I plug the numbers I know for May 31 into (5.19), namely
’s ¼ �1:190; ’Zenith@Sunrise ¼ 0:958; and l ¼ 0:650;all in radians, and I obtain

0:372� 0:576� 0:796
þð�0:928Þ � ð0:818Þ � 0:796
þ cosðysÞ � 0:605

0
@

1
A ¼ 0: ð5:21Þ

Whence

y ¼ 1:178 radians ð5:22Þ
.

As implied, I used a spreadsheet (Microsoft Excel) to do this calculation for the
year August 30, 2007 through August 29, 2008. The results are shown in Fig. 5.8.
They are shown as x-, y- and z-components of the vector S. I have compared them
with the values downloaded from the US Naval Observatory. It is very hard, even
when I look at the raw Excel graph on my computer screen, to see a difference
between the Navy’s values of the x- and y-components and mine. I can see a
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Fig. 5.8. Components of x, y, and z components of the vector S pointing to the sun.
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difference between the z-components. Mine are a little bit too far South. I have the
Sun overhead half a degree too far South at both solstices.
Another way to check my calculation is to take the published value of the Earth’s

tilt (23.44�: according toWikipedia’s Earth article, 23.45� according to ref. 33, p. 57),
and transform the components of my vector S so that the equator of my new
coordinates is the ecliptic for a 23.44� tilt.
The method is given in the Appendix A, (A.18)-(A.26).
Ideally, the Sun should always have zero declination with respect to the ecliptic.
According to my measurement and calculation, it actually has the declination

shown in Fig. 5.9. Again, we see that ‘‘my’’ Sun is a little too far South, by up to 0.014
radians, or 0.8�. Given the approximations I made, that is acceptable.
I could not have been contenter.

Conclusion
In addition to showing you how long a day is on Mars, I have shown you how to
work out the right ascension, declination and position along the ecliptic of the sun
from tables of sunrise and sunset data for your locality.
We are now ready to go to work on the distances to the superior planets.
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Fig. 5.9. The Declination of the Sun, according to my measurement and calculation,
with respect to (w.r.t.) the ecliptic, assuming a tilt of 23.44�.
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CHAPTER SIX

Getting Further
from the Sun:

How do you Ride
an Epicycle?

I got the distance to Venus from a quick-hit measurement. For the superior planets,
I was not saved from arduous labor by quick wit. I had to collect a lot of data and
crunch many numbers. For both Saturn and Mars I collected more data than I
absolutely needed. One reason for this was that I simultaneously read around to see
if I could find a useable analysis technique. I simply did not know how much data I
was going to need.

The other reason was that astronomy is my hobby, and I was simply having a bit of
fun watching the apparent movement of the planets. I did not need to care very
much about whether my science was efficient, unlike in the day job.

First, I will take you through my photographic techniques. I am not afraid to
experiment, knowing that some ideas will bomb out – but I do keep things simple
and stupid. Then I will show you how to extract the coordinates of a planet from a
photo. My simplified model of the planet’s orbit is that it is circular, so I will take you
through the geometry of circular orbits, and show you how to work out what you
would expect to see for such an orbit. Finally, I will compare such orbits with my
photographic data, and show you that by assuming orbits to be circular, you can get
a good distance to Saturn and a reasonable one for Mars.

I suppose you could call the case for using circular orbits the circular argument. . .

J.D. Clark, Measure Solar System Objects and Their Movements for Yourself!,
Patrick Moore’s Practical Astronomy Series,
DOI: 10.1007/978-0-387-89561-1_6, © Springer Science + Business Media, LLC 2009

97



Photography
Not the least of the talents of the early astronomers such as Galileo was their ability
to draw accurately. In some circles, such as the Internet-based Society for Popular
Astronomy, to which I belong, this is still encouraged. I have the greatest respect for
people who can do this, not least because I cannot draw at all well.
If your drawing is good enough to record the positions of planets relative to the

stars, you could most certainly track the planets that way. That is how people used to
do it.
However, I am reduced by lack of talent to photography for all my imaging.
For astronomical purposes I use a couple of Philips SPC900NCTM webcams. I

bought a second because I found that continually swapping the lens and the
telescope adapter, with a UV/IR filter as a dust cover, was resulting in a lot of dust
on the chip.
I hope by now you have latched onto the idea that to make most measurements,

you do not need the kind of photographic quality that will get you published in Sky
and Telescope. What you do need is fairly regular pictures, whether the seeing is good
or lousy. The people who get shots published in magazines do not show you the
photos they canned because they had to wait days if not weeks for good seeing. We
do not have that luxury here.
My first method of photographing the planets was to place the webcam on a

camera tripod, and shoot a movie of the sky. The field of view was about enough for
the constellation of Leo, or for the two constellations of Gemini and Auriga. To deal
with the tracking, I simply let my stacking software RegistaxTM take care of the
apparent movement of the sky. How much exposure was needed depended on the
conditions. Ninety seconds at five frames per second was as much as I needed. I tried
a 5-min movie, but there was too much rotation for Registax to cope with. On really
clear nights I could have got away with less, but by the time I had reprogrammed my
video capture software – K3CCD ToolsTM – the movie was already shot.
The method really only worked when there was a bright planet in the picture.

Most nights, the stars twinkled too much for Registax to track them. It can track a
handful of really bright stars such as Capella (a Aurigae). I tried photographing
constellations this way. Orion was pretty easy, and I got a nice picture, but Ursa
Major was a complete failure. There was nothing bright enough to track.
If there was a trackable object in the shot, then on clear nights I could certainly see

more stars in the photo than with the naked eye. This is hardly a severe test of the
technique: in a suburban backyard with a laptop computer next to me, I was not
exactly dark adjusted.
The worst nights were the ones with slight fog that you could barely see. The

orange glow of the street lights reflects depressingly well from the water droplets.
I suppose I could have experimented with light pollution filters, but it was not really
necessary. I got all the photos I wanted; and rejected very few as too poor to make
measurements from.
Also, this camera comes with a glass lens, which will keep out the UVand the IR to

which the chip is sensitive.
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As time went on, I realized that one of the difficulties with this technique is that it
is not very good on partly cloudy nights. I was tending to take few pictures because
there were not enough completely clear nights. In the event, this proved not to be a
serious problem; I had enough data to make good measurements (Fig. 6.1).

At one level, this photography was easy. With Registax, it took little skill to obtain
good pictures. There was a bit of an art to setting the exposure level in the webcam
driver, so that the sky was dark but the stars were still visible, but not much of a one.
If the picture was no good, I just tried again.

Eventually, however, I became dissatisfied with this technique, mostly because it
was hard to triangulate accurately to get good right ascension and declination
coordinates for the planets. I discuss this point below.

Another method, which I have not tried, is to attach a single-lens reflex camera
with a telephoto lens to a guided telescope mount and take a long exposure photo.
I am sure that this tried-and-tested method will work, but I cannot tell you from
experience how good it is at tracking planets.

Castor & Pollux

Mars

Gemini

Taurus

Auriga

Fig. 6.1. One of the better photos taken with a webcam. You can see plenty despite the
presence of the Moon. The Moon was only a problem on misty nights. The blossom on the
tree branch shows how much street light I have to live with. This vegetation is not sharp
because Registax was tracking Mars, not the tree. I would like to show you a poor but
useable photo, but I doubt if it would reproduce in a book. Suffice it to say that if you can
see ten stars well enough to find their centers on the picture, you have a useable photo. On
this one, on my PC screen, I can see 28 stars.
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As an experiment, I had a go at placing the webcam behind a 26-mm eyepiece on
my 8 in. f/6 telescope. This technique is known in the photography books as afocal
coupling,34 although I have also seen it called eyepiece projection. Learning to do this
was fiddly, but rewarding (Fig. 6.2).
To hold the webcam onto the eyepiece, I bought a digital camera holder from a

nearby firm called Scopes’n’SkiesTM, who share premises with a firm called Astro
EngineeringTM that makes little mechanical add-ons for astronomy. The webcam did
not fit, but, fortunately, they had lots of spare Astro Engineering bits and sold me the
extra piece I needed to make the assembly work. Although they were, as always,
courteous and helpful, I did detect some skepticism that this arrangement would
work. I was not sure either, but was willing to risk £25 ($50) in the attempt.
I need not have worried. It works just fine on my 6-in. and 8-in. reflectors. I only

found out about the 6-in. instrument because of an emergency. One Friday night,
the electronic dual axis drive controller on my Sky-Watcher EQ5TM mount began to
sizzle and emit burning smells. It never worked again.
‘‘Er, that’ll take six weeks to obtain, Sir.’’
‘‘But it can’t. I have a book to write and a publisher’s deadline. I really need to

resume these observations.’’
To give James at Scopes’n’Skies his due, he understood and got me a new

controller in 4 days. Meanwhile, I had to use the 6-in. machine, which has its own
mount and controller.

Fig. 6.2. Attaching the webcam to an eyepiece in afocal coupling mode. The holder
was supplied by a firm about an hour from here called Scopes’n’Skies, who are on the
same premises as a firm called Astro Engineering that makes little mechanical widgets for
astronomy. There is an irritating LED on top of the camera, which I covered with electrical
tape.
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With the 8-in. beast, I found that a 5 min exposure at five frames per second (fps)
gave better results than a 90-s exposure. After stacking, there was much less pixel
noise in the pictures. When Saturn was still high in the sky after dark, on some nights
I could photograph stars as dim as Magnitude +12.5. Most nights I could capture
Magnitude +10.5 ones.

The tricky bit was getting good alignment between the axis of the webcam lens
and the axis of the eyepiece. Once I had achieved this, I tightened the grub screws so
darn tight I wonder if I will ever get them undone. The one screw you cannot
overtighten on those webcams is the one that goes into the thread at the base of the
camera. If you do, you will detach the plastic mount holding the metal thread.
Fortunately, it can be superglued back, but this is not ideal. Superglue is not very
waterproof; and in my part of the world you do get dew.

The other, much more major, irritant about Philips webcams for astrophotogra-
phy is that there is a bright white LED just above the lens. Even when covered with
black electrical tape, this LED does cause stray light. No doubt by writing your own
software driver, you could suppress this, but why do not they give you a radio button
on the supplied driver to turn off this LED?

Astrometry: Getting Data
from Photographs

I had to solve the problem of how to work out the right ascension and declination of
a planet on a photograph. The method I am going to show you will only work if the
star field can be approximated by a Mercator projection – you know, like on maps of
the Earth where the north–south lines are always parallel and vertical (Fig. 6.3).

This approximation requires two preconditions. First, it is not good at all near the
celestial poles – not that there are any Solar System planets there. Second, it only
works over small areas of the sky. Even over the sickle of Leo, it is a bit crude.
Keeping within the range from a Leonis to d Leonis, or 0.20 to 0.35 radians of
declination, gives acceptable results. Large ranges of right ascension do not ruin the
approximation: it is large declination changes that require a better approximation
(Fig. 6.4).

In Fig. 6.5, a Mercator projection is shown of two stars A and B, and a planet U,
whose location is unknown.

It is worth noting that the names of A and B have been chosen so that the sequence
A, B, and U is clockwise. Also, U is below the line AB. We will look at the case where
U is above AB later. In Fig. 6.5, several angles have been worked out. I am now going
to work out the tangent of the gradient of the lines AU and BU. The coordinates of A
and B are (aR, aD) and (bR, bD), where the subscripts R and D refer to right ascension
and declination, respectively. I am assuming that these are known. You can easily
find them on the Internet using the usual search engines. Always use at least two
sources of data to minimize the risk of misprints. At the time of writing, there is a Web
site called http://www.sky-map.org with a very comprehensive, almost infinitely
zoomable, sky map. It contains stars in the Henry Draper, Tycho, and US Naval
Observatory catalogs. I cross-checked the stars I used against the original catalogs,
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which are also on the Internet, and found one error, which I think must have been a
misnamed star.
The difference in declension divided by difference in right ascension of a pair of

stars is called its gradient in mathematical jargon. This gradient is also equal to the
tangent of the angle the line makes with the right-ascension axis. In other words,

uD � aD

aR � uR
¼ tanðA� HÞ;

bD � uD

bR � uR
¼ tanðB þ HÞ:

ð6:1Þ

If you have half-forgotten what a tangent is, check out the Appendix A. Before
proceeding to solve (6.1), I am going to remind you of the proof that the gradient of
the angle is a tangent. This is proved in Fig. 6.6.
There is another hoop we have to jump through. What if the plane is above the

line AB? In Fig. 6.7 I show that it does not matter so long as the stars A and B are
named so that the sequence A, B, and U remains clockwise. Finally, I should point
out that (6.1) break down if either of the denominators is zero or if the line AB is
vertical. Avoid using reference stars that make this happen.

Leo: Mercator Projection
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Fig. 6.3. A Mercator projection of the brightest stars in Leo. From my light polluted
backyard, these are pretty much the only stars I can see. I have included r Leonis, which I
can barely see, because it is on the ecliptic; and can be used to benchmark the move-
ments of nearby planets. The units of right ascension and declination I have used are not
the usual ones of a 24-h clock one way and �90� the other. Instead, I have converted
them to radians (see previous chapter). There are 2p radians in either 360� or 24 h. I also
had to make the radians negative or I would have gotten a mirror image of Leo. Using
radians will make subsequent calculations a little bit easier: software, especially spread-
sheets like Microsoft ExcelTM, use them for trigonometry.
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Fig. 6.4. A more accurate projection of the brightest stars in Leo. The lines of right
ascension are not parallel. The light dotted lines are the boundaries of Leo: the darker one
that passes by Regulus is the ecliptic. (Source: http://en.wikipedia.org/wiki/Image:
Leo_constellation_map.png, where there is a GNU free document license granted.)

Fig. 6.5. Two stars A and B and a planet U. Some trigonometric angles have been
worked out. Repeated use has been made of the rule that the angles of a triangle add up
to 180� or p radians.
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I am going to tell you what the solutions for (uR, uD) are, and then prove that they
are correct. The as-yet-unproved solutions are (6.2):

uR ¼ aD � bD þ ½aRtanðA�HÞ� þ ½bRtanðB þHÞ�
tanðA� HÞ þ tanðB þ HÞ ;

uD ¼ ½aDtanðB þ HÞ� � ½tanðA� HÞfðbD þ ½ðaR � bRÞtanðB þ HÞ�Þg�
tanðA� HÞ þ tanðB þ HÞ :

ð6:2Þ

Fig. 6.6. Two stars A and B and a planet U. The tangent of y is opposite divided by
adjacent or (bD�uD) divided by (bR�uR).

Fig. 6.7. Two stars A and B and a planet U, which is now above the line AB. Some
trigonometric angles have been worked out. Repeated use has been made of the rule that
the angles of a triangle add up to 180� or p radians. The angles governing the gradients
of the lines AU and BU are the same is in Fig. 6.5. This only happens if I insist on naming
stars A and B such that the sequence A, B, and U remains clockwise. Hence (6.1) are still
valid in this case.
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To prove them, let me substitute them into (6.1). You then get

½aDtanðB þ HÞ� þ ½tanðA�HÞ�fbD þ ½ðaR�bRÞtanðB þ HÞ�g
tanðA�HÞ þ tanðB þ HÞ � aD

aR � aD�bD þ ½aR tanðA�HÞ� þ ½bRtanðB þ HÞ�
tanðA�HÞ þ tanðB þ HÞ

¼ tanðA�HÞ and

bD � ½aDtanðB þ HÞ� þ ½tanðA�HÞ�fbD þ ½ðaR�bRÞtanðB þ HÞ�g
tanðA�HÞ þ tanðB þ HÞ

bR � aD�bD þ ½aRtanðA�HÞ� þ ½bRtanðB þ HÞ�
tanðA�HÞ þ tanðB þ HÞ

¼ tanðB þ HÞ:
ð6:3Þ

What a mess! The quickest way to untangle this lot is to find common denomina-
tors. The obvious one is tan(A�H) + tan(B + H). I then end up with a huge, messy
pair of equations, which I am going to expand right out. All I am doing here is high
school algebra – just rather a lot of it.

½aD tanðB þ HÞ� þ ½tanðA�HÞ�fbD þ ½ðaR�bRÞtanðB þ HÞ�g�½aDtanðA�HÞ��½aDtanðB þ HÞ�
tanðA�HÞ þ tanðB þ HÞ

�aD þ bD�½aRtanðA�HÞ��½bRtanðB þ HÞ� þ ½aRtanðA�HÞ� þ ½aRtanðB þ HÞ�
tanðA�HÞ þ tanðB þ HÞ

¼ tanðA� HÞ;

½bDtanðA�HÞ� þ ½bDtanðB þ HÞ��½aDtanðB þ HÞ��½tanðA�HÞ�fbD þ ½ðaR�bRÞtanðB þ HÞ�g
tanðA�HÞ þ tanðB þ HÞ

½bRtanðA�HÞ� þ ½bRtanðB þ HÞ��aD þ bD�½aRtanðA�HÞ��½bR tanðB þ HÞ�
tanðA�HÞ þ tanðB þ HÞ

¼ tanðB þ HÞ:

ð6:4Þ
I still need to expand out some brackets, and I also cancel some terms:

½aDtanðB þ HÞ þ ½tanðA�HÞ�fbD þ ½ðaR�bRÞtanðB þ HÞ�g
�½aDtanðA�HÞ��½aDtanðB þ HÞ�

n o
�aD þ bD�½aRtanðA�HÞ��½bRtanðB þ HÞ�þ½aRtanðA�HÞ�

þ ½aRtanðB þ HÞ�
n o ¼ tanðA� HÞ;

½bDtanðA�HÞ� þ ½bDtanðB þ HÞ��½aDtanðB þ HÞ�
�½tanðA�HÞ�fbD þ ½ðaR�bRÞtanðB þ HÞ�g

n o
½bRtanðA�HÞ� þ ½bRtanðB þ HÞ��aD þ bD�½aRtanðA�HÞ�

�½bRtanðB þ HÞ�
n o ¼ tanðB þ HÞ:

ð6:5Þ

There is still more bracket expanding to do:

½aDtanðB þ HÞ� þ ½bDtanðA�HÞ� þ ½aRtanðB þ HÞtanðA�HÞ�
�½bRtanðB þ HÞtanðA�HÞ��½aDtanðA�HÞ��½aDtanðB þ HÞ�

n o
�aD þ bD � bRtanðB þ HÞ þ ½aRtanðB þ HÞ� ¼ tanðA� HÞ;

½bDtanðA�HÞ� þ ½bDtanðB þ HÞ��½aDtanðB þ HÞ��½bDtanðA�HÞ�
�½aRtanðA�HÞtanðB þ HÞ� þ ½bRtanðA�HÞtanðB þ HÞ�

n o
½bRtanðA� HÞ� � aD þ bD � ½aRtanðA� HÞ� ¼ tanðB þ HÞ:

ð6:6Þ

Now I can start to look for terms which cancel. The result is

½bDtanðA�HÞ� þ ½aRtanðB þ HÞtanðA�HÞ�
�½bRtanðB þ HÞtanðA�HÞ��½aDtanðA�HÞ�

bD þ ½aRtanðB þ HÞ� � ½bRtanðB þ HÞ� � aD
¼ tanðA� HÞ;

½bDtanðB þ HÞ�½aDtanðB þ HÞ��½aRtanðA�HÞtanðB þ HÞ�
þ ½bRtanðA�HÞtanðB þ HÞ�

bD � aD � ½aRtanðA� HÞ� þ ½bRtanðA� HÞ� ¼ tanðB þ HÞ:
ð6:7Þ
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If we reorder some of the terms, it will become clear that there is a great big
cancellation we could do

fbD þ ½aRtanðB þ HÞ� � ½bRtanðB þ HÞ� � aDgtanðA�HÞ
bD þ ½aRtanðB þHÞ� � ½bRtanðB þHÞ� � aD

¼ tanðA� HÞ;
fbD � aD � ½aRtanðA� HÞ� þ ½bRtanðA�HÞ�gtanðB þHÞ

bD � aD � ½aRtanðA� HÞ� þ ½bRtanðA� HÞ� ¼ tanðB þ HÞ:

ð6:8Þ
Aha, we are getting there. Most terms now cancel, leaving

tanðA� HÞ ¼ tanðA�HÞ
tanðB þ HÞ ¼ tanðB þ HÞ ð6:9Þ

Equations (6.2) did not look very obviously true, but they are equivalent to (6.9).
Not even those high priced lawyers who get rich crooks acquitted could argue that
(6.9) are false.
With my webcam in afocal coupling mode, I could see a field of about one degree

square. Over an area this small, the Mercator approximation is excellent. Doing ten
triangulations would yield the same coordinates to within parts per thousand. The
limitation on the technique was that it is not easy to determine the location of the
center of Saturn when it is overexposed, only occupies a few pixels, and is sometimes
a funny shape because of satellites which are not quite separately resolved.
I did not find this triangulation method in a book: my wife, daughter, and I

discussed how to devise a simple method on a long car journey one day. We had
plenty of time to kick ideas around, and tried writing a couple of them down when
we got home.
I asked a professional astronomer friend, who once wrote a book on statistics for

astronomers, why I did not find this apparently simple method in the textbooks. His
answer was brief and to the point: professionals use mathematics to correct for
optical distortion, whereas I have not.
How much does this matter? My wide-angle photos certainly suffered a lot of

distortion. If I took overlapping photos and used Microsoft Digital Imaging SuiteTM,
a cheaper version of PhotoshopTM, to overlay the images, they simply did not quite
overlay. Compared to the Mercator-distortion error, this was small beer, so I did not
get excited about it.
When I began using a telescope to track Saturn, I discovered something interest-

ing. If a star, such as HD 89364 in Fig. 6.8, was toward the edge of the field of view,
when the avi frames were stacked, optical distortion would sometimes make the star
appear to be an elliptical blob, not a circular one. In other words, the star did not
quite stack in the same place. If that happened, I simply did not triangulate against
this star.
So, once again, digital photography and frame stacking have changed the rules of

the astronomy game for the better. On a single-exposure 35-mm film shot, you
would have to allow for distortion. On stacked digital photos, you can spot it and
ignore it.
Ignoring a few stars is not that big a deal. If you can see n undistorted stars on the

photo, each one can be paired with (n�1) other undistorted stars for triangulation.
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That makes n(n�1) pairs. Oops! No, it does not. I have counted each pair twice. So
the actual number of pairs of stars is (1/2)n(n�1). It there are eight undistorted stars
in the photo, there are (1/2) � 8 � 7 = 28 pairs of stars. That is a lot more than you
need. Ten is plenty to check the reproducibility of the triangulation. Five good stars
in the picture will give you (1/2) � 5 � 4 = 10 pairs of stars. By the way, you can
make your friends do quite a good double-take by asserting after a couple of drinks
that you have ten pairs of fingers on each hand.

I exploited this fact on my Mars photos to get around the poor Mercator
approximation. Fortunately for me there were several stars in Gemini and Taurus
with very similar declinations to Mars. I could usually find five of them to triangulate
from. That was more by luck than judgment: it was not true for Saturn in Leo.

Motion of Saturn Tracked using a Camera
behind the Telscope Eyepiece, 2008
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Fig. 6.8. Toward the end of the project I began to use a telescope to track Saturn, as
opposed to a stand-alone webcam. This gave much more precise results, because I was
no longer trying to impose aMercator projection onto the whole of Leo. Dates are given in
American format: 04/05 is April 5th. Some dates are omitted for clarity, especially near
the turnaround from westward to eastward motion, when there was little apparent day-to-
day motion. If I could wind the clock back, I would have used this tracking method for the
entire project, although with fast-moving Mars, it would have been quite a challenge to
identify all the nearby stars from a catalog. The gaps in the data give you a good idea of
when it was cloudy all night. Once I had learned the technique, I needed about half an
hour of intermittently clear sky to obtain a picture. I would shoot avi movie for 5 min if the
clouds let me, which they usually did. Once I realized I could detect daily motion, even
close to the stationary points, I began to take a lot more photos. Whether I would have
had the patience to keep this up for 200 days I do not know. At the outset of the project I
had no idea what I would detect. I simply had a go to see what I could see. I did not even
know if I would detect any motion in Saturn. Mars is a different kettle of fish: you can see its
day-to-day movement with the naked eye.
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Actually Doing the Triangulation

I did this using the computer-aided drafting (CAD) software package TurboCADTM.
Steps 1–4 are shown in Figs. 6.9–6.12. Step 5: I used a Microsoft Excel spreadsheet to
enter the angles. Beforehand, I had programmed it with the right ascensions and
declinations of the nearby stars. Once I had entered my data from TurboCAD, I had
Excel to do the calculation of (6.2).
I found that the best way to do this was to have a pre-laid out worksheet, and copy

it from day to day, so that I had one worksheet per photo. I used dates to name the
worksheets. I collected the measured right ascensions and declinations into a
summary worksheet, from which I could plot graphs. I found that copying each
day’s worksheet was an easy way to keep track of the occasional changes I had to
make whenever the target planet moved so much that in one triangles I was using,
the order of A, B, and U went from clockwise to anticlockwise. I would then have to
switch star A to star B and vice versa.
I have to confess that I was taken aback by how much work all this was. It took me

two or three weekends of pretty well continuous slog. Did it nearly drive me
crazy? You bet! Edison’s dictum about research being ‘‘99% perspiration and 1%
inspiration’’ proved yet again to be true. You do need patience. If you are not used to
CAD software, you will need to persist a little bit to become fluent with it. I always
find this when I try a new CAD package: I am all fingers and thumbs for a while.

Fig. 6.9. Step 1: Import the png image from Registax into the CAD package, and
identify the stars. I used abbreviated names: 320 for HD89320, 558 for TYC-843-558-1,
and so on. My identifications came from the online catalog http://www.sky-map.org,
which I checked against the online copies of the Tycho and US Naval Observatory
catalogs. Links to these are given in sky-map.org.
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I also made the classic data analysis mistake of collecting a great pile of data before
analyzing it. This was for the simple reason that, at the start of the project, I did not
know how to analyze the data. In parallel with the photography, I was doing a great
deal of reading to try to find a method. I got lots of ideas, but books written by celestial
mechanics professors for their graduate students are not a rich source of simple
techniques for amateur astronomers. Also, in fairness to the professors, there really
is not a one-size-fits-all method. You have to use different methods for different orbits,
depending on how great the eccentricity is, and how inclined to the ecliptic the orbits
are.35 Thus a technique that works well for Pluto, whose orbit is highly eccentric and
inclined at 17� to the ecliptic, may completely fail to find the orbit of Saturn, whose
orbit has low eccentricity and is close to the ecliptic (Figs. 6.13–6.16).

Three-Dimensional Coordinates

I used three-dimensional coordinates as described in the Appendix A. If you are not
familiar with three-dimensional coordinates, I suggest you read this part of the
Appendix, or you may get mental appendicitis.

Fig. 6.10. Step 2: with the ‘‘snap’’ feature turned off, draw circles centered on each
star. You will need to zoom in to each one to do this accurately. It may take several
attempts to get a satisfactory result, especially with dim stars, but you will improve
considerably with practice. Saturn presents a particular challenge which Mars does
not: it is elliptical and occupies maybe 20 pixels in a shot like this. Sometimes this ellipse
is distorted by satellites which cannot be separately resolved. I never found a really
satisfactory answer to this. Drawing an ellipse and moving it around is about as good
as it gets. Incidentally, in this picture, Titan is to the left of Saturn; and over several nights I
was able to identify the object to the upper right of Saturn as Iapetus because it followed
Saturn, not the Stars.
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I am going to make my x-axis point toward the First Point of Aries, where the
ecliptic crosses the celestial equator in March; and z point toward the North Celestial
Pole. You may recall that, in Fig. 6.3, I had the right ascension radians of Leo as
negative. This was done to make the graph come out the right way round, not as a
mirror image. For this to happen, my y-axis has to point to the West, giving positive
right ascensions (in radians) to the West of the First Point of Aries, and negative ones
to its east. Leo is east of the First Point of Aries.
This in turn means that my coordinate system is left-handed.
To change right ascensions from hours, minutes, and seconds to radians, I used

the formula

Radians ¼ �
2p hoursþ minutes

60

� �þ seconds
3;600

� �� �
24

: ð6:10Þ

I then used (A.13) and (A.15) in the Appendix A to turn my right ascensions and
declinations into (x, y, z) coordinates, remembering that y = (p/2)�D, where D is
declination. Having done that, I used (A.24) and (A.26) in the Appendix A to obtain
a set of (x 0, y 0, z 0) coordinates with the x 0y 0-plane being the ecliptic. This is easy to
set up in Microsoft Excel or OpenOffice Calc. Using (A.16) and (A.17) in the
Appendix A I could convert these back to polar coordinates. Again this is straight-
forward in a spreadsheet program.
From Figs. 6.17 to 6.20, you can see that the approximation that the planets orbit

along the ecliptic is by no means perfect, but it is not a bad approximation.

Fig. 6.11. Step 3: With the ‘‘snap’’ feature set to ‘‘center,’’ draw lines from the centers
of the circles where you think the stars are to the circle or ellipse you drew over the planet.
This will place these lines with mathematical exactness to within the (very high) numerical
accuracy of the software and the computer. Furthermore, you can do this very quickly. The
hard work was done centering the circles on the stars.
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If the planetary orbits all lay in exactly the same plane, then the planets would all
move along the ecliptic, the imaginary line shown in Fig. 5.7. The eight known major
planets orbit in approximately the same plane, but the superior planets only deviate
from coplanarity by up to 2.5�.36 They therefore appear to move very close to, but
not quite on, the ecliptic. In the present analysis, we will ignore the slight off-ecliptic
movement.

Looking down on the ecliptic at some time t, from or from above the north pole of
the ecliptic, we would see a triangle with the Sun at one vertex S, the Earth at another
vertex E, and the superior planet at the third vertex P. We also need to consider a few
other points in the plane of the ecliptic, notably the point O through which the
planet passes when it is at opposition to Earth, i.e., when SEP is a straight line, not a
triangle with finite area. We also need to consider the line FG shown in Fig. 6.21.
This line is parallel to the line SO, goes through the center of the Earth, and it is
convenient to choose the position of F such that the angle OSF is a right angle.

An observer on Earth looking along EG at time t will see the same star field as
he or she would at the time topp of opposition looking along O, when the Earth

Fig. 6.12. Step 4: With the ‘‘snap’’ feature set to both ‘‘center’’ and ‘‘nearest object,’’
draw lines between the centers of the chosen pairs of stars. Then use the dimensioning
tools to measure the angles ABU and BAU per Figs. 6.5–6.7. I set the measurement units
to be radians, and the precision to be three decimal places. For stars at very similar
declinations to Mars, the angles were very shallow, and I got noticeably more reproduc-
ible positions for Mars if I used four decimal places. To prevent the image becoming too
cluttered I put the lines AB (per Figs. 6.5–6.7) and the angles on different ‘‘layers’’ within
the CAD file. In CAD jargon, ‘‘layers’’ are the software analog of different layers of tracing
paper that draftsmen used to make their engineering drawings more intelligible in the
not-so-good old days of drawing boards. I never found out what the limit to the number of
layers in TurboCAD is: I have used over 80 in a single file in my day job.
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Leo: Mercator Projection
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Fig. 6.13. Saturn moving within Leo. On this scale the movement cannot be seen in
detail. The measurements started on 6 November 2007 and continued until 22 May
2008.

Observed Track of Saturn 2007/8
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Fig. 6.14. Close-up of Saturn moving within Leo. The arrows indicate the directions of
apparent motion of the planet. The change from eastward to westward motion and back
is the so-called epicycle, which so confused the ancients.
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Positions of Mars Relative to Stars 2007/8
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Fig. 6.15. Positions of Mars from 30 August 2007 to 2 May 2008. During this time,
Mars appeared to move relative to the heavens much more than Saturn. It crossed from
Taurus into Gemini, then went back almost to b Tauri (also known as g Aurigae) before
returning eastward through Gemini.
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Fig. 6.16. Repeat of Fig. 6.15 with the stars removed for clarity. The arrows show the
eastward (direct) motion and the intervening period of retrograde (westward) apparent
motion. The retrograde motion was from 16 November 2007 to 30 January 2008. This
was a shorter period of time than the retrograde motion of Saturn, which lasted 4½
months.
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Saturn: Position along Ecliptic, 2007/8
Zero = Sun at Vernal Equinox
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Fig. 6.17. ‘Right ascensions’ measured for Saturn along the ecliptic, not the celestial
equator.
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Fig. 6.18. Angles relative to ecliptic north pole measured for Saturn along the ecliptic,
not the celestial equator. Notice the much greater precision obtained once I began using
a telescope to track the planet after Day 215. If Saturn were on the ecliptic, the angle
relative to the ecliptic north pole would be p/2 or 1.571 radians.
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Mars: Position along Ecliptic, 2007/8
Zero = Sun at Vernal Equinox
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Fig. 6.19. ‘‘Right ascensions’’ measured for Mars along the ecliptic, not the celestial
equator.
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Fig. 6.20. Angles relative to ecliptic north pole measured for Mars along the ecliptic,
not the celestial equator. If Mars were on the ecliptic, the angle relative to the ecliptic north
pole would be p/2 or 1.571 radians.
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would be along the line SO. Indeed, the planet P would then appear to be in the
direction SO.
The apparent movement of P relative to the stars is indicated by the angle b in

Fig. 6.21. This is the angle by which the planet P will appear to move between time
t and time topp.
Our objective is to learn enough about the changes in the angle b over time to

calculate the distance from the Sun to P that is the distance SP in Fig. 6.21. In this
figure, the distance SP is labeled as a AU, and SE as 1 AU.
It goes without saying that you should grab any knowledge you can about the

dynamics of P from anywhere you can. It is not as if you have to do a black bag job
on NASA. There is plenty of information around. In earlier chapters, notably Chap. 1,
(1.19), we discussed Kepler’s third law of planetary motion,

GM

4p2
¼ r3

T 2
¼ constant; ð6:11Þ

where r is the orbital radius, T the orbital period, G the universal gravitational
constant, andM the mass of the Sun. Applying this equation to our current situation
gives

a3

T 2
P

¼ 13

T 2
E

; ð6:12Þ

where the radii are in AU, so that

a3

13
¼ a3 ¼ T 2

P

T 2
E

¼ 2p
�
o2

P

2p=o2
E

¼ o2
E

o2
P

; ð6:13Þ

Fig. 6.21.
Geometry needed to
analyze the motion
of the superior planet
P. This is a ‘‘snap-
shot’’ of the situation
at time t, which
occurs before oppo-
sition.
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since the period Tof an orbit is 2p/o, where o is the angular velocity of the planet’s
orbit. An immediate consequence of (6.13) is that

oPa
3=2 ¼ oE: ð6:14Þ

This in turn tells us what the angles OSP and OSE are in Fig. 6.21:

ffOSE ¼ oEðtopp � tÞ and

ffOSP ¼ oPðtopp � tÞ ¼ a2=3oEðtopp � tÞ ¼ a2=3ffOSE:
ð6:15Þ

In Fig. 6.21, angle OSP is marked by a triple arc; and angle OSE is marked by a
double arc, as is the angle SEF, which must be equal to angle OSE since angle ESF is
equal to ((p/2)�angle OSE); and since the angles of the right-angle triangle ESF
must add up to p radians (see Appendix A).

The angle SEP is marked in Fig. 6.21 with a quadruple arc. Angles SEF, SEP, and
PEG (labeled b) add up to p radians. We already know that ffSEF ¼ oEðtopp � tÞ, so
ffSEFþ ffSEPþ ffPEG ¼ ffSEFþ ffSEPþ b ¼ oEðtopp � tÞ þ ffSEPþ b ¼ p:

;b ¼ p� oEðtopp � tÞ � ffSEP: ð6:16Þ
If we can solve for angle SEP, we know b, the angle we are tying to calculate.
Furthermore, given what we have said, we are quite likely to find a formula for b
in terms of a, which is what we really want to know.

We also know oE. The earth’s orbital period is 365.25 days, so

oE ¼ 2p
TE

¼ 2p
365:25

¼ 0:01720 radians=day: ð6:17Þ

Before proceeding, I will point out that from Fig. 6.21

ffPSE ¼ ffOSE� ffOSP ¼ ðoE � oPÞðtopp � tÞ ¼ oEð1� a2=3Þðtopp � tÞ: ð6:18Þ
The pieces are coming together. I am going to use two trigonometric tricks: the sine
rule (http://en.wikipedia.org/wiki/Sine_rule) and the cosine rule (Appendix A), to
nail down the angle SEP.

First, the cosine rule gives me the distance EP from the Earth to the superior
planet, which for some reason seems to be called r (Greek lower case rho) in the
celestial mechanics literature. This always makes me think that it is a bit too far to
row a boat there. Anyway, I digress. The cosine rule, the cosine rule. . .applied to
triangle PSE, it tells us that

r2 ¼ a2 þ 12 � ð2� a � 1� cosðffPSEÞÞ

;r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1� ð2a cosðffPSEÞÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1� ð2a cosðoEð1� a2=3Þðtopp � tÞÞÞ

q
;

ð6:19Þ
where I have used (6.18) in the last line.

Right, now let us have a go with the sine rule on triangle PSE. As per the Appendix
A, the conditions are satisfied for the obtuse angle version of the sine rule because
the angle PES is obtuse; and lengths SE < SP and SF < SE. Therefore
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a

sinðp� ffSEPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1� ð2a cosðoEð1� a2=3Þðtopp � tÞÞÞ

q
sinðoEð1� a2=3Þðtopp � tÞÞ : ð6:20Þ

I can get angle SEP from this equation:

arcsin
a sinðoEð1� a2=3Þðtopp � tÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1� ð2a cosðoEð1� a2=3Þðtopp � tÞÞÞ
q

0
B@

1
CA ¼ p� ffSEP: ð6:21Þ

We got there! Thank goodness for spreadsheets to do the grunt work of evaluating
this equation. From (6.16),

p� ffSEP� oEðtopp � tÞ ¼ b: ð6:22Þ
Substituting (6.21) into (6.22) gives

b ¼ arcsin
a sinðoEð1� a2=3Þðtopp � tÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1� ð2a cosðoEð1� a2=3Þðtopp � tÞÞÞ
q

0
B@

1
CA

� oEðtopp � tÞ:

ð6:23Þ

Finally, we have solved for b, the ‘‘right ascension’’ along the ecliptic relative to
the ecliptical ‘‘right ascension’’ at opposition. Fortunately, (6.23) still works when
t > topp.
We don’t have a hope in you-know-where of turning this equation inside out to

get a in terms of b. You just cannot do that when there are cosines and sines and stuff
around. Besides, there is another unknown: the opposition time topp.
How do we get out of that, then?
There are no doubt many ways to skin this particular cat, but mine was to use a

spreadsheet program (Excel) to try out a very large number of combinations of a and
topp. In fact I tried out 32,768 combinations per planet. I then used the method of
least squares to select the combination that best fitted my measured positions along
the ecliptic. The method was exactly as in Chap. 4. It is described in Appendix B. The

technique was to add all the values of ð’trial � ’observedÞ2, where ’trial is the trial
value of the ‘‘right ascension’’ ð’ ¼ ’opposition þ bÞ in the coordinate system of the

ecliptic at the same time as the observation. The combination of a and topp that

minimized
P ð’trial � ’observedÞ2 was selected.

There are a three tricky bits to this. First, (6.23) is really too complicated to type
straight into a spreadsheet cell. So wrote some Excel macros. I taught myself to do
this from a book years ago. Since I do not do it very often, I have to refer a book every
time.37 I have never written more than a trivial macro in the other major spread-
sheet, OpenOffice Calc, but the method is obviously very similar. If you truly hate
macros, you could type (6.23) straight into spreadsheet cells, but it would not be
much fun to debug this.
The second tricky bit is that if you wind the clock back enough, the angle SEP will

cease to be acute. The same applies if you go far enough forward in time after the
opposition. You then have to replace (6.21) with
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arcsin
a sinðoEð1� a2=3Þðtopp � tÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1� ð2a cosðoEð1� a2=3Þðtopp � tÞÞÞ
q

0
B@

1
CA ¼ ffSEP; ð6:24Þ

so that (6.23) becomes

b ¼ p� arcsin
a sinðoEð1� a2=3Þðtopp � tÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1� ð2a cosðoEð1� a2=3Þðtopp � tÞÞÞ
q

0
B@

1
CA

� oEðtopp � tÞ:

ð6:25Þ

The thought of solving for the transition point between the versions of b in (6.23)
and (6.25) did not fill me with joy. However, I do know that the transition will occur
when the arcsin in (6.23) and (6.25) goes through a maximum value of p/2. So I set
my Excel macro to search for whether this arcsin was increasing or decreasing over
very tiny time intervals, and use the IF-THEN-ELSE constructs to select the appro-
priate one.

The final bit of trickiness is that I need to add b to the position of the planet on the
ecliptic at opposition. In Chap. 5, I worked out how to do this, and used the data I
calculated there to give me a value of the ‘‘right ascension’’ angle along the ecliptic at
every trial opposition time I examined.

So. . .how well did I do?
The actual time of the 2008 Saturn Opposition was 12:05:23 GMT on February

24th (http://telescopes.net/doc/3020). My time is 4½ h early, but over 200 days,
I think that is pretty good accuracy.

Further evidence that I got the time of the opposition about right comes from
Fig. 6.22, a composite of photos of Saturn taken before and after the opposition. The
shadow cast by the planet onto its rings can be seen to move form the West side
before the opposition to the East side afterward. This is consistent with the Earth
overtaking Saturn while orbiting eastward.

From a Web site at http://homepage.ntlworld.com/mjpowell/Astro/Saturn-Orbit.
htm, I estimate that Saturn at the 2008 opposition was about a quarter of the way

2008-01-22 2008-02-09 2008-02-12

Changing shadow on Saturn’s Rings as it Passes through Opposition on 2008-02-24

2008-02-15 2008-02-26 2008-03-09 2008-03-30 2008-05-18

Fig. 6.22. The shadow cast by Saturn onto its rings moves from theWest side to the East
side as time progresses. You can see this shadow on the rings close to the edge of the
planet as they go behind Saturn.
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between perihelion and aphelion. From Wikipedia (http://en.wikipedia.org/wiki/
Saturn) the perihelion is 9.05 AU from the Sun; and the aphelion is 10.12 AU away.
A quarter of the way is a Sun-Saturn distance of 9.32 AU. Compared to this my value
in Table 6.1 is about half a percent low. I am really pleased with that.
My opposition time for Mars (Table 6.2) was not quite so accurate as for Saturn,

as expected. It was actually at 19:47 GMT on 24th December (http://seds.org/
�spider/spider/Mars/marsopps.html), so I was 10 h 59 min late, out of about 200
days’ observing.
There is an applet at http://www.windows.ucar.edu/tour/link=/mars/mars_orbit.

html where you can watch the distance from Mars to Earth change. It turns out that
my observations around the opposition of mars were not that far from its aphelion,
whose distance from the Sun is 1.67 AU (http://en.wikipedia.org/wiki/Mars). My
value is close to that. However, the orbit of Mars is much more elliptical than that of
any planet except Mercury, so miracles cannot be expected. To put this into
perspective, the perihelion is only 1.38 AU from the Sun. So, really, I have
overestimated the Sun-Mars distance in Table 6.2. That is the price paid for the
circular approximation.

Epicycles
It can be seen in Figs. 6.23 and 6.24 that the angle of the planet along the ecliptic
moves at first toward the East (negative radians), reaching an easternmost point,
then moves toward the West (radians getting less negative or more positive), and
eventually turns back eastward. This phenomenon in the path of a superior planet is
known as an epicycle.
I will now show that epicycles arise because both the Earth and the superior planet

orbit the Sun; and because the Earth, orbiting the faster, overtakes the superior

Table 6.1. Distances and Opposition Times Measured for Saturn

Planet Distance (AU) from Sun Opposition Time

Saturn 9.27 February 24, 2008
07:35 UT

Table 6.2. Distances and Opposition Times Measured for Mars

Planet Distance (AU) from Sun Opposition Time

Mars 1.68 December 25, 2007
06:46 UT
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planet once a year. An outline of this calculation is given in Tatum,38 although he
leaves the detailed workings, which I have included in full, to the reader (Fig. 6.25).

Tatum’s way to calculate the positions of the stationary points in the planet’s path
is to note that the superior planet does not move relative to the background stars

Mars: Position along Ecliptic, 2007/8
Zero = Sun at Vernal Equinox

Best Model: Mars orbits at 1.68 AU,
Opposition on 25 December 2007 at 06:46 UT
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Fig. 6.24. Comparison of measured positions with the least-squares fitted circular orbit
model.

Saturn: Position along Ecliptic, 2007/8
Zero = Sun at Vernal Equinox

Best Model: Saturn orbits at 9.27 AU,
Opposition on 24 February 2008 at 07:35 UT
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Fig. 6.23. Comparison of measured positions with the least-squares fitted circular orbit
model.
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when the components of the motions of the planet and the earth perpendicular to
the line EP are equal.
The condition for this is that

a cosðaÞ ¼ a3=2cosðeÞ;
cosðaÞ ¼ ffiffiffi

a
p

cosðeÞ: ð6:26Þ

But from triangle SEP we have, using the sine rule (http://en.wikipedia.org/wiki/
Sine_rule)

1

sinðaÞ ¼
a

sinðeÞ ;

a sinðaÞ ¼ sinðeÞ:
ð6:27Þ

From these, I want to get rid of a (alpha), which is not very easily measured, and get
a value of a (lower case A) in terms of e, which is fairly easily measured. Here goes.
The first thing I propose to do is to replace the sines and cosines with tangents.

Having followed the calculation, I know that it is worth doing this.
Remembering that

siny ¼ Opposite

Hypotenuse
¼ O

H
; cosy ¼ Adjacent

Hypotenuse
¼ A

H
; and

tany ¼ Opposite

Adjacent
¼ O

A
;

ð6:28Þ

Fig. 6.25. The
geometry of Fig.
6.21, with two new
angles, labeled a
and E.
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and that Pythagoras’ theorem states that the square of the hypotenuse of a right-
angled triangle is equal to the sum of the squares of the other two sides, i.e.,

O2 þ A2 ¼ H2; ð6:29Þ

it follows from (6.28) that

sin2yþ cos2y ¼ O2

H2
þ A2

H2
¼ O2 þ A2

H2
¼ H2

H2
¼ 1; ð6:30Þ

so that

siny ¼ O=A

H=A
¼ tany

1=A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þO2

p ¼ tanyffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

A2 þ O2

A2

q ¼ tanyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2y

p ð6:31Þ

and

cosy ¼ A=A

H=A
¼ 1

1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2þH2

p ¼ 1
1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þO2

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

A2 þ O2

A2

q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2y

p : ð6:32Þ

Hence, (6.26) becomes

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2a

p ¼
ffiffiffi
a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2e

p ; ð6:33Þ

and (6.27) becomes

a tanaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2a

p ¼ taneffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2e

p : ð6:34Þ

Hence, using (6.33),

a
ffiffiffi
a

p
tan affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2e
p ¼ tan effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2e
p ;

a
ffiffiffi
a

p
tana ¼ tan e:

ð6:35Þ

Equation (6.27) becomes, when combined with (6.26),

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2a

p
¼ sin e;

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a cos2e

p
¼ sin e;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a cos2e
p

¼ sin e
a

:

ð6:36Þ
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Squaring both sides of (6.36) gives

1� a cos2e ¼ sin2e
a2

:

Now is the time to use the tangent formulae (6.31) and (6.32) to get rid of the sines
and cosines.

1� a

1þ tan2e
¼ tan2e

a2ð1þ tan2eÞ ;

1þ tan2e� a ¼ tan2e
a2

;

a2 þ a2tan2e� a3 ¼ tan2e;

a2 � a3 ¼ ð1� a2Þtan2e;
a2ð1� aÞ ¼ ð1� a2Þtan2e;
a2ð1� aÞ ¼ ð1þ aÞð1� aÞtan2e;

a2

ð1þ aÞ ¼ tan2e:

ð6:37Þ

Finally, by taking the square root of (6.37), we end up with an equation for the
tangent of e, namely

tan e ¼ affiffiffiffiffiffiffiffiffiffiffi
1þ a

p : ð6:38Þ

Therefore

e ¼ arctan
affiffiffiffiffiffiffiffiffiffiffi
1þ a

p
� 	

; ð6:39Þ

where e is the angular distance between a stationary point and the opposition of the
planet. The angular distance between the two stationary points will be

2e ¼ 2arctan
affiffiffiffiffiffiffiffiffiffiffi
1þ a

p
� 	

: ð6:40Þ

How does (6.40) compare to what I observed? The easiest way to calculate this is to
note that I already have an expression for p�e, viz., (6.23). If I use (6.40), I calculate
just under 136 days between the stationary points of Saturn, and just under 78 days
between the stationary points of Mars.
I only observed one stationary point for Mars and one for Saturn. I estimated the

dates for the stationary points I did not observe from Figs. 6.23 and 6.24. For Saturn,
a time of 136 days between stationary points is consistent with Fig. 6.23; and with
the widely published date of December 20, 2007 (http://www.poyntsource.com/
New/Diary.htm) for the stationary point that I did not observe. For Saturn, I
therefore measured a time between stationary points of about 134 days.
I observed Mars to be stationary on November 16, 2007, and the published value

of the other stationary point is January 30, 2008 – a period of 75 days. This is not
quite as good as the agreement between prediction and observation for Saturn, but it
is not bad either.
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Conclusion
Using my circular-orbit approximation, I measured a very good Sun-Saturn dis-
tance; and a reasonably good Sun-Mars distance. The reason for the less good result
in the latter case is that Mars has a much less circular orbit than the other superior
planets.

The retrograde motion phase of the epicycles seen in the motion of superior
planets lasts approximately the time expected from analysis of a model of circular
orbits.
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CHAPTER SEVEN

Size Matters

This is something I have not talked about much. There is a reason.
I needed to derive some geometrical and statistical results to get us this far. Our

hardest work is now over. The thrust of this chapter is actually very simple. Since I
know how big the planets look in my photos, and I now know how far away they are,
I can calculate their sizes.

I also need the stuff in Chap. 4 about converting lengths on photos to angles in
arcminutes, which I showed you how to do in (4.1)–(4.7). The only slight difference
from this treatment is that when taking planet photos, I used a Barlow lens. You have
to multiply the image size you calculate in arcminutes by the magnification of the
Barlow. Do remember to calibrate your Barlow: the quoted magnifications are not
exact.

Do not forget that the Planet–Sun distance is not the Planet–Earth distance. The
latter varies all the time as both planets orbit. This is obvious from, say, Fig. 1.12.
The effect is less obvious in Fig. 6.22, but it is there. The rightmost image of Saturn is
about 8% smaller than the one taken nearest Opposition, the fourth from the right.
In the case of Mars, Fig. 7.1 shows that the Earth-Mars distance varies a lot. (My wife
pointed out that it could be Mars that changes size, but not even she believes that.)

We cannot escape the need to allow for the varying distance to these planets if we
want to measure and calculate their sizes.

For superior planets, the key diagram is Fig. 6.21. The required distance is labeled
as r in this figure. I calculated its value to be that in (6.19). For Mars and Saturn, I
know the orbital radius a and opposition time topp. They are given in Tables 6.1 and
6.2. I can simply plug these values into (6.19) and calculate the distance to the planet
when the photograph was taken.

For the inferior planets Mercury and Venus, the principle is very similar. We now
use Fig. 7.2 to define the distance r to the inferior planet. I also make minor
alterations to (6.19) to produce an equation for the distance r to the inferior planet:

J.D. Clark, Measure Solar System Objects and Their Movements for Yourself!,
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r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 � ð2a cosðoEða2=3 � 1ÞðtIC � tÞÞÞ

q
; ð7:1Þ

where now a< 1 so that ða2=3 � 1Þ is positive. The time tIC is the time of the inferior
conjunction. As with (6.19), I have applied the cosine rule, (A.44) in the Appendix
A, to Fig. 7.2.
For both superior and inferior planets, we need to turn our knowledge of r

and the angle y subtended by the planet on our photos into a size for the planet.

Fig. 7.1. Photographs of Mars taken during the 2007/8 apparition. Notice how much
the apparent size of the planet varies.

Measure Solar System Objects and Their Movements for Yourself!128



Figure 7.3 shows you how to do this. The geometry follows directly from the
definition of a tangent in Appendix A, (A.1):

ðW=2Þ
r

¼ tan
y
2

� �
ð7:2Þ

In the pre-spreadsheet era, you would have solved (7.2) for W by making the small
angle approximation in (A.5). If you are not comfortable doing this, you can just let
your favorite spreadsheet solve the equation

Fig. 7.2. Geometry needed to work out the distance to the inferior planet P. This is a
‘‘snapshot’’ of the situation at time t, which occurs before inferior conjunction (IC).

W

r

J / 2

Fig. 7.3. The parameters necessary to turn knowledge of the angle y and the distance r
into a size W for our planet.
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W ¼ 2r tan
y
2

� �
ð7:3Þ

You will get the same answer either way to a large number of decimal places so long
as the angle y is in radians. You will need to convert it to radians in a spreadsheet in
any case.
Do not forget that your angle y may not be in degrees:

1 radian ¼ p
180

� ��

¼ 60p
180

� �0
¼ 3;600p

180

� �00
ð7:4Þ

To measure my angles y in the photos in Figs. 1.12, 6.22, and 7.1, I used CAD
software. I drew circles around the visible parts of the planets using the ‘‘draw a circle
by specifying three points’’ tool. There is a bit of an art to this, and it requires
practice, as I discovered when doing the same thing for Moon pictures. I always drew
three circles around each image, each on a different layer so that I could not see the
previous ones while drawing each one. Sometimes I averaged the three results,
sometimes I took the middle one (the median) depending how the mood took
me. It makes little difference. Just do not expect the variance, or its square root the
standard deviation, to mean anything for just three samples.
There was always a lot of scatter in my measurements. My equipment is not good

enough to resolve the edges of these planets sharply. It is a lot better if the telescope is
properly collimated. I recommend doing that fairly regularly. The images are also a
lot better if you take a bit of trouble over focusing. My favorite way to do this is to
use a baffle with three holes where the main front cap goes on my telescope. You can
buy these things for an obscene price for a bit of plastic you might step on and break
in the dark, or you can do what I did, which is to make one out of cardboard and
waterproof adhesive tape. What happens is that you only see three small parts of the
‘‘blob’’ created by an out-of-focus image. As you bring the image into focus these
three small blobs merge into one. It is best to do this with your webcam brightness
turned right up initially, and to focus a bright star near your target planet rather than
a planet. Once your three images have merged, turn the webcam brightness down,
and the three blobs will probably de-merge. Refocus, and repeat until you can no
longer see the star. You will than have pretty sharp focus. I reckon to take 20 min to
do this, although I am getting quicker with practice. An engineer colleague of mine,
Blair McKnight, once took my rack-and-pinion focuser apart and cured the backlash
in it by wrapping plumber’s Teflon tape around the barrel of the focuser. Life got a
lot better after that. Finally, if your three images would not merge, you probably
need to recollimate your telescope.
Averaging the diameter measurements over a lot of photos does seem work quite

well as a way of dealing with fuzzy pictures.
How often do you need to recollimate? That depends how much you move the

scope. It is carrying it around that does the misaligning; and it is usually the odd
bump because you drive over a pothole rather than regular, careful transportation.
My worst experience that way was when I put my 8-in. Newtonian onto the mount,
and as I walked away, it fell to the ground with a sickening clang as it bounced off the
tripod leg. It rolled around just enough that it landed focuser first onto the grass, and
stove the tube in very nicely. I tried hammering it back into shape, but one nut
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holding the secondary mirror’s spider onto the tube would not undo, so I did not
dare hammer hard. In the end, I worked out a technique for placing G-clamps of
various sizes through the focuser hole, and pulling the tube aluminum straight.
There is quite a scar on the tube, but it recollimates just fine.

I forgot to mention that I did not measure the date of Venus’ 2007 inferior
conjunction. That in turn means that I did not know r, the instantaneous Earth–
Venus distance. I dealt with this problem in a simple but stupid way. If I assumed a
conjunction date, I could calculate the diameters for each Venus photo. They should
be constant, apart from random scatter due to the variable quality of my photogra-
phy. Therefore, if I choose the correct conjunction date, there would be no system-
atic error due to a wrong conjunction date to add to the random errors (see
Appendix B). So the calculated standard deviation should be a minimum, since it
really sums random and systematic errors. Therefore I took the measured conjunc-
tion date to be the one that gave me the minimum standard deviation in my Venus
diameters. It was August 19, 2007 at 13:08, cf. the Cambridge Planetary Handbook’s
August 18, 2007.39 I used a Monte Carlo technique to determine this (see Appendix
B) in which I let Microsoft Excel work out the standard deviation of all the diameters
for several thousand assumed times of inferior conjunction. Two lots of 8,192
instances gave the same time to five significant figures.

Anyway, back to my distance measurements. The values I obtained are in Table
7.1. They are given in astronomical units. Even though this is unusual, I make no
apology for it. You can see how tiny the planets are compared to the distances
between them. The planetary diameters are of the order of one ten-thousandth of an
astronomical unit. The planets themselves go out to about 30 AU, so the diameter of
the planetary Solar System is of the order of 60 AU. That is about a million times the
diameter of Venus.

Given that the current definition of a planet requires it to absorb most of the
interplanetary matter in its neighborhood, the above reasoning shows that they are
awfully small vacuum cleaners.

Oops, I forgot to mention that the disk of Saturn is not very circular. I measured it
by the following cunning means. In the CAD system, I drew a straight line freehand
between the tips of the rings. I then drew an ellipse, using the snap tools to force its
center to be the midpoint of the line between the rings. I made its major axis be
along this line, and placed the ends of the major axis at the edge of the planet proper.
The minor axis I made go from one pole to the other. Since the planet is tilted
relative to the Earth, this is only approximately true. When in late 2009 the rings are
edge-on, I intend to repeat this measurement. A good value of the ratio of polar to
equatorial diameters will in principle enable me to estimate the rotation speed, since
the surface is where centrifugal and gravitational forces balance. The estimate will be
crude, because the rotation speed is not uniform, but I cannot think of any other way
to reveal this rotation speed with typical amateur equipment.

I have not of course managed to measure an astronomical unit in miles, but this
is an easy number to look up.40 Using the values

1 AU ¼ 1:496� 108 km ¼ 9:296� 107 miles, ð7:5Þ
I have checked the values in Chap. 2, (2.1) and in Table 7.1 against those in
the Cambridge Planetary Handbook,41 and report the comparisons in Table 7.2.
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The biggest error is in the estimate of Mars’ diameter. This reflects the greater
uncertainty in its distance. The next biggest discrepancy is in Saturn’s polar diame-
ter. I have already mentioned the reason for the uncertainty here. All the published
values lie within my error bars.
So the main part of my story ends on a high note: with amateur kit like mine, you

can measure good values of planetary sizes.

Table 7.1. Planetary Diameters in AU

Planet Venus Mars Saturn

Diameter (AU)
(�standard
deviation)

7.38 �
0.54 � 10�5

4.83 �
0.41�10�5

Equatorial:
7.98 � 0.61 � 10�4

Polar: 6.87� 0.32 � 10�4

Rings: 1.74 � 0.08 � 10�3

Table 7.2. Planetary Diameters in AU

Planet
Diameter (AU)
(�Standard Deviation)

Values in Reference
41 (AU) Error of Mean

Venus 7.38 � 0.54 � 10�5 8.09 � 10�5 �3.3%
Earth 8.33 � 0.76 � 10�5 8.51 � 10�5 �2.2%
Mars 4.83 � 0.41 � 10�5 4.53 � 10�5 6.3%
Saturn Equatorial: 7.98 � 0.61 � 10�4 Equatorial:

8.05 � 10�4
Equatorial: �1.0%

Polar: 6.87 � 0.32 � 10�4 Polar: 7.19 � 10�4 Polar: �4.7%
Rings: 1.74 � 0.08 � 10�3 Rings: 1.73 � 10�3 Rings: 0.7%
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Appendix A:
Geometrical
Appendix:

Geometry for
Those Who Have

Forgotten

Basic Trigonometry
My working assumption is that most readers have a vague idea that trigonometry is
about triangles and cosines and stuff, but cannot remember the details.

The purpose of this section is to remind such readers of some things they may
have forgotten.

The first result I want to prove is that the sum of angles of a triangle is 180� or p
radians. In Fig. A.1, angle A ¼ angle F, angle B ¼ angle D, and angle C ¼ angle E.
Since anglesD, E, and F obviously add up to 180� or p radians, the same must be true
of angles A, B, and C. I use this result a lot.

The definitions of sine, cosine, and tangent are as follows.

sinðAÞ ¼ opposite

hypotenuse

cosðAÞ ¼ adjacent

hypotenuse

tanðAÞ ¼ opposite

adjacent
¼ opposite=hypotenuse

adjacent=hypotenuse
¼ sinðAÞ

cosðAÞ :

ðA:1Þ

The last line of (A.1) follows since the hypotenuse cancels out of the division.
Remember that the angles of a triangle add up to 180�. From this it follows

that the angles in the triangle in Fig. A.2 are A, 90� and (90��A). It follows from
(A.1) that

sinðAÞ ¼ cosð90� � AÞ and cosðAÞ ¼ sinð90� � AÞ ðA:2Þ
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By the way, since you cannot divide by zero, you have a problem with (A.1) if cos
(A)¼ 0. It turns out that this is true when A¼ 90�. Tan(90�) is normally reported in
tables as being equal to infinity. It would be more accurate to state that as (A)
approaches 90�, tan(A) gets bigger and bigger. Table A.1 shows what I mean.

Fig. A.1. The angles of a triangle sum to 180� or p radians.

Fig. A.2. A right angle triangle showing the names of the sides relative to the angle A.
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What Happens if A is bigger
than 90�?

Think of a circle whose radius is equal to the hypotenuse, just like the one shown in
Fig. A.3. Now imagine that the x- and y-coordinates are as shown in Fig. A.3. The
‘‘Adjacent’’ side is in the x-direction; the ‘‘Opposite’’ side is in the y-direction.

If the angle A is between 90� and 180�, the usual practice is to take a bit of a liberty
with what we mean by the ‘‘Adjacent’’ side. Imagine the geometry shown in Fig. A.4,
and simply use the definitions of sine, cosine, and tangent we had before. It is also
customary to note that the ‘‘Adjacent’’ side is along the negative part of the x-axis
and therefore to give the length of the ‘‘Adjacent’’ side a negative value. Since all we
are doing is defining things, we can define them how we darn well like, even if this
does result in a rather odd use of the word ‘‘Adjacent.’’

Our right angle triangle is taken into the regions where A lies between 180� and
270�; and 270� and 360� in the same way as before. This is shown in Fig. A.5.

Between 180� and 270�, both the ‘‘Adjacent’’ and ‘‘Opposite’’ sides are given
negative length. Between 270� and 360�, the ‘‘Adjacent’’ side is given positive length,
and the ‘‘Opposite’’ side is given negative length.

Figures A.5 and A.6 show what sin(A), cos(A), and tan(A) look like if we use the
above definitions.

In principle, these definitions can be extended to any angle, simply by taking the
angle A round and round the circle of radius equal to the hypotenuse. Negative
angles are no problem either: just take the angle A going clockwise instead of
anticlockwise (Fig. A.7).

Angular Units
Finally, units are never as simple as they might be. Degrees came originally from
ancient Babylon, where they used base 60 in their mathematics. There are decimal
based angular units, but I never see them used. The unit which is commonly used in

Table A.1. Showing How Tan(A) Tends to Infinity
as A Increases to 90�

A Tan(A)

80� 5.67
89� 57.29
89.9� 572.96
89.99� 5,729.58
89.999� 57,295.78
89.9999� 572,957.80
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mathematics is called the radian. It is defined so that there are 2p radians in a
complete circle:

2p radians ¼ 360�

p radians ¼ 180�

p
2
radians ¼ 90�

1 radian ¼ 180

p

� ��
ðA:3Þ

You might well ask why anyone would want to do this. The answer is that a lot of
mathematics becomes a lot simpler if you use these units. They are a kind of
‘‘natural’’ unit for trigonometry and calculus.
One very useful approximation that only works in radians is that for angles below

about 10�, i.e., below about 0.2 radians,

sinðAÞ � A;

cosðAÞ � 1;

tanðAÞ � A:

ðA:4Þ

Fig. A.3. A right angle triangle showing the names of the sides relative to the angle A, a
circle whose radius is equal to the hypotenuse, and x- and y-coordinates. The ‘‘Adjacent’’
side is in the x-direction; the ‘‘Opposite’’ side is in the y-direction.



Finally, there are two notations which mean ‘‘the angle whose sine (or cosine or
tangent) is A’’. They are

arcsinðAÞ ¼ sin�1ðAÞ ¼ angle whose sin is A;

arccosðAÞ ¼ cos�1ðAÞ ¼ angle whose cos is A;

arctanðAÞ ¼ tan�1ðAÞ ¼ angle whose tan is A:

ðA:5Þ

Coordinate Systems
There are two coordinate systems of interest to astronomers: Cartesian and polar.

First, let us look at two-dimensional coordinates. Figure A.8 shows the coordi-
nates of the point P in Cartesian or (x, y) coordinates. It also shows the coordinates
of P in polar coordinates, (r, ’), where ’ is the Greek lower case letter phi.
The distance from the origin O to P is r. The angle the line OP makes with the x-
axis is ’. By convention ’ is positive going from +x toward +y. Equally convention-
ally but equally arbitrarily, the +x direction is toward the right and the +y direction is
upward.

Fig. A.4. If the angle A is between 90 and 180�, the usual practice is to take a bit of a
libertywithwhatwemeanby the ‘‘Adjacent’’ side, imagine the geometry shown, and simply
use the definitions of sine, cosine, and tangentwehadbefore. It is also customary to note that
the ‘‘Adjacent’’ side is along the negative part of the x-axis and therefore to give the length of
the ‘‘Adjacent’’ sidea negative value. Since all weare doing is defining things,wecan define
them how what we jolly well like, even if this does result in a rather odd use of the
word ‘‘Adjacent.’’



Fig. A.5. Our right angle triangle is taken into the regions where A lies between 180�

and 270�; and 270� and 360� in the same way as before.
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It follows from Pythagoras’ theorem that

r2 ¼ x2 þ y2 ðA:6Þ
It also follows from (A.1) that

x

r
¼ cosð’Þ and

y

r
¼ sinð’Þ ðA:7Þ

Plots of sin(A) and cos(A) between 0 and 360 degrees
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Fig. A.6. Plots of sin(A) and cos(A) for A between 0� and 360�.

Plot of tan(A) between 0 and 360 degrees
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Fig. A.7. Plots of tan(A) for A between 0� and 360�. Note that tan(45�)¼ tan(225�)¼
+1, tan(135�) ¼ tan(315�) ¼ �1 and tan(0�) ¼ tan(180�) ¼ tan(360�) ¼ 0.
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Fig. A.8. Cartesian and polar coordinates in two dimensions. The point P has Cartesian
coordinates (x, y) and polar coordinates (r, ’).

Therefore

x ¼ r cosð’Þ and y ¼ r sinð’Þ ðA:8Þ

From (A.8) it also follows that

y

x
¼ r sinð’Þ

r cosð’Þ ¼ tanð’Þ ðA:9Þ

where I have used (A.1). Equations (A.6)–(A.9) give us the means to switch between
Cartesian and polar coordinates, which is often a useful thing to do.
Ok, now let us look at three dimensions. The ideas are the same as in two

dimension, but there are a few complications.
First, there needs to be a second angle in spherical polar coordinates, and this

angle could be defined in more than one way. In fact this angle is conventionally
defined as in Fig. A.9. If our point is again called P, the second angle, called by the
Greek letter y (theta), is the angle from the line OP to the z-axis. The angle ’ is now
the angle of the projection of the line OP onto the xy-plane from +x toward +y. Thus
’ and y are a kind of longitude and latitude. The latitude is not quite y, but is
(90��y) or ((1/2)p�y) depending whether you prefer degrees or radians. Thus, on
the celestial sphere (see below), the declination would be (90��y) or ((1/2)p�y).
Ok. We are getting there. There is one other little joker in the three-dimensional

coordinate deck: handedness.
If you imagine making your thumb, index finger, and second finger all straight

and mutually perpendicular, you can then make x point along your index finger, y
point along your second finger, and z point along your thumb (Fig. A.10). Notice
that, if you do this with both hands, you cannot superimpose the two sets of fingers.
If you align x and y, the z s will point in opposite directions, and so on. Left-handed
and right-handed coordinate systems are different.
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Fig. A.9. Cartesian and polar coordinates in three dimensions. The point P has
Cartesian coordinates (x, y, z) and polar coordinates (r, y, ’), where y is lower case
Greek theta.

You will have to put the book down, but if you have never done this before, it is a
worthwhile exercise. Although it is normal to choose a right-handed coordinate
system, I found that it was easier to analyze the celestial sphere in a left-handed one
when I was working out the distances to superior planets, so that is what I did.

Returning to Fig. A.9, we can see that from Pythagoras’ theorem

OQ2 ¼ x2 þ y2 ðA:10Þ
where Q is the Projection of P onto the xy-plane. Hence, applying Pythagoras’
theorem a second time

OP2 ¼ OQ2 þ QP2

i:e:; OP2 ¼ x2 þ y2 þ z2

i:e:; r2 ¼ x2 þ y2 þ z2

ðA:11Þ

In three-dimensional coordinates, the length of line OP is r. The projection of OP
onto the xy-plane is obtained by noting that

OQ

OP
¼ cos

p
2
� y

� �
¼ sinðyÞ

i:e:; OQ ¼ r sinðyÞ
ðA:12Þ
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From (A.8) and (A.12) it follows that

x ¼ r cosð’ÞsinðyÞ and y ¼ r sinð’ÞsinðyÞ ðA:13Þ
Since

QP

OP
¼ cosðyÞ ¼ z

r
; ðA:14Þ

it follows that

z ¼ r cosðyÞ: ðA:15Þ
Equations (5.7) and (A.15) enable us to extract Cartesian coordinates from spherical
polar coordinates.
How do we go the other way? We already know from (A.11) how to work out r

given x, y, and z. We get ’ from (A.16):

y

x
¼ tanð’Þ; so ’ ¼ arctan

y

x

� �
ðA:16Þ

We get y from (A.11) and (A.15):

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
sinðyÞ; so y ¼ arcsin

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
 !

ðA:17Þ

We now have formulae to transform both ways between three-dimensional
Cartesian and spherical polar coordinates.

Fig. A.10. Showing how to make the fingers of your hand like coordinate axes. The
index finger points in the x-direction, the second finger along y and the thumb along z.
Left-handed coordinates are like the left hand; and right-handed ones like the right hand.
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Proof of Coordinate Transform
Formulae

These formulae are widely asserted in mathematics and other textbooks, but rarely
derived or proved. I recently had to derive them to help my teenage daughter with her
homework. I was taken aback by how long it tookme to do this – a good two hours. So
I felt it only fair to save you, dear reader, the trouble to which I had to go. I hope that
understanding my derivation will take you considerably less than two hours.

My wife, whose double major was in mathematics and physics, and I agreed
afterward that neither of us had been shown convincing derivations of these
formulae at college (Fig. A.11).

The question is: what are the (x 0, y 0) coordinates of the point (x, y)?
The length OA is x, the length OF is y, the length OC is x 0, and the lengths OG and

CE are both y 0.
By simple trigonometry (see above)

OB ¼ OCcosðcÞ ðA:18Þ
and

AB ¼ DC ¼ EC sinðcÞ ðA:19Þ
But

OA ¼ OB� AB; or

x ¼ OCcosðcÞ � EC sinðcÞ; or

x ¼ x 0cosðcÞ � y 0sinðcÞ:
ðA:20Þ

Also by simple trigonometry

Fig. A.11. Showing two coordinate axes separated by an angle c (Greek lower case
‘‘psi’’). The x-axis is shown horizontal and the y-axis is shown vertical. The x 0 -axis goes
toward the top right and the y 0 -axis toward the top left. English letters are used to denote
points in the diagram.
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OH ¼ OC sinðcÞ; ðA:21Þ
and

HF ¼ DE ¼ EC cosðcÞ: ðA:22Þ
But

OF ¼ OHþHF; or

y ¼ OC sinðcÞ þ EC cosðcÞ; or
y ¼ x 0sinðcÞ þ y 0cosðcÞ:

ðA:23Þ

We are sort of there, but I have it the wrong way round: I know (x 0, y 0) in terms of
(x, y), when I really want them the other way round. That actually is not a big deal.
From (A.20) and (A.23), I can write that

x cosðcÞ þ y sinðcÞ ¼ x 0cos2ðcÞ � y 0sinðcÞcosðcÞ þ x 0sin2ðcÞ
þ y 0cosðcÞsinðcÞ

¼ x 0cos2ðcÞ þ x 0sin2ðcÞ ¼ x 0: ðA:24Þ
I have simply multiplied my formula for x by cos(c), my formula for y by sin(c),
added them, cancelled out some terms and used the well-known formula that

cos2 ðcÞ þ sin2 ðcÞ ¼ 1: ðA:25Þ
Now let me multiply my formula for x by sin(c), my formula for y by cos(c), and
this time subtract them. I get

y cosðcÞ � x sinðcÞ ¼ y 0cos2ðcÞ þ x 0sinðcÞcosðcÞ � x 0cosðcÞsinðcÞ
þ y 0sin2ðcÞ

¼ y 0cos2ðcÞ þ y 0sin2ðcÞ ¼ y 0: ðA:26Þ
I have done it! Equations (A.24) and (A.26) give me (x 0, y 0) in terms of (x, y),

which is exactly what I was after.

Vectors: A Way of Simplifying
Geometry

Imagine my wife and myself walking in straight lines. I go from A to B in Fig. A.12,
and then to C, whereas she goes straight from A to C. We both end up in the same
place.
In vector language, we write this as

AB
�!þ BC

�! ¼ AC
�!

: ðA:27Þ
Now, suppose she walks from C to A and then to B, whereas I retrace my steps to B.
There is a vector equation for this too:
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CB
�! ¼ AB

�!� AC
�!

: ðA:28Þ
AC is now negative, because she went from C to A. Rocket science it ain’t.

We have taken account here of both the distances and the directions of the lines

AB, BC, and AC. In (A.27) and (A.28), AB
�!

, BC
�!

, and AC
�!

are referred to as vectors.
They have magnitude (the distance) and direction.

Unfortunately, there are many vector notations.
Alternative ways used to write (A.27) include:

AB
�!þ BC

�! ¼ AC
�!

Dþ E ¼ F

~Dþ ~E ¼~F

Dþ E ¼ F

ðA:29Þ

The single letter is sometimes underlined, and sometimes bold. You cannot easily
handwrite bold font, so this notation is usually restricted to printing. When I
handwrite vectors, I usually use a curly underline, because this is harder to mistake
for a slip of the pen. A straight underline is obviously more word-processor friendly.

Ok, my wife and I have done adding and subtracting. What happens when
we multiply? Perhaps not. No jokes about my needing size and direction, please. We
had better stick to multiplying vectors. There are two ways of doing this. One yields a
vector, and the other yields a common or garden number. But you have much more
street cred in the vector world if you call it a scalar instead of a number.

In this book, I have used the one that gives me a number. It is variously called the
scalar product and the dot product of two vectors. That is because this product is
often written as

D � E ¼ s; ðA:30Þ
where s is a scalar quantity, a.k.a. a number. How do we actually do the multiplica-
tion? This will look very arbitrary, but I promise you it is a useful thing to do.

D � F ¼ Dj j Fj jcosðcÞ ¼ DF cosðcÞ: ðA:31Þ

the notation jDj means the length of D. It is sometimes written D, without the
underline, bold, or whatever. But we are not going to call it the length. Oh no. That
would be much too easy. We are out to confuse you here. So we are going to call it the

Fig. A.12. If I walk from A to B, and then walk from B to C (both in straight lines),
whereas my wife walks in a straight line from A to C, we both end up in the same place.
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modulus of D. There is a sort of legitimacy here. After all, people write the modulus
of minus three as j�3j ¼ 3¼ j + 3j. The term and the notation convey the idea of size
or magnitude. Note that in (A.31), the order of D and F does not matter:

D � F ¼ F � D: ðA:32Þ
I chose to show you the definition for D and F, not D and E because D and E are
perpendicular, and the cosine of a right angle is zero. Hence

D � E ¼ 0: ðA:33Þ
I use this property to calculate the position of the Sun at sunrise and sunset in Chap. 5,
because the Sun, being exactly on the horizon, is then perpendicular to the zenith.
Note also that in Fig. A.13, from (A.1)

AB

AC
¼ cosðcÞ: ðA:34Þ

We can exploit this fact to set up some components in Cartesian coordinates for
vectors. Figure A.14 shows how, at least in two dimensions.
It can be seen from Fig. A.14 that

Wx ¼ Wj jcosðcÞ; and Wy ¼ Wj jsinðcÞ: ðA:35Þ
By the way, I can now come clean about the other requirement for a quantity to be a
vector. It must not only have magnitude and direction, but also obey the coordinate
transformation rule derived in the previous section. This may sound like a dry
technicality, but if it did not hold, believe me, there would be chaos in astronomy.

Fig. A.13. Showing the included angle c between the vectors D and F.

Fig. A.14. The normal convention is to label the x-component of the vector W as Wx

and the y - component as Wy, with no underlining or bolding.
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The extension of the coordinate notation for vectors to three dimensions is
straightforward (Fig. A.15).

I have one other very useful type of vector to define: a so-called unit vector. Unit
vectors all have length one, but can point in any direction. For example, the unit
vector pointing in the direction of W is

Ŵ ¼ W

Wj j: ðA:36Þ

In other words I have divided the vector W by the scalar jWj to give me a vector
whose length is unity. Unit vectors are usually denoted by having a ‘‘^’’ symbol on
top, and are usually pronounced ‘‘double-you-hat,’’ etc. Three especially useful unit
vectors are x̂; ŷ; and ẑ. They point along our Cartesian axes. Since they are mutually

perpendicular, it follows from (A.31) that

x̂ � ŷ ¼ x̂ � ẑ ¼ ŷ � ẑ ¼ 0: ðA:37Þ
and

x̂ � x̂ ¼ ŷ � ŷ ¼ ẑ � ẑ ¼ 1� 1� cosð0Þ ¼ 1: ðA:38Þ
I can, if the mood takes me, write W as

W ¼ Wxx̂ þWyŷ þWzẑ: ðA:39Þ
This is the usual form in which vectors are written in Cartesian coordinates. It is
generally taken that a vector with the same magnitude and direction as W, but which
does not start at the coordinate origin, is equal to W. It, too, can then be written like
(A.39).

Suppose we now consider two vectors U andW. Something clever happens when I
write down their dot product in Cartesian coordinates.

Fig. A.15. Extension of the Cartesian notation for vectors to three dimension. The angles
y, a, and b are the angles between the vector W and the axes. Since y is one of the
angles used to define spherical polar coordinates, I thought it is silly to rename it gamma.
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U �W ¼ ðUxx̂ þ Uyŷ þ UzẑÞ � ðWxx̂ þWyŷ þWzẑÞ
¼ UxWxx̂ � x̂ þ UxWyx̂ � ŷ þ UxWzx̂ � ẑ

þ UyWxŷ � x̂ þ UyWyŷ � ŷ þ UyWzŷ � ẑ
þ UzWxẑ � x̂ þ UzWyẑ � ŷ þ UzWzẑ � ẑ

¼ UxWxx̂ � x̂ þ UyWyŷ � ŷ þ UzWzẑ � ẑ
¼ UxWx þ UyWy þ UzWz ;

ðA:40Þ

since all other terms are zero by virtue of (A.37). I have also used (A.38) in the last
line. Thus, if I know the x, y, and z-components of any two vectors, I can work out
their dot product without any messing around with cosines. Indeed, I do just that
when working out the position of the sun from sunrise and sunset data.
Incidentally, Pythagoras’ theorem follows trivially from (A.31) and (A.40). Let

U¼ W. Then

W �W ¼ Wj j Wj jcosð0Þ
¼ Wj j2
¼ WxWx þWyWy þWzWz

¼ W 2
x þW 2

y þW 2
z :

ðA:41Þ

Fig. A.16. Extension of the Cartesian notation for vectors to 3D. The angles u, a and
b are the angles beween the vector W and the axes. Since u is one of the angles used to
define spherical polar co-ordinates, i thought it silly to rename it gamma.
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Lines two and four are precisely Pythagoras’ theorem. This proof is much shorter
and neater than the one in my school mathematics textbook, which I think was the
one due to Euclid.42 Indeed, a major benefit of vector notation is that it simplifies
proving theorems. Another very useful triangle theoremwhen working out distances
to superior planets is the so-called cosine rule. In Fig. A.16 and (A.29),

E ¼ F� D: ðA:42Þ
I am going to take the dot product of each side of (A.42) with itself. I then get

E � E ¼ ðF� DÞ � ðF� DÞ
¼ F � Fþ D � D� 2D � F; ðA:43Þ

i.e.,

Ej j2¼ ðF� DÞ � ðF� DÞ ¼ Fj j2þ Dj j2�2 Fj j Dj jcosðyÞ; ðA:44Þ
where y is the angle between D and F. This theorem, proved in four lines flat, is
known as the cosine rule. It is used to find the length of the third side of a triangle
when you know the lengths of the other two and the angle between them.

I think that is all you need to know about vectors to understand this book.
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Appendix B:
Statistical
Appendix

This appendix is coming from a different place from the geometrical one. There, I
assumed you had merely forgotten nearly everything you once knew about the
subject. Here I assume you were much less well trained. Furthermore, I am not
very impressed by the way statistics is taught. There is too much emphasis on rote
learning techniques and not enough on where the techniques come from. The result
is that people make statistical inferences they do not understand. It does not take
great prescience to imagine that this could lead to trouble. Indeed, while you might
be forgiven for thinking that all branches of mathematics have a bad reputation for
being difficult, the only one with a bad reputation for effectiveness is statistics.

There is actually a reason for a lot of the rote learning: you need a background in
calculus and analysis to understand the derivations of the statistical formulae. Once
you have the background, the statistics I want to show you are not especially difficult.

Nevertheless, the reasoning behind the justification for using them is not trivial,
and there is no point pretending it is.

If you are not very comfortable with mathematics, you could miss out the section
‘‘All Distributions Lead to a Normal Distribution’’ on a first reading and come back
to it later.

The only way I can think of to fit this material into an Appendix is to label some
parts of the story as advanced topics; and to warn you that you will need the kind of
training someone with a science, engineering, or economics major would have.

The alternative is that I write a book called A Down to Earth Guide to Statistics for
Amateur Astronomers. . .
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Probability
You can make this subject complicated, but I do not want to. I do not think I need to.
I think we need two ideas of what probability is. You are meant to imagine some
event where we know it can happen, but also view its likelihood as governed in some
way by chance. We all know the kinds of phenomena: drawing raffle tickets from
hats, etc.
You could have a theoretical view of the likelihood of the event, and state that if

you believe that an event can occur inm out of n possible ways, the probability of the
event occurring is m/n. For example, you might believe that there are two sides
a coin could land on, and only one is heads. Then the probability of getting heads is
1/2. Or the probability of getting raffle ticket number 729 out of a book of 1,000
tickets is 1/1,000. By the way, I have snuck in the assumption that raffle ticket draws
are independent. If ticket number 64 has already been drawn, the probability of
getting number 729 is no longer 1/1,000.
You can also take an observational approach, and say that in n repetitions of an

experiment, you found that your event occurredm times, then you could say that the
empirical probability of your event is m/n.
You can compare empirical against theoretical probabilities, for example to see if

you get swindled the next time you visit the gaming tables at the City of Lost Wages
in Nevada. A famous statistician, Karl Pearson, did just that in Monte Carlo, and
guess what he found?43

Since m cannot be greater than n, or less than zero if it comes to that, we can say
that probabilities such as m/n lie anywhere from zero through one. They are
sometimes expressed as percentages from 0 to 100%.
Sometimes we can work out theoretical values of m by counting the number of

ways n attempts could yield a given result. Let me go back to my raffle tickets to
illustrate. At the first draw, there are 1,000 tickets. At the second there remain 999
tickets; at the third there are 998 left, etc. How many ways are there that I could draw,
say, three tickets? The answer is that there are 1,000 � 999 � 998 ways. We can use
factorial notation to write this number down. Remember that n factorial, written n!,
is equal to
n(n�1)(n�2)(n�3). . .3 � 2 � 1. Therefore

100� 99� 98 ¼ 100� 99� 98� � � � � 3� 2� 1

97� 96� 95� � � � � 3� 2� 1
¼ 100!

97!
: ðB:1Þ

It is always true that there are n!/(n�m)! ways of randomly choosing m out of n
events. For our raffle tickets, one way we could select the tickets is 64, 729, 1.
But we might also select 1, 64, and then 729. If the first prize is the best prize the

order in which we draw these tickets matters. If all the prizes were the same, it would
not matter. In that event, which is like a lot of real astronomical situations, all I want
to know is about selecting those three tickets in any order. There are three ways you
could pick the first ticket (1, 64, and 729). We do not at this point know which ticket
was picked first, so there are three different combinations of second ticket (1 & 64, 64
& 729, and 729 & 1). For each of those there are two choices of second ticket. There
is only one third remaining ticket for each possible combination, so there are in total
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3� 2� 1 = 3! ways to pick our three tickets. That is always true: there arem! ways to
selectm tickets. If I am only interested in the number of ways I could get tickets 1, 64,
& 729 but do not care about the order, (B.1) overcounts.

Therefore, combining the discussion of the two preceding paragraphs, the
number of ways to pick m tickets out of n is

Ways to pick m tickets out of n ¼ n!

m!ðn�mÞ! : ðB:2Þ

In (B.2), them! appears in the denominator to divide out all the overcounting. If you
do not understand this formula, try a few real examples, with smallish numbers to
keep the arithmetic easy, until you do understand it.

A Measurement that Fluctuates
This is really what we need to understand for astronomy. Real measurements are
imprecise for many reasons. The causes might be anything from atmospheric
turbulence to thermal noise in digital camera chips. Leaving aside the vexed question
of whether* ‘‘God plays dice with the universe,’’ it is impractical to track down every
last cause of variability in measurement. It is, however, practical to assume that the
variability is random, and use statistical models of this randomness to analyze the
variability, and try and obtain a better estimate of the ‘‘true’’ value of a ‘‘perfect’’
measurement. It used to be thought that such a value existed, before the waters were
muddied by Heisenberg’s discovery of the uncertainty principle. We now believe the
concepts of true value and perfect measurement to be approximations.

So, we end up with a simplified conceptual model of our measurement in which
we take it that there is a ‘‘correct’’ answer, which we cannot find because of random
fluctuations in the values we measure. What we often find is that the more measure-
ments we take, the more constant their average becomes. The fluctuations about the
average also have a tendency to settle down to a predictable pattern.

Apart from metaphysics and Heisenberg, there is another whopping great as-
sumption in our conceptual model of a measurement. We assume that there are no
systematic errors.

What is a systematic error? For example, I discovered a systematic error this
winter when I was trying to measure the orbits of Saturn’s satellites Titan and
Rhea. To take the photos, I was using two Barlow lenses, a 2� for when Titan was
far from Saturn and a 4� when it was near. Then there were some strange quirks in
the results. In desperation, I decided to do some magnification tests on my Barlow
lenses. Guess what? The magnifications were nearer 2.3� and 3.7�. It was only a
chance reading on the Web that Barlow lenses will work as zoom lenses that led me
to make this test. I could indeed make my Barlows work as zoom lenses, by not

*Einstein had a tendency to toss off remarks – don’t we all? – to which people attached more
significance than he probably intended. There was a regrettable tendency to treat every word of his
as holy writ. This particular remark has all the hallmarks of bad science, as I am sure he knew. It is
simply an assertion, which had no justification in the then available experimental evidence.
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pushing the camera all the way into the Barlow lens, and refocusing. Once I
corrected my measured distances for this effect, they looked much more believable.
This example is typical of systematic errors. They are hard to find, and usually make
you look stupid when you do find them, since hindsight is always 20/20.
If measurements vary in an apparently random way, the fluctuation is referred to

as a random error. The word ‘‘error’’ in this context does not mean ‘‘mistake’’ but it
comes from the Latin word ‘‘errare’’ meaning ‘‘to wander.’’ Thus random errors are
random wanderings from the actual value.
I propose to illustrate how the normal distribution, also called the Gaussian

distribution and the bell curve, arises by showing you an example you can generate
for yourself with Microsoft Excel or OpenOffice Calc.
I ask you to imagine a measurement of some quantity whose average value over

many measurements is 42 units. It does not matter what units we use. This is a
theoretical example. We do not know the ‘‘correct’’ value. All we can ever find is the
average value. In some statistics texts this average is referred to as the expectation
value. This example is contrived to make it work in Microsoft Excel. I subject each
measurement to 40 random perturbations, each of which might increase or decrease
the value I measure by one unit. In Microsoft Excel, I use the random number
function RAND( ) and the IF facility. The random number function fills the
spreadsheet cell with a random number between 0 and 1. Hence, the typing =IF
(RAND( )<0.5,�1,1) will put�1 in the cell if RAND( ) is less than 0.5, and +1 in the
cell if RAND( ) is not less than 0.5. Half the time it will insert �1; the other half it
will insert +1. In OpenOffice Calc the corresponding function is =IF(RAND( )<
0.5;�1;1) with semicolons instead of commas.
Excel will let me add IF(RAND( )<0.5,�1,1) to 42 forty times before it complains

my command line is too long. Hence each

Measurement M ¼ 42þ IF ðRANDð Þ;�1; 1Þ þ IFðRANDð Þ;�1; 1Þ
þ � � � þ IFðRANDð Þ;�1; 1Þ

¼ 42þ
X40
1

IFðRANDð Þ;�1; 1Þ ¼ 42þW ðk; nÞ; ðB:3Þ

where the Greek sigma symbol
P40

1 means sum from 1 to 40, i.e., add the IF(RAND
( )<0.5,�1,1) term 40 times. What happened? Figures B.1–B.3 tell us.
There is no good reason for choosing 287 measurements–it was the first number

that came into my head. My wife asked me why I chose it. I think she would be better
asking a psychologist. I will be that no one would have questioned me if I had chosen
a round number of results like 250 or 256 = 28.
If we look at the first 287 measurements, the distribution of measurements is shown

in Fig. B.1. The distribution looks a bit like a bell curve (see also 4.14), but not much.
If we look at the first 2887 measurements (a number also picked for no good

reason), the distribution of measurements is shown in Fig. B.2. The distribution
looks more like a bell curve, with much less ‘‘noise,’’ but it shows some asymmetry
about the average value, 42.
If we look at the first 28,887 measurements (a number picked for no better

reason than 287 or 2,887), the distribution of measurements is shown in Fig. B.3.
The distribution now looks very symmetric about the average value, 42; and
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looks like the well-known bell curve. But 28,887 is an awfully large number of
measurements.

Why take all these measurements? I am trying to show you the concept of
reproducibility. This concept deals with the question of whether many repeats of a
measurement with random fluctuations tend to give the same result.

Table B.1 shows the average measurements under various circumstances. Taking
the average of five measurements does not produce a consistent answer. We say that
five measurements are not enough to make our experimental measurement repro-
ducible. Taking ten measurements gives an answer within 10% of what we expect.
Taking 27 gets us to within 3%. A law of diminishing returns now begins to apply.
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Fig. B.2. Distribution of measurements of our quantity obtained from 2,887 instances
of (B.3).
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Fig. B.1. Distribution of measurements of our quantity obtained from 287 instances
of (B.3).
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Taking 287 measurements gets us to within 1% or out target value (which we only
know because it is a made-up example). Going to 2,887 or 28,887 measurements
yields a slight improvement for a lot more effort. Most of the reproducibility will be
revealed by the first dozen or so measurements.
I now want to show you how to work out what the spread of measurements looks

like. Can we work out the characteristics of the distributions of measurements in
Fig. B.2 and B.3? The answer is yes. I follow here the treatment of a very similar
problem given by one of the few people to win a Nobel Prize for astrophysics,
S. Chandrasekhar,44 although I promise you that this particular calculation is not
going to need Nobel-level skills.
The probability of a given fluctuation being positive (or negative) in our example

is 1/2. The probability of the next fluctuation being positive is also 1/2. Therefore the
probability of both fluctuations being positive is 1/2 of 1/2, i.e., (1/2)2. The proba-
bility of a positive step followed by a negative step is also (1/2)2, and so on. After the
40 steps in (B.3), the probability of a given sequence of positive and negative
fluctuations is (1/2).40 In general, let the result of the fluctuations be a measurement
of 42+k, where k is an integer or whole number. It can be positive, negative or zero. I
need to come clean about something I glossed over: in 40 fluctuations from a
starting value of 42, the final value has to be even. Every time you add +1 or �1
an even number of times to 42, you get an even number. So k must be even.
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Fig. B.3. Distribution of measurements of our quantity obtained from 28,887 instances
of (B.3).

Table B.1. Average Values of the ‘‘Measurement’’ in Our Model

Which
Measurements

First
5

Second
5

First
10

First
27

First
287

First
2887

First
28887

44.8 47.6 46.2 43.3 41.6 42.0 42.0
% Difference
from 42.0

7% 13% 10% 3% �1% 0% 0%
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Anyway, of the 40 fluctuations, (1/2)(40+k) must have been positive fluctuations
and (1/2)(40�k) must have been negative. You can convince yourself of this
by trying specific examples. For example, if k = +2, there must have been 21 positive
fluctuations and 19 negative ones. If k = +10, there must have been 25
positive fluctuations and 15 negative ones. If k = �10, there must have been 15
positive fluctuations and 25 negative ones, and so on.

We now use (B.2) to work out the number of ways to get to 42+k in 40 fluctua-
tions. The probability of this happening is the number of sequences of fluctuations
with (1/2)(40+k) positive fluctuations and (1/2)(40�k) negative ones times the
probability of each occurring. Let me write this number as W(k, 40). then

W ðk; 40Þ ¼ 40!
1
2
ð40þ kÞ� �

! 1
2
ð40� kÞ� �

!

1

2

� �40

: ðB:4Þ

If instead of 40 fluctuations, we have n fluctuations,

W ðk; nÞ ¼ n!
1
2
ðnþ kÞ� �

! 1
2
ðn� kÞ� �

!

1

2

� �n

: ðB:5Þ

When n is large and k ¼ n, we can write an approximate version of this formula. We
use an approximation known as Stirling’s approximation. I am afraid that the
derivation of Stirling’s approximation requires rather more mathematical knowl-
edge than the minimum I have assumed, so I will not give it here. At the time of
writing, you can find the derivation of this formula on Wikipedia at http://en.
wikipedia.org/wiki/Stirling%27s_formula, or in the book by Mathews and Walker.45

Stirling’s formula is

n! �
ffiffiffiffiffiffiffiffi
2pn

p n

e

� �n
ðB:6Þ

where e is the base of natural logarithms. If you do not like my producing Stirling’s
formula out of a hat, I do not blame you. I have just done something I have never
done before, which is to draw up a table in Microsoft Excel comparing the values of
Stirling’s approximation with n!. Even without the derivation, you can see from
Table B.2 that for n > 9, Stirling’s formula is good to better than 1%.

The main practical advantage of Stirling’s formula is that n! overloads electronic
calculators because it increases so rapidly as n increases. Stirling’s formula is partic-
ularly useful in its logarithmic form,

loge ðn!Þ ¼ loge
ffiffiffiffiffiffiffiffi
2pn

p� �
þ loge ððn=eÞnÞ

¼ 1

2
loge ð2pÞ þ

1

2
loge ðnÞ þ n logeðn=eÞ

¼ 1

2
loge ð2pÞ þ nþ 1

2

� �
loge ðnÞ � n logeðeÞ

¼ 1

2
loge ð2pÞ þ nþ 1

2

� �
loge ðnÞ � n; ðB:7Þ

since the natural logarithm of e is one.
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Let me apply (B.7) to (B.5). The logarithm of (B.5) is

loge ðW ðk; nÞÞ ¼ loge ðn!Þ � loge
1

2
ðnþ kÞ

	 

!

� �
� loge

1

2
ðn� kÞ

	 

!
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þ n loge
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2
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� nþ 1

2

� �
logeðnÞ � n
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2
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Table B.2. Comparison of n! with Stirling’s Formula

N n! Stirling’s Formula Ratio

1 1 0.922137009 1.084438
2 2 1.919004351 1.042207
3 6 5.836209591 1.028065
4 24 23.50617513 1.021008
5 120 118.019168 1.016784
6 720 710.0781846 1.013973
7 5,040 4,980.395832 1.011968
8 40,320 39,902.39545 1.010466
9 362,880 359,536.8728 1.009298
10 3,628,800 3,598,695.619 1.008365
20 2.43 � 1018 2.42279 � 1018 1.004175
30 2.65 � 1032 2.64517 � 1032 1.002782
40 8.16 � 1047 8.14217 � 1047 1.002085
50 3.04 � 1064 3.03634 � 1064 1.001668
60 8.32 � 1081 8.30944 � 1081 1.00139
80 7.2 � 10118 7.1495 � 10118 1.001042
100 9.3 � 10157 9.3248 � 10157 1.000834
150 5.7 � 10262 5.7102 � 10262 1.000556
170 7.3 � 10306 7.2539 � 10306 1.00049
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We can simplify (B.8) further by expanding some of the logarithms as series. This is a
slightly more advanced technique, fully explained and derived in many mathematics
textbooks, among which my favorite is an old classic by Courant.46 If you are not
familiar with this expansion, you can always test it in a spreadsheet program for
various values of k/n.

The series expansion of a logarithm is

loge 1� k

n

� �
� � k

n
� k2

2n2
� � � � ðB:9Þ

This is valid so long is k < n. We substitute (B.9) into (B.8) to yield

logeðW ðk; nÞÞ � nþ 1
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We are almost there. Taking the antilogarithm of (B.10) yields

W ðk; nÞ ¼
ffiffiffiffiffiffi
2

pn

r
exp

�k2

2n

� �
: ðB:11Þ

If k were a continuous variable, not an integer, (B.11) would be the equation of a
normal or Gaussian distribution. As it is, k can only take certain values, but the
distribution of W(k, n) is a normal distribution.
But, you rightly ask, was not this a rather contrived example? A Mickey Mouse

one even? Yes it was. The remarkable thing is that the same thing happens for
virtually any distribution of random errors.

All Distributions Tend Toward
a Normal Distribution

I am now going to take you through the proof of this remarkable claim: all
distributions of random fluctuations tend toward normal distributions if there are
enough fluctuations. I will have to meander somewhat to set up some results to use
in my proof. Your patience is requested.
Here is something else worth asking about the distribution W(k, n) of measure-

ments. How scattered are they? The way statisticians usually get a handle on this is to
think not only in terms of the average or mean of a measurement, but also in terms
of its variance.
To define this, we need to do some work on the mean of W(k, n). I do not know

why but you have more street cred if you say ‘‘mean’’ rather than ‘‘average.’’ Let me
call it m (Greek lower case ‘‘mu’’). It is obvious from Fig. B.1 through Fig. B.3 that, in
terms of (B.3), the mean value ofM is 42, and the mean ofW(k, n) is therefore zero.
The same conclusion could quickly be drawn from (B.11), where it can be seen that
W(k, n) = W(�k, n) because W(k, n) only depends on k2. It would therefore be
absurd for the mean value of W(k, n), m, to be anything other than zero.
A more mathematical definition of the mean47 is this:

m ¼
X
k

kW ðk; nÞ; ðB:12Þ

where the sum is taken over all possible values of k. Since W(k, n) = W(�k, n), the
value of m in (B.12) has to be zero because every term k W(k, n) is canceled out by a
term �kW(�k, n) = �kW(k, n). In general for other functions W(k, n), m need not
be zero. If k were continuous, i.e., could have noninteger values, the mean would be
defined48 as

m ¼
ð
kW ðk; nÞdk; ðB:13Þ

where the integral is really a definite integral taken over all possible values of k.
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Back to variance. Note that (k�m) could be positive or negative, but (k�m)2 is
always positive. Out of left field, let me ask: what is the mean of (k�m)2? The answer,
using the language of (B.12), is

s2 ¼
X
k

ðk � mÞ2W ðk; nÞ: ðB:14Þ

This is in fact the definition of variance that statisticians use. If k were continuous,
the definition of variance would be

s2 ¼
ð
ðk � mÞ2W ðk; nÞdk; ðB:15Þ

where again the integral is really a definite integral taken overall possible values of k.
The variance is given the name s2, not s (Greek lower case ‘‘sigma’’) because its

square root s also has a name: it is called the standard deviation of the distribution.
That is all I am going to tell you about variance and standard deviation for now. This
is not meant to be a treatise on statistics, merely an Appendix to get you through the
main chapters of the book.

I am sorry to skip around and introduce apparently mad ideas. Please trust me.
I am getting there. I do need to tell you about something called amoment generating
function. This is a rather scary name for a function which really is not very
complicated. It is a bit like a mean only different. Its definition is

GðtÞ ¼
X
k

expðt kÞW ðk; nÞ � discrete k;

GðtÞ ¼
ð
expðt kÞW ðk; nÞdk � continuous k:

ðB:16Þ

In fact by analogy with (B.12) and (B.13), G(k) is the mean of exp(t k).
We exploit the fact that

expðt kÞ ¼ 1þ ðt kÞ þ ðt kÞ2
2!

þ ðt kÞ3
3!

þ ðt kÞ4
4!

þ � � � ðB:17Þ

to write

GðkÞ ¼
X
k

W ðk; nÞ þ
X
k

ðt kÞW ðk; nÞ þ
X
k

ðt kÞ2
2!

W ðk; nÞ þ
X
k

ðt kÞ3
3!

W ðk; nÞ

þ � � � � discrete k;

GðkÞ ¼
ð
W ðk; nÞdk þ

ð
ðt kÞW ðk; nÞdk

þ
ð ðt kÞ2

2!
W ðk; nÞdk þ

ð ðt kÞ3
3!

W ðk; nÞdk þ L � continuous k:

ðB:18Þ
You may care to note that the second term in each of the two versions of (B.18) looks
like our mean ((B.12) and (B.13)), and the third term bears a passing resemblance to
our variance ((B.14) and (B.15)). Note also that for every different form of W(k, n),
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there can only be one moment generating function. The converse is true.
The moment generating function for W(k, n) cannot be the moment generating
function for any other probability distribution.
Oh, and I have to confess to having contrived my example so that the mean of

W(k, n) came out to zero. That is a common trick in statistics: to subtract the mean
value from a random variable to keep mathematical manipulation simple. You
can make it even simpler if you make the following transformation of a random
variable k.

Z ¼ k � m
s

: ðB:19Þ

Z then has a mean of zero and a variance of one. In some texts you may see it referred
to as a standardized random variable.
Now for another meander. Suppose I have a load of sets of random variables Xi

where i = 1,2,3,. . .,n. Suppose further that each has the same mean m and variance
s2. Now let me, just for the heck of it, add ‘em all up.

Sn ¼ X1 þ X2 þ X3 þ � � � þ Xn ¼
Xn
i¼1

Xi: ðB:20Þ

The mean of Sn is therefore

Mean of Sn ¼
Xn
i¼1

m ¼ nm: ðB:21Þ

The variance of Sn is

VarðSnÞ ¼
Xn
i¼1

VarðXiÞ ¼
Xn
i¼1

s2 ¼ ns2: ðB:22Þ

The standardized random variable for Sn, per (B.19), is therefore

S�n ¼
Sn � nmffiffiffiffiffiffi

ns
p : ðB:23Þ

So [expletive, deleted] what, you ask? I am getting there. I am getting there.
The moment generating function for S�n is

G S�n
 � ¼ Mean expðS�ntÞ

 �

¼ Mean exp
Sn � nm
s
ffiffiffi
n

p t

� �� �

¼ Mean exp
X1 � m
s
ffiffiffi
n

p t

� �
exp

X2 � m
s
ffiffiffi
n

p t

� �
� � � exp

Xn � m
s
ffiffiffi
n

p t

� �� �

¼ Mean exp
X1 � m
s
ffiffiffi
n

p t

� �� �� �n

¼ GðXnÞn;

ðB:24Þ

since each of the random variables Xi has the same m and s. By a series expansion of
the exponential function
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GXn
ðtÞ ¼ Mean exp

X1 � m
s
ffiffiffi
n

p t

� �� �

¼ Mean 1þ X1 � m
s
ffiffiffi
n

p
t
þ X1 � mð Þ2

2 s2n
t2 þ � � �

 !

¼ Meanð1Þ þMeanðX1 � mÞ
s
ffiffiffi
n

p t þMeanðX1 � mÞ2
2s2n

t2 þ � � �

¼ 1þ 0

s
ffiffiffi
n

p t þ s2

2s2n
t2 þ � � �

¼ 1þ s2

2s2n
t2 þ � � �

ðB:25Þ

Therefore

GS�n ðtÞ ¼ GXn
ðtÞn ¼ 1þ s2

2s2n
t2 þ � � �

� �n

¼ 1þ t2

2n
þ � � �

� �n

: ðB:26Þ

Now, the limit of (B.26) as n tends to infinity is

lim
n!1GS�nðtÞ ¼ lim

n!1 1þ t2

2n
þ � � �

� �n

¼ exp
t2

2n

� �n

¼ exp
t2

2

� �
: ðB:27Þ

A little earlier I claimed that all probability distributions tend to the normal
distribution. If I am right, (B.27) should be equal, or at the very least proportional,
to the moment generating function for a normal distribution. Let us check. Well, let
me calculate the moment generating function for a normal distribution

f ðxÞ ¼ 1

s
ffiffiffiffiffi
2p

p exp
�x2

2s2

� �
: ðB:28Þ

Then

GðtÞ ¼ 1

s
ffiffiffiffiffi
2p

p
ð1
�1

expðtxÞexp �x2

2s2

� �
dx

¼ 1

s
ffiffiffi
2

p
p

ð1
�1

exp
�x2

2s2
þ tx

� �
dx

¼ 1

s
ffiffiffiffiffi
2p

p
ð1
�1

exp � x2 � 2ts2x
2s2

� �
dx

¼ 1

s
ffiffiffiffiffi
2p

p
ð1
�1

exp � x2 � 2ts2x þ ðstÞ2 � ðstÞ2
2s2

 !
dx

¼ 1

s
ffiffiffiffiffi
2p

p
ð1
�1

exp �ðx � tsÞ2 � ðstÞ2
2s2

 !
dx

¼ expðt2=2Þ
s
ffiffiffiffiffi
2p

p
ð1
�1

exp �ðx � tsÞ2
2s2

 !
dx

¼ expðt2=2Þ
s
ffiffiffiffiffi
2p

p
ð1
�1

exp � x2

2s2

� �
dx

¼ Constant� expðt2=2Þ;

ðB:29Þ
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since
Ð1
�1 expð�x2=ð2s2ÞÞdx is a constant. In the last line but two of (B.29), I made

use of the fact that since x runs fromminus infinity to infinity, it makes no difference
to the integral if ts is subtracted from x. I could have evaluated the integral in the last
line of (B.29), but it is rather paper- and brain-consuming to evaluate this integral;
and there is no point. I have proved that the moment generating function for a
Gaussian distribution is proportional the one in (B.27). Therefore all distributions
tend to one that is proportional to a normal distribution. Any distribution that
differs form a normal distribution only by a constant of proportionality must be a
normal distribution. So I have proved my point.

What Happens When I Can Only
Make One Measurement per
Observation of a Moving Body?

In this case, we might end up with a series of observations like, say, those in Fig. B.4.
There is a pattern, in this case perhaps a straight line relationship, but each of the
measurements is also subject to random fluctuations. By virtue of the above discus-
sion, we can safely assume that the fluctuations at each point would be normally
distributed if we had been able to make many observations at that point.
We do not need to. We can exploit the knowledge that such measurements at each

point would be normally distributed to obtain a best fit to the data in Fig. B.4 or any
similar data set. Often, our horizontal axis is time. Nowadays we can measure time
very accurately and precisely, so we can take it that all the fluctuations occur in the
other quantity.

Fig. B.4. A set of measurements of a quantity which shows a behavior pattern, but also
some random noise.
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We assume, then, that whatever quantity this is, we have measured one of a sample
of data points normally distributed about a mean value with probability

expð�Dy2i =2s
2Þ, where Dy i is the variation of the y value of the ith measurement.

We further assume that each measurement has the same variance s2. Since the same
measurement technique is usually used for all the measurements, this is a reasonable
assumption; and that each measurement varies independently of the others. Then
the probability of obtaining the whole set of measurements

Pset ¼ exp �Dy21
2s2

� �
exp �Dy22

2s2

� �
� � � exp �Dy2n

2s2

� �

¼ exp �Dy21 þ Dy22 þ � � � þ Dy2n
2s2

� �
ðB:30Þ

the best fit is that which would maximize Pset. The lower the value of

Dy21 þ Dy22 þ � � � þ Dy2n, the higher is Pset. Therefore the best fit occurs when we
minimize the sum of the squares of the fluctuations in y.

This is a really useful result. It works in all sorts of situations, and saves us an awful
lot of work.

In a situation like Fig. B.4 where the best fit is a straight line, or indeed a
polynomial, it is possible to solve algebraically for the least squares fit. This is
done in many textbooks for the straight line case, but the Schaum book on
Probability and Statistics also derives the least squares parabola case.49

Other cases cannot be so solved, and we have to use our wits.
The method I used was to adapt a so-called Monte Carlo method. The idea was to

use a spreadsheet program –Microsoft Excel and OpenOffice Calc should both work
– to run a large number of trial models of my data, and to choose the one which has
the lowest sum of the squares of the fluctuations in y. For example, when I was
looking at Saturn’s moons (results not included in this text) my model of the
distance of the moon from the parent planet in the direction of the planet’s equator
was

y ¼ A cosðot þ ’Þ; ðB:31Þ
where A is an unknown constant, o is an unknown angular frequency of the orbit,
and ’ is an unknown phase. In other words I have three unknowns. I tried instances
of

y ¼ ðA0 þ dAÞcosððo0 þ dwÞt þ ð’0 þ d’ÞÞ; ðB:32Þ
where dA, do, and d’ are random numbers added to A0,o0, and ’0, respectively. A0,
o0, and ’0 are my initial guesses of the values of A, o, and ’.

I am going to illustrate this principle via a table. In practice the number of data
points is much greater, but I am trying to show you how to do the analysis, not what
answers I got.

In Table B.3, I quite arbitrarily set

do ¼ 0:2o0; dA ¼ 0:1A0; and d’ ¼ 0:2’0: ðB:33Þ
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In order to calculate the numbers in the cells in the three leftmost columns, I then
used the formulae

2p
o0 þ do

¼ 0:95� 2p
o0

þ 0:10� RANDð Þ;
A0 þ dA ¼ 0:95� A0 þ 0:10� RANDð Þ; and
’0 þ d’ ¼ 0:90� ’0 þ 0:20� RANDð Þ;

ðB:34Þ

where I have written the formulae in the syntax of Microsoft Excel and OpenOffice
Calc. The idea is that, since dA is 0.1A0, in (B.33), A can fluctuate from 0.95A0

to 1.05A0; since d’ is 0.2’0, in (B.34), ’ can fluctuate from 0.9’0 to 1.1’0, and
so on.
I was really after the orbital period 2p/o rather than o. In the fifth through

seventh columns I put the calculated values from (B.32). In the eighth through tenth

columns, I have worked out the differences Dy21; Dy
2
2; and Dy23 between observed

and modeled values; and in the eleventh column I have added them to give

Dy21 þ Dy22 þ Dy23. This sum of squares is the very quantity I am trying to minimize.

In the final column, I have selected the minimum value of Dy21 þ Dy22 þ Dy23, which
is 0.004, which inspection showed came from my seventh trial model (there are ten
trial models in Table B.3). Therefore this seventh trial model is my best fit, with

A ¼ 3:517; 2p=o ¼ 16:457; and ’ ¼ 0:955:

The orbital period of Titan is actually about 15.945 days, so my value of 16.457 days
is not outrageous considering how few data points I have used. When I re-ran the
Monte Carlo simulation ten times with the same number of points, I found orbital
periods between about 15.3 and 17.3 days. So the answer in (B.35) is a luckier than
I really deserve. There are not enough data. When I did it for real, I had 58
measurements taken at different times, and instead of ten trials I had 32,772 trials.
As a matter of practical convenience, I had 8,193 trials on the Excel worksheet, and I
copied and used paste-special-values to put the data onto four separate worksheets
to store it while I recalculated. This is because the RAND( ) function in Excel has the
irritating habit of recalculating every time you do something. When you only have
one or two of them in a worksheet, it does not matter, but it takes a minute or so to
munch through 8,193 � 58 � 3 = 1,425,582 instances of RAND( ), even on my
rather fast desktop computer.
The outcome of my Monte Carlo simulation was that the orbital period of Titan

was best fit by a value of 15.911 days, which is 0.22% different from the published
value. That was quite impressive. However, the method proved to be poor at fitting
amplitudes A for Titan and Rhea. By ‘‘poor’’ I mean that the results were no better
than �2%. The value of the least squares difference did not change much if A
changed. Indeed the only way I could get good fixes on A was to take photos very
close to the moment of maximum distance from Saturn, and make measurements
from them. For Jupiter’s moons, I noted the same phenomenon, but it was not such
a difficulty. I still got good fits. What I often did was to run a second Monte Carlo
simulation with less fluctuation, using the fits from the first simulation as my
starting data. That often got me better fits.
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Therefore, this method is not perfect, and needs to be taken with a pinch of salt.
Do not be gulled into believing your results until you have checked them. In real
research situations, of course, you may not have any published data to compare with.
You then have to make a decision whether you believe your results. Ask yourself
these questions. Does a slight perturbation of the best fit still produce a good fit? If
not, you may have an error in your mathematics. Do the second and third best fits
give very similar answers to the best one? If you plot your fitted data, do they look
like a good fit to the measured data? If not, poke around and try to find out why not.
And, above all, leave your results for a day or two and then recheck them. It is
amazing how many errors you then find.
Nevertheless it enabled me to work out satellite orbits and the distances to Saturn

and Mars, so it is a practical technique if used with care.
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