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Preface

Since the start of the twentieth century, modern society has been utilizing electric
power for maintaining civil systems such as transportation, communications, fac-
tories, houses, and commercial buildings. Power electronics has recently been an
active area because of electric vehicles, renewable energies, smart grids, mobile
devices, light emitting diodes (LEDs), and wireless power transfer (WPT)
technology. Power supplies and switching converters are a requisite for modern
devices and most electric systems. More efficient, lower weight, compact, and
cheaper power solutions are highly sought by consumers, and power electronics
deals with these challenging issues.

It is well known that all switching converters are time varying and equivalent to
switched transformers, which I first proved in general about 30 years ago. Although
there were the well-known R.D. Middlebrook’s state-space averaging techniques
and Peter Wood’s existence function techniques, they are valid only for DC-DC
converter analyses and static analyses of converters, respectively. I wondered at that
time why we still did not have a general technique valid for the static and dynamic
analyses of any converters.

After studying this problem for several years during my Ph.D. candidate period,
I found that power electronics is a unique field among electronic engineering areas
in that it always involves time-varying characteristics of converters without any
exception. A linear power electronic circuit containing power switches even
becomes nonlinear when a power switch operates in the discontinuously conduction
mode, which means that the inductor current or capacitor voltage spontaneously
becomes zero during a switching period. Therefore, nonlinear time-varying systems
are abundant in switching converters, which require a special modeling technique to
make the complex nature of the switching converter simple and easy to handle.

There are many books on power electronics that explain how the switching
converters operate, and they provide some analytical results and design guidelines.
Except for the state averaging and existence function techniques, most books deal
with piecewise linear circuit models; hence, mathematical results derived from the
models become too complicated to be used in practice. Until now, there is no such
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book that generally and systematically deals with the time-varying switching sys-
tem, transforming it into an equivalent time-invariant circuit. Neither cumbersome
equations nor matrix manipulations are needed by the techniques introduced in this
book, which are collectively referred to as ‘phasor transformation’.

This book starts with the introduction of the philosophy of power electronics and
fundamental knowledge and background of modern power electronics. The swit-
ched transformer concept, which is applicable to any switching converter, is
introduced and it is shown that DC-DC converter analyses are so straightforward
that little equational manipulations are needed. Then the phasor transformation
techniques are comprehensively explained in three parts. Single phase and
multi-phase AC systems are dealt with through the single phase phasor transfor-
mation and circuit DQ transformation, respectively. A general unified phasor
transformation is then introduced for the static and dynamic cases. Each part pro-
vides readers with corresponding application examples.

As an inventor of the switched transformer model and phasor transformation
models in power electronics, I feel that these models are the most fundamental and
powerful theories to deal with power electronics with great ease. Throughout my
research and developments on practical applications of power electronics during the
past three decades, I have also become familiar with the most advanced LED
drivers and WPT technologies. I have led a team to develop the WPT systems of the
On-Line Electric Vehicles (OLEVs), which were the first of their kind to be
commercialized in the world. My students and I have researched the longest dis-
tance WPT of 10 W at 10 m and developed several innovative WPT products
including the world’s first free space charging mobile device that is plate type with
six degrees of freedom. I have included some of these research issues in this book,
which vividly shows the practical application of the proposed theories to industries.
In this way, this book covers from the ultimately basic concepts to the most
advanced state-of-the-art technologies. The usefulness of this book, however,
depends on how frequently readers apply it in their engineering problem solving.
The intention of writing this book is to provide know-how to beginners, new-
comers, and experienced power electronics engineers who want to find an appro-
priate model and to analyze the switching converter systematically. This book can
be used as a textbook for graduate students who major in power electronics or as a
reference book of higher level undergraduate students.

I would like to thank Prof. Gyu H. Cho at KAIST for his outstanding leadership
in developing a circuit-based unified general method to analyze and design com-
plicated electronic circuits very easily without any equations. My work on mod-
eling power electronics was significantly motivated by Prof. Cho’s ideas on
electronic circuits. Furthermore, he persistently encouraged research on this unified
general modeling of power electronics, which is a sort of high-risk-high-return
research. It is always challenging to study unknown areas, especially the devel-
opment of a theory in an engineering field. Now I can say the following words:

A circuit is more powerful than equations.
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I would also like to thank Mr. Seog Y. Jeong, Ji H. Kim, and Gi C. Jang for their
great help in preparing the manuscript of this book. I appreciate very much Springer
for its decision to publish this book. Without this help, this book would not have
appeared.

As a teacher at a university now, I am very happy to share my experience of
struggling throughout my life with worldwide friends to find appropriate switching
converter models.

January 2016 Chun T. Rim
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Part I
Introduction to Power Electronics

This part introduces the very basic knowledge of power electronics. The most
fundamental principles of power electronics are explained first: the philosophy of
power electronics. A few important principles of power electronics, which are the
‘key principles’ of power electronics, follow.



Chapter 1
The Philosophy of Power Electronics

This chapter explains why power electronics is so special and difficult to under-
stand. A state equation is obtained for a switching converter example and generally
compared with conventional systems. However, general unified approaches for
understanding and analysis of power circuits are deliberately sought in this book as
an extension of similar works done in electronic circuits, which were believed to be
very complicated and formidable to handle.

Since electronics switches such as transistors and diodes are used to control
power, power electronics has become an important area of electronics. As electronic
switches started being used in power circuits, engineers realized that the switching
power circuits are quite different from conventional electric circuits. The charac-
teristics of switching power circuits that confound engineers are time-varying
nature and AC (alternating current) circuit dynamics, as shown in Fig. 1.1. In this
chapter, these unique features of power electronics are explained as an introduction
to power electronics.

I like power electronics because it is a kind of 3D work, i.e., diversified, dan-
gerous, and difficult. To be a power electronics expert, one should know not only
electronics such as electric circuit theory, micro-electronics, control, signal pro-
cessing, semi-conductor, and electricity but also mechanics and materials. There are
unique characteristics in electrical engineering because the control, communica-
tions, image processing, and software engineering may not be so diversified
compared with power electronics. Moreover, power electronics deals with high
voltage and large current as the conventional electrical engineering is doing; as
such, it is dangerous when performing experiments and development. Power
electronics may be one of the most difficult engineering fields, on par with radio
frequency engineering and fluid mechanics, from my experience. However, a power
electronic circuit looks simple compared to a conventional analog filter or an
electronic circuit. Actually, this apparently simple power electronic circuit makes it
more difficult to analyze and design of it, which is the reason why many electric
engineers who are now familiar with power electronics have trouble handling
power electronic circuits.

© Springer Science+Business Media Singapore 2016
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1.1 All Switching Converter Is Time-Varying, Which
Makes Power Electronics so Unique and Difficult
to Learn

Let me give you an example of analyzing a boost converter, as shown in Fig. 1.2,
which is one of the most basic switching converters in power electronics. (The
name, ‘boost’ stems from the fact that the output voltage of the boost converter is
always higher than the input voltage.) What is the output voltage of the converter
when the switch Qc is ideally turned on and off periodically with a turn-on duty
ratio of d = 0.7 assuming all other circuit parameters are given?

If you are familiar with electronic circuit analysis, you may find the answer by
setting up piecewise state equations for each switching state, as shown in Fig. 1.3.

L
dis
dt

¼ vS C
dv0
dt

� v0
RL

for kT\t\kT þ d � T; k ¼ 0; 1; 2; . . . ðS1Þ ð1:1aÞ

L
dis
dt

¼ vS � v0 C
dv0
dt

¼ iS � v0
RL

for kT\d � T\t\ðkþ 1ÞT ;
k ¼ 0; 1; 2; . . . ðS2Þ

ð1:1bÞ

As you solve the state equations of S1 circuit and apply the final values of the
circuit to the initial conditions of S2 circuit, you can determine the whole voltages
and currents of the circuit for a period. As you repeat this process for the

Fig. 1.1 Time-varying and AC characteristics of power electronics that give engineers a headache

4 1 The Philosophy of Power Electronics



Fig. 1.2 The behavior of a boost converter in continuous conduction mode (CCM). a A simplified
circuit diagram. b Its switching waveforms in the steady state

Fig. 1.3 Piecewise analysis of a boost converter in the CCM. a Two piecewise circuits S1 and S2
of Fig. 1.2. b The dynamic state variables for the first six periods when the initial conditions are
zeroes

1.1 All Switching Converter Is Time-Varying, Which Makes Power … 5



consecutive periods, you can determine the values of any states, as shown in the
bottom diagram of Fig. 1.3. For simplicity of discussion, it is assumed that all the
switch currents are continuously conducting throughout the operation, which is
called continuous conduction mode (CCM) in power electronics.

Question 1

1. Can you solve (1.1) for a period, assuming zero initial conditions?
2. Apply the solution of (1.1) to the next period.
3. Think about how to obtain the steady state solution.

It looks like we now have a complete solution for the boost converter because
we know all the circuit information for given circuit parameters. However, you will
readily recognize that there are quite a few cases where you can make designs based
on the state equations and the solutions. If you try to repeat the process for the first
three consecutive periods, you will find that the solution in the analytic form is
hardly possible to deal with. It is too complicated and its complexity increases as
the number of periods increases. There is no hope of finding the steady state
condition in this way.

For the control of this switching converter, you need the average values of
voltage and current which has lots of switching ripples. As you filter out the
switching ripples with a finite bandwidth, you will get the response of the filters
instead of the original signals, which results in a slow system response. In this way,
the switching behavior of a converter makes it very difficult to analyze and control a
power electronic circuit composed of a converter and its controller.

We can say that power electronics is a unique engineering field that deals with
non-linear time-varying switching systems. All switching converters, without
exception, are time-varying systems because their circuit configurations are
repeatedly changed in time by electronic switches, as can be seen from Fig. 1.3.
Equation (1.1) can be rewritten in a state equation form, as follows:

_x ¼ A1xþB1u for kT\t\kT þ d � T ; k ¼ 0; 1; 2; . . . ð1:2aÞ

_x ¼ A2xþB2u for kT þ d � T\t\ðkþ 1ÞT ; k ¼ 0; 1; 2; . . . ð1:2bÞ

where state x, input u, and linear time-invariant (LTI) matrices A1, B1, A2, B2 are
defined as

x � iS
vO

� �
; u � vS; A1 �

0 0

0 � 1
CRL

( )
;

B1 �
1
L

0

� �
; A2 �

0 � 1
L

1
C � 1

CRL

( )
; B2 �

1
L

0

� �
:

ð1:3Þ
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In order to unify the two LTI equations of (1.2) into a single equation, an existence
function, which was adopted first by Peter Wood, is used as follows:

dðtÞ ¼ 1 for kT\t\kT þ d � T; k ¼ 0; 1; 2; . . . ð1:4aÞ

dðtÞ ¼ 0 for kT þ d � T\t\ðkþ 1ÞT; k ¼ 0; 1; 2; . . .; ð1:4bÞ

which results in the following unified single equation.

_x ¼ ðA1xþB1uÞdðtÞþ ðA2xþB2uÞd0ðtÞ
¼ A1dðtÞþA2d

0ðtÞf gxþ B1dðtÞþB2d
0ðtÞf gu;

¼ AðtÞxþBðtÞu
ð1:5Þ

where the time-varying matrices AðtÞ;BðtÞ and the complementary existence
function d0ðtÞ are defined as follows:

AðtÞ � A1dðtÞþA2d
0ðtÞ

BðtÞ � B1dðtÞþB2d
0ðtÞ

d0ðtÞ � 1� dðtÞ:
ð1:6Þ

In general, the state equation and output equation of a switching converter can be
described as follows:

_x ¼ AðtÞxþBðtÞu ð1:7aÞ

y ¼ CðtÞxþDðtÞu: ð1:7bÞ

In (1.4b), CðtÞ;DðtÞ are time-varying matrices, which are quite useful for describing
a converter with no energy storage elements such as inductors and capacitors;
therefore, in this case there are no state variables but an ideal voltage or current
source with switches. The number of piecewise LTI circuits in a switching period
T is not necessarily two, as shown in Fig. 1.3, and can be arbitrary in general.

As identified from (1.6), the system matrices AðtÞ;BðtÞ are not non-linear even
though they are time-varying as long as the piecewise circuits are LTI.

A switching system, which is typically composed of switching converters, filters,
controllers, power sources, and loads, can be compared to an ordinary
non-switching system in the state equation domain, as shown in Fig. 1.4. An
ordinary system can be represented by the LTI state equation and output equation,
where the input may be a power source and the disturbance may be the change of
system parameters. In contrast, a switching system can be represented by the
time-varying state equation and output equation, where the input is typically the
duty ratio and the disturbance is a change of the power source. The duty ratio d is
defined from (1.4) as follows:

1.1 All Switching Converter Is Time-Varying, Which Makes Power … 7



d ¼ d0 � 1
T

Zðkþ 1ÞT

kT

dðtÞdt for kT\t\ðkþ 1ÞT; k ¼ 0; 1; 2; . . .: ð1:8Þ

Contrary to an ordinary non-switching system, a switching system is often con-
trolled by the duty ratio, which is often regarded as the disturbance in the ordinary
system. In general, the existence function d(t) of (1.4) can be decomposed in
Fourier series to DC and multiple sinusoids with its amplitude, phase, and angular
frequency as follows:

dðtÞ ¼ d0 þ d1 sinðxstþ/1Þþ d2 sinð2xstþ/2Þþ � � � ð1:9Þ

The DC and first AC component, which are often referred to as ‘fundamental
components,’ are of prime importance, whereas the remaining are referred to as
‘harmonic components.’ Depending on the application, the DC or AC components
are selected by power filters. The switching frequency or a period T is not neces-
sarily constant and may vary in time, as follows:

xs � 2pfs ¼ 2p
T

: ð1:10Þ

Similarly, the amplitude and phase of a fundamental component may vary in time.
D = d0 for a DC power system, and D = d1 and / ¼ /1 for an AC power system. In
general, a switching system can be controlled by the existence function, which
controls the amplitude, phase, and frequency D;/; fs, as shown in Fig. 1.4.

Question 2

1. Can you find a Fourier series expansion of the existence function d(t) in Fig. 1.2
of the form of (1.9)?

2. Determine D;/; fs from (1.1).

It can be said that a switching system composed of linear circuit components,
operating in the CCM, is linear with respect to (w.r.t.) u and y. Unfortunately, this is

Fig. 1.4 Comparison of a switching system and an ordinary system. a An ordinary system.
b A linear switching system
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not true in general w.r.t. the input parameters d; fs and the output y of the switching
system. Therefore, the term ‘a linear switching system’ in this book means that the
system is linear w.r.t. only u and y. Even though the meaning of ‘linear’ is narrow,
it is still very useful because it enables us to find a general unified modeling
technique, which would be impossible for a non-linear system.

1.2 A Switching Converter May Even Be Nonlinear
but Fortunately It Is Linear in Many Cases

A switching converter becomes non-linear if its circuit elements are non-linear or its
switches operate in the discontinuous conduction mode (DCM), which means that
at least one of the switch currents eventually becomes zero, as shown in Fig. 1.5.
The same circuit of Fig. 1.2 becomes DCM when the inductor current becomes
zero, as shown in Fig. 1.5a. This occurs when the duty ratio in the steady state, i.e.,
d = D, becomes small or the load resistance is large. At t = t0, the current is becomes
zero, and then an open circuit S3 is generated, as shown in Fig. 1.5b. You may find
the boundary condition between the CCM and DCM, which is called the boundary
conduction mode (BDM), by letting t0 = T.

L
diS
dt

¼ vS C
dvo
dt

¼ � vo
RL

for kT\t\kT þ d � T ; k ¼ 0; 1; 2; . . . ðS1Þ
ð1:11aÞ

L
diS
dt

¼ vS � vo C
dvo
dt

¼ iS � vo
RL

for kT þ d � T\t\kT þ t0;

k ¼ 0; 1; 2; . . . ðS2Þ
ð1:11bÞ

iS ¼ 0 C
dvo
dt

¼ � vo
RL

for kT þ t0\t\ðkþ 1ÞT ; k ¼ 0; 1; 2; . . . ðS3Þ
ð1:11cÞ

Question 3

1. Determine t0 assuming that the output voltage changes little during a period.
2. Plot the boundary condition t0 = T w.r.t. D and RL.

The boundary condition of the time t0 is not fixed but rather is a complicated
function of circuit and control parameters such as L, C, RL, d, fs, and vs. Therefore,
the system matrices in the DCM become as follows:

1.1 All Switching Converter Is Time-Varying, Which Makes Power … 9



AðtÞ � A1d1ðtÞþA2d2ðtÞþA3d3ðtÞ
BðtÞ � B1d1ðtÞþB2d2ðtÞþB3d3ðtÞ

d1ðtÞ � dðtÞ; d1ðtÞþ d2ðtÞþ d3ðtÞ ¼ 1
; ð1:12Þ

where the system matrices A1;A2;A3;B1;B2;B3 are the LTI system matrices for
the piecewise equivalent circuits of S1, S2, and S3, respectively. The values of
existence functions d1ðtÞ; d2ðtÞ; d3ðtÞ become unity only for their corresponding
periods of S1, S2, and S3, as similarly defined as (1.4). An important fact is that the
period of d1ðtÞ is independently controlled by dðtÞ but the periods of d2ðtÞ and d3ðtÞ
are influenced by t0, which is variable by the state variables is and vo. This means

Fig. 1.5 The behavior of a boost converter in DCM. a The switching waveforms in the steady
state. b Three piecewise circuits S1, S2, and S2 of Fig. 1.2
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that the system matrices of the state equation and output equation become a
function of states as follows:

_x ¼ Aðt; xÞxþBðt; xÞu ð1:13aÞ

y ¼ Cðt; xÞxþDðt; xÞu: ð1:13bÞ

As identified from (1.13), the system is no longer linear even w.r.t. u and y. (You
can check the linearity of a system in general by providing two independent input
variables to system equations, and then the output will be the same as the sum of
two output of each input variable if it is a linear system.)

Therefore, a switching converter (or a switching system) operating in the DCM
is nonlinear in all respects, as shown in Fig. 1.6. As discussed above, a switching
system with LTI circuit components only becomes linear or nonlinear depending on
the operating conditions, where the BDM condition on t0 determines the boundary.
Fortunately, converters are very often designed to operate in the CCM because it is
easy to control and the dynamic system performances tend to be better than the
DCM.

Except for the cases otherwise specified, all the circuit parameters are assumed to
be linear throughout this book, because the switching system is already complicated
enough, as proved so far for one of the simplest basic converters, shown in Fig. 1.2.

1.3 Converters Are Crucial for Matching Various Sources
with Loads

The purpose of power electronics is to change amplitudes, frequencies, or phases of
the power source by electronic switches. Hence, all switching power converters are
time-varying systems, which is quite different from conventional time-invariant
systems, as discussed in the previous chapter. In general, the power system in
power electronics is composed of the power source, input filter, converter, output
filter, load, and controller, as shown in Fig. 1.7. The power source can be one of the
DC power supplies, DC energy storages, high voltage DC transmission (HVDC)
systems, 50/60 Hz single phase (1Φ) AC powers, and three phase (3Φ) AC powers,
as shown in Fig. 1.8. The load can be one of the home appliances, DC motors,

Fig. 1.6 A switching system
that becomes nonlinear in the
DCM

1.2 A Switching Converter May Even Be … 11



variable-voltage variable-frequency (VVVF) AC motors, and other powers such as
DC powers and AC powers. The converter, often referred to as a ‘power converter’
to distinguish it from a signal converter, is used due to the mismatches between
various sources and loads. The converter is either a switching converter as dis-
cussed so far or a linear regulator, which is not widely used due to large power loss.
Depending on the input and output power types, various converters such as DC-DC
(switching regulators), DC-AC (inverters), or AC-DC (rectifiers), AC-AC
(cycloconverters) converters are used. Note that the power source is not necessar-
ily providing power and that the load is not necessarily receiving power. The power
flow can be arbitrary in general, and any power source can be regarded as a load
and vice versa. The input and output filters in power electronics mitigate high order
harmonic currents and voltages generated from the converter as well as the power
source and load. These filters are usually passive type filters composed of inductors,
capacitors, and resistors, which are very often avoided because of power loss. The

Fig. 1.7 The configuration of a general power system in power electronics

Fig. 1.8 The need for power converters is to match different sources and loads relative to each
other
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filters can be made of a converter, which is called an active filter. The controller
collects information from all the components of a power system and processes the
information to appropriately control the converter. The controller can be either a
digital processor or an analog controller. A ‘converter system’ consisting of the
converter, input/output filters, and controller in this book is also often called a
‘converter’. Therefore, it is important to pay attention to the use of ‘converter’
regarding the intended meaning.

1.4 The Dynamic Characteristics of AC Circuits Are
Another Challenging Issue in Power Electronics

As shown in Fig. 1.1, the transient state response of the three phase RLC circuits
with three phase balanced (the phase difference between each phase is equal and the
amplitude is the same each other) sources is a sinusoidal waveform, whose
envelope is asymptotically increasing to the steady state. The static behavior of an
AC circuit can be easily analyzed by the well-known phasor analysis; however, the
dynamic behavior of an AC circuit is completely different from the static behavior.
There was no available theory, often called ‘modeling’ in power electronics, until I
proposed the ‘phasor transformation’ in 1990.

The simulation results shown in Fig. 1.1 are an actual response I made, which
has an exponential envelope characteristic. It is strange that the 3rd order system per
phase, i.e., the RLC circuit, is a 9th order system as a total system, but looks like a
first order system in its output voltage response. Moreover, this is not always true
because the system order of the envelope characteristics may look like a 2nd order
system. There must be a sufficient explanation with a simple model if possible.

In general, AC waveforms are everywhere in the universe, and they stem from
oscillation phenomena such as rotating electrons around nuclei, oscillating swings,
ringing bells, fluctuating bridges, orbiting satellites around Earth, and radiating
X-rays from the center of a black hole in a galaxy. In most modern physics and
engineering, the oscillation phenomena are dealt with in static ways and dynamics
in the time domain are seldom considered due to the difficulties of handling the
dynamic AC characteristics (Fig. 1.9).

The AC characteristic is different from the time-varying nature of switching
power circuits. The AC characteristic may come from AC sources, AC loads, and
AC switching converters, whereas the time-varying characteristic comes only from
any switching converter. They must be dealt with separately and sometimes toge-
ther, which will be discussed in the subsequent chapters.
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1.5 Power Electronics Deals with the Unseen, Untouchable,
Unbounded, and Inseparable Natures

Power electronics is a kind of electronics. Therefore, the nature of electronics is also
found in power electronics as follows:

– Unseen: Parameters such as voltage, current, impedance, frequency, and phase
cannot be directly seen. This is why we need measuring instruments such as
oscilloscopes, multi-meters, and function generators.

– Untouchable: Most devices and energy media such as μ-chip, power line, LED
light, and plasma cannot be directly touched. This is why we need various
sensors such as probes, microscopes, and temperature sensors.

– Unbounded: Transmitting power and signal often involves an unlimited range
of magnetic field, microwave (M/W), and laser communication.

– Inseparable: The circuit, system, network, and system of systems in electronics
are closely related to each other and it is quite difficult to separate the operation
of a part from other parts.

The above four natures of electronics are not well identified in other fields such
as mechanics and construction engineering. The four natures are not easily over-
come by common sense, but they must be familiarized by endless practice and
experiments until one feels the unseen and untouchable by heart. This is why
electronics as well as power electronics are so difficult to learn, which will be your
privileged knowledge once you surmount the obstacles you encounter.

Fig. 1.9 Oscillation phenomenon in the universe from an atom to a galaxy
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Among a hundred of IEEE societies, there are at least 8 societies directly related
with power electronics (marked as red) and 19 societies where power electronics
related technical issues (marked as blue) are often published, as shown in Fig. 1.10.
This is roughly a quarter of all IEEE societies, which means that power electronics
is an extremely influential area with many challenging technical issues. It is
amazing that nearly every modern electric device and equipment has power systems
inside it, and the requirements of each power system differ from each other because
of various applications.

1.6 Why Do We Need Theories, Simulations,
and Experiments?

I have met many people including engineers who talk about the importance of
experiments. Not necessarily to talk about, to have experiments is a vital process to
validate a design and to check the reliable operation under certain conditions. One
of the problems I found is that many people underestimate the importance of
theories. A theory is a good tool to understand the whole principle of a system,
especially when a system is very difficult to handle. Because a switching power
system is inherently time-varying and sometimes nonlinear with lots of harmonics
noises, a good theory or model is crucial for designing and controlling the system.

Fig. 1.10 Power electronics is one of the most popular and large areas in the IEEE society
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Furthermore, the optimum design and tolerance assessment for extreme cases can
be done only by theories and cannot be verified by a finite number of experiments
with constrained practical conditions. Cost and time are also problems that limit
experiments, and this is why computer simulation is also preferred in power
electronics.

For a generalized understanding of phenomena, detailed descriptions are
inevitably omitted from a theory, which becomes the limitation of the theory.
Simulation also has limitations such as lack of confidence of its results and the
absence of physical insight. Therefore, using theory, simulation, and experiment is
very helpful for a thorough understanding and optimum design of a system. It is
highly desirable for the results of theory, simulation, and experiment to be a trinitas,
as shown in Fig. 1.11. For the validity of a design, at least two of the three results
should be within reasonable error. A good combination may be either
‘theory-experiment’ or ‘simulation-experiment’.

1.7 Good Power Electronics Engineers Do not Rely
on Complicated Equations; Instead, a Smart
Equivalent Circuit Is Enough

In this chapter, I have explained why power electronics is so special and why it is so
difficult to deal with. However, I would like to give you hope that we can overcome
the 3D of power electronics if we can find an equivalent power circuit that can be
easily analyzed.

There is already a very good example in the area of electronic circuits, which
were believed to be one of the most complicated problems to solve in electronics. In
the late 1970s, Dr. Gyu H. Cho, a professor with the Department of Electrical and

Fig. 1.11 The trinitas of
theory, simulation, and
experiment
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Electronics at KAIST, developed an analytical technique for analyzing and
designing very complicated electronic circuits with great ease, as shown in
Fig. 1.12.

For any kind of circuit, regardless of how complicated, we can obtain analytical
results such as small signal gains, input impedances, output impedances, loop gains
of feedback amplifiers, and cut-off frequencies without setting up any equations. It
took several hours or even days to analyze the integrated circuit (IC) amplifier of
Fig. 1.12 by a conventional equational based approach, but it takes a minute by the
Cho Formula (abbreviated as ‘Cho-Form’), which is mainly because of the time for
writing solutions by hand. The new method is based on a circuit based approach;
hence, physical insights such as the impedance concept and Thevenin equivalent
circuit concept are fruitfully provided. With the Cho-Form, not only the analysis but
also the design of ICs becomes possible, which has greatly contributed to the
advance of modern electronic engineering during the past few decades. If you want
to know the details of the Cho-Form, please refer to the book, “Gyu-Hyeong Cho,
Advanced Electronic Circuits, Hong-Reung Publisher, 2008.” I am afraid that the
book is written in Korean and an English version has not appeared yet.

I have carried out similar works in power electronics throughout my carreer, as
shown in Fig. 1.13. The switching power circuits of time-varying and AC are
transformed to non-switching ordinary circuits of LTI and DC by four circuit
transformation techniques that I developed. The ‘DC-AC’ of Fig. 1.13 includes
both DC-AC converters and AC-DC converters. Recently, they have been com-
bined with a unified general phasor transformation, which is applicable to any type
of linear converter.

Fig. 1.12 Cho Formula in electronic circuits, which requires no equations for analysis and design
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Throughout the rest of this book, the time-varying nature and AC dynamics of
switching power systems will be explored and the Rim Formula, which includes
powerful modeling techniques, shall be provided for the readers.

Fig. 1.13 Rim Formula in switching power circuits, which also requires no equations for analysis
and design
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Chapter 2
Key Principles of Power Converters

This chapter explains how linear regulators and switching converters are adopted in
power processing from the very basic principles of power circuits. The switching
process is dealt with and switching losses, efficiency, and snubber circuits are
introduced. The concepts of continuous conduction and discontinuous conduction
modes are explained.

A converter, also quite often referred to as a ‘switching converter’ or ‘power
converter’ to distinguish it from a signal converter, is composed of inductors (L),
capacitors (C), resistors (R), transformers (T), and semiconductor switches (S), as
shown in Fig. 2.1. It can be said that the purpose of a ‘modern’ converter is to
convert and control power by semiconductor switches. Note that ‘old’ converters in
the early 20th century were not made of semiconductor switches but rather
electro-mechanical machines or electronic vacuum tube switches.

In this chapter, a few key principles for understanding the converter are provided
from the very basic idea. Ideally, a converter

1. changes power without any power loss, i.e., power efficiency is 100 %,
2. takes zero response time with no transient overshoot, i.e., its operation is quite

fast and stable,
3. has no harmonics and ripples,
4. is involved in no faults, i.e., it is maintenance free and has infinite lifetime,
5. has minimum size, weight, and cost,
6. operates in all-weather environments under harsh conditions.

Of course, there is no such ideal converter, and power electronic engineers are
struggling to make converters close to it. More often, finding a suitable trade-off
between the above mentioned six requirements is a practical issue that engineers
encounter. More specifically, choosing the configuration of a converter and deter-
mining the parameters of circuit components, often called ‘design’, are major jobs
for engineers.
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2.1 Evolution of Power Converters

2.1.1 Why Do We Need Power Control?

Let’s see why we should control the power with a DC power circuit, as shown in
Fig. 2.2. There are at least three cases where we need to control the power. First, the
battery output voltage changes by aging, as shown in Fig. 2.2a. Many loads do not
permit this voltage drop; then, we should have a countermeasure to address this
problem. Second, the output voltage of a battery changes as the load current

Fig. 2.1 A converter is
composed of LCR and TS in
general

Fig. 2.2 The reasons why we need power control in a power system. a A battery voltage changes
by aging. b The output voltage changes as the load current increases. c We want to vary the output
as desired
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increases, as shown in Fig. 2.2b. This voltage drop is inevitable due to the finite
value of the internal resistance of the battery, which is of course not permitted for a
voltage sensitive load. The third case is that we want to vary the output dynamically
as desired, as shown in Fig. 2.2c. It is remarkable to see that the need for power
control comes from the power source, load, and converter. This means that every
component of a power system can be a source of problems that should be solved.

2.1.2 We Can Control the Power by a Time-Varying
Resistor

Let’s start with a very simple idea of controlling output power by a controllable
variable resistor, as shown in Fig. 2.3. As the source voltage vS fluctuates randomly,
we need to control the resistor Rc so that the output voltage vO can be regulated as
desired. It is straightforwardly found that the DC (direct current) gain, often referred
to as ‘large signal gain’, is as follows:

Gv � vO
vS

¼ RL

Rc þRL
: ð2:1Þ

Rc(t), which is now time-varying, can then be determined for given DC gain as
follows:

RcðtÞ ¼ RL
1
Gv

� 1
� �

¼ RL
vS
vO

� 1
� �

: ð2:2Þ

As identified from (2.2), vO cannot be larger than vS so far as Rc(t) is
non-negative, and the power control system involves inherent power loss in Rc(t).
Therefore, this type of converter can be applicable to voltage step-down conversion
applications where power efficiency is not a serious problem.

Fig. 2.3 An idea for controlling output power by a variable resistor
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2.1.3 We Can Control the Power by a Power Transistor
in Linear Mode

The ideal of controllable resistor can be implemented by using a transistor, as
shown in Fig. 2.4. The output voltage can be determined by a simple equation,
considering non-saturation conditions for the transistor, as follows:

vO ¼ vQ � vc for vS � vO � vr ffi 0:2 *vQ ¼ vO þ vc ffi vO þ 0:7: ð2:3Þ

As identified from (2.3), the output voltage can be arbitrarily controlled under
the restricted conditions of non-saturation. A very popular application is the linear
regulator, where the output voltage is usually kept constant to a certain specified
value, as shown in Fig. 2.4 as a dotted line. Feedback control is very often used in
practice to achieve an accurate voltage regulation regardless of source voltage
variation and load current change. Another application is the power amplifier,
where the output voltage quickly follows the wanted voltage waveform, as shown
in Fig. 2.4 as a bold line.

Over current protection for a small RL, over voltage protection against high input
voltage or output voltage due to inductive load characteristics, and over temperature
protection for the power transistor are needed for practical applications. This is why
we need a power control integrated circuit (IC) in power electronics.

Question 1

1. Determine the maximum amplitude of a sinusoidal output voltage of a power
amplifier for a fixed Vs.

2. Calculate the power efficiency of the power amplifier for the maximum
amplitude case of (1).

Fig. 2.4 An implementation example of the controllable resistor of Fig. 2.3
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2.1.4 We Can Control the Power by a Power Transistor
in Switching Mode

An innovative way of controlling output power without any power loss is to use an
ideal power switch, as shown in Fig. 2.5. When the power switch is ON, then the
voltage drop of the ideal power switch is zero. When the power switch is OFF, then
the current of the ideal power switch is zero. Therefore, the power loss in the ideal
switch becomes always zero, which results in 100 % power efficiency.

The idea of controlling power by an ideal power switch can be implemented by a
power transistor, operating in switching mode, as shown in Fig. 2.6. Similar to the
controllable resistor case, voltage step-down conversion is only possible and square
wave type output voltage is obtained for this power switch method.

Furthermore, this switch mode power transistor is seldom used without proper
measures in practice because of the leakage inductance, which exists for any power
line of the order of 1 μH/m for 1 nH/mm. For example, a 10 cm power line has
0.1 μH, which may destroy a power transistor of 1000 V voltage rating. One way of
avoiding this unwanted high induced voltage from the leakage inductance is to use
a power diode, as shown in Fig. 2.7. As soon as the ideal transistor is turned on or
off, the ideal diode is turned off and on, which provides an alternative current path
so that the current of the leakage inductor can be continuous. In this way, the

Fig. 2.5 An ideal power switch for controlling output power without any power loss

Fig. 2.6 Implementation of the ideal power switch of Fig. 2.5
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collector-emitter voltage stress of the transistor is safely constrained within the
source voltage. The output current is accordingly determined by the leakage
inductance and load, as depicted in Fig. 2.7.

The transistor-diode pair is referred to as a ‘switch cell’ because the switches do
not operate separately but rather they operate like a system. Even though the switch
mode transistor-diode pair is safely operating, this power circuit is not widely used
except for a simple on/off control of power where large switching noise is not a
problem in practice.

2.1.5 A Switching Converter with Input and Output Filters
Is a Viable Solution

Instead of leakage inductance, a lumped inductor can be attached the switch cell.
The switch cell with a filter can be called a basic ‘converter’, as shown in Fig. 2.8.

Fig. 2.7 A possible way of protecting the power transistor from the leakage inductance using a
power diode

Fig. 2.8 A basic converter with an output inductor only
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Now, the output current can be continuous and the load voltage becomes smooth.
One of the problems of this converter is that the input current iQ contains large
switching current, as shown in Fig. 2.8.

Therefore, we need to add an input filter to mitigate the switching harmonic
current, and we need to strengthen the output filter as well, as shown in Fig. 2.9.
The input and output LC filters eliminate the switching voltage and current gen-
erated from the switch cell. The step-down converter, as shown in Figs. 2.8 and 2.9,
is called a buck converter when it is used in DC-DC power conversion, which is
regarded as the most fundamental converter. Now we have smooth voltage and
current waveforms of both source and load sides.

A remaining problem is that the system becomes too complicated, and conse-
quently the design of circuit parameters and control of the system are not easy. For
example, the system order of the buck converter of Fig. 2.9 is four, and it is not a
simple task to find the dynamic (transient state response) and static (steady state
response) solutions by 4 × 4 matrix manipulations. Note that the buck converter of
Fig. 2.9 is one of the simplest converters, and the system order tends to be even
higher than ten and the system is even time-varying. Of course, you do not have to
worry about these problems. To make the complicated nature of the power circuit
simple is the purpose of this book. An easy way of solving the problems will be
provided for you.

2.1.6 What Are Allowable Switches and What Are
not Allowed?

Concerning the switches in a switch cell, each switch must be of appropriate type to
cope with the voltage and current directions of the source and load. Let me show

Fig. 2.9 A buck converter with input and output LC filters
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you the configuration of a converter, also referred to as the ‘topology’, for the buck
converter example. As shown in Fig. 2.10, the current flow of an inductor and the
voltage polarity of a capacitor in the power circuit do not change in a period. The
switch cell should cope with these properties; i.e., the switches Q1 and Q2 should
provide the same output current direction at once. The switch Q2 of Fig. 2.10a
cannot provide forward current, and hence continuous output current flow is not
guaranteed. However, the switch cell of Fig. 2.10b provides either positive or
negative directions of output current flow at once, which is called as ‘two quadrant
operation’ in power electronics. If the switch cell of Fig. 2.10b provides the step
down voltage conversion function for the negative polarity of voltage, then it is
called ‘four quadrant operation’. This type of converter is called a ‘chopper’ if it is
used in AC-AC power conversion. Of course, the converters in Figs. 2.8 and 2.9 are
for DC-DC applications because the voltage and current flow of the switch cell can
be unidirectional only with the proposed transistor-diode pair. For the chopper
applications, the switch cell should be made of bidirectional switches, which
operate for both directions of voltage and current.

2.2 Understanding the Operation of Converters

Various aspects of the operation of converters are explained below.

Fig. 2.10 Prohibited and permitted topologies of the buck converter example. a Prohibited
topologies. b Permitted topology
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2.2.1 CCM and DCM Analyses for an Ideal Switch Cell

The piecewise LTI circuit analysis, as introduced for the boost converter example in
the previous chapter, will be briefly introduced for the buck converter example to
see the similarities and differences between the two converters. For simplicity, a
buck converter with an output LC filter is selected this time. Drawing piecewise LTI
circuits is a good start for analyzing a converter even though it cannot show all
features of the operation of a converter, as discussed in the previous chapter.
The LTI circuits for the CCM and DCM are two and three, respectively, as shown
in Figs. 2.11 and 2.12.

At the beginning of the analysis, usually parasitic circuit elements such as
internal resistances in switches, inductors, and capacitors, parasitic capacitances in
inductors, and parasitic inductances in capacitors are neglected. Moreover, the
source voltage and output voltage are assumed to be perfectly constant; i.e.,
the output capacitance is large enough so that there is no switching ripple voltage in
the output. The system is also assumed to be in the steady state; of course, this is not
true and the dynamic response should be explored in many cases for practical
applications.

The inductor current becomes a straight line and the positive change of S1
becomes the same as the negative change of S2 in the steady state for the CCM case
of Fig. 2.11, as follows:

DIo ffi Vs � Vo

Lo
DT ffi Vo

Lo
ð1� DÞT ; ð2:4Þ

Fig. 2.11 Piecewise LTI circuits for the CCM operating buck converter
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which results in a very simple DC gain.

GV � Vo

Vs
ffi D: ð2:5Þ

We need one more equation to determine the unknown variables in (2.4), which
is the following output equation:

Vo ¼ IoRL or Io ¼ Vo=RL ffi DVs=RL: ð2:6Þ

Then the minimum and maximum values of the inductor current become as
follows:

Io;min ¼ Io � DIo=2; Io;max ¼ Io þDIo=2: ð2:7Þ

From (2.7), Io,max is used to determine the inductor current rating to withstand
magnetic saturation, whereas Io,min is used to determine the boundary condition
between the CCM and DCM as follows:

Io;min ¼ Io � DIo=2 ¼ 0 ! DBCM ¼ 1� 2Lo
RLT

: ð2:8Þ

As identified from (2.8), no BCM exists for the large Lo or small RL for a given
T which eventually makes DBCM negative. In case the BCM exists, the buck con-
verter operates in the CCM when D > DBCM and operates in the DCM when
D < DBCM.

Fig. 2.12 Piecewise LTI circuits for the DCM operating buck converter
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In the DCM, the inductor current becomes zero at the time of D�T , and (2.4) is
slightly changed as follows:

DIo ffi Vs � Vo

Lo
DT ffi Vo

Lo
ðD� � DÞT : ð2:9Þ

The output equation becomes, considering the average output current becomes
the same as the load current, as follows:

Io ¼ Vo

RL
¼ DIo

2
D�: ð2:10Þ

From (2.9) and (2.10), the duty ratio of conduction D� is determined.

D� ¼ Lo
RLT

þD: ð2:11Þ

Applying (2.11) to (2.9) results in a slightly complicated DC gain for the DCM
as follows:

GV � Vo

Vs
ffi K

1þK
; *K � D�D

RLT
2L2o

: ð2:12Þ

Even though we have assumed the simplest case, the analyses of the most basic
buck converter are not so simple. Actually, there are many more analysis and design
issues to consider.

2.2.2 Practical Switching Characteristics of a Switching Cell

All practical power switches have finite on and off switching times, which results in
temporary open or off circuits, as shown in Fig. 2.13. At the turn off timing of the
transistor Qc, the diode D is not yet turned on until the diode voltage vd becomes
negative, while the Qc is about to turn off. If the Qc is forcefully turned off before
the D is turned on, an open circuit (A case) may occur. At the instant of turn on
timing of Qc, the D was conducting; hence, a short circuit (B case) may occur if the
Qc is forcefully turned on. Of course these open and circuits are theoretically not
allowed, but practical switches with finite switching times are exposed to the danger
of failures due to the high open voltage (A case) or large short current (B case) if not
properly operated.
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As shown in Fig. 2.14, the switching waveforms of a switch cell with finite
switching times can be drawn for an inductive load assuming an ideal DC source
and load voltages. If the turn-on current and turn-off voltage of Qc are of straight
line change, then the circuit can be analyzed considering the following conditions:

vQ þ vD ¼ VS ð2:13aÞ

iQ þ iD ¼ iO: ð2:13bÞ

Fig. 2.13 Practical switches may be in danger of open or short circuit due to finite switching times

Fig. 2.14 Switching waveforms of a switch cell with finite switching times for an inductive load
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The power loss during switching, called switching loss, can be calculated as
follows:

Psw ¼ PQ ¼ 1
T

ZT

0

vQiQdt ffi VsIo
2

tr þ tf
T

*
Ztr
0

vQiQdt ffi
Ztr
0

VsðIot=trÞdt ¼ VsIotr=2

*
Ztf

0

vQiQdt ffi
Ztf

0

Vsð1�t=tf ÞIodt ¼ VsIotf =2 : ð2:14Þ

Note that the switching loss of the diode is zero because either the voltage or
current of the diode becomes zero during the on and off switching periods.
Therefore, the switching loss in the transistor PQ is the same as the total switching
loss Psw of the switch cell in this case. Furthermore, we have not considered the
conduction loss of the switches yet. As noticed from (2.14), the switching loss
highly depends on the switching waveforms of the switch voltage and current,
which is referred as switching trajectory.

Another switching case for a resistive load with finite switching times is shown
in Fig. 2.15, where both the voltage and current of the transistor are assumed to vary
simultaneously in straight lines.

The switching loss can be calculated as follows:

PQ ¼ 1
T

ZT

0

vQiQdt ffi VsIo
6

tr þ tf
T

*
Ztr
0

vQiQdt ffi
Ztr
0

ðVs � IoRLt=trÞðIot=trÞdt ¼ VsIotr=6 : ð2:15Þ

Fig. 2.15 Switching waveforms of a switch cell with finite switching times for a resistive load
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Comparing (2.15) to (2.14), the resistive load has three times less switching loss
than the inductive load. The power efficiency of the converters, often referred to as
‘efficiency’, can be calculated from (2.14) and (2.15) as follows:

g � Po

Ps
¼ Po

Po þPsw
¼ 1

1þPsw=Po
ð2:16Þ

Applying the general efficiency equation of (2.16) to the inductive and resistive
switching cases results in the following.

gL ¼
1

1þ VsIo
2

tr þ tf
T

1
VoIo

¼ 1

1þ tr þ tf
2T

1
GV

ffi 1

1þ tr þ tf
2T

1
Dþ tf = 2Tð Þ

¼ 1

1þ tr þ tf
2TDþ tf

ð2:17aÞ

gR ffi 1

1þ VsIo
6

tr þ tf
T

1
VsIoD

¼ 1

1þ tr þ tf
6T

1
D

ð2:17bÞ

As noticed from (2.17a, 2.17b), the efficiency highly depends not only on the
switching times and load types but also the duty ratio, which should be considered
in cases where higher efficiency is required.

So far, it has been assumed in this section that there is no parasitic inductance
and capacitance in a switch. In practice, switches in a switch cell involve lots of
parasitics, which play important roles in every switching, as shown in Fig. 2.16. For
the turn-on process of a switch cell, as denoted by S1, both the transistor and diode

Fig. 2.16 Practical switching on/off processes, where switches involve parasitic inductances and
capacitances
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are turned on and a short circuit is established. The parasitic inductances of the
switches LQ and LD then mainly determine the slope of current iD until the reverse
recovery of the diode ceases. Just after the reverse recovery process, a non-linear
parasitic capacitance of the diode of a few pF gives rise to resonant ringing together
with the parasitic inductances, which is typically a few MHz damping sinusoidal
waveform.

Question 2
Can you try to analyze the parasitic resonant ringing phenomena?

For the turn-off process of the switch cell, as denoted by S2, both the transistor
and diode are turned off and an open circuit is established. Then, the parasitic
capacitances of the switches CQ and CD mainly determine the slope of the voltage
vD until the reverse recovery of the diode ceases. As soon as the diode is turned on,
the parasitic inductance LD gives rise to another resonant ringing together with the
parasitic capacitances.

As I have explained a few aspects of a practical switching phenomenon, the
switching process is never simple and easy to handle. But this switching process is
quite important, perhaps the most important aspect, in the design of a switching
converter because it determines the switching loss, power efficiency, and reliability
of the switching converter. In particular, the switching trajectory determines the
reliability of each switch because the junction temperature of a switch increases due
to the switching loss. Therefore, the circuit fabrication of a switch cell should be
very compact in size and length to reduce the parasitic inductances, and the
selection of switches must be made considering the parasitic capacitances in order
to have fast switching or less switching loss. Much more detailed analyses and
measurements should be made in practice to build a long lasting reliable converter,
which are left for practice.

2.2.3 Snubber Circuits Are Often Used to Improve
Switching Characteristics

The reliability of switching devices in a converter is highly determined by the
switching characteristics as mentioned above. One of the switching problems is
the over voltage that arises from parasitic ringing, which should be mitigated or
constrained. Another important switching problem is the large slope of the reverse
recovery current of a diode, which results in high voltage spikes or breakdown of
the main switch such as a transistor and silicon controlled rectifier (SCR). Two
example snubber circuits are illustrated for an inductive load, as shown in Fig. 2.17.
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As explained for the single switch resistor case of Fig. 2.6, the line inductance Ll
may give rise to a high voltage spike when the transistor is turned off, and the
snubber circuits, as shown in Fig. 2.18, can protect the switch from voltage
breakdown.

Fig. 2.18 Snubber circuits for a resistive load, protecting the switch from a stray inductance

Fig. 2.17 Snubber circuits for an inductive load, protecting switches and improving switching
characteristics. a For over voltage protection. b For di/dt limit
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Part II
Switching Converters

as Electronic Transformers

In this part, a few important conventional modeling techniques are introduced, and
the properties of switches as transformers are strictly proved in general and then
extended to all switching converters.



Chapter 3
Conventional Models

Dealing with switches has been an important issue in power electronics since they
can turn linear time-invariant systems into nonlinear time-varying systems.
Simplifying or eliminating switching action is the main problem in modeling
switching systems. One successful method is the state-space averaging technique.
This approach was well-established for DC-DC converters by R.D. Middlebrook.
Another useful model is the existence function model developed by Peter Wood,
which can be applicable to the steady state analyses of AC converters (DC-AC,
AC-DC, and AC-AC converters). A quite general unified approach called the
discrete state equation model was proposed by J.G. Kassakian, but it is not easy to
apply in practice. These conventional models are explained in this chapter, and you
will see their strengths and weaknesses, which will show the need for a general
unified but simple and easy model.

3.1 State Space Average Model

3.1.1 One of the Most Powerful and Simple Methods
for Eliminating Time-Varying Nature of DC-DC
Converters

About 40 years ago, R.D. Middlebrook developed a general unified modeling
technique for DC-DC switching converters called the ‘state space average model’
[1, 2]. The basic idea is to take an average over the time-varying state equation of a
switching converter. Let me explain using a buck converter with an ideal switching
cell and LC output filter, as shown in Fig. 3.1.

Assuming that the converter is operating in the CCM, there are two operating
modes of the converter, S1 and S2, which result in two LTI state equations as
follows:
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_x ¼ A1xþB1u for kT\t\kT þ d � T ; k ¼ 0; 1; 2; . . . : S1 ð3:1aÞ

_x ¼ A2xþB2u for kT þ d � T\t\ðkþ 1ÞT ; k ¼ 0; 1; 2; . . . : S2; ð3:1bÞ

where state x, input u, and linear time-invariant matrices A1, B1, A2, B2 are defined
to be

x � iO
vO

� �
; u � vS; A1 �

0 � 1
Lo

1
Co

� 1
CoRL

( )
; B1 �

1
Lo

0

� �
; A2 �

0 � 1
Lo

1
Co

� 1
CoRL

( )
;

B2 �
0

0

� �
:

ð3:2Þ

Similar with the boost converter case of the previous part, a combined
time-varying state equation is obtained as follows:

_x ¼ ðA1xþB1uÞdðtÞþ ðA2xþB2uÞd0ðtÞ
¼ AðtÞxþBðtÞu ; ð3:3Þ

Fig. 3.1 Piecewise equivalent LTI circuits for a buck converter and their state equations
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where the duty function is

dðtÞ ¼ 1 for kT\t\kT þ d � T ; k ¼ 0; 1; 2; . . . ð3:4aÞ

dðtÞ ¼ 0 for kT þ d � T\t\ðkþ 1ÞT ; k ¼ 0; 1; 2; . . .; ð3:4bÞ

and time-varying matrices are

AðtÞ � A1dðtÞþA2d
0ðtÞ

BðtÞ � B1dðtÞþB2d
0ðtÞ

d0ðtÞ � 1� dðtÞ
: ð3:5Þ

Taking an average over a period T, we can obtain another state equation, called
the state space average model, as follows:

_�x ffi ðA1xþB1uÞD þðA2xþB2uÞD0

¼ ðA1DþA2D
0Þ�x þðB1DþB2D

0Þ�u
� A0�xþB0�u

: ð3:6Þ

The averaged variables and matrices are defined as follows:

�x � 1
T

R tþT
t xðtÞdt; �u � 1

T

R tþT
t uðtÞdt

A0 � 1
T

R T
0 AðtÞdt;B0 � 1

T

R T
0 BðtÞdt : ð3:7Þ

The averaged variables are drawn in Fig. 3.2 with an averaged circuit, which is
reconstructed from (3.6).

Fig. 3.2 Averaged waveforms and an averaged circuit of Fig. 3.1
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3.1.2 The State Average Model Is not an Exact but Rather
an Approximate Model

Note that all the variables in Fig. 3.2 are different from those in Fig. 3.1, which are
correlated with each other through (3.7). In other words, there is no guarantee that
the averaged circuit of Fig. 3.2 gives us the exact averaged values of the
time-varying state equation of (3.3) or the original switching circuit of Fig. 3.1.
Actually, the validity of the state average model of (3.6) has never been rigorously
verified by R.D. Middlebrook so far as I know, even though the technique is very
well known and widely used with fruitful results. It is a bold assumption that the
averaged state equation of (3.6) will give arise to a correct solution of the
time-varying state equation of (3.3).

As R.D. Middlebrook explained, the state space average model is an approxi-
mate model, whose conditions for exactness and mismatching errors are not fully
identified. There are a few studies that describe the errors of the state average model
for a specific converter.

Now let’s generally identify the background theory underlying the state space
averaging. The time-varying state equation of (3.3) can be expanded in Fourier
series as follows:

_x ¼ AðtÞxþBðtÞu

¼
X1
k¼�1

Akejkxtxþ
X1
k¼�1

Bkejkxtu
; ð3:8Þ

where the Fourier coefficient matrices are defined

Ak ¼ 1
T

Z T

0
AðtÞe�jkxtdt; Bk ¼ 1

T

Z T

0
BðtÞe�jkxtdt: ð3:9Þ

As identified from (3.9), the DC terms of Ak and Bk are A0 and B0 of (3.7);
hence, it can be said that the state space averaging is an approximated form of the
state equation expanded in Fourier series. The AC terms of Ak and Bk that corre-
spond to the non-zero k are the source of error of the state space averaging.

If a solution of closed form is available, then the Fourier state equation of (3.8)
can be a general unified modeling technique. A possible trial would be to put the
state and input variables as follows:

x ¼
X1
k¼�1

XkðtÞejkxt;u ¼
X1
k¼�1

UkðtÞejkxt: ð3:10Þ
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Applying (3.10) to (3.8) results in

_x ¼
X1
k¼�1

_XkðtÞejkxt þ jkxXkðtÞejkxt
� � ¼

X1
k¼�1

_XkðtÞþ jkxXkðtÞ
� �

ejkxt

¼
X1
k¼�1

Akejkxt
X1
k¼�1

XkðtÞejkxt þ
X1
k¼�1

Bkejkxt
X1
k¼�1

UkðtÞejkxt

¼
X1

m¼�1

X1
n¼�1

AmXnðtÞejðmþ nÞxt þ
X1

m¼�1

X1
n¼�1

BmUnðtÞejðmþ nÞxt

:

ð3:11Þ

By equating the left term with the right term of (3.11), it is possible to obtain the
k-th state equation as follows:

_XkðtÞþ jkxXkðtÞ ¼
X1

m¼�1

X1
n¼�1

AmXnðtÞþBmUnðtÞf g for k ¼ mþ n: ð3:12Þ

For the DC-DC converter case, i.e., k = 0, (3.12) becomes as follows:

_X0ðtÞ ¼ A0X0ðtÞþB0U0ðtÞþA1X�1ðtÞþB1U�1ðtÞþA�1X1ðtÞ
þB�1U1ðtÞþA2X�2ðtÞþB2U�2ðtÞþ � � � : ð3:13Þ

As is evident from (3.13) that a Fourier state equation involves an infinite
number of other state variables, it is impossible to have a general solution of closed
form in this way. In case the AC terms of the system matrices are negligible, (3.13)
can be approximated as follows:

_X0ðtÞ ffi A0X0ðtÞþB0U0ðtÞ; ð3:14Þ

which is of the same form of the state space averaging of (3.6).

3.1.3 The Merits and Demerits of the State Average Model

Despite the theoretical limitations of the state space averaging, the technique has
been loved by power electronics engineers so far because of its straightforward way
of modeling with lots of physical insight. The strengths and drawbacks of the state
space average model can be summarized as follows:

• Valid for DC-DC converters only
• Useful for DC & AC analyses
• Valid for ideal switching only
• Not used for harmonic analysis
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• Not a circuit oriented model
• Needs complex matrix manipulation

The DC analyses of a converter involve DC transfer gain of voltage or current,
power loss, power efficiency, and power factor, whereas the AC analyses involve
small signal transfer functions w.r.t. duty ratios and source voltage, etc., impe-
dances, and frequency responses of a converter. Even though an equivalent circuit
for an AC small signal is drawn from a state space average model, the state space
modeling highly relies on complicated matrix manipulation to derive solutions. For
instance, the state space averaged equation is resolved into the DC terms (steady
state large signals) and AC terms (transient small signals) as follows:

_�x � _Xþ _̂x ¼ _̂x ¼ A0 Xþ x̂ð ÞþB0 Uþ ûð Þ; ð3:15Þ

which results in the following DC and AC solutions.

0 ¼ A0XþB0U ! X ¼ A�1
0 B0U; ð3:16aÞ

_̂x ¼ A0x̂þB0û ! X̂ðsÞ ¼ sI � A0ð Þ�1ÛðsÞ: ð3:16bÞ

As seen from (3.16a, b), complicated matrix inversions and multiplications are
inevitable for the state space models, which can be hardly applicable in practice to a
converter whose system order is higher than 4. Even though computer aided
solutions are available for higher order systems, no physical insight can be obtained
in this way.

Question 1

1. What happens to the average state equation if an LC filter is attached to the
source side or load side of the circuit in Fig. 3.2?
→ A new state equation should be set up for a different circuit configuration
even though we already know the state equations of both circuits. This is a quite
cumbersome and tedious work in practice, whereas circuit domain work is very
simple and intuitive if an equivalent LTI circuit of a converter is known.

2. Is there any general rule in the state space average model concerning circuit
attachment and detachment?

3.2 Existence Function Model

Peter Wood proposed the existence function model as a general solution for a
converter consisting of ideal switches and sources only, as shown in Fig. 3.3 [3].
The dependent voltage and current of the converter are determined by the existence
functions and ideal sources as follows:

42 3 Conventional Models



vd ¼ h1 tð Þvs
id ¼ h1 tð Þio

: ð3:17Þ

In general, the dependent variables of (3.17) can be described as a special form
of an output equation as follows:

y ¼ DðtÞu: ð3:18Þ

Applying Fourier series expansion to (3.18) results in

y ¼
X1
k¼�1

Dkejkxt
X1
k¼�1

Ukejkxt ¼
X1

m¼�1

X1
n¼�1

DmUnejðmþ nÞxt: ð3:19Þ

Note from (3.19) that the coefficient matrices are no longer time-varying because
the existence function model does not deal with the transient response of a
switching converter. The phasor of the k-th frequency component can be deter-
mined once the source variables and existence functions are given. Different from
the Fourier state equation of (3.12), the existence function model of (3.19) gives us
a straightforward solution.

The merits and demerits of the existence function model can be summarized as
follows:

• Generally applicable to DC converters (DC-DC) and AC converters (DC-AC,
AC-DC, AC-AC)

• Useful for DC analyses only
• Useful for harmonic analysis
• Valid for ideal switching and linear switching cases (CCM) only
• Not a circuit oriented model

Fig. 3.3 Existence function model and its switching waveforms
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3.3 Discrete State Equation Model

I would like to introduce one more general unified model, which was believed to be
so general that it can solve most time-varying switching converter problems. The
time-varying state equation of (3.3) is composed of several LTI state equations;
hence, a consecutive application of the LTI state equations may result in a closed
form time-invariant discrete state equation that leads to a general solution [4, 5].
Assume that the switching converter is described by n consecutive LTI state
equations as follows:

_x ¼ AðtÞxþBðtÞu

¼
Xn
m¼1

AmdmðtÞxþ
Xn
m¼1

BmdmðtÞu
; ð3:20Þ

where Am and Bm are the LTI system matrices, and dm tð Þ is the m-th duty ratio
function in a period that becomes 1 for its period and 0 for others. For example, the
boost-converter operating in the DCM, as depicted in (3.12) of Ch. 1, has three LTI
matrices as follows:

AðtÞ � A1d1ðtÞþA2d2ðtÞþA3d3ðtÞ
BðtÞ � B1d1ðtÞþB2d2ðtÞþB3d3ðtÞ

: ð3:21Þ

The state values for the example of (3.21) at the end time of each duty function
of a period T can be found as follows:

x1 ¼ eA1d1Tx0 þ
Z d1T

0
B1uðtÞdt

x2 ¼ eA2d2Tx1 þ
Z d1 þ d2ð ÞT

d1T
B2uðtÞdt

x3 ¼ eA3d3Tx2 þ
Z d1 þ d2 þ d3ð ÞT

d1 þ d2ð ÞT
B3uðtÞdt

; ð3:22Þ

which can be rewritten as

x3 ¼ eA3d3T eA2d2Tx1 þ
Z d1 þ d2ð ÞT

d1T
B2uðtÞdt

( )
þ

Z d1 þ d2 þ d3ð ÞT

d1 þ d2ð ÞT
B3uðtÞdt

¼ eðA2d2 þA3d3ÞTx1þ eA3d3T
Z d1 þ d2ð ÞT

d1T
B2uðtÞdtþ

Z d1 þ d2 þ d3ð ÞT

d1 þ d2ð ÞT
B3uðtÞdt

¼ eðA2d2 þA3d3ÞT eA1d1Tx0 þ
Z d1T

0
B1uðtÞdt

� �
þ eA3d3T

Z d1 þ d2ð ÞT

d1T
B2uðtÞdtþ

Z d1 þ d2 þ d3ð ÞT

d1 þ d2ð ÞT
B3uðtÞdt

¼ eðA1d1 þA2d2 þA3d3ÞTx0 þ eðA2d2 þA3d3ÞT
Z d1T

0
B1uðtÞdtþ eA3d3T

Z d1 þ d2ð ÞT

d1T
B2uðtÞdtþ

Z d1 þ d2 þ d3ð ÞT

d1 þ d2ð ÞT
B3uðtÞdt

� Adx0 þw0

:

ð3:23Þ
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For simplicity, two LTI matrices are introduced in (3.23), which are valid for a
period as follows:

Ad ¼ eðA1d1 þA2d2 þA3d3ÞT

w0 ¼ eðA2d2 þA3d3ÞT
Z d1T

0
B1uðtÞdtþ eA3d3T

Z d1 þ d2ð ÞT

d1T
B2uðtÞdt

þ
Z d1 þ d2 þ d3ð ÞT

d1 þ d2ð ÞT
B3uðtÞdt

: ð3:24Þ

In general, the nth state value of the kth period becomes the first state value of
the (k+1)th period; hence, we can obtain the following discrete state equation.

x kþ 1ð Þ ¼ xm ¼ Adx kð Þþw kð Þ; ð3:25Þ

where

Ad ¼ e
Pn

m¼1
AmdmT

w0 ¼ e
Pn

m¼2
AmdmT

Z d1T

0
B1uðtÞdtþ e

Pn

m¼3
AmdmT

Z d1 þ d2ð ÞT

d1T
B2uðtÞdtþ � � �

þ
Z T

1�dnð ÞT
BnuðtÞdt

:

ð3:26Þ

It is a formidable work to obtain matrices (3.24) or (3.26) even for a second
order system. It seems to be ideal that the discrete equation of (3.25) is LTI and
generally applicable to any converter including nonlinear DCM converters. It is
difficult to find good applications of this model though, which implies that a model
should not only be general unified but also easy to use. The strengths and draw-
backs of the discrete state equation model can be summarized as follows:

• Generally applicable to any DC and AC converters
• Valid even for the nonlinear DCM
• Not simple even for DC analyses
• Not applicable to harmonic analysis
• Not a circuit oriented model

Question 2

1. What do you think is the most important aspect in power circuit models among
general, unified, and easy?

2. Why are piecewise-LTI-equation-based models still frequently used in power
electronics?
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→ There should be some advantages in the equation-based models because
people are quite accustomed to setting up circuit equations by themselves and
the deduction process is traceable step by step. However, it is often impossible
to get the time-domain response from the equation. I very often see cases where
people apply the Laplace transform to the circuit equation they derived and try
to plot in the frequency domain, which is totally incorrect to get the right
response. A time-varying system cannot be dealt with in such a way, which is
the reason why the models in power electronics should show an equivalent LTI
model at the end.
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Chapter 4
Switched Transformer Model

It would be frustrating for readers that there are not appropriate conventional
modeling techniques in power electronics which have the following requirements at
the same time:

• Generally applicable to any DC and AC converters
• Unified approach for various converter types
• Valid at least for CCM and for DCM if possible
• Applicable to DC and AC analyses
• Applicable to harmonic analysis
• Exact but can be approximated if necessary
• Available for practical switches with finite switching times and parasitics
• Circuit oriented easy model with lots of physical insight

In this chapter, a strong candidate modeling technique that can meet most of the
above requirements is suggested. A lot of this chapter is based on the original paper
written by myself [1].

4.1 Introduction to Switched Transformer Models

This switched transformer model is solely conceived by myself since I was a PhD
student after thorough reviewing previously developed power electronics modeling
techniques [2–11].

4.1.1 A Switch Set in the DC-DC Converter Is a Switched
Autotransformer

The fact that the switches in the pulse width modulated (PWM) DC-DC converters
are equivalent to transformers is not a news and found in a few papers [7, 9, 10];
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however, the equivalence is valid for only the averaged circuit, as explained in the
previous chapters. It will be shown here that an ideal switch set is exactly equiv-
alent to a time-varying ideal transformer, as shown in Fig. 4.1.

As an illustrative example, the buck converter shown in Fig. 4.1a is selected,
where the two dual switches constitute a switch set. The proof that this switch set is
equivalent to the switched transformers, as shown in Fig. 4.1b, can be done as
follows.

When the switch S1 is turned on (that is, d(t) = l) and S2 is turned off (that is, d′
(t) = 0), let the upper turn-ratio of the transformer be zero, (that is, n(t) = 0) and the
lower turn-ratio of the transformer be unity, (that is, n′(t) = 1); then, the configu-
rations of the two circuits become identical because the points A and C are con-
nected, and the points B and C are disconnected. Since the inductance of an ideal
transformer is infinite, the points B and C are completely disconnected in terms of
electric circuit. When S1 is turned off and S2 is turned on, the lower turn-ratio is set
to zero whereas the upper one is set to unity. The circuit configurations are also the
same. So it can be concluded that the switch set is exactly equivalent to the
switched transformers whose turn-ratio is defined to be the dual value of the duty
ratio of the switch set as follows:

nðtÞ ¼ 1� dðtÞ ð4:1Þ

In Fig. 4.1, each switch is replaced with its own switched transformer whose
turn-ratio is the dual value of the existence function of the switch. At first, it is not
easy for readers to accept the fact that the turn-ratio of a transformer can be abruptly
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Fig. 4.1 Buck converter example for switched transformers. a Original circuit. b Switched
transformers (A switch set is not an approximated but exact equivalent circuit for a switched
transformer.)
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changed, as shown in Fig. 4.1. But you will see that there is no restriction on the
turn-ratio of the ideal transformer in the circuit theory. Because a transformer is
completely different from an inductor, abrupt change of the turn-ratio as well as
discontinuously varying switching voltage and current is allowed for an ideal
transformer, which is forbidden for an inductor.

A slight different equivalent circuit for a switch set is the switched autotrans-
former, where two complementary switched transformers of Fig. 4.1 are combined
together into one, as shown in Fig. 4.2.

The dependent voltage and current of Fig. 4.2a are exactly the same as that of
Fig. 4.2b, which is an ideal autotransformer, as follows:

vd ¼ vsh1ðtÞ
id ¼ iLh1ðtÞ : ð4:2Þ

Comparing Fig. 4.2 to Fig. 4.1, the switched autotransformer model is found to
be exactly equivalent to the complementary switched transformers. Even though the
model of Fig. 4.1 is more general, the autotransformer model of Fig. 4.2 is more
convenient and will be used in the subsequent steps.

Fig. 4.2 Another buck converter example for a switched autotransformer. a Original circuit.
b Switched autotransformer circuit (The switched autotransformer circuit is equivalent to a switch
set regardless of switching patters.)
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Question 1

1. Is it really no problem if a pulsating current flows into the ideal transformer in
Figs. 4.1b and 4.2b?
→ As identified from (4.2), the current id becomes pulsating if the turn-ratio
h1(t) is pulsating. Because there is no inductance in an ideal transformer, even an
infinitely large current may flow into the transformer, which is not allowed for
an inductor. The physical formation and notation of a transformer looks like two
coupled inductors, which makes the power electronics beginner get confused a
lot. Please spend enough time to distinguish a transformer from inductors.

2. What is the equivalent circuit of each power switch instead of a set of switches?
→ It is an auto-transformer whose output is grounded to one side and the
turn-ratio is the same as the existence function. This idea was suggested by Prof.
David Perreault at MIT when I delivered my lecture on the phasor transfor-
mation in 2014.

4.1.2 A Switched Transformer Can Be Decomposed
to an Ordinary Transformer and Harmonic Sources

The switched autotransformer, also referred more frequently as ‘switched trans-
former’, is not an approximated but an exact model for an ideal switch set; how-
ever, it is inconvenient in practice because of its time-varying nature. As shown in
Fig. 4.3, this switching characteristic of the switched transformer can be removed as
follows:
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Fig. 4.3 A buck converter with input and output filters, showing harmonic source models.
a Original circuit. b Switched transformer circuit. c An equivalent circuit with harmonic sources.
d Filtered harmonic circuit (The switched transformer model is powerful when it is used in a
practical converter with high order filters.)
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vd ¼ vsh1ðtÞ � vsfh1 þ hh tð Þg ¼ vsh1 þ vh * vh � vshhðtÞ
id ¼ i2h1ðtÞ � i2fh1 þ hhðtÞg ¼ i2h1 þ ih * ih � i2hhðtÞ

: ð4:3Þ

In (4.3), h1 is the average value of the existence function over a period and the
dependent variables are decomposed to non-switching terms and harmonic source
terms. This equation can be drawn, as shown in Fig. 4.3c, which includes an
ordinary autotransformer and harmonic voltage and current sources. Note that there
is no approximation in (4.3) and Fig. 4.3c; therefore, they are exactly equivalent to
the original circuit of Fig. 4.3a. The harmonic analysis can be done using Fig. 4.3c
since the harmonic sources can be calculated from (4.3) and the filtered harmonics
can be obtained from the frequency response of the input and output filters just like
an ordinary circuit analysis.

The next step is to find an averaged circuit. If the switching frequency is much
higher than the cutoff frequencies of the input and output filters, the switched
transformer can be simply substituted with the averaged ideal transformer whose
turn-ratio is the average of n(t) of Fig. 4.3c, since the switching harmonics are
negligible compared to the fundamental components. Finally, the DC model is
obtained by eliminating the reactive elements, as shown in Fig. 4.1d. The analysis
is straightforward; hence, no additional equation is required.

4.1.3 DC Analyses of DC Converters Become Possible
Without Using Any Equations

Using the equivalent circuits of the switched transformer, the analyses of a DC-DC
converter can be straightforwardly done with the circuit drawing only, as shown in
Figs. 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9. The DC model of a buck converter, operating
in the steady state, is obtained by eliminating the reactive elements, as shown in
Fig. 4.4. The DC voltage gain as well as the average voltages and currents of input
and output can be determined with no additional equation.

The procedures for the boost, buck-boost, Cuk, Zeta, and single-ended
primary-inductor converter (SEPIC) converters are the same as that already dis-
cussed, and thus the resultant equivalent circuits are drawn as in Figs. 4.5, 4.6, 4.7,
4.8, and 4.9, respectively. Clearly, these equivalent transformers turn the complex
converter problems into simple RLC circuits including an ordinary transformer.
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Fig. 4.4 Buck converter example. a Original circuit. b Averaged circuit. c DC circuit
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As identified from Figs. 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9, the switch cell in the six
basic DC-DC converters plays the same role as an ‘electronic transformer’. This is a
really good unified approach that apparently different DC converters are inherently
all the same each other, and the only difference is the location and configuration of
input and output filters.
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Fig. 4.5 Boost converter example. a Original circuit. b Averaged circuit. c DC circuit (The reason
why the output voltage of a boost converter is always boosted up is explained by an
autotransformer.)
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Fig. 4.6 Buck-boost converter. a Original circuit. b Averaged circuit. c DC circuit
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Fig. 4.7 Cuk converter. a Original circuit. b Averaged circuit. c DC circuit (The analysis of a Cuk
converter becomes straightforward when the switched transformer model is adopted.)
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Practical DC converters often have isolation transformers, which are conven-
tional mechanical transformers, as shown in Fig. 4.10. These converters can be
appropriately related with basic circuits; therefore, it is not necessary to analyze
these converters with isolation transformers separated from the basic converters.

4.1.4 Switches in the DC-AC (or AC-DC) Converters Are
also Equivalent to Switched Transformers

It is no longer surprising that the equivalent circuits for the switches in inverters or
rectifiers are time-varying transformers. The equivalence of the two circuits can be
proved by showing that the external characteristics of both circuits are identical, as
done for the DC converters. It is assumed, from now on, that all switches and
sources are ideal and balanced, the switches are in the CCM, and switching har-
monics are negligible unless otherwise specified. Remember that the electronic
transformers as the equivalent circuits of switches are still time-varying.

The dependent voltage and current of the switch sets of Fig. 4.11a are as follows:

is ¼ iad1 þ ibd2 þ icd3
v1 ¼ Vsd1
v2 ¼ Vsd2
v3 ¼ Vsd3;

ð4:4Þ

and those of Fig. 4.11b are

i�s ¼ iad1 þ ibd2 þ icd3
v�1 ¼ Vsd1
v�2 ¼ Vsd2
v�3 ¼ Vsd3:

ð4:5Þ
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Fig. 4.9 SEPIC converter. a Original circuit. b Averaged circuit. c DC circuit
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(a) (b)

Fig. 4.11 Switches as transformers of VSI. a Switching circuit. b Transformer circuit

(a)

(b)

(c)

(d)

Fig. 4.10 DC converters with an isolation transformer. The left circuits are original converters and
the right circuits are their corresponding basic converters. a Forward converter. b Push-pull
converter. c Half-bridge converter. d Fly-back converter
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By comparing (4.4) and (4.5), it is found that

i�s ¼ is
v�1 ¼ v1
v�2 ¼ v2
v�3 ¼ v3;

ð4:6Þ

which implies that the two circuits are equivalent so far as the turn-ratios of the
transformers are the dual values of the duty functions of corresponding switches.
Note that the equivalence is valid not only for the switched transformer but also for
the averaged transformer since (4.4)–(4.6) are true for both cases. In a similar
procedure, the equivalent circuit for a current-source inverter (CSI) is obtained, as
shown in Fig. 4.12.

4.1.5 Even the Switches in AC-AC Converters Are
Equivalent to Electronic Transformers

A general switching system, which includes an AC-AC converter, is shown in
Fig. 4.13a which has m inputs and n outputs. The expected equivalent transformer
circuit is depicted in Fig. 4.13b. Then the proof is straightforward as follows.
Applying the following relationships to both circuits, it is easily verified that they
satisfy the relationships simultaneously:

V 0 ¼ DTV

I ¼ DI0;
ð4:7Þ
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Fig. 4.12 Switches as transformers of CSI. a Switching circuit. b Transformer circuit
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where

V ¼ ½vk�m�1

V 0 ¼ ½v0k�n�1

I ¼ ½ik�m�1

I0 ¼ ½i0k�n�1

D ¼ ½Djk�m�n

ð4:8Þ

This means that the circuits are equivalent if only the turn-ratios are defined to be
the dual values of the duty ratios of the switches. The averaged duty ratio D is the
fundamental component of the original switching duty ratio d(t), however, the proof
is also valid for the case of d(t) as previously discussed.

4.2 AC Analyses and Harmonic Analyses

4.2.1 A Perturbed Electronic Transformer Makes It Possible
to Get the AC Analyses

The AC analyses of a DC converter can be done by perturbing the electronic
transformer, which is nonlinear w.r.t. the duty ratio, as shown in Fig. 4.14. The
dependent variables of the switch cell can be determined as follows:

(a) (b)

Fig. 4.13 General switches as transformers. a General switching system. b General time-varying
transformer
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vd ¼ v1d ¼ ðV1 þ v̂1ÞðDþ d̂Þ ¼ ðV1 þ v̂1ÞDþV1d̂þ v̂1d̂ ffi V1 þ v̂1ð ÞDþV1d̂ ¼ v1 þV1d̂

id ¼ i2d ¼ I2 þ î2
� �ðDþ d̂Þ ¼ I2 þ î2

� �
Dþ I2d̂þ î2d̂ ffi I2 þ î2

� �
Dþ I2d̂ ¼ i2 þ I2d̂

:

ð4:9Þ

The multiplication of two perturbed terms are omitted from (4.9) because they are
very small when the perturbations are small enough.

The circuit reconstruction of (4.9) is done with a transformer of a constant
turn-ratio and two voltage and current sources, whose magnitudes are determined
by the DC operating conditions.

Removing all the DC variables and the autotransformer from Fig. 4.14, an
equivalent AC circuit is obtained, as shown in Fig. 4.15.

The dynamic transfer functions of Fig. 4.15 can be found by a circuit analysis,
which requires quite few equations, as follows:

GvðsÞ ¼ V̂oðsÞ
V̂sðsÞ

¼ Z2//ðZ3 þ Z4ÞZ4D
½Z1 þ Z2//ðZ3 þ Z4Þ�ðZ3 þ Z4Þ

GdðsÞ ¼ V̂oðsÞ
D̂ðsÞ ¼ Z4V1

Z1//Z2 þ Z3 þ Z4
� Z1//Z2//ðZ3 þ Z4ÞZ4DI2

Z3 þ Z4

Fig. 4.14 Perturbed buck converter with input and output filters

Fig. 4.15 AC equivalent
circuit for AC analyses
excluding the autotransformer
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Z1 ¼ sD2L1

Z2 ¼ D2

sC1

Z3 ¼ sL2

Z4 ¼ 1
sC2

//RL

ð4:10Þ

4.2.2 The Harmonic Analysis Model Is the Same as the AC
Perturbed Circuit

It is interesting that the harmonic analysis circuit is the same as the AC perturbed
circuit, as shown in Fig. 4.16. The only difference is the values of the sources.

So far the AC analyses and harmonic analysis are shown for DC converters,
however, the same procedures and methods can be extended to AC converters,
which will be possible together with phasor transformations.

4.2.3 The Switched Transformer Model Can Be Applicable
Even to Nonlinear Switching Converters

The fact that the switched transformer model can be applicable to the nonlinear
converter in the DCM has not been explained yet. Let me explain now about the
extended switched transformer model for a switch cell operating in DCM, as shown
in Fig. 4.17. As the inductor current becomes zero, i.e., DCM, the dependent
voltage vd is the same as the output voltage vo. As shown in Fig. 4.17c, vd can be
decomposed to the transformer secondary voltage vd1 and the nonlinear voltage
source of vd2 as follows:

vd ¼ vd1 þ vd2 * vd1 ¼ h1vs; vd2 ¼ �h1�h2vo: ð4:11Þ

Fig. 4.16 Harmonic analysis circuit, which is the same as the AC equivalent circuit
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Note from (4.11) that vd1 is the same as the secondary voltage of the switched
transformer while vd2 includes the existence function of h2, which is controlled by
the inductor current. Therefore, the equivalent circuit for a switch cell with DCM is
the combination of a linear switching transformer and a nonlinear voltage source, as
shown in Fig. 4.17b. In this way, the switched transformer model can be extended
to the nonlinear switching DCM case, which can be of course further extended to
nonlinear AC converters. This work is left for the proactive readers.

4.2.4 The Switched Transformer Model Can Be Applicable
Even to the Case of Finite Switching Times

The switched transformer model can be also applicable to the practical switches
with finite switching times, as shown in Fig. 4.18.

As shown in Figs. 4.18b, e, the switching function of current di is not necessarily
the same as the switching function of voltage dv as follows:

iQ ¼ diiO; vd ¼ dvVs: ð4:12Þ

In (4.12), the switching functions di and dv could be either switching waveform or
its average one, which is used now. It is necessary to notice that the equivalent
switched transformer for the finite switching times has imbalanced dependent
turn-ratios between the primary current source and the secondary voltage source, as
shown in Fig. 4.18c.

Fig. 4.17 An extended switched transformer model for a switch cell operating in DCM. a A
switch cell with DCM. b Its equivalent transformer model with a nonlinear voltage source.
c Decomposition of the dependent voltage into the transformer voltage and the nonlinear voltage
source
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The efficiency for a large output inductor can be sought as follows:

g � Po

Ps
¼ VdIo

VsIQ
¼ ðDvVsÞIo

VsðDiIoÞ ¼
Dv

Di
: ð4:13Þ

It is noteworthy from (4.13) that the efficiency of a switching converter with
switching loss only is determined by the ratio of the average switching voltage duty

Fig. 4.18 Another extended switched transformer model for a switch cell with finite switching
times. a The switch cell with finite switching times. b Its equivalent switched transformer.
c Imbalanced sources. d Its switching waveforms. e The switching functions of current and voltage
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function and the average switching current duty ratio, which was not shown in any
other literatures.

For the inductive switching case, as shown in Fig. 2.14 of Chap. 2, the efficiency
(4.13) is identified to be exactly the same as (2.17a) of Chap. 2, as follows:

g ¼ Dv

Di
¼ Dþ tf =ð2TÞ

Dþ tr=ð2TÞþ tf =T
¼ 1

1þ ðtr þ tf Þ=ð2TÞ
Dþ tf =ð2TÞ

¼ 1

1þ tr þ tf
2TDþ tf

¼ gL: ð4:14Þ

Question 2

1. Please prove (4.14) using the switching loss calculation of finite switching times.
2. In case highly complicated switching where ringing and high spike switching

functions appear, is still (4.13) valid for the case?
→ So far as the inductor current does not fluctuating too much, the efficiency
can be simply determined by (4.13).

4.2.5 The Switched Transformer Model Can Deal
with Switching Converters with Great Easy
and Accurately

It can be summarized that the switched transformer model has the following
strengths, which are quite close to the ideal modeling requirements.

• Generally applicable to any DC and AC converters
• Unified approach for various converter types
• Valid not only for CCM but also for DCM
• Applicable to DC and AC analyses
• Applicable to harmonic analysis
• Exact but can be approximated if necessary
• Available for practical switches with finite switching times and parasitics
• Circuit oriented easy model with lots of physical insight

One thing unexplained above is the practical switch with parasitics [12], which is
left for proactive readers.
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Part III
Single Phase AC Circuits
and Resonant Converters

Phasor transformation, also referred to as phasor modeling, was first brought before
the public in 1990, which I had studied for at least four years as a tool to deal with
AC circuits, including series resonant converters (SRC) in a unified and general
way. This phasor modeling provides explicit and simple equations with fruitful
physical insight. For example, in the case that switching frequency deviates from
resonant frequency, the SRC is modeled as the first order, and in the case of
resonance, the SRC is modeled as the second order.

In this part, the basics of the phasor transformation and its application to the
SRC and single phase AC power are explained.



Chapter 5
Basic Phasor Transformation
and Application to Series Resonant
Converters

In this chapter, the advent of phasor transformation is explained from the back-
ground to the application to series resonant converters as an example. The con-
ventional phasor concept that has long been used for nearly a century is found to be
a ‘static phasor’ and a ‘dynamic phasor’, coined later by other researchers, is
introduced here as an extension of the static phasor to a general form of the phasor.
A lot of this chapter is based on the original paper of mine [1].

5.1 Background of Phasor Transformation for the SRC

Many researchers [2–8] have shown that the well-known resonant converters are
nonlinear switching equations. The complete DC and AC analyses of switching
frequency controlled SRC are found in [2, 3]. Several useful curves based on DC
analysis, which can be utilized in designing the SRC, are proposed in [4]. The small
signal circuit models for AC analysis are suggested in [5–7].

It is worthy to note that the experimental or the simulation output voltage
waveforms are very similar to either the first or the second order system responses
in a certain operating range and the DC voltage gain curves are similar with
resistance-inductance-capacitance (RLC) filter frequency characteristic curves.
Therefore, in view of practical applications, it is an important work to find a
simplified equivalent circuit of an SRC which can show the simple behaviors
though not so accurate for the efficient analysis and design.

Some solutions to the above problem have been given in [9–12]. The diode
rectifier and output filter is substituted by an equivalent resistor [9, 10]. So the
analysis is drastically simplified by this substitution and the resemblance of reso-
nant converters with RLC filters is well explained in this way. This technique is,
however, valid only for the DC analysis and is no longer valid for the AC analysis.
On the other hand an approximated small signal model is suggested in a recent
paper with good intuition [11].
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It is thought that the previous models have at least one of the following dis-
advantages in view of the practical application of them.

1. The equations are not of explicit form.
2. The model is too complex to get physical insights from it.
3. Any rigorous explanation for that the system order changes according to the

switching frequency is not provided.
4. DC/AC analyses of frequency [3]/phase [12] control methods are not performed

by a unified principle.

In this chapter, a systematic approach based on phasor transformation which
gives an equivalent time-invariant circuit that is described as the explicit equations,
is suggested. Also the first and second order models of SRC are given. It is further
shown that the simulation results based on the proposed model agree with the
experimental results.

5.2 Introduction to Phasor Transformation

It is assumed that the SRC shown in Fig. 5.1 is composed of ideal switches and ideal
circuit components. Also it is assumed that the converter operates in the continuous
conduction mode (CCM) and that the quality factor is sufficiently high enough for
the sufficient reduction of harmonic current in the LC resonant tank [2, 3]. The
switching frequency which is lower than a half of the resonant frequency is not
considered due to the difficulties in dealing with the harmonic resonances such as the
3rd and 5th switching harmonics. Though these assumptions arise some error in the
analysis result and reduce the generality, these are still useful for the practical
application of the SRC models.

5.2.1 Equivalent Transformer Circuit

Since it is proved that a switch set is generally a time-varying transformer [13], an
equivalent circuit of Fig. 5.1 can be drawn, as shown in Fig. 5.2 where the switch
sets are substituted by their corresponding transformers. The turn-ratios are just the
same as the switching functions as shown in Fig. 5.3c. Here the influence of
harmonics is ignored since the magnitudes of harmonics are small and these small

Vs

+

_ Co RL vo

+
L C

_

Fig. 5.1 Series resonant
converter (SRC)
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harmonics are filtered by the LC resonant circuit. The analysis is greatly simplified
by this approximation. It should be, however, reminded that this may not be true
when the quality factor is small or the switching frequency is much lower than the
resonant frequency. The fundamental component, s1ðtÞ; s2ðtÞ of the original
switching functions sþ1 ðtÞ; sþ2 ðtÞ are represented as

s1ðtÞ ¼ 4
p
cos/ � cosxst ð5:1aÞ

s2ðtÞ ¼ 4
p
cosðxst � hÞ; ð5:1bÞ

where / is the controlled phase, h is the diode switch phase delay, and xs is the
switching frequency. Since the s2ðtÞ is a function of inductor current, the SRC is
described by nonlinear equations and so we cannot directly use the Laplace
transformation technique for the analysis of the SRC.

It is noted that no switching element is appeared in Fig. 5.2. The system equation
is now analytical, which is a very important basic condition for the following linear
transformation.

5.2.2 Phasor Transformation

It is well known that the DQ transformation is powerful in the analysis of
poly-phase AC systems. The basic principle of the DQ transformation is to find a
stationary circuit for a given rotary circuit, which makes it greatly easy to find the

is

1 : s1(t) L C  s2(t):1

vciL

Co RL vovs

+

_

+

_

+ _ io

Fig. 5.2 An equivalent transformer circuit

φ φ

Fig. 5.3 Switching functions. a Original sþ1 ðtÞ. b Original sþ2 ðtÞ. c Fundamentals of a and b
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envelopes of rotary variables of a rotary circuit [13]. Unfortunately the powerful
DQ transformation cannot be applied to the single phase AC circuits as well as
SRC. Up to now, there has been no appropriate transformation which is directly
applicable to the analysis of the single phase AC systems.

In this section the way to obtain a stationary circuit for a given rotary one is
suggested. Since the conventional phasor represents the magnitude and the phase of
a sinusoidal signal in the steady state it cannot represent the signal in the transient
state. So a modified phasor which can represent any sinusoidal signal is considered:

xðtÞ ¼ Re
ffiffiffi
2

p
xðtÞejxst

n o
; ð5:2Þ

where the xðtÞ indicates the complex time-varying variable. None of the xðtÞ and xs,
need to be sinusoidal or constant; however, the xðtÞ can be non-sinusoidal function
when the xðtÞ is sinusoidal with the frequency ofxs. In the steady state, xðtÞ becomes
just the conventional phasor. By applying (5.2) to the time-varying circuit variables
appeared in the rotary circuit of Fig. 5.2, a stationary circuit is obtained.

The five basic circuit elements of the single phase AC system, which are
inductor, capacitor, transformer, resistor and source, are phasor-transformed,
respectively, as follows.

5.2.2.1 Inductor Phasor Transformation

The procedure of the phasor transformation for the inductor is shown in Fig. 5.4.
The rotary circuit equation is

L
diL
dt

¼ vL: ð5:3Þ

vL

iL

L

iL

t t

vL

+

_

(a) (b) (c)

LiL

vL

|vL|

t t

|iL|

+

_ j    Lsω

(d)
(e) (f)

Fig. 5.4 Inductor phasor transformation. a Rotary circuit. b Rotary voltage. c Rotary current.
d Stationary circuit. e Stationary voltage. f Stationary current
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The phasor transformations of iL and are vL are

iL ¼ Re
ffiffiffi
2

p
iLejxst

n o

and

vL ¼ Re
ffiffiffi
2

p
vLejxst

n o
; ð5:4Þ

respectively. Applying (5.4) to (5.3) results in

L
d
dt
Re

ffiffiffi
2

p
iLejxst

n o
¼ Re

ffiffiffi
2

p
vLejxst

n o
ð5:5aÞ

or

LRe
diL
dt

ejxst þ jxsiLejxst

� �
¼ Re L

diL
dt

þ jxsiL

� �
ejxst

� �
¼ Re vLejxst

� �
:

ð5:5bÞ

Equation (5.5a, b) is just equivalent to

L
diL
dt

þ jxsiL ¼ vL: ð5:6Þ

The equivalence of (5.5a, b) with (5.6) can be proved as follows.

Theorem

For any x; y; xs 6¼ 0 Re xejxst
� � ¼ Re yejxst

� �
if any only if x ¼ y

Proof

Re xejxst
� � ¼ Re xj jejargðxÞejxst

n o
¼ xj jRe ejargðxÞþ jxst

n o
¼ yj jRe ejargðyÞþ jxst

n o

$ xj j ¼ yj j and argðxÞ ¼ argðyÞþ 2pn; n ¼ 0; 1; 2; . . .

$ x ¼ y : Q:E:D:

It is necessary to make (5.6) be of circuit form for the benefit of well-established
circuit analyses techniques as shown in Fig. 5.4d. There exists an imaginary
resistor, whose meaning is just conventional inductor impedance in the steady state.
However it should not be misunderstood that Fig. 5.4d is no longer valid for in the
transient state. The imaginary resistor does not vanish even though it is in the
transient state, therefore it’s worthy to distinguish this from a conventional
reactance.
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As can be seen from Fig. 5.4b, c, e, f the stationary circuit can be used to find the
envelopes of the sinusoidal waveforms of the rotary circuit. Since the imaginary
resistor does not serve the damping, the response needs not to be exponential; in
this example there is no time delay.

5.2.2.2 Capacitor Phase Transformation

By a similar procedure with the inductor case, the rotary circuit equation of
Fig. 5.5a,

C
dvC
dt

¼ iC ð5:7Þ

is changed by the phasor transformation to

C
dvC
dt

þ jxCvC ¼ iC ð5:8Þ

The circuit reconstruction of (5.8) is shown in Fig. 5.5b.

5.2.2.3 Transformer Phasor Transformation

The voltage source single phase inverter as shown in Fig. 5.6a is composed of
stationary and rotary parts. Hence the phasor transformation is taken for the rotary
part only as

vC CiC

(a) (b)

vCiC C
Cj sω

1
+

_

+

_

Fig. 5.5 Capacitor phasor transformation. a Rotary circuit. b Stationary circuit

Fig. 5.6 Transformer phasor
transformation. a Original.
b Phasor transformed
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vo � Re
ffiffiffi
2

p
voejxst

n o
ð5:9aÞ

sðtÞ � Re
ffiffiffi
2

p
sejxst

n o
ð5:9bÞ

io � Re
ffiffiffi
2

p
ioejxst

n o
ð5:9cÞ

On the other hand the following relations exist in the transformer of Fig. 5.6a:

v0 ¼ sðtÞvs ð5:10aÞ

is ¼ sðtÞi0 ð5:10bÞ

Applying (5.9a, b, c)–(5.10a, b) results in

vo ¼ Re
ffiffiffi
2

p
voejxst

n o
¼ Re

ffiffiffi
2

p
svsejxst

n o
ð5:11aÞ

is ¼ Re
ffiffiffi
2

p
sejxst

n o
� Re

ffiffiffi
2

p
svsejxst

n o
¼ Re s�iof gþRe sioe2jxst

� � ð5:11bÞ

In (5.11a, b), the symbol, asterisk (*) represents the complex conjugate. As
previously proved, (5.11a) becomes

vo ¼ svs ð5:12aÞ

and (5.11b) can be rewritten as follows considering that the as current of it does not
contribute to any voltage change in the source or any energy transfer. Furthermore
the frequency of the AC current is so high that this is thoroughly filtered by the
adjacent circuits. Therefore,

is ¼ s�io ð5:12bÞ

where a dummy variable is whose imaginary part may be arbitrary is introduced as

is � Refisg ð5:12cÞ

Equation (5.12b) may not be true for the parallel resonant converter case where
the imaginary current cannot be set to be arbitrary. This cumbersome problem is
unsolved until the general unified phasor transformation is introduced in the fol-
lowing chapters. For simplicity, it will not be explained further in this chapter.

The circuit reconstruction based on (5.12a, b, c) is shown in Fig. 5.6b, where an
unusual complex turn-ratio is found.
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5.2.2.4 Resistor Phasor Transformation

The phasor transformation of a resistor is straightforward since

vR ¼ Re
ffiffiffi
2

p
vRejxst

n o
¼ RiR ¼ Re

ffiffiffiffiffiffi
2R

p
iRejxst

n o
ð5:13aÞ

or

vR ¼ RiR ð5:13bÞ

5.2.3 Phasor Transformed SRC

Since the stationary circuits for individual rotary circuits are now available, the
stationary SRC for the rotary SRC of Fig. 5.2 can be drawn as shown in Fig. 5.8
using the results of Figs. 5.4, 5.5, 5.6 and 5.7. Auto-transformers are used now
since the turn-ratios never exceed unities. They are determined from (5.1a, b) and
(5.9b) as

s1 ¼ 2
ffiffiffi
2

p

p
cos/

s2 ¼ 2
ffiffiffi
2

p

p
e�jh

ð5:14Þ

Now the circuit shown in Fig. 5.8 is no longer time-varying and all the variables
in it are just equivalent to those in Fig. 5.2 with respect to the phasor transfor-
mation, (5.2).

It took many steps and discussions in finding this time-invariant circuit, however
this procedure can be drastically simplified only if one is get used to this trans-
formation; Fig. 5.8 can be directly drawn from Fig. 5.2 or Fig. 5.1 without any
manipulation of equations in case that one knows Figs. 5.4, 5.5, 5.6 and 5.7.

Fig. 5.7 Resistor phasor
transformation. a Rotary
circuit. b Stationary circuit
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5.3 The Analysis of SRC

5.3.1 DC Analysis

From the phasor transformed circuit of Fig. 5.8, the DC circuit which is utilized in
the DC analysis can be obtained by removing the inductor and the capacitors. This
stationary circuit should not be confused with the rotary circuit; the inductors of
Fig. 5.8 are not substituted by the AC reactances since Fig. 5.8 is not the rotary
circuit.

Since the input, output voltages of the two circuits of Figs. 5.2 and 5.9 are
identical (note that phasor transformation is not applied to these DC side variables),
the DC gain of Fig. 5.9 is the same as that of Fig. 5.2. Then the DC gain is
calculated from Fig. 5.9 as

GV � V0

Vs
¼ cos/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2 xs
xr
� xr

xs

h i2r ; ð5:15Þ

where

Q ¼ p2

8
xrL
RL

; xr ¼ 1ffiffiffiffiffiffi
LC

p ð5:16Þ

This confirms the previous simplified DC analyses results where intuitive models
are used [9, 10]. There is a little discrepancy between (5.15) and the result of [2],
which stems not from the inaccuracy of the phasor transformation but from the
neglect of the high order harmonics. Recall that the only approximation used in the
phasor transformation is the neglect of the DC side AC current, which does not
affect the fundamental components of DC or AC side signals as shown in (5.11b)
and (5.12b).

RL

+
_

+

_
Vo

Lj sω

1:S1 S2:1Is

IL
Cj sω

1

Vs

IoFig. 5.9 DC circuit for
phasor transformed SRC

L

Co RL

+
_vs

+

_
vo

Lj sω C

Cj
sω

1

+ vc
_

1:s1 s2:1
is

iL

Fig. 5.8 Phasor transformed
SRC
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5.3.2 Variation of System Order

Since Fig. 5.8 is still too complex to analyze, let’s simplify it considering the fact
that the impedances of imaginary resistors are much larger than those of reactor
impedances. This can be justified since the output capacitor is so large that it may
govern the overall system response time and, as a result, this time is much larger
than a switching period. Under this assumption that s � xs, it can be seen that

1
sCþ jxsC

¼ 1

jxsC 1þ s
jxs

	 
 � 1
jxsC

1� s
jxs

� �
¼ 1

jxsC
þ sL

xr

xs

� �2

ð5:17Þ

Surprisingly the capacitor is changed to an equivalent inductor, which reduces
the system order, as shown in Fig. 5.10a, b. Furthermore it is found that this can be
once more simplified as shown in Fig. 5.10c, where the equivalent inductor and
imaginary resistors are

Leq ¼ L 1þ xr

xs

� �2
( )

Xeq ¼ xeL 1� xr

xs

� �2
( ) ð5:18Þ

The simplified SRC for AC analysis then can be drawn as shown in Fig. 5.11.
The reason why the system order changes according to the switching frequency can
be explained by Fig. 5.11 and (5.18).

Fig. 5.10 Simplification of phasor transformed resonant tank. a Original circuit. b Approximated.
c Simplified

vs

jXeq

s1 s2
Co RL

Leq+
_

Fig. 5.11 Simplified SRC of
Fig. 5.8
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As xs deviates from xr, the absolute of the impedance of the inductor sLeq
becomes smaller than that of the imaginary resistor Xeq, as seen from (5.18) since
the magnitude of the switching frequency is much larger than the inverse of the
system response time. This can be justified by the fact that the time constant of an
output filter—the products of C0, and RL—is several hundred times larger than the
switching period in practice. Under this condition the system becomes the first order
as shown in Fig. 5.12.

On the other hand as xs; is close to xr, now Xeq becomes smaller than sLeq as
seen from (5.18). Under this condition the system becomes second order as shown
in Fig. 5.13. Especially when xs is identical to xr, Xeq becomes zero, which is just
the case of quantum converter [14, 15].

It is important to determine the boundary switching frequencies xb at which the
system order changes since this is essential to select a correct model between the
two models of Figs. 5.12 and 5.13. Obviously the exact determination of xb is
impossible since the system order does not change abruptly in practice, however the
rough estimation may not be impossible assuming that the equivalent LC resonant
circuit impedances of Figs. 5.12 and 5.13 become identical at xb. Under this
condition the both circuits are physically equivalent.

Since it is observed by the simulation and the experiment that xb is very close to
xr, (5.18) can be approximated as

Xeq

�� �� ¼ xr � xdð ÞL 1� xr

xr � xd

� �2
( )�����

����� � 2xdL ð5:19aÞ

sLeq
�� �� ¼ sj jL 1þ xr

xr � xd

� �2
( )

� 2
ss
L ð5:19bÞ

Fig. 5.12 First order model

Fig. 5.13 Second order
model
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where it is defined as

xb ¼ xr þxd forxs [xr

xr � xd xs\xr

�
ð5:19cÞ

ss is the system time constant when it is modeled as the first order system and xd

is the frequency deviation from xr.
From the above discussion it can be concluded that

Xeq

�� �� ¼ sLeq
�� �� or xd ¼ 1

ss
ð5:20Þ

This very simple relationship shows that the boundary switching frequency is
directly related with the system time constant. And it is found that the SRC is first
order at almost everywhere except the very narrow frequency band around xr, since
ss is very much larger than a switching period. This is true in practice since the
output filter time constant is so largely designed compared with the switching
period that the output voltage ripple may be very small (about 1 % of regulated
output voltage). Equation (5.20) will be completed in later by the determination of
the value, ss.

5.3.3 AC Analysis When xs Deviates from xr

The first order model as shown in Fig. 5.12 is now analyzed. Since this model is
nonlinear due to the non-linear turn-ratio s2 the small signal perturbations in source
voltage, phase, and frequency are to be applied to the first order model to linearize
it. Before applying small signal perturbations, let’s find an output side equivalent
circuit.

The transient current i is determined from Fig. 5.12 and (5.14) as

i ¼ iLs�2 ¼
vss1 � vos2

jXeq
s�2 ¼

8
p2

v1ejh � vo
jXeq

ð5:21aÞ

where

v1 � vs cos/ ð5:21bÞ

Since the diode rectifier switching function, s2 is always synchronized with the
resonant tank current iL the rectified current i should be positive real. So (5.21a, b)
can be decomposed to imaginary and real parts as follows:
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ImðiÞ ¼ 0; ReðiÞ[ 0 ð5:22aÞ

or

h ¼ þ cos�1 v0
vs cos/

xs [xr

� cos�1 v0
vs cos/

xs\xr

(
ð5:22bÞ

Equation (5.22a, b) completely determines s2 of (5.14). Applying (5.22a, b) to
(5.21a, b) yields

i ¼ 8
p2

vs cos/ sin h
Xeq

ð5:23aÞ

or

i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vs cos/ð Þ2�v2o

q
Xe

ð5:23bÞ

where

Xe ¼ p2

8
Xeq ð5:23cÞ

As discussed above, (5.23b) is a nonlinear function of input/output voltages,
hence perturbations are now applied:

î ¼ @i
@v1

@v1
@vs

v̂s þ @v1
@v/

/̂

� �
þ @i

@v0
v̂o þ @i

@Xe

@Xe

@xs
x̂s ð5:24aÞ

or

î ¼ 1
Xe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RL

Xe

� �2
s

cos/ � v̂s � Vs

Xe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RL

Xe

� �2
s

� sin/ � /̂� RL

X2
e
v̂o

� p2

8
VsLeq
X2
e

x̂sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RL

Xe

	 
2
r � îx � v̂0

Rx
ð5:24bÞ
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where the following relations are used:

Io ¼ I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
1 � V2

o

p
Xe

;
Vo

V1
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Xe
RL

	 
2
r ;

Vo

Io
¼ RL;Rx ¼ X2

e

RL

ð5:24cÞ

Since the output voltage perturbation term in (5.24b) is just the expression of a
resistor, the perturbed circuit for Fig. 5.12 can be drawn as shown in Fig. 5.14.

The output voltage perturbation is determined by applying (5.24a, b, c) to
Fig. 5.14, as follows:

V̂oðsÞ ¼ ÎxðsÞRx==RL
xc

sþxc
¼ xc

sþxc
G1V̂sðsÞ � G2/̂ðsÞ � G3x̂3ðsÞ

n o
; ð5:25aÞ

where

G1 ¼ Gv ¼ cos/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Xe

RL

	 
2
r ;G2 ¼ Vs sin/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Xe
RL

	 
2
r ;G3 ¼ p2

8
VsLeqRL

X2
e

1þ RL

Xe

� �2
( )�3=2

xc ¼ 1þ RL

Xe

� �2
( )

1
CoRL

:

ð5:25bÞ

The expressions of (5.25a, b) are of explicit and simple forms, which are what
we have searched for.

RX RL)(ˆ sI
x

)(ˆ sI

)(ˆ sVo

+

_osC

1

Fig. 5.14 Perturbed first
order model
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5.3.4 AC Analysis When xs Is Close to xr

Now the second order model as shown in Fig. 5.13 is used for the analysis. The
circuit without transformer is drawn as shown in Fig. 5.15 considering the fact that
the turn-ratios of (5.14) are all real; this is justified since the h is zero as can be
identified from (5.15) and (5.22b). The AC analysis of this circuit is then
straightforward.

V̂oðsÞ ¼ GoðsÞ V̂sðsÞ � cos/� Vs sin/ � /̂ðsÞ
n o

ð5:26aÞ

where

GoðsÞ ¼ x2
n

s2 þ asþx2
n
; a ¼ 1

CoRL
; xn ¼ 2

p
ffiffiffiffiffiffiffiffi
LCo

p ð5:26bÞ

The similar result has been also obtained by our previous work [15], as a
quantum converter analysis. All SRC control methods such as frequency, phase and
time domain ones have been analyzed by a unified principle, the phasor
transformation.

5.4 Simulations

Since the proposed model includes several assumptions and approximations, the
verification of the model is quite essential. By comparing the exact solution with the
response obtained by the proposed model this can be accomplished.

To obtain the exact solution, the following state equation for the original circuit
of Fig. 5.1 which is valid not only for CCM but also for discontinuous conduction
mode (DCM) is solved numerically:

RLφcossv
+

_

2)
2

(
π

L

Co

Fig. 5.15 Transformerless
second order model
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_iL
_vc
_vo

2
4

3
5 ¼

0 � 1
L

sþ2 ðtÞ
L

1
C 0 0

sþ1 ðtÞ
Co

0 � 1
CoRL

2
64

3
75 ð5:27aÞ

where

sþ1 ðtÞ ¼ sðtÞ; sþ2 ðtÞ ¼ sgnðiLÞ � 1 iL [ 0
�1 iL\0

�
ð5:27bÞ

The switching function, sðtÞ is externally controllable; however, sþ2 ðtÞ which
represents the diode rectification is internally controlled by the inductor current.
These are the same as those shown in Fig. 5.3.

The following parameters used in the simulations are selected:

L ¼ 78 lH; C ¼ 0:20 lF; Vs ¼ 5:0V

Here the frequency and the phasor perturbation simulations are done for various
xs;/;Co, and RL. Large signal operation waveforms are shown in Fig. 5.16. The
vertical scale is relative scale, whereas the horizontal scale is absolute scale. From a
lot of simulations it is identified that the large signal system behaviors are nearly
either first or second order as shown here. Step change in switching frequency or
phase is applied to the SRC in a steady state to identify the small signal behaviors.
Comparisons of the simulated waveforms (with harmonic noise) with the approx-
imated model waveforms (without harmonic noise) are shown in Figs. 5.17, 5.18,
5.19, 5.20 and 5.21 for the first order model and in Fig. 5.22 for the second order
model. By a lot of simulations as well as the above mentioned it is identified that
the proposed models contain errors of about 15 % when the quality factor is too
small as shown in Fig. 5.20, or when the switching frequency is neither close to nor
far from the resonant frequency as shown in Fig. 5.21. The proposed models,
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Fig. 5.16 Large signal simulation waveform examples with zero initial conditions. a Inductor
current. b Output voltage

80 5 Basic Phasor Transformation and Application …



t [ms]

0.8

0.6

0.4

0.2

0.25 0.5 0.75 1.0 1.25

1.0

0

vo [V]

Fig. 5.18 Frequency perturbed output voltage simulation waveforms: first order response
ððxs=xrÞ : 2:482 ! 2:409; / : 0:000 rad; Co : 50 lF; RL : 5 XÞ:
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Fig. 5.17 Frequency perturbed output voltage simulation waveforms: first order response
ððxs=xrÞ : 1:654 ! 1:601; / : 1:414 rad; Co : 30 lF; RL : 3 XÞ:
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Fig. 5.19 Frequency perturbed output voltage simulation waveforms: first order response
ððxs=xrÞ : 0:709 ! 0:689; / : 0:000 rad; Co : 50 lF; RL : 5 XÞ:
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Fig. 5.20 Phase perturbed output voltage simulation waveforms: first order response
ððxs=xrÞ : 1:654; / : 0:628 ! 0:597 rad; Co : 20 lF; RL : 10 XÞ:
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Fig. 5.21 Phase perturbed output voltage simulation waveforms: first order response
ððxs=xrÞ : 1:241; / : 0:628 ! 0:597 rad; Co : 100 lF;RL : 3 XÞ:
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Fig. 5.22 Phase perturbed output voltage simulation waveforms: first order response
ððxs=xrÞ : 1:000; / : 0:361 ! 0:314 rad; Co : 20 lF; RL : 6 XÞ:
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however, have no problem in practice since the quality factor is usually not smaller
than unity and the switching frequency is either close to (for quantum converter) or
far from (for frequency control method) the resonant frequency.

5.5 Experiments

The proposed models are to now be experimentally verified for the feasibility test of
the practical application. The experimental circuit is selected as a half bridge SRC
instead of a full bridge one, however the analytical result of the full bridge SRC
valids for the half bridge one either with slight changes in variables as shown in
Fig. 5.23.

The parameters are

L ¼ 78 lH; C ¼ 0:24 lF; Vs ¼ 5:0 V;

Rs ¼ 0:40 X; RQ ¼ 0:46 X; RD ¼ 0:10 X;

Lm ¼ 130 lH; VD ¼ 0:60 V; fr ¼ 36:8 kHz

The circuit is constructed on a breadboard and is open loop controlled by the
frequency and the phase. The typical experimental output voltage waveforms
correspond to the first and the second order models are shown in Figs. 5.24 and
5.25, respectively. Since the second order model is well verified by the literature
[14, 15], only the first order model is extensively studied here.

5.5.1 Time Constant Versus Switching Frequency

The time constant of the first order model can be deduced from (5.25b) as

s � 1
xc

¼ CoRL

1þ RL
Xe

	 
2 ð5:28Þ

Co RL

VDRDRQ

RsLs

1 : 1

1 : 1

Lm
VDRD

+

_2Vs

2
sC

2
sC

RQ

Fig. 5.23 Half-bridge SRC for experiment
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Now this is compared with the measured value for various switching fre-
quencies as shown in Figs. 5.26, 5.27, 5.28 and 5.29. The time constant is less
affected by the switching frequency when the load resistance is small as can be
predicted by (5.28). A little discrepancy between the predicted and the measured
is seemed to be due to the harmonics and parasitic resistances which have not
been counted in the model.

Fig. 5.24 Photograph of frequency perturbed output voltage waveform ððxs=xrÞ : 0:80;
/ : 0:000 rad; Co : 116 lF; RL : 5 X; 200 ls/dev; upper: frequency input, lower: voltage output)

Fig. 5.25 Photograph of phase perturbed output voltage waveform ððxs=xrÞ : 1:00;
/ : p=4 rad; Co : 116 lF; RL : 5 X; 100 ms/dev; upper: phase input, lower: voltage output)
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5.5.2 Time Constant Versus Output Capacitor

As predicted by (5.28), the system time constant is proportional to the output
capacitor as shown in Fig. 5.30 for two different load resistors. This confirms the
fact that the system order is dominated by the output filter circuit.
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Fig. 5.27 Time constant
versus switching frequency;
predicted. Measured
ðCo : 116 lF; RL : 10 XÞ
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Fig. 5.28 Time constant
versus switching frequency;
predicted. Measured
ðCo : 116 lF; RL : 5 XÞ
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Fig. 5.26 Time constant
versus switching frequency;
predicted. Measured
ðCo : 116 lF; RL : 22 XÞ
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5.5.3 Small Signal Phase Gain Versus Phase

To verify the gain of the proposed first order model the phase gain is selected as an
example among the three kinds of small signal gains. Figures 5.31 and 5.32 show
the phase gains for two different switching frequencies. The gain curves are nearly
sinusoid as previously predicted by (5.25b).

5.5.4 Boundary Switching Frequency Versus Output
Capacitor

The boundary switching frequency is experimentally measured by finding the
critical switching frequency when the overshoot eventually appears in the system
response.

Fig. 5.29 Time constant
versus switching frequency;
predicted. Measured
ðCo : 116 lF; RL : 2:2 XÞ

Fig. 5.30 Time constant
versus output capacitor; bold
line is the predicted and
circles are the measured
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Applying the approximation used in (5.19a, b, c)–(5.28) and setting the system
time constant of (5.20) be the same as the first order time constant of (5.28) yield
the following

xd � 1þ 1
4Q2

xr

xd

� �2
( )

1
CoRL

ð5:29Þ

Unfortunately (5.29) is not an explicit from, hence this cannot be solved by
numerical computation. It is verified that (5.29) is enough for the rough prediction
of the boundary switching frequency as shown in Figs. 5.33 and 5.34. And it is also
identified that the practical SRC whose Co is normally larger than 100 μF is a first
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Fig. 5.32 Phase gain versus
phase ððxs=xrÞ : 1:36;
Co : 116 lF; RL ¼ 5 XÞ
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Fig. 5.31 Phase gain versus
phase ððxs=xrÞ : 0:78;
Co : 116 lF; RL ¼ 5 XÞ
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order system almost everywhere except the narrow switching frequency band
within 2 kHz from the resonant frequency, which corresponds to at most 5 % of the
resonant frequency.

5.6 Concluding Remarks

Throughout this chapter, the followings are newly explained and verified.

• The phasor transformation is newly proposed and utilized for the DC and AC
analyses of the three control methods. So explicit and very simple analytical
results are deduced from the equivalent time-invariant circuits obtained by the
phasor transformation.

• The analytical results are verified by both the simulations and the experiments
with good agreement with the theories. A little discrepancy between the theories
and the experiments may arise no problem since this occurs at the region not
used in practice.
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• The time constant and the gain expressions have been widely explored. The
system is modeled as the second order when xs is close to xr, whereas it is
modeled as the first order when xs, deviates from xr. Furthermore the system
order depends on load capacitor and resistor.

• The boundary switching frequency where the system order changes is estimated
and verified by experiments that the system is practically first order almost
everywhere except the very narrow frequency band near xr

It can be concluded that the phasor transformation is one of the basic and
powerful analysis techniques for single phase AC systems, especially for the SRC.
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Chapter 6
Applications of Phasor Transformation
to AC Circuits and Phasor Detectors

The detection of amplitude and phase information in single phase AC systems is
quite challenging due to the lack of quadrature component, which is available in
multi-phase AC systems. Phasor transformation can be used to the analysis of
single phase AC systems only if the quadrature component is acquired. To fetch a
reliable quadrature component from single phase AC systems containing harmonic
noises, a derivative quadrature generator with appropriate filters is explained in this
chapter. A low pass filter (LPF) optimizing the reductions of total harmonic dis-
tortion (THD) and response time of sensed signals is presented, surveying gener-
alized n-th order filters. A lot of this chapter is written based on the original paper of
mine [1].

6.1 Introduction

There are many single phase AC power applications such as single phase AC power
grid, renewable energy sources, single phase AC converters, and various resonant
converters. Fast and precise controls of them, however, are very often impeded by
the slow and unreliable amplitude and phase information, i.e. the phasor of sensed
voltage or current signals. For example, the power grids connected to sensitive
loads such as network computers, data centers, and semiconductor facilities require
fast and reliable detections of phasor to switch over power source swiftly [2, 3].
This is why there are several phasor detector literatures for single phase AC systems
[4–8]. To obtain the amplitude and phase information of a phasor from a sensed
signal vs, the quadrature component vβ orthogonal to a direct one vα should be
obtained first, then these variables in the rotary frame are transformed to the DQ
variables in the stationary frame, as shown in Fig. 6.1.
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In three phase AC power systems, the DQ information can be easily extracted
from their balanced three phase abc variables by appropriate DQ transformations.
Ideally, there are no time delay due to the DQ transformation and no need for noise
filtering to obtain the DQ information. In the single phase AC power systems,
however, there are several issues to be considered concerning the generation of
quadrature component. The first issue is the harmonic noise of the sensing signal.
For instance, the third and fifth harmonics are dominant and difficult to reduce in
most cases. When the noise is not reasonably canceled out in the α-β quadrature
generator of Fig. 6.1, the control process using this signal cannot be accurate. The
second issue is the response of the quadrature generator for an abrupt change of vs.
In the on-line electric vehicle (OLEV) system [9–12] of 20 kHz operating fre-
quency, for example, fast moving vehicles are considered as rapidly changing
loads. To achieve a proper control for regulating voltage and current fluctuation
within a few cycles, quite fast quadrature generator of sub milliseconds is essential.

There are a few conventional schemes for the quadrature generation: transport
delay [13], Hilbert transformation [14], inverse Park transformation [15], second
order generalization integrators (SOGI) [16–18], and the capacitor voltage and
current method [19]. Most conventional methods contains follow problems: fre-
quency dependency, high complexity, nonlinearity, and lack of filtering ability.
Although a better result have been reported by SOGI which is the latest scheme, a
trade-off issue between a dynamic system response and a filtering performance still
exists [20, 21].

In this chapter, a new quadrature generator which does not use integrator but use
a differentiator to acquire quadrature component from the sensing signal vs is
proposed, which is especially well suited for the single phase AC system requiring
fast response time. The pre-processor of the differentiator, composed of a low pass
filter (LPF) and an all pass filter (APF), are used to increase the noise immunity.
Section 6.2 introduces the concept of the derivative quadrature generator and its
design flow. The implementation of the quadrature generator and its experimental
verifications are described in Sect. 6.3.

Single Phase AC 
application

Quadrature
Generator

α-β  to d-q 
transformation

vs

vα vβ

Control

d-q to a-φ
transformation

vd

vq

a φ

Fig. 6.1 Proposed single
phase AC system with a
phasor detector
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6.2 Design of the Derivative Quadrature Generator

6.2.1 Derivative or Integral Method for Quadrature
Generator

The orthogonal component against a sinusoidal signal can be obtained by using an
integrator or a differentiator. The integrator, however, has the offset problem due to
the initial value, which generates the offset error when the sensing signal is abruptly
changed at the nonzero point, as shown in Fig. 6.2. So it is difficult to use the
integrator for the quadrature generator. Therefore, the differentiator which does not
have the offset problem, as shown in Fig. 6.2, was preferred in this book, even
though it has the impulse output noise problem for a step load change.

The input vs of the proposed derivative quadrature generator consists of vf and vh
which are the fundamental and harmonic components of vs, respectively, as shown
in Fig. 6.3. The LPF attenuates the harmonic components vh, but it causes a phase
shift in vf. To compensate this phase shift, the APF is adopted; hence, the phase of
the output vα of the APF becomes identical to vf.

The dynamic phasor of vα can be defined, in general, as follows [22].

va ¼ Imfaejðxstþ/Þg ¼ Imfðaej/Þejxstg; ð6:1Þ

where aej/ is the phasor of vα in which a and / are the time varying amplitude and
phase information, respectively. The angular frequency of the signal ωs is, however,
assumed to be constant in this chapter.

Fig. 6.2 Simulation results for a derivative (vdiff) and an integral (vint) method to obtain the
orthogonal component of a sensed signal (vs)
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Then, the differentiator output vβ can be derived as follows.

vb � 1
xs

dva
dt

¼ 1
xs

Im
da
dt

þ j
d/
dt

aþ jxsa

� �
ejðxstþ/Þ

� �
ð6:2Þ

In the quasi steady state, the time derivative terms in (6.2) become diminish as
follows.

da
dt

ffi 0;
d/
dt

ffi 0 ð6:3Þ

Therefore, vα and vβ are approximately expressed as follows.

va ¼ Im aejðxstþ/Þ
n o

¼ asinðxstþ/Þ ð6:4Þ

and

vb ffi Im jaejðxstþ/Þ
n o

¼ acosðxstþ/Þ ð6:5Þ

6.2.2 Selection of Low Pass Filter

The differentiator amplifies high frequency noises in general. To reduce the high
frequency noises, the LPF should be used. Because the response time and harmonic
noise are important system parameters of the quadrature generator, the system order
and cutoff frequency of the LPF should be carefully selected.

Because it is hardly possible to determine the response time of the LPF higher
than the 3rd order system analytically, it was determined by simulations for a given
transfer function Hn(s), where a generalized form is as follows.

HnðsÞ ¼ xn
c

ðs� p1Þðs� p2Þ � � � ðs� pnÞ ; n ¼ 1; 2; ð6:6Þ

Fig. 6.3 Proposed derivative quadrature generator
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where ωc is the cutoff frequency for the n-th order LPF. The Butterworth filter,
which was adopted in this book because of its flat frequency response, has the pole
pk as follow [23]:

pk ¼ xcej
ð2kþ n�1Þ

2n p; k ¼ 1; 2; . . .; n ð6:7Þ

As shown in Fig. 6.4, the rising time is inversely proportional to the cutoff
frequency of the LPF in general, and it is higher for a higher system order LPF.

Another important system parameter is the THD of vβ, which is determined by
the characteristics of the LPF, APF, and differentiator, as shown in Fig. 6.3. To
reduce the high frequency noise which is amplified by the differentiator, the LPF
has to sufficiently attenuate the high frequency noise. In other words, the system
order of the LPF should be higher than two, as identified from Fig. 6.5.

Because the low order harmonic components such as the 3rd and 5th harmonics
are critical for the performance of the quadrature generator, 10 % of the 3rd and 5th
harmonics are included in the simulations for various LPFs. Figure 6.5 shows that the
harmonic reduction for higher system order than three is not significant. It is identified
that there are trade-off relationships between the rising time and the THD charac-
teristics by using simulation results in Figs. 6.4 and 6.5. Selecting optimal cutoff
frequency and system order of the LPF, therefore, highly depends on every applied

Fig. 6.4 Simulation results for the rising time of different system order LPFs according to various
cutoff frequencies in step response
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system which requires different rising time and THD performance. For the single
phase 60 Hz AC systems which has low order harmonic components, a 3rd system
order LPF with above 100 Hz cutoff frequency, which has reasonably short rising
time and fine harmonic reduction ability, is proper, as shown in Figs. 6.4 and 6.5.

Before heading to the next step which is an APF design, the 3rd system order
LPF with 120 Hz cutoff frequency is selected for satisfying two system parameters.

Fig. 6.5 Simulation results for the THD of vβ of different system order LPFs according to various
cutoff frequencies. a When vs includes 10 % of 3rd order harmonic. b When vs includes 10 % of
5th order harmonic
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The rising time and the THD of vβ for selecting the LPF are respectively assumed as
less than half cycle of 60 Hz, i.e. 8.33 ms, and 6 %.

Two bode plots for input vf* and output vα of APF are shown in Fig. 6.6. As
shown in Fig. 6.6a, the LPF occurs the phase shift of vf, while it diminish the
harmonic components. To compensate this phase difference between vf and vf*, the
APF is designed. The transfer function HAPF (s) of the APF is derived as

HAPF sð Þ ¼ s� xs

sþxs
; ð6:8Þ
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Fig. 6.6 Simulation results for the phase correction of the APF for the 3rd order LPF example.
a The input of the APF vf* (120 Hz cutoff frequency). b The output of the APF vα, which has been
phase-corrected
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where ωs is the target frequency that makes 90° phase shift [24]. By adding the APF
after the LPF, the phase of vα at 60 Hz is corrected to become in phase with vs, as
shown in Fig. 6.5b.

By organizing the proposed quadrature generator with the selected LPF, APF,
and differentiator, the two orthogonal signals are generated as outputs. The each
transfer function for vα and vβ can be derived as

Ha sð Þ ¼ H3 sð Þ � HAPF sð Þ ð6:9Þ

Hb sð Þ ¼ H3 sð Þ � HAPF sð Þ � Hdiff sð Þ; ð6:10Þ

where the transfer function Hdiff (s) of the differentiator is defined by ωs which is the
frequency that the magnitude intersects with 0-dB line as

Hdiff sð Þ ¼ s
xs

: ð6:11Þ

Compared to the SOGI which is one of the conventional schemes introduced in
[14], the (6.9) and (6.10) show the same transfer functions for vα and vβ when the
system order of LPF is two. By changing the system order of LPF, the proposed
derivative quadrature generator can modulate the noise reduction rate as against the
SOGI.

6.2.3 Amplitude and Phase Detection and Simulation
Results

The time-varying amplitude a and phase ϕ of the vs can be derived from (6.4)–(6.5)
as follows.

a ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2a þ v2b

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2d þ v2q

q
ð6:12Þ

/ ¼ tan�1 vq
vd

ð6:13Þ

where the vd and vq is defined as

vd
vq

� �
¼ cosxst � sinxst

sinxst cosxst

� �
va
vb

� �
: ð6:14Þ
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The vd and vq are calculated as

vd ¼ a sin/ ð6:15Þ

vq ¼ a cos/; ð6:16Þ

where ωst is the angle difference between DQ and α-β reference frames.
The simulation for verifying the designed quadrature generator is conducted

when the vs includes 10 % of 3rd order harmonic component as shown in Fig. 6.7.
Under the step resistive load change, moreover, the amplitude a follows the change
of vs well.

Fig. 6.7 Simulation results of proposed derivative quadrature generator

vα vβ

LA 25-NP

Fig. 6.8 The implementation
of the quadrature generator
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Fig. 6.9 Experimental results of the proposed derivative quadrature generator. a Experimental
waveforms for high THD case. b Experimental waveforms for low THD case
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6.3 Experimental Verification with a 60 Hz Single Phase
Inverter

The proposed derivative quadrature generator was built based on the proposed
design procedure and verified with 60 Hz single phase inverter. The derivative
quadrature generator was implemented by using a LA 25-NP current transducer,
several analog operational amplifier, and passive elements for organizing the
selected LPF, APF, and differentiator, as shown in Fig. 6.8.

To verify the performance of the proposed derivative quadrature generator, each
experiment was conducted for the high THD case and low THD case as shown in
Fig. 6.9.

For the two THD cases, the vs was manipulated to have high THD of 9.33 % and
low THD of 2.77 % by combining 3rd and 5th order harmonic components. The
THDs of sensed load current signal vs, and the two orthogonal signals from the
derivative quadrature generator vα and vβ were measured by a WT1600 digital
power meter, as summarized in Tables 6.1 and 6.2.

The noise immunity abilities were verified by the measured THDs which are
well matched with the simulation results introduced in Sect. 6.2. From the exper-
imental results of high THD case, it is also identified that the system order and
cutoff frequency of LPF should be re-designed when the other applied system
requires low THD of vβ which is less than 6.39 %.

The rising and falling times were measured for verifying the dynamic response
of the proposed phase detector, and the both rising and falling times were found to
be less than a half cycle for a step change input signal, as shown in Fig. 6.10.

Table 6.1 The measured
THDs for high THD case

vs vα vβ
3rd (%) 8.32 2.08 6.15

5th (%) 3.14 0.37 1.51

THD (%) 9.33 2.12 6.39

Table 6.2 The measured
THDs for low THD case

vs vα vβ
3rd (%) 2.77 0.72 2.09

5th (%) 1.18 0.11 0.46

THD (%) 3.16 0.79 2.2
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Fig. 6.10 Experimental results for dynamic system responses. a Experimental waveforms for
rising time (6.8 ms). b Experimental waveforms for falling time (7.7 ms)
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6.4 Concluding Remarks

In this chapter, a new quadrature generator for single phase AC power systems
based on the differentiator is presented. The proposed quadrature generator has fast
dynamic response by using the differentiator, and it has good noise immunity by
adopting the 3rd system order LPF. The design procedure for the quadrature
generator shows the better noise immunity characteristic can be obtained by trading
off the system response time. The performance of proposed quadrature generator
and its design procedure has been validated by the experimental results.
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Chapter 7
Application of Phasor Transformation
to Static Analyses of LED Drivers

In this chapter, another example of applying the static phasor transformation to an
LED driver is explained. This chapter is useful to see an aspect of modern LED
drivers. Innovative passive LED drivers that can reduce the total harmonic dis-
tortion (THD) significantly by LC parallel resonance are suggested in this chapter.
Using an inductor and three capacitors, called LC3, novel characteristics such as
high efficiency and power factor (PF) with extremely long life time are achieved.
The proposed LED drivers have a temperature-robust characteristic because their
power is hardly changed by temperature, selecting the number of LED in series ns
appropriately so that the LED power variation due to temperature change in LED
can be zero. For the universal use of the proposed LED drivers in various countries
with different source voltages and frequencies, circuit configurations applicable to
110/220 V and/or 50/60 Hz are proposed. To analyze the power and PF of the
proposed LED driver, the phasor transformation was firstly applied to a non-linear
diode rectifier modeling. Nevertheless, this non-linear switching, the proposed
analyses agreed well with simulation and experiment results. A prototype LED
driver showed a very high power efficiency of 95.2 % at 70 W, meeting PF and
THD regulations for source voltage variation of ±6 % of 220 V, though a rea-
sonably small filter was used. A lot of this chapter is written based on our paper [1].

7.1 Introduction

Since LEDs have higher efficacy than that of fluorescent lamps as well as much
longer lifetimes [2–7], conventional lamps are being replaced with LEDs. The
change of lamps to LEDs, however, has been slow because of the high cost of
LEDs and their drivers as well as the short lifetimes of the drivers [8]. It is quite
important for LED drivers to have a longer lifetime than LEDs so that the LED
lamps can operate for more than 50,000 h. LED drivers, in general, should be able
to regulate or control LED power level, guarantee high input power factor (PF) and
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low total harmonic distortion (THD). For example, the PF should be greater than
0.9 for LED power ≥5 W according to Energy Star Requirement for Solid [9], and
the THD should satisfy the IEC 61000-3-2 class C standard [10]. Conventionally,
switch-mode-power-supply(SMPS)-type LED drivers, which typically include
active switches, control ICs, and passive circuit elements, have been widely used to
meet the requirements [11–29]. They usually provide LEDs with constant currents
by PWM switching techniques with a feedback control. The SMPS-type LED
drivers, however, typically have low power efficiencies, which result in large power
loss and high junction temperature of the switching devices. Together with DC
electrolytic capacitors, this high junction temperature shortens the lifetime of the
conventional LED drivers.

In order to overcome these drawbacks, passive-type LED drivers that consist of
just passive components, such as inductors, capacitors, and diodes, have been
recently proposed [30–35], as shown in Fig. 7.1. One of the simplest passive LED
drivers is the resistor-type LED driver, composed of a bridge diode, a resistor, and a
capacitor [30], as shown in Fig. 7.1a. The LED power variation is mitigated by the
resistor; however, the power efficiency is inevitably deteriorated due to the power
dissipation in the resistor. A more simplified and efficient one is the capacitor-type
LED driver, which consists of a capacitor and a bridge diode [31]. Because no
resistive element is used in this circuit, very high power efficiency of 98 % can be
easily achieved [31]. However, due to the use of a capacitor only, the PF is as low
as 0.71. To solve this problem, the LC-series-resonance-type LED driver, as shown
in Fig. 7.1c, was proposed [32]. The LC resonant frequency of this circuit is tuned
close to the source frequency in order to achieve good PF and THD characteristics.
The LC filter size, however, should be very large due to the low source frequency of
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Fig. 7.1 Conventional passive LED drivers, showing long lifetime but sensitivity to LED
temperature. a A resistor-type LED driver [30]. b A capacitor-type LED driver [31]. c An
LC-series-resonance-type LED driver [32]. d A valley-fill-type LED driver [33]

106 7 Application of Phasor Transformation to Static Analyses of LED …



50 or 60 Hz. A valley-fill-type LED driver, as shown in Fig. 7.1d, was also
proposed [33] in order to remove electrolyte capacitors.

Large-size capacitors should be used for the valley-fill filter to avoid flickering.
Furthermore, a large number of passive components including two bulky inductors
causes a cost increase and high power loss, i.e. relatively low power efficiency of
93.6 % [33]. These passive LED drivers mentioned so far usually have long life-
times and high power efficiency because passive circuit elements are quite robust
and free from high frequency switching loss. In some cases, however, PF and THD
may not be satisfied by the use of passive elements only [30, 31]. In addition, the
LED power may change due to high operating temperature and variation of source
voltage because there is no means of regulating the LED power.

In this chapter, compact passive LC3 LED drivers that achieve low THD and
high PF by using LC parallel resonance are newly proposed, as shown in Fig. 7.2.
An optimum number of LED array in series is appropriately selected such that the
LED power becomes temperature-robust. Furthermore, the LED drivers can operate
at both 50 and 60 Hz as well as either 110 or 220 V. The proposed LED drivers are
analyzed by the powerful phasor transformation techniques [36–41], which were
even applied to wireless power transfer systems [42–44], but their application to the
non-linear switching case occurs for the first time in this paper. Experimental
verification of the phasor transformation for the proposed LED driver showed good
agreements with simulations and designs.

7.2 Static Analysis of the Proposed LED Driver

The proposed LED driver is illustrated in Fig. 7.2, where the source side filters L1,
C1, and C2 together with the number of LED array in series ns determine the line
PF, THD in source current is, and LED load power PL. The source side capacitor C3

is just for PF compensation whereas the load side electrolyte capacitor CL is for
smoothing the LED array voltage vL. The LED array is composed of np number of
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Fig. 7.2 The proposed LC3 LED driver, which is quite insensitive to LED temperature, meeting
PF and THD requirements
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parallel sub-arrays, as shown in Fig. 7.2. The steady state behaviors of the proposed
LED driver will be analyzed in this chapter by neglecting high-order switching
harmonics, and appropriate designing of circuit parameters will be provided. The
internal resistance of L1 is considered as R1, but the ESRs of capacitors are omitted
from consideration throughout this chapter. The characteristics of all the LEDs are
assumed to be identical, and temperature distribution over the LED array is even.
The source voltage is given and assumed to be fixed. All the circuit parameters are
assumed to be ideal unless otherwise specified.

7.2.1 Equivalent Circuit Modeling of the Proposed
LED Driver

As shown in Fig. 7.3, each LED in an array can be replaced with a dynamic
resistance rd and a DC voltage source Vd [17]. According to the general equivalence
of a converter with a time-varying transformer [36, 37], the full bridge diode
rectifier can be replaced with a time-varying transformer, whose turn-ratio is a
switching function s(t) at the source frequency [37], as shown in Fig. 7.3a, b. Only
the fundamental components of voltages and currents of the circuit are considered,
and all harmonics are neglected from consideration in this chapter, and it is assumed
that input and output filters moderately attenuate the switching harmonics.

In order to analyze the proposed circuit, the well-known phasor transformation
[36–41] is applied to the time-varying fundamental component equivalent circuit of
Fig. 7.3, as shown in Fig. 7.4. Then a time-invariant complex circuit with a [36] is
obtained.

A simplified static circuit, neglecting dynamic behavior, is derived for the static
analysis, as shown in Fig. 7.4. In the phasor transformation, the rectified current at
the DC output side should include only real value in general and should not contain
any imaginary components [38]. Therefore, the input current of the
auto-transformer Ii (¼ IL=a) should be also real in case the phase reference is tuned
to the diode rectifier. In the phasor transformation, the selection of a reference phase
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Fig. 7.3 Large signal AC equivalent circuit of Fig. 7.2 replacing each LED with a linear
approximated model. a A time-varying fundamental component equivalent circuit. b Switching
waveforms of an ideal time-varying transformer
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may be arbitrary; hence, the phase of the rectifier is set to zero for simplicity of
analysis, and the phase of source voltage /s is unknown at the moment. Throughout
this chapter, the bridge diode is assumed to be lossless and ideal, with a fixed
turn-ratio of a.

The remaining work is to find the source voltage Vs and the source current Is of a
complex variable so that Ii can be real, where the magnitude Vs is given and the
magnitude Is, the phase /s, and /0

s should be determined. Vs and Is can be defined
as follows:

Vs � Vse j/s ð7:1Þ

Is � Ise j/
0
s : ð7:2Þ

Let us determine /s first. By reflecting the turn-ratio of auto-transformer to an
equivalent circuit seen from left part, Fig. 7.4 can be converted to Fig. 7.5a. In
Fig. 7.5, the Z1, Z2, Z3, Re, and Ve are defined as follows:

Z1 ¼ ð jxsL1 þR1Þ// 1
jxsC1

; Z2 ¼ 1
jxsC2

; Z3 ¼ 1
jxsC3

ð7:3Þ

Re ¼ a2
ns
np

rd; Ve ¼ a nsVd: ð7:4Þ

By applying the Thevenin’s theorem to the left part of the circuit of Fig. 7.5a, a
simplified static circuit is finally obtained, as shown in Fig. 7.5b, where Vt and Zt

are derived as follows:

Vt ¼ Vs
Z2

Z1 þZ2
� ðVs e j/sÞ � ðc e j/cÞ ¼ Vte j/t ð7:5aÞ

* Vt ¼ cVs; /t ¼ /s þ/c ð7:5bÞ
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Fig. 7.4 A static phasor
circuit, where the rectified
current IL is always real
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Zt ¼ Z1//Z2 ¼ R1 þ jxsL1
1� x2

s L1ðC1 þC2Þþ jxsR1ðC1 þC2Þ : ð7:6Þ

In (7.5a, b), c and /c are defined as follows:

c ¼ Z2

Z1 þZ2

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2

s L1C1Þ2 þðxsC1R1Þ2
f1� x2

s L1ðC1 þC2Þg2 þx2
s R

2
1ðC1 þC2Þ2

s
ð7:7aÞ

/c ¼ \ Z2

Z1 þZ2
¼ tan�1 xsC1R1

1� x2
s L1C1

� tan�1 xsR1ðC1 þC2Þ
1� x2

s L1ðC1 þC2Þ : ð7:7bÞ

It is identified from (7.5b) that /s can be obtained if /t is determined, where /c is
readily calculated from (7.7b) for the given L1, R1, C1, and C2. In order to determine
the /t, the phasor diagram for Fig. 7.5b is illustrated, as shown in Fig. 7.6, where
/ve should be the same as /ze in order to make Ii have only a real part, which is the
condition for the diode rectified current, as follows:

Ii ¼ Vt � Ve

Zt þRe
¼ Vte

Zte
¼ Vtee j/ve

Ztee j/ze
¼ Vte

Zte
*/ve ¼ /ze

� �
* Vte � Vt � Ve � Vtee j/ve ; Zte � Zt þRe � Ztee j/ze :

ð7:8Þ

Therefore, /ve is determined as follows:

/ve ¼ /ze ¼ tan�1 xs½L1f1� x2
s L1ðC1 þC2Þg � R2

1ðC1 þC2Þ�
R1 þRe½f1� x2

s L1ðC1 þC2Þg2 þx2
sR

2
1ðC1 þC2Þ2�

: ð7:9Þ

As identified from Fig. 7.6a, now /t can be determined because /ve, Ve, and Vt

have already been determined from (7.9), (7.4), and (7.5b), respectively. Applying
the cosine law of a triangle to Fig. 7.6a results in the following.
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Fig. 7.5 A simplified final static circuit of the proposed LED driver. a Equivalent static circuit of
Fig. 7.4 eliminating the auto-transformer. b Simplified final static circuit of (a)
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cos/t ¼
V2
t þV2

e � V2
te

2VtVe
; ð7:10Þ

where Vte can be determined from the right-angle triangle in Fig. 7.6a as follows:

V2
t ¼ ðVte sin/veÞ2 þðVe þVte cos/veÞ2

) Vte ¼ �Ve cos/ve þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
t � V2

e sin
2 /ve

q
:

ð7:11Þ

From (7.9) to (7.11), /t is eventually determined as follows:

/t ¼ cos�1 Ve

Vt
sin2/ve þ cos/ve

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ve

Vt
sin/ve

� �2
s0

@
1
A: ð7:12Þ

Finally, /s can be determined from (7.7b) and (7.12) as follows:

/s ¼ /t � /c: ð7:13Þ

Now all the variables in Figs. 7.4, 7.5 and 7.6 are completely determined, which
finishes the equivalent circuit modeling of the proposed LED driver.

7.2.2 Power Factor (PF)

Now the source current phasor /0
s of (7.2) in the steady state can be readily

determined in order to calculate the PF because all the variables including /s have
been determined in the previous section. To find the source current Is, the
auto-transformer in Fig. 7.4 is substituted with the current source Ii, as shown in
Fig. 7.7, which is already determined from (7.8). Because this circuit is linear, Is

tφ veφ

tV

teV

eV

zφ
zeφ

teZ

eR

tZ
(a) (b)Fig. 7.6 Phasor diagrams for

the simplified static circuit of
Fig. 7.5b. a Phasor diagram of
Ve, Vt, and Vte. b Phasor
diagram of Re, Zt, and Zte
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can be derived by the superposition of the responses from the voltage source Vs and
current source Ii as follows:

Is � Ise j/
0
s ¼ Vs

Z1 þZ2
þ Vs

Z3
þ Z2

Z1 þZ2
Ii ¼ Vs

Za
e jð/s�/aÞ þ jxsC3Vse j/s þ c Iie j/c � Isr þ jIsi

* Za � Z1 þZ2 ¼ Zae j/a ; Is ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2sr þ I2si

q
; /

0
s ¼ tan�1ðIsi=IsrÞ;

ð7:14Þ

where γ and /c are already defined in (7.7a, b), and Za and /a are found as follows:

Za � Zaj j ¼ Z1 þZ2j j ¼ Z1 þZ2j j
Z2j j Z2j j ¼ Z2j j

c
¼ 1

xsC2c
ð7:15aÞ

/a � \ðZ1 þZ2Þ ¼ \ Z1 þZ2

Z2
Z2

� �
¼ \ Z1 þZ2

Z2

� �
þ\Z2 ¼ �/c �

p
2
:

ð7:15bÞ

From (7.15a, b), Is and /0
s of (7.14) can be eventually calculated, though the

complicated analytical expressions for Isr and Isi are not shown here.
Finally, PF can be determined from (7.13) and (7.14) as follows:

PF ¼ cosð/s � /0
sÞ: ð7:16Þ

7.2.3 Power and Efficiency

Now the source power Ps and load power PL can be determined from the analytical
results of the previous sections.

As shown in Fig. 7.5, the PL can be calculated from Re, Ve, and Ii, which are
determined by (7.4) and (7.8), respectively, as follows:

PL � VLIL ffi aVLIi ¼ I2i Re þVeIi: ð7:17Þ

In (7.17), the assumption that the diode rectifier is lossless has been adopted, which
can be identified by comparing Fig. 7.4 to Fig. 7.5.

IiVs

+

-

Z1

Z2Z3

IsFig. 7.7 An equivalent static
circuit of Fig. 7.4, substituting
the auto-transformer with a
current source Ii
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In order to derive the power efficiency of the overall circuit, the source power Ps

is calculated from (7.1), (7.14), and (7.16), as follows:

Ps ¼ RefVsI�sg ¼ VsIscosð/s � /0
sÞ: ð7:18Þ

Therefore, the power efficiency of the proposed LED driver can be determined
from (7.17) and (7.18) as follows:

g ¼ PL

Ps
: ð7:19Þ

7.2.4 Harmonic Reduction by LC Parallel Resonance

The diode rectifier generates switching harmonic currents ii, as shown in Fig. 7.2. In
the steady state, the kth harmonic component of the source current Isk, as shown in
Fig. 7.8, can be analyzed if a corresponding kth switching harmonic component of
the diode rectifier Iik is given. In particular, the 3rd and 5th harmonics are dominant
and must be diminished by filters. In Fig. 7.8, the internal resistance of the inductor
R1 is ignored because the impedance of L1 becomes much larger than R1 at the high
harmonic frequencies.

The proposed parallel resonant circuit composed of L1 and C1 increases its LC
tank impedance significantly at the harmonic frequency so that the contribution of
the diode harmonic current to the source current can be mitigated. This harmonic
current reduction ratio is obtained as follows:

GIðjkxsÞ � Isk
Iik

¼ Z2k

Z1k þZ2k

����
���� ¼ 1� k2x2

s L1C1

1� k2x2
s L1ðC1 þC2Þ

����
����; ð7:20Þ

where, Z1k and Z2k are given as

Z1k ¼ jkxsL1//
1

jkxsC1
; Z2k ¼ 1

jkxsC2
: ð7:21Þ
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Fig. 7.8 Simplified
equivalent static circuit
considering the kth harmonic
current Iik generated from the
diode rectifier
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In (7.20), there are two resonance angular frequencies ωrs and ωrp, as shown in
Fig. 7.9, which correspond to a series resonance and parallel resonance, respec-
tively, as follows:

xrs ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1ðC1 þC2Þ

p � k1xs ð7:22aÞ

xrp ¼ 1ffiffiffiffiffiffiffiffiffiffi
L1C1

p � k2xs; ð7:22bÞ

where k1 and k2 are corresponding multiples of the source frequency ωs. It is
identified from (7.22a, b) that ωrp is always larger than ωrs and they can be sep-
arated from each other by an appropriate selection of C1 and C2.

As identified from Fig. 7.9, GI has a large gain at ωrs, whose frequency should be
avoided in order not to amplify the switching harmonic currents Iik. Because the
switching harmonic current Iik includes only odd components, ωrp is chosen between
the 3rd and 5th harmonics in order to get the benefit of the parallel resonance
harmonic suppression. Therefore, the design boundary conditions for the filters are
finally determined, considering harmonic patterns and filter size, as follows:

xs\xrs ¼ k1xs\3xs ! 1\k1\3 ð7:23aÞ

3xs\xrp ¼ k2xs\5xs ! 3\k2\5: ð7:23bÞ

7.3 Designs for Frequency- and Voltage-Versatile LED
Drivers

7.3.1 Baseline Design of the Temperature-Robust LED
Driver

For a given set of design conditions for Vs, PL, PF, and THD as an example, as
shown in Table 7.1, the circuit parameters L1, C1, C2, C3, and ns shall be determined
to complete the baseline design of the proposed LED driver, as shown in Fig. 7.2.

GI

0 rsω rpω
skω

sω

sω3

sω5

21
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+
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Fig. 7.9 The harmonic
current reduction ratio of the
proposed parallel resonant
filter
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One more design condition for determining the five circuit parameters for the four
given design conditions is the temperature robustness of PL. It is assumed that the
operating frequency of the baseline LED driver is fixed to 60 Hz.

As the LED array starts to operate, its temperature slowly increases, which
results in a decrease in the forward voltage drop Vd of an LED. Therefore, the load
power PL should be insensitive to this LED voltage change. To find this
temperature-robust point against the change of Vd, the characteristics of PL with
respect to ns, whose contribution to the LED array open voltage nsVd is the same as
Vd, are investigated, as shown in Fig. 7.10. As the number of LED in series ns is
either too small or too large, the voltage or current of the LED array becomes very
small, which results in lower power PL. Therefore, there could be a maximum
power point at which @PL=@ns ¼ 0, as shown in Fig. 7.10.

The internal resistance of the inductor R1 is temporarily excluded from the
baseline design because it is rather negligible to design the proposed LED driver;
hence, R1 is assumed to be zero at the moment. The turn-ratio of the equivalent
auto-transformer of the diode rectifier, as shown in Fig. 7.4, a is selected as 0.80
throughout the chapter, which will be explained in the Discussions chapter. From
Figs. 7.2, 7.3 and 7.4, the PL can be determined in terms of the multiples of the
power of an LED power Pd as follows:

Table 7.1 Design conditions
and circuit parameters for the
baseline design of
temperature-robust LED
drivers

Given design conditions Selected circuit
parameters

Parameters Values Parameters Values

Vs 220 V (±6 %) L1 1.07 H

PL,max 60 W C1 0.4 μF

PF >0.93 (>0.90) C2 0.4 μF

THD <27 % (=30 % × PF) C3 1.3 μF

@PL=@ns 0 ns,max 70

0

PL [W]

PL,max

ns,maxVd nsVd

0=
∂
∂

s

L

n

P

Fig. 7.10 The characteristic
of PL with respect to ns, where
a temperature-robust point
exists
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PL ¼ VLIL ¼ Pdnpns ð7:24aÞ

* Pd � ðVd þ IdrdÞId ð7:24bÞ

Then, the appropriate ns for the given PL and Pd can be determined from (7.24a, b),
provided that np is determined, as follows:

ns ¼ PL

Pdnp
ð7:25Þ

In (7.25), the ns cannot be arbitrarily large because VL should not be larger than the
peak source voltage as follows:

VL ¼ nsðVd þ IdrdÞ\
ffiffiffi
2

p
Vs ! ns\

ffiffiffi
2

p
Vs

Vd þ Idrd
: ð7:26Þ

For example, the LED A0P7EFCKLNP4 selected for our designs and experi-
ments has the following parameters: Vd = 2.8 V and rd = 4.0 Ω at the nominal LED
current Id = 70 mA. Then, the nominal dissipated power of an LED becomes
Pd = 0.2156 W. From (7.25) and (7.26), the boundary condition for np can be
determined, in general, as follows:

ns ¼ PL

Pdnp
\

ffiffiffi
2

p
Vs

Vd þ Idrd
! np;min � PL

Pd

Vd þ Idrdffiffiffi
2

p
Vs

\np: ð7:27Þ

It is found from (7.27) that np;min ¼ 2:75 for the selected LED array; hence, np
should be either 3 or 4. From (7.25), ns becomes 93 for np = 3 and ns becomes 70
for np = 4. Now, L1, C1, C2, and C3 can be determined in order to satisfy the design
conditions in Table 7.1. For PL,max = 60 W, it is found that the inductor size, which
is the major cost driver, is minimized when np = 4 and ns,max = 70. It is not possible
to analytically determine the temperature robustness point of PL,max and the THD.
Accordingly, the four circuit parameters were appropriately determined by
numerical calculations to meet the design conditions, as shown in Figs. 7.11 and
7.12, where the PF and PL were calculated from (7.16) and (7.17) and the THD was
calculated by a PSIM simulation. As a result, an optimum parameter set of
L1 = 1.07 H, C1 = 0.4 μF, C2 = 0.4 μF, and C3 = 1.3 μF was selected to satisfy the
given design conditions.

As identified from Fig. 7.11a, the temperature robust point was obtained for
L1 = 1.07 H, C1 = 0.4 μF at ns,max = 70. The PF is well over 0.93 when C3 = 1.3 μF,
where the PF is 3 %, which is marginally higher than the requirement of 0.90.
The THD reaches its minimum of 9.4 %, which is well below the requirement of
27.0 %, when C1 = 0.4 μF. If the size of C1 is of concern, C1 could be further
reduced to 0.1 μF, where the THD is still as low as 13.5 %.
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Based on the determined optimum circuit parameters, k1 and k2 in (7.22a, b)
were calculated as 2.86 and 4.05, respectively, and it was found that they satisfy the
design boundary conditions of (7.23a, b).

7.3.2 Design of a Frequency-Compatible LED Driver

In order to make a universal LED driver that can be used for both 50 and 60 Hz, a
frequency-compatible LED driver, which is the same circuit as in Fig. 7.2, is
proposed in this chapter. The power, PF, and THD should not be significantly
changed regardless of the operating frequency change. The new design conditions
and circuit parameters L1, C1, C2, C3, and ns, which are not necessarily the same as
those of the previous baseline design, are specified in Table 7.2. The
temperature-robust condition of @PL=@ns ¼ 0 for the baseline design is no longer
valid for this frequency-compatible design because this condition cannot be
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simultaneously met for both 50 and 60 Hz. Instead, the characteristics for both
frequencies over temperature variation are minimized. Though not perfectly zero,
the overall temperature variation effect can be minimized when @PL=@nsjfs¼60Hz¼
�@PL=@nsjfs¼50Hz, as shown in Fig. 7.13. In similar with the previous section, a set
of the five circuit parameters were appropriately found by numerical calculations
using (7.16)–(7.17) and the PSIM simulation, which are L1 = 1.59 H, C1 = 0.3 μF,
C2 = 1.6 μF, C3 = 0.1 μF, and ns,com = 95. Because ns,com is predetermined, np is
calculated from (7.24a, b) as 2.93, which is quantized to be np = 3. In addition, k1
and k2 in (7.22a, b) are calculated as 1.83 and 4.61 for 50 Hz, and 1.53 and 3.84 for
60 Hz, respectively, which also satisfy the design boundary conditions of (7.23a, b).

For the selected circuit parameters, the characteristics are shown in Figs. 7.14
and 7.15, where the PL and PF were calculated from (7.16) and (7.17) and the THD
was calculated by a PSIM simulation. As shown in Fig. 7.14b, the PF is 0.963 and
0.931 for 50 and 60 Hz, respectively, which meet the design condition, PF > 0.93.
The simulated THD are 6.6 and 4.2 % for 50 and 60 Hz, respectively, which is well
below the design condition of 27 %.

Table 7.2 Design conditions
and circuit parameters for the
frequency compatible design
of LED drivers

Given design conditions Selected circuit
parameters

Parameters Values Parameters Values

Vs 220 V (±6 %) L1 1.59 H

PL,com 60 W C1 0.3 μF

PF >0.93 (>0.90) C2 1.6 μF

THD <27 % (=30 % × PF) C3 0.1 μF

@PL=@ns Minimized ns,com 95

0

PL [W]

PL,com

ns,comVd nsVd

fs = 60 Hz

fs = 50 Hz

Hz50=sfs

L

n

P
0<

Hz60=sfs

L

n

P
0>

Fig. 7.13 The characteristic
of PL with respect to ns, where
the temperature-robustness is
even at the compatible
operating point
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7.3.3 Design of a Voltage-Compatible LED Driver

The proposed baseline LED driver design can be applied to the design of voltage
compatible LED drivers, as shown in Fig. 7.16, where the source voltage can be
changed by two times, such as 100/200 V and 110/220 V. The LED power PL can
remain unchanged against the Vs change by a set of appropriate mechanical
switching of SW1, SW2, and SW3, as shown in Table 7.3. Each LED array is
designed so that it can operate at lower source voltage such as Vs = 110 V. The LED
array 1 and LED array 2 are connected in series when Vs = 220 V. For imple-
mentation convenience and reducing manufacturing cost, the inductor of each
baseline design of Fig. 7.2 has been merged to a transformer of this
voltage-compatible LED driver, as shown in Fig. 7.16. All the currents of the circuit
elements of each LED driver in Fig. 7.16 will remain unchanged if all the impe-
dances of the circuit parameters are halved for the halved source voltage; hence, the
dissipated power of each LED driver is accordingly halved. The circuit parameters
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Fig. 7.14 The calculation results of the PL and PF for satisfying the given design conditions of
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of the voltage compatible LED driver for the same design condition of the baseline
LED driver are listed in Table 7.4. Comparing Table 7.4 to Table 7.1, L1 and ns,max
are halved, whereas C1, C2, and C3 are doubled in order to provide the same power
of PL = 60 W.
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Fig. 7.16 The proposed voltage-compatible LED driver, where all the circuit parameters except vs
are the same as those of the baseline LED driver of Fig. 7.2

Table 7.3 The switch conditions for 110 V/220 V of the voltage-compatible LED driver

Case SW1 SW2 SW3 Vs

Parallel On On Off 110 V

Series Off Off On 220 V

Table 7.4 Design conditions and circuit parameters for the voltage-compatible LED driver

Given design conditions Selected circuit parameters

Parameters Values Parameters Values

Vs 110/220 V (±6 %) L1 0.54 H

PL,max 60 W C1 0.8 μF

PF >0.93 (>0.90) C2 0.8 μF

THD <27 % (=30 % × PF) C3 2.6 μF

∂PL/∂ns 0 ns,max 35
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7.4 Experimental Verifications

The design results for the baseline LED driver among those of the three proposed
LED drivers will be experimentally verified due to the page limit and similarity of
the characteristics. Instead, the experimental results will be compared in detail to
the simulation results as well as the calculated results.

7.4.1 Fabrications and Measurements

As shown in Fig. 7.17, an experimental kit was fabricated in accordance with the
proposed design, as listed in Table 7.1. Because the proposed LED driver can be
used for a street light application, whose power level is as high as 60–70 W, a
slightly large-sized inductor poses no serious problem. The internal resistance R1 of
the fabricated inductor was measured as 13 Ω, which has been used throughout this
chapter for simulation and theoretical calculations. The fabricated inductor current
rating is 530 mA, which was determined by simulation and found to be quite
sufficient for the experiments. The DC capacitor, which affects the flickering of
LED light, was also determined by simulation as 100 μF. The total weight of the
prototype LED driver was measured as 960 g, where the weight of the inductor is
930 g, and the highest temperature of it in the steady state was 40 °C at the ambient
temperature of 30 °C.

The waveforms of vs, is, vL, iL, and PL at ns = 70 for the prototype baseline LED
driver are shown in Fig. 7.18. As anticipated, the source current is involves minimal
harmonic current, and the fluctuations of the LED current iL and LED power PL are
not significant, which can be further reduced by increasing the DC capacitance if
needed.

8.5 cm

7.0 cm

L1

C1 ~ C3, CL, and
a bridge diode

LED array

Fig. 7.17 An experimental
prototype of the proposed
baseline LED driver,
operating at 220 V and 60 Hz
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7.4.2 Power Factor and THD

To verify the design for PF, the experimental results as well as the simulation and
calculation results are shown in Fig. 7.19. Even though there are slight discrep-
ancies between them, the calculation result matches well with the simulation and
experiment results; the measured PF at ns = 70 is 0.977, which is much better than
anticipated. The discrepancy mainly comes from the selection of a = 0.80 that was
used for the design, which will be discussed in detail in Sect. 7.5. The harmonic
characteristics of the source current is were also measured by a WT1600 power
meter, as shown in Fig. 7.20. The THD was measured as 10.5 %, which is quite
close to the simulation result of 9.4 %, and each harmonic component is well below
the IEC61000-3-2 class C standard.

is

vs
iL

vL

PL

(a) (b)

Fig. 7.18 The experimental waveforms of the proposed baseline LED driver for ns = 70 at 220 V
and 60 Hz. a The waveforms of vs and is. b The waveforms of vL, iL, and PL
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results of the PF compared to
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7.4.3 Power and Efficiency

To verify the design for power and efficiency, the experimental results as well as the
simulation and calculation results are shown in Fig. 7.21. The experiment result of
PL has a maximum point, which corresponds to the temperature-robust point, at
ns = 70; this matches well with the calculation, as shown in Fig. 7.21a. The
measured power level at ns = 70, however, is 70 W, which is about 10 W larger than
the calculated power level. The simulation result is relatively similar with the
experiment one. The power efficiency, as shown in Fig. 7.21b, shows that the
measured value is 95.2 % at ns = 70, which is a little lower than the calculated and
simulation results.

Though not perfectly matched with each other, it is clear that the tendencies of
the characteristics with respect to the ns are all the same and that the calculation
results as well as the simulation results help the design.

IEC61000-3-2 class C Standard

Simulation result

Experiment result

Harmonics

%
 o

f 
Fu

nd
am

en
ta

l

Fig. 7.20 Experimental results of harmonics compared to the simulation results for ns = 70 at
220 V and 60 Hz

60 W

0

10

20

30

40

50

60

70

P
L

[W
]

Calculation Result
Simulation Result
Experiment Result

96.8 %

80

84

88

92

96

100

E
ff

ic
ie

nc
y 

[η
]

Calculation Result
Simulation Result
Experiment Result

40 50 60 70 80 90
ns

40 50 60 70 80 90
ns

(a) (b)

Fig. 7.21 The experimental results of the PL and efficiency compared to the simulation and
calculation results at 220 V and 60 Hz. a PL. b Power efficiency

7.4 Experimental Verifications 123



7.4.4 Source Voltage Variation

For a fixed source voltage of Vs = 220 V, the proposed LED driver satisfies all the
design conditions of the LED power level, PF, and THD, as shown in Table 7.1.
One of the limitations of the proposed passive LED drivers is no power control
capability against the source voltage variation. Therefore, the proposed LED drivers
should be used for the applications where the source voltage is regulated.
Fortunately, Vs is generally well regulated within ±6 % in most advanced countries
because it is the global standard of source voltage variation regulation.

The measured parameters for the source voltage variation of 206–233 V are
summarized in Table 7.5, where both the PF and THD meet the design conditions,
even though no feedback circuit is involved. The change of LED power is less than
±13 %, which is acceptable because the brightness change of LED lighting as a
result of this power change is not a problem in many applications. The overall
efficiencies were always kept above 95.0 %, which is quite high compared to
conventional LED drivers for street lights.

7.5 Discussions on the Design Verifications
by Experiments

Through the experiments, the proposed designs based on the phasor analyses are
identified to be quite useful, considering the nonlinearities of the diode rectifier and
LEDs. However, the discrepancies between the experiment, simulation, and cal-
culation results need to be further explained in this section.

One of the discrepancies may come from the limitations in LED modeling, i.e.,
the LED model used for both PSIM simulations and calculations is a
linear-approximated LED model, where rd and Vd of an LED in Fig. 7.4 are always
constant regardless of the LED current. In practice, the rd and Vd highly depend on
the LED current, and the discrepancy due to the rd and Vd becomes more dominant
when the LED current deviates from a nominal LED current of 70 mA in this
chapter. Furthermore, the simulation results in this chapter did not include the
conduction loss of a bridge diode.

Table 7.5 Measured results
for source voltage variation
(Vs = 220 V ± 6 %)

Measured parameters Source voltage (Vs)

206 Vrms 220 Vrms 233 Vrms

Ps (W) 64.9 73.5 83.2

PL (W) 61.9 70.0 79.0

PF 0.991 0.977 0.953

THD (%) 10.9 10.5 10.0

Efficiency (%) 95.4 95.2 95.0
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Another important source of the discrepancies is the non-linear characteristic of
the auto-transformer of Fig. 7.4, where the equivalent turn-ratio is also assumed to
be constant (a ¼ 0:80) regardless of the change of ns and switching conditions. To
ensure the linearity of the turn-ratio, the diode rectifier should operate in the con-
tinuous conduction mode (CCM), and it becomes a ¼ 2

ffiffiffi
2

p
=p ffi 0:90 [36]. In order

to make a diode rectifier operate in the CCM, the input and output sides of it should
have different sources, as shown in Fig. 7.1c, where a current source (an inductor) is
at the input side of the bridge diode and a voltage source (a capacitor) is at the
output side of it. The diode currents of the proposed LED drivers are, however, not
continuous; therefore, they may operate in the discontinuous conduction mode
(DCM). As identified from Fig. 7.2, the output current of the bridge diode io does
not flow until the input voltage vi reaches to the rectified voltage vL; hence, the
effective turn-on period of a switching function is reduced, which results in the
decrease of a. It must be extremely complicated to find an expression for this highly
non-linear parameter a by analysis; instead, such an expression has been found by
curve fitting the PL-ns and PF-ns curves, as shown in Fig. 7.22.

As identified from Fig. 7.21, the temperature-robust point was found as ns = 70
through both simulations and experiments. As identified from Fig. 7.22, the best
curve fitting is found when a ¼ 0:80 for both the PL and PF; this is why this value
has been used in calculation throughout the chapter. It should be noted, however,
that the best curve fitting value of a ¼ 0:80 may not be valid for other design
disciplines.

7.6 Conclusion

The proposed passive-type LED drivers, which have just one inductor and three
capacitors, called LC3, are found to be temperature-robust and highly efficient. The
measured THD was as low as 10.5 %, and the PF was as high as 0.977 at the
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nominal operating condition. The measured power efficiency was 95.2 %, and the
temperature increase of the LED driver was merely 10 °C, which are quite
acceptable characteristics for the 70 W street light LED drivers in addition to the
inherent extremely long lifetime of the proposed passive LED drivers. The pro-
posed phasor analysis for the non-linear diode rectifier and LEDs was effective in
the design of the LED drivers, which is generally applicable in other areas. Design
examples for the 50/60 Hz compatible and 110/220 V compatible LED drivers
showed the usefulness of the proposed phasor analysis.
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Part IV
Multi-phase AC Circuits

and Circuit DQ Transformation

In this part, the circuit DQ transformation, which I had developed for multi-phase
AC converters and power systems, is explained. Contrary to the single phase AC
circuits, multi-phase AC circuits may utilize the well-known DQ-transformation
techniques. Equational DQ-transformations, however, are not preferred for practical
applications due to complicated manipulations and lack of physical insights.
Therefore, a circuit DQ-transformation is introduced in this part with application
examples.



Chapter 8
Circuit DQ-Transformation

As explained in the previous chapters, the equivalent circuits for the switches in
DC-DC, DC-AC, AC-DC, and AC-AC converters are proved to be time-varying
transformers. This result is used in this chapter for the analyses of AC-DC-AC
converters, an eighth-order current source rectifier-inverter, and a buck-boost
inverter, with fruitful physical insight. The circuit D-Q transformation is introduced
in this chapter for the analyses of general AC converters such as inverters, rectifiers,
and cycloconverters, which include the time-varying transformers. Gyrators, new
power circuit elements, appear in the DQ transformed inductors and capacitors of
the AC converters. Few equational manipulations are required to determine the
steady-state operating points and the small signal gains of the converters. The
analysis results for the rectifier-inverter show that the circuit has self-short-circuit
protection capability and strong immunity to parasitic inductor resistances. A lot of
this chapter is written based on the original paper of mine [1].

8.1 Introduction

Dealing with switches has been an important issue in the power electronics industry
since they can turn linear time-invariant systems into nonlinear time-varying sys-
tems [2, 3]. Simplifying or eliminating switching action is the main problem in
modeling switching systems [3–8]. One successful method is the state-space
averaging technique [7]. This approach is well-established for the DC-DC con-
verters. A trial for the extension of this concept to the DC-AC converters is found in
[8], where the time-varying nature of the switching systems is eliminated by
equational DQ transformation. The equational approach is limited, however, to
low-order systems having fewer than four reactive elements since manipulating
matrices with order higher than four is very difficult.
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Another useful method is to replace the switches with equivalent circuits [9, 10].
DC ideal transformers are found to be equivalent circuits for the switches in DC-DC
converters: the first trial for this work is found in [9], and the three-terminal
equivalent transformer is found in [10]. The cumbersome equational manipulations
are minimized by this method. The fact that a certain ac-AC switching converter has
a property similar to a transformer which changes frequency, voltage, current,
phase, and power factor is discussed in [11]. Up to now, however, general proofs
for the equivalence of all switches with transformers and the analyses of AC
converters (DC-AC, AC-DC, and AC-AC converters) based on the results have not
been found; otherwise, surely the analytical capability of power converters could
have increased drastically, and the efforts at finding appropriate models could have
been reduced.

In this chapter this property of switches as transformers is strictly proved in
general and is then extended to all switching converters. A new circuit DQ trans-
formation suit for the analysis of AC converters is also suggested. High-order AC
switching systems such as eighth-order system can be modeled as easily as a few
third-order systems. Thus the use of cumbersome equations or matrix manipulations
is minimized or eliminated. Analytical examples are shown for an eighth-order
current-source rectifier-inverter and a buck-boost inverter.

8.2 Circuit DQ Transformation (Three-Phase
Rectifier-Inverter Example)

Those circuits that contain the time-varying transformers cannot be analyzed by the
numerous powerful circuit analyses techniques such as Laplace transform until they
are transformed to the appropriate time-invariant circuits. As is well known,
sinusoidal time-varying systems can be changed to time-invariant systems by the
DQ transformation. However this method is inappropriate for multi switch
high-order switching systems since they often include a couple of high-order
matrices that are impossible to handle. One possible solution, proposed in this
chapter, is to draw the DQ transformed circuits and apply circuit analysis tech-
niques rather than manipulate the cumbersome equations.

In this section the circuit to analyze is divided into five kinds of AC subcircuits
and a DC subcircuit, and DQ transformation is applied to the individual AC sub-
circuits. This makes it possible to regard the complex multi switching system as a
few partitioned simple switching systems. The resultant circuits are then combined
into one. Finally, this circuit is perturbed for AC analysis and simplified for DC
analysis. The modeling procedure is shown for a sufficiently complex converter
example, the rectifier-inverter shown in Fig. 8.1; the switching frequency of the
primary rectifier part is x1 and that of the secondary inverter part is x2. Throughout
this chapter, it is assumed that the circuit is balanced, which means that all the
circuit parameters are same for each phase. For the case of unbalanced multi-phase
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AC circuits, other literatures dealing with decomposition of a general unbalanced
AC circuit to positive sequence and negative sequence rotating balanced AC cir-
cuits and a DC offset circuit [12].

8.2.1 Circuit Partitioning

The first step is to divide the original circuit into several subcircuits. It is found that
there are six kinds of subcircuits in the switching system. They are the time-varying
transformer set, the voltage (or current) source set, the inductor set, the capacitor
set, the resistor set (these are AC subcircuits), and the DC subcircuit. Then the
independent partitioned circuits are obtained, regarding the adjacent voltages or
currents as external sources (Fig. 8.2).

8.2.2 Subcircuit DQ Transformations

There are five kinds of AC subcircuits. The equivalent DQ transformed circuits are
obtained assuming all elements are balanced.

1. Time-Varying Transformer Sets: There are two kinds of DC-AC (or ac-DC)
converters; voltage-source inverter (VSI) and CSI (or, equivalently, current- and
voltage-source rectifier). The DQ transformations of the VSI and CSI trans-
formers are shown in Figs. 8.3 and 8.4, respectively. These procedures are
proved as follows, assuming the switching harmonics are negligible. Thus the
switching functions are pure sinusoidal.
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Proof

v ¼ DTvabc ¼ DTK�1vqd0

iabc ¼ Di ¼ K�1iqd0 ð8:1aÞ

i ¼ DTiabc ¼ DTK�1iqd0

vabc ¼ Dv ¼ K�1vqd0 ð8:2bÞ

where

D ¼
d1
d2
d3

2
64

3
75 ¼ dm

ffiffiffi
2
3

r sin(xtþ/Þ
sin(xt � 2

3 pþ/Þ
sin(xtþ 2

3pþ/Þ

2
64

3
75
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va
vb
vc

2
4

3
5 vqd0 ¼

vq
vd
v0

2
4

3
5

iabc ¼
ia
ib
ic
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3
5 iqd0 ¼

iq
id
i0

2
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3
5

K ¼
ffiffiffi
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r cosðxtÞ cosðxt � 2
3 pÞ cosðxt � 2

3 pÞ
sinðxtÞ sinðxt � 2

3 pÞ sinðxtþ 2
3 pÞ

1ffiffi
2

p 1ffiffi
2

p 1ffiffi
2

p

2
64

3
75

K�1 ¼
ffiffiffi
2
3

r cosðxtÞ sinðxtÞ 1ffiffi
2

p

cosðxt � 2
3 pÞ sinðxt � 2

3 pÞ 1ffiffi
2

p

cosðxtþ 2
3 pÞ sinðxtþ 2

3pÞ 1ffiffi
2

p

2
64

3
75 ð8:3Þ

Applying (8.3) to (8.2), it is found that

v ¼ dmðvq sin/þ vd cos/Þ

iq ¼ dm sin/ i

id ¼ dm cos/ i ð8:4aÞ

i ¼ dmðiq sin/þ id cos/Þ
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vq ¼ dm sin/ v

vd ¼ dm cos/ v ð8:4bÞ

The DQ transform is selected as the power-invariant transformation, since this
does not change the coefficients. The circuit reconstructions of (8.4a) and (8.4b) are
Figs. 8.3b and 8.4b, respectively. Note that the time-varying nature of the trans-
former is removed by the DQ transformation, as expected.

2. Three-Phase Voltage (or Current) Source:

The DQ transformed circuit is shown in Fig. 8.5, where the instantaneous power
is not changed by this transform.

Proof
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Fig. 8.5 DQ transformation
of voltage (or current) source
set. a Original circuit. b DQ
transformed circuit
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3. Three-phase Inductor Set: The DQ transformed circuit is shown in Fig. 8.6.

Proof

L _iabc ¼ vabc ð8:7Þ

Substituting iabc with that in (8.6) and taking the derivative, (8.11) becomes

L½ _ðK�1Þiqd0 þK�1_iqd0� ¼ vabc ð8:8Þ

or

L _iqd0 ¼ �LKð _K�1Þiqd0 þKvabc

¼ �Lx
0 1 0
�1 0 0
0 0 0

2
4

3
5iqd0 þ vqd0 ð8:9Þ

This means that

L_iq ¼ �xLid þ vq

L_id ¼ �xLiq þ vd

L_i0 ¼ v0 ¼ 0; balanced condition: ð8:10Þ

The circuit reconstruction of (8.10) is Fig. 8.6b. Note that a gyrator is newly
introduced. An interesting fact is that the DQ variables of inductor sets are elec-
trically coupled by the gyrator through the inductors are not magnetically coupled
in fact. The 0 axis variable can be excluded from our discussion since the sources
are balanced.
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Fig. 8.6 DQ transformation
of inductor set. a Original
circuit. b DQ transformed
circuit
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4. Three-phase Capacitor Set: The DQ transformed circuit is shown in Fig. 8.7.

Proof

C _vabc ¼ iabc ð8:11Þ

Considering vabc in (8.4), (8.11) becomes

C½ _ðK�1Þvqd0 þK�1vqd0� ¼ iabc ð8:12Þ

or

C _vqd0 ¼ �CKð _K�1Þvqd0 þKiabc

¼ �Cx
0 1 0
�1 0 0
0 0 0

2
4

3
5vqd0 þ iqd0 ð8:13Þ

This means

C _vq ¼ �xCvd þ iq

C _vd ¼ �xCvq þ id

C _v0 ¼ i0 ¼ 0; balanced condition: ð8:14Þ

The circuit reconstruction of (8.14) is Fig. 8.7b. A gyrator is also introduced as
with the inductor set, and the 0 axis variable is eliminated.

5. Three-phase Resistor Set: The DQ transformed circuit is shown in Fig. 8.8.

Proof

vqd0 ¼ Kvabc ¼ KRiabc ¼ Riqd0 ð8:15Þ

The 0 axis variable is omitted since those of other circuits are not used.
The 0 axis variables are excluded for both the balanced sources and balanced

initial conditions. The values are always kept zero under these both conditions.
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Fig. 8.7 DQ transformation
of capacitor set. a Original
circuit. b DQ transformed
circuit
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8.2.3 Circuit Reconstruction

The DQ transformed subcircuits of Fig. 8.1 is shown in Fig. 8.9. The reconstruc-
tions are done simply by connecting the adjacent ports that have the same variables
as shown in Fig. 8.10. Note that DC side subcircuit D is unchanged. The circuit
shown in Fig. 8.10 is equivalent to the original one shown in Fig. 8.1 in the sense of
the power-invariant DQ transformation. The DC and AC analyses of Fig. 8.1 can be
done by the circuits deduced from this DQ transformed circuit.

8.2.4 Circuit Perturbation

The transformer turn-ratio, which corresponds to the duty ratio of the switch, and
the gyrator frequency, which corresponds to the switching frequency, are the
control signals in the power electronics. To determine the AC transfer functions, the
perturbed circuits must be obtained. A detailed circuit perturbation technique can be
found in the literature [7].

(a) (b)va

vb

vc

ia

ib

ic

iq

id
vd

vq R

RR

R

R

+_

+_

+_

+_

+_
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Fig. 8.9 DQ transformed partitioned subcircuits
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1. Transformer Perturbation: The turn-ratio is perturbed as shown in Fig. 8.18,
such that a voltage source and a current source are generated. The negligible
bilinear term is eliminated, as shown in Fig. 8.11d.

2. Gyrator Perturbation: The two kinds of gyrators are shown in Figs. 8.12 and
8.13. The switching frequency is perturbed, and thus two sources are generated,
neglecting the bilinear terms.

By applying the perturbed transformer and gyrator to the DQ transformed circuit
of Fig. 8.10, the AC transfer functions can be calculated as functions of the duty
ratio, switching frequency, input voltage, etc. This will be shown for the simpler
case in the following section for better illustration.
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Fig. 8.10 Reconstruction of partitioned circuits

(a) (b)

(c) (d)

Fig. 8.11 Perturbed transformer. a Original. b Perturbed. c Separated. d Final equivalent
transformer
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8.2.5 DC Analysis

The DC operating points can be determined by analyzing Fig. 8.14, which is
obtained from Fig. 8.10 by shorting inductors and opening capacitors. The DC
voltage gain is calculated from Fig. 8.14 by applying conventional circuit laws as
follows:

(a) (b)

(c) (d)

Fig. 8.12 Perturbed capacitive gyrator. a Original. b Perturbed. c Separated. d Final equivalent
gyrator

(a) (b)

(c)

(d)

Fig. 8.13 Perturbed inductive gyrator. a Original. b Perturbed. c Separated. d Final equivalent
gyrator
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Gv ¼ V0

Vs
¼ DcDERL sinð/1 � /cÞ

x1L1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðx2C2R2Þ2

q ð8:16Þ

Equation (8.16) is of very simple form despite the complexities in the circuit
configuration and the inclusions of several conditions such as arbitrary PWM
switching patterns and arbitrary input/output frequencies and voltages. It is note-
worthy that this voltage gain Gv, is not sensitive to the inductor resistance Rs and
the inverter phase /E, which seem to affect to the gain. It can be seen from
Eq (8.16) that as the output voltage decreases either the input or the output fre-
quency increases and that the system has self-short-circuit protection capability
since the output voltage becomes zero when RL is zero notwithstanding the states of
the rectifier or the inverter controllers.

8.3 Buck-Boost Inverter Analysis

To compare the proposed technique with the previous one, the buck-boost inverter
shown in Fig. 8.15 analyzed in [8], is analyzed again here. The DQ transformed
circuit is obtained as shown in Fig. 8.16 by substituting the subcircuits of Fig. 8.15
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with their subcircuits and combining them. The perturbed circuit is Fig. 8.17. The
transfer function of GdðsÞ, which is the perturbed output response against the
perturbed duty ratio of the buck converter, is calculated as an example. GdðsÞ used
in designing the controller that regulates the output voltage by the buck converter;
by a few manipulations it is found from

Figure 8.17 as follows:

GdðsÞ ¼ V̂dðsÞ
D̂mðsÞ

¼ G1ðsÞ
G2ðsÞ ð8:17Þ

where

G1ðsÞ ¼ 1
D2

m
ð1þ sCRLÞ sLIL � VdDmð Þ

G1ðsÞ ¼ 1þðRLCþ x2LC2RL

D2
m

þ L
D2

mRL
Þs

þ 2LC
D2

m
s2 þ LC2RL

D2
m

s3
ð8:18Þ

Comparing this result with that in [8], it is found that both approaches give the
same results.
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Fig. 8.16 DQ transformed buck-boost inverter
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Since the DC circuit can be drawn from Fig. 8.16 as depicted in Fig. 8.18, the
voltage gain becomes

Gv � Vo

Vs
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
d þV2

q

q
Vs

¼ D
Dm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðxCRLÞ2

q
: ð8:19Þ

This result is also the same as that in [8]. The modeling procedure is, however,
considerably simplified by this new approach. The cumbersome matrix inversions
and multiplications, which are in many cases impossible to manipulate by hand, are
avoided here. It is apparent that this equivalent circuit model provides more con-
venience and physical insight than does the equational model.

8.4 Concluding Remarks

The fact that the equivalent circuits for the switches are ideal time-varying trans-
former is proved in general, and the new circuit DQ transformation technique is
identified a simple and useful method in the analysis of AC converters. An
eighth-order rectifier-inverter is analyzed by the proposed circuit DQ transformation
such that the equivalent circuit is derived and the DC voltage gain is calculated; it
could hardly be analyzed by conventional approaches. The rectifier-inverter is
found to have self-short-circuit protection capability and robustness in the parasitic
inductor resistance. By the comparison with the conventional approach in analyzing
the buck-boost inverter, the proposed approach is found to give almost the same
results; however, it provides more physical insight with fewer equational manip-
ulations, especially high-order matrix inversion and multiplication that often pre-
vent manual solution. Since the equivalent circuits are composed of traditional
electric circuit components only, it can be concluded that the analyses of all linear
switching systems become those of the RLC filters with transformers and gyrators.

Vs

DVs

IL

Vd RL RL Vq
s

m

V
D

D

+

_

+

_

+

_

+

_
ω C

+
_

Fig. 8.18 DC circuit of
buck-boost inverter

144 8 Circuit DQ-Transformation



References

1. Rim CT, Hu DY, Cho GH (1990) Transformers as equivalent circuits for switches: General
proofs and D-Q transformation-based analysis. IEEE Trans Ind Appl 777–785

2. Wood P (1979) General theory of switching power converters. In: IEEE power electronics
specialists conference record, pp 3–10

3. Rim CT, Joung GB, Cho GH (1988) A state space modeling of non-ideal DC-DC converters.
In: IEEE power electronics specialists conference record, pp 943–950

4. Verghese GC, Elbuluk ME, Kassakian JG (1986) A general approach to sampled-data
modeling for power electronic circuits. IEEE Trans. Power Electron. PE-1(2):76–89

5. Verghese G, Mukherji U (1981) Extended averaging and control procedures. In: IEEE power
electronics specialists conference record, pp 329–336

6. Lee FCY, Iwens RP, Yu Y, Triner JE (1979) Generalized computer-aided discrete
time-domain modeling and analysis of DC-DC converters. IEEE Trans Ind Electron Contr
Instrum IECI-26(2):58–69

7. Middlebrook RD, Cuk S (1976) A general unified approach to modeling switching converter
stages, In: IEEE power electronics specialists conference record, pp 18–34

8. Ngo KDT (1986) Low frequency characterization of PWM converter. IEEE Trans Power
Electron PE-1(4):223–230

9. Middlebrook RD (1987) Topics in multi-loop regulators and current-mode programming.
IEEE Trans Power Electron PE-2(2):109–124

10. Vorperian V, Tymersky R, Lee FCY (1989) Equivalent circuit models for resonant and PWM
switches. IEEE Trans Power Electron PE-4(2):205–214

11. Alesina A, Venturini MGB (1981) Solid-state power conversion: a fourier analysis approach
to generalized transformer synthesis. IEEE Trans Circuits Syst CAS-28(4):319–330

12. Cespedes M, Sun J (2014) Impedance modeling and analysis of grid-connected voltage-source
converters. IEEE Trans Power Electron 29(3):1254–1261

References 145



Chapter 9
Application of Circuit DQ Transformation
to Current Source Inverter

The circuit DQ transformation is used to analyze a three-phase controlled-current
PWM rectifier in this chapter. The DC operating point and AC transfer functions are
completely determined. Most features of the converter are clearly interpreted. They
are (1) the output voltage can be controlled from zero to maximum, (2) the system
is equivalently an ideal current source in the steady state, (3) the system can be
described as linear circuits, and (4) the input power factor can be arbitrarily con-
trolled within a certain control range. A lot of this chapter is based on our papers
[1, 2]. The circuit DQ transformation is used to analyze a three-phase
controlled-current PWM rectifier in this chapter. The DC operating point and AC
transfer functions are completely determined. Most features of the converter are
clearly interpreted. They are (1) the output voltage can be controlled from zero to
maximum, (2) the system is equivalently an ideal current source in the steady state,
(3) the system can be described as linear circuits, and (4) the input power factor can
be arbitrarily controlled within a certain control range. A lot of this chapter is based
on our papers [1, 2].

9.1 Introduction

Aa an excellent DC voltage source of VSI-fed motor drive, the three-phase
controlled-current PWM rectifier has been widely studied. Its numerous merits such
as sinusoidal input current, power factor adjustment capability, and instantaneous
power flow change make it different from the conventional phase controlled rectifier
(PCR). Previous works are so much focused on the space vector input current
control method [3, 4–6] that the rectified DC voltage should be larger than some
value [5, 6], and nonlinear dynamic equation is therefore generated [3, 4–6].
A system control method that is based on the predetermined switching pattern,
PWM is sometimes found in the literature [7]. A modeling based on the equational
DQ transformation and its application to several control methods of the DC-side
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capacitor voltage are introduced [8, 9]. However, so far the following important
features of the ideal rectifier are not clearly interpreted without the manipulation of
complex equations:

1. The rectified DC voltage ranges from zero to its maximum.
2. The rectified DC part is an ideal current source in the steady state.
3. The power factor can be controlled arbitrary only within a certain control range.
4. The system is linear with respect to the source voltage when it is open-loop

controlled.
5. Full sets of the DC and linearized AC transfer functions.
6. Open loop control as well as closed-loop control of the system is allowable.

The features are independent of PWM patterns and circuit parameters. In this
chapter, they are fully explained based on the recently proposed circuit DQ
transformation with great ease in analysis [10]. Some negative aspects of the
converter such as large in-rush-current problem and input side harmonic current
problem are not described in this chapter, despite their practical importance, in
order to highlight on the basic features of the converter.

9.2 Circuit DQ Transformation of the Current
Source Inverter

The system shown in Fig. 9.1 is a three-phase controlled current PWM rectifier to
be modeled in this section. All circuit elements are LTI (linear time-invariant). All
switches and the source voltages are ideal and balanced. The switches operate in the
CCM continuous conduction mode). The switch pattern may be either any PWM or
six-pulse control, so long as its switching harmonics are not dominant. Now the
switched linear time-varying system shown in Fig. 9.1 is to be transformed to an
equivalent LTI system by the circuit DQ transformation [10].

Fig. 9.1 Three-phase
controlled-current PWM
rectifier
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9.2.1 Circuit Partitioning

The original system is too complex to analyze as a whole. It is therefore partitioned
to several basic subcircuits that can be analyzed with ease. There are five basic
subcircuits in the PWM rectifier. They are voltage source set, resistor set, inductor
set, VSI switch set, and DC circuit. The rule of circuit partitioning is to make the
original circuit be composed of basic subcircuits only. The results are shown in
Fig. 9.2.

9.2.2 Circuit DQ Transformation of Basic Subcircuits

The rotary circuits are now transformed to stationary circuits. The time-varying
nature of the switching system is eliminated in this way. The voltage source,
switching function, and power invariant DQ transformation matrix are given as
follows: (9.1)–(9.4) shown at the bottom of the page, where

vabc ¼
vs1
vs2
vs3

2
4

3
5 ¼

ffiffiffiffiffiffiffiffi
2=3

p
Vs

sinðxtþ/1Þ
sinðxt � 2p=3þ/1Þ
sinðxtþ 2p=3þ/1Þ

2
4

3
5 ð9:1Þ

s ¼
s1
s2
s3

2
4

3
5 ¼

ffiffiffiffiffiffiffiffi
2=3

p
d

sinðxtþ/2Þ
sinðxt � 2p=3þ/2Þ
sinðxtþ 2p=3þ/1Þ

2
4

3
5 ð9:2Þ

K ¼
ffiffiffiffiffiffiffiffi
2=3

p sinðxtþ/Þ cosðxt � 2p=3þ pÞ cosðxtþ 2p=3þ/Þ
sinðxtþ/Þ sinðxt � 2p=3þ/Þ sinðxtþ 2p=3þ/Þ

1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p

2
4

3
5 ð9:3Þ

Fig. 9.2 Partitioned circuit
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* K�1 ¼ KT ð9:4Þ

v ¼ vcs; ic ¼ sTi; xqd0 ¼ Kxabc ð9:5Þ

The voltage source is balanced by the assumption, and the switching function is
continuous sinusoidal, assuming that the high-order switching harmonics do not
contribute much to the fundamental components. The constant phases of the voltage
source, switching function, and DQ transformation matrix are arbitrary, as denoted
by (9.1), (9.2), and (9.3).

The modulation index d of (9.2) ranges from zero to 1.56 and is controlled
externally. The x of (9.5) denotes any AC voltage or current variables in Figs. 9.1,
9.2, 9.3, 9.4. The voltage and current variables of (9.5) represent the operation of
rectifier switches.

The equivalent circuits can be drawn from the DQ variables using conventional
circuit elements, such as transformers, gyrators, and inductors.

By this transformation, the inductor set becomes a second-order gyrator-coupled
system, and the switch set becomes time-invariant transformers as well. Since all
switching harmonics are assumed to be negligible, if only the fundamental com-
ponent of a switching function is identical, then the dynamic response is just
identical regardless of the PWM patterns. The result of the transformation is shown
in Fig. 9.3, where all switches vanish.

Fig. 9.3 DQ transformed partitioned circuits
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9.2.3 Circuit Reconstruction

The rule of circuit reconstruction is to connect the adjacent related nodes where the
voltage and current variables are the same. The result is shown in Fig. 9.4. The
resultant stationary circuit is LTI with respect to the source voltage. Remember that
previous works showed the nonlinearity of this system [3–6]. It can be seen that the
nonlinearity does not stem from the system elements, such as switches, but from the
nonlinear switch control. This circuit can be directly used to find the DC operating
points and the dynamic responses.

9.2.4 Circuit Reduction

The stationary circuit shown in Fig. 9.4 can be simplified noticing the fact that the
phase of the DQ transform can be set to an arbitrary value. One possible selection is
ϕ = ϕ1. Then vq becomes zero, as shown in Fig. 9.5.

Another choice is / ¼ /2. Then one of the transformers vanishes, as shown in
Fig. 9.6. It is evident that this selection simplifies the original system much more
than the previous one does. Remark that there is no loss of generality throughout
the procedures.

Fig. 9.4 Reconstructed
stationary circuit

Fig. 9.5 Simplified circuit
(/ ¼ /1 case)
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9.3 DC Analysis

The DC analysis can be performed by the steady-state circuit, as shown in Fig. 9.7,
obtained from Fig. 9.6 by shorting the inductors and opening the capacitor. To pay
our whole attention to the description of the main features of the system, the
parasitic source resistances are omitted.

9.3.1 DC Transfer Function: Gv

It is found from Fig. 9.7 that

Vc ¼ IcRL ¼ IdDRL ¼ Vq

xL
DRL ¼ Vs sin/0

xL
DRL; ð9:6Þ

where

Vq ¼ Vs sinð/1 � /2Þ ¼ Vs sin/0

Vd ¼ Vs cosð/1 � /2Þ ¼ Vs cos/0
ð9:7Þ

Fig. 9.6 Simplified circuit (/ ¼ /2 case)

Fig. 9.7 The DC circuit with
no source resistance
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and /0 is the phase difference between the source voltage and switching function.
Then the DC transfer function is found to be

Gv ¼ Vc

Vs
¼ sin/0

xL
DRL ð9:8Þ

Note that Gv ranges from zero to infinite by controlling /0 and D. However, this
is impeded in practice by current or voltage ratings. Because of this constraint, Gv

should be near unity. For given circuit parameters, the maximum DC transfer
function is given by

Gv;max ¼ RL

xL
Dmax ð9:9Þ

Thus it can be seen that for given Gv,max and RL the source inductor impedance
should be smaller than the value determined by (9.9) to establish enough DC output
voltage. Equivalently, RL should be much larger than the source inductor impe-
dance to guarantee /0 and D of (9.8) small enough for power factor control.

Figure 9.8 shows the Gv as a function of the phase difference between the source
and inverter voltages for different values of the modulation index D. The DC
analysis based on the circuit DQ transformation is very straightforward, so we do
not have to do any cumbersome equational manipulation.

9.3.2 Ideal Current Source Characteristics

The rectified current Io is found from Fig. 9.7 and (9.6) as

I0 ¼ IC ¼ Vs sin/0

xL
D ð9:10Þ

Note that it is independent of the DC voltage Vs, or load resistor RL. It is determined
by circuit parameters and switching function variables only. Hence it is an ideal
current source controlled by the switching function characterized by /0 and D.

Fig. 9.8 The DC voltage
gain
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This ideal current source feature is very useful when we construct a
quasi-steady-state capacitor voltage controller. In case the system response is very
slow, it is possible to approximate the system into a first-order system as shown in
Fig. 9.9, since the capacitor is very large in practice. The maximum current is
limited by the source impedance. Note the fact that negative current flow is also
allowed if the switches were four-quadrant ones. Regeneration occurs instanta-
neously when the polarity of current is negative while the DC capacitor voltage is
kept positive, not in the steady state but in the transient state.

9.3.3 Input Power: P, Q, PF (Resistive Load Case)

The input real power P and reactive power Q are found to be

P ¼ VqIq þVdId ¼ V2
s

xL
a sin2 /0 ð9:11aÞ

Q ¼ VqId þVdIq ¼ V2
s

xL
1� a sin/0 cos/0ð Þ ð9:11bÞ

Where

a ¼ D2RL

xL
ð9:12Þ

Then the power factor PF becomes

PF ¼ P

P2 þQ2ð Þ1=2
¼ a sin2 /0

1� a sin 2/0 þ a2 sin2 /0

� �1=2 ð9:13Þ

Figures 9.10, 9.11, 9.12 show the P, Q, and PF for different a’s, respectively. By
proper selection of a and ϕ0, the P and Q can be controlled as required. For the
optimum operation of the system, the power factor should be at its maximum value.
It can be seen from Fig. 9.11 that a should be larger than 2 for the unity power
factor. In other words, power factor may not be unity when the load resistor is very

Fig. 9.9 Quasi-steady-state
output model
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small, as can be seen from (9.12) and (9.13). This fact has not been reported before.
The unity power factor is obtained when the reactive power is zero. From (9.11b) it
can be seen that

1� 2
a
sin 2/0 ¼ 0 or /0 ¼

1
2
sin�1 2

a

� �
; a� 2 ð9:14Þ

Under the unity power factor condition of (9.14), the output capacitor voltage of
(9.6) becomes

Vc ¼ VsRL

xL
D sin

1
2
sin�1 2xL

D2RL

� �
� Vs

D
; a � 2 ð9:15Þ

Hence the output voltage is determined similar with a boost converter under the
unity power factor condition. Remark that when the load resistance is much larger
than the source inductor impedance, the voltage is not sensitive to the load resis-
tance. On the other hand, power factor becomes its maximum even though it is
smaller than unity when the ratio of Q and P is minimum. This is calculated from
(9.11a) (9.11b) as follows:

Fig. 9.10 Real power

Fig. 9.11 Reactive power

Fig. 9.12 Power factor

9.3 DC Analysis 155



PF ¼ 4a
a2 þ 4

;/0 ¼ sin�1 2

a2 þ 4ð Þ1=2
; a\2 ð9:16Þ

Figure 9.13 shows the maximum power factor conditions determined by (9.14)
and (9.16). There are two possible /0’s when a is larger than 2. The larger one
(dotted line) cannot be realized in practice since the output voltage of (9.6) becomes
too much larger than the source voltage.

9.3.4 Input Power: P, Q, PF (No Load Case)

At no load case, the system may be a reactive power compensator. The DC voltage
can be fixed to a certain predetermined value by controlling the rectified current of
(9.10). In the steady state, real power and PF are set to zeros by adjusting /0 to be
zero; that is,

P ¼ PF ¼ /0 ¼ 0 ð9:17Þ

Then reactive power becomes

Q ¼ V2
s

xL
1� bð Þ; b ¼ DVc

Vs
ð9:18Þ

Equation (9.18) shows that the reactive power may be directly controlled by b or
equivalently D from negative to positive, as shown in Fig. 9.14. Considering an
input side equivalent circuit (9.18) becomes

Q ¼
V2
s

xLeq
$ Leq ¼ L

1�b ; b\1

�xCeqV2
s $ Ceq ¼ b�1

x2L ; b� 1

(
ð9:19Þ

The converter is an equivalently variable reluctance linear reactive power
compensator (Fig. 9.15).

Fig. 9.13 Maximum power
factor condition
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9.4 AC Analysis

In this section the specified circuit shown in Fig. 9.6 is analyzed. Though the
equivalent circuit shown in Fig. 9.6 is composed of linear elements, this circuit
should be perturbed since the circuit is not linear with respect to some variables.
Hence the first step is to obtain a perturbed circuit from Fig. 9.6. There are four
possible perturbation variables in the system. They are input voltage, and input
frequency, phase, and modulation index. Among these, the former two are distur-
bances and the latter two are control variables. For normal power line, the input
frequency is so stable that this may not be a disturbance in this case. Then the AC
small-signal perturbed circuit is drawn as shown in Fig. 9.16 [10]. It seems to be
very complex to analyze the circuit shown in Fig. 9.16. It is necessary to find a
more simplified circuit. Figure 9.17 shows this circuit where sources are integrated
and DC source is eliminated. The voltage sources are

v1 ¼ v̂s sin/0 þ /̂0Vs cos/0 � x̂IdL

v2 ¼ v̂s cos/0 þ /̂0Vs sin/0 � x̂IqL� d̂Vc

i1 ¼ d̂ Id ð9:20Þ

Fig. 9.15 The AC perturbed circuit

Fig. 9.14 Reactive power
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Now the cumbersome gyrator is to be removed. Considering Norton’s Theorem, it
can be seen from Fig. 9.17 that

I2ðsÞ ¼ V1ðsÞ
xL

¼ VsðsÞ � I1ðsÞZ
xL

¼ VsðsÞ
xL

� VsðsÞ
Zeq

ð9:21aÞ

V2ðsÞ ¼ Zeq
xL

VsðsÞ � I2ðsÞZeq ð9:21bÞ

where

Zeq ¼ ðxLÞ2
Z

ð9:22Þ

Applying the removal processes of the gyrator and the transformer to the circuit
of Fig. 9.16, the output voltage can be obtained as follows:

V0ðsÞ ¼ H1ðsÞV1ðsÞþH2ðsÞV2ðsÞþH3ðsÞI1ðsÞ ð9:23aÞ

or

V0ðsÞ ¼ H1ðsÞ V̂sðsÞsin/0 þ /̂0ðsÞVscos/0 � x̂sIdL
n o

þH2ðsÞ V̂sðsÞcos/0 þ /̂0ðsÞVssin/0 � x̂sIqL� D̂ðsÞVc

n o
þH3ðsÞ D̂ðsÞId

	 

ð9:23bÞ

Fig. 9.17 The removal of the gyrator

Fig. 9.16 The simplified circuit
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or

V0ðsÞ ¼ GvðsÞV̂sðsÞþG/ðsÞ/̂0ðsÞþGxðsÞx̂ðsÞþGdðsÞD̂ðsÞ ð9:23cÞ

where

GvðsÞ ¼ V0ðsÞ
V̂ðsÞ ¼ H1ðsÞ sin/0 þH2ðsÞ cos/0 ð9:24aÞ

G/ðsÞ ¼ V0ðsÞ
/̂ðsÞ ¼ H1ðsÞ cos/0 � H2ðsÞ sin/0½ �Vs ð9:24bÞ

GxðsÞ ¼ V0ðsÞ
x̂ðsÞ ¼ �H1ðsÞId þH2ðsÞIq

� �
L ð9:24cÞ

GdðsÞ ¼ V0ðsÞ
D̂ðsÞ ¼ �H2ðsÞVc þH3ðsÞId ð9:24dÞ

and

H1ðsÞ ¼ G1ðsÞ
G0ðsÞ ; H2ðsÞ ¼ G2ðsÞ

G0ðsÞ ; H3ðsÞ ¼ G3ðsÞ
G0ðsÞ : ð9:25Þ

We also have

G0ðsÞ ¼ D2RLðsLþRsÞþ ðsRLCþ 1Þ � sLþRsð Þ2 þ xLð Þ2
n o

G1ðsÞ ¼ xLDRL

G2ðsÞ ¼ ðsLþRsÞDRL

G3ðsÞ ¼ sLþRsð Þ2 þ xLð Þ2
n o

RL

ð9:26Þ

Now the four AC transfer functions are fully determined, completing the AC
analysis. The transfer functions are nonlinear to the DC operating points, and the
system order is found to be three. The analysis is very simple because of the
graphical tool, the circuit DQ transformation.

9.5 Simulation Verification

Previous results are now partially verified by time-domain simulations.
Experimental verification is not always superior to the simulation verifications since
it can cause unwanted discrepancy to arise. The circuit parameters for simulation
are selected as follows:
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Vs ¼ 220V; x ¼ 120p rad/s; /0 ¼ 4 � L ¼ 5mH
C ¼ 2000 lF Rs ¼ 1X RL ¼ 100X D ¼ 1:0

ð9:27Þ

To verify the circuit model of Fig. 9.6, the step responses for /0 are compared,
as shown in Figs. 9.18 and 9.19. Figure 9.18 shows the step response of the model
of Fig. 9.6, whereas Fig. 9.19 shows that of the original circuit of Fig. 9.1. It can be
seen from Fig. 9.19 that the circuit DQ transformed model is very exact, excluding
the harmonics.

Fig. 9.18 Step responses of
the circuit model of Fig. 9.6
(input is /̂ ¼ 4uðtÞ �) a Step
response of DC capacitor
voltage. b Step response of
q-axiscurrent. c Step response
of d-axis current
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9.6 Concluding Remarks

The rectifier has been completely analyzed. Several new facts are suggested and
verified by a recently proposed analysis technique, the circuit DQ transformation,
and simulation. The DC voltage can be controlled from zero to its maximum, and
the system is a linear ideal current source in the steady state. The power factor is
less than unity when a is less than 2, whereas it can be unity when a is larger than 2.
The reactive power control capability is described in detail. Four AC small-signal

Fig. 9.19 Step responses of
the original circuit of Fig. 9.1
(input is /̂0 ¼ 4uðtÞ �)
a Step response of DC
capacitor voltage. b Step
response of q-axiscurrent.
c Step response of d-axis
current
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transfer functions are fully determined without much equational manipulation. It
can be concluded that the circuit DQ transformation is a very powerful tool in the
analysis of polyphase AC systems.
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Part V
Unified General Phasor

Transformation

Phasor transformations were at first developed for single phase AC systems, then
the circuit DQ transformation was developed for multi-phase AC systems. They
should be unified to form a unified general phasor transformation. Furthermore, this
model should be able to use for both DC analyses (static phasor transformation) and
AC analyses (dynamic phasor transformation or Laplace phasor transformation),
which is explained in the subsequent chapters.

More general phasor transformation that embraces the nonlinear switching case
of DCM are possible, but this issue is not included in this book this time.



Chapter 10
Static Phasor Transformation

It is highly demanded in power electronics to analyze thousands of numerous
converters and power circuits by a unified general theory like the conventional
Laplace transform or Fourier transform. It is highly demanded in power electronics
to analyze thousands of numerous converters and power circuits by a unified
general theory like the conventional Laplace transform or Fourier transform. The
‘phasor transformer’ concept is explained in this chapter as a candidate of the
theory, which comprises of two parts: the ‘generalized switched transformer’ for all
switching converters and the ‘general unified phasor transformation’ for all AC
circuits.

10.1 Introduction

A unified general circuit-oriented phasor transformation with expanded application
area encompassing polyphase AC converters, which has previously been covered
by the circuit DQ transformation [1, 2], is proposed in this chapter. The proposed
transformation drastically simplifies the AC converter analysis: (1) polyphase AC
converters are degenerated to single phase converters; (2) the switches in AC
converters are replaced with an equivalent transformer with a complex turn-ratio
regardless of the numbers of switches and poles; and (3) circuit analyses with a
minimal number of equations are possible for high order converters with any degree
of complexity, thereby changing the power converter analysis to a conventional
circuit analysis [3–25].
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10.2 Generalized Switched Transformer Models

10.2.1 m-Poly Power Invariant Phasor Transformation
(m-PIP)

To obtain simplified and accurate models of AC converters, a generalized
power-invariant phasor transformation for the m-poly phase is proposed. The phasor
domain circuit is connected to the real domain circuit by 1-to-1 mapping as follows.

xðtÞ ¼ Re

ffiffiffiffi
2
m

r
xðtÞ e jhðtÞ

( )
for m-poly phase ð10:1Þ

Equation (10.1) is generally valid for an arbitrary sinusoidal or switching vari-
able in principle, and can be used to describe the modulation in amplitude, fre-
quency, or phase of power systems. However, the phasor xðtÞ becomes stationary
with no harmonics when the transformation frequency is the same as that of a
sinusoidal real variable, xðtÞ. Hence, it is assumed hereafter that the AC converters
considered here are operating in sinusoid, and involve no switching harmonics.
A harmonic analysis for various PWM switching patterns can be performed with
the help of work in previous studies [1, 26].

The term “power-invariant” is used, since the power in a real domain circuit is
the same as that in a phasor-transformed domain, as delineated in (10.1). This can
be proved conceptually for an m-poly phase circuit, considering that the power is
proportional to the square of the voltage or current in the circuit, as follows.

P � mx2ðtÞ ¼ m
2
m

xj j2cos2 hðtÞ
� �

¼ 2 xj j21
2
¼ xj j2¼ x � x� ð10:2Þ

The total normalized average power of real circuit elements is m times the
normalized average power of a real circuit element, and is the same as that of a
phasor domain circuit element, as shown in (10.2). It is, however, important to
carefully check how the power invariant principle is applied to AC sources,
inductors, capacitors, resistors, and switched transformers, as shown in the fol-
lowing section. In (10.1) and (10.2), the phasor represents the rms value, which
simplifies the equivalent transformer.

For the single phase case, i.e., m ¼ 1, (10.1) becomes the previous phasor
transformation in [27]. For the three phase case, i.e., m ¼ 3, with fixed transfor-
mation frequency, which is the most common application case, (10.1) becomes as
follows.

xðtÞ ¼ Re

ffiffiffi
2
3

r
xðtÞ e jxst

( )
for 3-phase; x ¼ xs ð10:3Þ
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Applying (10.3) to a polyphase balanced power system, although the three phase
case is shown here, the voltage or current variables in the abc-frame become

xa
xb
xc

2
64

3
75 �

Ref ffiffiffiffiffiffiffiffi
2=3

p
xa e jxstg

Ref ffiffiffiffiffiffiffiffi
2=3

p
xb e jxstg

Ref ffiffiffiffiffiffiffiffi
2=3

p
xc e jxstg

2
64

3
75 ¼

Ref ffiffiffiffiffiffiffiffi
2=3

p
x e jxstg

Re
ffiffiffiffiffiffiffiffi
2=3

p
x e jxstþ j2p3

n o

Re
ffiffiffiffiffiffiffiffi
2=3

p
x e jxst�j2p3

n o

2
6664

3
7775

¼ Re

ffiffiffi
2
3

r
x e jxst

1

e j
2p
3

e�j2p3

2
64

3
75

8><
>:

9>=
>; � Re

ffiffiffi
2
3

r
x e jxst U1

( )
;

ð10:4Þ

where the phase difference matrix is defined as follows.

U1 ¼
1
e j

2p
3

e�j2p3

2
4

3
5 ð10:5Þ

From (10.4), it can be identified that the polyphase variables, regardless of the
number of phases, can be described by a phasor. This implies the possibility of
degeneration of the polyphase power system to a single phase system.

The m-PIP (m-poly Power Invariant Phasor transformation) unifies a 3-PIP
analysis into a 1-PIP analysis. Therefore, employing m-PIP, 3-poly or 6-poly phase
power systems can be dealt with in the same manner as for a single phase system.

10.2.2 Application of m-PIP to AC Subcircuits

In general, all converters as well as AC converters are composed of nine categories
of subcircuits, as classified in this chapter. They are AC voltage sources, AC current
sources, AC inductors, AC capacitors, AC resistors, VSI (Voltage Source Inverter)
transformers, CSI (Current Source Inverter) transformers, matrix transformers, and
DC subcircuits.

The category of DC subcircuits, while entailing thousands of different config-
urations, is not segmented further for the purpose of the m-PIP. Rectifiers, mean-
while, are not separately categorized because, from a modeling point of view, they
are equivalent to inverters. The VSI is equivalent to the CSR (Current Source
Rectifier), and the CSI is equivalent to the VSR (Voltage Source Rectifier),
although their current flows are, in most cases, in opposite direction. The most
important and complicated subcircuits to be phasor-transformed are the AC
inductors, AC capacitors, and AC transformers, as in [27].
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The AC converter shown in Fig. 10.1, the same three phase rectifier-inverter
example as used in [1], is chosen here for comparison. The converter should be
broken into the following subcircuits, which have corresponding subcircuits in the
phasor domain. Eight subcircuits need the m-PIP, as outlined below.

1. Voltage or Current Sources: The application of m-PIP to the AC voltage or
current sources results in the following, as shown in Fig. 10.2 (upper).

Vabc �
va
vb
vc

2
64

3
75 ¼

ffiffiffi
2
3

r
Re vp e jxst U1

� �

Iabc �
ia
ib
ic

2
64

3
75 ¼

ffiffiffi
2
3

r
Re ip e jxst U1

� �
ð10:6Þ

Checking the power relation, the power supplied from the voltage sources in the
abc domain is found to be the same as that in the m-phasor domain, as follows.

Ps � vaia þ vbib þ vcic ¼ 3vaiað¼3 VrmsIrms cosð/V � /IÞÞ
¼ 3

ffiffiffiffiffiffiffiffi
2=3

p
Refvp e jxstg

ffiffiffiffiffiffiffiffi
2=3

p
Refip e jxstg

¼ Refvp e jxstip e jxst þ vp e jxsti�p e�jxstg ¼ Refvpi�pg
ð10:7Þ

Similarly, the reactive power supplied from the voltage sources in the abc
domain is given as follows.

Fig. 1 Three phase rectifier-inverter example to be modeled
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Qs � 3 VrmsIrms sinð/V � /IÞ ¼ vpi�p
��� ��� sinð/V � /IÞ ¼ Imfvpi�pg ð10:8Þ

From (10.7) and (10.8), it is identified that the instantaneous complex power in
the m-phasor domain source is simply determined, permitting the time change of
phasors in (10.7) and (10.8) as

ps � Ps þ jQs ¼ Refvpi�pgþ j Imfvpi�pg ¼ vpi�p: ð10:9Þ

Hence, the m-phasor domain sources in Fig. 10.2c constitute a subcircuit pre-
serving the power invariance principle.

2. Inductors: The application of m-PIP to the AC inductors results in an inductor
with an imaginary resistor, as shown in Fig. 10.2 (middle), where the governing
equations are as follows.

Vabc �
ffiffiffi
2
3

r
Re vp e jxstU1

� � ¼ L
d
dt
Iabc

¼ L

ffiffiffi
2
3

r
Re

d
dt
ðip e jxst U1Þ

� �

¼ L

ffiffiffi
2
3

r
Re

dip
dt

þ jxsip

� 	
e jxstU1

� �
ð10:10Þ

Fig. 2 Comparisons of m-PIP with DQ transformation: voltage/current sources (upper), inductors
(middle), capacitors (lower). a abc domain. b DQ domain. c m-phasor domain
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In (10.10), the voltage and current definitions of (10.6) are used.
Applying the following equivalence theorem [27],

Refxe jxstg ¼ Refye jxstg; xs 6¼ 0 , x ¼ y; ð10:11Þ

the m-phasor domain inductor subcircuit becomes

vp ¼ L
dip
dt

þ jxsLip: ð10:12Þ

Note that (10.12) has exactly the same form in [27], which gives the single
phase inductor case.
The energy relation for the inductors is as follows.

EL � 3
L
2
i2a ¼

3L
2
½

ffiffiffiffiffiffiffiffi
2=3

p
Refip e jxstg�2 ¼ L

2
ip
�� ��2 ð10:13Þ

As seen from (10.13), the energy in an m-phasor domain inductor is equal to the
sum of the energies for the abc domain; hence, the power, a time derivative of
energy, is also invariant.

3. Capacitors: In a similar manner, the application of m-PIP to the AC capacitors
results in a capacitor with an imaginary resistor, as shown in Fig. 10.2 (lower),
where the corresponding equations are as follows.

Iabc �
ffiffiffi
2
3

r
Re ip e jxst U1

� � ¼ C
d
dt
Vabc

¼ C

ffiffiffi
2
3

r
Re

d
dt
ðvp e jxst U1Þ

� �

¼ C

ffiffiffi
2
3

r
Re

dvp
dt

þ jxsvp

� 	
e jxst U1

� �

, ip ¼ C
dvp
dt

þ jxsCvp

ð10:14Þ

The imaginary resistors in Fig. 10.2c must not be simply interpreted as the
steady state reactance, since they also play important roles in the dynamic
transient state.

4. Resistors: The application of m-PIP to the AC resistors, as shown in Fig. 10.3
(upper), is relatively simple:

Vabc �
ffiffiffi
2
3

r
Re vp e jxst U1

� � ¼ RIabc

¼ R

ffiffiffi
2
3

r
Re ip e jxst U1

� �
, vp ¼ Rip

ð10:15Þ

170 10 Static Phasor Transformation



5. VSI: The application of m-PIP to the VSI transformers as, shown in Fig. 10.3
(middle) and delineated in the following, requires extensive caution.

Vabc � Re

ffiffiffi
2
3

r
vp e jxst U1

( )
¼ vdcdabc

� vdcRe

ffiffiffi
2
3

r
d e jxst U1

( )

¼ Re

ffiffiffi
2
3

r
vdcd e jxst U1

( )

, vp ¼ vdc d

ð10:16aÞ

Fig. 3 Comparisons of m-PIP with DQ transformation: resistors (upper), VSI transformers
(middle), CSI transformers (lower). a abc domain. b DQ domain. c m-phasor domain
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idc ¼ iada þ ibdb þ icdc

¼
X2
k¼0

Re

ffiffiffi
2
3

r
ip e jxstþ j2p3 k

( )
Re

ffiffiffi
2
3

r
d e jxstþ j2p3 k

( )

¼ 1
3

X2
k¼0

Re ip e jxstþ j2p3 k d� e�jxst�j2p3 k þ ip e jxstþ j2p3 k d e jxstþ j2p3 k
n o

¼ 1
3

X2
k¼0

Re ip d� þ ip d e j2xstþ j4p3 k
n o

¼ Re ip d�
� �

:

ð10:16bÞ

Only the AC voltage term is considered in the VSI transformer modeling, and
the DC offset voltage in the VSI output, which is not of importance in AC power
conversion, is omitted from (10.16a) and Fig. 10.3a (middle). The DC current in
(10.16b) contains no sinusoidal harmonics for the balanced m-poly phase. This,
however, no longer holds for the single phase case, where the harmonic current
disappears in the model by considering the average DC current [27].
It is not straightforward to build a complex transformer with a complex
turn-ratio of d from (10.16a, b), since (10.16a) involves “real part operation.”
Equation (10.16a, b) should be modified as follows to find appropriate equiv-
alent circuits in the m-phasor domain.

vp ¼ vdc d , vpffiffiffi
2

p ¼ vdc
dffiffiffi
2

p , vp=2 � vpffiffiffi
2

p ¼ vdc
dffiffiffi
2

p � vdcd1=2

idc ¼ Re ip d�
� � ¼ ip d� þ i�p d

2
¼ ipffiffiffi

2
p d�ffiffiffi

2
p þ i�pffiffiffi

2
p dffiffiffi

2
p � ip=2 d

�
1=2 þ i�p=2 d1=2

ð10:17Þ

The circuit realization of (10.17) is shown in Fig. 10.3c (middle), where the
voltages and currents in the m-phasor domain are the power-halved phasors, as
first introduced in [28]. The double bar of the transformer in Fig. 10.3c describes
the complex turn-ratio.
In order to cope with the scale factor 1=

ffiffiffi
2

p
in (10.17), the following

power-halved m-PIP should be applied for the previous R, L, and C subcircuits.

xðtÞ ¼ Ref 2ffiffiffiffi
m

p x1=2ðtÞ e jhðtÞg for m� poly phase ð10:18Þ

In the power-halved phasor domain, equivalent circuits are apparently
unchanged, but the values of the voltage and current become “power-halved”
compared with (10.1).
This can be clarified if the impedance and power are examined. The ratio of the
phasor voltage and current in (10.17) is unchanged for the power-halved phasor,
which means the impedances of the circuits connected to the VSI are not
changed by the scale factor of m-PIP, as follows:
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zp � vp
ip

¼ vp=
ffiffiffi
2

p

ip=
ffiffiffi
2

p ¼ vp=2
ip=2

; ð10:19Þ

where the circuit impedance determined by the complex conjugate voltage and
current part in Fig. 10.3c is found to be

v�p=2
i�p=2

¼ v�p
i�p

¼ z�p: ð10:20Þ

The power delivered from the DC side to the VSI is also preserved by both
m-PIP and power-halved m-PIP as follows.

PVSI � vdcidc ¼ vdcRe ip d�
� � ¼ vdc

ip d� þ i�p d
2

¼ ip vdcd� þ i�p vdcd
2

¼ ip v�p þ i�p vp
2

¼ Re vpi�p
n o ð10:21aÞ

PVSI1=2 � vdcidc ¼ vdcRe ip d�
� � ¼ vdcðip=2 d�1=2 þ i�p=2 d1=2Þ

¼ ip=2 vdcd
�
1=2 þ i�p=2 vdcd1=2 ¼ ip=2v

�
p=2 þ i�p=2vp=2 ¼ 2Refvp=2i�p=2g

¼ Refvp=2 i�p=2 þ v�p=2ip=2g ¼ Refvp=2i�p=2gþRefv�p=2ip=2g
ð10:21bÞ

In the power-halved phasor case of (10.21b), the total power is the sum of the
two complex transformers in Fig. 10.3c (middle). It can be seen from (10.21a, b)
that the power is unchanged by phasor transformation method thus far, as the
power is calculated for all the corresponding phasor voltages and currents.

6. CSI: The application of m-PIP to the CSI transformers in Fig. 10.3 (lower) is
very similar with the VSI case, as given below.

Iabc � Re

ffiffiffi
2
3

r
ip e jxst U1

( )
¼ idcdabc

� idcRe

ffiffiffi
2
3

r
d e jxst U1

( )

¼ Re

ffiffiffi
2
3

r
idcd e jxst U1

( )

, ip ¼ idc d

ð10:22aÞ

10.2 Generalized Switched Transformer Models 173



vdc ¼ vada þ vbdb þ vcdc

¼
X2
k¼0

Re

ffiffiffi
2
3

r
vp e jxstþ j2p3 k

( )
Re

ffiffiffi
2
3

r
d e jxstþ j2p3 k

( )

¼ 1
3

X2
k¼0

Re vp e jxstþ j2p3 kd �e�jxst�j2p3 k þ vp e jxstþ j2p3 kd e jxstþ j2p3 k
n o

¼ 1
3

X2
k¼0

Re vp d� þ vpd e j2xstþ j4p3 k
n o

¼ Re vp d�
� �

ð10:22bÞ

In a similar fashion with (10.17), the “real part operation” of (10.22b) can be
dealt with as follows.

ip ¼ idcd , ipffiffiffi
2

p ¼ idc
dffiffiffi
2

p , ip=2 �
ipffiffiffi
2

p ¼ idc
dffiffiffi
2

p � idcd1=2

vdc ¼ Re vpd�
� � ¼ vpd� þ v�pd

2
¼ vpffiffiffi

2
p d�ffiffiffi

2
p þ v�pffiffiffi

2
p dffiffiffi

2
p � vp=2d

�
1=2 þ v�p=2d1=2

ð10:23Þ

10.2.3 Construction of m-PIP Circuit

Substituting the m-PIP subcircuits of the previous section with the original parti-
tioned circuits in Fig. 10.1, the m-PIP circuit can be constructed, in accordance with
[1], as shown in Fig. 10.4. The input and output AC circuits contain complex
conjugate subcircuits due to VSI and CSI transformers. The source and output
voltages are power-halved values, and hence they must be multiplied by

ffiffiffi
2

p
to

obtain the rms values of the original circuit in Fig. 10.1.
Comparing the m-phasored circuit of Fig. 10.4 with the DQ transformed circuit

[1], the former is greatly simplified, since there is no gyrator coupling between the
d-axis and q-axis in [1]. Figure 10.4 can also be compared with the graphical phasor
transformation [2], where a similar complex conjugate circuit concept is used;
however, more complex transformers are required in some cases.

Analyzing the circuit including four complex transformers in Fig. 10.4 still
remains complicated, although obtaining the m-phasored circuit including the
conjugate circuit is easy. It is thus necessary to further simplify Fig. 10.4 rather than
analyze it, while retaining the accuracy and generality of the model.
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10.2.4 Simplified m-PIP Circuit with Dummy Sources

For simplification of the circuit, we should first return to (10.16a, b) or (10.22a, b)
in order to deal with the “real part operation.” By introducing appropriate imaginary
current or voltage sources, the VSI or CSI can be represented as a single trans-
former, respectively.

The VSI case is shown first, introducing a dependent imaginary current source as
follows.

vp ¼ vdcd

idc ¼ Re ipd�
� � ¼ ipd� � j Im ipd�

� � � ipd� � jid
ð10:24Þ

For the CSI case, by introducing a dependent imaginary voltage source, the
following is derived.

ip ¼ idcd

vdc ¼ Re vpd�
� � ¼ vpd� � j Im vpd�

� � � vpd� � jvd
ð10:25Þ

The circuit realization of (10.24) or (10.25) includes only a complex transformer,
although the imaginary sources are still included in Fig. 10.5, where the circuit
variables are no longer power-halved m-phasor.

The system order of the simplified m-phasored circuit in Fig. 10.5 is 4, which is
halved from the 8th order original circuit in Fig. 10.1. The imaginary sources are
not counted in the system order because they are dependent variables.

The merit of this simplification is straightforward: the circuit analysis is now
conventional if the imaginary source effect can be appropriately dealt with.

Fig. 4 Equivalent three phase rectifier-inverter circuit in the m-phasor domain (lower part circuit
is the complex conjugate of the upper part AC circuit)
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10.2.5 Simplified m-PIP Circuit Analysis for Controlled
Sources

In most practical applications, the DC input voltage of VSI (or the DC output
voltage of CSR) and the DC input current of CSI (or the DC output current of VSR)
are controlled to have certain desired values. The analysis for this case is drastically
simplified, as shown in Fig. 10.6, where there is no imaginary source effect on the
circuits because of the controlled source.

For the controlled case, the CSR output voltage and the CSI input current
become an ideal voltage source (v7) and an ideal current source (i5), respectively, as
shown in Fig. 10.6.

The DC circuit shown in Fig. 10.6b can be used for a steady state analysis of the
converter as follows.

I4 ¼ RefIsD�g ¼ Re
Vs � V7D
jx1L1

D�
� �

¼ Re
VsD�

jx1L1
� V7D2

jx1L1

� �

¼ Re
VsD�

jx1L1

� �
¼ ImfVsD�g

x1L1
¼ VsD sinð/s � /DÞ

x1L1

ð10:26Þ

Fig. 5 Simplified m-phasored circuits introducing imaginary sources (the left parts of a and b are
real, and the right parts are complex). a Simplified VSI (upper left). b Simplified CSI (upper
right). c Simplified three-phase-rectifier-inverter (lower)
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It is verified that (10.26) is exactly the same result as that obtained from the
circuit DQ transformation [29], which is an ideal current source characteristic
independent of the CSR output voltage. Note that the imaginary source is never
separately considered in the calculation; instead the condition that no imaginary
current should flow into the DC circuit is adopted.

Similarly, the output circuit of Fig. 10.6b is analyzed as

V8 ¼ RefVoS�g ¼ Re I5S RL//
1

jx2C2

� 	
S�

� �

¼ Re I5S
2 RL

1þ jx2C2RL

� �
¼ I5S2RL

1þðx2C2RLÞ2
:

ð10:27Þ

Equation (10.27) can be verified from previous works of [1, 2], and [28].
The source power characteristics from Fig. 10.6b can also be calculated as

follows.

Ps � Ps þ jQs ¼ VsI�s ¼ Vs
Vs � V7D
jx1L1

� 	�
¼ Vs

V�
s � V7D�

�jx1L1

¼ V2
s � V7VsD�

�jx1L1
¼ V2

s � V7½RefVsD�gþ j ImfVsD�g�
�jx1L1

:

ð10:28Þ

Fig. 6 Simplified m-phasored circuit for controlled sources case (the dotted box represents the
controlled sources). a Dynamic circuit (upper) b Steady state circuit (lower)
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where the real power and reactive power are, respectively,

Ps ¼ V7 ImfVsD�g
x1L1

¼ V7
VsD sinð/s � /DÞ

x1L1
¼ V7I4

Qs ¼ V2
s � V7RefVsD�g

x1L1
¼ V2

s � V7VsD cosð/s � /DÞ
x1L1

:

ð10:29Þ

It is verified again that (10.29) is exactly the same result as [29].
Besides the controlled VSI and CSI cases, any resonant converters having ideal

DC voltage or current sources can be analyzed by this simplified method.

10.2.6 Simplified m-PIP Circuit Analysis by Real
Part Operation

It is appropriate to find a general method to exclude the effect of imaginary sources
in Fig. 10.5, where there is no more controlled source. A key issue is how to
eliminate the complex transformers without any loss of generality of the model.

A generalized approach to transform the m-phasor domain circuit into a DC side
circuit is proposed, as shown in Fig. 10.7. In general, the m-phasor domain circuit
can be degenerated into a Thevenin circuit (or a Norton circuit if wanted) composed
of an equivalent voltage source and an equivalent impedance.

For the VSI circuit of Fig. 10.7a, the DC current is found to be

Idc ¼ Re Is�VdcD
Zs

� 	
D�

� �
¼ Re IsD�f g � VdcRe

D2

Zs

� �

� In � Vdc

Zn
;

ð10:30Þ

where

In ¼ RefIsD�g ¼ IsD cosð/s � /DÞ; Zn ¼ RefZsg
D2 : ð10:31Þ

For the CSI circuit of Fig. 10.7b, the DC voltage is found to be

Vdc ¼ RefðVo þ IdcZoDÞD�g ¼ RefVoD�gþ IdcRefD2Zog
� Vt þ IdcZt;

ð10:32Þ

where

Vt ¼ RefVoD�g ¼ VoD cosð/o � /DÞ; Zt ¼ D2RefZog: ð10:33Þ
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As seen from (10.30)–(10.33), the procedure to obtain an equivalent circuit for
any given circuit represented as a Thevenin or Norton circuit in Fig. 10.7 is
two-fold. First, we eliminate the complex transformer. We then take the real part of
the source and impedance. The imaginary dependent sources disappear simply by
performing this real part operation. There is no preference between the Thevenin
and Norton circuits, although one of them is used for example.

The proposed method is applicable to more complicated AC circuit, as shown in
Fig. 10.7c for example, as long as the circuit is in a steady state. The analysis of the
circuit can be finished in minutes by manual calculation.

It is found for this VSR case that the source impedance from the DC side is
ideally zero, and the output voltage Vo is independent of Ro in the case where
Rs ¼ 0: Without the help of the proposed m-PIP theory, it would not be easy to
predict that the LC filter reactance does not deteriorate the ideal voltage charac-
teristics of the VSR.

Application of a small signal perturbation to the equivalent m-phasor models to
obtain the dynamic response is omitted here, since the method is the same as that
described in [27].

Application of the real part operation to a complex Laplace transform domain in
order to find the dynamic state operation is remained for further work.

Fig. 7 Real part operation on the AC m-phasor circuits from DC domain. a Norton equivalent
circuit example of VSI (upper). b Thevenin equivalent circuit example of CSI (middle).
c Application example for the VSR with LC input filters (lower)
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10.3 General Unified Phasor Transformation Models

10.3.1 Application of m-PIP to Matrix Transformer

The matrix converters are ac-AC converters, where no DC link exists. The appli-
cation of the proposed m-PIP has been shown for the m-poly phasored subcircuits
in the previous chapter except the matrix transformers. An example matrix con-
verter with 9 switches and 9 reactive elements, representing a typical case, is shown
in Fig. 10.8a.

Fig. 8 Three phase matrix converter example. a Original circuit. b m-phasor equivalent circuit
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The m-PIP is applied to the input and output part circuits with different trans-
formation frequencies as follows.

xðtÞ ¼ Re

ffiffiffi
2
3

r
xðtÞ e jxit

( )
for input part x ¼ xi ð10:34aÞ

xðtÞ ¼ Re

ffiffiffi
2
3

r
xðtÞ e jxot

( )
for output part x ¼ xo ð10:34bÞ

For the matrix switching transformer, the input and output current and voltage
are determined by a switching function, i.e., the turn-ratio of an equivalent
switching transformer.

Considering the fundamental sinusoidal component, they become

V0 � Re

ffiffiffi
2
3

r
vo e jxot U1

( )
¼ StVi

� Re
2
3
sm e jðxo�xiÞt U�

3

� �
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ffiffiffi
2
3

r
vi e jxi t U1

( )

¼
ffiffiffi
2
3

r
1
3
Re sm e jðxo�xiÞt U�

3vi e
jxi t U1 þ sm e jðxo�xiÞt U�

3v
�
i e

�jxi t U�
1

n o

¼
ffiffiffi
2
3

r
1
3
Re smvi e jxot U�

3 U1 þ smv�i e
jðxo�2xiÞt U�

3 U
�
1

n o

¼ Re

ffiffiffi
2
3

r
smvi e jxot U1

( )
, vo ¼ smvi;

ð10:35Þ

where

S � 2
3
Re Sme j/m

e jðxo�xiÞt e jðxo�xiÞtþ j2p3 e jðxo�xiÞt�j2p3

e jðxo�xiÞt�j2p3 e jðxo�xiÞt e jðxo�xiÞtþ j2p3

e jðxo�xiÞtþ j2p3 e jðxo�xiÞt�j2p3 e jðxo�xiÞt

2
4

3
5

8<
:

9=
; ð10:36aÞ
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ð10:36bÞ
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and

Ii � Re

ffiffiffi
2
3

r
ii e jxi t U1

( )
¼ SIo

� Re
2
3
sm e jðxo�xiÞt U3

� �
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ffiffiffi
2
3

r
io e jxot U1

( )

¼
ffiffiffi
2
3

r
1
3
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jðxo�xiÞt U3io e
jxot U1 þ s�me

jðxi�xoÞt U�
3io e

jxot U1
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¼
ffiffiffi
2
3

r
1
3
Re smio e jð2xo�xiÞt U3 U1 þ s�mio e

jxi t U�
3 U1

n o
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ffiffiffi
2
3

r
s�mio e

jxi t U1

( )
, ii ¼ s�mio;

ð10:37Þ

where

U3 U1 ¼
1 e j

2p
3 e�j2p3

e�j2p3 1 e j
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3
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3 e�j2p3 1

2
64

3
75

1
e j

2p
3
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0
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2
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3
5: ð10:38Þ

The circuit realization of (10.35) and (10.37) is merely a complex transformer
[27]. The scale factor, 2/3 of the matrix switching function, matches the 3-PIP
applied here. No restriction on the frequency, phase, or magnitude is imposed on
the input, output, and switching matrix. Note that no real part operation is needed
for the matrix transformer. Hence, the analysis of the matrix converter will be quite
simple and straightforward.

10.3.2 Analysis of Matrix Converter

By substituting the equivalent complex transformer with the matrix converter in
Fig. 10.8a, the most simplified equivalent circuit without loss of accuracy or gen-
erality is obtained, as shown in Fig. 10.8b. The 9 matrix switches are substituted
with a complex transformer, and the 9th order system is degenerated into the 3rd
order. This system order reduction stems from the coupling between abc phases and
the balanced circuit topology, which results in a reduced number of independent
variables.

The single complex transformer in Fig. 10.8b can be compared with a graphical
phasor transformation [2], where two complex transformers are used for the same
purpose among the total five transformers.
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Another case of a graphical phasor transformation for a matrix converter analysis
[30] requires three complex transformers for dq0 axes in general. One complex
transformer is required for the special case where the input phase is zero, which is
not necessary in this chapter.

The power between the matrix transformer is investigated using (10.35) and
(10.37), as follows.

pi � vii�i ¼ vos�1
m ðios

�
mÞ� ¼ vos�1

m i�osm ¼ voi�o � po ð10:39Þ

It is found from (10.39) that the reactive power as well as the real power is
preserved through the matrix power conversion. This result is not obvious, since the
input and output frequencies and phases are arbitrary. On the contrary, the VSI or
the CSI preserves only the real power, as discussed in the previous chapter.
Utilizing the property of preserving reactive power of the matrix converter, an
effective reactive power generator can be constructed by increasing the output
frequency to a sufficiently high level so as to reduce the AC capacitor size for a
given reactive power.

The dynamic operation of the converter can be found by applying the Laplace
transform to Fig. 10.8b. The Thevenin equivalent circuit for the left part of
Fig. 10.8b becomes

Vth1ðsÞ ¼ Z2ðsÞ
Z1ðsÞþZ2ðsÞVsðsÞ; Zth1ðsÞ ¼ Z1ðsÞ//Z2ðsÞ

* Z1ðsÞ ¼ sLs þ jxiLs; Z2ðsÞ ¼ 1
sCs þ jxiCs

:

ð10:40Þ

Using (10.40), the Thevenin equivalent circuit for the middle part of Fig. 10.8b,
where the complex transformer is eliminated, becomes

Vth2ðsÞ ¼ Vth1ðsÞSm; Zth2ðsÞ ¼ Zth1ðsÞS2m: ð10:41Þ

Using (10.41), the Thevenin equivalent circuit for the right part of Fig. 10.8b
finally becomes

VLðsÞ ¼ RL

Zth2ðsÞþZoðsÞþRL
Vth2ðsÞ * ZoðsÞ ¼ sLo þ jxoLo: ð10:42Þ

The dynamic and steady state voltage transfer functions can be calculated from
(10.40)–(10.42), respectively, as follows.

GVðsÞ � VLðsÞ
VsðsÞ ¼ Z2ðsÞ

Z1ðsÞþZ2ðsÞ �
SmRL

fZ1ðsÞ//Z2ðsÞgS2m þZoðsÞþRL
ð10:43Þ
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GV � VLð0Þ
Vsð0Þ
����

���� ¼ 1
1� x2

i LsCs
� SmRL

fjxiLs//ðjxiCsÞ�1gS2m þ jxoLo þRL

�� ��
¼ 1

1� x2
i LsCs

� SmRLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
L þfxoLo þxiLsS2m=ð1� x2

i LsCsÞg2
q ð10:44Þ

As seen from (10.43) and (10.44), quite explicit solutions are obtained without
cumbersome high order matrix manipulation. In contrast, such matrix manipulation
is inevitable when the real value solution is sought by decoupling complex phasors
into sine and cosine components [29], or a small signal response is required [30].

It is noteworthy from (10.44) that the voltage gain of the matrix converter is
independent of the phase difference between the source voltage and the matrix
switching function, which is not the case of CSR in (10.31) or VSR in (10.33).

10.3.3 Verification by Simulation

The m-PIP model in Fig. 10.8b is tested by a numerical simulation, where the
complex state equation for the model is established as follows.

Ls i
�
s
¼ vs � jxiLsis � vc

Cs v
�
c
¼ is � jxiCsvc � s�mio

Lo i
�
o
¼ smvc � ðjxoLo þRLÞio

) vL ¼ RLio

ð10:45Þ

Since the complex circuit simulation by computers is not available yet, (10.45) is
numerically calculated by an Excel sheet, which takes a few seconds to finish one
iteration of the simulation, for the parameters:

Vs ¼ 100 \ p
6
; Sm ¼ 0:50 \ p

4
; fi ¼ 60 Hz; fo ¼ 200 Hz

Ls ¼ 5 mH; Cs ¼ 390 lF; Lo ¼ 1 mH; RL ¼ 4 X
ð10:46Þ

The simulation results for the dynamic states of the phasor model and real time
model with zero initial conditions are shown in Fig. 10.9. The phasor model is
verified to be quite accurate, having less than 0.1 % error for this simulation case.
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Fig. 9 Numerical simulation
for the matrix converter
phasor model (the phasor
value (upper) is

ffiffiffiffiffiffiffiffi
2=3

p
times

scaled down to fit the
envelopes of the abc values
(below))
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10.4 Concluding Remarks

The analysis of AC time-varying circuits has been one of the fundamental problems
in the field of power electronics, and a general solution of the m-PIP theory is
provided in this work. This theory is applicable to multi-phase ac-DC, DC-ac, and
ac-AC converters as well as to single phase ac-DC, DC-ac, ac-AC converters, and
DC-DC resonant converters. Any converter can be substituted with a generalized
complex transformer, and the AC balanced subcircuits can be substituted with
stationary circuits by the developed theory. The circuit DQ transformation for
polyphase converters and the phasor transformation for single phase converters are
unified in this chapter.
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Chapter 11
Laplace Phasor Transformation

The phasor transformation is extended to the dynamic analysis of linear AC con-
verters in this chapter. A complex Laplace transformation is adopted in power
electronics for the dynamic analysis of phasor transformed circuits. It is verified in
general by mathematics that any linear AC converter can be completely analyzed of
closed form by the proposed ‘Laplace phasor transformation.’ Pseudo real
Laplacian concept is envisioned to deal with the real part operation in the phasor
circuits for DC-AC or AC-DC converters. The system stability of a time-varying
AC converter in time domain is proved to be the same as that in complex Laplace
domain. A three-phase rectifier with LC filters is fully analyzed and verified by
simulations as an example. The proposed transformation is much simpler than the
conventional DQ transformation and found to be quite accurate and useful for the
design and control of high order AC converters. Lots of this chapter is based on the
paper of ours [1].

11.1 Introduction

Power switches in a converter rapidly change the circuit configuration over time;
hence, all switching converters are inherently time-varying, and switching har-
monics are inevitably generated from the switches. In the history of power elec-
tronics, how to deal with the time-varying nature of switching converters has been
the most important issue in numerous models and analyses [2–24]. Among them,
several modeling techniques have drawn great attention from power electronics
specialists, i.e. the switching function based Fourier analysis techniques [2, 4, 5] for
fundamental and harmonics analyses in the steady state, the averaging techniques
[3, 11] for static and dynamic analyses of DC converters, the DQ transformations
[6, 8, 12, 14, 15] for three-phase AC converter analyses, and the circuit transfor-
mations [8, 9, 12, 14] for static and dynamic analyses of converters like conven-
tional circuits.
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The phasor transformation was first introduced [9] for single phase AC converter
analyses, where the conventional phasor concept that the magnitude and phase of a
sinusoid are constant [25] was substituted with the generalized time-varying phasor.
It is applicable to not only single phase DC-AC, AC-DC, and AC-AC converter
analyses but also to any resonant converter analyses. This technique has evolved to
various forms [26–32] because it makes the analysis of AC converters very easy.

Recently, a unified general circuit-oriented phasor transformation has been
developed [33] encompassing polyphase AC converters, which was previously
analyzed by the circuit DQ transformation [8, 12, 14] in a very complicated manner.
This new phasor transformation drastically simplifies the AC converter analysis so
that any balanced polyphase AC converters can be degenerated into single phase
converters and multiple switches in the AC converters can be replaced with an
equivalent transformer having a complex turn-ratio regardless of the number of
switches. The paper [33] shows, however, only the case of static analyses for AC
converters in the steady state. The dynamic analyses for phasor transformed AC
circuits in the transient state have not been possible in general.

For the convenient dynamic analyses, traditional linear transformations such as
Laplace transformations, Fourier transformations, and z-transformations should be
applicable to the phasor transformed AC circuits. By the phasor transformations [9,
33], an AC converter is transformed into a circuit that contains imaginary resistors
and electronic transformers with complex turn-ratios. Without rigorous verifica-
tions, the linear transformations, dealing with only real variables so far, cannot be
applied to the complex circuits whose voltages and currents are complex variables
in time.

In this chapter, the complex Laplace transformation is introduced first in power
electronics for the dynamic analyses of phasor transformed complex circuits. It is
verified in general by mathematics that any linear AC converter can be completely
analyzed of closed form by the proposed transformation. Pseudo real Laplacian
concept is envisioned to deal with the real part operation in the phasor circuits for
DC-AC or AC-DC converters. The system stability of a time-varying AC converter
in time domain is proved to be the same as that in complex Laplace frequency
domain. A three-phase rectifier with LC filters is fully analyzed by the proposed
transformation and verified by simulations as an example. The proposed technique
is much simpler than the conventional DQ transformation and found to be quite
accurate and useful for the design and control of high order AC converters.

Together with the static phasor transformation [33], this circuit oriented dynamic
phasor transformation makes it possible to analyze AC converters without cum-
bersome equations; thus, these techniques are quite essential for high order con-
verter analyses.

Now, a complete analysis flow for any switching converters in power electronics
can be established in general, as shown in Fig. 11.1. First, any switching converter
could be substituted with corresponding electronic transformer(s) because a switch
set is exactly equivalent to a time-varying transformer whose turn-ratio is the
switching function [8]. If the switching function is affected by the currents or the
voltages of the converter, the system is in the DCM (Discontinuous Conduction
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Mode) and becomes a non-linear system. If the switching function is solely
determined by external commands, i.e. turn-on/off duty ratio, the system is in the
CCM (Continuous Conduction Mode) and becomes a linear system so far as linear
circuit elements are used. The switched transformer in a linear switching system can
be averaged for the fundamental component analysis to determine the steady state
characteristics, i.e. voltage gain GV , output power Po, efficiency g, DC operating
points, power factor PF and dynamic state characteristics, i.e. transfer function
GVðsÞ, rising/falling times, and system stability. Harmonic analysis for EMI
(Electro Magnetic Interference) and THD (Total Harmonic Distortion) design can
be performed by the harmonic voltage/current sources derived from the switched
transformer model. The last imperfect part of the phasor transformation based
analyses was the dynamic state analysis, as shown in the dotted line box of
Fig. 11.1, which has been supplemented by the proposed Laplace phasor
transformation.

11.2 Laplace Phasor Transformation for AC Converters

A three-phase rectifier, as shown in Fig. 11.2a, is chosen to show the procedure of
applying the complex Laplace transformation to the phasor transformed circuit
throughout this chapter. It is assumed that the three-phase rectifier is well balanced
and harmonics free because the LC input filters and the output filter can sufficiently
diminish switching harmonics so as not to meaningfully affect the fundamental
voltage or current components.

Switching 
Circuit
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Transformer
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Transformer

Steady  State

Dynamic StatePerturbation

Phasor 
Transform
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Harmonic 
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AC-DC
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Fig. 11.1 Phasor
transformation based analysis
flow of switching converters
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11.2.1 Application of the Unified General Phasor
Transformation to AC Converters

The converter in the rotary time frame, as shown in Fig. 11.2a, can be transformed
into a circuit in the stationary time frame, as shown in Fig. 11.2b, by the
power-invariant phasor transformation [33]. The system order is drastically
degenerated from seven to three, which makes it possible to analyze the circuit by
hands. In Fig. 11.2b, it can be seen that the three-phase rectifier acts like a
single-phase rectifier and that the six switches are substituted with a complex
transformer, which is much simpler than the conventional DQ transformation [6, 8].
The phasor transformed circuit is no longer a time-varying but a time-invariant
linear system; hence, conventional circuit theories can be used if carefully applied.
For an example, the imaginary resistor no longer means a conventional reactance of
AC inductors and capacitors in the steady state [25].

The phasor transformed circuit is, however, not ready to the analysis of
dynamics characterization in frequency domain because of three reasons. First,
there is no theoretical rationale in applying conventional linear transformations such
as Laplace transformation developed for real variables only to the circuit containing
complex variables. Second, the real part operation [33] which is the interface of
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Fig. 11.2 A three-phase rectifier example for the unified general phasor transformation. a Original
power circuit in real time domain. b Phasor transformed circuit in time domain
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phasor domain and real domain of a circuit, as depicted in a dotted line with a
dummy source in Fig. 11.2b, should be valid for frequency domain. Third, a small
signal perturbed model for the complex transformer, as shown in the phasor
transformed circuit of Fig. 11.2b, valid for frequency domain should be available.

11.2.2 Introduction of the Complex Laplace Transformation

Among the linear transformations, the Laplace transformation is selected for the
frequency domain analysis tool of complex circuits in this chapter since it is most
widely used in power electronics, automatic controls, and electric circuits. The
Laplace transformation in the complex form was first proposed as a generalized
form of the previous Laplace transformation by Poincare [34, 35] as follows:

FðsÞ ¼
Z1

0

f ðtÞe�stdt; f ðtÞ : complex variable ð11:1Þ

The time domain variable of (11.1) is no longer a real number but a complex
number. It is recent years, however, that this concept has been gradually used in
engineering areas such as digital signal processing [36] and time-varying control
[37–39]. Now, this theory is to be applied to power electronics in which complex
circuits are involved. The complex Laplace transformation applied to the phasor
transformed complex circuits is called ‘Laplace phasor transformation’ in this
chapter.

It is not straightforward yet to apply (11.1) to complex circuits in a way that can
give us same physical meaning such as conventional impedances and system poles
and zeroes. To obtain the result of Laplace integration in mathematics is one thing,
and to analyze electric circuits based upon the result is another thing, which will be
clarified in the following section.

11.2.3 Application of the Complex Laplace Transformation
to Phasor Transformed Complex Circuit Elements

Phasor transformed AC circuits, also called complex circuits, can be decomposed
into nine circuit elements in the phasor domain, as shown in Fig. 11.3. They are
linear time-invariant circuit elements, i.e. phasor voltage sources, phasor current
sources, phasored inductors, phasored capacitors, phasored real resistors, phasored
imaginary resistors, complex matrix transformers, complex VSI (Voltage Source
Inverter) transformers, and complex CSI (Current Source Inverter) transformers.
Therefore, if the complex Laplace transformation can be applicable to each
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complex circuit element, then any complex circuit composed of the complex circuit
elements can be analyzed, in general, by the complex Laplace transformation.

(a) Phasored inductor: First of all, the application of the complex Laplace
transformation to a phasor transformed inductor, called a phasored inductor in
this chapter, is performed. By comparing the result of conventional Laplace
transformation of real form with that of the complex Laplace transformation,
the mathematical validation will be confirmed.

The governing time domain equation for a phasored inductor, as shown in
Fig. 11.3a ①, is as follows:

vL ¼ L
diL
dt

ð11:2Þ

where vL and iL are the complex voltage and current of a phasored inductor in time
domain, respectively, and L is the inductance of the real value. Since a complex
variable can be decomposed into a real part and an imaginary part, (11.2) can be
rewritten as follows:

vLr þ jvLi ¼ L
diLr
dt

þ j
diLi
dt

� �
; * j �

ffiffiffiffiffiffiffi
�1

p
ð11:3Þ

where vL and iL are defined using the real time variables, respectively, as

vL � vLr þ jvLi; iL � iLr þ jiLi ð11:4Þ

Decomposing (11.3) into a real part equation and an imaginary part equation,
two sets of independent equations in the real time domain are obtained, as follows:

vLr ¼ L
diLr
dt

vLi ¼ L
diLi
dt

ð11:5Þ

A conventional Laplace transformation of the form (11.7) can be applied to (11.5)
without any mathematical arguments as follows:

VLrðsÞ ¼ LfsILrðsÞ � iLrð0Þg
VLiðsÞ ¼ LfsILiðsÞ � iLið0Þg

ð11:6Þ

FðsÞ �
Z1

0

f ðtÞe�stdt; f ðtÞ : real variable ð11:7Þ
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It is found that applying the complex Laplace transformation (11.1)–(11.4) and
using (11.6) results in the following relationship:

VLðsÞ �
Z1

0

vLe�stdt ¼
Z1

0

ðvLr þ jvLiÞe�stdt

¼
Z1

0

vLre�stdtþ j
Z1

0

vLie�stdt ¼ VLrðsÞþ jVLiðsÞ

¼ LfsILrðsÞ � iLrð0Þgþ jLfsILiðsÞ � iLið0Þg
¼ sLfILrðsÞþ jILiðsÞg � LfiLrð0Þþ jiLið0Þg
¼ sLILðsÞ � LiLð0Þ

¼
Z1

0

L
diL
dt

e�stdt

ð11:8Þ

From (11.8), it is noted that the direct application of the complex Laplace trans-
formation (11.1)–(11.2) is equivalent to the application of the conventional Laplace
transformation to the real and imaginary parts of a complex variable respectively, as
shown in (11.3)–(11.7). In other words, the ‘complex Laplace transformation’ can
be interpreted as the complex sum of two conventional Laplace transformations
applied to the real and imaginary parts of a complex variable, independently.

The equivalent circuit in the complex Laplace transformed domain can be
obtained, as shown in Fig. 11.3b ①, based on the following equation derived from
(11.8):

ILðsÞ ¼ VLðsÞ
sL

þ iLð0Þ
s

ð11:9Þ

It can be seen from (11.9) that the phasored inductor in frequency domain has the
impedance of sL, which is the same as the conventional inductor case. The initial
current of (11.9) is, however, of complex form.

It is worthy to note that the voltage and current of the phasored inductor are
completely separable into the real and imaginary parts, as shown in (11.5); they are
actually independent each other though they are apparently combined into a
complex equation, as shown in (11.2), (11.3), and (11.8). Therefore, the complex
Laplace transformed voltage and current of (11.8) and (11.9) can be decomposed
into real and imaginary parts again. It is convenient, in the decomposition, to regard
the Laplacian s as a real value, which will be called ‘pseudo real Laplacian’ in this
chapter. The Laplacian s was regarded as a complex value in the conventional
Laplace transformation.
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(b) Phasored capacitor: Now, the complex Laplace transformation can be directly
applied to the phasored capacitor. The governing time domain equation for a
phasored capacitor, as shown in Fig. 11.3a ②, is as follows:

iC ¼ C
dvC
dt

ð11:10Þ

Applying the complex Laplace transformation (11.1)–(11.10) results in the
following Laplace equation.

ICðsÞ ¼
Z1

0

iCe�stdt ¼
Z1

0

C
dvC
dt

e�stdt

¼ sCVCðsÞ � CvCð0Þ or VCðsÞ ¼ ICðsÞ
sC

þ vCð0Þ
s

ð11:11Þ

The equivalent circuit of (11.11) in the complex Laplace transformed domain
can be obtained, as shown in Fig. 11.3b ②, where the voltage source term repre-
sents the initial capacitor voltage and can be removed if it is zero. It can be seen
from (11.11) that the phasored capacitor in frequency domain has the admittance of
sC, which is the same as the conventional capacitor case.

(c) Phasored real resistor: The application of the complex Laplace transforma-
tion to a phasored real resistor, as shown in Fig. 11.3a ③, is straightforward
since its governing time domain equation is as follows:

vR ¼ RiR ð11:12Þ

Performing the complex Laplace transformation for (11.12) results in the fol-
lowing Laplace equation.

VRðsÞ ¼
Z1

0

vRe�stdt ¼
Z1

0

RiRe�stdt

¼ R
Z1

0

iRe�stdt ¼ RIRðsÞ
ð11:13Þ

The equivalent circuit of (11.13) in the complex Laplace transformed domain is
shown in Fig. 11.3b ③. The resistance is unchanged by the Laplace phasor
transformation.
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(d) Phasored imaginary resistor: The application of the complex Laplace trans-
formation to a phasored imaginary resistor, as shown in Fig. 11.3a ④, is
performed for the governing time domain equation, as follows:

vX ¼ jXiX ð11:14Þ

Performing the complex Laplace transformation for (11.14) results in the fol-
lowing Laplace equation.

VXðsÞ ¼
Z1

0

vXe�stdt ¼
Z1

0

jXiXe�stdt

¼ jX
Z1

0

iXe�stdt ¼ jXIXðsÞ
ð11:15Þ

The equivalent circuit of (11.15) in the complex Laplace transformed domain is
shown in Fig. 11.3b ④. The imaginary resistance is also unchanged by the Laplace
phasor transformation.

It is worthy to note from (11.14) and (11.15) that the real part of the voltage is
related with the imaginary part of the current by the value of the imaginary resis-
tance X. It is also true for the relationship between the imaginary part of the voltage
and the real part of the current. Thus, there are two independent equations in (11.14)
and (11.15), respectively. They are, however, different from the phasored inductor,
capacitor, and resistor cases, where there is no cross relationship between the real
and imaginary parts, as shown in (11.5).

(e) Complex matrix transformer: A complex matrix transformer, as shown in
Fig. 11.3a ⑤, is a phasor transformed equivalent circuit element of an AC-AC
converter, i.e. a matrix converter, whose governing time domain equation is as
follows [33]:

vo ¼ vsSm; is ¼ ioS�m ð11:16Þ

where Sm, i.e. Smej/S , is a complex turn-ratio representing the voltage
conversion ratio Sm and the phase difference /S between the source and output
voltages of the fundamental components. S�m; i.e. Sme�j/S , is a complex
conjugate of the complex turn-ratio and represents the relationship between
the source and the output currents. It should be remarked that the complex
turn-ratio includes neither switching harmonics nor time-varying components
in this chapter; hence, it is just a time-invariant complex number.
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The complex turn-ratios of the complex transformer models in Fig. 11.3 are
assumed to have already been perturbed [9]; hence, the transformer models have
fixed complex turn-ratios; perturbed voltage sources and current sources are
excluded from the models. Under this condition, the application of the complex
Laplace transformation to (11.16) results in the following Laplace equation.

VoðsÞ ¼
Z1

0

voe�stdt ¼
Z1

0

vsSme�stdt

¼ Sm

Z1

0

vse�stdt ¼ VsðsÞSm;

IsðsÞ ¼
Z1

0

ise�stdt ¼
Z1

0

ioS�me
�stdt

¼ S�m

Z1

0

ioe�stdt ¼ IoðsÞS�m

ð11:17Þ

The equivalent circuit of (11.17) in the complex Laplace transformed domain is
shown in Fig. 11.3b ⑤. The complex transformer is unchanged by the proposed
Laplace Phasor transformation, i.e. the complex turn-ratios are unchanged for fre-
quency domain as well.

In (11.16) and (11.17), the real and imaginary parts of the voltages or currents
are cross-correlated each other, which is the most complicated cases so far.

(f) Complex VSI transformer: A complex VSI transformer, as shown in
Fig. 11.3a ⑥, is a phasor transformed equivalent circuit element of a DC-AC
voltage source converter, i.e. a voltage source inverter or a current source
rectifier, whose governing time domain equation is as follows [33]:

vo ¼ vdcSm; idc ¼ RefioS�mg ð11:18Þ

where the cumbersome real part operation is used to describe the fact that there
is no complex voltage and current in the real time domain circuits, i.e. the DC
side circuits. The dotted line, together with the small circle in Fig. 11.3a ⑥,
represents a border line that divides the real domain (left side) and the complex
domain (right side), where the small circle denotes the dummy current source
[33] to nullify the imaginary current of the complex transformer flowing into
the DC side. Except for this real part operator, which is composed of the
dotted line and the small circle, the complex transformers in Fig. 11.3⑥ and
⑦ are exactly the same as that in Fig. 11.3⑤.
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The Sm of (11.18) is a constant complex turn-ratio, as discussed in the above
complex matrix transformer case; hence, the application of the complex Laplace
transformation to (11.18) results in the following Laplace equation.

VoðsÞ ¼
Z1

0

voe�stdt ¼
Z1

0

vdcSme�stdt

¼ Sm

Z1

0

vdce�stdt ¼ VdcðsÞSm;

IdcðsÞ ¼
Z1

0

idce�stdt ¼
Z1

0

RefioS�mge�stdt

¼ Re
Z1

0

ioe�stdtS�m

8<
:

9=
; ¼ RefIoðsÞS�mg

ð11:19Þ

From (11.19), it should be remarked that the real part operator Re{ } is valid for the
complex Laplace transformation only when regarding the Laplacian s as a real
number. The equivalent circuit of (11.19) in the complex Laplace transformed
domain is shown in Fig. 11.3b ⑥. It is identified from (11.19) that the real part
operation is linear and that the complex VSI transformer is unchanged in frequency
domain.

(g) Complex CSI transformer: A complex CSI transformer, as shown in
Fig. 11.3a ⑦, is a phasor transformed equivalent circuit element of a current
source DC-AC converter, i.e. a current source inverter or a voltage source
rectifier, whose governing time domain equation is as follows [33]:

io ¼ idcSm; vdc ¼ RefvoS�mg; ð11:20Þ

which is analogous to (11.18); the real part operation was used for the same
purpose as the complex VSI transformer case. The dotted line, together with
the small circle in Fig. 11.3 ⑦, also divides the real domain (left side) and the
complex domain (right side), where the small circle denotes the dummy
voltage source [33], which is used to nullify the imaginary voltage of the
complex transformer at the DC side.

The Sm of (11.20) is also a constant complex turn-ratio; hence, the application of
the complex Laplace transformation to (11.20) results in the following Laplace
equation:
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IoðsÞ ¼
Z1

0

ioe�stdt ¼
Z1

0

idcSme�stdt

¼ Sm

Z1

0

idce�stdt ¼ IdcðsÞSm;

VdcðsÞ ¼
Z1

0

vdce�stdt ¼
Z1

0

RefvoS�mge�stdt

¼ Re
Z1

0

voe�stdtS�m

8<
:

9=
; ¼ Re VoðsÞS�m

� �

ð11:21Þ

From (11.21), the real part operator Re{ } is also valid for the complex Laplace
transformation only when regarding the Laplacian s as a real number. The equiv-
alent circuit of (11.21) in the complex Laplace transformed domain is shown in
Fig. 11.3b ⑦.

The applications of the complex Laplace transformation to the phasor voltage
source and the phasor current source are not shown separately here; however, they
are inherently included in the above discussions, e.g. in (11.16) and (11.17).

11.2.4 Application of Complex Laplace Transformation
to Complex Circuits

The application of the complex Laplace transformation to the individual complex
circuit elements shown in Fig. 11.2b assuming zero initial conditions and the
reconstruction of them result in a circuit in the frequency domain, as shown in
Fig. 11.4. Apparently, the complex Laplace transformation is similar to a con-
ventional Laplace transformation, as can be seen in Fig. 11.4, in which inductors

oR

sj L

j

ω

)(ssV

sC

1
−

−

ssL

ssC

1
osL

)(sVo

*: mS1

domainPhasor domainReal

Fig. 11.4 Complex laplace
transformed three-phase
rectifier
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and a capacitor have impedances represented in Laplacian terms. There is, however,
no guarantee that the Laplace phasor transformed circuit gives the same poles and
zeros as the conventional Laplace transformed circuit does. So, it is not straight-
forward yet to find the poles and zeros when the real part operator is included in the
circuit. Remind that dealing with the real part operation was the biggest issue in the
steady state case [33]. Therefore, conventional circuit theories cannot be directly
applied to the Laplace phasor transformed circuit of Fig. 11.4 without special cares
for the real part operator, nevertheless the similarity of the complex Laplace
transformation with the conventional Laplace transformation.

The example three-phase rectifier, shown in Fig. 11.4, is used to demonstrate the
analysis procedure where the real part operator is included. Dynamic responses, as
well as static responses, can be analyzed by the proposed Laplace phasor trans-
formation. Though this chapter is focusing on the dynamic analysis, the static
analysis is also provided here since it is useful to determine the Q point.

11.2.5 Static Analysis of Laplace Phasor Transformed
Circuit

In the steady state, inductors are shorted and capacitors are opened for the complex
Laplace transformed circuit, as shown in Fig. 11.5a. This is the same as the con-
ventional Laplace transformation case, where s → 0 in the steady state.

The source voltage Vs is a complex value representing the magnitude and phase
of the source voltages, as shown in Fig. 11.2a, and the angular frequency x is the
same as that of the source voltages. Because the circuit including the real part
operator is linear, Thevenin theorem can be applied to the Laplace phasor trans-
formed circuit. Thus, a Thevenin equivalent circuit for the left part of the complex
transformer, as shown in Fig. 11.5b, can drastically simplify the analysis, where the
Thevenin equivalent voltage and impedance are as follows:

Vt1 ¼
1

jxCs

jxLs þ 1
jxCs

Vs ¼ 1
1� x2LsCs

Vs ð11:22Þ

Zt1 ¼
jxLs 1

jxCs

jxLs þ 1
jxCs

¼ jxLs
1� x2LsCs

ð11:23Þ

Now, the complex transformer in Fig. 11.5b can be eliminated when another
Thevenin equivalent circuit for the right part is sought, considering that the complex
transformer is linear, as shown in Fig. 11.5c. The Thevenin equivalent voltage is the
open circuit voltage shown in Fig. 11.5b, in which no current flows, as follows:
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Fig. 11.5 Static equivalent circuits of the three-phase rectifier. a Original static circuit. b The first
Thevenin equivalent circuit for the source side. c The second Thevenin equivalent circuit,
removing the complex transformer. d The third Thevenin equivalent circuit, removing the real part
operator
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Vt2 ¼ V2jIo¼0¼ V1S�m
��
Io¼0¼ Vt1S�m ð11:24Þ

The Thevenin equivalent resistance can be calculated from Fig. 11.5b, as
follows:

Zt2 � V1S�m
�Io

����
Vt1¼0

¼ ð�IoSmZt1ÞS�m
�Io

¼ Zt1SmS�m ¼ Zt1 Smj j2� Zt1S
2
m

ð11:25Þ

Finally, the Fig. 11.5c can be further simplified to remove the cumbersome real
part operator with a little caution on the phasor domain and real domain as follows:

Vo ¼ RefVt2 � Zt2Iog
¼ RefVt2g � RefZt2gIo � Vt3 � Zt3Io

ð11:26Þ

where

Vt3 � RefVt2g; Zt3 � RefZt2g: ð11:27Þ

From (11.26) and (11.27), it can be seen that the final circuit of Fig. 11.5(d)
includes only the real part variables and that a conventional circuit analysis is now
possible; hence, the DC output voltage can be calculated from (11.22)–(11.27), as
follows:

Vo ¼ Ro

Zt3 þRo
Vt3 ¼ Ro

RefZt2gþRo
RefVt2g

¼ Ro

RefZt1S2mgþRo
RefVt1S�mg

¼ Ro

Ref jxLs
1�x2LsCs

gS2m þRo
Re

VsS�m
1� x2LsCs

� 	

¼ Ro

0þRo

RefVsS�mg
1� x2LsCs

¼ RefVsS�mg
1� x2LsCs

ð11:28Þ

Note that Zt3 becomes zero because the real part of (11.23) or (11.25) is zero;
hence, the analytical result of (11.28) is very simple. The procedure for DC phasor
analysis seems somewhat complicated for this example, which is intentionally
illustrated in detail; however, the circuit oriented phasor analysis requires quite few
equations and can even be drastically simple, as shown in [33].
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11.2.6 Dynamic Analysis of Laplace Phasor Transformed
Circuit

The Laplace phasor transformed three-phase rectifier shown in Fig. 11.4 can be
analyzed in a fashion similar to that of the above static analysis case for the
dynamics characterization, as shown in Fig. 11.6. Because the Laplace phasor
transformed circuit shown in Fig. 11.6a is linear, a Thevenin equivalent circuit for
the left part of the complex transformer is obtained, as shown in Fig. 11.6(b), in
which the Thevenin equivalent voltage and impedance are as follows:

Vt1ðsÞ ¼ 1=ðsCs þ jxCsÞ
sLs þ jxLs þ 1=ðsCs þ jxCsÞ � VsðsÞ

¼ 1
1þðsLs þ jxLsÞðsCs þ jxCsÞ � VsðsÞ

ð11:29Þ

Zt1ðsÞ ¼
ðsLs þ jxLsÞ 1

sCs þ jxCs

ðsLs þ jxLsÞþ 1
sCs þ jxCs

¼ sLs þ jxLs
1þðsLs þ jxLsÞðsCs þ jxCsÞ

ð11:30Þ

The complex transformer in Fig. 11.6b can be eliminated by finding a Thevenin
equivalent circuit for the left side of the real part operator, as shown in Fig. 11.6c.
The Thevenin equivalent voltage is the open circuit voltage shown in Fig. 11.6b, at
which no current flows, as follows:

Vt2ðsÞ ¼ V2ðsÞjIoðsÞ¼0¼ V1ðsÞS�m
��
IoðsÞ¼0¼ Vt1ðsÞS�m ð11:31Þ

The Thevenin equivalent resistance is calculated from Fig. 6b as follows:

Zt2ðsÞ � V1ðsÞS�m
�IoðsÞ

����
Vt1ðsÞ¼0

¼ �IoðsÞSmZt1ðsÞS�m
�IoðsÞ

¼ Zt1ðsÞSmS�m ¼ Zt1ðsÞS2m
ð11:32Þ

Figure 11.6c is further simplified by removing the real part operator as follows:

V3ðsÞ ¼ RefV2ðsÞg ¼ RefVt2ðsÞ � Zt2ðsÞIoðsÞg
¼ RefVt2ðsÞg � RefZt2ðsÞgIoðsÞ
� Vt3ðsÞ � Zt3ðsÞIoðsÞ

ð11:33Þ
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(a)

(b)

(c)

(d)

Fig. 11.6 Dynamic equivalent circuits of the three-phase rectifier in the complex laplace domain.
a Original dynamic circuit. b The first Thevenin equivalent circuit for the source side. c The
second Thevenin equivalent circuit, removing the complex transformer. d The third Thevenin
equivalent circuit, removing the real part operator
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where

Vt3ðsÞ � RefVt2ðsÞg ¼ RefVt1ðsÞS�mg;
Zt3ðsÞ � RefZt2ðsÞg ¼ RefZt1ðsÞgS2m

ð11:34Þ

From (11.33) and (11.34), the final circuit of Fig. 11.6d can be drawn; this circuit
is in the conventional Laplace transformation domain and no complex variables
exist. Thus, the output voltage transfer function can be calculated from (11.29)–
(11.34) as follows:

VoðsÞ ¼ Ro

Zt3ðsÞþ sLo þRo
Vt3ðsÞ

¼ Ro

RefZt1ðsÞgS2m þ sLo þRo
RefVt1ðsÞS�mg

ð11:35Þ

where the real part operation of the dynamic case is quite complicated in com-
parison with the static case of (11.28), as follows:

RefVt1ðsÞS�mg ¼
Re VsðsÞS�m

� �
1þðs2 � x2ÞLsCs

� �þ Im VsðsÞS�m
� �

2xsLsCs

1þðs2 � x2ÞLsCsf g2 þ 4x2s2L2sC
2
s

ð11:36Þ

RefZt1ðsÞg ¼ sLs 1þðs2 þx2ÞLsCs
� �

1þðs2 � x2ÞLsCsf g2 þ 4x2s2L2sC
2
s

: ð11:37Þ

11.2.7 Introduction of Pseudo Real Laplacian to Deal
with the Real Part Operation

It should be noted that the imaginary part operation Im{} is used in (11.36) and that
the real part operation is not directly applicable to the denominator.
Equations (11.36) and (11.37) constitute the key parts of this chapter; hence, how to
apply the real part operation for the Laplace phasor transformed circuit is illustrated
for this case. Detail procedures for (11.36) and (11.37) are in Appendix (11.61) and
(11.62).

As emphasized in the previous chapter, the Laplacian s is regarded as a real
number in the real part operations of (11.36) and (11.37). This may be very strange
for the readers who are familiar with the idea that the Laplacian s should be a
complex number in general. Furthermore, the complex Laplace transformation of
(11.1) has been applied to the complex variables, as shown in Fig. 11.3; hence, it
can be thought that it might be a complex number. It is worthwhile, at the moment,
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to remark on the validity of the proposed real part operation in the complex domain
related with the complex Laplace transformation.

Let us begin with a complex Laplace transformed function FðsÞ, assuming that it
can be decomposed into two conventional real Laplace transformed functions, FrðsÞ
and FiðsÞ, as follows:

FðsÞ ¼ FrðsÞþ jFiðsÞ ð11:38Þ

where

FðsÞ �
Z1

0

f ðtÞe�stdt;

FrðsÞ �
Z1

0

frðtÞe�stdt; FiðsÞ �
Z1

0

fiðtÞe�stdt

ð11:39Þ

and

f ðtÞ ¼ frðtÞþ jfiðtÞ; * frðtÞ; fiðtÞ 2 R1 : real. ð11:40Þ

Note that FrðsÞ and FiðsÞ of (11.39) are of real value if the Laplacian s is a real
number because their corresponding time domain functions frðtÞ and fiðtÞ are real.
So, FrðsÞ and FiðsÞ become complex values only when the Laplacian s is a complex
number. In other words, the nature of complex variables in the conventional
Laplace transformed function stems not from the time domain function but from the
postulation that the Laplacian s is a complex variable. It can be seen from (11.38)
and (11.40) that the real part operation in the complex Laplace transformation is
valid for the real Laplacian s, as follows:

RefFðsÞg ¼ Re
Z1

0

f ðtÞe�stdt

8<
:

9=
;

¼
Z1

0

Reff ðtÞge�stdt if s 2 R1

¼
Z1

0

frðtÞe�stdt ¼ FrðsÞ

¼ RefFrðsÞþ jFiðsÞg if s 2 R1

ð11:41Þ

It should not be misunderstood, however, from (11.41) that the complex Laplace
transformation proposed in this chapter is valid for the real Laplacian s only. What
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(11.41) shows is just a way of finding the real part of a complex Laplace function,
i.e. it does not necessarily impose the Laplacian s on a real number.

To further clarify this statement, a conventional real Laplace transformed
function FðsÞ of (11.7), which represents one of FrðsÞ and FiðsÞ, is defined as
follows:

FðsÞ � b0 þ b1s1 þ b2s2 þ � � � þ bmsm

a0 þ a1s1 þ a2s2 þ � � � þ ansn
¼ GzðsÞ

GpðsÞ ;

*fakg 2 R1; 1� k� n; fbkg 2 R1; 1� k�m;

an 6¼ 0; bm 6¼ 0

GpðsÞ ¼ a0 þ a1s
1 þ a2s

2 þ � � � þ ans
n;

GzðsÞ ¼ b0 þ b1s
1 þ b2s

2 þ � � � þ bms
m

ð11:42Þ

It is assumed that FðsÞ is composed of polynomial functions GpðsÞ and GzðsÞ
with real coefficients, which is the case in a linear system with real variables such as
an ordinary electrical circuit. Permitting complex poles pk and complex zeros zk,
FðsÞ of (11.42) can be rewritten in the following form.

FðsÞ ¼ GzðsÞ
GpðsÞ ;

GpðsÞ ¼ anðs� p0Þðs� p1Þ � � � ðs� pnÞ;
GzðsÞ ¼ bmðs� z0Þðs� z1Þ � � � ðs� zmÞ

ð11:43Þ

Note that the complex poles in GpðsÞ or the complex zeros in GzðsÞ always have
their corresponding complex conjugate pairs so that the coefficients can be real, as
shown for the following complex pole pair case.

ðs� pkÞðs� p�kÞ ¼ s2 � sðpk þ p�kÞþ pkp
�
k

¼ s2 � s � 2Refpkgþ pkj j2; 1� k� n
ð11:44Þ

The time domain function f ðtÞ, which is the inverse Laplace transformation of
(11.43), includes no complex value, as defined in (11.7); hence, the complex pole
pairs or complex zero pairs do not generate any complex time domain value. In this
way, the real Laplace transformed functions FrðsÞ and FiðsÞ, though having com-
plex poles or zeros, are inversely Laplace transformed to the time domain functions
of real value only. In a word, what matters is not the nature of Laplacian s but the
real coefficients in FðsÞ; hence, the decomposition of the complex Laplace trans-
formed function FðsÞ into FrðsÞ and FiðsÞ can be conveniently performed by
finding the real and imaginary parts of FðsÞ regarding s as real, as shown in (11.36)
and (11.37). From this viewpoint, the s is called the pseudo real Laplacian for the
real part operation or the imaginary part operation in the complex Laplace
transformation.
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11.2.8 Perturbation Analysis of Laplace Phasor
Transformed Circuit

In the previous section, the source voltage VsðsÞ was considered only as an input for
the purpose of large signal dynamic analysis; however, the complex transformer, as
shown in Fig. 11.2b or Fig. 11.6a, is the control driver in most applications. The
complex transformer is no longer linear for a time-varying complex turn-ratio sm,
though it is linear for the constant Sm, as has been discussed so far.

So, a perturbed complex transformer model in the complex Laplace domain
neglecting the product of two perturbed variables is, as follows:

vo � Vo þ v̂o ¼ vssm � ðVs þ v̂sÞðSm þ ŝmÞ
¼ VsSm þVsŝm þ Smv̂s þ v̂sŝm ffi VsSm þVsŝm þ Smv̂s

is � Is þ îs ¼ ios�m � ðIo þ îoÞðS�m þ ŝ�mÞ
¼ IoS�m þ Ioŝ

�
m þ S�mîo þ îoŝ

�
m ffi IoS�m þ Ioŝ

�
m þ S�mîo

ð11:45Þ

The small signal perturbed variables, excluding the large signal constant vari-
ables from (11.45), as shown in Fig. 11.7a, are as follows:

v̂o ffi Vsŝm þ Smv̂s

îs ffi Ioŝ
�
m þ S�mîo

ð11:46Þ

It can be seen from (11.46) that the equations are now linear w.r.t. the perturbed
variables with the constant complex coefficients, corresponding to the Q points of

(a)

(b)

Fig. 11.7 Perturbed complex
transformer model. a Time
domain. b Complex laplace
domain
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the converter; hence, the complex Laplace transformation can be applied to (11.46),
resulting in the following Laplace domain equations, as also shown in Fig. 11.7b.

V̂oðsÞ ffi VsŜmðsÞþ SmV̂sðsÞ
ÎsðsÞ ffi IoŜ

�
mðsÞþ S�mÎoðsÞ

ð11:47Þ

Considering sm ¼ smej/s and s�m ¼ sme�j/s , the perturbed complex turn-ratios in
(11.46) can be further resolved as follows:

ŝm ¼ ŝmej/s þ j/̂sSme
j/s ¼ ðŝm=Sm þ j/̂sÞSm

ŝ�m ¼ ŝme�j/s � j/̂sSme
�j/s ¼ ðŝm=Sm � j/̂sÞS�m

ð11:48Þ

The complex Laplace transformation for (11.48) results in the following.

ŜmðsÞ ¼ fŜmðsÞ=Sm þ j/̂sðsÞgSm
Ŝ
�
mðsÞ ¼ fŜmðsÞ=Sm � j/̂sðsÞgS�m

ð11:49Þ

The perturbed complex Laplace transformed transformer model of Fig. 11.7b
can be applied to Fig. 11.6a for the perturbation analysis, as shown in Fig. 11.8a.
The source voltage is also perturbed; hence, there are three independent voltage and
current sources in Fig. 11.8a, in which the source side LC filter is substituted with
the Thevenin resistance Zt1ðsÞ, which is the same as (11.30), and the perturbed
Thevenin voltage V̂t1ðsÞ is as follows:

V̂t1ðsÞ ¼ 1
1þðsLs þ jxLsÞðsCs þ jxCsÞ � V̂sðsÞ ð11:50Þ

Removing the complex transformer and obtaining the Thevenin open voltage for
the three independent sources, a more simplified equivalent circuit is found in
Fig. 11.8c, in which the Thevenin resistance Zt2ðsÞ is the same as (11.32) and the
perturbed Thevenin voltage V̂t2ðsÞ is as follows:

V̂t2ðsÞ ¼ S�mV̂t1ðsÞ � S�mIoZt1ðsÞŜmðsÞþV1Ŝ
�
mðsÞ: ð11:51Þ

Finally, removing the real part operator, the Thevenin equivalent circuit is found
in Fig. 11.8d, where the Thevenin resistance Zt3ðsÞ is the same as (11.34) and the
perturbed Thevenin voltage V̂ t3ðsÞ is as follows:

V̂ t3ðsÞ ¼ RefV̂t2ðsÞg ð11:52Þ

Now, the perturbed output voltage can be obtained by applying conventional real
domain circuit analysis to Fig. 11.8d, which is very similar to (11.35), as follows:
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(a)

(c)

(d)

Fig. 11.8 Perturbed circuits of the three-phase rectifier in the complex laplace domain. a Original
perturbed circuit. b The first Thevenin equivalent circuit for the source side. c The second
Thevenin equivalent circuit, removing the complex transformer. d The third Thevenin equivalent
circuit, removing the real part operator
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V̂oðsÞ ¼ Ro

Zt3ðsÞþ sLo þRo
V̂ t3ðsÞ

¼ Ro

RefZt1ðsÞgS2m þ sLo þRo
RefV̂t2ðsÞg

ð11:53Þ

where RefZt1ðsÞg is the same as (11.37) and RefV̂t2ðsÞg can be obtained using
(11.49)–(11.51).

RefV̂t2ðsÞg ¼ RefS�mV̂t1ðsÞ � S�mIoZt1ðsÞŜmðsÞþV1Ŝ
�
mðsÞg

¼ RefS�mV̂t1ðsÞg � IoRe S�mZt1ðsÞfŜmðsÞ=Sm þ j/̂SðsÞgSm
n o

þRe V1fŜmðsÞ=Sm � j/̂SðsÞgS�m
n o

¼ RefS�mV̂t1ðsÞg � IoS
2
m RefZt1ðsÞgŜmðsÞ=Sm � ImfZt1ðsÞg/̂ðsÞ
h i

þ RefV1S�mgŜmðsÞ=Sm þ ImfV1S�mg/̂SðsÞ
h i

ð11:54Þ

In similar ways to those used for obtaining (11.36) and (11.37), RefS�mV̂t1ðsÞg
and ImfZt1ðsÞg/̂SðsÞ can be found as follows:

RefS�mV̂t1ðsÞg

¼ RefS�mV̂sðsÞg 1þðs2 � x2ÞLsCs
� �þ 2ImfS�mV̂sðsÞgxsLsCs

1þðs2 � x2ÞLsCsf g2 þ 4x2s2L2sC
2
s

ð11:55Þ

ImfZt1ðsÞg

¼ Im ðsLs þ jxLsÞ 1þðs2 � x2ÞLsCs � j2xsLsCs
� �� �

1þðs2 � x2ÞLsCsf g2 þ 4x2s2L2sC
2
s

¼ xLs 1� ðs2 þx2ÞLsCs
� �

1þðs2 � x2ÞLsCsf g2 þ 4x2s2L2sC
2
s

ð11:56Þ

It is important to note that the system analysis results in the Laplace phasor
transformation, (11.53)–(11.56) are also valid for the original time-varying con-
verter in time domain, as shown in Fig. 11.2a. In other words, the system stability
of a converter is unchanged by the proposed Laplace phasor transformation. It is
due to the fact that the phasor transformation [33] is one-to-one mapping trans-
formation from a time-varying real circuit to a time-invariant complex circuit and
vice versa; hence, the magnitude and phase of voltage or current is unchanged and
preserved through the transformation. A stable system in the Laplace phasor
transformed domain must also be stable in the corresponding time domain.
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Therefore, the proposed Laplace phasor transformation can be directly used for the
design and control of AC converters in the same way the conventional Laplace
transformation does for the time-invariant real circuit.

11.3 Simulations of Laplace Phasor Transformed Circuits

The proposed Laplace phasor transformation embraces several new concepts and
mathematics; hence, the accuracy and usefulness of the theory for practical situa-
tions should be identified. Experimental verifications, though giving physical
insights in most cases, are not preferred this time since they are not appropriate for
checking the accuracy of a theory. Instead, real time domain numerical simulations
using a state equation for Fig. 11.2a, neglecting switching harmonics, were per-
formed for the following circuit parameters, unless otherwise specified.

Vs ¼ 440\ p
3

Sm ¼ 0:90\ p
4

fs ¼ 60 Hz

Ls ¼ 5 mH Cs ¼ 300 lF Lo ¼ 3 mH RL ¼ 10 X
ð11:57Þ

A time domain transient response for all zero initial conditions under the circuit
parameters of (11.57) is shown in Fig. 11.9, in which the converter is stabilized
within 2–3 cycles but undergoes large transient voltage stresses for a step source
voltage at t = 0.
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Fig. 11.9 Transient simulation results of the output voltage and input capacitor voltages for the
three phase rectifier examples of Fig. 11.2a with the parameters of (11.57)
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11.3.1 Verifications for the Static Analysis

The DC output voltage analysis result of (11.28) was verified by the time domain
simulations for different switching functions, i.e. Sm and /S. The DC voltage gain
should be as follows:

GV � Vo

Vs
¼ 1

Vs

RefVsS�mg
1� x2LsCs

¼ 1
Vs

RefVsej/V Sme�j/Sg
1� x2LsCs

¼ Sm cosð/V � /SÞ
1� x2LsCs

� Sm cos/VS

1� x2LsCs

ð11:58Þ

It is verified by the time domain simulation, as shown in Fig. 11.10, that the DC
voltage gain of (11.58), as a function of /VS, is well within the 0.1 % error, which is
regarded as a simulation error. The DC gain GV could be negative if the four
quadrant AC switches are used in the example circuit shown in Fig. 11.2a.

11.3.2 Verifications for the Dynamic Perturbation Analysis

For simplicity, it is assumed that the source voltage phasor has a zero phase angle,
by which the analysis results do not lose generality because the responses will be
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Fig. 11.10 Static simulation results of the DC voltage gain versus the phase difference between
the source voltage and the switching function for different turn-ratios shown in Fig. 11.2a, ðVs

¼ 440\ p
3 Sm : variable fs ¼ 60 Hz Ls ¼ 5 mH Cs ¼ 300 lF Lo ¼ 3 mH RL ¼ 10 XÞ
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relative w.r.t. the source voltage. In this way, the small signal source voltage
transfer function, chosen among the transfer functions (11.49)–(11.56), becomes as
follows:

GvðsÞ ¼ 1

V̂sðsÞ
Ro

RefZt1ðsÞgS2m þ sLo þRo
RefV̂t2ðsÞg

����
ŜmðsÞ¼/̂SðsÞ¼0

ð11:59Þ

A detail procedure of (11.59) is available in Appendix.
The amplitude frequency response of the example converter can be obtained

from (11.59), as follows:

GvðxcÞj j � GvðsÞj js¼jxc;x¼xs

¼ SmRo
cos/S 1� ðx2

c þx2
s ÞLsCs

� �� j2 sin/SxsxcLsCs

�� ��
jxcLs 1þðx2

s � x2
cÞLsCs

� �
S2m þðjxcLoþRoÞ 1� ðx2

c þx2
s ÞLsCs

� �2�4x2
sx

2
cL2sC2

s

h i��� ���
ð11:60Þ

Note that xc is a variable control angular frequency, whereas xs is the fixed
source voltage angular frequency, and that the frequency response of the complex
Laplace transfer function can be calculated by letting s ¼ jxc, just as in the con-
ventional Laplace transformation case. Other small signal transfer functions, though
not shown here, can also be obtained in ways similar to those used in (11.59) and
(11.60).

As shown in Fig. 11.11, this theoretical calculation of the voltage gain (11.60) is
well within �0:1 from the time domain simulation result, in which a small
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Fig. 11.11 Simulation results for the small signal frequency response of the amplitude gain for the
example converter of Fig. 11.2a. ðVs ¼ 440\0 /VS ¼ p

12 fs ¼ 60 Hz
Ls ¼ 5 mH Cs ¼ 300 lF Lo ¼ 3 mH RL ¼ 10 XÞ
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perturbation signal was inserted into the source voltage using the circuit parameters
of (11.57) except for the turn-ratio. The errors stem from the inaccurate measure-
ments of the simulated output voltages, in which some harmonic ripples remained.
It is found that there are two poles at 68–70 Hz and 191–193 Hz, which roughly
correspond to the difference between and the addition of the input filter resonance
frequency 130 Hz and the source frequency 60 Hz. This can be explained by noting
that the modulating control signal over the source voltages generates frequencies of
the difference and the addition of each frequency and these frequencies resonate
with the input filter.

There are potential applications of the proposed Laplace phasor transformation
to the dynamic characterization of AC converters such as renewable energy con-
versions [40–44], which would not be possible to analyze of close form by the
conventional techniques. The AC converters shall be manipulated like conventional
circuits by the proposed theory.

11.4 Concluding Remarks

The application of the complex Laplace transformation to a phasor transformed
circuit for the dynamics characterization was performed and selectively verified by
simulations. Together with the static analysis theory for AC converters [33], the
general unified phasor transformation theory is now completed by the proposed
Laplace phasor transformation in this chapter. Any linear time-varying AC con-
verters with multiple phases and multiple switches can be substituted with a
complex circuit including a complex transformer, and can be thoroughly analyzed
by the proposed theory.

The applications of other linear transformations such as Fourier transformation
and z-transformation to the phasor transformed circuits will be quite challenging.
Furthermore, the extension of the proposed Laplace phasor transformation to the
area wherever sinusoidal oscillation occurs, i.e. RF electronic circuits, mechanical
vibration controls, and musical instrument designs must be interesting and fruitful.
They are left for further works.

Appendix

The real part operations in (11.36) and (11.37) are performed respectively as
follows.
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RefVt1ðsÞS�mg ¼ Re
VsðsÞS�m

1þðsLs þ jxLsÞðsCs þ jxCsÞ
� 	

¼ Re
VsðsÞS�m

1þðs2 � x2ÞLsCs þ j2xsLsCs

� 	

¼ Re
VsðsÞS�m 1þðs2 � x2ÞLsCs � j2xsLsCs

� �
1þðs2 � x2ÞLsCs þ j2xsLsCsf g 1þðs2 � x2ÞLsCs � j2xsLsCsf g

� 	

¼ Re VsðsÞS�m 1þðs2 � x2ÞLsCs � j2xsLsCs
� �� �

1þðs2 � x2ÞLsCsf g2 þ 4x2s2L2sC
2
s

¼ Re VsðsÞS�m
� �

1þðs2 � x2ÞLsCs
� �þ Im VsðsÞS�m

� �
2xsLsCs

1þðs2 � x2ÞLsCsf g2 þ 4x2s2L2sC
2
s

ð11:61Þ

RefZt1ðsÞg ¼ Re
sLs þ jxLs

1þðsLs þ jxLsÞðsCs þ jxCsÞ
� 	

¼ Re ðsLs þ jxLsÞ 1þðs2 � x2ÞLsCs � j2xsLsCs
� �� �

1þðs2 � x2ÞLsCsf g2 þ 4x2s2L2sC
2
s

:

¼ sLs 1þðs2 � x2ÞLsCs
� �þðxLsÞ2xsLsCs

1þðs2 � x2ÞLsCsf g2 þ 4x2s2L2sC
2
s

¼ sLs 1þðs2 þx2ÞLsCs
� �

1þðs2 � x2ÞLsCsf g2 þ 4x2s2L2sC
2
s

ð11:62Þ
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Chapter 12
Dynamics of Inductive Power Transfer
Systems

As an example of applying the Laplace phasor transform to a practical problem
solving a large signal dynamic model of the inductive power transfer system (IPTS)
for on-line electric vehicles (OLEVs) is explained in this chapter. As an example of
applying the Laplace phasor transform to a practical problem solving a large signal
dynamic model of the inductive power transfer system (IPTS) for on-line electric
vehicles (OLEVs) is explained in this chapter.

With the help of the dynamic model, the effect of the output capacitor and load
resistance variation on the transient response of the IPTS is analyzed. The maxi-
mum pick-up current and the output voltage for an abrupt in-rush of the OLEV are
examined by both the proposed analysis and simulations, and verified through good
agreement with experiments. Thus, it is found that the voltage and current ratings of
the pick-up remain relatively constant regardless of the load resistance. A lot of this
chapter is written based on the paper of ours [1].

12.1 Introduction

The depletion of petroleum and the global warming make the electric vehicle
(EV) be the most promising means of transport, and various types of EVs such as
hybrid electric vehicle (HEV), plug-in HEV (PHEV), and pure EV (PEV) have
been developed.

The high price, large size, and relatively short distance per charge of the battery
in the EVs, however, make it difficult to commercialize them. To alleviate the
battery problems, the roadway-powered EVs (RPEVs) which are based on the
inductive power transfer system (IPTS) have been developed [2–12]. Recently, the
on-line electric vehicle (OLEV), one of the most advanced RPEVs so far, has been
developed and successfully deployed at various public sites [6–8]. Its concept is
shown in Fig. 12.1 and the overall schematic of the IPTS is shown in Fig. 12.2.
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To improve the power transfer efficiency, the “fully resonated current source
IPTS” was proposed for the OLEV [10–12]. The IPTS constantly controls the
primary coil current i1, and the magnetizing inductance Lm and leakage inductance
Ll2 of the pick-up are resonated with the secondary capacitor C2. By doing so, the
output voltage of the IPTS is nearly constant for various load conditions. The
pick-up current, however, is highly fluctuated because of the abrupt in-rush
movement of the vehicle and the rapid load current change. The pick-up undergoes
severe voltage stress and breakdown may occur in the capacitors during this
transient state. One of the worst case scenarios is that the LC resonant tank of the
pick-up, i.e. i2, is maximally energized by the inverter whereas the output voltage is
zero; this is a very probable situation in practice when a fast OLEV rushes into the
primary coil. At this case, i2 can be largely fluctuated and its maximum value
should be clearly identified in order to design the ratings of the C2. Hence, not only
the static analysis but also the large signal dynamic analysis on i2 is quite essential
for various load conditions and circuit parameters.

To find an appropriate dynamic model, the recently proposed Laplace phasor
transform theory [13], which was developed for the dynamic analysis of phasored
circuits [14–19], has been adopted in this chapter. The conventional DQ

Inverter

Pick-up 

Regulator

OLEV

Magnetic
flux

Vin

Primary coil

Battery

Fig. 12.1 The concept of the OLEV system

Fig. 12.2 The overall schematic of the IPTS for the OLEV. The on-board regulator and battery is
replaced with Ro
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transformations [20, 21] could be used to analyze AC systems if the system order is
less than three, however, it is nearly impossible to obtain the dynamics of the IPTS
by the traditional techniques because the system order is very high, as identified
from Fig. 12.2. On the other hand, the linear time-invariant dynamic model for a
very high order AC system can be easily obtained by the unified general phasor
transform [19, 13], and the analysis of the phasor transformed circuit is straight-
forward because conventional circuit analysis techniques such as Kirchhoff’s
voltage and current laws, Thevenin’s theorem, and Norton’s theorem can be applied
to the phasored circuits.

In this chapter, the Laplace phasor transform [13] was firstly applied to the
practical real system, and the large signal dynamic model for the pick-up current of
the OLEV is fully developed.

12.2 Large Signal Dynamic Model for the OLEV IPTS

12.2.1 Operation Principle of the OLEV

The key operation concept of the IPTS for OLEV is to control the primary coil
current i1 as a constant current source, where the C2 is resonated with n2Lm + Ll2 to
maximize power transfer. Under this condition, the output voltage Vo in the steady
state is equal to nωsLmI1 [12], where the ωs is the switching angular frequency and
I1 is the magnitude of the primary coil current i1 in the steady state. Because the
primary current I1 is constant regardless of the load condition, the output voltage of
the IPTS of an OLEV is kept constant; hence, this IPTS can effectively supply
wireless power to multiple OLEVs on the primary coil simultaneously.

In addition, the intrinsic resonant frequency ωi of the Lm + Ll1 and the C1 is set to
a slightly lower frequency than the inverter switching frequency ωs so that the IPTS
can be always inductive in the primary coil, which results in the zero voltage
switching (ZVS) of the inverter [12]. Because the pick-up and primary coil of the
IPTS is loosely coupled, the Lm is much lower than the Ll1. Therefore, the ωi does
not vary largely in accordance with the number of OLEVs on the primary rail and
the air-gap between the pick-up and primary coil; hence, the stable control of the i1
is possible at the fixed switching frequency.

12.2.2 Large Signal Dynamic Analysis of the Pick-up
Current

To develop the large signal model of the pick-up current i2, the Laplace phasor
transform [13] which converts the rotatory AC domain circuit to the stationary
phasor domain circuit in the frequency domain is adopted. For example, the Laplace
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phasor transform converts an inductor in the rotatory AC domain shown in
Fig. 12.3 can be transformed into an inductor with an imaginary resistor in the
stationary phasor domain as shown in Fig. 12.4. The inductor rotatory circuit
equation is

Ll1
di1
dt

¼ vL1; ð12:1Þ

where the vL1 is the voltage across the inductor. By applying the phasor transfor-
mation, the dynamic phasor I1 and VL1 can be obtained from

i1 � Ref
ffiffiffi
2

p
I1ejxstg; vL1 � Ref

ffiffiffi
2

p
VL1ejxstg: ð12:2Þ

Note that the phasors in (12.2) are not stationary but dynamic so that they are
time-varying complex numbers. By applying (12.2) to (12.1), the relationship
between the VL1 and the I1 is obtained as

Ll1
dI1
dt

þ jxsLl1I1 ¼ VL1: ð12:3Þ

Therefore the inductor Ll1 in the rotatory AC domain converts into inductor Ll1
with an imaginary resistor jωsLl1 in the stationary phasor [19]. By applying the
Laplace transformation [13] into the first term of (12.3), the (12.3) can be converted as

Fig. 12.3 Simplified overall schematic of the IPTS for the OLEV

Fig. 12.4 The overall Laplace phasor transformed equivalent circuit of the IPTS from source side,
removing the transformer. The bold letters indicate the complex variables in the Laplace domain.
The D1 and D2 indicate the complex turn ratios of the complex transformers for the inverter and
diode rectifier, respectively
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sLl1I1 þ jxsLl1I1 ¼ VL1: ð12:4Þ

In this way, the other rotatory domain elements can be converted into the sta-
tionary domain. The overall phasor transformed circuit of the IPTS for the OLEV is
shown in Fig. 12.4. The dotted small circles connect the real domain and the phasor
domain, and it is called as “real part operator” [19]. In Fig. 12.4, the complex
transformer turn-ratio D1, i.e. D1ejh1 where D1 is the voltage conversion ratio and h1
is the phase difference between the source voltage Vin and the Vx12, is defined as

Vx12 ¼ VinD1; Idc ¼ ReðI1D�
1Þ; ð12:5Þ

where the detailed transform process is explained in [13, 19]. In this process, the
real part operator Re() regards the Laplacian ‘s’ as a real number, and it was named
‘pseudo real Laplacian’ [13]. For example, ReðsLþRþ jxLÞ ¼ sLþR is valid for
this pseudo real Laplacian. In Fig. 12.4, the rm indicates the side effects of the coils
of the IPTS, which include the iron loss and eddy current loss of the coils. The rs2
includes the copper loss of the pick-up coil and the dynamic resistance of the bridge
diodes. Because the inverter primary coil current i1 is constantly controlled by the
inverter, it becomes a constant current source, as shown in Fig. 12.5a. In general,
the system dynamics of the IPTS is much slower than the switching period of the
inverter; hence, the absolute value of Laplacian ‘s’ can be artificially much smaller
than the ωs as follows [16];

sj j � xs: ð12:6Þ

Therefore, the impedance of the pick-up coil Z2 shown in Fig. 12.5a can be
derived using (12.6) as

Z2 ¼ sLl2
n2

þ jxsLl2
n2

þ 1
sn2C2 þ jxsn2C2

¼ sLl2
n2

þ jxsLl2
n2

þ 1
jxsn2C2

� 1
1þ s

jxs

:

ð12:7Þ

By the condition (12.6), it can be approximately as follows:

Z2 ffi sLl2
n2

þ jxsLl2
n2

þ 1
jxsn2C2

1� s
jxs

� �

¼ sLl2
n2

þ jxsLl2
n2

þ 1
jxsn2C2

þ s
x2

s n
2C2

: ð12:8Þ

In (12.8), the last term can be expressed as follow:

s
x2

s n
2C2

¼ sLeq ð12:9Þ
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where

Leq ¼ Lm þ Ll2
n2

� �
� xr2

xs

� �2

; xr2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn2Lm þ Ll2ÞC2

p : ð12:10Þ

To apply Thevenin’s theorem to the dotted arrow region in Fig. 12.5a, the open
circuit equivalent impedance is obtained as follows:

(a)

(b)

(c)

Fig. 12.5 Dynamic equivalent circuits of the IPTS in the complex Laplace domain. a Equivalent
circuit of the IPTS assuming a constant current source. bMore simplified and approximated circuit
for the source side. c The most simplified circuit in the resonant condition
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Zth ¼ ðsLm þ jxsLmÞ==rm ¼ sLm þ jxsLm
1þ sLm þ jxsLm

rm

: ð12:11Þ

Because the rm is much larger than the jxsLmj j or sLm þ jxsLmj j, (12.11) can be
approximately represented as

sLm þ jxsLm
1þ sLm þ jxsLm

rm

ffi sLm þ jxsLmð Þ 1� sLm þ jxsLm
rm

� �
: ð12:12Þ

By applying the condition (12.6) to (12.12), it can be simplified as follows:

Zth ffi sLm þ jxsLm þ x2
s L

2
m

rm
: ð12:13Þ

In addition, the Thevenin voltage source Vth shown in Fig. 12.5b is defined as

V th ¼ fðsLm þ jxsLmÞ==rmgI1: ð12:14Þ

Using (12.11)–(12.13), it can be approximately expressed as follows:

V th ffi sLm þ jxsLm þ x2
s L

2
m

rm

� �
I1: ð12:15Þ

Because sLm þ jxsLmj j is much larger than x2
s L

2
m

rm
so far as rm � xsLm, and sLmj j

is much smaller than jxsLmj j, the Thevenin voltage source of (12.15) can be
simplified as follows:

V th ffi jxsLmI1: ð12:16Þ

In addition, the equivalent resistance req shown in Fig. 12.5b is defined as
follows:

req ¼ x2
s L

2
m

rm
þ rs2

n2
: ð12:17Þ

Therefore, the first approximated equivalent circuit is obtained from Fig. 12.5a
as shown in Fig. 12.5b.

If the resonant angular frequency ωr2 in (12.10) is equal to the switching fre-
quency ωs, the equivalent inductance Leq is equal to Lm þ Ll2

n2 and the most sim-
plified equivalent circuit can be obtained, as shown in Fig. 12.5c. In this Fig., the
dynamic model of i2 can be derived from if the Zx is known. To obtain the Zx, the
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phasor transformed circuit of the diode rectifier and the output impedance Zo is
shown in Fig. 12.6. Because the diode rectifier is a sort of the current controlled
rectifier (CSR), the phase of the test current Ix shown in Fig. 12.6 determines the
phase of the complex transformer turn-ratio Dx as follows [16]:

Ix ¼ Ixejhx ! Dx ¼ Dxejhx ; Dx ¼ 2
ffiffiffi
2

p

p
ð12:18Þ

Therefore, the test voltage Vx shown in Fig. 12.6 is determined as

Vx ¼ VoDx; ð12:19Þ

and the Zx shown in Fig. 12.6 is determined as follows:

Zx ¼ Vx

Ix
¼ VoDx

Ix
¼ ReðIxD�

xÞZo � Dx

Ix

where Zo ¼ Ro

n2ð1þ sCoRoÞ
ð12:20Þ

From (12.18), IxD�
x can be derived as

IxD�
x ¼ Ix ejhx � Dxe�jhx ¼ IxDx ¼ ReðIxD�

xÞ: ð12:21Þ

Applying (12.21) to (12.20), the Zx is finally determined as

Zx ¼ IxD�
xZo � Dx

Ix
¼ D2

xZo: ð12:22Þ

Fig. 12.6 The phasor
transformed circuit of the
diode rectifier and the output
impedance
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The final equivalent circuit can be derived, as shown in Fig. 12.7, and the phasor
I2 can be obtained as

I2 ¼ jG2 � 1þ sCoRo
s2
x2

2
þ s

Q2x2
þ 1

I1 ð12:23Þ

where

G2 ¼ nxsLm
D2

2Ro þ n2req
; x2 ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

2Ro þ n2req
2LeqCoRo

s

Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD2

2Ro þ n2reqÞð2LeqCoRoÞ
p

nð2Leq þCoRoreqÞ ; f2 ¼
1

2Q2
¼ nð2Leq þCoRoreqÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD2

2Ro þ n2reqÞð2LeqCoRoÞ
p ;

ð12:24Þ

and the time domain expression of (12.23) is obtained as

î2ðtÞ ¼ G2̂i1ðtÞ � G2̂i1ðtÞ �
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=4�Q2

2Þ�x2t
p

Q2
þ

Q2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=4�Q2

2
Þ�x2 t

p
Q2

� �
� x2�CoRoQ2x

2
2

Q2
� x2

2Q2

� �
x2

ffiffiffiffiffiffiffiffiffiffiffiffi
1=4�Q2

2

p
exp x2t

2Q2

ð12:25Þ

where

î1ðtÞ ¼ I1 t	 0
0 t\0

�
: ð12:26Þ

The î1ðtÞ and î2ðtÞ are the envelop time domain variables of the i1 and i2
respectively.

Fig. 12.7 The final simplified
phasor transformed circuit of
the IPTS
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The presented model is also applicable to develop the small signal dynamic
model. Because the turn-ratio of the complex transformer is time-varying when the
complex transformer is used as the control driver, the complex transformer is
non-linear in that case. Therefore, the linearization by perturbing the control vari-
ables is necessary to develop the small signal dynamic model and the detailed
process of the perturbation is shown in [13, 17].

12.3 Experimental Verifications

The OLEV system was implemented as shown in Fig. 12.8a. To simplify the
experiment, the discrete component Ll1, Lm, and Ll2 were used instead of the real
primary rail and the pick-up which are used on the OLEV as shown in Fig. 12.8b,
and the values of the inductance Ll1, Lm, and Ll2 were determined by reference [12].
To experiment the pick-up current dynamics, the switch SW1 shown in Fig. 12.8a
was inserted in the pick-up coil and the step response of the pick-up current was
measured. The inverter constantly controls the primary coil current i1. To guarantee
the zero voltage switching (ZVS) of the inverter, the resonant frequency of the
primary coil was set to slightly lower than the switching frequency 20 kHz of
the inverter. To check the resonant conditions of the pick-up coil, the steady state
wave forms were measured, as shown in Fig. 12.9. As expected in (12.23), the phase
difference between the i1 and i2 was about π/2, as shown in Fig. 12.9. This means the
impedance of the Lm þ Ll2

n2 is successfully canceled by the impedance of the n2C2.

Fig. 12.8 The experiment setup for the pick-up current dynamics study
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Initially, the SW1 was open and the i1 was set to 40 Apeak. After the i1 was
stabilized to its steady state value, the SW1 was turned on and the dynamics of the i2
was observed for various load conditions, as shown in Fig. 12.10. For comparison,
the simulation results and the step response of (12.23) were shown in Fig. 12.11.
The step response of (12.23) is well matched with the simulated pick-up current by
PSIM. In that process, the req was found by comparing the experimental wave-
forms, and it is about 0.15 Ω. The comparison plot for the maximum and the steady
state current of the i2 is shown in Fig. 12.12.

The experimental results and the step response of (12.23) show that the maxi-
mum value of the pick-up current i2 is varying with the load conditions. The
maximum value increases with larger output capacitance for a given output resis-
tance. The remarkable characteristic of the IPTS from the results is that the max-
imum values of the pick-up current for different output resistances are not
significantly changed for a given output capacitor, as shown in Fig. 12.13. This
feature is quite advantageous for the robust IPTS development because the rated
voltage of the Cl2 does not largely change by the output resistance.

2i

1i

ov 20 μs25 V

2 A

50 A
0.25Ts

Fig. 12.9 The steady state waveforms for the primary coil current i1, pick-up current i2, and the
output voltage vo. The Ts is the period of the switching frequency ωs
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Fig. 12.10 The measured step response of the pick-up current i2 and the out voltage vo for various
load conditions. a Ro = 50 Ω, Co = 6.6 μF. b Ro = 50 Ω, Co = 27.1 μF. c Ro = 25 Ω, Co = 27.1 μF
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Fig. 12.11 The simulated step response (AC waveform) and the envelop waveform of the step
response of (23) for the pick-up current i2. a Ro = 50 Ω, Co = 6.6 μF. (b) Ro = 50 Ω, Co = 27.1 μF.
c Ro = 25 Ω, Co = 27.1 μF
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Fig. 12.12 The peak and steady state current values of the pick-up for various output capacitors.
a Ro = 50 Ω. b Ro = 25 Ω
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Fig. 12.13 The measured
peak current of the pick-up
current for various output
resistances
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12.4 Conclusions

The dynamic model for the IPTS of the OLEV has been fully developed and
verified by simulations and experiments in this chapter. By applying the Laplace
phasor transform first to the very high order IPTS, a very simple second order
equivalent circuit could be obtained. With the help of this novel dynamic model, the
maximum pick-up current during the transient state was successfully identified, and
found to be relatively unchanged for various load resistances.
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Part VI
Phasored Power Electronics

and Beyond

Throughout this book, the phasor model has been identified to be a useful tool for
dealing with switching converters. In this last chapter, the applicability of the
phasor model to other power electronics areas such as controllers, signal processors,
power systems, and motors is explained. Furthermore, the general applicability of
the phasor model is shown for other areas including mechanics and musical
instruments. Finally, the future uses of power electronics are suggested.

Numerous studies of the application of phasor transformation to fields other than
power electronics can be found in the literature. It will be challenging to apply the
phasor transformation to quantum mechanics and stochastic processes of signal
processing, work that remains for proactive readers and researchers.



Chapter 13
Phasor Transformers in Power Electronics
and Beyond

As all switch set of a converter is identified as an electronic transformer with a
complex turn-ratio, which is simply referred as ‘phasor transformer’ in this book, it
can be said in general that power electronics deal with phasor transformers. Now
the phasor transformers embrace not only converters, but also controllers, proces-
sors, power systems, and motors. This assertion that ‘power electronics = phasor
transformers’ can be justified by the fundamental fact that “power electronics
processes the power of a system, which results in the changes of amplitude, phase,
and frequency of voltages and currents.” Ideally, there is no power loss in the
general power system, which includes converters, transformers, power lines, and
motors. This means that the output power is ideally the same as input power, and
that ‘the power processor’ is ‘the phasor transformer.’ Of course, this argument is
true for a lossy power system, which results in a ‘lossy’ phasor transformer. DC
converters and DC motors are regarded as special cases of phasor transformers with
the turn-ratio of zero phase at zero frequency.

In this chapter, the applications of phasor transformation to other power elec-
tronics areas except for converters are explained for a few selected issues.

13.1 Complex Controllers and Phasored Signal Processing

A conventional controller in a converter system processes the rare signals coming
from outputs and inputs, as shown in Fig. 13.1a.

In case of AC converters, the signals are of sinusoidal waveform, which must be
transformed to DQ domain if an envelope control of signal is required, as shown in
Fig. 13.2a. If not this case, the abc-to-dq conversion is not needed.

Different from the canonical controller where real variables are used for control,
the new phasored controller uses complex variables for control, as shown in
Fig. 13.1b. In Fig. 13.2, it is assumed that the three phase AC system is balanced,
which means that the phase differences between each phase are the same as each
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other and the magnitude of each voltage or current is also the same. If this is not the
case, one offset term will appear, which will result in three stationary DQ0 vari-
ables. A proportional, integral, and derivative (PID) controller is shown in
Fig. 13.2, as an example. The PID controller is widely used in industry, and one of
the very cumbersome problems with this controller is that two identical PID pro-
cessors must be used to constitute a canonical PID controller. As we change the
gain of one of the D- or Q-PID processor, we must also change the other as follows:

v0d ¼ KPvd þKI

Z t

0

vddtþKD
dvd
dt

; ð13:1aÞ

Fig. 13.1 Comparison of a canonical controller with a phasored controller. a Canonical controller.
b Phasored controller
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v0q ¼ KPvq þKI

Z t

0

vqdtþKD
dvq
dt

: ð13:1bÞ

This inconvenience can be completely removed if a phasored PID controller is
adopted, as shown in Fig. 13.2b. The processing of the complex PID controller
becomes as follows:

vc ¼ KPve þKI

Z t

0

vedtþKD
dve
dt

: ð13:2Þ

Note from (13.2) that the same PID gains of (13.1a, b) are used.
A new aspect to consider is that the phasored controller should be able to

manipulate complex numbers, which is not available in the case of an ordinary
processor but available for a modern signal processor handling complex numbers.

Similarly, any signal processing of AC signals can be done by complex signal
processors, as done by (13.2).

Fig. 13.2 Comparison of a canonical PID controller with a phasored PID controller. a Canonical
controller. b Phasored controller
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13.2 Phasored Power Systems and Motors

AC systems including AC power systems such as AC transmission lines, power
distribution networks, transformers, and motors can be now studied by the phasor
transformation, as shown in Fig. 13.3. A time domain simulation is shown in
Fig. 13.3, where the envelope resembles a first order system, which can be explored
using the equivalent phasored circuit.

As expected from the equivalent circuit, the system order is not necessarily one
but it could be two, though not shown here. Detailed study of this system order
change is left for future works for active readers. It is noteworthy that the system
order is never six, which is the number of energy storage elements of the power
circuit.

As shown in Fig. 13.4, another example is shown for a resonant transformer,
also referred to as a ‘Tesla coil’, which consists of a transformer and capacitors to
have resonance circuits. This circuit is also widely used for wireless power transfer,
where a loose magnetic coupling is often used. As a step input is applied to this
resonant transformer, the dynamic response is quite complicated, but it should be
well controlled to stabilize the overall system, minimizing its overshoot and
dynamic response time. Although not shown here, a phasor circuit for this resonant
transformer is useful for the design of the main circuit and controller.

AC motors such as induction motors and synchronous motors, which are usually
expressed in the DQ domain, can be explicitly described in the phasored domain.

Fig. 13.3 The static and dynamic characteristics of an AC power system (left) can be analyzed by
its equivalent phasor circuit (right). Then, dynamic response can be analyzed (bottom)

242 13 Phasor Transformers in Power Electronics and Beyond



13.3 AC Electronic Filters and RF Circuits

The RF electronic circuit, as shown in Fig. 13.5, can be explored by the phasored
circuit to find the dynamics and static behaviors. By the phasor transformation, the
LC resonant tank becomes 2Cs when it is in parallel resonance, as shown in
Fig. 13.5. If the LC resonant tank is in series resonance, its equivalent circuit
becomes 2Ls. With the help of the phasor transformation, the envelope behavior can
be completely explored. This equivalent phasored circuit can explain an AM
transmitter or receiver, which has a large delayed response when its Q factor is
large. The envelope dynamics can be determined by the circuit, which was
empirically tuned by an engineer. Moreover, FM and PM modulators can also be
studied in this way even though they are of digital signal.

Fig. 13.4 The static and dynamic characteristics of a resonant transformer (top) can be analyzed
by using its equivalent phasor circuit, from which its envelope can be studied (below)

Fig. 13.5 The envelope of an RF electronic filter can be analyzed by its equivalent phasor circuit
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13.4 Phasored Mechanics and Musical Instruments

Because a mechanically vibrating system is analogous with an electric circuit, a
phasor circuit can be useful for analyzing mechanical systems. There are many
mechanical vibrating systems including mechanical resonance in cars, airplanes,
and other machines, and oscillation in acoustic systems and musical instruments.

Furthermore, any oscillations including quantum mechanics can be dealt with
using the phasor transformation to analyze their dynamics, which is left for future
work.
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Chapter 14
The Future of Power Electronics

The future of power electronics is estimated using emerging issues and trends
widely selected from my academic activities. This estimation is, however, not
rigorous but instead some general ideas are offered.

As long as the electronic power switch, i.e., semiconductor switch now, is used
for power processing, power electronics will never disappear as presently defined.
But there will be endless changes in the future of power electronics because
everything changes.

I think that the future of power electronics can be summarized as “NEW FRI”
days, as predicted now.

• “New Advanced Stone Ages”
• “Electrification”
• “Wireless”
• “Filter-less”
• “Renewables”
• “Innovations”

These trends of the future of power electronics can be explained as follows:

“New Advanced Stone Age” will come because of low cost power switches

Because semiconductor power switches used in power electronic systems are very
expensive and vulnerable to various operating conditions, the number and cost of
the power switches are of great concern for the design of a converter. However,
power switches are becoming cheaper and better now, and the restrictions of the
switches in terms of cost, speed, temperature, and size have been significantly
mitigated. In particular, SiC and GaN power switches have reached breakthroughs
in cost and performance, making them viable solutions to many applications which
would not have been possible but for their advent.
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“Electrification” will be accelerated by electric vehicles, batteries, smart grids

More vehicles are electrified now than ever, especially in Japan, Norway, and
China. The rate of new electric vehicles in markets is over 30 % each year in these
countries. Among electric vehicles (EVs), more electrified vehicles such as pure
battery EVs and plug-in hybrid EVs are becoming preferred over less electrified
vehicles such as hybrid EVs. Rechargeable batteries are widely used due to ever
increasing mobile devices. Smart grids are becoming more important as an efficient
way of using electric power. Electrification has changed the world for a century and
will change the future in the 21st century.

“Wireless” will change future life

Wireless power transfer (WPT) is one of the ways of delivering power in general.
Inductive coupling, capacitive coupling, conductive coupling, electromagnetic
wave, sound, and light between a transmitter (Tx) and a few receivers (Rx’s) are
typical methods of WPT. Inductive power transfer (IPT) utilizes inductive coupling
between a Tx and an Rx coils and has become the most widespread power transfer
method, with power rating ranges from a few mW to several MW. WPT will be
crucial for continuous powering or stationary charging to any moveable things such
as mobile devices, electric vehicles, drones, and robots. Together with sensors and
communication technologies, WPT will be one of three key technologies in the
coming internet of things (IoT) and ubiquitous era.

“Filter-less” will cost down power electric systems

As the cost and size of passive filters, i.e., inductors and capacitors, have been of
great concern in power electronics, the switching frequency of converters tends to
increase, which results in an increase of the operating frequency of filters. In this
way the burden of cost and size of filters is mitigated, which is inevitable consid-
ering the expensive materials used for filters such as copper, iron, and scarce
materials. Recently, less-filter, inductor-less, or even filter-less power electronic
systems such as no-dc-link inverters and digital LED drivers have become avail-
able, and this ‘filter-less’ trend will grow in the future.

“Renewables” will continue to grow

Energy will be more important in the future. Due to global warming and air pol-
lution, clean energies such as wind power and solar power together with nuclear
power, tidal power, and earth heat power will play more important roles than fossil
energies such as oil, coal, gas, and waste energies. In particular, wind power and
solar power are attracting more attention from the public and governments even
though their initial cost is high, due to ever improving technologies in power
electronics and material science.

“Innovations” will not stop in the future

Some experts predict the saturation of technology, i.e., the cease of innovation.
However, this will never happen until human beings disappear. The world is not
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perfect and ever changing in time and space. Power electronics is a relatively young
engineering field compared to its ‘mother technologies’ such as electronics and
electrical and mechanical engineering. Due to the high pressure for new research
and developments discussed above, lots of innovations will be made by power
electronics in the future. Ultra high speed and high power density motors and
actuators, digital lighting, long-range and free-space-charging WPTs, wireless IoTs,
electric airplanes, ubiquitous robots, commercially available 50 % efficiency solar
cells, auto-piloted personal electric airplanes, and on-line electric vehicles running
on electrified smart roads are expected in the coming decades.
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