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Preface

This festschrift is devoted to recognize the career of a man who not only witnessed the
growth of operations research from its inception, but also contributed significantly
to this growth. Dr. Salah E. Elmaghraby received his doctorate degree from Cornell
University in 1958, and since then, his scholarly contributions have enriched the
fields of production planning and scheduling and project scheduling. This collection
of papers is contributed in his honor by his students, colleagues, and acquaintances.
It offers a tribute to the inspiration received from his work, and from his guidance
and advice over the years, and recognizes the legacy of his many contributions.

Dr. Elmaghraby is a pioneer in the area of project scheduling (in particular, project
planning and control through network models, for which he coined the term ‘ac-
tivity networks’). In his initial work in this area, he developed an algebra based
on signal flow graphs and semi-Markov processes for analyzing generalized ac-
tivity networks involving activities with probabilistic durations. This work led to
the development of what was later known as the Graphical Evaluation and Review
Technique (GERT), and GERT simulation models. He has made fundamental contri-
butions in determining criticality indices for activities, in developing methodologies
for project compression and time/cost analysis, and in the use of stochastic and
chance-constrained programming and Petri Nets for the analysis of activity net-
works. These contributions have been brought together in a seminal book in this area
entitled, “Activity Networks: Project Planning and Control by Network Models”
published by John Wiley, and a monograph on “Some Network Models in Manage-
ment Science” published by Springer-Verlag. Dr. Elmaghraby also wrote one of the
first books on production planning entitled, “The Design of Production Systems.”

His fundamental contributions to the economic lot scheduling problem (ELSP)
and economic manufacturing quantity (EMQ) analysis are also widely cited.
This work presented a novel methodology using a combination of a dynamic
programming-based model, integer programming, and a method to circumvent in-
feasibility. He later extended this work to include learning and forgetting effects, and
to the computation of power-of-two policies. Dr. Elmaghraby’s extensive work on
a wide range of deterministic and stochastic sequencing and scheduling problems,
arising in different machine environments, has resulted in many landmark contribu-
tions which have advanced this field of study and have strengthened its knowledge
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base. It has offered novel ideas and effective methodologies relying on mathematical
rigor for the solution of these problems.

Dr. Elmaghraby is one of the rare individuals who have excelled both as a re-
searcher and an administrator. He was appointed as University Professor and Director
of the Graduate Program of Operations Research at North Carolina State University
in his early 40’s, and over the years, he directed that program with aplomb without
losing any of his scholarly productivity. That program flourished for all these years
under his leadership, providing a world-class education to its students. His superb
guidance and leadership by example in bringing quality in everything that he does has
been a defining force that has shaped the careers of his students. It is, therefore, not
surprising that, among his numerous awards, Dr. Elmaghraby has been recognized
with the Frank and Lillian Gilbreth Award, the highest and most esteemed honor
bestowed by The Institute of Industrial Engineers on individuals who have distin-
guished themselves through contributions to the welfare of mankind in the field of
industrial engineering.

This volume brings together 14 contributions, which can be viewed under the
following three main themes: operations research and its application in production
planning, project scheduling, and production scheduling, inspired by, and in many
cases based on, Dr. Elmaghraby’s work in these areas. The first five chapters are
devoted to the first theme, followed by four chapters each devoted to the other two,
respectively. An additional chapter is devoted to the vulnerability of multimodal
freight systems.

In the first chapter, “Ubiquitous OR in Production Systems”, Leon McGinnis puts
forth an argument for a paradigm shift in OR education, from the traditional emphasis
on teaching of standalone ‘artisan’ type tools (where each model is developed to
address a specific problem), to a reusable platform that enables their broader and
deeper penetration in a domain. This argument is made in view of the advent of
new computer technologies, and for applications to production systems that are well
understood.

In the second chapter entitled “Integrated Production Planning and Pricing De-
cisions in Congestion-Prone Capacitated Production Systems,” Upasani and Uzsoy
address a production planning problem when the customer demand is sensitive to
delivery lead times. Since the lead times are known to increase nonlinearly with the
utilization of capacitated resources, a large reduction in price may increase demand
to the extent that it can no longer be satisfied in a timely manner by available capacity,
thereby negatively impacting customer satisfaction and future sales. They present an
integrated model for dynamic pricing and production planning for a single product
under workload-dependent lead times, and study interactions among pricing, sales,
and lead times. Their investigation reveals a different behavior of the integrated
model from a conventional model that ignores the congestive effect on resources
because of price variations.

A “Refined EM Method for Solving Linearly Constrained Optimization Prob-
lems” is presented by Yu and Fang in the third chapter. They extend the original
Electromagnetism-like Mechanism (EM) that has been widely used for solving global
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optimization problems with box-constrained variables to solving optimization prob-
lems with linear constraints, and call it a ‘Refined EM Method.” The EM method is a
stochastic search method that uses a functional evaluation at each step, and does not
require any special information or structure about the objective function. The pro-
posed method explicitly considers linear constraints in an efficient manner to direct
sample points to attractive regions of the feasible domain. Results of a computational
investigation are also presented that show the proposed method to outperform known
methods and to converge rapidly to global optimal solutions.

In “The Price of Anarchy for a Network of Queues in Heavy Traffic,” Shaler
Stidham investigates the price of anarchy in a congestive network of facilities in
which the cost functions at the facilities follow the characteristics of the waiting-
time function for a queue with infinite waiting room. Similar to a network of parallel
M/M/I queues, Stidham develops an analytical expression for the price of anarchy
for the GI/GI/I network.

In the fifth chapter entitled, “A Comparative Study of Procedures for the Multi-
nomial Selection Problem,” Tollefson, Goldsman, Kleywegt, and Tovey address the
multinomial selection problem originally formulated by Bechhofer, Elmaghraby,
and Morse (1959), that of determining the number of trials needed to select the best
among a given number of alternatives. The aim is to minimize the expected number
of trials required while exceeding a lower bound on the probability of making the
correct selection. The authors present a comparative study on the performances of
various methods that have been proposed for this problem over the years.

The sixth chapter is entitled, “Vulnerability of Multimodal Freight Systems.”
In this chapter, Aydin and Pulat explore the vulnerability of multimodal freight
transportation infrastructure in the face of extreme disruptive events. The freight
transportation system constitutes a backbone of global economy. This study, mo-
tivated by recent hurricane-related events encountered in the USA, examines the
concepts of vulnerability, reliability, resilience, and risk, and the relationship among
them, for the freight transportation infrastructure, and provides valuable insights on
how vulnerable and resilient the transportation infrastructure is to extreme disruptive
events.

The following two chapters address stochastic project scheduling problems. In,
“Scheduling and Financial Planning in Stochastic Activity Networks,” Dodin and
Elimam analyze the impact of stochastic variations in the renewable and nonrenew-
able resources required by each activity of the project, on project cost and duration.
An analytical approach is used to determine the probability density functions of the
project cost and duration. A linear programming model is used to distribute the re-
sulting project budget over its activities and to minimize the project duration. Willy
Herroelen presents “A Risk Integrated Methodology for Project Planning Under Un-
certainty” in the eight chapter. A two-phase methodology is presented in the face
of the risk of resource breakdown and variability of activity durations. In the first
phase, the number of regular renewable resources to be allocated to the project is de-
termined, and in phase two, first a resource-feasible proactive schedule is constructed,
after which resource and time buffers are inserted to protect it against disruptions.



viii Preface

The schedule is then tested by simulating stochastic disruptions and by appropri-
ately repairing it if it becomes infeasible. This approach provides an implementable
schedule along with a workable reactive schedule procedure that can be invoked in
case it becomes infeasible despite the protection built in it.

In the ninth chapter, entitled, “Dynamic Resource Constrained Multi-Project
Scheduling Problem with Earliness/Tardiness Costs,” Pamay, Bulbul, and Ulusoy
address the problem of scheduling a new arriving project against a set of known re-
newable resources when a number of projects are already in process. The due dates
and earliness/tardiness penalties of the activities of the existing project are known
while the due date of the new project is to be determined, which is accounted for by
assigning a penalty cost per unit time the new project spends in the system. A heuristic
method is proposed to solve large-sized problems, and its efficacy is demonstrated.

“A Multi-Mode Resource-Constrained Project Scheduling Problem Including
Multi-Skill Labor” is discussed by Santos and Tereso in the tenth chapter. Each
activity of the project may require only one unit of a resource type, which can be
utilized at any of its specified levels (called modes) that dictates its operating cost and
duration. The processing time of an activity is given by the maximum of the durations
that result from the different resources allocated to that activity. The objective is to
determine the operating mode of a resource for each activity so as to minimize the
total cost incurred, given a due date as well as a bonus for earliness and penalty cost
for tardiness. A filtered beam method is proposed for the solution of this problem,
and results of its performance are presented.

The last four chapters address production scheduling problems. Allaoui and Art-
iba consider “Hybrid Flow Shop Scheduling with Availability Constraints” in the
eleventh chapter. They assume that a machine is not continuously available, and in-
stead, is subjected to at most one preventive maintenance in a specified time window.
The jobs are non-resumable, and the objective is to minimize the makespan. For a
special case of this problem, with one machine at each stage (the traditional two-
machine flow shop problem), a dynamic programming-based method is presented to
determine an optimal schedule, while for the hybrid flow shop with one machine at
the first stage and m machines at the second stage, a branch-and-bound procedure is
proposed that exploits an effective lower bound.

In the twelfth chapter entitled, “A Probabilistic Characterization of Allocation
Performance in a Worker-Constrained Job Shop,” Lobo, Thoney, Hodgson, King,
and Wilson address a job shop scheduling problem in the presence of dual resource
constraints pertaining to limited availabilities of both machines and workers. The
objective is to minimize maximum lateness. For a given allocation of workers to
the machines, they estimate a distribution of the difference between the maximum
lateness achievable and a lower bound on maximum lateness. Both heuristic methods
for worker allocation and schedule generation as well as a lower bound on maximum
lateness that are used for this investigation are presented in an earlier paper.

McFadden and Yano address a problem on “A Mine Planning Above and Be-
low Ground: Generating a Set of Pareto-Optimal Schedules Considering Risk and
Return” in chapter thirteen. They assume the availability of different methods for
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mining minerals with each method leading to a different profit and risk. They em-
ploy a methodology based on a longest-path network framework to determine mining
plans that give the k best values of expected profit, and integrate it with various mea-
sures of risk to construct a set of Pareto-optimal solutions. The various measures of
risk considered include variance, probability of achieving a specified profit target,
and conditional value-at-risk. The methodology is illustrated using a simple example
with conditional value-at-risk as the risk measure.

In chapter fourteen entitled, “Multiple-Lot Lot Streaming in a Two- stage As-
sembly System,” Yao and Sarin apply lot streaming to a two-stage assembly shop in
which the first stage consists of m parallel machines and the second stage consists
of one assembly machine. Each lot consists of items of a unique product type. A lot-
attached set up time is incurred at the machines at both the stages. For a given number
of sublots of each lot, the problem is to determine sublot sizes and the sequence in
which to process the lots at both the stages so as to minimize the makespan. Although
the problem of scheduling in such a machine environment has been addressed in the
literature, the application of lot streaming to this problem is new. Some structural
properties for the problem are presented, and a branch-and-bound-based method is
applied for its solution. The efficacy of this method is also demonstrated through
computational investigation.

We hope that the contributions in this volume serve to extend the body of
knowledge in the wide range of research areas to which Professor Elmaghraby has
contributed, which we believe is the most appropriate recognition for an outstand-
ing scholar and administrator. The fields of Industrial Engineering and Operations
Research will remain deeply in his debt for many years to come.
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Chapter 1
Introduction: For Daddy

Wedad J. ElImaghraby and Karima N. Radwan

It is hard to write a brief introduction for a man whom you have viewed most of your
life as “part-God”. It is a bit awkward to step back and try to describe him to others.
This is our attempt to do so—to express our love and respect for, quite simply, the
most beautiful man we know, and one we were so fortunate enough to have as our
father.

Since our father’s academic history is clear, we would like to share with you a
little bit about his life before operations research (OR) entered into his life, and then
conclude with a few stories about him that, we believe, clearly illustrate the true
scholar and gentleman he is.

Before Operations Research Our father was born in 1927 in Egypt—he was the
second son out of four children. He lived his early life in Alexandria, briefly fleeing
to Rosetta in World War II (WWII) to escape from Rommel and his army (always the
engineer, even as a child, he built himself a radio with crystals to hear all the news of
the day in WWII). From the stories we heard growing up—it was clear that our father
always had an inquisitive mind and a strong aptitude for studies. When he finished
elementary school, he ranked first in his national exams. One of his best friends was
the son of a Basha (a high ranking military officer) in Egypt and he, unfortunately,
failed his exams. When his friend retook the exams, he managed to pass the second
time around. Proud of his son’s success, the Basha went out and bought his son a
shiny new bike. Our father was excited by this development and shared this with
his own father. He told his father that, since he not only passed his exam, but came
out first amongst his peers, he should not only receive a new bike, but one with all
the bells and whistles that were available on the market. His father, who was a high
school teacher, told him that he was proud of his son for doing well, but he was not
going to buy him anything. The reward is learning and achieving something, and
that is something that stays with you forever.

W. J. Elmaghraby (D<)
Robert H. Smith School of Business, University of Maryland, College Park, USA
e-mail: welmaghr @rhsmith.umd.edu

K. N. Radwan
Northern Virginia Community College, Annandale, USA
e-mail: kelmaghr@hotmail.com

P. S. Pulat et al. (eds.), Essays in Production, Project Planning and Scheduling, 1
International Series in Operations Research & Management Science 200,
DOI 10.1007/978-1-4614-9056-2_1, © Springer Science+Business Media New York 2014
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Our father graduated from high school at the young age of 15 and went to study
Mechanical Engineering at the prestigious Cairo University. His first job upon grad-
uation (at the age of 20) was with the Coca-Cola bottling plant in Cairo. His job was
to help oversee production at the plant. It was an enviable position as an engineer,
and gave him a place of rank within the hierarchical Egyptian society. One day he
was advised by some of the other engineers to eat his lunch in his private office,
and not in full view of the factory workers. They feared that eating in front of the
manual workers would make them jealous and would then bring the evil eye upon
him. Always a man of science, our father listened to their advice and then promptly
moved his desk to the center of the factory floor to dispel any myths about evil eyes.

Although the job at Coca-Cola was prestigious and paid very well, after a short
time, our father did not feel that he was being sufficiently challenged. He applied for
and was awarded a position working for the Egyptian Railroads authority in 1949.
They posted him in the UK to serve as a quality control inspector. At the time, Egypt
was purchasing locomotives from abroad and would send engineers to the respective
producing countries to inspect the production processes. Our father recalls that he
was sent there with a few other engineers who were the “sons of important men”.
While the other young men, excited by their new found freedom away from home,
enjoyed their days in England in ways we might imagine young men would, our father
spent his days in factory floors, taking notes of absolutely everything and sending
back reports to Egypt. His supervisor was surprised by our father’s diligence and
asked why he did not “relax” and enjoy his posting abroad. Our father’s response
was that he was enjoying himself—Ilearning about locomotives, their design and all
of the science that went into their production! His reports back home continued in
a steady manner, and more than once he stopped a shipment of parts back to Egypt
because he did not feel that the work was done well.

When we ask our father about his time there, he says that it was interesting, but
that he never felt happy in the grey, smoggy weather of England. His supervisor
took pity on him and heeded his request for a sunnier climate. He was transferred to
Hungary in 1952. While in Hungary, he saw the effects of the communist revolution
in that country. He attended some of the most beautiful operas and symphonies for
prices next to nothing, but he also saw the demise of the social elite. His doorman
was a Count who had only an elementary school education and therefore was not
qualified to do anything other than the most menial of tasks. While the uneducated
social elite was thrown down the economic ladder, he saw that doctors, engineers,
and scientists, who had been well-educated before the revolution, still continued in
their professions. He says that it was then that he truly understood—your mind is
your most valuable asset, and no one can ever take away your education.

While his family preferred for him to return to Egypt, our father’s quest for
learning drew him to the USA. While working for the Egyptian Railroad Authority,
he had managed to save enough money for a voyage to the USA and one year of
study. Not deterred, he went to Ohio State where he managed to complete both his
course work and write a Masters thesis in one year. Finally, he was accepted into
the PhD program at Cornell University’s Mechanical Engineering department. The
Operations Research and Industrial Engineering (ORIE) department did not exist at
the time!
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After Operations Research Our father’s love of learning and striving for excellence
is palpable and infectious. Possibly, that explains his jump from an Assistant Prof. at
Yale straight to being a University Prof. at NCSU. But more than academic titles, we
believe that it is his commitment to his students and colleagues and the “institution”
of learning that distinguishes him. When we he was brought to NCSU, he was
charged with building an Operations Research department. Part of this is building
the infrastructure—the class lists, the faculty roster, the departmental policies, etc.
But more than this, what our father did was build a community. We remember having
to attend the OR picnics every spring and fall at one of the local parks in Raleigh,
where faculty and students would barbecue and play volleyball together. Then there
would be the dinners that my mother would host for all of the PhD students once
each semester. The students would confess that they would not eat all day for they
knew (or had been told) what feasts awaited them in the Elmaghraby household!
Finally, there was the steady stream of seminar speakers who were picked up by our
father from the airport and brought to our home to join us for dinner. At the time, we
did not know that this was unusual—going “above and beyond” the call of duty. For
us, this was the reality of life—building and sustaining the OR department was part
a huge part of our father’s life, and hence a part of ours.

Over the years, the networks of students and colleagues our father has built con-
tinues strong. Meetings with new PhD students still punctuate his days, occurring
at cafes, in the office, and even at our parents’ home, when a research problem just
could not wait until the doctor’s ordered “2 days of rest” were over. With the “old”
PhD students (now themselves established Associate and Full Professors), he still
searches out opportunities to go visit them for several weeks at a time, wherever they
may be—China, Taiwan, Belgium, France, Morocco, etc. To put this into context,
keep in mind that our father is now 84, and his last secondment to China was last
year. While we are sometimes annoyed that his commitment to his students takes
both him and my mother away from us sometimes for an entire semester (for certain,
our mom would not stay in Raleigh while our dad travels the world—they must go
together!). We understand that he cannot stop, for he loves what he does.

While it is true that the OR department was socially a large part of our lives,
we were lucky enough that our father left most of his talk about “work™ in the
office. While we were never given lectures about Activity Networks or Dynamic
Optimization, we knew that if we asked for some help with our math, our father
was probably going to start by describing the origins of the number zero, or the
beauty of . No topic was safe from our father’s love of math. Once when Karima
asked what the best age was for getting married, our father replied that it was a
nonlinear function. While we laugh about these stories now, we (and many of his
students) know that we were fortunate enough to have been touched by his view of
life and learning. This desire to learn what is new is what prompted him to buy us a
Commodore computer back in 1982 and encourage my sister and I to learn how to
use it. When we asked why, he would reply, “Because, this is the way of the future.
If you do not learn it, you will be left behind.” He would always encourage us, and
everyone around him, to look forward with an open and inquisitive mind.
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We would not want to conclude and have anyone think that our father’s love of
learning was unidimensional, directed only toward math and engineering. While it is
true that Wedad went into IEOR (it is the truth when we say that this was not because
of deep discussion over the topic with our dad; actually, Wedad never much listened to
what our parents had to say and specifically avoided talking about anything serious
like school), Karima decided to pursue cooking and the Classics. When Karima
entered into the University of North Carolina at Chapel Hill and declared that she
wanted to be a Classics major, the Egyptian community in Raleigh was perplexed.
“Why is she doing this? She is a smart girl.” they would ask of our parents. My
father’s response was always the same—“This is what she loves.” When Karima
decided that she wanted to go to cooking school in France, and the snide remarks
surfaced—“Why send her to France - my wife can teach her how to cook and it won’t
cost you anything." Our dad would smile and say “This is what she wants to do. She
is going to study with the best". It is that kind of open-mindedness and appreciation
of all subjects and jobs that makes him a true scholar and a wonderful father.

We would like to conclude with a few favorite sayings of our father:

There are no dull subjects—only dull people. Education—it is the one thing they can never
take away from you. I need to go study for my next exam. Don’t be a jack of all trades and
a master of none. Do what you love and never work a day in your life.

A final note from Wedad I was fortunate enough to go to Cornell for my undergrad-
uate education in ORIE, being taught by some of my father’s former professors and
colleagues, and earn my PhD in IEOR (University of California, Berkeley). From
the very beginning, I would occasionally be approached and asked “Are you related
to the Salah Elmaghraby?” During the first 10 years or so, not knowing much about
my father and the magnitude of his contribution to OR, I would say “Yes - I'm his
daughter” and then be surprised when the person would gush out many accolades
about my father, want to shake my hand, etc. While personally I thought that my
dad was special because he was my dad, I did not quite understand why anyone
else would be excited about knowing him or having met his daughter. It has been
a couple of decades since this started to happen, and I now know how very unique
my father is and why all the fuss. Simply put, my father sincerely loves to connect
with other scholars, is excited by new ideas from a variety of fields, shares his own
selflessly with others, and works tirelessly to accomplish the next goal, whether that
be helping a student find a job, working on a paper, submitting a new grant (yes,
he still submits grants!), writing a book, studying for an exam in a new class he is
auditing (he was still auditing statistics and math classes as a Full Prof.), or hosting
an unknown colleague from abroad coming to visit him merely because the person
asked of him to do so. He gives of himself to others, and because this is rare, it is
noted and appreciated.

For some unexplained reason having to do with the gravitational pull of our
offices, I often find that people do not make an effort to attend a seminar in another
department, let alone another university. It was not so with my dad. I can recall that
when I was visiting Duke, the junior faculty there commented to me that they were
surprised to see my father at some of their seminars. They should not have been. If
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you know him, you know that a drive of 30 min is something he is happy to do in
order to learn what is new. I try to take this lesson to heart and make the effort to do
the same. He has set a very very tough act for me to try follow. I console myself with
the fact that there are few “Salah Elmaghraby” in this world—and I am just lucky
enough to have had him as a role model.



Chapter 2

Ubiquitous Operations Research in Production
Systems

Leon F. McGinnis

Introduction

The contemporary education of an operations research (OR) professional is struc-
tured around an artisanal model of OR practice. We teach the artistic techniques of
the discipline, i.e., the “fundamental methods” of mathematics and mathematical ap-
plications, computational methods and tools, and “genres” of application domains,
such as production, logistics, or health care delivery. We teach the creative part of
the art of OR, i.e., “modeling”—if at all—as a “studio” course; we demonstrate for
the budding OR artisan what it means “to model,” pose them challenges and critique
their work, in the hope that they will acquire that essential esthetic appreciation that
characterizes the master OR artisan. The paradigm we teach is the hand-crafted,
purpose-built model of a specific problem. We send our graduates out into the world
to work as OR professionals have worked for the past 70 years, albeit with an ever-
growing and improving technical toolkit. In practice, our graduates are sometimes
fortunate enough to work in teams with both domain experts and IT experts to build
large scale persistent OR models. These kinds of models are intended to be used rou-
tinely over time, and must accommodate changing instance data. In contemporary
practice, OR professionals have access to very powerful analysis modeling tools, to
IT tools that can harvest data and conform it to our models, to solvers that benefit from
40 years of algorithmic and computational research, and to computing platforms that
accommodate gigabyte databases and teraflop computations.

Over the past three decades, this marriage of OR and IT has enabled our profession
to accomplish some amazing feats in logistics, finance, medical decision making, and
in almost all walks of modern life. One could argue, however, that the penetration of
OR in production systems decision making is a fraction of what it could and should
be, based on the proven results. Successful applications are not replicated nearly as
often as they could be, in large part because of the time and cost for replicating them.
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There is an emerging need, and a burgeoning opportunity, to “industrialize” OR in
production systems. To industrialize OR in production decision making would make
a broad range of “standard” OR applications available to the masses of decision
makers whose decisions could be significantly improved through more and better
OR analysis—much faster and cheaper than is possible today with the conventional
approach to model development. The rapid growth of “business analytics” could be
viewed as one manifestation of this need and opportunity (see, e.g., Kiron, Schockly
et al. 2011) for a recent survey). One contemporary emphasis in business analytics
can be viewed as the “industrialization” of statistical methods and tools to enable
managers to understand and exploit transactional data without the direct involvement
of statistics or IT experts. There is a similar opportunity to industrialize OR methods
and tools to enable better decision making for production systems design, planning,
and control.

The purpose of this chapter is to explore this concept, and in particular, to argue that
methods and tools from computing and software engineering could be used to make
OR applications ubiquitous in production systems. Such a transformation would have
profound impacts on both the decision makers, who would gain access to these OR
tools and methods, and the operations researchers, who develop, implement, and
maintain production system decision support systems.

The chapter starts with perhaps the simplest possible example of an OR application
in production in order to begin to frame the issues, of which knowledge capture
and knowledge management are paramount. This section suggests that there are
multiple categories of models that are important for OR applications in production
systems. Next comes a very high level introduction to the basic concepts of “model-
driven architecture (MDA),” an approach to software engineering that may not be
widely familiar to the OR community. The following two sections describe how
MDA concepts can be used to capture important knowledge, i.e., models, and to
automate the transformation of models of one kind into models of another kind. The
implications of these capabilities are explored briefly, two fundamental intellectual
challenges are identified, and the chapter closes with some concluding thoughts.

No doubt, there are those in the OR community who will question the wisdom of
providing powerful OR analyses to non-OR experts. That question is not the focus
of this chapter and, in any event, will be answered by the non-OR experts who will
decide for themselves whether or not access to powerful OR analyses will be valuable
to them. Rather, the focus here is on the technologies already available to enable the
industrialization of OR for particular domains of application.

OR and Production Knowledge

The native tongue of OR is mathematics. At any OR conference, in any session, on
any topic, the focus of attention is almost invariably on the mathematical formulation
of “the problem” and on the subsequent (mathematical or computational) analysis of
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that formulation. A corollary to this phenomenon is that, almost invariably, the orig-
inal problem stakeholders—those who must make actual decisions about designing
or operating the system being modeled—do not speak mathematics with sufficient
fluency to truly understand what is being presented. The stakeholders have their
own language which is specific to the domain of the problem—a semantic model of
the domain that allows them to organize information about what they observe, and
communicate efficiently among themselves regarding the problems in their domain.

As an illustration, consider one of the most basic OR modeling examples. In the
terms of the stakeholder, the problem is described as follows. A firm has warehouses
in 10 cities, each containing a known inventory of a popular product. The firm has
orders from 50 customers, scattered around the country, and must decide how to
allocate the available inventories to the customer orders in hand. A reasonable way
to make the allocation is to seek the largest net profit, considering the price to be
charged to each customer, the cost to deliver the product to the customer, and the
cost of the product in the warehouse.

The OR instructor, presenting this problem in an introductory course, will draw a
network (perhaps even pointing out that it is a directed bipartite graph) to illustrate
the connections between warehouses and customers. Then, perhaps implicitly, the
instructor will make some associations, which often is referred to as “representing
the problem mathematically’:

Warehouse index, i =1, ..., 10

Cost per unit in the warehouse, ¢;,i = 1, ..., 10

Supply at the warehouse, s;, 7, ..., 10

Customer index, j =1, ...,50

Customer demand, d;, j =1, ... ,50

Price to customer, p;,j =1, ...,50

Transport cost per unit between warehouse and customer, #;,i=1,...,10,
j=1,...,50

Shipment from warehouse i to customer j, x;,i=1,...,10, j=1,...,50

Finally, the instructor will write out “the problem” using the usual linear program-
ming (LP) formulation of the classical transportation problem as shown in Fig. 2.1.
From this point forward, the discussion will be focused on this formulation, this
mathematical statement of an analysis which is intended to indicate what the best
decisions would be, i.e., the optimal values of the flow variables.

Once students are comfortable with the mathematical formulation, the discus-
sion will then turn to how to actually solve the problem. At this point, students
are introduced to a modeling language, which will allow them to prepare the in-
put necessary for some open source or commercial solver. For example, AMPL
(“A Mathematical Programming Language,” http://www.ampl.com/) might be used
to create a computational model of the form shown in Fig. 2.2.

Typically, the decision maker will not directly comprehend the models illustrated
in either Fig. 2.1 or 2.2, although in this simple case, the OR analyst can make
a direct translation to the domain semantics. The decision variables correspond to
allocations, the constraints correspond to conservation relationships, etc. In more
complex scenarios, such a translation may not be so easy.
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Fig. 2.1 Transportation 10 50
problem formulation
max P = ZZ[p] ¢ — U]xij
i=1j=1
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This simple example illustrates a fundamental aspect of OR-based decision sup-
port, namely that there are three important, related but distinct kinds of knowledge
involved. The first is domain knowledge, which is common to the stakeholders in the
domain (though sometimes tacit rather than explicit) and which has its own semantics
(warehouse, customer, product, shipment, etc). The second is analysis knowledge,
or knowledge of a particular analysis, which could be used to support a particular
decision in the domain (the LP formulation of the transportation problem) which has
its own (mathematical) semantics and syntax, along with, perhaps, knowledge of a
particular computational modeling language, and even a particular solver. The third
is the modeling knowledge that enables the translation of a problem from its domain
semantics into the semantics and syntax of a particular OR analysis, considering
the limitations of the analytic model. Each category of knowledge is essential for
a successful OR decision support project, and each presents its own challenges for
knowledge capture and reuse.

Domain knowledge is rarely formalized; in fact it is a common problem to find that
different companies in the same industry will use different terms for the same concept,
or the same term for different concepts. The standards that have been developed tend
to be either very generic and high level (like the supply chain operations reference
(SCOR) model for supply chains (Huan et al., 2004)) or focused on information tech-
nology (like Business Process Model and Notation (BPMN, http://www.bpmn.org/)
or ISA-95 (http://www.isa-95.com/). There have been some research publications
on the use of ontologies, e.g., in material handling (Libert and ten Hompel 2011),
manufacturing (Jiang et al., 2010), production (Chungoora et al., 2011), but to date,
there is not a commonly used, agreed-upon production system ontology. Thus, do-
main knowledge in production systems remains largely ad hoc, making it difficult to
reuse, to teach, or to learn.

This stands in sharp contrast to analysis knowledge, which ultimately is expressed
in very precise and canonical mathematical forms and in analysis-specific modeling.
This knowledge typically is gained through the student’s exposure to the canonical
mathematical formulations and particular modeling languages, and by their cre-
ating formulations and using the modeling languages for homework and projects;
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set SOURCE; # sources
set DEST; # destinations

param supply {SOURCE} >=0; # amounts available at sources
param demand {DEST} >=0; # amounts required at destinations

check: sum {i in SOURCE} supply[i] = sum {j in DEST} demand[j];

param cost {SOURCE,DEST} >=0; # shipment costs per unit
var Trans {SOURCE,DEST} >=0; # units to be shipped

minimizetotal_cost:
sum {i in SOURCE, j in DEST} cost[i,j] * Trans][i,j];

subject to Supply {i in SOURCE}:
sum {j in DEST} Trans]i,j] = supply[il;

subject to Demand {j in DEST}:
sum {i in SOURCE} Transli,j] = demand][j];

Fig. 2.2 AMPL model for transportation problem formulation

it is refined and deepened through practice in application. Analysis methods are
largely mathematical and thus, by their nature, somewhat formalized. The corre-
sponding modeling languages make it relatively easy to create, archive, teach, and
learn particular modeling applications and “tricks.”

This difference between domain knowledge and analysis knowledge leads to what
might be called a “semantic gap” that is a key issue in the practice of OR in pro-
duction systems. The OR models and OR methods invariably rely on the semantics
of mathematics and particular mathematical methods and may be influenced by the
analysis modeling language and even the solver to be used, while the stakeholders
invariably rely on the semantics of their domain and frequently find themselves in-
capable of directly evaluating the fidelity between the model developed by the OR
analyst and the domain problem as they understand it.

Thus, the contemporary practice of OR in production systems requires the OR an-
alyst or team to bridge this gap by using, and often creating, “modeling knowledge” to
translate between the (natural) language of the stakeholders and the (formal) language
of OR. The translation from “problem” to “formulation” tends to require significant
investment of time for both analysts and stakeholders, is subject to interpretation
errors, and is usually static, i.e., the resulting models may not accommodate changes
in the modeled system. The translation from analytic results back to the stakeholder
decision space also is largely the responsibility of the analysts, and likewise may be
subject to interpretation errors. The test of analysis model fidelity often is simply
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whether or not the analysis results “make sense” when viewed in light of the prior
experience of the domain stakeholders.

It is safe to say that this modeling knowledge is the least codified of the three
kinds of knowledge needed for OR-based decision support of production systems
decision making. In fact, OR faculty have struggled, almost from the emergence of
OR as a discipline, to discover an effective way for students to learn “how to model,”
which almost always means “how to extract a mathematical model of a process or
decision from a somewhat ambiguous domain-specific problem description.”

In the simple transportation problem illustration given above, the semantic gap
is small and, one would hope, presents no great challenge to either the domain
stakeholder or the OR analyst. Likewise, the modeling process itself seems straight-
forward, once illustrated. In more complex scenarios, the semantic gap becomes a
larger problem, as does the challenge of modeling. For example, the creation of large
scale optimization or simulation models to support the design and management of
global logistics systems involves translating relatively arcane considerations, such
as local content requirements, or export/import duties into precise mathematical re-
lationships. Similarly, the development of large scale optimization models to design
radiation therapies also involves translating what may be known with some ambiguity
about the effects of radiation into a precise mathematical structure.

One contemporary approach to bridging the semantic gap is to create “paramet-
ric” analysis models which can accommodate any instance data conforming to the
parametric definitions. For our simple example, this would give the decision maker
the ability to specify the warehouses and customers, perhaps extracting the supplies,
demands, and transport costs from appropriate data sources. This is an important
step toward ubiquitous OR, but it obscures rather than resolves the semantic gap.
Bridging the semantic gap still requires tacit knowledge that is not captured in a
form that is transferable, reusable, teachable, and deployable. Moreover, the domain
knowledge is encoded in the specification of the parametric data for the optimization
formulation. In this form, the specification of the domain knowledge will be of lim-
ited value in supporting other relevant decision support models, such as simulation
or risk analysis.

Effectively managing and exploiting these three kinds of knowledge—domain,
analysis, and modeling—is the key to achieving a broader and deeper penetration of
OR in production system decision making. This knowledge management problem
has two fundamental challenges:

* How to capture each kind of knowledge in a form that is transferable, reusable,
teachable, and deployable

¢ How to make the three kinds of knowledge interoperable, i.e., how to use
modeling knowledge to support the transformation from instances of domain
models—created using domain knowledge—to instances of analysis models in
an appropriate computational form

In this regard, there is much to be learned from the experience of the software
engineering community about knowledge representation and model transformation.
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Model-driven Architecture

Until recently, software development has also been a largely artisanal activity. The
image of the “hacker” is iconic in modern society—the idiosyncratic individual who
can understand the nature of the needed computation, and craft an elegant code to
make it possible. The limitation of the hacker model is the realized mismatch be-
tween the supply of hackers and the demands for software in modern society. The
response of the software engineering community has been to “industrialize” the pro-
duction of well-understood software applications (see, e.g., the evolution of BPMN
(White 2006)). This industrialization is being accomplished by an evolving suite of
theories, tools, and methods that permit individuals with less than “true hacker” cre-
dentials to create satisfactory implementations of the needed software. The essential
nature of these tools and methods is that they capture both domain and software
engineering knowledge in a form that is transferable, reusable, teachable, and de-
ployable. The resulting “industrialization” of the artisanal software process is aptly
captured in the term “software factories” (anonymous 2012a).

This movement in software engineering has been called “model-driven archi-
tecture” (MDA) (http://www.omg.org/mda/) or “model-driven engineering” (see,
e.g., Meyers and Vangheluwe 2011). The fundamental enablers of MDA are for-
mal modeling languages and model transformation theories and tools. The Unified
Modeling Language (UML) (http://www.uml.org/) has evolved over the past 20 years
to dominate modeling in the software engineering process. Emerging tools like the
Object Management Group’s (OMG) Query/View/Transformation (QVT) standard
(http://en.wikipedia.org/wiki/QVT) enable the computational transformation of a
model created with one language (syntax and semantics) to a model expressed in a
different language. For example, the source model could be a UML-based descrip-
tion of a business process, and the target model could be the Java code necessary to
provide the computational implementation of the business process.

Within systems engineering there is a growing community of researchers and
practitioners who are adapting the tools and methods of MDA to systems engineer-
ing, calling it “model- based systems engineering” or MBSE (Ramos, et al., 2011).
The language used most often in this community is OMG’s Systems Modeling Lan-
guage (OMG SysML™ ), which is an extension of UML to expand its modeling
capabilities beyond software systems to address hardware, people, requirements,
and parametric relationships (http://omgsysml.org/). A great deal of effort is being
directed to understanding how to use SysML to model large scale, complex systems,
incorporating multiple (discipline-specific) views, and integrating multiple analysis
tools (Peak et al., 2009).

The approaches and experiences of MBSE present the OR community with two
tantalizing opportunities. The first opportunity arises in situations where much is
already known about using OR to answer particular kinds of questions in a particular
domain, e.g., cycle time estimation in electronics manufacturing, production schedul-
ing in aircraft assembly, or vehicle routing in package delivery. The opportunity is to
package that knowledge together with a formal semantic model of the domain, and
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deliver to domain stakeholders the capability to describe their problem—in its own
terms, which they already understand—and get immediate and transparent access to
appropriate OR analyses, without the direct intervention of an OR analyst. Simply
put, the opportunity is to capture what we already know, and make it transferable,
reusable, teachable, and deployable. Given the enormous collective repertoire of
models and analyses, this is an opportunity to increase the reach and penetration of
OR manyfold. Moreover, if both domain and OR knowledge are captured in formal
semantics, they become much more easily taught and learned.

The second opportunity is to leverage the first opportunity to accelerate the cre-
ation of new and valuable OR-based knowledge, and its conversion to a transferable,
reusable, teachable, and deployable form. If they are based on formal languages,
domain-specific semantics can be elaborated to account for newly recognized prob-
lem domain elements or factors. New OR analyses, or enhancements to existing
analyses could be more rapidly deployed by elaborating an existing infrastructure of
domain specific languages and integrated OR analyses.

Formal Language and Knowledge Capture

The goal of capturing knowledge in a form that that is transferable, reusable, teach-
able, and deployable requires making knowledge explicit. Over the past 20 years,
there has been a great deal of interest in methods to accomplish this, particularly in
the context of information systems and the Internet. For example Vernadet (2007) has
suggested the construction of ontologies as a way to achieve information systems in-
teroperability through the use of metadata repositories. In the computing community,
“ontology” usually implies the formal definition of classes representing concepts in a
domain, properties of the classes representing features and attributes of the concept,
and possibly restrictions on the properties (Dieng 2000). The ontology, together with
instances of its classes, will constitute a “knowledge base.” In this form, a knowledge
base is machine readable, and can be manipulated using software.

There are many computational tools for authoring, editing, and visualiz-
ing ontologies (see, e.g., the techwiki page http://techwiki.openstructs.org/index.
php/Ontology_Tools). However, these tools tend to be somewhat arcane and are
often not easily accessible by application domain experts. A different strategy de-
veloped in the software engineering community and currently gaining traction in
the systems engineering community is to create domain-specific languages (DSLs)
that conform to a domain-specific ontology and thus are easier for domain experts
to understand and use.

The language most commonly used by software engineers in the design of software
applications is UML (http://www.uml.org/). UML is a graphical, object-oriented
modeling language based on 13 diagram types which provide semantics for mod-
eling application architecture, structure, and behavior, as well as business process
flows, database, and message structure. A standards-based implementation of UML
will include capabilities for elaborating the semantics, e.g., by further refining the
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definition of generic objects or by adding new diagram types. For example, a generic
object named “class” might be used to define new objects that are special kinds of
“class,” such as “machine_tool” or “transport_vehicle.” These new objects might
then be used by a domain expert to describe a particular application.

In 2007, OMG published a standard for a new modeling language, OMG
SysML™, which is based on a subset of UML, and adds new diagram types specifi-
cally to support the modeling of complex systems incorporating software, hardware,
and people (http://omgsysml.org/). A derivative of UML, SysML also is object-
oriented and graphical. SysML supports the modeling of systems from multiple
perspectives in a unified manner (Peak et al., 2009). It is a very expressive language
for system modeling because it integrates the representation of structure (classes
and the multiple kinds of relationships among them) and behavior (activities, state
machines, and the sequence and timing of interactions among blocks).

Despite the relatively recent emergence of SysML, there have been a num-
ber of examples of its use in manufacturing (Huang et al., 2008; Batarseh
et al., 2012), and supply chains (Thiers and McGinnis 2011; Ehm et al., 2011).
Modeling an electronics assembly operation is described in Batarseh and McGinnis
(2012), where the goal is to significantly reduce the time and cost of developing
simulation models used to support production program planning.

In the system studied in Batarseh and McGinnis (2012), the assembly process
starts with populated circuit card assemblies, to which hardware, such as connec-
tors, will be assembled, and conformal coatings will be applied. The cards are then
assembled into a chassis and additional coatings may be applied. Because the prod-
ucts have very high reliability requirements and may operate in extreme conditions, a
large amount of testing is required, leading to significant amounts of rework. SysML
was used to capture the semantics of the production process. Figure 2.3 summarizes
the result. It illustrates the use of the “stereotype” facility of SysML to define new
modeling concepts, e.g., refining “class” to specify a set of resource types, each with
its own particular set of attributes. Specific instances of each resource type can be
defined and stored in a library for ease of reuse. The stereotype facility also was
used to define “part” and “final product” so that bills of materials could be created,
and production schedules or requirements could be associated with final products.
Finally, the types of processes required to produce a product were specified as stereo-
types of the SysML “call action” object, and each different process type was given
a set of appropriate attributes.

The domain expert would use these stereotyped objects, and perhaps libraries
of their instances, to create both a bill of materials and a process plan for each
subassembly and final assembly. A simple bill of materials is illustrated in Fig. 2.4 and
a simple process plan in Fig. 2.5. These examples illustrate how the expressiveness
of SysML can be exploited to create a graphical DSL that is easily accessible by the
domain experts.

In this approach, two kinds of domain knowledge are captured in two distinct
phases. First, the generic knowledge, the domain semantics, is captured using the
stereotyping facility of SysML. This requires collaboration between domain experts
and SysML modeling experts. In the second phase, the “use phase,” the domain
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Fig. 2.3 Example of domain specific language semantics. a Resource semantics. b Product
semantics. ¢ Manufacturing processes semantics

specific language is used to capture knowledge of a particular application. One might
reasonably ask, “how is this different from the usual OR study approach, where the
OR analyst team works with domain experts to create the OR model?”

The difference, in fact, is quite significant. In the conventional approach, the
knowledge captured about the domain is encoded in the OR model, severely limiting
the opportunity to reuse this knowledge or to share it with other analysts. In particular,
it makes it very difficult to reuse the knowledge for a different kind of analysis. For
example, if the initial analysis used an optimization model, e.g., to establish capacity
levels, a subsequent model using simulation, e.g., to size work-in-process buffers,
would not be able to reuse the knowledge in a straightforward manner. With a DSL,
reusable knowledge is captured both in the language itself, and possibly in every use
of the language, as new information is added to libraries of similar objects.
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Using SysML to create domain specific languages for well-understood problems
appears to be a very tractable strategy. To understand how the other two kinds of
knowledge—analysis knowledge and modeling knowledge—would be captured, it
is important to understand some other aspects of the MDA approach

Meta-object Facility and Model Transformation

OMG has developed the Meta-Object Facility (MOF), “as an extensible model-
driven integration framework for defining, manipulating and integrating metadata
and data in a platform-independent manner” (http://www.omg.org/technology/
documents/modeling_-spec_catalog.htm#MOF). In the MOF context, models ex-
pressed in a MOF-conforming language are simply data, to be authored, edited,
viewed, manipulated, and exchanged between software systems. Metadata are “data
about data,” which can provide information about the structure of the data, and also
important information about the data themselves, such as when they were created,
by whom, etc.

MOF can be described in terms of both languages and models. The MOF architec-
ture consists of four levels, with the highest level, M3 representing the most abstract
language or model, and the lowest level, MO, representing an instance of a model,
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Fig. 2.6 Example of OMG modeling hierarchy

or a specific “expression” in some language. At level M3 is the meta-language (or
meta-meta-model) which is used to define languages; often this meta-language also
is referred to as “MOF.” In MOF, this meta-language is used to define a number
of specific languages, such as UML (for software system design), Common Ware-
house Metamodel (CWM, for data warehousing) and SysML (for systems modeling),
among others (see http://www.omg.org/technology/documents-/index.htm for a list
of OMG technologies). Figure 2.6 from Kwon (2011) illustrates the OMG modeling
hierarchy in the context of a DSL for production.

In Fig. 2.6, M3 contains the fundamental modeling constructs of the meta-
language, e.g., the concept of “class.” M2 corresponds to a specific language, such
as SysML; in SysML the meta-language is used to refine the concept “class” by
creating two new concepts, “block” and “property,” where a property is a “part
of” a block. The “part of” relationship used in M2 also is defined using the meta-
language, although this is not shown in the figure. In the M1 level of the hierarchy,
the M2 language, e.g., SysML, is used to describe a particular domain, by defin-
ing categories of “block” which have domain specific semantics, e.g., “machine”
and “material handling,” and each of these new kinds of blocks has particular kinds
of properties. It is at the M1 level that a “language” of production is created, and
thus it could be said that SysML is the “meta-language” for this domain-specific
“production language.” Finally, at the MO level, a description of a specific factory
contains instances of the machine and material-handling blocks, representing partic-
ular machines and material-handling resources in the particular factory. The “part of”
relationship between a block and its properties is shown explicitly in M2, but implic-
itly in M1 and MO by containing the properties within the owning block. Note that in
Fig. 2.6, each level is characterized in terms of “models,” where MO corresponds to an
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“instance model” and M3 corresponds to a “meta-meta-model.” It is generally as-
sumed that four levels of modeling hierarchy are sufficient, where the top two levels
are “standard” languages (or models, if one prefers) and the bottom two levels are
the application of those standards to a particular problem domain. For the example of
electronics assembly presented in Figs. 2.3, 2.4, and 2.5, Fig. 2.3 would correspond
to a “user model” or DSL at M1, and the specific model constructed with that DSL,
shown in Figs. 2.4 and 2.5, would correspond to MO.

The OMG modeling hierarchy is a powerful approach for capturing domain se-
mantics in a way that is accessible by the domain experts because the domain specific
language—the “user model” at M1 in Fig. 2.6—can employ the semantics that are
familiar to the domain expert. At the same time, because the user model conforms
to the meta-model, which conforms to the meta-meta model, the instance models
created with this DSL are easily manipulated using appropriate software tools for
model transformation.

In fact, this is the true power of the MDA approach—given two languages, both
conforming to the MOF hierarchy (i.e., both conforming to the meta-language), and
both capable of expressing a view of a particular system, then, under certain con-
ditions, it is possible to define a mapping between the two languages, and use that
mapping to transform an instance model in one language to an instance model in an-
other language. The classic example in MDA is the description of a business process
stated using BPMN, see http://www.omg.org/spec/BPMN/2.0/) and the transforma-
tion from BPMN to, say, Java to create the source code for the application software
required to implement the business process.

In adapting these concepts to production systems decision support, the goal is
to translate an instance of a production system model, expressed in a DSL derived
from SysML, into an instance of an analysis model, expressed in some appropriate
modeling language. For this to be possible, the information contained in the source
and target meta-models must be sufficient to allow the definition of a set of rules for
mapping from the source meta-model to the target meta-model that, when applied to
the source instance model, will translate it into the desired target instance model. In
other words, between the source and target meta-model and the mapping rules, all
the knowledge needed to create a target instance model is captured in a formal way.

To support this idea of model transformation, OMG has specified a set of lan-
guages, referred to collectively as QVT (see http://en.wikipedia.org/wiki/QVT for
a good overview) for creating and executing mappings between MOF-compliant
models. The essence of the model transformation process is illustrated in Fig. 2.7,
which identifies seven distinct models. In the electronics assembly example given
earlier, the source model, which conforms to a source meta-model, which conforms
to the meta-meta-model, would be the instance model created using the DSL (a cus-
tomization of SysML), which conforms to MOF. The target model might be, e.g., a
simulation model, which conforms to its meta-model, which conforms to MOF. The
sixth model is the meta-model for transformation rules, which also conforms to MOF.
The final model is the model specifying the particular transformation rules, which
conforms to its meta-model and which references the source and target meta-models.



2 Ubiquitous Operations Research in Production Systems 21

Meta-meta-model

£108 Coy
ko nf,
s Orm, 5

conforms

Source Meta-model Transformation Target Meta-model
A Meta-model A
o

]
&
&
conforms &
2
3

3
'a')u""a;e
5

conforms
conforms

Transformation
Rules
A

executes
1

Source Model - = = = Transformation | = = | Target Model

Fig. 2.7 Model transformation

Of course, to implement the process illustrated in Fig. 2.7, a computational tool
(labeled “Transformation” in Fig. 2.7) is required, which will take as input the
source model, the source meta-model, the transformation rules model, and the tar-
get meta-model, and using these inputs will create the target model. This is an area
of active development, but there are available open-source tools, such as the Atlas
Transformation Language (ATL) (http://www.eclipse.org/atl/).

The study described in Batarseh and McGinnis (2012) demonstrates that the MDA
approach can be adapted to support OR modeling in production systems. In their
study, the target model was an Arena™ simulation. The Access™ database model
export/import facility of Arena was used as a proxy for Arena, and MOF was used
to create a meta-model for the corresponding data schema. A transformation script
was developed, which enabled the transformation of production system models cre-
ated with the DSL into Access databases, which then were imported into Arena for
analysis. The process was extensively tested in an industry setting, and the impact on
“typical” simulation studies has been a reduction from about 200 person hours for
developing and running simulations in the conventional approach to about 20 person

hours using the DSL and model transformation approach.

Ubiquity of Models and Modeling

Models and modeling are ubiquitous in any application of OR. In a particular ap-
plication, there will be models of the question to be answered or the problem to
be solved, models of the analysis that supports answering the question or solving
the problem, and models of the computation needed to support the analysis. As dis-
cussed above, there can be models of the relationships between models. Each of
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these models may be explicit or implicit. An example of an explicit model is the
mathematical formulation given in Fig. 2.1, or the SysML-based model of a process
plan in Fig. 2.5. The semantics of the domain is often an implicit model, or at best,
partially explicit, e.g., through the use of a list of terminology. The model of the
relationship between the domain semantic model and the explicit analysis model is
almost always completely implicit, i.e., it remains the personal knowledge of the
analyst/modeler. The knowledge contained in implicit models is very difficult to
share and impossible to archive. In MDA or MBSE, the implicit knowledge that is
critical in creating solutions is made explicit, whether the solutions are Java codes
for implementing business processes, or OR-based decision support models.

MDA and MBSE go beyond simply making modeling knowledge explicit, which
could be done using documents. MDA and MBSE make the explicit modeling knowl-
edge formal, in the sense that it is computer readable, but also conforms to a formal
syntax and semantics, so that it can be algorithmically manipulated. Capturing mod-
eling knowledge explicitly and formally is the key to making OR ubiquitous, i.e.,
making OR-based decision support available, on-demand, to domain stakeholders
and decision makers. This is because doing so means that the formerly labor-intensive
task of using implicit knowledge to translate between implicitly known domain
models and explicit formal analysis models can be replaced by a much simpler
process of explicitly describing the domain problem and automating the creation of
the corresponding analysis model using explicit modeling knowledge.

In some ways, the application of MDA and MBSE to OR-based decision support
in production may be the next phase in the natural evolution of the field. If anal-
ysis modeling languages like AMPL are seen as corresponding to third-generation
programming languages, then the integration of a production DSL, model trans-
formation, and target analysis model solver could be seen as corresponding to a
fourth-generation programming language (see http://en.wikipedia.org/wiki/Fourth-
generation_programming_language and the links there for a discussion of program-
ming language generations).

Implications

The adaptation of MDA/MBSE in the deployment of OR models to support pro-
duction system decision makers has significant implications for the curriculum of
OR and production systems, for the way OR-based decision support is deployed in
routine applications, and for the nature of research addressing decision support in
production systems.

Today, the typical curriculum content addressing OR in production systems comes
in two primary forms. Analysis content addresses the canonical analysis formulations
and analysis methodologies, e.g., linear optimization, the simplex method, and a
modeling language/solver like AMPL/CPLEX, or Monte Carlo sampling, discrete
event simulation, and modelers/solvers like Arena or AnyLogic. Domain content
for applications in significant areas of practice, such as supply chain engineering,
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humanitarian logistics, finance, or health care delivery is addressed informally by
defining terms, often through examples, and perhaps presenting mini-case studies.
If we recognize modeling per se as a category of knowledge that can be captured
and deployed in routine applications, the curriculum will need to change to reflect
the tools and methods required and the growing archive of modeling knowledge.

Faculty and students who choose the path of modeling as their area of expertise will
need to become conversant with formal languages and model transformation theories,
as well as with tools for creating and deploying DSLs and model transformations.
Just as today we see deep mathematical results contributing to the advance of the
field, in the future we will see deep theoretical results from linguistics and computer
science enhancing our ability to create and deploy powerful solutions.

Figures 2.8 and 2.9 illustrate key aspects of how OR-based decision support sys-
tems will be deployed in the future for routine applications. Off-line, as a foundational
activity, OR modeling experts will collaborate with domain experts to capture knowl-
edge about the domain, first as informal semantic models, perhaps using SysML,
and then as meta-models. This process can be iterative, and it can proceed by first
capturing a basic description of the domain and subsequently elaborating the de-
scription, adding new aspects of the domain as they become recognized as important
and valuable to include.
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Similarly, modeling experts will work with analysis experts to capture knowledge
about the kinds of analyses that would be valuable to domain stakeholders as they
make important decisions. This knowledge also might be captured initially using
SysML and then captured formally as meta-models. Again, this knowledge capture
can be iterative, continuously improving the range and scope of the analyses available
to the domain stakeholders. Finally, the modeling expert will work to create the
mapping rules relating the domain meta-model to each of the relevant analysis meta-
models. This work also may require collaboration with both domain and analysis
experts.

Perhaps most important is that the process in Fig. 2.8 is not a one-time process
with a single result. Rather, the knowledge captured in this process can be con-
tinuously refined and extended, thus continuously expanding the scope of “routine
applications.”

Figure 2.9 illustrates how MDA/MBSE would impact the actual use of OR-based
decision support. In general, there will be multiple stakeholders/decision makers for
any production system. Using the DSL for the production system, a domain expert
(who also could be a decision maker) will create the formal model that reflects
the problem aspects important to the collection of decision makers. The knowledge
captured in the off-line activities of Fig. 2.8 will then be used to generate specific
analysis models which provide information or guidance to the decision makers.

The process described in Fig. 2.9 will require not only capabilities for generating
instances of appropriate decision support models, but also user interface and data
validation capabilities. The rapidly developing field of “analytics” will provide many
of the necessary data validation capabilities.
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Note that the product of the activities illustrated in Fig. 2.8 is a new archive of
knowledge, much of which could be integrated into the traditional curriculum. Fur-
thermore, as tools become available for performing the activities of Fig. 2.9, these
tools also could be integrated into the curriculum, much as are the contemporary
analysis modeling tools like AMPL or Arena. As the knowledge and tools are in-
tegrated into the curriculum, much more realistic domain problems, such as global
supply chains, distribution networks, etc., also can be integrated into the curricu-
lum, giving students much more realistic case problems, and the opportunity to gain
broader insights than is currently practical.

Finally, there are implications for research on OR-based decision support in pro-
duction systems. Creating the canonical model for a domain of practice, such as
supply chains, finance, health care delivery, or manufacturing, is a task whose dif-
ficulty can hardly be overstated. Such a canonical model must address at least three
related aspects of the domain:

e Structure, i.e., the relevant resources and actors (including the external environ-
ment or boundary conditions), and the relationships among them

¢ Behavior, i.e., the ways in which the states of structural components can change
and how structural components interact

e Control, i.e., how stakeholders in the domain can or should attempt to achieve a
particular trajectory of state changes

Moreover, the canonical model should accommodate the (frequently conflicting)
viewpoints of the key domain stakeholders, and should enable the specification
of instance models containing all the source information that would be needed to
populate the intended target decision support models.

These canonical models will only result from great creativity on the part of teams
of researchers, applying knowledge of both the domain and the relevant decision
support analyses, and using appropriate modeling languages. This represents a kind
of research which is very different from what one might find today in the journals
that publish production systems research, but which is clearly of great archival value
to the field.

In a similar way, creating the analysis meta-models and the transformation rules
also presents daunting challenges. Many decision support models share a “core
formulation,” on which variations are developed, and it would seem to be desirable
to have a “core meta-model” for the associated analysis, which could be further
refined for the variations. Contemporary research, on the other hand, tends to treat
each formulation as a distinct entity, without reliance on any other formulation, so
there is considerable intellectual work simply to establish an appropriate modeling
framework within which the core meta-model and its variations could be constructed.

Just as there may be families of decision support meta-models, there may be
corresponding families of transformation rule models. In fact, a major research
opportunity is simply to better understand the model transformation process in this
context, and to begin to “engineer” transformation solutions.
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Two Fundamental Intellectual Challenges

The famous statistician George E. P. Box wrote that “essentially, all models are
wrong, but some are useful” (Box and Draper, 2012). Among the most fundamental
questions in science and engineering are those whose answers improve the repertoire
of useful models we have at our disposal for helping us to understand both natural
and man-made phenomena and to aid us in harnessing these phenomena for use-
ful purposes. The history of particle physics aptly illustrates the process of asking
and answering fundamental questions: Prout’s concept of the proton (Prout 1815)
was “proven” by Rutherford’s discovery in 1917 (Rutherford 1919); Gell-Mann and
Zweig independently conjectured that the proton was really made up from other par-
ticles (http://en.wikipedia.org/wiki/Quark), and those particles were subsequently
observed at the Stanford Linear Accelerator (Bloom et al., 1969). The models of
protons, quarks, and all the other subatomic particles are part of a larger search
for fundamental knowledge about the physical universe. New models emerged from
the investigation of older models, or as very different alternative explanations of
phenomena. Importantly, the models in particle physics are formal models whose
semantics are well documented and universally used within the research community.

The kind of deep knowledge of the physical universe represented by models in
particle physics is essential to the invention, development, and application of new
materials and processes that enable our modern way of life, from the biology and
chemistry of food crops, to the synthesis of materials for clothing and shelter, to the
production and distribution of energy. All these materials and processes result from
understanding and manipulating physical processes.

Production systems, of course, depend also upon deep knowledge of the physical
universe. But production systems are, themselves, an artificial construct, in the sense
that their configuration and the rules by which they operate, while conforming to the
laws of physics, cannot be explained purely in terms of physical phenomena—they
also have a significant artificial component, which results from the decisions made
by their stakeholders.

In order for OR to become ubiquitous in the support of production system de-
cision making, it is necessary that our knowledge of production systems becomes
formalized, in much the same way that the knowledge of particle physics has become
formalized. So a fundamental question is simply this: “What do we know about pro-
duction systems qua production systems, and how do we know it?”” This is a question
about the models in which we encode what we know about production systems, and
today it would be a very difficult question to answer because there is not a common
semantic model that is used by researchers and practitioners in the field of production
systems. The development, dissemination, maintenance, and use of such a common
semantic model collectively represent a fundamental challenge. One might think of
this as the “science” of production systems decision support.

It is not enough to create a common semantic model of what is known about
production systems. In order for OR to become ubiquitous in production system de-
cision support; this knowledge of production systems must also be made actionable.
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A central component in making this knowledge actionable is combining it with
modeling knowledge in order to automate the creation of decision support analysis
models. This is the essence of the second fundamental challenge, i.e., discovering an
effective strategy for combining semantic knowledge of the domain, semantic knowl-
edge of the analysis, and modeling knowledge of the relationships between domain
knowledge and analysis knowledge. One might think of this as the “engineering” of
production systems decision support.

Conclusion

The continuing growth of the field of OR in general, and in production systems in
particular, depends on the discovery of new knowledge—knowledge about domains
of practice, knowledge about forms of analysis that support decision making, and
knowledge about the translation between the domain instance and the analysis in-
stance. This chapter has been about evolving developments that hold the promise of
capturing that knowledge in a form that makes it transferable, reusable, teachable,
and deployable. The potential impact of these developments is at least as great as
the impact of the computing revolution, which brought large-scale OR analyses to
the desktop of the OR practitioner. Capturing the benefits will require operations
researchers to embrace these new knowledge capture and exploitation tools with the
same enthusiasm that they embraced computation in the mid-1970s.
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Chapter 3

Integrated Production Planning and Pricing
Decisions in Congestion-Prone Capacitated
Production Systems

Abhijit Upasani and Reha Uzsoy

Introduction

The highly capital intensive nature of the semiconductor industry requires its factories
to operate at high utilization levels, where small changes in utilization can cause large
changes in lead times. Demand for these products over time can be quite uneven,
which leads to firms trying to shape their demand by price promotions in order to
maintain high factory utilization levels. However, it is well known from queuing
models of manufacturing systems (Buzacott and Shanthikumar 1993) that higher
resource utilization leads to increasing lead times. This raises the possibility of price
reductions becoming counterproductive—an unwise price promotion can create a
surge in demand that, after some time, results in a large increase in lead times,
missed delivery dates, cancelled orders and lost future business.

To this end, companies will often develop aggregate production plans at the prod-
uct family level for several months (up to 18 months in the case of one semiconductor
manufacturing firm described by Allison et al. (1997)) in order to identify potential
capacity bottlenecks and make sure that competitive lead times can be maintained.
This plan, based on current order books and marketing forecasts, permits the plan-
ning of price promotions as part of the process. Given the long planning horizon, an
aggregate planning model focusing on the loading of resources and management of
prices over time to achieve maximum profit with competitive lead times would be
useful to management. The high utilization levels at which many capital-intensive
factories, such as semiconductor wafer fabs, operate renders a planning model that
accounts for the nonlinear relationship between resource utilization and lead times
desirable, especially when customers are sensitive to both lead times and prices.
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Most existing pricing-production planning models do not address this problem in
its full complexity. In particular, most such models do not consider the effect of work-
load on queues and lead times, and hence may underestimate the price that should
be charged at a given output level. In particular, if high demand results in long lead
times due to congestion in the production facility, the assumption that demand can
be met within a fixed lead time may result in significant lost sales. Dynamic pricing
models based on queuing, on the other hand, generally describe long-run steady-state
behavior and do not provide a framework for decisions to be made over time.

The model presented in this chapter is a first step towards addressing these issues.
We use clearing functions (CFs, Asmundsson et al. 2009) to capture the nonlinear
relationship between resource utilization and lead times. Following the literature,
customer behavior is modeled using a demand function that is linear in both price
and lead time, with a maximum lead time beyond which no demand will be forthcom-
ing. In each planning period, customers can observe the average flow time associated
with the current workload of the production system, and place orders accordingly.
Such systems are already in use by semiconductor manufacturing companies such as
Taiwan Semiconductor Manufacturing Corporation which provide contract manufac-
turing services to other firms (www.tsmc.com/english/dedicatedFoundry/services/
eFoundry.htm). The model jointly determines the price and the amount of work to
be released in each time period, thus determining the average lead time associated
with that planning period. The model allows the possibility of production smoothing
through the accumulation of finished goods inventories and price promotions.

Our results show that when the demand is sensitive to lead times, the CF model
with workload-dependent lead times produces significantly higher profits than a
conventional model assuming a fixed lead time. In several scenarios the release
plans suggested by the fixed lead time model are unable to satisfy the market demand
generated by the associated prices, since they assume that a fixed lead time can be
maintained in the face of the high demand created by low prices. In fact, the increased
demand resulting from price reductions can only be met with long lead times, which
end up reducing demand. Hence a thorough understanding of the effects of pricing
on lead times and queues is essential for capacity constrained firms that plan to use
dynamic pricing. As suggested by Pekgun et al. (2008), the separation of lead time
and pricing considerations between the production and marketing operations is a
significant obstacle to this understanding, suggesting the need for more emphasis on
this interface in capital-intensive firms operating at high utilization levels.

Literature Review

Our research is related to three different streams of literature: joint pricing and
production planning models, models for load-dependent lead-time quotation, and
steady state models that study relationships between price and lead times.

Joint pricing and production planning models aim to produce a profit-maximizing
combination of prices and production plans. Eliashberg et al. (1991) and Yano and
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Gilbert (2003) present detailed reviews of this stream of literature. This literature also
includes dynamic pricing models that change prices over time to improve profitability
(Swann 2001; Charnsirisakskul et al. 2006; Deng and Yano 2006). Ahn et al. (2007)
present an interesting model where demand in a given period depends on prices in
preceding periods. Adida and Perakis (2006) consider a continuous time model with
a linear demand function and an additive model of uncertainty, and present a robust
optimization model. In a subsequent paper (Adida and Perakis 2010) they compare
robust and stochastic optimization models for this problem, noting that stochastic
optimization models can be sensitive to the probability distributions used. The related
area of dynamic pricing focusing on the interface with inventory management is
reviewed by Elmaghraby and Keskinocak (2003).

Researchers in this area have used simple, aggregate capacity constraints with
limited ability to consider interactions between capacity utilization and lead time.
When faced with high demands that saturate capacity constraints in a given period,
these models will build inventory in earlier periods, effectively increasing lead times.
However, this dynamic does not capture the rapid nonlinear increase in lead times
observed at higher utilizations, providing an incomplete picture of system behavior.
Recent work (Kefeli et al. 2011) has shown that in the presence of congestion the
theoretical output of the system may not be achieved due to the very high work
in process inventories required to achieve them, causing these types of capacity
constraints to give an optimistic picture of the production system’s ability to meet
demand. We illustrate this effect in our numerical examples.

Chen and Hall (2010), in contrast, consider the pricing of individual orders on
a single machine or a two-machine flow shop to maximize profit under different
cost criteria which are determined by the production schedules. They provide exact
dynamic programming algorithms and heuristics, and demonstrate that even heuristic
solutions to the problem yield significant improvement in profit over the case where
prices and schedules are determined independently. Since these models represent
capacity at a very fine level of detail, they capture the relationship between utilization
and lead times correctly. However, such models do not easily scale up to the longer
time periods addressed in this chapter.

The second stream of literature encompasses models that estimate lead times
based on the current state of the system and use these lead times for order negotiation.
These models recognize that lead times are load dependent and address operational
decisions like input control or order selection, price and lead-time quotation, and
capacity investment (Donohue 1994; Easton and Moodie 1999; Elhafsi and Rolland
1999; Elhafsi 2000; Charnsirisakskul et al. 2004; Plambeck 2004). While these
models allow marketing to make realistic lead-time quotations to be used in price
negotiation, they do not capture the relationship between prices, resource utilization
and lead times.

A related set of models, classified in the literature as order acceptance models,
assume stochastic (usually Poisson) customer arrivals and quote each customer a
delivery date based on system status (Dellaert 1991; Duenyas 1995; Duenyas and
Hopp 1995). These models assume a certain probability that the customer will actu-
ally place an order when quoted the delivery date, thus obtaining an effective arrival
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rate for orders. Late orders are penalized and the models aim to minimize the impact
of this penalty on revenue, which is fixed for every order.

The last stream of models conducts steady state analyses of relationships between
price, lead time and capacity for M/M/1 systems (Low 1974; Palaka et al. 1998;
So and Song 1998; Boyaci and Ray 2003; Ray and Jewkes 2004). Almost all these
models use a demand function that is linear in both price and lead time to represent
the market and aim to set prices and lead times subject to a service level constraint
under steady state conditions. These models yield useful managerial insights through
their characterization of optimal behavior, but their steady state nature does not allow
them to be used to develop pricing and production plans over a finite horizon. Liu
et al. (2007) study price and lead-time setting in a decentralized supply chain where
a supplier specified a wholesale price and a planned delivery time, while the retailer
quotes a retail price. Customers are sensitive to both lead time and retail price. They
model the behavior of the supplier and retailer as a Stackelberg game and obtain the
equilibrium strategy of both actors. Pekgun et al. (2008) developed a steady-state
make-to-order (MTO) model that incorporates coordination mechanisms for price
and lead-time quotation.

Plambeck (2004) considers capacity setting, price and lead-time quotation, and
order sequencing decisions ina MTO system with two customer classes and compares
dynamic against static lead-time quotations (similar to our Fixed Lead Time (FLT)
model). The key assumption the author makes is that customers belonging to the
“patient” class will tolerate long lead times. The author requires this slow-moving
portion of the order queue to be so large that the system utilization approaches 100 %,
allowing the author to apply heavy-traffic queuing approximations to derive optimal
decision policies. Our CF model considers a different problem, that of determining
anintegrated aggregate plan for factory loading and pricing over discrete time periods
in the face of the market’s sensitivity to lead times. Our model does not impose a
utilization level on the system but instead allows the system to choose its optimal
utilization level. Consistent with Plambeck’s results, our model also shows that taking
the state of the system into account can yield significantly higher profit than a fixed
lead-time model.

The joint planning models in the first stream represent aggregate planning de-
cisions in a make-to-stock environment, where a different price is quoted every
period, but all orders in the same period observe the same price. These joint planning
models fall under the domain of models at the production/marketing interface that
also includes models for sales-production coordination mechanisms (Eliashberg and
Steinberg 1991; Upasani and Uzsoy 2008). Models in the last two environments fo-
cus on a MTO environment where no stocks of finished goods inventory are held and
each order can be quoted a separate price or lead time. Detailed reviews of models
in the last two streams are found in Chatterjee et al. (2002), Keskinocak and Tayur
(2004), and Upasani and Uzsoy (2008).

To summarize the existing literature, joint planning-pricing models have limited
ability to capture the effects of utilization on delivery times, whereas steady-state
lead-time quotation models do not yield medium-term plans over a finite horizon.
Recent developments in production planning models with load-dependent lead times
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(Pahl et al. 2005) provide avenues for integrating state-dependent lead times into
models of the production-marketing interface. Specifically, we use CFs (Pahl et al.
2005, 2007; Asmundsson et al. 2006; Asmundsson et al. 2009; Missbauer and Uzsoy
2010), which relate the expected throughput of a production system in a planning
period to the expected work-in-process (WIP) inventory level over the period.

Clearing Functions

A promising approach to modeling workload-dependent lead times in production
planning has been the use of CFs (Karmarkar 1989) that represent the expected
output of a resource over a given period of time as a function of the expected WIP
inventory level over that period. The term has its origin in work by Graves (1986)
that specifies the fraction of the current WIP that can be processed to completion
(“cleared”) by a resource in a given time period. Karmarkar (1989) and Srinivasan
et al. (1988) independently develop nonlinear CFs for production planning models.
We shall use the term “WIP” to denote any reasonable measure of the WIP inventory
level over a period of time that can be used as a basis for a CF. An extensive review
of CFs and their use in production planning models is given by Missbauer and Uzsoy
(2010)

To motivate the use of a nonlinear CF, consider a resource that can be modeled
as a G/G/1 queuing system in steady state. The average number in system, i.e., the
expected WIP, is given by Medhi (1991) as

_@rd g

2 (d-p)

where ¢, and ¢, denote the coefficients of variation of interarrival and service times,
respectively and p the utilization of the server. Setting ¢ =( ¢4 + ¢%5)/2 and rear-
ranging (1), we obtain a quadratic in W whose positive root yields the desired p
value. Solving for p with ¢ > 1 yields

+p 3.1)

b= VW + 12 +4W(2 - 1) — (W + 1)
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which has the desired concave form. When 0 < ¢ < 1, the other root of the quadratic
will always give positive values for p. When ¢ = 1, (3.2) simplifies to p = WA 1 + W),
again of the desired concave form. We see that for a fixed c¢ value, utilization, and
hence throughput, increase with WIP but at a declining rate due to variability in
service and arrival rates.

Several authors discuss the relationship between throughput and WIP levels in the
context of queuing analysis, where the quantities studied are the long-run steady-state
expected throughput and WIP levels. Agnew (1976) studies this type of behavior in
the context of optimal control policies. Spearman (1991) presents an analytic con-
gestion model for closed production systems with increasing failure rate processing
time distributions that describes the relationship between throughput and WIP. Hopp
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Fig. 3.1 Examples of clearing

functions (Karmarkar 1989) /
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and Spearman (2001) provide a number of illustrations of CFs for a variety of sys-
tems. Srinivasan et al. (1988) derive the CF for a closed queuing network with a
product form solution. While these approaches are based, as is our analysis above,
on steady-state queuing models, a number of researchers have examined the issue of
estimating CFs when the underlying queuing system is not in steady state. Asmunds-
son et al. (2009) show that even under transient conditions the concave shape of the
CF will be maintained. Missbauer (2009) and Sel¢uk (2007) use transient queuing
models to derive CFs under somewhat different sets of assumptions.

Figure 3.1, derived from Karmarkar (1989) depicts several examples of CFs con-
sidered in the literature to date. The horizontal line TH = C corresponds to a fixed
upper bound on output over the period, but without a lead-time constraint it im-
plies that production can occur without any WIP in the system if work release and
production are synchronized. This is reflected in the independence of output from
the WIP level, which may constrain throughput to a level below the upper bound by
starving the resource. This approach is implemented in, for example, the Capacitated
MRP (MRP-C) approach of Tardif and Spearman (1997) and most LP approaches
such as that of Hackman and Leachman (1989), but is supplemented with a fixed
lead time that is an exogenous parameter independent of workload. The linear CF
of Graves (1986) is represented by the TH = W/L line, which implies a lead time of
L periods that can be maintained independently of the WIP level. Note that if WIP
and output are measured in the same time units (e.g., hours of work), the slope of the
proportional part of the function is 1/L, where L is the average lead time. However,
as seen in Fig. 3.1, this model may suggest infeasible output levels when WIP levels
are high. If a fixed lead time is maintained up to a certain maximum output, we have
the relationship TH = min{W/L, C}. In the special case of the Graves CF where the
lead time is equal to the average processing time, with no queuing delays at all, we
obtain the line TH = W/p, where p denotes the average processing time. Assuming
that average lead time is equal to the average processing time up to the maximum
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output level, it gives the “Best Case” model TH = min{W/p, C} described in Chap. 7
of Hopp and Spearman (2001). However, by linking production rate to WIP level,
a linear CF differs from the fixed delays used in most LP models, where the out-
put of a production process is simply the input shifted forward in time by the fixed
lead time. Orcun et al. (2006) illustrate the differences between these models using
system dynamics simulations. For most capacitated production resources subject to
congestion, limited capacity leads to a saturating (concave) CF. It is also apparent
from the Fig. 3.1 that the CF always lies below the TH = W/p and TH = C lines.

An important issue in using CF models is the question of how long the planning
periods should be. If the CFs are derived using steady-state queuing models, the
planning period must be long enough that the queues representing the production
system can be at least approximately in steady state. Given the long-term, aggregate
purpose of this type of model, as outlined in the introduction and the discussion in
Allison et al. (1997), the planning buckets are likely to be long enough (e.g., a month)
that most production systems with relatively short raw processing times should reach
steady state. However, even if this is not the case, current research is exploring means
of deriving CFs for systems under transient regimes (for example, Selcuk 2007 and
Missbauer 2009), showing that even under transient conditions the concave shape of
the CF is maintained.

A number of authors have suggested empirical approaches to estimating CFs,
where a functional form with the desired properties is postulated, and then fit to data
obtained either from an industrial facility or a simulation model using some form of
regression analysis. Karmarkar (1989) suggests a CF of the form

KIWz

= — 3.3
Kz + Wt ( )

t
where X; denotes the output in period t, W, the WIP at the resource at the start of
period ¢, and K the maximum possible output of the resource in period . The shape
parameter K is estimated by the user. Selcuk et al. (2007) demonstrate the derivation
of K, for an M/G/1 system with bulk arrivals. Srinivasan et al. (1988) suggest an
alternative functional form

FW) = Ki(1 — ey (3.4)

where k is again a user-estimated shape parameter. Asmundsson et al. (2009) use
this latter functional form and give an extensive discussion of various issues in
collecting simulation data for fitting this type of CF. Asmundsson et al. (2006) use
a visual fit of linear segments to simulation data to develop a CF formulation for
a scaled-down semiconductor wafer fabrication facility with unreliable equipment
and reentrant flows. Kacar and Uzsoy (2010) and Kacar et al. (2010) use a linear
regression approach applied to data collected from a simulation model, with good
results. Asmundsson et al. (2009) show that an empirically fitted CF can give good
results even under a transient regime. The implication for this research is that it is
possible to represent the behavior of a production system with an appropriately fitted
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CF. Thus we shall proceed with our model on the assumption this can be done and
examine the potential impact on profits of using a model with fixed lead time that
does not consider queuing behavior.

A Single Product Dynamic Joint Price-Production Model
Incorporating Congestion

We now present a joint price-production model that incorporates CFs and lead-time-
dependent demand. We assume a single firm that behaves as a monopolist. The firm
sees a linear demand function D = g(P, L) = Max{0, M-aP-bL}, where a, b > 1 are
the price and lead-time sensitivities of demand D with respect to price P and lead
time L, respectively. Changes in market conditions are represented by changes in
these sensitivities. The intercept M of the demand function represents the maximum
possible demand, i.e., the market size.

In a given period ¢, the firm quotes a price P; and a delivery time L, to customers.
We assume that the firm quotes a delivery time for orders received in a period equal to
the average manufacturing lead time at the start of the period. Since the manufacturing
lead time (delivery time) depends on the number of orders waiting, the firm can
control the maximum delivery time by limiting the number of orders to be processed
(per Fig. 3.1). In effect, the firm quotes the delivery time based on the minimum of
two values: the average manufacturing lead time, and a guaranteed delivery time Lg
by which all orders need to be satisfied, or customers will not place orders. Hence
an order received in period ¢ has to be fulfilled by period 7 + L.

The firm needs to align its production system with this market preference by
mapping L on Fig. 3.1 and quoting an average delivery time below the value of L.
This will, in turn, determine the number of orders that a firm may accept and hold
in queue for processing, yielding a target production rate and a target utilization.
Thus, the higher the guaranteed delivery time allowed by the market, the higher the
utilization at which the firm can operate its resources. From Fig. 3.1, as utilization
increases, a large increase in threshold value Ls will allow only a small increase
in utilization, since lead time increases rapidly with additional workload at high
utilization levels. This guaranteed delivery time assumption is similar to that used
by Selcuk et al. (2007) and Spitter et al. (2005a; b) in their supply chain operations
planning (SCOP) models, where they assume a planned manufacturing lead time
within which an order must finish processing. The idea of a quoted lead time in
combination with a maximum lead time is also used by Dellaert (1991) and Duenyas
and Hopp (1995) in their models of due-date management with order selection.

Another mechanism by which a firm may control quoted average delivery time
is to quote a higher price and thus accept fewer orders. This is possible due to the
monopolist assumption and the price and lead-time-dependent nature of demand.
Customers may be willing to pay a premium for lower-quoted average delivery times
and the relative magnitude of this premium would depend upon their sensitivity to
delivery time represented by parameter b;.
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The average delivery time quotation implies that some orders will be ready for
delivery earlier than promised. The customer may not always want to take delivery
early, in which case the manufacturer has to hold finished goods inventory. We
assume that the customer will allow a limited number of orders to be delivered early
in the planning horizon and represent this by a parameter v. Late deliveries are not
allowed, though this can be incorporated in a straightforward manner. To further
simplify the model, we restrict every order to have a size of one unit. This enables
us to eliminate constraints that would otherwise be included to track fulfillments of
orders of varying sizes. We define the following notation:

Variables

R, Order release quantity in period ¢

W, WIP inventory at the end of period ¢

X, Production quantity in period ¢

I, Finished goods inventory (FGI) at end of period ¢
P, Price in period ¢

D, Sales quantity in period ¢

Y, Quantity shipped in period ¢

Parameters

a, Price sensitivity of demand in period ¢

b; Lead-time sensitivity of demand in period ¢

h, Holding cost of finished goods inventory per unit in period ¢

o; Holding cost of WIP inventory per unit in period ¢

¢, Unit production cost in period ¢

¢; Order release cost per unit released in period ¢

v Maximum units allowed to be shipped before due date over the horizon
K, Theoretical maximum production capacity

K, Curvature parameter of CF

M Intercept of demand function, i.e., demand when price = lead time =0
T Length of planning horizon, t=1,..,T

L Guaranteed delivery time (in periods)

f(.) CF

Let W, be the estimated average WIP level in a period ¢. We use the CF form suggested
by Karmarkar (1989). From (3.3) we have

. KW,
(i) = K
K, +W,

The production X, in period ¢ is bounded by the CF in that period.
As mentioned earlier, the demand in period # is expressed by the demand function
D;=M — a,P; — b;L,. By Little’s Law, the expected lead time in period 7 is given
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by L, = W, /X, expressed in units of periods. By invoking Little’s Law we assume
that the production system is in steady state within the planning period. Thus, the
demand observed in period ¢ is given by

D, =M —a,P, —b, (

Wi
X;

Our CF-based joint price-production planning model is now as follows:

CF model

S.t.
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The objective is to maximize total contribution, expressed as the difference between
the total revenue in each period and variable operating costs. Equations (3.6) and (3.7)
are WIP and finished goods inventory balance constraints. Equation (3.8) represents
production capacity using the CF, and constraint (3.9) defines the sales quantity.
Constraint (3.10) requires that all orders be shipped within the planned delivery time,
but allows orders to be shipped earlier than due, rather than being held as finished
goods inventory. Since the customer may impose a limit on the number of orders
shipped early over the horizon (given by the parameter v), we model this preference
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in constraint (3.11). We estimate the average WIP level W, within a given period using
the WIP levels at the end points of the period using (3.12). All variables are required
to be non-negative by (3.13). The Greek letters in curly brackets to the left of each
constraint denote its associated Lagrange multipliers. We do not impose a cost on
shipping since it would require setting values for another parameter, which we avoid
for sake of parsimony in the experimental design. For the same reason, we do not
impose a penalty if the average delivery time quotation exceeds the planned delivery
time. Instead we reduce sales through our time-dependent demand function. This
mechanism is further discussed in the section “Experiments Without Early Delivery
Flexibility: v = 0.

For comparison purposes we now state a joint price-production planning model
that assumes a fixed delivery time L < L which is specified as an exogenous pa-
rameter, and hence is denoted as the Fixed Lead Time (FLT) model. The demand
observed by this model in period ¢ is expressed as D, = M — a,P, — b,L. The
firm must set L < L to avoid exceeding the target utilization. We assign a Lagrange
multiplier for each constraint as was done for the CF model.

FLT model
T
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We use the variable X, to denote production initiated in period t. Since there is
a fixed production lead time L, production initiated in period ¢ is available to be
shipped in period 7 + L. This variable corresponds to the releases variable R, from
the CF model. Hence we incorporate a time lag L in the inventory balance constraint
(3.15). Since the FLT model ignores the buildup of queues in the system due to
its fixed lead-time assumption, it does not have any WIP variables or WIP balance
constraints. This model is consistent with FLT production planning models (Johnson
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and Montgomery 1974; Hackman and Leachman 1989; Spitter et al. 2005a; Spitter
et al. 2005a) or the joint price-production model of Swann (2001).

In our numerical experiments we use a modified version of the FLT model that
facilitates direct comparisons with the CF model. Recall that X, models the material
released in period ¢ so that it finishes processing and is available for shipping in
period ¢ + L. This definition, while capturing the nature of fixed lead times, does not
allow a direct comparison between the two models. Hence, we replace the variable
X , with two variables: R, to denote the material release in period ¢, and X’ e the actual
production in period ¢. The two variables are related by the expression R =X (+L-
Hence, the 13, units of work released in period ¢ will remain in WIP for L time
periods, which we explicitly include in the objective function. The modified FLT
model is thus as follows:
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In the following section we examine the structure of locally optimal solutions to
both the FLT and CF models to explore the differences between them, induced by
the different models of production capacity they use.

Model Analysis

In Appendix 3.1, we show that the revenue function of the FLT model is concave,
resulting in a concave objective function. Further, the linear demand function results
in constraints (3.15)—(3.19) being linear. Thus the FLT model aims to maximize a
concave function over a convex constraint set, so a locally optimal solution is also
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globally optimal. The CF model has a quasi-concave objective function if the sales
variable is positive and the capacity constraint is tight (see Appendix 3.2). However,
satisfying the capacity constraint at equality causes the constraint set to lose convexity
and become concave. Hence the CF model does not have a unique global optimum.
Nevertheless, all local optima should satisfy the Karush-Kuhn-Tucker (KKT)
optimality conditions and since the global optimum must also be a local optimum,
structural properties derived for a local optimum are valid for a global optimum.

We begin by examining the relationships between price, demand, lead time and
capacity using the KKT conditions for a local optimum (Appendix 3.3). We then
examine the relationship between the ending FGI and the delivery flexibility
parameter v and discuss properties of some Lagrange multipliers used in the
formulations.

Sales, Price and Delivery Time at Optimality

We first develop expressions for price and sales quantity based on the KKT conditions
for a local optimum. We are interested in local optima with non-trivial solutions, i.e.,
the firm operates in a reasonable manner that yields non-zero revenue, or in other
words, both price and sales are non-zero. Using P; > 0 in (3.46) and (3.61) we obtain
the optimal prices for both models as follows:

Price(FLT model)
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"7 2a, 2a 2 (Mz T:;L ot r:tZJrL pf) ( )
Price(CF model)
N T T
M b <W,) 1
= 2 (B LY et Y b (329)
2a; 2a; \ X; 2 t=t+Lg t=t+Lg

Substituting these expressions into the demand functions for the respective models,
we obtain the following expressions for the sales quantities:

Sales (FLT model)
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Equations (3.28)—(3.31) clearly show that under the CF model both price and sales
decisions are dependent upon the observed lead time. Equation (3.29) is particularly
interesting since price is expressed as a downward sloping function of lead time using
the basic decision variables of the production system. Ray and Boyaci (2004) assume
price to be adownward sloping function of lead time in order to investigate the effects
of ignoring lead-time sensitivity of prices while making pricing decisions. However,
our model does not require such an assumption, since the relationship between price
and lead time emerges directly from the model. The last terms in all four expressions
represent the interactions between the cumulative shipment constraints and can be
interpreted in terms of the Lagrange multiplier of the finished goods inventory balance
constraints of the respective models. We discuss this in the section “Properties of
Lagrange Multipliers”.

It is interesting to examine the behavior of the model as lead times approach the
threshold delivery time L. We can write

T T
M bl bt l
¢ 2a, 2a, ¢+ 2a, ) 1223 Z o + Z P ( )
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The AL term represents the difference between the maximum allowable delivery
time and the average delivery time quotation (i.e., the average manufacturing lead
time). When AL < 0, i.e., the average delivery time quotation exceeds the maximum
allowable delivery time, our model penalizes the firm by reducing demand per (3.33),
thus reducing the WIP in the production system and hence the average lead time.
This self-regulating behavior removes the need to include explicit penalty terms for
exceeding the delivery time guarantee in the objective function of model CF.

This behavior can be visualized by examining relationships between different
variables by means of a causal loop diagram (Sterman 2000) in Fig. 3.2. The variable
at the tail of an arc is linked to the variable at the head of the arc by the sign on the head
that indicates whether an increase in the variable at the tail causes a corresponding
increase or a decrease in the variable at the head. Average delivery times eventually
have a negative feedback on sales, since an increase in sales will cause an increase
in quoted average delivery times, which in turn will reduce AL, making it negative.
Negative values of AL cause a reduction in sales, keeping the average delivery time
and sales variables in close relation with each other. Recall that these two variables
are tightly coupled with the price variable through the demand function. Hence a
reduction in both sales and average delivery time would require an increase in price.
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Eig. 3.2 Rel'atti);)nship Average delivery time
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Thus the firm can use both price and delivery time in an aggregate planning framework
to manage sales. Webster (2002) proposes a similar feedback loop in his model for
determining equilibrium values for price and lead time in face of a changing demand
function. His model changes capacity in response to a change in sales, keeping lead
time fixed, but does not consider the costs of changing capacity.

Prices and Utilization

If AL > 0, the quoted average delivery time is less than the guaranteed delivery
time. From (3.33), it would appear that this would cause sales to increase, increasing
resource utilization and delivery times. Recall that a target guaranteed delivery time
corresponds to a particular utilization level. However, it is not possible to determine a
priori whether a targeted utilization level will allow satisfying the guaranteed delivery
time, since we only have information about average delivery times and the maximum
realized delivery time may exceed the guaranteed delivery time at high utilizations.
Attaining higher utilization levels in the CF model requires additional WIP, and the
marginal increase in utilization decreases with each unit increase in WIP. The CF
model uses this information to determine a utilization level that may be lower than the
target utilization level corresponding to the guaranteed delivery time parameter. This
decision is implemented by limiting sales (to control utilization) by increasing prices
instead (AL > 0 in (3.32)). At high values of Lg, AL could be significant enough
that a large difference may exist between the prices quoted by the two models.
Analytically, this behavior can be explained as follows. Let u, denote the uti-
lization level in period ¢ due to production level X;, i.e., X; = u,K;. Using this

relationship we obtain L, = % Initially it appears counterintuitive that lead time
decreases with increasing utilization. However, this expression must be viewed in
the light of the relationship between WIP W, and utilization u,. As shown in Fig. 3.1,
a unit increase in utilization will cause WIP, and thus lead times, to increase by a
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larger amount. Conversely, if utilization threatens to increase, the CF model can
lower WIP, thus controlling it and keeping average delivery time in check. The FLT
model is blind to the effects of utilization on delivery time and thus has one less lever
for managing sales and system operation. The impact of this can be observed by
simulating the key decisions of the FLT model in a congestion-prone system, which
we do in the section “Low Utilization: u=0.8, L=1".

The key decisions made by a joint pricing and production planning model are
prices and material releases. For the FLT model, these correspond to the variables
P, and X g respectively. If we define W to be the WIP level arising from the material

release X, then the production in a given period is found to be f (W ) from the
. Now let D be the sales

CF. Thus, the average delivery time can be written as -

(W,
decision arising from this average delivery time quotation and price quotation P,
Then we have

, W,
D.=M—aP —b (3.34)
(f( ,)>

Further, if D,>0 and Wt/ > 0, then u, = 0 and @, = 0 from complementary

slackness conditions (3.52) and (3.65). Using this in (3.28) and (3.29), we can express
the difference in prices as

Pt—ﬁtzzb—c;(l,——) Z (0 — 61) — Z (o1 — Pr)

t=t+Lg T=t+Lg

za,AL+ Z (01 — &) — Z (or — f1)

T=t+Lg T=t+Lg

At high values of L (corresponding to high utilization), it is possible that AL >0
and is large enough for P, to be significantly less than P,. In this scenario, we have
D; > D,. Further, since AL > 0, the material release decisions X ; could load the
system with significantly higher WIP than the release decisions R, made by the CF
model, leading to larger queue sizes. Average quoted lead times will not be met and
there will not be enough FGI to satisfy sales D,. If we allow unsatisfied sales to be
lost, revenues will drop since the prices quoted are lower than those in the CF model.
We discuss this further through a numerical example in the section “Experiments
with Early Delivery Flexibility: v > 0”.

On the other hand, at low values of L (corresponding to low utilization), AL
will be small and will have less influence over the differences in prices quoted by
the two models. From Fig. 3.1, it can be seen that lower utilizations imply lower
WIP levels and hence lower average delivery times. Further, the marginal increase
in throughput with a unit increase in WIP is higher at low utilization than at high
utilization. This allows the production system to fulfill demand in a timely manner
more easily. Lower utilizations are achieved by having low sales or ample excess
capacity. Neither of these alternatives is practical in a capital-intensive environment,
motivating our interest in high-utilization environments.
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Properties of Lagrange Multipliers

Proposition 1 In an optimal solution to the CF model the capacity constraint is
always tight (i.e., 6, > 0) if W;, R,, P, and D, are all strictly positive.

Proof See Appendix 3.4.

Capacity in the CF model is expressed in terms of the amount of WIP in the system
that can be cleared in a given period. The above proposition implies that the release
pattern will be coordinated with the sales pattern, so that there is just enough WIP
to create the capacity required for fulfilling sales.

Proposition 2 In an optimal solution to the CF model, the marginal cost of holding
ﬁAnished goods inventory is always positive (i.e., 7y > 0) if 6, > 0, X, > 0, and
W; > 0.

Proof See Appendix 3.5.

Proposition 3 In an optimal solution to the FLT model, the marginal cost of holding
finished goods inventory is always positive (i.e., y, > 0).

Proof See Appendix 3.6.

Since we quote an average delivery time, production that is realized earlier than
due can be held as finished goods inventory to fulfill orders by the guaranteed delivery
time. This can be clarified further when the marginal FGI costs are seen in relationship
to the shipment Y;. Considering the FLT model, if shipments Y, > 0, for some period
t, then from condition (3.63), we have

T T

Vi—Y Gty pr=0
=t =t
T T

< —Z&r +Z/3r =W
=t =t

T T
IfY, i1, >0,wehave — Y 6; + > pr = —VitLe

=t =t

Since ﬁ, > 0, from condition (3.61), we have

T T
_M+azﬁz+brLG+at ﬁ,—i—/l,— Z o + Z pe | =0
t=t+Lg T=t+Lg

when D, > 0, i, = 0. Hence—M + a, P, + b, L + a;(P, — Yi+Lg) = 0. Rewriting,
we obtain

VitLe = 2P — % + Z—:LG > 0 by Proposition 3. Thus when there are positive
sales in period ¢, it is beneficial to have FGI in period ¢ + L¢ in order to meet the
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quoted delivery date. The analogous expression for the CF model is

M b (W,
7Tz+LG=2Pz—a—+a— < |
t t t

Since D,, P,, and the average quoted delivery time for the CF model are strictly
positive (section “CF model”), we find that the marginal cost of the FGI constraint
in period f 4 L is strictly positive by a simple manipulation of the demand function.
In addition, the marginal cost of the FGI constraint in the CF model varies with both
the price and the average delivery time, whereas for the FLT model it can vary only
with price.

We also investigate the optimal sales decision made by our CF model if the linear
demand function is replaced by the power function used by So and Song (1998). The
demand function itself is expressed as D, = M P, “L; P where all symbols have
the same meaning as before. By repeating the steps in Appendix 3.3 and the section
“CF model”, we obtain the optimal sales decision as:

T T A
a; W;
InD;,=InM —a;1n (1 ) E Oz — E ol —b;/In (7> (3.35)

—a t
r=t+Lg t=t+Lg

We find that the negative feedback loop discussed in the section “Sales, Price, and
Delivery Time at Optimality” for the linear demand function also holds for the power
demand function, though on a logarithmic scale. We conjecture that the negative
feedback relationship between sales and average delivery times would exist in case
of any demand function form that is downward sloping in delivery time. We now
present a numerical study to compare the behavior of the CF and FLT models.

Numerical Study

The length of the planning horizon is chosen to be 24 periods where each period
corresponds to a month. The price and lead time sensitivities for each period are
presented in Table 3.1. Price sensitivity is low in the first half of the horizon and
increases in the latter half. This change in sensitivity represents a typical scenario
in semiconductor products where, as other manufacturers bring competing devices
to market, the price for the device will begin to decrease significantly (Akcali et al.
2000; Leachman and Ding 2007). Lead-time sensitivity, on the other hand, is low in
the first and third quarters, and high in the second and fourth quarters of the horizon.
The high-sensitivity periods represent seasonal effects where the market is unwilling
to wait for a longer time interval between placing the order and taking delivery of
the product.

Values of other input parameters are given in Table 3.2. The value of the curvature
parameter K is selected such that the slope of the CF at W, = 0 does not exceed the
reciprocal of the raw process time.
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Table 3.1 Price and Period range  Price sensitivity (¢,)  Lead-time sensitivity (b;)
lead-time sensitivities
1-6 1 1
7-12 1 2
13-18 2 1
19-24 2 2

The relationship between utilization u and fixed lead time L for chosen values of
the CF parameters K; and K, is obtained as seen in Appendix 3.7. We chose the
value for guaranteed lead time as L =L + 1 periods. Thus sales will only be lost
if the realized lead time exceeds the planned lead time L by more than one period.
We consider four combinations of unit costs given in Table 3.3. Combination 1 is the
base case. Combination 2 allows comparison of objective function values when unit
material cost is less than the unit production cost. Combination 3 allows for a similar
comparison when WIP holding cost is less than the FGI holding cost. To facilitate
direct comparison of the objective function values, we use the modified FLT (MFLT)
model that considered WIP costs in the objective function instead of the original FLT
model used for the analytical results.

We assume there is no residual demand from earlier planning periods to be met in
the current planning horizon. Both CF and modified FLT models are initialized with
WIP equal to the targeted production in period 1, i.e., Wy =uK;. We also require
that ending WIP in periods 23 and 24 for both CF and FLT model equals uK;.
WIP inventory in the FLT model at the end of a period is the sum of the releases
in the previous L periods; we impose this boundary condition on the FLT model
by controlling the material releases. By imposing these boundary conditions, we
aim to avoid ramp-up and end-effects that would normally influence behavior at the
beginning and end of the horizon.

Table 3.2 Input parameter values

Length of planning horizon T 24 periods

Theoretical production capacity per period K, 500 units

Curvature parameter K> 100

Demand at zero price and zero lead time M 1,000 units

Early delivery flexibility v 0 units

Fixed lead time L and corresponding target utilizations u L 1 period (u=0.8),
2 periods (#=0.9),
4 periods (u=0.95)

Initial WIP for CF and FLT models (z = 0.8) W, 400
WIP at ending of period 23 for CF and FLT models (= 0.8) Wos 400
WIP at ending of period 24 for CF and FLT models (# =0.8) Wy 400
Initial WIP for CF and FLT models (1« =0.9) W, 900
WIP at ending of period 23 for CF and FLT models (# =0.9) Was 900
WIP at ending of period 24 for CF and FLT models (# =0.9) Wou 900
Initial WIP for CF and FLT models (z = 0.95) W, 1,900

WIP at ending of period 23 for CF and FLT models (z = 0.95) Was 1,900
WIP at ending of period 24 for CF and FLT models (z = 0.95) Wy 1,900
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Table 3.3 Unit cost combinations

Combination Unit material cost Unit production cost Unit WIP holding cost Unit FGI holding cost

1 1/unit 1/unit 1/unit/period 1/unit/period
2 0.5/unit 1/unit 1/unit/period 1/unit/period
3 1/unit 1/unit 0.5/unit/period 1/unit/period
4 0.5/unit 1/unit 0.125/unit/period 0.25/unit/period

Both models are solved using the CONOPT solver in the general algebraic mod-
eling system (GAMS) optimization suite (www.gams.com). Since this solver does
not guarantee a globally optimal solution for the nonconvex CF model, we used six
different starting points for both models, and found that for both models all initial
starting points led to the same values for the objective function and decision variables.

The primary question of interest is how important it is to consider the effects of
congestion explicitly—do they lead to significant differences in profit, and, if so
under what conditions? One way to approach this issue is to examine how much
profit-planned solutions from the FLT model would yield if the production system is
subject to the type of congestion represented in the CF model. In other words, how
much profit is lost if we plan using a fixed lead time when our production system is,
in reality, subject to congestion as represented by a CF?

In order to examine this question, we simulate the behavior of the production
system period by period using expressions (3.6) and (3.7). The material releases
obtained from the MFLT model are used to determine the WIP level in each period,
and the CF is used to determine the production at this WIP level. The WIP level in a
period can be calculated using the ending WIP in the previous period and the release in
the current period using expressions derived in Appendix 3.8. We estimate the average
delivery time resulting from the WIP level as L, = W, /X:. These provide estimates
of the realized production, WIP and finished goods inventory available when the
system operates as represented by the CF, allowing us to obtain actual shipments.
Projected sales in each period under the price quoted by the FLT model are given
by the linear demand function, allowing us to calculate the revenue that would be
realized if the production system were able to produce exactly the quantities planned
by the FLT model in each period. We assume sales are lost if not enough finished
goods are available for order fulfillment. The realized shipments are multiplied by
the quoted price to give the realized revenue in each period. We deduct the material,
production and inventory costs incurred due to the release and sales decisions to
obtain the realized profit for both models. We impose no boundary conditions on the
system during this simulation.

Experiments without Early Delivery Flexibility: v=0 In our base case we use
the unit costs described by Combination 1 to study the behavior of each model
with no early delivery flexibility, i.e., v=0. We will discuss the results for each
planned utilization level u, and hence each planned lead time L, separately. In all
figures, the captions “FLT,” and “CF” denote the quantity computed by the respective
optimization models. “Realized FLT” denotes the quantities that are realized when
the plans computed from the FLT model are implemented in a system that is subject
to congestion as represented by the CF.



3 Integrated Production Planning and Pricing Decisions . .. 49

550

500

—4—CF - planned
FLT - planned
=0=FLT - realized

B
(=3
=]

Sales (units)
Y
3

350

300 T
0 6 12 18 24
Period

Fig. 3.3 Sales comparison at u =0.8

Low utilization: u=0.8, L=1 The results of this experiment are summarized in
Figs. 3.3, 3.4 and 3.5. As seen in Fig. 3.4, the CF model consistently sets prices
somewhat higher than MFLT model, but not by a great deal. Both models reduce
prices in the second half of the planning horizon when the market becomes sensitive
to price. However, Fig. 3.3 shows that the FLT model realizes substantially lower
sales than the CF model in the later periods. Examination of Figs. 3.5 and 3.6, which
show the planned lead times and FGI levels, explains the situation. The CF model
plans to operate at a higher utilization level with longer lead times from the start of the
horizon. It must meet demands within the maximum lead time L, but accomplishes
this by building finished goods inventory early in the horizon which it draws down
over time, allowing the model to meet demand within the specified maximum lead
time L that the market will bear. As a result of this approach and the slightly higher
prices it sets, the planned sales of the CF model are lower than those of the FLT
model.

However, Fig. 3.6 shows that the finished goods inventory realized when the
material releases and prices from the FLT plan are implemented in the presence
of congestion is very different from that planned. The FLT model assumes that any
demand that does not exceed the capacity of the system can be met within the planned
lead time L = 1, allowing it to set lower prices than CF. However, the low prices and
low-quoted lead time lead to high demand, which the congested system cannot meet
within the planned lead time L. This results in a stock out in periods 9 through 11
where there is no available product to ship and sales are lost. The net result, seen in
Fig. 3.7, is an approximately 20 % difference in planned and realized revenue for the
FLT model in periods 11 through 20.
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Fig. 3.5 Planned and realized average lead times at u = 0.8
Figure 3.7 shows that both models plan to achieve very similar revenue, but the CF

is able to achieve its aim while the FLT model is not. The difference is almost entirely
due to the FLT model’s assumption that the fixed lead time L can be maintained
regardless of utilization. The FLT model loads the system to its available theoretical
capacity, which results in utilization levels incompatible with the maximum lead time
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L. It is also interesting that this significant difference in behavior occurs despite
low demand sensitivity to both prices and lead times.

The results of this experiment highlight what we believe is the principal reason for
an FLT model to perform poorly in an environment subject to congestion. The basic
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issue is that the planning model fails to represent accurately the realized behavior
of the production system, which is manifested in the realized lead time. Figure 3.5
clearly indicates that the planned lead time L is a gross underestimate of the realized
lead time that becomes worse as the planning horizon advances.

Intermediate utilization: u=0.9, L=2, Lg =3 The results of this experiment are
given in Figs. 3.8-3.11. In this situation the difference between the two models is
rather less than might be expected, although the behavior of the inventory and lead
times differs somewhat between the models. This is because the maximum lead
time L¢ is consistent with a high level of utilization. The FLT model again loads
the system to its capacity, resulting in lead times higher than L, but because Lg
is already quite high the impact on predicted lead times is not as severe as at the
lower utilization level. The CF model, on the other hand, varies lead times over the
horizon, keeping them below L. Hence in this case both models plan very similar
total revenues and both achieve them, although with quite different production plans.
The reason both are able to achieve their plans to a large extent is the low sensitivity
of demand to prices and lead times.

High utilization level: u=0.95, L=4, Lgc =15 In this case, again the difference
between the two models is closer than before (Figs. 3.12-3.14). The primary reason
for this is the high WIP level imposed at the beginning of the horizon for both models.
Both models behave similarly, choosing not to make any releases into the system
in the first few periods and consuming the initial WIP. This allows lead times to be
low for both the CF and the realized FLT decisions in this initial part of the horizon.
The FLT model again loads the system to capacity in the following periods, due to
which the realized lead times gradually rise over the horizon. This is the only case



3 Integrated Production Planning and Pricing Decisions . .. 53

600

500 {s—t—r—r—r—r—e—e—e—— 1

400

300 \L FLT

Price

-=-CF

200

100

Period

Fig. 3.9 Price comparison for u =0.9

3.00

2.50

M
o
=]

~&—CF - planned
1 —8—FLT - realised
| =t—FLT - planned

Average Lead Time (periods)
- -
o in
=) =]

0.50 \/

0.00

0 6 12 18 24
Period

Fig. 3.10 Lead time comparison for u =0.9

where we impose the ending WIP conditions on the simulated decisions of the FLT
model, because otherwise the ending WIP does not rise to a value high enough to
satisfy the ending conditions. This is again due to the fact that there are no releases
early in the horizon, resulting in low WIP levels that do not rise fast enough during
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the course of the horizon. The detailed results of this experiment are omitted for the

sake of brevity.

Objective function values The discussion to this point has demonstrated that the
production and pricing plans developed by the CF and FLT models result in quite
different plans over the planning horizon. When the planned lead time substantially
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Fig. 3.14 Release decision comparisons for FLT model with changing v

underestimates the manufacturing lead time that can actually be realized, severe
discrepancies between the plans and actual deliveries to customers can result, as
was the case for our experiment with u =0.8. Table 3.4 presents a comparison of
the realized objective function values planned by the FLT model, and those realized
when the FLT plans are simulated in the presence of congestion. All quantities are
expressed as a ratio to the objective function value obtained by the CF model for the
same cost combination.

When u=0.8, we find that even though the FLT model predicts an objective
function value higher than the CF model, the realized objective (Fixed Lead Time-
Simulated FLT-SIM) is significantly lower than both FLT and CF models. This is
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Table 3.4 Comparison of (u, L, Lg) Costscenario (c;, f,, h;, w;)  FLT FLT-SIM
planned and realized

objective function values 0.8, 1,2) (1,1,L,1) 1.065  0.930
0.5, 1,1,1) 1.065 0.930

(1,1,0.5,1) 1.064 0.930
(0.5,1,0.125,0.25) 1.062 0.930

09,23)  (LL11) 0999 0978
0.5, 1,1,1) 0.999 0.978

(1,1,0.5,1) 1.000 0.978
(0.5,1,0.125,0.25) 0.999 0.977

095,4,5) (1,1,1,1) 0987  0.993
(0.5, 1,1,1) 0.988 0.993

(1,1,0.5,1) 0.990 0.993
(0.5,1,0.125,0.25) 0.991 0.994

due to the release decisions proposed by the FLT model that result in high WIP
levels, high lead times and product shortages, all of which lead to lower revenue and
profit margin. When the discrepancy between planned and realized lead times is less
severe, when u = 0.9, the same effect is observed although at a much smaller level.
When u =0.95, the FLT-SIM is very slightly higher than the planned FLT objective,
because the realized lead time is shorter than the planned lead time for most of the
planning horizon. It is notable that the CF model gives the highest objective function
value in all scenarios considered, most markedly when the discrepancy between
planned and realized FLT lead time is most severe.

Experiments with Early Delivery Flexibility: v> 0 The combinations with early
delivery flexibility v provide more interesting insights. Early delivery flexibility
allows both plans to shift production away from periods with high-delivery-time
sensitivity to those with low-delivery-time sensitivity without the need to carry all
the production as finished goods inventory. This should result in an increase in profit
margins as flexibility increases, due to reduction in cost of carrying finished goods
inventory. The two models use this flexibility differently. The shipment decisions
made by the FLT model for different values of v and cost Combination 4 when
L =2 are seen in Fig. 3.12 and those for the CF model in Fig. 3.13. The FLT model
applies all of its flexibility in the early part of the horizon, choosing to make zero
shipments in period 2. The model also chooses to increase the load in the system
as v increases by releasing more orders, which has a detrimental effect on the profit
margin when its decisions are subjected to congestion.

Table 3.5 summarizes the planned and realized objective function values of the
models, again using the objective function value of the CF model as a base. We
observe that the profit margin for FLT-SIM decreases as v increases from 125 to 500.
The CF model also uses its flexibility early on for lower values of v, but for v =500
and 1,000, it spreads this flexibility over the horizon. It is interesting to note that the
realized objective function value FLT-SIM first decreases and then increases with
v, suggesting that the choice of an optimal value for v may improve the realized
performance of the FLT model. However, it is again striking that the CF model
produces higher objective function values consistently across all scenarios.
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Table 3.5 Objective function u, L, Lg) n FLT FLT-SIM
comparison for experiments
with early delivery 0.8, 1,2) 0 1.062 0.930
125 1.062 0.938
250 1.062 0.935
500 1.062 0.934
1,000 1.062 0.962
0.9,2,3) 0 0.999 0.977
125 0.999 0.984
250 0.999 0.977
500 0.998 0.993
1,000 0.998 0.997
(0.95,4,5) 0 0.991 0.994
125 0.991 0.996
250 0.990 0.995
500 0.990 0.995
1,000 0.990 0.995

Conclusions and Future Directions

In this chapter we have used the concept of CFs developed in the production planning
literature to develop an integrated model for jointly planning production and pricing
over time for a manufacturing firm whose resources are subject to congestion. Our
analytical results show that the interplay between lead times and prices in the demand
function requires careful consideration of the implications of pricing decisions for
lead times. Pricing decisions made under a naive capacity model that assumes any
level of demand up to the theoretical capacity of the system can be met within a fixed
lead time independent of workload have the potential to lead to significant difficulties
when low prices and optimistic lead time estimates lead to the system being unable
to meet demand within a reasonable time, causing lost sales and possibly loss of
customer goodwill. It is interesting that noticeable effects can be observed even
when the demand is not very sensitive to prices or lead times.

The critical issue is the difference between the lead times assumed in the planning
model and the realized lead times. A FLT model may perform satisfactorily in terms
of achieving its planned revenue even at high utilization if the planned lead time is
set consistently with the realized utilization levels and remains within the maximum
lead time the market will bear. However, such a model will have difficulties when
lead times are underestimated or when sensitivity to lead times changes abruptly,
since it has no ability to modulate the lead times quoted based on system state and
market sensitivities. It is also noteworthy that the CF model consistently sets higher
prices than the FLT model, which upon reflection is intuitive; the price set by the
CF model considers the costs incurred due to congestion such as WIP accumulation,
whereas the FLT model does not. When solved at an aggregate level considering
product families and planning horizons of 18—24 months, the models can be solved
sufficiently rapidly to permit extensive what-if analysis to provide decision makers
with intuition as to the likely results of their decisions.
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The CF model is, as far as we are aware, the first model to integrate dynamic
pricing and production planning over time in a manner that represents the effects of
congestion due to queuing. Most queuing-based models provide steady-state results,
while most prior models that plan prices and production over time have adopted
conventional models of capacity that do not capture the effect of workload on lead
times, and do not permit the joint manipulation of lead times and prices to maximize
profit.

These results highlight the importance of a well-designed and functional
manufacturing-marketing interface for firms operating in markets where price and
lead-time sensitivity may change over time. The problem is aggravated by the fact
that lead times are generally the responsibility of the supply chain organization, while
pricing is determined by sales and marketing groups. A common solution to this issue
we have observed in industry, and which has been advocated by a number of authors
(Graves 1986; de Kok and Fransoo 2003) is to simplify the situation by requiring
the supply chain organization to maintain a constant lead time which is agreeable
to marketing. However, in capital intensive industries where resources must be run
at high utilization for the firm to be profitable, small changes in utilization make
maintaining a constant lead time a very challenging task. The CF model proposed
here in fact addresses exactly this—modulating prices and releases to optimize profit
within the constraints of the lead time imposed by the market’s “reservation” lead
time Lg. In addition, the ability to change both prices and lead times in response
to changing market sensitivity may result in higher revenues and profits relative to
using price as the only control variable.

Several directions for future work present themselves. A natural direction is the
extension of the models developed in this chapter to environments with multiple
product families that may serve quite different markets but share capacity. Many
semiconductor wafer fabs operating as foundries produce circuits for quite different
markets, such as controllers and communication devices, in the same fab using largely
the same technology and equipment. Another natural extension is to embed these
models in a multistage stochastic programming framework where scenarios would
consider different price sensitivities for different products over time. This model
presents a number of challenges due to the rapid growth of the scenario tree, but may
still be practical for the aggregate models of the type suggested in this chapter, and
considered by Allison et al. (1997).

Appendix 3.1: Concavity of Revenue Function for the FLT Model

Our revenue function has the form R = PD = P(M — aP — bL) = MP — aP?> — bLP.
Thus there is only one variable, P. Taking the second derivative of the revenue
function w.r.t P, we obtain

d*R

ﬁz—Zafo
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Since we assume a > 1,we have —2a < (0. Hence the revenue function is strictly
concave.

Appendix 3.2: Nature of Demand and Revenue Function for the
CF Model

The demand function has the form. D; = M —a; P,—b; (g—:) Under very reasonable
conditions (see Proposition 3), we can show that the capacity constraint is tight, i.e.,

X, =f (Wt) = KK ]Jx; . Under these conditions, the demand function takes the form
2 t

Dy=M—a,P,— %(K2+W,). Thus, the demand function has a linear form. The CF constraint

(3.8) is convex, hence the constraint set is also convex.

Then, revenue function has the form g,=pr, D,=P,(M—a, P,fl'é—’l(KerW,)). ‘We have:

8gt__ﬁp_328t_
aw, K1 U aw?
g b, A 828:
— =M —2a;,P, — — (K, + W,); — = —2a
P, 4t Kl( 2 1) 8P,2 t
328: . b,
dAPOW, K,

In order to have quasi-concavity, we require that

g\’ b\ b’
_< €f> =_(_—’P,> Sy (3.36)
oW, K K;

g g g 82g1<8gz)2_ 38y (8&) o
AW, 0P, oW, 3P aw2 \ oW, P2 \ow,

and

. 2 R
After some algebra the expression above reduces to 22 p, (M—a, Pi— 2 (K, +Wy)). If sales
K7 K1

Dy=M—a,P,— ,](’—’I(K2+W1 )0, itis clear that this expression is nonnegative. Thus from (3.36)
and this expression we conclude that the revenue function is quasi-concave.

Appendix 3.3: KKT Conditions for CF and FLT Models

KKT conditions for CF model The Lagrangian for this planning model is as below:

W,
L=— Z |:MP, —a,P*—b,P, <7’) — R — X, — I, — a),Wt:|

=1 4



60 A. Upasani and R. Uzsoy

T T
+Y MW =W+ X, = R)+ Y m(l = I — X, + Y)
t=1

t=1

T T 2
A 1%
+ Y 0K X+ X W)+ Y (—M +a P +b (7»

t=1 t=1 !

T t t=t—Lg W
(T ()
t=1 =1

=1 T

T t t=t—Lg W
T
oo (pre g (e () )

T
A 1
+Y % (W, — W+ W;))

=1
The first order optimality conditions and complementary slackness conditions follow:

First Order Optimality Conditions

oL
tht“‘nz_”r—l >0
aL’ (3.37)
I A
L, T t+7mr
oL
Izﬁ =Irthy + 7 —m—1) =0
8Lt (3.38)
I,— =Ir(h
31, r(hr +77)
oL
=cr—M>0 3.39
IR, cr t = ( )
oL
=R —Ar)=0 3.40
IR, r(cr T) (3.40)
JL 1
W, =+ A — A1 — E(Xz + X+1) =0 (3.41)
oL
W, =0 3.42
Y (3.42)
oL -
X, =¢+ A —m +0,(Ky+ W)
A T T
bW,
vl LRI DS ) D (3.43)
t
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oL
X,— =0
X,

P,

oL
P =0
P,
T T
aL
8_Y =Tft—201+2,0r20
4 T=t T=t
aL
Yt_ :0
3Y,

8W[

t=t+Lg T=t+Lg

~ oL
W,

i —— =20
8W[

Complementary Slackness Conditions

0,(K2 X, + X, W, — K, W,)

fwrane ()
o )
(£ E e (8))

~ 1
Xt (Wt - E(Wtfl + Wt)> =0

Nonnegativity conditions 2, m,: unrestricted, 6,, s, o1, oz, x: >0

L b a a
= =9t(Xt_Kl)+Xt+Ylt P + i — Z o+ Z p| =0

61

(3.44)

L W, d d
_=_M+atPt+bt(7:>+at P+ i — Z o+ Z pr| =0

T=t+Lg T=t+Lg

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

KKT conditions for FLT model The Lagrangian for this planning model is as below:

t

L=— Z[Mﬁ, —a,P? b, B LG —c X, — h,i,]
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T
+ Y 8(X = K+ Zm( — M +a, P +b L)
t=1

t=1

Z ( ZYH—If(M—a, bLG)>
ZT: (ZY —tZLG(M—aT P, —b.Lg)— v)

The first order optimality conditions and complementary slackness conditions follow.

First Order Optimality Conditions

BL
o =h+¥—%+120 (3.56)
t
~ dL
=0 (3.57)
al,
oL
8)2; =C — Vi+Lg T 8 =>0 (3.58)
~ 0L
X,(— =0 (3.59)
0X;
L a a
~ = —M+aP +blL+a (P, thi— Y Gt Y 6,) >0 (3.60)
BPZ T=t+L T=t+L
~ 0L
P— =0 (3.61)
oPp;
9L T T
W=Vr—231+ZPzZO (3.62)
! 1=t =t
~ 0L
— =0 (3.63)
0Y;

Complementary Slackness Conditions

85X, —K)=0 (3.64)

(=M +a,P,+bLg)=0 (3.65)
t—Lg

P(Z Y+ Y (M—aP —bLg) = (3.66)
=1 - LGl 1

P,(ZY, Z (M —aP —bLg)—v)=0 (3.67)
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Nonnegativity conditions y,: unrestricted, 8;, [i;, 6;, p; > 0

Appendix 3.4: Proof of Proposition 1

From equation (3.50), we have W,% =0.

From W, > 0, we have

9L b u d
~ Zet(Xz_K1)+Xz+7t P+ — Z or + Z o] =0
aWt 4 t=t+Lg t=t+Lg
| b T T
0= |t (Prm— D ot D o] (69
(Kl - X[) Xt T=t+Lg t=t+Lg
From equation (3.46), we have P,g—f,f =0.
From P; > 0,
N T T
oL W,
ﬁz—M+a,P,+b;<7t>+a, P+ — Z or + Z pr | =0
t t t=t+Lg T=t+Lg

T T -
1 W,

=S| P+wn - Z o + Z P :a_<M_atPt_bt<71)>20
t t

T=t+Lg t=t+Lg

Since sales D; > 0, we have

az

1 W,
- (M —a, P — bgf)) >0 (3.69)
t

For the CF model, we have K; > X;. This statement can be inferred from Fig. 3.1,
where K| refers to the theoretical capacity indicated by the “fixed capacity” line and
X, is the output of the concave CF. Using this fact and Eq. (3.69) in (3.68), we have
6, > 0. From complementary slackness condition (3.51), if 6, > 0, K, X, + X, W, —
KW, =0, implying that the capacity constraint is tight. QED.

Appendix 3.5: Proof of Proposition 2

From equation (3.44), we have X, ;—i =0.
From X, > 0, we have

oL
X,

2 T T
. bW
= ¢ th =m0 (Kt W) = =S| Pt = Y oot Y pe| =0
t

t=t+Lg t=t+Lg
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yielding

~

T T
" bW
To=gith 0K+ W) — S5t | Pt = D0 oot Y o

t t=t+Lg T=t+Lg

From equation (3.40), we have R, (¢c;—A,) =0. From R, > 0, we have X, = ¢, Thus

2 T T
A bW,
T =¢ + 60(Kx + W) — ;(zt P+ — Z or + Z Pr

t

t=t+Lg t=t+Lg
From (3.68), we have
. | b, . T T
s sl LAss ,+uz—T=§Gaf+T:§Gm
:ﬂ o T T ~ B B
o Dot Y | =0(Ki—X)—x

t=t+Lg T=t+Lg

Using this relation in the expression for 7r;, we have

A~

~ W,
T=¢ + o+ 0Ky + W)+ 7’(}(; —0,(Ki — X)) (3.70)
t

Since 6, > 0, we have K>, X; + X, W, — K, W, = 0 from complementary slackness

condition (3.51). Rewriting, we obtain K, + W, = K)'(—YV’ Using this in (3.70), we
have

QK]W WX 9K1W A WX N
T=¢,+c + ZX, Ly )’({’— lXt L WO =¢ + o+ )’(t’+W,0,>0

QED.

Appendix 3.6: Proof of Proposition 3

We have two cases. Shipments can be made from the production quantity in the
current period or from ending inventory from the previous period.
Case I: X ;>0
In this case, sales are fulfilled from production in that period.
From equation (3.59),

A oL A
Xt—LG ~ = Xt—L(;(CI—LG - y[ + (St—LG) = 0

t—Lg
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Since X, > 0 the expression in brackets equals zero. Rearranging the terms in the
bracket, we obtain y;, = ¢;_r, + ;-1 > 0, which implies that y;, > 0 for any period
with positive production.

Case 2: I; >0
In this case, shipments take place from ending inventory of previous period.
From equation (3.57) for period ¢t — 1, we have

)/[ =h1‘_] +y[_1 (3.71)

Let the last positive production have taken place ¢-t periods before and sales in all
subsequent periods be met from inventory resulting from this production. In other
words, )A(,,Lc,f > 0 and )A(,,LG,TH =..= )A(t,LG = 0. Then from Case (1) we
have y,.. > 0.

In addition, we have IAt_t, IA,_H] yeees f,_] > (. Writing equation (3.71) for periods
t-T + 1 to t, we have

Vice#l = e + Vi1
Vier42 = Mgl + Vicr41

vi=hi_1+ vy

Adding the above expressions, we get

t—1
Vi = Z hi +vi—

i=t—1

Since both terms on the right hand side are positive, we have y; > 0. QED.

Appendix 3.7

By Little’s Law we have L=‘§%’, implying that W, = LX,. Noting that the capacity
KWy

constraints will be tight, we have x,= 1. The utilization u, in period t can thus be
t

1
2+ W,
calculated as u,:%: I XLtﬁsz . Solving for K2, we obtain K, = L(1 —u,)K,. Choosing

K, =M]/2, for M =1,000 we obtain K; =500. For L=1 and u; =0.8, we obtain
K> =100.

Appendix 3.8

From WIP Balance constraint of CF model, we have:

Wiy=W, 1 - X+ R,
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Writing the constraint for WIP level as an equality, we have w,="=1""_implying
w,=2W,—w,_;. Setting the two expressions for W, equal to each other, we find that
X =R —2W,+2W,_

Writing the CF constraint as an equality,

. KW,
X = f(Wz) = l—tA
K> '
Comparing both equations for X;, we have
. KW,
Rt — 2Wt + 2Wt71 =
KZ + Wz

Solving the resulting quadratic in W,

o (R —2K+2W, 1 — K\) £ (R — 2K +2W; 1 — K1)* + 8Ko(R + W, 1)
4

t =

We use the positive root for calculating WIP level in a period when simulating FLT
decisions under congestion.
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Chapter 4

Refined EM Method for Solving Linearly
Constrained Global Optimization Problems

Lu Yu and Shu-Cherng Fang

Introduction

In recent years global optimization has become a rapidly developing field. Many
real life problems in areas such as physics, chemistry, and molecular biology involve
nonlinear objective functions where multiple local optima may exist. These problems
can be difficult to optimize by conventional mathematical tools, such as gradient
methods.

To locate a global optimum among many local optima, various stochastic search
methods have been proposed. Commonly used algorithms include simulated anneal-
ing (Ingber 1994), multilevel methods (Kan and Timmer 1987), evolutionary methods
(Michalewicz 1996), partitioning methods (Wood 1991), and particle swarm opti-
mizer (Kennedy and Eberhart 1995). These methods utilize a stochastic mechanism
to search for better bounds on an objective function to be optimized. Some of these
methods may combine the search process with local refinements like hill-climbing
or gradient-based methods (Hart 1994).

Recently, Birbil and Fang proposed a new population-based stochastic search al-
gorithm (Birbil and Fang 2002, 2004). The method is called electromagnetism-like
method (EM), which utilizes an attraction-repulsion mechanism to move a pop-
ulation of points toward optimality. The computational results have shown that
EM converges rapidly (in terms of the number of functions evaluations) to the
global optimal solutions and produce better results than other known methods in
solving problems without the using higher order information of the objective func-
tions. In this paper we extend the EM method to solve optimization problems
defined by general linear constraints without using the derivatives of the objective
function.
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Let f(-) be a real-valued function, A be an m x n real matrix, and b be an
m—vector. In this paper, we consider the following global optimization problem
with linear constraints:

min  f(x)
st. Ax<b 4.1)
X € R".

We do not require any special information or structure of the objective function, as
long as we know how to evaluate its value at each point. But the feasible domain
S = {x € R" | Ax < b} is assumed to be a nonempty bounded set. The refined EM
seeks for the global solution of (4.1) while maintaining feasibility in each iteration.

The paper is organized as follows. In Sect. 4.2, the main structure of refined
EM, including its major steps, is given. The computational results and comparisons
between refined EM and existing global optimizers are given in Sect. 4.3. Conclusions
are given in Sect. 4.4.

Refined Electromagnetism-Like Mechanism (Refined EM)

We assume that for problem (4.1), the following parameters are given: the dimension
of the problem (n), the objective function ( f(-)), the matrix A € R™*" and the vector
b € R™. Since EM works on a set of sample points (population), there is an additional
predetermined parameter, r, which denotes the number of points in the population.

Our goal is to design a refined EM seeking for the global solutions while main-
taining feasibility in each iteration. In this way, the algorithm always provides a
meaningful solution even when it stops prematurely. The refined EM contains four
major steps, namely, “Initialization”, “Local Search”, “Calculation of Aggregated
Force” and “Movement”. The main structure of refined EM is given in Algorithm 1.
The details of these procedures will be given in Sects. 4.2.1-4.2.5.

Algorithm 1 EM for linear-constrained Problems

: Define parameters.

. Initialize(r)

: iteration = 1.

: while termination criteriaare not satisfied do
Local ()

CalcF ()

Move ()

Check termination criteria
iteration = iteration + 1.

: end while

: Output x**stand £ (x®°%).

Sovwnaunswy s
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Initialization

The Initialization procedure is used to sample a certain number (r) of points randomly
from the feasible domain,

S ={xeR" Ax < b} 4.2)

which is an n dimensional polyhedron.
Before the algorithm starts, some parameters are defined as follows:

Parameters

Ay: the stopping tolerance.
A: the stopping parameter.
¢ > 1, 0 < 6 < 1: the increasing and decreasing factors, respectively.

Ao and A will be used to check termination criteria. ¢ > 1 and 0 < 0 < 1 are used
to increase and decrease the stopping parameter A.

After the parameters have been defined, initialization starts. There are four meth-
ods considered in refined EM to generate initial feasible solutions. The first method
is to ignore the linear constraints at the beginning and randomly generate points.
Then a newly generated point is accepted if it satisfies the linear constraints. This
strategy is straightforward and easy to implement. However, such a strategy may not
be efficient for generating a diverse feasible population.

The second method for generating initial feasible population works as described
below. Since the constraint functions are all linear, we may produce a linear pro-
gramming problem by using the feasible domain S and an artificial linear function as
the objective function. Then we apply the simplex method or interior point method
to solve the problem. During the solving procedure, by recording the location of the
point in each iteration, we are able to obtain some feasible solutions to the problem.
Finally, the convex combinations of these solutions can be used as the initial feasible
points. Since the linear programming problem can be solved in polynomial time
by the interior point method, this method may finish generating the initial feasible
population in polynomial time.

The third way of providing an initial feasible population is explained below. First,
find an interior point x* that lies inside the feasible domain S by solving the following
linear programming problem

max t
st. Ax+tre<b 4.3)
with the optimal solution (x*,¢*), where e = (1,1, ... ,DT e R Ift* > 0, x*
can be accepted. Then, from x*, a set of random vectors v, v2, ..., v} pointing to

different directions are generated. Before extending these vectors to hit the boundary
of S, if we choose the step length o; carefully, we can use the points

X =x"4+ov,a>0i=12,...,q, (4.4)
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and their convex combinations as the initial feasible points. This method involves
solving only one linear programming problem.

The fourth method of generating the initial feasible solutions is first find the
maximum-volume ellipsoid which is inscribed in the feasible region S. The ellipsoid
can be represented as (x*, E*), where x* € R" is the center of the ellipsoid and
E € 8!, where S is the cone of all symmetric positive definite matrices in R".
Then, an initial population within the ellipsoid is randomly generated as below:

X =x*+E,i=12,...,r, 4.5)

where 7' € R" and ||17i|| <1,i=1,2,...,r,are vectors generated along different
directions. Since the ellipsoid is inside the feasible region, the points generated
are feasible. Furthermore, the maximum-volume ellipsoid helps us to distribute the
points as diverse as possible.

The computation of the maximum-volume ellipsoid inscribed inside the feasible
region is carried out by the interior point method developed by (Zhang and Gao 2001).
In their article, there exists a good state-of-the-art optimization software to calculate
the maximum-volume ellipsoid.

In our algorithm, the method of finding the maximum volume ellipsoid is first
applied since it may generate diverse initial solutions. If the interior point method is
unable to find the ellipsoid in a certain number of iterations, we turn to use the third
method which is described previously. When the calculated step lengths in the third
method are too small, which means the generated points are too close to x* in (4.4),
the second method is applied. Finally, if the second method still does not provide
enough initial feasible solutions, the first method has to be utilized, though it appears
to be inefficient.

Local Search

After the initial population has been generated, the procedure Local Search is used
to find better solutions in their neighborhoods. Many powerful local search methods
can be utilized in this step. In this paper a direct search method is applied only at the
current best point x°**!. In each iteration of the direct search method, we evaluate the
objective function value of each selected point in the neighborhood of x**'. The new
points in the neighborhood are obtained by adding to x***' a set of feasible directions
d,i=12,...,k}:

xi =x"pad,i=1,2,...,k (4.6)

nbr

where a; > 0 is the step length. Then we keep the one with the lowest function value
in {xbest, Xt i =1,2,... ,k} as the updated x5t This procedure is repeated until
the maximum number of iterations has been reached.

The calculation of the directions {d’, i = 1,2,... ,k}isa key step. When x S

not close to the boundary of the feasible domain S, a good choice of the directions

best i
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is [d!,d?,...,d*] = [I —I], where [ is the identity matrix. Otherwise, the set of
searching directions {d', ... ,d*} should reflect the geometry of any portion of the
boundary of the feasible region near x"°t.

To calculate {d', ... ,dX } in the latter case, we adopt the idea in (Kolda et al.
2003). Let a’ be the i™ row of A in (4.1) and b; be the i™ element of b in (4.1). For
a given € > 0, define

T={i|ax" —b >—¢,i=12,...,m}),

~

4.7)

to be the active set whose elements are the indices of the active constraints. Let A, b
be the matrix and vector that correspond to the active set:

>

=[ai]andg=[bi],ieI. (4.8)

Define

VAV oy —all e (4.9)

Geometrically v/ (x>, ¢) is the outward-pointing normal to the corresponding facet
of S. Define K (x***, ¢) to be the cone generated by the vectors in {V/ (x €), i € I},
and its polar cone K°(x**,¢) = {u | u’v < 0, Vv € K(x", ¢)}. Then
the search directions can be formed by the vectors which generate the cone
KO(Xbesl, 6).

If the vectors {v'} that generate the cone K (x",¢*) are linearly independent
for some €* > 0, one can construct the generators of the cone K O(xPest ¢) in the
following way: let V denote the matrix whose columns are {v'}. Suppose there are
s vectors, V is an n x s matrix. Let N be the matrix whose columns are in the basis
of the null space of VT, Then one can show that for any €, 0 < € < €*, aset of
generators of K°(x*®*!, ¢) can be found among the columns of N, V(VTV)~! and
—-VvTv)=L

The next task is to determine a set of linearly independent vectors (vil. If € is
set to be too large, there could be more rows in A and there is a higher probability
that the rows are linearly dependent. If € is too small, the directions obtained could
be useless. Thus the direct search used in refined EM method tries to dynamically
decrease € to achieve our goal. The calculationof {d’, i = 1,2,... , k}is summarized
in Algorithm 2.

best
9

Calculate Force

The computation of the total force vector is inspired by the superposition principle of
electromagnetism theory (Cowan 1968). In each iteration, a charge g; of each point
x' is calculated according to f(x') in (4.10). The charge reflects the efficiency of the
objective function value of the corresponding point in the population. The point with
a higher charge has a lower function value and tends to attract other points to come
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Algorithm 2 CalcJ(x"*", ¢,))
xPes: the current best point.
€01 > 0: the stopping tolerance.

1: Set € > 0 to be the stopping parameter.

2: Set 0 < < 1 to be the decreasing factor.

3: while € > ¢, do

4 Let A be the matrix defined in (4.8).

5. if Ais of full row rank and rank(A) > 0 then

6: Find a QR factorization of AT: [Q,R] = qr(gT).
7 Set B=Q(RT)™!, N = I — BA.

8 Set J=[B —B N —N].

9: else if dim(;l) =0 then

10: Set J = [I —I.

11:  else ~
12: Set € = U x € (decrease € to make A full row rank).
13:  end if

14: end while
15: Output the matrix J =[d}, d?, ..., d"]where{d", i = 1, 2,..., k} are the directions used to generate
new trial points.

closer to it, while the one with lower charge repulses other particles. The charge of
particles are defined as

(4.10)

f(Xi) _ f(Xbest) )
Dot L) = f(xPesn)] )

Then the total force vector f! exerted on point x' is calculated by adding to-
gether the individual component forces, £/, between pairs of points x' and x/,
j=1,2,...,r, j #i. The magnitude of this component force is inversely propor-
tional to the Euclidean distance between the points and directly proportional to the
product of their charges.

qi = exp (—n X

r

f=>ti=12..,r, (4.11)
J#i
where
) () —x) i f(x)) < f(xD)
i — I/ —x"]}> Li=1,2,....rn 4.12)

& X, IS0 2 £

Closely examining the algorithm, we see that the determination of a direction via
the total force vector is similar to the statistical estimation of the gradient vector
of f. But the Euclidean distance between two points also affects the magnitude of
the force. Therefore, the points that become close enough may lead each other to a
direction other than the statistically estimated gradient of f.

To prevent the algorithm from converging prematurely (for details, please refer
(Birbil and Fang 2004)), a modification is performed by adding a perturbed point x”
which is the farthest point from the current best point x***! defined by

x” = argmax{|[x**" —x'||, i = 1,2,...,r}. (4.13)
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At x”, the component forces are perturbed by a random number A ~ U(0, 1),

, I xpy 2di g p(x P,
ol _ (X,, _Xj)"xzq;:;‘j” i f(Xj) < f(Xp) @i
xf —x )||xi—po2’ if f(x/) > f(xP).

Also, the directions of the component forces are perturbed. That is, if A is less
than a given parameter v, then the direction of the component force is reversed.
Consequently, there exists one point in the population for which the direction of
movement may be reversed. The purpose of introducing the perturbed point is to allow
the algorithm explore more areas in the feasible region so that a global convergent
property can be proved. For details of the convergence proof, please refer to Birbil
and Fang (2004).

Movement

In refined EM, the mechanism of movement of the points is similar to that of the
original EM for bounded constraints. But instead of moving inside the feasible re-
gion formed only by the lower and upper bounds, the points have to shift inside a
polyhedron formed by the bounds and linear constraints.

To simplify the notation, let fi « Hi_:ll’ (i =12,...,r and i # best) be the
normalized force vector. A feasible point x' is moved according to the following
equation:

x' =x' +AfI(RNG;), i = 1,2,...,r and i # best, (4.15)

new

where & ~ U(0,1] and X, is the updated point. Our goal is to calculate the
appropriate RNG; > 0 so that x’, is still feasible.
For a point x’ in the population, let £; be the set of indices corresponding to the

constraints which may lead to infeasibility:
Li={jlalt' >0, j=1,2,...,m}, (4.16)

where a/ is the j™ row of matrix A. We can see that if a/f’ < 0, no matter how large
the step length is, the new point remains feasible. It simply goes further away from
the boundary of the feasible region. Therefore, only the rows a/ whose indices are in
L; need to be considered. The maximum step length allowed along the force vector
f' is given by

minjez; (%) , if £; is not empty,
1, if £; is empty.

(4.17)

Then, if a direction f' is pointing outward to the boundary that may lead the point x’
to infeasibility, RNG; will prevent x’ from going too far. Thus Eq. (4.15) guarantees
the feasibility of the updated point.
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If a point x' is close to the boundary of S and the direction f’ exerted on it
is pointing outward to that boundary, RNG; could be very small. This boundary
is called an active constraint. In this case, the point will not be updated to a new
position. To resolve this problem, one more step is applied at x'.

The first thing is to find the active constraints. Let € be a small positive number,
a/ be the j" row of A and b ; be the j™ element of b. For a given ¢, define

b; —a/x'
M;={j|- aX <e, j=1,2,...,m¢,
a’f!
and
Ai=[al ], jeM,. (4.18)

Then, we project the direction f onto the null space of A;, i.e.,
f' = — AT, AT Apf. (4.19)

Since A,fi =0, fi does not point outward to the active constraint and RNG; is
significantly larger than 0. Thus, f can be used as the new force vector exerted on
x'.

Finally, the current best point x***' is not moved since the current best record
should be kept and carried to the subsequent iteration. This suggests that we may
avoid the calculation of the total force on the current best point.

best

Termination

The original EM method stops when the number of iterations exceeds a maximum
limit. We keep this as an important criterion, and there are other ways of defining
the stopping criteria.

Notice that in the searching procedure there are two cases in which the method
could fail to find a better point. The first one is that, before performing the local
search procedure, all the updated points are not better than the best point obtained
in the previous iteration. The second case is that in the local search step, no better
point is found. When the two cases happen consecutively, it indicates that refined EM
has not find an improved solution in the current iteration. In this case the stopping
parameter A defined in Algorithm 1 is decreased. Otherwise, the stopping parameter
A is increased. Hence a sufficiently small A indicates that the algorithm could not
find a better point in relatively many iterations and it is the time to stop.

In this paper the algorithm stops when either the iterations or function evaluations
exceed the corresponding limits, or when A is less than a certain threshold A.
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Computational Experiments

After developing refined EM, we collect a set of 73 problems found in the literature
to test its performance. The problems are from the following resources: Vanderbei
(2013), CUTEr collection Gould, Orban and Toint (2013), GLOBALLIib, Runars-
son and Yao (2000), Ji et al (2007) and Michalewicz (1994, 1996). Among the 73
problems, there are 14 problems whose objective functions are linear functions and
59 problems whose objective functions are nonlinear functions. The dimension of
the problems ranges between 2 and 100.

We then apply refined EM and other derivative free global optimizers to solve the
test problems and compare the results provided by refined EM and other optimizers.
Besides refined EM, the optimizers used in our numerical experiments are PSwarm
(PSO) (Vaz and Vicente 2009) and Genetic Algorithm (GA) in the MATLAB toolbox.
These two methods are both population-based stochastic search methods.

All the parameters used in the optimizers are set to be the default values. The
population size of each solver is set to be 40. Refined EM, GA, and PSO are all run
10 times. We terminate the iteration using a combination of relative and absolute
measures of f(x), i.e., when

|f(X*) - fglobl = Trlfg10b| + 74, (4.20)

where f(x*) is the solution obtained by the algorithm and fqqp is the known global
optimum. 7, and t, are relative and absolute error tolerances, respectively. In our
experiments, we set 7, = 1073 and 7, = 107%.

When an optimizer cannot achieve the known global optimum, it stops when it
reaches the maximum number of function evaluations which is set to be 10,000 in
our experiments. There is one problem (p.63: s340) whose global optimal solution
is unknown and this case will be omitted in Fig. 4.1.

Performances on All Test Problems

Figure 4.1 shows the average number of function evaluations used by refined EM
to solve the 72 problems (s340 omitted). Figure 4.2 shows the number of problems
solved under different (average) function evaluations.

Figures 4.1 and 4.2 suggest that a large portion of the problems (more than 50) can
be solved by refined EM in under 2,000 function evaluations. Most problems (more
than 60) are solved in under 5,000 function evaluations. The points whose number of
function evaluations are more than 10,000 in Fig. 4.1 represent the problems that are
not solved optimally in 10,000 function evaluations. (Since we allow the optimizers
to finish the current iteration before they stop, the number of function evaluations for
some cases could exceed 10,000). Note that problem 5340 is excluded in Fig. 4.1.

Table 4.1 lists some of the test problems solved by refined EM. The problems
have various dimensions and numbers of constraints. It indicates that refined EM has
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Number of function evaluations

Problem number

Fig. 4.1 Number of function evaluations used by refined EM for solving the test problems
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Fig. 4.2 Number of problems solved by refined EM under different function evaluations

the ability to find optimal solutions or near optimal solutions for problems of differ-
ent sizes. We can also find out that, in general, the number of function evaluations
grows when the dimension and/or number of constraints become larger. Further-
more, refined EM met some difficulties in solving problem 5224, which is a linear
programming (LP) problem. This fact is true for many LP problems and gives us an
area where refined EM needs to be improved.

To investigate the relationship between dimensionalities of the problems and func-
tion evaluations used by refined EM, we divide the problems into groups of different
dimensions. The median of the problem dimension is 4, and the interval of the di-
mension is divided into 4 parts: [1,2], [3,4], [5, 10] and [11, 100]. The number of
problems in each interval is 19,21, 18 and 15, respectively. Then the average dimen-
sions, average function evaluations and the 95 % confidence intervals of the average
function evaluations are calculated for the problems in these intervals.
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Table 4.1 Problems of various dimensions and number of constraints solved by refined EM

Prob Dim Cons Avg. Evals. Stdev. Evals.
Ji3 2 1 348 31.7007
$224 2 2 6115 50.3919
hs076 4 3 137 23.1442
bunnag5 6 4 298 799111
avgasa 6 6 373 54.3612
s278 6 6 4909 2842.3621
bunnag12 20 10 9401 1610.9595
ex2_1_7 20 10 8489 3666.4410
goffin 51 50 8892 1308.2944
himmelbi 100 12 2088 689.3390
Prob Avg f(x) Best f(x) Stdev. f(x) Known Best
Ji3 -5.9948 -5.9955 0.0012 -6.0000
s224 5.7009 0.0000 6.3076 0.0000
hs076 -4.6792 -4.6816 0.0016 -4.6818
bunnag5 -11 -11 0.0000 -11

avgasa -4.1685 -4.1687 0.0002 -4.1687
s278 7.8470 7.8434 0.0023 7.8385
bunnag12 -2782.3868 -4105.2779 1534.9321 -4105.2779
ex2_1.7 -3688.4141 -4147.5819 637.8759 -4150.4101
goffin 0.0029 0.0001 0.0017 0.0000
himmelbi -1754.3000 -1755.0000 0.5516 -1755.0000

The result shown in Fig. 4.3 indicates a trend that the number of function
evaluations increases as the dimension of the problem grows.

Performance Profile for Function Evaluations

In the next part we are interested in comparing the existing solvers with refined EM.
We present the numerical results in the form of performance profiles, as described in
Dolan and Mor¢ (2002), for evaluating and comparing the performances of optimiza-
tion softwares. The performance profile for a solver is the (cumulative) distribution
function for a performance metric. This procedure was developed to benchmark
optimization softwares, i.e., to compare different solvers on several (possibly many)
test problems. One advantage of the performance profiles is that the tested solvers can
be presented in one figure where each solver has a cumulative distribution function
that represents its performance.

Benchmark results are generated by running a set of solvers S on a set P of
problems and recording information of interests such as the number of function
evaluations and the objective function values. We assume that we have n; solvers
and n, problems.

Firstly, we are interested in using function evaluations as a performance measure;
although, the ideas below can be used with other measures. For each problem p and
solver s, we define

t, s = the # of function evaulations required to solve problem p by solver s
(4.21)
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Fig. 4.3 Number of function  gggg
evaluations vs. problem
dimensions 7000 b

and performance ratio

bs
= —————(>1). 4.22
s minfz, | s € S}( ) ( )

We assume that a parameter ry; > r,, for all p and s, is chosen, and r,,; = ry if
and only if solver s does not solve problem p.
Then we define

ps(T) = ni(the # of elementsin {p € P|r,, < 1}). (4.23)
P
ps(1) represents the probability for solver se S whose performance ratio 7, ; is within
afactort > 1.

In our study, the term of performance profile is kept in use as is in Dolan and
Moré (2002). According to Dolan and Moré (2002), a plot of the performance profile
reveals the major performance characteristics. In particular, if the set of problems
ps(T) is suitably large and representative for problems that are likely to occur in
applications, then the solvers with large probability p,(7) are preferred.

Figures 4.4, 4.6 and 4.7 are the performance profiles of the three tested solvers
in terms of the average, minimum and maximum number of function evaluations,
respectively. In each figure, the x-axis is 7, and the y-axis is ps(7) defined above.
There are several points to be addressed in these figures. First, the line of refined
EM is higher than the other two algorithms in all three figures, which means it has
the highest probability of being the optimal solver. For instance, in Fig. 4.4, refined
EM solves about 60 % problems using least function evaluations (t = 0), while the
percentages for PSO and GA are 23 % and 11 %, respectively.

In Fig. 4.4, the line of refined EM is higher than the line of PSO for most of the
7, and both of them are higher than the line of GA. Also, refined EM is especially
competitive for the smaller factors (r € [1,3.3]), which suggests that refined EM
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Fig. 4.4 Performance profile of the average number of function evaluations on [1, 15]

can solve more problems with relatively small number of function evaluations. It can
be seen that refined EM solves approximately 75 % of the problems with a factor
T = 1.2, which means that in any of these 75 % problems, say, in problem p, if the
smallest number of function evaluations used in all the solvers is t;, then the number
of function evaluations used by refined EM is no more than 1.2¢}. The corresponding
factors for PSO and GA are 2.1 and 14.8, respectively. Similarly, if we are interested
in the solver that can solve 80 % of the problems with the greatest efficiency, refined
EM also stands out.

When 7 is large enough, p,(7) represents the percentage of problems that a solver
s could eventually solve at least once. We set T = ry; = 1,000, scale the plot and
present Fig. 4.5, which is the performance profile for log, (7, ). Here, the probability
ps(7) is defined below:

1
ps(t) = —(the #of elementsin {p € IP| log, (r,,) < }). (4.24)
np

Figure 4.5 indicates that refined EM can solve 91.8 % of all problems at least once,
while PSO and GA can solve 90.4 % and 82.2 % of all problems at least once. Also,
we can see that in the interval [2, 4], the line of GA has a relatively quick increment.

Figure 4.6 shows that, in terms of the minimum number of function evaluations
used in 10 runs, 60 % of the solutions provided by refined EM has the term 7 smaller
than 1.5, the corresponding percentages for PSO and GA are 50 % and 35 %. In
general, refined EM has the best p,(7) for t € [1,2.2]. PSO has the best p;(t) for
T € [2.2,4.1]. Moreover, refined EM and PSO perform similarly in the interval
[4.1,15].
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From Fig. 4.7, we conclude that refined EM is the most efficient solver in terms
of the maximum number of function evaluations used in 10 runs. Moreover, it can
be seen that refined EM can solve 65.8 % of all problems in all 10 runs, which is
because the maximum numbers of function evaluations used in these problems are
smaller than 10, 000. Similarly, PSO solves 65.8 % of the problems and GA solves
64.4 % of them.

Figure 4.8 shows the band of 95 % confidence interval for each solver. We can see
that for small 7, the band of refined EM is above the band of PSO and they do not
overlap, which means that refined EM is significantly better than PSO in terms of
the number of function evaluations when t € [1, 2]. Moreover, the bands of refined
EM and PSO are above the band of GA for T € [1, 15].

Performance Profile for Solution Quality

Now we are interested in the objective function values obtained by the tested solvers.
Here, the performance ratio is defined as
f p.s x
- P
Tps = (=D, (4.25)
=1
where f, is the (average, minimum or maximum) objective value for problem p
obtained by solver s, f and f} are the best and worst objective values for problem
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Fig. 4.6 Performance profile of the minimum number of function evaluations on [1, 15]

p among the solutions of all solvers, respectively. If f = f¥, which means that
all the solvers have found the same solution, let r,, = O for all s € S. Define the

probability

<1). (4.26)

ps(T) = ni(the #of elementsin {p € P| 7,
P
with O < 7 < 1 in this situation.

For a fixed 0 < t < 1, a solver with a higher line suggests that it has the ability
of providing “r—good” solutions in more problems. A “r—good” solution is the one
whose performance ratio (4.25) is smaller than or equal to 7.

Figures 4.9, 4.10, and 4.11 give the performance profiles for the average, min-
imum, and maximum solutions obtained by refined EM, PSO and GA in their 10
runs.

Figure 4.9 shows that refined EM always provides “t—good” average solutions in
more problems than GA and PSO, since the line of refined EM is higher than PSO
and GA for every 7.

Figure 4.10 indicates that, in terms of the minimum objective function values,
PSO is better when 7 € [0.05, 0.49] and refined EM is better for T € [0.49, 1].

From Fig. 4.11, we can see that, in terms of the maximum objective function
values, refined EM is almost always better than PSO, while GA becomes competitive
for T > 0.52.
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Fig. 4.7 Performance profile of the maximum number of function evaluations on [1, 15]

Figure 4.12 shows the band of 95 % confidence interval of each solver in terms
of the objective function values. It can be seen that the bands of refined EM and
PSO overlap heavily, which means that the performances of refined EM and PSO
are similar in terms of the objective function values.

In summary, if one is interested in the average objective function values, refined
EM is a good choice, which means that refined EM is more stable. While if one seeks
best solutions, both refined EM and PSO are very competitive.

Solution Quality on Hard Problems

In this section, we mark the hard problems as those were not solved by a solver s in
4 runs or more out of the 10 runs. The problem with unknown optimum is excluded.
There are in total 15 hard problems for refined EM, 19 for PSO and 18 for GA. We
are interested in the 15 hard problems for refined EM. The computational results are
shown in Table 4.2. In the table, every solution is the best solution obtained by the
corresponding solver in the 10 runs. N/A means that the solver did not find a feasible
solution.
In Table 4.2, we notice that

1) Among the 15 problems, refined EM solved optimally 10 problems at least once:
bunnag7, bunnag8, bunnag9, bunnagl?2, bunnagl3, ex2_1_7, hs044, s279, s280
and #fi2.
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Table 4.2 Comparison of different methods using 10,000 function evaluations

Problem n EM-lin PSO GA Known best
bunnag? 10 —39.0000 —39.0000 —38.9921 —39.0000
bunnag8 20 —394.4029 —394.3840 —160.1755 —394.7506
bunnag9 20 —883.9029 —828.8544 —679.7276 —884.7506
bunnag10 20 —8224.4559 —8315.1801 —3486.4060 —8695.0119
bunnagl1 20 —682.5842 —753.9962 —630.1617 —754.7506
bunnag12 20 —4105.2779 —4105.2779 —524.7473 —4105.2779
bunnag13 20 49359.1934 51431.0000 154925.5218 49318.0000
ex2_1_10 20 101183.1904 121737.4909 153480.6965 49318.0180
ex2_1_7 20 —4147.5819 —4146.4153 —378.5011 —4150.4101
hs044 4 —14.9923 —14.9987 —14.9864 —15.0000
s279 8 10.6106 10.6157 10.6168 10.6059
s280 10 13.3886 13.3869 13.3906 13.3754
$359 5 —5.4711E+06 —5.4958E+06 N/A —5.5045E+06
$392 30 —1.0662E+06 —1.0418E+06 —331242.8649 —1.1012E+6
tfi2 3 0.6496 0.6493 N/A 0.6490

2) PSO also solved 10 problems optimally at least once: bunnag7, bunnag$,
bunnagll, bunnagl?2, ex2_1_7, hs044, s279, s280, 359, and tfi2.
3) GA solved four problems optimally at least once: bunnag7, hs044, s279, and

5280.
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Table 4.3 Comparison of errors under the budget of 10,000 objective function evaluations

Problem eEM epso €GA
bunnag7 0.0000 % 0.0000 % 0.0203 %
bunnag8 0.0881 % 0.0929 % 59.4236 %
bunnag9 0.0958 % 6.3177 % 23.1730 %
bunnag10 54118 % 4.3684 % 59.9034 %
bunnagl1 9.5616 % 0.1000 % 16.5073 %
bunnag12 0.0001 % 0.0002 % 87.2177 %
bunnag13 0.0835 % 4.2844 % 214.1359 %
ex2_1_10 105.1648 % 146.8418 % 211.2061 %
ex2_1_7 0.0681 % 0.0963 % 90.8804 %
hs044 0.0513 % 0.0087 % 0.0907 %
s279 0.0443 % 0.0924 % 0.1028 %
s280 0.0987 % 0.0860 % 0.1136 %
s359 1.8778 % 0.1574 % N/A

$392 3.1784 % 5.3941 % 69.9198 %
tfi2 0.0924 % 0.0462 % N/A

4) Refined EM outperforms PSO in five problems (bunnag9, bunnagi3, ex2_1_7,
ex2_1_10, and $392) while PSO outperforms refined EM in three problems
(bunnag10, bunnagl 1 and s359).

5) None of the solvers found a close-to-optimal solution for the linear programming
problem ex2_1_10. This shows that their abilities to solve linear programming
problems need to be improved.

To quantify the distances of the results given by refined EM, PSO, and GA from
the known best solutions, in Table 4.3, the errors of refined EM, PSO, and GA are
defined:

* * *
— Jglob — Jglob — Jglob
eEy = |fEM fg‘) |:eP50= |fPSO fgo | andeGAz |fGA fg" |’ (427)
|fglob| |fglob| |fg10b|

where f7,,, fhso and f§, are the best values obtained by refined EM, PSO, and GA,
respectively. fyop is the known best solution and fyop # O.

In Table 4.3, N/A means GA cannot find a feasible solution for that problem. The
bold numbers are the smallest errors for the corresponding problems.

Table 4.3 shows that

1) Refined EM solved 10 problems with error smaller than 0.1 %, they are considered
as solved optimally by refined EM.

2) Other than these 10 problems, there are two problems whose errors are between
0.1 % and 5 %: 5359 and s392. There are two problems whose errors are between
5 % and 10 %: bunnag10 and bunnagl 1.

3) There are nine problems in which refined EM achieves best solutions. And there
are seven problems in which PSO achieves best solutions.

In summary, refined EM is able to solve problems with relative high level of difficulty
to optimal or near optimal. Moreover, refined EM has achieved the best performance
among all the three test solvers in terms of objective function values obtained.
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Conclusions and Future Research

In this paper we have refined the original EM method which solves bounded con-
strained problems and made it capable to solve linearly constrained problems. We
have applied this algorithm as well as other existing optimizers to different test prob-
lems in the literature and compared their performances. Our testing results support
the claim that refined EM solves linearly constrained global optimization problems in
an effective manner. Our computational results indicate that refined EM outperforms
other two tested optimizers in terms of the number of function evaluations and/or the
quality of best solutions obtained.

Future research will focus on refining EM to handle more complicated constraints,
such as general convex constraints and nonlinear constraints. To handle general
convex constraints, we need to redesign the initialization, local search, and movement
procedures. Particularly in the movement procedure, a new method of calculating
the range parameters needs to be developed. To handle general nonlinear constraints,
calculating range parameters may not be useful since the feasible region is more
complicated. Therefore a different method is needed.

Since the results in this paper have shown that the essential scheme utilized in the
EM method is quite efficient as compared to other heuristics such as GA and PSO,
good performance can be expected if the difficulty of handling different constraints
is overcome.
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Chapter 5

The Price of Anarchy for a Network of Queues
in Heavy Traffic

Shaler Stidham

Introduction

A recurring theme in the literature on optimal design and control of queueing sys-
tems is the distinction between individually and socially optimal solutions. Roughly
speaking, individual optimization refers to a situation in which each individual user
(customer) makes decisions (e.g., whether to join the system, which facility or route
to choose) based on the cost (e.g., waiting time) incurred by the user. By contrast,
in the case of social optimization, an agent acting on behalf of the collective of all
customers makes decisions with the objective of minimizing the sum of the costs of
all users. In the language of welfare economics, individually optimal solutions are
Nash equilibria and socially optimal solutions are Pareto optima.

The literature on vehicle traffic flow contains some of the earliest references
to individual and social optimization in the context of congestion phenomena. In
a pioneering paper, Wardrop (1952) introduced the two optimality criteria in the
setting of the traffic assignment problem, in which given origin/destination de-
mands for travel in a road network are to be assigned to different routes, where the
travel time on each link in the network is an increasing function of the flow on that
link. Subsequent books and papers include Beckmann et al. (1956), Dafermos and
Sparrow (1969), Dafermos (1980), and Dafermos and Nagourney (1984).

Naor (1969) brought the concepts of individual and social optimization to the
attention of the queueing theory community in the context of an M/M/I queueing
model in which arriving customers choose whether or not to join, based on real-
time observation of the queue length. This paper initiated an extensive literature
on this topic, with respect to both optimal design (in which queue lengths cannot
be observed) and optimal control (in which queue lengths can be observed). Sur-
veys and books on this topic include Sobel (1974), Stidham and Prabhu (1974),
Crabill et al (1977), Serfozo (1981), Stidham (1978, 1984, 1985, 1988), Kitaev and
Rykov (1995), Hassin and Haviv (2003), and Stidham (2009).
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It is well known from the research on social and individual optimization that
congestion tolls can be used to induce users concerned only with their own costs
(e.g., travel or waiting times) to behave in a manner that minimizes the total cost
incurred by all users. By setting the toll equal to the external effect, an individually
optimal solution can be rendered socially optimal. In systems with congestion (e.g.,
queueing facilities and traffic networks) the external effect is the additional cost of
congestion (e.g., waiting or travel time) imposed on other users by a user’s decision
to join a facility or traverse a link. (See Chap. 1 of Stidham (2009) for an introduction
to these concepts in the setting of queueing systems.)

More recently, researchers in the telecommunications community have examined
the problem of route assignment for traffic in a communication network (such as the
Internet), using variants of the Wardrop model for road traffic networks. It is in this
context of communication networks that attention has recently turned to establishing
approximations and upper bounds for the ratio of the total congestion cost of an
individually optimal solution to that of a socially optimal solution: the so-called
price of anarchy (POA). (A more accurate term might be the price of free choice.)
See, e.g., Roughgarden (2002, 2005, 2006), Roughgarden and Tardos (2002), Chau
and Sim (2003), Schultz and Stier-Moses (2003), Perakis (2004), and Correa et al.
(20044, b, 2005). The primary goal of this research has been to find upper bounds
that are independent of the topology of the network and only minimally dependent
on the form of the congestion cost (e.g., travel time) on each link.

By establishing upper limits on the additional cost incurred under individual op-
timization relative to social optimization, research on the POA can provide some
insight into the potential benefit of setting up a toll-collecting mechanism to achieve
social optimization. Inasmuch as such mechanisms have their own administrative
costs and inconveniences, it is important to have some idea of how much the total
cost to society could be reduced by their imposition. Since the costs incurred by users
are larger in heavy traffic, it is particularly useful to have bounds and approximations
that hold in such circumstances.

In each of these settings—queueing theory, vehicular traffic-flow theory, and
the theory of telecommunication networks—the object of interest is a congestion
network: a network in which using a facility (e.g., traversing a link) has an associated
cost per user which is an increasing function of the flow at that facility. In this paper
we shall focus on facility congestion-cost functions of the form that arise when
the facilities of a congestion network are modeled as queues with infinite waiting
rooms. An important property of such queueing models is that the cost (e.g., waiting
time) approaches infinity as the arrival rate (flow) approaches the service rate. As we
shall see, this property has a crucial effect on the POA in the associated network. In
particular, the POA does not grow without bound as the flow approaches the capacity,
in contrast to the “conventional” estimates and upper bounds in the literature. In fact
we are able to derive finite, closed-form expressions for the POA in heavy traffic for
a variety of networks of queues.

The rest of the paper is organized as follows. In Sect. 5.2 we introduce our basic
model of a congestion network. Following the literature on road-traffic and commu-
nication networks, our model is a deterministic network-flow model with nonlinear
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cost functions on each link. The flows on the different routes are the decision vari-
ables. (In the language of queueing-optimization theory, ours is a design rather than
a control model.) Sect. 5.3 provides an introduction and summary of previous results
for the POA. (Sects. 5.2 and 5.3 follow closely the development in Stidham (2009)).

In Sect. 5.4 we focus on a network of parallel facilities. For the case in which each
facility is an M/M/I queue we derive closed-form expressions for the individually
and socially optimal flow allocations, their associated total costs, and the POA. We
compare this result to the upper bound from the literature on the POA, and show that
this upper bound can be quite weak, particularly as the traffic intensity increases.
We pay particular attention to the heavy-traffic limit, in which our expression for the
POA has a particularly simple form. We also show how to extend the heavy-traffic
analysis to the case of parallel GI/GI/] facilities.

In Sect. 5.5 we continue the focus on heavy traffic and show how to extend our
results for parallel facilities to more general networks.

(An earlier version of the present paper appeared in 2008 as a technical report
(Stidham 2008)).

General Model of a Congestion Network

The system under study is a network consisting of a set J = {1,... ,n} of service
facilities and a set R of routes. Each route r € R consists of a subset of facilities,
and we use the notation j € r to indicate that facility j is on route r.'

The network operates over a finite or infinite time interval, which we refer to as the
period. At this stage, rather than specify a particular congestion model for each ser-
vice facility, we prefer to describe the system in general terms, keeping structural and
stochastic assumptions at a minimum. (We shall later consider specific examples.)

There is a single class of jobs (customers). The arrival rate—the average number
of jobs entering the system per unit time during the period—is denoted by \ and is
assumed to be a fixed parameter in our model. (Later we shall examine the behavior
of the system as this parameter varies.) Each job that enters the system must be
assigned to one of the routes, r € R. Let \, denote the flow (average number of
jobs per unit time) assigned to route r, r € R. The flows, \,, r € R, are decision
variables, subject to the constraint that the total flow must equal A:

Zx, = A. (5.1)

rer

! This abstract characterization of a network is sufficiently general to include both classical models
of networks of queues and road traffic networks, as well as more recent models of communication
networks. In queueing-network models (e.g., a Jackson network), each queue (service facility) is
modeled as a node, with a directed arc from node j to node k if service at queue j may be followed
immediately by service at queue k. In communication-network models it is more common (and more
natural) to consider each transmission link as a service facility, with a queue of jobs (messages or
packets) at the node (router/server) at the head of the link, waiting to be transmitted. In road traffic
networks, both nodes (intersections) and links (road segments between intersections) are service
facilities in the sense that they are potential sources of congestion and waiting.
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A flow A, on route r may be implemented by independently assigning each arriving
job to route r with probability p, = A,/A.

We assume that at each facility the average waiting cost per job is a function of
the total flow (arrival rate) at that facility. The total flow at each facility j € J is
denoted by v; and equals the sum of the flows on all the routes that use that facility.
That is,

v = Z A, jEJ. (5.2)

rijer

Let G;j(v;) denote the average waiting cost of a job at facility j, as a function of
the flow, v;. We assume that G;(v;) takes values in [0, co] and is nondecreasing and
differentiable in v;, 0 < v; < 0o, with

Gj(vj)) = oo, asv;— oo, jelJ. (5.3)

The meaning of the word “average” depends on the specific model context. For
example, it may mean a sample-path time average or (in the case of an infinite time
period) the expectation of a steady-state random variable.

In general waiting cost is a measure of the disutility to a customer of the time
spent waiting in the queue or in the queue plus in service. In some cases (see the
following example) the waiting cost is proportional to the total time spent in queue
and in service. This is a useful paradigm to keep in mind, but we prefer to keep the
development as general as possible until specific assumptions are needed.

Example 1 As an example, suppose facility j is a single-server queue operating in
steady state, with

G;j(vj) = E[hj(W;(vi)],

where h;(t) is the waiting cost incurred by a job that spends a length of time ¢ at
facility j and, for each v; > 0, Wj(v;) is the steady-state random waiting time in the
system for the queueing system induced by an arrival rate equal to v;. For the special
case of a M/M/I queue with an (FCFS) queue discipline and a linear waiting-cost
function, h;(t) = h; - t,t > 0, we have

h; .
, ifv; < w;,
G =qm—vy 7 (54)
oo, lfv] = :u’]9

where | is the service rate (i.e., the reciprocal of the average service time).

Remark 1 The assumption that the waiting cost at each facility depends only on
the flow at that facility puts restrictions on the applicability of our general model
to a network of queues. In a classical Jackson network (Poisson arrival process and
independent and exponentially distributed service times at the facilities) the facilities
behave like independent M/M/I queues in steady state, with facility j having Poisson
arrivals at rate v;, exponential service times with service rate j;, and average waiting
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time 1/(u; — v;). But for a generalized Jackson network—that is, a network with a
renewal arrival process and i.i.d. service times and FCFS queue discipline at each
facility—the different facilities do not exhibit independent behavior in steady state.
Hence, the expected steady-state waiting time at facility j is in general a function
of the flows at other facilities as well as facility j. (There are some examples of
networks of queues with general interarrival-time and service-time distributions and
non-FCFS queue disciplines in which the facilities behave independently and the
expected steady-state waiting times at each facility depend only on the average flow
at that facility. These are sometimes called Kelly networks: see, e.g., Kelly (1979)).
In Sect. 5.5 we shall consider a more general model in which the waiting cost at a
facility may depend on other flows as well as the flow at that facility. This generalized
model accommodates generalized Jackson networks.

Given the flows, v;, at the various facilities, the total waiting cost incurred by
a job that follows a particular route is the sum of the resulting waiting costs at the
facilities on that route:

> Gy, reRr.

jijer

There may also be a toll §; which is charged to each customer who uses facility j,
J € J.In this case the total cost (or full price) for a job assigned to route r is given
by

> @+ Gy,

jijer

The solution to the decision problem depends on who is making the decision and what
criteria are being used. The decision may be made by the individual customers, each
concerned only with his/her own waiting cost (individual optimality) or by an agent
for the customers as a whole who might be interested in minimizing the aggregate
waiting cost incurred by all customers per unit time (social optimality).

Socially Optimal Arrival Rates and Routes

First let us consider the problem from the point of view of social optimization. The
objective is to choose a vector of route flows, A = (A,,r € R), to minimize the
average total cost per unit time,

C =Y % > Gy,
reR jijer

among all feasible flows. Let A* = (A],r € R) denote a vector of socially optimal
arrival rates.
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Thus we have the following constrained minimization problem:

c¥) = ming, rer:v; jeryC(A)
s.t > h=A,
rer
Z A=V, j€J,
rijer
A >0,r €R

The necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions for this problem

are:
Z,\, = A,

> (G(v) + vGi(v) = a7 € R,

jijer
| Y (G +vGiv)) —a | =0.r R,

jijer
Y he=v.jel,

rijer

A->0,r € R.

Individually Optimal Arrival Rates and Routes

Individually optimal arrival rates are characterized by the Nash-equilibrium prop-
erty that no individual user will have an incentive to deviate unilaterally from the
equilibrium behavior implied by these rates.

Consider a given arrival rate A and a feasible allocation of flows, that is, (A,,7 €
R;vj, j € J) satisfying (5.1) and (5.2). Let  denote the minimum value of the full
price on all routes r € R. That is,

T = min,cg Z (6 + G(v))

jijer

Consider the behavior of a user entering the system with this arrival rate and flow
allocation (a marginal user). At equilibrium, such a user will choose a route which
offers the minimum full price. If, to the contrary, a route with a larger full price
receives positive flow, then such a solution cannot be an equilibrium, since there is
an incentive to divert some of this flow to a route that achieves the minimum price.
Thus A¢ > 0 only if > (6 + Gj(v)) =m.

jijer
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Therefore, an allocation of route flows, A = (A,,r € R), is individually optimal
(denoted A° = (A{,r € R))if and only if it satisfies the following system of equations
and inequalities, for some 7 > O:

Dk = A (5.5)

rer
> @G+ Gy =m.reR, 5.6)
jijer
| Y @G+G)) - | =0.reR, (5.7)
jijer
Do h=vpi e, (5.8)
rijer
and1, > 0,r € R. 5.9

Together with conditions (5.6) and (5.9), the complementary-slackness conditions
(5.7) ensure that 7 = min,cg Zj:jer (8; + G;(v;)) and that only the routes with the
minimal price have positive flows. Note that it will be typical for an equilibrium
solution to have more than one route sharing the minimal price and, therefore, having
a positive flow.

It can be shown that the equilibrium conditions for an individually optimal al-
location have a unique solution, by noting that the equilibrium conditions are the
optimality conditions for the following minimization problem:

vj
it e 3 |G GOy
0

jed

st Y = A,
rer
D=
rijer
A->0,r € R.

Since the objective function is jointly convex in (A, v;, j € J) and the constraints are
linear, the KKT conditions are necessary and sufficient for a global minimum to this
problem. These conditions have a unique solution and it is easily verified that they
are identical to the equilibrium conditions, (5.5)—(5.9), for an individually optimal
solution.

Note that the above minimization problem has the property that the marginal
impact of flow at facility j on the objective function, namely, the integrand,

8 + Gi(m),
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equals the cost incurred by a marginal user. This observation explains intuitively why
the optimality conditions coincide with the equilibrium conditions for an individually
optimal solution.

We can interpret G;j(v;) as the internal effect of a marginal increase in the flow
(arrival rate) v; at facility j. It is the portion of the marginal increase in aggregate
waiting cost that is borne by a marginal user at facility j when the arrival rate is
v;. Similarly, we can interpret the term ij}(vj) as the external effect: the rate of
increase in waiting cost borne by all users as a result of a marginal increase in the
arrival rate v;. By charging a toll at each facility j equal to the external effect—that is,
8j = v;Gj(vj)—one can render the individually optimal allocation socially optimal.

The Price of Anarchy in a General Congestion Network

If charging tolls is not a practical option, then an individually optimal allocation
will typically have a higher total cost than a socially optimal allocation. How bad
(relative to the socially optimal allocation) can a toll-free individually optimal allo-
cation be? More precisely, what is the worst-case behavior of the ratio of the total
cost of an individually optimal allocation to the total cost of the socially optimal
allocation? Using more colorful language (cf. Roughgarden and Tardos 2002): what
is the “POA”? In this setting, “anarchy” means letting customers make their own
route choices.

Previous research on the POA has focussed primarily on the derivation of upper
bounds on the ratio of the total cost of an individually optimal allocation to the cost
of a socially optimal allocation. These bounds apply over the full range of values of
the parameter, A, and in some cases are independent of the topology of the network.
Relevant references are Dafermos (1980), Roughgarden (2002, 2005, 2006), Rough-
garden and Tardos (2002), Chau and Sim (2003), Schultz and Stier-Moses (2003),
Perakis (2004), and Correa et al. (2004, 2004, 2005). In this section we provide a
brief overview of this research, inspired by the approach of Correa et al. (2005).

It will sometimes be convenient to work with an alternative formulation of the
social optimization problem. Using the equality constraints (5.5) we can rewrite the
objective function for social optimization as follows:

DD G =) MG =) vGy) (5.10)
reR jijer jeJ rijer jeJ

Now define the set, F, of feasible vectors of facility flows, v = (v;,j € J), as
follows:

F:={v3 >0, reR:vj=ZA,, jeJ;ZA,:A
rijer reR

Then the social optimization problem can be rewritten with decision variables, v =
(vj, j € J), as follows:

min

ey €O
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where C(v) := ) .., viGi(vj), v € F.

jeJ

Derivation of Upper Bounds: Review

We first establish a relation between the total cost, C(v), of an arbitrary flow vector,
v € F, and the total cost, C(v¢), of the individually optimal flow vector, v°, which
can be used to bound the ratio, C(v°®)/C(v*), where v° is the vector of socially
optimal flows.

Lemma 1 An individually optimal vector of facility flow rates, v°, satisfies the
relation,

COY=C+Y & |m=> Gyl (5.11)

rer jijer

forall v = (v;, j € J) € F, where 7 is the imputed cost of an individually optimal
flow (see (5)—(9)).

Proof. First note that it follows from (5.5)—(5.9) and (5.10) that
C(v) = Am. (5.12)
Therefore, for all v € F,
CO)=Amr =) m

reRr
=C)+ Zkrn - Z/\r Z Gi(v)
rer rer jijer
=CO+Y a7 =Y Gy
rer Jijer

Remark. As an immediate consequence of (5.6), (5.10), and Lemma 1, we have
the inequality,

CO*) < CO) + Y (G — G(v)), (5.13)
jed
which has been used in the POA literature to bound the ratio, C(v¢)/C(v*). The
inequality (5.13) can also be derived from the following variational inequality:

> = v)G(vf) <0, forallv e F (5.14)
=
(see, for example, Correa et al (2005)). But it is important to note that the relation
(5.11) is stronger than the variational inequality (5.14).

Now we show how (5.11) (or (5.14)) can be used to find an upper bound on
C(v%)/C().
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Theorem 2  Suppose there exists a constant o < 1 such that

Z’\r T - Z Gi(v) | <o C(), (5.15)

rer jijer

forallv e F.Then C(v°) < (1 — o)~ 'C(v*).
Proof. For any v € F, using (5.11) and (5.15) we have

COY=C+Y a7 = D Gy

reR jijer
< CW)+oCO).

Since this inequality holds for all v € F, it holds in particular for the socially optimal
vector, v¥. Thus

C(v%) <COW)+oCO°),

from which the desired result follows.

Corollary 3  Suppose there exists a constant o < 1 such that

3 (GO — Giy) < 0 CO°), (5.16)

jel

forallv e F.Then C(v°) < (1 — o)~ 'C(v*).

The Price of Anarchy in a Network of Parallel Queues

In this section and the next we focus our attention on congestion networks in which
the individual facilities are modeled as queues with infinite waiting rooms. We derive
exact formulas and bounds which exploit the specific characteristics of the queues
and/or the topology of the network and compare these to the upper bounds derived
in the previous section for a general congestion network. We begin with a network
of parallel queues and then (in the next section) extend our analysis to a general
network of queues.

Parallel M/M/1 Queues

Consider a system consisting of n independent parallel facilities, with facility j be-
having as an M/M/I queue in steady state with service rate u;, j € J ={1,... ,n}.
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There is a single class of customers arriving according to a Poisson process at fixed
rate \. The decision variables are the arrival rates, v;, j € J, at the various facili-
ties, where } ., v; = A. The waiting cost per customer at facility j is linear, with
waiting-cost coefficient /;, so that

hj .
Gi(v) = , jed.
i —Vj

(See Example 1 above.) Without loss of generality, assume that the facilities are
numbered so that
ho_hy
231 2% Hn
In this case explicit expressions are available for the individually optimal arrival rates,

the socially optimal arrival rates, and the associated costs. (See Stidham (1971, 1985,
2009) for derivations).

(5.17)

Individually Optimal Arrival Rates and Costs

Let v{ denote the individually optimal arrival rate (flow) at facility j, j € J. Let
v = (vf,j € J). Define

k
Sk 1= Z(Mi —hipg/hy), k=1,...,n,

i=1

n
Snt1 = E Mi-
i=1

Note that it follows from the ordering (5.17) that

n
O=s51 <8< <8 < Spy1 = E M-
i=1

Then the individually optimal allocation is as follows: fork = 1,... ,n,if sy < A <
Sk+1, then
hj k .
. Wi — ( i /L,-—A), j=1,...,k,
Ve = j (Zf1 hi) > ici
0, j=k+1,...,n,
and

CcC(v®) =

(Zf;l hi) (Zf;l Mi) Xk:h (Zf;l hi) A

(T —A T (CLm—A
Note that the cost of the individually optimal allocation equals the waiting cost per
unit time at a single M/M/1 facility with service rate u = Zle w; and waiting-cost

rate h = Y r_, hy.



102 S. Stidham
Socially Optimal Arrival Rates and Costs

Let v; denote the socially optimal arrival rate (flow) at facility j, j € J. Let v’ =
(vjs,j € J). Define

k

T = Z(/Li —\/hiliil/«k/hk>’ k=1,....n,

i=1

n
ng1: = E Mi.

i=1

Note that it follows from the ordering (5.17) that

n
0=r1§l’2§"'5i’n§rn+1=E i
i=1

Then, fork =1,... ,n,ifry, < A <rpyq,
Vhi k ;
s_ I \=—F— (Zi:l/”“i_A)’ J=1... .k
Vi = (Zf‘(—l Vhipi
0, j=k+1,...,n,
and

(Cm)-n ="

It follows that the ratio of the individually optimal total cost to the socially optimal
total cost is given by

C(v°) _ (Zjej hj) (Zje] Mj) —(n—A) Zje] hj
€ (Zje] M)Z —(u—=A) Zje] h;

(where p := Y% | w;), provided A is large enough that all n facilities have pos-
itive arrival rates in both allocations. From this expression we see that the ratio,
C(v?)/C(V°) decreases in heavy traffic as A — u, approaching the finite limit,

(Zje] hj) (Zje] Mj)
(Syes VIoi5)

Note the interesting property that this expression is symmetric in {h;, j € J} and

Cc(v') =

(5.18)

(5.19)
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For the special case of equal waiting-cost rates, h; = 1, j € J, (5.18) simplifies
to

cEsy _ " (Zjej Mj) —n(uw—A)
O (e ) — e =)

Stidham (1985) analyzed the the ratio, C(v¢)/ C(v°®), for this case in heavy traffic. It
follows from (5.20) (or from (5.19)) that

(5.20)

2

lim CO)/CON=nu/ | D Vi | <n

jed

This expression attains its lower bound, limy,, C(v¢)/C(v*) = 1, in the symmetric
case in which the service rates are equal at all facilities. In this case (by symmetry) the
socially optimal and the individually optimal allocations both assign equal arrival
rates, A; = A/n, to all facilities. The upper bound, n, is tight, as can be seen by
considering the case

M1 = U — RE,
wj=¢€ j=2,...,n,
and letting € — 0.
In the non-heavy-traffic setting, the behavior of the ratio, C(v®)/C(v*), can be

quite complicated. We illustrate this complexity below by presenting a numerical
example.

Numerical Example. To keep the exposition simple, we restrict attention to the
case of equal waiting-cost rates, h; =1, j € J.

Suppose the system consists of four M/M/1 queues in parallel. The service rates
are

w1 =20, pr=15 u3=10, u4=>5.

For this system the breakpoints at which each facility starts receiving positive flow
are

S = 0, Sy = 5, §3 = 15, S4 = 30, S5 = 50,
for the individually optimal solution and
ry = O, Iy = 26795, r3 = 86104, rqg = 192687, rs = 50,

for the socially optimal solution. Fig. 5.1 compares the exact behavior of C(v¢)/C(V*)
with that of the conventional upper bound on the POA (calculated in this case
using Theorem 2). Note that, for this example, the maximum value of the ratio,
C(v°)/C(V%), equals 1.1 and occurs at A = 30.
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1.25 . . T T T T " T T
Upper
12 - Bound / .
4/
115 - -
cijc
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Fig. 5.1 Comparison of C,/C; with Upper Bound

By contrast the upper bound on the POA approaches co as A — u. To gain
insight into why this is the case, let us look in more detail at the derivation of ¢ in
Theorem 2 in the case of parallel facilities. It follows from Theorem 2 and (5.12)
that any constant o used in the upper bound on the POA must satisfy the inequality

- Z/G] J (T[ C;j(vjs))
- A7 '

Thus we see that any such upper bound must be at least as great as the upper bound
derived by solving, for each facility j, a social optimization problem with linear
utility in which the reward coefficient is . Now m is the imputed reward that in-
duces 1nd1V1dually optimizing customers to join each facility j at a rate v{ such that
> jel v/ = A. But the imputed reward (Lagrange multiplier) o requ1red for social
optimization is strictly larger than m. (See Chap. 7 of Stidham (2009)). Using &
rather than o« > 7 in the social optimization problem leads to facility arrival rates
that are uniformly smaller than the individually optimal rates and therefore sum to
a quantity strictly smaller than A. The result is an upper bound on the difference
between C(v°) and C(v*) that is based on a systematic underestimate of C(v*).
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This interpretation suggests an explanation for why the upper bound, (1 — o)™,
on the ratio, C(v°)/C(v°®), increases to infinity as A — p in the case of parallel
M/M/1 facilities, whereas the ratio itself actually decreases.

Parallel GI/GI/1 Queues; Heavy Traffic

Now consider a system consisting of n independent parallel facilities, with each
facility behaving as an GI/GI/I queue in steady state. Our model and assumptions
are basically those of Shanthikumar and Xu (1997).

Customers arrive to the system according to a renewal process. The generic inter-
arrival time is denoted by A = X /A, where X is a fixed nonnegative random variable
with mean 1 and squared coefficient of variation (scv) C2. Upon arrival each cus-
tomer joins facility j with probability p;, where p; > 0, for j € J = {1,... ,n},
independently of all other customers,and ) jes Pi = 1. The service times of the
customers who join facility j form an i.i.d. sequence of random variables distributed
as S; with finite mean 1/; and scv Céj, j € J.Weassume that A < p := Zjej .

Let {A;,t = 1,2,...} be a sequence of i.i.d. random variables with the same
distribution as A and let Z; be an independent geometric random variable with mean
1/pj, j € J. Define

Zj
AV =3"A, jel.
=1

Then facility j behaves as a GI/GI/I queue with a renewal arrival process which has
a generic inter-arrival time A) with mean 1/(Ap;) and scv p;(C2 — 1)+ 1, j € J.

The decision variables are the routing probabilities, p;, j € J, or, equivalently,
the arrival rates, v;, where v; = Ap;, j € J, and Zjej v; = A. The waiting cost per
customer at facility j is linear, with waiting-cost coefficient 4;, so that

Gi(v) = hiWj(vy), jelJ,

where W;(v)) is the steady-state expected waiting time (in queue plus in service) of
a customer at facility j, j € J. The total waiting cost per unit time is therefore given
by

Cv) =D G = Y vl Wi,

jeJ jeJ

where v = (v;, j € J). As usual, we denote the individually optimal and socially
optimal flow allocations by v¢ and v*, respectively.

We use variants of techniques from Shanthikumar and Xu (1997) to derive upper
and lower bounds on W;(v;), j € J, which are the basis for the derivation of the POA
in heavy traffic, that is,

lim C(v®)/CO?).
A—p
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The main result of this section is that the POA for a system of parallel GI/Gl/]
facilities coincides with the POA for a system of parallel M/M/I facilities with a
modified waiting-cost function.

Let the arrival rate, A, be given. Consider a particular facility j € J with a given
routing probability, p;, and corresponding flow rate, v; = Ap;. Define

W 1i(Cqg = D+ A(C5, + 1) £
(v;) 1= =
. 2A G = vp) Hj = Vj

, (5.21)

where
1i(C; — D+ AC5, + 1)
T 2A ‘

We shall use Wj(vj) as a heavy-traffic approximation of W;(v;). Following Shanthiku-
mar and Xu (1997) it can be shown that

A Cs, C?—1+20+2p A 1 1
W) — | —L + =4 < W) < W:uw)+ | — + —
](VJ) (21“’J 2A - ](VJ) - j(v]) <2/lj Uj>’

(5.22)

for all v; € (0, w;), where a and B are positive, finite constants defined in Shanthiku-

mar and Xu (1997). Note that the lower bound on W;(v;) — Wj(vj) is independent
of v;, whereas the upper bound approaches oo as v; — 0 and approaches O as
v; — u;. Since, for any feasible flow allocation, it must be the case that v; — u; as
A—>pu=Y) jes M this upper bound will suffice in heavy traffic. This observation
leads to the following lemma.

Lemmad Let € > 0 be given. Then there exists a 6 > 0 such that
W) = j < Wi(vy) < Wi(v) + ), (5.23)
forall A € (u— 6, 1), where

Cs, L G- 1+2at2p

b=a 2A
Hj

1 n 1
U= —
T e

For all feasible flow allocations, v, let

é(u)::Zﬁ,»( u > (5.24)

N
jer N

where

hj = h; f. (5.25)
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Note that C(v) coincides with the total cost per unit time in a system consisting of n
parallel M/M/I facilities, where facility j has service rate p; and linear waiting-cost
function with & ; as the waiting cost per customer per unit time, j € J.

The following lemma restates a result from Shanthikumar and Xu (1997) (cf.

)2

Lemma 5 There exist finite constants, L and U, such that for all feasible flow
allocations, v,
Ch)—L<Ch)<CW)+U.

F rom (5.22) we obtain the following upper and lower bounds on L ;(v;) = v; W;(v;)
for all v; € (0, w;):

A C3  pi(C*—1+42a+28) . 3
v Wi(v;) — (T] e = vW;(v) = vW(v) + >

2

Lemma 5 follows directly from these inequalities.

For given A, let D* = (;°, j € J) denote a vector of flows that minimizes the
approximate cost function, C), subject to Y jes Vi = A. As a consequence of
Lemma 5 we have the following theorem (cf. Theorem 3 in Shanthikumar and Xu
(1997)), which demonstrates that D* is strongly asymptotically (socially) optimal in
heavy traffic.

Theorem 6 Forall A < pu,

0<=CH—-COM)=L+U, (5.26)
and therefore
C NS
CEEJ; — l,as A — pu. (5.27)

Now we turn our attention to individually optimal flows. We show that the same
approximation can be used to construct asymptotically individually optimal flows.
For given A, let ¢ = (), j € J) denote a vector of flows that is individually

optimal for the approximate cost function, ¢ (v), subjectto Y jes Vi =A.
Theorem 7

C(°)
C(ve)

— 1, asA — u. (5.28)
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Proof. Assuming that A is large enough that all facilities have positive flows, and
using (5.21), we can write the equilibrium conditions satisfied by b¢ as

hA "
—ﬁLG,jeJ, (5.29)
Kj—Vj

Y vi=A (5.30)
jeJ

forsome wr > 0. Similarly, the equilibrium conditions satisfied by v*, the individually
optimal vector of flows for the original problem, take the form

thVj(l)j):T[, J eJ, (531)
D2u=A (5.32)
jeJ

From (5.23) we obtain the following inequalities,

Mh — hil; < hWi(v)) < ff

Mj = Vj Mj =
forall A € (u — 6, ).
First we consider the Egs. (5.29) and (5.31) for a fixed, arbitrary value of the
parameter 7. Let v;(;r) denote the solution to Eq. (31) and let 9;(;r) denote the
solution to Eq. (5.29), j € J. Solving Eq. (5.29) for v; in terms of 7 yields

h
V() = pj — —f jed. (5.34)

S+ huj, jelJ, (5.33)

Now consider the following equations,

hi f
;f]‘—hjljzﬂ', jGJ,
Hj —Vj

hi

jﬁ +h,~u,-=n, jeld,
Mj=vi

noting that the solution to the former is D;(7r + &;l;) and the solution to the latter is
Di(w — hju;). It follows from (33) that

Vi — hjuy) < vi(m) < Vi(w + hyly), jeJ. (5.35)
Let y := maxjeshju;, 6 := max;esh;l;. Then (5.35) implies that
Vi(mr —y) <vi(w) < Di(w +8), jel. (5.36)
It follows from (5.36) that

CO@m —y) = Cu(m)) = CO( +9)). (5.37)
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Dividing all three terms by C(b(r)) yields

CO@ —y) _ Co@) _ CO +8)

~ < == =< = (5.38)
C(m)) C(m)) C(m))

Our intermediate goal is to show that

C(v(m))

——— — 1, asw — oo.
C(v(m))

It suffices to show that both the upper and lower bounds in (5.38) approach one as
m — oo. We shall do this by approximating C(-) by C(-). .
From (5.24) and (5.34) we obtain the following simple formula for C(D(r)):

CO@)=mn—Y hif. (5.39)

jeJ
Lemma 5 implies that
COH@)—L<COHm) <CH@)+U,
ChH@E —y)—L<Ci —y)<CHE —y)+U,

from which we obtain the following inequalities:

Co@ —y)—L _CO@—y) _CO@-y)+U
Ch@y+U ~— CO@) — COh@n-L

Substituting for C from (5.39) yields

(r =y — (e hif) — L _CO@—y) _ (r =y — (e i)+ U
= (e hH+U T CO@) T au— (i hkH-L

It is easily seen that both the lower and the upper bound approach one as 7 — oo.
Therefore,

CO@ =)

= — 1, asw — oo.
C(v(m))

A similar argument shows that

CO(r +9)
—— — 1, asm — 0.
C(v(r))
It follows from (5.38) that
C(]A)(T[)) — 1, asm — o0, (5.40)
C(v(r))

which is the desired intermediate result.
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Now we return to our ultimate goal of proving (5.23):

C(H%)
C(v9)

— 1, asA — pu.

For 0 < A < u, let w(A) be the solution to
> vim) = A,
jeJ

and let 7(A) be the solution to
> 9(r) = A.
jeJ

Then

CO¥) _ CO@EA)) _ CO@MN))  COEA)
C(ve)  Cur(A))  COA)) C(A))

Since m(A) — oo as A — W,

C(m(A))

— l,as A — pu,
C(v(w(A)))

by (5.40). It remains to show that

COT(A))

———— > l,as A - u.
C((m(A))

S. Stidham

(5.41)

From (5.34) and (5.36) we obtain the following inequalities, for all = > 0:

hjf; hifi .
- <y < ui— s eJ.
i — < () < w; —+5
Summing over j € J yields
Zjej h; fi Z'e] h; fi
e RV € TR
-y ]Xe; ! T+48
For given \, let 77,(1) denote the solution to
_ Zje] hjjJC' — A,
T—y

and let 77;(A) denote the solution to

_ Zjelhjﬁ — A
T+46

(5.42)
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Then
fuwy = 220 5 aiay—s,
u—A
and
. Yoicshifi .
Fu(A) = ZLELT oy — R (A
n—A

From these observations and (5.42) it follows that
AA) =8 <m(A) =a(M)+,
so that

T(A)
T (A)

— l,asA — pu. (5.43)

Recall that our goal is to show that

CO(T(A))

— — l,as A — 1. (5.44)
C(((A))
Now

C(((A)) _ C(((A))) . COHGH(A)) . CH((A))
CH@A))  CHFERWM))) CHa)) COG(A)))

The first and third factors approach one as A — p by Lemma 5. It remains to show

that
COGDD |y, 6.45)
C(r(A))

Recall (cf. (5.39)) that

CO@)=mu—Y hif.
jelJ
Therefore,
CHFEA)) _ TN — X jerhif
COmMA)) T =Y 0 hif

Since m(A) — oo and 7(A) — oo as A — pu, it follows from (5.43) that (5.45)
holds.
This completes the proof of the theorem.



112 S. Stidham

Theorem 8 The POA for the system of parallel GI/GI/1 facilities is given by

. . ~ ~ (Zje] EJ) (Zje] 'u‘j)
lim C(v*)/C(v*) = lim C(v*)/C(V*) = =,
A—p A—p —

(Zjej hj“j)

where ﬁj is given by (25), j € J.

Proof. First observe that
C®)  CO¥) C@{H) CH) C@H*) COH)
C*)  CO9) Mo Ci9 COH) Co)

The first and fifth ratios approach one as A — w by Theorems 7 and 6, respectively.
The second and fourth ratios approach one as A — p by Lemma 5. Therefore,

im @ — lim CA'(‘A)e) _ (Zjel h]ﬁ) (ZJ‘EJ /ij>
e meen (Zjej \/hjﬁﬂj)z

where the last equality follows from substituting the explicit expressions for D¢ and
DY (cf. Sect. 5.4.1 into (5.24) and taking the limit as A — L.

The implication of Theorem 8 is that the POA for a system of parallel GI/GI/]
facilities coincides with the POA for a system of parallel M/M/I facilities with h;
replaced by ﬁj =hif,jelJ.

s

General Network of Queues; Heavy Traffic

In this section we return to a general congestion network and show how the heavy-
traffic results for parallel queues can be extended to certain networks satisfying weak
regularity conditions which hold for most queueing models.

We shall work with a more general model of a congestion network than the one
introduced in Sect. 5.5. In the generalized model the waiting cost at each facility j
may depend on the entire allocation of flows to routes, A := (A,,r € R), rather than
just on the flow at facility j, thatis, v; = > ¢ ., A,

(Recall that the steady-state expected waiting time at a facility in a network of
queues depends only on the flow at that facility when interarrival times and service
times at all facilities are exponentially distributed (a Jackson network), but not for a
generalized Jackson network. See Remark 1 in Sect. 5).

Let G;j(1) denote the average waiting cost of a job at facility j, j € J, as a function
of the allocation vector, A. Let H;(A) denote the average waiting cost incurred per unit
time at facility j, j € J, asafunction of the allocation vector, A. In our standard model
it follows from the formula, H = AG (cf., e.g., Chap. 6 of El-Taha and Stidham
(1998)), that H;(A) = v;G;(A). In general we shall make the following assumption
about the network and the waiting cost functions.
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Assumption 1  For each facility j, the feasible set for v; is A; = [0, u;], where p;
is a positive constant. For a given value of the total arrival rate A = ) __, A, the
feasible set for A = (A,,7 € R) is

reR

L= =0, reRvy=> A, 0<vy<w, jelid A=A

rijer reR

The function G;j(A) takes values in [0, 0o], with G;(A) = oo for all A such that v; = p;
and Gj(A) — oo for any sequence of feasible values of A such that v; — ;.

(Note that we extend the domain of v; to the closed interval [0, u;] by setting
Gj(A) = oo for A such that v; = ;).

The waiting-cost functions for most classical queueing models satisfy this as-
sumption, with ; as the service rate of the facility. (See Example 1 in Sect. 5.2.)
Because our interest here is in flows in a network, however, we shall refer to p; as
the capacity of facility j.

For a feasible flow vector A € L, the total cost per unit time is given by:

COY = vG).

jet

For a given value of A, the social optimization problem may now be written as
follows:

min{,\eg}C(k).

Let X’ = (A, r € R) denote a socially optimal allocation of flows, that is, an alloca-
tion that achieves the above minimum. Let A° = (A¢,r € R) denote an individually
optimal allocation.

The Nash-equilibrium property of an individually optimal allocation can be ex-
pressed as follows (cf. Section 5.2). A flow vector A € L is individually optimal if
and only if there exists a constant m such that:

Y Gz, rer (5.46)
jijer
Ww| Y. G —m|=0=0, reRr. (5.47)
jijer

Our interest is in the heavy-traffic behavior of the ratio, C(1°)/C(X%).

In the remainder of this section we shall restrict our attention to a classical Ford-
Fulkerson network (FFN). A Ford-Fulkerson network consists of a set of nodes N
and a set of (directed) links A. (The links correspond to the facilities in our general
network model.) Each link a € A (equivalently, each facility j € J) corresponds to
a pair (i, k) of nodes, i € NV, k € NV, such that the flow in link a proceeds from node
i to node k. One node s € NV is designated as the source and another node ¢t € A is
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designated as the sink. In this network a route r consists of an ordered set of links
connecting the source to the sink and the set R consists of all such routes.

We shall continue to use the notation and definitions for a general network (namely,
a set of facilities J and a set of routes R), but it is important to note that our results
only hold for a classical Ford-Fulkerson network. In particular, it is essential that all
routes between the source and the sink be included in the set R.

We shall need the following definitions from the theory of (deterministic) network
flows (cf. Bertsekas (1998)). A cut is a subset of facilities j € J such that each route
r € R from s to ¢ contains at least one facility j in the subset. Thus the removal of the
subset from the set J of all facilities makes it impossible to find a feasible flow for any
positive A. A minimal cut is a cut (denoted C) whose total capacity, i := ZjeC 17
is no larger than that of any other cut.

The Max-Flow-Min-Cut Theorem (cf. Bertsekas (1998)) states that the maximal
feasible total flow through the network equals the total capacity of a minimal cut.
Thus, the set of feasible values for the parameter A is [0, u].

We can therefore write the heavy-traffic POA as

c(2)
im
A—p C(X)

. (5.48)

To simplify the analysis we shall make the following technical assumption.

Assumption2 The minimal cut (denoted C) is unique. A feasible allocation, A € L,
can saturate facility j (that is, v; = ;) if and only if j € C.

For the remainder of this section we shall confine our attention to a general
congestion network with flows and waiting cost functions satisfying Assumption 1
in which the underlying network is a Ford-Fulkerson network satisfying Assumption
2. We shall refer to such a network as a FFGCN.

We shall show (Theorem 10 below) that the behavior of the heavy-traffic limit
(5.48) of the POA for a FFGCN is determined completely by the waiting-cost func-
tions, H;(A), at the facilities j € C, that is, the facilities in the (unique) minimal cut.
This result makes it possible to reduce the problem for a FFGCN to an equivalent
problem for a network of parallel facilities.

First we need some more notation. Consider an alternative network with the same
topology as the original network, but with a revised set of facility cost functions,
I:Ij( -) such that, for any feasible allocation, A € L,

H() =H;0), jeC
Hi() =0, j¢cC
Define
Ch):= Z Hi()) = Z H;(%).

JeJ JeC

That is, C(1) is the total waiting cost per unit time incurred at the facilities in the
minimal cut.
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Lemma 9 For any feasible allocation, A € L,

. C)
lim — =
A—pu C(A)

Proof. By Assumption 2, there exists a constant, M < 0o, such that

Z H;(h) < M.
j¢C
for all A € L. It follows that
_Co _ 2 jec Hi®)
SO T N HiD+ X 00 Hi()
> jec Hi(h)

—_ 1,as A .
_ngch()»)‘FM_) asA —

Now let A¢ and A° denote, respectively, individually optimal and socially optimal
allocations for the network with the revised facility-cost functions, H;( - ), j € J.

Theorem 10  Suppose

A e
lim C:(~ ) =K < 00. (5.49)
A—p C(}\‘v)
Then
c(\e
(%) =K. (5.50)
A—p C(X)
Proof. It suffices to show that
1) C(¢
“ )—g — 0, asA — u. (5.51)
C)  CO)

Note that

c(r) COo)

B CcO) C(r%)
Cx¥)  CO)

Cx¥)  C)

C(r%) B C(1%)
Cx) CO)

<

(5.52)

We first show that the second term on the right-hand side of the inequality approaches
zero as A — . Consider socially optimal flows for the original network and for the
parallel network constructed from the facilities in the minimal cut. We claim that

O
lim —
A—p C()\S)

= 1. (5.53)
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To show this, let € > 0 be arbitrary. It suffices to show that
(o)
C()

> 1—e¢€, forall A < usufficiently close to .

Suppose, to the contrary, there exists an € > 0 such that
C(A)
C®)

<1l—e¢, forallA < pu.

Now C(2*) = C(X*) + Y ;40 H;(X*). Since Y ;.o H;(0*) < M < o0 and C(X) —
oo as A — u, we can choose a A < u sufficiently close to p such that
ngc H.i([\x)
C(N)

< €.

It then follows that
C(M)
C(»)

<l—€e4+e=1,

which implies that C(1*) < C (), contradicting the assumed social optimality of A
Thus, (5.53) holds.

By an argument similar to that used to prove Theorem 7 in Sect. 5.4 one can show
that

. CQo
Iim —
A=pu C(A°)

=1. (5.54)
From (5.53) and (5.54) and the assumption that C(Xe)/é(is) — Kk < 00, it follows
that

C(o) CO)
Co  CO)

C(r%) . C(A) _ C(1) B C(L9)
C(e)y C¥) COs) CO)

C(e) |C(®) CHY)
= = |=— " = —1|—>0,as A —> pu,
C) |[Ce) CW)
and hence
C(ne
N( ) — Kk <00, asA — u. (5.55)
C(»)

Now we show that the first term on the right-hand side of the inequality (52) also
approaches zero as A — . We have

cGe) C(1%)
Cx)  C)

ce) C(¥) ' C(r%) B C(r9)
Cre) C) Cs) C)
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_C0O)

_ o) C(¥) .
C(»)

Cre) C)

il

which approaches zero as A — pu by Lemma 9 and the fact that C %)/ C(¥)
approaches a finite limit as A — p (cf. Eq. (5.55)). This completes the proof of the
theorem.

Application to a Network of Queues

We now consider the special case of a generalized Jackson network satisfying the
assumptions of this section. The detailed conditions of our model for the arrival
process and the service times at the facilities are essentially the same as for the
model for parallel GI/GI/I queues in Section 5.4 For convenience we restate the
conditions here.

Customers arrive to the source node s according to a renewal process. The generic
interarrival time is denoted by A = X /A, where X is a fixed nonnegative random
variable with mean 1 and squared coefficient of variation (scv) C2. Upon arrival
each customer is assigned to route r € R with probability p,, where p, > 0, for
r € R, independently of all other customers, and ) ._. p» = 1. The service times
of the customers who use facility j € J form an i.i.d. sequence of random variables
distributed as S; with finite mean 1/1; and sev €5, j € J.

Let {A;,t = 1,2,...} be a sequence of i.i.d. random variables with the same
distribution as A and let Z, be an independent geometric random variable with mean
1/p,,r € R. Define

Zr
AV :=%"A, reRr.
t=1

Then the interarrival times of customers assigned to route r € R are i.i.d. random
variables distributed as the generic random variable A",

The waiting cost incurred by a customer who spends a length of time ¢ at facility
Jis hj(t), t > 0, where h;( - ) is non-decreasing with 4;(0) =0, j € J. Thus

G(») =EmOWV,())), e,

where W;(1) is the steady-state random waiting time (in queue plus in service) of a
customer at facility j, j € J. The total waiting cost per unit time is therefore given
by

C) =Y G = Y vEILW,0)],

jeJ jeJ

where A = (A, € R).
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The decision variables are the routing probabilities, p,, r € R, or, equivalently,
the arrival rates, A,, where ., = Ap,,r € R, and ZreR A, = A.Asusual, we denote
individually optimal and socially optimal flow allocations by A¢ and }’, respectively.

We shall refer to such a network satisfying Assumptions 1 and 2 as a Ford-
Fulkerson Generalized Jackson Network (FFGJN).

Now we construct an alternative network, in which the generic service times at
the facilities j € J are defined as follows:

S}‘ = Sj, ] eC
In this alternative network, the waiting times at the facilities j ¢ C are identically
zero, so that these facilities become in effect transparent to the customers as they
move through the network. It follows that the facilities j € C behave exactly like a
network of parallel independent GI/GI/I queues as studied in Sect. 5.4.2. Specifically,
the arrivals to each facility j € C — namely, those customers who are assigned to the

routes r that include facility j — have i.i.d. inter-arrival times with mean 1/v; and scv
given by

(Y pCI-D+1, jeC,

rijer

where

Vj:AZpr, jGC

r.jer

Since the facilities j € C in the alternative network act independently of each other,
just as in the network of parallel queues considered in Sect. 5.4.2, the waiting times
and costs at facility j, j € C, are completely determined by v;. Therefore we can
write G (v;) rather than G () for the waiting cost function at facility j, j € C, and
C (v) rather than C (1) for the total waiting cost in the alternative network. Let v*
and v° denote the socially optimal and individually optimal facility flow allocations,
respectively, in the alternative network.
We can now state the following corollary of Theorem 10.

Corollary 11  Consider a FEGIN. Suppose

lim — ~_) =K < 0Q. (5.56)

Then
C(A%)
im
A= COR)

For the special case of linear waiting cost functions, we have the following corollary
of Theorems 8§ and 10.
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Corollary 12  Consider a FFGIN with linear waiting cost functions,
G/(h) = Elhj - W@, jel.

The POA for this system is given by

(Zjec ﬁj) (Zjec Mj)

2
(Z jec ’Wj)
where fzj is given by (5.25), j € C.

The implication of Corollary 12 is that the POA for a FFGJN with linear waiting
cost functions coincides with the POA for a system consisting only of the facilities
in the minimal cut C, operating in parallel, where each facility j € C operates as an
M/M/1 queue with hj replaced by hj = h; f.

lim C(A%)/C(¥) = lim C(7°)/C(*) =
A—u A—p

Conclusions

The POA for a general congestion network is the ratio of the total cost of an indi-
vidually optimal (competitive equilibrium) allocation of flows to the total cost of a
socially optimal allocation. In this paper we have considered the POA for a conges-
tion network in which the waiting costs at the facilities have the property that the
average waiting cost of a customer approaches infinity as the flow at that facility
approaches the capacity of the facility. The expected steady-state waiting time in a
single-server queue typically has this property, with the mean service rate playing
the role of the capacity. For special cases of such a network, we have shown that
the heavy-traffic limit of the POA is finite. We were able to calculate this limit in
closed form for the special case of a network of parallel GI/GI/I queues. For certain
cases of generalized Jackson networks, we have shown that the heavy-traffic limit
of the POA coincides with the limit for a network consisting only of the facilities in
a minimal cut, operating in parallel. Our results contrast with those in the previous
literature on the POA for general congestion networks, in which upper bounds on
the POA are derived which typically grow without bound in heavy traffic.

There are a number of possibilities for future research in this area. An extension
of our results in Sect. 5 from Ford-Fulkerson networks to more general single-class
networks would allow for applications in which not all routes are permitted. In
such networks, the allocation of flows in heavy traffic is more complicated and it
no longer suffices to consider only the flows in a minimal cut. Multiclass networks
(e.g., networks with different types of customers with different waiting costs and/or
many origin-destination pairs, each with its own demand), also will require a more
sophisticated analysis.
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Chapter 6

A Comparative Study of Procedures
for the Multinomial Selection Problem

Eric Tollefson, David Goldsman, Anton J. Kleywegt and Craig A. Tovey

Introduction

How many games are needed in a playoff series to identify the best team with specified
confidence? How many potential voters should be surveyed to identify the most
popular candidate in a particular political campaign? How many households does
one need to include in a survey to identify the most watched television show during
a certain time slot? How many wine connoisseurs have to participate in a tasting
competition to identify the wine most likely to be preferred (by a connoisseur)? How
many times does one have to send packages to a destination with different couriers
to identify the courier that is fastest on average (Bartholdi 2010)? These are all
questions that can be formulated as multinomial selection problems (MSPs), where
one attempts to identify the alternative (or outcome or category) of a multinomial
distribution that has the largest probability of occurrence, and in which one may be
subject to a budget constraint that limits the number of trials to be conducted.

We want to design an experiment to choose the best among k alternatives. An
experiment consists of a chosen number of trials, in each of which all the alterna-
tives compete. In each trial, alternative i has probability p; > 0 of winning, where
Zf:l pi = 1. Denote the ordered p;’s by pij < ppp; < -+ < pp. The alternative
associated with pyy is the most probable or best, and is denoted i* (it is assumed
throughout the paper that the best alternative is unique). The purpose of the exper-
iment is to identify correctly with high probability the best alternative i*. Prior to
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an experiment, all that is known is the number of alternatives, how each trial will
be conducted, and how the winning alternative will be chosen. No information is
known concerning the probabilities p = (py, p2, ... , px) or the likelihood that any
alternative is better than any other.

Letx; = 1[0] if alternative i is [is not] the winner of trial j, and let n;,,, = ZT:I Xjj
denote the total number among the first m trials won by alternative i. We denote the
cumulative win vector by n,, = (M1m» N2m. - - - » Nkm), and we denote the ordered 71;,,’s
by nim < -+ < Num- Let N be a random variable that denotes the total number
of trials conducted during an experiment. A procedure M is a method to choose
the number of trials conducted and to select one alternative at the conclusion of the
trials. When needed, we include a subscript on M and N to refer to a particular
MSP procedure, e.g., Nj is the number of trials conducted by procedure M;. We
consider only procedures for which, after N trials, an alternative with the most wins is
selected; that is, an alternative i with n;y = npn is chosen. For cases when multiple
alternatives are tied for the most wins, we choose each with equal probability. The
chosen alternative is denoted zA'N.

For a given procedure, the probability of correct selection, denoted by B, (CS), or
simply P(CS), is the probability that alternative i * is chosen. Clearly, P(CS) depends
on p. For any MSP procedure, a reasonable objective is to minimize the expected
number of trials while requiring that

P,(CS) > P*forall p such that py/py—1; > 6%, 6.1)

where the desired probability of correct selection P* > 1/k and the so-called
relative-ratio indifference-zone parameter 6* > 1 are constants that are both spec-
ified by the user. The quantity 6* can be regarded as the “smallest ratio py;/pr—1
worth detecting.”

To guarantee (6.1), we require additional information. Let P = {p [0, 1]* :
Zle pi = 1} be the set of all possible probability configurations p. The preference
zone (PZ) is denoted Ppz = {p € P : pwy/pPi-11 = 6*}. Its complement, Py,
is the indifference zone (IZ). Given a procedure, the least favorable configuration
(LFC) is the probability configuration p € Ppz that minimizes P,(CS). While guar-
anteeing (6.1), the goal is to minimize the expected number of trials when p is the
LFC. However, for some MSP procedures, the LFC has not yet been identified, so
we instead attempt to minimize the expected number of trials when p is the slippage
configuration (SC):

1 1 0*
SC = Sy R ,
0*+k—1 0*+k—1 6*+k—1

which is the LFC for many procedures. In that case, our objective is to minimize the
expected number of trials when p is the SC, while requiring that

P,(CS) > P* when p is the SC, (6.2)

a weaker condition than condition (6.1).
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There are different versions of the MSP described above. In the single-stage
or static MSP, the experimenter has to choose in advance the number N of trials.
Researchers typically assume that the experimenter wants the smallest number N
such that if fN is chosen as described above, then conditions (6.1) or (6.2) hold. Since
the number of trials is committed in advance, the experimenter does not consider
or allow the possibility of conducting one trial at a time for the purpose of deciding
whether to stop or conduct another trial based on the outcomes of the previous trials.

In the sequential or dynamic MSP, the experimenter may conduct one trial at a
time and dynamically determine the (random) number N of trials. In this setting,
researchers typically assume that the experimenter wants to choose a procedure
M that minimizes the expectation of My under configuration p, denoted E ,[ Mul;
special attention is placed on cases for which p is the LFC (which depends on
the procedure M) or at least the SC, and such that conditions (6.1) or (6.2) hold.
Sequential procedures can be one of three types:

* Unbounded sequential procedures for which there is no a priori bound on the
number of trials taken during an experiment.

e Bounded sequential procedures for which the chosen procedure parameters
provide an upper bound on the number of trials taken during an experiment.

* Constrained sequential procedures (a special case of bounded procedures) for
which the decision maker specifies a maximum number of trials that can be taken,
called the budget b.

An example of a setting modeled as a static MSP is an agricultural experiment, in
which each trial consists of dividing a plot of land into k parts, one part for each of
the k crops that are planted. The experimenter has to decide how many such plots
of land to prepare before the growing season, and does not want to conduct one
trial in each growing season before deciding whether to conduct another trial. Many
sports competitions are dynamic “best-out-of-m” type tournaments. For example,
the Major League Baseball World Series is a best-out-of-7 tournament (experiment),
in which the first team to win 4 games (trials) is the winner of the tournament. Many
tennis matches are best-out-of-3 matches (experiments), in which the first side to
win 2 sets (trials) wins the match. As pointed out later, a best-out-of-m procedure is
a specific type of procedure for dynamic MSPs.

In the next section, we review the static and dynamic procedures that will be
compared in the paper. After this, we describe the methodology and metrics we will
use to evaluate the performance of the procedures. We then compare the procedures,
and finally we give conclusions. New, more-accurate and extensive parameter tables
are given in the appendices.

Review of Procedures

The classic single-stage procedure is due to Bechhofer, Elmaghraby, and Morse
(BEM) (1959), and proceeds as follows.
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Procedure Mpggy

» For the given k, 6%, and P*, choose the number nggy of trials. Tables that give the
minimum value of nggy subject to (6.2) have been prepared, e.g., BEM (1959)
or Bechhofer, Santner, and Goldsman (BSG) (1995).

* Conduct nggy multinomial trials in a single stage.

* Select anEM as the best alternative, using randomization to break ties.

Remark 1 For Procedure Mpggy;, Kesten and Morse (1959) prove that the SC is the
LFC. Thus, the parameter nggy in BEM (1959), chosen based upon the procedure
performance in the SC, satisfies condition (6.1) for the given k, 6*, and P*.

In principle, any static procedure can be used to choose the number of trials for
a dynamic MSP. However, it is clear that such a procedure may sometimes conduct
more trials than needed, because it does not exploit the information provided as
trial outcomes are observed. For example, if k = 2 and nggy = 100 trials are
chosen, and we obtain 7 190 = 99 and 1,100 = 1, then for many values of 6* and
P*, we could have stopped before trial 100 and still have reached the conclusion
that alternative 1 is the most probable for the given P*-requirement on P(CS). The
bounded sequential procedure of Bechhofer and Kulkarni (BK) (1984) capitalizes
on such favorable sample paths, that is, sample paths that allow the procedure to stop
before conducting all nggy trials required by the single-stage Procedure Mpggy.

Procedure Mgk

e For the given k, 6%, and P*, choose the parameter ngg (usually ngx = nggm).
Sources are BSG (1995) or Appendix A of this paper.

* At the mth stage of experimentation, m > 1, conduct a multinomial trial.

* Calculate the ordered cumulative wins i, i = 1,2,... , k. Stop the experiment
at the first stage when

Nikim — Nk—11m = NBK — M. (6.3)

¢ Select fm as the best alternative, using randomization to break ties.

In other words, Procedure Mpg employs a curtailment strategy that stops sampling
at the first stage m for which the alternative currently in first place can do no worse
than tie if the remaining ngx — m trials were to be conducted. Let Ngk be a random
variable denoting the value of m at the termination of the experiment. It can be
shown that the curtailed Procedure Mgk yields the same P(CS) as the single-stage
Procedure Mpggy, yet with a smaller expected number of trials, i.e., for all p,

B,(CS using Procedure Mgk) = PB,(CS using Procedure Mggm)
and

Ep[Nek] < npem.
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Remark 2 Since P, (CS) for both procedures is identical when ngx = nggwm, the SC
for Procedure Mpg must be the LFC as Kesten and Morse (1959) proved for Proce-
dure Mggy. Thus, the parameter ngx , chosen based upon the procedure performance
in the SC, satisfies condition (6.1) for the given k, 6*, and P*.

Another sequential procedure is due to Ramey and Alam (RA) (1979), who com-
bine the stopping rule of Alam’s (1971) unbounded procedure, which stops when one
alternative has a sufficient lead over the remaining alternatives, with the inverse sam-
pling stopping rule of Cacoullos and Sobel (1966), which stops when the alternative
with the largest number of wins hits a certain stopping bound.

Procedure Mpga

¢ Forthe givenk, 6%, and P*, choose the parameter pair (r, t). Sources are Bechhofer
and Goldsman (1985a) or Appendix C of this paper.

* At the mth stage of experimentation, m > 1, conduct a multinomial trial.

* Calculate the ordered cumulative wins i, i = 1,2,... , k. Stop the experiment
at the first stage when

Nikim = ¢ OT  Nklm — Nk—1lm = 1.
e Select fm as the best alternative; ties are not possible.

Remark 3 In their paper, RA prove that the SC is the LFC for their procedure when
k = 2, and use empirical evidence to conjecture that it is so for k > 2. The (r,1)-
values in BG (1985a) have been chosen to minimize the expected number of trials
conducted by Procedure Mgra when p is the SC, satisfying condition (6.2), but not
necessarily condition (6.1).

Consider the special case of Procedure Mga with r = ¢. In that case, the first
alternative to win ¢ trials is chosen as the best alternative. In the case with k = 2,
that corresponds to a best out of 2 — 1 tournament.

In a slight modification to Procedure Mga, Chen (1992) creates Procedure Mgy,
by adding truncation with curtailment at trial nga’.

Procedure Mgy

¢ For the given k, 6%, and P*, choose the parameter triplet (nga’, r, t). Sources are
Chen (1992) or Appendix D of this paper.

* At the mth stage of experimentation, m > 1, conduct a multinomial trial.

* Calculate the ordered cumulative wins i, i = 1,2,... , k. Stop the experiment
at the first stage when

Nkim =t OF Niklm — NMik—=11m = ¥ OF Nkl — Nk—11m = HRA — M.

e Select fm as the best alternative, using randomization to break ties.

Remark 4 Chen conjectures that the LFC of Procedure Mpgya s is the SC. The
(nrav, 7, t)-values in Chen (1992) have been chosen to minimize the expected number
of trials conducted by Procedure Mpga when p is the SC, satisfying condition (6.2),
but not necessarily condition (6.1).
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Bechhofer and Goldsman (BG) (1985b, 1986) introduce Procedure Mpgg, which
truncates an unbounded sequential procedure due to Bechhofer, Kiefer, and Sobel
(BKS) (1968) in order to save trials by reducing the inherent overprotection of P(CS)
in the BKS procedure.

Procedure Mpg

e For the given k, 6%, and P*, choose the truncation parameter ngg. Sources are
BG (1986) or BSG (1995).

* At the mth stage of experimentation, m > 1, conduct a multinomial trial.

* Calculate the ordered cumulative wins nj;,, i = 1,2, ... , k, and the quantity

k—1

1 Nklm —N[ilm
w=2(a)

i=1

Stop the experiment at the first stage when either

Zm < (1= P*)/P* O Ngm — Nk—13m = NBg — M. (6.4)

¢ Select fm as the best alternative, using randomization to break ties.

Remark 5 For the unbounded procedure upon which Procedure Mg is based, BKS
prove that the LFC is the SC; see also Levin (1984). BG (1986) acknowledge that both
the BKS procedure and Procedure Mgk share the same LFC, but they do not prove
that combining the stopping rules of these two procedures by adding a truncation
point to the BKS procedure actually preserves the LFC in the new procedure. The
tabulated npg-values in BG (1986) and BSG (1995) minimize the expected number
of trials taken by Procedure Mgg when p is the SC, satisfying condition (6.2), but
not necessarily condition (6.1).

Chen (1988) proposes a bounded sequential procedure that combines inverse
sampling with a finite truncation point.

Procedure M

* For the given k, 6*, and P*, choose the parameter pair (nc, t). A source is Chen
(1988).

¢ At the mth stage of experimentation, m > 1, conduct a multinomial trial.

* Calculate the ordered cumulative wins nijm, i = 1,2,... , k. Stop the experiment
at the first stage when

Niklm = ¢ Or m = nc. (65)

e Select sz as the best alternative, using randomization to break ties.

Remark 6 Chen proves that the SC is the LFC. Thus, his tabulated (nc, t)-pairs,
based upon procedure performance in the SC, satisfy condition (6.1) for a given «,
6*, and P*.
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Remark 7 Chen states that the strong curtailment stopping rule (see (6.3)) of
Procedure Mgk could be used to reduce the expected number of trials for his
procedure without affecting P(CS), but he does not implement the change. We do so
for this comparative study by incorporating curtailment, renaming it Procedure M,
and tabulating (in Appendix B) the results for common choices of k, 6%, and P*.

The classical sequential procedures reviewed above do not necessarily minimize
the expected number of trials in the LFC or SC, but are heuristics for the dynamic
MSP. Tollefson et al. (2013) develop an approach to find optimal sequential proce-
dures that minimize the expected number of trials for a specified configuration such
as the SC, for a constrained MSP with a specified trial budget b.

The sequential procedures reviewed above employ stopping rules that depend on
simple relationships between the components of the cumulative win vector  and
the specified procedure parameters. In general, one may consider all cuamulative win
vectors 3,,, and specify a decision whether to stop the experiment or continue with
another trial for each 5,,. Note that each of the classical sequential procedures can
be specified in such a general way.

If there is a trial budget b, then all cumulative win vectors 7,, for m < b are

considered. Specifically, let N = {1] : Zle N < b} denote the set of all possible

cumulative win vectors for a given budget b, andlet NV}, = { n: Zle n; = b denote

the set of possible cumulative win vectors after b trials. To find optimal sequential
procedures, randomized stopping is allowed. Thus, for any n € N, let ¢, € [0, 1]
denote the conditional probability that the procedure stops when reaching cumulative
win vector 7, given arrival at 7. Due to the budget constraint, ¢, = 1 for all n € N,.
The classical sequential procedures are nonrandomized procedures, and for such
procedures ¢y, € {0, 1} forally € N In other words, for nonrandomized procedures,
the decision to stop at any point » is deterministic—the experiment either stops if
it reaches (¢, = 1) or it does not (¢, = 0). In contrast, a randomized procedure
allows ¢, € [0, 1] for all n € N\ N,. For a randomized procedure, the decision to
stop at a particular point 7 may be deterministic (if ¢, € {0, 1}) or may be random (if
¢y, € (0, 1)). Note that, if one allows b = oo, then any nonrandomized procedure can
be specified by a function ¢ : N — {0, 1}, and any randomized procedure can be
specified by a function ¢ : N+ [0, 1]. Recall that the experimenter does not know
in advance which alternative is more or less likely to win than another alternative;
and, therefore, the indexing of alternatives is arbitrary, and hence ¢, is required to be
invariant with respect to permutations of 3. In other words, for any 5,5’ € A such
that y and 5’ are permutations of each other, ¢, = ¢.

Next we specify generic nonrandomized and randomized Procedures Mygr and
MR, respectively.

Procedures Myg and Mg

 For the given k, 6*, P*, and b, specify the function ¢ : N+ [0, 1] for the
randomized case, or the function ¢ : N+ {0, 1} for the nonrandomized case.

* At the mth stage of experimentation, m > 1, conduct a multinomial trial.

e Calculate », the cumulative win vector. In the randomized case, generate a
uniform(0, 1) random number v,,; if v,, < ¢y, then stop and select alternative
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im, using randomization to break ties. In the nonrandomized case, if ¢, = 1,

then stop and select alternative fm, using randomization to break ties. Otherwise,
continue with the next trial.

Tollefson et al. (2013) present a linear program (LP) to choose the function ¢ :
N + [0,1], such that the resulting Procedure My is an optimal solution to the
constrained MSP, in the sense that it minimizes the expected number of trials subject
to a constraint on the probability of correct selection and a budget constraint, for
specified parameters k, 6%, P*, b, and p. Also, they present a mixed integer linear
program (MIP) to choose the function ¢ : N — {0, 1}, such that the resulting
Procedure Mg is an optimal nonrandomized solution to the constrained MSP for
specified parameters k, 6, P*, b, and p. That paper’s unique contribution lies in
characterizing the problem as a network in which flows represent probabilities, and
the nodes 7 in the network represent vectors through which the multinomial sample
paths may go.

Remark 8 Tollefson et al. (2013) do not prove that the SC is the LFC for Procedures
Mg and MRg. Empirical evidence drawn from Monte Carlo (MC) sampling suggests
that it is so.

Remark 9 For Procedure Mg, the required MIP formulation can be obtained from
the LP formulation for Procedure My by adding constraints and binary variables. It
follows that

Ep[Nr] < Ep[Narl.

Remark 10 Although Procedures Myr and My in Tollefson er al. (2013) are
optimal (over all nonrandomized or randomized procedures, respectively), they have
a number of practical drawbacks compared with the classical procedures reviewed
before.

1. Each of the classical procedures can be specified with a small number of pro-
cedure parameters (that can be published in tables for many values of the input
parameters) and a small number of inequalities that are easy to compute. In con-
trast, the optimal procedures are specified by ¢, for each n € N, and do not
facilitate representation in concise tables.

2. Computation of an optimal procedure requires the solution of an LP if a random-
ized procedure is acceptable, or an MIP if a nonrandomized procedure is desired.
This requires software to solve the LP or MIP, and software that specifies the
formulation of the problem.

3. The optimal procedures require specification of a probability configuration p. For
some of the classical procedures, it has been shown that the LFC is the SC; but
that has not yet been established for the optimal procedures.

4. The LP or MIP formulations for the optimal procedures take a budget constraint
as input. All the classical procedures reviewed above are either single-stage or
bounded sequential procedures, but the bounds result from the procedure pa-
rameters, and not from the input parameters. It is conjectured that for any input
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parameters k, 6*, and P*, there exists a budget b(k,0*, P*) such that the set of
optimal solutions is the same for all b > b(k,6*, P*) (and thus the LP and MIP
formulations can be used to find optimal solutions even if the given problem has
no budget constraint); but this conjecture has not yet been established. Also, the
sizes (number of decision variables and number of constraints) of the LP and
MIP formulations grow as b grows, and thus it is not desirable to choose an
unnecessarily large value of b.

Due to these drawbacks, several of the classical procedures have not lost their practi-
cal appeal. One of the purposes of this paper is to investigate how much in optimality
is sacrificed by using a classical procedure.

For more details concerning the LP and MIP formulations for Procedures Mg
and Mg, see Tollefson et al. (2013).

Methodology

The purpose of the paper is to compare the performances of the MSP procedures
reviewed above.

We will use the optimal procedures as a benchmark for comparing the relative
performances of the classical procedures. First, we describe how we will compare
the different types of MSP procedures, and then, we describe the metrics we will use
for the comparisons.

Procedures

For all the procedures reviewed previously, the SC is either proven or conjectured
to be the LFC. Therefore, we will conduct most of our comparisons of procedure
performance when the probability configuration p is the SC. Furthermore, although
we can evaluate the performance of both Procedures Mg and Mg when p is the
SC, we will not include Procedure Myg in our comparisons for three reasons:

1. The expected number of trials for Procedure Myg turns out to be very close to
that of Procedure Mp in most cases, especially for large b.

2. The maximum size of the MIPs that we are able to solve is much smaller than the
maximum size of the LPs that we are able to solve. Considering only Procedure
Mg allows us to make comparisons across a larger set of problems than we could
if we considered Procedure Mg.

3. Most importantly, Procedure My, is optimal.

All the classical procedures that we consider are either single-stage or bounded se-
quential procedures. Bounded sequential procedures do not require the specification
of a budget b as do the constrained Procedures Mygr and My; rather, their proce-
dure parameters are chosen in order to satisfy the P*-requirement while minimizing
Esc[N]. In order to level the playing field and make like comparisons, we will choose
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a b for each problem and then search only over the subset of possible procedure pa-
rameters that ensures that the maximum number of trials is at most b. For some
problems, this may result in a particular procedure not being able to achieve P* at
all. Our choice of b for each problem is important and will be discussed later. It is
of course possible for us to conduct procedure comparisons without the invocation
of a budget constraint, but we do not do so here.

The following are the seven procedures that we will examine. We explain how
the budget b will affect the search for the optimal procedure parameters for a given
problem. In order to evaluate procedure performance, we developed algorithms to
calculate the exact performance characteristics of each procedure. In some cases, that
exercise allowed us to update the existing parameter tables found in the literature.
When applicable, we refer the reader to those updated tables as well.

1. Procedure Mggy: The single-stage procedure for which the truncation param-
eter ngem < b.

2. Procedure Mpk: The bounded sequential procedure for which the truncation
parameter ngg < b. We include updated tables for this procedure in Appendix A.

3. Procedure M : A modified version of Chen’s (1988) inverse sampling Proce-
dure M that includes the strong curtailment stopping rule (see (6.3)). Parameter
tables for this new procedure can be found in Appendix B. Given b, choices for
this procedure include all parameter combinations with ¢t < n¢ < b.

4. Procedure Mpga: The bounded sequential procedure that includes all parameter
combinations with r <t < (b —1)/k + 1 (which ensures that the procedure will
stop at or before the budget b). We include updated tables for this procedure in
Appendix C.

5. Procedure Mgy : The bounded sequential procedure that includes all parameter
combinations with ngar < b and r < t < nga//2 (by strong curtailment). We
include updated tables for this procedure in Appendix D.

6. Procedure Mpyg: The bounded sequential procedure with truncation parameter
ngg < b.

7. Procedure Mp: The optimal randomized constrained sequential procedure under
budget b.

Metrics

In this section, we briefly describe some of the performance measures that we will
use to compare procedures.

Expected Number of Trials

Given that a procedure meets the appropriate probability requirement, the most-
common performance measure in the literature is Egc[N]. Naturally, Egc[N] is
quite important to the decision maker when considering a procedure to use, since his
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primary goal is normally the minimization of Egc[N]. In some cases, the decision
maker may be concerned with minimizing the maximum possible number of trials
taken; however, we assume that in setting a budget, the decision maker is more
interested in the former than the latter. A decision maker might also be interested
in the expected number of trials in the equal-probability configuration (EPC), p =
(%, %, e, %). This worst-case expectation, Egpc[ V], gives the decision maker insight
into the possible procedure run length for the most challenging configuration with
respect to determining the best alternative.

Procedure Inefficiency Metric

We may also be interested in the deviation of procedure performance with respect to
the achievable lower bound on the expected number of trials in the SC, thereby using
Procedure My as a benchmark against which we compare other procedures. In order
to facilitate an analysis across different problems with widely varying budgets, we use
the following procedure inefficiency metric, Wj, for a given general procedure M;:
_ Esc[Mi] —Esc[Nr] _ Esc[Ni]
! Esc[Nr] Esc[Nr]

where Egc[NVy] denotes the expected number of trials using procedure Mj in the SC,
and Egc[NR] is the expected number of trials using optimal Procedure My in the
SC. We can think of procedure inefficiency as the fractional increase in the expected
number of trials due to using procedure Mj instead of the optimal procedure.

Note that W; depends on problem input k,6*, P*, and b, although the notation
does not show the dependence.

Often, we may want to evaluate procedure performance over a range of problem
input. For that purpose, we extend the procedure inefficiency metric heuristically
by calculating the mean procedure inefficiency, Wy, for a range of P*-values,
PJTO, ijl, ..., P’ where mj is the total number of P*-values at which we calculate

Jmy?
Esc[NV], and Whe;e we assume for ease of exposition that Pl < P}y < PJ*mJ
(We could also carry out an analogous evaluation based on a range of 9*-Values but
we will not do so here.) Since we only calculate the performance at each P* incre-
ment, the value EgC[NJ] calculated at Pyf; will serve as the approximate expected

number of trials for the entire interval (Py;_;, Py;]. Let I be the overall probability

. S . . —I
interval of P*-values we are considering. The mean procedure inefficiency, W, , for
procedure Mj over interval / is defined as

ZEZSC[IVJ Jl Jl 1)

WJI = —1.

mR

ZE [Ne] (Pg; — Piiy)

Note that our definition does not require constant increment size, nor do we need to
use the same increment sizes for both procedures. It does, however, require the same
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overall P*-interval I:

Pt

_ * * _ *
tmy = Prmgand Prg = Pgy.

Keep in mind that the metric is specific to a particular combination of k, 6%, and b,
as well as a particular set of Py;’s.

We must be careful here when comparing procedures, since WJI compares each
procedure with the optimum procedure, based upon the P*-domain of each pro-
cedure, i.e., the range from 1/k to the maximum achievable Pgc(CS) for each
procedure. Procedures Mpgym, Mgk, Mc, Mga, and Mg have the same P*-
domain. On the other hand, procedures Mga and Mpg may have different domains
than each other and the remaining procedures. Considering only the mean procedure
inefficiency metric fails to recognize that the domains of the procedures may be dif-
ferent. If we want to compare two procedures, say procedures M; and My, over a
common domain, we create a new metric, which we call the mean relative procedure
performance, defined as follows:

mjy
Z Eisc[NJ] (Pin - PJti—l)
V;,L = -1,

mp,

> EgINL (P = Pr,y)
i=1

where [ is the intersection of the domains of procedures Mj and My . A positive
value indicates that procedure My, performs better than procedure M;j over the
interval of interest; a negative value indicates the opposite.

Distributional Metrics

We can enumerate all of the possible stopping vectors for any MSP procedure, and
we can develop algorithms to determine the probability of arriving and stopping
at each possible stopping vector. All MSP procedures under a finite budget have a
finite number of stopping points; therefore, we have complete information about the
discrete probability distribution of the number of trials required by the procedure.
With this information, we can calculate metrics such as the mean, median, mode,
variance, and quantiles of the random variable N.

Performance Comparison

We compared the seven procedures described previously using our proposed perfor-
mance metrics. In Appendix E, we include comparison tables for the 36 possible
combinations of k € {2,3,4}, 6* € {1.6,2.0,2.4,3.0}, and P* € {0.75,0.90, 0.95},



6 A Comparative Study of Procedures for the Multinomial Selection Problem 135

0 g b=10 » b=20 _
k-] k-]
o —_— O 15 —
- — - -
o6 - — o — =
* _ * —_
T, - o 10 -
2 —— 2 _
] — ] ——
Q2 —_— 8 s —_—
X — X i
w w —
0 Q
0.5 0.55 0.6 0.65 0.7 0.75 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Required PCS (P*) Required PCS (P*)
=4 - - -
P b =40 - 2 50 b =60 _
O 30 - o -
5 - 5 40
* —_ *
* 20 = 5 30
Q —_—— = Q
° T © 20
g 10 = 2
u’j — u>j 10
0 [0}
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
Required PCS (P*) Required PCS (P*)
[—BEm BK ——C RA ——RA ——BG —R)|

Fig. 6.1 Procedure Comparison Plots for k = 2, 6* = 1.6, b € {10, 20, 40, 60}

with a single budget b for each. For the examples in that appendix, we set the
budget b equal to the optimal truncation parameter ngg for Procedure Mpg—a pro-
cedure which typically performs at least as well as the other classical procedures.
Thus setting b = npg typically creates conditions favorable to the best of the existing
procedures, thereby minimizing its inefficiency compared to the optimal procedure.

The tables give results for both Egc[N] and Egpc[N]. For those 36 cases, Pro-
cedure Mpg usually performs better, in terms of Egc[N], than Procedure Mga/;
however, Tables 6.10 and 6.18 in Appendix E show that this is not always the case.
While certain trends may be evident across the tables, it is hard to draw any com-
pletely general conclusions, particularly since our choice of the budget b will affect
the results and the relative performance of the procedures.

Relative Procedure Performance

We try to account for the effect of the budget b by examining procedure performance
across the 12 combinations of k € {2,3,4} and 6* € {1.6,2.0,2.4,3.0}. For each
combination, we choose four values for the budget b and then consider all possible P*
values between 1/k and 0.99, in increments of 0.01. We plot our results to visualize
relative procedure performance.

Figure 6.1 shows a series of four charts, one each for b € {10, 20,40, 60}, with
k =2 and 6* = 1.6. The expected performance, Esc[N], of the seven procedures is
plotted as a function of P*. Procedure Mpg, the lower bound, is shown in black.
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Some Interesting Results for k = 2

The plotted results for k = 2 illustrate some intriguing findings, some of which
have heretofore not been explained in the literature. First, Procedures Mgk and
M perform identically when k = 2. Specifically, for Procedure M, stops due to
inverse sampling (i.e., the parameter ¢) are identical to stops due to strong curtailment
(i.e., the parameter nc) when ne = 2t. To see this, note that if k = 2 and n = 2¢,
then a stop due to curtailment implies

N2 — Nm = n—m = 2t — (M@ + M1im),

which is true if and only if 523, > . Since the procedure must stop when 12}, = ¢,
the curtailment and inverse sampling stopping conditions are satisfied simultane-
ously. Choosing n > 2t means that the procedure will always stop due to the inverse
sampling condition. Choosing ¢ > n/2 means that the procedure will always stop
due to the curtailment condition. Therefore, when k = 2, we can represent any two-
parameter Procedure M equivalently as the single-parameter Procedure Mgk with
ngg = min{nc, 2t}.

There is another unique characteristic of curtailment when k = 2 that is not
obvious from the figure. Namely, for k = 2, the set of cumulative win vectors that
are stops due to curtailment when n = n( with ng even, is identical to the set of
cumulative win vectors that are stops due to curtailment when n = ny — 1. To see
that this is true, we show first that when k = 2 and n = no with ny even, a cumulative
win vector at trial m, n,,, is a stop due to curtailment if and only if 1y, = no/2. If
n,, is a curtailment stop, then

N2m — Niim = o —m = ng — (23w + N1im)

if and only if npy, > no/2, where ng/2 is an integer since ng is even. Let npp, =

no/2 + v, where v € N U 0, and therefore ,, = (no/2 + v,m — ny/2 — v). Then
N2im — Nm = "o/2 +v —(m —ng/2 —v) =ng —m +2v,

which always satisfies the curtailment condition. But not all values of v may result in
a feasible stopping point because it is possible that the procedure will have stopped
at a previous trial. Therefore, we consider trial m — 1 under two possible cases: either
the alternative associated with 7}, won trial m or the other alternative won. In the
former, the difference between the number of wins of the two alternatives after trial
m—1is

no/2+v—1—m—ny/2—v) = np—m+2v—1.
Since there are ny — m + 1 trials remaining, the curtailment condition is met at trial
m — 1 if v > 0. In the latter case, the difference is
no/24+v—m-—nog/2—v—1 = ng—m+2v+1,

which is a stop for all v > 0. Only v = 0 allows the procedure to reach 5,,; and
v > O results in an n,, that is infeasible. Therefore, if 7,, is a stop due to curtailment,
then npym = no/2.
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To show the reverse, if 72}, = no/2, then
N2m = Mim = No/2 — (m —no/2) = ng —m,

which satisfies the curtailment stopping condition. We have now shown that when
k =2 and n = ng, ng even, a cumulative win vector 7,, is a stop due to curtailment
if and only if nj2ym = no/2.

Now, we show that when k = 2 and n = ng — 1 with ng even, a cumulative
win vector 1, is a stop due to curtailment if and only if np), = no/2. If p,, is a
curtailment stop, then

N2 — M = n—m = ng— 1 — @i + M1jm)

if and only if 5y, > (no — 1)/2. But (ng — 1)/2 is not an integer since ng is
even, so Npjm = no/2 is the smallest integer that meets the stopping condition. Let
N2 = no/2 + v, where v € NU 0, and therefore 5,, = (no/2 + v,m —no/2 —v).
By the same reasoning as the previous proof, if v > 0, then 5,, is not a feasible
stopping point. Only v = 0 results in a feasible stopping point at trial m. Therefore,
if n,,, is a stop due to curtailment, then 12}, = no/2.

To show the reverse, if npy, = no/2, then

N2m — Miim = No/2 — (M — no/2) = ng —m,

which satisfies the curtailment stopping condition since there are ng — m — 1 trials
remaining. We have now shown that when k = 2 and n = ny — 1 with ng even,
a cumulative win vector at trial m, #,,, is a stop due to curtailment if and only if
Nm = no/2. As a result, when k = 2, the set of cumulative win vectors that
are stops due to curtailment when n = n( with ng even, is identical to the set of
cumulative win vectors that are stops due to curtailment when n = ng — 1.

Returning to our discussion of the relationships between Procedures Mgk and
M, we can now state that when k = 2, we can represent any two-parameter
Procedure M equivalently as the single-parameter Procedure Mgk with nggx =
min{nc, 2t — 1}.

Similarly, Procedures Mga and Mpga: also perform identically when & = 2. In
this case, stops due to ¢ are identical to stops due to ngar when ngar = 2t — 1.
Thus, when k = 2, Procedure Mgas with a particular (nga/,’,t')-triplet is iden-
tical to Procedure Mga with a corresponding (r,)-pair in which r = r’ and
t = min {¢, [(nga’ + 1)/2]}, where | x| is the floor function (i.e., rounds x down to
the nearest integer).

Procedure Mg has significant overlap with Procedures Mg and Mga when
k = 2. For Procedure Mg, the parameter z,, in the stopping criteria (6.4) is based on
the differences between the alternative with the most wins and the other alternatives.
When k = 2, there is only one difference to consider, in which case exactly the same
stopping behavior can be achieved with the r parameter in Procedures Mga and
Mgar. To see that this is true, recall the Procedure Mpg stopping condition:

l N2lm —N[1m 1 _ P*
im = (0—*> < P
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Solving for nj2pm — N1jm, and using the fact that 1j2),, — 113, must be an integer, we
get

- _ o _ [y -ma-ry
n2m = Nilm = = In @) ;

where [x] is the ceiling function (i.e., rounds x up to the nearest integer). As with
the previous discussions, the parameter npg acts similarly to the ¢ parameter when
k = 2. The main aspect that makes Procedure Mpg differ from Procedures Mga
and Mpga in some cases is that parameter » can be chosen in the latter procedures
independently of the other parameters, whereas z,, for Procedure Mpg is determined
by the problem parameters (i.e., cannot be chosen independently).

An Anomaly of Procedure Mgg

The lack of flexibility in the stopping criteria (6.4) leads to some interesting behavior
with respect to Procedure Mpg. For some smaller values of P*, there exists no
ngg < b such that P(CS) of Procedure Mgyg is greater than or equal to P*, but
(surprisingly) for some larger values of P*, there exists ngg < b such that P(CS) of
Procedure Mpg is greater than or equal to P*. Such nonmonotonic behavior can be
seen in the chart for » = 20 in Fig. 6.1. In that case, given P* = 0.80, there exists
no ngg < 20 such that P(CS) of Procedure Mg is greater than or equal to 0.80;
but given P* = (.81, there exists ngg < 20 such that P(CS) of Procedure Mpgg
is greater than 0.81. For this example, given P* = 0.80, ngg must be increased to
25 before P(CS) of Procedure My is greater than 0.80. This nonmonotonicity is
a characteristic peculiar to Procedure Mpg that is not shared by any of the other
procedures discussed here. In some cases, such as for k = 2, 6* = 3, P* = 0.90,
there exists no ngg at all such that P(CS) of Procedure Mg is greater than or equal to
P*. These anomalies are due to the fact that the stopping condition z,, < (1—P*)/P*
was originally developed by BKS (1968) for an unbounded procedure. When BG
(1985b, 1986) added the additional stopping parameter, ngg, thereby bounding the
procedure to save trials in expectation, the truncated procedure lost the ability to
achieve P*-values for which the unboundedness of the number of trials was required.
Let Ay = np2pm — Npim- Then for our example with £ = 2 and 6* = 1.6,

0.625 if Ay =1
(] 0391 ifay =2
Zm_(g_*> ] 0244 ifAy =3
0.153 if Ay = 4.

Thus, for P* = 0.79, we have (1 — P*)/P* = 0.266, and we stop at difference
Ay = 2 when z,, = 0.391; for P* = 0.8, (1 — P*)/P* = 0.25, and we stop at
A1 = 3 when z,, = 0.244; and for P* = 0.81, (1 — P*)/P* = 0.235, and we stop
at A;; = 4 when z,, = 0.153. As it turns out, stops from z,, values that are less than,
but very close to, (1 — P*)/P* require more trials to achieve P*, as is the case for
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P* = 0.8 above. For the extreme example when k = 2, 6* = 3, and P* = 0.9, the
stopping condition quantity (1 — P*)/P* = 1/9, which is exactly equal to z,, when
Aj; = 2. In that case, the procedure requires an infinite trial budget to achieve P*.

How can we explain this phenomenon? We first refer to the discussion in Chap. 7
of Tollefson (2012) which shows that, for the SC with k = 2, the posterior (aka
“conditional”) P(CS), given a stop at cumulative win vector 7, is the remarkably
simple expression

o)™
(9*)71[11 + (9*)71[2] )

If we require this expression to be at least P*, then a little algebra reveals that

1 nR21—nn) 1 _ P*
im = | — < .
o* P+

Thus, the original BKS stopping rule requires stopping at the first point for which the
posterior P(CS) > P* when the configuration is the LFC (which BKS prove is the
SC). Now, back to our problem. The prior P(CS) is the expectation of the posterior
P(CS), which is the quantity that we need to be at least P*. For the above example
with k = 2, 6 = 3, and P* = 0.9, we always stop when z,, = 1/9, i.e., when
ni21 — N1 = 2. This means that we always stop exactly when the posterior P(CS) =
P*. Clearly then, we can never incorporate a truncation point ngg for Procedure
Mg because stops due to that criterion will result in a posterior P(CS) < P*, while
the other stopping points have exactly the required P(CS). Thus, any curtailment
would result in a prior P(CS) < P* (although the difference would admittedly be
small if ngg were large). This is also the case when the stopping values of z,, are very
close to (and obviously less than) their required value of (1 — P*)/P*. The closer
that the posterior P(CS) of our z,,-condition stopping points gets to our required P*
(which occurs as z,, approaches (1 — P*)/ P* from below), the larger the curtailment
point ngg must be since we have very little excess posterior P(CS) that can be offset
by the curtailment points. As ngg increases, the contribution to the prior P(CS)
due to curtailment stopping points decreases. As we increase P*, we must increase
npg until we need to move to the next discrete value of z,, (i.e., the next larger
difference), at which point the required ngg may not necessarily be larger than the
previous value—as is the case when we move from P* = 0.79 to 0.80 to 0.81, which
is the particular case we are considering here.

Results for k > 2

We now examine similar plots when the number of alternatives is larger than k = 2.
Figure 6.2 shows a series of charts for b € {5, 10,25,40} with k = 4 and 6* = 2.4.
In this figure, we see that the relationships between the procedures are more complex
than they were for k = 2. None of the procedures perform identically, as some did
for k = 2, but some do perform similarly when b is low.
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Fig. 6.2 Procedure Comparison Plots for k = 4, 0* = 2.4, b € {5, 10,25, 40}

We note some relationships between the procedures (regardless of k) that are
reflected in Fig. 6.2.

¢ Procedure Mpg with parameter ngk is a special case of Procedure M with
parameter pair (n¢/,t), where nc = ngg and t > [nc /2].

* Procedure M with parameter pair (n¢,t) is a special case of Procedure Mga:
with parameter triplet (nga’,7’,t"), where ngar = ner, ¥’ > [ner /27, and t' = t.

¢ Procedure Mg with parameter pair (r, ) is a special case of Procedure Mga/
with parameter triplet (nga/,7’,t"), where ngar > kt + 1,7 =r,and ¢’ = ¢.

e Procedure Mgy always performs better than Procedure Mpggy.

These relationships guarantee a relative ordering between Procedures Mga and
Mgar, and among Procedures Mpggy, Mgk, Mc/, and Mga/, which are reflected in
Fig. 6.2, as well as in Fig. 6.1. Thus, when considering the best performing procedure
(not including the optimal procedures), we need only compare Procedures Mga: and
Mpg. Figure 6.2 shows that there are regions in which Procedure Mga’ (and even
Procedure Mgy ) perform better than Mg and regions (seemingly more numerous)
in which the opposite is true. We will address that issue in more detail later in this
section.

Another insight from Fig. 6.2 is the seemingly counterintuitive fact that Procedure
Mgk and even Procedure Mpgy perform better than Procedure Mga for some P*-
values. The reason for this phenomenon, which only occurs when b is low, is that
the budget poses a more significant constraint on Procedure Mg, than it does for
Procedures Mpggym and Mgg. For a Procedure Mga parameter pair (r,) to be
possible, we must have b > k(t — 1) + 1. For example, if k = 4 and b = 5, then
we require that r < 2, resulting in the possible parameter pairs in Table 6.1. Note
that when r = 1, the procedure stops after one trial, regardless of ¢; therefore, there
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Table 6.1 Parameters for Procedures Mgra and Mgk fork=4,60* =2.4,and b =5

Procedure Mga Procedure Mpg

Parameters Psc(CS) Esc[N] Parameters Psc(CS) Esc[N]

r=Lt=1) 0.4444 1.000 npx = 1 0.4444 1.000

r=2,t=2) 0.5690 3.080 npg =2 0.4444 1.000
ngx =3 0.5085 2.700
npg =4 0.5559 3.012
ngK =5 0.5849 4.104

is no need to include results for (r = 1, t+ = 2). Consider P* = 0.5. Procedure
Mgk with ngg = 3 can achieve P* with Esc[N] = 2.7, but Procedure Mga with
(r = 2,1 = 2), the only parameter pair that achieves P*, requires Egc[N] = 3.08.
Even Procedure Mggm with nggm = 3 achieves P* with alower Esc[N] = 3. These
results agree with Fig. 6.2, although the results for Procedure Mgk are masked by
that of Procedure Mpg at P* = 0.5.

The anomalies that we noticed for Procedure Mpg when k = 2 occasionally
manifest for k > 2, but very rarely. In fact, such phenomena do not appear at all
in Fig. 6.2 for k = 4. While these anomalies are more common for k = 2, we
speculate that a larger k allows for a greater number of possible z,,-values and thus
fewer anomalies from large gaps between the discrete z,,-values.

Mean Procedure Inefficiency

To supplement the visual insights provided by our charts, we also calculated the

metrics Wy and WJI. The tables in Appendix E for our 36 procedure comparisons
include values for Wy as a percentage in the column labeled “100W;.” We also
calculated WJI for the 12 combinations of k € {2,3,4} and 6* € {1.6,2.0,2.4,3.0}
at four values of b. For those examples, we use a constant increment size of 0.01 for
P* (except for the interval between 1/3 and 0.34 when k = 3). In addition, we use
the same increment sizes for each procedure M; as we do for Procedure Mpg. The
following are the four relevant intervals:

« W, is calculated from the entire interval from 1/k to the maximum achievable
P* by procedure M. For example, the maximum achievable P* for Procedure
Mpga with k = 2,0* = 2, and b = 20 is 0.9313. The interval considered in
this comparison is then (for both Procedures Mgs and My) from 0.50 to 0.93,
even though Procedure My can achieve a higher P* at b = 20. Thus, we should
qualify the mean procedure inefficiency metric by calling it the mean procedure
inefficiency over its achievable P*-region when that region is shorter than that of
the optimal procedure. However, we omit the qualifier for the sake of brevity.

. W;S is calculated from the interval from 1/k to the maximum achievable P* or
0.75, whichever is less.
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Fig. 6.3 Mean Procedure Inefficiency for k = 2, 0* = 1.6, b € {10, 20, 40, 60}

J WJ% is calculated from the interval from 0.75 to the maximum achievable P* or
0.9, whichever is less. If procedure Mj cannot achieve a P* above 0.75, this
Eegtsric is not defined.

* W;" is calculated from the interval from 0.9 to the maximum achievable P* or
0.95, whichever is less. If procedure Mj cannot achieve a P* above 0.9, this
metric is not defined.

Figure 6.3 shows the mean procedure inefficiencies for each of the four P*-regions,
with b € {10,20,40,60}, k = 2, and 6* = 1.6 (i.e., corresponding to the charts in
Fig. 6.1). Here we see numerically what we noted in the plots of raw performance:
Procedures Mgy and M have the same performances, as do Procedures Mga and
Mgar. We also see that Procedure Mpg performs similarly to Procedures Mga and
Mgar. The absence of a set of bars for any region means that none of the procedures
can achieve P* in that interval.

Figure 6.4 shows the mean procedure inefficiencies for each of the four regions,
with b € {5, 10, 25,40}, k = 4, and 6* = 2.4. Due to the larger k and lower numbers
of trials, there are again several regions within which none of the procedures can
achieve a particular P*, even though 6* is larger than for Fig. 6.3. The relative
ordering of procedure performance discussed in connection with Fig. 6.2 is evident
here, as is the poorer performance of Procedure Mg when b is low.

The performances of Procedures Mgas and Mpg dominate those of all other
procedures except the optimal procedures. Therefore, we narrow our attention to just

the two procedures by examining the mean relative procedure performance metric
—I
Vra'BG

Figure 6.5 shows the results for this comparison over the same sets of k, 6%,
and b we have analyzed thus far. The figure consists of 12 charts, one for each
possible combination of k € {2,3,4} and 6* € {1.6,2.0,2.4,3.0}. Each row of charts

represents a particular number of alternatives k, and each column of charts represents
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Fig. 6.4 Mean Procedure Inefficiency for k = 4, 0* = 2.4, b € {5, 10, 25,40}

a particular 6*. Within each chart, the horizontal axis includes four groups of four
bars. Each group of four bars represents a particular budget b, which is labeled on
the axis. The four bars within each group represent the same four regions of interest

. . —I . . .
(i.e., intervals I) as those described for W;. The vertical axis on each chart is the

= I
value of the metric V, pg. Thus, within each group, the four bars from left to

. —* 75 =90 —95 .
right represent values of V. 56> Vra sG> VrarBg» a0d Vgar gg» TeSpPectively. Bars

above the center line indicate regions within which Procedure Mpg performs better
than Procedure Mga/. Bars below indicate regions within which the opposite is
true. Points at which there are no bars indicate either identical or nearly identical
performance, or a region within which the procedures cannot compete.

The greater frequency of bars above versus below shows that for the regions and
problems we examined, Procedure Mpg performs better than Mg, more often than
the reverse. However, we point out again that this comparison is over the intersection
of their domains. In some cases, Procedure Mga can attain a higher maximum P*
for a problem than can Procedure Mg, which may provide a decisive advantage for
particular situations. Of course, we should not lose sight of the fact that Procedure
MR (and Procedure Mg ) always perform as well as or better than all other existing
procedures, and should be used if possible when minimization of the expected number
of trials is the most important performance measure.

Distributional Comparisons

As discussed previously, we have complete distributional information for any proce-
dure given the problem parameters (k and 6*) and procedure parameters (e.g., n, r, f,
etc.). We can calculate the population variance of N in the SC, Varsc[N], and thus
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Fig. 6.5 Mean Relative Procedure Performance: Mpgas Versus Mpg (Bars Above Center Line
Indicate Regions within which Procedure Mpg Performs Better)

its standard deviation, SDgc[N], which we include in the tables in Appendix E. We
were also interested in comparing the variance across the 36 cases in the appendix.
Since Varsc[N] and SDsc[N] increase for all procedures except Procedure Mpgym
as Egc[N] increases (and are therefore dependent upon our choice of budget b),
we chose to make our comparisons based on the coefficient of variation, CVgc[N],
which measures variability relative to the mean, and is given by

SDgc[N]
Esc[N]

Table 6.2 shows the mean CVsc[N] across the possible combinations of k € {2, 3,4},
0* € {1.6,2.0,2.4,3.0}, and P* € {0.75,0.90,0.95}, with b = npg, as well as
minimum and maximum values of CVgc[N] for each procedure. We did not consider
the trivial case when b = 1 or when there is no entry for a procedure; therefore, the
number of cases considered is less than 36. The relative ordering of the procedures, in

CVsc[N]
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Table 6.2 Coefficient of Variation Results

Procedure Cases Mean CVyc[N] Min CVsc[N] Max CVsc[N]
Mg 34 0.47 0.34 0.59
MR 29 0.45 0.20 0.60
Magg 34 0.48 0.20 0.61
Mgar 34 0.43 0.15 0.61
MRa 25 0.41 0.20 0.61
M 34 0.18 0.11 0.28
Mgk 35 0.13 0.05 0.20
Mpem 35 0 0 0
35 F T T T T T T T T |
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25 -
»
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Fig. 6.6 Procedure Distribution Boxplots for k = 3, 0* =2, P* = 0.9, and b = 34

terms of their mean CVgc[N], generally holds for each of the cases. The following
lists the procedures in increasing order of variability for the cases we examined,
including Procedure Myg. This order was not necessarily intact for all cases, but
summarizes the observed trend.

. Procedure Mppm

. Procedure Mpgx

. Procedure M¢

. Procedures Mga and Mga
. Procedures Myr and My

. Procedure Mpg

(o N O R S R

Note that the better performing procedures tend towards higher variability.

We may also be interested in more information about relative procedure perfor-
mance. For example, a decision maker might care about the minimum, maximum,
or median of the trial distribution, N, as well. One tool we can use is a modified
boxplot (or box-and-whisker plot). Figure 6.6 displays boxplots of the distribution
of N for each procedure when k = 3, 6% = 2, P* = 0.9, and b = 34, corresponding
to Table 6.12 in Appendix E, but including Procedure Myg as well. The bottom,
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middle, and top of the boxes represent the 25th, 50th (median), and 75th percentiles
of the procedure distributions, respectively. The ends of the whiskers represent the
minimum and maximum of the distributions. We have also added information about
the mean and standard deviation in the blue triangular regions. The horizontal line in
the center of the triangular region represents the mean (Egc[N]); the triangles extend
one standard deviation from the mean.

The figure confirms our relative ordering for procedure variability. We also see that
the distributions of Procedures Mg, Mg, and Mg are noticeably skewed towards
lower numbers of trials, since their medians are below the centers of the rectangles.
Plots such as these can provide decision makers with the additional information
necessary to compare other aspects of procedure performance in the SC or any other
probability configuration. We could go a step further and plot the probability mass
functions for each procedure; however, we feel that such detail is not necessary here.

Conclusions

We developed a procedure comparison methodology, which includes a method to
compare different types of MSP procedures as well as a number of metrics that
allow the user to examine different aspects of procedure performance. We used
those metrics and selected charts to demonstrate some important relationships be-
tween the procedures in terms of performance, particularly when k = 2, as well
as some interesting anomalies in the performance of Procedure Mpg. We also fo-
cused on a more thorough comparison of Procedures Mpg and Mga/, showing that
Procedure Mpg usually performs better in terms of Egc[N], but that Procedure
MR’ can sometimes attain a higher maximum P*. Then, we reported additional
information provided by the distribution of N for each MSP procedure. In particular,
we examined and compared MSP variabilities. The procedures followed a ranking
with fairly good consistency, with Procedure Mpggy having the least variability and
Procedure Mpg having the greatest variability. In general, procedures with better
average performance had greater variability.

We provide updated tables for several procedures in the appendices. Our tables in-
clude the expected number of trials and the probability of correct selection for a larger
number of problem parameter combinations than had been available previously.

Although our intent was not to show that the new class of procedures are better
than classical MSP procedures, it should not be lost on the reader that, if the capability
to derive the required functions for the new procedures is available, Procedures Mg
and Mg should be used.

A. Updated Tables for Procedure Mpg

Table 6.3 identifies the ngk-values that minimize Egc[N] while still achieving P*.
We searched all ngg-values up to ngg = 400. Table entries with “>400" in the
column for npk indicate P* requirements that cannot be achieved within our search
space for the given k and 6*.
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BK (1984) focus on proving various theorems and lemmas associated with cur-
tailment, not on providing tables for the user. Their tables only include results for
npk < 20 and are tabulated by k, ngk, and 6*. We supplement those tables by pro-
viding results for common choices of P*, including a greater range of 6*-values, and
searching over a much larger search space for ngg. We also provide the expected
number of trials in the EPC (i.e., Egpc[N]).

B. Updated Tables for Procedure M

Table 6.4 identifies the (n¢, t)-pairs that minimize Egc[N] while still achieving P*.
We do not include a table for k = 2, since, as discussed previously, Procedures M¢
and Mpy are identical in that case; and so we can consult the Procedure Mpy table
in Appendix A.

We searched all possible (n¢, t)-pairs up to nc = 125. Rows with no entries in the
table are 0*-values for which P* cannot be achieved within the search space. These
tables improve upon those in Chen (1988), in which his values for Egc[N] did not
incorporate curtailment. Also, his tables only provided performance characteristics
for nc < 30. In addition, we provide the expected number of trials in the EPC (i.e.,
Egpc[N]).
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C. Updated Tables for Procedure Mga

Table 6.5 identifies the (r,#)-pairs that minimize Egc[N] while still achieving P*.
We searched all possible (r, t)-pairsuptot = 150 fork =2 and 3, andup to t =75
for k = 4. Rows with no entries in the table are 0*-values for which P* cannot be
achieved within the search space.

These tables improve upon those in BG (1985a) by including a greater range of
6*-values (theirs included 6* = 2.0,2.4,3.0 with some entries for 8* = 1.6), as
well as a few corrections to their original paper. In the table, the symbol ' represents
an entry in our table that is different from that in BG. For that particular instance,
BG allow Pgc(CS) to be slightly below P*; in our table, we do not. The symbol
¥ represents a value that is different from that in BG due to either our improved
algorithm or our ability to calculate an exact result when BG estimated the result
using MC sampling.

D. Updated Tables for Procedure Mga

Table 6.6 identifies the (nga’, 1, t)-triplets that minimize Egc[N] while still achieving
P*. We do not include a table for k = 2, since, as discussed previously, Procedures
MRga and Mg, are identical in that case; and so we can consult the Procedure Mga
table in Appendix C when k = 2.

We searched all possible (ngra, 7, t)-triplets up to ngar = 125 for k = 3 and
4. Rows with no entries in the table are 6*-values for which P* cannot be achieved
within the search space. These tables improve upon those in Chen (1992) by including
a greater range of 0*-values (his included 6* = 2.0, 2.4, 3.0), as well as corrections
to some numerical errors found in his original paper. We use a ' to identify entries
that are corrections to values found in Table 1 of Chen (1992).

E. Procedure Comparison Tables

This appendix includes tables for all possible combinations of k € {2,3,4}, P* €
{0.75,0.90, 0.95}, and 8* € {1.6,2.0,2.4,3.0}. We require that all procedures operate
under a firm budget constraint, b, on the maximum number of trials, which sometimes
results in a procedure not being able to achieve P*.

All of the table entries have been verified via MC sampling. For each entry,
we conducted 100,000 independent replications of the procedure. For any MC result
outside of two standard errors of the tabulated data, we first determined if the tabulated
data could be verified via a published source. If so, we did not pursue those any further.
If not, we took 100,000 more MC samples. In all ten of those cases, the MC results
were within two standard errors of our tabulated data. Thus, we have reasonable
confidence that our results are accurate.
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Table 6.7 Comparative Results for k =2 and 6* = 1.6

P*  Proc Parameters Psc(CS) Egsc[N] SDsc[N] Egpc[N] 100W;
095 Mg 0.9500 26.355 14.113 36.396
Mg  npg =39 0.9502 26.559 14.825 37.094 0.78
MRga/ ngar =59, r =7,t =30 0.9502 26.559 14.825 37.094 0.78
Mra r=7,t=30 0.9502 26.559 14.825 37.094 0.78
M ne =49,t =25 0.9501 40.331 4.497 44.386 53.03
Mgk  npg =49 0.9501 40.331 4.497 44.386 53.03
Mpem  ngem = 49 0.9501 49.000 0.000 49.000 85.92
0.90 Mg 0.9000 16.865 10.019 21.185
Mg ngg = 41 0.9006 17.001 10.318 21.482 0.81
Mpra nra =41,r =5t =21 0.9006 17.001 10.318 21.482 0.81
Mpga r=51=21 0.9006 17.001 10.318 21.482 0.81
M no =31,t =16 0.9054 25.505 3.259 27.522 51.23
Mgk ngg = 31 0.9054 25.505 3.259 27.522 51.23
Mpem  hpem = 31 0.9054 31.000 0.000 31.000 83.81
0.75 Mg 0.7500 5.558 2.056 5.814
Mpg ngg =9 0.7559 5.956 2.289 6.258 7.16
MRga/ nra =9, r=3,t=5 0.7559 5.956 2.289 6.258 7.16
Mga r=31t=5 0.7559 5.956 2.289 6.258 7.16
M no=91t=>5 0.7647 7.295 1.272 7.539 31.25
Mgk ngg =9 0.7647 7.295 1.272 7.539 31.25
Mspem  neem =9 0.7647 9.000 0.000 9.000 61.93

For all procedures except Procedure Mg, we report the parameters of the proce-
dure that minimize Egc[N], while achieving the required P* and remaining under
the trial budget, b. In addition to Egc[N] and Psc(CS), we also report Egpc[N],
SDsc(N), and W (as a percentage and labeled “100 W;”).

Blank rows for a particular procedure in a table indicate one of two situations. First,
the procedure may not be able to achieve the given P* under the budget constraint.
These are marked by an “N/A” in the Parameters column. Second, the computational
time or requirements for calculating Egc[N] and Psc(CS) for a particular procedure
may be beyond our current capabilities. These are marked by “??” in the Parameters
column in Tables 6.7-6.18.
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P*  Proc Parameters Psc(CS) Egsc[N]  SDsc[N] Egpc[N] 100W;
095 Mg 0.9500 12.411 5.992 16.625
Mazg npg = 27 0.9537 13.091 6.671 17.898 5.48
Mgrar nra =27,r =5t =14  0.9537 13.091 6.671 17.898 5.48
Mra r=51t=14 0.9537 13.091 6.671 17.898 5.48
M no =23,t =12 0.9520 17.806 2.629 20.132 43.47
Mpk  npg =23 0.9520 17.806 2.629 20.132 43.47
Mpem  npem = 23 0.9520 23.000 0.000 23.000 85.32
0.90 Mg 0.9000 8.511 3.519 10.048
Mpg  npg =15 0.9033 8.899 3.796 10.587 4.56
Mrar  nra = 15,r =4, =38 0.9033 8.899 3.796 10.587 4.56
MRa r=4,t=38 0.9033 8.899 3.796 10.587 4.56
M no =151=38 09118 11.681 1.926 12.858 37.25
Mg npg =15 09118 11.681 1.926 12.858 37.25
Mpem  npem = 15 09118 15.000 0.000 15.000 76.24
0.75 Mg 0.7500 2.625 1.409 2.752
Magg nge =5 0.7737 3.086 1.259 3.250 17.58
Mrar nra =5,r=2,t =3 0.7737 3.086 1.259 3.250 17.58
Mra r=2,t=3 0.7737 3.086 1.259 3.250 17.58
M no =5,t=3 0.7901 3.963 0.793 4.125 50.97
Mpk  npg =15 0.7901 3.963 0.793 4.125 50.97
Mpem  hBem =5 0.7901 5.000 0.000 5.000 90.48
Table 6.9 Comparative Results for k =2 and 6* = 2.4
P*  Proc Parameters Psc(CS) Egsc[N] SDsc[N] Egpc[N] 100W;
0.95 Mg 0.9500 7.962 3.581 10.430
Magg npg = 17 0.9548 8.465 4.085 11.380 6.32
Mrar nra =17,r=4,t =9 0.9548 8.465 4.085 11.380 6.32
Mra r=41t=9 0.9548 8.465 4.085 11.380 6.32
M no =15t =8 0.9552 11.188 1.884 12.858 40.51
Mgk  npg =15 0.9552 11.188 1.884 12.858 40.51
Mpem  npem = 15 0.9552 15.000 0.000 15.000 88.39
0.90 Mgy 0.9000 5.226 2.238 6.144
Mpg  npg =11 09113 5.718 2.736 6.943 9.40
Mrar  nrar =11,r =3,1=6 09113 5.718 2.736 6.943 9.40
MRga r=31=6 09113 5.718 2.736 6.943 9.40
M nog=9,t=5 0.9082 6.823 1.283 7.539 30.55
Mgk ngg =9 0.9082 6.823 1.283 7.539 30.55
Mpem  npem =9 0.9082 9.000 0.000 9.000 72.21
0.75 Mg 0.7500 1.730 0.791 1.774
Mps  ngg =3 0.7914 2.415 0.493 2.500 39.58
Mgrar  nrar =3,r =2,t =2 0.7914 2.415 0.493 2.500 39.58
Mra r=2,t=2 0.7914 2415 0.493 2.500 39.58
M no =3,t=2 0.7914 2.415 0.493 2.500 39.58
Mpk  ngg =3 0.7914 2.415 0.493 2.500 39.58
Mpem  hBem = 3 0.7914 3.000 0.000 3.000 73.37
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Table 6.10 Comparative Results for k =2 and 6* = 3.0

P*  Proc Parameters Psc(CS) Egsc[N] SDsc[N] Egpc[N] 100W;
095 Mg 0.9500 5.140 2.363 6.682
Mpg  npg =11 0.9522 5.251 2.530 6.943 2.17
MRga/ nga = 11, r =3,t =6 0.9522 5.251 2.530 6.943 2.17
Mra r=3,t=6 0.9522 5.251 2.530 6.943 2.17
M ne =91t=>5 0.9511 6.540 1.238 7.539 27.24
Mgk  nggk =9 0.9511 6.540 1.238 7.539 27.24
Mpem  ngem =9 0.9511 9.000 0.000 9.000 75.10
0.90 Mg 0.9000 3.405 1.559 3.973
Mg N/A
Mrar  nrar =7,r =3t =4 0.9261 4.560 1.493 5.344 33.94
Mpga r=3,t=4 0.9261 4.560 1.493 5.344 33.94
M no=71t=4 0.9294 5.163 1.020 5.813 51.65
Mgk ngg =7 0.9294 5.163 1.020 5.813 51.65
Mpem  nem = 7 0.9294 7.000 0.000 7.000 105.61
0.75 Mg 0.7500 1.000 0.000 1.000
Mpg  npg =1 0.7500 1.000 0.000 1.000 0.00
MRga/ ngar = L,r=1,t=1 0.7500 1.000 0.000 1.000 0.00
MRa r=1,t=1 0.7500 1.000 0.000 1.000 0.00
M no=1,t=1 0.7500 1.000 0.000 1.000 0.00
Mgk ngg = 1 0.7500 1.000 0.000 1.000 0.00
Mpem npem = 1 0.7500 1.000 0.000 1.000 0.00

Table 6.11 Comparative Results for k =3 and 6* = 1.6

P*  Proc Parameters Psc(CS) Esc[N] SDsc[N] Egpc[N] 100W;
095 Mg 0.9500 50.049 27.313 79.216
Mg  npg = 125 0.9502 50.321 28.698 81.434 0.54
Mpga ngar = 111,r = 8,1t =39 0.9501 53.256 27.071 80.785 6.41
Mra r=28,t=39 0.9504 53.270 27.102 81.005 6.44
M ne =95,t =35 0.9503 78.097 8.770 88.608 56.04
Mgk npg =93 0.9502 82.011 5.697 88.365 63.86
Msgpem  nem = 93 0.9502 93.000 0.000 93.000 85.82
0.90 Mg 0.9000 36.949 19.345 50.761
Mpg ngg = 83 0.9003 37.261 20.583 52.614 0.84
Mga/ nrar =81, r =6, =30 0.9003 37.691 20.981 52.270 2.01
MRga r=17,t=25 0.9010 41.243 17.791 53.841 11.62
M no =64,t =24 0.9001 52.906 6.576 58.699 43.19
Mpx ngg = 63 0.9007 55.643 4.358 59.203 50.60
Mpgem  npem = 63 0.9007 63.000 0.000 63.000 70.51
0.75 Mg 0.7500 17.242 8.101 19.548
Mpg ngg = 32 0.7517 17.597 8.823 20.254 2.06
Mpga/ nrar =30, r =4, =12 0.7505 17.927 8.409 20.327 3.97
MRa r=51=11 0.7628 20.515 6.778 22.903 18.98
M ne =26,t =11 0.7507 22.193 2.844 23.325 28.72
Mgk ngg = 26 0.7517 22.732 2.275 23.596 31.84

Mgem  npem = 26 0.7517 26.000 0.000 26.000 50.80
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Table 6.12 Comparative Results for k =3 and 6* = 2.0
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P*  Proc Parameters Psc(CS) Egsc[N]  SDsc[N] Egpc[N] 100W;
095 Mg 0.9500 22.750 11.975 35.038
Mazg npg = 52 0.9508 23.032 12.475 35.972 1.24
Mgra nra =48, r =6,t =17  0.9502 25.113 11.011 36.327 10.39
Mra r=6,t=17 0.9504 25.114 11.013 36.343 10.39
M no =43,t =17 0.9516 33.488 4.933 39.228 47.20
Mpk  npg =42 0.9509 35.023 3.511 38.921 53.95
Mpem  npem = 42 0.9509 42.000 0.000 42.000 84.62
0.90 Mg 0.9000 16.857 8.429 22.676
Mg  npg = 34 0.9016 17.165 8.813 23.296 1.83
Mgrar nrar =30,r =5, =12 0.9001 18.749 7.470 23.902 11.22
MRga r=51t=12 0.9057 18.940 7.746 24.698 12.35
M no =29, =12 0.9028 23.088 3.563 26.073 36.96
Mgk npgk =29 0.9044 24.242 2.716 26.455 43.80
Mpem  npem = 29 0.9044 29.000 0.000 29.000 72.03
0.75 Mg 0.7500 7.831 3.200 8.765
Magg npg = 13 0.7512 7.966 3.315 8.934 1.72
Mrar nra =13,r =3, =6 0.7572 8.395 3.399 9.360 7.21
Mra r=41t=5 0.7556 8.809 2.208 9.629 12.49
M no =12t =5 0.7505 8.927 1.912 9.669 13.99
Mpk  npg =12 0.7577 9.902 1.453 10.431 26.45
Mpem  npem = 12 0.7577 12.000 0.000 12.000 53.24
Table 6.13 Comparative Results for k =3 and 6* = 2.4
P*  Proc Parameters Psc(CS) Egsc[N] SDsc[N] Egpc[N] 100W;
0.95 Mg 0.9500 14.177 7.046 21.303
Magg npg = 31 0.9516 14.479 7.397 22.086 2.13
Mrar nra =28,r =5t =11 0.9509 15.921 6.503 22.426 12.30
Mra r=5t=11 0.9530 15.969 6.590 22.903 12.64
M no =27,t =11 0.9527 19.840 3.496 23.981 39.94
Mgk npg =26 0.9511 20.781 2.565 23.596 46.58
Mpem  npem = 26 0.9511 26.000 0.000 26.000 83.40
0.90 Mgy 0.9000 10.235 5.160 13.784
Mpg  npg =22 0.9021 10.429 5.397 14.247 1.90
Mrar  nra =19,r =4, =38 0.9038 11.637 4.638 14.857 13.71
MRa r=4,1r=38 0.9104 11.785 4.862 15.506 15.15
M no =18,t =38 0.9045 13.916 2.405 15.876 35.97
Mgk ngx = 18 0.9056 14.436 1.994 16.035 41.05
Mpem  npem = 18 0.9056 18.000 0.000 18.000 75.87
0.75 Mg 0.7500 4910 1.864 5.390
Mps  npg =8 0.7602 5.403 1.770 5.938 10.02
Mrar nra =7, r =4t =4 0.7502 5.559 0.857 5.786 13.22
Mra  N/A
M no=17t=4 0.7502 5.559 0.857 5.786 13.22
Mpk  ngg =7 0.7502 5.559 0.857 5.786 13.22
Mgpem  nem =7 0.7502 7.000 0.000 7.000 42.56
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Table 6.14 Comparative Results for k =3 and 6* = 3.0

P*  Proc Parameters Psc(CS) Egsc[N] SDsc[N] Egpc[N] 100W;
095 Mg 0.9500 8.844 4.399 13.383
Mpg  npg =20 0.9505 8.901 4.474 13.573 0.64
MRga/ nra = 19, r =4t =17 0.9505 9.768 3.830 13.731 10.44
Mra r=4,1t=7 0.9505 9.768 3.830 13.731 10.44
M ne =17t =17 0.9509 11.470 2.414 14.356 29.69
Mg npg =17 0.9554 12.958 1.895 15.079 46.51
Mpem ngem = 17 0.9554 17.000 0.000 17.000 92.21
0.90 Mg 0.9000 6.762 2.864 8.682
Mg ngg = 12 0.9029 6.969 3.023 8.933 3.06
Mrar  hrar =12,r =3,1=6 0.9029 6.969 3.023 8.933 3.06
Mpga N/A
M no =12t =5 0.9066 8.026 1.864 9.669 18.70
Mgk ngg = 11 0.9014 8.460 1.353 9.482 25.11
Mpem  hpem = 11 0.9014 11.000 0.000 11.000 62.67
0.75 Mg 0.7500 3.068 1.053 3.290
Mpg  npg =35 0.7574 3.242 1.143 3.481 5.66
MRga/ nrar =5, r=2,t =3 0.7574 3.242 1.143 3.481 5.66
MRa N/A
M no =51=3 0.7690 3.950 0.642 4.111 28.76
Mgk ngg =5 0.7690 3.950 0.642 4.111 28.76
Mpem  nBgm =5 0.7690 5.000 0.000 5.000 62.97

Table 6.15 Comparative Results for k =4 and 6* = 1.6

P*  Proc Parameters Psc(CS) Esc[N] SDsc[N] Egpc[N] 100W;
095 Mg 77
Mg npg = 181 0.9500 76.265  41.254 128.931
Mgra  7?
Mra 7?7
M 7?7
Mg  npg = 138 0.9506 125.956 6.368 133.642
Mpem  nppm = 138 0.9506 138.000 0.000 138.000
0.90 Mgy 0.9000 58.189  29.900 83.609
Mpg npg = 126 0.9004 58.715  31.160 86.889 0.90
Mpa nrar = 111,r =7, =32 0.9004 62.545 29.113 86.294 7.49
Mra r=7,1t=32 0.9029 62.755 29.470 87.896 7.85
M nc = 100,1 =29 0.9003 82.010 10.439 92.877 40.94
Mpx  ngg =97 0.9005 88.796 4.993 93.341 52.60
Mpem  ngem = 97 0.9005 97.000 0.000 97.000 66.70
0.75 Mg 0.7500 30.549 14.559 36.195
Mpg npg =57 0.7512 31.109  15.462 37.649 1.83
Mgrar  nrar =50,r =5,t =15 0.7504 33.385 12.826 38.648 9.29
Mgra r=5,t=15 0.7551 33.601 13.115 39.218 9.99
M no =49,t =14 0.7511 37.863 6.092 41.335 23.94
Mpx  ngg =46 0.7544 42.072 2.862 43469 37.72

Mgem  npem = 46 0.7544 46.000 0.000 46.000 50.58
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Table 6.16 Comparative Results for k =4 and 6* = 2.0

E. Tollefson et al.

P*  Proc Parameters Psc(CS) Egsc[N]  SDsc[N] Egpc[N] 100W;
095 Mg 0.9500 33.673 16.774 53.912
Mazg npg = 74 0.9500 33.824 17.611 55.326 0.45
Mpgrar  nrar =68,r =6, =21 0.9505 36.094 16.872 55.301 7.19
Mra r=28,t=19 0.9515 41.970 13.131 57.765 24.64
M no =64,t =19 0.9503 47.068 7.664 57.894 39.78
Mpk  npg = 61 0.9513 53.207 4.034 58.092 58.01
Mpem  hpem = 61 0.9513 61.000 0.000 61.000 81.16
0.90 Mg 0.9000 25.566 12.699 36.378
Mps  ngg =53 0.9000 25.706 13.518 37.305 0.55
Mgra nray =47,r =5t =15 0.9000 27.674 12.181 37.600 8.24
MRga r==6,t=14 0.9049 30.293 10.316 39.759 18.49
M no =44,t = 14 0.9006 34.069 5.802 39.933 33.26
Mgk npg =43 0.9022 37.669 3.172 40.557 47.34
Mpem  npem = 43 0.9022 43.000 0.000 43.000 68.19
0.75 Mg 0.7500 13.342 6.098 15.712
Magg npg = 24 0.7541 13.781 6.448 16.449 3.29
Mrar  hra =22,r =4, =7 0.7534 14.973 4.636 17.137 12.22
MRa N/A
M no =21,t=17 0.7527 15.900 3.254 17.641 19.17
Mgk  npg =20 0.7533 17.481 1.799 18.319 31.02
Mpem  hpem = 20 0.7533 20.000 0.000 20.000 49.90
Table 6.17 Comparative Results for k =4 and 6* = 2.4
P*  Proc Parameters Psc(CS) Egsc[N] SDsc[N] Egpc[N] 100W;
0.95 Mg 0.9500 20.471 10.064 32.570
Magg npg = 44 0.9506 20.679 10.484 33.382 1.01
Mgrar  nrar =41,r=5,t =13  0.9506 22.229 9.744 33.560 8.58
MRga N/A
M no =43,t =12 0.9501 26.711 5.313 34.594 30.48
Mgk npg = 37 0.9512 31.115 2.998 34.731 51.99
Mpem  npem = 37 0.9512 37.000 0.000 37.000 80.74
0.90 Mgy 0.9000 15.604 7.378 21.869
Mg  npg =31 0.9022 15.927 7.794 22.767 2.07
Mgrar nrar =29,r =4,t =10  0.9025 16.750 7.491 22.904 7.35
MRa N/A
M no =27,t =9 0.9004 19.607 4.019 23.688 25.65
Mgk ngx = 26 0.9017 21.980 2.356 24.093 40.86
Mpgm  npem = 26 0.9017 26.000 0.000 26.000 66.62
0.75 Mg 0.7500 7.922 3.731 9.377
Mps  npgg =15 0.7569 8.286 4.020 9.911 4.59
Mra nra = 13,r=3,t=5 0.7555 8.964 3.152 10.271 13.15
Mra  N/A
M no =13t =5 0.7627 9.952 2.141 11.065 25.61
Mpk  npg =12 0.7518 10.102 1.339 10.688 27.52
Mpem  hpem = 12 0.7518 12.000 0.000 12.000 51.47
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Table 6.18 Comparative Results for k =4 and 6* = 3.0

P*  Proc Parameters Psc(CS) Egsc[N] SDsc[N] Egpc[N] 100W;
095 Mg 0.9500 12.741 5.858 19.727
Mapg ngg = 26 0.9513 12.968 6.114 20.341 1.78
MQgar ngar =25, r =4,t =9 0.9519 13.602 6.070 20.458 6.76
MRga N/A
M ne =25,t=8 0.9508 15.773 3.590 20.953 23.80
Mgk ngk = 23 0.9527 18.523 2.222 21.215 45.38
Mgem  npem = 23 0.9527 23.000 0.000 23.000 80.53
0.90 Mg 0.9000 9.534 4.690 13.361
Mg ngg = 19 0.9036 9.844 5.048 13.852 3.25
Mgrar  nra =19,r =3t =17 0.9016 9.739 4912 13.762 2.15
Mpga N/A
M no =17t =6 0.9026 11.553 2.748 14.350 21.17
Mgk ngg = 16 0.9024 12.969 1.741 14.493 36.02
Mpgem  ngem = 16 0.9024 16.000 0.000 16.000 67.82
0.75 Mg 0.7500 4.848 2.370 5.613
Mapg ngg =9 0.7517 4.907 2.526 5.747 1.22
MRga/ ngar =9, r =2t =4 0.7513 4.895 2.513 5.740 0.98
Mga r=3,t=3 0.7541 5.167 1.468 5.864 6.60
M no =8,t=3 0.7508 5.154 1.437 5.826 6.32
Mgk ngg = 8 0.7701 6.430 1.099 6.911 32.64
Mpem nBem = 8 0.7701 8.000 0.000 8.000 65.03
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Chapter 7

Vulnerability Discussion in Multimodal
Freight Systems

Saniye Gizem Aydin and Pakize Simin Pulat

Transportation infrastructure has been the subject of research mostly for passenger
transportation. The impact of extreme events has led to the study of evacuation
models and the determination of the most vital links for passenger safety. This chapter
focuses on the vulnerability of the transportation infrastructure to the extreme events
within a multimodal freight transportation context. Reliability, vulnerability, risk,
and resilience terminologies are defined; their relationship with each other within
the freight transportation context is discussed. The concepts are illustrated using
Hurricane Katrina’s impact on the freight flow transportation within a state and for the
USA. The intent of the discussion is to promote further research on the vulnerability
of multimodal freight transportation systems to extreme events.

Multimodal transportation, a critical component of the global economy, offers
solutions to the ever-increasing congestion on the roadway network, helping address
pollution and noise problems of large cities. On the other hand, inclusion of two or
more modes into the analysis increases the problem complexity significantly, neces-
sitating the creation of transfer points and the study of efficient and safe operations at
these points. While the global economy relies heavily on the efficient movement of
goods through the interdependent multimodal systems, vulnerability of multimodal
transportation systems presents the challenge to understand, resist, prepare, and re-
cover from unexpected events faster, cheaper, and better. Although, the discussion
on the multimodal freight transportation and the importance of vulnerability analy-
sis for the multimodal system are discussed in this chapter, we limit the definition
and demonstration of the vulnerability measures to a single-mode freight transporta-
tion network. Further research is needed to expand the concepts to the multimodal
network system.
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Multimodal Freight Transportation System and Importance
of Its Vulnerability to Extreme Events

The global economy relies heavily on the efficient movement of freight. In 2007,
the US transportation system moved freight nearly 3.5 trillion ton-miles (5.6 trillion
ton-kilometer (tkm), USDOT BTS 2009). Freight transportation is as important in
other countries as it is in the USA. In 2008, China transported 6.85 billion ton-miles
(11 billion tkm) of freight; in 2009, it was 2.3 trillion ton-miles (3.6 trillion tkm) for
the European Union countries (EU-27) and 4.6 billion ton-miles (7.4 billion tkm) for
Russia (EuroStat 2011). As global networks grow, their dependency on third-party
logistics provider (3PL) services grows and hence, the importance of the freight
transportation becomes more apparent across the globe.

The transportation sector’s contribution to the economy through employment is
substantial. In EU-27, the freight transport industry employed more than 6.9 million
people in 2008. The transportation industry directly employed 10 million in 2009,
accounting for 4.5 % of total employment and representing 4.6 % of the Gross Do-
mestic Product (GDP, EuroStat 2011). In the USA, the transportation sector employed
20 million with transportation-related goods and services accounting for more than
10 % of the GDP in 2002; only housing, healthcare, and food industries contributed
a larger share to the GDP (USDOT BTS 2004).

Freight utilizes several modes of transportation: trucks, railcars, planes, and ships.
Trucks are used extensively on shorter hauls for valuable goods and time-sensitive
freight, while rail is used mainly for long haul of heavy freight and waterways for
long-haul transport of containers between ports. Inland waterway traffic is also very
important, especially on the major inland rivers such as the Ohio and the Missis-
sippi. Airways are used mostly for small, valuable, and urgently needed goods. The
trucks have the largest modal share in freight transportation. In the USA the trucks
carry 70 % of the freight annually. However, congestion and negative environmental
impacts are challenging the freight system and have been the subject of study by the
transportation planners in the last decade. As passenger and freight transportation
increase, opportunities to link the different modes of transportation are created.

The multimodal transportation services combine advantages of the single-mode
transportation and offer potential cost savings in addition to service advantages, such
as speed, capacity, routing, and scheduling. Therefore, the multimodal transportation
offers flexibility to the changing face of the global markets by meeting the compet-
itive distribution requirements. It is also considered to be more environmentally
friendly and can relieve the congestion on other modes. The share of the multimodal
transport is small compared to the single mode. In order to benefit from the multi-
modal transportation opportunities, industries share risks within their supply chains.
Increased information sharing, outsourcing of services to 3PL companies for the
control, planning, and management of the transportation operations seamlessly from
the origin to the destination, and public/private investments to improve the efficiency
of the transportation facilities are making multimodal transportation systems a more
viable alternative. Combining the multiple modes is not only a flexible option but
also an environmentally friendly option. On the other hand, the system is as strong
as its weakest link.
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In this chapter, we focus on how to assess the vulnerability of a freight transporta-
tion network to extreme events. One can apply the methodology to determine what
the impact of an extreme event under consideration would be on the transportation of
freight from origin to its destination or to identify segments of the transportation net-
work with the largest impact on freight transportation if they become nonfunctional
due to an extreme event. We first review the concept of vulnerability and related ter-
minologies, then we study the vulnerability of a single-mode freight transportation
system and conclude with a discussion of an approach to studying the vulnerability
of a multimodal transportation system.

Vulnerability becomes visible when an extreme event occurs. There was an upward
trend in the occurrence of disasters during the period 2000-2008 (Vos et al. 2010)
and no sign of a decline so far. History recorded many extreme events since the early
ages; let it be natural disasters, by which dinosaurs went extinct, cities were buried
under ground, economic development and daily lives were severely disrupted; or
man-made disasters by which the society was targeted and cut off of critical sources
on purpose. Any interruption in the transportation of people, goods, and services can
have a devastating impact on the economy. In extreme cases, the spillover effects
may cost even more than the primary damages. All extreme events show us how
critical and vulnerable transportation systems are, and how dependent our lives and
our economy are on an interconnected network of systems. Below are just a few
examples of extreme events and their direct and indirect impacts in an interconnected
network of systems.

In August 2003, a malfunction of a single electricity generation plant in Cleve-
land, Ohio, caused an estimated economic damage of US $ 6.4 billion (Anderson
and Geckil 2003). This event triggered electrical systems’ failure and resulted in a
blackout covering eight US states and two Canadian provinces, leaving about 50
million people in complete darkness (North American Electric Reliability Corpo-
ration, NERC 2004). In New York City, the subway system failed trapping several
thousand commuters. Telecommunication and water systems were also disrupted
(Renesys Corporation 2004; NERC 2004). Investigation of the case revealed a com-
plex matrix of environmental and engineering conditions on the day of the event.
The conditions combined with several violations of operating and planning standards
caused the widespread crisis (NERC 2004). More recent events, such as Hurricane
Irene (August 2011) resulted in high winds and massive flooding, leaving many peo-
ple homeless as well as taking many lives. The Fukushima earthquake (April 2011)
resulted in a failure of a nuclear plant. The leaking gas increased the radiation levels
so high that the region was evacuated and the radiation clouds traveled around the
world. A tsunami triggered by the earthquake created enormous destruction on the
coastal areas, pushing debris islands across the ocean.

More often than not, one event triggers another, and cascading effects are observed
where the resulting damage increases exponentially. The 2003 North American black-
out, Hurricane Irene, and the Fukushima earthquake validate that a systems approach
is more appropriate to understand the reasons and spillover effects of extreme events.

Vulnerability of transportation systems has received attention from researchers
only recently. On the other hand, vulnerability has been studied extensively in the
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social sciences. With the increasing natural and man-made disasters, most existing
vulnerability research focused on critical infrastructure protection. As methods used
in transport reliability research are found to be inadequate to study interdependent
system failures, new approaches and methods are necessary to assess the vulnerability
of transportation systems (Berdica 2002; D’Este and Taylor 2003; Nicholson 2003).

In the next section, we define a multimodal freight system model and discuss
the unique properties of single-mode and multimodal transport systems. In the third
section, we define vulnerability and discuss how it can be analyzed in a multimodal
transportation context. Related terms like reliability and risk are defined and their
connection to vulnerability is demonstrated with an example. The section provides
insights for the following question: If each of the modes used within a multimodal
transportation system is subject to failure, then how does one study the overall risk and
vulnerability of the integrated system as a function of an extreme event? We conclude
the chapter with future research directions that will assist the transportation planners
and operators to study the vulnerability of multimodal freight transportation systems
to a set of extreme events.

Multimodal Freight Transport Systems

Multimodal freight systems can be represented by graphs composed of a series of
single-mode transport systems connected through transfer points. Layered network
models are used to represent various infrastructural systems in the literature, (see
Johannson and Hassel 2010; Zhang and Peeta 2011; and Van Nes 2002), particularly
on multimodal transportation network design. We will use a two-layered model for
each single mode and then link the modes via transfer nodes and edges. Each single
mode will be composed of a network layer and a service layer, modeled separately
and then linked via transfer points.

Network Model

Consider a network model representation of a multimodal freight transport system
by a graph G= (N, E) consisting of a set of nodes N and a set of edges (links)
E. |N| = n denotes the number of nodes while number of links is |E| = m. Let
G; = (N;, E;) represent represent the graph of the subsystem for transport mode i.
Let G;; = (Nifj, E;;) represent the graph connecting nodes common to N; and N;
represented by the set N;j via set of links E;;. Hence,

G ={G;,G;;}, forall transport modes i and j # i,
N = {N;}, for all i,
E ={E;, E;;}, for all transport modes i and j # i.



7 Vulnerability Discussion in Multimodal Freight Systems 165

Table 7.1 Multimodal freight network model

Roadways Railways Waterways Airways
E; Highways Railroad tracks Routes Routes

Interstates

Arterial roads
E;; Artificial edge connecting common locations across layers, i.e., G; and G
N; Location where the freight is originated

Final destination for the freight
Intermediate location in G; where the freight changes mode
N, Transportation nodes common across layers, i.e., G; and G

For the sake of simplicity, we will use the notation Ni/ ; When referring to the transport
nodes common to modes i and j and N; when referring to the nodes only in the
subnetwork for mode i. Table 7.1 describes examples of each node and link type.
An example multimodal transportation model is presented in Fig. 7.1. Let G| =
Airways, G, = Roadways, G3 = Railways, and G4 = Waterways.

Network and Service Layers

Network layers show the physical representation of corresponding modes (Fig. 7.1,
left). According to the graph:

N = {nl,nz, ...,nzz,n23}
Ny, = {(n1,n2,n3,n4) € Niand (ns,n6,n11,112) € Na}
Ep = (ny,ns), (n2,n6), (n3,n11), (n4,112)
Ny; = {(n7,n8,n10) € Noand (n17,n15,n19) € N3}
Esz = (n7,n17), (ng, n15), (M0, n19)
N,y = {(n7,n9,n19,n12) € Noand (na, n21,n2,n23) € N4}
Esy = (n7,n2), (n9, n21), (n10, 122), (112, 123)
N3y = {(n17,n19) € N3and (n20,n22) € Ny}
E34 = (n17,n20), (19, 122)

Service layers include the operational characteristics of the corresponding mode
(Fig. 7.1, right). A road service model, for instance, may include trucks as well as
information on transfer locations and specific operational requirements for transfers
and user preferences.

Waterways are composed of routes (represented as links) and connected via ports
to mainland represented as nodes, where goods are transferred by intermodal connec-
tions. Port environment can be explained in Fig. 7.2 (WEF 2011). It is composed of
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Fig. 7.1 Network and service layers of the multimodal transportation system

five elements: the vessels carrying the goods, navigable waterways that vessels use,
the terminal operations such as loading and unloading, the intermodal connection
point, and the intermodal connection to other modes by public infrastructure. These
elements are modeled in the service layer. Railways and airways can be detailed in
a similar fashion to roadways and waterways.

Multimodal transportation systems are represented via edges referred to as “trans-
fer edges” and the incident nodes referred to as the “transfer nodes.” (An exception
may be a consolidation on a single-mode network, where goods may be transferred
to another vehicle on the same network.) In reality, these transfer nodes correspond
to the same geographic location. In a passenger flow example, they can represent a
train/bus station or an airport. In the case of freight, they can be a port, an airport, or
a warehouse. The transfer edges may have zero distance, or a value that represents
the value of transfer, for instance in terms of time, service hours, or a cost value.
Service network representation describes the set of activities included in the trans-
fer process, such as, loading/unloading, transfer between vehicles, packaging, and
sorting. A freight ship may transfer goods to barges or unload at a port to be stored
until it is loaded on a railcar or a truck for its next destination. At an airport, goods
may be delivered to the warehouse in containers, to be sorted, packaged, and loaded
to trucks.

For practical applications, a single-mode freight system is easier to manage than
a multientity, multimode freight transport chain. The next section discusses the
definition of vulnerability within a freight transportation context. Definitions and
formulations of related terminologies are given and illustrated by an example.



7 Vulnerability Discussion in Multimodal Freight Systems 167

Open sea g--------- Water :Land ----------------------- >
_______ A
1 1 1
:Navigable : |
\waterways | Intermodal connection |Intermodal connection: 'Public infrastructure:
I ! point road, rail, pipelines, :highway, rail,
: : bridges ipipeline system
1 ! !
! : Terminal operations :
Vessel : - 1 -
——‘—)I > ] >
1 1
1

| ]
1 I 1
1 ! !

1 1
: < T Port environment >l
l 1 !
_______ [ i iR R =)

Fig. 7.2 Port environment. (WEF 2011)

Defining Vulnerability in Multimodal Freight Systems

Living in an imperfect world, we design and try to live with imperfect systems,
because perfect is just too expensive, or not practical. As aresult, failure, malfunction,
and in general, vulnerability are inevitable. In relation to both risk and reliability,
where does vulnerability stand? In reliability analysis, the objective is to minimize
the occurrence/recurrence of failures by understanding and considering the design
within budget (i.e., cost) limits (Modarres et al. 2010). In risk analysis, the objective is
to minimize the occurrence (the attack ever happening), recurrence (i.e., by increased
protection, security measures), as well as the consequences (minimize damage and
improve resilience). Although incorporated in risk and reliability, the definition of
vulnerability has not reached a consensus yet. Various opinions suggest vulnerability
as a consequence, part of risk, and unreliability, and involve partial or complete loss
of accessibility or serviceability, which may also change based on user perception.

Vulnerability has been defined in the literature from different perspectives. For
example, by definition vulnerability means susceptibility to injury or attack (MW
2008), reduced accessibility due to disruptions (Chen et al. 2007), loss of utility,
classified as connective vulnerability (D’Este and Taylor 2003), variations on the
accessibility indices, referred to as access vulnerability (D’Este and Taylor 2003),
susceptibility to incidents that can result in considerable reductions in (road) network
serviceability (Berdica 2002), properties of a transportation system that may weaken
or limit its ability to endure, handle, and survive threats and disruptive events (that
originate both within and outside the system boundaries; Asbjornslett and Rausand
1999), probability and consequence of degradation on performance of the system
(Nicholson and Du 1994; Murray 2011), and “success” of the threat, a manifestation
of the inherent states of targeted system(s), each of which is dynamic and changes
in response to the inputs and other building blocks (Haimes 2006).
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Risk

Risk is the result of a threat causing adverse effects to a vulnerable system—where
threat is intent and capability (motivation to harm, and, ability and capacity to attack
a target and cause harm; Haimes 2006). The impact of a threat may vary depending
on the situation. In general, one will identify possible scenarios and associate a
probability and consequence (such as cost) associated with each scenario. Hence,
risk is defined as a triplet of scenario, frequency (probability), and consequence
associated with each scenario that may adversely diminish the system’s ability to
perform its mission (Kaplan and Garric 1981). As part of risk analysis, vulnerability
of the system is identified based on the scenario.
Definition: Risk is a function of probability p, scenario sc, and consequence c.

risk = f(p,sc,c) (7.1)

The calculation of a risk for a given scenario requires knowledge of the probability
of the scenario occurring, the level of impact of the scenario on the performance of
the system, and the recovery capability of the system.

Reliability

Reliability is defined as “the ability of an item to perform a required function, under
given environmental and operational conditions and for a stated period of time”
(ISO 8402). Here, the term item refers to any entity, which may be a component,
system, or a subsystem. A required function refers to any function that is required to
be performed by the entity and can be a single function or a combination of multiple
functions. Therefore, defining the functions of the entity is crucial for reliability as-
sessment. The environmental and operational conditions, as well as time dimensions
set the expected/usual conditions and life cycle concepts within the definition. In rela-
tion to reliability (or unreliability), vulnerability is identified based on its diminished
performance (in terms of capacity, time, or cost, for example).
Definition: Reliability is the probability of system “s” at an acceptable level f,,.

rs = ps(fn) (7.2)
urs =1 — ps (fu) = qs(fa) (7.3)

Hence, unreliability is the probability of the system not functioning at an acceptable
level.

Reliability of transportation systems is defined in various ways. One of the com-
monly used and simplest measure of transport network reliability is the terminal or
connectivity reliability, the probability that there is a connection between a pair of
nodes in the network when one or more links are broken (Wakabayashi and lida
1992; Bell and lida 1997). Other measures include the travel time reliability, the
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probability of a trip that will be completed within a specified time interval (Yang
et al. 2000; Clark and Watling 2005), and the capacity reliability, the probability of
accommodating a desired level of traffic for a given network (Yang et al. 2000; Chen
et al. 2002). Early contributions to the problem of finding the most vital link or node
include Garrison (1960), who studied using graph theoretical concepts, and Ratliff
et al. (1975) and Ball et al. (1989), who developed various algorithms to determine
most vital components of a network.

Vulnerability

Vulnerability as defined in risk analysis is part of the consequences of the identified
risks. In reliability analysis, reliability is calculated by the design specifications,
and unreliability includes every consequence related to a scenario leading to not
satisfying one or more design specifications. The system is then assumed to function
at an unacceptable level.

For a multimodal transportation system that is defined with a system of systems
(network of networks), each of which is composed of a (physical) network and a
service layer, connected via specific transfer nodes and edges, vulnerability is a
multidimensional-state value of the system expressed as the performance degrada-
tion as a consequence of an extreme event that is caused by the dynamic inherent
states of the system. The most important facets of multimodal freight transportation
can be mapped as in Fig. 7.3: (1) condition and decay, (2) capacity and use, (3)
interdependency, (4) spatial factors, (5) threats, (6) policy and political environment,
(7) safeguards, (8) temporal factors (Grubesic et al. 2011), (9) economy, and (10)
network design. In addition, most important vulnerability characteristics specific to
the service layer can be listed as (11) communication, (12) demand, and (13) transfer
(goods, vehicle, personnel, storage; Fig. 7.3). We explain each dimension in terms
of its individual characteristics as well as its influences on other dimensions and its
contribution to vulnerability.

The multimodal freight transportation system is a complex system, with multiple
interdependent components. Each component’s vulnerability contributes to the sys-
tem vulnerability; the system is only as strong as its weakest link and as vulnerable
as its weakest link. The design of a multimodal freight transportation network that
is composed of a connected set of single-mode networks and service layers plays
a critical role in determining the system functionality. For example hub-and-spoke
networks are more susceptible to vulnerability than random networks because when
the link between hub and spoke is targeted, the spoke can easily be disconnected from
the main network (Grubesic and Murray 2007). The connectors (transfer points) of
single-mode networks (transfer edges and transfer nodes) are of interest explaining
key aspects of multimodal freight transportation network design. At transfer loca-
tions (such as ports), goods are transferred from one mode to another. The process
may include storage, packaging, consolidation, or technical services. In addition to
transfer of goods between single-mode networks, changes in the vehicles (i.e., ship
to trucks at a port) and personnel (i.e., ship crew to truck drivers at a port) occur.
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Decision-makers may also differ as when the custody of the goods is transferred from
the shipping company to the trucking company at a port. As a result, planning, coor-
dination, and handling of these operations play a significant role, and communication
is a key component.

The multimodal freight transportation systems, like other utility services, require
substantial investment, continuous maintenance, and timely expansion as the demand
for the services grows. Parallel to investments and expansion, demand grows and
the cycle continues. However, there are limitations, such as resources, time, or
budget. As aresult, systems degrade and become more susceptible to extreme events.
Therefore, when looking into vulnerability, the current condition of the system needs
to be analyzed. When the system or a component of the system is obsolete, failure
is inevitable. In addition, where demand grows faster than the available capacity,
there is less slack (redundancy) to incorporate the unexpected events. This lack of
capacity again increases the vulnerability. Redundancy, generally introduced during
the design phase in order to handle some of the variation in daily traffic, may not be
sufficient under extreme conditions.

System functionality and its vulnerability are influenced by location and topol-
ogy; for instance, soil and weather conditions affect the system functionality and may
increase the vulnerability of the system. For example, the Gulf Coast is susceptible
to hurricanes and tropical storms, whereas southern California is susceptible to wild-
fires and earthquakes (Schmidtlein et al. 2008). The widespread multimodal freight
transportation networks may be subject to different environmental threats, as well as
other extreme events. Another aspect is the proximity or interdependency of systems,
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which may trigger cascading failures (i.e., 2003 Northeast blackout). Making use of
safeguards in design or in addition to the design may decrease vulnerability. Policies
and political environments can influence communication between agents to elevate
the collaboration and introduce benefits.

The timing of the threat also plays an important role in the resulting vulnerability.
Rush-hour traffic would carry a high number of cars on the transportation network,
and in the case of a failure, vulnerability is higher than, for example, at 3:00 in
the morning. Duration of the threat, such as the time an earthquake lasts, directly
influences the vulnerability of the system. If a segment of the transportation network
is not being used for freight transportation, then we will categorize it as not important
and hence not vulnerable.

Each of the facets such as timing and duration of the threat, and importance of the
affected segment of the network on freight transportation contributes to the system
vulnerability in a positive or a negative way. Assume each of these dimensions is
expressed as a variable x;. The vulnerability of a system can be defined based on the
change in these facets:

Vulnerability = f(Axy, Axa, ..., Ax1, Axi3). (7.4)

System functionality is the actual result of the inherent dynamic states of the system
and we assume that the vulnerability is the change in the system’s functionality

V= (fu = fu) (7.5)

where, f,, is the lowest system function value reached after an extreme event. In this
study, we assume that the system’s functionality reaches the state f,, as a result of
an extreme event. In general, the system may reach a level of f;, with a probability
pi and we can find the expected value of vulnerability, E(V):

EV)=fi= Y pefe- (7.6)

Acknowledging the multifaceted nature of our multimodal transportation system, one
should pay close attention to the reliability, vulnerability, and risk associated with
a given freight transportation network. We will next illustrate how vulnerability,
reliability, and risk come into play in the case of an extreme event impacting the
freight transportation network. Two new measures, resilience and recovery, are also
introduced to discuss the impact of an extreme event on the functionality of the
transportation system which in turn will lead to a new definition of risk.

Vulnerability, Recovery, and Resilience

Figure 7.4 is an illustration of the impact of an extreme event on the system func-
tionality (performance) as a function of time. The figure assumes three possible
scenarios associated with the extreme event. The system recovery depends on the
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scenario. This figure will form the basis of our discussion for the remaining sections
of this chapter.

Prior to an extreme event, a transportation system is assumed to function nor-
mally at the desired (acceptable) performance level, f,. So, let f, be the predisaster
system functionality level as seen in Fig. 7.4. When an extreme event hits the system,
the system can either fail or cope with the situation. The system may withstand the
pressure of the event for some time; this interval is referred to as the system failure
threshold, t,;,. For instance, only a single bridge failed in the 2002 I-40 bridge col-
lapse (OK). The time between the start and completion points of the bridge failure
was negligible (instantaneous failure). In the case of an M3 hurricane, such as Hurri-
cane Katrina (2005), many bridges and roadways incrementally failed due to various
primary reasons ranging from high winds, heavy rain, and flooding. The damage
moved from south to north. Hence, #,, was not negligible. When the threshold value
is nonzero as in Hurricane Katrina, the decision-maker may initiate immediate pro-
tection protocols during this time period minimizing the impact of the event. Hence,
the magnitude of #,;, is important for the recovery period. Let

Lip =1Tfc — s, 7.7)

where t, is the failure start time and 7. is the failure completion time. Although
we do not elaborate on the threshold value any further in this chapter, it is an impor-
tant variable that decision-makers must consider while studying impacts of extreme
events.

The period between the time that a system starts to fail and reaches a complete
failure may follow different paths (see example failure curves in Fig. 7.4). In case
of a hub-spoke network, when a hub fails, the system degrades and performance
decreases. The failure property is defined based on the network attributes such as
the network topology. However, system performance does not diminish completely
because the hub is highly connected. On the other hand, when a spoke is cut, complete
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failure is highly probable due to its low connectivity and hence, high vulnerability.
On another note, structural failures are immediate, and congestion behavior changes
in time may take a linear or nonlinear form. We represent different discrete levels of
system degradation for a specific case under study via lines for clarity purposes. The
differences in failure curves of each case indicate the sensitivity of the performance
measure to the extreme event and may be valuable to the decision-makers in terms
of determining what actions to take during that threshold time.

When a system cannot handle the impact, the system fails. In other words, it
reaches the lowest performance level, f,,, where f,, = fo = 0 or may be equal to f
a degraded system functionality level k. We can then compute the vulnerability, V,
of the system as a measure of how much the system performance has degraded due
to the extreme event (which is a composite result of the system’s inherent dynamic
states). In Fig. 7.4, V| = f, — frand V, = f, — fo represent the vulnerability of
the system at two different degradation levels.

Recovery

If asystem is capable of recovery, then the recovery phase begins. We define two other
concepts, recovery and resilience, which are widely used in vulnerability analysis.
Recovery refers to the percent gain in system functionality after the occurrence of the
extreme event (disaster). Assume that the system recovers partially to a functionality
level f,, from fy. Then,

recovery = (fm — fo), (7.8)

where f,, may be equal to f,, meaning that the system recovers completely to its
predisaster levels. Similar to vulnerability, recovery depends on the system char-
acteristics. Recovery may involve multiple stages such as no recovery immediately
after the disaster, small recovery after main connections are established, and recover
to predisaster functionality levels, f, after some time. The recovery function may
not be similar to the failure function. While both provide information on the same
system, there are different factors involved in each step, such as external circum-
stances. Therefore, similar factors in both terms need to be identified in order to
eliminate a possible covariance in calculations. Under which conditions failure and
recovery curves would be similar, different, and how this information can be help-
ful for vulnerability analysis is another future research question. Recovery time for
different systems may be different—slow or fast recovery may be observed (¢, and
tgo in Fig. 7.4). Another possibility is that the system may not reach the predisaster
functionality levels in the recovery period ( f;, at time g, in Fig. 7.4).

Resilience

Resilience, re, is used to refer to the ease of system recovery, the system’s ability to re-
turn to a stable functionality level after the extreme event. Here, the time is taken into
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consideration to refer how easy it is for the system to return to a designed/operational
system performance, f,,. Hence,

re = (fm — fo) /At (7.9)

or,
re = recovery/ At (7.10)

where, At is the interval between the start and the end of the recovery period, which
is (tp4 — tgo) in Fig. 7.4.

In our context, reliability is the probability that a system functions at a desired
level. The risk associated with an extreme event is a term expressing the impact of the
event on the performance of the system. Hence, it is a function of system vulnerability
and resilience. We rewrite Eq. 7.1 as Eq. 7.10, substituting the consequences of a
scenario with vulnerability and resilience of the system. If a system is unable to
recover, then the system has a higher risk. The p stands for the probability of the
extreme event in the following risk function:

risk = f(p,V,re) (7.11)

In Fig. 7.4, we gathered vulnerability, resilience, recovery, and risk together to
observe the relationship between concepts. In the next section, we will demonstrate
how one can relate these concepts to various decision-making phases using Hurricane
Katrina as an example.

An Example: The Impact of Hurricane Katrina on Freight Flows on the Road-
ways A disaster is an event concentrated in time and space in which a relatively
self-sufficient subdivision of society undergoes severe danger and incurs losses, re-
sulting in diminished physical and essential functions of the society (Fritz 1961;
Peek and Mileti 2002). Hurricanes are one of the costliest and deadliest disasters.
Hurricanes deliver high winds, storm surge, and rainfall. The physical size of a hurri-
cane influences the storm surge and the extent of damage. When a vulnerable region
faces a hurricane, we observe diminished physical environment and functions of the
society who lives in the region in terms of damaged infrastructure, homes, buildings,
and even loss of lives. The unfortunate increase in number of extreme events urges re-
searchers, governments, and society to better understand extreme events, preparing,
managing, and recovering, given our imperfect and rather unreliable systems.

On the 29 August 2005, Hurricane Katrina hit the land and caused widespread
devastation in Louisiana (LA), Mississippi (MS), and Alabama (AL). Categorized as
an M3 storm, Katrina hit the New Orleans, LA region, with winds higher than 140
mph and caused 20-25 ft storm surges. Many areas were under water and slight to
severe damage was observed in residential and nonresidential homes, government
buildings, and infrastructure in three states.
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Table 7.2 Hurricane Katrina roadways, failure, and repair timelines

Bridge/roadway conditions at the end of

Timeline  Predisaster August September September st 3rd 6th After 6
29 5 20 month month month  months

Roadway No failures Hurricane FloodI  FloodII  SetIre- Set2re- Set3re- Set4 re-
network hits the paired  paired paired paired
condi- area
tions

Scenario  Sc0.0 Scl.0 Scl.1 Scl.2 Scl.3 Scl4  Scl.5
name

1. Impact on Roadway Freight Traffic Flows

According to a report by the American Society of Civil Engineers (ASCE) ap-
proximately 45 roadway bridges sustained moderate to major damage, and the
transportation system was severely disrupted. In addition, massive flooding left part
of the city deserted at least for a month (see DesRoches 2006 for further details of
the damage and reasons for failure at roadways and railroads; for further information
on damage to the ports and the coasts, see Curtis 2007).

The Appendix lists 24 roadway locations we have selected for the definition of
scenarios based on the damage level and the spatial location (Table 7.5). The time-
line of the recovery is identified to examine the changes in recovery of the freight
supply—demand balance and the network. The damaged roadways and bridges are
grouped according to their repair dates. Table 7.2 shows the designed scenario steps:
predisaster before the hurricane, two flood cases (dated 5 and 21 August by NGA
2009), and four phases based on the recovery pattern of the infrastructure at the end
of the 1st, 3rd, and 6th month, and after the 6th month.

In the flood scenarios the New Orleans area is closed; thus, the area is excluded
from the analysis for these specific scenarios by either removing the node from the
network or by removing the node from the origin—destination (O-D) matrix so that
there is no such node to deliver or ship.

A dynamic freight flow matrix is used for the flood scenario steps, reflecting clo-
sure due to floods. Shortest-path (All-or-Nothing, AON) assignments are completed
in TransCAD for each scenario step. Based on the travel distance, the percentage
change in traffic flow for each scenario step is calculated as shown in Fig. 7.5 and
summarized for the states AL, LA, MA, and the USA in Table 7.3.

The impact of the damage caused by Hurricane Katrina on freight flows over the
roadways was felt in three states. The closed roadways and the floods cut off the
supply routes from the three-state region (AL, LA, MS) to other states (blue lines
on Fig. 7.5). Freight flow that normally passes through these regions, particularly
through the New Orleans area, was rerouted towards north (orange lines on Fig. 7.5).

If the system functionality for freight flow during the predisaster period (Sc0.0)
is represented as 100 % (current performance level), then as a result of the first and
the second flood (Sc1.0 and Scl.1, respectively) the system functionality decreased
t0 96.86 % for AL. In other words, only 96.86 % of the predisaster freight flow used
AL after the two floods. During the three stages of the recovery period, an increase in
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Fig. 7.5 Impact of Hurricane Katrina on roadway freight flows, Sc0.0 versus Sc1.0

Table 7.3 Truck traffic percentage changes due to Hurricane Katrina roadway damages

State Sc0.0 Scl.0 Scl.1 Scl.2 Scl.3 Scl.4 Scl.5
AL 100 96.86 96.86 100.05 100.43 100.43 100
LA 100 73.46 73.46 95.42 100.42 100.42 100
MS 100 88.02 88.02 99.31 100 100 100
UsS 100 98.89 98.89 99.87 100 100 100

100: fully functional

freight flow was observed (Sc1.2, Sc1.3, and Sc1.4) for AL. The system functionality
was above the predisaster period (over 100 %). Decreased system functionality for
LA, MA, and the USA were as indicated in Table 7.3. The system functionality
above 100 % indicates that more freight was transported than normally would be
on the corresponding roadway network; the change in flow in the USA returned to
100 % at the end of the 3rd month (Sc1.3). Likewise LA and AL reached predisaster
system levels after the 6th month (Sc1.5). For more details on how freight flow was
impacted by Hurricane Katrina, see Aydin et al. (2011).

2. Vulnerability, Recovery, and Resilience

We next demonstrate how vulnerability, recovery, and resilience measures can be
calculated for the roadway freight transportation system using the data for Hurri-
cane Katrina. We calculate these measures for three states and for the USA. The
relationships among the measures are illustrated in Fig. 7.6.

Assume that the vulnerability of the roadway network can be measured by the
change in the truck traffic due to the damage on the roadways. Given the traffic
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Fig. 7.6 Vulnerability and resilience of roadways to Hurricane Katrina

flow changes on the roadway network, we calculate the vulnerability of the roadway
transportation system using Eq. 7.5. Note that we are using the results of Scl.1 in
Fig. 7.3 because the largest impact on truck traffic flow occurred at this particular
scenario.

Var = 100 — 96.86 = 3.14
Via = 100 — 73.46 = 26.50
Vs = 100 — 88.02 = 11.98
Vs = 100 — 98.89 = 1.11

The state with the highest vulnerability and diminished system performance was LA
with a vulnerability value 0of 26.50, followed by MA and the USA in decreasing order.
This information can be used in allocating resources to the highest-need region. For
example, Wal-Mart closely observed the path of Hurricane Katrina, and allocated
necessary items away from Katrina’s path but close enough to satisfy the regions
needs faster than the Federal Emergency Management Agency (FEMA) itself.

The recovery periods for MA and the USA are assumed to be at the end of the 3rd
month since the system recovered fully at that time. Similarly, performance values
are at the end of the 6th month for AL and LA (Table 7.3). By using Eqgs. 7.8 and
7.9, recovery and resilience values for the three-state region and the USA can be
determined as given in Table 7.4.

Note that LA recovered faster than the other states and was the most vulnerable
state for the impact of Hurricane Katrina to freight flow on roadways. In addition, LA
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Table 7.4 : Recovery and
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. State Recovery Resilience
resilience of the roadway
network from Hurricane AL 3.57 0.60
Katrina LA 26.96 4.49
MS 11.98 3.99
us 1.11 0.37

also has the highest resilience value. Although LA experienced the largest negative
change in the roadway functionality, the LA area’s resilience was higher than the
resilience of the other states and the USA.

Assuming that the probability of a hurricane was same for the regions, we can
assess a value for the risk measure as a function of vulnerability and resilience mea-
sures using Eq. 7.11 as indicated in Fig. 7.7. Note that lower vulnerability value and
higher resilience value lead to a low risk for the system. Hence, a high-vulnerability—
low-resilience point on the graph represents the highest-risk situation. The graph is
partitioned with red and blue lines to indicate regions with extreme risk and compar-
atively lower risks, respectively. This information will be useful for decision-makers
in assessing state-level vulnerability and resilience of transportation infrastructure
for risk management purposes.

Assuming that the probability of a major hurricane hitting each area is the same,
based on the vulnerability and resilience values calculated for this example and
illustrated in Fig. 7.7, the USA as a whole has the lowest vulnerability-resilience
binary value demonstrating the comparatively low vulnerability and resilience of the
roadway network. AL, MA, and LA follow in increasing order. The US binary value
presents a faster adaptation and rapid recovery, concluding that the USA managed to
absorb the extreme event impact. On the other hand, the LA area is highly vulnerable
and also expected to be highly resilient to the impact of Hurricane Katrina. If the
probability of a hurricane hitting the regions is not constant, then resilience and
vulnerability calculations should be modified to reflect this fact.

Vulnerability and Resilience of
Roadways to Hurricane Katrina

Resilience
W

0 5 10 15 20 25 30
Vulnerability

Fig. 7.7 Vulnerability and resilience of roadways to Hurricane Katrina
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Conclusion and Suggestions for Future Research

The transportation system is a necessary component of the economy. This vital link
is being challenged by the increasing demand on transportation infrastructure and
services. Multimodal transportation infrastructure offers cost and service advantages,
flexibility, speed, capacity, routing, and scheduling. Hence, itis of utmost importance
for the competitive global markets and strong economies. However, the increased
number and frequency of extreme events are threatening the aging transportation
infrastructure, having a significant impact on the transportation of freight and hence,
impacting national and global economies.

Disasters such as the Kobe earthquake in 1995, the Northeast blackout in 2003,
and, Hurricane Katrina in 2005 crippled transportation services, damaged infras-
tructure, and caused social and indirect losses. The need to understand the behavior
of systems (why and how systems fail, what happens when an extreme event hits a
region, and the region’s ability to recover) and systems’ vulnerability and resilience
to extreme events is vital to minimize (or perhaps eliminate) its impact to the global
economy. The study of vulnerability, reliability, resilience, and risk is important to
transportation systems. While literature on the application of these terminologies to
different problem settings is vast, these measures have not been discussed all together
for a given problem setting. However, the relationship among these terms is impor-
tant and most often depends on the characteristics of the problem setting in question.
In this chapter, we define and illustrate the relationships of the terminologies within
the context of a multimodal freight flow transportation system. The intent of the
discussion is to stimulate further research on the topic and provide valuable insights
to the transportation planners and decision-makers as to how vulnerable and resilient
the transportation infrastructure is to extreme events.

The roadway damage caused by Hurricane Katrina (2005) is used to demonstrate
the above concepts and the impact of the hurricane to the freight flow transportation
traffic on the roadway network. Future research can involve the expansion of our con-
cepts to analyze vulnerability of a multimodal transport route. For instance, assume
we are given two network layers, G| and G, are connected via E1, = (ny,n,). The ar-
tificial edge connecting two layers is £, and the transfer pointsaren; € Ny, n, € N,.
Assume origin O is n3 € N; and destination Dis ny € N,. The route r; is on
Njstarting from n3 to n; and route r, is on N, starting from n; to ng, where goods
from O to D take route r;, transfers from layers G; to G, through E|, and takes
route r, through in addition, (n;,n3 € N;) and (ny,n4 € N3). Then the complete
route becomes r; U E|, U r,, and vulnerability of this route can be calculated using
multiattribute theory and decision analysis tools by defining the facets influenced by
the dynamic system characteristics and estimating the vulnerability and resilience
from the change in system functionality in case of an extreme event. Subsequently,
we can relate vulnerability of the route to other terms and have a comprehensive
view on the multimodal network.

Further research is also necessary to determine how the dimensions listed in
Fig. 7.3 contribute to vulnerability and how one can aggregate the impact of each
dimension into one vulnerability value. If a weight schema is to be proposed, then how
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these weights should be determined will also be the subject of future research. Note
that the weights of these dimensions might be different for a planner, a traveler, or a
freight company since they represent different utilities for different settings. Research
is needed to determine criticality of the artificial edges that connect different modes
via transfer points and the transfer characteristics into vulnerability calculations.
Moreover, understanding of how a system fails and then recovers provides insights
for future design, prevention, and recovery strategies. Connection of the knowledge
and complex system analysis, specifically a multimodal transportation system with
multiple interdependent networks and service layers with multiple decision-makers,
will equip us towards a less vulnerable and more resilient future.

Appendix

Table 7.5 List of bridges and roadways used in the Hurricane Katrina roadway scenarios. (Modified

from DesRoches 2006)

Damaged bridge/roadway name Carried Damage State  Repair
level time
Bayou La Batre Bridge Highway 188 Moderate AL <1
Cochrane Africatown USA Bridge US-90 Moderate AL >6
Mobile Delta Causeway I-10 to US90/98 Moderate AL <6
Bayou Lafourche @ Leeville LA-1 Extensive LA <1
Bonfouca LA-433 Extensive LA <6
Caminada Bay LA-1 Extensive LA <1
Chef Menteur US-90 Extensive LA <3
Claiborne LA-39 Moderate LA <3
East Pearl River US-90 Moderate LA <1
Inner Harbour Navigation Channel Florida Avenue Extensive LA >6
Lake Pontchartrain I-10 Complete LA <6
Bayou Barataria—Jefferson LA302 Moderate LA
Pontchartrain Causeway LA Causeway Complete LA <1
Rigolets Pass US-90 Extensive LA <1
David V. LaRosa Bridge W. Witman Road Moderate MA
Popps Ferry Bridge Popps Ferry Road Significant MA
Tchefuncte River Madisonville Bridge LA-22 Moderate LA <1
US-11@ Lake Ponchartrain US-11 Extensive LA <1
West Pearl River US-90 Moderate LA <1
Yscloskey LA-46 Extensive LA >6
Biloxi Back Bay Bridge I-110 Extensive MA <3
Biloxi-Ocean Springs Bridge US-90 Complete MA >6
I-10 Pascagoula River Bridge I-10 Extensive MA <1
US-90 Bay St. Louis Bridge US-90 Complete MA >6
US-90 Henderson Point Bridges US-90 Complete MA <6
US-90 roadway between Pass Christian US-90 Extensive MA <6

and Biloxi-Ocean Springs Bridge
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Chapter 8

Scheduling and Financial Planning in Stochastic
Activity Networks

Bajis M. Dodin and Abdelghani A. Elimam

Introduction

Stochastic Activity Networks (SANs) deal with projects where the required informa-
tion for managing the project is not known with certainty. In most cases, information
related to duration or resources of some or all activities are given as random vari-
ables (r.v.) characterized by probability distribution functions (pdfs). Examples of
these projects are ample; they include most of high technology projects, new prod-
uct development projects, behavioral and service oriented projects, among others.
Management of SAN projects raises important issues that are emanating from the
stochastic variations of the project (see Chaps. 4 and 5 of Elmaghraby 1977; Herroe-
len and Leus 2005). One of these issues, which has been heavily investigated, is the
determination of the project schedule and project completion time. Another issue is
the determination of the project budget and financial plan; in spite of its importance,
this issue is yet to receive the proper attention (see Wiesemann et al. 2010; Chap. 3
of Demeulemeester and Herroelen 2002; Dayanand and Padman 1998).

Random variations cover various aspects of stochastic projects. In most cases,
these variations emanate from the need to develop or discover the required innova-
tions or technology for achieving the project objectives. These may lead to variations
in the structure of the project network, the duration of activities, the amount of re-
sources needed, and the prices paid to acquire these resources. All of these variations
lead to changes in project schedule, duration, and budget. For instance, network
structure may be hard to finalize at the initial stage. It also may be altered at later
stages of the project due to unforeseen conditions, change in technology, or quality
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audit results. As project work proceeds, new conditions might be uncovered that
would necessitate adding or deleting activities leading to a change in the network
structure. The results of completed project work quality audits might require under-
taking additional activities for repair or rework. Most work on SANs assume that
network structure is always given, and stays that way throughout the project man-
agement cycle (again see Demeulemeester and Herroelen 2002). In this chapter we
also assume that the structure of the activity network (AN) is given.

In addition to the potential change in the network structure, managers and re-
searchers are always faced with the challenging task of estimating the required
resources and duration for the activity. The quantity of resource(s) required to com-
plete an activity may be expressed as a random variable(s) due to not precisely
knowing the details of the activity work. Consider for instance the number of pro-
gramming hours a software engineer will consume to develop a certain module of a
larger program; or the number of experiments required before a certain compound
or medicine is developed. The resources can be of two types: Renewable such as
operators and machines/tools, and nonrenewable such as all consumables, typical
of which are money, and material consumed. The skill of the renewable resource or
the manner of its deployment may affect the duration of the activity. An example
of this is often found in service projects, such as those in health care or in audit
staff scheduling (see Dodin and Elimam 1997), where the duration of the activity
depends on the skill level. Hence, duration of the activity may depend on the amount
of the renewable resources required; consequently, the duration of the activity may
be expressed as a function of the required renewable resources. By contrast, the du-
ration of the activity may be independent of the amount of nonrenewable resources
required or the mode of deploying these resources. Finally, the prices paid for some
or all of these resources may also vary, particularly for projects with long durations,
or in times of economic volatility.

Based on the above, one can see that the combined effect of the stochastic varia-
tions in the network structure, duration of activities, amounts of resources, and the
price of these resources would have a profound impact on the project budget, its
distribution over the various activities, and on its schedule. These variations have
been a major source of difficulty for budgeting and managing projects with high
degree of uncertainty. In spite of the need to develop such pioneering projects at the
least possible cost, not much work has been published in the area of budgeting and
financial planning, and scheduling for stochastic projects. This is different from the
work that has been completed on maximizing net present value of stochastic projects
such as that of Wiesemann et al. (2010); Sobel et al. (2009); Benati (2006).

Recognition of the need to manage projects with some of the above variations
started with the work of Elmaghraby (1964) on generalized activity networks. He
attempted to handle the issues of scheduling and project duration emanating from
structural changes in the AN. He introduced a methodology that combines elements
of the Project Evaluation and Review Technique (PERT) and the Critical Path Method
(CPM) with those of decision nodes/analysis. This work was expanded by Pritsker
and Whitehouse (1966) through the development of Graphical Review and Evalu-
ation Technique (GERT) to include cost elements. The difficulty in solving GERT
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models led to developing GERT Simulation by Pritsker and Sigal (1974). In GERT
Simulation the duration of the activity is specified as a r.v., independent of the re-
quired resource(s), and the cost of the activity is expressed as a linear function of its
duration. For a survey of research related to GERT see Neumann (1999). Since then
not much has been published on the area of financial planning in stochastic projects.
In this chapter we assume that for a given project the renewable and nonrenewable
resources are given as random variables with specified pdfs. The duration of the ac-
tivity is also a r.v. written as a function of the renewable resource(s) required. Given
these relations, the managerial questions that remain to be answered are:

. What is the bidding price or planned budget (PB) for the project?

. Given the PB, what is the financial plan for the project?

. What is the optimal duration and schedule of the project for the PB?

. How do the variations in these relations affect the above three measures (PB,
financial plan, and project duration and schedule)?

SN =

This chapter deals with the above questions. It develops practical and accurate ana-
lytical procedures to answer these questions. This procedure can be used to explore
the relationship between the probability of completing the project at a given time
and the amount of resources to be used as well as its corresponding budget, i.e.,
we establish the time—cost trade off curve for the stochastic project or any of its
subprojects/stages.

The chapter is organized as follows: In the section “Determining the Probability
Distribution Function of the Project Cost,” a procedure is developed to calculate the
pdf of the project cost. A PB for the project can be based on the pdf of the project cost.
Then, in the section “Determining the Probability Distribution Function of the Project
Duration,” another procedure is developed to calculate the pdf of project duration. In
the section “Calculating the Project Financial Plan,” linear programming is used to
determine the financial plan that yields the optimal project duration for the given PB.
An example is provided in the section “Illustrative Example.” Concluding remarks
are given in the section “Conclusions and Extensions.” The following symbols will
be used in the presentation of the chapter, and Fig. 8.1 provides its outline:

Parameters

A Set of activities in the project

IAl Number of activities

N Set of nodes and index of the last node in the project

B(j) Set of nodes preceding node j and directly connecting to it by an activity (i.j)

Dd,)) Random variable denoting the duration of activity (i,j) € A; it is a function of R(i,j)
R(@,j) Random variable representing the cost/quantity of the renewable resource requirements

for activity (i,j), US$/unit

NR(i,j) Random variable representing the cost/quantity of the nonrenewable resource
requirements for activity (i,j), US$/unit

TG) Random variable representing the duration of the project up to node j

TC(,j)  Random variable denoting the total cost of activity (i,j).

NTC(j) Random variable denoting the cost of the project up to node j
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PB Planned budget derived from the pdf of the NTC(N)

Fj; (r) =Pr(TC(i,j) <r), cumulative probability distribution of the total cost of activity (i,j)

F(t) =Pr(T(N) <t), cumulative probability distribution of project completion time

CL; Lower bound on activity (i,j) renewable resource cost

CUj; Upper bound on activity (i,j) renewable resource cost

DL; Lower bound on activity (i,j) duration

DU Upper bound on activity (i,j) duration

wij The conversion factor between the renewable resource cost of activity (i,j) and its
duration, i.e., the slope of the renewable resources cost and duration function

NRC Total cost of all nonrenewable resources for project activities in the PB

Decision Variables

Vij Duration of activity (i,j) € A
q;j Amount of renewable resource funds allocated to activity (i,j)
t(j) Realization for the duration of the project up to node j

» Read the activity network structure using AoA, where ¥
activity (i ,j) e Ali<j&(ij)isunique
* Read the related input/ parametersfor each activity (i .j) € A

¥
Calculate the pdf of the total cost of the project as specifiedin
figure 2

¥

Calculatethe pdf of the project duration (completion time) as
specifiedin figure 3

From the pdf of NTC{N) select a planned budget (PB)for the
project

Use linear programmin g to determine the financial plan that
minimizes the completion time of the project within PB;i.e.
distribute the PB on the activities optimally and determine the
corresponding project schedule

4

From thefinancial plan andthe relationship between
resources and duration, calculate th e corresponding activity
duration

Calculate the corresponding projectduration andthe
correspondin g probability completion time

Fig. 8.1 Scheduling and financial planning for projects represented by SANs

Determining the Probability Distribution Function
of the Project Cost

In this chapter the project is represented by an activity-on-arc network. The arcs of
the network represent the activities, and the nodes represent the events. The events
can be numbered from 1 to N where 1 is the unique starting node, and N is the unique
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ending node; an activity (i,j) € A, where A is the set of all activities in the AN, i <j
where i is the start of the activity, and j is the end of the activity and the ordered pair
is (7,j) is unique. Since some or the entire project activities are not well defined in
the sense of the activity content, the duration and cost of such activities are given
as random variables. It is also assumed that the cost of the activity consists of the
following two elements:

* Cost of the nonrenewable (NR)resources: The quantity of the NR resources re-
quired by the activity is a r.v. independent of the activity duration; hence the cost
of the NR resources is a r.v. with a given pdf. NR(i,j) can be stated as quantity or
as cost, as it is assumed that the cost/unit of the nonrenewable resource is fixed.

» Cost of the renewable (R) resources: The quantity of the R resources required for
each activity is also a r.v. with a given pdf. It is also observed that the R resources
required by the activity determine the duration of the activity, i.e., the duration is
expressed as a function of the renewable resource(s). R(i,j) can also be expressed
as quantity or cost as the cost/unit is fixed.

As aresult of the above assumptions, the cost of each activity is the sum of the above
two random variables; it is a r.v. TC(i, j) = NR(, j) + R(i, j) with a pdf that can
be calculated by convoluting the above two probability distributions. In this case if
f(r)=Pr(R(, j) = r)and g(s) = Pr (NR(i, j) = s), then

F@)=Pr(ICG.) <o) =y _ firgle—n.

The pdf of the activity cost is independent of its duration or schedule. The project
cost or any of its segments can be calculated by summing the individual activities
costs in the project or in its subprojects. Hence, in principle, the cost of the project
can be calculated by performing (2 |A| — 1) convolution operations where |Al is the
number of activities. This may be theoretically possible for some simple pdfs, and
a small size |Al. However, for all practical purposes |Al is not small, and it is not
possible to convolute this many pdfs, especially when some of the individual pdfs
are hard to convolute. Furthermore, as two pdfs are convoluted, the outcome is a
more complicated pdf; when this is convoluted with a third pdf, the resulting pdf is
messier, and so on. The convolution process reaches to a point where it cannot be
carried out. Consequently, it is very important to develop a practical and accurate
procedure to carry out the (2 |A| — 1) convolution operations ending with the pdf of
the project cost in a reasonable computing time. This is the subject of this section.
The above difficulty in carrying out the convolution operations is valid whether
we have continuous or discrete distribution functions. It is more valid in the case of
continuous pdfs, where the difficulty is apparent. To illustrate this difficulty in case
of discrete pdfs, suppose we have 20 activities, the cost of each is ar.v., characterized
by a discrete pdf, where each r.v. has five realizations/outcomes. The convolution
of two of these will have between 9 and 25 unique realizations; it depends on the
similarity between the realizations of the two convoluted distributions. It will have
nine unique realizations if the two convoluted pdfs have the same realizations; and
it could reach to 25 unique realizations if the two convoluted distributions have
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different realizations. Similarly if the resulting pdf is convoluted with a third of the
original distributions; the new distribution will have unique realizations ranging from
13 to 125; and so on. Therefore, in this case the final distribution at node N may
have unique realizations ranging from 81 to 520 (which is a very large number).
The following procedure is used to calculate the pdf of the cost at each node in the
project ending with node N designating the end of the project.

Procedure for Calculating the pdf of the Project Cost

This procedure is summarized in Fig. 8.2. It starts at node 1, where it has a cost of
zero with probability of 1, and then advances sequentially to node 2, then to 3, and
so on until node N, ending with the realizations and pdf of the project cost. At each
node j it calculates the cost of the subproject ending in that node.

For instance, in the AN of Fig. 8.3, at each node (j > 1) we first calculate the
pdf of the cost of each activity incident into the node by convoluting the two random
variables R(i,j) and NR(i,j). Then, to calculate the cost up to node j, we convolute the
pdf of the cost up to node (j—1) with the pdf of cost of the activities incident into node
j. So at node j =2, it is simply equal to the cost of activity (1,2). Hence, only one
convolution operation is performed to calculate the pdf of TC(1,2). Then, to calculate
the cost up to node 3, four convolution operations are performed. The first two are
for calculating TC(1,3) and TC(2,3). Then the last two are for convoluting the cost of
node 2 with TC(1,3); then the outcome is convoluted with the TC(2,3). The process
moves to node 4, where, similarly, four convolution operations are required. Hence,
in this case, a total of nine convolution operations are performed. The proposed
sequential procedure is stated as follows:

1. Initialization:

a. Input the AN structure using activity-on-arc mode of representation, and num-
ber the nodes from 1 (unique starting node/event of the project) to NV (the unique
completion node of the project) such that for any activity/arc (i,j) i <j, and
the pair (i,j) is unique.

b. Input the pdf of the renewable and nonrenewable costs of each activity (i,j) e A.

c. Startatnodej = 1, and set its cost to 0 with probability of 1; then setj=j + 1;

2. Calculating the pdf of the project cost up to node j:

a. Determine the set B(j), which is the set of activities ending in node j; If node
j — 1 is not connected to node j, then connect them by adding the dummy
activity (j — 1, j) to the set B(j) with a cost of 0 and probability 1. Rank the
activities in the set B(j) in an increasing order of their starting nodes.

b. For each activity (i,j) € B(j), calculate the pdf, Fj(r), of the total cost of the
activity, denoted by TC(i, j) = R(i, j) + NR(i, j), by convoluting the pdf of
the cost for its renewable resources with that of its nonrenewable resources as
defined above. Please note that if the pdf of TC(i,j) is already calculated/given,
then go to the next activity in the set B(j).



8 Scheduling and Financial Planning in Stochastic Activity Networks 189

v

Read AN structure using AOA where for each activity (i, j) €A, i <]

v

Read the pdf of each activity cost: the non-renewable and
renewable resources

v

Setj =1, NTC(j) = 0 & Pr(NTC(j) = 0) = 1

v

Set j=j+1 & determine the set B(j) = {(k,j) where (k,j) e A}

N Connect (j-1) to j by a dummy
° 3 activity (j-1,j) € B(j) with TC(j-
1,j)=0 with probability 1

Yes

For each activity (k,j) € B(j) calculate TC(k,j) and its pdf by
convoluting the two costs: renewable & non-renewable
resources

v

Calculate NTC(j) by convoluting NTC(j-1) with TC(k,j) Vk € B(j)

No

Isj=N

Yes

Print/store NTC(N)
and its pdf

Fig. 8.2 Calculating the probability distribution function of stochastic project cost

c. Let K be the number of realizations for the r.v. TC(i,j). If K is greater
than a desired number of realizations the analyst would like to have for
the r.v., such as k <K, then the pdf of TC(i,j) of the activity is approx-
imated by another pdf with only k realizations. This is done where the
full range of TC(i,j) is preserved. Therefore, the maximum and minimum
realizations of TC(i,j) are maintained with their respective probabilities.
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Fig. 8.3 Sample activity
network

The remaining K — 2 realizations are mapped into K — 2 realizations
using the same rules as in Dodin (1985).

d. To calculate the cost of the project up to node j, denoted by NTC(j), convolute
the pdf of NTC(j — 1) with the pdf of the cost of the first activity in the
set B(j). The resulting pdf is then convoluted with the pdf of the cost of the
second activity in B(j); and so on until convoluting with the pdf of the cost of
the last activity in the set B(j). After each convolution operation if K > k, do
the operation presented in 2.a.

3. Termination: Setj=j + 1. If j <N go to 2, otherwise record the pfd of NTC(N)
and all its statistics.

The convolution operation of two pdfs is carried out as it is the case in Dodin (1985)
and it will not be repeated in this chapter. It should be noted that the convolution oper-
ation presented in Dodin (1985) assumes that all random variables are characterized
by discrete pdfs. Consequently, if an activity in SAN has a cost with a continuous pdf,
it should first be discretized. This can be done by applying the discretizing procedure
developed also in Dodin (1985).

From the above distribution for NTC(N), designating the cost of the project, we
can calculate all of its statistics (mean, mode, median, min., max., skewness, and
quintiles). This is done without any reference or reliance on the activity duration or
project schedule.

Given that most projects consist of many activities (more than ten), the central
limit theorem implies that the pdf of the project cost, NTC(N), converges to a normal
distribution with mean value (., equaling the sum of the mean values of the cost
for all activities, and project cost variance o[% equaling the sum of the variances for
all activities. This may allow us to establish bidding price forecasts with certain
confidence limits, establish upper and lower bounds on the project cost, and assess
the risks attached to each bidding price or PB.

Determining the Probability Distribution Function
of the Project Duration

As stated above, the duration of the activity is given as a function of its renewable re-
source requirements. In most instances the duration, expressed as ar.v., is negatively
correlated with the quantity/cost of the renewable resource requirements: the larger
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the quantity of renewable resources, the lower the duration, and vice versa. Hence the
lower end for the cost distribution of the renewable resources of an activity matches
the upper end of the distribution of its duration. The pdf of the activity duration is
calculated using the inverse of the above function. In case the pdf of activity (i,j)
duration, denoted by D(i,j), is given as a conditional probability of that of the R(i,j),
then the pdf of D(i,j) can be calculated first from the conditional probability.

Once the pdf of the duration for each activity is determined, then the pdf of the
project duration, denoted by T'(N), or any of its subprojects ending in node j, 7(j),
can be calculated using any of the available methods. However, as it is stated in De-
meulemeester and Herroelen (2002); Dodin (1985); Elmaghraby (1977), calculating
the exact pdf of the project duration for nontrivial projects is not possible. Conse-
quently, and also for practical reasons, we rely on using one of the approximating
procedures to calculate the pdf of the project duration. In this regard, we can use the
sequential approximating procedure developed in Dodin (1985). This procedure can
be applied for projects of any size, independent of the activity underlying probability
distributions. However, it may be more practical in approximating the pdf of T(N)
to rely on characterizing it. It was shown in Dodin and Servanci (1990) that such
a pdf can be approximated by either a normal distribution or by an extreme value
(EV) distribution. In both cases, what is required is to simply calculate the corre-
sponding mean and variance of such a distribution, then it will be easy to calculate
F(t) =Pr(T(N) <t)foranyt>0.

Determining if the pdf of T(N) converges to a normal or to an EV distribution
depends on the number of paths competing to be the longest path (in duration) in
SAN. The pdf converges to either of the following:

* A normal distribution, exactly as it is the case in the PERT method, if there is
a path in SAN that dominates all other paths in the sense that its probability of
being the longest path is higher than it is for any other path and with a reasonable
margin

e An EV distribution if there are several paths that have similar probabilities for
being the longest path

In performing the above test, we use Dodin (1984) to identify the n most critical
paths, where n can be any positive integer; but for practical purposes n =3 or 4 can
be satisfactory for the normality test. If one path dominates, in probability, all others
and emerges to be the longest path, then the project duration is normally distributed
and its parameters are approximated exactly as it is in PERT. In this case, the mean
duration of the project and its variance are given by:

uPy= Yy and o*(P)= Y o,

(i,j)eCP (i,j)eCP

And F(t) = Pr(T(N) < t) for any ¢ > 0 can be easily calculated from the standard
normal tables. If otherwise, then the pdf of project duration is approximated by an
EV distribution, where its parameters are calculated as in Dodin and Servanci (1990).
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In this case:

0.577 ) w2
and o“(EV)=

EV) =a, L
/L()a+bn 61

where n = the number of dominating paths (close in length) determined in the above
test,

a, = wW(P)+o(P) |: /2logn — (loglogn + 10g4n):|

2./2logn
V21
= VOB
o(P)

F@)=Pr(T(N)<t)= exp [_ e*bn(tfa,, )]

The process of determining the pdf of T(/V) is summarized in the flowchart of Fig. 8.4.

The pdf of project duration depends on the pdfs of the activity durations. But
these depend on the pdf of the corresponding activity renewable costs. Hence, it
is expected that the pdf of T(N) is negatively correlated with the pdf of NTC(N)
derived in the section “Determining the Probability Distribution Function of the
Project Cost.” In this case the high end of NTC(N) matches the low end of T(V),
and the low end of NTC(N) matches the high end of T(N). The question now is
how to use both distributions to establish a project financial plan, and a schedule
for all activities. For a given budget or bidding price, as derived in the section
“Determining the Probability Distribution Function of the Project Cost,” how is the
budget distributed over the individual activities? What is the duration of each activity?
What is the corresponding project completion time? Can the budget be distributed
over the activities to achieve the least completion time for the project? These issues
are the subject of the next section.

Calculating the Project Financial Plan

This section deals with distributing the PB on the activities in an optimal manner,
where optimality is defined as seeking to allocate more funds to the activities that
affect project duration the most; hence, achieving the least possible project comple-
tion time for a given budget. Also, it is important to discuss how sensitive the project
completion time is to changes in the budget and vice versa? That is, how much
should the budget increase to achieve a given completion time, hence, increasing
the probability of completing the project within the given time? If PB represents the
90 % realization in the pdf of NTC(N), then how should this amount be distributed
among all the activities? Should we distribute these in a uniform manner such as
90 % funding for each activity? Would this yield a project duration realization #(N)
where

F(t) = Pr(T(N) < t(N)) = 0.90
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v

Read AN structure using AOA where for each activity (i, j) € A, i <j.

\/

For each activity (i,j) € A, read pdf of the renewable
resource cost R(i,j) & D(i,j) = f (R(i,j))

v

Calculate the realizations of D(i, j) & its pdf

v

Use Dodin (1984) to identify the n longest paths in AN, n can be = 3.
Rank them 1,2,....n starting with the longest

Does the
duration of the 18t
path dominate the
other durations?

pdf is approximated
by an Extreme value
| distribution, calculate
its u, a

Use PERT to compute y, o, assume pdf of T(N) is N(u, o)

y

Connect the pdf of T(N) with the pdfof NTC(N). The far right (largest)
value of NTC(N) with the far left (smallest) of T(N) & vice versa

v

Derive relationships between specific values of NTC(N) and T(N),
forecasts & confidence intervals

Fig. 8.4 Flowchart of determining the pdf of project duration
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Fig. 8.5 Renewable resource A Means at a given resource quantity
quantity—activity duration

Duration of Activity ij

A

Quantity of Resource r

Alternatively, should some activities be funded at a higher level while others at alower
level? How will these be selected, and what is the impact on the project completion
time? These questions imply that different allocations of the PB provide for different
project schedules and project completion times, #(/V). Given the reverse relationship
between the activity renewable resources cost and the activity duration, the more
funds are allocated to the activity, the lower is its duration (see Fig. 8.5). Hence, if the
budget allows for funding each activity at its highest level, then each activity can be
processed at the least/crash duration; and the project may be completed at minimum
time. Conversely, if the budget is short, and each activity is funded at its lowest level,
then this may lead to completing the project at maximum time. Consequently, from
the activity cost—duration relation we can determine the maximum project budget
required, and hence the minimum project duration; and the minimum budget and
the maximum duration. In managing real world projects, one rarely adopts either
of these two extremes. Managers try to select the least necessary budget, and use
it to achieve the shortest project completion time, i.e., the maximum probability of
completing the project within budget.

The above criterion can be used to guide the distribution of the PB over the
activities in an optimal manner, where optimality is defined by obtaining the least
project duration; which maximizes the probability completion time of the project
for the given budget. In deterministic project management, distribution of funds is
guided by the rational used in the Ford—Fulkerson (1962) algorithm. In this case,
we wish to distribute the funds on the critical activities with the least cost first;
hence, achieving maximum reduction in project duration for a given budget. In this
case, the problem is formulated as a linear program (LP) to determine the minimum
project completion time emanating from a specified budget (see Elmaghraby 1977).
In SANS, the concept of critical activity does not work as in deterministic ANs. The
corresponding concept in SANSs is known as activity criticality index (CI). The CI
of an activity is the sum of the CIs of the paths that contain this activity, i.e., the
activity is a constituent of the path, where the CI of a path is the probability that the
path is the longest in the SAN. If the CI of each activity is determined, then we can
use a similar formulation to distribute the funds on the activities with the highest CIs
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and lowest costs. However, calculating the CI for each activity in SAN is a problem
by itself (see Dodin and Elmaghraby 1985). Consequently we are satisfied by using
the relation presented in Fig. 8.5. This expresses the activity average duration as
a function of the activity renewable resource cost. Such a relation is used in the
following LP formulation to optimally distribute the PB over all activities. In this
formulation the project completion time #(N) is minimized subject to:

* The precedence relations between the project activities represented by constraint
set number 1

» Upper and lower limits on the activity duration y;; represented by constraint set
number 2

* Relationships between the renewable resources cost g;; to be allocated to an activ-
ity (i,j) bounded from below by CL(i,j) and the activity duration y;; (as in Fig. 8.5);
these are represented by constraint set number 3

* The funds allocated to activity (i,j), g;;, does notexceed CU ;; these are represented
by constraint set number 4

» Total distributed funds do not exceed the renewable resources share in the PB as
shown in constraint number 5

Min. t(N)

Subject to

H(1)=0

1G) = t(i) + y; Vie N and Vi € B(j) 8.1

DL;<y; <DU; VjeNand Vi < B() (8.2)

v; = DUy — wi(q; — CLy) Vj € N and ¥i € B()) (8.3)

g; < CU; VjeN and Vi € B(j) (8.4)
>~ 4; <PB—NCR (8.5)

(i.j)eA

The decision variables in the above LP are the { y;;} and the { g;;}, where we have
IAl variables of each, and #(j), where we have (N — 1) variables. Solving this LP
provides the financial plan, which is the optimal allocation of the funds over the
activities, represented by the values of { g;}. It also provides the corresponding
activity durations { y;}, and the corresponding project completion time #(V). From
the activity durations and event realizations #(j), a project schedule such as that of
the latest start time schedule for each activity can be constructed. From the pdf of
T(N), we can calculate Pr (7T (N) > t(N)) which is the largest project completion
probability within the PB.

The above formulation can also be used to establish the cost—time response curve.
For each value of PB we can establish a financial plan, a project schedule, and
completion time along with the corresponding completion time probability. This
curve provides a menu to chose from for PB, #(N), and F (¢(N)) = Pr (T (N) < t(N)).
In the following section an illustrative example is provided.
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Table 8.1 Probability distribution of activity cost in US$ 1,000.00

Activity cost TC(1,2) TC(1,3) TC(2,3) TC(2,4) TC@3.4)
Realizationj  (c;, p(c;)) (cj, pcj)) (cj, p(cj)) (cj, pcj)) (cj, pcj))
1 2,02 3,0.2 2,0.5 2,0.5 3,03

2 3,03 4,0.5 3,0.5 4,04 4,0.3

3 4,0.3 5,0.3 6, 0.1 5,0.3

4 5,0.2 6,0.1
E(TC(,))) 3.5 4.1 2.5 3.2 4.2

o (TC(L,j)) 1.025 0.70 0.50 176 0.98

Table 8.2 Probability distribution function of the project cost up to node j

Realization NTC(1) NTC(2) NTC(3) NTC4) Cumulative
probability
(¢j, p(c)) (¢j, p(cj) (¢j, p(c)) (¢, p(c)) For NTC(4)

1 0, 1.0 2,0.2 7,0.020 12, 0.003 0.003

2 3,03 8,0.100 13,0.018 0.021

3 4,0.3 9,0.215 14, 0.05265 0.077

4 5,02 10, 0.275 15, 0.1039 0.178

5 11, 0.235 16, 0.15455 0.332

6 12,0.125 17,0.1812 0.513

7 13, 0.030 18, 0.1733 0.687

8 19, 0.1377 0.824

9 20, 0.0913 0.916

10 21, 0.05065 0.966

11 22, 0.02305 0.989

12 23, 0.0082 0.998

13 24,0.00215 0.999

14 25, 0.0003 1.000
Mean 0.00 3.50 10.10 17.5

Standard 0.00 1.025 1.34 2.12

Deviation

Ilustrative Example

Consider the AN of Fig. 8.3. The renewable and nonrenewable costs for each activity
have been added resulting in the cost distribution specified in Table 8.1. To calculate
the pdf of NTC(j), the cost of the project up to node j, we use the sequential procedure
presented in the section “Determining the Probability Distribution Function of the
Project Cost.” It starts at node one with a cost distribution NTC(1) = (0,1). Then the
process moves to node 2 where the pdf of NTC(2) is equal to the pdf of TC(1,2). The
process moves to node 3, where the pdf of NTC(3) is obtained by convoluting NTC(2)
with TC(1,3); then the outcome is convoluted with 7C(2,3). Finally, the project cost,
represented by NTC(4), is obtained by convoluting NTC(3) with TC(2,4), and the
outcome is convoluted with TC(3,4). The pdf of the project cost up to node j for all
Jj € N is presented in Table 8.2. The means and standard deviations are presented in
the last two rows.



8 Scheduling and Financial Planning in Stochastic Activity Networks 197

p(c)
0.2
0.18 - —4—p(c)

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

0 5 10 15 20 25 30

Fig. 8.6 Probability distribution function of the project cost

The project cost is presented in Table 8.2 by the ordered pairs {(cj, p(cj)} in
the column headed by NTC(4). It is clear from these ordered pairs and their plot
in Fig. 8.6 that the project cost is almost normally distributed with mean value
=17.5, and standard deviation = 2.12. Realizations of NTC(4) represented by {c;}
in column 5, and its corresponding cumulative probability distribution presented in
the last column of Table 8.2 can be used to select a PB or a bidding price, and to assess
the probability of completing the project within the selected budget. For instance, if
the selected budget is US$ 20,000, then the probability of not completing the project
within this budget is 8.4 %. If this level of risk is not acceptable, then increasing the
budget by US$ 1,000.00 reduces the risk to 3.4 %.

To calculate the probability of project completion time, F(¢) for the PB, we first
need to determine D(i,j) and its pdf for each activity (i,j) € A. The pdf of D(i,j) is
derived from the relation between the activity renewable resource cost and duration.
It can be provided as input exactly as that of R(i,j). Table 8.3 has the pdf for all D(i,j).
Then F(z) is determined as prescribed in the section “Determining the Probability
Distribution Function of the Project Duration.” Due to the small size of the SAN of
Fig. 8.3, the pdf for project duration is calculated exactly. It is presented in column 5
of Table 8.4; its cumulative pdfis presented in column 6 of Table 8.4. Please note that
F (1) is not affected by the size of the PB or its distribution over the five activities; it
is affected by {R(i,j)}. The project average completion time E(7T'(N)) =9.12, where
E(T(N)) obtained by the PERT method is 8.80.

The distribution of the project completion time, F(¢), can be used to determine
the project’s largest probability completion time emanating from any PB. First the
financial plan is derived using the method presented in the section “Calculating the
Project Financial Plan,” yielding the duration for each activity and the least project
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Table 8.3 Probability distribution of activity duration

Activity duration  D(1,2) D(1,3) D(2.3) D(2.,4) D(3.,4)
Realization j (d;, p(d))) (d;, p(d))) (d;, p(d))) (d;, p(d))) (d;, p(d)))
1 4,02 3,02 3,05 6,0.5 5,0.3

2 3,03 2,05 2,05 4,04 4,03

3 2,03 1,03 3,0.1 3,0.3

4 1,02 2,0.1
E(D(ij)) 2.50 1.90 25 4.80 3.80

o (D(i,j)) 1.025 0.70 0.50 1.327 0.98

Table 8.4 Probability distribution function of project completion time

Realization (1) T(2) T(3) T4) Cumulative
probability

Gr@G)  Gp@)  Gpw)  Gpr)  of T(d)

1 0,1.0 4,02 7,0.10 12,0.03 01.00

2 3,03 6,0.25 11,0.105 0.970

3 2,03 5,0.30 10, 0.262 0.865

4 1,02 40.25 9,0.288 0.603

5 3,0.10 8,0.211 0.315

6 7,0.0858 0.1040

7 6,0.0169 0.0182

8 5,0.0013 0.0013

Mean 0.00 3.50 5.00 9.12 PERT ;1 =8.8

Standard deviation ~ 0.00 1.025 1.14 1.29 PERT o =1.5

completion time. The latest start time schedule is applied to these realizations to
determine a project schedule. Then, the corresponding F(¢(N)) is determined from
the exact pdf presented in Table 8.4.

Given a PB of US$ 20,000.00, and suppose it is the total renewable resources cost.
The PB does not allow for maximum funding of each of the project activities; hence,
it is not possible to process each activity at minimum/crash time. How would this
budget be distributed over the five activities? As discussed in the section “Calculating
the Project Financial Plan,” different budget allocations may lead to different activity
durations, which result in different project schedule and completion time. We wish to
determine the financial plan that yields the minimum completions time, which max-
imizes the probability of completing the project within the given budget. We use the
above LP model to determine the optimal financial plan, and corresponding activity
durations. In this instance the LP model consists of 13 variables and 26 constraints.
In specifying constraint number 3, it is assumed that the relationship between renew-
able resources cost and activity duration depicted in Fig. 8.5 is continuous. In this
case the slope wy; is calculated from the two ordered pairs, (maximum g;;, minimum
¥;) and (minimum ¢;;, maximum y;;) presented in the input Tables 1 and 3. Solving
the LP model results in the optimal financial plan {g;; }and the corresponding activity
durations {y;}. These are presented in Table 8.5 along with the probability of the
level of funding for each activity.
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Table 8.5 Financial plan (in US$ 1,000) and resulting activity durations

Activity (1,2) (1,3) 2,3) 2,4) (3.4)
Activity cost, g;; 5 3 3 3.715 5.285
Activity duration, y;; 1 3 2 4.714 2.710
Pr(R@, j) < q;) 1.00 0.20 1.00 0.843 0.929

Contrasting the datain rows 2 and 3 of Table 8.5 with the criticality of each activity,
we notice that activities that are critical most of the time, i.e., have higher criticality
indices, received either maximum or close to maximum funding; while less critical
activities received less funding. Analyzing the criticality of the five activities using the
duration input data of Table 8.3, we notice that project completion time is dominated
by path 1-2-3-4 with an average value of 9.12 periods, and activities (1,2), (2,3),
and (3,4) are the most critical; where activity (1,3) is the least critical followed by
activity (2,4), which is more critical. Solution of the LP model resulted in distributing
the PB of US$ 20,000 as follows: Activities (1,2) and (2,3) received maximum
funding, hence have minimum/crash durations, and activity (3,4) received close
to maximum (92.9 %) funding with duration close to the minimum (2.71 periods).
However, activity (1,3) received minimum (20 %) funding, hence with maximum
duration, where activity (2,4) received higher (84.3 %) funding and have higher
duration (4.714 periods).

The optimal financial plan resulted in a realization for the project duration, T(N) =
5.714 periods. This corresponds to a Pr(T(N) > 5.714) = 0.981, as shown in
Table 8.4. Consequently, this financial plan provides a 98 % chance of completing
the project within time, and the PB provides a 90 % of completing the project within
budget.

Conclusions and Extensions

In this chapter, the problem of scheduling and financial planning in SAN projects is
considered. First, issues of uncertainty in project environment are discussed. These
include AN structure, renewable and nonrenewable resource requirements, price/cost
of the resources, and duration of activities. Dependence of activity duration on the
renewable and nonrenewable resources is explored. We conclude that while activ-
ity duration is independent of the nonrenewable resource requirements, it can be
expressed as a function of the renewable resource requirements. This relationship
allows connecting the project schedule and duration to project budget and financial
plan.

Starting with a project network structure where the cost of renewable and nonre-
newable resources are given as random variables characterized by different pdfs, an
accurate and practical procedure is developed to calculate the pdf of the project cost.
The procedure can be applied to all SAN sizes regardless of the underlying activity
cost probability distributions. The cost pdf allows project managers to select a budget
for the project and assess the risks of completing the work of the project within the
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selected budget. The question then becomes how to distribute the selected budget
over the activities of the project? The budget can be distributed over the activities in
many different ways—each may lead to a different project schedule and completion
time. What is the best distribution plan of funds over the activities? In answering
this question, we rely on the relation between the two random variables: activity
renewable resource requirements and activity duration. First, this relation is reversed
providing the pdf for the activity duration. These probability distributions are then
used to calculate the pdf of project completion time. Also activity pdfs are used with
the given budget to determine the optimal financial plan. Optimality is defined by
realizing the least project completion time for the given budget. This problem is
formulated as an LP with the objective of minimizing the project completion time
for the given budget.

Solution of the LP yields the financial plan which specifies the share of each
activity in the budget, the corresponding activity duration, and the least project
completion time. The resulting durations are used to construct a project schedule
such as the early or late start time schedules. The pdf of project completion time can
be used to assess the probability of completing the project within the budget and its
corresponding project completion time.

The procedures developed above for calculating pdf of NTC(N) and the optimal
financial plan are yet to be applied to large SANs. It will be tested in future work.
Also other random variations, such as the price of the renewable and nonrenewable
resources that affect the management of stochastic projects are not investigated in
this chapter. We hope to investigate the impact of these variations on project budget,
financial plan, and project duration in future work.
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Chapter 9

A Risk Integrated Methodology for Project
Planning Under Uncertainty

Willy Herroelen

Introduction

Project management involves the planning, scheduling, and control of project ac-
tivities to achieve performance, cost, and time objectives for a given scope of work
while using resources in an efficient and effective manner (Demeulemeester and Her-
roelen 2002; Demeulemeester et al. 2007). Project scheduling and control has been
the subject of extensive research efforts leading to an impressive body of literature
(Demeulemeester and Herroelen 2002; Elmaghraby 1977) while a wide variety of
commercialized software packages have been released and put to use in practical
project settings. Despite all these efforts, numerous publications have documented
projects that went severely over budget or dragged on long past their originally
scheduled completion date (see, e.g., Flyvbjerg et al. 2003; Standish Group 2004).

The planning, scheduling, and control of projects under stochastic conditions is
indeed a complex and challenging task, involving decisions at the strategic, tactical,
and operational levels (Leus et al. 2007). At the strategic level, the long-term strategic
resource planning decisions to be made by top management include the selection
of projects of major strategic importance, major resource investments, and project
financing. The tactical decisions have to do with project selection/acceptance, the
allocation of company capacity, and reliable due date setting. Detailed scheduling
and resource allocation decisions have to be made at the operational level. Success
in managing a project requires a complete and realistic project baseline schedule
that represents the project plan. Project control implies the deployment of corrective
actions when the project baseline schedule is rendered infeasible by the disruptive
events that may occur during actual project execution.
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Fig. 9.1 Iterative two-phase
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In this chapter, we describe a risk integrated methodology for tactical and opera-
tional project planning under uncertainty. The methodology integrates quantitative
risk analysis with reliable proactive/reactive project scheduling procedures.

Project risk management aims to provide insight into the risk profile of a project
so as to facilitate the mitigation of the impact of risks on project objectives such
as budget and time. Effective risk management requires a risk analysis process that
is scientifically sound and that is supported by reliable quantitative techniques. In
this chapter, we consider risks that impact both the duration of project activities
and the availability of renewable resources. The traditional practice of quantitative
risk analysis assumes that the duration of a project activity captures all uncertainty
that originates from the occurrence of risks; i.e., uncertainty is commonly placed on
activity durations using three-point estimates of low, most likely, and long activity
durations and selecting appropriate probability distributions (Hulett 2009). Contrary
to this activity-based approach, we opt for a risk-driven approach in which the impact
of each identified risk is assessed individually and is subsequently mapped to the
duration of an activity. The probability distribution for a project activity is developed
based on the probability and impact of all the risks that are assigned to it and their
impact on its duration if they do occur. In doing so, the uncertainty is associated
with each risk, not with the project activity that is affected by risks (Creemers et al.
2010; Schatteman et al. 2008). Quantitative project risk analysis is the subject of the
Section “The Need for Quantitative Risk Analysis.” It provides crucial input for the
generation of robust baseline schedules that are adequately protected against possible
disruptions that may occur during project execution.

The risk integrated methodology we describe in this chapter consists of two
iterative phases (Fig. 9.1).

The project specification input of phase 1 consists of an activity-on-the-node
network for the project G(N, A) and the externally imposed customer project due
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date §. For each activity i in the project network, we assume that the project planning
team can come up with a single point estimate d; of the activity duration, an estimate
of the per period requirement ri for each renewable resource type k € K, and a
so-called inflexibility weight w;. The inflexibility weight represents the marginal
cost of deviating from the planned starting time s; of an activity during the execution
of the project (Leus and Herroelen 2004). A small activity weight reflects high
scheduling flexibility: it does not “cost” that much if the actually realized activity
starting time during schedule execution differs from the planned activity starting
time in the baseline schedule. Activities that are to be executed by resources with
ample availability, for example, will be given a relatively small flexibility weight,
reflecting project management’s view that their rescheduling cost is relatively small.
A heavy activity weight denotes low scheduling flexibility, reflecting management’s
view that deviations from planned activity starting times are deemed very costly for
the organization due, for example, to the high penalty costs that are incurred when
individual milestones or the project due date are not met. Activities that use scarce
resources or rely on subcontractors that are in a strong bargaining position will also
receive a heavy weight as it is preferable for the starting time of these activities to
be kept fixed in time as much as possible.

The project should be the subject of a qualitative and quantitative risk analysis
allowing for the identification of the major project risks and a quantification of both
their probability of occurrence and their impact.

During phase I decisions have to be made about the number of regular renewable
resource units ax of type k € K to be allocated to the project and the so-called internal
project due date §". These decisions will serve as input for the robust baseline schedule
generation and schedule execution problem that is solved in the second phase. Up
to the internal due date &', activities can be performed using the allocated regular
renewable resource units. In case the project takes longer than §’, we assume that
irregular emergency resource capacity can be hired at a cost. The internal due date
8’ is bounded from below by the critical path length CP of the project and bounded
from above by the externally imposed customer due date §, CP < § < §. The
decisions to be made in phase 1 can then be represented by means of a (|K| + 1)
vector sol = (ay, ...,ak,d), corresponding to |K| resource allocation decisions and
one internal due date decision. An effective procedure for setting the renewable
resource levels and the internal due date is introduced in the Section “Resource
Allocation and Internal Due Date Setting.”

Phase 2 of the integrated procedure implements a proactive/reactive schedule
generation methodology, whose components have been heavily researched over the
past few years (Herroelen 2007). A proactive baseline schedule can be generated
using a combination of resource buffering, minimal makespan scheduling, and time
buffering. The proactive baseline scheduling system we propose aims at generating
a baseline schedule that is precedence and resource feasible and that is effectively
protected (using time and/or resource buffers) in an effort to achieve timely project
completion and schedule stability. The proactive schedule is generated using a two-
step procedure. In the first step, a precedence and resource feasible schedule is
generated with acceptable project duration. In a second step, the schedule is to be
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Fig. 9.2 Iterative risk
management process Risk identification

Risk analysis

Risk response

protected against disruptions that may occur during the execution of the project.
This is done by inserting buffers into the schedule (Demeulemeester and Herroelen
2010). Resource and time buffering form the subject of the Section “Robust Schedule
Generation.”

The proactive schedule is then to be used as a guideline during project execu-
tion. A sufficient number of schedule executions are simulated using the stochastic
information about possible resource breakdowns and activity durations. When the
built-in protection of the baseline schedule is no longer sufficient and the schedule
becomes infeasible, schedule feasibility has to be restored by deploying a proper
reactive scheduling procedure. The procedure has to decide whether the schedule
is repaired by (a) preempting one or more of the active activities and by reschedul-
ing activities that are planned in the future and that are affected by the preemption
through precedence relations or the use of shared resources, or (b) by hiring irregular
renewable resource capacity at an additional irregular capacity cost (Deblaere et al.
2011; Van de Vonder et al. 2007). This allows for the calculation of the expected
values of the irregular capacity costs and the schedule instability costs. The feedback
loop shown in Fig. 9.1 then involves the use of the mean-variance function of the
schedule execution costs to evaluate the resource and internal due date decisions
made in phase 1. Schedule execution and reactive scheduling form the topic of the
Section “Schedule Execution and Reactive Scheduling.”

The Need for Quantitative Risk Analysis

The need to manage uncertainty is inherent in most projects. The Project Management
Institute defines a project risk as “an uncertain event or condition that, if it occurs,
has a positive or negative effect on at least one project objective” (PMI 2008). The
essential purpose of risk management is to improve project performance via sys-
tematic identification, appraisal, and management of project-related risk (Chapman
and Ward 1997). Risk management (PMI 2008) is an iterative process involving risk
detection, risk analysis, and risk response (Fig. 9.2).
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Fig. 9.3 Overview of the risk
analysis process. (Creemers
et al. 2010)
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Risk Identification

The risk identification process involves the identification of the major risks that may
affect the project objectives. This implies that the roots of the risks must be identified
rather than the risk symptoms. Useful tools in the risk identification process are
risk check lists containing a structured overview of all the risks that may occur on
the project. The Belgian Building Research Institute, for example, maintains a risk
management database containing standardized risk checklists describing all the risks
that have occurred in the past on different types of construction projects (Schatteman
et al. 2008; Van de Vonder et al. 2010).

Risk Analysis

Once the risks have been identified, they should be properly analyzed. The risk anal-
ysis process consists of three major phases (Fig. 9.3): qualitative risk management
and risk prioritization, quantitative risk assessment, and quantitative risk evaluation.

Qualitative risk analysis relies on an ordinal scale to assign a score (for example,
1—low, 2—medium, and 3—high) for both the probability of occurrence of the risk
(P) and its impact on the project objectives (/). This allows the risks to be prioritized
based on their total score (P x I), the priority risks being the risks with the highest
score.

Both the risk identification and the qualitative risk analysis provide the input for
the so-called risk register. For each identified risk, the risk register contains a clear
description of the risk, its probability of occurrence (P), its impact score (I), the total
risk score (P x I), as well as the proactive and reactive measures taken to respond
to the risk (see “Risk Response”). The high priority risks should then be the subject
of a quantitative risk analysis.
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Quantitative Risk Analysis

Quantitative risk assessment is the procedure by which experts provide detailed
estimates of the probability of occurrence and the impact of high priority risks. These
estimates are then used in the quantitative risk evaluation procedure to analyze the
impact of the short-listed risks on the overall project objectives. In the following,
we rely on examples from construction industry practice to clarify the main issues
involved.

Activity Groups

Quantitative risk assessment is commonly considered by practitioners to be a rather
time-consuming procedure. We follow Schatteman et al. (2008) in suggesting the
use of so-called activity groups, i.e., groups of activities that share common risks.
In a construction project, for example, the activity group “masonry” may contain
all the masonry activities that are subject to similar risks (e.g., the risk of weather
delay). Obviously, the same risk may have an impact on different activity groups. For
example, weather delay may not only affect the activity group “masonry” but may
also affect the activity group “roofing.” Risks can then be assessed at the activity
group level, rather than at the level of each of the many individual project activities.

Risk Impact Types

In this chapter, we are interested in the so-called project schedule risks, the risks
that affect the project schedule. We follow Van de Vonder et al. (2010) in identifying
different impact types of project scheduling risks: (a) proportional or fixed impact,
(b) start time delay, and (c) breakdown.

Proportional or Fixed Activity Duration Impact

Risks may affect the duration of project activities. The risk “bad soil quality,” for
example, may have a proportional impact on the duration of a construction activity
in the activity group “excavation.” Proportional risk impacts may be assessed by
first asking the risk expert to estimate the probability (percentage) that the risk will
impact an activity group (often the impact will be 100 %) and to provide an estimate
of the impact on the duration of an activity in the activity group using a pessimistic,
most probable, and optimistic estimate.

Similar input is required for risks having a fixed impact on the duration of an ac-
tivity (for example, the need to perform an additional stability study). The probability
percentage of fixed impact risks will rarely be 100 %.
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Starting Time Delays

Risks may cause a delay in the planned starting time of activities. The risk “late
material delivery,” for example, may cause a delay in the start of one or more con-
struction activities in the activity group “reinforcement work.” Again the expert can
be asked to provide the percentage probability of occurrence of the impact together
with three-point starting time delay estimates.

Breakdowns

The risk type “breakdown” may be used to model breakdowns in the use of renewable
resources (for example, machine defects). In this case, the expert may be asked to
provide an estimate of the mean time to failure (MTTF) and the mean time to repair
(MTTR) for the particular renewable resource types.

Risk Response

Having identified the risk exposure and quantified its potential impact, proper actions
should be identified to respond to the risks. Risk response may include risk avoidance
(forexample, performing the activity using an alternative activity execution mode that
does not contain the risk), risk reduction (taking actions to reduce the risk by reducing
its probability of occurrence and/or its impact), risk transfers (for example, passing
on the risk to a third party by outsourcing an activity), and risk anticipation through
proactive/reactive scheduling. The latter approach constitutes a crucial component
of our suggested risk integrated project planning methodology.

Resource Allocation and Internal Due Date Setting

During the first phase of the integrated procedure, a decision has to be made on the
level of the renewable resource capacity ax of resource type k € K to allocate to
the project from the project start time t =0 up to the internal project due date t =4’
As already mentioned above, the internal due date 8’ is bounded from below by the
critical path length CP of the project and bounded from above by the externally
imposed due date §, CP < §’ <§. The decisions that need to be made in phase 1 can
then be represented by means of a (K| +1) vector sol = (ay, ..., ak, §’), corresponding
to |K] resource allocation decisions and one internal due date decision.

Lambrechts (2007) has developed an effective tabu search procedure to optimize
the resource allocation and due date setting decisions in a computationally efficient
manner. The author represents a solution to the resource allocation and due date
setting problem by means of the vector sol = (ay, ..., ag,8’) and suggests evaluating
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the value of the objective function z corresponding to such a vector using the simu-
lation procedure to be described below as a crucial step of phase 2 of the integrated
procedure.

The objective function z is defined as z = average(7TC), the average value of the
total cost function 7C obtained over all simulation scenarios, where 7C is defined as
the sum of the regular renewable resource costs, the expected irregular renewable
resource costs, and the so-called expected schedule instability costs. More formally,

TC = &' Zakc]:eg +E <Z A;’(rlregc;'crreg) + ZWiE 1S; — s 9.1)
k kit

ieN
with
d The internal project due date
ai The amount of renewable resource type k € K allocated to the project
¢ ¥ the per period cost of a regular unit of renewable resource type k
A" The number of irregular units of renewable resource type k hired in period ¢
¢, ®  The per period cost of an irregular renewable resource unit of type k
w; The activity flexibility weight, i.e., the per period start time deviation cost of
activity i
S The planned starting time of activity i in the baseline schedule
S; The actually realized starting time of activity i during schedule execution
E The expectation operator

In other words, we assume that the regular resource capacity ay is allocated to the
project prior to the start of project execution at a regular resource cost ¢, * per period.
In case the project takes longer than the internally set due date §’, or when a schedule
infeasibility occurs during project execution, we assume that additional irregular
emergency capacity A, can be hired on a per period basis at a cost ¢, per period.
The last term in Eq. (9.1) represents the so-called schedule instability costs relying
on the notion of schedule stability or solution robustness. Schedule stability refers to
the difference between a project baseline schedule and the actually realized schedule
during project execution. Leus and Herroelen (2004) suggest measuring schedule
stability by the weighted sum of the absolute differences between the planned activity
starting times s; in the baseline schedule and the actually realized activity start times S;
during project execution. As mentioned earlier, the weights w; represent the activity
disruption cost per time unit, i.e., the nonnegative cost per time unit overrun or
underrun on the start time of activity i. This disruption cost reflects either the difficulty
in shifting the booked time window on the required resources or the difficulty in
obtaining the required resources, or the importance of on-time performance of the
activity.

The exact evaluation of Eq. (9.1) is unrealistic; computing the expected project
duration and the probability that a project without resource constraints is finished
by a given time instant, assuming an early start schedule—the Program Evaluation
and Review Technique (PERT) problem—is already #P complete (Hagstrom 1988).
Hence we opt to obtain the value z = average(7'C) through a number of simulation
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runs, performed in phase 2, using the same baseline schedule, the same resource
allocations, and the same internal due date.

In the fabu search procedure of Lambrechts (2007), a move is defined as a unit
increase and decrease of every element of sol. A move is declared admissible if the
combination of the resource allocation and the internal due date resulting from the
move are feasible. The admissible move yielding the best value 7’ obtained in the
current iteration of the tabu search is executed if it is not declared tabu. Whenever a
move is accepted, the opposite of the move is declared tabu for the next |K] iterations.
The tabu restriction can be overridden when the move corresponds to a solution value
that improves the best overall solution value z* found up to the current iteration. The

starting value of §' is set to 8’ = %, where CP denotes the critical path length and
ESS LEV
the starting value of ay is set to a; = %, Vk, where a,fss = maxg()_ ry), with

ieB,
B, the set of activities in progress during period ¢ in the early start schedulé ESS, and
a,fEV = max,(}_ ry) the corresponding maximum per period resource requirement
ieB;
in a leveled schedule, obtained by a reliable resource leveling procedure (see, e.g.,
Gather et al. 2010; Neumann and Zimmermann 2000). As such, the starting values
are taken in the middle of two extremes for the planned project duration and resource
capacity, corresponding to a schedule with smallest possible makespan " and high

peak resource requirement a,fss , and a longer schedule with makespan § with lower,

: LEV
leveled per period resource usage a;”" .

Robust Schedule Generation

Phase 2 of the integrated project planning procedure implements a proactive/reactive
schedule generation methodology. The proactive/reactive project scheduling lit-
erature (Herroelen 2007; Herroelen and Leus 2005) suggests the generation of
a proactive project schedule using a combination of resource buffering, minimal
makespan scheduling, and time buffering.

The Generation of a Resource-Buffered Schedule

During project execution, renewable resources may be subject to breakdown causing
the planned baseline schedule to become infeasible. The proactive scheduling strat-
egy may involve the use of resource buffers to protect the baseline schedule against
resource disruptions.

Resource buffering can be achieved by including so-called resource slack. This
means that the project is planned using a regular renewable resource availability a; “**
that is lower than the regular resource availability a determined in phase 1 of the
integrated project planning procedure. The required size of the resulting resource

buffers will depend on the probability distribution of the resource availabilities.
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It can be shown (Ross 1983) that a single renewable resource unit of resource
type k with independently and identically distributed times between failure Xy and
independently and identically distributed repair times Yy has a stationary availability
(the probability that the resource is active at a time in the future) given by
_ E(Xp)

E(Xy») + EMN)

Remember that proper estimates of MTTF E(Xx) and MTTR E(Yx) are to be obtained
from the risk expert during the quantitative risk analysis procedure. Writing E(Xy) =
1/Agy = MITFy, E(Yy) = 1/ur = MTTRy, and py = MTTRy/MTTF, we have
Ar = 1/(1 + pi). The probability P(a; =j) can now be written as

. a j ai—Jj ai 'O;clk_j
= = . A (1 — A% = . .
Plax = J) (]>( k)’ ( k) (J> T+ o)™

The expected value (taking breakdowns into account) of the resource availability in
the steady state for renewable resource type k € K can now be written as

E(a) = LZm x P(A; = m)J ) 9.3)

m=0

Kk 9.2)

This value can be used as the buffered resource availability a, *In case this buffered

availability is smaller than the maximum resource requirement max;cy7;, its value
is augmented until the activity with the highest resource demand for resource type k
can be executed.

The initial project baseline schedule can now be generated using any exact or
heuristic procedure for solving the well-known resource-constrained project schedul-
ing problem (RCPSP), involving the determination of the activity start times subject
to the precedence and renewable resource constraints under the minimal makespan
objective (Hartmann and Briskorn 2010; Herroelen 2005). If the resource-buffered
schedule violates the internal project due date §’, the most constrained resource type
is identified and its availability is progressively increased up to the maximum (orig-
inal) availability ax. The schedule generation procedure is then reexecuted until the
due date 8’ is met. The most constraining resource type is defined as the resource type
that leads to the highest decrease in schedule makespan when its buffered availabil-
ity is increased by one unit. The resource type with the smallest deviation between
the expected resource availability and the adjusted buffered availability is used as a
tiebreaker.

Time Buffering

Translating Resource Uncertainty into Time Uncertainty

The resource-buffered (minimal makespan) schedule can be the subject of time
buffering. Lambrechts et al. (2011) have shown that, under realistic assumptions,
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resource availability uncertainty can be effectively translated into activity duration
uncertainty. When a resource infeasibility occurs and the decision is made to hire
no irregular renewable resource capacity, activities that were in progress at the
time of a resource breakdown are preempted. The authors make a distinction be-
tween a preempt-repeat and a preempt-resume environment. In a preempt-repeat
environment, preempted activities have to be restarted from scratch, while in a
preempt-resume environment, preempted activities may be restarted from the point
where execution halted.

Lambrechts et al. (2011) prove that in a preempt-repeat environment with fixed
resource allocations, the expected activity duration extension due to breakdowns for
an activity ¢ with planned duration d; and renewable resource usage rix of renewable
resource type k for which the time to failure of each resource unit is exponentially
distributed with parameter Ay and the time to repair is also exponentially distributed
with parameter i, is given by

Y, AkTik
Ely] = i 1+ —d;, 9.4
il (1—wi>(zxkr,-k>( ; i ) O

k

where y, =1 — e~ LMtk

For a preempt-resume environment, Lambrechts et al. (2011) prove that the ex-
pected duration extension due to resource breakdowns for an activity i with planned
duration d; and renewable resource usage rix of renewable resource type k for which
the time to failure of each resource unit is exponentially distributed with parameter
Mt and the time to repair is also exponentially distributed with parameter py is given
by

AkTi
Elyl=d; Yy =, ©9.5)
e Mk

Time Buffering Procedures

The nice thing about the results derived above is that both time and resource uncer-
tainty can now be effectively dealt with by proactive/reactive scheduling procedures
that were originally developed to cope with activity duration uncertainty. A wide
variety of exact and suboptimal procedures have been developed and evaluated on
their effectiveness and efficiency (Van de Vonder et al. 2008). Despite its simplicity,
the so-called starting time criticality (STC) heuristic, developed by Van de Vonder
et al. (2006) obtains excellent results.

The iterative STC heuristic relies on information provided by the activity weights
w; and the variance structure of the activity durations. The underlying idea is to take
a resource-buffered schedule as input and iteratively create intermediate schedules
by adding a one-unit time buffer in front of that activity that is the most starting time
critical in the current intermediate schedule. The starting time criticality stc(i) of
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activity i in the current schedule is defined as
ste(i) = P(S; > s;) x w; = & X wy, (9.6)

where &; denotes the probability that activity i cannot be started at its scheduled
starting time s;. Activities are listed in decreasing order of the szc(i), breaking ties
arbitrarily. The list is scanned and the time buffer to be placed in front of the current
activity from the list is augmented by one time unit. If the resulting schedule does not
violate the project due date and results in a lower surrogate stability cost Y _ stc(i), the

schedule serves as input for the next iteration step. If not, the procedure taiies the next
activity in the list. Whenever the procedure reaches an activity i with stc(i) =0 (by
definition, this is the case for all activities j with a planned starting time s; = 0 in the
baseline schedule) and no further improvement is found, the procedure terminates
with a local optimum.

Schedule Execution and Reactive Scheduling

At the start of project execution, the activity durations are set to the input durations

d; and a regular renewable resource capacity of ay units per period is allocated to the

project from its start at time t =0 up to time t = &' (for periods t > §’, regular resource

capacity is set to 0). During the simulation, at the start of every time period ¢, the real

activity duration is updated for the activities starting at time ¢ and the real resource
obs

availability af;* in time period ¢ becomes known. In case a resource breakdown is
of such a magnitude that the real resource availability is insufficient to satisfy the

resource requirement of the activities that are active at time ¢ <Elk Y ri > a,‘{’f"y) s
iii€B;

the following resource conflict resolution procedure is used. For each activity i € By,

it has to be decided whether to preempt that activity or to keep it at its current starting

time. The difference between the total resource requirements of the nonpreempted

activities and the observed renewable resource availability a?* at time ¢ then needs

to be filled by hiring irregular resource capacity:

Vk : a* = max(0, § i — al’).

ieB;: i not preempted

The resource conflict resolution procedure uses full enumeration to determine which
activities have to be preempted, yielding the lowest combination of additional
instability costs and additional irregular capacity costs.

Rescheduling may be done using one of the existing reactive scheduling proce-
dures developed in the literature (Lambrechts et al. 2008). The scheduled order repair
heuristic, for example, is a list scheduling heuristic that reschedules the activities
in the order dictated by the baseline schedule (using the lowest activity number as
a tiebreaker), while taking into account the reduced resource availabilities. When a
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disruption occurs in time period ¢, a priority list L is created including the activities
that are not yet completed at t*, ordered in increasing order of their baseline start time
si. This priority list is then decoded into a feasible schedule using a serial schedule
generation scheme that takes the known resource availabilities a,, up to the current
time period ¢* into account. Activities selected from the list are started as soon as
possible. For activities i € By, the procedure first tries the current time ¢*. If this
is infeasible, the procedure tries the next time period (t* + 1) and subsequent time
periods if necessary. For the activities not yet started, it is only necessary to consider
the earliest precedence feasible starting time.

During each simulation run, the resource capacity costs and the schedule insta-
bility costs are calculated. When a sufficient number of simulation runs have been
performed, the mean-variance function of the schedule execution cost 7C is calcu-
lated. A solution is stored if its cost is lower than the best solution obtained so far and
the feedback loop to the tabu search procedure of phase 1, shown in Fig. 9.1, can be
performed, allowing for an update of the resource availabilities ax and the due date §’.

The last generated schedule can then be used as the baseline schedule during
actual project execution.

Conclusions

The objective of this chapter was to describe the working principles of an integrated
procedure for the planning of projects under time and renewable resource uncertainty.
The integrated procedure heavily relies on quantitative schedule risk analysis and
involves two phases to be performed iteratively. In phase 1, decisions are made about
the amount of regular and irregular renewable resource capacities to be allocated
to the project. In phase 2, a robust baseline schedule is constructed based on the
decisions made in phase 1 and the output of the quantitative schedule risk analysis.
The execution of this robust baseline schedule is then simulated a sufficient number of
times for varying uncertainty scenarios allowing for the computation of the schedule
execution costs composed of the regular and irregular renewable resource costs and
the schedule instability costs. The mean-variance function of the schedule execution
costs is then used to evaluate and eventually update the resource and due date factor
decisions that were made in phase 1. The final proactive project schedule can then
be used as a robust baseline schedule during actual project execution.
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Chapter 10

Dynamic Resource Constrained Multi-Project
Scheduling Problem with Weighted
Earliness/Tardiness Costs

M. Berke Pamay, Kerem Biilbiil and Giindiiz Ulusoy

Introduction and Motivation

Building a high-rise building in a business district, or manufacturing a special pur-
pose machine for a customer, or organizing a concert all involve various tasks to
be completed in a systematic order to reach a final target. The project management
approach can be applied to any of these endeavors as a decision tool to improve
efficiency. This wide range of applications makes projects a common structure for
organizing work. Besides internal company activities like maintenance or research
and development (R&D), project-based companies such as in construction, make-
to-order manufacturing, or software development industries all present examples
of multi-project management applications. Payne (1995) reports that up to 90 % of
the value of all projects occur in a multi-project context. Typically, multiple projects
share common resource pools whose capacities are not sufficient to support all project
activities at the same time, leading to the resource-constrained multi-project schedul-
ing problem (RCMPSP), which focuses on scheduling multiple projects while using
available resource profiles and satisfying the precedence constraints to optimize the
desired objective function.

Most project scheduling models are of static nature, where schedules are based
on the data that are available before the solution procedure and the effects of unex-
pected events such as disruptions in projects, arrival of new projects, and changes in
resource availability are not considered. Herbots et. al. (2007) point out that static
approaches are less realistic and a revision of the existing schedule might be re-
quired, especially when dealing with external projects. The main reason behind the
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dynamic nature of external projects lies in the complex network of business relations
between companies. Cooperation with other organizations, subcontractors, and cus-
tomers is a common way of doing business resulting in a multi-project environment.
Anticipating the total project load in the future becomes almost impossible for the
companies as their project portfolios change over time. Therefore, models dealing
with the dynamic multi-project environments become critical to provide realistic de-
cision instruments. The model presented in this chapter is an attempt to partially fill
the need for creating effective decision tools to be employed in dynamic multi-project
environments; in particular, if the events have to be handled case by case with low
visibility into the future.

Selecting the appropriate performance measure is essential to reflect reality. Min-
imizing the project completion time is a popular performance measure focusing on
the effective usage of resources as well as the responsiveness of a company to its
market. However, dynamic decision processes involve progressive schedule gener-
ation steps. Therefore, the starting times of the activities as well as the resource
allocation decisions in the schedule can change dramatically while minimizing the
makespan for the modified data sets. Handling these changes effectively requires or-
ganizational responsiveness—a crucial competitive capability. Drastic updates to the
schedule and resource commitments may lead to significant organizational overhead
and may not be desirable or even possible. Therefore, focusing on deviations from
the baseline schedule in subsequent scheduling activities can help absorb any nega-
tive ripple effects of the dynamic events in the organization. As a result, punishing
both earliness and tardiness, directly or indirectly, forces the companies to schedule
all activities on time or as close as possible to their due dates or completion times in
the baseline schedule.

No baseline schedule exists for a newly arriving project, and the main concern
for such a project is quoting a due date that trades off its potential revenue against
the impact of accommodating it in the baseline schedule. Yang and Sum (1997) state
that a negotiation procedure between the client (project owner) and the contractor is
generally adopted in the decision process to handle this problem. The client wants
the project to be completed as soon as possible and might even offer an increased
payment for an earlier completion time as an incentive for the contractor. From the
perspective of the contractor, the new project generates more revenue if completed
earlier; however, the risk of paying late delivery costs for existing commitments has
to be mitigated by pushing the new project toward the end of the existing schedule
at the expense of forfeiting some of the potential revenue. The mathematical model
we propose in this chapter captures the trade-off between the revenue to be collected
from a new project and the penalties which may result from not meeting existing
delivery and resource commitments for the contractor.

The problem under consideration can be defined as follows. In a multi-project en-
vironment with a certain number of available renewable resource types; a processing
time, a due date, resource profiles, and associated unit tardiness and earliness costs
are assigned to each activity. A baseline schedule exists for this set of projects. At a
given point in time, a new project arrives. For the newly arriving project a due date
has to be assigned and it has to be incorporated into the baseline schedule resulting
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in a new schedule. A cost parameter for the completion time of the new project repre-
senting the cost of delaying a new project by one time unit is defined and is referred
to as the completion time factor K. The objective then becomes the weighted sum
of the earliness/tardiness costs of the ongoing projects plus the cost associated with
the new project’s completion time. Hence, the problem under consideration can be
considered as a variant of the RCMPSP with weighted earliness/tardiness penalties
(RCMPSPWET) and will be denoted as DRCMPSPWET in reference to the dynamic
nature of the decision environment.

Within the context of this problem, the activity due dates and associated penalties
are important parameters defining the characteristics of an instance. An applicable
due date selection procedure is to convert the planned completion times into due
dates. In other words, a baseline schedule, which is accepted by the contractor as
well as by the client, is generated, and associated costs are defined to penalize devi-
ations from the baseline plan in the new schedule. This approach can be applied to
our deterministic model easily, since each disruption, as explained earlier, provides a
new baseline schedule and can be converted into due dates for a potential new event
in the future. With this approach, the dynamic problem can be simulated for multiple
disruptions. The changes in revenue and deviations in schedules can be observed for
multiple project arrivals at different points in time. Another strategy might involve
defining some critical progress levels and penalties only for certain milestones of the
projects. From a mathematical modeling point of view, defining milestones trans-
lates into choosing relatively higher cost parameters for the corresponding activities.
Moreover, higher penalties for project completion times can be selected to empha-
size the significance of completing projects at their previously scheduled times even
if we allow shifting activities within a project. In the extreme case, we may omit
the due date costs for all activities except those for the terminal activities of the
projects. In summary, by setting the cost parameters associated with the activity due
dates properly, we may model the problem with varying levels of flexibility and data
requirements.

For any of these options, the following step is to determine the unit tardiness
penalty values so that the deviations from the baseline schedule are not ruled out. An
important factor for these penalties is the tightness of the due dates. A project with
tight due dates has a greater possibility of becoming tardy; so the penalty values for a
unit time should be lower than those under loose due dates, where the contractor has
a wider time horizon to complete the project on time. In addition, the cost parameters
have to be determined in a way that a trade-off between deviations from the baseline
schedule and the due date of the new project exists.

In this chapter, the dynamics of the problem are analyzed with respect to the
total number of activities, the due date tightness, the due date range, the number
of resource types, and the completion time factor. The goal is to design a solution
method that rapidly provides near optimal solutions for this problem. Quick solution
methods can make rescheduling time and cost feasible in comparison with repair
heuristics, which incorporate myopic approaches in most cases. This study makes
the following contributions:
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* The problem under consideration—DRCMPSPWET—is developed conceptually
and a mathematical programming formulation of the problem is provided.

e Alocal search (LS) heuristic is designed and implemented. It is tested for solution
quality and time against exact solutions obtained for a certain number of problem
instances.

* A unique data set is generated for investigating the effects of the total number
of activities, the due date tightness, the due date range, the number of resource
types, and the completion time factor of the newly arriving project on the solution
approach.

The chapter is organized as follows: In the Section “Related Literature and Problem
Description,” the related work in the literature and the problem definition are pre-
sented and an integer programming formulation for DRCMPSPWET is given. In the
Section “An Iterated Local Search Approach for RCPSPWET,” a heuristic approach
for DRCMPSPWET is presented. The discussion of the data sets and an evaluation of
the results are included in the Section “Computational Study.” Conclusions and pos-
sible extensions for future work are presented in the Section “Concluding Remarks
and Future Work.”

Related Literature and Problem Description

Herroelen and Leus (2005) classify the related work on DRCPSP under four cate-
gories: reactive scheduling, stochastic rescheduling, fuzzy project scheduling, and
proactive scheduling. Note that our problem falls within the scope of the first cate-
gory. Hence, we will concentrate here only on work in the area of reactive scheduling.
Interested readers may refer to a recent review of stochastic project scheduling by
Ashtiani et al. (2011). The models focusing on reactive scheduling try to model
any unexpected event within a deterministic approach. Instead of executing a full
rescheduling process, another option would be trying to minimize the effects of the
unexpected event building on a baseline schedule which might or might not be re-
paired. One such example is the study of Artigues and Roubellat (2000) considering
the case of activity insertion to the baseline schedule. The objective is to minimize
the maximum lateness in a multi-mode multi-project setting. The multi-project en-
vironment is transformed to a resource flow network setting and dominant insertion
cuts are used to generate the new schedule. El Sakkout and Wallace (2000) propose a
method for minimizing the weighted absolute difference between the starting times
of each activity in the baseline and modified schedules. The weighted absolute dif-
ferences correspond to the earliness/tardiness concepts with symmetric costs, if the
finishing times in the baseline schedule are treated as due dates. They propose a
repair-based heuristic approach to solve this problem.
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Resource-Constrained Project Scheduling Problem with Weighted
Earliness/Tardiness Costs

To the best of our knowledge, the existing work on resource-constrained project
scheduling problem with weighted earliness/tardiness costs (RCPSPWET) is lim-
ited to single projects and no research has been conducted with multiple projects.
Moreover, the concept of a baseline schedule is also not included in most of the
studies. Neumann et al. (2003) mention an original schedule subject to change as a
result of unexpected events. The limited work in the literature includes some exact
solution approaches as well as heuristic methods for the problem.

An exact solution procedure for the resource-unconstrained version of the problem
is suggested by Vanhoucke et al. (1999). The objective function is composed of the
weighted sum of the earliness and tardiness values. This approach is based on a recur-
sive search algorithm and consists of two main steps. First, a schedule is generated
by scheduling activities at their due dates or later while considering only precedence
relations. As a result, no right shift in the schedule can decrease the objective value.
In the second step of the algorithm the set of activities, for which a backward shift can
decrease the objective value, are selected by implementing a recursive search. Van-
houcke et al. (2001) extend the model to include resource capacity constraints. Using
the exact solution algorithm for the resource-unconstrained version they develop a
branch and bound algorithm based on resolving the resource conflicts in a resource-
unconstrained solution. Precedence relations are added between activities in process
during a period of resource conflict. Each conflict corresponds to a new node in the
search tree and feasible solutions are obtained, if all conflicts are resolved. A further
extension of the resource constrained model is provided by Vanhoucke (2002). In
this study, for each activity, various due date options are offered. Each option differs
in the tightness and unit cost values of the due date. That is, if an earlier due date
is selected for an activity, the unit earliness and tardiness cost values are lower than
those for a later due date. The objective is to select an appropriate due date option for
each activity and generate a schedule such that the weighted sum of the earliness and
tardiness values is minimized. A double branch and bound algorithm is developed to
solve this problem. First, the resource-unconstrained model is solved with the con-
vex due date cost profiles. These profiles are obtained by converting the combination
of different due date cost functions for each activity into a convex envelope. Using
these convex envelopes a single due date is selected for each activity. However, unit
earliness or tardiness costs might change according to the convex envelope profile.
The solution yields a lower bound on the cost of the actual due date profile and the
first branch and bound is applied while considering the distance between the convex
envelope and the original due date profile for each activity completion time. The
optimal solution is obtained after applying a second branch and bound procedure in
order to resolve the resource conflicts as in Vanhoucke et al. (2001).

Ballestin et al. (2008) develop an iterated LS algorithm for RCPSPWET. A popu-
lation of feasible solutions is generated and LS procedures are applied to improve the
objective function value. Activity lists and a schedule generation scheme are used
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to generate corresponding schedules. The activities are scheduled iteratively with
respect to a parameter called the simulated due date, which is the completion time of
an activity in a randomly generated precedence feasible but resource-unconstrained
schedule. Simulated due dates are selected instead of the original due date values
in the problem data in order to create diversity in the population. Four different LS
procedures are then applied to existing schedules. At this stage, the activity lists are
not changed; instead, schedules are modified in order to obtain improved solutions
for a particular activity list in the population. To expand the search space, the activity
lists are perturbed. The sequence of the activities in the list as well as the simulated
due dates are updated using five different perturbation procedures.

Another list-based heuristic approach is proposed by Nanobe and Ibaraki (2006).
This work covers a variety of project scheduling problems with convex cost functions
including the weighted earliness/tardiness problem. The solution procedure relies on
keeping event lists to obtain schedules. Each activity consists of a start- and an end-
event, where positions of events in a list define priority relations. Each list can be
mapped to an event-on-node network representation, and the dual problem can be
solved as a minimum cost network flow problem. Event lists have to be resource and
precedence feasible. This is done by checking the total resource demand of activities
which are allowed to be processed simultaneously. If necessary, the list is modified
and made feasible by changing the positions of events. A neighborhood is defined
by moving events in the list backward or forward, and an iterated LS is applied to
the solution with the best objective value.

Problem Formulation

The DRCMPSPWET is defined here over an activity-on-node multi-project network
with dummy start and finish activities. No precedence relation is assumed among
the projects. The precedence relations among the activities are of the finish-to-start
type with zero time lag. All activities are of a single mode. Hence, only renewable
resources are taken into account. Preemption is not allowed.

A special case of RCMPSPWET with a single project, a single resource of unit
capacity, unit resource usage for each activity, no precedence relationships, and
zero unit earliness costs reduces to the strongly NP-hard single-machine scheduling
problem of minimizing the total-weighted tardiness (Lenstra et al. 1977). Hence,
RCMPSPWET is strongly NP-hard since the model presented in this study general-
izes RCMPSPWET by incorporating a revenue function for the due date quoted for a
new project. The overall objective is then to quote a due date that is as early as possi-
ble in order to maximize revenue while constructing a new schedule that minimizes
the total-weighted deviation of the activity finishing times from their completion
times in the baseline schedule. We define the following notation.
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Sets and indices:

T Set of time periods

I Set of all projects in the baseline schedule

I Set of all projects including the arriving project

h |1]

h+1 Index of the arriving project

Ji Set of activities of project i

P, Set of precedence relations between activities ¢ of project i
R Set of renewable resources

Parameters:

Wy Amount of renewable resource r available in period ¢

ES;; Earliest start time of activity j of project i

LS;; Latest start time of activity j of project i

dij Due date of activity j of project i

pij  Processing time of activity j of project i

wir  Renewable resource requirement of activity j of project i of type r per unit
time

&ij Earliness penalty of activity j of project i per unit time

t Lateness penalty of activity j of project i per unit time

K Completion time factor for the arriving project

The parameters presented above are required to define an instance of DRCMPSP-
WET. For each activity, the p;; and wj; values define the single execution mode.
However, there are additional parameters for activities depending on their status in
the problem. For activities in the baseline schedule, a due date and unit earliness and
tardiness penalties must be specified as well as a completion time factor standing for
the cost associated with the completion time of the arriving project. Note that d;; and
K are not part of the original problem data in the experimental study. Their values
depend on the baseline schedule of the instance. We elaborate on this issue further
in the Sections “Due Date Generation,” “Due Date Range,” “Due Date Tightness,”
and “Completion Time Factor.” Finally, the available capacities of the renewable
resources are required. Note that the earliest and latest start times (LSTs) of activ-
ities can be calculated for a given time horizon 7| using the conventional forward
and backward pass algorithms of the critical path method (see, e.g., Badiru and Pu-
lat 1995). The objective function under consideration is non-regular, and delaying
activities may decrease the total cost. Therefore, an optimal schedule may contain
unforced idle time; however, no activity will complete at a time later than I7'| in an
optimal schedule, where T is set to the sum of the maximum due date and the sum
of the processing times of all activities of the arriving project.
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Decision Variables

A 0-1 decision variable xj; is defined for each activity in the multi-project network
including the dummy start and finish activities. For the activities in the baseline
schedule, a finishing time, earliness and tardiness values have to be determined. For
the arriving project, a due date is quoted as the finishing time of the dummy finish
activity of the arriving project.

Xijt {1, if activity j of project i starts at time period ¢; 0, otherwise.
fi Finishing time of activity j of project i

dny1 Due date of the arriving project

E;;  Earliness of activity j of project i

T;; Tardiness of activity j of project i
Mathematical Model DRCMPSPWET:
mlnz Z (e,-j . E,] + 1 - Tl/) + K - dh-H (10.1)
iel jel;
fi— fiue=pa  Viel*,V(k,DeP, (10.2)
LS
fi= Y xj-t+p; Viel*,Vjel; (10.3)
f:ES,:,'
T,'j > fij — d,‘j Viel ,\VjeJ; (10.5)
dp1 > frr, Viedht1 (10.6)

t
Z Z Z Xjo - wijr < Wy VreR,VteT (10.7)

iel* jeli g=max{ES;t—p;+1}

LSy
Y xp=1  VielVje; (10.8)

1=ES;;
Xijr € {0,1} ViEI*,VjGJ,',V[EES,‘j, A ,LS,j (10.9)
dists fop1; =0 Vjed (10.10)
Ej,T;, f; =0 Viel ,VjeJ; (10.11)

The objective function Eq. (10.1) consists of the weighted sum of the earliness and
tardiness values of the activities in the baseline schedule and the completion time cost
of the new project. Constraint Eq. (10.2) defines the precedence relationships among
the activity pairs. The finishing times of the activities are determined in constraint
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Eq. (10.3). Constraints Egs. (10.4) and (10.5) determine the earliness and tardiness
values, respectively. The quoted due date value, i.e., the completion time of the
newly arriving project, is set by constraint Eq. (10.6). The total renewable resource
usage in each time period is restricted to the maximum available amount in constraint
Eq. (10.7). Finally, constraint Eq. (10.8) ensures that each activity is executed once
and constraints Eqgs. (10.9), (10.10), and (10.11) define the domains of the decision
variables.

This problem formulation above differs from the single project static RCPSWET
problem formulation given by Vanhoucke etal. (2001) in that it reflects a multi-project
dynamic decision environment. The dynamic nature of the problem is incorporated
into the formulation through the second term in the objective function Eq. (10.1)
and the additional decision variables and associated constraints. Being the product
of the completion time factor K and the quoted due date for the new project the
second term represents an implicit cost of due date quotation and hence introduces
into the formulation the trade-off between the stability of the activity finish times of
the existing projects and the quoted due date for the new project.

An Iterated Local Search Approach for RCPSPWET

Heuristic procedures have been developed for RCPSPWET in single project envi-
ronments as discussed in the Section “Related Literature and Problem Description.”
List-based heuristics reported by Ballestin and Trautman (2008) and Nanobe and
Ibaraki (2006) perform well both in terms of solution quality as well as computation
times. Moreover, neighborhoods can easily be defined for the schedules represented
by the lists, and the associated schedule generation procedures are simple and effi-
cient. Therefore, a population-based LS procedure is suggested to solve the problem
at hand. The general flow of the solution algorithm is presented in Fig. 10.1.

The heuristic method starts by generating an initial population of activity lists.
Three different improving steps are applied to this initial population iteratively in
order to improve the activity lists. These steps replace the sequencing and opti-
mal timing procedures commonly used in the machine scheduling literature for
weighted earliness/tardiness problems. (Kanet and Sridharan (2000) give an overview
of different optimal timing algorithms in the machine scheduling domain.) First, a
list-position-based neighborhood search is performed to improve the sequencing in
each activity list. An optimal timing-based neighborhood search is then applied to
move chains of activities earlier in time. Finally, for all resource types in an instance,
the associated arcs that prevent resource conflicts are added to the network and the
resulting optimal timing problem is formulated and solved as a linear program (LP).

Activity Lists and Schedule Generation

An activity list in the population is used to represent a schedule. Each activity is
assigned to a position in the list. In a precedence feasible activity list, each activity is
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input : An instance of DRCMPSPWET.
output: A feasible solution for the instance.
1 begin
2 Initialization;
Y Create the initial population;
4 foreach activity list in the initial population do

5 Apply List Positional Neighborhood Search;
8 Apply Timing-Based Neighborhood Search;
/* The following lines are performed on some activity lists only.
See text. =/
7 Construct an extended precedence graph that prevents resource infeasibilities

based on the current best schedule associated with the activity list;

8 Solve the optimal timing problem for this extended precedence graph as an LP;

° end

10 Report the best schedule identified;

11 end

Fig. 10.1 Flow of the LS heuristic

positioned after its predecessors and before its successors. Given a precedence fea-
sible activity list, a locally optimal schedule is generated by scheduling each activity
in the list to start at its locally optimal position. For an activity in the baseline sched-
ule, a locally optimal position is defined as the one which minimizes (earliness +
tardiness) cost for this activity without shifting the activities already scheduled. The
activities of the newly arriving project are scheduled as early as possible because the
associated cost component in the objective function is increasing in the completion
time of this project.

Initial Population Generation

An initial population is generated to apply the neighborhood search procedures. Each
member of the population is a precedence feasible activity list. To ensure the diver-
sity of the initial population and explore a larger portion of the search space, activity
lists are constructed by applying two different priority rules and adapting a shifting
bottleneck (SB)-based heuristic originally developed for job shop scheduling prob-
lems with non-regular objectives by Bulbul and Kaminsky (2010) to our problem, in
addition to randomly generating precedence feasible activity lists.

To create activity lists the most total successors (MTS) and minimum LST priority
rules are employed by selecting the activity with the best value among the precedence
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feasible candidates. These are network and critical path-based priority rules, respec-
tively (Demeulemeester and Herroelen 2002). The basic idea behind the selection
of these dispatching rules is to increase the possibility of adding a larger number
of precedence feasible activities to the candidate list earlier and thereby improving
their chance of on-time scheduling as well as achieving higher resource utilization.
Biased sampling versions of these priority rules are also used to increase the size of
the population. That is, candidate activities are assigned probabilities proportional to
their respective priorities, and the next activity in the list is picked randomly based
on these selection probabilities.

The SB heuristic is a well-known machine-based decomposition method in the
machine scheduling literature (Adams et al. 1988). In the application of the SB
framework to job shop scheduling problems, the machine capacity constraints are
initially all relaxed and are then added back to the problem sequentially by solving
a series of single-machine scheduling subproblems. The objective function value of
a single-machine subproblem provides an estimate of the effect of the capacity re-
strictions of the machine under consideration on the overall schedule. The currently
unscheduled machine with the highest subproblem objective value is referred to as
the bottleneck machine, and the sequence of operations on this machine is fixed first
before those of the remaining unsched