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Preface

This festschrift is devoted to recognize the career of a man who not only witnessed the
growth of operations research from its inception, but also contributed significantly
to this growth. Dr. Salah E. Elmaghraby received his doctorate degree from Cornell
University in 1958, and since then, his scholarly contributions have enriched the
fields of production planning and scheduling and project scheduling. This collection
of papers is contributed in his honor by his students, colleagues, and acquaintances.
It offers a tribute to the inspiration received from his work, and from his guidance
and advice over the years, and recognizes the legacy of his many contributions.

Dr. Elmaghraby is a pioneer in the area of project scheduling (in particular, project
planning and control through network models, for which he coined the term ‘ac-
tivity networks’). In his initial work in this area, he developed an algebra based
on signal flow graphs and semi-Markov processes for analyzing generalized ac-
tivity networks involving activities with probabilistic durations. This work led to
the development of what was later known as the Graphical Evaluation and Review
Technique (GERT), and GERT simulation models. He has made fundamental contri-
butions in determining criticality indices for activities, in developing methodologies
for project compression and time/cost analysis, and in the use of stochastic and
chance-constrained programming and Petri Nets for the analysis of activity net-
works. These contributions have been brought together in a seminal book in this area
entitled, “Activity Networks: Project Planning and Control by Network Models”
published by John Wiley, and a monograph on “Some Network Models in Manage-
ment Science” published by Springer-Verlag. Dr. Elmaghraby also wrote one of the
first books on production planning entitled, “The Design of Production Systems.”

His fundamental contributions to the economic lot scheduling problem (ELSP)
and economic manufacturing quantity (EMQ) analysis are also widely cited.
This work presented a novel methodology using a combination of a dynamic
programming-based model, integer programming, and a method to circumvent in-
feasibility. He later extended this work to include learning and forgetting effects, and
to the computation of power-of-two policies. Dr. Elmaghraby’s extensive work on
a wide range of deterministic and stochastic sequencing and scheduling problems,
arising in different machine environments, has resulted in many landmark contribu-
tions which have advanced this field of study and have strengthened its knowledge
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vi Preface

base. It has offered novel ideas and effective methodologies relying on mathematical
rigor for the solution of these problems.

Dr. Elmaghraby is one of the rare individuals who have excelled both as a re-
searcher and an administrator. He was appointed as University Professor and Director
of the Graduate Program of Operations Research at North Carolina State University
in his early 40’s, and over the years, he directed that program with aplomb without
losing any of his scholarly productivity. That program flourished for all these years
under his leadership, providing a world-class education to its students. His superb
guidance and leadership by example in bringing quality in everything that he does has
been a defining force that has shaped the careers of his students. It is, therefore, not
surprising that, among his numerous awards, Dr. Elmaghraby has been recognized
with the Frank and Lillian Gilbreth Award, the highest and most esteemed honor
bestowed by The Institute of Industrial Engineers on individuals who have distin-
guished themselves through contributions to the welfare of mankind in the field of
industrial engineering.

This volume brings together 14 contributions, which can be viewed under the
following three main themes: operations research and its application in production
planning, project scheduling, and production scheduling, inspired by, and in many
cases based on, Dr. Elmaghraby’s work in these areas. The first five chapters are
devoted to the first theme, followed by four chapters each devoted to the other two,
respectively. An additional chapter is devoted to the vulnerability of multimodal
freight systems.

In the first chapter, “Ubiquitous OR in Production Systems”, Leon McGinnis puts
forth an argument for a paradigm shift in OR education, from the traditional emphasis
on teaching of standalone ‘artisan’ type tools (where each model is developed to
address a specific problem), to a reusable platform that enables their broader and
deeper penetration in a domain. This argument is made in view of the advent of
new computer technologies, and for applications to production systems that are well
understood.

In the second chapter entitled “Integrated Production Planning and Pricing De-
cisions in Congestion-Prone Capacitated Production Systems,” Upasani and Uzsoy
address a production planning problem when the customer demand is sensitive to
delivery lead times. Since the lead times are known to increase nonlinearly with the
utilization of capacitated resources, a large reduction in price may increase demand
to the extent that it can no longer be satisfied in a timely manner by available capacity,
thereby negatively impacting customer satisfaction and future sales. They present an
integrated model for dynamic pricing and production planning for a single product
under workload-dependent lead times, and study interactions among pricing, sales,
and lead times. Their investigation reveals a different behavior of the integrated
model from a conventional model that ignores the congestive effect on resources
because of price variations.

A “Refined EM Method for Solving Linearly Constrained Optimization Prob-
lems” is presented by Yu and Fang in the third chapter. They extend the original
Electromagnetism-like Mechanism (EM) that has been widely used for solving global



Preface vii

optimization problems with box-constrained variables to solving optimization prob-
lems with linear constraints, and call it a ‘Refined EM Method.’ The EM method is a
stochastic search method that uses a functional evaluation at each step, and does not
require any special information or structure about the objective function. The pro-
posed method explicitly considers linear constraints in an efficient manner to direct
sample points to attractive regions of the feasible domain. Results of a computational
investigation are also presented that show the proposed method to outperform known
methods and to converge rapidly to global optimal solutions.

In “The Price of Anarchy for a Network of Queues in Heavy Traffic,” Shaler
Stidham investigates the price of anarchy in a congestive network of facilities in
which the cost functions at the facilities follow the characteristics of the waiting-
time function for a queue with infinite waiting room. Similar to a network of parallel
M/M/1 queues, Stidham develops an analytical expression for the price of anarchy
for the GI/GI/1 network.

In the fifth chapter entitled, “A Comparative Study of Procedures for the Multi-
nomial Selection Problem,” Tollefson, Goldsman, Kleywegt, and Tovey address the
multinomial selection problem originally formulated by Bechhofer, Elmaghraby,
and Morse (1959), that of determining the number of trials needed to select the best
among a given number of alternatives. The aim is to minimize the expected number
of trials required while exceeding a lower bound on the probability of making the
correct selection. The authors present a comparative study on the performances of
various methods that have been proposed for this problem over the years.

The sixth chapter is entitled, “Vulnerability of Multimodal Freight Systems.”
In this chapter, Aydin and Pulat explore the vulnerability of multimodal freight
transportation infrastructure in the face of extreme disruptive events. The freight
transportation system constitutes a backbone of global economy. This study, mo-
tivated by recent hurricane-related events encountered in the USA, examines the
concepts of vulnerability, reliability, resilience, and risk, and the relationship among
them, for the freight transportation infrastructure, and provides valuable insights on
how vulnerable and resilient the transportation infrastructure is to extreme disruptive
events.

The following two chapters address stochastic project scheduling problems. In,
“Scheduling and Financial Planning in Stochastic Activity Networks,” Dodin and
Elimam analyze the impact of stochastic variations in the renewable and nonrenew-
able resources required by each activity of the project, on project cost and duration.
An analytical approach is used to determine the probability density functions of the
project cost and duration. A linear programming model is used to distribute the re-
sulting project budget over its activities and to minimize the project duration. Willy
Herroelen presents “A Risk Integrated Methodology for Project Planning Under Un-
certainty” in the eight chapter. A two-phase methodology is presented in the face
of the risk of resource breakdown and variability of activity durations. In the first
phase, the number of regular renewable resources to be allocated to the project is de-
termined, and in phase two, first a resource-feasible proactive schedule is constructed,
after which resource and time buffers are inserted to protect it against disruptions.
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The schedule is then tested by simulating stochastic disruptions and by appropri-
ately repairing it if it becomes infeasible. This approach provides an implementable
schedule along with a workable reactive schedule procedure that can be invoked in
case it becomes infeasible despite the protection built in it.

In the ninth chapter, entitled, “Dynamic Resource Constrained Multi-Project
Scheduling Problem with Earliness/Tardiness Costs,” Pamay, Bulbul, and Ulusoy
address the problem of scheduling a new arriving project against a set of known re-
newable resources when a number of projects are already in process. The due dates
and earliness/tardiness penalties of the activities of the existing project are known
while the due date of the new project is to be determined, which is accounted for by
assigning a penalty cost per unit time the new project spends in the system. A heuristic
method is proposed to solve large-sized problems, and its efficacy is demonstrated.

“A Multi-Mode Resource-Constrained Project Scheduling Problem Including
Multi-Skill Labor” is discussed by Santos and Tereso in the tenth chapter. Each
activity of the project may require only one unit of a resource type, which can be
utilized at any of its specified levels (called modes) that dictates its operating cost and
duration. The processing time of an activity is given by the maximum of the durations
that result from the different resources allocated to that activity. The objective is to
determine the operating mode of a resource for each activity so as to minimize the
total cost incurred, given a due date as well as a bonus for earliness and penalty cost
for tardiness. A filtered beam method is proposed for the solution of this problem,
and results of its performance are presented.

The last four chapters address production scheduling problems. Allaoui and Art-
iba consider “Hybrid Flow Shop Scheduling with Availability Constraints” in the
eleventh chapter. They assume that a machine is not continuously available, and in-
stead, is subjected to at most one preventive maintenance in a specified time window.
The jobs are non-resumable, and the objective is to minimize the makespan. For a
special case of this problem, with one machine at each stage (the traditional two-
machine flow shop problem), a dynamic programming-based method is presented to
determine an optimal schedule, while for the hybrid flow shop with one machine at
the first stage and m machines at the second stage, a branch-and-bound procedure is
proposed that exploits an effective lower bound.

In the twelfth chapter entitled, “A Probabilistic Characterization of Allocation
Performance in a Worker-Constrained Job Shop,” Lobo, Thoney, Hodgson, King,
and Wilson address a job shop scheduling problem in the presence of dual resource
constraints pertaining to limited availabilities of both machines and workers. The
objective is to minimize maximum lateness. For a given allocation of workers to
the machines, they estimate a distribution of the difference between the maximum
lateness achievable and a lower bound on maximum lateness. Both heuristic methods
for worker allocation and schedule generation as well as a lower bound on maximum
lateness that are used for this investigation are presented in an earlier paper.

McFadden and Yano address a problem on “A Mine Planning Above and Be-
low Ground: Generating a Set of Pareto-Optimal Schedules Considering Risk and
Return” in chapter thirteen. They assume the availability of different methods for
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mining minerals with each method leading to a different profit and risk. They em-
ploy a methodology based on a longest-path network framework to determine mining
plans that give the k best values of expected profit, and integrate it with various mea-
sures of risk to construct a set of Pareto-optimal solutions. The various measures of
risk considered include variance, probability of achieving a specified profit target,
and conditional value-at-risk. The methodology is illustrated using a simple example
with conditional value-at-risk as the risk measure.

In chapter fourteen entitled, “Multiple-Lot Lot Streaming in a Two- stage As-
sembly System,” Yao and Sarin apply lot streaming to a two-stage assembly shop in
which the first stage consists of m parallel machines and the second stage consists
of one assembly machine. Each lot consists of items of a unique product type. A lot-
attached set up time is incurred at the machines at both the stages. For a given number
of sublots of each lot, the problem is to determine sublot sizes and the sequence in
which to process the lots at both the stages so as to minimize the makespan. Although
the problem of scheduling in such a machine environment has been addressed in the
literature, the application of lot streaming to this problem is new. Some structural
properties for the problem are presented, and a branch-and-bound-based method is
applied for its solution. The efficacy of this method is also demonstrated through
computational investigation.

We hope that the contributions in this volume serve to extend the body of
knowledge in the wide range of research areas to which Professor Elmaghraby has
contributed, which we believe is the most appropriate recognition for an outstand-
ing scholar and administrator. The fields of Industrial Engineering and Operations
Research will remain deeply in his debt for many years to come.
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Chapter 1
Introduction: For Daddy

Wedad J. Elmaghraby and Karima N. Radwan

It is hard to write a brief introduction for a man whom you have viewed most of your
life as “part-God”. It is a bit awkward to step back and try to describe him to others.
This is our attempt to do so—to express our love and respect for, quite simply, the
most beautiful man we know, and one we were so fortunate enough to have as our
father.

Since our father’s academic history is clear, we would like to share with you a
little bit about his life before operations research (OR) entered into his life, and then
conclude with a few stories about him that, we believe, clearly illustrate the true
scholar and gentleman he is.

Before Operations Research Our father was born in 1927 in Egypt—he was the
second son out of four children. He lived his early life in Alexandria, briefly fleeing
to Rosetta in World War II (WWII) to escape from Rommel and his army (always the
engineer, even as a child, he built himself a radio with crystals to hear all the news of
the day in WWII). From the stories we heard growing up—it was clear that our father
always had an inquisitive mind and a strong aptitude for studies. When he finished
elementary school, he ranked first in his national exams. One of his best friends was
the son of a Basha (a high ranking military officer) in Egypt and he, unfortunately,
failed his exams. When his friend retook the exams, he managed to pass the second
time around. Proud of his son’s success, the Basha went out and bought his son a
shiny new bike. Our father was excited by this development and shared this with
his own father. He told his father that, since he not only passed his exam, but came
out first amongst his peers, he should not only receive a new bike, but one with all
the bells and whistles that were available on the market. His father, who was a high
school teacher, told him that he was proud of his son for doing well, but he was not
going to buy him anything. The reward is learning and achieving something, and
that is something that stays with you forever.

W. J. Elmaghraby (�)
Robert H. Smith School of Business, University of Maryland, College Park, USA
e-mail: welmaghr@rhsmith.umd.edu

K. N. Radwan
Northern Virginia Community College, Annandale, USA
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2 W. J. Elmaghraby and K. N. Radwan

Our father graduated from high school at the young age of 15 and went to study
Mechanical Engineering at the prestigious Cairo University. His first job upon grad-
uation (at the age of 20) was with the Coca-Cola bottling plant in Cairo. His job was
to help oversee production at the plant. It was an enviable position as an engineer,
and gave him a place of rank within the hierarchical Egyptian society. One day he
was advised by some of the other engineers to eat his lunch in his private office,
and not in full view of the factory workers. They feared that eating in front of the
manual workers would make them jealous and would then bring the evil eye upon
him. Always a man of science, our father listened to their advice and then promptly
moved his desk to the center of the factory floor to dispel any myths about evil eyes.

Although the job at Coca-Cola was prestigious and paid very well, after a short
time, our father did not feel that he was being sufficiently challenged. He applied for
and was awarded a position working for the Egyptian Railroads authority in 1949.
They posted him in the UK to serve as a quality control inspector. At the time, Egypt
was purchasing locomotives from abroad and would send engineers to the respective
producing countries to inspect the production processes. Our father recalls that he
was sent there with a few other engineers who were the “sons of important men”.
While the other young men, excited by their new found freedom away from home,
enjoyed their days in England in ways we might imagine young men would, our father
spent his days in factory floors, taking notes of absolutely everything and sending
back reports to Egypt. His supervisor was surprised by our father’s diligence and
asked why he did not “relax” and enjoy his posting abroad. Our father’s response
was that he was enjoying himself—learning about locomotives, their design and all
of the science that went into their production! His reports back home continued in
a steady manner, and more than once he stopped a shipment of parts back to Egypt
because he did not feel that the work was done well.

When we ask our father about his time there, he says that it was interesting, but
that he never felt happy in the grey, smoggy weather of England. His supervisor
took pity on him and heeded his request for a sunnier climate. He was transferred to
Hungary in 1952. While in Hungary, he saw the effects of the communist revolution
in that country. He attended some of the most beautiful operas and symphonies for
prices next to nothing, but he also saw the demise of the social elite. His doorman
was a Count who had only an elementary school education and therefore was not
qualified to do anything other than the most menial of tasks. While the uneducated
social elite was thrown down the economic ladder, he saw that doctors, engineers,
and scientists, who had been well-educated before the revolution, still continued in
their professions. He says that it was then that he truly understood—your mind is
your most valuable asset, and no one can ever take away your education.

While his family preferred for him to return to Egypt, our father’s quest for
learning drew him to the USA. While working for the Egyptian Railroad Authority,
he had managed to save enough money for a voyage to the USA and one year of
study. Not deterred, he went to Ohio State where he managed to complete both his
course work and write a Masters thesis in one year. Finally, he was accepted into
the PhD program at Cornell University’s Mechanical Engineering department. The
Operations Research and Industrial Engineering (ORIE) department did not exist at
the time!
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After Operations Research Our father’s love of learning and striving for excellence
is palpable and infectious. Possibly, that explains his jump from an Assistant Prof. at
Yale straight to being a University Prof. at NCSU. But more than academic titles, we
believe that it is his commitment to his students and colleagues and the “institution”
of learning that distinguishes him. When we he was brought to NCSU, he was
charged with building an Operations Research department. Part of this is building
the infrastructure—the class lists, the faculty roster, the departmental policies, etc.
But more than this, what our father did was build a community. We remember having
to attend the OR picnics every spring and fall at one of the local parks in Raleigh,
where faculty and students would barbecue and play volleyball together. Then there
would be the dinners that my mother would host for all of the PhD students once
each semester. The students would confess that they would not eat all day for they
knew (or had been told) what feasts awaited them in the Elmaghraby household!
Finally, there was the steady stream of seminar speakers who were picked up by our
father from the airport and brought to our home to join us for dinner. At the time, we
did not know that this was unusual—going “above and beyond” the call of duty. For
us, this was the reality of life—building and sustaining the OR department was part
a huge part of our father’s life, and hence a part of ours.

Over the years, the networks of students and colleagues our father has built con-
tinues strong. Meetings with new PhD students still punctuate his days, occurring
at cafes, in the office, and even at our parents’ home, when a research problem just
could not wait until the doctor’s ordered “2 days of rest” were over. With the “old”
PhD students (now themselves established Associate and Full Professors), he still
searches out opportunities to go visit them for several weeks at a time, wherever they
may be—China, Taiwan, Belgium, France, Morocco, etc. To put this into context,
keep in mind that our father is now 84, and his last secondment to China was last
year. While we are sometimes annoyed that his commitment to his students takes
both him and my mother away from us sometimes for an entire semester (for certain,
our mom would not stay in Raleigh while our dad travels the world—they must go
together!). We understand that he cannot stop, for he loves what he does.

While it is true that the OR department was socially a large part of our lives,
we were lucky enough that our father left most of his talk about “work” in the
office. While we were never given lectures about Activity Networks or Dynamic
Optimization, we knew that if we asked for some help with our math, our father
was probably going to start by describing the origins of the number zero, or the
beauty of π . No topic was safe from our father’s love of math. Once when Karima
asked what the best age was for getting married, our father replied that it was a
nonlinear function. While we laugh about these stories now, we (and many of his
students) know that we were fortunate enough to have been touched by his view of
life and learning. This desire to learn what is new is what prompted him to buy us a
Commodore computer back in 1982 and encourage my sister and I to learn how to
use it. When we asked why, he would reply, “Because, this is the way of the future.
If you do not learn it, you will be left behind.” He would always encourage us, and
everyone around him, to look forward with an open and inquisitive mind.
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We would not want to conclude and have anyone think that our father’s love of
learning was unidimensional, directed only toward math and engineering. While it is
true that Wedad went into IEOR (it is the truth when we say that this was not because
of deep discussion over the topic with our dad; actually, Wedad never much listened to
what our parents had to say and specifically avoided talking about anything serious
like school), Karima decided to pursue cooking and the Classics. When Karima
entered into the University of North Carolina at Chapel Hill and declared that she
wanted to be a Classics major, the Egyptian community in Raleigh was perplexed.
“Why is she doing this? She is a smart girl.” they would ask of our parents. My
father’s response was always the same—“This is what she loves.” When Karima
decided that she wanted to go to cooking school in France, and the snide remarks
surfaced—“Why send her to France - my wife can teach her how to cook and it won’t
cost you anything." Our dad would smile and say “This is what she wants to do. She
is going to study with the best". It is that kind of open-mindedness and appreciation
of all subjects and jobs that makes him a true scholar and a wonderful father.

We would like to conclude with a few favorite sayings of our father:

There are no dull subjects—only dull people. Education—it is the one thing they can never
take away from you. I need to go study for my next exam. Don’t be a jack of all trades and
a master of none. Do what you love and never work a day in your life.

A final note from Wedad I was fortunate enough to go to Cornell for my undergrad-
uate education in ORIE, being taught by some of my father’s former professors and
colleagues, and earn my PhD in IEOR (University of California, Berkeley). From
the very beginning, I would occasionally be approached and asked “Are you related
to the Salah Elmaghraby?” During the first 10 years or so, not knowing much about
my father and the magnitude of his contribution to OR, I would say “Yes - I’m his
daughter” and then be surprised when the person would gush out many accolades
about my father, want to shake my hand, etc. While personally I thought that my
dad was special because he was my dad, I did not quite understand why anyone
else would be excited about knowing him or having met his daughter. It has been
a couple of decades since this started to happen, and I now know how very unique
my father is and why all the fuss. Simply put, my father sincerely loves to connect
with other scholars, is excited by new ideas from a variety of fields, shares his own
selflessly with others, and works tirelessly to accomplish the next goal, whether that
be helping a student find a job, working on a paper, submitting a new grant (yes,
he still submits grants!), writing a book, studying for an exam in a new class he is
auditing (he was still auditing statistics and math classes as a Full Prof.), or hosting
an unknown colleague from abroad coming to visit him merely because the person
asked of him to do so. He gives of himself to others, and because this is rare, it is
noted and appreciated.

For some unexplained reason having to do with the gravitational pull of our
offices, I often find that people do not make an effort to attend a seminar in another
department, let alone another university. It was not so with my dad. I can recall that
when I was visiting Duke, the junior faculty there commented to me that they were
surprised to see my father at some of their seminars. They should not have been. If
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you know him, you know that a drive of 30 min is something he is happy to do in
order to learn what is new. I try to take this lesson to heart and make the effort to do
the same. He has set a very very tough act for me to try follow. I console myself with
the fact that there are few “Salah Elmaghraby” in this world—and I am just lucky
enough to have had him as a role model.



Chapter 2
Ubiquitous Operations Research in Production
Systems

Leon F. McGinnis

Introduction

The contemporary education of an operations research (OR) professional is struc-
tured around an artisanal model of OR practice. We teach the artistic techniques of
the discipline, i.e., the “fundamental methods” of mathematics and mathematical ap-
plications, computational methods and tools, and “genres” of application domains,
such as production, logistics, or health care delivery. We teach the creative part of
the art of OR, i.e., “modeling”—if at all—as a “studio” course; we demonstrate for
the budding OR artisan what it means “to model,” pose them challenges and critique
their work, in the hope that they will acquire that essential esthetic appreciation that
characterizes the master OR artisan. The paradigm we teach is the hand-crafted,
purpose-built model of a specific problem. We send our graduates out into the world
to work as OR professionals have worked for the past 70 years, albeit with an ever-
growing and improving technical toolkit. In practice, our graduates are sometimes
fortunate enough to work in teams with both domain experts and IT experts to build
large scale persistent OR models. These kinds of models are intended to be used rou-
tinely over time, and must accommodate changing instance data. In contemporary
practice, OR professionals have access to very powerful analysis modeling tools, to
IT tools that can harvest data and conform it to our models, to solvers that benefit from
40 years of algorithmic and computational research, and to computing platforms that
accommodate gigabyte databases and teraflop computations.

Over the past three decades, this marriage of OR and IT has enabled our profession
to accomplish some amazing feats in logistics, finance, medical decision making, and
in almost all walks of modern life. One could argue, however, that the penetration of
OR in production systems decision making is a fraction of what it could and should
be, based on the proven results. Successful applications are not replicated nearly as
often as they could be, in large part because of the time and cost for replicating them.
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There is an emerging need, and a burgeoning opportunity, to “industrialize” OR in
production systems. To industrialize OR in production decision making would make
a broad range of “standard” OR applications available to the masses of decision
makers whose decisions could be significantly improved through more and better
OR analysis—much faster and cheaper than is possible today with the conventional
approach to model development. The rapid growth of “business analytics” could be
viewed as one manifestation of this need and opportunity (see, e.g., Kiron, Schockly
et al. 2011) for a recent survey). One contemporary emphasis in business analytics
can be viewed as the “industrialization” of statistical methods and tools to enable
managers to understand and exploit transactional data without the direct involvement
of statistics or IT experts. There is a similar opportunity to industrialize OR methods
and tools to enable better decision making for production systems design, planning,
and control.

The purpose of this chapter is to explore this concept, and in particular, to argue that
methods and tools from computing and software engineering could be used to make
OR applications ubiquitous in production systems. Such a transformation would have
profound impacts on both the decision makers, who would gain access to these OR
tools and methods, and the operations researchers, who develop, implement, and
maintain production system decision support systems.

The chapter starts with perhaps the simplest possible example of an OR application
in production in order to begin to frame the issues, of which knowledge capture
and knowledge management are paramount. This section suggests that there are
multiple categories of models that are important for OR applications in production
systems. Next comes a very high level introduction to the basic concepts of “model-
driven architecture (MDA),” an approach to software engineering that may not be
widely familiar to the OR community. The following two sections describe how
MDA concepts can be used to capture important knowledge, i.e., models, and to
automate the transformation of models of one kind into models of another kind. The
implications of these capabilities are explored briefly, two fundamental intellectual
challenges are identified, and the chapter closes with some concluding thoughts.

No doubt, there are those in the OR community who will question the wisdom of
providing powerful OR analyses to non-OR experts. That question is not the focus
of this chapter and, in any event, will be answered by the non-OR experts who will
decide for themselves whether or not access to powerful OR analyses will be valuable
to them. Rather, the focus here is on the technologies already available to enable the
industrialization of OR for particular domains of application.

OR and Production Knowledge

The native tongue of OR is mathematics. At any OR conference, in any session, on
any topic, the focus of attention is almost invariably on the mathematical formulation
of “the problem” and on the subsequent (mathematical or computational) analysis of
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that formulation. A corollary to this phenomenon is that, almost invariably, the orig-
inal problem stakeholders—those who must make actual decisions about designing
or operating the system being modeled—do not speak mathematics with sufficient
fluency to truly understand what is being presented. The stakeholders have their
own language which is specific to the domain of the problem—a semantic model of
the domain that allows them to organize information about what they observe, and
communicate efficiently among themselves regarding the problems in their domain.

As an illustration, consider one of the most basic OR modeling examples. In the
terms of the stakeholder, the problem is described as follows. A firm has warehouses
in 10 cities, each containing a known inventory of a popular product. The firm has
orders from 50 customers, scattered around the country, and must decide how to
allocate the available inventories to the customer orders in hand. A reasonable way
to make the allocation is to seek the largest net profit, considering the price to be
charged to each customer, the cost to deliver the product to the customer, and the
cost of the product in the warehouse.

The OR instructor, presenting this problem in an introductory course, will draw a
network (perhaps even pointing out that it is a directed bipartite graph) to illustrate
the connections between warehouses and customers. Then, perhaps implicitly, the
instructor will make some associations, which often is referred to as “representing
the problem mathematically”:

Warehouse index, i = 1, . . . , 10
Cost per unit in the warehouse, ci , i = 1, . . . , 10
Supply at the warehouse, si , I , . . . , 10
Customer index, j = 1, . . . , 50
Customer demand, dj , j = 1, . . . , 50
Price to customer, pj , j = 1, . . . , 50
Transport cost per unit between warehouse and customer, tij, i = 1, . . ., 10,
j = 1, . . ., 50
Shipment from warehouse i to customer j, xij, i = 1, . . ., 10, j=1, . . ., 50
Finally, the instructor will write out “the problem” using the usual linear program-

ming (LP) formulation of the classical transportation problem as shown in Fig. 2.1.
From this point forward, the discussion will be focused on this formulation, this
mathematical statement of an analysis which is intended to indicate what the best
decisions would be, i.e., the optimal values of the flow variables.

Once students are comfortable with the mathematical formulation, the discus-
sion will then turn to how to actually solve the problem. At this point, students
are introduced to a modeling language, which will allow them to prepare the in-
put necessary for some open source or commercial solver. For example, AMPL
(“A Mathematical Programming Language,” http://www.ampl.com/) might be used
to create a computational model of the form shown in Fig. 2.2.

Typically, the decision maker will not directly comprehend the models illustrated
in either Fig. 2.1 or 2.2, although in this simple case, the OR analyst can make
a direct translation to the domain semantics. The decision variables correspond to
allocations, the constraints correspond to conservation relationships, etc. In more
complex scenarios, such a translation may not be so easy.
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Fig. 2.1 Transportation
problem formulation

This simple example illustrates a fundamental aspect of OR-based decision sup-
port, namely that there are three important, related but distinct kinds of knowledge
involved. The first is domain knowledge, which is common to the stakeholders in the
domain (though sometimes tacit rather than explicit) and which has its own semantics
(warehouse, customer, product, shipment, etc). The second is analysis knowledge,
or knowledge of a particular analysis, which could be used to support a particular
decision in the domain (the LP formulation of the transportation problem) which has
its own (mathematical) semantics and syntax, along with, perhaps, knowledge of a
particular computational modeling language, and even a particular solver. The third
is the modeling knowledge that enables the translation of a problem from its domain
semantics into the semantics and syntax of a particular OR analysis, considering
the limitations of the analytic model. Each category of knowledge is essential for
a successful OR decision support project, and each presents its own challenges for
knowledge capture and reuse.

Domain knowledge is rarely formalized; in fact it is a common problem to find that
different companies in the same industry will use different terms for the same concept,
or the same term for different concepts. The standards that have been developed tend
to be either very generic and high level (like the supply chain operations reference
(SCOR) model for supply chains (Huan et al., 2004)) or focused on information tech-
nology (like Business Process Model and Notation (BPMN, http://www.bpmn.org/)
or ISA-95 (http://www.isa-95.com/). There have been some research publications
on the use of ontologies, e.g., in material handling (Libert and ten Hompel 2011),
manufacturing (Jiang et al., 2010), production (Chungoora et al., 2011), but to date,
there is not a commonly used, agreed-upon production system ontology. Thus, do-
main knowledge in production systems remains largely ad hoc, making it difficult to
reuse, to teach, or to learn.

This stands in sharp contrast to analysis knowledge, which ultimately is expressed
in very precise and canonical mathematical forms and in analysis-specific modeling.
This knowledge typically is gained through the student’s exposure to the canonical
mathematical formulations and particular modeling languages, and by their cre-
ating formulations and using the modeling languages for homework and projects;
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set SOURCE;   # sources
set DEST;   # des�na�ons

param supply {SOURCE} >= 0;   # amounts available at sources
param demand {DEST} >= 0;   # amounts required at des�na�ons

check: sum {i in SOURCE} supply[i] = sum {j in DEST} demand[j]; 

param cost {SOURCE,DEST} >= 0;   # shipment costs per unit
var Trans {SOURCE,DEST} >= 0;    # units to be shipped 

minimizetotal_cost:
sum {i in SOURCE, j in DEST} cost[i,j] * Trans[i,j]; 

subject to Supply {i in SOURCE}: 
sum {j in DEST} Trans[i,j] = supply[i];

subject to Demand {j in DEST}:
sum {i in SOURCE} Trans[i,j] = demand[j]; 

Fig. 2.2 AMPL model for transportation problem formulation

it is refined and deepened through practice in application. Analysis methods are
largely mathematical and thus, by their nature, somewhat formalized. The corre-
sponding modeling languages make it relatively easy to create, archive, teach, and
learn particular modeling applications and “tricks.”

This difference between domain knowledge and analysis knowledge leads to what
might be called a “semantic gap” that is a key issue in the practice of OR in pro-
duction systems. The OR models and OR methods invariably rely on the semantics
of mathematics and particular mathematical methods and may be influenced by the
analysis modeling language and even the solver to be used, while the stakeholders
invariably rely on the semantics of their domain and frequently find themselves in-
capable of directly evaluating the fidelity between the model developed by the OR
analyst and the domain problem as they understand it.

Thus, the contemporary practice of OR in production systems requires the OR an-
alyst or team to bridge this gap by using, and often creating, “modeling knowledge” to
translate between the (natural) language of the stakeholders and the (formal) language
of OR. The translation from “problem” to “formulation” tends to require significant
investment of time for both analysts and stakeholders, is subject to interpretation
errors, and is usually static, i.e., the resulting models may not accommodate changes
in the modeled system. The translation from analytic results back to the stakeholder
decision space also is largely the responsibility of the analysts, and likewise may be
subject to interpretation errors. The test of analysis model fidelity often is simply
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whether or not the analysis results “make sense” when viewed in light of the prior
experience of the domain stakeholders.

It is safe to say that this modeling knowledge is the least codified of the three
kinds of knowledge needed for OR-based decision support of production systems
decision making. In fact, OR faculty have struggled, almost from the emergence of
OR as a discipline, to discover an effective way for students to learn “how to model,”
which almost always means “how to extract a mathematical model of a process or
decision from a somewhat ambiguous domain-specific problem description.”

In the simple transportation problem illustration given above, the semantic gap
is small and, one would hope, presents no great challenge to either the domain
stakeholder or the OR analyst. Likewise, the modeling process itself seems straight-
forward, once illustrated. In more complex scenarios, the semantic gap becomes a
larger problem, as does the challenge of modeling. For example, the creation of large
scale optimization or simulation models to support the design and management of
global logistics systems involves translating relatively arcane considerations, such
as local content requirements, or export/import duties into precise mathematical re-
lationships. Similarly, the development of large scale optimization models to design
radiation therapies also involves translating what may be known with some ambiguity
about the effects of radiation into a precise mathematical structure.

One contemporary approach to bridging the semantic gap is to create “paramet-
ric” analysis models which can accommodate any instance data conforming to the
parametric definitions. For our simple example, this would give the decision maker
the ability to specify the warehouses and customers, perhaps extracting the supplies,
demands, and transport costs from appropriate data sources. This is an important
step toward ubiquitous OR, but it obscures rather than resolves the semantic gap.
Bridging the semantic gap still requires tacit knowledge that is not captured in a
form that is transferable, reusable, teachable, and deployable. Moreover, the domain
knowledge is encoded in the specification of the parametric data for the optimization
formulation. In this form, the specification of the domain knowledge will be of lim-
ited value in supporting other relevant decision support models, such as simulation
or risk analysis.

Effectively managing and exploiting these three kinds of knowledge—domain,
analysis, and modeling—is the key to achieving a broader and deeper penetration of
OR in production system decision making. This knowledge management problem
has two fundamental challenges:

• How to capture each kind of knowledge in a form that is transferable, reusable,
teachable, and deployable

• How to make the three kinds of knowledge interoperable, i.e., how to use
modeling knowledge to support the transformation from instances of domain
models—created using domain knowledge—to instances of analysis models in
an appropriate computational form

In this regard, there is much to be learned from the experience of the software
engineering community about knowledge representation and model transformation.
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Model-driven Architecture

Until recently, software development has also been a largely artisanal activity. The
image of the “hacker” is iconic in modern society—the idiosyncratic individual who
can understand the nature of the needed computation, and craft an elegant code to
make it possible. The limitation of the hacker model is the realized mismatch be-
tween the supply of hackers and the demands for software in modern society. The
response of the software engineering community has been to “industrialize” the pro-
duction of well-understood software applications (see, e.g., the evolution of BPMN
(White 2006)). This industrialization is being accomplished by an evolving suite of
theories, tools, and methods that permit individuals with less than “true hacker” cre-
dentials to create satisfactory implementations of the needed software. The essential
nature of these tools and methods is that they capture both domain and software
engineering knowledge in a form that is transferable, reusable, teachable, and de-
ployable. The resulting “industrialization” of the artisanal software process is aptly
captured in the term “software factories” (anonymous 2012a).

This movement in software engineering has been called “model-driven archi-
tecture” (MDA) (http://www.omg.org/mda/) or “model-driven engineering” (see,
e.g., Meyers and Vangheluwe 2011). The fundamental enablers of MDA are for-
mal modeling languages and model transformation theories and tools. The Unified
Modeling Language (UML) (http://www.uml.org/) has evolved over the past 20 years
to dominate modeling in the software engineering process. Emerging tools like the
Object Management Group’s (OMG) Query/View/Transformation (QVT) standard
(http://en.wikipedia.org/wiki/QVT) enable the computational transformation of a
model created with one language (syntax and semantics) to a model expressed in a
different language. For example, the source model could be a UML-based descrip-
tion of a business process, and the target model could be the Java code necessary to
provide the computational implementation of the business process.

Within systems engineering there is a growing community of researchers and
practitioners who are adapting the tools and methods of MDA to systems engineer-
ing, calling it “model- based systems engineering” or MBSE (Ramos, et al., 2011).
The language used most often in this community is OMG’s Systems Modeling Lan-
guage (OMG SysMLTM ), which is an extension of UML to expand its modeling
capabilities beyond software systems to address hardware, people, requirements,
and parametric relationships (http://omgsysml.org/). A great deal of effort is being
directed to understanding how to use SysML to model large scale, complex systems,
incorporating multiple (discipline-specific) views, and integrating multiple analysis
tools (Peak et al., 2009).

The approaches and experiences of MBSE present the OR community with two
tantalizing opportunities. The first opportunity arises in situations where much is
already known about using OR to answer particular kinds of questions in a particular
domain, e.g., cycle time estimation in electronics manufacturing, production schedul-
ing in aircraft assembly, or vehicle routing in package delivery. The opportunity is to
package that knowledge together with a formal semantic model of the domain, and
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deliver to domain stakeholders the capability to describe their problem—in its own
terms, which they already understand—and get immediate and transparent access to
appropriate OR analyses, without the direct intervention of an OR analyst. Simply
put, the opportunity is to capture what we already know, and make it transferable,
reusable, teachable, and deployable. Given the enormous collective repertoire of
models and analyses, this is an opportunity to increase the reach and penetration of
OR manyfold. Moreover, if both domain and OR knowledge are captured in formal
semantics, they become much more easily taught and learned.

The second opportunity is to leverage the first opportunity to accelerate the cre-
ation of new and valuable OR-based knowledge, and its conversion to a transferable,
reusable, teachable, and deployable form. If they are based on formal languages,
domain-specific semantics can be elaborated to account for newly recognized prob-
lem domain elements or factors. New OR analyses, or enhancements to existing
analyses could be more rapidly deployed by elaborating an existing infrastructure of
domain specific languages and integrated OR analyses.

Formal Language and Knowledge Capture

The goal of capturing knowledge in a form that that is transferable, reusable, teach-
able, and deployable requires making knowledge explicit. Over the past 20 years,
there has been a great deal of interest in methods to accomplish this, particularly in
the context of information systems and the Internet. For example Vernadet (2007) has
suggested the construction of ontologies as a way to achieve information systems in-
teroperability through the use of metadata repositories. In the computing community,
“ontology” usually implies the formal definition of classes representing concepts in a
domain, properties of the classes representing features and attributes of the concept,
and possibly restrictions on the properties (Dieng 2000). The ontology, together with
instances of its classes, will constitute a “knowledge base.” In this form, a knowledge
base is machine readable, and can be manipulated using software.

There are many computational tools for authoring, editing, and visualiz-
ing ontologies (see, e.g., the techwiki page http://techwiki.openstructs.org/index.
php/Ontology_Tools). However, these tools tend to be somewhat arcane and are
often not easily accessible by application domain experts. A different strategy de-
veloped in the software engineering community and currently gaining traction in
the systems engineering community is to create domain-specific languages (DSLs)
that conform to a domain-specific ontology and thus are easier for domain experts
to understand and use.

The language most commonly used by software engineers in the design of software
applications is UML (http://www.uml.org/). UML is a graphical, object-oriented
modeling language based on 13 diagram types which provide semantics for mod-
eling application architecture, structure, and behavior, as well as business process
flows, database, and message structure. A standards-based implementation of UML
will include capabilities for elaborating the semantics, e.g., by further refining the

http://techwiki.openstructs.org/index.php/Ontology_Tools
http://techwiki.openstructs.org/index.php/Ontology_Tools
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definition of generic objects or by adding new diagram types. For example, a generic
object named “class” might be used to define new objects that are special kinds of
“class,” such as “machine_tool” or “transport_vehicle.” These new objects might
then be used by a domain expert to describe a particular application.

In 2007, OMG published a standard for a new modeling language, OMG
SysMLTM, which is based on a subset of UML, and adds new diagram types specifi-
cally to support the modeling of complex systems incorporating software, hardware,
and people (http://omgsysml.org/). A derivative of UML, SysML also is object-
oriented and graphical. SysML supports the modeling of systems from multiple
perspectives in a unified manner (Peak et al., 2009). It is a very expressive language
for system modeling because it integrates the representation of structure (classes
and the multiple kinds of relationships among them) and behavior (activities, state
machines, and the sequence and timing of interactions among blocks).

Despite the relatively recent emergence of SysML, there have been a num-
ber of examples of its use in manufacturing (Huang et al., 2008; Batarseh
et al., 2012), and supply chains (Thiers and McGinnis 2011; Ehm et al., 2011).
Modeling an electronics assembly operation is described in Batarseh and McGinnis
(2012), where the goal is to significantly reduce the time and cost of developing
simulation models used to support production program planning.

In the system studied in Batarseh and McGinnis (2012), the assembly process
starts with populated circuit card assemblies, to which hardware, such as connec-
tors, will be assembled, and conformal coatings will be applied. The cards are then
assembled into a chassis and additional coatings may be applied. Because the prod-
ucts have very high reliability requirements and may operate in extreme conditions, a
large amount of testing is required, leading to significant amounts of rework. SysML
was used to capture the semantics of the production process. Figure 2.3 summarizes
the result. It illustrates the use of the “stereotype” facility of SysML to define new
modeling concepts, e.g., refining “class” to specify a set of resource types, each with
its own particular set of attributes. Specific instances of each resource type can be
defined and stored in a library for ease of reuse. The stereotype facility also was
used to define “part” and “final product” so that bills of materials could be created,
and production schedules or requirements could be associated with final products.
Finally, the types of processes required to produce a product were specified as stereo-
types of the SysML “call action” object, and each different process type was given
a set of appropriate attributes.

The domain expert would use these stereotyped objects, and perhaps libraries
of their instances, to create both a bill of materials and a process plan for each
subassembly and final assembly. A simple bill of materials is illustrated in Fig. 2.4 and
a simple process plan in Fig. 2.5. These examples illustrate how the expressiveness
of SysML can be exploited to create a graphical DSL that is easily accessible by the
domain experts.

In this approach, two kinds of domain knowledge are captured in two distinct
phases. First, the generic knowledge, the domain semantics, is captured using the
stereotyping facility of SysML. This requires collaboration between domain experts
and SysML modeling experts. In the second phase, the “use phase,” the domain
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Fig. 2.3 Example of domain specific language semantics. a Resource semantics. b Product
semantics. c Manufacturing processes semantics

specific language is used to capture knowledge of a particular application. One might
reasonably ask, “how is this different from the usual OR study approach, where the
OR analyst team works with domain experts to create the OR model?”

The difference, in fact, is quite significant. In the conventional approach, the
knowledge captured about the domain is encoded in the OR model, severely limiting
the opportunity to reuse this knowledge or to share it with other analysts. In particular,
it makes it very difficult to reuse the knowledge for a different kind of analysis. For
example, if the initial analysis used an optimization model, e.g., to establish capacity
levels, a subsequent model using simulation, e.g., to size work-in-process buffers,
would not be able to reuse the knowledge in a straightforward manner. With a DSL,
reusable knowledge is captured both in the language itself, and possibly in every use
of the language, as new information is added to libraries of similar objects.
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Fig. 2.4 Example bill of materials

Using SysML to create domain specific languages for well-understood problems
appears to be a very tractable strategy. To understand how the other two kinds of
knowledge—analysis knowledge and modeling knowledge—would be captured, it
is important to understand some other aspects of the MDA approach

Meta-object Facility and Model Transformation

OMG has developed the Meta-Object Facility (MOF), “as an extensible model-
driven integration framework for defining, manipulating and integrating metadata
and data in a platform-independent manner” (http://www.omg.org/technology/
documents/modeling_-spec_catalog.htm#MOF). In the MOF context, models ex-
pressed in a MOF-conforming language are simply data, to be authored, edited,
viewed, manipulated, and exchanged between software systems. Metadata are “data
about data,” which can provide information about the structure of the data, and also
important information about the data themselves, such as when they were created,
by whom, etc.

MOF can be described in terms of both languages and models. The MOF architec-
ture consists of four levels, with the highest level, M3 representing the most abstract
language or model, and the lowest level, M0, representing an instance of a model,

http://www.omg.org/technology/documents/modeling_-spec_catalog.htm#MOF
http://www.omg.org/technology/documents/modeling_-spec_catalog.htm#MOF
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Fig. 2.6 Example of OMG modeling hierarchy

or a specific “expression” in some language. At level M3 is the meta-language (or
meta-meta-model) which is used to define languages; often this meta-language also
is referred to as “MOF.” In MOF, this meta-language is used to define a number
of specific languages, such as UML (for software system design), Common Ware-
house Metamodel (CWM, for data warehousing) and SysML (for systems modeling),
among others (see http://www.omg.org/technology/documents-/index.htm for a list
of OMG technologies). Figure 2.6 from Kwon (2011) illustrates the OMG modeling
hierarchy in the context of a DSL for production.

In Fig. 2.6, M3 contains the fundamental modeling constructs of the meta-
language, e.g., the concept of “class.” M2 corresponds to a specific language, such
as SysML; in SysML the meta-language is used to refine the concept “class” by
creating two new concepts, “block” and “property,” where a property is a “part
of” a block. The “part of” relationship used in M2 also is defined using the meta-
language, although this is not shown in the figure. In the M1 level of the hierarchy,
the M2 language, e.g., SysML, is used to describe a particular domain, by defin-
ing categories of “block” which have domain specific semantics, e.g., “machine”
and “material handling,” and each of these new kinds of blocks has particular kinds
of properties. It is at the M1 level that a “language” of production is created, and
thus it could be said that SysML is the “meta-language” for this domain-specific
“production language.” Finally, at the M0 level, a description of a specific factory
contains instances of the machine and material-handling blocks, representing partic-
ular machines and material-handling resources in the particular factory. The “part of”
relationship between a block and its properties is shown explicitly in M2, but implic-
itly in M1 and M0 by containing the properties within the owning block. Note that in
Fig. 2.6, each level is characterized in terms of “models,” where M0 corresponds to an
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“instance model” and M3 corresponds to a “meta-meta-model.” It is generally as-
sumed that four levels of modeling hierarchy are sufficient, where the top two levels
are “standard” languages (or models, if one prefers) and the bottom two levels are
the application of those standards to a particular problem domain. For the example of
electronics assembly presented in Figs. 2.3, 2.4, and 2.5, Fig. 2.3 would correspond
to a “user model” or DSL at M1, and the specific model constructed with that DSL,
shown in Figs. 2.4 and 2.5, would correspond to M0.

The OMG modeling hierarchy is a powerful approach for capturing domain se-
mantics in a way that is accessible by the domain experts because the domain specific
language—the “user model” at M1 in Fig. 2.6—can employ the semantics that are
familiar to the domain expert. At the same time, because the user model conforms
to the meta-model, which conforms to the meta-meta model, the instance models
created with this DSL are easily manipulated using appropriate software tools for
model transformation.

In fact, this is the true power of the MDA approach—given two languages, both
conforming to the MOF hierarchy (i.e., both conforming to the meta-language), and
both capable of expressing a view of a particular system, then, under certain con-
ditions, it is possible to define a mapping between the two languages, and use that
mapping to transform an instance model in one language to an instance model in an-
other language. The classic example in MDA is the description of a business process
stated using BPMN, see http://www.omg.org/spec/BPMN/2.0/) and the transforma-
tion from BPMN to, say, Java to create the source code for the application software
required to implement the business process.

In adapting these concepts to production systems decision support, the goal is
to translate an instance of a production system model, expressed in a DSL derived
from SysML, into an instance of an analysis model, expressed in some appropriate
modeling language. For this to be possible, the information contained in the source
and target meta-models must be sufficient to allow the definition of a set of rules for
mapping from the source meta-model to the target meta-model that, when applied to
the source instance model, will translate it into the desired target instance model. In
other words, between the source and target meta-model and the mapping rules, all
the knowledge needed to create a target instance model is captured in a formal way.

To support this idea of model transformation, OMG has specified a set of lan-
guages, referred to collectively as QVT (see http://en.wikipedia.org/wiki/QVT for
a good overview) for creating and executing mappings between MOF-compliant
models. The essence of the model transformation process is illustrated in Fig. 2.7,
which identifies seven distinct models. In the electronics assembly example given
earlier, the source model, which conforms to a source meta-model, which conforms
to the meta-meta-model, would be the instance model created using the DSL (a cus-
tomization of SysML), which conforms to MOF. The target model might be, e.g., a
simulation model, which conforms to its meta-model, which conforms to MOF. The
sixth model is the meta-model for transformation rules, which also conforms to MOF.
The final model is the model specifying the particular transformation rules, which
conforms to its meta-model and which references the source and target meta-models.
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Fig. 2.7 Model transformation

Of course, to implement the process illustrated in Fig. 2.7, a computational tool
(labeled “Transformation” in Fig. 2.7) is required, which will take as input the
source model, the source meta-model, the transformation rules model, and the tar-
get meta-model, and using these inputs will create the target model. This is an area
of active development, but there are available open-source tools, such as the Atlas
Transformation Language (ATL) (http://www.eclipse.org/atl/).

The study described in Batarseh and McGinnis (2012) demonstrates that the MDA
approach can be adapted to support OR modeling in production systems. In their
study, the target model was an ArenaTM simulation. The AccessTM database model
export/import facility of Arena was used as a proxy for Arena, and MOF was used
to create a meta-model for the corresponding data schema. A transformation script
was developed, which enabled the transformation of production system models cre-
ated with the DSL into Access databases, which then were imported into Arena for
analysis. The process was extensively tested in an industry setting, and the impact on
“typical” simulation studies has been a reduction from about 200 person hours for
developing and running simulations in the conventional approach to about 20 person
hours using the DSL and model transformation approach.

Ubiquity of Models and Modeling

Models and modeling are ubiquitous in any application of OR. In a particular ap-
plication, there will be models of the question to be answered or the problem to
be solved, models of the analysis that supports answering the question or solving
the problem, and models of the computation needed to support the analysis. As dis-
cussed above, there can be models of the relationships between models. Each of
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these models may be explicit or implicit. An example of an explicit model is the
mathematical formulation given in Fig. 2.1, or the SysML-based model of a process
plan in Fig. 2.5. The semantics of the domain is often an implicit model, or at best,
partially explicit, e.g., through the use of a list of terminology. The model of the
relationship between the domain semantic model and the explicit analysis model is
almost always completely implicit, i.e., it remains the personal knowledge of the
analyst/modeler. The knowledge contained in implicit models is very difficult to
share and impossible to archive. In MDA or MBSE, the implicit knowledge that is
critical in creating solutions is made explicit, whether the solutions are Java codes
for implementing business processes, or OR-based decision support models.

MDA and MBSE go beyond simply making modeling knowledge explicit, which
could be done using documents. MDA and MBSE make the explicit modeling knowl-
edge formal, in the sense that it is computer readable, but also conforms to a formal
syntax and semantics, so that it can be algorithmically manipulated. Capturing mod-
eling knowledge explicitly and formally is the key to making OR ubiquitous, i.e.,
making OR-based decision support available, on-demand, to domain stakeholders
and decision makers. This is because doing so means that the formerly labor-intensive
task of using implicit knowledge to translate between implicitly known domain
models and explicit formal analysis models can be replaced by a much simpler
process of explicitly describing the domain problem and automating the creation of
the corresponding analysis model using explicit modeling knowledge.

In some ways, the application of MDA and MBSE to OR-based decision support
in production may be the next phase in the natural evolution of the field. If anal-
ysis modeling languages like AMPL are seen as corresponding to third-generation
programming languages, then the integration of a production DSL, model trans-
formation, and target analysis model solver could be seen as corresponding to a
fourth-generation programming language (see http://en.wikipedia.org/wiki/Fourth-
generation_programming_language and the links there for a discussion of program-
ming language generations).

Implications

The adaptation of MDA/MBSE in the deployment of OR models to support pro-
duction system decision makers has significant implications for the curriculum of
OR and production systems, for the way OR-based decision support is deployed in
routine applications, and for the nature of research addressing decision support in
production systems.

Today, the typical curriculum content addressing OR in production systems comes
in two primary forms. Analysis content addresses the canonical analysis formulations
and analysis methodologies, e.g., linear optimization, the simplex method, and a
modeling language/solver like AMPL/CPLEX, or Monte Carlo sampling, discrete
event simulation, and modelers/solvers like Arena or AnyLogic. Domain content
for applications in significant areas of practice, such as supply chain engineering,
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Fig. 2.8 Future deployment—off-line activities

humanitarian logistics, finance, or health care delivery is addressed informally by
defining terms, often through examples, and perhaps presenting mini-case studies.
If we recognize modeling per se as a category of knowledge that can be captured
and deployed in routine applications, the curriculum will need to change to reflect
the tools and methods required and the growing archive of modeling knowledge.

Faculty and students who choose the path of modeling as their area of expertise will
need to become conversant with formal languages and model transformation theories,
as well as with tools for creating and deploying DSLs and model transformations.
Just as today we see deep mathematical results contributing to the advance of the
field, in the future we will see deep theoretical results from linguistics and computer
science enhancing our ability to create and deploy powerful solutions.

Figures 2.8 and 2.9 illustrate key aspects of how OR-based decision support sys-
tems will be deployed in the future for routine applications. Off-line, as a foundational
activity, OR modeling experts will collaborate with domain experts to capture knowl-
edge about the domain, first as informal semantic models, perhaps using SysML,
and then as meta-models. This process can be iterative, and it can proceed by first
capturing a basic description of the domain and subsequently elaborating the de-
scription, adding new aspects of the domain as they become recognized as important
and valuable to include.
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Similarly, modeling experts will work with analysis experts to capture knowledge
about the kinds of analyses that would be valuable to domain stakeholders as they
make important decisions. This knowledge also might be captured initially using
SysML and then captured formally as meta-models. Again, this knowledge capture
can be iterative, continuously improving the range and scope of the analyses available
to the domain stakeholders. Finally, the modeling expert will work to create the
mapping rules relating the domain meta-model to each of the relevant analysis meta-
models. This work also may require collaboration with both domain and analysis
experts.

Perhaps most important is that the process in Fig. 2.8 is not a one-time process
with a single result. Rather, the knowledge captured in this process can be con-
tinuously refined and extended, thus continuously expanding the scope of “routine
applications.”

Figure 2.9 illustrates how MDA/MBSE would impact the actual use of OR-based
decision support. In general, there will be multiple stakeholders/decision makers for
any production system. Using the DSL for the production system, a domain expert
(who also could be a decision maker) will create the formal model that reflects
the problem aspects important to the collection of decision makers. The knowledge
captured in the off-line activities of Fig. 2.8 will then be used to generate specific
analysis models which provide information or guidance to the decision makers.

The process described in Fig. 2.9 will require not only capabilities for generating
instances of appropriate decision support models, but also user interface and data
validation capabilities. The rapidly developing field of “analytics” will provide many
of the necessary data validation capabilities.
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Note that the product of the activities illustrated in Fig. 2.8 is a new archive of
knowledge, much of which could be integrated into the traditional curriculum. Fur-
thermore, as tools become available for performing the activities of Fig. 2.9, these
tools also could be integrated into the curriculum, much as are the contemporary
analysis modeling tools like AMPL or Arena. As the knowledge and tools are in-
tegrated into the curriculum, much more realistic domain problems, such as global
supply chains, distribution networks, etc., also can be integrated into the curricu-
lum, giving students much more realistic case problems, and the opportunity to gain
broader insights than is currently practical.

Finally, there are implications for research on OR-based decision support in pro-
duction systems. Creating the canonical model for a domain of practice, such as
supply chains, finance, health care delivery, or manufacturing, is a task whose dif-
ficulty can hardly be overstated. Such a canonical model must address at least three
related aspects of the domain:

• Structure, i.e., the relevant resources and actors (including the external environ-
ment or boundary conditions), and the relationships among them

• Behavior, i.e., the ways in which the states of structural components can change
and how structural components interact

• Control, i.e., how stakeholders in the domain can or should attempt to achieve a
particular trajectory of state changes

Moreover, the canonical model should accommodate the (frequently conflicting)
viewpoints of the key domain stakeholders, and should enable the specification
of instance models containing all the source information that would be needed to
populate the intended target decision support models.

These canonical models will only result from great creativity on the part of teams
of researchers, applying knowledge of both the domain and the relevant decision
support analyses, and using appropriate modeling languages. This represents a kind
of research which is very different from what one might find today in the journals
that publish production systems research, but which is clearly of great archival value
to the field.

In a similar way, creating the analysis meta-models and the transformation rules
also presents daunting challenges. Many decision support models share a “core
formulation,” on which variations are developed, and it would seem to be desirable
to have a “core meta-model” for the associated analysis, which could be further
refined for the variations. Contemporary research, on the other hand, tends to treat
each formulation as a distinct entity, without reliance on any other formulation, so
there is considerable intellectual work simply to establish an appropriate modeling
framework within which the core meta-model and its variations could be constructed.

Just as there may be families of decision support meta-models, there may be
corresponding families of transformation rule models. In fact, a major research
opportunity is simply to better understand the model transformation process in this
context, and to begin to “engineer” transformation solutions.



26 L. F. McGinnis

Two Fundamental Intellectual Challenges

The famous statistician George E. P. Box wrote that “essentially, all models are
wrong, but some are useful” (Box and Draper, 2012). Among the most fundamental
questions in science and engineering are those whose answers improve the repertoire
of useful models we have at our disposal for helping us to understand both natural
and man-made phenomena and to aid us in harnessing these phenomena for use-
ful purposes. The history of particle physics aptly illustrates the process of asking
and answering fundamental questions: Prout’s concept of the proton (Prout 1815)
was “proven” by Rutherford’s discovery in 1917 (Rutherford 1919); Gell-Mann and
Zweig independently conjectured that the proton was really made up from other par-
ticles (http://en.wikipedia.org/wiki/Quark), and those particles were subsequently
observed at the Stanford Linear Accelerator (Bloom et al., 1969). The models of
protons, quarks, and all the other subatomic particles are part of a larger search
for fundamental knowledge about the physical universe. New models emerged from
the investigation of older models, or as very different alternative explanations of
phenomena. Importantly, the models in particle physics are formal models whose
semantics are well documented and universally used within the research community.

The kind of deep knowledge of the physical universe represented by models in
particle physics is essential to the invention, development, and application of new
materials and processes that enable our modern way of life, from the biology and
chemistry of food crops, to the synthesis of materials for clothing and shelter, to the
production and distribution of energy. All these materials and processes result from
understanding and manipulating physical processes.

Production systems, of course, depend also upon deep knowledge of the physical
universe. But production systems are, themselves, an artificial construct, in the sense
that their configuration and the rules by which they operate, while conforming to the
laws of physics, cannot be explained purely in terms of physical phenomena—they
also have a significant artificial component, which results from the decisions made
by their stakeholders.

In order for OR to become ubiquitous in the support of production system de-
cision making, it is necessary that our knowledge of production systems becomes
formalized, in much the same way that the knowledge of particle physics has become
formalized. So a fundamental question is simply this: “What do we know about pro-
duction systems qua production systems, and how do we know it?” This is a question
about the models in which we encode what we know about production systems, and
today it would be a very difficult question to answer because there is not a common
semantic model that is used by researchers and practitioners in the field of production
systems. The development, dissemination, maintenance, and use of such a common
semantic model collectively represent a fundamental challenge. One might think of
this as the “science” of production systems decision support.

It is not enough to create a common semantic model of what is known about
production systems. In order for OR to become ubiquitous in production system de-
cision support; this knowledge of production systems must also be made actionable.
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A central component in making this knowledge actionable is combining it with
modeling knowledge in order to automate the creation of decision support analysis
models. This is the essence of the second fundamental challenge, i.e., discovering an
effective strategy for combining semantic knowledge of the domain, semantic knowl-
edge of the analysis, and modeling knowledge of the relationships between domain
knowledge and analysis knowledge. One might think of this as the “engineering” of
production systems decision support.

Conclusion

The continuing growth of the field of OR in general, and in production systems in
particular, depends on the discovery of new knowledge—knowledge about domains
of practice, knowledge about forms of analysis that support decision making, and
knowledge about the translation between the domain instance and the analysis in-
stance. This chapter has been about evolving developments that hold the promise of
capturing that knowledge in a form that makes it transferable, reusable, teachable,
and deployable. The potential impact of these developments is at least as great as
the impact of the computing revolution, which brought large-scale OR analyses to
the desktop of the OR practitioner. Capturing the benefits will require operations
researchers to embrace these new knowledge capture and exploitation tools with the
same enthusiasm that they embraced computation in the mid-1970s.
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Chapter 3
Integrated Production Planning and Pricing
Decisions in Congestion-Prone Capacitated
Production Systems

Abhijit Upasani and Reha Uzsoy

Introduction

The highly capital intensive nature of the semiconductor industry requires its factories
to operate at high utilization levels, where small changes in utilization can cause large
changes in lead times. Demand for these products over time can be quite uneven,
which leads to firms trying to shape their demand by price promotions in order to
maintain high factory utilization levels. However, it is well known from queuing
models of manufacturing systems (Buzacott and Shanthikumar 1993) that higher
resource utilization leads to increasing lead times. This raises the possibility of price
reductions becoming counterproductive—an unwise price promotion can create a
surge in demand that, after some time, results in a large increase in lead times,
missed delivery dates, cancelled orders and lost future business.

To this end, companies will often develop aggregate production plans at the prod-
uct family level for several months (up to 18 months in the case of one semiconductor
manufacturing firm described by Allison et al. (1997)) in order to identify potential
capacity bottlenecks and make sure that competitive lead times can be maintained.
This plan, based on current order books and marketing forecasts, permits the plan-
ning of price promotions as part of the process. Given the long planning horizon, an
aggregate planning model focusing on the loading of resources and management of
prices over time to achieve maximum profit with competitive lead times would be
useful to management. The high utilization levels at which many capital-intensive
factories, such as semiconductor wafer fabs, operate renders a planning model that
accounts for the nonlinear relationship between resource utilization and lead times
desirable, especially when customers are sensitive to both lead times and prices.
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Most existing pricing-production planning models do not address this problem in
its full complexity. In particular, most such models do not consider the effect of work-
load on queues and lead times, and hence may underestimate the price that should
be charged at a given output level. In particular, if high demand results in long lead
times due to congestion in the production facility, the assumption that demand can
be met within a fixed lead time may result in significant lost sales. Dynamic pricing
models based on queuing, on the other hand, generally describe long-run steady-state
behavior and do not provide a framework for decisions to be made over time.

The model presented in this chapter is a first step towards addressing these issues.
We use clearing functions (CFs, Asmundsson et al. 2009) to capture the nonlinear
relationship between resource utilization and lead times. Following the literature,
customer behavior is modeled using a demand function that is linear in both price
and lead time, with a maximum lead time beyond which no demand will be forthcom-
ing. In each planning period, customers can observe the average flow time associated
with the current workload of the production system, and place orders accordingly.
Such systems are already in use by semiconductor manufacturing companies such as
Taiwan Semiconductor Manufacturing Corporation which provide contract manufac-
turing services to other firms (www.tsmc.com/english/dedicatedFoundry/services/
eFoundry.htm). The model jointly determines the price and the amount of work to
be released in each time period, thus determining the average lead time associated
with that planning period. The model allows the possibility of production smoothing
through the accumulation of finished goods inventories and price promotions.

Our results show that when the demand is sensitive to lead times, the CF model
with workload-dependent lead times produces significantly higher profits than a
conventional model assuming a fixed lead time. In several scenarios the release
plans suggested by the fixed lead time model are unable to satisfy the market demand
generated by the associated prices, since they assume that a fixed lead time can be
maintained in the face of the high demand created by low prices. In fact, the increased
demand resulting from price reductions can only be met with long lead times, which
end up reducing demand. Hence a thorough understanding of the effects of pricing
on lead times and queues is essential for capacity constrained firms that plan to use
dynamic pricing. As suggested by Pekgun et al. (2008), the separation of lead time
and pricing considerations between the production and marketing operations is a
significant obstacle to this understanding, suggesting the need for more emphasis on
this interface in capital-intensive firms operating at high utilization levels.

Literature Review

Our research is related to three different streams of literature: joint pricing and
production planning models, models for load-dependent lead-time quotation, and
steady state models that study relationships between price and lead times.

Joint pricing and production planning models aim to produce a profit-maximizing
combination of prices and production plans. Eliashberg et al. (1991) and Yano and
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Gilbert (2003) present detailed reviews of this stream of literature. This literature also
includes dynamic pricing models that change prices over time to improve profitability
(Swann 2001; Charnsirisakskul et al. 2006; Deng and Yano 2006). Ahn et al. (2007)
present an interesting model where demand in a given period depends on prices in
preceding periods. Adida and Perakis (2006) consider a continuous time model with
a linear demand function and an additive model of uncertainty, and present a robust
optimization model. In a subsequent paper (Adida and Perakis 2010) they compare
robust and stochastic optimization models for this problem, noting that stochastic
optimization models can be sensitive to the probability distributions used. The related
area of dynamic pricing focusing on the interface with inventory management is
reviewed by Elmaghraby and Keskinocak (2003).

Researchers in this area have used simple, aggregate capacity constraints with
limited ability to consider interactions between capacity utilization and lead time.
When faced with high demands that saturate capacity constraints in a given period,
these models will build inventory in earlier periods, effectively increasing lead times.
However, this dynamic does not capture the rapid nonlinear increase in lead times
observed at higher utilizations, providing an incomplete picture of system behavior.
Recent work (Kefeli et al. 2011) has shown that in the presence of congestion the
theoretical output of the system may not be achieved due to the very high work
in process inventories required to achieve them, causing these types of capacity
constraints to give an optimistic picture of the production system’s ability to meet
demand. We illustrate this effect in our numerical examples.

Chen and Hall (2010), in contrast, consider the pricing of individual orders on
a single machine or a two-machine flow shop to maximize profit under different
cost criteria which are determined by the production schedules. They provide exact
dynamic programming algorithms and heuristics, and demonstrate that even heuristic
solutions to the problem yield significant improvement in profit over the case where
prices and schedules are determined independently. Since these models represent
capacity at a very fine level of detail, they capture the relationship between utilization
and lead times correctly. However, such models do not easily scale up to the longer
time periods addressed in this chapter.

The second stream of literature encompasses models that estimate lead times
based on the current state of the system and use these lead times for order negotiation.
These models recognize that lead times are load dependent and address operational
decisions like input control or order selection, price and lead-time quotation, and
capacity investment (Donohue 1994; Easton and Moodie 1999; Elhafsi and Rolland
1999; Elhafsi 2000; Charnsirisakskul et al. 2004; Plambeck 2004). While these
models allow marketing to make realistic lead-time quotations to be used in price
negotiation, they do not capture the relationship between prices, resource utilization
and lead times.

A related set of models, classified in the literature as order acceptance models,
assume stochastic (usually Poisson) customer arrivals and quote each customer a
delivery date based on system status (Dellaert 1991; Duenyas 1995; Duenyas and
Hopp 1995). These models assume a certain probability that the customer will actu-
ally place an order when quoted the delivery date, thus obtaining an effective arrival
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rate for orders. Late orders are penalized and the models aim to minimize the impact
of this penalty on revenue, which is fixed for every order.

The last stream of models conducts steady state analyses of relationships between
price, lead time and capacity for M/M/1 systems (Low 1974; Palaka et al. 1998;
So and Song 1998; Boyaci and Ray 2003; Ray and Jewkes 2004). Almost all these
models use a demand function that is linear in both price and lead time to represent
the market and aim to set prices and lead times subject to a service level constraint
under steady state conditions. These models yield useful managerial insights through
their characterization of optimal behavior, but their steady state nature does not allow
them to be used to develop pricing and production plans over a finite horizon. Liu
et al. (2007) study price and lead-time setting in a decentralized supply chain where
a supplier specified a wholesale price and a planned delivery time, while the retailer
quotes a retail price. Customers are sensitive to both lead time and retail price. They
model the behavior of the supplier and retailer as a Stackelberg game and obtain the
equilibrium strategy of both actors. Pekgun et al. (2008) developed a steady-state
make-to-order (MTO) model that incorporates coordination mechanisms for price
and lead-time quotation.

Plambeck (2004) considers capacity setting, price and lead-time quotation, and
order sequencing decisions in a MTO system with two customer classes and compares
dynamic against static lead-time quotations (similar to our Fixed Lead Time (FLT)
model). The key assumption the author makes is that customers belonging to the
“patient” class will tolerate long lead times. The author requires this slow-moving
portion of the order queue to be so large that the system utilization approaches 100 %,
allowing the author to apply heavy-traffic queuing approximations to derive optimal
decision policies. Our CF model considers a different problem, that of determining
an integrated aggregate plan for factory loading and pricing over discrete time periods
in the face of the market’s sensitivity to lead times. Our model does not impose a
utilization level on the system but instead allows the system to choose its optimal
utilization level. Consistent with Plambeck’s results, our model also shows that taking
the state of the system into account can yield significantly higher profit than a fixed
lead-time model.

The joint planning models in the first stream represent aggregate planning de-
cisions in a make-to-stock environment, where a different price is quoted every
period, but all orders in the same period observe the same price. These joint planning
models fall under the domain of models at the production/marketing interface that
also includes models for sales-production coordination mechanisms (Eliashberg and
Steinberg 1991; Upasani and Uzsoy 2008). Models in the last two environments fo-
cus on a MTO environment where no stocks of finished goods inventory are held and
each order can be quoted a separate price or lead time. Detailed reviews of models
in the last two streams are found in Chatterjee et al. (2002), Keskinocak and Tayur
(2004), and Upasani and Uzsoy (2008).

To summarize the existing literature, joint planning-pricing models have limited
ability to capture the effects of utilization on delivery times, whereas steady-state
lead-time quotation models do not yield medium-term plans over a finite horizon.
Recent developments in production planning models with load-dependent lead times
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(Pahl et al. 2005) provide avenues for integrating state-dependent lead times into
models of the production-marketing interface. Specifically, we use CFs (Pahl et al.
2005, 2007; Asmundsson et al. 2006; Asmundsson et al. 2009; Missbauer and Uzsoy
2010), which relate the expected throughput of a production system in a planning
period to the expected work-in-process (WIP) inventory level over the period.

Clearing Functions

A promising approach to modeling workload-dependent lead times in production
planning has been the use of CFs (Karmarkar 1989) that represent the expected
output of a resource over a given period of time as a function of the expected WIP
inventory level over that period. The term has its origin in work by Graves (1986)
that specifies the fraction of the current WIP that can be processed to completion
(“cleared”) by a resource in a given time period. Karmarkar (1989) and Srinivasan
et al. (1988) independently develop nonlinear CFs for production planning models.
We shall use the term “WIP” to denote any reasonable measure of the WIP inventory
level over a period of time that can be used as a basis for a CF. An extensive review
of CFs and their use in production planning models is given by Missbauer and Uzsoy
(2010)

To motivate the use of a nonlinear CF, consider a resource that can be modeled
as a G/G/ 1 queuing system in steady state. The average number in system, i.e., the
expected WIP, is given by Medhi (1991) as

w = (c2
a + c2

s )

2

ρ2

(1 − ρ)
+ ρ (3.1)

where ca and cs denote the coefficients of variation of interarrival and service times,
respectively and ρ the utilization of the server. Setting c= (c2

a + c2
s)/2 and rear-

ranging (1), we obtain a quadratic in W whose positive root yields the desired ρ

value. Solving for ρ with c > 1 yields

ρ =
√

(W + 1)2 + 4W (c2 − 1) − (W + 1)

2(c2 − 1)
(3.2)

which has the desired concave form. When 0≤ c < 1, the other root of the quadratic
will always give positive values for ρ. When c= 1, (3.2) simplifies to ρ=W/(1+W ),
again of the desired concave form. We see that for a fixed c value, utilization, and
hence throughput, increase with WIP but at a declining rate due to variability in
service and arrival rates.

Several authors discuss the relationship between throughput and WIP levels in the
context of queuing analysis, where the quantities studied are the long-run steady-state
expected throughput and WIP levels. Agnew (1976) studies this type of behavior in
the context of optimal control policies. Spearman (1991) presents an analytic con-
gestion model for closed production systems with increasing failure rate processing
time distributions that describes the relationship between throughput and WIP. Hopp
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Fig. 3.1 Examples of clearing
functions (Karmarkar 1989)

and Spearman (2001) provide a number of illustrations of CFs for a variety of sys-
tems. Srinivasan et al. (1988) derive the CF for a closed queuing network with a
product form solution. While these approaches are based, as is our analysis above,
on steady-state queuing models, a number of researchers have examined the issue of
estimating CFs when the underlying queuing system is not in steady state. Asmunds-
son et al. (2009) show that even under transient conditions the concave shape of the
CF will be maintained. Missbauer (2009) and Selçuk (2007) use transient queuing
models to derive CFs under somewhat different sets of assumptions.

Figure 3.1, derived from Karmarkar (1989) depicts several examples of CFs con-
sidered in the literature to date. The horizontal line TH =C corresponds to a fixed
upper bound on output over the period, but without a lead-time constraint it im-
plies that production can occur without any WIP in the system if work release and
production are synchronized. This is reflected in the independence of output from
the WIP level, which may constrain throughput to a level below the upper bound by
starving the resource. This approach is implemented in, for example, the Capacitated
MRP (MRP-C) approach of Tardif and Spearman (1997) and most LP approaches
such as that of Hackman and Leachman (1989), but is supplemented with a fixed
lead time that is an exogenous parameter independent of workload. The linear CF
of Graves (1986) is represented by the TH =W/L line, which implies a lead time of
L periods that can be maintained independently of the WIP level. Note that if WIP
and output are measured in the same time units (e.g., hours of work), the slope of the
proportional part of the function is 1/L, where L is the average lead time. However,
as seen in Fig. 3.1, this model may suggest infeasible output levels when WIP levels
are high. If a fixed lead time is maintained up to a certain maximum output, we have
the relationship TH =min{W/L, C}. In the special case of the Graves CF where the
lead time is equal to the average processing time, with no queuing delays at all, we
obtain the line TH =W/p, where p denotes the average processing time. Assuming
that average lead time is equal to the average processing time up to the maximum



3 Integrated Production Planning and Pricing Decisions . . . 35

output level, it gives the “Best Case” model TH =min{W/p, C} described in Chap. 7
of Hopp and Spearman (2001). However, by linking production rate to WIP level,
a linear CF differs from the fixed delays used in most LP models, where the out-
put of a production process is simply the input shifted forward in time by the fixed
lead time. Orcun et al. (2006) illustrate the differences between these models using
system dynamics simulations. For most capacitated production resources subject to
congestion, limited capacity leads to a saturating (concave) CF. It is also apparent
from the Fig. 3.1 that the CF always lies below the TH =W/p and TH =C lines.

An important issue in using CF models is the question of how long the planning
periods should be. If the CFs are derived using steady-state queuing models, the
planning period must be long enough that the queues representing the production
system can be at least approximately in steady state. Given the long-term, aggregate
purpose of this type of model, as outlined in the introduction and the discussion in
Allison et al. (1997), the planning buckets are likely to be long enough (e.g., a month)
that most production systems with relatively short raw processing times should reach
steady state. However, even if this is not the case, current research is exploring means
of deriving CFs for systems under transient regimes (for example, Selcuk 2007 and
Missbauer 2009), showing that even under transient conditions the concave shape of
the CF is maintained.

A number of authors have suggested empirical approaches to estimating CFs,
where a functional form with the desired properties is postulated, and then fit to data
obtained either from an industrial facility or a simulation model using some form of
regression analysis. Karmarkar (1989) suggests a CF of the form

Xt = K1Wt

K2 +Wt

(3.3)

where Xt denotes the output in period t, Wt the WIP at the resource at the start of
period t, and K1 the maximum possible output of the resource in period t. The shape
parameter K2 is estimated by the user. Selçuk et al. (2007) demonstrate the derivation
of K2 for an M/G/ 1 system with bulk arrivals. Srinivasan et al. (1988) suggest an
alternative functional form

f (Wt ) = K1(1 − ekWt) (3.4)

where k is again a user-estimated shape parameter. Asmundsson et al. (2009) use
this latter functional form and give an extensive discussion of various issues in
collecting simulation data for fitting this type of CF. Asmundsson et al. (2006) use
a visual fit of linear segments to simulation data to develop a CF formulation for
a scaled-down semiconductor wafer fabrication facility with unreliable equipment
and reentrant flows. Kacar and Uzsoy (2010) and Kacar et al. (2010) use a linear
regression approach applied to data collected from a simulation model, with good
results. Asmundsson et al. (2009) show that an empirically fitted CF can give good
results even under a transient regime. The implication for this research is that it is
possible to represent the behavior of a production system with an appropriately fitted
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CF. Thus we shall proceed with our model on the assumption this can be done and
examine the potential impact on profits of using a model with fixed lead time that
does not consider queuing behavior.

A Single Product Dynamic Joint Price-Production Model
Incorporating Congestion

We now present a joint price-production model that incorporates CFs and lead-time-
dependent demand. We assume a single firm that behaves as a monopolist. The firm
sees a linear demand function D= g(P, L)=Max{0, M-aP-bL}, where a, b≥ 1 are
the price and lead-time sensitivities of demand D with respect to price P and lead
time L, respectively. Changes in market conditions are represented by changes in
these sensitivities. The intercept M of the demand function represents the maximum
possible demand, i.e., the market size.

In a given period t, the firm quotes a price Pt and a delivery time Lt to customers.
We assume that the firm quotes a delivery time for orders received in a period equal to
the average manufacturing lead time at the start of the period. Since the manufacturing
lead time (delivery time) depends on the number of orders waiting, the firm can
control the maximum delivery time by limiting the number of orders to be processed
(per Fig. 3.1). In effect, the firm quotes the delivery time based on the minimum of
two values: the average manufacturing lead time, and a guaranteed delivery time LG

by which all orders need to be satisfied, or customers will not place orders. Hence
an order received in period t has to be fulfilled by period t+LG.

The firm needs to align its production system with this market preference by
mapping LG on Fig. 3.1 and quoting an average delivery time below the value of LG.
This will, in turn, determine the number of orders that a firm may accept and hold
in queue for processing, yielding a target production rate and a target utilization.
Thus, the higher the guaranteed delivery time allowed by the market, the higher the
utilization at which the firm can operate its resources. From Fig. 3.1, as utilization
increases, a large increase in threshold value LG will allow only a small increase
in utilization, since lead time increases rapidly with additional workload at high
utilization levels. This guaranteed delivery time assumption is similar to that used
by Selcuk et al. (2007) and Spitter et al. (2005a; b) in their supply chain operations
planning (SCOP) models, where they assume a planned manufacturing lead time
within which an order must finish processing. The idea of a quoted lead time in
combination with a maximum lead time is also used by Dellaert (1991) and Duenyas
and Hopp (1995) in their models of due-date management with order selection.

Another mechanism by which a firm may control quoted average delivery time
is to quote a higher price and thus accept fewer orders. This is possible due to the
monopolist assumption and the price and lead-time-dependent nature of demand.
Customers may be willing to pay a premium for lower-quoted average delivery times
and the relative magnitude of this premium would depend upon their sensitivity to
delivery time represented by parameter bt .
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The average delivery time quotation implies that some orders will be ready for
delivery earlier than promised. The customer may not always want to take delivery
early, in which case the manufacturer has to hold finished goods inventory. We
assume that the customer will allow a limited number of orders to be delivered early
in the planning horizon and represent this by a parameter ν. Late deliveries are not
allowed, though this can be incorporated in a straightforward manner. To further
simplify the model, we restrict every order to have a size of one unit. This enables
us to eliminate constraints that would otherwise be included to track fulfillments of
orders of varying sizes. We define the following notation:

Variables

Rt Order release quantity in period t
Wt WIP inventory at the end of period t
Xt Production quantity in period t
It Finished goods inventory (FGI) at end of period t
Pt Price in period t
Dt Sales quantity in period t
Yt Quantity shipped in period t

Parameters

at Price sensitivity of demand in period t
bt Lead-time sensitivity of demand in period t
ht Holding cost of finished goods inventory per unit in period t
ωt Holding cost of WIP inventory per unit in period t
φt Unit production cost in period t
ct Order release cost per unit released in period t
ν Maximum units allowed to be shipped before due date over the horizon
K1 Theoretical maximum production capacity
K2 Curvature parameter of CF
M Intercept of demand function, i.e., demand when price= lead time= 0
T Length of planning horizon, t= 1,..,T
LG Guaranteed delivery time (in periods)
f(.) CF

Let Ŵt be the estimated average WIP level in a period t. We use the CF form suggested
by Karmarkar (1989). From (3.3) we have

f
(
Ŵt

)
= K1Ŵt

K2 + Ŵt

The production Xt in period t is bounded by the CF in that period.
As mentioned earlier, the demand in period t is expressed by the demand function

Dt = M − atPt − btLt . By Little’s Law, the expected lead time in period t is given
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by Lt = Ŵt/Xt , expressed in units of periods. By invoking Little’s Law we assume
that the production system is in steady state within the planning period. Thus, the
demand observed in period t is given by

Dt = M −atPt −bt

(
Ŵt

Xt

)

Our CF-based joint price-production planning model is now as follows:

CF model

Max
T∑

t=1

[

Pt

(

M − atPt − bt

(
Ŵt

Xt

))

− ctRt − φtXt − htIt − ωtWt

]

(3.5)

s.t.

{λt } Wt = Wt−1 −Xt + Rt ∀t (3.6)

{πt } It = It−1 +Xt − Yt ∀t (3.7)

{θt } Xt ≤ K1Ŵt

K2 + Ŵt

∀t (3.8)

{μt } M − atPt − bt

(
Ŵt

Xt

)

≥ 0 ∀t (3.9)

{σt }
t∑

τ=1

Yτ ≥
t−LG∑

τ=1

[

M − aτpτ − bτ

(
Ŵτ

Xτ

)]

∀t (3.10)

{ρt }
t∑

τ=1

Yτ ≥
t−LG∑

τ=1

[

M − aτpτ − bτ

(
Ŵτ

Xτ

)]

+ ν ∀t (3.11)

{χt } Ŵt ≤ 1

2
(Wt−1 +Wt ) ∀t (3.12)

Pt , Xt , It , Wt , Rt , Yt , Ŵt ≥ 0 ∀t (3.13)

The objective is to maximize total contribution, expressed as the difference between
the total revenue in each period and variable operating costs. Equations (3.6) and (3.7)
are WIP and finished goods inventory balance constraints. Equation (3.8) represents
production capacity using the CF, and constraint (3.9) defines the sales quantity.
Constraint (3.10) requires that all orders be shipped within the planned delivery time,
but allows orders to be shipped earlier than due, rather than being held as finished
goods inventory. Since the customer may impose a limit on the number of orders
shipped early over the horizon (given by the parameter ν), we model this preference
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in constraint (3.11). We estimate the average WIP level Ŵt within a given period using
the WIP levels at the end points of the period using (3.12). All variables are required
to be non-negative by (3.13). The Greek letters in curly brackets to the left of each
constraint denote its associated Lagrange multipliers. We do not impose a cost on
shipping since it would require setting values for another parameter, which we avoid
for sake of parsimony in the experimental design. For the same reason, we do not
impose a penalty if the average delivery time quotation exceeds the planned delivery
time. Instead we reduce sales through our time-dependent demand function. This
mechanism is further discussed in the section “Experiments Without Early Delivery
Flexibility: ν = 0.

For comparison purposes we now state a joint price-production planning model
that assumes a fixed delivery time L≤LG which is specified as an exogenous pa-
rameter, and hence is denoted as the Fixed Lead Time (FLT) model. The demand
observed by this model in period t is expressed as Dt = M − atPt − btL. The
firm must set L≤LG to avoid exceeding the target utilization. We assign a Lagrange
multiplier for each constraint as was done for the CF model.

FLT model

Max
T∑

t=1

[
P̂t

(
M − at P̂ t − btL

)
− ct X̂t − ht Ît

]
(3.14)

s.t.

{γt } Ît = Ît−1 + X̂t−L − Ŷt ∀t (3.15)

{δt } X̂t ≤ K1 ∀t (3.16)

{μ̂t } M − at P̂t − L ≥ 0 ∀t (3.17)

{σ̂t }
t∑

τ=1

Ŷτ ≥
t−L∑

τ=1

(M − aτ P̂τ − bτL) ∀t (3.18)

{ρ̂t }
t∑

τ=1

Ŷτ ≥
t−L∑

τ=1

(M − aτ P̂τ − bτL) + ν ∀t (3.19)

X̂t , P̂t , Ŷt , Ît ≥ 0 ∀t (3.20)

We use the variable X̂t to denote production initiated in period t. Since there is
a fixed production lead time L, production initiated in period t is available to be
shipped in period t+ L. This variable corresponds to the releases variable Rt from
the CF model. Hence we incorporate a time lag L in the inventory balance constraint
(3.15). Since the FLT model ignores the buildup of queues in the system due to
its fixed lead-time assumption, it does not have any WIP variables or WIP balance
constraints. This model is consistent with FLT production planning models (Johnson
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and Montgomery 1974; Hackman and Leachman 1989; Spitter et al. 2005a; Spitter
et al. 2005a) or the joint price-production model of Swann (2001).

In our numerical experiments we use a modified version of the FLT model that
facilitates direct comparisons with the CF model. Recall that X̂t models the material
released in period t so that it finishes processing and is available for shipping in
period t+ L. This definition, while capturing the nature of fixed lead times, does not
allow a direct comparison between the two models. Hence, we replace the variable
X̂t with two variables: R̂t to denote the material release in period t, and X̂′

t , the actual
production in period t. The two variables are related by the expression R̂t = X̂′

t+L.
Hence, the R̂t units of work released in period t will remain in WIP for L time
periods, which we explicitly include in the objective function. The modified FLT
model is thus as follows:

T∑

t=1

⎡

⎣P̂t

(
M − at P̂t − btL

)
− ct R̂t − φtX̂

′
t − ht Ît − ωt

t∑

j=t−L+1

R̂j

⎤

⎦ (3.21)

s.t.

X̂′
t+L = R̂′

t ∀t
Ît = Ît−1 + X̂

′
t − Ŷt ∀t (3.22)

X̂
′
t ≤ K1 ∀t (3.23)

M − at P̂t − btL ≥ 0 ∀t (3.24)

t∑

τ=1

Ŷt ≥
t−L∑

τ=1

(M − at P̂t − btL) ∀t (3.25)

t∑

τ=1

Ŷt ≤
t−L∑

τ=1

(M − at P̂t − btL) + ν ∀t (3.26)

X̂
′
t , P̂t , Ît , Ŷt , R̂t ≥ 0 ∀t (3.27)

In the following section we examine the structure of locally optimal solutions to
both the FLT and CF models to explore the differences between them, induced by
the different models of production capacity they use.

Model Analysis

In Appendix 3.1, we show that the revenue function of the FLT model is concave,
resulting in a concave objective function. Further, the linear demand function results
in constraints (3.15)–(3.19) being linear. Thus the FLT model aims to maximize a
concave function over a convex constraint set, so a locally optimal solution is also
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globally optimal. The CF model has a quasi-concave objective function if the sales
variable is positive and the capacity constraint is tight (see Appendix 3.2). However,
satisfying the capacity constraint at equality causes the constraint set to lose convexity
and become concave. Hence the CF model does not have a unique global optimum.
Nevertheless, all local optima should satisfy the Karush-Kuhn-Tucker (KKT)
optimality conditions and since the global optimum must also be a local optimum,
structural properties derived for a local optimum are valid for a global optimum.

We begin by examining the relationships between price, demand, lead time and
capacity using the KKT conditions for a local optimum (Appendix 3.3). We then
examine the relationship between the ending FGI and the delivery flexibility
parameter ν and discuss properties of some Lagrange multipliers used in the
formulations.

Sales, Price and Delivery Time at Optimality

We first develop expressions for price and sales quantity based on the KKT conditions
for a local optimum. We are interested in local optima with non-trivial solutions, i.e.,
the firm operates in a reasonable manner that yields non-zero revenue, or in other
words, both price and sales are non-zero. Using Pt > 0 in (3.46) and (3.61) we obtain
the optimal prices for both models as follows:

Price(FLT model)

P̂t = M

2at

− bt

2at

L− 1

2

(

μ̂t −
T∑

τ=t+L

σ̂τ +
T∑

τ=t+L

ρ̂τ

)

(3.28)

Price(CF model)

Pt = M

2at

− bt

2at

(
Ŵt

Xt

)

− 1

2

⎛

⎝μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ (3.29)

Substituting these expressions into the demand functions for the respective models,
we obtain the following expressions for the sales quantities:

Sales (FLT model)

D̂t = M

2
− bt

2
− at

2

(
T∑

τ=t+L

σ̂t −
T∑

τ=t+L

ρ̂t − μ̂t

)

(3.30)

Sales(CF model)

Dt = M

2
− bt

2

(
Ŵt

Xt

)

− at

2

⎛

⎝
T∑

τ=t+LG

σt −
T∑

τ=t+LG

ρt − μt

⎞

⎠ (3.31)
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Equations (3.28)–(3.31) clearly show that under the CF model both price and sales
decisions are dependent upon the observed lead time. Equation (3.29) is particularly
interesting since price is expressed as a downward sloping function of lead time using
the basic decision variables of the production system. Ray and Boyaci (2004) assume
price to be a downward sloping function of lead time in order to investigate the effects
of ignoring lead-time sensitivity of prices while making pricing decisions. However,
our model does not require such an assumption, since the relationship between price
and lead time emerges directly from the model. The last terms in all four expressions
represent the interactions between the cumulative shipment constraints and can be
interpreted in terms of the Lagrange multiplier of the finished goods inventory balance
constraints of the respective models. We discuss this in the section “Properties of
Lagrange Multipliers”.

It is interesting to examine the behavior of the model as lead times approach the
threshold delivery time LG. We can write

(
Ŵt

Xt

)

= LG −
(

LG −
(

Ŵt

Xt

))

= LG −�L

which, in turn, allows us to rewrite (3.29) and (3.31) as:

Pt = M

2at

− bt

2at

LG + bt

2at

�L− 1

2

⎛

⎝μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ (3.32)

Dt = M

2
− bt

2
LG + bt

2
�L− at

2

⎛

⎝
T∑

τ=t+LG

στ −
T∑

τ=t+LG

ρτ − μt

⎞

⎠ (3.33)

The ΔL term represents the difference between the maximum allowable delivery
time and the average delivery time quotation (i.e., the average manufacturing lead
time). When ΔL < 0, i.e., the average delivery time quotation exceeds the maximum
allowable delivery time, our model penalizes the firm by reducing demand per (3.33),
thus reducing the WIP in the production system and hence the average lead time.
This self-regulating behavior removes the need to include explicit penalty terms for
exceeding the delivery time guarantee in the objective function of model CF.

This behavior can be visualized by examining relationships between different
variables by means of a causal loop diagram (Sterman 2000) in Fig. 3.2. The variable
at the tail of an arc is linked to the variable at the head of the arc by the sign on the head
that indicates whether an increase in the variable at the tail causes a corresponding
increase or a decrease in the variable at the head. Average delivery times eventually
have a negative feedback on sales, since an increase in sales will cause an increase
in quoted average delivery times, which in turn will reduce ΔL, making it negative.
Negative values of ΔL cause a reduction in sales, keeping the average delivery time
and sales variables in close relation with each other. Recall that these two variables
are tightly coupled with the price variable through the demand function. Hence a
reduction in both sales and average delivery time would require an increase in price.
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Fig. 3.2 Relationship
between variables

Thus the firm can use both price and delivery time in an aggregate planning framework
to manage sales. Webster (2002) proposes a similar feedback loop in his model for
determining equilibrium values for price and lead time in face of a changing demand
function. His model changes capacity in response to a change in sales, keeping lead
time fixed, but does not consider the costs of changing capacity.

Prices and Utilization

If ΔL > 0, the quoted average delivery time is less than the guaranteed delivery
time. From (3.33), it would appear that this would cause sales to increase, increasing
resource utilization and delivery times. Recall that a target guaranteed delivery time
corresponds to a particular utilization level. However, it is not possible to determine a
priori whether a targeted utilization level will allow satisfying the guaranteed delivery
time, since we only have information about average delivery times and the maximum
realized delivery time may exceed the guaranteed delivery time at high utilizations.
Attaining higher utilization levels in the CF model requires additional WIP, and the
marginal increase in utilization decreases with each unit increase in WIP. The CF
model uses this information to determine a utilization level that may be lower than the
target utilization level corresponding to the guaranteed delivery time parameter. This
decision is implemented by limiting sales (to control utilization) by increasing prices
instead (ΔL > 0 in (3.32)). At high values of LG, ΔL could be significant enough
that a large difference may exist between the prices quoted by the two models.

Analytically, this behavior can be explained as follows. Let ut denote the uti-
lization level in period t due to production level Xt , i.e., Xt = utK1. Using this

relationship we obtain Lt = Ŵt

K1ut
. Initially it appears counterintuitive that lead time

decreases with increasing utilization. However, this expression must be viewed in
the light of the relationship between WIP Wt and utilization ut . As shown in Fig. 3.1,
a unit increase in utilization will cause WIP, and thus lead times, to increase by a
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larger amount. Conversely, if utilization threatens to increase, the CF model can
lower WIP, thus controlling it and keeping average delivery time in check. The FLT
model is blind to the effects of utilization on delivery time and thus has one less lever
for managing sales and system operation. The impact of this can be observed by
simulating the key decisions of the FLT model in a congestion-prone system, which
we do in the section “Low Utilization: u= 0.8, L= 1”.

The key decisions made by a joint pricing and production planning model are
prices and material releases. For the FLT model, these correspond to the variables
P̂t and X̂t respectively. If we define Ŵ

′
t to be the WIP level arising from the material

release X̂t , then the production in a given period is found to be f (Ŵ
′
t ) from the

CF. Thus, the average delivery time can be written as Ŵ
′
t

f (Ŵ
′
t )

. Now let D
′
t be the sales

decision arising from this average delivery time quotation and price quotation P̂t .
Then we have

D
′
t = M − at P̂t − bt

(
Ŵ

′
t

f (Ŵ
′
t )

)

(3.34)

Further, if Dt>0 and Ŵ
′
t > 0, then μt = 0 and μ̂t = 0 from complementary

slackness conditions (3.52) and (3.65). Using this in (3.28) and (3.29), we can express
the difference in prices as

Pt − P̂t = bt

2at

(

L− Ŵt

Xt

)

+
T∑

τ=t+LG

(σt − σ̂t ) −
T∑

τ=t+LG

(ρt − ρ̂t )

= bt

2at

�L
′ +

T∑

τ=t+LG

(σt − σ̂t ) −
T∑

τ=t+LG

(ρt − ρ̂t )

At high values of L (corresponding to high utilization), it is possible that �L
′
>0

and is large enough for P̂t to be significantly less than Pt . In this scenario, we have
D

′
t > Dt . Further, since ΔL

′
> 0, the material release decisions X̂t could load the

system with significantly higher WIP than the release decisions Rt made by the CF
model, leading to larger queue sizes. Average quoted lead times will not be met and
there will not be enough FGI to satisfy sales D

′
t . If we allow unsatisfied sales to be

lost, revenues will drop since the prices quoted are lower than those in the CF model.
We discuss this further through a numerical example in the section “Experiments
with Early Delivery Flexibility: ν > 0”.

On the other hand, at low values of L (corresponding to low utilization), ΔL
′

will be small and will have less influence over the differences in prices quoted by
the two models. From Fig. 3.1, it can be seen that lower utilizations imply lower
WIP levels and hence lower average delivery times. Further, the marginal increase
in throughput with a unit increase in WIP is higher at low utilization than at high
utilization. This allows the production system to fulfill demand in a timely manner
more easily. Lower utilizations are achieved by having low sales or ample excess
capacity. Neither of these alternatives is practical in a capital-intensive environment,
motivating our interest in high-utilization environments.
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Properties of Lagrange Multipliers

Proposition 1 In an optimal solution to the CF model the capacity constraint is
always tight (i.e., θt > 0) if Ŵt , Rt , Pt and Dt are all strictly positive.

Proof See Appendix 3.4.
Capacity in the CF model is expressed in terms of the amount of WIP in the system

that can be cleared in a given period. The above proposition implies that the release
pattern will be coordinated with the sales pattern, so that there is just enough WIP
to create the capacity required for fulfilling sales.

Proposition 2 In an optimal solution to the CF model, the marginal cost of holding
finished goods inventory is always positive (i.e., πt > 0) if θt > 0, Xt > 0, and
Ŵt > 0.

Proof See Appendix 3.5.

Proposition 3 In an optimal solution to the FLT model, the marginal cost of holding
finished goods inventory is always positive (i.e., γt > 0).

Proof See Appendix 3.6.
Since we quote an average delivery time, production that is realized earlier than

due can be held as finished goods inventory to fulfill orders by the guaranteed delivery
time. This can be clarified further when the marginal FGI costs are seen in relationship
to the shipment Yt . Considering the FLT model, if shipments Ŷt > 0, for some period
t, then from condition (3.63), we have

γt −
T∑

τ=t

σ̂τ +
T∑

τ=t

ρ̂τ = 0

⇔ −
T∑

τ=t

σ̂τ +
T∑

τ=t

ρ̂τ = −γt

If Y t+LG
> 0, we have −

T∑

τ=t

σ̂τ +
T∑

τ=t

ρ̂τ = −γt+LG

Since P̂t > 0, from condition (3.61), we have

−M + at P̂t + btLG + at

⎛

⎝P̂t + μ̂t −
T∑

τ=t+LG

σ̂τ +
T∑

τ=t+LG

ρ̂τ

⎞

⎠ = 0

when D̂t > 0, μ̂t = 0. Hence−M + at P̂t + btLG + at (P̂t − γt+LG
) = 0. Rewriting,

we obtain
γt+LG

= 2P̂t − M
at
+ bt

at
LG > 0 by Proposition 3. Thus when there are positive

sales in period t, it is beneficial to have FGI in period t+LG in order to meet the
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quoted delivery date. The analogous expression for the CF model is

πt+LG
= 2Pt − M

at

+ bt

at

(
Ŵt

Xt

)

.

Since Dt , Pt , and the average quoted delivery time for the CF model are strictly
positive (section “CF model”), we find that the marginal cost of the FGI constraint
in period t+ L is strictly positive by a simple manipulation of the demand function.
In addition, the marginal cost of the FGI constraint in the CF model varies with both
the price and the average delivery time, whereas for the FLT model it can vary only
with price.

We also investigate the optimal sales decision made by our CF model if the linear
demand function is replaced by the power function used by So and Song (1998). The
demand function itself is expressed as Dt = MP

−at
t L

−bt
t , where all symbols have

the same meaning as before. By repeating the steps in Appendix 3.3 and the section
“CF model”, we obtain the optimal sales decision as:

ln Dt = ln M − at ln

⎡

⎣
(

at

1 − at

)⎛

⎝
T∑

τ=t+LG

ρτ −
T∑

τ=t+LG

στ

⎞

⎠

⎤

⎦− bt ln

(
Ŵt

Xt

)

(3.35)

We find that the negative feedback loop discussed in the section “Sales, Price, and
Delivery Time at Optimality” for the linear demand function also holds for the power
demand function, though on a logarithmic scale. We conjecture that the negative
feedback relationship between sales and average delivery times would exist in case
of any demand function form that is downward sloping in delivery time. We now
present a numerical study to compare the behavior of the CF and FLT models.

Numerical Study

The length of the planning horizon is chosen to be 24 periods where each period
corresponds to a month. The price and lead time sensitivities for each period are
presented in Table 3.1. Price sensitivity is low in the first half of the horizon and
increases in the latter half. This change in sensitivity represents a typical scenario
in semiconductor products where, as other manufacturers bring competing devices
to market, the price for the device will begin to decrease significantly (Akcali et al.
2000; Leachman and Ding 2007). Lead-time sensitivity, on the other hand, is low in
the first and third quarters, and high in the second and fourth quarters of the horizon.
The high-sensitivity periods represent seasonal effects where the market is unwilling
to wait for a longer time interval between placing the order and taking delivery of
the product.

Values of other input parameters are given in Table 3.2. The value of the curvature
parameter K2 is selected such that the slope of the CF at Ŵt = 0 does not exceed the
reciprocal of the raw process time.
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Table 3.1 Price and
lead-time sensitivities

Period range Price sensitivity (at ) Lead-time sensitivity (bt )

1–6 1 1
7–12 1 2

13–18 2 1
19–24 2 2

The relationship between utilization u and fixed lead time L for chosen values of
the CF parameters K1 and K2 is obtained as seen in Appendix 3.7. We chose the
value for guaranteed lead time as LG = L+ 1 periods. Thus sales will only be lost
if the realized lead time exceeds the planned lead time L by more than one period.
We consider four combinations of unit costs given in Table 3.3. Combination 1 is the
base case. Combination 2 allows comparison of objective function values when unit
material cost is less than the unit production cost. Combination 3 allows for a similar
comparison when WIP holding cost is less than the FGI holding cost. To facilitate
direct comparison of the objective function values, we use the modified FLT (MFLT)
model that considered WIP costs in the objective function instead of the original FLT
model used for the analytical results.

We assume there is no residual demand from earlier planning periods to be met in
the current planning horizon. Both CF and modified FLT models are initialized with
WIP equal to the targeted production in period 1, i.e., W0 = uK1. We also require
that ending WIP in periods 23 and 24 for both CF and FLT model equals uK1.
WIP inventory in the FLT model at the end of a period is the sum of the releases
in the previous L periods; we impose this boundary condition on the FLT model
by controlling the material releases. By imposing these boundary conditions, we
aim to avoid ramp-up and end-effects that would normally influence behavior at the
beginning and end of the horizon.

Table 3.2 Input parameter values

Length of planning horizon T 24 periods
Theoretical production capacity per period K1 500 units
Curvature parameter K2 100
Demand at zero price and zero lead time M 1,000 units
Early delivery flexibility ν 0 units
Fixed lead time L and corresponding target utilizations u L 1 period (u= 0.8),

2 periods (u= 0.9),
4 periods (u= 0.95)

Initial WIP for CF and FLT models (u= 0.8) Wo 400
WIP at ending of period 23 for CF and FLT models (u= 0.8) W23 400
WIP at ending of period 24 for CF and FLT models (u= 0.8) W24 400
Initial WIP for CF and FLT models (u= 0.9) Wo 900
WIP at ending of period 23 for CF and FLT models (u= 0.9) W23 900
WIP at ending of period 24 for CF and FLT models (u= 0.9) W24 900
Initial WIP for CF and FLT models (u= 0.95) Wo 1,900
WIP at ending of period 23 for CF and FLT models (u= 0.95) W23 1,900
WIP at ending of period 24 for CF and FLT models (u= 0.95) W24 1,900
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Table 3.3 Unit cost combinations

Combination Unit material cost Unit production cost Unit WIP holding cost Unit FGI holding cost

1 1/unit 1/unit 1/unit/period 1/unit/period
2 0.5/unit 1/unit 1/unit/period 1/unit/period
3 1/unit 1/unit 0.5/unit/period 1/unit/period
4 0.5/unit 1/unit 0.125/unit/period 0.25/unit/period

Both models are solved using the CONOPT solver in the general algebraic mod-
eling system (GAMS) optimization suite (www.gams.com). Since this solver does
not guarantee a globally optimal solution for the nonconvex CF model, we used six
different starting points for both models, and found that for both models all initial
starting points led to the same values for the objective function and decision variables.

The primary question of interest is how important it is to consider the effects of
congestion explicitly—do they lead to significant differences in profit, and, if so
under what conditions? One way to approach this issue is to examine how much
profit-planned solutions from the FLT model would yield if the production system is
subject to the type of congestion represented in the CF model. In other words, how
much profit is lost if we plan using a fixed lead time when our production system is,
in reality, subject to congestion as represented by a CF?

In order to examine this question, we simulate the behavior of the production
system period by period using expressions (3.6) and (3.7). The material releases
obtained from the MFLT model are used to determine the WIP level in each period,
and the CF is used to determine the production at this WIP level. The WIP level in a
period can be calculated using the endingWIP in the previous period and the release in
the current period using expressions derived inAppendix 3.8. We estimate the average
delivery time resulting from the WIP level as Lt = Ŵt/Xt . These provide estimates
of the realized production, WIP and finished goods inventory available when the
system operates as represented by the CF, allowing us to obtain actual shipments.
Projected sales in each period under the price quoted by the FLT model are given
by the linear demand function, allowing us to calculate the revenue that would be
realized if the production system were able to produce exactly the quantities planned
by the FLT model in each period. We assume sales are lost if not enough finished
goods are available for order fulfillment. The realized shipments are multiplied by
the quoted price to give the realized revenue in each period. We deduct the material,
production and inventory costs incurred due to the release and sales decisions to
obtain the realized profit for both models. We impose no boundary conditions on the
system during this simulation.

Experiments without Early Delivery Flexibility: ν= 0 In our base case we use
the unit costs described by Combination 1 to study the behavior of each model
with no early delivery flexibility, i.e., ν= 0. We will discuss the results for each
planned utilization level u, and hence each planned lead time L, separately. In all
figures, the captions “FLT,” and “CF” denote the quantity computed by the respective
optimization models. “Realized FLT” denotes the quantities that are realized when
the plans computed from the FLT model are implemented in a system that is subject
to congestion as represented by the CF.
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Fig. 3.3 Sales comparison at u= 0.8

Low utilization: u= 0.8, L= 1 The results of this experiment are summarized in
Figs. 3.3, 3.4 and 3.5. As seen in Fig. 3.4, the CF model consistently sets prices
somewhat higher than MFLT model, but not by a great deal. Both models reduce
prices in the second half of the planning horizon when the market becomes sensitive
to price. However, Fig. 3.3 shows that the FLT model realizes substantially lower
sales than the CF model in the later periods. Examination of Figs. 3.5 and 3.6, which
show the planned lead times and FGI levels, explains the situation. The CF model
plans to operate at a higher utilization level with longer lead times from the start of the
horizon. It must meet demands within the maximum lead time LG, but accomplishes
this by building finished goods inventory early in the horizon which it draws down
over time, allowing the model to meet demand within the specified maximum lead
time LG that the market will bear. As a result of this approach and the slightly higher
prices it sets, the planned sales of the CF model are lower than those of the FLT
model.

However, Fig. 3.6 shows that the finished goods inventory realized when the
material releases and prices from the FLT plan are implemented in the presence
of congestion is very different from that planned. The FLT model assumes that any
demand that does not exceed the capacity of the system can be met within the planned
lead time L= 1, allowing it to set lower prices than CF. However, the low prices and
low-quoted lead time lead to high demand, which the congested system cannot meet
within the planned lead time LG. This results in a stock out in periods 9 through 11
where there is no available product to ship and sales are lost. The net result, seen in
Fig. 3.7, is an approximately 20 % difference in planned and realized revenue for the
FLT model in periods 11 through 20.
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Fig. 3.4 Pricing comparison at u= 0.8

Fig. 3.5 Planned and realized average lead times at u= 0.8

Figure 3.7 shows that both models plan to achieve very similar revenue, but the CF
is able to achieve its aim while the FLT model is not. The difference is almost entirely
due to the FLT model’s assumption that the fixed lead time L can be maintained
regardless of utilization. The FLT model loads the system to its available theoretical
capacity, which results in utilization levels incompatible with the maximum lead time
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Fig. 3.6 Finished goods inventory levels for u= 0.8
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Fig. 3.7 Revenue comparison for u= 0.8

LG. It is also interesting that this significant difference in behavior occurs despite
low demand sensitivity to both prices and lead times.

The results of this experiment highlight what we believe is the principal reason for
an FLT model to perform poorly in an environment subject to congestion. The basic
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Fig. 3.8 Sales comparison for u= 0.9

issue is that the planning model fails to represent accurately the realized behavior
of the production system, which is manifested in the realized lead time. Figure 3.5
clearly indicates that the planned lead time L is a gross underestimate of the realized
lead time that becomes worse as the planning horizon advances.

Intermediate utilization: u= 0.9, L= 2, LG = 3 The results of this experiment are
given in Figs. 3.8–3.11. In this situation the difference between the two models is
rather less than might be expected, although the behavior of the inventory and lead
times differs somewhat between the models. This is because the maximum lead
time LG is consistent with a high level of utilization. The FLT model again loads
the system to its capacity, resulting in lead times higher than LG, but because LG

is already quite high the impact on predicted lead times is not as severe as at the
lower utilization level. The CF model, on the other hand, varies lead times over the
horizon, keeping them below LG. Hence in this case both models plan very similar
total revenues and both achieve them, although with quite different production plans.
The reason both are able to achieve their plans to a large extent is the low sensitivity
of demand to prices and lead times.

High utilization level: u= 0.95, L= 4, LG = 5 In this case, again the difference
between the two models is closer than before (Figs. 3.12–3.14). The primary reason
for this is the high WIP level imposed at the beginning of the horizon for both models.
Both models behave similarly, choosing not to make any releases into the system
in the first few periods and consuming the initial WIP. This allows lead times to be
low for both the CF and the realized FLT decisions in this initial part of the horizon.
The FLT model again loads the system to capacity in the following periods, due to
which the realized lead times gradually rise over the horizon. This is the only case



3 Integrated Production Planning and Pricing Decisions . . . 53

0

100

200

300

400

500

600

24181260

P
ri

ce

Period

FLT 
CF

Fig. 3.9 Price comparison for u= 0.9

Fig. 3.10 Lead time comparison for u= 0.9

where we impose the ending WIP conditions on the simulated decisions of the FLT
model, because otherwise the ending WIP does not rise to a value high enough to
satisfy the ending conditions. This is again due to the fact that there are no releases
early in the horizon, resulting in low WIP levels that do not rise fast enough during
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Fig. 3.11 Revenue comparison for u= 0.9

Fig. 3.12 Shipment decision comparisons for FLT model with changing ν

the course of the horizon. The detailed results of this experiment are omitted for the
sake of brevity.

Objective function values The discussion to this point has demonstrated that the
production and pricing plans developed by the CF and FLT models result in quite
different plans over the planning horizon. When the planned lead time substantially
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Fig. 3.14 Release decision comparisons for FLT model with changing ν

underestimates the manufacturing lead time that can actually be realized, severe
discrepancies between the plans and actual deliveries to customers can result, as
was the case for our experiment with u= 0.8. Table 3.4 presents a comparison of
the realized objective function values planned by the FLT model, and those realized
when the FLT plans are simulated in the presence of congestion. All quantities are
expressed as a ratio to the objective function value obtained by the CF model for the
same cost combination.

When u= 0.8, we find that even though the FLT model predicts an objective
function value higher than the CF model, the realized objective (Fixed Lead Time-
Simulated FLT-SIM) is significantly lower than both FLT and CF models. This is
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Table 3.4 Comparison of
planned and realized
objective function values

(u, L, LG) Cost scenario (ct , ft , ht , wt ) FLT FLT-SIM

(0.8, 1,2) (1,1,1,1) 1.065 0.930
(0.5, 1,1,1) 1.065 0.930
(1,1,0.5,1) 1.064 0.930
(0.5,1,0.125,0.25) 1.062 0.930

(0.9, 2,3) (1,1,1,1) 0.999 0.978
(0.5, 1,1,1) 0.999 0.978
(1,1,0.5,1) 1.000 0.978
(0.5,1,0.125,0.25) 0.999 0.977

(0.95, 4, 5) (1,1,1,1) 0.987 0.993
(0.5, 1,1,1) 0.988 0.993
(1,1,0.5,1) 0.990 0.993
(0.5,1,0.125,0.25) 0.991 0.994

due to the release decisions proposed by the FLT model that result in high WIP
levels, high lead times and product shortages, all of which lead to lower revenue and
profit margin. When the discrepancy between planned and realized lead times is less
severe, when u= 0.9, the same effect is observed although at a much smaller level.
When u = 0.95, the FLT-SIM is very slightly higher than the planned FLT objective,
because the realized lead time is shorter than the planned lead time for most of the
planning horizon. It is notable that the CF model gives the highest objective function
value in all scenarios considered, most markedly when the discrepancy between
planned and realized FLT lead time is most severe.

Experiments with Early Delivery Flexibility: ν > 0 The combinations with early
delivery flexibility ν provide more interesting insights. Early delivery flexibility
allows both plans to shift production away from periods with high-delivery-time
sensitivity to those with low-delivery-time sensitivity without the need to carry all
the production as finished goods inventory. This should result in an increase in profit
margins as flexibility increases, due to reduction in cost of carrying finished goods
inventory. The two models use this flexibility differently. The shipment decisions
made by the FLT model for different values of ν and cost Combination 4 when
LG = 2 are seen in Fig. 3.12 and those for the CF model in Fig. 3.13. The FLT model
applies all of its flexibility in the early part of the horizon, choosing to make zero
shipments in period 2. The model also chooses to increase the load in the system
as ν increases by releasing more orders, which has a detrimental effect on the profit
margin when its decisions are subjected to congestion.

Table 3.5 summarizes the planned and realized objective function values of the
models, again using the objective function value of the CF model as a base. We
observe that the profit margin for FLT-SIM decreases as ν increases from 125 to 500.
The CF model also uses its flexibility early on for lower values of ν, but for ν= 500
and 1,000, it spreads this flexibility over the horizon. It is interesting to note that the
realized objective function value FLT-SIM first decreases and then increases with
ν, suggesting that the choice of an optimal value for ν may improve the realized
performance of the FLT model. However, it is again striking that the CF model
produces higher objective function values consistently across all scenarios.
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Table 3.5 Objective function
comparison for experiments
with early delivery

(u, L, LG) n FLT FLT-SIM

(0.8, 1,2) 0 1.062 0.930
125 1.062 0.938
250 1.062 0.935
500 1.062 0.934
1,000 1.062 0.962

(0.9, 2,3) 0 0.999 0.977
125 0.999 0.984
250 0.999 0.977
500 0.998 0.993
1,000 0.998 0.997

(0.95, 4, 5) 0 0.991 0.994
125 0.991 0.996
250 0.990 0.995
500 0.990 0.995
1,000 0.990 0.995

Conclusions and Future Directions

In this chapter we have used the concept of CFs developed in the production planning
literature to develop an integrated model for jointly planning production and pricing
over time for a manufacturing firm whose resources are subject to congestion. Our
analytical results show that the interplay between lead times and prices in the demand
function requires careful consideration of the implications of pricing decisions for
lead times. Pricing decisions made under a naı̈ve capacity model that assumes any
level of demand up to the theoretical capacity of the system can be met within a fixed
lead time independent of workload have the potential to lead to significant difficulties
when low prices and optimistic lead time estimates lead to the system being unable
to meet demand within a reasonable time, causing lost sales and possibly loss of
customer goodwill. It is interesting that noticeable effects can be observed even
when the demand is not very sensitive to prices or lead times.

The critical issue is the difference between the lead times assumed in the planning
model and the realized lead times. A FLT model may perform satisfactorily in terms
of achieving its planned revenue even at high utilization if the planned lead time is
set consistently with the realized utilization levels and remains within the maximum
lead time the market will bear. However, such a model will have difficulties when
lead times are underestimated or when sensitivity to lead times changes abruptly,
since it has no ability to modulate the lead times quoted based on system state and
market sensitivities. It is also noteworthy that the CF model consistently sets higher
prices than the FLT model, which upon reflection is intuitive; the price set by the
CF model considers the costs incurred due to congestion such as WIP accumulation,
whereas the FLT model does not. When solved at an aggregate level considering
product families and planning horizons of 18–24 months, the models can be solved
sufficiently rapidly to permit extensive what-if analysis to provide decision makers
with intuition as to the likely results of their decisions.
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The CF model is, as far as we are aware, the first model to integrate dynamic
pricing and production planning over time in a manner that represents the effects of
congestion due to queuing. Most queuing-based models provide steady-state results,
while most prior models that plan prices and production over time have adopted
conventional models of capacity that do not capture the effect of workload on lead
times, and do not permit the joint manipulation of lead times and prices to maximize
profit.

These results highlight the importance of a well-designed and functional
manufacturing-marketing interface for firms operating in markets where price and
lead-time sensitivity may change over time. The problem is aggravated by the fact
that lead times are generally the responsibility of the supply chain organization, while
pricing is determined by sales and marketing groups. A common solution to this issue
we have observed in industry, and which has been advocated by a number of authors
(Graves 1986; de Kok and Fransoo 2003) is to simplify the situation by requiring
the supply chain organization to maintain a constant lead time which is agreeable
to marketing. However, in capital intensive industries where resources must be run
at high utilization for the firm to be profitable, small changes in utilization make
maintaining a constant lead time a very challenging task. The CF model proposed
here in fact addresses exactly this—modulating prices and releases to optimize profit
within the constraints of the lead time imposed by the market’s “reservation” lead
time LG. In addition, the ability to change both prices and lead times in response
to changing market sensitivity may result in higher revenues and profits relative to
using price as the only control variable.

Several directions for future work present themselves. A natural direction is the
extension of the models developed in this chapter to environments with multiple
product families that may serve quite different markets but share capacity. Many
semiconductor wafer fabs operating as foundries produce circuits for quite different
markets, such as controllers and communication devices, in the same fab using largely
the same technology and equipment. Another natural extension is to embed these
models in a multistage stochastic programming framework where scenarios would
consider different price sensitivities for different products over time. This model
presents a number of challenges due to the rapid growth of the scenario tree, but may
still be practical for the aggregate models of the type suggested in this chapter, and
considered by Allison et al. (1997).

Appendix 3.1: Concavity of Revenue Function for the FLT Model

Our revenue function has the form R=PD=P(M − aP− bL)=MP− aP2 − bLP.
Thus there is only one variable, P. Taking the second derivative of the revenue
function w.r.t P, we obtain

d2R

dP 2
= −2a ≤ 0
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Since we assume a≥ 1,we have − 2a < 0. Hence the revenue function is strictly
concave.

Appendix 3.2: Nature of Demand and Revenue Function for the
CF Model

The demand function has the form. Dt = M−atPt−bt

(
Ŵt

Xt

)
. Under very reasonable

conditions (see Proposition 3), we can show that the capacity constraint is tight, i.e.,

Xt = f (Ŵt ) = K1Ŵt

K2+Ŵt
. Under these conditions, the demand function takes the form

Dt=M− atPt− bt
K1

(K2+Ŵt ). Thus, the demand function has a linear form. The CF constraint
(3.8) is convex, hence the constraint set is also convex.

Then, revenue function has the form gt=PtDt=Pt (M−atPt− bt
K1

(K2+Ŵt )). We have:

∂gt

∂Ŵt

= − bt

K1
Pt ;

∂2gt

∂Ŵ 2
t

= 0

∂gt

∂Pt

= M − 2atPt − bt

K1
(K2 + Ŵt );

∂2gt

∂Pt
2 = −2at

∂2gt

∂Pt∂Ŵt

= − bt

K1

In order to have quasi-concavity, we require that

−
(

∂gt

∂Ŵt

)2

= −
(
− bt

K1
Pt

)2

= −bt
2

K2
1

P 2
t (3.36)

and

2
∂2gt

∂Ŵt∂Pt

.
∂gt

∂Ŵt

.
∂gt

∂Pt

− ∂2gt

∂Ŵ 2
t

(
∂gt

∂Ŵt

)2

− ∂2gt

∂P 2
t

(
∂gt

∂Ŵt

)
> 0

After some algebra the expression above reduces to 2
b2
t

K2
1

Pt

(
M− atPt− bt

K1
(K2+Ŵt )

)
. If sales

Dt=M− atPt− bt
K1

(K2+Ŵt )〉0, it is clear that this expression is nonnegative. Thus from (3.36)
and this expression we conclude that the revenue function is quasi-concave.

Appendix 3.3: KKT Conditions for CF and FLT Models

KKT conditions for CF model The Lagrangian for this planning model is as below:

L = −
T∑

t=1

[

MPt − atP
2 − btPt

(
Ŵt

Xt

)

− ctRt − φtXt − htIt − ωtWt

]
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+
T∑

t=1

λt (Wt −Wt−1 +Xt − Rt ) +
T∑

t=1

πt (It − It−1 −Xt + Yt )

+
T∑

t=1

θt (K2Xt +XtŴt ) +
T∑

t=1

μt

(

−M + atPt + bt

(
Ŵt

Xt

))

+
T∑

t=1

πt

(

−
t∑

τ=1

Yτ+
τ=t−LG∑

τ=1

(

−M + aτPτ + bτ

(
Ŵτ

Xτ

)))

+
T∑

t=1

ρt

(
t∑

τ=1

Yτ −
τ=t−LG∑

τ=1

(

−M + aτPτ + bτ

(
Ŵτ

Xτ

))

− υ

)

+
T∑

t=1

χt

(
Ŵt − 1

2
(Wt−1 +Wt )

)

The first order optimality conditions and complementary slackness conditions follow:

First Order Optimality Conditions

∂L

∂It

= ht + πt − πt−1 ≥ 0

(3.37)
∂L

∂It

= hT + πT

It

∂L

∂It

= IT (hT + πt − πt−1) = 0

(3.38)

It

∂L

∂It

= IT (hT + πT )

∂L

∂Rt

= cT − λt ≥ 0 (3.39)

Rt

∂L

∂Rt

= RT (cT − λT ) = 0 (3.40)

∂L

∂Wt

= ωt + λt − λt+1 − 1

2
(χt + χt+1) ≥ 0 (3.41)

Wt

∂L

∂Wt

= 0 (3.42)

∂L

∂Xt

= φt + λt − πt + θt (K2 + Ŵt )

− btŴt

X2
t

⎛

⎝Pt + μt−
T∑

τ=t+LG

στ+
T∑

τ=t+LG

ρτ

⎞

⎠ (3.43)
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Xt

∂L

∂Xt

= 0 (3.44)

∂L

∂Pt

= −M + atPt + bt

(
Ŵt

Xt

)

+ at

⎛

⎝Pt + μt−
T∑

τ=t+LG

στ+
T∑

τ=t+LG

ρτ

⎞

⎠≥ 0

(3.45)

Pt

∂L

∂Pt

= 0 (3.46)

∂L

∂Yt

= πt−
T∑

τ=t

στ+
T∑

τ=t

ρτ≥ 0 (3.47)

Yt

∂L

∂Yt

= 0 (3.48)

∂L

∂Ŵt

= θt (Xt −K1) + χt + bt

Xt

⎛

⎝Pt + μt−
T∑

τ=t+LG

στ+
T∑

τ=t+LG

ρτ

⎞

⎠≥ 0 (3.49)

Ŵt

∂L

∂Ŵt

= 0 (3.50)

Complementary Slackness Conditions

θt (K2Xt +XtŴt −KtŴt ) (3.51)

μt

(

−M + atPt + bt

(
Ŵt

Xt

))

= 0 (3.52)

σt

(

−
t∑

τ=1

Yτ+
t−LG∑

τ=1

(

M − aτPτ − bτ

(
Ŵτ

Xτ

)))

= 0 (3.53)

ρt

(
t∑

τ=1

Yτ−
t−LG∑

τ=1

(

M − aτPτ − bτ

(
Ŵτ

Xτ

))

− v

)

= 0 (3.54)

χt

(
Ŵt − 1

2
(Wt−1 +Wt )

)
= 0 (3.55)

Nonnegativity conditions �t , πt : unrestricted, θt , μt , σt , ρt , χt ≥ 0

KKT conditions for FLT model The Lagrangian for this planning model is as below:

L = −
t∑

τ=1

[
MP̂t − at P̂

2
t − bt P̂tLG −ct X̂t − ht Ît

]

+
t∑

τ=1

γt

(
Ît − Ît−1 − X̂t−LG

+ Ŷt

)
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+
T∑

t=1

δt (X̂t −K1) +
T∑

t=1

μ̂t ( −M + at P̂t + btLG)

+
T∑

t=1

σ̂t

(

−
t∑

τ=1

Ŷt +
t−LG∑

T=1

(M − aτ P̂τ − bτLG)

)

+
T∑

t=1

ρ̂t

(
t∑

τ=1

Ŷτ −
t−LG∑

T=1

(M − aτ P̂τ − bτLG)−v

)

The first order optimality conditions and complementary slackness conditions follow.

First Order Optimality Conditions

∂L

∂Ît

= ht + γt − γt+1 ≥ 0 (3.56)

Î t
∂L

∂Ît

= 0 (3.57)

∂L

∂X̂t

= ct − γt+LG
+ δt ≥ 0 (3.58)

X̂t

∂L

∂X̂t

= 0 (3.59)

∂L

∂P̂t

= −M + at P̂t + btL+ at

(

P̂t + μ̂t −
T∑

τ=t+L

σ̂τ +
T∑

τ=t+L

σ̂τ

)

≥ 0 (3.60)

P̂t

∂L

∂P̂t

= 0 (3.61)

∂L

∂Yt

= γt −
T∑

l=t

σ̂l +
T∑

l=t

P̂l ≥ 0 (3.62)

Ŷt

∂L

∂Ŷt

= 0 (3.63)

Complementary Slackness Conditions

δt (X̂t −K) = 0 (3.64)

μ̂t ( −M + at P̂t + btLG) = 0 (3.65)

P̂ (
t∑

l=1

Ŷl +
t−LG∑

l=1

(M − alP̂l − blLG)) = 0 (3.66)

P̂t (
t∑

l=1

Ŷl −
t−LG∑

l=1

(M − alP̂ − blLG) − v) = 0 (3.67)
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Nonnegativity conditions γt : unrestricted, δt , μ̂t , σ̂t , ρ̂t ≥ 0

Appendix 3.4: Proof of Proposition 1

From equation (3.50), we have Ŵt
∂L

∂Ŵt
= 0.

From Ŵt > 0, we have

∂L

∂Ŵt

= θt (Xt −K1) + χt + bt

Xt

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ = 0

⇒ θt = 1

(K1 −Xt )

⎛

⎝χt + bt

Xt

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠

⎞

⎠ (3.68)

From equation (3.46), we have Pt
∂L
∂Pt

= 0.
From Pt > 0,

∂L

∂Pt

= −M + atPt + bt

(
Ŵt

Xt

)

+ at

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ = 0

⇒
⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ = 1

at

(

M − atPt − bt

(
Ŵt

Xt

))

≥ 0

Since sales Dt > 0, we have

1

at

(

M − atPt − bt (
Ŵt

Xt

)

)

> 0 (3.69)

For the CF model, we have K1 > Xt . This statement can be inferred from Fig. 3.1,
where K1 refers to the theoretical capacity indicated by the “fixed capacity” line and
Xt is the output of the concave CF. Using this fact and Eq. (3.69) in (3.68), we have
θt > 0. From complementary slackness condition (3.51), if θt > 0, K2Xt + XtŴt −
K1Ŵt = 0, implying that the capacity constraint is tight. QED.

Appendix 3.5: Proof of Proposition 2

From equation (3.44), we have Xt
∂L
∂Xt

= 0.
From Xt > 0, we have

∂L

∂Xt

= φt + λt − πt + θt (K2 + Ŵt ) − btŴt

X2
t

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠= 0
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yielding

πt = φt + λt + θt (K2 + Ŵt ) − btŴt

X2
t

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ .

From equation (3.40), we have Rt (ct−λt )= 0. From Rt > 0, we have λt = ct. Thus

πt = ct + θt (K2 + Ŵt ) − btŴt

X2
t

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ .

From (3.68), we have

θt = 1

(K1 −Xt )

⎛

⎝χt + bt

Xt

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠

⎞

⎠

⇒ bt

Xt

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ = θt (K1 −Xt ) − χt

Using this relation in the expression for πt , we have

πt = φt + ct + θt (K2 + Ŵt ) + Ŵt

Xt

(χt − θt (K1 −Xt )) (3.70)

Since θt > 0, we have K2Xt + XtŴt − K1Ŵt = 0 from complementary slackness

condition (3.51). Rewriting, we obtain K2 + Ŵt = K1Ŵt

Xt
. Using this in (3.70), we

have

πt =φt + ct + θtK1Ŵt

Xt

+ Ŵtχt

Xt

− θtK1Ŵt

Xt

+ Ŵt θt =φt + ct + Ŵtχt

Xt

+ Ŵt θt > 0

QED.

Appendix 3.6: Proof of Proposition 3

We have two cases. Shipments can be made from the production quantity in the
current period or from ending inventory from the previous period.
Case 1: X̂t > 0
In this case, sales are fulfilled from production in that period.

From equation (3.59),

X̂t−LG

∂L

∂X̂t−LG

= X̂t−LG
(ct−LG

− γt + δt−LG
) = 0
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Since X̂t > 0 the expression in brackets equals zero. Rearranging the terms in the
bracket, we obtain γt = ct−LG

+ δt−LG
> 0, which implies that γt > 0 for any period

with positive production.

Case 2: Ît > 0
In this case, shipments take place from ending inventory of previous period.

From equation (3.57) for period t− 1, we have

γt = ht−1 + γt−1 (3.71)

Let the last positive production have taken place t-τ periods before and sales in all
subsequent periods be met from inventory resulting from this production. In other
words, X̂t−LG−τ > 0 and X̂t−LG−τ+1 = ... = X̂t−LG

= 0. Then from Case (1) we
have γt-τ > 0.

In addition, we have Ît−τ , Ît−τ+1, ..., Ît−1 > 0. Writing equation (3.71) for periods
t-τ + 1 to t, we have

γt−τ+1 = ht−τ + γt−τ

γt−τ+2 = ht−τ+1 + γt−τ+1
...

γt = ht−1 + γt−1

Adding the above expressions, we get

γt =
t−1∑

i=t−τ

hi + γt−τ

Since both terms on the right hand side are positive, we have γt > 0. QED.

Appendix 3.7

By Little’s Law we have L= Ŵt
Xt

, implying that Ŵt = LXt . Noting that the capacity
constraints will be tight, we have Xt= K1Ŵt

K2+Ŵt
. The utilization ut in period t can thus be

calculated as ut= Xt
K1

= LXt
LXt+K2

. Solving for K2, we obtain K2 = L(1− ut )K1. Choosing
K1 =M/2, for M = 1,000 we obtain K1 = 500. For L= 1 and ut = 0.8, we obtain
K2 = 100.

Appendix 3.8

From WIP Balance constraint of CF model, we have:

Wt = Wt−1 −Xt + Rt
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Writing the constraint for WIP level as an equality, we have Ŵt=Wt−1+Wt
2 , implying

Wt=2Ŵt−Wt−1. Setting the two expressions for Wt equal to each other, we find that
Xt=Rt−2Ŵt+2Wt−1

Writing the CF constraint as an equality,

Xt = f (Ŵt ) = K1Ŵt

K2 + Ŵt

Comparing both equations for Xt , we have

Rt − 2Ŵt + 2Wt−1 = K1Ŵt

K2 + Ŵt

Solving the resulting quadratic in Ŵt

Ŵt = (Rt − 2K2 + 2Wt − 1 −K1)±
√

(Rt − 2K2 + 2Wt −1 −K1)2 + 8K2(Rt +Wt − 1)

4

We use the positive root for calculating WIP level in a period when simulating FLT
decisions under congestion.

References

Adida, E., & Perakis, G. (2006). A robust optimization approach to dynamic pricing and inventory
control with no backorders. Mathematical Programming Series B, 107, 97–129.

Adida, E., & Perakis, G. (2010). Dynamic pricing and inventory control: robust vs. stochastic
uncertainty models: A computational study. Annals of Operations Research, 181, 125–157.

Agnew, C. (1976). Dynamic modeling and control of some congestion prone systems. Operations
Research, 24(3), 400–419.

Ahn, H., Gumus, M., & Kaminsky, P. (2007). Pricing and manufacturing decisions when demand
is a function of prices in multiple periods. Operations Research, 55(6), 1039–1057.

Akcali, E., Nemoto, K., & Uzsoy, R. (2000). Quantifying the benefits of cycle-time reduction in
semiconductor wafer fabrication. IEEE Transactions on Electronics Packaging Manufacturing,
23, 39–47.

Allison, R. A. H., Yu, J., Tsai, L. H., Liu, C., Drummond, M., Kayton, D., Sustae, T., & Witte, J.
(1997). Macro model development as a bridge between factory level simulation and LP enter-
prise systems. IEEE/CPMT International Electronics Manufacturing Technology Symposium:
408–416.

Asmundsson, J. M., Rardin, R. L., Turkseven, C. H., & Uzsoy, R. (2009). Production planning
models with resources subject to congestion. Naval Research Logistics, 56, 142–157.

Asmundsson, J. M., Rardin, R. L., & Uzsoy, R. (2006). Tractable nonlinear production planning
models for semiconductor wafer fabrication facilities. IEEE Transactions on Semiconductor
Manufacturing, 19, 95–111.

Boyaci, T., & Ray, S. (2003). Product differentiation and capacity cost interaction in time and price
sensitive markets. Manufacturing and Service Operations Management, 5(1), 18–36.

Buzacott, J. A., & Shanthikumar, J. G. (1993). Stochastic models of manufacturing systems.
Englewood Cliffs, NJ, Prentice-Hall.



3 Integrated Production Planning and Pricing Decisions . . . 67

Charnsirisakskul, K., Griffin, P., & Keskinocak, P. (2004). Order selection and scheduling with
leadtime flexibility. IIE Transactions, 36, 697–707.

Charnsirisakskul, K., Griffin, P., & Keskinocak, P. (2006). Pricing and scheduling decisions with
leadtime flexibility. European Journal of Operational Research, 171, 153–169.

Chatterjee, S., Slotnick, S. A., & Sobel, M. J. (2002). Delivery guarantees and the interdependence
of marketing and operations. Production and Operations Management, 11(3), 393–410.

Chen, Z. L., & Hall, N. G. (2010). The coordination of pricing and scheduling decisions.
Manufacturing and Service Operations Management, 12(1), 77–92.

de Kok,A. G., & Fransoo, J. C. (2003). Planning supply chain operations: definition and comparison
of planning concepts. OR Handbook on supply chain management. A. G. de Kok & S. C. Graves
(597–675). Amsterdam: Elsevier.

Dellaert, N. P. (1991). Due date setting and production control. International Journal of Production
Economics, 23, 59–67.

Deng, S., &Yano, C. A. (2006). Joint production and pricing decisions with setup costs and capacity
constraints. Management Science, 52, 741–756.

Donohue, K. L. (1994). The economics of capacity and marketing measures in a simple
manufacturing environment. Production and Operations Management, 3(2), 78–99.

Duenyas, I. (1995). Single facility due date setting with multiple customer classes. Management
Science, 41(4), 608–619.

Duenyas, I., & Hopp, W. J. (1995). Quoting customer lead times. Management Science, 41, 608–
619.

Easton, F. F., & Moodie, D. R. (1999). Pricing and lead time decisions for make-to-order firms with
contingent orders. European Journal of Operational Research, 116, 305–318.

Elhafsi, M. (2000). An operational decision model for lead-time and price quotation in congested
manufacturing systems. European Journal of Operational Research, 126, 355–370.

Elhafsi, M., & Rolland, E. (1999). Negotiating price/delivery date in a stochastic manufacturimg
environment. IIE Transactions, 31, 255–270.

Eliashberg, J., & Steinberg, R. (1991). Marketing-production joint decision-making. Management
science in marketing, handbooks in operations research and management science. J. Eliashberg
and J. D. Lilien, North Holland: 827–880.

Elmaghraby, W., & Keskinocak, P. (2003). Dynamic pricing in the presence of inventory considera-
tions: Research overview, current practices and future directions. Management Science, 49(10),
1287–1309.

Graves, S. C. (1986). A tactical planning model for a job shop. Operations Research, 34, 552–533.
Hackman, S. T., & Leachman, R. C. (1989). A general framework for modeling production.

Management Science, 35, 478–495.
Hopp, W. J., & Spearman, M. L. (2001). Factory physics: Foundations of manufacturing

management. Boston, Irwin/McGraw-Hill.
Johnson, L. A., & Montgomery, D. C. (1974). Operations research in production planning,

scheduling and inventory control. New York: John Wiley.
Kacar, N. B., & Uzsoy, R. (2010). Estimating clearing functions from simulation data. Winter

Simulation Conference. B. Johansson, Jain, S., Montoya-Torres, J., Hugan, J., Yucesan, E.
Baltimore, MD.

Karmarkar, U. S. (1989). Capacity loading and release planning with work-in-progress (WIP) and
lead-times. Journal of Manufacturing and Operations Management, 2(105-123).

Kefeli, A., Uzsoy, R., Fathi, Y., & Kay, M. (2011). Using a mathematical programming model
to examine the marginal price of capacitated resources. International Journal of Production
Economics, 131(1), 383–391.

Keskinocak, P., & Tayur, S. (2004). Due-date management policies. In D. Simchi-Levi, S. D. Wu,
& Z. M. Shen (Eds.), Supply chain analysis in the e-business era: Handbook of quantitative
supply chain analysis. Kluwer Academic Publishers.

Leachman, R. C., & Ding, S. (2007). Integration of speed economics into decision-making for
manufacturing management. International Journal of Production Economics, 107, 39–55.



68 A. Upasani and R. Uzsoy

Liu, L. M., Parlar, M., & Zhu, S. X. (2007). Pricing and lead time decisions in decentralized supply
chains. Management Science, 53(5), 713–725.

Low, D. W. (1974). Optimal dynamic pricing policies for an M/M/s queue. Operations Research,
22, 545–561.

Medhi, J. (1991). Stochastic models in queuing theory. Academic Press.
Missbauer, H. (2009). Models of the transient behaviour of production units to optimize the

aggregate material flow. International Journal of Production Economics, 118(2), 387–397.
Missbauer, H., & Uzsoy, R. (2010). Optimization models for production planning. Planning pro-

duction and inventories in the extended enterprise: A state of the art handbook. K. G. Kempf,
P. Keskinocak and R. Uzsoy (437–508). New York: Springer.

Orcun, S., Uzsoy, R., & Kempf, K. G. (2006). Using system dynamics simulations to compare
capacity models for production planning. Winter Simulation Conference. Monterey, CA.

Pahl, J., Voss, S., & Woodruff, D. L. (2005). Production planning with load dependent lead times.
4OR: A Quarterly Journal of Operations Research, 3, 257–302.

Pahl, J., Voss, S., & Woodruff, D. L. (2007). Production planning with load dependent lead times:
An update of research. Annals of Operations Research, 153, 297–345.

Palaka, K., Erlebacher, S., & Kropp, D. H. (1998). Lead-time setting capacity utilization, and
pricing decisions under lead-time dependent demand. IIE Transactions, 30, 151–163.

Pekgun, P., Griffin, P. M., & Keskinocak, P. (2008). Coordination of marketing and production for
price and leadtime decisions. IIE Transactions, 40(1), 12–30.

Plambeck, E. L. (2004). Optimal leadtime differentiation via diffusion approximation. Operations
Research, 52(2), 213–228.

Ray, S., & Jewkes, E. M. (2004). Customer lead time management when both demand and price
are lead time sensitive. European Journal of Operational Research, 153, 769–781.

Selçuk, B., Fransoo, J. C., & de Kok, A. G. (2007). Work in process clearing in supply chain
operations planning. IIE Transactions, 40, 206–220.

So, K. C., & Song, J.-S. (1998). Price, delivery time guarantees and capacity selection. European
Journal of Operational Research, 111, 28–49.

Spearman, M. L. (1991). An analytic congestion model for closed production systems with ifr
processing times. Management Science, 37(8), 1015–1029.

Spitter, J. M., A. G. de Kok and N. P. Dellaert (2005a). Timing production in LP models in a rolling
schedule. International Journal of Production Economics, 93–94, 319–329.

Spitter, J. M., Hurkens, C. A. J., de Kok, A. G., Lenstra, J. K., & Negenman, E. G. (2005b). Linear
programming models with planned lead times for supply chain operations planning. European
Journal of Operational Research, 163, 706–720.

Srinivasan, A., Carey, M., & Morton, T. E. (1988). Resource pricing and aggregate scheduling
in manufacturing systems. Graduate School of Industrial Administration, Carnegie-Mellon
University. Pittsburgh, PA

Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world.
New York: McGraw-Hill.

Swann, J. L. (2001). Dynamic pricing models to improve supply chain performance. Depart-
ment of Industrial Engineering and Management Sciences. Evanston, IL 60601, Northwestern
University.

Tardif, V., & Spearman, M. L. (1997). Diagnostic scheduling in finite-capacity production
environments. Computers and Industrial Engineering, 32, 867–878.

Upasani, A., & Uzsoy, R. (2008). Incorporating manufacturing lead times in joint production-
marketing models: A review and further directions. Annals of Operations Research, 161, 171–
188.

Webster, S. (2002). Dynamic pricing and lead time policies for make to order systems. Decision
Sciences, 33(4), 579–599.

Yano, C. A., & Gilbert, S. M. (2003). Coordinated pricing and production/procurement decisions: A
review. Managing business interfaces: Marketing, engineering and manufacturing perspectives.
A. Charkarvarty and J. Eliashberg, Kluwer Academic Publishers: 65–103.



Chapter 4
Refined EM Method for Solving Linearly
Constrained Global Optimization Problems

Lu Yu and Shu-Cherng Fang

Introduction

In recent years global optimization has become a rapidly developing field. Many
real life problems in areas such as physics, chemistry, and molecular biology involve
nonlinear objective functions where multiple local optima may exist. These problems
can be difficult to optimize by conventional mathematical tools, such as gradient
methods.

To locate a global optimum among many local optima, various stochastic search
methods have been proposed. Commonly used algorithms include simulated anneal-
ing (Ingber 1994), multilevel methods (Kan andTimmer 1987), evolutionary methods
(Michalewicz 1996), partitioning methods (Wood 1991), and particle swarm opti-
mizer (Kennedy and Eberhart 1995). These methods utilize a stochastic mechanism
to search for better bounds on an objective function to be optimized. Some of these
methods may combine the search process with local refinements like hill-climbing
or gradient-based methods (Hart 1994).

Recently, Birbil and Fang proposed a new population-based stochastic search al-
gorithm (Birbil and Fang 2002, 2004). The method is called electromagnetism-like
method (EM), which utilizes an attraction-repulsion mechanism to move a pop-
ulation of points toward optimality. The computational results have shown that
EM converges rapidly (in terms of the number of functions evaluations) to the
global optimal solutions and produce better results than other known methods in
solving problems without the using higher order information of the objective func-
tions. In this paper we extend the EM method to solve optimization problems
defined by general linear constraints without using the derivatives of the objective
function.
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Let f ( · ) be a real-valued function, A be an m × n real matrix, and b be an
m−vector. In this paper, we consider the following global optimization problem
with linear constraints:

min f (x)
s.t. Ax ≤ b

x ∈ Rn.

(4.1)

We do not require any special information or structure of the objective function, as
long as we know how to evaluate its value at each point. But the feasible domain
S = {x ∈ Rn | Ax ≤ b} is assumed to be a nonempty bounded set. The refined EM
seeks for the global solution of (4.1) while maintaining feasibility in each iteration.

The paper is organized as follows. In Sect. 4.2, the main structure of refined
EM, including its major steps, is given. The computational results and comparisons
between refined EM and existing global optimizers are given in Sect. 4.3. Conclusions
are given in Sect. 4.4.

Refined Electromagnetism-Like Mechanism (Refined EM)

We assume that for problem (4.1), the following parameters are given: the dimension
of the problem (n), the objective function (f (·)), the matrix A ∈ Rm×n and the vector
b ∈ Rm. Since EM works on a set of sample points (population), there is an additional
predetermined parameter, r , which denotes the number of points in the population.

Our goal is to design a refined EM seeking for the global solutions while main-
taining feasibility in each iteration. In this way, the algorithm always provides a
meaningful solution even when it stops prematurely. The refined EM contains four
major steps, namely, “Initialization”, “Local Search”, “Calculation of Aggregated
Force” and “Movement”. The main structure of refined EM is given in Algorithm 1.
The details of these procedures will be given in Sects. 4.2.1–4.2.5.

Algorithm 1  EM for linear-constrained Problems
1: Define parameters.
2: Initialize(r)
3: iteration = 1.
4: while termination criteriaare not satisfied do
5: Local ()
6: CalcF ()
7: Move ()
8: Check termination criteria
9: iteration = iteration + 1.

10: end while
11: Output xbest and  f (xbest).
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Initialization

The Initialization procedure is used to sample a certain number (r) of points randomly
from the feasible domain,

S = {x ∈ Rn| Ax ≤ b} (4.2)

which is an n dimensional polyhedron.
Before the algorithm starts, some parameters are defined as follows:

Parameters

�tol: the stopping tolerance.
�: the stopping parameter.
φ > 1, 0 < θ < 1: the increasing and decreasing factors, respectively.

�tol and � will be used to check termination criteria. φ > 1 and 0 < θ < 1 are used
to increase and decrease the stopping parameter �.

After the parameters have been defined, initialization starts. There are four meth-
ods considered in refined EM to generate initial feasible solutions. The first method
is to ignore the linear constraints at the beginning and randomly generate points.
Then a newly generated point is accepted if it satisfies the linear constraints. This
strategy is straightforward and easy to implement. However, such a strategy may not
be efficient for generating a diverse feasible population.

The second method for generating initial feasible population works as described
below. Since the constraint functions are all linear, we may produce a linear pro-
gramming problem by using the feasible domain S and an artificial linear function as
the objective function. Then we apply the simplex method or interior point method
to solve the problem. During the solving procedure, by recording the location of the
point in each iteration, we are able to obtain some feasible solutions to the problem.
Finally, the convex combinations of these solutions can be used as the initial feasible
points. Since the linear programming problem can be solved in polynomial time
by the interior point method, this method may finish generating the initial feasible
population in polynomial time.

The third way of providing an initial feasible population is explained below. First,
find an interior point x∗ that lies inside the feasible domain S by solving the following
linear programming problem

max t

s.t. Ax + te ≤ b
(4.3)

with the optimal solution (x∗, t∗), where e = (1, 1, . . . , 1)T ∈ Rm. If t∗ > 0, x∗
can be accepted. Then, from x∗, a set of random vectors {v1, v2, . . . , vq} pointing to
different directions are generated. Before extending these vectors to hit the boundary
of S, if we choose the step length αi carefully, we can use the points

xi = x∗ + αivi , αi > 0, i = 1, 2, . . . , q, (4.4)
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and their convex combinations as the initial feasible points. This method involves
solving only one linear programming problem.

The fourth method of generating the initial feasible solutions is first find the
maximum-volume ellipsoid which is inscribed in the feasible region S. The ellipsoid
can be represented as (x∗, E∗), where x∗ ∈ Rn is the center of the ellipsoid and
E ∈ Sn+, where Sn+ is the cone of all symmetric positive definite matrices in Rn.
Then, an initial population within the ellipsoid is randomly generated as below:

xi = x∗ + E∗ηi , i = 1, 2, . . . , r , (4.5)

where ηi ∈ Rn and ‖ηi‖ ≤ 1, i = 1, 2, . . . , r , are vectors generated along different
directions. Since the ellipsoid is inside the feasible region, the points generated
are feasible. Furthermore, the maximum-volume ellipsoid helps us to distribute the
points as diverse as possible.

The computation of the maximum-volume ellipsoid inscribed inside the feasible
region is carried out by the interior point method developed by (Zhang and Gao 2001).
In their article, there exists a good state-of-the-art optimization software to calculate
the maximum-volume ellipsoid.

In our algorithm, the method of finding the maximum volume ellipsoid is first
applied since it may generate diverse initial solutions. If the interior point method is
unable to find the ellipsoid in a certain number of iterations, we turn to use the third
method which is described previously. When the calculated step lengths in the third
method are too small, which means the generated points are too close to x∗ in (4.4),
the second method is applied. Finally, if the second method still does not provide
enough initial feasible solutions, the first method has to be utilized, though it appears
to be inefficient.

Local Search

After the initial population has been generated, the procedure Local Search is used
to find better solutions in their neighborhoods. Many powerful local search methods
can be utilized in this step. In this paper a direct search method is applied only at the
current best point xbest. In each iteration of the direct search method, we evaluate the
objective function value of each selected point in the neighborhood of xbest. The new
points in the neighborhood are obtained by adding to xbest a set of feasible directions
{di , i = 1, 2, . . . , k}:

xi
nbr = xbest + aidi , i = 1, 2, . . . , k, (4.6)

where ai > 0 is the step length. Then we keep the one with the lowest function value
in {xbest, xi

nbr, i = 1, 2, . . . , k} as the updated xbest. This procedure is repeated until
the maximum number of iterations has been reached.

The calculation of the directions {di , i = 1, 2, . . . , k} is a key step. When xbest is
not close to the boundary of the feasible domain S, a good choice of the directions
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is [d1, d2, . . . , dk] = [I −I ], where I is the identity matrix. Otherwise, the set of
searching directions {d1, . . . , dk} should reflect the geometry of any portion of the
boundary of the feasible region near xbest.

To calculate {d1, . . . , dk} in the latter case, we adopt the idea in (Kolda et al.
2003). Let ai be the i th row of A in (4.1) and bi be the i th element of b in (4.1). For
a given ε > 0, define

I = {i | aixbest − bi ≥ −ε, i = 1, 2, . . . , m}, (4.7)

to be the active set whose elements are the indices of the active constraints. Let Ã, b̃
be the matrix and vector that correspond to the active set:

Ã = [
ai

]
and b̃ = [

bi

]
, i ∈ I. (4.8)

Define

vi � vi(xbest, ε) = ai T , i ∈ I. (4.9)

Geometrically vi(xbest, ε) is the outward-pointing normal to the corresponding facet
of S. Define K(xbest, ε) to be the cone generated by the vectors in {vi(xbest, ε), i ∈ I},
and its polar cone K0(xbest, ε) = {u | uT v ≤ 0, ∀ v ∈ K(xbest, ε)}. Then
the search directions can be formed by the vectors which generate the cone
K0(xbest, ε).

If the vectors {vi} that generate the cone K(xbest, ε∗) are linearly independent
for some ε∗ > 0, one can construct the generators of the cone K0(xbest, ε) in the
following way: let V denote the matrix whose columns are {vi}. Suppose there are
s vectors, V is an n × s matrix. Let N be the matrix whose columns are in the basis
of the null space of V T . Then one can show that for any ε, 0 < ε < ε∗, a set of
generators of K0(xbest, ε) can be found among the columns of N , V (V T V )−1 and
−V (V T V )−1.

The next task is to determine a set of linearly independent vectors {vi}. If ε is
set to be too large, there could be more rows in Ã and there is a higher probability
that the rows are linearly dependent. If ε is too small, the directions obtained could
be useless. Thus the direct search used in refined EM method tries to dynamically
decrease ε to achieve our goal. The calculation of {di , i = 1, 2, . . . , k} is summarized
in Algorithm 2.

Calculate Force

The computation of the total force vector is inspired by the superposition principle of
electromagnetism theory (Cowan 1968). In each iteration, a charge qi of each point
xi is calculated according to f (xi) in (4.10). The charge reflects the efficiency of the
objective function value of the corresponding point in the population. The point with
a higher charge has a lower function value and tends to attract other points to come
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4.8

closer to it, while the one with lower charge repulses other particles. The charge of
particles are defined as

qi = exp

(
−n× f (xi) − f (xbest)

∑r
k=1 [f (xk) − f (xbest)]

)
. (4.10)

Then the total force vector f i exerted on point xi is calculated by adding to-
gether the individual component forces, f ij , between pairs of points xi and xj ,
j = 1, 2, . . . , r , j = i. The magnitude of this component force is inversely propor-
tional to the Euclidean distance between the points and directly proportional to the
product of their charges.

f i =
r∑

j =i

f ij, i = 1, 2, . . . , r , (4.11)

where

f ij =
{

(xj − xi) qiqj

‖xj−xi‖2 , if f (xj ) < f (xi)

(xi − xj ) qiqj

‖xj−xi‖2 , if f (xj ) ≥ f (xi)
, i = 1, 2, . . . , r. (4.12)

Closely examining the algorithm, we see that the determination of a direction via
the total force vector is similar to the statistical estimation of the gradient vector
of f . But the Euclidean distance between two points also affects the magnitude of
the force. Therefore, the points that become close enough may lead each other to a
direction other than the statistically estimated gradient of f .

To prevent the algorithm from converging prematurely (for details, please refer
(Birbil and Fang 2004)), a modification is performed by adding a perturbed point xp

which is the farthest point from the current best point xbest defined by

xp = argmax{‖xbest − xi‖, i = 1, 2, . . . , r}. (4.13)
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At xp, the component forces are perturbed by a random number λ ∼ U (0, 1),

fpj =
{

(xj − xp) λqpqj

‖xj−xp‖2 , if f (xj ) < f (xp),

(xp − xj ) λqpqj

‖xj−xp‖2 , if f (xj ) ≥ f (xp).
(4.14)

Also, the directions of the component forces are perturbed. That is, if λ is less
than a given parameter ν, then the direction of the component force is reversed.
Consequently, there exists one point in the population for which the direction of
movement may be reversed. The purpose of introducing the perturbed point is to allow
the algorithm explore more areas in the feasible region so that a global convergent
property can be proved. For details of the convergence proof, please refer to Birbil
and Fang (2004).

Movement

In refined EM, the mechanism of movement of the points is similar to that of the
original EM for bounded constraints. But instead of moving inside the feasible re-
gion formed only by the lower and upper bounds, the points have to shift inside a
polyhedron formed by the bounds and linear constraints.

To simplify the notation, let f i ← f i

‖f i‖ , (i = 1, 2, . . . , r and i = best) be the

normalized force vector. A feasible point xi is moved according to the following
equation:

xi
new = xi + λf i(RNGi), i = 1, 2, . . . , r and i = best, (4.15)

where λ ∼ U (0, 1] and xi
new is the updated point. Our goal is to calculate the

appropriate RNGi > 0 so that xi
new is still feasible.

For a point xi in the population, let Li be the set of indices corresponding to the
constraints which may lead to infeasibility:

Li = {j | aj f i > 0, j = 1, 2, . . . , m}, (4.16)

where aj is the j th row of matrix A. We can see that if aj f i ≤ 0, no matter how large
the step length is, the new point remains feasible. It simply goes further away from
the boundary of the feasible region. Therefore, only the rows aj whose indices are in
Li need to be considered. The maximum step length allowed along the force vector
f i is given by

RNGi =
⎧
⎨

⎩
minj∈Li

(
bj − ajxi

ajf i

)
, if Li is not empty,

1, if Li is empty.

(4.17)

Then, if a direction f i is pointing outward to the boundary that may lead the point xi

to infeasibility, RNGi will prevent xi from going too far. Thus Eq. (4.15) guarantees
the feasibility of the updated point.
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If a point xi is close to the boundary of S and the direction f i exerted on it
is pointing outward to that boundary, RNGi could be very small. This boundary
is called an active constraint. In this case, the point will not be updated to a new
position. To resolve this problem, one more step is applied at xi .

The first thing is to find the active constraints. Let ε be a small positive number,
aj be the j th row of A and bj be the j th element of b. For a given ε, define

Mi =
{

j | bj − aj xi

aj f i
< ε, j = 1, 2, . . . , m

}

,

and

Ai =
[

aj
]

, j ∈ Mi . (4.18)

Then, we project the direction f i onto the null space of Ai , i.e.,

f̂ i = (I − AT
i (AiA

T
i )−1Ai)f i . (4.19)

Since Ai f̂ i = 0, f̂ i does not point outward to the active constraint and RNGi is
significantly larger than 0. Thus, f̂ i can be used as the new force vector exerted on
xi .

Finally, the current best point xbest is not moved since the current best record
should be kept and carried to the subsequent iteration. This suggests that we may
avoid the calculation of the total force on the current best point.

Termination

The original EM method stops when the number of iterations exceeds a maximum
limit. We keep this as an important criterion, and there are other ways of defining
the stopping criteria.

Notice that in the searching procedure there are two cases in which the method
could fail to find a better point. The first one is that, before performing the local
search procedure, all the updated points are not better than the best point obtained
in the previous iteration. The second case is that in the local search step, no better
point is found. When the two cases happen consecutively, it indicates that refined EM
has not find an improved solution in the current iteration. In this case the stopping
parameter � defined in Algorithm 1 is decreased. Otherwise, the stopping parameter
� is increased. Hence a sufficiently small � indicates that the algorithm could not
find a better point in relatively many iterations and it is the time to stop.

In this paper the algorithm stops when either the iterations or function evaluations
exceed the corresponding limits, or when � is less than a certain threshold �tol.
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Computational Experiments

After developing refined EM, we collect a set of 73 problems found in the literature
to test its performance. The problems are from the following resources: Vanderbei
(2013), CUTEr collection Gould, Orban and Toint (2013), GLOBALLib, Runars-
son and Yao (2000), Ji et al (2007) and Michalewicz (1994, 1996). Among the 73
problems, there are 14 problems whose objective functions are linear functions and
59 problems whose objective functions are nonlinear functions. The dimension of
the problems ranges between 2 and 100.

We then apply refined EM and other derivative free global optimizers to solve the
test problems and compare the results provided by refined EM and other optimizers.
Besides refined EM, the optimizers used in our numerical experiments are PSwarm
(PSO) (Vaz andVicente 2009) and GeneticAlgorithm (GA) in the MATLAB toolbox.
These two methods are both population-based stochastic search methods.

All the parameters used in the optimizers are set to be the default values. The
population size of each solver is set to be 40. Refined EM, GA, and PSO are all run
10 times. We terminate the iteration using a combination of relative and absolute
measures of f (x), i.e., when

|f (x∗) − fglob| ≤ τr |fglob| + τa , (4.20)

where f (x∗) is the solution obtained by the algorithm and fglob is the known global
optimum. τr and τa are relative and absolute error tolerances, respectively. In our
experiments, we set τr = 10−3 and τa = 10−4.

When an optimizer cannot achieve the known global optimum, it stops when it
reaches the maximum number of function evaluations which is set to be 10,000 in
our experiments. There is one problem (p.63: s340) whose global optimal solution
is unknown and this case will be omitted in Fig. 4.1.

Performances on All Test Problems

Figure 4.1 shows the average number of function evaluations used by refined EM
to solve the 72 problems (s340 omitted). Figure 4.2 shows the number of problems
solved under different (average) function evaluations.

Figures 4.1 and 4.2 suggest that a large portion of the problems (more than 50) can
be solved by refined EM in under 2,000 function evaluations. Most problems (more
than 60) are solved in under 5,000 function evaluations. The points whose number of
function evaluations are more than 10,000 in Fig. 4.1 represent the problems that are
not solved optimally in 10,000 function evaluations. (Since we allow the optimizers
to finish the current iteration before they stop, the number of function evaluations for
some cases could exceed 10,000). Note that problem s340 is excluded in Fig. 4.1.

Table 4.1 lists some of the test problems solved by refined EM. The problems
have various dimensions and numbers of constraints. It indicates that refined EM has
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Fig. 4.1 Number of function evaluations used by refined EM for solving the test problems

Fig. 4.2 Number of problems solved by refined EM under different function evaluations

the ability to find optimal solutions or near optimal solutions for problems of differ-
ent sizes. We can also find out that, in general, the number of function evaluations
grows when the dimension and/or number of constraints become larger. Further-
more, refined EM met some difficulties in solving problem s224, which is a linear
programming (LP) problem. This fact is true for many LP problems and gives us an
area where refined EM needs to be improved.

To investigate the relationship between dimensionalities of the problems and func-
tion evaluations used by refined EM, we divide the problems into groups of different
dimensions. The median of the problem dimension is 4, and the interval of the di-
mension is divided into 4 parts: [1, 2], [3, 4], [5, 10] and [11, 100]. The number of
problems in each interval is 19, 21, 18 and 15, respectively. Then the average dimen-
sions, average function evaluations and the 95 % confidence intervals of the average
function evaluations are calculated for the problems in these intervals.
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Table 4.1 Problems of various dimensions and number of constraints solved by refined EM

Prob Dim Cons Avg. Evals. Stdev. Evals.
Ji3 2 1 348 31.7007
s224 2 2 6115 50.3919
hs076 4 3 137 23.1442
bunnag5 6 4 298 79.9111
avgasa 6 6 373 54.3612
s278 6 6 4909 2842.3621
bunnag12 20 10 9401 1610.9595
ex2_1_7 20 10 8489 3666.4410
goffin 51 50 8892 1308.2944
himmelbi 100 12 2088 689.3390

Prob Avg f (x) Best f (x) Stdev. f (x) Known Best
Ji3 -5.9948 -5.9955 0.0012 -6.0000
s224 5.7009 0.0000 6.3076 0.0000
hs076 -4.6792 -4.6816 0.0016 -4.6818
bunnag5 -11 -11 0.0000 -11
avgasa -4.1685 -4.1687 0.0002 -4.1687
s278 7.8470 7.8434 0.0023 7.8385
bunnag12 -2782.3868 -4105.2779 1534.9321 -4105.2779
ex2_1_7 -3688.4141 -4147.5819 637.8759 -4150.4101
goffin 0.0029 0.0001 0.0017 0.0000
himmelbi -1754.3000 -1755.0000 0.5516 -1755.0000

The result shown in Fig. 4.3 indicates a trend that the number of function
evaluations increases as the dimension of the problem grows.

Performance Profile for Function Evaluations

In the next part we are interested in comparing the existing solvers with refined EM.
We present the numerical results in the form of performance profiles, as described in
Dolan and Moré (2002), for evaluating and comparing the performances of optimiza-
tion softwares. The performance profile for a solver is the (cumulative) distribution
function for a performance metric. This procedure was developed to benchmark
optimization softwares, i.e., to compare different solvers on several (possibly many)
test problems. One advantage of the performance profiles is that the tested solvers can
be presented in one figure where each solver has a cumulative distribution function
that represents its performance.

Benchmark results are generated by running a set of solvers S on a set P of
problems and recording information of interests such as the number of function
evaluations and the objective function values. We assume that we have ns solvers
and np problems.

Firstly, we are interested in using function evaluations as a performance measure;
although, the ideas below can be used with other measures. For each problem p and
solver s, we define

tp,s = the # of function evaulations required to solve problem p by solver s

(4.21)
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Fig. 4.3 Number of function
evaluations vs. problem
dimensions

and performance ratio

rp,s = tp,s

min{tp,s| s ∈ S} ( ≥ 1). (4.22)

We assume that a parameter rM ≥ rp,s, for all p and s, is chosen, and rp,s = rM if
and only if solver s does not solve problem p.

Then we define

ρs(τ ) = 1

np

(the # of elements in {p ∈ P| rp,s ≤ τ }). (4.23)

ρs(τ ) represents the probability for solver s∈ S whose performance ratio rp,s is within
a factor τ ≥ 1.

In our study, the term of performance profile is kept in use as is in Dolan and
Moré (2002). According to Dolan and Moré (2002), a plot of the performance profile
reveals the major performance characteristics. In particular, if the set of problems
ρs(τ ) is suitably large and representative for problems that are likely to occur in
applications, then the solvers with large probability ρs(τ ) are preferred.

Figures 4.4, 4.6 and 4.7 are the performance profiles of the three tested solvers
in terms of the average, minimum and maximum number of function evaluations,
respectively. In each figure, the x-axis is τ , and the y-axis is ρs(τ ) defined above.
There are several points to be addressed in these figures. First, the line of refined
EM is higher than the other two algorithms in all three figures, which means it has
the highest probability of being the optimal solver. For instance, in Fig. 4.4, refined
EM solves about 60 % problems using least function evaluations (τ = 0), while the
percentages for PSO and GA are 23 % and 11 %, respectively.

In Fig. 4.4, the line of refined EM is higher than the line of PSO for most of the
τ , and both of them are higher than the line of GA. Also, refined EM is especially
competitive for the smaller factors (τ ∈ [1, 3.3]), which suggests that refined EM
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Fig. 4.4 Performance profile of the average number of function evaluations on [1, 15]

can solve more problems with relatively small number of function evaluations. It can
be seen that refined EM solves approximately 75 % of the problems with a factor
τ = 1.2, which means that in any of these 75 % problems, say, in problem p, if the
smallest number of function evaluations used in all the solvers is t∗p, then the number
of function evaluations used by refined EM is no more than 1.2t∗P . The corresponding
factors for PSO and GA are 2.1 and 14.8, respectively. Similarly, if we are interested
in the solver that can solve 80 % of the problems with the greatest efficiency, refined
EM also stands out.

When τ is large enough, ρs(τ ) represents the percentage of problems that a solver
s could eventually solve at least once. We set τ = rM = 1, 000, scale the plot and
present Fig. 4.5, which is the performance profile for log2 (rp,s). Here, the probability
ρs(τ ) is defined below:

ρs(τ ) = 1

np

(the # of elements in {p ∈ P| log2 (rp,s) ≤ τ }). (4.24)

Figure 4.5 indicates that refined EM can solve 91.8 % of all problems at least once,
while PSO and GA can solve 90.4 % and 82.2 % of all problems at least once. Also,
we can see that in the interval [2, 4], the line of GA has a relatively quick increment.

Figure 4.6 shows that, in terms of the minimum number of function evaluations
used in 10 runs, 60 % of the solutions provided by refined EM has the term τ smaller
than 1.5, the corresponding percentages for PSO and GA are 50 % and 35 %. In
general, refined EM has the best ρs(τ ) for τ ∈ [1, 2.2]. PSO has the best ρs(τ ) for
τ ∈ [2.2, 4.1]. Moreover, refined EM and PSO perform similarly in the interval
[4.1, 15].
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Fig. 4.5 Performance profile of the average number of function evaluations on [1, 210] in log2 scale

From Fig. 4.7, we conclude that refined EM is the most efficient solver in terms
of the maximum number of function evaluations used in 10 runs. Moreover, it can
be seen that refined EM can solve 65.8 % of all problems in all 10 runs, which is
because the maximum numbers of function evaluations used in these problems are
smaller than 10, 000. Similarly, PSO solves 65.8 % of the problems and GA solves
64.4 % of them.

Figure 4.8 shows the band of 95 % confidence interval for each solver. We can see
that for small τ , the band of refined EM is above the band of PSO and they do not
overlap, which means that refined EM is significantly better than PSO in terms of
the number of function evaluations when τ ∈ [1, 2]. Moreover, the bands of refined
EM and PSO are above the band of GA for τ ∈ [1, 15].

Performance Profile for Solution Quality

Now we are interested in the objective function values obtained by the tested solvers.
Here, the performance ratio is defined as

rp,s =
fp,s − f ∗

p

f w
p − f ∗

p

( ≤ 1), (4.25)

where fp,s is the (average, minimum or maximum) objective value for problem p

obtained by solver s, f ∗
p and f w

p are the best and worst objective values for problem
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Fig. 4.6 Performance profile of the minimum number of function evaluations on [1, 15]

p among the solutions of all solvers, respectively. If f ∗
p = f w

p , which means that
all the solvers have found the same solution, let rp,s = 0 for all s ∈ S. Define the
probability

ρs(τ ) = 1

np

(the # of elements in {p ∈ P| rp,s ≤ τ }). (4.26)

with 0 ≤ τ ≤ 1 in this situation.
For a fixed 0 ≤ τ ≤ 1, a solver with a higher line suggests that it has the ability

of providing “τ–good” solutions in more problems. A “τ–good” solution is the one
whose performance ratio (4.25) is smaller than or equal to τ .

Figures 4.9, 4.10, and 4.11 give the performance profiles for the average, min-
imum, and maximum solutions obtained by refined EM, PSO and GA in their 10
runs.

Figure 4.9 shows that refined EM always provides “τ–good” average solutions in
more problems than GA and PSO, since the line of refined EM is higher than PSO
and GA for every τ .

Figure 4.10 indicates that, in terms of the minimum objective function values,
PSO is better when τ ∈ [0.05, 0.49] and refined EM is better for τ ∈ [0.49, 1].

From Fig. 4.11, we can see that, in terms of the maximum objective function
values, refined EM is almost always better than PSO, while GA becomes competitive
for τ ≥ 0.52.
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Fig. 4.7 Performance profile of the maximum number of function evaluations on [1, 15]

Figure 4.12 shows the band of 95 % confidence interval of each solver in terms
of the objective function values. It can be seen that the bands of refined EM and
PSO overlap heavily, which means that the performances of refined EM and PSO
are similar in terms of the objective function values.

In summary, if one is interested in the average objective function values, refined
EM is a good choice, which means that refined EM is more stable. While if one seeks
best solutions, both refined EM and PSO are very competitive.

Solution Quality on Hard Problems

In this section, we mark the hard problems as those were not solved by a solver s in
4 runs or more out of the 10 runs. The problem with unknown optimum is excluded.
There are in total 15 hard problems for refined EM, 19 for PSO and 18 for GA. We
are interested in the 15 hard problems for refined EM. The computational results are
shown in Table 4.2. In the table, every solution is the best solution obtained by the
corresponding solver in the 10 runs. N/A means that the solver did not find a feasible
solution.

In Table 4.2, we notice that

1) Among the 15 problems, refined EM solved optimally 10 problems at least once:
bunnag7, bunnag8, bunnag9, bunnag12, bunnag13, ex2_1_7, hs044, s279, s280
and tfi2.
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Fig. 4.8 Bands of 95 % confidence intervals for the performance profile of the number of function
evaluations on [1, 15]

Table 4.2 Comparison of different methods using 10,000 function evaluations

Problem n EM-lin PSO GA Known best

bunnag7 10 −39.0000 −39.0000 −38.9921 −39.0000
bunnag8 20 −394.4029 −394.3840 −160.1755 −394.7506
bunnag9 20 −883.9029 −828.8544 −679.7276 −884.7506
bunnag10 20 −8224.4559 −8315.1801 −3486.4060 −8695.0119
bunnag11 20 −682.5842 −753.9962 −630.1617 −754.7506
bunnag12 20 −4105.2779 −4105.2779 −524.7473 −4105.2779
bunnag13 20 49359.1934 51431.0000 154925.5218 49318.0000
ex2_1_10 20 101183.1904 121737.4909 153480.6965 49318.0180
ex 2_1_7 20 −4147.5819 −4146.4153 −378.5011 −4150.4101
hs044 4 −14.9923 −14.9987 −14.9864 −15.0000
s279 8 10.6106 10.6157 10.6168 10.6059
s280 10 13.3886 13.3869 13.3906 13.3754
s359 5 −5.4711E+06 −5.4958E+06 N/A −5.5045E+06
s392 30 −1.0662E+06 −1.0418E+06 −331242.8649 −1.1012E+6
tfi2 3 0.6496 0.6493 N/A 0.6490

2) PSO also solved 10 problems optimally at least once: bunnag7, bunnag8,
bunnag11, bunnag12, ex2_1_7, hs044, s279, s280, s359, and tfi2.

3) GA solved four problems optimally at least once: bunnag7, hs044, s279, and
s280.
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Fig. 4.9 Performance profile of the average objective function values

Fig. 4.10 Performance profile of the minimum objective function values
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Fig. 4.11 Performance profile of the maximum objective function values

Fig. 4.12 Bands of 95 % confidence intervals for the performance profile of the objective function
values
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Table 4.3 Comparison of errors under the budget of 10,000 objective function evaluations

Problem eEM ePSO eGA

bunnag7 0.0000 % 0.0000 % 0.0203 %
bunnag8 0.0881 % 0.0929 % 59.4236 %
bunnag9 0.0958 % 6.3177 % 23.1730 %
bunnag10 5.4118 % 4.3684 % 59.9034 %
bunnag11 9.5616 % 0.1000 % 16.5073 %
bunnag12 0.0001 % 0.0002 % 87.2177 %
bunnag13 0.0835 % 4.2844 % 214.1359 %
ex2_1_10 105.1648 % 146.8418 % 211.2061 %
ex2_1_7 0.0681 % 0.0963 % 90.8804 %
hs044 0.0513 % 0.0087 % 0.0907 %
s279 0.0443 % 0.0924 % 0.1028 %
s280 0.0987 % 0.0860 % 0.1136 %
s359 1.8778 % 0.1574 % N/A
s392 3.1784 % 5.3941 % 69.9198 %
tfi2 0.0924 % 0.0462 % N/A

4) Refined EM outperforms PSO in five problems (bunnag9, bunnag13, ex2_1_7,
ex2_1_10, and s392) while PSO outperforms refined EM in three problems
(bunnag10, bunnag11 and s359).

5) None of the solvers found a close-to-optimal solution for the linear programming
problem ex2_1_10. This shows that their abilities to solve linear programming
problems need to be improved.

To quantify the distances of the results given by refined EM, PSO, and GA from
the known best solutions, in Table 4.3, the errors of refined EM, PSO, and GA are
defined:

eEM = |f ∗
EM − fglob|
|fglob| , ePSO = |f ∗

PSO − fglob|
|fglob| and eGA = |f ∗

GA − fglob|
|fglob| , (4.27)

where f ∗
EM , f ∗

PSO and f ∗
GA are the best values obtained by refined EM, PSO, and GA,

respectively. fglob is the known best solution and fglob = 0.
In Table 4.3, N/A means GA cannot find a feasible solution for that problem. The

bold numbers are the smallest errors for the corresponding problems.
Table 4.3 shows that

1) Refined EM solved 10 problems with error smaller than 0.1 %, they are considered
as solved optimally by refined EM.

2) Other than these 10 problems, there are two problems whose errors are between
0.1 % and 5 %: s359 and s392. There are two problems whose errors are between
5 % and 10 %: bunnag10 and bunnag11.

3) There are nine problems in which refined EM achieves best solutions. And there
are seven problems in which PSO achieves best solutions.

In summary, refined EM is able to solve problems with relative high level of difficulty
to optimal or near optimal. Moreover, refined EM has achieved the best performance
among all the three test solvers in terms of objective function values obtained.
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Conclusions and Future Research

In this paper we have refined the original EM method which solves bounded con-
strained problems and made it capable to solve linearly constrained problems. We
have applied this algorithm as well as other existing optimizers to different test prob-
lems in the literature and compared their performances. Our testing results support
the claim that refined EM solves linearly constrained global optimization problems in
an effective manner. Our computational results indicate that refined EM outperforms
other two tested optimizers in terms of the number of function evaluations and/or the
quality of best solutions obtained.

Future research will focus on refining EM to handle more complicated constraints,
such as general convex constraints and nonlinear constraints. To handle general
convex constraints, we need to redesign the initialization, local search, and movement
procedures. Particularly in the movement procedure, a new method of calculating
the range parameters needs to be developed. To handle general nonlinear constraints,
calculating range parameters may not be useful since the feasible region is more
complicated. Therefore a different method is needed.

Since the results in this paper have shown that the essential scheme utilized in the
EM method is quite efficient as compared to other heuristics such as GA and PSO,
good performance can be expected if the difficulty of handling different constraints
is overcome.
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Chapter 5
The Price of Anarchy for a Network of Queues
in Heavy Traffic

Shaler Stidham

Introduction

A recurring theme in the literature on optimal design and control of queueing sys-
tems is the distinction between individually and socially optimal solutions. Roughly
speaking, individual optimization refers to a situation in which each individual user
(customer) makes decisions (e.g., whether to join the system, which facility or route
to choose) based on the cost (e.g., waiting time) incurred by the user. By contrast,
in the case of social optimization, an agent acting on behalf of the collective of all
customers makes decisions with the objective of minimizing the sum of the costs of
all users. In the language of welfare economics, individually optimal solutions are
Nash equilibria and socially optimal solutions are Pareto optima.

The literature on vehicle traffic flow contains some of the earliest references
to individual and social optimization in the context of congestion phenomena. In
a pioneering paper, Wardrop (1952) introduced the two optimality criteria in the
setting of the traffic assignment problem, in which given origin/destination de-
mands for travel in a road network are to be assigned to different routes, where the
travel time on each link in the network is an increasing function of the flow on that
link. Subsequent books and papers include Beckmann et al. (1956), Dafermos and
Sparrow (1969), Dafermos (1980), and Dafermos and Nagourney (1984).

Naor (1969) brought the concepts of individual and social optimization to the
attention of the queueing theory community in the context of an M/M/1 queueing
model in which arriving customers choose whether or not to join, based on real-
time observation of the queue length. This paper initiated an extensive literature
on this topic, with respect to both optimal design (in which queue lengths cannot
be observed) and optimal control (in which queue lengths can be observed). Sur-
veys and books on this topic include Sobel (1974), Stidham and Prabhu (1974),
Crabill et al (1977), Serfozo (1981), Stidham (1978, 1984, 1985, 1988), Kitaev and
Rykov (1995), Hassin and Haviv (2003), and Stidham (2009).
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It is well known from the research on social and individual optimization that
congestion tolls can be used to induce users concerned only with their own costs
(e.g., travel or waiting times) to behave in a manner that minimizes the total cost
incurred by all users. By setting the toll equal to the external effect, an individually
optimal solution can be rendered socially optimal. In systems with congestion (e.g.,
queueing facilities and traffic networks) the external effect is the additional cost of
congestion (e.g., waiting or travel time) imposed on other users by a user’s decision
to join a facility or traverse a link. (See Chap. 1 of Stidham (2009) for an introduction
to these concepts in the setting of queueing systems.)

More recently, researchers in the telecommunications community have examined
the problem of route assignment for traffic in a communication network (such as the
Internet), using variants of the Wardrop model for road traffic networks. It is in this
context of communication networks that attention has recently turned to establishing
approximations and upper bounds for the ratio of the total congestion cost of an
individually optimal solution to that of a socially optimal solution: the so-called
price of anarchy (POA). (A more accurate term might be the price of free choice.)
See, e.g., Roughgarden (2002, 2005, 2006), Roughgarden and Tardos (2002), Chau
and Sim (2003), Schultz and Stier-Moses (2003), Perakis (2004), and Correa et al.
(2004a, b, 2005). The primary goal of this research has been to find upper bounds
that are independent of the topology of the network and only minimally dependent
on the form of the congestion cost (e.g., travel time) on each link.

By establishing upper limits on the additional cost incurred under individual op-
timization relative to social optimization, research on the POA can provide some
insight into the potential benefit of setting up a toll-collecting mechanism to achieve
social optimization. Inasmuch as such mechanisms have their own administrative
costs and inconveniences, it is important to have some idea of how much the total
cost to society could be reduced by their imposition. Since the costs incurred by users
are larger in heavy traffic, it is particularly useful to have bounds and approximations
that hold in such circumstances.

In each of these settings—queueing theory, vehicular traffic-flow theory, and
the theory of telecommunication networks—the object of interest is a congestion
network: a network in which using a facility (e.g., traversing a link) has an associated
cost per user which is an increasing function of the flow at that facility. In this paper
we shall focus on facility congestion-cost functions of the form that arise when
the facilities of a congestion network are modeled as queues with infinite waiting
rooms. An important property of such queueing models is that the cost (e.g., waiting
time) approaches infinity as the arrival rate (flow) approaches the service rate. As we
shall see, this property has a crucial effect on the POA in the associated network. In
particular, the POA does not grow without bound as the flow approaches the capacity,
in contrast to the “conventional” estimates and upper bounds in the literature. In fact
we are able to derive finite, closed-form expressions for the POA in heavy traffic for
a variety of networks of queues.

The rest of the paper is organized as follows. In Sect. 5.2 we introduce our basic
model of a congestion network. Following the literature on road-traffic and commu-
nication networks, our model is a deterministic network-flow model with nonlinear
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cost functions on each link. The flows on the different routes are the decision vari-
ables. (In the language of queueing-optimization theory, ours is a design rather than
a control model.) Sect. 5.3 provides an introduction and summary of previous results
for the POA. (Sects. 5.2 and 5.3 follow closely the development in Stidham (2009)).

In Sect. 5.4 we focus on a network of parallel facilities. For the case in which each
facility is an M/M/1 queue we derive closed-form expressions for the individually
and socially optimal flow allocations, their associated total costs, and the POA. We
compare this result to the upper bound from the literature on the POA, and show that
this upper bound can be quite weak, particularly as the traffic intensity increases.
We pay particular attention to the heavy-traffic limit, in which our expression for the
POA has a particularly simple form. We also show how to extend the heavy-traffic
analysis to the case of parallel GI/GI/1 facilities.

In Sect. 5.5 we continue the focus on heavy traffic and show how to extend our
results for parallel facilities to more general networks.

(An earlier version of the present paper appeared in 2008 as a technical report
(Stidham 2008)).

General Model of a Congestion Network

The system under study is a network consisting of a set J = {1, . . . , n} of service
facilities and a set R of routes. Each route r ∈ R consists of a subset of facilities,
and we use the notation j ∈ r to indicate that facility j is on route r.1

The network operates over a finite or infinite time interval, which we refer to as the
period. At this stage, rather than specify a particular congestion model for each ser-
vice facility, we prefer to describe the system in general terms, keeping structural and
stochastic assumptions at a minimum. (We shall later consider specific examples.)

There is a single class of jobs (customers). The arrival rate—the average number
of jobs entering the system per unit time during the period—is denoted by λ and is
assumed to be a fixed parameter in our model. (Later we shall examine the behavior
of the system as this parameter varies.) Each job that enters the system must be
assigned to one of the routes, r ∈ R. Let λr denote the flow (average number of
jobs per unit time) assigned to route r, r ∈ R. The flows, λr , r ∈ R, are decision
variables, subject to the constraint that the total flow must equal �:

∑

r∈R

λr = �. (5.1)

1 This abstract characterization of a network is sufficiently general to include both classical models
of networks of queues and road traffic networks, as well as more recent models of communication
networks. In queueing-network models (e.g., a Jackson network), each queue (service facility) is
modeled as a node, with a directed arc from node j to node k if service at queue j may be followed
immediately by service at queue k. In communication-network models it is more common (and more
natural) to consider each transmission link as a service facility, with a queue of jobs (messages or
packets) at the node (router/server) at the head of the link, waiting to be transmitted. In road traffic
networks, both nodes (intersections) and links (road segments between intersections) are service
facilities in the sense that they are potential sources of congestion and waiting.
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A flow λr on route r may be implemented by independently assigning each arriving
job to route r with probability pr = λr/�.

We assume that at each facility the average waiting cost per job is a function of
the total flow (arrival rate) at that facility. The total flow at each facility j ∈ J is
denoted by νj and equals the sum of the flows on all the routes that use that facility.
That is,

νj =
∑

r:j∈r

λr , j ∈ J. (5.2)

Let Gj(νj) denote the average waiting cost of a job at facility j, as a function of
the flow, νj. We assume that Gj(νj) takes values in [0,∞] and is nondecreasing and
differentiable in νj, 0 ≤ νj < ∞, with

Gj(νj) →∞, as νj →∞, j ∈ J. (5.3)

The meaning of the word “average” depends on the specific model context. For
example, it may mean a sample-path time average or (in the case of an infinite time
period) the expectation of a steady-state random variable.

In general waiting cost is a measure of the disutility to a customer of the time
spent waiting in the queue or in the queue plus in service. In some cases (see the
following example) the waiting cost is proportional to the total time spent in queue
and in service. This is a useful paradigm to keep in mind, but we prefer to keep the
development as general as possible until specific assumptions are needed.

Example 1 As an example, suppose facility j is a single-server queue operating in
steady state, with

Gj(νj) = E[hj(Wj(νj))],

where hj(t) is the waiting cost incurred by a job that spends a length of time t at
facility j and, for each νj ≥ 0, Wj(νj) is the steady-state random waiting time in the
system for the queueing system induced by an arrival rate equal to νj. For the special
case of a M/M/1 queue with an (FCFS) queue discipline and a linear waiting-cost
function, hj(t) = hj · t , t ≥ 0, we have

Gj(νj) =
⎧
⎨

⎩

hj

μj − νj
, if νj < μj,

∞, if νj ≥ μj,
(5.4)

where μj is the service rate (i.e., the reciprocal of the average service time).

Remark 1 The assumption that the waiting cost at each facility depends only on
the flow at that facility puts restrictions on the applicability of our general model
to a network of queues. In a classical Jackson network (Poisson arrival process and
independent and exponentially distributed service times at the facilities) the facilities
behave like independent M/M/1 queues in steady state, with facility j having Poisson
arrivals at rate νj, exponential service times with service rate μj, and average waiting
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time 1/(μj − νj). But for a generalized Jackson network—that is, a network with a
renewal arrival process and i.i.d. service times and FCFS queue discipline at each
facility—the different facilities do not exhibit independent behavior in steady state.
Hence, the expected steady-state waiting time at facility j is in general a function
of the flows at other facilities as well as facility j. (There are some examples of
networks of queues with general interarrival-time and service-time distributions and
non-FCFS queue disciplines in which the facilities behave independently and the
expected steady-state waiting times at each facility depend only on the average flow
at that facility. These are sometimes called Kelly networks: see, e.g., Kelly (1979)).
In Sect. 5.5 we shall consider a more general model in which the waiting cost at a
facility may depend on other flows as well as the flow at that facility. This generalized
model accommodates generalized Jackson networks.

Given the flows, νj, at the various facilities, the total waiting cost incurred by
a job that follows a particular route is the sum of the resulting waiting costs at the
facilities on that route:

∑

j :j∈r

Gj(νj), r ∈ R.

There may also be a toll δj which is charged to each customer who uses facility j,
j ∈ J . In this case the total cost (or full price) for a job assigned to route r is given
by

∑

j :j∈r

(δj +Gj(νj)).

The solution to the decision problem depends on who is making the decision and what
criteria are being used. The decision may be made by the individual customers, each
concerned only with his/her own waiting cost (individual optimality) or by an agent
for the customers as a whole who might be interested in minimizing the aggregate
waiting cost incurred by all customers per unit time (social optimality).

Socially Optimal Arrival Rates and Routes

First let us consider the problem from the point of view of social optimization. The
objective is to choose a vector of route flows, λ = (λr , r ∈ R), to minimize the
average total cost per unit time,

C(λ) :=
∑

r∈R

λr

∑

j :j∈r

Gj(νj),

among all feasible flows. Let λs = (λs
r , r ∈ R) denote a vector of socially optimal

arrival rates.
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Thus we have the following constrained minimization problem:

C(λs) = min{λr ,r∈R;νj ,j∈J}C(λ)

s.t.
∑

r∈R

λr = �,

∑

r:j∈r

λr = νj, j ∈ J ,

λr ≥ 0, r ∈ R.

The necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions for this problem
are:

∑

r∈R

λr = �,

∑

j :j∈r

(Gj(νj) + νjG
′
j(νj)) ≥ α, r ∈ R,

λr

⎛

⎝
∑

j :j∈r

(Gj(νj) + νjG
′
j(νj)) − α

⎞

⎠ = 0, r ∈ R,

∑

r:j∈r

λr = νj, j ∈ J ,

λr ≥ 0, r ∈ R.

Individually Optimal Arrival Rates and Routes

Individually optimal arrival rates are characterized by the Nash-equilibrium prop-
erty that no individual user will have an incentive to deviate unilaterally from the
equilibrium behavior implied by these rates.

Consider a given arrival rate � and a feasible allocation of flows, that is, (λr , r ∈
R; νj, j ∈ J ) satisfying (5.1) and (5.2). Let π denote the minimum value of the full
price on all routes r ∈ R. That is,

π = minr∈R

∑

j:j∈r

(δj + Gj(νj))

Consider the behavior of a user entering the system with this arrival rate and flow
allocation (a marginal user). At equilibrium, such a user will choose a route which
offers the minimum full price. If, to the contrary, a route with a larger full price
receives positive flow, then such a solution cannot be an equilibrium, since there is
an incentive to divert some of this flow to a route that achieves the minimum price.
Thus λe

r > 0 only if
∑

j :j∈r (δj +Gj(νj)) = π .
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Therefore, an allocation of route flows, λ = (λr , r ∈ R), is individually optimal
(denoted λe = (λe

r , r ∈ R)) if and only if it satisfies the following system of equations
and inequalities, for some π > 0:

∑

r∈R

λr = �, (5.5)

∑

j :j∈r

(δj +Gj(νj)) ≥ π , r ∈ R, (5.6)

λr

⎛

⎝
∑

j :j∈r

(δj +Gj(νj)) − π

⎞

⎠ = 0, r ∈ R, (5.7)

∑

r:j∈r

λr = νj, j ∈ J , (5.8)

and λr ≥ 0, r ∈ R. (5.9)

Together with conditions (5.6) and (5.9), the complementary-slackness conditions
(5.7) ensure that π = minr∈R

∑
j:j∈r (δj + Gj(νj)) and that only the routes with the

minimal price have positive flows. Note that it will be typical for an equilibrium
solution to have more than one route sharing the minimal price and, therefore, having
a positive flow.

It can be shown that the equilibrium conditions for an individually optimal al-
location have a unique solution, by noting that the equilibrium conditions are the
optimality conditions for the following minimization problem:

min{λ;λr ,r∈R;νj∈J}
∑

j∈J

∫ νj

0
(δj +Gj(η))dη

s.t.
∑

r∈R

λr = �,

∑

r:j∈r

λr = νj,

λr ≥ 0, r ∈ R.

Since the objective function is jointly convex in (λ, νj, j ∈ J ) and the constraints are
linear, the KKT conditions are necessary and sufficient for a global minimum to this
problem. These conditions have a unique solution and it is easily verified that they
are identical to the equilibrium conditions, (5.5)–(5.9), for an individually optimal
solution.

Note that the above minimization problem has the property that the marginal
impact of flow at facility j on the objective function, namely, the integrand,

δj +Gj(η),
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equals the cost incurred by a marginal user. This observation explains intuitively why
the optimality conditions coincide with the equilibrium conditions for an individually
optimal solution.

We can interpret Gj(νj) as the internal effect of a marginal increase in the flow
(arrival rate) νj at facility j. It is the portion of the marginal increase in aggregate
waiting cost that is borne by a marginal user at facility j when the arrival rate is
νj. Similarly, we can interpret the term νjG

′
j(νj) as the external effect: the rate of

increase in waiting cost borne by all users as a result of a marginal increase in the
arrival rate νj. By charging a toll at each facility j equal to the external effect—that is,
δj = νjG

′
j(νj)—one can render the individually optimal allocation socially optimal.

The Price of Anarchy in a General Congestion Network

If charging tolls is not a practical option, then an individually optimal allocation
will typically have a higher total cost than a socially optimal allocation. How bad
(relative to the socially optimal allocation) can a toll-free individually optimal allo-
cation be? More precisely, what is the worst-case behavior of the ratio of the total
cost of an individually optimal allocation to the total cost of the socially optimal
allocation? Using more colorful language (cf. Roughgarden and Tardos 2002): what
is the “POA”? In this setting, “anarchy” means letting customers make their own
route choices.

Previous research on the POA has focussed primarily on the derivation of upper
bounds on the ratio of the total cost of an individually optimal allocation to the cost
of a socially optimal allocation. These bounds apply over the full range of values of
the parameter, λ, and in some cases are independent of the topology of the network.
Relevant references are Dafermos (1980), Roughgarden (2002, 2005, 2006), Rough-
garden and Tardos (2002), Chau and Sim (2003), Schultz and Stier-Moses (2003),
Perakis (2004), and Correa et al. (2004, 2004, 2005). In this section we provide a
brief overview of this research, inspired by the approach of Correa et al. (2005).

It will sometimes be convenient to work with an alternative formulation of the
social optimization problem. Using the equality constraints (5.5) we can rewrite the
objective function for social optimization as follows:

∑

r∈R

λr

∑

j :j∈r

Gj(νj) =
∑

j∈J

∑

r:j∈r

λrGj(νj) =
∑

j∈J

νjGj(νj) (5.10)

Now define the set, F , of feasible vectors of facility flows, ν = (νj, j ∈ J ), as
follows:

F :=
⎧
⎨

⎩
ν|∃λr ≥ 0, r ∈ R : νj =

∑

r:j∈r

λr , j ∈ J ;
∑

r∈R

λr = �

⎫
⎬

⎭

Then the social optimization problem can be rewritten with decision variables, ν =
(νj, j ∈ J ), as follows:

min
{ν∈f } C(ν)
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where C(ν) :=∑j∈J νjGj(νj), ν ∈ F .

Derivation of Upper Bounds: Review

We first establish a relation between the total cost, C(ν), of an arbitrary flow vector,
ν ∈ F , and the total cost, C(νe), of the individually optimal flow vector, νe, which
can be used to bound the ratio, C(νe)/C(νs), where νs is the vector of socially
optimal flows.

Lemma 1 An individually optimal vector of facility flow rates, νe, satisfies the
relation,

C(νe) = C(ν) +
∑

r∈R

λr

⎛

⎝π −
∑

j :j∈r

Gj(νj)

⎞

⎠, (5.11)

for all ν = (νj, j ∈ J ) ∈ F , where π is the imputed cost of an individually optimal
flow (see (5)–(9)).

Proof. First note that it follows from (5.5)–(5.9) and (5.10) that

C(νe) = �π. (5.12)

Therefore, for all ν ∈ F ,

C(νe) = �π =
∑

r∈R

λrπ

= C(ν) +
∑

r∈R

λrπ −
∑

r∈R

λr

∑

j :j∈r

Gj(νj)

= C(ν) +
∑

r∈R

λr

⎛

⎝π −
∑

j :j∈r

Gj(νj)

⎞

⎠.

Remark. As an immediate consequence of (5.6), (5.10), and Lemma 1, we have
the inequality,

C(νe) ≤ C(ν) +
∑

j∈J

νj(Gj(ν
e
j ) −Gj(νj)), (5.13)

which has been used in the POA literature to bound the ratio, C(νe)/C(νs). The
inequality (5.13) can also be derived from the following variational inequality:

∑

j∈J

(νe
j − νj)Gj(ν

e
j ) ≤ 0, for all ν ∈ F (5.14)

(see, for example, Correa et al (2005)). But it is important to note that the relation
(5.11) is stronger than the variational inequality (5.14).

Now we show how (5.11) (or (5.14)) can be used to find an upper bound on
C(νe)/C(νs).
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Theorem 2 Suppose there exists a constant σ < 1 such that

∑

r∈R

λr

⎛

⎝π −
∑

j :j∈r

Gj(νj)

⎞

⎠ ≤ σC(νe), (5.15)

for all ν ∈ F . Then C(νe) ≤ (1 − σ )−1C(νs).

Proof. For any ν ∈ F , using (5.11) and (5.15) we have

C(νe) ≤ C(ν) +
∑

r∈R

λr

⎛

⎝π −
∑

j :j∈r

Gj(νj)

⎞

⎠

≤ C(ν) + σC(νe).

Since this inequality holds for all ν ∈ F , it holds in particular for the socially optimal
vector, νs . Thus

C(νe) ≤ C(νs) + σC(νe),

from which the desired result follows.

Corollary 3 Suppose there exists a constant σ < 1 such that

∑

j∈J

νj(Gj(ν
e
j ) −Gj(νj)) ≤ σC(νe), (5.16)

for all ν ∈ F . Then C(νe) ≤ (1 − σ )−1C(νs).

The Price of Anarchy in a Network of Parallel Queues

In this section and the next we focus our attention on congestion networks in which
the individual facilities are modeled as queues with infinite waiting rooms. We derive
exact formulas and bounds which exploit the specific characteristics of the queues
and/or the topology of the network and compare these to the upper bounds derived
in the previous section for a general congestion network. We begin with a network
of parallel queues and then (in the next section) extend our analysis to a general
network of queues.

Parallel M/M/1 Queues

Consider a system consisting of n independent parallel facilities, with facility j be-
having as an M/M/1 queue in steady state with service rate μj, j ∈ J = {1, . . . , n}.
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There is a single class of customers arriving according to a Poisson process at fixed
rate λ. The decision variables are the arrival rates, νj, j ∈ J , at the various facili-
ties, where

∑
j∈J νj = �. The waiting cost per customer at facility j is linear, with

waiting-cost coefficient hj, so that

Gj(νj) = hj

μj − νj
, j ∈ J.

(See Example 1 above.) Without loss of generality, assume that the facilities are
numbered so that

h1

μ1
≤ h2

μ2
≤ · · · ≤ hn

μn

. (5.17)

In this case explicit expressions are available for the individually optimal arrival rates,
the socially optimal arrival rates, and the associated costs. (See Stidham (1971, 1985,
2009) for derivations).

Individually Optimal Arrival Rates and Costs

Let νe
j denote the individually optimal arrival rate (flow) at facility j, j ∈ J . Let

νe = (νe
j , j ∈ J ). Define

sk :=
k∑

i=1

(μi − hiμk/hk), k = 1, . . . , n,

sn+1 :=
n∑

i=1

μi.

Note that it follows from the ordering (5.17) that

0 = s1 ≤ s2 ≤ · · · ≤ sn ≤ sn+1 =
n∑

i=1

μi.

Then the individually optimal allocation is as follows: for k = 1, . . . , n, if sk ≤ � ≤
sk+1, then

νe
j =

⎧
⎪⎨

⎪⎩

μj −
(

hj
∑k

i=1 hi

)(∑k
i=1 μi −�

)
, j = 1, . . . , k,

0, j = k + 1, . . . , n,

and

C(νe) =
(∑k

i=1 hi

) (∑k
i=1 μi

)

(
∑k

i=1 μi) −�
−

k∑

i=1

hi =
(∑k

i=1 hi

)
�

(
∑k

i=1 μi) −�
.

Note that the cost of the individually optimal allocation equals the waiting cost per
unit time at a single M/M/1 facility with service rate μ =∑k

i=1 μi and waiting-cost
rate h =∑k

i=1 hi .
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Socially Optimal Arrival Rates and Costs

Let νs
j denote the socially optimal arrival rate (flow) at facility j, j ∈ J . Let νs =

(νs
j , j ∈ J ). Define

rk : =
k∑

i=1

(
μi −

√
hiμiμk/hk

)
, k = 1, . . . , n,

rn+1 : =
n∑

i=1

μi.

Note that it follows from the ordering (5.17) that

0 = r1 ≤ r2 ≤ · · · ≤ rn ≤ rn+1 =
n∑

i=1

μi.

Then, for k = 1, . . . , n, if rk ≤ � ≤ rk+1,

νs
j =

⎧
⎪⎨

⎪⎩

μj −
( √

hjμj
∑k

i=1

√
hiμi

)(∑k
i=1 μi −�

)
, j = 1, . . . , k,

0, j = k + 1, . . . , n,

and

C(νs) =
(∑k

i=1

√
hiμi

)2

(∑k
i=1 μi

)
−�

−
k∑

i=1

hi.

It follows that the ratio of the individually optimal total cost to the socially optimal
total cost is given by

C(νe)

C(νs)
=
(∑

j∈J hj

) (∑
j∈J μj

)
− (μ−�)

∑
j∈J hj

(∑
j∈J

√
hjμj

)2 − (μ−�)
∑

j∈J hj

(5.18)

(where μ := ∑n
i=1 μi), provided � is large enough that all n facilities have pos-

itive arrival rates in both allocations. From this expression we see that the ratio,
C(νe)/C(νs) decreases in heavy traffic as � → μ, approaching the finite limit,

(∑
j∈J hj

) (∑
j∈J μj

)

(∑
j∈J

√
hjμj

)2 . (5.19)

Note the interesting property that this expression is symmetric in {hj, j ∈ J } and
{μj, j ∈ J }.
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For the special case of equal waiting-cost rates, hj = 1, j ∈ J , (5.18) simplifies
to

C(νe)

C(νs)
=

n
(∑

j∈J μj

)
− n(μ−�)

(∑
j∈J

√
hjμj

)2 − n(μ−�)
. (5.20)

Stidham (1985) analyzed the the ratio, C(νe)/C(νs), for this case in heavy traffic. It
follows from (5.20) (or from (5.19)) that

lim
�↑μ

C(νe)/C(νs) = nμ/

⎛

⎝
∑

j∈J

√
μj

⎞

⎠

2

≤ n.

This expression attains its lower bound, limλ↑μ C(νe)/C(νs) = 1, in the symmetric
case in which the service rates are equal at all facilities. In this case (by symmetry) the
socially optimal and the individually optimal allocations both assign equal arrival
rates, λj = λ/n, to all facilities. The upper bound, n, is tight, as can be seen by
considering the case

μ1 = μ− nε,

μj = ε, j = 2, . . . , n,

and letting ε → 0.
In the non-heavy-traffic setting, the behavior of the ratio, C(νe)/C(νs), can be

quite complicated. We illustrate this complexity below by presenting a numerical
example.

Numerical Example. To keep the exposition simple, we restrict attention to the
case of equal waiting-cost rates, hj = 1, j ∈ J .

Suppose the system consists of four M/M/1 queues in parallel. The service rates
are

μ1 = 20, μ2 = 15, μ3 = 10, μ4 = 5.

For this system the breakpoints at which each facility starts receiving positive flow
are

s1 = 0, s2 = 5, s3 = 15, s4 = 30, s5 = 50,

for the individually optimal solution and

r1 = 0, r2 = 2.6795, r3 = 8.6104, r4 = 19.2687, r5 = 50,

for the socially optimal solution. Fig. 5.1 compares the exact behavior of C(νe)/C(νs)
with that of the conventional upper bound on the POA (calculated in this case
using Theorem 2). Note that, for this example, the maximum value of the ratio,
C(νe)/C(νs), equals 1.1 and occurs at λ = 30.
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Fig. 5.1 Comparison of Ce/Cs with Upper Bound

By contrast the upper bound on the POA approaches ∞ as � → μ. To gain
insight into why this is the case, let us look in more detail at the derivation of σ in
Theorem 2 in the case of parallel facilities. It follows from Theorem 2 and (5.12)
that any constant σ used in the upper bound on the POA must satisfy the inequality

σ ≥
∑

j∈J νs
j (π −Gj(νs

j ))

�π
.

Thus we see that any such upper bound must be at least as great as the upper bound
derived by solving, for each facility j, a social optimization problem with linear
utility in which the reward coefficient is π. Now π is the imputed reward that in-
duces individually optimizing customers to join each facility j at a rate νe

j such that∑
j∈J νe

j = �. But the imputed reward (Lagrange multiplier) α required for social
optimization is strictly larger than π. (See Chap. 7 of Stidham (2009)). Using π

rather than α > π in the social optimization problem leads to facility arrival rates
that are uniformly smaller than the individually optimal rates and therefore sum to
a quantity strictly smaller than �. The result is an upper bound on the difference
between C(νe) and C(νs) that is based on a systematic underestimate of C(νs).
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This interpretation suggests an explanation for why the upper bound, (1 − σ )−1,
on the ratio, C(νe)/C(νs), increases to infinity as � → μ in the case of parallel
M/M/1 facilities, whereas the ratio itself actually decreases.

Parallel GI/GI/1 Queues; Heavy Traffic

Now consider a system consisting of n independent parallel facilities, with each
facility behaving as an GI/GI/1 queue in steady state. Our model and assumptions
are basically those of Shanthikumar and Xu (1997).

Customers arrive to the system according to a renewal process. The generic inter-
arrival time is denoted by A = X/�, where X is a fixed nonnegative random variable
with mean 1 and squared coefficient of variation (scv) C2

a . Upon arrival each cus-
tomer joins facility j with probability pj , where pj ≥ 0, for j ∈ J = {1, . . . , n},
independently of all other customers,and

∑
j∈J pj = 1. The service times of the

customers who join facility j form an i.i.d. sequence of random variables distributed
as Sj with finite mean 1/μj and scv C2

Sj
, j ∈ J . We assume that � < μ :=∑j∈J μj.

Let {At , t = 1,2, . . . } be a sequence of i.i.d. random variables with the same
distribution as A and let Zj be an independent geometric random variable with mean
1/pj, j ∈ J . Define

A(j ) :=
Zj∑

t=1

At , j ∈ J.

Then facility j behaves as a GI/GI/1 queue with a renewal arrival process which has
a generic inter-arrival time A(j ) with mean 1/(�pj) and scv pj(C2

a − 1) + 1, j ∈ J .
The decision variables are the routing probabilities, pj , j ∈ J , or, equivalently,

the arrival rates, νj, where νj = �pj, j ∈ J , and
∑

j∈J νj = �. The waiting cost per
customer at facility j is linear, with waiting-cost coefficient hj, so that

Gj(νj) = hjWj(νj), j ∈ J ,

where Wj(νj) is the steady-state expected waiting time (in queue plus in service) of
a customer at facility j, j ∈ J . The total waiting cost per unit time is therefore given
by

C(ν) =
∑

j∈J

νjGj(νj) =
∑

j∈J

νjhjWj(νj),

where ν = (νj, j ∈ J ). As usual, we denote the individually optimal and socially
optimal flow allocations by νe and νs , respectively.

We use variants of techniques from Shanthikumar and Xu (1997) to derive upper
and lower bounds on Wj(νj), j ∈ J , which are the basis for the derivation of the POA
in heavy traffic, that is,

lim
�→μ

C(νe)/C(νs).
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The main result of this section is that the POA for a system of parallel GI/GI/1
facilities coincides with the POA for a system of parallel M/M/1 facilities with a
modified waiting-cost function.

Let the arrival rate, �, be given. Consider a particular facility j ∈ J with a given
routing probability, pj , and corresponding flow rate, νj = �pj. Define

Ŵj(νj) := μj(C2
a − 1) +�(C2

Sj
+ 1)

2�(μj − νj)
= fj

μj − νj
, (5.21)

where

fj := μj(C2
a − 1) +�(C2

Sj
+ 1)

2�
.

We shall use Ŵj(νj) as a heavy-traffic approximation of Wj(νj). Following Shanthiku-
mar and Xu (1997) it can be shown that

Ŵj(νj) −
(

C2
Sj

2μj
+ C2

a − 1 + 2α + 2β

2�

)

≤ Wj(νj) ≤ Ŵj(νj) +
(

1

2μj
+ 1

νj

)
,

(5.22)

for all νj ∈ (0, μj), where α and β are positive, finite constants defined in Shanthiku-
mar and Xu (1997). Note that the lower bound on Wj(νj) − Ŵj(νj) is independent
of νj, whereas the upper bound approaches ∞ as νj → 0 and approaches 0 as
νj → μj. Since, for any feasible flow allocation, it must be the case that νj → μj as
� → μ =∑j∈J μj, this upper bound will suffice in heavy traffic. This observation
leads to the following lemma.

Lemma 4 Let ε > 0 be given. Then there exists a δ > 0 such that

Ŵj(νj) − lj ≤ Wj(νj) ≤ Ŵj(νj) + uj , (5.23)

for all � ∈ (μ− δ, μ), where

lj : = C2
Sj

2μj
+ C2

a − 1 + 2α + 2β

2�
,

uj : = 1

2μj
+ 1

μj − ε

For all feasible flow allocations, ν, let

Ĉ(ν) :=
∑

j∈J

h̃j

(
νj

μj − νj

)
, (5.24)

where

h̃j := hjfj. (5.25)
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Note that Ĉ(ν) coincides with the total cost per unit time in a system consisting of n
parallel M/M/1 facilities, where facility j has service rate μj and linear waiting-cost
function with h̃j as the waiting cost per customer per unit time, j ∈ J .

The following lemma restates a result from Shanthikumar and Xu (1997) (cf.
(27)).

Lemma 5 There exist finite constants, L and U, such that for all feasible flow
allocations, ν,

Ĉ(ν) − L ≤ C(ν) ≤ Ĉ(ν) + U.

F rom (5.22) we obtain the following upper and lower bounds on Lj (νj) = νjWj(νj)
for all νj ∈ (0, μj):

νjŴj(νj) −
(

C2
Sj

2
+ pj(C2

a − 1 + 2α + 2β)

2

)

≤ νjWj(νj) ≤ νjŴj(νj) + 3

2
.

Lemma 5 follows directly from these inequalities.
For given �, let ν̂s = (ν̂j

s , j ∈ J ) denote a vector of flows that minimizes the
approximate cost function, Ĉ(ν), subject to

∑
j∈J νj = �. As a consequence of

Lemma 5 we have the following theorem (cf. Theorem 3 in Shanthikumar and Xu
(1997)), which demonstrates that ν̂s is strongly asymptotically (socially) optimal in
heavy traffic.

Theorem 6 For all � < μ,

0 ≤ C(ν̂) − C(νs) ≤ L+ U , (5.26)

and therefore

C(ν̂s)

C(νs)
→ 1, as � → μ. (5.27)

Now we turn our attention to individually optimal flows. We show that the same
approximation can be used to construct asymptotically individually optimal flows.

For given �, let ν̂e = (ν̂j
e, j ∈ J ) denote a vector of flows that is individually

optimal for the approximate cost function, Ĉ(ν), subject to
∑

j∈J νj = �.

Theorem 7

C(ν̂e)

C(νe)
→ 1, as � → μ. (5.28)
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Proof. Assuming that � is large enough that all facilities have positive flows, and
using (5.21), we can write the equilibrium conditions satisfied by ν̂e as

hjfj

μj − νj
= π , j ∈ J , (5.29)

∑

j∈J

νj = �, (5.30)

for some π > 0. Similarly, the equilibrium conditions satisfied by νe, the individually
optimal vector of flows for the original problem, take the form

hjWj(νj) = π , j ∈ J , (5.31)

∑

j∈J

νj = �. (5.32)

From (5.23) we obtain the following inequalities,

hjfj

μj − νj
− hjlj ≤ hjWj(νj) ≤ hjfj

μj − νj
+ hjuj , j ∈ J , (5.33)

for all � ∈ (μ− δ, μ).
First we consider the Eqs. (5.29) and (5.31) for a fixed, arbitrary value of the

parameter π. Let νj(π ) denote the solution to Eq. (31) and let ν̂j(π ) denote the
solution to Eq. (5.29), j ∈ J . Solving Eq. (5.29) for νj in terms of π yields

ν̂j(π ) = μj − hjfj

π
, j ∈ J. (5.34)

Now consider the following equations,

hjfj

μj − νj
− hjlj = π , j ∈ J ,

hjfj

μj − νj
+ hjuj = π , j ∈ J ,

noting that the solution to the former is ν̂j(π + hjlj) and the solution to the latter is
ν̂j(π − hjuj). It follows from (33) that

ν̂j(π − hjuj) ≤ νj(π ) ≤ ν̂j(π + hjlj), j ∈ J. (5.35)

Let γ := maxj∈Jhjuj, δ := maxj∈Jhjlj. Then (5.35) implies that

ν̂j(π − γ ) ≤ νj(π ) ≤ ν̂j(π + δ), j ∈ J. (5.36)

It follows from (5.36) that

C(ν̂(π − γ )) ≤ C(ν(π )) ≤ C(ν̂(π + δ)). (5.37)
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Dividing all three terms by C(ν̂(π )) yields

C(ν̂(π − γ ))

C(ν̂(π ))
≤ C(ν(π ))

C(ν̂(π ))
≤ C(ν̂(π + δ))

C(ν̂(π ))
. (5.38)

Our intermediate goal is to show that

C(ν(π ))

C(ν̂(π ))
→ 1, as π →∞.

It suffices to show that both the upper and lower bounds in (5.38) approach one as
π →∞. We shall do this by approximating C( · ) by Ĉ( · ).

From (5.24) and (5.34) we obtain the following simple formula for Ĉ(ν̂(π )):

Ĉ(ν̂(π )) = πμ−
∑

j∈J

hjfj. (5.39)

Lemma 5 implies that

Ĉ(ν̂(π )) − L ≤ C(ν̂(π )) ≤ Ĉ(ν̂(π )) + U ,

Ĉ(ν̂(π − γ )) − L ≤ C(ν̂(π − γ )) ≤ Ĉ(ν̂(π − γ )) + U ,

from which we obtain the following inequalities:

Ĉ(ν̂(π − γ )) − L

Ĉ(ν̂(π )) + U
≤ C(ν̂(π − γ ))

C(ν̂(π ))
≤ Ĉ(ν̂(π − γ )) + U

Ĉ(ν̂(π )) − L
.

Substituting for Ĉ from (5.39) yields

(π − γ )μ− (
∑

j∈J hjfj) − L

πμ− (
∑

j∈J hjfj) + U
≤ C(ν̂(π − γ ))

C(ν̂(π ))
≤ (π − γ )μ− (

∑
j∈J hjfj) + U

πμ− (
∑

j∈J hjfj) − L
.

It is easily seen that both the lower and the upper bound approach one as π → ∞.
Therefore,

C(ν̂(π − γ ))

C(ν̂(π ))
→ 1, as π →∞.

A similar argument shows that

C(ν̂(π + δ)

C(ν̂(π ))
→ 1, as π →∞.

It follows from (5.38) that

C(ν(π ))

C(ν̂(π ))
→ 1, as π →∞, (5.40)

which is the desired intermediate result.
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Now we return to our ultimate goal of proving (5.23):

C(ν̂e)

C(νe)
→ 1, as � → μ.

For 0 ≤ � < μ, let π (�) be the solution to
∑

j∈J

νj(π ) = �,

and let π̂ (�) be the solution to
∑

j∈J

ν̂j(π ) = �.

Then

C(ν̂e)

C(νe)
= C(ν̂(π̂ (�)))

C(ν(π (�)))
= C(ν̂(π̂ (�)))

C(ν̂(π (�)))
· C(ν̂(π (�)))

C(ν(π (�)))
.

Since π (�) →∞ as � → μ,

C(ν̂(π (�)))

C(ν(π (�)))
→ 1, as � → μ,

by (5.40). It remains to show that

C(ν̂(π̂ (�)))

C(ν̂(π (�)))
→ 1, as � → μ. (5.41)

From (5.34) and (5.36) we obtain the following inequalities, for all π > 0:

μj − hjfj

π − γ
≤ νj(π ) ≤ μj − hjfj

π + δ
, j ∈ J.

Summing over j ∈ J yields

μ−
∑

j∈J hjfj

π − γ
≤
∑

j∈J

νj(π ) ≤ μ−
∑

j∈J hjfj

π + δ
. (5.42)

For given λ, let π̂u(λ) denote the solution to

μ−
∑

j∈J hjfj

π − γ
= �,

and let π̂l(λ) denote the solution to

μ−
∑

j∈J hjfj

π + δ
= �.
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Then

π̂l(�) =
∑

j∈J hjfj

μ−�
− δ = π̂ (�) − δ,

and

π̂u(�) =
∑

j∈J hjfj

μ−�
+ γ = π̂ (�) + γ.

From these observations and (5.42) it follows that

π̂ (�) − δ ≤ π (�) ≤ π̂ (�) + γ ,

so that

π̂ (�)

π (�)
→ 1, as � → μ. (5.43)

Recall that our goal is to show that

C(ν̂(π̂ (�)))

C(ν̂(π (�)))
→ 1, as � → 1. (5.44)

Now

C(ν̂(π̂ (�)))

C(ν̂(π (�)))
= C(ν̂(π̂ (�)))

Ĉ(ν̂(π̂ (�)))
· Ĉ(ν̂(π̂ (�)))

Ĉ(ν̂(π (�)))
· Ĉ(ν̂(π (�)))

C(ν̂(π (�)))
.

The first and third factors approach one as � → μ by Lemma 5. It remains to show
that

Ĉ(ν̂(π̂ (�)))

Ĉ(ν̂(π (�))
→ 1, as � → μ. (5.45)

Recall (cf. (5.39)) that

Ĉ(ν̂(π )) = πμ−
∑

j∈J

hjfj.

Therefore,

Ĉ(ν̂(π̂ (�)))

Ĉ(ν̂(π (�)))
= π̂ (�)μ−∑j∈J hjfj

π (�)μ−∑j∈J hjfj
.

Since π (�) → ∞ and π̂ (�) → ∞ as � → μ, it follows from (5.43) that (5.45)
holds.

This completes the proof of the theorem.
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Theorem 8 The POA for the system of parallel GI/GI/1 facilities is given by

lim
�→μ

C(νe)/C(νs) = lim
�→μ

Ĉ(νe)/Ĉ(νs) =
(∑

j∈J h̃j

) (∑
j∈J μj

)

(
∑

j∈J

√
h̃jμj

)2 ,

where h̃j is given by (25), j ∈ J .

Proof. First observe that

C(νe)

C(νs)
= C(νe)

C(ν̂e)
· C(ν̂e)

Ĉ(ν̂e)
· Ĉ(ν̂e)

Ĉ(ν̂s)
· Ĉ(ν̂s)

C(ν̂s)
· C(ν̂s)

C(νs)
.

The first and fifth ratios approach one as � → μ by Theorems 7 and 6, respectively.
The second and fourth ratios approach one as � → μ by Lemma 5. Therefore,

lim
�→μ

C(νe)

C(νs)
= lim

�→μ

Ĉ(ν̂e)

Ĉ(ν̂s)
=
(∑

j∈J hjfj

) (∑
j∈J μj

)

(∑
j∈J

√
hjfjμj

)2 ,

where the last equality follows from substituting the explicit expressions for ν̂e and
ν̂s (cf. Sect. 5.4.1 into (5.24) and taking the limit as � → μ.

The implication of Theorem 8 is that the POA for a system of parallel GI/GI/1
facilities coincides with the POA for a system of parallel M/M/1 facilities with hj

replaced by h̃j = hjfj, j ∈ J .

General Network of Queues; Heavy Traffic

In this section we return to a general congestion network and show how the heavy-
traffic results for parallel queues can be extended to certain networks satisfying weak
regularity conditions which hold for most queueing models.

We shall work with a more general model of a congestion network than the one
introduced in Sect. 5.5. In the generalized model the waiting cost at each facility j
may depend on the entire allocation of flows to routes, λ := (λr , r ∈ R), rather than
just on the flow at facility j, that is, νj =∑R:j∈r λr .

(Recall that the steady-state expected waiting time at a facility in a network of
queues depends only on the flow at that facility when interarrival times and service
times at all facilities are exponentially distributed (a Jackson network), but not for a
generalized Jackson network. See Remark 1 in Sect. 5).

Let Gj(λ) denote the average waiting cost of a job at facility j, j ∈ J , as a function
of the allocation vector, λ. Let Hj(λ) denote the average waiting cost incurred per unit
time at facility j, j ∈ J , as a function of the allocation vector, λ. In our standard model
it follows from the formula, H = λG (cf., e.g., Chap. 6 of El-Taha and Stidham
(1998)), that Hj(λ) = νjGj(λ). In general we shall make the following assumption
about the network and the waiting cost functions.



5 The Price of Anarchy for a Network of Queues in Heavy Traffic 113

Assumption 1 For each facility j, the feasible set for νj is Aj = [0, μj], where μj

is a positive constant. For a given value of the total arrival rate � = ∑r∈R λr , the
feasible set for λ = (λr , r ∈ R) is

L :=
⎧
⎨

⎩
λ|λr ≥ 0, r ∈ R; νj =

∑

r:j∈r

λr , 0 ≤ νj ≤ μj, j ∈ J ;
∑

r∈R

λr = λ

⎫
⎬

⎭

The function Gj(λ) takes values in [0,∞], with Gj(λ) = ∞ for all λ such that νj = μj

and Gj(λ) →∞ for any sequence of feasible values of λ such that νj → μj.
(Note that we extend the domain of νj to the closed interval [0, μj] by setting

Gj(λ) = ∞ for λ such that νj = μj).
The waiting-cost functions for most classical queueing models satisfy this as-

sumption, with μj as the service rate of the facility. (See Example 1 in Sect. 5.2.)
Because our interest here is in flows in a network, however, we shall refer to μj as
the capacity of facility j.

For a feasible flow vector λ ∈ L, the total cost per unit time is given by:

C(λ) :=
∑

j∈J

νjGj(λ).

For a given value of �, the social optimization problem may now be written as
follows:

min{λ∈L}C(λ).

Let λs = (λs
r , r ∈ R) denote a socially optimal allocation of flows, that is, an alloca-

tion that achieves the above minimum. Let λe = (λe
r , r ∈ R) denote an individually

optimal allocation.
The Nash-equilibrium property of an individually optimal allocation can be ex-

pressed as follows (cf. Section 5.2). A flow vector λ ∈ L is individually optimal if
and only if there exists a constant π such that:

∑

j :j∈r

Gj(λ) ≥ π , r ∈ R, (5.46)

λr

⎛

⎝
∑

j :j∈r

Gj(λ) − π

⎞

⎠ = 0 = 0, r ∈ R. (5.47)

Our interest is in the heavy-traffic behavior of the ratio, C(λe)/C(λs).
In the remainder of this section we shall restrict our attention to a classical Ford-

Fulkerson network (FFN). A Ford-Fulkerson network consists of a set of nodes N
and a set of (directed) links A. (The links correspond to the facilities in our general
network model.) Each link a ∈ A (equivalently, each facility j ∈ J ) corresponds to
a pair (i, k) of nodes, i ∈ N , k ∈ N , such that the flow in link a proceeds from node
i to node k. One node s ∈ N is designated as the source and another node t ∈ N is
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designated as the sink. In this network a route r consists of an ordered set of links
connecting the source to the sink and the set R consists of all such routes.

We shall continue to use the notation and definitions for a general network (namely,
a set of facilities J and a set of routes R), but it is important to note that our results
only hold for a classical Ford-Fulkerson network. In particular, it is essential that all
routes between the source and the sink be included in the set R.

We shall need the following definitions from the theory of (deterministic) network
flows (cf. Bertsekas (1998)). A cut is a subset of facilities j ∈ J such that each route
r ∈ R from s to t contains at least one facility j in the subset. Thus the removal of the
subset from the set J of all facilities makes it impossible to find a feasible flow for any
positive �. A minimal cut is a cut (denoted C) whose total capacity, μ :=∑j∈C μj,
is no larger than that of any other cut.

The Max-Flow-Min-Cut Theorem (cf. Bertsekas (1998)) states that the maximal
feasible total flow through the network equals the total capacity of a minimal cut.
Thus, the set of feasible values for the parameter � is [0, μ].

We can therefore write the heavy-traffic POA as

lim
�→μ

C(λe)

C(λs)
. (5.48)

To simplify the analysis we shall make the following technical assumption.

Assumption 2 The minimal cut (denoted C) is unique. A feasible allocation, λ ∈ L,
can saturate facility j (that is, νj = μj) if and only if j ∈ C.

For the remainder of this section we shall confine our attention to a general
congestion network with flows and waiting cost functions satisfying Assumption 1
in which the underlying network is a Ford-Fulkerson network satisfying Assumption
2. We shall refer to such a network as a FFGCN.

We shall show (Theorem 10 below) that the behavior of the heavy-traffic limit
(5.48) of the POA for a FFGCN is determined completely by the waiting-cost func-
tions, Hj(λ), at the facilities j ∈ C, that is, the facilities in the (unique) minimal cut.
This result makes it possible to reduce the problem for a FFGCN to an equivalent
problem for a network of parallel facilities.

First we need some more notation. Consider an alternative network with the same
topology as the original network, but with a revised set of facility cost functions,
H̃j( · ) such that, for any feasible allocation, λ ∈ L,

H̃j(λ) = Hj (λ), j ∈ C

H̃j(λ) = 0, j /∈ C

Define

C̃(λ) :=
∑

J∈J

H̃j(λ) =
∑

J∈C
Hj (λ).

That is, C̃(λ) is the total waiting cost per unit time incurred at the facilities in the
minimal cut.
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Lemma 9 For any feasible allocation, λ ∈ L,

lim
�→μ

C̃(λ)

C(λ)
= 1.

Proof. By Assumption 2, there exists a constant, M < ∞, such that

∑

j /∈C
Hj (λ) ≤ M.

for all λ ∈ L. It follows that

1 ≥ C̃(λ)

C(λ)
=

∑
j∈C Hj (λ)

∑
j∈C Hj (λ) +∑j /∈C Hj (λ)

≥
∑

j∈C Hj (λ)
∑

j∈C Hj (λ) +M
→ 1, as � → μ.

Now let λ̃e and λ̃s denote, respectively, individually optimal and socially optimal
allocations for the network with the revised facility-cost functions, H̃j( · ), j ∈ J .

Theorem 10 Suppose

lim
�→μ

C̃(λ̃e)

C̃(λ̃s)
= κ < ∞. (5.49)

Then

lim
�→μ

C(λe)

C(λs)
= κ. (5.50)

Proof. It suffices to show that
∣∣∣∣∣
C(λe)

C(λs)
− C̃(λ̃e)

C̃(λ̃s)

∣∣∣∣∣
→ 0, as � → μ. (5.51)

Note that
∣∣∣∣∣
C(λe)

C(λs)
− C̃(λ̃e)

C̃(λ̃s)

∣∣∣∣∣
≤
∣∣∣∣∣
C(λe)

C(λs)
− C̃(λe)

C̃(λs)

∣∣∣∣∣
+
∣∣∣∣∣
C̃(λe)

C̃(λs)
− C̃(λ̃e)

C̃(λ̃s)

∣∣∣∣∣
(5.52)

We first show that the second term on the right-hand side of the inequality approaches
zero as � → μ. Consider socially optimal flows for the original network and for the
parallel network constructed from the facilities in the minimal cut. We claim that

lim
�→μ

C̃(λ̃s)

C̃(λs)
= 1. (5.53)
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To show this, let ε > 0 be arbitrary. It suffices to show that

C̃(λ̃s)

C̃(λs)
> 1 − ε, for all � < μsufficiently close to μ.

Suppose, to the contrary, there exists an ε > 0 such that

C̃(λ̃s)

C̃(λs)
≤ 1 − ε, for all � < μ.

Now C(λ̃s) = C̃(λ̃s) +∑j /∈C Hj (λ̃s). Since
∑

j /∈C Hj (λ̃s) ≤ M < ∞ and C(λs) →
∞ as � → μ, we can choose a � < μ sufficiently close to μ such that

∑
j /∈C Hj (�̃s)

C(�s)
< ε.

It then follows that

C(λ̃s)

C(λs)
< 1 − ε + ε = 1,

which implies that C(λ̃s) < C(λs), contradicting the assumed social optimality of λs.
Thus, (5.53) holds.

By an argument similar to that used to prove Theorem 7 in Sect. 5.4 one can show
that

lim
�→μ

C̃(λ̃e)

C̃(λe)
= 1. (5.54)

From (5.53) and (5.54) and the assumption that C̃(λ̃e)/C̃(λ̃s) → κ < ∞, it follows
that

∣∣∣∣∣
C̃(λe)

C̃(λs)
− C̃(λ̃e)

C̃(λ̃s)

∣∣∣∣∣
=
∣∣∣∣∣
C̃(λe)

C̃(λ̃e)
· C̃(λ̃s)

C̃(λs)
· C̃(λ̃e)

C̃(λ̃s)
− C̃(λ̃e)

C̃(λ̃s)

∣∣∣∣∣

= C̃(λ̃e)

C̃(λ̃s)
·
∣∣∣∣∣
C̃(λe)

C̃(λ̃e)
· C̃(λ̃s)

C̃(λs)
− 1

∣∣∣∣∣
→ 0, as � → μ,

and hence

C̃(λe)

C̃(λs)
→ κ < ∞, as � → μ. (5.55)

Now we show that the first term on the right-hand side of the inequality (52) also
approaches zero as � → μ. We have

∣∣∣∣∣
C(λe)

C(λs)
− C̃(λe)

C̃(λs)

∣∣∣∣∣
=
∣∣∣∣∣
C(λe)

C̃(λe)
· C̃(λs)

C(λs)
· C̃(λe)

C̃(λs)
− C̃(λe)

C̃(λs)

∣∣∣∣∣
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= C̃(λe)

C̃(λs)
·
∣∣∣∣∣
C(λe)

C̃(λe)
· C̃(λs)

C(λs)
− 1

∣∣∣∣∣
,

which approaches zero as � → μ by Lemma 9 and the fact that C̃(λe)/C̃(λs)
approaches a finite limit as � → μ (cf. Eq. (5.55)). This completes the proof of the
theorem.

Application to a Network of Queues

We now consider the special case of a generalized Jackson network satisfying the
assumptions of this section. The detailed conditions of our model for the arrival
process and the service times at the facilities are essentially the same as for the
model for parallel GI/GI/1 queues in Section 5.4 For convenience we restate the
conditions here.

Customers arrive to the source node s according to a renewal process. The generic
interarrival time is denoted by A = X/�, where X is a fixed nonnegative random
variable with mean 1 and squared coefficient of variation (scv) C2

a . Upon arrival
each customer is assigned to route r ∈ R with probability pr , where pr ≥ 0, for
r ∈ R, independently of all other customers, and

∑
r∈R pr = 1. The service times

of the customers who use facility j ∈ J form an i.i.d. sequence of random variables
distributed as Sj with finite mean 1/μj and scv C2

Sj
, j ∈ J .

Let {At , t = 1,2, . . . } be a sequence of i.i.d. random variables with the same
distribution as A and let Zr be an independent geometric random variable with mean
1/pr , r ∈ R. Define

A(r) :=
Zr∑

t=1

At , r ∈ R.

Then the interarrival times of customers assigned to route r ∈ R are i.i.d. random
variables distributed as the generic random variable A(r).

The waiting cost incurred by a customer who spends a length of time t at facility
j is hj(t), t ≥ 0, where hj( · ) is non-decreasing with hj(0) = 0, j ∈ J . Thus

Gj(λ) = E[hj(Wj(λ))], j ∈ J ,

where Wj(λ) is the steady-state random waiting time (in queue plus in service) of a
customer at facility j, j ∈ J . The total waiting cost per unit time is therefore given
by

C(λ) =
∑

j∈J

νjGj(λ) =
∑

j∈J

νjE[hj(Wj(λ))],

where λ = (λr , r ∈ R).



118 S. Stidham

The decision variables are the routing probabilities, pr , r ∈ R, or, equivalently,
the arrival rates, λr , where λr = �pr , r ∈ R, and

∑
r∈R λr = �. As usual, we denote

individually optimal and socially optimal flow allocations by λe and λs, respectively.
We shall refer to such a network satisfying Assumptions 1 and 2 as a Ford-

Fulkerson Generalized Jackson Network (FFGJN).
Now we construct an alternative network, in which the generic service times at

the facilities j ∈ J are defined as follows:

S̃j = Sj , j ∈ C

S̃j = 0, j /∈ C

In this alternative network, the waiting times at the facilities j /∈ C are identically
zero, so that these facilities become in effect transparent to the customers as they
move through the network. It follows that the facilities j ∈ C behave exactly like a
network of parallel independent GI/GI/1 queues as studied in Sect. 5.4.2. Specifically,
the arrivals to each facility j ∈ C – namely, those customers who are assigned to the
routes r that include facility j – have i.i.d. inter-arrival times with mean 1/νj and scv
given by

(
∑

r:j∈r

pr )(C2
a − 1) + 1, j ∈ C,

where

νj = �
∑

r:j∈r

pr , j ∈ C.

Since the facilities j ∈ C in the alternative network act independently of each other,
just as in the network of parallel queues considered in Sect. 5.4.2, the waiting times
and costs at facility j, j ∈ C, are completely determined by νj. Therefore we can
write G̃j(νj) rather than G̃j(λ) for the waiting cost function at facility j, j ∈ C, and
C̃(ν) rather than C̃(λ) for the total waiting cost in the alternative network. Let ν̃s

and ν̃e denote the socially optimal and individually optimal facility flow allocations,
respectively, in the alternative network.

We can now state the following corollary of Theorem 10.

Corollary 11 Consider a FFGJN. Suppose

lim
�→μ

C̃(ν̃e)

C̃(ν̃s)
= κ < ∞. (5.56)

Then

lim
�→μ

C(λe)

C(λs)
= κ. (5.57)

For the special case of linear waiting cost functions, we have the following corollary
of Theorems 8 and 10.
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Corollary 12 Consider a FFGJN with linear waiting cost functions,

Gj(λ) = E[hj ·W(λ)], j ∈ J.

The POA for this system is given by

lim
�→μ

C(λe)/C(λs) = lim
�→μ

C̃(ν̃e)/C̃(ν̃s) =
(∑

j∈C h̃j

) (∑
j∈C μj

)

(
∑

j∈C

√
h̃jμj

)2 ,

where h̃j is given by (5.25), j ∈ C.
The implication of Corollary 12 is that the POA for a FFGJN with linear waiting

cost functions coincides with the POA for a system consisting only of the facilities
in the minimal cut C, operating in parallel, where each facility j ∈ C operates as an
M/M/1 queue with hj replaced by h̃j = hjfj.

Conclusions

The POA for a general congestion network is the ratio of the total cost of an indi-
vidually optimal (competitive equilibrium) allocation of flows to the total cost of a
socially optimal allocation. In this paper we have considered the POA for a conges-
tion network in which the waiting costs at the facilities have the property that the
average waiting cost of a customer approaches infinity as the flow at that facility
approaches the capacity of the facility. The expected steady-state waiting time in a
single-server queue typically has this property, with the mean service rate playing
the role of the capacity. For special cases of such a network, we have shown that
the heavy-traffic limit of the POA is finite. We were able to calculate this limit in
closed form for the special case of a network of parallel GI/GI/1 queues. For certain
cases of generalized Jackson networks, we have shown that the heavy-traffic limit
of the POA coincides with the limit for a network consisting only of the facilities in
a minimal cut, operating in parallel. Our results contrast with those in the previous
literature on the POA for general congestion networks, in which upper bounds on
the POA are derived which typically grow without bound in heavy traffic.

There are a number of possibilities for future research in this area. An extension
of our results in Sect. 5 from Ford-Fulkerson networks to more general single-class
networks would allow for applications in which not all routes are permitted. In
such networks, the allocation of flows in heavy traffic is more complicated and it
no longer suffices to consider only the flows in a minimal cut. Multiclass networks
(e.g., networks with different types of customers with different waiting costs and/or
many origin-destination pairs, each with its own demand), also will require a more
sophisticated analysis.
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Chapter 6
A Comparative Study of Procedures
for the Multinomial Selection Problem

Eric Tollefson, David Goldsman, Anton J. Kleywegt and Craig A. Tovey

Introduction

How many games are needed in a playoff series to identify the best team with specified
confidence? How many potential voters should be surveyed to identify the most
popular candidate in a particular political campaign? How many households does
one need to include in a survey to identify the most watched television show during
a certain time slot? How many wine connoisseurs have to participate in a tasting
competition to identify the wine most likely to be preferred (by a connoisseur)? How
many times does one have to send packages to a destination with different couriers
to identify the courier that is fastest on average (Bartholdi 2010)? These are all
questions that can be formulated as multinomial selection problems (MSPs), where
one attempts to identify the alternative (or outcome or category) of a multinomial
distribution that has the largest probability of occurrence, and in which one may be
subject to a budget constraint that limits the number of trials to be conducted.

We want to design an experiment to choose the best among k alternatives. An
experiment consists of a chosen number of trials, in each of which all the alterna-
tives compete. In each trial, alternative i has probability pi > 0 of winning, where∑k

i=1 pi = 1. Denote the ordered pi’s by p[1] ≤ p[2] ≤ · · · < p[k]. The alternative
associated with p[k] is the most probable or best, and is denoted i∗ (it is assumed
throughout the paper that the best alternative is unique). The purpose of the exper-
iment is to identify correctly with high probability the best alternative i∗. Prior to
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an experiment, all that is known is the number of alternatives, how each trial will
be conducted, and how the winning alternative will be chosen. No information is
known concerning the probabilities p = (p1, p2, . . . , pk) or the likelihood that any
alternative is better than any other.

Let xij = 1[0] if alternative i is [is not] the winner of trial j, and let ηim ≡∑m
j=1 xij

denote the total number among the first m trials won by alternative i. We denote the
cumulative win vector by ηm ≡ (η1m, η2m, . . . , ηkm), and we denote the ordered ηim’s
by η[1]m ≤ · · · ≤ η[k]m. Let N be a random variable that denotes the total number
of trials conducted during an experiment. A procedure M is a method to choose
the number of trials conducted and to select one alternative at the conclusion of the
trials. When needed, we include a subscript on M and N to refer to a particular
MSP procedure, e.g., NJ is the number of trials conducted by procedure MJ. We
consider only procedures for which, after N trials, an alternative with the most wins is
selected; that is, an alternative i with ηiN = η[k]N is chosen. For cases when multiple
alternatives are tied for the most wins, we choose each with equal probability. The
chosen alternative is denoted îN .

For a given procedure, the probability of correct selection, denoted by Pp(CS), or
simply P(CS), is the probability that alternative i∗ is chosen. Clearly, P(CS) depends
on p. For any MSP procedure, a reasonable objective is to minimize the expected
number of trials while requiring that

Pp(CS) ≥ P ∗ for all p such that p[k]/p[k−1] ≥ θ∗, (6.1)

where the desired probability of correct selection P ∗ > 1/k and the so-called
relative-ratio indifference-zone parameter θ∗ > 1 are constants that are both spec-
ified by the user. The quantity θ∗ can be regarded as the “smallest ratio p[k]/p[k−1]

worth detecting.”
To guarantee (6.1), we require additional information. Let P ≡ {p ∈ [0, 1]k :∑k
i=1 pi = 1} be the set of all possible probability configurations p. The preference

zone (PZ) is denoted PPZ ≡ {p ∈ P : p[k]/p[k−1] ≥ θ∗}. Its complement, PIZ,
is the indifference zone (IZ). Given a procedure, the least favorable configuration
(LFC) is the probability configuration p ∈ PPZ that minimizes Pp(CS). While guar-
anteeing (6.1), the goal is to minimize the expected number of trials when p is the
LFC. However, for some MSP procedures, the LFC has not yet been identified, so
we instead attempt to minimize the expected number of trials when p is the slippage
configuration (SC):

SC ≡
(

1

θ∗ + k − 1
, . . . ,

1

θ∗ + k − 1
,

θ∗

θ∗ + k − 1

)
,

which is the LFC for many procedures. In that case, our objective is to minimize the
expected number of trials when p is the SC, while requiring that

Pp(CS) ≥ P ∗ when p is the SC, (6.2)

a weaker condition than condition (6.1).
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There are different versions of the MSP described above. In the single-stage
or static MSP, the experimenter has to choose in advance the number N of trials.
Researchers typically assume that the experimenter wants the smallest number N

such that if îN is chosen as described above, then conditions (6.1) or (6.2) hold. Since
the number of trials is committed in advance, the experimenter does not consider
or allow the possibility of conducting one trial at a time for the purpose of deciding
whether to stop or conduct another trial based on the outcomes of the previous trials.

In the sequential or dynamic MSP, the experimenter may conduct one trial at a
time and dynamically determine the (random) number N of trials. In this setting,
researchers typically assume that the experimenter wants to choose a procedure
M that minimizes the expectation of NM under configuration p, denoted Ep[NM];
special attention is placed on cases for which p is the LFC (which depends on
the procedure M) or at least the SC, and such that conditions (6.1) or (6.2) hold.
Sequential procedures can be one of three types:

• Unbounded sequential procedures for which there is no a priori bound on the
number of trials taken during an experiment.

• Bounded sequential procedures for which the chosen procedure parameters
provide an upper bound on the number of trials taken during an experiment.

• Constrained sequential procedures (a special case of bounded procedures) for
which the decision maker specifies a maximum number of trials that can be taken,
called the budget b.

An example of a setting modeled as a static MSP is an agricultural experiment, in
which each trial consists of dividing a plot of land into k parts, one part for each of
the k crops that are planted. The experimenter has to decide how many such plots
of land to prepare before the growing season, and does not want to conduct one
trial in each growing season before deciding whether to conduct another trial. Many
sports competitions are dynamic “best-out-of-m” type tournaments. For example,
the Major League Baseball World Series is a best-out-of-7 tournament (experiment),
in which the first team to win 4 games (trials) is the winner of the tournament. Many
tennis matches are best-out-of-3 matches (experiments), in which the first side to
win 2 sets (trials) wins the match. As pointed out later, a best-out-of-m procedure is
a specific type of procedure for dynamic MSPs.

In the next section, we review the static and dynamic procedures that will be
compared in the paper. After this, we describe the methodology and metrics we will
use to evaluate the performance of the procedures. We then compare the procedures,
and finally we give conclusions. New, more-accurate and extensive parameter tables
are given in the appendices.

Review of Procedures

The classic single-stage procedure is due to Bechhofer, Elmaghraby, and Morse
(BEM) (1959), and proceeds as follows.
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Procedure MBEM

• For the given k, θ∗, and P ∗, choose the number nBEM of trials. Tables that give the
minimum value of nBEM subject to (6.2) have been prepared, e.g., BEM (1959)
or Bechhofer, Santner, and Goldsman (BSG) (1995).

• Conduct nBEM multinomial trials in a single stage.
• Select înBEM as the best alternative, using randomization to break ties.

Remark 1 For Procedure MBEM, Kesten and Morse (1959) prove that the SC is the
LFC. Thus, the parameter nBEM in BEM (1959), chosen based upon the procedure
performance in the SC, satisfies condition (6.1) for the given k, θ∗, and P ∗.

In principle, any static procedure can be used to choose the number of trials for
a dynamic MSP. However, it is clear that such a procedure may sometimes conduct
more trials than needed, because it does not exploit the information provided as
trial outcomes are observed. For example, if k = 2 and nBEM = 100 trials are
chosen, and we obtain η1,100 = 99 and η2,100 = 1, then for many values of θ∗ and
P ∗, we could have stopped before trial 100 and still have reached the conclusion
that alternative 1 is the most probable for the given P ∗-requirement on P(CS). The
bounded sequential procedure of Bechhofer and Kulkarni (BK) (1984) capitalizes
on such favorable sample paths, that is, sample paths that allow the procedure to stop
before conducting all nBEM trials required by the single-stage Procedure MBEM.

Procedure MBK

• For the given k, θ∗, and P ∗, choose the parameter nBK (usually nBK = nBEM).
Sources are BSG (1995) or Appendix A of this paper.

• At the mth stage of experimentation, m ≥ 1, conduct a multinomial trial.
• Calculate the ordered cumulative wins η[i]m, i = 1, 2, . . . , k. Stop the experiment

at the first stage when

η[k]m − η[k−1]m ≥ nBK −m. (6.3)

• Select îm as the best alternative, using randomization to break ties.

In other words, Procedure MBK employs a curtailment strategy that stops sampling
at the first stage m for which the alternative currently in first place can do no worse
than tie if the remaining nBK −m trials were to be conducted. Let NBK be a random
variable denoting the value of m at the termination of the experiment. It can be
shown that the curtailed Procedure MBK yields the same P(CS) as the single-stage
Procedure MBEM, yet with a smaller expected number of trials, i.e., for all p,

Pp(CS using Procedure MBK) = Pp(CS using Procedure MBEM)

and

Ep[NBK] ≤ nBEM.
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Remark 2 Since Pp(CS) for both procedures is identical when nBK = nBEM, the SC
for Procedure MBK must be the LFC as Kesten and Morse (1959) proved for Proce-
dure MBEM. Thus, the parameter nBK, chosen based upon the procedure performance
in the SC, satisfies condition (6.1) for the given k, θ∗, and P ∗.

Another sequential procedure is due to Ramey and Alam (RA) (1979), who com-
bine the stopping rule of Alam’s (1971) unbounded procedure, which stops when one
alternative has a sufficient lead over the remaining alternatives, with the inverse sam-
pling stopping rule of Cacoullos and Sobel (1966), which stops when the alternative
with the largest number of wins hits a certain stopping bound.

Procedure MRA

• For the given k, θ∗, and P ∗, choose the parameter pair (r , t). Sources are Bechhofer
and Goldsman (1985a) or Appendix C of this paper.

• At the mth stage of experimentation, m ≥ 1, conduct a multinomial trial.
• Calculate the ordered cumulative wins η[i]m, i = 1, 2, . . . , k. Stop the experiment

at the first stage when

η[k]m = t or η[k]m − η[k−1]m = r.

• Select îm as the best alternative; ties are not possible.

Remark 3 In their paper, RA prove that the SC is the LFC for their procedure when
k = 2, and use empirical evidence to conjecture that it is so for k > 2. The (r , t)-
values in BG (1985a) have been chosen to minimize the expected number of trials
conducted by Procedure MRA when p is the SC, satisfying condition (6.2), but not
necessarily condition (6.1).

Consider the special case of Procedure MRA with r = t . In that case, the first
alternative to win t trials is chosen as the best alternative. In the case with k = 2,
that corresponds to a best out of 2t − 1 tournament.

In a slight modification to Procedure MRA, Chen (1992) creates Procedure MRA′
by adding truncation with curtailment at trial nRA′ .

Procedure MRA′

• For the given k, θ∗, and P ∗, choose the parameter triplet (nRA′ , r , t). Sources are
Chen (1992) or Appendix D of this paper.

• At the mth stage of experimentation, m ≥ 1, conduct a multinomial trial.
• Calculate the ordered cumulative wins η[i]m, i = 1, 2, . . . , k. Stop the experiment

at the first stage when

η[k]m = t or η[k]m − η[k−1]m = r or η[k]m − η[k−1]m ≥ nRA′ −m.

• Select îm as the best alternative, using randomization to break ties.

Remark 4 Chen conjectures that the LFC of Procedure MRA′ is the SC. The
(nRA′ , r , t)-values in Chen (1992) have been chosen to minimize the expected number
of trials conducted by Procedure MRA′ when p is the SC, satisfying condition (6.2),
but not necessarily condition (6.1).
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Bechhofer and Goldsman (BG) (1985b, 1986) introduce Procedure MBG, which
truncates an unbounded sequential procedure due to Bechhofer, Kiefer, and Sobel
(BKS) (1968) in order to save trials by reducing the inherent overprotection of P(CS)
in the BKS procedure.

Procedure MBG

• For the given k, θ∗, and P ∗, choose the truncation parameter nBG. Sources are
BG (1986) or BSG (1995).

• At the mth stage of experimentation, m ≥ 1, conduct a multinomial trial.
• Calculate the ordered cumulative wins η[i]m, i = 1, 2, . . . , k, and the quantity

zm =
k−1∑

i=1

(
1

θ∗

)η[k]m−η[i]m

.

Stop the experiment at the first stage when either

zm ≤ (1 − P ∗)/P ∗ or η[k]m − η[k−1]m ≥ nBG −m. (6.4)

• Select îm as the best alternative, using randomization to break ties.

Remark 5 For the unbounded procedure upon which Procedure MBG is based, BKS
prove that the LFC is the SC; see also Levin (1984). BG (1986) acknowledge that both
the BKS procedure and Procedure MBK share the same LFC, but they do not prove
that combining the stopping rules of these two procedures by adding a truncation
point to the BKS procedure actually preserves the LFC in the new procedure. The
tabulated nBG-values in BG (1986) and BSG (1995) minimize the expected number
of trials taken by Procedure MBG when p is the SC, satisfying condition (6.2), but
not necessarily condition (6.1).

Chen (1988) proposes a bounded sequential procedure that combines inverse
sampling with a finite truncation point.

Procedure MC

• For the given k, θ∗, and P ∗, choose the parameter pair (nC, t). A source is Chen
(1988).

• At the mth stage of experimentation, m ≥ 1, conduct a multinomial trial.
• Calculate the ordered cumulative wins η[i]m, i = 1, 2, . . . , k. Stop the experiment

at the first stage when

η[k]m = t or m = nC. (6.5)

• Select îm as the best alternative, using randomization to break ties.

Remark 6 Chen proves that the SC is the LFC. Thus, his tabulated (nC, t)-pairs,
based upon procedure performance in the SC, satisfy condition (6.1) for a given k,
θ∗, and P ∗.
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Remark 7 Chen states that the strong curtailment stopping rule (see (6.3)) of
Procedure MBK could be used to reduce the expected number of trials for his
procedure without affecting P(CS), but he does not implement the change. We do so
for this comparative study by incorporating curtailment, renaming it Procedure MC′ ,
and tabulating (in Appendix B) the results for common choices of k, θ∗, and P ∗.

The classical sequential procedures reviewed above do not necessarily minimize
the expected number of trials in the LFC or SC, but are heuristics for the dynamic
MSP. Tollefson et al. (2013) develop an approach to find optimal sequential proce-
dures that minimize the expected number of trials for a specified configuration such
as the SC, for a constrained MSP with a specified trial budget b.

The sequential procedures reviewed above employ stopping rules that depend on
simple relationships between the components of the cumulative win vector η and
the specified procedure parameters. In general, one may consider all cumulative win
vectors ηm, and specify a decision whether to stop the experiment or continue with
another trial for each ηm. Note that each of the classical sequential procedures can
be specified in such a general way.

If there is a trial budget b, then all cumulative win vectors ηm for m ≤ b are

considered. Specifically, let N ≡
{
η :

∑k
i=1 ηi ≤ b

}
denote the set of all possible

cumulative win vectors for a given budget b, and let Nb ≡
{
η :

∑k
i=1 ηi = b

}
denote

the set of possible cumulative win vectors after b trials. To find optimal sequential
procedures, randomized stopping is allowed. Thus, for any η ∈ N , let φη ∈ [0, 1]
denote the conditional probability that the procedure stops when reaching cumulative
win vector η, given arrival at η. Due to the budget constraint, φη = 1 for all η ∈ Nb.
The classical sequential procedures are nonrandomized procedures, and for such
procedures φη ∈ {0, 1} for all η ∈ N . In other words, for nonrandomized procedures,
the decision to stop at any point η is deterministic—the experiment either stops if
it reaches η (φη = 1) or it does not (φη = 0). In contrast, a randomized procedure
allows φη ∈ [0, 1] for all η ∈ N \Nb. For a randomized procedure, the decision to
stop at a particular point η may be deterministic (if φη ∈ {0, 1}) or may be random (if
φη ∈ (0, 1)). Note that, if one allows b = ∞, then any nonrandomized procedure can
be specified by a function φ : N �→ {0, 1}, and any randomized procedure can be
specified by a function φ : N �→ [0, 1]. Recall that the experimenter does not know
in advance which alternative is more or less likely to win than another alternative;
and, therefore, the indexing of alternatives is arbitrary, and hence φη is required to be
invariant with respect to permutations of η. In other words, for any η, η′ ∈ N such
that η and η′ are permutations of each other, φη = φη′ .

Next we specify generic nonrandomized and randomized Procedures MNR and
MR, respectively.

Procedures MNR and MR

• For the given k, θ∗, P ∗, and b, specify the function φ : N �→ [0, 1] for the
randomized case, or the function φ : N �→ {0, 1} for the nonrandomized case.

• At the mth stage of experimentation, m ≥ 1, conduct a multinomial trial.
• Calculate η, the cumulative win vector. In the randomized case, generate a

uniform(0, 1) random number υm; if υm < φη, then stop and select alternative
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îm, using randomization to break ties. In the nonrandomized case, if φη = 1,
then stop and select alternative îm, using randomization to break ties. Otherwise,
continue with the next trial.

Tollefson et al. (2013) present a linear program (LP) to choose the function φ :
N �→ [0, 1], such that the resulting Procedure MR is an optimal solution to the
constrained MSP, in the sense that it minimizes the expected number of trials subject
to a constraint on the probability of correct selection and a budget constraint, for
specified parameters k, θ∗, P ∗, b, and p. Also, they present a mixed integer linear
program (MIP) to choose the function φ : N �→ {0, 1}, such that the resulting
Procedure MNR is an optimal nonrandomized solution to the constrained MSP for
specified parameters k, θ∗, P ∗, b, and p. That paper’s unique contribution lies in
characterizing the problem as a network in which flows represent probabilities, and
the nodes η in the network represent vectors through which the multinomial sample
paths may go.

Remark 8 Tollefson et al. (2013) do not prove that the SC is the LFC for Procedures
MNR andMR. Empirical evidence drawn from Monte Carlo (MC) sampling suggests
that it is so.

Remark 9 For Procedure MNR, the required MIP formulation can be obtained from
the LP formulation for Procedure MR by adding constraints and binary variables. It
follows that

Ep[NR] ≤ Ep[NNR].

Remark 10 Although Procedures MNR and MR in Tollefson et al. (2013) are
optimal (over all nonrandomized or randomized procedures, respectively), they have
a number of practical drawbacks compared with the classical procedures reviewed
before.

1. Each of the classical procedures can be specified with a small number of pro-
cedure parameters (that can be published in tables for many values of the input
parameters) and a small number of inequalities that are easy to compute. In con-
trast, the optimal procedures are specified by φη for each η ∈ N , and do not
facilitate representation in concise tables.

2. Computation of an optimal procedure requires the solution of an LP if a random-
ized procedure is acceptable, or an MIP if a nonrandomized procedure is desired.
This requires software to solve the LP or MIP, and software that specifies the
formulation of the problem.

3. The optimal procedures require specification of a probability configuration p. For
some of the classical procedures, it has been shown that the LFC is the SC; but
that has not yet been established for the optimal procedures.

4. The LP or MIP formulations for the optimal procedures take a budget constraint
as input. All the classical procedures reviewed above are either single-stage or
bounded sequential procedures, but the bounds result from the procedure pa-
rameters, and not from the input parameters. It is conjectured that for any input
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parameters k, θ∗, and P ∗, there exists a budget b(k, θ∗, P ∗) such that the set of
optimal solutions is the same for all b ≥ b(k, θ∗, P ∗) (and thus the LP and MIP
formulations can be used to find optimal solutions even if the given problem has
no budget constraint); but this conjecture has not yet been established. Also, the
sizes (number of decision variables and number of constraints) of the LP and
MIP formulations grow as b grows, and thus it is not desirable to choose an
unnecessarily large value of b.

Due to these drawbacks, several of the classical procedures have not lost their practi-
cal appeal. One of the purposes of this paper is to investigate how much in optimality
is sacrificed by using a classical procedure.

For more details concerning the LP and MIP formulations for Procedures MR

and MNR, see Tollefson et al. (2013).

Methodology

The purpose of the paper is to compare the performances of the MSP procedures
reviewed above.

We will use the optimal procedures as a benchmark for comparing the relative
performances of the classical procedures. First, we describe how we will compare
the different types of MSP procedures, and then, we describe the metrics we will use
for the comparisons.

Procedures

For all the procedures reviewed previously, the SC is either proven or conjectured
to be the LFC. Therefore, we will conduct most of our comparisons of procedure
performance when the probability configuration p is the SC. Furthermore, although
we can evaluate the performance of both Procedures MR and MNR when p is the
SC, we will not include Procedure MNR in our comparisons for three reasons:

1. The expected number of trials for Procedure MNR turns out to be very close to
that of Procedure MR in most cases, especially for large b.

2. The maximum size of the MIPs that we are able to solve is much smaller than the
maximum size of the LPs that we are able to solve. Considering only Procedure
MR allows us to make comparisons across a larger set of problems than we could
if we considered Procedure MNR.

3. Most importantly, Procedure MR is optimal.

All the classical procedures that we consider are either single-stage or bounded se-
quential procedures. Bounded sequential procedures do not require the specification
of a budget b as do the constrained Procedures MNR and MR; rather, their proce-
dure parameters are chosen in order to satisfy the P ∗-requirement while minimizing
ESC[N ]. In order to level the playing field and make like comparisons, we will choose
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a b for each problem and then search only over the subset of possible procedure pa-
rameters that ensures that the maximum number of trials is at most b. For some
problems, this may result in a particular procedure not being able to achieve P ∗ at
all. Our choice of b for each problem is important and will be discussed later. It is
of course possible for us to conduct procedure comparisons without the invocation
of a budget constraint, but we do not do so here.

The following are the seven procedures that we will examine. We explain how
the budget b will affect the search for the optimal procedure parameters for a given
problem. In order to evaluate procedure performance, we developed algorithms to
calculate the exact performance characteristics of each procedure. In some cases, that
exercise allowed us to update the existing parameter tables found in the literature.
When applicable, we refer the reader to those updated tables as well.

1. Procedure MBEM: The single-stage procedure for which the truncation param-
eter nBEM ≤ b.

2. Procedure MBK: The bounded sequential procedure for which the truncation
parameter nBK ≤ b. We include updated tables for this procedure in Appendix A.

3. Procedure MC′ : A modified version of Chen’s (1988) inverse sampling Proce-
dure MC that includes the strong curtailment stopping rule (see (6.3)). Parameter
tables for this new procedure can be found in Appendix B. Given b, choices for
this procedure include all parameter combinations with t ≤ nC′ ≤ b.

4. Procedure MRA: The bounded sequential procedure that includes all parameter
combinations with r ≤ t ≤ (b− 1)/k+ 1 (which ensures that the procedure will
stop at or before the budget b). We include updated tables for this procedure in
Appendix C.

5. Procedure MRA′ : The bounded sequential procedure that includes all parameter
combinations with nRA′ ≤ b and r ≤ t ≤ nRA′/2 (by strong curtailment). We
include updated tables for this procedure in Appendix D.

6. Procedure MBG: The bounded sequential procedure with truncation parameter
nBG ≤ b.

7. Procedure MR: The optimal randomized constrained sequential procedure under
budget b.

Metrics

In this section, we briefly describe some of the performance measures that we will
use to compare procedures.

Expected Number of Trials

Given that a procedure meets the appropriate probability requirement, the most-
common performance measure in the literature is ESC[N ]. Naturally, ESC[N ] is
quite important to the decision maker when considering a procedure to use, since his
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primary goal is normally the minimization of ESC[N ]. In some cases, the decision
maker may be concerned with minimizing the maximum possible number of trials
taken; however, we assume that in setting a budget, the decision maker is more
interested in the former than the latter. A decision maker might also be interested
in the expected number of trials in the equal-probability configuration (EPC), p =
( 1
k
, 1

k
, . . . , 1

k
). This worst-case expectation, EEPC[N ], gives the decision maker insight

into the possible procedure run length for the most challenging configuration with
respect to determining the best alternative.

Procedure Inefficiency Metric

We may also be interested in the deviation of procedure performance with respect to
the achievable lower bound on the expected number of trials in the SC, thereby using
Procedure MR as a benchmark against which we compare other procedures. In order
to facilitate an analysis across different problems with widely varying budgets, we use
the following procedure inefficiency metric, WJ, for a given general procedure MJ:

WJ ≡ ESC[NJ] − ESC[NR]

ESC[NR]
= ESC[NJ]

ESC[NR]
− 1,

where ESC[NJ] denotes the expected number of trials using procedure MJ in the SC,
and ESC[NR] is the expected number of trials using optimal Procedure MR in the
SC. We can think of procedure inefficiency as the fractional increase in the expected
number of trials due to using procedure MJ instead of the optimal procedure.

Note that WJ depends on problem input k, θ∗, P ∗, and b, although the notation
does not show the dependence.

Often, we may want to evaluate procedure performance over a range of problem
input. For that purpose, we extend the procedure inefficiency metric heuristically
by calculating the mean procedure inefficiency, WJ, for a range of P ∗-values,
P �

J,0, P �
J,1, . . . , P �

J,mJ
, where mJ is the total number of P ∗-values at which we calculate

ESC[NJ], and where we assume for ease of exposition that P �
J,0 ≤ P �

J,1 ≤ · · · ≤ P �
J,mJ

.
(We could also carry out an analogous evaluation based on a range of θ∗-values, but
we will not do so here.) Since we only calculate the performance at each P ∗ incre-
ment, the value Ei

SC[NJ] calculated at P �
J,i will serve as the approximate expected

number of trials for the entire interval (P �
J,i−1, P �

J,i]. Let I be the overall probability

interval of P ∗-values we are considering. The mean procedure inefficiency, W
I

J , for
procedure MJ over interval I is defined as

W
I

J ≡

mJ∑

i=1

Ei
SC[NJ]

(
P �

J,i − P �
J,i−1

)

mR∑

i=1

Ei
SC[NR]

(
P �

R,i − P �
R,i−1

)
− 1.

Note that our definition does not require constant increment size, nor do we need to
use the same increment sizes for both procedures. It does, however, require the same
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overall P ∗-interval I :

P �
J,mJ

= P �
R,mR

and P �
J,0 = P �

R,0.

Keep in mind that the metric is specific to a particular combination of k, θ∗, and b,
as well as a particular set of P �

J,i’s.

We must be careful here when comparing procedures, since W
I

J compares each
procedure with the optimum procedure, based upon the P ∗-domain of each pro-
cedure, i.e., the range from 1/k to the maximum achievable PSC(CS) for each
procedure. Procedures MBEM, MBK, MC′ , MRA′ , and MR have the same P ∗-
domain. On the other hand, procedures MRA and MBG may have different domains
than each other and the remaining procedures. Considering only the mean procedure
inefficiency metric fails to recognize that the domains of the procedures may be dif-
ferent. If we want to compare two procedures, say procedures MJ and ML, over a
common domain, we create a new metric, which we call the mean relative procedure
performance, defined as follows:

V
I

J,L ≡

mJ∑

i=1

Ei
SC[NJ]

(
P �

J,i − P �
J,i−1

)

mL∑

i=1

Ei
SC[NL]

(
P �

L,i − P �
L,i−1

)
− 1,

where I is the intersection of the domains of procedures MJ and ML. A positive
value indicates that procedure ML performs better than procedure MJ over the
interval of interest; a negative value indicates the opposite.

Distributional Metrics

We can enumerate all of the possible stopping vectors for any MSP procedure, and
we can develop algorithms to determine the probability of arriving and stopping
at each possible stopping vector. All MSP procedures under a finite budget have a
finite number of stopping points; therefore, we have complete information about the
discrete probability distribution of the number of trials required by the procedure.
With this information, we can calculate metrics such as the mean, median, mode,
variance, and quantiles of the random variable N .

Performance Comparison

We compared the seven procedures described previously using our proposed perfor-
mance metrics. In Appendix E, we include comparison tables for the 36 possible
combinations of k ∈ {2, 3, 4}, θ∗ ∈ {1.6, 2.0, 2.4, 3.0}, and P ∗ ∈ {0.75, 0.90, 0.95},
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Fig. 6.1 Procedure Comparison Plots for k = 2, θ∗ = 1.6, b ∈ {10, 20, 40, 60}

with a single budget b for each. For the examples in that appendix, we set the
budget b equal to the optimal truncation parameter nBG for Procedure MBG—a pro-
cedure which typically performs at least as well as the other classical procedures.
Thus setting b = nBG typically creates conditions favorable to the best of the existing
procedures, thereby minimizing its inefficiency compared to the optimal procedure.

The tables give results for both ESC[N ] and EEPC[N ]. For those 36 cases, Pro-
cedure MBG usually performs better, in terms of ESC[N ], than Procedure MRA′ ;
however, Tables 6.10 and 6.18 in Appendix E show that this is not always the case.
While certain trends may be evident across the tables, it is hard to draw any com-
pletely general conclusions, particularly since our choice of the budget b will affect
the results and the relative performance of the procedures.

Relative Procedure Performance

We try to account for the effect of the budget b by examining procedure performance
across the 12 combinations of k ∈ {2, 3, 4} and θ∗ ∈ {1.6, 2.0, 2.4, 3.0}. For each
combination, we choose four values for the budget b and then consider all possible P ∗
values between 1/k and 0.99, in increments of 0.01. We plot our results to visualize
relative procedure performance.

Figure 6.1 shows a series of four charts, one each for b ∈ {10, 20, 40, 60}, with
k = 2 and θ∗ = 1.6. The expected performance, ESC[N ], of the seven procedures is
plotted as a function of P ∗. Procedure MR, the lower bound, is shown in black.
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Some Interesting Results for k = 2

The plotted results for k = 2 illustrate some intriguing findings, some of which
have heretofore not been explained in the literature. First, Procedures MBK and
MC′ perform identically when k = 2. Specifically, for Procedure MC′ , stops due to
inverse sampling (i.e., the parameter t) are identical to stops due to strong curtailment
(i.e., the parameter nC′ ) when nC′ = 2t . To see this, note that if k = 2 and n = 2t ,
then a stop due to curtailment implies

η[2]m − η[1]m ≥ n−m = 2t − (η[2]m + η[1]m),

which is true if and only if η[2]m ≥ t . Since the procedure must stop when η[2]m = t ,
the curtailment and inverse sampling stopping conditions are satisfied simultane-
ously. Choosing n > 2t means that the procedure will always stop due to the inverse
sampling condition. Choosing t > n/2 means that the procedure will always stop
due to the curtailment condition. Therefore, when k = 2, we can represent any two-
parameter Procedure MC′ equivalently as the single-parameter Procedure MBK with
nBK = min{nC′ , 2t}.

There is another unique characteristic of curtailment when k = 2 that is not
obvious from the figure. Namely, for k = 2, the set of cumulative win vectors that
are stops due to curtailment when n = n0 with n0 even, is identical to the set of
cumulative win vectors that are stops due to curtailment when n = n0 − 1. To see
that this is true, we show first that when k = 2 and n = n0 with n0 even, a cumulative
win vector at trial m, ηm, is a stop due to curtailment if and only if η[2]m = n0/2. If
ηm is a curtailment stop, then

η[2]m − η[1]m ≥ n0 −m = n0 − (η[2]m + η[1]m)

if and only if η[2]m ≥ n0/2, where n0/2 is an integer since n0 is even. Let η[2]m =
n0/2 + ν, where ν ∈ N ∪ 0, and therefore ηm = (n0/2 + ν, m− n0/2 − ν). Then

η[2]m − η[1]m = n0/2 + ν − (m− n0/2 − ν) = n0 −m+ 2ν,

which always satisfies the curtailment condition. But not all values of ν may result in
a feasible stopping point because it is possible that the procedure will have stopped
at a previous trial. Therefore, we consider trial m−1 under two possible cases: either
the alternative associated with η[2]m won trial m or the other alternative won. In the
former, the difference between the number of wins of the two alternatives after trial
m− 1 is

n0/2 + ν − 1 − (m− n0/2 − ν) = n0 −m+ 2ν − 1.

Since there are n0 −m+ 1 trials remaining, the curtailment condition is met at trial
m− 1 if ν > 0. In the latter case, the difference is

n0/2 + ν − (m− n0/2 − ν − 1) = n0 −m+ 2ν + 1,

which is a stop for all ν ≥ 0. Only ν = 0 allows the procedure to reach ηm; and
ν > 0 results in an ηm that is infeasible. Therefore, if ηm is a stop due to curtailment,
then η[2]m = n0/2.
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To show the reverse, if η[2]m = n0/2, then

η[2]m − η[1]m = n0/2 − (m− n0/2) = n0 −m,

which satisfies the curtailment stopping condition. We have now shown that when
k = 2 and n = n0, n0 even, a cumulative win vector ηm is a stop due to curtailment
if and only if η[2]m = n0/2.

Now, we show that when k = 2 and n = n0 − 1 with n0 even, a cumulative
win vector ηm is a stop due to curtailment if and only if η[2]m = n0/2. If ηm is a
curtailment stop, then

η[2]m − η[1]m ≥ n−m = n0 − 1 − (η[2]m + η[1]m)

if and only if η[2]m ≥ (n0 − 1)/2. But (n0 − 1)/2 is not an integer since n0 is
even, so η[2]m = n0/2 is the smallest integer that meets the stopping condition. Let
η[2]m = n0/2+ ν, where ν ∈ N ∪ 0, and therefore ηm = (n0/2+ ν, m− n0/2− ν).
By the same reasoning as the previous proof, if ν > 0, then ηm is not a feasible
stopping point. Only ν = 0 results in a feasible stopping point at trial m. Therefore,
if ηm is a stop due to curtailment, then η[2]m = n0/2.

To show the reverse, if η[2]m = n0/2, then

η[2]m − η[1]m = n0/2 − (m− n0/2) = n0 −m,

which satisfies the curtailment stopping condition since there are n0 −m− 1 trials
remaining. We have now shown that when k = 2 and n = n0 − 1 with n0 even,
a cumulative win vector at trial m, ηm, is a stop due to curtailment if and only if
η[2]m = n0/2. As a result, when k = 2, the set of cumulative win vectors that
are stops due to curtailment when n = n0 with n0 even, is identical to the set of
cumulative win vectors that are stops due to curtailment when n = n0 − 1.

Returning to our discussion of the relationships between Procedures MBK and
MC′ , we can now state that when k = 2, we can represent any two-parameter
Procedure MC′ equivalently as the single-parameter Procedure MBK with nBK =
min{nC′ , 2t − 1}.

Similarly, Procedures MRA and MRA′ also perform identically when k = 2. In
this case, stops due to t are identical to stops due to nRA′ when nRA′ = 2t − 1.
Thus, when k = 2, Procedure MRA′ with a particular (nRA′ , r ′, t ′)-triplet is iden-
tical to Procedure MRA with a corresponding (r , t)-pair in which r = r ′ and
t = min

{
t′, �(nRA′ + 1)/2�}, where �x� is the floor function (i.e., rounds x down to

the nearest integer).
Procedure MBG has significant overlap with Procedures MRA and MRA′ when

k = 2. For Procedure MBG, the parameter zm in the stopping criteria (6.4) is based on
the differences between the alternative with the most wins and the other alternatives.
When k = 2, there is only one difference to consider, in which case exactly the same
stopping behavior can be achieved with the r parameter in Procedures MRA and
MRA′ . To see that this is true, recall the Procedure MBG stopping condition:

zm =
(

1

θ∗

)η[2]m−η[1]m

≤ 1 − P ∗

P ∗ .
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Solving for η[2]m − η[1]m, and using the fact that η[2]m − η[1]m must be an integer, we
get

η[2]m − η[1]m ≥ r ′ ≡
⌈

ln (P ∗) − ln (1 − P ∗)
ln (θ∗)

⌉
,

where �x� is the ceiling function (i.e., rounds x up to the nearest integer). As with
the previous discussions, the parameter nBG acts similarly to the t parameter when
k = 2. The main aspect that makes Procedure MBG differ from Procedures MRA

and MRA′ in some cases is that parameter r can be chosen in the latter procedures
independently of the other parameters, whereas zm for Procedure MBG is determined
by the problem parameters (i.e., cannot be chosen independently).

An Anomaly of Procedure MBG

The lack of flexibility in the stopping criteria (6.4) leads to some interesting behavior
with respect to Procedure MBG. For some smaller values of P ∗, there exists no
nBG ≤ b such that P(CS) of Procedure MBG is greater than or equal to P ∗, but
(surprisingly) for some larger values of P ∗, there exists nBG ≤ b such that P(CS) of
Procedure MBG is greater than or equal to P ∗. Such nonmonotonic behavior can be
seen in the chart for b = 20 in Fig. 6.1. In that case, given P ∗ = 0.80, there exists
no nBG ≤ 20 such that P(CS) of Procedure MBG is greater than or equal to 0.80;
but given P ∗ = 0.81, there exists nBG ≤ 20 such that P(CS) of Procedure MBG

is greater than 0.81. For this example, given P ∗ = 0.80, nBG must be increased to
25 before P(CS) of Procedure MBG is greater than 0.80. This nonmonotonicity is
a characteristic peculiar to Procedure MBG that is not shared by any of the other
procedures discussed here. In some cases, such as for k = 2, θ∗ = 3, P ∗ = 0.90,
there exists no nBG at all such that P(CS) of Procedure MBG is greater than or equal to
P ∗. These anomalies are due to the fact that the stopping condition zm ≤ (1−P ∗)/P ∗
was originally developed by BKS (1968) for an unbounded procedure. When BG
(1985b, 1986) added the additional stopping parameter, nBG, thereby bounding the
procedure to save trials in expectation, the truncated procedure lost the ability to
achieve P ∗-values for which the unboundedness of the number of trials was required.

Let �21 ≡ η[2]m − η[1]m. Then for our example with k = 2 and θ∗ = 1.6,

zm =
(

1

θ∗

)�21

=

⎧
⎪⎪⎨

⎪⎪⎩

0.625 if �21 = 1
0.391 if �21 = 2
0.244 if �21 = 3
0.153 if �21 = 4.

Thus, for P ∗ = 0.79, we have (1 − P ∗)/P ∗ = 0.266, and we stop at difference
�21 = 2 when zm = 0.391; for P ∗ = 0.8, (1 − P ∗)/P ∗ = 0.25, and we stop at
�21 = 3 when zm = 0.244; and for P ∗ = 0.81, (1 − P ∗)/P ∗ = 0.235, and we stop
at �21 = 4 when zm = 0.153. As it turns out, stops from zm values that are less than,
but very close to, (1 − P ∗)/P ∗ require more trials to achieve P ∗, as is the case for
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P ∗ = 0.8 above. For the extreme example when k = 2, θ∗ = 3, and P ∗ = 0.9, the
stopping condition quantity (1− P ∗)/P ∗ = 1/9, which is exactly equal to zm when
�21 = 2. In that case, the procedure requires an infinite trial budget to achieve P ∗.

How can we explain this phenomenon? We first refer to the discussion in Chap. 7
of Tollefson (2012) which shows that, for the SC with k = 2, the posterior (aka
“conditional”) P(CS), given a stop at cumulative win vector η, is the remarkably
simple expression

(θ∗)η[2]

(θ∗)η[1] + (θ∗)η[2]
.

If we require this expression to be at least P ∗, then a little algebra reveals that

zm =
(

1

θ∗

)η[2]−η[1]

≤ 1 − P ∗

P ∗ .

Thus, the original BKS stopping rule requires stopping at the first point for which the
posterior P(CS) > P ∗ when the configuration is the LFC (which BKS prove is the
SC). Now, back to our problem. The prior P(CS) is the expectation of the posterior
P(CS), which is the quantity that we need to be at least P ∗. For the above example
with k = 2, θ∗ = 3, and P ∗ = 0.9, we always stop when zm = 1/9, i.e., when
η[2] − η[1] = 2. This means that we always stop exactly when the posterior P(CS) =
P ∗. Clearly then, we can never incorporate a truncation point nBG for Procedure
MBG because stops due to that criterion will result in a posterior P(CS) < P ∗, while
the other stopping points have exactly the required P(CS). Thus, any curtailment
would result in a prior P(CS) < P ∗ (although the difference would admittedly be
small if nBG were large). This is also the case when the stopping values of zm are very
close to (and obviously less than) their required value of (1 − P ∗)/P ∗. The closer
that the posterior P(CS) of our zm-condition stopping points gets to our required P ∗
(which occurs as zm approaches (1−P ∗)/P ∗ from below), the larger the curtailment
point nBG must be since we have very little excess posterior P(CS) that can be offset
by the curtailment points. As nBG increases, the contribution to the prior P(CS)
due to curtailment stopping points decreases. As we increase P ∗, we must increase
nBG until we need to move to the next discrete value of zm (i.e., the next larger
difference), at which point the required nBG may not necessarily be larger than the
previous value—as is the case when we move from P ∗ = 0.79 to 0.80 to 0.81, which
is the particular case we are considering here.

Results for k > 2

We now examine similar plots when the number of alternatives is larger than k = 2.
Figure 6.2 shows a series of charts for b ∈ {5, 10, 25, 40} with k = 4 and θ∗ = 2.4.
In this figure, we see that the relationships between the procedures are more complex
than they were for k = 2. None of the procedures perform identically, as some did
for k = 2, but some do perform similarly when b is low.
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Fig. 6.2 Procedure Comparison Plots for k = 4, θ∗ = 2.4, b ∈ {5, 10, 25, 40}

We note some relationships between the procedures (regardless of k) that are
reflected in Fig. 6.2.

• Procedure MBK with parameter nBK is a special case of Procedure MC′ with
parameter pair (nC′ , t), where nC′ = nBK and t ≥ �nC′/2�.

• Procedure MC′ with parameter pair (nC′ , t) is a special case of Procedure MRA′
with parameter triplet (nRA′ , r ′, t ′), where nRA′ = nC′ , r ′ ≥ �nC′/2�, and t ′ = t .

• Procedure MRA with parameter pair (r , t) is a special case of Procedure MRA′
with parameter triplet (nRA′ , r ′, t ′), where nRA′ ≥ kt + 1, r ′ = r , and t ′ = t .

• Procedure MBK always performs better than Procedure MBEM.

These relationships guarantee a relative ordering between Procedures MRA and
MRA′ , and among Procedures MBEM, MBK, MC′ , and MRA′ , which are reflected in
Fig. 6.2, as well as in Fig. 6.1. Thus, when considering the best performing procedure
(not including the optimal procedures), we need only compare Procedures MRA′ and
MBG. Figure 6.2 shows that there are regions in which Procedure MRA′ (and even
Procedure MRA) perform better than MBG and regions (seemingly more numerous)
in which the opposite is true. We will address that issue in more detail later in this
section.

Another insight from Fig. 6.2 is the seemingly counterintuitive fact that Procedure
MBK and even Procedure MBEM perform better than Procedure MRA for some P ∗-
values. The reason for this phenomenon, which only occurs when b is low, is that
the budget poses a more significant constraint on Procedure MRA than it does for
Procedures MBEM and MBK. For a Procedure MRA parameter pair (r , t) to be
possible, we must have b ≥ k (t − 1) + 1. For example, if k = 4 and b = 5, then
we require that t ≤ 2, resulting in the possible parameter pairs in Table 6.1. Note
that when r = 1, the procedure stops after one trial, regardless of t ; therefore, there



6 A Comparative Study of Procedures for the Multinomial Selection Problem 141

Table 6.1 Parameters for Procedures MRA and MBK for k= 4, θ∗ = 2.4, and b = 5

Procedure MRA Procedure MBK

Parameters PSC(CS) ESC[N ] Parameters PSC(CS) ESC[N ]
(r = 1, t = 1) 0.4444 1.000 nBK = 1 0.4444 1.000
(r = 2, t = 2) 0.5690 3.080 nBK = 2 0.4444 1.000

nBK = 3 0.5085 2.700
nBK = 4 0.5559 3.012
nBK = 5 0.5849 4.104

is no need to include results for (r = 1, t = 2). Consider P ∗ = 0.5. Procedure
MBK with nBK = 3 can achieve P ∗ with ESC[N ] = 2.7, but Procedure MRA with
(r = 2, t = 2), the only parameter pair that achieves P ∗, requires ESC[N ] = 3.08.
Even Procedure MBEM with nBEM = 3 achieves P ∗ with a lower ESC[N ] = 3. These
results agree with Fig. 6.2, although the results for Procedure MBK are masked by
that of Procedure MBG at P ∗ = 0.5.

The anomalies that we noticed for Procedure MBG when k = 2 occasionally
manifest for k > 2, but very rarely. In fact, such phenomena do not appear at all
in Fig. 6.2 for k = 4. While these anomalies are more common for k = 2, we
speculate that a larger k allows for a greater number of possible zm-values and thus
fewer anomalies from large gaps between the discrete zm-values.

Mean Procedure Inefficiency

To supplement the visual insights provided by our charts, we also calculated the

metrics WJ and W
I

J . The tables in Appendix E for our 36 procedure comparisons
include values for WJ as a percentage in the column labeled “100WJ.” We also

calculated W
I

J for the 12 combinations of k ∈ {2, 3, 4} and θ∗ ∈ {1.6, 2.0, 2.4, 3.0}
at four values of b. For those examples, we use a constant increment size of 0.01 for
P ∗ (except for the interval between 1/3 and 0.34 when k = 3). In addition, we use
the same increment sizes for each procedure MJ as we do for Procedure MR. The
following are the four relevant intervals:

• W
�

J is calculated from the entire interval from 1/k to the maximum achievable
P ∗ by procedure MJ. For example, the maximum achievable P ∗ for Procedure
MRA with k = 2, θ∗ = 2, and b = 20 is 0.9313. The interval considered in
this comparison is then (for both Procedures MRA and MR) from 0.50 to 0.93,
even though Procedure MR can achieve a higher P ∗ at b = 20. Thus, we should
qualify the mean procedure inefficiency metric by calling it the mean procedure
inefficiency over its achievable P ∗-region when that region is shorter than that of
the optimal procedure. However, we omit the qualifier for the sake of brevity.

• W
75
J is calculated from the interval from 1/k to the maximum achievable P ∗ or

0.75, whichever is less.
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Fig. 6.3 Mean Procedure Inefficiency for k = 2, θ∗ = 1.6, b ∈ {10, 20, 40, 60}

• W
90
J is calculated from the interval from 0.75 to the maximum achievable P ∗ or

0.9, whichever is less. If procedure MJ cannot achieve a P ∗ above 0.75, this
metric is not defined.

• W
95
J is calculated from the interval from 0.9 to the maximum achievable P ∗ or

0.95, whichever is less. If procedure MJ cannot achieve a P ∗ above 0.9, this
metric is not defined.

Figure 6.3 shows the mean procedure inefficiencies for each of the four P ∗-regions,
with b ∈ {10, 20, 40, 60}, k = 2, and θ∗ = 1.6 (i.e., corresponding to the charts in
Fig. 6.1). Here we see numerically what we noted in the plots of raw performance:
Procedures MBK and MC′ have the same performances, as do Procedures MRA and
MRA′ . We also see that Procedure MBG performs similarly to Procedures MRA and
MRA′ . The absence of a set of bars for any region means that none of the procedures
can achieve P ∗ in that interval.

Figure 6.4 shows the mean procedure inefficiencies for each of the four regions,
with b ∈ {5, 10, 25, 40}, k = 4, and θ∗ = 2.4. Due to the larger k and lower numbers
of trials, there are again several regions within which none of the procedures can
achieve a particular P ∗, even though θ∗ is larger than for Fig. 6.3. The relative
ordering of procedure performance discussed in connection with Fig. 6.2 is evident
here, as is the poorer performance of Procedure MRA when b is low.

The performances of Procedures MRA′ and MBG dominate those of all other
procedures except the optimal procedures. Therefore, we narrow our attention to just
the two procedures by examining the mean relative procedure performance metric

V
I

RA′,BG.
Figure 6.5 shows the results for this comparison over the same sets of k, θ∗,

and b we have analyzed thus far. The figure consists of 12 charts, one for each
possible combination of k ∈ {2, 3, 4} and θ∗ ∈ {1.6, 2.0, 2.4, 3.0}. Each row of charts
represents a particular number of alternatives k, and each column of charts represents
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Fig. 6.4 Mean Procedure Inefficiency for k = 4, θ∗ = 2.4, b ∈ {5, 10, 25, 40}

a particular θ∗. Within each chart, the horizontal axis includes four groups of four
bars. Each group of four bars represents a particular budget b, which is labeled on
the axis. The four bars within each group represent the same four regions of interest

(i.e., intervals I ) as those described for W
I

J . The vertical axis on each chart is the

value of the metric V
I

RA′,BG. Thus, within each group, the four bars from left to

right represent values of V
�

RA′,BG, V
75
RA′,BG, V

90
RA′,BG, and V

95
RA′,BG, respectively. Bars

above the center line indicate regions within which Procedure MBG performs better
than Procedure MRA′ . Bars below indicate regions within which the opposite is
true. Points at which there are no bars indicate either identical or nearly identical
performance, or a region within which the procedures cannot compete.

The greater frequency of bars above versus below shows that for the regions and
problems we examined, Procedure MBG performs better than MRA′ more often than
the reverse. However, we point out again that this comparison is over the intersection
of their domains. In some cases, Procedure MRA′ can attain a higher maximum P ∗
for a problem than can Procedure MBG, which may provide a decisive advantage for
particular situations. Of course, we should not lose sight of the fact that Procedure
MR (and Procedure MNR) always perform as well as or better than all other existing
procedures, and should be used if possible when minimization of the expected number
of trials is the most important performance measure.

Distributional Comparisons

As discussed previously, we have complete distributional information for any proce-
dure given the problem parameters (k and θ∗) and procedure parameters (e.g., n, r , t ,
etc.). We can calculate the population variance of N in the SC, VarSC[N ], and thus
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Fig. 6.5 Mean Relative Procedure Performance: MRA′ Versus MBG (Bars Above Center Line
Indicate Regions within which Procedure MBG Performs Better)

its standard deviation, SDSC[N ], which we include in the tables in Appendix E. We
were also interested in comparing the variance across the 36 cases in the appendix.
Since VarSC[N ] and SDSC[N ] increase for all procedures except Procedure MBEM

as ESC[N ] increases (and are therefore dependent upon our choice of budget b),
we chose to make our comparisons based on the coefficient of variation, CVSC[N ],
which measures variability relative to the mean, and is given by

CVSC[N ] = SDSC[N ]

ESC[N ]
.

Table 6.2 shows the mean CVSC[N ] across the possible combinations of k ∈ {2, 3, 4},
θ∗ ∈ {1.6, 2.0, 2.4, 3.0}, and P ∗ ∈ {0.75, 0.90, 0.95}, with b = nBG, as well as
minimum and maximum values of CVSC[N ] for each procedure. We did not consider
the trivial case when b = 1 or when there is no entry for a procedure; therefore, the
number of cases considered is less than 36. The relative ordering of the procedures, in
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Table 6.2 Coefficient of Variation Results

Procedure Cases Mean CVSC[N ] Min CVSC[N ] Max CVSC[N ]
MR 34 0.47 0.34 0.59
MNR 29 0.45 0.20 0.60
MBG 34 0.48 0.20 0.61
MRA′ 34 0.43 0.15 0.61
MRA 25 0.41 0.20 0.61
MC′ 34 0.18 0.11 0.28
MBK 35 0.13 0.05 0.20
MBEM 35 0 0 0

R NR BG RA’ RA C’ BK BEM

0

5

10

15

20

25

30

35

O
b

se
rv

at
io

n
s

Fig. 6.6 Procedure Distribution Boxplots for k = 3, θ∗ = 2, P ∗ = 0.9, and b = 34

terms of their mean CVSC[N ], generally holds for each of the cases. The following
lists the procedures in increasing order of variability for the cases we examined,
including Procedure MNR. This order was not necessarily intact for all cases, but
summarizes the observed trend.

1. Procedure MBEM

2. Procedure MBK

3. Procedure MC′
4. Procedures MRA and MRA′
5. Procedures MNR and MR

6. Procedure MBG

Note that the better performing procedures tend towards higher variability.
We may also be interested in more information about relative procedure perfor-

mance. For example, a decision maker might care about the minimum, maximum,
or median of the trial distribution, N , as well. One tool we can use is a modified
boxplot (or box-and-whisker plot). Figure 6.6 displays boxplots of the distribution
of N for each procedure when k = 3, θ∗ = 2, P ∗ = 0.9, and b = 34, corresponding
to Table 6.12 in Appendix E, but including Procedure MNR as well. The bottom,
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middle, and top of the boxes represent the 25th, 50th (median), and 75th percentiles
of the procedure distributions, respectively. The ends of the whiskers represent the
minimum and maximum of the distributions. We have also added information about
the mean and standard deviation in the blue triangular regions. The horizontal line in
the center of the triangular region represents the mean (ESC[N ]); the triangles extend
one standard deviation from the mean.

The figure confirms our relative ordering for procedure variability. We also see that
the distributions of Procedures MR, MNR, and MBG are noticeably skewed towards
lower numbers of trials, since their medians are below the centers of the rectangles.
Plots such as these can provide decision makers with the additional information
necessary to compare other aspects of procedure performance in the SC or any other
probability configuration. We could go a step further and plot the probability mass
functions for each procedure; however, we feel that such detail is not necessary here.

Conclusions

We developed a procedure comparison methodology, which includes a method to
compare different types of MSP procedures as well as a number of metrics that
allow the user to examine different aspects of procedure performance. We used
those metrics and selected charts to demonstrate some important relationships be-
tween the procedures in terms of performance, particularly when k = 2, as well
as some interesting anomalies in the performance of Procedure MBG. We also fo-
cused on a more thorough comparison of Procedures MBG and MRA′ , showing that
Procedure MBG usually performs better in terms of ESC[N ], but that Procedure
MRA′ can sometimes attain a higher maximum P ∗. Then, we reported additional
information provided by the distribution of N for each MSP procedure. In particular,
we examined and compared MSP variabilities. The procedures followed a ranking
with fairly good consistency, with Procedure MBEM having the least variability and
Procedure MBG having the greatest variability. In general, procedures with better
average performance had greater variability.

We provide updated tables for several procedures in the appendices. Our tables in-
clude the expected number of trials and the probability of correct selection for a larger
number of problem parameter combinations than had been available previously.

Although our intent was not to show that the new class of procedures are better
than classical MSP procedures, it should not be lost on the reader that, if the capability
to derive the required functions for the new procedures is available, Procedures MR

and MNR should be used.

A. Updated Tables for Procedure MBK

Table 6.3 identifies the nBK-values that minimize ESC[N ] while still achieving P ∗.
We searched all nBK-values up to nBK = 400. Table entries with “>400” in the
column for nBK indicate P ∗ requirements that cannot be achieved within our search
space for the given k and θ∗.
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BK (1984) focus on proving various theorems and lemmas associated with cur-
tailment, not on providing tables for the user. Their tables only include results for
nBK ≤ 20 and are tabulated by k, nBK, and θ∗. We supplement those tables by pro-
viding results for common choices of P ∗, including a greater range of θ∗-values, and
searching over a much larger search space for nBK. We also provide the expected
number of trials in the EPC (i.e., EEPC[N ]).

B. Updated Tables for Procedure MC′

Table 6.4 identifies the (nC′ , t)-pairs that minimize ESC[N ] while still achieving P ∗.
We do not include a table for k = 2, since, as discussed previously, Procedures MC′
and MBK are identical in that case; and so we can consult the Procedure MBK table
in Appendix A.

We searched all possible (nC′ , t)-pairs up to nC′ = 125. Rows with no entries in the
table are θ∗-values for which P ∗ cannot be achieved within the search space. These
tables improve upon those in Chen (1988), in which his values for ESC[N ] did not
incorporate curtailment. Also, his tables only provided performance characteristics
for nC ≤ 30. In addition, we provide the expected number of trials in the EPC (i.e.,
EEPC[N ]).



6 A Comparative Study of Procedures for the Multinomial Selection Problem 149

Ta
bl

e
6.

4
U

pd
at

ed
Pe

rf
or

m
an

ce
C

ha
ra

ct
er

is
tic

s
fo

r
Pr

oc
ed

ur
e

M
C
′

P
∗

θ
∗

k
=

3
k
=

4

n
C
′

t
P

SC
(C

S)
E

SC
[N

]
E

E
PC

[N
]

n
C
′

t
P

SC
(C

S)
E

SC
[N

]
E

E
PC

[N
]

0.
95

3.
0

17
7

0.
95

09
11

.4
70

14
.3

56
25

8
0.

95
08

15
.7

73
20

.9
53

2.
8

19
8

0.
95

08
13

.4
51

16
.4

86
28

9
0.

95
00

18
.3

84
24

.0
40

2.
6

23
9

0.
95

13
15

.7
07

19
.5

23
31

11
0.

95
05

23
.1

51
28

.4
53

2.
4

27
11

0.
95

27
19

.8
40

23
.9

81
43

12
0.

95
01

26
.7

11
34

.5
94

2.
2

33
13

0.
95

05
24

.4
78

29
.3

90
48

15
0.

95
01

35
.0

40
43

.5
23

2.
0

43
17

0.
95

16
33

.4
88

39
.2

28
64

19
0.

95
03

47
.0

68
57

.8
94

1.
8

60
23

0.
95

08
47

.9
66

55
.3

70
91

26
0.

95
04

68
.8

32
82

.9
33

1.
6

95
35

0.
95

03
78

.0
97

88
.6

08
1.

4
1.

2
0.

90
3.

0
12

5
0.

90
66

8.
02

6
9.

66
9

17
6

0.
90

26
11

.5
53

14
.3

50
2.

8
13

6
0.

90
62

9.
72

7
11

.1
96

19
7

0.
90

32
13

.8
91

16
.7

79
2.

6
15

7
0.

90
49

11
.5

83
13

.1
62

22
8

0.
90

15
16

.4
98

19
.6

68
2.

4
18

8
0.

90
45

13
.9

16
15

.8
76

27
9

0.
90

04
19

.6
07

23
.6

88
2.

2
23

9
0.

90
25

16
.6

91
19

.5
23

34
11

0.
90

18
25

.2
69

30
.2

11
2.

0
29

12
0.

90
28

23
.0

88
26

.0
73

44
14

0.
90

06
34

.0
69

39
.9

33
1.

8
40

16
0.

90
01

32
.6

67
36

.4
49

63
19

0.
90

11
49

.6
24

57
.5

14
1.

6
64

24
0.

90
01

52
.9

06
58

.6
99

10
0

29
0.

90
03

82
.0

10
92

.8
77

1.
4

12
5

48
0.

90
01

11
2.

57
9

11
9.

34
8

1.
2

0.
75

3.
0

5
3

0.
76

90
3.

95
0

4.
11

1
8

3
0.

75
08

5.
15

4
5.

82
6

2.
8

6
3

0.
78

03
4.

49
3

4.
92

6
9

4
0.

76
27

7.
05

1
7.

73
3

2.
6

6
3

0.
75

36
4.

54
9

4.
92

6
11

4
0.

75
85

7.
61

1
8.

62
0

2.
4

7
4

0.
75

02
5.

55
9

5.
78

6
13

5
0.

76
27

9.
95

2
11

.0
65

2.
2

10
4

0.
75

81
6.

74
4

7.
34

8
16

6
0.

76
01

12
.6

00
13

.8
86

2.
0

12
5

0.
75

05
8.

92
7

9.
66

9
21

7
0.

75
27

15
.9

00
17

.6
41

1.
8

17
7

0.
75

33
13

.3
74

14
.3

56
29

10
0.

75
39

24
.1

79
26

.1
66

1.
6

26
11

0.
75

07
22

.1
93

23
.3

25
49

14
0.

75
11

37
.8

63
41

.3
35

1.
4

52
20

0.
75

09
45

.4
54

47
.5

65
94

27
0.

75
10

81
.0

02
86

.2
74

1.
2



150 E. Tollefson et al.

C. Updated Tables for Procedure MRA

Table 6.5 identifies the (r , t)-pairs that minimize ESC[N ] while still achieving P ∗.
We searched all possible (r , t)-pairs up to t = 150 for k = 2 and 3, and up to t = 75
for k = 4. Rows with no entries in the table are θ∗-values for which P ∗ cannot be
achieved within the search space.

These tables improve upon those in BG (1985a) by including a greater range of
θ∗-values (theirs included θ∗ = 2.0, 2.4, 3.0 with some entries for θ∗ = 1.6), as
well as a few corrections to their original paper. In the table, the symbol † represents
an entry in our table that is different from that in BG. For that particular instance,
BG allow PSC(CS) to be slightly below P ∗; in our table, we do not. The symbol
‡ represents a value that is different from that in BG due to either our improved
algorithm or our ability to calculate an exact result when BG estimated the result
using MC sampling.

D. Updated Tables for Procedure MRA′

Table 6.6 identifies the (nRA′ , r , t)-triplets that minimize ESC[N ] while still achieving
P ∗. We do not include a table for k = 2, since, as discussed previously, Procedures
MRA′ and MRA are identical in that case; and so we can consult the Procedure MRA

table in Appendix C when k = 2.
We searched all possible (nRA′ , r , t)-triplets up to nRA′ = 125 for k = 3 and

4. Rows with no entries in the table are θ∗-values for which P ∗ cannot be achieved
within the search space. These tables improve upon those in Chen (1992) by including
a greater range of θ∗-values (his included θ∗ = 2.0, 2.4, 3.0), as well as corrections
to some numerical errors found in his original paper. We use a † to identify entries
that are corrections to values found in Table 1 of Chen (1992).

E. Procedure Comparison Tables

This appendix includes tables for all possible combinations of k ∈ {2, 3, 4}, P ∗ ∈
{0.75, 0.90, 0.95}, and θ∗ ∈ {1.6, 2.0, 2.4, 3.0}. We require that all procedures operate
under a firm budget constraint, b, on the maximum number of trials, which sometimes
results in a procedure not being able to achieve P ∗.

All of the table entries have been verified via MC sampling. For each entry,
we conducted 100,000 independent replications of the procedure. For any MC result
outside of two standard errors of the tabulated data, we first determined if the tabulated
data could be verified via a published source. If so, we did not pursue those any further.
If not, we took 100,000 more MC samples. In all ten of those cases, the MC results
were within two standard errors of our tabulated data. Thus, we have reasonable
confidence that our results are accurate.
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Table 6.7 Comparative Results for k= 2 and θ∗ = 1.6

P ∗ Proc Parameters PSC(CS) ESC[N ] SDSC[N ] EEPC[N ] 100WJ

0.95 MR 0.9500 26.355 14.113 36.396
MBG nBG = 59 0.9502 26.559 14.825 37.094 0.78
MRA′ nRA′ = 59, r = 7, t = 30 0.9502 26.559 14.825 37.094 0.78
MRA r = 7, t = 30 0.9502 26.559 14.825 37.094 0.78
MC′ nC′ = 49, t = 25 0.9501 40.331 4.497 44.386 53.03
MBK nBK = 49 0.9501 40.331 4.497 44.386 53.03
MBEM nBEM = 49 0.9501 49.000 0.000 49.000 85.92

0.90 MR 0.9000 16.865 10.019 21.185
MBG nBG = 41 0.9006 17.001 10.318 21.482 0.81
MRA′ nRA′ = 41, r = 5, t = 21 0.9006 17.001 10.318 21.482 0.81
MRA r = 5, t = 21 0.9006 17.001 10.318 21.482 0.81
MC′ nC′ = 31, t = 16 0.9054 25.505 3.259 27.522 51.23
MBK nBK = 31 0.9054 25.505 3.259 27.522 51.23
MBEM nBEM = 31 0.9054 31.000 0.000 31.000 83.81

0.75 MR 0.7500 5.558 2.056 5.814
MBG nBG = 9 0.7559 5.956 2.289 6.258 7.16
MRA′ nRA′ = 9, r = 3, t = 5 0.7559 5.956 2.289 6.258 7.16
MRA r = 3, t = 5 0.7559 5.956 2.289 6.258 7.16
MC′ nC′ = 9, t = 5 0.7647 7.295 1.272 7.539 31.25
MBK nBK = 9 0.7647 7.295 1.272 7.539 31.25
MBEM nBEM = 9 0.7647 9.000 0.000 9.000 61.93

For all procedures except Procedure MR, we report the parameters of the proce-
dure that minimize ESC[N ], while achieving the required P ∗ and remaining under
the trial budget, b. In addition to ESC[N ] and PSC(CS), we also report EEPC[N ],
SDSC(N ), and WJ (as a percentage and labeled “100 WJ”).

Blank rows for a particular procedure in a table indicate one of two situations. First,
the procedure may not be able to achieve the given P ∗ under the budget constraint.
These are marked by an “N/A” in the Parameters column. Second, the computational
time or requirements for calculating ESC[N ] and PSC(CS) for a particular procedure
may be beyond our current capabilities. These are marked by “??” in the Parameters
column in Tables 6.7–6.18.



154 E. Tollefson et al.

Table 6.8 Comparative Results for k= 2 and θ∗ = 2.0

P ∗ Proc Parameters PSC(CS) ESC[N ] SDSC[N ] EEPC[N ] 100WJ

0.95 MR 0.9500 12.411 5.992 16.625
MBG nBG = 27 0.9537 13.091 6.671 17.898 5.48
MRA′ nRA′ = 27, r = 5, t = 14 0.9537 13.091 6.671 17.898 5.48
MRA r = 5, t = 14 0.9537 13.091 6.671 17.898 5.48
MC′ nC′ = 23, t = 12 0.9520 17.806 2.629 20.132 43.47
MBK nBK = 23 0.9520 17.806 2.629 20.132 43.47
MBEM nBEM = 23 0.9520 23.000 0.000 23.000 85.32

0.90 MR 0.9000 8.511 3.519 10.048
MBG nBG = 15 0.9033 8.899 3.796 10.587 4.56
MRA′ nRA′ = 15, r = 4, t = 8 0.9033 8.899 3.796 10.587 4.56
MRA r = 4, t = 8 0.9033 8.899 3.796 10.587 4.56
MC′ nC′ = 15, t = 8 0.9118 11.681 1.926 12.858 37.25
MBK nBK = 15 0.9118 11.681 1.926 12.858 37.25
MBEM nBEM = 15 0.9118 15.000 0.000 15.000 76.24

0.75 MR 0.7500 2.625 1.409 2.752
MBG nBG = 5 0.7737 3.086 1.259 3.250 17.58
MRA′ nRA′ = 5, r = 2, t = 3 0.7737 3.086 1.259 3.250 17.58
MRA r = 2, t = 3 0.7737 3.086 1.259 3.250 17.58
MC′ nC′ = 5, t = 3 0.7901 3.963 0.793 4.125 50.97
MBK nBK = 5 0.7901 3.963 0.793 4.125 50.97
MBEM nBEM = 5 0.7901 5.000 0.000 5.000 90.48

Table 6.9 Comparative Results for k= 2 and θ∗ = 2.4

P ∗ Proc Parameters PSC(CS) ESC[N ] SDSC[N ] EEPC[N ] 100WJ

0.95 MR 0.9500 7.962 3.581 10.430
MBG nBG = 17 0.9548 8.465 4.085 11.380 6.32
MRA′ nRA′ = 17, r = 4, t = 9 0.9548 8.465 4.085 11.380 6.32
MRA r = 4, t = 9 0.9548 8.465 4.085 11.380 6.32
MC′ nC′ = 15, t = 8 0.9552 11.188 1.884 12.858 40.51
MBK nBK = 15 0.9552 11.188 1.884 12.858 40.51
MBEM nBEM = 15 0.9552 15.000 0.000 15.000 88.39

0.90 MR 0.9000 5.226 2.238 6.144
MBG nBG = 11 0.9113 5.718 2.736 6.943 9.40
MRA′ nRA′ = 11, r = 3, t = 6 0.9113 5.718 2.736 6.943 9.40
MRA r = 3, t = 6 0.9113 5.718 2.736 6.943 9.40
MC′ nC′ = 9, t = 5 0.9082 6.823 1.283 7.539 30.55
MBK nBK = 9 0.9082 6.823 1.283 7.539 30.55
MBEM nBEM = 9 0.9082 9.000 0.000 9.000 72.21

0.75 MR 0.7500 1.730 0.791 1.774
MBG nBG = 3 0.7914 2.415 0.493 2.500 39.58
MRA′ nRA′ = 3, r = 2, t = 2 0.7914 2.415 0.493 2.500 39.58
MRA r = 2, t = 2 0.7914 2.415 0.493 2.500 39.58
MC′ nC′ = 3, t = 2 0.7914 2.415 0.493 2.500 39.58
MBK nBK = 3 0.7914 2.415 0.493 2.500 39.58
MBEM nBEM = 3 0.7914 3.000 0.000 3.000 73.37
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Table 6.10 Comparative Results for k= 2 and θ∗ = 3.0

P ∗ Proc Parameters PSC(CS) ESC[N ] SDSC[N ] EEPC[N ] 100WJ

0.95 MR 0.9500 5.140 2.363 6.682
MBG nBG = 11 0.9522 5.251 2.530 6.943 2.17
MRA′ nRA′ = 11, r = 3, t = 6 0.9522 5.251 2.530 6.943 2.17
MRA r = 3, t = 6 0.9522 5.251 2.530 6.943 2.17
MC′ nC′ = 9, t = 5 0.9511 6.540 1.238 7.539 27.24
MBK nBK = 9 0.9511 6.540 1.238 7.539 27.24
MBEM nBEM = 9 0.9511 9.000 0.000 9.000 75.10

0.90 MR 0.9000 3.405 1.559 3.973
MBG N/A
MRA′ nRA′ = 7, r = 3, t = 4 0.9261 4.560 1.493 5.344 33.94
MRA r = 3, t = 4 0.9261 4.560 1.493 5.344 33.94
MC′ nC′ = 7, t = 4 0.9294 5.163 1.020 5.813 51.65
MBK nBK = 7 0.9294 5.163 1.020 5.813 51.65
MBEM nBEM = 7 0.9294 7.000 0.000 7.000 105.61

0.75 MR 0.7500 1.000 0.000 1.000
MBG nBG = 1 0.7500 1.000 0.000 1.000 0.00
MRA′ nRA′ = 1, r = 1, t = 1 0.7500 1.000 0.000 1.000 0.00
MRA r = 1, t = 1 0.7500 1.000 0.000 1.000 0.00
MC′ nC′ = 1, t = 1 0.7500 1.000 0.000 1.000 0.00
MBK nBK = 1 0.7500 1.000 0.000 1.000 0.00
MBEM nBEM = 1 0.7500 1.000 0.000 1.000 0.00

Table 6.11 Comparative Results for k= 3 and θ∗ = 1.6

P ∗ Proc Parameters PSC(CS) ESC[N ] SDSC[N ] EEPC[N ] 100WJ

0.95 MR 0.9500 50.049 27.313 79.216
MBG nBG = 125 0.9502 50.321 28.698 81.434 0.54
MRA′ nRA′ = 111, r = 8, t = 39 0.9501 53.256 27.071 80.785 6.41
MRA r = 8, t = 39 0.9504 53.270 27.102 81.005 6.44
MC′ nC′ = 95, t = 35 0.9503 78.097 8.770 88.608 56.04
MBK nBK = 93 0.9502 82.011 5.697 88.365 63.86
MBEM nBEM = 93 0.9502 93.000 0.000 93.000 85.82

0.90 MR 0.9000 36.949 19.345 50.761
MBG nBG = 83 0.9003 37.261 20.583 52.614 0.84
MRA′ nRA′ = 81, r = 6, t = 30 0.9003 37.691 20.981 52.270 2.01
MRA r = 7, t = 25 0.9010 41.243 17.791 53.841 11.62
MC′ nC′ = 64, t = 24 0.9001 52.906 6.576 58.699 43.19
MBK nBK = 63 0.9007 55.643 4.358 59.203 50.60
MBEM nBEM = 63 0.9007 63.000 0.000 63.000 70.51

0.75 MR 0.7500 17.242 8.101 19.548
MBG nBG = 32 0.7517 17.597 8.823 20.254 2.06
MRA′ nRA′ = 30, r = 4, t = 12 0.7505 17.927 8.409 20.327 3.97
MRA r = 5, t = 11 0.7628 20.515 6.778 22.903 18.98
MC′ nC′ = 26, t = 11 0.7507 22.193 2.844 23.325 28.72
MBK nBK = 26 0.7517 22.732 2.275 23.596 31.84
MBEM nBEM = 26 0.7517 26.000 0.000 26.000 50.80
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Table 6.12 Comparative Results for k= 3 and θ∗ = 2.0

P ∗ Proc Parameters PSC(CS) ESC[N ] SDSC[N ] EEPC[N ] 100WJ

0.95 MR 0.9500 22.750 11.975 35.038
MBG nBG = 52 0.9508 23.032 12.475 35.972 1.24
MRA′ nRA′ = 48, r = 6, t = 17 0.9502 25.113 11.011 36.327 10.39
MRA r = 6, t = 17 0.9504 25.114 11.013 36.343 10.39
MC′ nC′ = 43, t = 17 0.9516 33.488 4.933 39.228 47.20
MBK nBK = 42 0.9509 35.023 3.511 38.921 53.95
MBEM nBEM = 42 0.9509 42.000 0.000 42.000 84.62

0.90 MR 0.9000 16.857 8.429 22.676
MBG nBG = 34 0.9016 17.165 8.813 23.296 1.83
MRA′ nRA′ = 30, r = 5, t = 12 0.9001 18.749 7.470 23.902 11.22
MRA r = 5, t = 12 0.9057 18.940 7.746 24.698 12.35
MC′ nC′ = 29, t = 12 0.9028 23.088 3.563 26.073 36.96
MBK nBK = 29 0.9044 24.242 2.716 26.455 43.80
MBEM nBEM = 29 0.9044 29.000 0.000 29.000 72.03

0.75 MR 0.7500 7.831 3.200 8.765
MBG nBG = 13 0.7512 7.966 3.315 8.934 1.72
MRA′ nRA′ = 13, r = 3, t = 6 0.7572 8.395 3.399 9.360 7.21
MRA r = 4, t = 5 0.7556 8.809 2.208 9.629 12.49
MC′ nC′ = 12, t = 5 0.7505 8.927 1.912 9.669 13.99
MBK nBK = 12 0.7577 9.902 1.453 10.431 26.45
MBEM nBEM = 12 0.7577 12.000 0.000 12.000 53.24

Table 6.13 Comparative Results for k= 3 and θ∗ = 2.4

P ∗ Proc Parameters PSC(CS) ESC[N ] SDSC[N ] EEPC[N ] 100WJ

0.95 MR 0.9500 14.177 7.046 21.303
MBG nBG = 31 0.9516 14.479 7.397 22.086 2.13
MRA′ nRA′ = 28, r = 5, t = 11 0.9509 15.921 6.503 22.426 12.30
MRA r = 5, t = 11 0.9530 15.969 6.590 22.903 12.64
MC′ nC′ = 27, t = 11 0.9527 19.840 3.496 23.981 39.94
MBK nBK = 26 0.9511 20.781 2.565 23.596 46.58
MBEM nBEM = 26 0.9511 26.000 0.000 26.000 83.40

0.90 MR 0.9000 10.235 5.160 13.784
MBG nBG = 22 0.9021 10.429 5.397 14.247 1.90
MRA′ nRA′ = 19, r = 4, t = 8 0.9038 11.637 4.638 14.857 13.71
MRA r = 4, t = 8 0.9104 11.785 4.862 15.506 15.15
MC′ nC′ = 18, t = 8 0.9045 13.916 2.405 15.876 35.97
MBK nBK = 18 0.9056 14.436 1.994 16.035 41.05
MBEM nBEM = 18 0.9056 18.000 0.000 18.000 75.87

0.75 MR 0.7500 4.910 1.864 5.390
MBG nBG = 8 0.7602 5.403 1.770 5.938 10.02
MRA′ nRA′ = 7, r = 4, t = 4 0.7502 5.559 0.857 5.786 13.22
MRA N/A
MC′ nC′ = 7, t = 4 0.7502 5.559 0.857 5.786 13.22
MBK nBK = 7 0.7502 5.559 0.857 5.786 13.22
MBEM nBEM = 7 0.7502 7.000 0.000 7.000 42.56



6 A Comparative Study of Procedures for the Multinomial Selection Problem 157

Table 6.14 Comparative Results for k= 3 and θ∗ = 3.0

P ∗ Proc Parameters PSC(CS) ESC[N ] SDSC[N ] EEPC[N ] 100WJ

0.95 MR 0.9500 8.844 4.399 13.383
MBG nBG = 20 0.9505 8.901 4.474 13.573 0.64
MRA′ nRA′ = 19, r = 4, t = 7 0.9505 9.768 3.830 13.731 10.44
MRA r = 4, t = 7 0.9505 9.768 3.830 13.731 10.44
MC′ nC′ = 17, t = 7 0.9509 11.470 2.414 14.356 29.69
MBK nBK = 17 0.9554 12.958 1.895 15.079 46.51
MBEM nBEM = 17 0.9554 17.000 0.000 17.000 92.21

0.90 MR 0.9000 6.762 2.864 8.682
MBG nBG = 12 0.9029 6.969 3.023 8.933 3.06
MRA′ nRA′ = 12, r = 3, t = 6 0.9029 6.969 3.023 8.933 3.06
MRA N/A
MC′ nC′ = 12, t = 5 0.9066 8.026 1.864 9.669 18.70
MBK nBK = 11 0.9014 8.460 1.353 9.482 25.11
MBEM nBEM = 11 0.9014 11.000 0.000 11.000 62.67

0.75 MR 0.7500 3.068 1.053 3.290
MBG nBG = 5 0.7574 3.242 1.143 3.481 5.66
MRA′ nRA′ = 5, r = 2, t = 3 0.7574 3.242 1.143 3.481 5.66
MRA N/A
MC′ nC′ = 5, t = 3 0.7690 3.950 0.642 4.111 28.76
MBK nBK = 5 0.7690 3.950 0.642 4.111 28.76
MBEM nBEM = 5 0.7690 5.000 0.000 5.000 62.97

Table 6.15 Comparative Results for k= 4 and θ∗ = 1.6

P ∗ Proc Parameters PSC(CS) ESC[N ] SDSC[N ] EEPC[N ] 100WJ

0.95 MR ??
MBG nBG = 181 0.9500 76.265 41.254 128.931
MRA′ ??
MRA ??
MC′ ??
MBK nBK = 138 0.9506 125.956 6.368 133.642
MBEM nBEM = 138 0.9506 138.000 0.000 138.000

0.90 MR 0.9000 58.189 29.900 83.609
MBG nBG = 126 0.9004 58.715 31.160 86.889 0.90
MRA′ nRA′ = 111, r = 7, t = 32 0.9004 62.545 29.113 86.294 7.49
MRA r = 7, t = 32 0.9029 62.755 29.470 87.896 7.85
MC′ nC′ = 100, t = 29 0.9003 82.010 10.439 92.877 40.94
MBK nBK = 97 0.9005 88.796 4.993 93.341 52.60
MBEM nBEM = 97 0.9005 97.000 0.000 97.000 66.70

0.75 MR 0.7500 30.549 14.559 36.195
MBG nBG = 57 0.7512 31.109 15.462 37.649 1.83
MRA′ nRA′ = 50, r = 5, t = 15 0.7504 33.385 12.826 38.648 9.29
MRA r = 5, t = 15 0.7551 33.601 13.115 39.218 9.99
MC′ nC′ = 49, t = 14 0.7511 37.863 6.092 41.335 23.94
MBK nBK = 46 0.7544 42.072 2.862 43.469 37.72
MBEM nBEM = 46 0.7544 46.000 0.000 46.000 50.58
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Table 6.16 Comparative Results for k= 4 and θ∗ = 2.0

P ∗ Proc Parameters PSC(CS) ESC[N ] SDSC[N ] EEPC[N ] 100WJ

0.95 MR 0.9500 33.673 16.774 53.912
MBG nBG = 74 0.9500 33.824 17.611 55.326 0.45
MRA′ nRA′ = 68, r = 6, t = 21 0.9505 36.094 16.872 55.301 7.19
MRA r = 8, t = 19 0.9515 41.970 13.131 57.765 24.64
MC′ nC′ = 64, t = 19 0.9503 47.068 7.664 57.894 39.78
MBK nBK = 61 0.9513 53.207 4.034 58.092 58.01
MBEM nBEM = 61 0.9513 61.000 0.000 61.000 81.16

0.90 MR 0.9000 25.566 12.699 36.378
MBG nBG = 53 0.9000 25.706 13.518 37.305 0.55
MRA′ nRA′ = 47, r = 5, t = 15 0.9000 27.674 12.181 37.600 8.24
MRA r = 6, t = 14 0.9049 30.293 10.316 39.759 18.49
MC′ nC′ = 44, t = 14 0.9006 34.069 5.802 39.933 33.26
MBK nBK = 43 0.9022 37.669 3.172 40.557 47.34
MBEM nBEM = 43 0.9022 43.000 0.000 43.000 68.19

0.75 MR 0.7500 13.342 6.098 15.712
MBG nBG = 24 0.7541 13.781 6.448 16.449 3.29
MRA′ nRA′ = 22, r = 4, t = 7 0.7534 14.973 4.636 17.137 12.22
MRA N/A
MC′ nC′ = 21, t = 7 0.7527 15.900 3.254 17.641 19.17
MBK nBK = 20 0.7533 17.481 1.799 18.319 31.02
MBEM nBEM = 20 0.7533 20.000 0.000 20.000 49.90

Table 6.17 Comparative Results for k= 4 and θ∗ = 2.4

P ∗ Proc Parameters PSC(CS) ESC[N ] SDSC[N ] EEPC[N ] 100WJ

0.95 MR 0.9500 20.471 10.064 32.570
MBG nBG = 44 0.9506 20.679 10.484 33.382 1.01
MRA′ nRA′ = 41, r = 5, t = 13 0.9506 22.229 9.744 33.560 8.58
MRA N/A
MC′ nC′ = 43, t = 12 0.9501 26.711 5.313 34.594 30.48
MBK nBK = 37 0.9512 31.115 2.998 34.731 51.99
MBEM nBEM = 37 0.9512 37.000 0.000 37.000 80.74

0.90 MR 0.9000 15.604 7.378 21.869
MBG nBG = 31 0.9022 15.927 7.794 22.767 2.07
MRA′ nRA′ = 29, r = 4, t = 10 0.9025 16.750 7.491 22.904 7.35
MRA N/A
MC′ nC′ = 27, t = 9 0.9004 19.607 4.019 23.688 25.65
MBK nBK = 26 0.9017 21.980 2.356 24.093 40.86
MBEM nBEM = 26 0.9017 26.000 0.000 26.000 66.62

0.75 MR 0.7500 7.922 3.731 9.377
MBG nBG = 15 0.7569 8.286 4.020 9.911 4.59
MRA′ nRA′ = 13, r = 3, t = 5 0.7555 8.964 3.152 10.271 13.15
MRA N/A
MC′ nC′ = 13, t = 5 0.7627 9.952 2.141 11.065 25.61
MBK nBK = 12 0.7518 10.102 1.339 10.688 27.52
MBEM nBEM = 12 0.7518 12.000 0.000 12.000 51.47
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Table 6.18 Comparative Results for k= 4 and θ∗ = 3.0

P ∗ Proc Parameters PSC(CS) ESC[N ] SDSC[N ] EEPC[N ] 100WJ

0.95 MR 0.9500 12.741 5.858 19.727
MBG nBG = 26 0.9513 12.968 6.114 20.341 1.78
MRA′ nRA′ = 25, r = 4, t = 9 0.9519 13.602 6.070 20.458 6.76
MRA N/A
MC′ nC′ = 25, t = 8 0.9508 15.773 3.590 20.953 23.80
MBK nBK = 23 0.9527 18.523 2.222 21.215 45.38
MBEM nBEM = 23 0.9527 23.000 0.000 23.000 80.53

0.90 MR 0.9000 9.534 4.690 13.361
MBG nBG = 19 0.9036 9.844 5.048 13.852 3.25
MRA′ nRA′ = 19, r = 3, t = 7 0.9016 9.739 4.912 13.762 2.15
MRA N/A
MC′ nC′ = 17, t = 6 0.9026 11.553 2.748 14.350 21.17
MBK nBK = 16 0.9024 12.969 1.741 14.493 36.02
MBEM nBEM = 16 0.9024 16.000 0.000 16.000 67.82

0.75 MR 0.7500 4.848 2.370 5.613
MBG nBG = 9 0.7517 4.907 2.526 5.747 1.22
MRA′ nRA′ = 9, r = 2, t = 4 0.7513 4.895 2.513 5.740 0.98
MRA r = 3, t = 3 0.7541 5.167 1.468 5.864 6.60
MC′ nC′ = 8, t = 3 0.7508 5.154 1.437 5.826 6.32
MBK nBK = 8 0.7701 6.430 1.099 6.911 32.64
MBEM nBEM = 8 0.7701 8.000 0.000 8.000 65.03

References

Alam, K., (1971). On selecting the most probable category. Technometrics 13, 843–850.
Bartholdi, J. J. (2010). The Great Package Race, The Supply Chain & Logistics Institute.

Atlanta: Georgia Institute of Technology. www2.isye.gatech.edu/people/faculty/John_Barth-
oldi/wh/package-race/package-race.html. Accessed 20 June 2012.

Bechhofer, R. E., Elmaghraby, S., & Morse, N. (1959). A single-sample multiple decision procedure
for selecting the multinomial event which has the highest probability. Annals of Mathematical
Statistics 30, 102–119.

Bechhofer, R. E., & Goldsman, D. (1985a). On the Ramey-Alam sequential procedure for
selecting the multinomial event which has the largest probability. Communications in Statistics—
Simulation and Computation B14, 263–282.

Bechhofer, R. E., & Goldsman, D. (1985b). Truncation of the Bechhofer-Kiefer-Sobel sequential
procedure for selecting the multinomial event which has the largest probability. Communications
in Statistics—Simulation and Computation B14, 283–315.

Bechhofer, R. E., & Goldsman, D. (1986). Truncation of the Bechhofer-Kiefer-Sobel sequential
procedure for selecting the multinomial event which has the largest probability (II): Extended
tables and an improved procedure. Communications in Statistics—Simulation and Computation
B15, 829–851.

Bechhofer, R. E., Kiefer, J., & Sobel, M. (1968). Sequential Identification and Ranking Proce-
dures (with Special Reference to Koopman-Darmois Populations). University of Chicago Press:
Chicago.

Bechhofer, R. E., & Kulkarni, R. V. (1984). Closed sequential procedures for selecting the multi-
nomial events which have the largest probabilities. Communications in Statistics—Theory and
Methods A13, 2997–3031.

http://www2.isye.gatech.edu/people/faculty/John_Bartholdi/wh/package-race/package-race.html
http://www2.isye.gatech.edu/people/faculty/John_Bartholdi/wh/package-race/package-race.html


160 E. Tollefson et al.

Bechhofer, R. E., Santner, T. J., & Goldsman, D. (1995). Design and Analysis of Experiments for
Statistical Selection, Screening and Multiple Comparisons. John Wiley and Sons: New York.

Cacoullos, T., & Sobel, M. (1966). An inverse sampling procedure for selecting the most probable
event in a multinomial distribution. In P. Krishnaiah (Ed.), Multivariate Analysis (pp. 423–455)
New York: Academic Press.

Chen, P. (1988). Closed inverse sampling procedure for selecting the largest multinomial cell
probability. Communications in Statistics—Simulation and Computation B17, 969–994.

Chen, P. (1992). Truncated selection procedures for the most probable event and the least probable
event. Annals of the Institute of Statistical Mathematics 44, 613–622.

Kesten, H., & Morse, N. (1959). A property of the multinomial distribution. Annals of Mathematical
Statistics 30, 120–127.

Levin, B. (1984). On a sequential selection procedure of Bechhofer, Kiefer, and Sobel. Statistics
Probability Letters 2, 91–94.

Ramey, J. T. Jr. & Alam, K. (1979). A sequential procedure for selecting the most probable
multinomial event. Biometrika 66, 171–173.

Tollefson, E. (2012). Optimal Randomized and Non-Randomized Procedures for Multinomial
Selection Problems, Ph.D. dissertation, H. Milton Stewart School of Industrial and Systems
Engineering, Georgia Institute of Technology, Atlanta, GA.

Tollefson, E., Goldsman, D., Kleywegt, A., & Tovey, C. (2013). Optimal selection of the most
probable multinomial alternative. In review.



Chapter 7
Vulnerability Discussion in Multimodal
Freight Systems

Saniye Gizem Aydin and Pakize Simin Pulat

Transportation infrastructure has been the subject of research mostly for passenger
transportation. The impact of extreme events has led to the study of evacuation
models and the determination of the most vital links for passenger safety. This chapter
focuses on the vulnerability of the transportation infrastructure to the extreme events
within a multimodal freight transportation context. Reliability, vulnerability, risk,
and resilience terminologies are defined; their relationship with each other within
the freight transportation context is discussed. The concepts are illustrated using
Hurricane Katrina’s impact on the freight flow transportation within a state and for the
USA. The intent of the discussion is to promote further research on the vulnerability
of multimodal freight transportation systems to extreme events.

Multimodal transportation, a critical component of the global economy, offers
solutions to the ever-increasing congestion on the roadway network, helping address
pollution and noise problems of large cities. On the other hand, inclusion of two or
more modes into the analysis increases the problem complexity significantly, neces-
sitating the creation of transfer points and the study of efficient and safe operations at
these points. While the global economy relies heavily on the efficient movement of
goods through the interdependent multimodal systems, vulnerability of multimodal
transportation systems presents the challenge to understand, resist, prepare, and re-
cover from unexpected events faster, cheaper, and better. Although, the discussion
on the multimodal freight transportation and the importance of vulnerability analy-
sis for the multimodal system are discussed in this chapter, we limit the definition
and demonstration of the vulnerability measures to a single-mode freight transporta-
tion network. Further research is needed to expand the concepts to the multimodal
network system.
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Multimodal Freight Transportation System and Importance
of Its Vulnerability to Extreme Events

The global economy relies heavily on the efficient movement of freight. In 2007,
the US transportation system moved freight nearly 3.5 trillion ton-miles (5.6 trillion
ton-kilometer (tkm), USDOT BTS 2009). Freight transportation is as important in
other countries as it is in the USA. In 2008, China transported 6.85 billion ton-miles
(11 billion tkm) of freight; in 2009, it was 2.3 trillion ton-miles (3.6 trillion tkm) for
the European Union countries (EU-27) and 4.6 billion ton-miles (7.4 billion tkm) for
Russia (EuroStat 2011). As global networks grow, their dependency on third-party
logistics provider (3PL) services grows and hence, the importance of the freight
transportation becomes more apparent across the globe.

The transportation sector’s contribution to the economy through employment is
substantial. In EU-27, the freight transport industry employed more than 6.9 million
people in 2008. The transportation industry directly employed 10 million in 2009,
accounting for 4.5 % of total employment and representing 4.6 % of the Gross Do-
mestic Product (GDP, EuroStat 2011). In the USA, the transportation sector employed
20 million with transportation-related goods and services accounting for more than
10 % of the GDP in 2002; only housing, healthcare, and food industries contributed
a larger share to the GDP (USDOT BTS 2004).

Freight utilizes several modes of transportation: trucks, railcars, planes, and ships.
Trucks are used extensively on shorter hauls for valuable goods and time-sensitive
freight, while rail is used mainly for long haul of heavy freight and waterways for
long-haul transport of containers between ports. Inland waterway traffic is also very
important, especially on the major inland rivers such as the Ohio and the Missis-
sippi. Airways are used mostly for small, valuable, and urgently needed goods. The
trucks have the largest modal share in freight transportation. In the USA the trucks
carry 70 % of the freight annually. However, congestion and negative environmental
impacts are challenging the freight system and have been the subject of study by the
transportation planners in the last decade. As passenger and freight transportation
increase, opportunities to link the different modes of transportation are created.

The multimodal transportation services combine advantages of the single-mode
transportation and offer potential cost savings in addition to service advantages, such
as speed, capacity, routing, and scheduling. Therefore, the multimodal transportation
offers flexibility to the changing face of the global markets by meeting the compet-
itive distribution requirements. It is also considered to be more environmentally
friendly and can relieve the congestion on other modes. The share of the multimodal
transport is small compared to the single mode. In order to benefit from the multi-
modal transportation opportunities, industries share risks within their supply chains.
Increased information sharing, outsourcing of services to 3PL companies for the
control, planning, and management of the transportation operations seamlessly from
the origin to the destination, and public/private investments to improve the efficiency
of the transportation facilities are making multimodal transportation systems a more
viable alternative. Combining the multiple modes is not only a flexible option but
also an environmentally friendly option. On the other hand, the system is as strong
as its weakest link.
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In this chapter, we focus on how to assess the vulnerability of a freight transporta-
tion network to extreme events. One can apply the methodology to determine what
the impact of an extreme event under consideration would be on the transportation of
freight from origin to its destination or to identify segments of the transportation net-
work with the largest impact on freight transportation if they become nonfunctional
due to an extreme event. We first review the concept of vulnerability and related ter-
minologies, then we study the vulnerability of a single-mode freight transportation
system and conclude with a discussion of an approach to studying the vulnerability
of a multimodal transportation system.

Vulnerability becomes visible when an extreme event occurs. There was an upward
trend in the occurrence of disasters during the period 2000–2008 (Vos et al. 2010)
and no sign of a decline so far. History recorded many extreme events since the early
ages; let it be natural disasters, by which dinosaurs went extinct, cities were buried
under ground, economic development and daily lives were severely disrupted; or
man-made disasters by which the society was targeted and cut off of critical sources
on purpose. Any interruption in the transportation of people, goods, and services can
have a devastating impact on the economy. In extreme cases, the spillover effects
may cost even more than the primary damages. All extreme events show us how
critical and vulnerable transportation systems are, and how dependent our lives and
our economy are on an interconnected network of systems. Below are just a few
examples of extreme events and their direct and indirect impacts in an interconnected
network of systems.

In August 2003, a malfunction of a single electricity generation plant in Cleve-
land, Ohio, caused an estimated economic damage of US $ 6.4 billion (Anderson
and Geckil 2003). This event triggered electrical systems’ failure and resulted in a
blackout covering eight US states and two Canadian provinces, leaving about 50
million people in complete darkness (North American Electric Reliability Corpo-
ration, NERC 2004). In New York City, the subway system failed trapping several
thousand commuters. Telecommunication and water systems were also disrupted
(Renesys Corporation 2004; NERC 2004). Investigation of the case revealed a com-
plex matrix of environmental and engineering conditions on the day of the event.
The conditions combined with several violations of operating and planning standards
caused the widespread crisis (NERC 2004). More recent events, such as Hurricane
Irene (August 2011) resulted in high winds and massive flooding, leaving many peo-
ple homeless as well as taking many lives. The Fukushima earthquake (April 2011)
resulted in a failure of a nuclear plant. The leaking gas increased the radiation levels
so high that the region was evacuated and the radiation clouds traveled around the
world. A tsunami triggered by the earthquake created enormous destruction on the
coastal areas, pushing debris islands across the ocean.

More often than not, one event triggers another, and cascading effects are observed
where the resulting damage increases exponentially. The 2003 NorthAmerican black-
out, Hurricane Irene, and the Fukushima earthquake validate that a systems approach
is more appropriate to understand the reasons and spillover effects of extreme events.

Vulnerability of transportation systems has received attention from researchers
only recently. On the other hand, vulnerability has been studied extensively in the
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social sciences. With the increasing natural and man-made disasters, most existing
vulnerability research focused on critical infrastructure protection. As methods used
in transport reliability research are found to be inadequate to study interdependent
system failures, new approaches and methods are necessary to assess the vulnerability
of transportation systems (Berdica 2002; D’Este and Taylor 2003; Nicholson 2003).

In the next section, we define a multimodal freight system model and discuss
the unique properties of single-mode and multimodal transport systems. In the third
section, we define vulnerability and discuss how it can be analyzed in a multimodal
transportation context. Related terms like reliability and risk are defined and their
connection to vulnerability is demonstrated with an example. The section provides
insights for the following question: If each of the modes used within a multimodal
transportation system is subject to failure, then how does one study the overall risk and
vulnerability of the integrated system as a function of an extreme event? We conclude
the chapter with future research directions that will assist the transportation planners
and operators to study the vulnerability of multimodal freight transportation systems
to a set of extreme events.

Multimodal Freight Transport Systems

Multimodal freight systems can be represented by graphs composed of a series of
single-mode transport systems connected through transfer points. Layered network
models are used to represent various infrastructural systems in the literature, (see
Johannson and Hassel 2010; Zhang and Peeta 2011; and Van Nes 2002), particularly
on multimodal transportation network design. We will use a two-layered model for
each single mode and then link the modes via transfer nodes and edges. Each single
mode will be composed of a network layer and a service layer, modeled separately
and then linked via transfer points.

Network Model

Consider a network model representation of a multimodal freight transport system
by a graph G= (N, E) consisting of a set of nodes N and a set of edges (links)
E. |N | = n denotes the number of nodes while number of links is |E| = m. Let
Gi = (Ni , Ei) represent represent the graph of the subsystem for transport mode i.
Let Gij = (N

′
ij , Eij ) represent the graph connecting nodes common to Ni and Nj

represented by the set N
′
ij via set of links Eij . Hence,

G = {Gi , Gij }, for all transport modes i and j = i,

N = {Ni}, for all i,

E = {Ei , Eij }, for all transport modes i and j = i.
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Table 7.1 Multimodal freight network model

Roadways Railways Waterways Airways

Ei Highways Railroad tracks Routes Routes
Interstates
Arterial roads

Eij Artificial edge connecting common locations across layers, i.e., Gi and Gj

Ni Location where the freight is originated
Final destination for the freight
Intermediate location in Gi where the freight changes mode

Nij Transportation nodes common across layers, i.e., Gi and Gj

For the sake of simplicity, we will use the notation N
′
ij when referring to the transport

nodes common to modes i and j and Ni when referring to the nodes only in the
subnetwork for mode i. Table 7.1 describes examples of each node and link type.
An example multimodal transportation model is presented in Fig. 7.1. Let G1 =
Airways, G2 = Roadways, G3 = Railways, and G4 = Waterways.

Network and Service Layers

Network layers show the physical representation of corresponding modes (Fig. 7.1,
left). According to the graph:

N = {n1, n2, ..., n22, n23}
N

′
12 = {(n1, n2, n3, n4) ∈ N1and (n5, n6, n11, n12) ∈ N2}

E12 = (n1, n5), (n2, n6), (n3, n11), (n4, n12)

N
′
23 = {(n7, n8, n10) ∈ N2and (n17, n15, n19) ∈ N3}

E23 = (n7, n17), (n8, n15), (n10, n19)

N
′
24 = {(n7, n9, n10, n12) ∈ N2and (n20, n21, n22, n23) ∈ N4}

E24 = (n7, n20), (n9, n21), (n10, n22), (n12, n23)

N
′
34 = {(n17, n19) ∈ N3and (n20, n22) ∈ N4}

E34 = (n17, n20), (n19, n22)

Service layers include the operational characteristics of the corresponding mode
(Fig. 7.1, right). A road service model, for instance, may include trucks as well as
information on transfer locations and specific operational requirements for transfers
and user preferences.

Waterways are composed of routes (represented as links) and connected via ports
to mainland represented as nodes, where goods are transferred by intermodal connec-
tions. Port environment can be explained in Fig. 7.2 (WEF 2011). It is composed of
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Fig. 7.1 Network and service layers of the multimodal transportation system

five elements: the vessels carrying the goods, navigable waterways that vessels use,
the terminal operations such as loading and unloading, the intermodal connection
point, and the intermodal connection to other modes by public infrastructure. These
elements are modeled in the service layer. Railways and airways can be detailed in
a similar fashion to roadways and waterways.

Multimodal transportation systems are represented via edges referred to as “trans-
fer edges” and the incident nodes referred to as the “transfer nodes.” (An exception
may be a consolidation on a single-mode network, where goods may be transferred
to another vehicle on the same network.) In reality, these transfer nodes correspond
to the same geographic location. In a passenger flow example, they can represent a
train/bus station or an airport. In the case of freight, they can be a port, an airport, or
a warehouse. The transfer edges may have zero distance, or a value that represents
the value of transfer, for instance in terms of time, service hours, or a cost value.
Service network representation describes the set of activities included in the trans-
fer process, such as, loading/unloading, transfer between vehicles, packaging, and
sorting. A freight ship may transfer goods to barges or unload at a port to be stored
until it is loaded on a railcar or a truck for its next destination. At an airport, goods
may be delivered to the warehouse in containers, to be sorted, packaged, and loaded
to trucks.

For practical applications, a single-mode freight system is easier to manage than
a multientity, multimode freight transport chain. The next section discusses the
definition of vulnerability within a freight transportation context. Definitions and
formulations of related terminologies are given and illustrated by an example.
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Fig. 7.2 Port environment. (WEF 2011)

Defining Vulnerability in Multimodal Freight Systems

Living in an imperfect world, we design and try to live with imperfect systems,
because perfect is just too expensive, or not practical. As a result, failure, malfunction,
and in general, vulnerability are inevitable. In relation to both risk and reliability,
where does vulnerability stand? In reliability analysis, the objective is to minimize
the occurrence/recurrence of failures by understanding and considering the design
within budget (i.e., cost) limits (Modarres et al. 2010). In risk analysis, the objective is
to minimize the occurrence (the attack ever happening), recurrence (i.e., by increased
protection, security measures), as well as the consequences (minimize damage and
improve resilience). Although incorporated in risk and reliability, the definition of
vulnerability has not reached a consensus yet. Various opinions suggest vulnerability
as a consequence, part of risk, and unreliability, and involve partial or complete loss
of accessibility or serviceability, which may also change based on user perception.

Vulnerability has been defined in the literature from different perspectives. For
example, by definition vulnerability means susceptibility to injury or attack (MW
2008), reduced accessibility due to disruptions (Chen et al. 2007), loss of utility,
classified as connective vulnerability (D’Este and Taylor 2003), variations on the
accessibility indices, referred to as access vulnerability (D’Este and Taylor 2003),
susceptibility to incidents that can result in considerable reductions in (road) network
serviceability (Berdica 2002), properties of a transportation system that may weaken
or limit its ability to endure, handle, and survive threats and disruptive events (that
originate both within and outside the system boundaries; Asbjornslett and Rausand
1999), probability and consequence of degradation on performance of the system
(Nicholson and Du 1994; Murray 2011), and “success” of the threat, a manifestation
of the inherent states of targeted system(s), each of which is dynamic and changes
in response to the inputs and other building blocks (Haimes 2006).
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Risk

Risk is the result of a threat causing adverse effects to a vulnerable system—where
threat is intent and capability (motivation to harm, and, ability and capacity to attack
a target and cause harm; Haimes 2006). The impact of a threat may vary depending
on the situation. In general, one will identify possible scenarios and associate a
probability and consequence (such as cost) associated with each scenario. Hence,
risk is defined as a triplet of scenario, frequency (probability), and consequence
associated with each scenario that may adversely diminish the system’s ability to
perform its mission (Kaplan and Garric 1981). As part of risk analysis, vulnerability
of the system is identified based on the scenario.

Definition: Risk is a function of probability p, scenario sc, and consequence c.

risk = f (p, sc, c) (7.1)

The calculation of a risk for a given scenario requires knowledge of the probability
of the scenario occurring, the level of impact of the scenario on the performance of
the system, and the recovery capability of the system.

Reliability

Reliability is defined as “the ability of an item to perform a required function, under
given environmental and operational conditions and for a stated period of time”
(ISO 8402). Here, the term item refers to any entity, which may be a component,
system, or a subsystem. A required function refers to any function that is required to
be performed by the entity and can be a single function or a combination of multiple
functions. Therefore, defining the functions of the entity is crucial for reliability as-
sessment. The environmental and operational conditions, as well as time dimensions
set the expected/usual conditions and life cycle concepts within the definition. In rela-
tion to reliability (or unreliability), vulnerability is identified based on its diminished
performance (in terms of capacity, time, or cost, for example).

Definition: Reliability is the probability of system “s” at an acceptable level fn.

rs = ps(fn) (7.2)

urs = 1 − ps (fn) = qs(fn) (7.3)

Hence, unreliability is the probability of the system not functioning at an acceptable
level.

Reliability of transportation systems is defined in various ways. One of the com-
monly used and simplest measure of transport network reliability is the terminal or
connectivity reliability, the probability that there is a connection between a pair of
nodes in the network when one or more links are broken (Wakabayashi and Iida
1992; Bell and Iida 1997). Other measures include the travel time reliability, the
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probability of a trip that will be completed within a specified time interval (Yang
et al. 2000; Clark and Watling 2005), and the capacity reliability, the probability of
accommodating a desired level of traffic for a given network (Yang et al. 2000; Chen
et al. 2002). Early contributions to the problem of finding the most vital link or node
include Garrison (1960), who studied using graph theoretical concepts, and Ratliff
et al. (1975) and Ball et al. (1989), who developed various algorithms to determine
most vital components of a network.

Vulnerability

Vulnerability as defined in risk analysis is part of the consequences of the identified
risks. In reliability analysis, reliability is calculated by the design specifications,
and unreliability includes every consequence related to a scenario leading to not
satisfying one or more design specifications. The system is then assumed to function
at an unacceptable level.

For a multimodal transportation system that is defined with a system of systems
(network of networks), each of which is composed of a (physical) network and a
service layer, connected via specific transfer nodes and edges, vulnerability is a
multidimensional-state value of the system expressed as the performance degrada-
tion as a consequence of an extreme event that is caused by the dynamic inherent
states of the system. The most important facets of multimodal freight transportation
can be mapped as in Fig. 7.3: (1) condition and decay, (2) capacity and use, (3)
interdependency, (4) spatial factors, (5) threats, (6) policy and political environment,
(7) safeguards, (8) temporal factors (Grubesic et al. 2011), (9) economy, and (10)
network design. In addition, most important vulnerability characteristics specific to
the service layer can be listed as (11) communication, (12) demand, and (13) transfer
(goods, vehicle, personnel, storage; Fig. 7.3). We explain each dimension in terms
of its individual characteristics as well as its influences on other dimensions and its
contribution to vulnerability.

The multimodal freight transportation system is a complex system, with multiple
interdependent components. Each component’s vulnerability contributes to the sys-
tem vulnerability; the system is only as strong as its weakest link and as vulnerable
as its weakest link. The design of a multimodal freight transportation network that
is composed of a connected set of single-mode networks and service layers plays
a critical role in determining the system functionality. For example hub-and-spoke
networks are more susceptible to vulnerability than random networks because when
the link between hub and spoke is targeted, the spoke can easily be disconnected from
the main network (Grubesic and Murray 2007). The connectors (transfer points) of
single-mode networks (transfer edges and transfer nodes) are of interest explaining
key aspects of multimodal freight transportation network design. At transfer loca-
tions (such as ports), goods are transferred from one mode to another. The process
may include storage, packaging, consolidation, or technical services. In addition to
transfer of goods between single-mode networks, changes in the vehicles (i.e., ship
to trucks at a port) and personnel (i.e., ship crew to truck drivers at a port) occur.
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Fig. 7.3 Dimensions of vulnerability, multimodal freight transportation systems

Decision-makers may also differ as when the custody of the goods is transferred from
the shipping company to the trucking company at a port. As a result, planning, coor-
dination, and handling of these operations play a significant role, and communication
is a key component.

The multimodal freight transportation systems, like other utility services, require
substantial investment, continuous maintenance, and timely expansion as the demand
for the services grows. Parallel to investments and expansion, demand grows and
the cycle continues. However, there are limitations, such as resources, time, or
budget. As a result, systems degrade and become more susceptible to extreme events.
Therefore, when looking into vulnerability, the current condition of the system needs
to be analyzed. When the system or a component of the system is obsolete, failure
is inevitable. In addition, where demand grows faster than the available capacity,
there is less slack (redundancy) to incorporate the unexpected events. This lack of
capacity again increases the vulnerability. Redundancy, generally introduced during
the design phase in order to handle some of the variation in daily traffic, may not be
sufficient under extreme conditions.

System functionality and its vulnerability are influenced by location and topol-
ogy; for instance, soil and weather conditions affect the system functionality and may
increase the vulnerability of the system. For example, the Gulf Coast is susceptible
to hurricanes and tropical storms, whereas southern California is susceptible to wild-
fires and earthquakes (Schmidtlein et al. 2008). The widespread multimodal freight
transportation networks may be subject to different environmental threats, as well as
other extreme events. Another aspect is the proximity or interdependency of systems,
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which may trigger cascading failures (i.e., 2003 Northeast blackout). Making use of
safeguards in design or in addition to the design may decrease vulnerability. Policies
and political environments can influence communication between agents to elevate
the collaboration and introduce benefits.

The timing of the threat also plays an important role in the resulting vulnerability.
Rush-hour traffic would carry a high number of cars on the transportation network,
and in the case of a failure, vulnerability is higher than, for example, at 3:00 in
the morning. Duration of the threat, such as the time an earthquake lasts, directly
influences the vulnerability of the system. If a segment of the transportation network
is not being used for freight transportation, then we will categorize it as not important
and hence not vulnerable.

Each of the facets such as timing and duration of the threat, and importance of the
affected segment of the network on freight transportation contributes to the system
vulnerability in a positive or a negative way. Assume each of these dimensions is
expressed as a variable xi . The vulnerability of a system can be defined based on the
change in these facets:

Vulnerability = f (�x1, �x2, . . . , �x12, �x13). (7.4)

System functionality is the actual result of the inherent dynamic states of the system
and we assume that the vulnerability is the change in the system’s functionality

V = (fn − fm) (7.5)

where, fm is the lowest system function value reached after an extreme event. In this
study, we assume that the system’s functionality reaches the state fm as a result of
an extreme event. In general, the system may reach a level offk with a probability
pk and we can find the expected value of vulnerability, E(V ):

E(V ) = fn −
∑

pkfk. (7.6)

Acknowledging the multifaceted nature of our multimodal transportation system, one
should pay close attention to the reliability, vulnerability, and risk associated with
a given freight transportation network. We will next illustrate how vulnerability,
reliability, and risk come into play in the case of an extreme event impacting the
freight transportation network. Two new measures, resilience and recovery, are also
introduced to discuss the impact of an extreme event on the functionality of the
transportation system which in turn will lead to a new definition of risk.

Vulnerability, Recovery, and Resilience

Figure 7.4 is an illustration of the impact of an extreme event on the system func-
tionality (performance) as a function of time. The figure assumes three possible
scenarios associated with the extreme event. The system recovery depends on the
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Fig. 7.4 Vulnerability, resilience, and failure recovery behavior of systems

scenario. This figure will form the basis of our discussion for the remaining sections
of this chapter.

Prior to an extreme event, a transportation system is assumed to function nor-
mally at the desired (acceptable) performance level, fn. So, let fn be the predisaster
system functionality level as seen in Fig. 7.4. When an extreme event hits the system,
the system can either fail or cope with the situation. The system may withstand the
pressure of the event for some time; this interval is referred to as the system failure
threshold, tth. For instance, only a single bridge failed in the 2002 I-40 bridge col-
lapse (OK). The time between the start and completion points of the bridge failure
was negligible (instantaneous failure). In the case of an M3 hurricane, such as Hurri-
cane Katrina (2005), many bridges and roadways incrementally failed due to various
primary reasons ranging from high winds, heavy rain, and flooding. The damage
moved from south to north. Hence, tth was not negligible. When the threshold value
is nonzero as in Hurricane Katrina, the decision-maker may initiate immediate pro-
tection protocols during this time period minimizing the impact of the event. Hence,
the magnitude of tth is important for the recovery period. Let

tth = tf c − tf s , (7.7)

where tf s is the failure start time and tf c is the failure completion time. Although
we do not elaborate on the threshold value any further in this chapter, it is an impor-
tant variable that decision-makers must consider while studying impacts of extreme
events.

The period between the time that a system starts to fail and reaches a complete
failure may follow different paths (see example failure curves in Fig. 7.4). In case
of a hub-spoke network, when a hub fails, the system degrades and performance
decreases. The failure property is defined based on the network attributes such as
the network topology. However, system performance does not diminish completely
because the hub is highly connected. On the other hand, when a spoke is cut, complete
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failure is highly probable due to its low connectivity and hence, high vulnerability.
On another note, structural failures are immediate, and congestion behavior changes
in time may take a linear or nonlinear form. We represent different discrete levels of
system degradation for a specific case under study via lines for clarity purposes. The
differences in failure curves of each case indicate the sensitivity of the performance
measure to the extreme event and may be valuable to the decision-makers in terms
of determining what actions to take during that threshold time.

When a system cannot handle the impact, the system fails. In other words, it
reaches the lowest performance level, fm, where fm = f0 = 0 or may be equal to fk

a degraded system functionality level k. We can then compute the vulnerability, V,
of the system as a measure of how much the system performance has degraded due
to the extreme event (which is a composite result of the system’s inherent dynamic
states). In Fig. 7.4, V1 = fn − fk1and V2 = fn − f0 represent the vulnerability of
the system at two different degradation levels.

Recovery

If a system is capable of recovery, then the recovery phase begins. We define two other
concepts, recovery and resilience, which are widely used in vulnerability analysis.
Recovery refers to the percent gain in system functionality after the occurrence of the
extreme event (disaster). Assume that the system recovers partially to a functionality
level fm from f0. Then,

recovery = (fm − f0), (7.8)

where fm may be equal to fn, meaning that the system recovers completely to its
predisaster levels. Similar to vulnerability, recovery depends on the system char-
acteristics. Recovery may involve multiple stages such as no recovery immediately
after the disaster, small recovery after main connections are established, and recover
to predisaster functionality levels, fn after some time. The recovery function may
not be similar to the failure function. While both provide information on the same
system, there are different factors involved in each step, such as external circum-
stances. Therefore, similar factors in both terms need to be identified in order to
eliminate a possible covariance in calculations. Under which conditions failure and
recovery curves would be similar, different, and how this information can be help-
ful for vulnerability analysis is another future research question. Recovery time for
different systems may be different—slow or fast recovery may be observed (tR1 and
tR2 in Fig. 7.4). Another possibility is that the system may not reach the predisaster
functionality levels in the recovery period (fm at time tR2 in Fig. 7.4).

Resilience

Resilience, re, is used to refer to the ease of system recovery, the system’s ability to re-
turn to a stable functionality level after the extreme event. Here, the time is taken into
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consideration to refer how easy it is for the system to return to a designed/operational
system performance, fm. Hence,

re = (fm − f0) /�t (7.9)

or,

re = recovery/�t (7.10)

where, �t is the interval between the start and the end of the recovery period, which
is (tR4 − tR0) in Fig. 7.4.

In our context, reliability is the probability that a system functions at a desired
level. The risk associated with an extreme event is a term expressing the impact of the
event on the performance of the system. Hence, it is a function of system vulnerability
and resilience. We rewrite Eq. 7.1 as Eq. 7.10, substituting the consequences of a
scenario with vulnerability and resilience of the system. If a system is unable to
recover, then the system has a higher risk. The p stands for the probability of the
extreme event in the following risk function:

risk = f (p, V , re) (7.11)

In Fig. 7.4, we gathered vulnerability, resilience, recovery, and risk together to
observe the relationship between concepts. In the next section, we will demonstrate
how one can relate these concepts to various decision-making phases using Hurricane
Katrina as an example.

An Example: The Impact of Hurricane Katrina on Freight Flows on the Road-
ways A disaster is an event concentrated in time and space in which a relatively
self-sufficient subdivision of society undergoes severe danger and incurs losses, re-
sulting in diminished physical and essential functions of the society (Fritz 1961;
Peek and Mileti 2002). Hurricanes are one of the costliest and deadliest disasters.
Hurricanes deliver high winds, storm surge, and rainfall. The physical size of a hurri-
cane influences the storm surge and the extent of damage. When a vulnerable region
faces a hurricane, we observe diminished physical environment and functions of the
society who lives in the region in terms of damaged infrastructure, homes, buildings,
and even loss of lives. The unfortunate increase in number of extreme events urges re-
searchers, governments, and society to better understand extreme events, preparing,
managing, and recovering, given our imperfect and rather unreliable systems.

On the 29 August 2005, Hurricane Katrina hit the land and caused widespread
devastation in Louisiana (LA), Mississippi (MS), and Alabama (AL). Categorized as
an M3 storm, Katrina hit the New Orleans, LA region, with winds higher than 140
mph and caused 20–25 ft storm surges. Many areas were under water and slight to
severe damage was observed in residential and nonresidential homes, government
buildings, and infrastructure in three states.
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Table 7.2 Hurricane Katrina roadways, failure, and repair timelines

Bridge/roadway conditions at the end of

Timeline Predisaster August
29

September
5

September
20

1st
month

3rd
month

6th
month

After 6
months

Roadway
network
condi-
tions

No failures Hurricane
hits the
area

Flood I Flood II Set I re-
paired

Set 2 re-
paired

Set 3 re-
paired

Set 4 re-
paired

Scenario
name

Sc0.0 Sc1.0 Sc1.1 Sc1.2 Sc1.3 Sc1.4 Sc1.5

1. Impact on Roadway Freight Traffic Flows

According to a report by the American Society of Civil Engineers (ASCE) ap-
proximately 45 roadway bridges sustained moderate to major damage, and the
transportation system was severely disrupted. In addition, massive flooding left part
of the city deserted at least for a month (see DesRoches 2006 for further details of
the damage and reasons for failure at roadways and railroads; for further information
on damage to the ports and the coasts, see Curtis 2007).

The Appendix lists 24 roadway locations we have selected for the definition of
scenarios based on the damage level and the spatial location (Table 7.5). The time-
line of the recovery is identified to examine the changes in recovery of the freight
supply–demand balance and the network. The damaged roadways and bridges are
grouped according to their repair dates. Table 7.2 shows the designed scenario steps:
predisaster before the hurricane, two flood cases (dated 5 and 21 August by NGA
2009), and four phases based on the recovery pattern of the infrastructure at the end
of the 1st, 3rd, and 6th month, and after the 6th month.

In the flood scenarios the New Orleans area is closed; thus, the area is excluded
from the analysis for these specific scenarios by either removing the node from the
network or by removing the node from the origin–destination (O–D) matrix so that
there is no such node to deliver or ship.

A dynamic freight flow matrix is used for the flood scenario steps, reflecting clo-
sure due to floods. Shortest-path (All-or-Nothing, AON) assignments are completed
in TransCAD for each scenario step. Based on the travel distance, the percentage
change in traffic flow for each scenario step is calculated as shown in Fig. 7.5 and
summarized for the states AL, LA, MA, and the USA in Table 7.3.

The impact of the damage caused by Hurricane Katrina on freight flows over the
roadways was felt in three states. The closed roadways and the floods cut off the
supply routes from the three-state region (AL, LA, MS) to other states (blue lines
on Fig. 7.5). Freight flow that normally passes through these regions, particularly
through the New Orleans area, was rerouted towards north (orange lines on Fig. 7.5).

If the system functionality for freight flow during the predisaster period (Sc0.0)
is represented as 100 % (current performance level), then as a result of the first and
the second flood (Sc1.0 and Sc1.1, respectively) the system functionality decreased
to 96.86 % for AL. In other words, only 96.86 % of the predisaster freight flow used
AL after the two floods. During the three stages of the recovery period, an increase in
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Fig. 7.5 Impact of Hurricane Katrina on roadway freight flows, Sc0.0 versus Sc1.0

Table 7.3 Truck traffic percentage changes due to Hurricane Katrina roadway damages

State Sc0.0 Sc1.0 Sc1.1 Sc1.2 Sc1.3 Sc1.4 Sc1.5

AL 100 96.86 96.86 100.05 100.43 100.43 100
LA 100 73.46 73.46 95.42 100.42 100.42 100
MS 100 88.02 88.02 99.31 100 100 100
US 100 98.89 98.89 99.87 100 100 100

100: fully functional

freight flow was observed (Sc1.2, Sc1.3, and Sc1.4) for AL. The system functionality
was above the predisaster period (over 100 %). Decreased system functionality for
LA, MA, and the USA were as indicated in Table 7.3. The system functionality
above 100 % indicates that more freight was transported than normally would be
on the corresponding roadway network; the change in flow in the USA returned to
100 % at the end of the 3rd month (Sc1.3). Likewise LA and AL reached predisaster
system levels after the 6th month (Sc1.5). For more details on how freight flow was
impacted by Hurricane Katrina, see Aydin et al. (2011).

2. Vulnerability, Recovery, and Resilience

We next demonstrate how vulnerability, recovery, and resilience measures can be
calculated for the roadway freight transportation system using the data for Hurri-
cane Katrina. We calculate these measures for three states and for the USA. The
relationships among the measures are illustrated in Fig. 7.6.

Assume that the vulnerability of the roadway network can be measured by the
change in the truck traffic due to the damage on the roadways. Given the traffic
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Fig. 7.6 Vulnerability and resilience of roadways to Hurricane Katrina

flow changes on the roadway network, we calculate the vulnerability of the roadway
transportation system using Eq. 7.5. Note that we are using the results of Sc1.1 in
Fig. 7.3 because the largest impact on truck traffic flow occurred at this particular
scenario.

VAL = 100− 96.86= 3.14
VLA = 100− 73.46= 26.50
VMS = 100− 88.02= 11.98
VUS = 100− 98.89= 1.11

The state with the highest vulnerability and diminished system performance was LA
with a vulnerability value of 26.50, followed by MA and the USA in decreasing order.
This information can be used in allocating resources to the highest-need region. For
example, Wal-Mart closely observed the path of Hurricane Katrina, and allocated
necessary items away from Katrina’s path but close enough to satisfy the regions
needs faster than the Federal Emergency Management Agency (FEMA) itself.

The recovery periods for MA and the USA are assumed to be at the end of the 3rd
month since the system recovered fully at that time. Similarly, performance values
are at the end of the 6th month for AL and LA (Table 7.3). By using Eqs. 7.8 and
7.9, recovery and resilience values for the three-state region and the USA can be
determined as given in Table 7.4.

Note that LA recovered faster than the other states and was the most vulnerable
state for the impact of Hurricane Katrina to freight flow on roadways. In addition, LA
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Table 7.4 : Recovery and
resilience of the roadway
network from Hurricane
Katrina

State Recovery Resilience

AL 3.57 0.60
LA 26.96 4.49
MS 11.98 3.99
US 1.11 0.37

also has the highest resilience value. Although LA experienced the largest negative
change in the roadway functionality, the LA area’s resilience was higher than the
resilience of the other states and the USA.

Assuming that the probability of a hurricane was same for the regions, we can
assess a value for the risk measure as a function of vulnerability and resilience mea-
sures using Eq. 7.11 as indicated in Fig. 7.7. Note that lower vulnerability value and
higher resilience value lead to a low risk for the system. Hence, a high-vulnerability–
low-resilience point on the graph represents the highest-risk situation. The graph is
partitioned with red and blue lines to indicate regions with extreme risk and compar-
atively lower risks, respectively. This information will be useful for decision-makers
in assessing state-level vulnerability and resilience of transportation infrastructure
for risk management purposes.

Assuming that the probability of a major hurricane hitting each area is the same,
based on the vulnerability and resilience values calculated for this example and
illustrated in Fig. 7.7, the USA as a whole has the lowest vulnerability-resilience
binary value demonstrating the comparatively low vulnerability and resilience of the
roadway network. AL, MA, and LA follow in increasing order. The US binary value
presents a faster adaptation and rapid recovery, concluding that the USA managed to
absorb the extreme event impact. On the other hand, the LA area is highly vulnerable
and also expected to be highly resilient to the impact of Hurricane Katrina. If the
probability of a hurricane hitting the regions is not constant, then resilience and
vulnerability calculations should be modified to reflect this fact.

Fig. 7.7 Vulnerability and resilience of roadways to Hurricane Katrina
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Conclusion and Suggestions for Future Research

The transportation system is a necessary component of the economy. This vital link
is being challenged by the increasing demand on transportation infrastructure and
services. Multimodal transportation infrastructure offers cost and service advantages,
flexibility, speed, capacity, routing, and scheduling. Hence, it is of utmost importance
for the competitive global markets and strong economies. However, the increased
number and frequency of extreme events are threatening the aging transportation
infrastructure, having a significant impact on the transportation of freight and hence,
impacting national and global economies.

Disasters such as the Kobe earthquake in 1995, the Northeast blackout in 2003,
and, Hurricane Katrina in 2005 crippled transportation services, damaged infras-
tructure, and caused social and indirect losses. The need to understand the behavior
of systems (why and how systems fail, what happens when an extreme event hits a
region, and the region’s ability to recover) and systems’ vulnerability and resilience
to extreme events is vital to minimize (or perhaps eliminate) its impact to the global
economy. The study of vulnerability, reliability, resilience, and risk is important to
transportation systems. While literature on the application of these terminologies to
different problem settings is vast, these measures have not been discussed all together
for a given problem setting. However, the relationship among these terms is impor-
tant and most often depends on the characteristics of the problem setting in question.
In this chapter, we define and illustrate the relationships of the terminologies within
the context of a multimodal freight flow transportation system. The intent of the
discussion is to stimulate further research on the topic and provide valuable insights
to the transportation planners and decision-makers as to how vulnerable and resilient
the transportation infrastructure is to extreme events.

The roadway damage caused by Hurricane Katrina (2005) is used to demonstrate
the above concepts and the impact of the hurricane to the freight flow transportation
traffic on the roadway network. Future research can involve the expansion of our con-
cepts to analyze vulnerability of a multimodal transport route. For instance, assume
we are given two network layers, G1 and G2 are connected via E12 = (n1, n2). The ar-
tificial edge connecting two layers is E12 and the transfer points are n1 ∈ N1, n2 ∈ N2.
Assume origin O is n3 ∈ N1 and destination Dis n4 ∈ N2. The route r1 is on
N1starting from n3 to n1 and route r2 is on N2 starting from n2 to n4, where goods
from O to D take route r1, transfers from layers G1 to G2 through E12 and takes
route r2 through in addition, (n1, n3 ∈ N1) and (n2, n4 ∈ N2). Then the complete
route becomes r1 ∪ E12 ∪ r2, and vulnerability of this route can be calculated using
multiattribute theory and decision analysis tools by defining the facets influenced by
the dynamic system characteristics and estimating the vulnerability and resilience
from the change in system functionality in case of an extreme event. Subsequently,
we can relate vulnerability of the route to other terms and have a comprehensive
view on the multimodal network.

Further research is also necessary to determine how the dimensions listed in
Fig. 7.3 contribute to vulnerability and how one can aggregate the impact of each
dimension into one vulnerability value. If a weight schema is to be proposed, then how
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these weights should be determined will also be the subject of future research. Note
that the weights of these dimensions might be different for a planner, a traveler, or a
freight company since they represent different utilities for different settings. Research
is needed to determine criticality of the artificial edges that connect different modes
via transfer points and the transfer characteristics into vulnerability calculations.
Moreover, understanding of how a system fails and then recovers provides insights
for future design, prevention, and recovery strategies. Connection of the knowledge
and complex system analysis, specifically a multimodal transportation system with
multiple interdependent networks and service layers with multiple decision-makers,
will equip us towards a less vulnerable and more resilient future.

Appendix

Table 7.5 List of bridges and roadways used in the Hurricane Katrina roadway scenarios. (Modified
from DesRoches 2006)

Damaged bridge/roadway name Carried Damage
level

State Repair
time

Bayou La Batre Bridge Highway 188 Moderate AL ≤ 1
Cochrane Africatown USA Bridge US-90 Moderate AL ≥ 6
Mobile Delta Causeway I-10 to US90/98 Moderate AL ≤ 6
Bayou Lafourche @ Leeville LA-1 Extensive LA ≤ 1
Bonfouca LA-433 Extensive LA ≤ 6
Caminada Bay LA-1 Extensive LA ≤ 1
Chef Menteur US-90 Extensive LA ≤ 3
Claiborne LA-39 Moderate LA ≤ 3
East Pearl River US-90 Moderate LA ≤ 1
Inner Harbour Navigation Channel Florida Avenue Extensive LA ≥ 6
Lake Pontchartrain I-10 Complete LA ≤ 6
Bayou Barataria–Jefferson LA302 Moderate LA
Pontchartrain Causeway LA Causeway Complete LA ≤ 1
Rigolets Pass US-90 Extensive LA ≤ 1
David V. LaRosa Bridge W. Witman Road Moderate MA
Popps Ferry Bridge Popps Ferry Road Significant MA
Tchefuncte River Madisonville Bridge LA-22 Moderate LA ≤ 1
US-11@ Lake Ponchartrain US-11 Extensive LA ≤ 1
West Pearl River US-90 Moderate LA ≤ 1
Yscloskey LA-46 Extensive LA ≥ 6
Biloxi Back Bay Bridge I-110 Extensive MA ≤ 3
Biloxi-Ocean Springs Bridge US-90 Complete MA ≥ 6
I-10 Pascagoula River Bridge I-10 Extensive MA ≤ 1
US-90 Bay St. Louis Bridge US-90 Complete MA ≥ 6
US-90 Henderson Point Bridges US-90 Complete MA ≤ 6
US-90 roadway between Pass Christian

and Biloxi-Ocean Springs Bridge
US-90 Extensive MA ≤ 6
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Chapter 8
Scheduling and Financial Planning in Stochastic
Activity Networks

Bajis M. Dodin and Abdelghani A. Elimam

Introduction

Stochastic Activity Networks (SANs) deal with projects where the required informa-
tion for managing the project is not known with certainty. In most cases, information
related to duration or resources of some or all activities are given as random vari-
ables (r.v.) characterized by probability distribution functions (pdfs). Examples of
these projects are ample; they include most of high technology projects, new prod-
uct development projects, behavioral and service oriented projects, among others.
Management of SAN projects raises important issues that are emanating from the
stochastic variations of the project (see Chaps. 4 and 5 of Elmaghraby 1977; Herroe-
len and Leus 2005). One of these issues, which has been heavily investigated, is the
determination of the project schedule and project completion time. Another issue is
the determination of the project budget and financial plan; in spite of its importance,
this issue is yet to receive the proper attention (see Wiesemann et al. 2010; Chap. 3
of Demeulemeester and Herroelen 2002; Dayanand and Padman 1998).

Random variations cover various aspects of stochastic projects. In most cases,
these variations emanate from the need to develop or discover the required innova-
tions or technology for achieving the project objectives. These may lead to variations
in the structure of the project network, the duration of activities, the amount of re-
sources needed, and the prices paid to acquire these resources. All of these variations
lead to changes in project schedule, duration, and budget. For instance, network
structure may be hard to finalize at the initial stage. It also may be altered at later
stages of the project due to unforeseen conditions, change in technology, or quality
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audit results. As project work proceeds, new conditions might be uncovered that
would necessitate adding or deleting activities leading to a change in the network
structure. The results of completed project work quality audits might require under-
taking additional activities for repair or rework. Most work on SANs assume that
network structure is always given, and stays that way throughout the project man-
agement cycle (again see Demeulemeester and Herroelen 2002). In this chapter we
also assume that the structure of the activity network (AN) is given.

In addition to the potential change in the network structure, managers and re-
searchers are always faced with the challenging task of estimating the required
resources and duration for the activity. The quantity of resource(s) required to com-
plete an activity may be expressed as a random variable(s) due to not precisely
knowing the details of the activity work. Consider for instance the number of pro-
gramming hours a software engineer will consume to develop a certain module of a
larger program; or the number of experiments required before a certain compound
or medicine is developed. The resources can be of two types: Renewable such as
operators and machines/tools, and nonrenewable such as all consumables, typical
of which are money, and material consumed. The skill of the renewable resource or
the manner of its deployment may affect the duration of the activity. An example
of this is often found in service projects, such as those in health care or in audit
staff scheduling (see Dodin and Elimam 1997), where the duration of the activity
depends on the skill level. Hence, duration of the activity may depend on the amount
of the renewable resources required; consequently, the duration of the activity may
be expressed as a function of the required renewable resources. By contrast, the du-
ration of the activity may be independent of the amount of nonrenewable resources
required or the mode of deploying these resources. Finally, the prices paid for some
or all of these resources may also vary, particularly for projects with long durations,
or in times of economic volatility.

Based on the above, one can see that the combined effect of the stochastic varia-
tions in the network structure, duration of activities, amounts of resources, and the
price of these resources would have a profound impact on the project budget, its
distribution over the various activities, and on its schedule. These variations have
been a major source of difficulty for budgeting and managing projects with high
degree of uncertainty. In spite of the need to develop such pioneering projects at the
least possible cost, not much work has been published in the area of budgeting and
financial planning, and scheduling for stochastic projects. This is different from the
work that has been completed on maximizing net present value of stochastic projects
such as that of Wiesemann et al. (2010); Sobel et al. (2009); Benati (2006).

Recognition of the need to manage projects with some of the above variations
started with the work of Elmaghraby (1964) on generalized activity networks. He
attempted to handle the issues of scheduling and project duration emanating from
structural changes in the AN. He introduced a methodology that combines elements
of the Project Evaluation and Review Technique (PERT) and the Critical Path Method
(CPM) with those of decision nodes/analysis. This work was expanded by Pritsker
and Whitehouse (1966) through the development of Graphical Review and Evalu-
ation Technique (GERT) to include cost elements. The difficulty in solving GERT
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models led to developing GERT Simulation by Pritsker and Sigal (1974). In GERT
Simulation the duration of the activity is specified as a r.v., independent of the re-
quired resource(s), and the cost of the activity is expressed as a linear function of its
duration. For a survey of research related to GERT see Neumann (1999). Since then
not much has been published on the area of financial planning in stochastic projects.
In this chapter we assume that for a given project the renewable and nonrenewable
resources are given as random variables with specified pdfs. The duration of the ac-
tivity is also a r.v. written as a function of the renewable resource(s) required. Given
these relations, the managerial questions that remain to be answered are:

1. What is the bidding price or planned budget (PB) for the project?
2. Given the PB, what is the financial plan for the project?
3. What is the optimal duration and schedule of the project for the PB?
4. How do the variations in these relations affect the above three measures (PB,

financial plan, and project duration and schedule)?

This chapter deals with the above questions. It develops practical and accurate ana-
lytical procedures to answer these questions. This procedure can be used to explore
the relationship between the probability of completing the project at a given time
and the amount of resources to be used as well as its corresponding budget, i.e.,
we establish the time–cost trade off curve for the stochastic project or any of its
subprojects/stages.

The chapter is organized as follows: In the section “Determining the Probability
Distribution Function of the Project Cost,” a procedure is developed to calculate the
pdf of the project cost. A PB for the project can be based on the pdf of the project cost.
Then, in the section “Determining the Probability Distribution Function of the Project
Duration,” another procedure is developed to calculate the pdf of project duration. In
the section “Calculating the Project Financial Plan,” linear programming is used to
determine the financial plan that yields the optimal project duration for the given PB.
An example is provided in the section “Illustrative Example.” Concluding remarks
are given in the section “Conclusions and Extensions.” The following symbols will
be used in the presentation of the chapter, and Fig. 8.1 provides its outline:

Parameters

A Set of activities in the project
|A| Number of activities
N Set of nodes and index of the last node in the project
B(j ) Set of nodes preceding node j and directly connecting to it by an activity (i,j)
D(i,j) Random variable denoting the duration of activity (i,j) ε A; it is a function of R(i,j)
R(i,j) Random variable representing the cost/quantity of the renewable resource requirements

for activity (i,j), US$/unit
NR(i,j) Random variable representing the cost/quantity of the nonrenewable resource

requirements for activity (i,j), US$/unit
T(j) Random variable representing the duration of the project up to node j
TC(i, j) Random variable denoting the total cost of activity (i,j).
NTC(j ) Random variable denoting the cost of the project up to node j
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PB Planned budget derived from the pdf of the NTC(N)
Fij (r) = Pr(TC(i,j)≤ r), cumulative probability distribution of the total cost of activity (i,j)
F(t) = Pr(T(N)≤ t), cumulative probability distribution of project completion time
CLij Lower bound on activity (i,j) renewable resource cost
CUij Upper bound on activity (i,j) renewable resource cost
DLij Lower bound on activity (i,j) duration
DUij Upper bound on activity (i,j) duration
wij The conversion factor between the renewable resource cost of activity (i,j) and its

duration, i.e., the slope of the renewable resources cost and duration function
NRC Total cost of all nonrenewable resources for project activities in the PB

Decision Variables

yij Duration of activity (i,j) ε A
qij Amount of renewable resource funds allocated to activity (i,j)
t(j) Realization for the duration of the project up to node j

Fig. 8.1 Scheduling and financial planning for projects represented by SANs

Determining the Probability Distribution Function
of the Project Cost

In this chapter the project is represented by an activity-on-arc network. The arcs of
the network represent the activities, and the nodes represent the events. The events
can be numbered from 1 to N where 1 is the unique starting node, and N is the unique
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ending node; an activity (i,j) ε A, where A is the set of all activities in the AN, i < j
where i is the start of the activity, and j is the end of the activity and the ordered pair
is (i,j) is unique. Since some or the entire project activities are not well defined in
the sense of the activity content, the duration and cost of such activities are given
as random variables. It is also assumed that the cost of the activity consists of the
following two elements:

• Cost of the nonrenewable (NR)resources: The quantity of the NR resources re-
quired by the activity is a r.v. independent of the activity duration; hence the cost
of the NR resources is a r.v. with a given pdf. NR(i,j) can be stated as quantity or
as cost, as it is assumed that the cost/unit of the nonrenewable resource is fixed.

• Cost of the renewable (R) resources: The quantity of the R resources required for
each activity is also a r.v. with a given pdf. It is also observed that the R resources
required by the activity determine the duration of the activity, i.e., the duration is
expressed as a function of the renewable resource(s). R(i,j) can also be expressed
as quantity or cost as the cost/unit is fixed.

As a result of the above assumptions, the cost of each activity is the sum of the above
two random variables; it is a r.v. TC(i, j) = NR(i, j) + R(i, j) with a pdf that can
be calculated by convoluting the above two probability distributions. In this case if
f (r) = Pr (R(i, j) = r) and g(s) = Pr (NR(i, j) = s), then

F(c) = Pr (TC(i, j) ≤ c) =
∑c

r=0
f(r)g(c − r).

The pdf of the activity cost is independent of its duration or schedule. The project
cost or any of its segments can be calculated by summing the individual activities
costs in the project or in its subprojects. Hence, in principle, the cost of the project
can be calculated by performing (2 |A| − 1) convolution operations where |A| is the
number of activities. This may be theoretically possible for some simple pdfs, and
a small size |A|. However, for all practical purposes |A| is not small, and it is not
possible to convolute this many pdfs, especially when some of the individual pdfs
are hard to convolute. Furthermore, as two pdfs are convoluted, the outcome is a
more complicated pdf; when this is convoluted with a third pdf, the resulting pdf is
messier, and so on. The convolution process reaches to a point where it cannot be
carried out. Consequently, it is very important to develop a practical and accurate
procedure to carry out the (2 |A| − 1) convolution operations ending with the pdf of
the project cost in a reasonable computing time. This is the subject of this section.

The above difficulty in carrying out the convolution operations is valid whether
we have continuous or discrete distribution functions. It is more valid in the case of
continuous pdfs, where the difficulty is apparent. To illustrate this difficulty in case
of discrete pdfs, suppose we have 20 activities, the cost of each is a r.v., characterized
by a discrete pdf, where each r.v. has five realizations/outcomes. The convolution
of two of these will have between 9 and 25 unique realizations; it depends on the
similarity between the realizations of the two convoluted distributions. It will have
nine unique realizations if the two convoluted pdfs have the same realizations; and
it could reach to 25 unique realizations if the two convoluted distributions have
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different realizations. Similarly if the resulting pdf is convoluted with a third of the
original distributions; the new distribution will have unique realizations ranging from
13 to 125; and so on. Therefore, in this case the final distribution at node N may
have unique realizations ranging from 81 to 5∧20 (which is a very large number).
The following procedure is used to calculate the pdf of the cost at each node in the
project ending with node N designating the end of the project.

Procedure for Calculating the pdf of the Project Cost

This procedure is summarized in Fig. 8.2. It starts at node 1, where it has a cost of
zero with probability of 1, and then advances sequentially to node 2, then to 3, and
so on until node N, ending with the realizations and pdf of the project cost. At each
node j it calculates the cost of the subproject ending in that node.

For instance, in the AN of Fig. 8.3, at each node (j > 1) we first calculate the
pdf of the cost of each activity incident into the node by convoluting the two random
variables R(i,j) and NR(i,j). Then, to calculate the cost up to node j, we convolute the
pdf of the cost up to node (j–1) with the pdf of cost of the activities incident into node
j. So at node j= 2, it is simply equal to the cost of activity (1,2). Hence, only one
convolution operation is performed to calculate the pdf of TC(1,2). Then, to calculate
the cost up to node 3, four convolution operations are performed. The first two are
for calculating TC(1,3) and TC(2,3). Then the last two are for convoluting the cost of
node 2 with TC(1,3); then the outcome is convoluted with the TC(2,3). The process
moves to node 4, where, similarly, four convolution operations are required. Hence,
in this case, a total of nine convolution operations are performed. The proposed
sequential procedure is stated as follows:

1. Initialization:
a. Input the AN structure using activity-on-arc mode of representation, and num-

ber the nodes from 1 (unique starting node/event of the project) to N (the unique
completion node of the project) such that for any activity/arc (i,j) i < j, and
the pair (i,j) is unique.

b. Input the pdf of the renewable and nonrenewable costs of each activity (i,j) ε A.
c. Start at node j= 1, and set its cost to 0 with probability of 1; then set j= j+ 1;

2. Calculating the pdf of the project cost up to node j:
a. Determine the set B(j), which is the set of activities ending in node j; If node

j − 1 is not connected to node j, then connect them by adding the dummy
activity (j − 1, j ) to the set B(j) with a cost of 0 and probability 1. Rank the
activities in the set B(j) in an increasing order of their starting nodes.

b. For each activity (i,j) ε B(j), calculate the pdf, Fij(r), of the total cost of the
activity, denoted by TC(i, j ) = R(i, j ) + NR(i, j ), by convoluting the pdf of
the cost for its renewable resources with that of its nonrenewable resources as
defined above. Please note that if the pdf of TC(i,j) is already calculated/given,
then go to the next activity in the set B(j).
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Read AN structure using AOA where for each activity (i, j) ∈A, i < j

Set j = 1, NTC(j) = 0 & Pr(NTC(j) = 0) = 1

Read the pdf of each activity cost: the non-renewable and
renewable resources    

Set j=j+1 & determine the set B(j) = {(k,j) where (k,j) ∈A} 

Is (j-1,j)  ∈ B(j) 

For each activity (k,j) ∈B(j) calculate TC(k,j) and its pdf by
convoluting the two costs: renewable & non-renewable

resources   

Yes 

No Connect (j-1) to j by a dummy
activity (j-1,j) ∈B(j) with TC(j-

1,j)=0 with probability 1  

Calculate NTC(j) by convoluting NTC(j-1) with TC(k,j) ∀k ∈B(j) 

Is j =N 

Print/store NTC(N)
and its pdf   

Yes 

No 

Stop

Start

Fig. 8.2 Calculating the probability distribution function of stochastic project cost

c. Let K be the number of realizations for the r.v. TC(i,j). If K is greater
than a desired number of realizations the analyst would like to have for
the r.v., such as k < K, then the pdf of TC(i,j) of the activity is approx-
imated by another pdf with only k realizations. This is done where the
full range of TC(i,j) is preserved. Therefore, the maximum and minimum
realizations of TC(i,j) are maintained with their respective probabilities.
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Fig. 8.3 Sample activity
network

1

3

4

2
1 4

2 5

3

The remaining K − 2 realizations are mapped into K − 2 realizations
using the same rules as in Dodin (1985).

d. To calculate the cost of the project up to node j, denoted by NTC(j), convolute
the pdf of NTC(j − 1) with the pdf of the cost of the first activity in the
set B(j). The resulting pdf is then convoluted with the pdf of the cost of the
second activity in B(j); and so on until convoluting with the pdf of the cost of
the last activity in the set B(j). After each convolution operation if K > k, do
the operation presented in 2.a.

3. Termination: Set j= j+ 1. If j <N go to 2, otherwise record the pfd of NTC(N)
and all its statistics.

The convolution operation of two pdfs is carried out as it is the case in Dodin (1985)
and it will not be repeated in this chapter. It should be noted that the convolution oper-
ation presented in Dodin (1985) assumes that all random variables are characterized
by discrete pdfs. Consequently, if an activity in SAN has a cost with a continuous pdf,
it should first be discretized. This can be done by applying the discretizing procedure
developed also in Dodin (1985).

From the above distribution for NTC(N), designating the cost of the project, we
can calculate all of its statistics (mean, mode, median, min., max., skewness, and
quintiles). This is done without any reference or reliance on the activity duration or
project schedule.

Given that most projects consist of many activities (more than ten), the central
limit theorem implies that the pdf of the project cost, NTC(N), converges to a normal
distribution with mean value μp equaling the sum of the mean values of the cost
for all activities, and project cost variance σ 2

p equaling the sum of the variances for
all activities. This may allow us to establish bidding price forecasts with certain
confidence limits, establish upper and lower bounds on the project cost, and assess
the risks attached to each bidding price or PB.

Determining the Probability Distribution Function
of the Project Duration

As stated above, the duration of the activity is given as a function of its renewable re-
source requirements. In most instances the duration, expressed as a r.v., is negatively
correlated with the quantity/cost of the renewable resource requirements: the larger
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the quantity of renewable resources, the lower the duration, and vice versa. Hence the
lower end for the cost distribution of the renewable resources of an activity matches
the upper end of the distribution of its duration. The pdf of the activity duration is
calculated using the inverse of the above function. In case the pdf of activity (i,j)
duration, denoted by D(i,j), is given as a conditional probability of that of the R(i,j),
then the pdf of D(i,j) can be calculated first from the conditional probability.

Once the pdf of the duration for each activity is determined, then the pdf of the
project duration, denoted by T (N), or any of its subprojects ending in node j, T (j),
can be calculated using any of the available methods. However, as it is stated in De-
meulemeester and Herroelen (2002); Dodin (1985); Elmaghraby (1977), calculating
the exact pdf of the project duration for nontrivial projects is not possible. Conse-
quently, and also for practical reasons, we rely on using one of the approximating
procedures to calculate the pdf of the project duration. In this regard, we can use the
sequential approximating procedure developed in Dodin (1985). This procedure can
be applied for projects of any size, independent of the activity underlying probability
distributions. However, it may be more practical in approximating the pdf of T (N)
to rely on characterizing it. It was shown in Dodin and Servanci (1990) that such
a pdf can be approximated by either a normal distribution or by an extreme value
(EV) distribution. In both cases, what is required is to simply calculate the corre-
sponding mean and variance of such a distribution, then it will be easy to calculate
F (t) = Pr (T (N ) ≤ t) for any t > 0.

Determining if the pdf of T (N) converges to a normal or to an EV distribution
depends on the number of paths competing to be the longest path (in duration) in
SAN. The pdf converges to either of the following:

• A normal distribution, exactly as it is the case in the PERT method, if there is
a path in SAN that dominates all other paths in the sense that its probability of
being the longest path is higher than it is for any other path and with a reasonable
margin

• An EV distribution if there are several paths that have similar probabilities for
being the longest path

In performing the above test, we use Dodin (1984) to identify the n most critical
paths, where n can be any positive integer; but for practical purposes n= 3 or 4 can
be satisfactory for the normality test. If one path dominates, in probability, all others
and emerges to be the longest path, then the project duration is normally distributed
and its parameters are approximated exactly as it is in PERT. In this case, the mean
duration of the project and its variance are given by:

μ(P ) =
∑

(i,j )∈CP

μij and σ 2 (P ) =
∑

(i,j )∈CP

σ 2
ij ,

And F (t) = Pr (T (N ) ≤ t) for any t > 0 can be easily calculated from the standard
normal tables. If otherwise, then the pdf of project duration is approximated by an
EV distribution, where its parameters are calculated as in Dodin and Servanci (1990).
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In this case:

μ(EV ) = an + 0.577

bn

and σ 2(EV ) = π2

6 b2
n

where n= the number of dominating paths (close in length) determined in the above
test,

an = μ(P ) + σ (P )

[√
2 log n− (log log n+ log 4π)

2
√

2 log n

]

bn =
√

2 log n

σ (P )
and

F (t) = Pr (T (N ) ≤ t) = exp
[− e− bn ( t−an )

]

The process of determining the pdf of T(N) is summarized in the flowchart of Fig. 8.4.
The pdf of project duration depends on the pdfs of the activity durations. But

these depend on the pdf of the corresponding activity renewable costs. Hence, it
is expected that the pdf of T (N) is negatively correlated with the pdf of NTC(N)
derived in the section “Determining the Probability Distribution Function of the
Project Cost.” In this case the high end of NTC(N) matches the low end of T (N),
and the low end of NTC(N) matches the high end of T (N). The question now is
how to use both distributions to establish a project financial plan, and a schedule
for all activities. For a given budget or bidding price, as derived in the section
“Determining the Probability Distribution Function of the Project Cost,” how is the
budget distributed over the individual activities? What is the duration of each activity?
What is the corresponding project completion time? Can the budget be distributed
over the activities to achieve the least completion time for the project? These issues
are the subject of the next section.

Calculating the Project Financial Plan

This section deals with distributing the PB on the activities in an optimal manner,
where optimality is defined as seeking to allocate more funds to the activities that
affect project duration the most; hence, achieving the least possible project comple-
tion time for a given budget. Also, it is important to discuss how sensitive the project
completion time is to changes in the budget and vice versa? That is, how much
should the budget increase to achieve a given completion time, hence, increasing
the probability of completing the project within the given time? If PB represents the
90 % realization in the pdf of NTC(N), then how should this amount be distributed
among all the activities? Should we distribute these in a uniform manner such as
90 % funding for each activity? Would this yield a project duration realization t(N)
where

F (t) = Pr (T (N ) ≤ t(N )) = 0.90
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Read AN structure using AOA where for each activity (i, j) ∈ A, i < j. 

Calculate the realizations of D(i, j) & its pdf

For each activity (i,j) ∈ A, read pdf of the renewable
resource cost R(i,j) & D(i,j) = f (R(i,j)) 

Does the 
duration of the 1st

path dominate the 
other durations?

Yes 

No 

Start

Use Dodin (1984) to identify the n longest paths in AN, n can be = 3.
Rank them 1,2,….n starting with the longest  

Use PERT to compute μ, α, assume pdf of T(N) is N(μ, α)

Connect the pdf of T(N) with the pdfof NTC(N). The far right (largest)
value of NTC(N) with the far left (smallest) of T(N) & vice versa   

Derive relationships between specific values of NTC(N) and T(N),
forecasts & confidence intervals  

Stop

pdf is approximated 
by an Extreme value   
distribution, calculate 

its μ, α

Fig. 8.4 Flowchart of determining the pdf of project duration
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Fig. 8.5 Renewable resource
quantity—activity duration
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Alternatively, should some activities be funded at a higher level while others at a lower
level? How will these be selected, and what is the impact on the project completion
time? These questions imply that different allocations of the PB provide for different
project schedules and project completion times, t(N). Given the reverse relationship
between the activity renewable resources cost and the activity duration, the more
funds are allocated to the activity, the lower is its duration (see Fig. 8.5). Hence, if the
budget allows for funding each activity at its highest level, then each activity can be
processed at the least/crash duration; and the project may be completed at minimum
time. Conversely, if the budget is short, and each activity is funded at its lowest level,
then this may lead to completing the project at maximum time. Consequently, from
the activity cost–duration relation we can determine the maximum project budget
required, and hence the minimum project duration; and the minimum budget and
the maximum duration. In managing real world projects, one rarely adopts either
of these two extremes. Managers try to select the least necessary budget, and use
it to achieve the shortest project completion time, i.e., the maximum probability of
completing the project within budget.

The above criterion can be used to guide the distribution of the PB over the
activities in an optimal manner, where optimality is defined by obtaining the least
project duration; which maximizes the probability completion time of the project
for the given budget. In deterministic project management, distribution of funds is
guided by the rational used in the Ford–Fulkerson (1962) algorithm. In this case,
we wish to distribute the funds on the critical activities with the least cost first;
hence, achieving maximum reduction in project duration for a given budget. In this
case, the problem is formulated as a linear program (LP) to determine the minimum
project completion time emanating from a specified budget (see Elmaghraby 1977).
In SANs, the concept of critical activity does not work as in deterministic ANs. The
corresponding concept in SANs is known as activity criticality index (CI). The CI
of an activity is the sum of the CIs of the paths that contain this activity, i.e., the
activity is a constituent of the path, where the CI of a path is the probability that the
path is the longest in the SAN. If the CI of each activity is determined, then we can
use a similar formulation to distribute the funds on the activities with the highest CIs
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and lowest costs. However, calculating the CI for each activity in SAN is a problem
by itself (see Dodin and Elmaghraby 1985). Consequently we are satisfied by using
the relation presented in Fig. 8.5. This expresses the activity average duration as
a function of the activity renewable resource cost. Such a relation is used in the
following LP formulation to optimally distribute the PB over all activities. In this
formulation the project completion time t(N) is minimized subject to:

• The precedence relations between the project activities represented by constraint
set number 1

• Upper and lower limits on the activity duration yij represented by constraint set
number 2

• Relationships between the renewable resources cost qij to be allocated to an activ-
ity (i,j) bounded from below by CL(i,j) and the activity duration yij (as in Fig. 8.5);
these are represented by constraint set number 3

• The funds allocated to activity (i,j), qij, does not exceed CUij; these are represented
by constraint set number 4

• Total distributed funds do not exceed the renewable resources share in the PB as
shown in constraint number 5

Min. t(N)

Subject to

t(1) = 0

t(j) ≥ t(i) + yij ∀j ∈ N and ∀ i ∈ B(j) (8.1)

DLij ≤ yij ≤ DUij ∀j ∈ N and ∀ i ∈ B(j) (8.2)

yij = DUij − wij(qij − CLij) ∀j ∈ N and ∀i ∈ B(j) (8.3)

qij ≤ CUij ∀j ∈ N and ∀i ∈ B(j) (8.4)
∑

(i,j )∈A

qij ≤ PB − NCR (8.5)

The decision variables in the above LP are the { yij} and the { qij}, where we have
|A| variables of each, and t(j), where we have (N − 1) variables. Solving this LP
provides the financial plan, which is the optimal allocation of the funds over the
activities, represented by the values of { qij}. It also provides the corresponding
activity durations { yij}, and the corresponding project completion time t(N). From
the activity durations and event realizations t(j), a project schedule such as that of
the latest start time schedule for each activity can be constructed. From the pdf of
T (N), we can calculate Pr (T (N ) ≥ t(N )) which is the largest project completion
probability within the PB.

The above formulation can also be used to establish the cost–time response curve.
For each value of PB we can establish a financial plan, a project schedule, and
completion time along with the corresponding completion time probability. This
curve provides a menu to chose from for PB, t(N), and F (t(N )) = Pr (T (N ) ≤ t(N )).
In the following section an illustrative example is provided.
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Table 8.1 Probability distribution of activity cost in US$ 1,000.00

Activity cost TC(1,2) TC(1,3) TC(2,3) TC(2,4) TC(3,4)
Realization j (cj , p(cj )) (cj , p(cj )) (cj , p(cj )) (cj , p(cj )) (cj , p(cj ))
1 2, 0.2 3, 0.2 2, 0.5 2, 0.5 3, 0.3
2 3, 0.3 4, 0.5 3, 0.5 4, 0.4 4, 0.3
3 4, 0.3 5, 0.3 6, 0.1 5, 0.3
4 5, 0.2 6, 0.1
E(TC(I,j)) 3.5 4.1 2.5 3.2 4.2
σ (TC(I,j)) 1.025 0.70 0.50 1.76 0.98

Table 8.2 Probability distribution function of the project cost up to node j

Realization NTC(1) NTC(2) NTC(3) NTC(4) Cumulative
probability

(cj, p(cj)) (cj, p(cj)) (cj, p(cj)) (cj, p(cj)) For NTC(4)

1 0, 1.0 2, 0.2 7, 0.020 12, 0.003 0.003
2 3, 0.3 8, 0.100 13, 0.018 0.021
3 4, 0.3 9, 0.215 14, 0.05265 0.077
4 5, 0.2 10, 0.275 15, 0.1039 0.178
5 11, 0.235 16, 0.15455 0.332
6 12, 0.125 17, 0.1812 0.513
7 13, 0.030 18, 0.1733 0.687
8 19, 0.1377 0.824
9 20, 0.0913 0.916
10 21, 0.05065 0.966
11 22, 0.02305 0.989
12 23, 0.0082 0.998
13 24, 0.00215 0.999
14 25, 0.0003 1.000
Mean 0.00 3.50 10.10 17.5
Standard

Deviation
0.00 1.025 1.34 2.12

Illustrative Example

Consider the AN of Fig. 8.3. The renewable and nonrenewable costs for each activity
have been added resulting in the cost distribution specified in Table 8.1. To calculate
the pdf of NTC(j), the cost of the project up to node j, we use the sequential procedure
presented in the section “Determining the Probability Distribution Function of the
Project Cost.” It starts at node one with a cost distribution NTC(1)= (0,1). Then the
process moves to node 2 where the pdf of NTC(2) is equal to the pdf of TC(1,2). The
process moves to node 3, where the pdf of NTC(3) is obtained by convoluting NTC(2)
with TC(1,3); then the outcome is convoluted with TC(2,3). Finally, the project cost,
represented by NTC(4), is obtained by convoluting NTC(3) with TC(2,4), and the
outcome is convoluted with TC(3,4). The pdf of the project cost up to node j for all
j ε N is presented in Table 8.2. The means and standard deviations are presented in
the last two rows.
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Fig. 8.6 Probability distribution function of the project cost

The project cost is presented in Table 8.2 by the ordered pairs
{
(cj, p(cj)

}
in

the column headed by NTC(4). It is clear from these ordered pairs and their plot
in Fig. 8.6 that the project cost is almost normally distributed with mean value
= 17.5, and standard deviation = 2.12. Realizations of NTC(4) represented by {cj}
in column 5, and its corresponding cumulative probability distribution presented in
the last column of Table 8.2 can be used to select a PB or a bidding price, and to assess
the probability of completing the project within the selected budget. For instance, if
the selected budget is US$ 20,000, then the probability of not completing the project
within this budget is 8.4 %. If this level of risk is not acceptable, then increasing the
budget by US$ 1,000.00 reduces the risk to 3.4 %.

To calculate the probability of project completion time, F(t) for the PB, we first
need to determine D(i,j) and its pdf for each activity (i,j) ε A. The pdf of D(i,j) is
derived from the relation between the activity renewable resource cost and duration.
It can be provided as input exactly as that of R(i,j). Table 8.3 has the pdf for all D(i,j).
Then F(t) is determined as prescribed in the section “Determining the Probability
Distribution Function of the Project Duration.” Due to the small size of the SAN of
Fig. 8.3, the pdf for project duration is calculated exactly. It is presented in column 5
of Table 8.4; its cumulative pdf is presented in column 6 of Table 8.4. Please note that
F(t) is not affected by the size of the PB or its distribution over the five activities; it
is affected by {R(i,j)}. The project average completion time E(T (N))= 9.12, where
E(T (N)) obtained by the PERT method is 8.80.

The distribution of the project completion time, F(t), can be used to determine
the project’s largest probability completion time emanating from any PB. First the
financial plan is derived using the method presented in the section “Calculating the
Project Financial Plan,” yielding the duration for each activity and the least project
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Table 8.3 Probability distribution of activity duration

Activity duration D(1,2) D(1,3) D(2,3) D(2,4) D(3,4)

Realization j (dj, p(dj)) (dj, p(dj)) (dj, p(dj)) (dj, p(dj)) (dj, p(dj))

1 4, 0.2 3, 0.2 3, 0.5 6, 0.5 5, 0.3
2 3, 0.3 2, 0.5 2, 0.5 4, 0.4 4, 0.3
3 2, 0.3 1, 0.3 3, 0.1 3, 0.3
4 1, 0.2 2, 0.1
E(D(i,j)) 2.50 1.90 2.5 4.80 3.80
σ (D(i,j)) 1.025 0.70 0.50 1.327 0.98

Table 8.4 Probability distribution function of project completion time

Realization T (1) T (2) T (3) T (4) Cumulative
probability

(tj,p(tj)) (tj, p(tj)) (tj, p(tj)) (tj, p(tj)) of T (4)

1 0, 1.0 4, 0.2 7, 0.10 12, 0.03 01.00
2 3, 0.3 6, 0.25 11, 0.105 0.970
3 2, 0.3 5, 0.30 10, 0.262 0.865
4 1, 0.2 4 0.25 9, 0.288 0.603
5 3, 0.10 8, 0.211 0.315
6 7, 0.0858 0.1040
7 6, 0.0169 0.0182
8 5, 0.0013 0.0013
Mean 0.00 3.50 5.00 9.12 PERT μ= 8.8
Standard deviation 0.00 1.025 1.14 1.29 PERT σ = 1.5

completion time. The latest start time schedule is applied to these realizations to
determine a project schedule. Then, the corresponding F (t(N )) is determined from
the exact pdf presented in Table 8.4.

Given a PB of US$ 20,000.00, and suppose it is the total renewable resources cost.
The PB does not allow for maximum funding of each of the project activities; hence,
it is not possible to process each activity at minimum/crash time. How would this
budget be distributed over the five activities? As discussed in the section “Calculating
the Project Financial Plan,” different budget allocations may lead to different activity
durations, which result in different project schedule and completion time. We wish to
determine the financial plan that yields the minimum completions time, which max-
imizes the probability of completing the project within the given budget. We use the
above LP model to determine the optimal financial plan, and corresponding activity
durations. In this instance the LP model consists of 13 variables and 26 constraints.
In specifying constraint number 3, it is assumed that the relationship between renew-
able resources cost and activity duration depicted in Fig. 8.5 is continuous. In this
case the slope wij is calculated from the two ordered pairs, (maximum qij, minimum
yij) and (minimum qij, maximum yij) presented in the input Tables 1 and 3. Solving
the LP model results in the optimal financial plan {qij}and the corresponding activity
durations {yij}. These are presented in Table 8.5 along with the probability of the
level of funding for each activity.
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Table 8.5 Financial plan (in US$ 1,000) and resulting activity durations

Activity (1,2) (1,3) (2,3) (2,4) (3,4)
Activity cost, qij 5 3 3 3.715 5.285
Activity duration, yij 1 3 2 4.714 2.710
Pr (R(i, j) ≤ qij) 1.00 0.20 1.00 0.843 0.929

Contrasting the data in rows 2 and 3 of Table 8.5 with the criticality of each activity,
we notice that activities that are critical most of the time, i.e., have higher criticality
indices, received either maximum or close to maximum funding; while less critical
activities received less funding. Analyzing the criticality of the five activities using the
duration input data of Table 8.3, we notice that project completion time is dominated
by path 1-2-3-4 with an average value of 9.12 periods, and activities (1,2), (2,3),
and (3,4) are the most critical; where activity (1,3) is the least critical followed by
activity (2,4), which is more critical. Solution of the LP model resulted in distributing
the PB of US$ 20,000 as follows: Activities (1,2) and (2,3) received maximum
funding, hence have minimum/crash durations, and activity (3,4) received close
to maximum (92.9 %) funding with duration close to the minimum (2.71 periods).
However, activity (1,3) received minimum (20 %) funding, hence with maximum
duration, where activity (2,4) received higher (84.3 %) funding and have higher
duration (4.714 periods).

The optimal financial plan resulted in a realization for the project duration, T (N)=
5.714 periods. This corresponds to a Pr (T (N ) ≥ 5.714) = 0.981, as shown in
Table 8.4. Consequently, this financial plan provides a 98 % chance of completing
the project within time, and the PB provides a 90 % of completing the project within
budget.

Conclusions and Extensions

In this chapter, the problem of scheduling and financial planning in SAN projects is
considered. First, issues of uncertainty in project environment are discussed. These
includeAN structure, renewable and nonrenewable resource requirements, price/cost
of the resources, and duration of activities. Dependence of activity duration on the
renewable and nonrenewable resources is explored. We conclude that while activ-
ity duration is independent of the nonrenewable resource requirements, it can be
expressed as a function of the renewable resource requirements. This relationship
allows connecting the project schedule and duration to project budget and financial
plan.

Starting with a project network structure where the cost of renewable and nonre-
newable resources are given as random variables characterized by different pdfs, an
accurate and practical procedure is developed to calculate the pdf of the project cost.
The procedure can be applied to all SAN sizes regardless of the underlying activity
cost probability distributions. The cost pdf allows project managers to select a budget
for the project and assess the risks of completing the work of the project within the
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selected budget. The question then becomes how to distribute the selected budget
over the activities of the project? The budget can be distributed over the activities in
many different ways—each may lead to a different project schedule and completion
time. What is the best distribution plan of funds over the activities? In answering
this question, we rely on the relation between the two random variables: activity
renewable resource requirements and activity duration. First, this relation is reversed
providing the pdf for the activity duration. These probability distributions are then
used to calculate the pdf of project completion time. Also activity pdfs are used with
the given budget to determine the optimal financial plan. Optimality is defined by
realizing the least project completion time for the given budget. This problem is
formulated as an LP with the objective of minimizing the project completion time
for the given budget.

Solution of the LP yields the financial plan which specifies the share of each
activity in the budget, the corresponding activity duration, and the least project
completion time. The resulting durations are used to construct a project schedule
such as the early or late start time schedules. The pdf of project completion time can
be used to assess the probability of completing the project within the budget and its
corresponding project completion time.

The procedures developed above for calculating pdf of NTC(N) and the optimal
financial plan are yet to be applied to large SANs. It will be tested in future work.
Also other random variations, such as the price of the renewable and nonrenewable
resources that affect the management of stochastic projects are not investigated in
this chapter. We hope to investigate the impact of these variations on project budget,
financial plan, and project duration in future work.
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Chapter 9
A Risk Integrated Methodology for Project
Planning Under Uncertainty

Willy Herroelen

Introduction

Project management involves the planning, scheduling, and control of project ac-
tivities to achieve performance, cost, and time objectives for a given scope of work
while using resources in an efficient and effective manner (Demeulemeester and Her-
roelen 2002; Demeulemeester et al. 2007). Project scheduling and control has been
the subject of extensive research efforts leading to an impressive body of literature
(Demeulemeester and Herroelen 2002; Elmaghraby 1977) while a wide variety of
commercialized software packages have been released and put to use in practical
project settings. Despite all these efforts, numerous publications have documented
projects that went severely over budget or dragged on long past their originally
scheduled completion date (see, e.g., Flyvbjerg et al. 2003; Standish Group 2004).

The planning, scheduling, and control of projects under stochastic conditions is
indeed a complex and challenging task, involving decisions at the strategic, tactical,
and operational levels (Leus et al. 2007). At the strategic level, the long-term strategic
resource planning decisions to be made by top management include the selection
of projects of major strategic importance, major resource investments, and project
financing. The tactical decisions have to do with project selection/acceptance, the
allocation of company capacity, and reliable due date setting. Detailed scheduling
and resource allocation decisions have to be made at the operational level. Success
in managing a project requires a complete and realistic project baseline schedule
that represents the project plan. Project control implies the deployment of corrective
actions when the project baseline schedule is rendered infeasible by the disruptive
events that may occur during actual project execution.
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Fig. 9.1 Iterative two-phase
project planning procedure Project specification

Renewable resource allocation and
internal due date setting 

Risk analysis

Proactive schedule generation

Execution simulation and cost evaluation

Phase1

Phase2

In this chapter, we describe a risk integrated methodology for tactical and opera-
tional project planning under uncertainty. The methodology integrates quantitative
risk analysis with reliable proactive/reactive project scheduling procedures.

Project risk management aims to provide insight into the risk profile of a project
so as to facilitate the mitigation of the impact of risks on project objectives such
as budget and time. Effective risk management requires a risk analysis process that
is scientifically sound and that is supported by reliable quantitative techniques. In
this chapter, we consider risks that impact both the duration of project activities
and the availability of renewable resources. The traditional practice of quantitative
risk analysis assumes that the duration of a project activity captures all uncertainty
that originates from the occurrence of risks; i.e., uncertainty is commonly placed on
activity durations using three-point estimates of low, most likely, and long activity
durations and selecting appropriate probability distributions (Hulett 2009). Contrary
to this activity-based approach, we opt for a risk-driven approach in which the impact
of each identified risk is assessed individually and is subsequently mapped to the
duration of an activity. The probability distribution for a project activity is developed
based on the probability and impact of all the risks that are assigned to it and their
impact on its duration if they do occur. In doing so, the uncertainty is associated
with each risk, not with the project activity that is affected by risks (Creemers et al.
2010; Schatteman et al. 2008). Quantitative project risk analysis is the subject of the
Section “The Need for Quantitative Risk Analysis.” It provides crucial input for the
generation of robust baseline schedules that are adequately protected against possible
disruptions that may occur during project execution.

The risk integrated methodology we describe in this chapter consists of two
iterative phases (Fig. 9.1).

The project specification input of phase 1 consists of an activity-on-the-node
network for the project G(N, A) and the externally imposed customer project due
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date δ. For each activity i in the project network, we assume that the project planning
team can come up with a single point estimate di of the activity duration, an estimate
of the per period requirement rik for each renewable resource type k ∈ K , and a
so-called inflexibility weight wi. The inflexibility weight represents the marginal
cost of deviating from the planned starting time si of an activity during the execution
of the project (Leus and Herroelen 2004). A small activity weight reflects high
scheduling flexibility: it does not “cost” that much if the actually realized activity
starting time during schedule execution differs from the planned activity starting
time in the baseline schedule. Activities that are to be executed by resources with
ample availability, for example, will be given a relatively small flexibility weight,
reflecting project management’s view that their rescheduling cost is relatively small.
A heavy activity weight denotes low scheduling flexibility, reflecting management’s
view that deviations from planned activity starting times are deemed very costly for
the organization due, for example, to the high penalty costs that are incurred when
individual milestones or the project due date are not met. Activities that use scarce
resources or rely on subcontractors that are in a strong bargaining position will also
receive a heavy weight as it is preferable for the starting time of these activities to
be kept fixed in time as much as possible.

The project should be the subject of a qualitative and quantitative risk analysis
allowing for the identification of the major project risks and a quantification of both
their probability of occurrence and their impact.

During phase 1 decisions have to be made about the number of regular renewable
resource units ak of type k ∈ K to be allocated to the project and the so-called internal
project due date δ′. These decisions will serve as input for the robust baseline schedule
generation and schedule execution problem that is solved in the second phase. Up
to the internal due date δ′, activities can be performed using the allocated regular
renewable resource units. In case the project takes longer than δ′, we assume that
irregular emergency resource capacity can be hired at a cost. The internal due date
δ′ is bounded from below by the critical path length CP of the project and bounded
from above by the externally imposed customer due date δ, CP ≤ δ′ ≤ δ. The
decisions to be made in phase 1 can then be represented by means of a (|K| + 1)
vector sol = (a1, ..., aK , δ′), corresponding to |K| resource allocation decisions and
one internal due date decision. An effective procedure for setting the renewable
resource levels and the internal due date is introduced in the Section “Resource
Allocation and Internal Due Date Setting.”

Phase 2 of the integrated procedure implements a proactive/reactive schedule
generation methodology, whose components have been heavily researched over the
past few years (Herroelen 2007). A proactive baseline schedule can be generated
using a combination of resource buffering, minimal makespan scheduling, and time
buffering. The proactive baseline scheduling system we propose aims at generating
a baseline schedule that is precedence and resource feasible and that is effectively
protected (using time and/or resource buffers) in an effort to achieve timely project
completion and schedule stability. The proactive schedule is generated using a two-
step procedure. In the first step, a precedence and resource feasible schedule is
generated with acceptable project duration. In a second step, the schedule is to be
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Fig. 9.2 Iterative risk
management process Risk identification

Risk analysis

Risk response

protected against disruptions that may occur during the execution of the project.
This is done by inserting buffers into the schedule (Demeulemeester and Herroelen
2010). Resource and time buffering form the subject of the Section “Robust Schedule
Generation.”

The proactive schedule is then to be used as a guideline during project execu-
tion. A sufficient number of schedule executions are simulated using the stochastic
information about possible resource breakdowns and activity durations. When the
built-in protection of the baseline schedule is no longer sufficient and the schedule
becomes infeasible, schedule feasibility has to be restored by deploying a proper
reactive scheduling procedure. The procedure has to decide whether the schedule
is repaired by (a) preempting one or more of the active activities and by reschedul-
ing activities that are planned in the future and that are affected by the preemption
through precedence relations or the use of shared resources, or (b) by hiring irregular
renewable resource capacity at an additional irregular capacity cost (Deblaere et al.
2011; Van de Vonder et al. 2007). This allows for the calculation of the expected
values of the irregular capacity costs and the schedule instability costs. The feedback
loop shown in Fig. 9.1 then involves the use of the mean-variance function of the
schedule execution costs to evaluate the resource and internal due date decisions
made in phase 1. Schedule execution and reactive scheduling form the topic of the
Section “Schedule Execution and Reactive Scheduling.”

The Need for Quantitative Risk Analysis

The need to manage uncertainty is inherent in most projects. The Project Management
Institute defines a project risk as “an uncertain event or condition that, if it occurs,
has a positive or negative effect on at least one project objective” (PMI 2008). The
essential purpose of risk management is to improve project performance via sys-
tematic identification, appraisal, and management of project-related risk (Chapman
and Ward 1997). Risk management (PMI 2008) is an iterative process involving risk
detection, risk analysis, and risk response (Fig. 9.2).
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Fig. 9.3 Overview of the risk
analysis process. (Creemers
et al. 2010) Qualitative risk management

Risk prioritization

Quantitative risk assessment

Quantitative risk evaluation

Get ordinal estimates of the 
probability of occurrence
and the impact of a risk

Use ordinal estimates to create
a shortlist of high priority risks

Get expert estimates of the
probability of occurrence and 
the impact of high priority risks

Use expert estimates to
assess the impact of high priority risks on

overall project objectives

Risk Identification

The risk identification process involves the identification of the major risks that may
affect the project objectives. This implies that the roots of the risks must be identified
rather than the risk symptoms. Useful tools in the risk identification process are
risk check lists containing a structured overview of all the risks that may occur on
the project. The Belgian Building Research Institute, for example, maintains a risk
management database containing standardized risk checklists describing all the risks
that have occurred in the past on different types of construction projects (Schatteman
et al. 2008; Van de Vonder et al. 2010).

Risk Analysis

Once the risks have been identified, they should be properly analyzed. The risk anal-
ysis process consists of three major phases (Fig. 9.3): qualitative risk management
and risk prioritization, quantitative risk assessment, and quantitative risk evaluation.

Qualitative risk analysis relies on an ordinal scale to assign a score (for example,
1—low, 2—medium, and 3—high) for both the probability of occurrence of the risk
(P) and its impact on the project objectives (I). This allows the risks to be prioritized
based on their total score (P × I), the priority risks being the risks with the highest
score.

Both the risk identification and the qualitative risk analysis provide the input for
the so-called risk register. For each identified risk, the risk register contains a clear
description of the risk, its probability of occurrence (P), its impact score (I), the total
risk score (P × I), as well as the proactive and reactive measures taken to respond
to the risk (see “Risk Response”). The high priority risks should then be the subject
of a quantitative risk analysis.
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Quantitative Risk Analysis

Quantitative risk assessment is the procedure by which experts provide detailed
estimates of the probability of occurrence and the impact of high priority risks. These
estimates are then used in the quantitative risk evaluation procedure to analyze the
impact of the short-listed risks on the overall project objectives. In the following,
we rely on examples from construction industry practice to clarify the main issues
involved.

Activity Groups

Quantitative risk assessment is commonly considered by practitioners to be a rather
time-consuming procedure. We follow Schatteman et al. (2008) in suggesting the
use of so-called activity groups, i.e., groups of activities that share common risks.
In a construction project, for example, the activity group “masonry” may contain
all the masonry activities that are subject to similar risks (e.g., the risk of weather
delay). Obviously, the same risk may have an impact on different activity groups. For
example, weather delay may not only affect the activity group “masonry” but may
also affect the activity group “roofing.” Risks can then be assessed at the activity
group level, rather than at the level of each of the many individual project activities.

Risk Impact Types

In this chapter, we are interested in the so-called project schedule risks, the risks
that affect the project schedule. We follow Van de Vonder et al. (2010) in identifying
different impact types of project scheduling risks: (a) proportional or fixed impact,
(b) start time delay, and (c) breakdown.

Proportional or Fixed Activity Duration Impact

Risks may affect the duration of project activities. The risk “bad soil quality,” for
example, may have a proportional impact on the duration of a construction activity
in the activity group “excavation.” Proportional risk impacts may be assessed by
first asking the risk expert to estimate the probability (percentage) that the risk will
impact an activity group (often the impact will be 100 %) and to provide an estimate
of the impact on the duration of an activity in the activity group using a pessimistic,
most probable, and optimistic estimate.

Similar input is required for risks having a fixed impact on the duration of an ac-
tivity (for example, the need to perform an additional stability study). The probability
percentage of fixed impact risks will rarely be 100 %.
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Starting Time Delays

Risks may cause a delay in the planned starting time of activities. The risk “late
material delivery,” for example, may cause a delay in the start of one or more con-
struction activities in the activity group “reinforcement work.” Again the expert can
be asked to provide the percentage probability of occurrence of the impact together
with three-point starting time delay estimates.

Breakdowns

The risk type “breakdown” may be used to model breakdowns in the use of renewable
resources (for example, machine defects). In this case, the expert may be asked to
provide an estimate of the mean time to failure (MTTF) and the mean time to repair
(MTTR) for the particular renewable resource types.

Risk Response

Having identified the risk exposure and quantified its potential impact, proper actions
should be identified to respond to the risks. Risk response may include risk avoidance
(for example, performing the activity using an alternative activity execution mode that
does not contain the risk), risk reduction (taking actions to reduce the risk by reducing
its probability of occurrence and/or its impact), risk transfers (for example, passing
on the risk to a third party by outsourcing an activity), and risk anticipation through
proactive/reactive scheduling. The latter approach constitutes a crucial component
of our suggested risk integrated project planning methodology.

Resource Allocation and Internal Due Date Setting

During the first phase of the integrated procedure, a decision has to be made on the
level of the renewable resource capacity ak of resource type k ∈ K to allocate to
the project from the project start time t= 0 up to the internal project due date t= δ′.
As already mentioned above, the internal due date δ′ is bounded from below by the
critical path length CP of the project and bounded from above by the externally
imposed due date δ, CP≤ δ′ ≤ δ. The decisions that need to be made in phase 1 can
then be represented by means of a (|K|+1) vector sol = (a1, ..., aK , δ′), corresponding
to |K| resource allocation decisions and one internal due date decision.

Lambrechts (2007) has developed an effective tabu search procedure to optimize
the resource allocation and due date setting decisions in a computationally efficient
manner. The author represents a solution to the resource allocation and due date
setting problem by means of the vector sol = (a1, ..., aK , δ′) and suggests evaluating
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the value of the objective function z corresponding to such a vector using the simu-
lation procedure to be described below as a crucial step of phase 2 of the integrated
procedure.

The objective function z is defined as z= average(TC), the average value of the
total cost function TC obtained over all simulation scenarios, where TC is defined as
the sum of the regular renewable resource costs, the expected irregular renewable
resource costs, and the so-called expected schedule instability costs. More formally,

TC = δ′
∑

k

akc
reg
k + E

(
∑

k,t

A
irreg
kt c

irreg
k

)

+
∑

i∈N

wiE |Si − si | (9.1)

with

δ′ The internal project due date
ak The amount of renewable resource type k ∈ K allocated to the project
c

reg
k the per period cost of a regular unit of renewable resource type k

A
irreg
kt The number of irregular units of renewable resource type k hired in period t

c
irreg
k The per period cost of an irregular renewable resource unit of type k

wi The activity flexibility weight, i.e., the per period start time deviation cost of
activity i

si The planned starting time of activity i in the baseline schedule
Si The actually realized starting time of activity i during schedule execution
E The expectation operator

In other words, we assume that the regular resource capacity ak is allocated to the
project prior to the start of project execution at a regular resource cost creg

k per period.
In case the project takes longer than the internally set due date δ′, or when a schedule
infeasibility occurs during project execution, we assume that additional irregular
emergency capacity A

irreg
kt can be hired on a per period basis at a cost cirreg

k per period.
The last term in Eq. (9.1) represents the so-called schedule instability costs relying
on the notion of schedule stability or solution robustness. Schedule stability refers to
the difference between a project baseline schedule and the actually realized schedule
during project execution. Leus and Herroelen (2004) suggest measuring schedule
stability by the weighted sum of the absolute differences between the planned activity
starting times si in the baseline schedule and the actually realized activity start times Si

during project execution. As mentioned earlier, the weights wi represent the activity
disruption cost per time unit, i.e., the nonnegative cost per time unit overrun or
underrun on the start time of activity i. This disruption cost reflects either the difficulty
in shifting the booked time window on the required resources or the difficulty in
obtaining the required resources, or the importance of on-time performance of the
activity.

The exact evaluation of Eq. (9.1) is unrealistic; computing the expected project
duration and the probability that a project without resource constraints is finished
by a given time instant, assuming an early start schedule—the Program Evaluation
and Review Technique (PERT) problem—is already #P complete (Hagstrom 1988).
Hence we opt to obtain the value z = average(TC) through a number of simulation
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runs, performed in phase 2, using the same baseline schedule, the same resource
allocations, and the same internal due date.

In the tabu search procedure of Lambrechts (2007), a move is defined as a unit
increase and decrease of every element of sol. A move is declared admissible if the
combination of the resource allocation and the internal due date resulting from the
move are feasible. The admissible move yielding the best value z′ obtained in the
current iteration of the tabu search is executed if it is not declared tabu. Whenever a
move is accepted, the opposite of the move is declared tabu for the next |K| iterations.
The tabu restriction can be overridden when the move corresponds to a solution value
that improves the best overall solution value z∗ found up to the current iteration. The
starting value of δ′ is set to δ′ = CP+δ

2 , where CP denotes the critical path length and

the starting value of ak is set to ak = aESS
k +aLEV

k

2 , ∀k, where aESS
k = maxk(

∑

i∈Bt

rik), with

Bt the set of activities in progress during period t in the early start schedule ESS, and
aLEV

k = maxt (
∑

i∈Bt

rik) the corresponding maximum per period resource requirement

in a leveled schedule, obtained by a reliable resource leveling procedure (see, e.g.,
Gather et al. 2010; Neumann and Zimmermann 2000). As such, the starting values
are taken in the middle of two extremes for the planned project duration and resource
capacity, corresponding to a schedule with smallest possible makespan δ′ and high
peak resource requirement aESS

k , and a longer schedule with makespan δ with lower,
leveled per period resource usage aLEV

k .

Robust Schedule Generation

Phase 2 of the integrated project planning procedure implements a proactive/reactive
schedule generation methodology. The proactive/reactive project scheduling lit-
erature (Herroelen 2007; Herroelen and Leus 2005) suggests the generation of
a proactive project schedule using a combination of resource buffering, minimal
makespan scheduling, and time buffering.

The Generation of a Resource-Buffered Schedule

During project execution, renewable resources may be subject to breakdown causing
the planned baseline schedule to become infeasible. The proactive scheduling strat-
egy may involve the use of resource buffers to protect the baseline schedule against
resource disruptions.

Resource buffering can be achieved by including so-called resource slack. This
means that the project is planned using a regular renewable resource availability a

reg∗
k

that is lower than the regular resource availability ak determined in phase 1 of the
integrated project planning procedure. The required size of the resulting resource
buffers will depend on the probability distribution of the resource availabilities.
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It can be shown (Ross 1983) that a single renewable resource unit of resource
type k with independently and identically distributed times between failure Xk and
independently and identically distributed repair times Yk has a stationary availability
(the probability that the resource is active at a time in the future) given by

Ak = E(Xk)

E(Xk) + E(Yk)
. (9.2)

Remember that proper estimates of MTTF E(Xk) and MTTR E(Yk) are to be obtained
from the risk expert during the quantitative risk analysis procedure. Writing E(Xk) =
1/λk = MTTFk , E(Yk) = 1/μk = MTTRk , and ρk = MTTRk/MTTFk , we have
Ak = 1/(1 + ρk). The probability P(ak = j) can now be written as

P (ak = j ) =
(

ak

j

)
(Ak)j (1 − Ak)ak−j =

(
ak

j

)
ρ

ak−j

k

(1 + ρk)ak
.

The expected value (taking breakdowns into account) of the resource availability in
the steady state for renewable resource type k ∈ K can now be written as

E(ak) =
⌊

ak∑

m=0

m× P (Ak = m)

⌋

. (9.3)

This value can be used as the buffered resource availability a
reg∗
k . In case this buffered

availability is smaller than the maximum resource requirement maxi∈Nrik , its value
is augmented until the activity with the highest resource demand for resource type k
can be executed.

The initial project baseline schedule can now be generated using any exact or
heuristic procedure for solving the well-known resource-constrained project schedul-
ing problem (RCPSP), involving the determination of the activity start times subject
to the precedence and renewable resource constraints under the minimal makespan
objective (Hartmann and Briskorn 2010; Herroelen 2005). If the resource-buffered
schedule violates the internal project due date δ′, the most constrained resource type
is identified and its availability is progressively increased up to the maximum (orig-
inal) availability ak. The schedule generation procedure is then reexecuted until the
due date δ′ is met. The most constraining resource type is defined as the resource type
that leads to the highest decrease in schedule makespan when its buffered availabil-
ity is increased by one unit. The resource type with the smallest deviation between
the expected resource availability and the adjusted buffered availability is used as a
tiebreaker.

Time Buffering

Translating Resource Uncertainty into Time Uncertainty

The resource-buffered (minimal makespan) schedule can be the subject of time
buffering. Lambrechts et al. (2011) have shown that, under realistic assumptions,
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resource availability uncertainty can be effectively translated into activity duration
uncertainty. When a resource infeasibility occurs and the decision is made to hire
no irregular renewable resource capacity, activities that were in progress at the
time of a resource breakdown are preempted. The authors make a distinction be-
tween a preempt-repeat and a preempt-resume environment. In a preempt-repeat
environment, preempted activities have to be restarted from scratch, while in a
preempt-resume environment, preempted activities may be restarted from the point
where execution halted.

Lambrechts et al. (2011) prove that in a preempt-repeat environment with fixed
resource allocations, the expected activity duration extension due to breakdowns for
an activity i with planned duration di and renewable resource usage rik of renewable
resource type k for which the time to failure of each resource unit is exponentially
distributed with parameter λk and the time to repair is also exponentially distributed
with parameter μk, is given by

E[γi] =
ψ

i

(1 − ψ
i
)(
∑

k

λkrik)

(

1 +
∑

k

λkrik

μk

)

− di , (9.4)

where ψ
i
= 1 − e−di

∑
k λkrik .

For a preempt-resume environment, Lambrechts et al. (2011) prove that the ex-
pected duration extension due to resource breakdowns for an activity i with planned
duration di and renewable resource usage rik of renewable resource type k for which
the time to failure of each resource unit is exponentially distributed with parameter
λk and the time to repair is also exponentially distributed with parameter μk is given
by

E[γi] = di

∑

k

λkrik

μk

. (9.5)

Time Buffering Procedures

The nice thing about the results derived above is that both time and resource uncer-
tainty can now be effectively dealt with by proactive/reactive scheduling procedures
that were originally developed to cope with activity duration uncertainty. A wide
variety of exact and suboptimal procedures have been developed and evaluated on
their effectiveness and efficiency (Van de Vonder et al. 2008). Despite its simplicity,
the so-called starting time criticality (STC) heuristic, developed by Van de Vonder
et al. (2006) obtains excellent results.

The iterative STC heuristic relies on information provided by the activity weights
wi and the variance structure of the activity durations. The underlying idea is to take
a resource-buffered schedule as input and iteratively create intermediate schedules
by adding a one-unit time buffer in front of that activity that is the most starting time
critical in the current intermediate schedule. The starting time criticality stc(i) of
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activity i in the current schedule is defined as

stc(i) = P (Si > si) × wi = ξi × wi , (9.6)

where ξi denotes the probability that activity i cannot be started at its scheduled
starting time si. Activities are listed in decreasing order of the stc(i), breaking ties
arbitrarily. The list is scanned and the time buffer to be placed in front of the current
activity from the list is augmented by one time unit. If the resulting schedule does not
violate the project due date and results in a lower surrogate stability cost

∑

i

stc(i), the

schedule serves as input for the next iteration step. If not, the procedure takes the next
activity in the list. Whenever the procedure reaches an activity i with stc(i)= 0 (by
definition, this is the case for all activities j with a planned starting time sj = 0 in the
baseline schedule) and no further improvement is found, the procedure terminates
with a local optimum.

Schedule Execution and Reactive Scheduling

At the start of project execution, the activity durations are set to the input durations
di and a regular renewable resource capacity of ak units per period is allocated to the
project from its start at time t= 0 up to time t= δ′ (for periods t > δ′, regular resource
capacity is set to 0). During the simulation, at the start of every time period t, the real
activity duration is updated for the activities starting at time t and the real resource
availability aobs

kt in time period t becomes known. In case a resource breakdown is
of such a magnitude that the real resource availability is insufficient to satisfy the

resource requirement of the activities that are active at time t

(

∃k :
∑

i:i∈Bt

rik > aobs
kt

)

,

the following resource conflict resolution procedure is used. For each activity i ∈ Bt ,
it has to be decided whether to preempt that activity or to keep it at its current starting
time. The difference between the total resource requirements of the nonpreempted
activities and the observed renewable resource availability aobs

kt at time t then needs
to be filled by hiring irregular resource capacity:

∀k : a
irreg
kt = max(0,

∑

i∈Bt : i not preempted

rik − aobs
kt ).

The resource conflict resolution procedure uses full enumeration to determine which
activities have to be preempted, yielding the lowest combination of additional
instability costs and additional irregular capacity costs.

Rescheduling may be done using one of the existing reactive scheduling proce-
dures developed in the literature (Lambrechts et al. 2008). The scheduled order repair
heuristic, for example, is a list scheduling heuristic that reschedules the activities
in the order dictated by the baseline schedule (using the lowest activity number as
a tiebreaker), while taking into account the reduced resource availabilities. When a
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disruption occurs in time period t∗, a priority list L is created including the activities
that are not yet completed at t∗, ordered in increasing order of their baseline start time
si. This priority list is then decoded into a feasible schedule using a serial schedule
generation scheme that takes the known resource availabilities a

′
kt up to the current

time period t∗ into account. Activities selected from the list are started as soon as
possible. For activities i ∈ Bt∗, the procedure first tries the current time t∗. If this
is infeasible, the procedure tries the next time period (t∗ + 1) and subsequent time
periods if necessary. For the activities not yet started, it is only necessary to consider
the earliest precedence feasible starting time.

During each simulation run, the resource capacity costs and the schedule insta-
bility costs are calculated. When a sufficient number of simulation runs have been
performed, the mean-variance function of the schedule execution cost TC is calcu-
lated. A solution is stored if its cost is lower than the best solution obtained so far and
the feedback loop to the tabu search procedure of phase 1, shown in Fig. 9.1, can be
performed, allowing for an update of the resource availabilities ak and the due date δ′.

The last generated schedule can then be used as the baseline schedule during
actual project execution.

Conclusions

The objective of this chapter was to describe the working principles of an integrated
procedure for the planning of projects under time and renewable resource uncertainty.
The integrated procedure heavily relies on quantitative schedule risk analysis and
involves two phases to be performed iteratively. In phase 1, decisions are made about
the amount of regular and irregular renewable resource capacities to be allocated
to the project. In phase 2, a robust baseline schedule is constructed based on the
decisions made in phase 1 and the output of the quantitative schedule risk analysis.
The execution of this robust baseline schedule is then simulated a sufficient number of
times for varying uncertainty scenarios allowing for the computation of the schedule
execution costs composed of the regular and irregular renewable resource costs and
the schedule instability costs. The mean-variance function of the schedule execution
costs is then used to evaluate and eventually update the resource and due date factor
decisions that were made in phase 1. The final proactive project schedule can then
be used as a robust baseline schedule during actual project execution.
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Chapter 10
Dynamic Resource Constrained Multi-Project
Scheduling Problem with Weighted
Earliness/Tardiness Costs

M. Berke Pamay, Kerem Bülbül and Gündüz Ulusoy

Introduction and Motivation

Building a high-rise building in a business district, or manufacturing a special pur-
pose machine for a customer, or organizing a concert all involve various tasks to
be completed in a systematic order to reach a final target. The project management
approach can be applied to any of these endeavors as a decision tool to improve
efficiency. This wide range of applications makes projects a common structure for
organizing work. Besides internal company activities like maintenance or research
and development (R&D), project-based companies such as in construction, make-
to-order manufacturing, or software development industries all present examples
of multi-project management applications. Payne (1995) reports that up to 90 % of
the value of all projects occur in a multi-project context. Typically, multiple projects
share common resource pools whose capacities are not sufficient to support all project
activities at the same time, leading to the resource-constrained multi-project schedul-
ing problem (RCMPSP), which focuses on scheduling multiple projects while using
available resource profiles and satisfying the precedence constraints to optimize the
desired objective function.

Most project scheduling models are of static nature, where schedules are based
on the data that are available before the solution procedure and the effects of unex-
pected events such as disruptions in projects, arrival of new projects, and changes in
resource availability are not considered. Herbots et. al. (2007) point out that static
approaches are less realistic and a revision of the existing schedule might be re-
quired, especially when dealing with external projects. The main reason behind the
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dynamic nature of external projects lies in the complex network of business relations
between companies. Cooperation with other organizations, subcontractors, and cus-
tomers is a common way of doing business resulting in a multi-project environment.
Anticipating the total project load in the future becomes almost impossible for the
companies as their project portfolios change over time. Therefore, models dealing
with the dynamic multi-project environments become critical to provide realistic de-
cision instruments. The model presented in this chapter is an attempt to partially fill
the need for creating effective decision tools to be employed in dynamic multi-project
environments; in particular, if the events have to be handled case by case with low
visibility into the future.

Selecting the appropriate performance measure is essential to reflect reality. Min-
imizing the project completion time is a popular performance measure focusing on
the effective usage of resources as well as the responsiveness of a company to its
market. However, dynamic decision processes involve progressive schedule gener-
ation steps. Therefore, the starting times of the activities as well as the resource
allocation decisions in the schedule can change dramatically while minimizing the
makespan for the modified data sets. Handling these changes effectively requires or-
ganizational responsiveness—a crucial competitive capability. Drastic updates to the
schedule and resource commitments may lead to significant organizational overhead
and may not be desirable or even possible. Therefore, focusing on deviations from
the baseline schedule in subsequent scheduling activities can help absorb any nega-
tive ripple effects of the dynamic events in the organization. As a result, punishing
both earliness and tardiness, directly or indirectly, forces the companies to schedule
all activities on time or as close as possible to their due dates or completion times in
the baseline schedule.

No baseline schedule exists for a newly arriving project, and the main concern
for such a project is quoting a due date that trades off its potential revenue against
the impact of accommodating it in the baseline schedule. Yang and Sum (1997) state
that a negotiation procedure between the client (project owner) and the contractor is
generally adopted in the decision process to handle this problem. The client wants
the project to be completed as soon as possible and might even offer an increased
payment for an earlier completion time as an incentive for the contractor. From the
perspective of the contractor, the new project generates more revenue if completed
earlier; however, the risk of paying late delivery costs for existing commitments has
to be mitigated by pushing the new project toward the end of the existing schedule
at the expense of forfeiting some of the potential revenue. The mathematical model
we propose in this chapter captures the trade-off between the revenue to be collected
from a new project and the penalties which may result from not meeting existing
delivery and resource commitments for the contractor.

The problem under consideration can be defined as follows. In a multi-project en-
vironment with a certain number of available renewable resource types; a processing
time, a due date, resource profiles, and associated unit tardiness and earliness costs
are assigned to each activity. A baseline schedule exists for this set of projects. At a
given point in time, a new project arrives. For the newly arriving project a due date
has to be assigned and it has to be incorporated into the baseline schedule resulting
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in a new schedule. A cost parameter for the completion time of the new project repre-
senting the cost of delaying a new project by one time unit is defined and is referred
to as the completion time factor K. The objective then becomes the weighted sum
of the earliness/tardiness costs of the ongoing projects plus the cost associated with
the new project’s completion time. Hence, the problem under consideration can be
considered as a variant of the RCMPSP with weighted earliness/tardiness penalties
(RCMPSPWET) and will be denoted as DRCMPSPWET in reference to the dynamic
nature of the decision environment.

Within the context of this problem, the activity due dates and associated penalties
are important parameters defining the characteristics of an instance. An applicable
due date selection procedure is to convert the planned completion times into due
dates. In other words, a baseline schedule, which is accepted by the contractor as
well as by the client, is generated, and associated costs are defined to penalize devi-
ations from the baseline plan in the new schedule. This approach can be applied to
our deterministic model easily, since each disruption, as explained earlier, provides a
new baseline schedule and can be converted into due dates for a potential new event
in the future. With this approach, the dynamic problem can be simulated for multiple
disruptions. The changes in revenue and deviations in schedules can be observed for
multiple project arrivals at different points in time. Another strategy might involve
defining some critical progress levels and penalties only for certain milestones of the
projects. From a mathematical modeling point of view, defining milestones trans-
lates into choosing relatively higher cost parameters for the corresponding activities.
Moreover, higher penalties for project completion times can be selected to empha-
size the significance of completing projects at their previously scheduled times even
if we allow shifting activities within a project. In the extreme case, we may omit
the due date costs for all activities except those for the terminal activities of the
projects. In summary, by setting the cost parameters associated with the activity due
dates properly, we may model the problem with varying levels of flexibility and data
requirements.

For any of these options, the following step is to determine the unit tardiness
penalty values so that the deviations from the baseline schedule are not ruled out. An
important factor for these penalties is the tightness of the due dates. A project with
tight due dates has a greater possibility of becoming tardy; so the penalty values for a
unit time should be lower than those under loose due dates, where the contractor has
a wider time horizon to complete the project on time. In addition, the cost parameters
have to be determined in a way that a trade-off between deviations from the baseline
schedule and the due date of the new project exists.

In this chapter, the dynamics of the problem are analyzed with respect to the
total number of activities, the due date tightness, the due date range, the number
of resource types, and the completion time factor. The goal is to design a solution
method that rapidly provides near optimal solutions for this problem. Quick solution
methods can make rescheduling time and cost feasible in comparison with repair
heuristics, which incorporate myopic approaches in most cases. This study makes
the following contributions:
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• The problem under consideration—DRCMPSPWET—is developed conceptually
and a mathematical programming formulation of the problem is provided.

• A local search (LS) heuristic is designed and implemented. It is tested for solution
quality and time against exact solutions obtained for a certain number of problem
instances.

• A unique data set is generated for investigating the effects of the total number
of activities, the due date tightness, the due date range, the number of resource
types, and the completion time factor of the newly arriving project on the solution
approach.

The chapter is organized as follows: In the Section “Related Literature and Problem
Description,” the related work in the literature and the problem definition are pre-
sented and an integer programming formulation for DRCMPSPWET is given. In the
Section “An Iterated Local Search Approach for RCPSPWET,” a heuristic approach
for DRCMPSPWET is presented. The discussion of the data sets and an evaluation of
the results are included in the Section “Computational Study.” Conclusions and pos-
sible extensions for future work are presented in the Section “Concluding Remarks
and Future Work.”

Related Literature and Problem Description

Herroelen and Leus (2005) classify the related work on DRCPSP under four cate-
gories: reactive scheduling, stochastic rescheduling, fuzzy project scheduling, and
proactive scheduling. Note that our problem falls within the scope of the first cate-
gory. Hence, we will concentrate here only on work in the area of reactive scheduling.
Interested readers may refer to a recent review of stochastic project scheduling by
Ashtiani et al. (2011). The models focusing on reactive scheduling try to model
any unexpected event within a deterministic approach. Instead of executing a full
rescheduling process, another option would be trying to minimize the effects of the
unexpected event building on a baseline schedule which might or might not be re-
paired. One such example is the study of Artigues and Roubellat (2000) considering
the case of activity insertion to the baseline schedule. The objective is to minimize
the maximum lateness in a multi-mode multi-project setting. The multi-project en-
vironment is transformed to a resource flow network setting and dominant insertion
cuts are used to generate the new schedule. El Sakkout and Wallace (2000) propose a
method for minimizing the weighted absolute difference between the starting times
of each activity in the baseline and modified schedules. The weighted absolute dif-
ferences correspond to the earliness/tardiness concepts with symmetric costs, if the
finishing times in the baseline schedule are treated as due dates. They propose a
repair-based heuristic approach to solve this problem.
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Resource-Constrained Project Scheduling Problem with Weighted
Earliness/Tardiness Costs

To the best of our knowledge, the existing work on resource-constrained project
scheduling problem with weighted earliness/tardiness costs (RCPSPWET) is lim-
ited to single projects and no research has been conducted with multiple projects.
Moreover, the concept of a baseline schedule is also not included in most of the
studies. Neumann et al. (2003) mention an original schedule subject to change as a
result of unexpected events. The limited work in the literature includes some exact
solution approaches as well as heuristic methods for the problem.

An exact solution procedure for the resource-unconstrained version of the problem
is suggested by Vanhoucke et al. (1999). The objective function is composed of the
weighted sum of the earliness and tardiness values. This approach is based on a recur-
sive search algorithm and consists of two main steps. First, a schedule is generated
by scheduling activities at their due dates or later while considering only precedence
relations. As a result, no right shift in the schedule can decrease the objective value.
In the second step of the algorithm the set of activities, for which a backward shift can
decrease the objective value, are selected by implementing a recursive search. Van-
houcke et al. (2001) extend the model to include resource capacity constraints. Using
the exact solution algorithm for the resource-unconstrained version they develop a
branch and bound algorithm based on resolving the resource conflicts in a resource-
unconstrained solution. Precedence relations are added between activities in process
during a period of resource conflict. Each conflict corresponds to a new node in the
search tree and feasible solutions are obtained, if all conflicts are resolved. A further
extension of the resource constrained model is provided by Vanhoucke (2002). In
this study, for each activity, various due date options are offered. Each option differs
in the tightness and unit cost values of the due date. That is, if an earlier due date
is selected for an activity, the unit earliness and tardiness cost values are lower than
those for a later due date. The objective is to select an appropriate due date option for
each activity and generate a schedule such that the weighted sum of the earliness and
tardiness values is minimized. A double branch and bound algorithm is developed to
solve this problem. First, the resource-unconstrained model is solved with the con-
vex due date cost profiles. These profiles are obtained by converting the combination
of different due date cost functions for each activity into a convex envelope. Using
these convex envelopes a single due date is selected for each activity. However, unit
earliness or tardiness costs might change according to the convex envelope profile.
The solution yields a lower bound on the cost of the actual due date profile and the
first branch and bound is applied while considering the distance between the convex
envelope and the original due date profile for each activity completion time. The
optimal solution is obtained after applying a second branch and bound procedure in
order to resolve the resource conflicts as in Vanhoucke et al. (2001).

Ballestin et al. (2008) develop an iterated LS algorithm for RCPSPWET. A popu-
lation of feasible solutions is generated and LS procedures are applied to improve the
objective function value. Activity lists and a schedule generation scheme are used
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to generate corresponding schedules. The activities are scheduled iteratively with
respect to a parameter called the simulated due date, which is the completion time of
an activity in a randomly generated precedence feasible but resource-unconstrained
schedule. Simulated due dates are selected instead of the original due date values
in the problem data in order to create diversity in the population. Four different LS
procedures are then applied to existing schedules. At this stage, the activity lists are
not changed; instead, schedules are modified in order to obtain improved solutions
for a particular activity list in the population. To expand the search space, the activity
lists are perturbed. The sequence of the activities in the list as well as the simulated
due dates are updated using five different perturbation procedures.

Another list-based heuristic approach is proposed by Nanobe and Ibaraki (2006).
This work covers a variety of project scheduling problems with convex cost functions
including the weighted earliness/tardiness problem. The solution procedure relies on
keeping event lists to obtain schedules. Each activity consists of a start- and an end-
event, where positions of events in a list define priority relations. Each list can be
mapped to an event-on-node network representation, and the dual problem can be
solved as a minimum cost network flow problem. Event lists have to be resource and
precedence feasible. This is done by checking the total resource demand of activities
which are allowed to be processed simultaneously. If necessary, the list is modified
and made feasible by changing the positions of events. A neighborhood is defined
by moving events in the list backward or forward, and an iterated LS is applied to
the solution with the best objective value.

Problem Formulation

The DRCMPSPWET is defined here over an activity-on-node multi-project network
with dummy start and finish activities. No precedence relation is assumed among
the projects. The precedence relations among the activities are of the finish-to-start
type with zero time lag. All activities are of a single mode. Hence, only renewable
resources are taken into account. Preemption is not allowed.

A special case of RCMPSPWET with a single project, a single resource of unit
capacity, unit resource usage for each activity, no precedence relationships, and
zero unit earliness costs reduces to the strongly NP-hard single-machine scheduling
problem of minimizing the total-weighted tardiness (Lenstra et al. 1977). Hence,
RCMPSPWET is strongly NP-hard since the model presented in this study general-
izes RCMPSPWET by incorporating a revenue function for the due date quoted for a
new project. The overall objective is then to quote a due date that is as early as possi-
ble in order to maximize revenue while constructing a new schedule that minimizes
the total-weighted deviation of the activity finishing times from their completion
times in the baseline schedule. We define the following notation.
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Sets and indices:

T Set of time periods
I Set of all projects in the baseline schedule
I∗ Set of all projects including the arriving project
h |I |
h+ 1 Index of the arriving project
Ji Set of activities of project i
Pi Set of precedence relations between activities ε of project i
R Set of renewable resources

Parameters:

Wrt Amount of renewable resource r available in period t
ESij Earliest start time of activity j of project i
LSij Latest start time of activity j of project i
dij Due date of activity j of project i
pij Processing time of activity j of project i
wijr Renewable resource requirement of activity j of project i of type r per unit

time
eij Earliness penalty of activity j of project i per unit time
tij Lateness penalty of activity j of project i per unit time
K Completion time factor for the arriving project

The parameters presented above are required to define an instance of DRCMPSP-
WET. For each activity, the pij and wijr values define the single execution mode.
However, there are additional parameters for activities depending on their status in
the problem. For activities in the baseline schedule, a due date and unit earliness and
tardiness penalties must be specified as well as a completion time factor standing for
the cost associated with the completion time of the arriving project. Note that dij and
K are not part of the original problem data in the experimental study. Their values
depend on the baseline schedule of the instance. We elaborate on this issue further
in the Sections “Due Date Generation,” “Due Date Range,” “Due Date Tightness,”
and “Completion Time Factor.” Finally, the available capacities of the renewable
resources are required. Note that the earliest and latest start times (LSTs) of activ-
ities can be calculated for a given time horizon |T | using the conventional forward
and backward pass algorithms of the critical path method (see, e.g., Badiru and Pu-
lat 1995). The objective function under consideration is non-regular, and delaying
activities may decrease the total cost. Therefore, an optimal schedule may contain
unforced idle time; however, no activity will complete at a time later than |T | in an
optimal schedule, where |T | is set to the sum of the maximum due date and the sum
of the processing times of all activities of the arriving project.
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Decision Variables

A 0–1 decision variable xijt is defined for each activity in the multi-project network
including the dummy start and finish activities. For the activities in the baseline
schedule, a finishing time, earliness and tardiness values have to be determined. For
the arriving project, a due date is quoted as the finishing time of the dummy finish
activity of the arriving project.

xijt {1, if activity j of project i starts at time period t; 0, otherwise.
fij Finishing time of activity j of project i
dh+1 Due date of the arriving project
Eij Earliness of activity j of project i
Tij Tardiness of activity j of project i

Mathematical Model DRCMPSPWET:

min
∑

i∈I

∑

j∈Ji

(
eij · Eij + tij · Tij

)+K · dh+1 (10.1)

fil − fik ≥ pil ∀i∈I ∗, ∀(k, l)∈Pi (10.2)

fij =
LSij∑

t=ESij

xijt · t + pij ∀i∈I ∗, ∀j∈Ji (10.3)

Eij ≥ dij − fij ∀i∈I , ∀j∈Ji (10.4)

Tij ≥ fij − dij ∀i∈I , ∀j∈Ji (10.5)

dh+1 ≥ fh+1j
∀j∈Jh+1 (10.6)

∑

i∈I∗

∑

j∈Ji

t∑

θ=max{ESij ,t−pij+1}
xijθ · wijr ≤ Wrt ∀r∈R, ∀t∈T (10.7)

LSij∑

t=ESij

xijt = 1 ∀i∈I ∗, ∀j∈Ji (10.8)

xijt ∈ {0,1} ∀i∈I ∗, ∀j∈Ji , ∀t∈ESij , . . . , LSij (10.9)

dh+1, fh+1j ≥ 0 ∀j∈Jh+1 (10.10)

Eij, Tij, fij ≥ 0 ∀i∈I , ∀j∈Ji (10.11)

The objective function Eq. (10.1) consists of the weighted sum of the earliness and
tardiness values of the activities in the baseline schedule and the completion time cost
of the new project. Constraint Eq. (10.2) defines the precedence relationships among
the activity pairs. The finishing times of the activities are determined in constraint
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Eq. (10.3). Constraints Eqs. (10.4) and (10.5) determine the earliness and tardiness
values, respectively. The quoted due date value, i.e., the completion time of the
newly arriving project, is set by constraint Eq. (10.6). The total renewable resource
usage in each time period is restricted to the maximum available amount in constraint
Eq. (10.7). Finally, constraint Eq. (10.8) ensures that each activity is executed once
and constraints Eqs. (10.9), (10.10), and (10.11) define the domains of the decision
variables.

This problem formulation above differs from the single project static RCPSWET
problem formulation given byVanhoucke et al. (2001) in that it reflects a multi-project
dynamic decision environment. The dynamic nature of the problem is incorporated
into the formulation through the second term in the objective function Eq. (10.1)
and the additional decision variables and associated constraints. Being the product
of the completion time factor K and the quoted due date for the new project the
second term represents an implicit cost of due date quotation and hence introduces
into the formulation the trade-off between the stability of the activity finish times of
the existing projects and the quoted due date for the new project.

An Iterated Local Search Approach for RCPSPWET

Heuristic procedures have been developed for RCPSPWET in single project envi-
ronments as discussed in the Section “Related Literature and Problem Description.”
List-based heuristics reported by Ballestin and Trautman (2008) and Nanobe and
Ibaraki (2006) perform well both in terms of solution quality as well as computation
times. Moreover, neighborhoods can easily be defined for the schedules represented
by the lists, and the associated schedule generation procedures are simple and effi-
cient. Therefore, a population-based LS procedure is suggested to solve the problem
at hand. The general flow of the solution algorithm is presented in Fig. 10.1.

The heuristic method starts by generating an initial population of activity lists.
Three different improving steps are applied to this initial population iteratively in
order to improve the activity lists. These steps replace the sequencing and opti-
mal timing procedures commonly used in the machine scheduling literature for
weighted earliness/tardiness problems. (Kanet and Sridharan (2000) give an overview
of different optimal timing algorithms in the machine scheduling domain.) First, a
list-position-based neighborhood search is performed to improve the sequencing in
each activity list. An optimal timing-based neighborhood search is then applied to
move chains of activities earlier in time. Finally, for all resource types in an instance,
the associated arcs that prevent resource conflicts are added to the network and the
resulting optimal timing problem is formulated and solved as a linear program (LP).

Activity Lists and Schedule Generation

An activity list in the population is used to represent a schedule. Each activity is
assigned to a position in the list. In a precedence feasible activity list, each activity is
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Fig. 10.1 Flow of the LS heuristic

positioned after its predecessors and before its successors. Given a precedence fea-
sible activity list, a locally optimal schedule is generated by scheduling each activity
in the list to start at its locally optimal position. For an activity in the baseline sched-
ule, a locally optimal position is defined as the one which minimizes (earliness +
tardiness) cost for this activity without shifting the activities already scheduled. The
activities of the newly arriving project are scheduled as early as possible because the
associated cost component in the objective function is increasing in the completion
time of this project.

Initial Population Generation

An initial population is generated to apply the neighborhood search procedures. Each
member of the population is a precedence feasible activity list. To ensure the diver-
sity of the initial population and explore a larger portion of the search space, activity
lists are constructed by applying two different priority rules and adapting a shifting
bottleneck (SB)-based heuristic originally developed for job shop scheduling prob-
lems with non-regular objectives by Bulbul and Kaminsky (2010) to our problem, in
addition to randomly generating precedence feasible activity lists.

To create activity lists the most total successors (MTS) and minimum LST priority
rules are employed by selecting the activity with the best value among the precedence
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feasible candidates. These are network and critical path-based priority rules, respec-
tively (Demeulemeester and Herroelen 2002). The basic idea behind the selection
of these dispatching rules is to increase the possibility of adding a larger number
of precedence feasible activities to the candidate list earlier and thereby improving
their chance of on-time scheduling as well as achieving higher resource utilization.
Biased sampling versions of these priority rules are also used to increase the size of
the population. That is, candidate activities are assigned probabilities proportional to
their respective priorities, and the next activity in the list is picked randomly based
on these selection probabilities.

The SB heuristic is a well-known machine-based decomposition method in the
machine scheduling literature (Adams et al. 1988). In the application of the SB
framework to job shop scheduling problems, the machine capacity constraints are
initially all relaxed and are then added back to the problem sequentially by solving
a series of single-machine scheduling subproblems. The objective function value of
a single-machine subproblem provides an estimate of the effect of the capacity re-
strictions of the machine under consideration on the overall schedule. The currently
unscheduled machine with the highest subproblem objective value is referred to as
the bottleneck machine, and the sequence of operations on this machine is fixed first
before those of the remaining unscheduled machines. The SB approach was orig-
inally developed for the classical job shop scheduling problem of minimizing the
makespan by Adams et al. (1988), and it was later extended to job shop scheduling
problems with maximum lateness (Demirkol et al. 1997) and total-weighted tardi-
ness minimization objectives (Pinedo and Singer 1999; Singer 2001; Mason et al.
2002) among others. Recently, Bulbul and Kaminsky (2010) extended this frame-
work to job shop scheduling problems with any objective function whose associated
optimal timing problem can be expressed as an LP. Their approach is particularly
effective, if the individual completion times are associated with explicit costs as in
our problem. Based on this observation, we adapted the SB algorithm of Bulbul and
Kaminsky (2010) for our purposes. Initially, a schedule is obtained by relaxing all
resource capacities and solving the resulting model as an LP. The SB heuristic then
resolves the resource conflicts present in the optimal solution of this relaxation iter-
atively by solving a set of single-resource-weighted earliness/tardiness scheduling
subproblems with precedence constraints. The unit earliness and tardiness costs in
the subproblems are estimated using LP sensitivity analysis as in the original pa-
per. The subproblem is a generalization of the NP-hard single-machine-weighted
earliness/tardiness problem, and the iterated LS approach we design for the overall
problem is also used to solve the subproblems of the SB heuristic with some minor
modifications and simplifications. These details are discussed in Pamay (2011). The
solution of a subproblem introduces new precedence relationships based on the con-
cept of resource flows (e.g., seeArtigues and Roubellat 2000). These new precedence
constraints are incorporated into the optimal timing LP and ensure that the capacity of
the resource under consideration is no longer violated. These steps are repeated until
all resource conflicts are removed and a feasible solution to the original problem is
obtained. This basic algorithm is enhanced by executing a restricted tree search over
all possible orders of resolving the resource conflicts and results in several feasible
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solutions for the original problem. A standalone application of this SB heuristic does
not produce high quality solutions; however, it provides us with a tool to diversify
the initial population. The schedules constructed by the SB heuristic are converted
to activity lists based on the activity start times and added to the initial population. In
our computational study, we report the results of the iterated LS algorithm both with
and without the initial solutions from the SB heuristic and demonstrate a significant
added value from their inclusion in the initial population.

List Positional Neighborhood Search

Once the initial population has been generated, the first neighborhood search proce-
dure starts. This process is applied to each member of the initial population separately
and if an improvement is observed the activity list is replaced and the search for better
schedules continues with the new activity list. First, all activities in an activity list are
sorted in non-increasing order of their contributions to the objective function. For the
activities of the new project this contribution is zero unless they belong to the critical
path of the project. A critical activity of the new project is assigned a cost of (K
fh+1,|Jh+1|), where fh+1,|Jh+1| is the completion time of the new project. The neigh-
borhood search proceeds by processing each activity in the list in the order specified
above. The activity under consideration may be moved to an earlier position in the
list while preserving precedence feasibility. Consequently, it can be scheduled at ear-
lier stages of the schedule generation process and has a greater chance of incurring
a lower cost. A selected activity may be moved anywhere between its predecessor
with the latest position in the list and its current position. Each of these possible
moves is evaluated by removing the activity from its current position and inserting
it at the required spot in the list. For each position, the objective function value is
determined by using the locally optimal scheduling scheme. If the objective value
can be improved, this change is applied to the activity list. If the evaluated moves
for the current activity are non-improving, the activity with the next highest cost
contribution is selected and the procedure is repeated until a limited number of non-
improving steps is reached. If no improvement can be observed until reaching this
threshold level, the best non-improving move is applied, and the move is added to a
tabu list to track forbidden moves. In general, the neighborhood search for an activ-
ity list terminates if either a prespecified maximum number of neighborhood search
moves or a prespecified maximum number of non-improving steps is reached first.

Timing-Based Neighborhood Search

To check for further possible improvements a timing-based LS is applied. The locally
optimal scheduler places an activity in its locally optimal position without shifting
activities already scheduled. Therefore, the total objective function value may be
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reduced by moving a single activity earlier or later in time. This can be done by
modifying the due dates of the activities temporarily such that the locally optimal
positions of the activities are changed for the same sequence. To this end, we first
determine chains of activities in the precedence graph which are processed without
idle time in between in the current schedule and then calculate the total cost con-
tribution of each chain. The chain with the maximum cost is selected, and the due
date of the first activity in this chain is decreased by a single time unit. This due
date value is used while scheduling the activity locally optimally, but the objective
function is still calculated with the original problem data. By decreasing the due date
of an activity, other members of the chain can move earlier in time, and the objective
function value may be improved. If this is the case, then we identify an improved
schedule associated with the current activity list. The procedure is repeated for other
chains in non-increasing order of their contributions to the objective function. The
search is terminated if either the prespecified maximum number of non-improving
steps or the maximum number of neighborhood search steps is reached first.

LP-Based Optimal Timing

A final improvement step is applied to a limited number of activity lists in the initial
population. We insert additional arcs into the precedence graph which avoid resource
infeasibilities based on the current feasible schedule associated with the activity list
(e.g., see Artigues and Roubellat 2000). This allows us to formulate an LP which
yields a resource-feasible optimal schedule for the given extended precedence graph.
In the LP formulation below, the set of extended precedence relationships P̄ includes
the original precedence relationships on top of the precedence relationships derived
from the resource flows. In essence, the concept of resource flows allows us to convert
conditions on resource feasibility into temporal relationships. In our presentation,
(i, k, j , l) ∈ P̄ if there is either a precedence relationship or a resource flow between
activities (i,k) and (j,l):

min
∑

i∈I

∑

j∈Ji

(
eij · Eij + tij · Tij

)+K · dh+1

fjl − fik ≥ pjl ∀(i, k, j , l)∈P (10.12)

(4), (5), (6), (10), (11)

Note that the structure of the LP above is similar to the mathematical model of
DRCMPSPWET, except that the binary variables xijt and the related constraints
are replaced by constraints Eq. (10.12) under the presence of extended precedence
relationships.
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Fig. 10.2 Parameter
fine-tuning results
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The number of activity lists to which the LP-based improvement step is ap-
plied is referred to here as the number of LP-based search steps. The search for
the best-performing values of this parameter together with the maximum number
of neighborhood search steps and the maximum number of non-improving steps for
both positional and neighborhood searches are the subject of the next section.

Parameter Fine-Tuning

In order to select the best-performing parameter settings, a fine-tuning procedure
is applied. Twenty different instances with 200 activities are tested. Six different
parameters are adjusted: the maximum number of steps for the positional neigh-
borhood search, the maximum number of steps for the timing-based neighborhood
search, two different parameters for the maximum number of non-improving steps
of these neighborhoods, the number of LP-based search iterations, and the size of the
tabu list in the positional neighborhood search. A preliminary analysis revealed that
the solution quality and time are insensitive to the size of the tabu list. This parameter
has therefore been fixed at 5 in the rest of our study. The different values selected for
each setting and the results are presented in Table 10.1 and Fig. 10.2, respectively.

Figure 10.2 shows the average gap between the best solution and the solution
found by each setting and the average CPU times. Setting 3 attains the best trade-off
in terms of solution quality and CPU times. Therefore, setting 3 is selected for the
solution procedure(s) applied.

Computational Study

All solution approaches were implemented in Visual C#. IBM ILOG CPLEX Opti-
mization Studio 12.1 is used as the engine for solving the LP models. A data set of
800 unique instances is generated to test the performance of the suggested methods.
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Table 10.1 Parameter selection settings

Max number
of positional
neighbor-
hood search
steps

Max number
of timing-
based neigh-
borhood
search steps

Max number
of non-impro-
ving steps for
the positional
neighborhood

Max number
of non-impro-
ving steps for
the timing-
based
neighborhood

Number of
LP-based
search
steps

Size of the
tabu list

Setting 1 20 30 10 20 5 5
Setting 2 50 50 20 40 5 5
Setting 3 100 100 30 70 10 5
Setting 4 200 200 100 150 10 5

Table 10.2 Parameter
settings for the data set
generated

Total number of activities 20, 40, 50, 100, 150, or 200
Due date range Clustered or distributed
Due data tightness Tight or loose
Number of resource types 2 or 5
Completion time factor High or low

The experiments were conducted on a single core of an HP Compaq DX 7400 Mi-
crotower with a 2.33 GHz Intel Core 2 Quad CPU Q8200 processor and 3.46 GB of
RAM.

Experimental Data

As stated before, the related work in the literature focuses on the single project
version of RCPSPWET. Moreover, existing benchmark instances do not always
investigate the effects of different problem parameters on the performance of the
proposed solution approaches. Therefore, a new data set is generated. Each instance
of the problem set consists of a group of projects present in a baseline schedule with
activity-based due dates, unit earliness and tardiness costs. A newly arriving project
is also included with a completion time factor K. The parameter settings for the
entire data set are given in Table 10.2. The rationale behind adopting each of these
parameters will be discussed in the upcoming subsections.

Project Pool Generation

Since our problem is a multi-project scheduling problem, each instance in the test
problem data set consists of a group of projects. For this reason, a project pool is
generated first, which will later be used to create the multi-project instances. Various
random project generation procedures have been discussed in the literature. ProGen
is developed by Kolisch et al. (1995) for RCPSP and its multi-mode extension.
ProGen/max developed by Schwindt (1995) is an upgraded version of ProGen for
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minimal and maximal time lag extensions of generalized precedence relations. A
more recent project generator, called RanGen, has been developed by Vanhoucke
et al. (2003). We use this generator because RanGen enables the user to select
predefined complexity measures for generated networks, which is important for
differentiating the instances.

Four parameters have to be specified in RanGen to obtain different project net-
works. The first parameter is the order strength (OS), which is defined as the number
of precedence relations including the transitive ones but not including those arcs
incident from or into the dummy start and end activities, respectively, divided by the
maximum number of precedence relations n(n− 1)/2, where n denotes the number
of non-dummy activities in the network (Mastor 1970). RanGen is able to generate
unique networks with the prespecified OS values. Three different OS values (0.25,
0.50, and 0.75) are selected. For each project, five types of renewable resources
are defined. Two different resource-usage-related parameters are included. The first
resource-related measure is the resource density (RU) defined as in Eq. (10.13) below:

RU = RUi =
R∑

r=1

1 if wir0,
0 otherwise

(10.13)

This parameter specifies the number of resource types used by an activity i, RUi,
in the network. RU is preferred to another resource-related measure referred to as
the resource factor (RF) introduced by Alvarez-Valdes and Tamarit (1989), because
RF might yield networks in which some activities do not use any resources at all.
Another resource measure, the resource constrainedness (RC), is defined as the ratio
between the available capacity of a resource type (Wr ) and the average usage of
activities (wr ) of this particular resource in Eq. (10.14). The RU and RC values are
selected as 4, 5, and 0.25, 0.50, respectively. The number of the activities in a project
is taken as an input data as well. To achieve the required number of activities for each
RCMPSPWET instance, projects with 5, 10, 20, and 30 activities are generated.

RCi = wr

Wr

(10.14)

All parameter settings are summarized in Table 10.3. The project pool for each n,
except for n= 5, consists of 50 different projects. A total of 32 projects with five
activities is used because the generator is not able to generate 50 unique networks
with the specified OS values due to the small number of nodes in the network.

The data set can be obtained by sending a request to the corresponding author.

Total Number of Activities

The total number of activities in an instance is an important measure of the size
as well as the difficulty of the instance. As presented in Table 10.2, for a given
instance the number of activities is ranging from 20 to 200 activities, excluding
the dummy activities. Note that we solve instances with up to 200 activities while
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Table 10.3 Settings for the
project pool generation

Number of
activities

OS RU RC Number of
unique projects

5 0.25 4 0.25 3
0.50 4 0.50 10
0.75 5 0.50 9
0.50 5 0.25 10

10 0.25 4 0.25 10
0.50 5 0.25 10
0.75 5 0.25 10
0.75 4 0.50 10
0.25 5 0.50 10

20 0.25 5 0.25 10
0.50 5 0.25 10
0.75 5 0.25 10
0.25 4 0.50 10
0.75 4 0.50 10

30 0.25 5 0.25 10
0.50 5 0.25 10
0.75 5 0.25 10
0.25 4 0.50 10
0.75 4 0.50 10

OS order strength, RU resource density, RC resource constrained-
ness

the maximum number of activities considered in the literature on earliness/tardiness
project scheduling problems is 100 (Ballestin and Trautman 2008, Vanhoucke et al.
2001, and Neumann et al. 2003).

Project Combinations

For each setting of the total number of activities, different combinations of projects
are selected from the project pool to create an instance of DRCMPSPWET with
the required number of activities. For example, in order to generate an instance of
DRCMPSPWET with 30 activities, a combination of three projects with ten activities
each is selected as one of the combinations. In this scenario, for two of these three
projects, due dates, earliness and tardiness costs are generated. The third project is
defined as the newly arriving one, and a completion time factor is determined for
it. Another combination uses a project portfolio of six projects with five activities,
where one of these projects is designated as the new arrival. For each value of
the total number of activities in Table 10.2, up to three different combinations are
selected. These combinations differ in the total number of projects in an instance.
For each combination, five different master instances are generated. These master
instances provide the information about which projects in the pool are added to the
project portfolio. This is accomplished by selecting projects from the pool with the
desired number of activities randomly. Master instances are then used to create unique
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instances by adding the data about the due dates, the unit earliness and tardiness
costs, and the completion time factors depending on the values of the remaining
data generation parameters. The unit earliness and tardiness costs are drawn from
uniform distributions in the range 0–10, and the generation of the due dates and the
completion time factors are detailed in the Sections “Due Date Generation,” “Due
Date Range,” “Due Date Tightness,” and “Completion Time Factor.” All the project
combination schemes are summarized in Table 10.8 in the Appendix.

Due Date Generation

Due dates are generated in this study based on a baseline schedule. All projects
in an instance, except for the new arrival, have an associated existing schedule
constructed by the scheduling routine described next. In Ballestin and Trautman
(2008), Vanhoucke et al. (2001), and Neumann et al. (2003), on the other hand, the
data sets are generated by considering the critical paths and the earliest start time
values of the activities in the network.

The method used to obtain the baseline schedule is quite important for the effective
utilization of the resources. Therefore, makespan minimization is selected as the ob-
jective for generating the baseline schedule. There are many heuristic approaches in
the literature developed for makespan minimization. We decided to use a scheduling
scheme with an effective dispatching rule in order to generate schedules with good
makespan values within reasonable computation times. In his review paper about
the performance of different dispatching rules for makespan minimization, Kolisch
(1996) states that the LST rule shows the best performance. Therefore, the LST
rule is used here together with the serial scheduling scheme (SSS) for generating
the baseline schedule. At each iteration, SSS selects the activity with the minimum
LST among the ones whose predecessors are already scheduled and schedules it at
the earliest feasible point in time leading to an active schedule. The LST values are
calculated using the backward pass algorithm of the critical path method. However,
we implement the LST rule slightly differently depending on the desired range of
the due dates as discussed next.

Due Date Range

The range of the due dates over the time horizon in the baseline schedule is important
for flexibility in scheduling. That is, if the due dates of a project are spread over the
entire planning horizon, activities can be moved forward or backward more freely in
time while scheduling the arriving project. Clustered due dates, on the other hand,
reduce the flexibility of the projects and constrain them to move only within shorter
time windows provided in the baseline schedule. The difference between these two
settings is visualized in Figs. 10.3 and 10.4. In the first case, all projects are active
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Fig. 10.3 Distributed due
date windows

Fig. 10.4 Clustered due date
windows

during most of the schedule timeline whereas in the second case only a few projects
are active within a given time interval.

In order to obtain schedules with these two different characteristics, the basic
schedule generation scheme based on the LST rule is modified. For the distributed
due date generation, we keep track of the progress levels of the projects while schedul-
ing activities iteratively. In other words, the activity with the lowest LST value is
picked among the activities of the project with the minimum progress level. With
this approach, the projects are kept active along the entire timeline of the baseline
schedule. The clustered due date range is obtained by randomly selecting a project
and scheduling all activities of this particular project one by one according to the LST
rule in order to complete the selected project as soon as possible after it is started.
The process continues by selecting another unscheduled project randomly until all
the projects are scheduled. In order to observe the effects of this parameter setting,
distributed and clustered due date generation schemes are applied to project com-
binations with a relatively high number of projects. Otherwise, only the distributed
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due date generation scheme is employed. The details are provided in Table 10.8 in
the Appendix.

Due Date Tightness

An additional parameter controls the tightness of the due dates. Tight due dates values
are closer to the starting time of the schedule and offer less flexibility for meeting
the due date. Loose due dates, on the other hand, allow delays to activities without
affecting successor activities or incurring additional cost. In other words, there is
a higher possibility of meeting loose due dates compared to tight ones. Due date
tightness in the related articles in the literature is manipulated by multiplying the
individual due dates (or an average due date) by a tightness factor. We use a different
approach. In order to reflect these tightness and looseness considerations in our
data generation scheme, we change the available resource capacities in the baseline
schedule. For setting loose due dates, we only allow a resource to be used at 80 % of
its available capacity. By creating a baseline schedule for the current project portfolio
by utilizing the resources at less than full availability, slack resource capacities can
be used to schedule a newly arriving project without causing significant deviations
in the new schedule. As a consequence, the makespan of the baseline schedule is
increased but additional resource capacity is allocated to schedule the newly arriving
project. We would expect that the number of activities scheduled on time would
increase and for the same master instance a lower objective value can be obtained.
By a similar argument, a baseline schedule constructed with fully available resources
would result in tight due dates. For each unique instance loose and tight due dates
settings are present in the data set.

Number of Resources

The number of resource types is another complicating factor in a project scheduling
problem. In general, instances with more resources are more challenging. In our
data set, the number of resource types is either two or five. Initially, all instances are
created with five resource types, and the last three resource types are simply dropped
from instances with 2 resource types.

Completion Time Factor

As one of the contributions of this study, the effects of the completion time factor
K on the schedules will be studied, and we need to set a completion time factor
value for each instance in the data set. As stated before, a trade-off between the
earliness/tardiness costs of the activities in the baseline schedule and the completion-
time-related cost of the new project must exist in order to obtain a reasonable problem
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setting. Otherwise, scheduling the newly arriving project at the beginning or at
the end of the schedule, depending on the dominant cost component, might yield
good solutions for most of the instances. Therefore, we implemented another pre-
scheduling step, similar to that in the due date generation process, to obtain the
completion time factors. For two due date range settings, different approaches are
used. For the distributed due date setting, we generate a new schedule employing the
LST rule after adding the new project to the set of projects present in the baseline
schedule of the instance and then calculate the total earliness/tardiness cost for the
projects in the baseline schedule. The completion time factor is obtained by dividing
the total earliness/tardiness cost by the completion time of the newly arriving project.
For the clustered due date range, recall that projects are added to the schedule one by
one in some sequence. The new project is inserted into each possible position in this
sequence, and the LST rule is invoked for the resulting order. We obtain different
cost values for the same instance depending on the position of the new project in the
sequence and then take the average of these cost values and also compute the average
completion time of the new project. The ratio of these two average values yields the
completion time factor of the instance. Thus, we generated completion time factors
specific to the instance data instead of selecting the same factor for all instances.

These completion time factor values are scaled in order to provide different pa-
rameter settings. In the “high” setting, the scaling factor is 1 and reflects that we
expect the contribution of the new project to the overall objective function to be
roughly the same as the total earliness/tardiness cost of the projects in the baseline
schedule. In the “low” setting, the scaling constant is 0.5.

Results

We had two primary goals in mind while designing our computational study. First,
we demonstrated that the LS method provides solutions of high quality in reasonable
computation times. Second, we explored the effects of various problem parameters
detailed in the previous sections on solution quality. We implemented two variants
of our iterated LS algorithm as discussed in the Section “Initial Population Gener-
ation.” In one variant (LS), the initial population consists of randomly generated
lists in addition to activity lists produced by dispatch rules. In the second variant
(LS-SB), the initial population is enhanced by activity lists retrieved from the SB
heuristic mentioned in the Section “Initial Population Generation.” Detailed results
are available in Pamay (2011).

In the first part of our computational study, we benchmark the proposed LS method
against the mixed integer programming (MIP) formulation presented in the Section
“Problem Formulation” solved by ILOG CPLEX 12.1 which can only handle in-
stances with up to 40 activities. Larger instances require excessive computation
times. The time limit imposed on CPLEX is 1 h for instances with 20 and 30 ac-
tivities, and 2 h for instances with 40 activities. If CPLEX does not terminate with
an optimal solution within the allotted time (39 and 42 instances with 30 and 40
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activities, respectively), then we report the best integer solution identified during the
optimization. Therefore, all gaps are computed with respect to the best solution avail-
able. The results in Table 10.4 are grouped by the number of activities and resource
types (indicated in the first two columns), and the number of instances in the group
is given in the third column. The results in Table 10.4 attest to the competitiveness of
the iterated LS heuristic. All optimal solutions are available for 40 instances with 20
activities, where LS attains the optimal solution in 24 cases with an optimality gap
of 3.87 % on average. When the initial population is extended with activity lists from
the SB heuristic, the number of optimal solutions identified increases to 29 with an
average optimality gap of 1.12 %. LS attains better solutions than MIP in 11 and 17
cases for instances with 30 and 40 instances, respectively. The corresponding num-
bers for LS-SB are 11 and 18. Both LS and LS-SB match the best solution obtained
by MIP in 19 and 10 cases for instances with 30 and 40 activities, respectively. For
instances with 40 activities, LS and MIP perform on a par, and LS-SB is superior to
MIP; however, both LS and LS-SB take a fraction of the effort required by CPLEX.
The diversification effect of the activity lists retrieved from the SB heuristic mani-
fests itself in both the average and the maximum gaps. For instances with 50 or more
activities the differences in the maximum gaps are particularly significant.

It is not possible to identify a uniform pattern regarding the effect of the due date
tightness on the solution quality from the data in Table 10.5. The results for instances
with 40 or less activities suggest that instances with loose due dates are somewhat
easier.

Next, we investigate the impact of the distributed and clustered due dates on the
iterated LS heuristic. Recall that instances with up to 40 activities are all generated
with the “distributed” option; therefore, no MIP result is available for this analysis.
Results presented in Table 10.6 suggest that the added value of the extended initial
population is more critical when the due dates are distributed.

Finally, Table 10.7 explores the sensitivity of our results to the completion time
factor of the new project. It is evident that LS and LS-SB return solutions of high
quality under both the “low” and “high” settings of the completion time factor. The
effect of the extended initial population is more pronounced for smaller values of the
completion time factor.

In summary, the proposed iterated LS heuristic delivers solutions of high qual-
ity. Instances with up to 200 activities are solved in short CPU times given that our
problem is not an operational problem and does not need to be solved frequently.
Furthermore, the performance of our algorithm is robust under various data gener-
ation settings; in particular, if we opt for using an enhanced initial population as
described in the Section “Initial Population Generation.”
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Table 10.5 Effect of the due date tightness on the solution quality

Number of
activities

Due date
tightness

Number of
instances

Avg. gap (%) Max. gap (%)

MIP LS LS-SB MIP LS LS-SB

20 Tight 20 0.00 4.22 1.35 0.00 35.05 16.71
Loose 20 0.00 3.52 0.88 0.00 29.41 9.09

30 Tight 40 0.62 6.59 5.51 15.07 36.84 36.84
Loose 40 1.04 8.25 6.47 14.55 40.10 40.10

40 Tight 40 14.41 12.59 10.66 456.88 53.34 44.42
Loose 40 5.85 7.88 5.96 55.85 70.40 59.20

50 Tight 60 1.01 0.00 17.11 0.00
Loose 60 5.12 0.00 56.14 0.00

100 Tight 80 1.06 0.00 28.10 0.00
Loose 80 1.63 0.00 39.42 0.00

150 Tight 80 1.45 0.00 57.13 0.00
Loose 80 0.22 0.00 14.56 0.00

200 Tight 80 0.00 0.00 0.00 0.00
Loose 80 0.21 0.00 12.54 0.00

Table 10.6 Effects of the due date range on the solution quality

Number of
activities

Due date
range

Number of
instances

Avg. gap (%) Max. gap (%)

LS LS-SB LS LS-SB

50 Distributed 80 4.27 0.00 56.14 0.00
Clustered 40 0.65 0.00 12.50 0.00

100 Distributed 120 1.68 0.00 39.42 0.00
Clustered 40 0.37 0.00 8.80 0.00

150 Distributed 120 0.16 0.00 14.56 0.00
Clustered 40 2.87 0.00 57.13 0.00

200 Distributed 120 0.14 0.00 12.54 0.00
Clustered 40 0.00 0.00 0.00 0.00

Concluding Remarks and Future Work

The purpose of this work is to study the dynamic project scheduling environments.
In that problem setting, a project arrives on top of an existing project portfolio,
and a due date has to be quoted for the new project while keeping the costs related
to changes in the schedule at a minimum. The objective function consists of the
weighted earliness/tardiness costs of the activities of the existing projects in the
current schedule in addition to a term that increases linearly with the anticipated
completion time of the new project. An iterated LS heuristic is developed to solve
large instances of this problem. In order to analyze the performance of the proposed
method, a new multi-project data set is created by controlling the due date tightness,
the due date range, the number of resource types, the completion time factor, and the
total number of activities in an instance. A series of computational experiments were
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Table 10.7 Effects of the completion time factor on the solution quality

Number of
activities

Completion
time factor

Number of
instances

Avg. gap (%) Max. gap (%)

MIP LS LS-SB MIP LS LS-SB

20 Low 20 0.00 5.07 1.89 0.00 35.05 16.71
High 20 0.00 2.67 0.34 0.00 29.41 5.00

30 Low 40 1.58 7.61 5.43 15.07 36.84 36.84
High 40 0.08 7.23 6.55 1.25 40.10 40.10

40 Low 40 5.09 10.47 8.02 55.85 53.34 38.42
High 40 15.18 10.00 8.60 456.88 70.40 59.20

50 Low 60 3.86 0.00 56.14 0.00
High 60 2.27 0.00 42.40 0.00

100 Low 80 2.23 0.00 39.42 0.00
High 80 0.47 0.00 13.76 0.00

150 Low 80 0.44 0.00 16.08 0.00
High 80 1.23 0.00 57.13 0.00

200 Low 80 0.21 0.00 12.54 0.00
High 80 0.00 0.00 0.00 0.00

carried out to test the performance of the LS approach. Moreover, exact solutions for
the small instances are provided. The results indicate that the proposed LS heuristic
performs well in terms of both solution quality and solution time. The value of an
extended initial population is also demonstrated.

Several interesting extensions of this work are listed below:

• Precedence relations between projects can also be included considering that in
practice some projects need to precede others due to technological factors, e.g.,
in R&D environments.

• Arrival of multiple projects at a time or at different points in time may be studied.
• A multi-mode extension is clearly an important research direction we may pursue

in the future.

To the best of our knowledge, the proposed work is the first study of the multi-project
dynamic version of RCPSPWET, namely, DRCMPSPWET. The relative scarcity
of the literature on this problem suggests that static and dynamic RCMPSPWET
constitute a rich topic for further research activities. Moreover, the practical relevance
of this problem for companies, which have to manage their project portfolio in
dynamic environments, offers a wide range of implementation options in the business
context.

Acknowledgments We gratefully acknowledge the support given by The Scientific and Techno-
logical Research Council of Turkey (TUBITAK) through Project Number MAG 109M571.
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Chapter 11
Multimode Resource-Constrained Project
Scheduling Problem Including Multiskill Labor
(MRCPSP-MS) Model and a Solution Method

Mónica A. Santos and Anabela P. Tereso

Introduction

The resource-constrained project scheduling problem (RCPSP) that we address in
this chapter involves multilevel activities where each activity can be processed us-
ing one of several modes that are available for each resource, with each mode of
a resource belonging to a different skill level and incurring different cost and du-
ration. This class of problems is an extension of RCPSP, which has been shown
to be nondeterministic polynomial-time (NP)-hard (Blazewicz et al. 1983). Some
of the earlier methods proposed for the solution of the project scheduling problem
include: critical path method (CPM; Kelley and Walker 1959) and program evalu-
ation and review technique (PERT; MacCrimmon and Ryavec 1964; Clark 1962),
resource allocation method (Davis 1966), resource leveling procedures (Bandelloni
et al. 1994; Zimmermann and Engelhardt 1998), Monte-Carlo simulation-based
methods (Metropolis et al. 1953; Ragsdale 1989), and those based on criticality
indices (Dodin and Elmaghraby 1985). Ever since, there have been mathematical
models proposed for more complex problems. The search for optimal solutions for
the RCPSP has focused on the use of integer programming (IP; Pritsker et al. 1969;
Berthold et al. 2010; Nemhauser and Wolsey 1988), dynamic programming (DP;
Bellman and Dreyfus 1959, Elmaghraby et al. 1992), and branch and bound (B&B)
techniques.

The presence of binary variables in a problem has led researchers to develop
B&B-based procedures for its solution. The success of this technique depends on the
branching scheme and on the tightness of the bound used. Kis (2005) explored the
scheduling problem where the need for resources for each activity varies in proportion
to the intensity of the activity itself. To formalize the problem, they used an integer
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linear programming model and proposed a B&B-based algorithm to find an optimal
solution. However, B&B procedures are inadequate for real-size problems, despite
their efficiency relative to a frontal attack on the discrete optimization problem. The
need to solve real problems in reasonable central processing unit (CPU) times, have
led researchers to develop heuristic procedures.

The heuristics used belong to one of two classes: priority rule-based methods or
metaheuristic approaches. The priority rule-based methods build a plan by selecting
activities from a range of activities available successively so that all activities are
sequenced (Boctor 1993; Dean et al. 1992; Heilmann 2000). The metaheuristic-
based methods begin with an initial solution and then search for its improvement by
defining an appropriate neighborhood. There are still two types of heuristics—series
heuristics where the priority of the activities is predetermined and remains fixed, and
parallel heuristics where the priority is updated each time an activity is scheduled for
processing. Other types of heuristics found in the literature, considered as a subfield
of metaheuristics, are tabu search (TS; Arroub et al. 2010), simulated annealing (SA;
Mika et al. 2005), and genetic algorithms (GA; Gonçalves et al. 2004). Tseng (2008)
has also discussed the use of GA applied to the multiproject, multimode RCPSP.

For the multimode RCPSP, it has been shown that for highly resource-constrained
projects with more than 20 activities and three modes in each activity it is difficult
to find optimal schedules (Hartmann 2001). The heuristic methods are simple to
understand, easy to apply, and are capable of clarifying the scheduling process.
Typically, heuristic methods consider each activity’s impact on a specific objective
by sorting the activities competing for resources and allocating only some of them the
resources needed for scheduling in a period. Besides, metaheuristic make few or no
assumptions about the problem and have the advantage of performance consistency
and the ability to determine global optimal solutions. However, the search for an
optimal solution within feasible solutions makes metaheuristic methods spend more
computational time than heuristic methods (Zhang et al. 2006).

The objective of our study is to minimize the total project cost given a due date
that includes a bonus for early completion or a penalty for tardiness. In several
resource-constrained scheduling problem models found in the literature, there are
two important aspects present in any model: the objective and the constraints. The ob-
jective may be based on time, such as minimizing the project duration (Boctor 1990;
Heilmann 2000; Basnet et al. 2001), or on economic aspects, such as minimizing
the project cost (Tereso et al. 2004, 2006; Mika et al. 2005). However, time-based
objectives are often in conflict with cost-based objectives. A recurrent situation en-
countered in practice is the need to complete a project by its due date and maximize
profit. Ozdmar and Ulusoy (1995) reported in their survey of the literature studies
where the net present value (NPV) is maximized while the due date is a “hard” con-
straint (Patterson et al. 1989, 1990). There are several other multiobjective studies
in the literature where efficient solutions regarding time and cost targets are gener-
ated. Guldemond et al. (2008) presented a study related to the problem of scheduling
projects with strict deadline jobs, defined as a time-constrained project schedul-
ing problem (TCPSP) where a nonregular objective function is used. The original
RCPSP uses regular objective functions, like minimizing the makespan, but several
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nonregular objectives have become popular like maximizing NPV. Vanhoucke et al.
(2000) define regular and nonregular measures of performance: “A regular measure
of performance is a nondecreasing function of the activity completion times, while
for a nonregular measure of performance the above definition does not hold.”

Kazaz and Sepil (1996) have presented a mixed integer linear program (MIP) for-
mulation with Benders decomposition for a project scheduling problem where the
cash flows do not occur at some event realization times, but as progress payments
at the end of some time periods. In Sepil and Ortaç (1997), three different heuristic
rules were developed to solve the same problem, extended with renewable resource
constraints. Padman and Dayanand (1997) allow the decision-maker to set progress
payment points and Etgar et al. (1997) incorporate elements of bonus/penalty struc-
tures. As the costs incurred depend on the activities in progress, while scheduling
is based on noncost-related considerations, the researchers explicitly included cash
flows resources constraints in their formulations. Elmaghraby and Herroelen (1990)
employed the following property of an optimal solution that maximizes the NPV: the
activities with positive cash flows should be scheduled as soon as possible and those
with negative cash flow as late as possible. They argue that the faster completion
of the project is not necessarily the optimal solution with regard to maximizing the
NPV. In the study by Mika et al. (2005), a positive flow is associated with each
activity. The objective is to maximize the NPV of all cash flows of the project. They
used two metaheuristics that are widely used in research: SA and TS. Our problem
objective is cost-based and we have a bonus/penalty structure, but we do not consider
the NPV objective.

In Ulusoy and Cebelli’s (2000) approach to payment scheduling problem (using a
multimode RCPSP), the amount and timing of the payments made by the client and
received by the contractor are determined so as to achieve an equitable solution. An
equitable solution is defined as one where both the contractor and the client deviate
from their respective ideal solutions by an equal percentage. The ideal solutions for
the contractor and the client result from having a lump sum payment at the start and the
end of the project, respectively. A double-loop GA is proposed to solve an equitable
solution. The outer loop represents the client and the inner loop the contractor. The
inner loop corresponds to a multimode RCPSP with the objective of maximizing the
contractor’s NPV for a given payment distribution. When searching for an equitable
solution, information flows between the outer and inner loops regarding the payment
distribution over the event nodes and the timing of these payments.

Willis (1985) described requirements for modeling realistic resources. These re-
quirements include the variable need of resources according to the duration of the
activity, variable availability of resources over the period of the project, and differ-
ent operational modes for the activities. A discrete time/resource function implies
the representation of an activity in different modes of operation. Each mode of op-
eration has its own duration and amount of renewable and nonrenewable resource
requirements.

The number of activities in a project determines the size of the project, and also,
it contributes to the complexity of a scheduling problem. Another fact contributing
to the complexity of a project is the precedence relations among the activities. As
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shown by Elmaghraby and Herroelen (1980), projects with the same number of
activities and the same number of activity relationships can have varying degrees of
difficulty. So, there is not a straightforward association between project complexity
and problem difficulty. Meanwhile, many project complexity measures have been
proposed (Herroelen 2006).

Boctor (1993) presented a heuristic procedure for the scheduling of nonpreemp-
tive resource-constrained projects where the resource is renewable from period to
period. Each activity is assumed to have a set of possible durations and resource
requirements. The objective is to minimize the project duration. The heuristic used
belongs to the class of priority rule-based methods. This class builds a plan by se-
lecting activities from a range of activities available successively so that all activities
are sequenced. A general framework to solve large-scale problems was suggested.
The heuristic rules that can be used in this framework were evaluated, and a strategy
to solve these problems efficiently was designed. Heilmann (2000) also worked with
the multimode case in order to minimize the duration of the project. In his work,
besides the different modes of execution of each activity, a maximum and minimum
delay between activities is specified. He presented a priority rule-based heuristic.
Basnet et al. (2001) presented a “filtered beam” search (FBS) technique to generate
makespan minimizing schedules for multimode single resource-constrained projects
where there is a single renewable resource to consider and the multimode consists
essentially of how many people can be employed to finish an activity.

The problem presented here also belongs to the class of project scheduling prob-
lems with multilevel (or multimode) activities, with each activity being processed
by resources operating at appropriate modes where each mode belongs to a different
resource skill level, which implies different cost and duration. Usually, multimode
RCPSP defines an explicit set of modes for each activity, with a specific activity du-
ration and resource requirements. Our approach, however, defines a set of resource
levels. Each activity may elect a level for each one of the resources required. The
combination of all possible levels of each resource, required for the execution of the
activity, provides the alternative modes of execution for each activity.

Santos and Tereso (2010) presented a formal multimode resource-constrained
project scheduling problem including multiskill labor (MRCPSP-MS) model and a
breadth-first search (BFS) procedure. Consequently, Santos and Tereso (2011a, b)
presented an adaptation of an FBS scheme to this problem and reported results of a
preliminary computational investigation. In this chapter, we present further analysis
on the results obtained for networks of different sizes.

In a BFS scheme, all the nodes (partial solutions) in the search tree are evaluated
at each stage before going any deeper, subsequently realizing an exhaustive search
that visits all nodes of the search tree. The B&B search technique can be seen as a
polished BFS, since it applies some criteria in order to reduce the BFS complexity.
Usually, it consists of keeping track of the best solution found so far, discarding a
node if it cannot offer a better solution. FBS is a heuristic B&B procedure that uses
BFS, but only the top best nodes are kept. At each stage of the tree, all successors
for the selected nodes at the current stage are generated, but it only stores a preset
number of descendent nodes at each stage, called the beam width.
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Table 11.1 Problem characteristics with three levels

Resources Processing time (j,r,l)

Activities 1(b1) . . . . . . |R| = ρ (bρ )

1 (1,1, 1) (1,1, 2) (1,1, 3) . . . (1, ρ, 1) (1, ρ, 2) (1, ρ, 3)
2 (2,1, 1) (2,1, 2) (2,1, 3) . . . (2, ρ, 1) (2, ρ, 2) (2, ρ, 3)
.
.
.

.

.

.
.
.
.

.

.

.

|A| = m (m, 1,1) (m, 1,2) (m, 1,3) . . . (2, ρ, 1) (2, ρ, 2) (2, ρ, 3)

br the number of units available of resource r, (j , r , l) the processing time p(j , r , l) for activity j of
resource r at level l

The B&B and the beam search (BS) procedures have been typically applied to
the RCPSP (Basnet et al. 2001; Demeulemeester and Herroelen 1996; Kis 2005).
The differentiating aspects of our approach are: (a) the definition of a set of states
followed by the activities, (b) the priority rules used to solve resource conflicts, and
(c) the alternative evaluation rules used to discard undesirable “branches.”

Our approach allows determination of a project solution using the BFS scheme
or the FBS scheme. We implemented the proposed approach using C# language.

Problem Description

Consider a project network in the activity-on-arc (AoA) representation: G = (N , A),
with |N | = n (representing the events) and |A| = m (representing the activities).
Each activity may require the simultaneous use of several resources with their con-
sumption dictated by the selected execution mode—each resource may be deployed
at a different level. The objective is to determine the optimal allocation of resources
to the activities in order to minimize the total cost incurred (due to resources +
penalty for tardiness + bonus for earliness). We follow the dictum that an activity
should be initiated as soon as it is sequence feasible.

There are |R| = ρ resources. A resource has a capacity of several units (say
workers or machines) and may be used at different levels, such as a “resource”
of electricians of different skill levels, or a “resource” of milling machines but of
different capacities and ages. A level might be the power of usage of a machine: high,
medium, or low, or the amount of hours used by a resource: half-time, normal time,
or extra-time. Another example would be a “resource” of routes where the levels
could be: easy, short, fast, or economic.

The different levels of a resource r ∈R may be represented asL(r) = {r1, . . . rL(r)};
the number of levels varies with the resource. If resource r is utilized at level l for
activity j then the processing time shall be denoted by p(j , r , l). An activity normally
requires the simultaneous utilization of more than one resource for its execution, but
each activity must be allocated exactly one unit of each resource.

To better visualize the problem, one can summarize its characteristics in a matrix
format as shown in Table 11.1. For illustrative purposes, we assume that any resource
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Fig. 11.1 A project with three
activities

may have at most three levels: low (level 1), average or normal (level 2), and high
(level 3). A cell entry in the matrix is the processing time p(j , r , l) for activity j of
resource r at level l. Due to space limitations, Table 11.1 exhibits the information as
(j , r , l); the symbol “p” is forfeited. If an activity does not require a resource, it is
indicated in the matrix by the symbol ∅ (null). The symbol br gives the number of
units available of resource r.

The processing time of an activity is given by the maximum of the durations that
would result from a specific allocation of various resources. To better understand
this representation, consider the miniscule project of Fig. 11.1 with three activities.
Assume that the project requires the utilization of four resources.

Let γ (r , l) be the unitary cost of resource r at level l. Then, in each cell, there
shall be a 2×|L(j , r)|matrix in which the first row gives the duration p(j , l) and the
second row the cost c(j , r , l). The total cost of a resource, at each level, is obtained
as the product of the resource unitary cost with the activity processing time.

For brevity, Table 11.2 gives only the processing times and costs at each level of
the resources; the identity of the activity and the resource are suppressed.

The top row indicates that there are four resources with varying availability:
resources 1 and 4 have b1 = b4 = 2 units each, resource 2 has only one unit
(b2 = 1), and resource 3 has b3 = 3 units. The following row specifies a cost rate
for each level of the resource. A positive entry in the row corresponding to activity
j indicates the resource(s) required by the activity—each activity must be allocated
exactly one unit of each resource. However, the resource may be utilized at any of its
specified levels. For instance, resource 2 has only one unit available, which can be
utilized at any of its three levels: if, for activity 2, it is utilized at level 1 (the lowest
level), then the processing time is 7 (i.e., p(2, 2, 1) = 7) and the cost is 14 (i.e.,
c(2, 2, 1) = 14); if it is utilized at level 2 (the intermediate level), then the processing
time is 5 and the cost is 25; finally, if it is utilized at level 3 (the highest level), then
the processing time is 3 and the cost is 30; etc.



11 Multimode Resource-Constrained Project Scheduling Problem Including . . . 255

Table 11.2 Project resource requirements, processing times, and resource costs

↓Act Resources (availability) → 1 (2) 2 (1) 3 (3) 4 (2) ηj

Resource unit cost for
each level

(1,3) (2,5,10) (1,3,5) (2,4,6)

1 p(j , r , l) (14,6) Ø (12,8,5) (18,12,7) 3
c(j , r , l) (14,18) (12,24,25) (36,48,42)

2 p(j , r , l) Ø (7,5,3) Ø (8,5,4) 2
c(j , r , l) (14,25,30) (16,20,24)

3 p(j , r , l) (20,12) (22,16,10) Ø Ø 2
c(j , r , l) (20,36) (44,80,100)

p(j , r , l) the processing time p(j , r , l) for activity j of resource r at level l, c(j , r , l) the total cost
of activity j of resource r at level l, ηj count of resources required for activity j

Suppose that all four resources are allocated at their respective level 2 (normal
intensity). Letting pj denote the duration of activity j and cj the total cost of activity
j, we get:

• Activity 1 shall take p1 = max{6, 8, 12} = 12 time units; cj = 18+24+48 = 90
monetary units

• Activity 2 shall take p2 = max{5, 5} = 5 time units; cj = 25+20 = 45 monetary
units

• Activity 3 shall take p3 = max{12, 16} = 16 time units; cj = 36 + 80 = 116
monetary units

And the project shall consume max{12+5, 16} = 17 time units to complete. However,
due to resource restrictions, activities 2 and 3 cannot be executed at the same time
since resource 2 has only one unit which must be allocated to either activity. So, if
allocated first to activity 2, the project should consume max{12 + 5, 17 + 16} = 33
time units; if allocated first to activity 3, the project should consume max{16 +
5, 16} = 21 time units. The latter decision should be the preferred one. So, the total
resource cost of the project shall be 251 monetary units and will be finished at time
T = 21 (assuming the project started at time T = 0). We also consider lateness costs
and earliness gains (negative costs). If the project’s specified due date is T s = 24,
the project will finish early. If the unitary cost for earliness is equal to −10, the total
cost will be 251 − 10*3 = 221.

Mathematical Model

Briefly, the constraints of this problem are:

• Precedence relationships among the activities.
• A unit of a resource is allocated to at most one activity at any time (the unit of the

resource may be idle during an interval) at one level.
• Capacity of each resource: the number of units allocated for processing at any

time should not exceed the capacity of the resource to which these units belong.
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• An activity can be started only when it is sequence feasible and all the requisite
resources are available, each perhaps at its own level, and must continue at that
level for all the resources without interruption or preemption.

The objective is to find an optimal solution that minimizes the overall project cost,
while respecting a specified delivery date. A penalty is incurred for tardiness beyond
the specified delivery date, or a reward is secured for early completion.

Consider the following variables:

Input variables

G(N , A): project network in AoA representation with a set N of nodes and a set
A of activities.

n: number of nodes; n = |N |.
m: number of arcs or number of activities; m = |A|.
(i, j ): activity, represented by arc (i, j ).
r: resource r ∈ R.

Lr : set of levels for resource r.
ηi,j: the count of resources required by activity (i, j ).
ρ: number of resources, ρ = |R|.
br : capacity of resource r.
γ (r, l): marginal cost of resource rat level l (US$/period).
γE : marginal gain from early completion of the project (US$/period).
γL: marginal loss (penalty) from late completion of the project

(US$/period).
p(i, j , r , l): the processing time of activity (i, j ) when resource r is allocated at

level l (time period).
TS: target completion time of the project (time period).

State variables

Ck: the kth uniformly directed cutset (udc) of the project network that is traversed
by the project progression (i.e., a set of ongoing activities); k = 1, . . . , K .

ti: time of realization of node i (AoA representation) where node 1 is the “start
node” of the project and node n its “end node” (time period).

Decision variables

x(i, j , r , l): a binary variable, of value 1 if resource r is allocated to activity (i, j )
at level l, and 0 otherwise. l is the level at which a resource is applied
to an activity l ∈ Lr .

Output variables

cE : earliness cost (US$).
cT : tardiness cost (US$).
cET : earliness-tardiness cost (US$).
cR: total resource cost for all project activities (US$).
TC: total cost of the project (US$).
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Next, we present the relevant constraints.
We begin by defining the processing time of an activity as the maximum of the

processing times imposed by the different resources. These processing times will be
a function of the levels at which the resources required by the activity are allocated,
and an activity cannot start before all the preceding activities have finished; we have

tj − ti ≥ max{p(i, j, r, l) ∗ x(i, j, r, l)}, ∀i, j ∈ N , ∀r ∈ R, ∀l ∈ Lr (11.1)

The total units of a resource allocated at any time to all the activities should not
exceed the capacity of the resource to which these units belong. This restriction is
applicable to the activities that are concurrently active (i.e., ongoing), which must
lie in the same udc.

The total allocation of resource r to the active activities in the “current” udc Ck

cannot exceed its available capacity

∑

i,j∈Ck
x(i, j , r , l) ≤ br , ∀r ∈R, ∀l∈Lr , k = 1, . . . , K (11.2)

A unit of a resource is allocated to an activity at only one level (the unit of the resource
may be idle during an interval of time):

∑

l∈Lr

x(i, j , r , l) = 1, ∀i, j ∈ N , ∀r ∈ R (11.3)

An activity must be allocated all the resources it needs at some level, at which time
it can be started and must continue at the same level for all the resources without
interruption or preemption. This requirement is represented as follows:

ηi,j −
∑

r∈R

∑

l∈Lr

x(i, j , r , l) = 0, ∀i, j ∈ CK (11.4)

The difficulty in implementing this constraint set stems from the fact that we do not
know a priori the identity of the udcs that shall be traversed during the execution of
the project since that depends on resource allocation. The allocation of the resources
is bounded by their availabilities at each udc, but the latter cannot be known until
after the allocation of resources has been determined. Enumerating all the udcs
and constraining the resources’ usage at each one would overconstrain the problem
(see Ramachandra and Elmaghraby 2006). There are several ways to resolve this
difficulty, formal as well as heuristic. The formal ones are of the IP genre, which,
when combined with the nonlinear mathematical programming model presented
above, present a formidable computing burden. On the other hand, the heuristic
approaches are more amenable to computing.

The objective function is composed of two parts: the cost of use of the re-
sources, and the gain or loss due to earliness or tardiness, respectively, of the project
completion time (tn) relative to its due date.

Earliness and tardiness (delay) are defined by:

e ≥ Ts − tn (11.5)
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Fig. 11.2 BFS traversal

d ≥ tn − Ts (11.6)

e, d ≥ 0 (11.7)

The costs may be evaluated as follows:

1. The cost of resource utilization in the selected level for each activity is:

cR(i, j ) =
∑

r∈R

∑

l∈Lr

c(i, j , r , l) ∗ x(i, j , r , l) (11.8)

c(i, j , r , l) = γ (r , l) ∗ p(i, j , r , l) (11.9)

2. The earliness/tardiness costs are:

cET = cE + cT = γE.e + γL.d (11.10)

3. Total resources cost for all activities of the project:

cR =
∑

i,j∈N
cR(i, j ) (11.11)

4. Total cost of the project:

TC = CR + CET (11.12)

The desired objective function may be written simply as:

minTC (11.13)

Solution Method

Our initial approach to solve the problem on hand relies on a BFS scheme. In the BFS
scheme, all the nodes (partial solutions) in the search tree are evaluated at each stage
before going any deeper (Fig. 11.2), subsequently realizing an exhaustive search
that visits all nodes of the search tree. The B&B search technique can be seen as a
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Fig. 11.3 A beam search tree with beam width = 3

polished BFS, since it applies some criteria in order to reduce the complexity of the
BFS scheme. Usually, it consists of keeping track of the best solution found so far
and checking if the solution given by that node is better than the best known solution.
So, if that node cannot offer a better solution than the solution obtained so far, the
node is fathomed. The B&B approach is more efficient if the bounds are tight.

The B&B process consists of two procedures:

1. Subset generation
2. Subset elimination

The former (subset generation) is accomplished by branching where a set of de-
scendent nodes is generated, thereby creating a tree-like structure. The latter (subset
elimination) is realized through either bounding where upper and lower bounds are
evaluated at each node, or via feasibility checking where the extension of a partial
solution is deemed infeasible and the branch is fathomed. A bound can be strong,
which is usually harder to calculate but it accelerates finding an optimal solution, or
it can be weak, which is easier to calculate but makes it slower to find the desired
solution.

In our case, the objective is to minimize the total cost encountered that is based
on the bonus achieved or the penalty cost incurred while respecting or exceeding
the specified due date, respectively. As a result, finding a bound depends on the
following three project parameters cited: the penalty cost, bonus cost, and due date.
As noted above, a bound helps in reducing the search while not discarding potentially
desirable branches.

FBS is a heuristic B&B procedure that uses BFS but only the top “best” nodes
are kept. At each stage of the tree, it generates all successors for the selected nodes
at the current stage, but only stores a predetermined number of descendent nodes at
each stage, called the beam width (Fig. 11.3).

In the proposed procedure, we have the option of using either the BFS or the FBS
scheme. For the latter, we need to specify an appropriated beam width.

We consider the activities to be in one of four states: “to begin,” “pending,” “active”
(i.e., ongoing), and “finished.” To get the first activities with which to initiate the
process, we search all activities that do not have any predecessors. These activities
are set to the state “to begin.” All others are set to the state “pending.”
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Activities in the state “to begin” are analyzed in order to check resources avail-
ability. If we have enough resources, all activities in the state “to begin” are modified
to the state “active”; otherwise, we apply in sequence the following rules until the
resources conflicts are resolved:

1. Give priority to activities that are precedents to a larger number of “pending”
activities.

2. Give priority to activities that use fewer resources.
3. Give priority to activities in sequence of arrival to the state “to begin.”

An “event” represents the starting time of one or more activities, and the project
begins at event 0 in which no activity has started yet. Each activity must be allocated
exactly one unit of each resource. For each active activity, we calculate all the possible
combinations of levels of resources. Then, we aggregate all these combinations to get
the initial combinations of allocation modes for all “active” activities. These initial
combinations form branches through which we will get possible solutions for the
project. All combinations have a copy of the resource availability information and
activities’ current state.

If the FBS scheme is selected to obtain a solution, then:

1. If the number of combinations is less than the beam width value, all combinations
are kept.

2. Otherwise, the set of combinations must be reduced to the beam width value; so,
some combinations need to be discarded. To evaluate the best combinations, we
may pick one of the following rules:
Select the top best combinations that have:
a. Minimum duration
b. Minimum cost
c. Minimum cost/duration
Not all combinations of the set can be directly compared because the number
of activities that have been scheduled in each combination may differ. So, the
combinations are grouped by the number of activities that have already been
scheduled.
Then, the combinations are compared with the others that belong to the same
group. The final set is composed by a share of combinations of each group
formed before.
The ratio of each group in the final combinations set is calculated by:

ratio = groupcount

totalcombinations
(11.14)

In either case, we continue applying the following procedure to each combination:

3. To all activities in progress, we find the ones that will be finished first, and set
that time as the next event.

4. We update activities found in step 1 to state “finished” and release all the resources
being used by them.
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5. For all activities in the state “to begin,” we seek the ones that can begin, the
same way we did when initiating the project. Activities in the state “to begin” are
analyzed in order to check resource availability. If no resource conflict exists, all
activities in the state “to begin” are set to state “active” and resources are set as
being used; otherwise, we apply in sequence the rules described above.

6. For all activities in the state “pending,” we check for precedence relationships.
For all activities that are precedence feasible, their state is updated to state “to
begin.” These activities are not combined with the previous set of “to begin”
activities to give priority to activities that entered first in this state.

7. If there are resources available and any pending activities were set “to begin,”
we apply step 5 again.

8. For all new “active” activities, we set their start time to the next event found in
step 3 and determine all the possible combinations of its resource levels. Then
we join all found combinations for these activities, getting new combinations to
add to the actual combination being analyzed. This generates new branches for
investigation.

9. We continue by applying step 1 (or 3) to each new combination until all activities
are set to state “finished.”

10. When all activities reach the “finished” state, we obtain a valid solution for the
problem.

We evaluate the project completion time and the total cost incurred for all complete
solutions, and choose the best among them.

A flowchart of the proposed solution method is shown in Fig. 11.4.

Computational Results and Analysis

The proposed solution method was implemented in C#, an object-oriented program-
ming (OOP) language, using Visual Studio 2010. To construct the project network
(in AoN), we used Graph#, an open source library for. Net/WPF applications that is
based on a previous library QuickGraph. These libraries support GraphML that is
an XML-based file format for graphs although we defined our own particular xml
format.

The following computational tests were performed on an Intel® Pentium® M
@1.20 GHz 1.25 GB RAM.

Three-Activity Network

Consider a three-activity network for four resources, one with two levels and the
others with three different levels. Assume the following parameter values for earliness
and lateness costs: γE = −10, γL = 20, and the due date TS = 24 (Table 11.3).
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Table 11.3 Three-activity
network solution values
obtained using the BFS
scheme

tn CE CT CR TC Runtime (ms)

16 80 0 230 150 44

The BFS scheme generates 972 combinations for the three-activity network. We
used a beam width between 20 and 900. As we can see by the results exhibited in
Table 11.4, the “duration” evaluation type was the best for this network, achieving the
same result that was obtained for the BFS scheme, even for the smaller beam width.
The evaluation type “cost” performed better than the “cost/duration,” which did not
achieve the best solution even with a beam width of 900. However, “cost/duration”
evaluation gave the lowest project cost when the bonus or penalty CR = 193 was not
considered.

As can be observed from Fig. 11.5, the quality of the solutions achieved increases,
i.e., the value of the TC decreases or remains equal with increase in the beam width
value. This does not happen for the project cost CR. On the contrary, this variable is
highest for the best solutions. The reason for this difference has to do with the bonus
and due date specified. These values make us achieve best solutions with unprofitable
CR values, because these complete the project earlier. If the earliness and lateness
costs where: γE = 0, γL = 0, the best solution would be CR = 189, TC= 189, and
tn = 30.

Five-Activity Network

Consider a five-activity network with the same resources as the three-activity network
above. Assume the following parameter values for earliness and lateness costs: γE =
−10, γL = 20, and the due date TS = 30 (Table 11.5).

The BFS scheme generates 104,976 combinations for the five-activity network.
We varied beam width between 50 and 100,000. As we can see by the results exhibited
in Table 11.6, the “duration” evaluation type was faster in reaching results similar
to the ones obtained for the BFS scheme. The other evaluation types are far from
the solution obtained for the BFS algorithm using lowest beam widths but achieved
better CR (project cost without bonus or penalty) values, CR = 323 for “cost” and
CR = 315 for “cost/duration” type (Fig. 11.6).

Again, we obtain better TC for worst CR values, but in this case, the bonus is never
materialized. For this project, our method could not find a solution with a completion
time less than or equal to the due date 30; the earliest time for completion is 36. If
the earliness and lateness costs where γE = 0, γL = 0, the best solution would be
CR = 315, TC= 315, and tn = 68.

A plot of the TC and CR values obtained for the BFS scheme, and γE = −10,
γL = 20, against several due dates, is shown in Fig. 11.7.

Note that starting from TS = 36, the total project cost takes advantage of the
bonus independent of the particular bonus and penalty cost parameter values. So,
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Table 11.4 Three-activity network solution values obtained using the FBS scheme
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Fig. 11.5 Variations of TC and CR values versus beam width for evaluation types cost, duration,
and cost/duration

Table 11.5 Five-activity
network solution values
obtained using the BFS
scheme

tn CE CT CR TC Runtime (s)

36 0 120 400 520 18

for this project, it would be profitable to adjust the due date specified first to a value
higher than 36.

Ten-Activity Network

Now, consider a ten-activity network for five different resources, three of them with
two possible levels, one having five levels, and the last one with three elective levels.
Assume the following rates for earliness and lateness costs: γE = −15, γL = 20,
and the due date TS = 36 (Table 11.7).
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Fig. 11.7 Variation of TC and
CR values versus due dates for
the BFS scheme
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A solution could not be achieved in a reasonable time for the BFS scheme.
We observed a performance decrement in runtime values. This project, besides

having more activities than the previous ones, also has more resources and resources
levels. Therefore, it is of higher complexity than the previous ones. The evaluation
type “cost” provides the best solutions, with a TC = 360 for a beam width of
50,000. We achieved reasonable solutions for “duration.” However, weak solutions
were obtained for “cost/duration.”

As can be seen in Fig. 11.8, there is no significant difference between the TC and
the CR values. However, the “cost/duration” values are worse as the penalty cost for
all beam width values was applied to this one.

Let us analyze the TC and CR, obtained for different due dates, using the same γE ,
and γL. The beam width analyzed is the 50,000, for the “cost” and the “duration”
evaluation types (Fig. 11.9).
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Fig. 11.9 Variation of TC and CR values versus due dates for evaluation types cost and duration

For both evaluation types, there is a due date from which the total project cost
takes advantage from the bonus; this due date is greater than 27 for “cost” and greater
than 23 for “duration.”

Twenty-Activity Network

Consider a twenty-activity network for the four resources with three different levels
each, with the following parameter values for earliness and lateness costs: γE = −10,
γL = 20, and the due date TS = 70 (Table 11.8).

The proposed method could not achieve a solution using the “duration” evaluation
type and beam widths of 5,000 and 10,000 because of computing memory limitations.
However, the best solutions were achieved by the “duration” evaluation type TC =
1479. Once again, the “cost/duration” type performed poorly, and the “cost” type,
even with a twenty times higher beam width, did not achieve a better solution than
the one obtained by a beam width of 500. The bad performance of the “cost” type is
directly related to the due date specified 70. For a due date TS = 135, we would get
a TC = 846, which is identical to the CR obtained for a beam width of 50.
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Fig. 11.10 Variations of TC and CR versus different due dates for evaluation types cost and duration

In Fig. 11.10, we depict variations of the TC and CR values over different due
dates using the same γE , and γL values. The beam width used is 3,000 for the “cost”
and the “duration” evaluation types.

The due dates, for which the total project cost takes advantage of the bonus, are
110 and 70 for “cost” type and “duration” type evaluations, respectively.

For γE = 0, γL = 0, the solution obtained for the “cost” evaluation type is
TC = CR = 846, and tn = 135. For the “duration” evaluation type we have TC =
CR = 1479 and tn = 70. So, according to the penalty and bonus values, there is the
possibility for adjusting the due date in order to get the advantage of the best of these
solutions.

Thirty-Activity Network

Next, we considered a thirty-activity network for four different resources, three of
them with two possible levels and one having four levels. Assume the following rates
for earliness and lateness costs: γE = −10, γL = 10, and the due date TS = 100
(Table 11.9).

The best solution found for this network was TC = 557 with the evaluation
type “cost.” In the solutions achieved using the “duration” type, we obtain a better
solution for the minimum beam width than for the higher ones. For a beam width of
50, the algorithm was able to preserve lowest cost solutions even with a small range
of branches in the search tree. The higher beam width values gave best solutions
in terms of project duration, but they were inferior in terms of total project cost
calculations. Again, the “cost/duration” type achieved worse solutions than the other
two evaluation types. The variations of TC and CR values over different beam widths
for each of the evaluation types are depicted in Fig. 11.11.

With γE = 0, γL = 0, the best solution for “cost” is TC = CR = 668 and tn = 94.

For the “duration” evaluation type we have TC = CR = 746 and tn = 87.

Observing the graphics of the TC and CR values obtained for different due dates
using γE = −10, γL = 10, and beam width of 5,000, note that they both have the
same due date from which a bonus or a penalty is applied TS = 87 (Fig. 11.12).
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Fig. 11.11 Variation of TC and CR versus beam width for evaluation types cost, duration, and
cost/duration
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Fig. 11.12 Variation of TC and CR versus different due dates for evaluation types cost and duration

Remark

The performance of an evaluation type seems to be intrinsically reliant on project
characteristics and especially on the defined values of bonus, penalty, and due date.
For complex project networks, an increase in beam width until it is computationally
feasible to obtain a solution does not offer, necessarily, better solutions. For each
project, there exists a specific due date beyond which the bonus or the penalty is
realized. Knowing the recommended solution for a project (obtained using different
evaluations types) without considering the bonus, penalty, or due date can be useful,
especially when there is a possibility of negotiating their values.

Conclusions and Further Research

The RCPSP belongs to the class of NP-hard problems (Blazewicz et al. 1983).
However, this problem becomes more difficult to solve when practical issues such
as multiobjective, multimode, and multiproject ones are included. A heuristic-based
approach is the best approach to use in such a case.
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In this chapter, we have addressed a RCPSP with multiple resource modes avail-
able at different levels. Given a due date, the objective is to allocate resources to all
activities of the project so as to minimize the total cost encountered because of re-
source utilization, plus the net gain (bonus) accrued from finishing the project earlier
or the penalty incurred for finishing the project late. We have presented a mathemat-
ical formulation for this problem and have developed an FBS-based method for its
solution. This is essentially a B&B-based method except for a limited number of
branches that are kept at a node.

Different criteria were used to evaluate a node, namely, cost, duration, and
cost/duration. A cost-based criterion was found to generate better solutions, as ex-
pected. However, we observed that even the duration-based criterion generated good
solutions (lowest cost values) for smaller beam width. The cost/duration evaluation
criterion was found to always give inferior results. Although we have developed an
effective procedure for the solution of this problem, yet it requires further investiga-
tion to study the problem’s inherent properties, which can further aid in obtaining
solutions of better quality in reasonable CPU times.
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Chapter 12
Hybrid Flow Shop Scheduling with Availability
Constraints

Hamid Allaoui and Abdelhakim Artiba

Introduction

The rapid evolution and highly competitive nature of today’s global markets give the
operation–production function a role of first importance in the global competitiveness
of companies. Nowadays manufacturers are facing an economy where competition
is based on products of high quality offered at lower prices while respecting due
dates. In this context the reduction of costs and the improvement of quality become
the principal concerns of those who seek to improve performance.

In the field of industrial production, the current tendencies indicate that the pow-
erful manufacturing systems must be quickly adapted to fluctuations of the market
(random requests) and to internal disturbances (breakdowns of the machines). The
machines must be simultaneously able to manufacture several types of products in
small quantities. In such a context, the optimal planning of production, reduction of
the production cycle time, and the control of these machines increasingly become the
main objectives for both investors and producers. Under these conditions, the joint
determination of the production rate, the maintenance policy, and the scheduling
rule which minimize the operations costs of these systems is an important research
problem in the production systems area.

Production and maintenance are two important interrelated functions in any in-
dustrial process. In the past, production and maintenance have been treated as two
separate functions. Nowadays because of their widely recognized interdependence,
there is an increasing interest in developing optimization models that take into
consideration the integration of the two functions.

One area where integration between maintenance and production functions can
be advantageous is scheduling. Both production and maintenance scheduling must
recognize the realities of the other’s needs. A classic question is: under what
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circumstances does production schedule around maintenance versus maintenance
scheduling around production? The integration of the two scheduling systems gives
both functions the ability to accomplish their scheduling more productively, leading
to greater plant utilization.

Most of the literature on scheduling assumes that machines are available at all
times. However, due to maintenance activities machines cannot operate continuously.
In general, maintenance activities can be classified into two categories: preventive
and corrective. For preventive maintenance the machine is checked, repaired, and
recalibrated before failure. On the other hand, for corrective maintenance the machine
is repaired following breakdown.

In the case of preventive maintenance the question is whether the maintenance
decision will be done separately or jointly with the job scheduling decision. If the
maintenance decision is made separately in advance, the nonavailability periods will
then become a constraint for job scheduling. On the other hand, if the maintenance
decision is made jointly with the job scheduling the start time and duration of the
machine nonavailability interval is a decision variable. In the case of corrective
maintenance the question for a partial failure is whether we should stop the machine
now and repair it immediately or repair it later. If we do not repair it, the machine
can still operate at a less-efficient speed. On the other hand, for a complete failure
which can happen at any time, the machine should be repaired to be back to normal
speed.

Scheduling under maintenance constraints has attracted much attention recently.
The nonavailability consideration adds complexity to any scheduling problem. In this
research we deal with the hybrid flow shop scheduling problem supposing that the
decision of preventive maintenance is already made and the corrective maintenance
is not considered.

Three directions have always been important in the investigation of scheduling
problems. The first is the investigation of computational complexity. The second is
the search for exact algorithms that give optimal solution. If the time needed by these
algorithms is excessive, heuristics to give approximate solutions will be investigated.

In this chapter, exact methods will be investigated. We first study the two ma-
chine flow shop scheduling problem to minimize the makespan under availability
constraints in the nonresumable case. The two-machine flow shop without avail-
ability constraint is a polynomial problem (Johnson 1954). However if we consider
only one nonavailability period on either the first or the second machine the prob-
lem becomes Non-deterministic Polynomial-time hard (NP-hard) (Lee et al. 1997).
To solve this problem optimally we propose a dynamic programming model whose
computational time is independent of the processing times of jobs. We then propose
a branch and bound algorithm to schedule a two-stage hybrid flow shop with only
one machine at the first stage and m identical machines at the second stage under
availability constraints, in nonresumable case, to minimize the makespan which is
NP-hard in the strong sense. The time required by this algorithm is still reasonable
for small size instances.
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Problem Statement

A common manufacturing environment in many industries (such as the glass, steel
paper, textile, and semiconductor) is a hybrid flow shop. This scheduling system is
a combination of the serial and parallel shop organizations. In this chapter we deal
with hybrid flow shop scheduling problems assuming that machines may become
unavailable during certain periods. Indeed most of the literature on scheduling prob-
lems assumes that the machines are always available during the scheduling period.
However in most industrial settings a machine can be unavailable for maintenance
activities, such as unforeseen breakdowns (stochastic unavailability) or scheduled
preventive maintenance where the periods of unavailability (also called gaps) are
known in advance (deterministic unavailability). Under such circumstances, special
consideration is needed in order to obtain optimal solutions.

Hybrid Flow Shop

A hybrid flow shop (HFS), also called a flexible flow shop, is a multistage production
system consisting of a set of u stages with each stage k (1 ≤ k ≤ u) having mk paral-
lel machines such that all jobs have to be processed through all the stages in the same
order: there are n jobs Ji (1 ≤ i ≤ n), each job consisting of a chain of u operations
Oi1, . . . , Oiu that have to be executed in this order. In the classical flow shop each stage
contains only one machine. At any time each job can be processed by at most one ma-
chine and each machine can process at most one job. The assumptions are as follows:
(i) all N jobs are independent and available for processing at time t = 0 (i.e., ∀i :
ri = 0), (ii) machines of the same stage are identical, (iii) the processing time pi,k of
each job i on stage k is known, (iv) preemption and splitting of job is not allowed: a
job, once started on a machine, continues in processing until it is completed; (v) jobs
are allowed to wait between two stages, and the storage is unlimited. The objective
function is to minimize the maximum completion time Cmax.

Maintenance Constraints

Most of the literature on scheduling assumes that machines are available at all times.
However, due to various reasons, machines may not be always available in many
realistic situations. Therefore, a more realistic scheduling model should take into
account the following machine maintenance activities:

• Preventive maintenance: where maintenance is performed on a scheduled basis
with scheduled intervals often based on manufacturers’ recommendations and
past experience with the equipment. This may involve replacement or repair, or
both.
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• Corrective maintenance: replacement or repair is performed only at the time of
failure. This may be the appropriate strategy in some cases, such as when the
hazard rate is constant and/or when the failure has no serious cost or safety
consequence or it is low on the priority list.

The problem of integrating production and preventive maintenance has been ap-
proached in the literature in two different ways. Some authors approached this
problem by determining the optimal preventive maintenance schedule in the pro-
duction system and others by taking maintenance as a constraint to the production
system (Ben Daya 1999; 1998a) and (Ben Daya and Makhdoom 1998b). Thus the
question is whether the preventive maintenance scheduling decision will be done
separately or jointly with the job scheduling decision. In this chapter we assume that
the preventive maintenance for each machine is done in the specified window), and do
not consider breakdown maintenance. There are three types of machine unavailability
(Lee et al. 1997; Lee 1997; Lee 1996) discussed in the literature:

• Resumable :A machine is called resumable if a job that cannot be finished before a
down period of a machine can be continued without any penalty after the machine
becomes available again.

• Nonresumable : A machine is called nonresumable if the job that cannot be com-
pleted before a period of machine nonavailability must be totally restarted rather
than continuing after the machine is brought back on line.

• Semiresumable : A machine is called semiresumable if the nonfinished job before
a period of machine nonavailability must be partially restarted. There are two
types of semiresumability: In Type−I , in addition to processing the nonfinished
part, the machine needs to process extra work that is proportional to the finished
part of that job. In Type−II , if a job is not processed to completion before the
machine is stopped for maintenance, an additional setup is necessary when the
processing is resumed.

Notation

In order to be able to refer the problem under study, we use a three field notation
α | β | γ presented in (Kubiak et al. 2002; Lee 1997) taking into account the
availability constraints:

• F2(P ), akj,l| r |Cmax : Minimizing the makespan in a hybrid flowshop with a
resumable availability constraint and an arbitrary number of gaps (l) on each
machine (j ) on each stage (k);

• F2(P ), akj,l| nr |Cmax : Minimizing the makespan in the two-machine flowshop
with a nonresumable availability constraint and an arbitrary number of gaps (l)
on each machine (j ) on each stage (k);

• F2(P ), akj,l| sr |Cmax : Minimizing the makespan in the two-machine flowshop
with a semiresumable availability constraint and an arbitrary number of gaps (l)
on each machine (j ) on each stage (k);
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For example F2(P ), h11,l| (m1 = 1, m2 = 2), nr |Cmax represents the problem of
minimizing makespan in the two stages hybrid flow shop with one machine at the
first stage and two at the second stage under a nonresumable availability constraint
and an arbitrary number of gaps at the first stage and no gaps at the second stage.

For the classical two machine flow shop problem it is more convenient to use
Lee’s notation (Lee et al. 1997).

• F2|r − a(Mj )|Cmax : Minimizing the makespan in the two-machine flow shop
with a resumable availability constraint on the machine Mj .

• F2|nr − a(Mj )|Cmax : Minimizing the makespan in the two-machine flow shop
with a nonresumable availability constraint on the machine Mj .

Literature Review

The hybrid flow shop is a nontrivial problem. Most of the works explore three
different issues: computational complexity, modeling criteria, and constraints and
solution methods. In terms of complexity hybrid flow shop scheduling problems can
be roughly grouped into three categories: (1) the two-stage hybrid flow shop, (2)
the three-stage hybrid flow shop, and (3) k-stage hybrid flow shop. Most theoreti-
cal research on HFS scheduling deals with single criterion problems, among which
the minimization of makespan is the most common. Other objectives considered in-
clude the minimization of the maximum tardiness, the total flow time and the sum of
completion times. Researchers have recently give more attention to maintenance or
availability constraints in a single machine, flow shop, and parallel machines prob-
lems but not yet for hybrid flow shop problems with more than one stage and more
than one machine at each stage. The HFS scheduling problems will be reviewed from
the point of view of complexity, exact methods, and heuristics.

Hybrid Flow Shop

Complexity Most of the work in the hybrid flow shop scheduling literature that
addresses complexity is done on the single and two-stage hybrid flow shop. While
interesting results have been obtained for these cases, there has been less work on the
k-stage (k ≥ 3). For the single stage hybrid flow shop which is the parallel machine
problem, Karp (1972) has proved that the problem of minimizing the makespan with
only two machines without preemption P 2| |Cmax is NP-hard in the ordinary sense.
The only variant of the hybrid flow shop problem solved in polynomial time is the
classical two-machine flow shop F2 |.|Cmax solved by (Johnson 1954). Garey et al
(1976) have shown that the problem F3 |.|Cmax is NP-hard in the strong sense. It
has been shown by Hoogeveen et al. (1996) that the problem F2(P ) |.|Cmax is NP-
hard in the strong sense even if there is only one machine at the first stage and two
machines at the second stage under both preemption and non-preemption.
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Exact Methods Branch and Bound methods have been widely used in hybrid flow
shop for finding an optimal solution. The Branch and Bound (B&B) algorithms of
Salvador (1973), and Rajendran and Chaudhuri (1992) can be used to solve two-stage
HFS with two parallel identical machines at the first stage and only one machine at
the second. Brah and Hunsucker (1991) give B&B algorithm to solve k-stage (k ≥ 3)
HFS problem which is modified later by Portman et al. (1998). The B&B approaches
have not been used in real world application because of their high computational
requirements.

Two-Stage HFS We will review works in the two-stage hybrid flow shop literature
according to six categories. The first category involves a single machine at the first
stage and parallel identical machines at the second stage (m1 = 1, m2(I ) = m > 1).
Several studies have been reported for the second category with parallel identical
machines at the first stage and one machine at the second stage (m1(I ) = m > 1, m2 =
1). The third category consists of one machine at the first stage and nonidentical
machines at the second stage (m1 = 1, m2 = m > 1). The fourth category involves
parallel nonidentical machines at the first stage and only one machine at the second
stage (m1 = m > 1, m2 = 1). In the fifth category we find identical machines at both
stages (m1(I ) > 1, m2(I ) > 1). In the last category the problem studied is dealing
with nonidentical machines at both stages (m1 > 1, m2 > 1).

In the first category Sriskandarajah and Sethi (1989) deal with the problem of
minimizing the makespan. They show that an arbitrary sequence has a worst case
performance (wcpb) ratio of 3 − 1

m
. They develop a heuristic based on Johnson’s

rule and show that its wcpb is equal to 3− 3
m
+ 1

m2 . Gupta et al. (1991) develop two
heuristics to approximately minimize the makespan. In the second category Chen et
al. (1998) considered Gupta’s heuristics for the two-stage hybrid flow shop with a
single machine at the second stage and determines its wcpb to be of 3 − 2

m
. Gupta

(1988) develops an efficient heuristic algorithm for finding an approximate solution.
He proposes using Johnson’s rule to first sequence the jobs using only one machine at
each stage, then assigning jobs to the machines at the first stage in order to minimize
the additional idle time at the second stage. His computational experiments are limited
to only two machines at the first stage. Chen et al. (1998) classifies the heuristics
for this problem into three classes and performs some empirical comparisons among
selected heuristics in three classes.

In the third category Narasimhan and Panwalkar (1984) develop a heuristic known
as the cumulative minimum deviation (CMD) rule. It is proved to be better than Short-
est Processing Time (SPT) and Longest Processing Time (LPT) in decreasing the
machine idle time and in-process waiting at the second stage. In the fourth category
Elmaghraby and Soewandi (2001) propose a new heuristic based on viewing the
second stage as sequencing jobs with “ready times” that are obtained by processing
the jobs optimally at the first stage. Gupta (1988) proposes four heuristics. The two
first heuristics H1 and H2 have a wcpb of 2, and the two last heuristics have a wcpb
of 2 − 1

m
.

Among works in the fifth category we can cite the work of Sriskandarajah and
Sethi (1989). These authors consider the problem when m1 = m2.They show that
Johnson’s sequence has a wcpb 3− 1

m
and their heuristic has an error bound between
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7
3 − 2

3 m
and 3 − 1

m
. Langston (1987) first shows that if a random sequence has a

wcpb bounded by 3 − 1
m

. He also shows that if the jobs are sequenced according
to the SPT rule with respect to pi,1, then the wcpb is bounded by 5

2 , and that the
wcpb will be improved to 2 if the sequence is arranged in nondecreasing order of
pi,2. Lee and Vairaktarakis (1994) develop a heuristic H that has an error bound of
2− 1

max(m1,m2) . This bound extends a recent bound for the case (m1 = 1, m2 = m > 1)
and significantly improves all other results for some special cases of the two-stage
hybrid flow shop.

The general case of the last category involving multiple machines at both stages
has been addressed by Narasimhan and Mangiameli (1987) and Paul (1979). Paul
examines production scheduling problems in the glass container industry in which
there are four stages with several unrelated machines in each stage. The author
chooses the first two stages to develop the scheduling and formulates it as a job shop
problem. The objectives are to minimize the number of tardy jobs and the average
tardiness. To find a solution, a simulation method is adopted to test dispatching rules.

Three-Stage HFS Adler et al. (1993) consider the three-stage problem with parallel
nonidentical machines at stages 1, 2, and 3 (m1 > 1, m2 > 1, m3 > 1) in the Bagpak
Production Scheduling System (BPSS), a scheduling support system for plants that
produce paper bags. The production process consists of three stages, but not all
orders have to go through all three stages. They try to achieve a compromise among
three objectives of minimizing: (i) the sum of tardiness; (ii) the sum of setup times;
and (iii) the work-in-process inventory. Riane et al. (1998) focuses on a three-stage
hybrid flow shop to minimize the makespan with one machine at stages 1 and 3,
and two machines at the second stage. The two machines at the second stage are
dedicated (i.e., it is known beforehand on which of the two machines each job will
be processed). They propose two heuristics, one based on dynamic programming
and the second one on a branch and bound algorithm. They evaluate the performance
of these heuristics by an experimental study. Jin et al. (2002) treat a three-stage HFS
for the production of printed circuit boards. They propose a global procedure that
utilizes a genetic algorithm and three subproblems to minimize the and evaluate their
performance using computational experiments.

k-Stage HFS The k-stage problem with parallel identical machines at each stage
(m1(I ) > 1, m2(I ) > 1, . . ., mk(I ) > 1) is studied by Wittrock (1985, 1988). He
presents an algorithm that schedules the loading of parts. The objective is primar-
ily to minimize the makespan and secondarily to minimize queueing. Zhou et al.
(1996) consider the k-stage problem with parallel nonidentical machines at each stage
(m1 > 1, m2 > l, . . ., mk > 1). They propose a concept of synthetic knowledge and
a heuristic node-path intelligent search method. The objective they use is to min-
imize the number of changeovers on all machines. The most general heuristic for
the k-stage HFS problem with parallel identical machines is provided by Lee and
Vairaktarakis (1994) who show that the wcpb r of their heuristic is:

r ≤ k − 1

max{m1, m2} −
1

max{m3, m4} − . . .− 1

max{mk−1, mk} .
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For some special cases of the k-stage HFS problem, this bound improves
significantly all the previous results.

Approximation Schemes Schuurman and Woeginger (2000), Hochbaum and
Shmoys (1987), Hall (1995), and Williamson et al. (1997) investigate the ap-
proximation behavior of the F (P ) | | Cmax problem. Their known results on the
approximation of the hybrid flow shop problem are summarized in Table 12.1.

Table 12.1 Approximation
schemes

Number of machines per stage

=1 Constant Arbitrary
k =1 Trivial FPTAS PTAS
stages =2 Polynomial PTAS PTAS

Constant ≥ 3 PTAS PTAS Open
Arbitrary �PTAS �PTAS �PTAS

The single-stage flow shop is the ordinary multiprocessor scheduling problem P

| | Cmax. When the number of machines is constant, Sahni (1976) proves that the
problem possesses a pseudopolynomial solution algorithm that can be used to con-
struct a Fully Polynomial-Time Approximation Scheme (FPTAS). When the number
of machines is part of the input, the problem is strongly NP-hard, and hence the
Polynomial-Time Approximation Scheme (PTAS) of Hochbaum and Shmoys (1987)
is the best possible approximation result unless P=NP. The two-stage flow shop can
be solved in polynomial time if m1 = m2 = 1 Johnson (1954). For the cases where
the number k of stages and the number of machines per stage all are constants, Hall
(1995) constructs a PTAS. Schuurman and Woeginger (2000) construct a PTAS for
the problem of two stages and an arbitrary number of machines per stage. Determin-
ing the approximation behavior of the k-stage HFS F (P ) | | Cmax where k > 3 is
a constant and where the number of machines is part of the input, is still an open
Hall (1995) question in the area of hybrid flow shop. Finally, for the case where
the number of stages is part of the input, Williamson et al. (1997) prove that the
existence of a polynomial time approximation algorithm with worst-case ratio less
than 5

4 would imply P = NP.

Scheduling with Availability Constraints

Generally the limited availability of machines is due to the maintenance constraints
(preventive and breakdowns). It may also result from other reasons. An example is
the case of preschedules which exist because most real world resource planning prob-
lems are dynamic. Thus machine unavailability can arise when machines continue to
process unfinished jobs scheduled in the previous planning period at the beginning
of the new planning period. In this section we review all works related to this area
under two categories: the first contains deterministic problems which involve pre-
ventive maintenance and the second stochastic problems taking into consideration
breakdowns.



12 Hybrid Flow Shop Scheduling with Availability Constraints 285

Machine scheduling with availability constraints is an important topic in schedul-
ing (see, for example, Blazewicz (1988) and Pinedo (2002)) and has attracted much
attention recently (see the surveys by Lee et al. (1998) and Schmidt (2000)). The
nonavailability consideration adds complexity to any scheduling problem. In this
section we focus only on works concerning flow shop scheduling with availability
constraints.

Deterministic Case For the resumable case, Lee et al. 1997 shows that both
F2|r − a(M1)|Cmax and F2|r − a(M2)|Cmax are NP-hard, where r − a(M1) and
r − a(M2) indicate that there is only one nonavailability interval on each of machine
1 and machine 2, respectively. If s1 = s2 = 0 then Johnson’s algorithm is optimal for
F2|r − a|Cmax. He also shows that for F2|r − a(M1)|Cmax, the wcpb of Johnson’s
heuristic is equal to 2. He provides two heuristics with error bound of CH1

c∗ ≤ 3
2

and CH2
c∗ ≤ 4

3 . He notes that the problem is irreversible, an important characteris-
tic that is distinct from the classical flow shop problem. Cheng and Wang (2000)
provide an algorithm for the F2|r − a(M1)|Cmax problem with an improved error
bound of CH

c∗ ≤ 4
3 . Kubiak et al. (2002) show that no polynomial-time algorithm

with a fixed worst case performance ratio exists unless P = NP. They construct a
branch and bound algorithm to solve the problem optimally with multiple nonavail-
ability intervals. Blazewicz et al. (2001) use local search based heuristics for the
F2|r − a(M1)|Cmax problem. Braun et al. (2002) derive sufficient conditions for
the optimality of Johnson’s permutation in the case of one or more nonavailability
intervals. They show that usually Johnson’s permutation remains optimal in the case
of nonavailability intervals.

For the nonresumable and semiresumable cases, Lee (1999) studies the F2|sr1−
a|Cmax where an availability constraint is imposed on only one machine or on both
machines. The problem is clearly NP-hard because a special case, 1|nr− a|Cmax, is
already NP-hard. Furthermore, the problem with multiple nonavailability intervals
is strongly NP-hard as its single machine special case is already strongly NP-hard
(2001). Lee (1999) provides a pseudo-polynomial dynamic programming algorithm
to solve the F2|sr1 − a(M1)|Cmax problem optimally in which the semiresumable
availability constraint is imposed on machine 1. He shows that wcpb of Johnson’s
algorithm is equal to 2. Thus, both the resumable and nonresumable cases have the
same error bound which is independent of the value of α. On the other hand, if we
apply Johnson’s algorithm to the F2|sr1 − a(M2)|Cmax then CJA

C∗ ≤ max{ 3
2 , 1 + α}

and the bound is tight. He develops an improved heuristic with wcpb ≤ 3
2 . It is also

shown by Lee and Vairaktarakis (1994) that for the problem where an availability
constraint is imposed on both machines, F2|sr1−a(M1, M2)|Cmax, is NP-hard even
if s1 = s2 = s, and t1 = t2 = t. For such a special case, s1 = s2 = s, and t1 = t2 = t

we have CJA
C∗ ≤ 1 + α.

Stochastic Case Allahverdi and Mittenhal (1998) address the problem of minimiz-
ing makespan in a two-machine flowshop when the machines are subject to random
breakdowns. They first show that it is sufficient to consider the same sequence of
the jobs on each machine. After providing an elimination criterion for minimizing
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makespan with probability 1, they show that under appropriate conditions Johnson’s
algorithm stochastically minimizes makespan.

Allahverdi and Mittenhal (1998) consider a two-machine fowshop scheduling
problem where machines suffer random breakdowns and processing times are con-
stant with respect to both makespan and maximum lateness objectives. They provide
an elimination criterion for a two machine flow shop when both machines are sub-
ject to random breakdowns. They show that the LPT and SPT orders are optimal
with respect to both criteria in a two machine flow shop when the first or the second
machine, respectively, suffers stochastic breakdowns.

From this brief literature review, we first conclude that the problem of two-
machine flow shop with availability constraints is widely studied. The most important
work is presented by (Lee et al. (1997)). In this chapter, we try to give an alternative
model to solve the problem for optimality. We also conclude that few of works are
dedicated to hybrid flow shop scheduling with availability constraints. This obser-
vation motivates us to propose a modified branch and bound algorithm to optimize
the makespan in his shop environment.

Scheduling the Two-Machine Flow Shop With Availability
Constraints

This section is concerned with the problem of scheduling n immediately available
jobs in a flow shop composed of two machines to minimize the makespan, when it
is known that there shall be only one interruption in machine availability either on
the first machine or on the second machine. For convenience we call the period of
unavailability a “gap” (Allaoui et al. 2006). The two machine flow shop (without
a gap) with the objective of minimizing the makespan is perhaps the first “multi
machine” scenario ever treated by researchers in the field. Its optimal solution is due to
Johnson (1954). Since that date it has witnessed several extensions and variations; see
Lee (1997) and Lee et al. (1997) for a comprehensive review of earlier contributions.
Lee proves that the problem with one gap on only one machine is NP hard in the
ordinary sense.

The processing times of job i are given by pi,1 and pi,2 on the first and second
machine; respectively. The start time of the gap on machine j is denoted by sj , its
duration by g, and its termination by tj = sj +g; ( j = 1, 2). We assume that machine
j , j = 1, 2, is unavailable during the period from sj to tj

(
0 ≤ sj ≤ tj

)
while the other

is always available. First, we characterize the problem instances in which Johnson’s
rule gives the optimum solution. We then propose a dynamic programming to solve
the first problem whose computational time is independent of processing times but
exponential in the number of jobs, if the gap is on the first machine. This reduces the
computational burden of the search for optimality drastically.

For simplicity, we refer to Johnson’s rule (JR) for optimizing the makespan in
the absence of the gap by JR, and to the order of jobs (the sequence) resulting from
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applying the rule by Johnson order (JO). The presence of the gap may render the JO
nonoptimal. Still, we shall adopt the JR as our heuristic.

Johnson’s rule (JR) : Divide the n-job set into two disjoint subsets, S1 and S2,
where S1 =

{
Ji : pi,1 ≤ pi,2

}
and S2 =

{
Ji : pi,1 > pi,2

}
. Order the jobs in S1 in

the nondecreasing order of pi,1 and the jobs in S2 in the nonincreasing order of pi,2.
Sequence jobs in S1first, followed by S2.

We adopt the following notations.

A : the set of jobs processed after the gap. AJR denotes the
jobs in Awhen following JR.

B : the set of jobs processed before the gap. BJR denotes the
jobs in Bwhen following JR.

∅ : indicates the absence of the gap.
G : indicates the presenceof a gap.
CJR

max (∅) : the makespan following JR when there is no gap,
it is optimal CJR

max (∅) = C∗
max (∅).

CJR
max (G) : the makespan following JR when there is a gap,

it may not be optimal.
C∗

max (G) : the optimalmakespan when there is a gap.
Ci,j (Sk) : the completion time of job i on machine j , i ∈ Sk.

Nk (B) : the subset of k jobs that are to be scheduled before the gap;
with Nk (A) = N −Nk (B) denoting the subset of n− k jobs
that are to be scheduled after the gap.

pi,j : the processing time of job i on machine j, j = 1, 2.

sj : the start time of the gap on machine j, j = 1, 2.

r : the resumable case.
nr : the nonresumable case.
tj : the end of the gap, tj = sj + g, j = 1, 2.

S1
{
Ji : pi,1 ≤ pi,2

}
. In JO the jobs in this set are

ordered in nondecreasing order of pi,1

S2
{
Ji : pi,1 ! pi,2

}
. In JO the jobs in this set are

ordered in nonincreasing order of pi,2

Lee (1997) proves an important lemma which characterizes the optimal solution
either when the gap is on the first machine or on the second machine.

Lemma (Lee’s (1997) Lemma 2, page 132.) There exists an optimal sequence such
that the jobs in the set B and the jobs in the set A are sequenced in JO.

Proof This assertion is proved by switching the order of two jobs in either B or A.
Such a switch can only increase the makespan by the optimality of the JO of either
sets.

Let us consider the gap on the first machine. In the two-machine flowshop with
availability constraints problem there are two types of idle time. The first is due to
the sequence of jobs, denoted by Iseq, and the second is due to the gap, denoted by
Igap. It is known that JO minimizes the sum

∑
Iseq (see Johnson (1954)). Hence its

optimality for the two-machine flowshop with a gap depends on wether it minimizes
Igap. Let JA

JO denote the first job completed after the gap on the first machine when
the jobs are sequenced in JO.
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Dynamic Programming Model

It is easy to determine the maximal number of jobs that “fit” in the interval [0, s1] :
Simply order the jobs in nondecreasing order of pi,1 and select the first n1 jobs for
which

∑n1
i=1 pi,1 ≤ s1 but

∑n1+1
i=1 pi,1 > s1. Then we know that no more than n1

jobs can be processed on the first machine before the gap. The issue now becomes:
which jobs? This may be answered in one of two ways. (It is this determination that
gives this problem its NP-hardness character.) One may solve a knapsack problem
and enumerate all its alternate optima, or one enumerates all subsets of cardinality
≤ n1, of which there are

(
n

1

) + (n2
) + · · · + ( n

n1

) ≤ 2n −∑n/2−1
r=0

(
n

r

)
. The inequality

is because if n1 > n/2 then we need to consider the jobs allocated to the set A.
Consider a subset of k jobs, k ≤ n1 that are to be scheduled before the gap.

Denote the subset by Nk (B) , and denote their processing time on the first machine
by P1 (Nk (B)) . That is,

P1 (Nk (B)) =
∑

i∈Nk(B)

pi,1.

Note that if P1 (Nk (B)) > s1 then this subset of jobs is deleted since it is not
eligible as candidate. This implies that we may end up evaluating fewer subsets
than the upper bound given above. For the remainder of this discussion we assume
that attention is limited to subsets with P1 (Nk (B)) ≤ s1. Clearly, if the jobs in
Nk (B) are the only jobs executed before the gap, then the remaining jobs, denoted
by Nk (A) = N −Nk (B) must start after the gap since

N = Nk (B)+Nk (A) .

By Lemma there exists a minimal makespan schedule such that the jobs in Nk (B) are
ordered in JO and the those in Nk (A) are also ordered in JO. Denote the makespan
obtained by such ordering of the jobs by Cmax (Nk (B)) . Clearly Cmax (Nk (B)) is
an upper bound (u.b.) on the value of the optimum, since it is a feasible schedule.
Let Ci,1 (Nk (B)) denote the completion time of job i on the first machine in subset
Nk (B); and define Ci,2 (Nk (B)) similarly for the second machine. Denote the com-
pletion time of the jobs in Nk (B) on the second machine by C2 (Nk (B))1. Identify
the first job after the gap generically by ja. Its start time on the first machine is
t1. Denote its start time on the second machine by sja ,2 ≥ t1 + pja ,1. The notation
is explained in Fig. 12.1. In the figure there is only one line representing the first
machine, but there are two lines representing the second machine, depending on the
completion time of the jobs in Nk (B) on the second machine relative to the comple-
tion time of job ja on the first machine. The first line of the second machine depicts
the case in which sja ,2 = t1 + pja ,1. The second line depicts the case in which sja ,2

is strictly greater than t1 + pja ,1.

1 Thus C2 (Nk (B)) = C2,l (Nk (B)) where l is the last job in the set B.



12 Hybrid Flow Shop Scheduling with Availability Constraints 289

M1

M2

M2

s1 t1

Set Nk(B) on M1

Set Nk(B) on M2

P1(Nk(B))

C2(Nk(B)
C2(Nk(B)

Job ja

sja,2 = t1+pja,1 

sja,2 = C2(Nk(B) > t1+pja,1

Fig. 12.1 Two cases of completion time of set Nk (B) on the second machine

Suppose that the set Nk (B) is augmented by job h which is currently in the set
Nk (A) so that we now have the set

Nk+1 (B) = Nk (B) ∪ {h}
that is supposed to be processed before s1. Job h is accepted as an augmentation
to Nk (B) if P1 (Nk+1 (B)) ≤ s1; otherwise it is rejected. The issue is to relate
the minimal makespan Cmax (Nk+1 (B)) to the old makespan Cmax (Nk (B)) ; which
would enable us to write the Dynamic Programming (DP) extremal equation. (Recall
that to achieve the minimal makespan under Nk (B) for any k ≥ 2 the jobs in Nk (B)

must be ordered in JO, and so are the jobs in Nk (A) .)
Denote the job immediately preceding job h in Nk (A) generically by h− 1, and

denote the job immediately succeeding it in Nk (A) generically by h+ 1. It is easy
to deduce that if Nk (B) is augmented by job h which is currently in the set Nk (A)

then the gain in the makespan, if any, is given by

v = sh+1,2 (Nk (A))− max
{
Ch−1,1 (Nk (A))+ ph+1,1, Ch−1,2 (Nk (A))

}
.

Let f (Nk (B)) denote the minimal makespan under set Nk (B) . Let

Nk−1 (B) = Nk (B)− {h} .
Then the DP extremal equation is given by

f (Nk (B)) = minh∈Nk(B) {f (Nk−1 (B))− v} .
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Iteration is initiated at k = 1 (i.e., subsets containing exactly a single job, j) for which
the makespan is determined following JO for the jobs in N − {j} which constitutes
the set A. Iteration is terminated when all subsets of size n1 have been considered.
The unconditional optimum is given by

mink=1,··· ,n1 {f (Nk (B))} . (12.1)

The worst case complexity of the procedure is nlogn + 2n1 . The advantage of this
model over others is that it’s complexity is independent of the processing times{
pi,j
}

, j = 1, 2.

Example Consider the following set of jobs

Job i 1 2 3 4 5 6
pi,1 : 2 6 10 4 10 4
pi,2 : 1 7 3 3 1 5

s1 = 9 and g = 3.

JR would yield the sequence: 6,2,3,4,1,5 with makespan equal to 45. It is easy to
deduce n1 = 2. The following table gives the dynamic programming iterations. The
set of jobs to be inserted before the gap is {1, 2, 4, 6}. Observe that we enumerated
only

(4
1

) + (42
) = 10

(" 26 = 64
)

subsets, and evaluated the makespan for only 8
subsets because two were infeasible. This procedure is a simple case of the procedure
given by Held and Karp (1962) due to the limited number of subsets that need to be
examined.

Stage Set B in JO Set Ain JO Cmax

1 {1} {6, 2, 3, 4, 5} 47
{2} {6, 3, 4, 1, 5} 43
{4} {6, 2, 3, 1, 5} 45
{6} {2, 3, 4, 1, 5} 45

2 {2, 1} {6, 3, 4, 5} 41
{4, 1} {6, 2, 3, 5} 43
{6, 1} {2, 3, 4, 5} 43
{6, 4} {2, 3, 1, 5} 41

The makespan given by dynamic programming procedure is 41 and the optimal
sequences are 2,1,6,3,4,5 or 6,4,2,1,3,5.

Combinatorial Approach

This approach may be viewed as a “shortcut” for the DP formalism discussed above.
Observe that once the set Nk (B) has been defined its optimal sequence is known,
as is the optimal sequence of the complementary set Nk (A) . There is no need for
optimization! The makespan is easily determined, and it is retained as the “best in
hand” if it is smaller than the last best in hand, else it is discarded.
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A pertinent observation in this regard is that we are interested in “packing” as
many jobs as possible before the time s1, whence enumeration of subsets should start
from the largest to the smallest. The superposition of simple elimination rules due to
dominance (as in the branch-and-bound approach) should speed up the calculations.

Example Consider the previous example. We knew that n1 = 2 and that the set of
jobs which can be in Bis {1, 2, 4, 6}. Therefore we start with subsets of cardinality 2.

{2, 1} feasible Cmax = 41
{4, 1} feasible Cmax = 43
{6, 1} feasible Cmax = 43
{4, 2} infeasible ×
{6, 2} infeasible ×
{6, 4} feasible Cmax = 41

Hence the optimal solution given by this approach is the sequence 2,1,6,3,4,5 or
6,4,2,1,3,5 with makespan equal to 41, as secured above. This procedure has the
same worst case complexity as the proposed DP.

The two machine flow shop scheduling is a special case of the two stage hybrid
flow shop. In the next section we focus on the two stage hybrid flow shop with more
than one machine in the second stage.

Scheduling the Two Stage Hybrid Flow Shop With Availability
Constraints

In this section we investigate the two-stage hybrid flow shop scheduling problem
with only one machine at the first stage and m identical machines at the second
stage to minimize the makespan Allaoui et al. (2006). At any time, every job can
be processed by at most one machine and every machine can process at most one
job. Jobs can wait between the two stages in unlimited storage. We assume that each
machine is subject to at most one unavailability period. The start and end time of
each period are known in advance and only the nonresumable case is studied. This
problem will be denoted as F2(P )|(m1 = 1, m2 = m), nr − a|Cmax.

Notations

We adopt the following notations.

Ji : Job i, i = 1, . . ., n.

Mj : Machine j at the second stage, j = 1, . . ., m.

pi,1 : Processing time of Ji at the first stage.
pi,2 : Processing time of Ji at the second stage.
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MS1 : The sum of processing time at the first stage (
n∑

i=1
pi,1).

MS2 : The sum of processing time at the second stage (
n∑

i=1
pi,2).

Ci,1 : The completion time of Ji at the first stage.
Ci,2 : The completion time of Ji at the second stage.
Cmax : The makespan.
s1 : The start time of the gap on machine in the first stage.
t1 : The finish time of the gap on machine in the first stage.
sj ,2 : The start time of the gap on Mj in the second stage.
tj ,2 : The finish time of the gap on Mj in the second stage.

Complexity Analysis

The only variant of the flow shop problem solved in polynomial time is the two-
machine flow shop F2 |.|Cmax (see Johnson(1954)). The problem F3 |.|Cmax is NP-
hard in the strong sense (see Garey and Johnson (1979)). The problem F2(P ) |.|Cmax

is NP-hard in the strong sense even if there is only one machine at the first stage and
two machines at the second stage (see Hoogveen (1996)).

Thus this proposition stands obviously.

Proposition 1 The problem F2(P )|(m1 = 1, m2 = m), nr − a|Cmax is NP-hard in
the strong sense.

Lee (1991) studies the problem Pm| |Cmax in which each machine has at most
one gap and shows that if there is no machine which is always available then no
polynomial approximation scheme exists unless P = NP. We can generalize this
result for the two-stage hybrid flow shop problem under the same assumption (there
is no machine which is always available) for the second stage. Therefore we assume
in the following that there is at least one machine at the second stage which is always
available.

To solve the k−stage hybrid flowshop scheduling problems, the only exact method
available is the branch and bound of Brah and Hunsucker (1991). In this chapter we
use the concept of B&B to solve the two-stage hybrid flow shop with availability
constraints when there is only one machine at the first stage and m machines at the
second stage. The branch and bound algorithm consists of three steps: bounding,
branching, and node elimination.

Determination of Lower Bounds

We will use the approach of Brah and Hunsucker (1991) to calculate a lower bound
for the branch and bound. Our contribution is to update their bounds by integrating
the availability constraints into the calculations in order to have tight bounds.

We first introduce the following notation:
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N : The set of all jobs
S : A subset of jobs such that S ⊆ N

S ′ : A subset of jobs on S and an other job Jq

such that Jq /∈ S and S ′ = S ∪ {Jq

}

σ1(S) : The partial schedule of the subset jobs S at the first stage
σ2(S) : The partial schedule of the subset jobs S at the second stage
C0(σ1(S)) : The completion time of the partial schedule σ1(S) at the first stage
Cj (σ2(S)) : The completion time of the partial schedule σ2(S)

on machine Mj (j = 1, . . ., m) in the second stage

Thus the partial schedule σk(S ′) (k = 1, 2) is obtained by adding the job Jq to the
partial schedule σk(S). The makespan can be expressed as:

Cmax = max
1≤j≤m

Cj (σ2(N )) (12.2)

The completion times at the first stage and on every machine at the second stage are
given by:

C0(σ1(S ′)) =
{

t1 + pq,1 if (C0(σ1(S)) ≤ s1 < C0(σ1(S)) + pq,1)
C0(σ1(S)) + pq,1 otherwise

}

(12.3)

We can calculate Cj (σ2(S ′)) in two cases:

• If Jq is assigned to Mj then

Cj (σ2(S ′)) =
⎧
⎨

⎩

tj2 + pq,2 if (Max(Cj (σ2(S)), C0(σ1(S ′))) ≤ sj ,2

< Max{Cj (σ2(S)), C0(σ1(S ′))} + pq,2

Max(Cj (σ2(S)), C0(σ1(S ′))) + pq,2 otherwise

⎫
⎬

⎭
(12.4)

• If Jq is not assigned to Mj then

Cj (σ2(S ′)) = Cj (σ2(S)) (12.5)

Machine Based Bounds We use the unprocessed work load at any of the two stages
to give a lower bound on the value of the optimal makespan at that stage. For any
given partial schedule σ1(S ′) we denote the maximum completion time for this partial
schedule at the first stage by:

MCT (σ1(S ′)) = C0(σ1(S ′)) (12.6)

The completion time and processing requirement for this partial schedule at the first
stage are given by:

ACT (σ1(S ′)) = C0(σ1(S ′)) +
∑

i∈N−S′
pi,1 (12.7)
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For the second stage, the maximum completion time and the average completion
time for any given partial schedule σ2(S ′) can be expressed as:

MCT (σ2(S ′)) = Max
1≤j≤m

(Cj (σ2(S ′))) (12.8)

ACT (σ2(S ′)) =

m∑

j=1
Cj (σ2(S ′))

m
+

∑

i∈N−S′
pi,2

m
(12.9)

For the problem studied in this chapter, we have only one machine at the first stage,
implying that the following relation always holds due to Eqs. 12.6 and 12.7:

MCT (σ1(S ′)) ≤ ACT (σ1(S ′)) (12.10)

Then the machine-based lower bound for the branching node for the first stage can
be given as:

LBM[σ1(S ′)] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ACT (σ1(S ′)) + Min
i∈N−S′

{
pi,2
}

if

(C0(σ1(S ′)) > t1) ∨ ((C0(σ1(S ′)) + ∑

i∈N−S′
pi,1) ≤ s1)

ACT (σ1(S ′)) + (t1 − s1) + εmin + Min
i∈N−S′

{
pi,2
}

otherwise

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(12.11)

The amount εmin is obtained at each node by resolving the knapsack problem:

Max( Y =
∑

i∈N−S′
xi × pi,1)

Such that : C0(σ1(S ′)) + Y ≤ s1

xi =
{

1 if Ji is assigned before the gap
0 otherwise

}

Then

εmin = s1 − Y ∗

The complexity of the calculations at each node can be at most O(
∣∣N − S ′

∣∣× (s1 −
C0(σ1(S ′)))). Thus there is a tradeoff between the time of calculations and the quality
of bounds.

For the second stage the lower bound for the branching node is:

LBM[σ2(S ′)] = Max(MCT (σ2(S ′)), ACT (σ2(S ′))) (12.12)

The effect of the availability constraint is introduced in the calculations of Cj (σ2(S ′)).
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Job-Based Bounds The calculations for a job based bound focuses on the remaining
processing required by each unscheduled job at each stage k (k = 1, 2). The job-
based bound for a hybrid flow shop can not be strong since there are alternate routes
for the other jobs in the set which is not the case in the classical flow shop. It is easy
to see that the job based lower bound at the first stage is given by:

LBJ [σ1(S ′)] = C0(σ1(S ′)) + Max
i∈N−S′

{
pi,1 + pi,2

}
(12.13)

And the job lower bound at the second stage is given by:

LBJ [σ2(S ′)] = Min
j

(Cj (σ2(S ′))) + Max
i∈N−S′

{
pi,2
}

(12.14)

Thus the composite lower bound for the two-stage hybrid flow shop with availability
constraints for the branching node at stage k(k = 1, 2) is as follows:

LBC[σk(S ′)] = Max
{
LBM[σk(S ′)], LBJ [σk(S ′)]

}
(12.15)

Branching Strategy

We propose a new branching strategy for the two-stage hybrid flow shop problem
which is different from that of Brah and Hunssucker. Thus at the first stage the
decision is the sequence of jobs, and at the second stage it is the assignment of jobs
to a specific machine Mj among the m parallel machines. The branching procedure
will be represented by a search tree. Two types of nodes will be used:

• A square node indicates that job Ji is sequenced in position r at the first stage.
• A circular node that job Ji is assigned to machine Mj at the second stage.

In order to develop the algorithm based on this branching strategy we give the
following rules:

1. The first level after the dummy node concerns a sequencing decision.
2. On the branching tree we use two types of levels. The first is the level of sequencing

decision and the second is the level of assignment decision. Thus we use the
notation Led to distinguish each level. If the nodes concern the first stage (i.e.,
sequencing decision) d = 1. However if the node concerns the second stage (i.e.,
assignment decision) d = 2. The number of the level in the branching tree if
d = 1 or d = 2 is indicated by e such that 1 ≤ e ≤ n.

3. Every sequencing decision must be followed by an assignment decision, such
that we can not find a path in the branching tree with two successive nodes of the
same kind of decision (i.e., sequencing or assignment).

4. The number of nodes generated at level Le1 is at most equal to n− e+ 1, and at
level Le2 is at most equal to m.

5. No path can be considered as a feasible solution if the number of square nodes or
circle nodes is less than the number of jobs n.
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Fig. 12.2 The branch and bound search tree

Adding to the decision taken, each node is represented by these three elements:

• The partial schedule σ1(S ′) for the square nodes and σ2(S ′) for the circle nodes
such that S ′ is the subset of jobs.

• The job q added after each decision. It is the left number on each node.
• The composite lower bound LBC[σk(S ′)] (k = 1, 2).

Example To illustrate this B&B procedure we consider two-stage hybrid flow shop
with one machine in the first stage and two machines in the second stage. Three jobs
have to be scheduled to minimize the makespan.

Job i 1 2 3
pi,1 : 1 2 3
pi,2 : 10 4 5

(s1 = 2 and t1 = 5); (s1,2 = 8 and t1,2 = 14).
In Fig. 12.2 we present the search tree of the branch and bound algorithm described
above applied to this instance, with the value of the composite bound for each node.
According to the next section the makespan given by a heuristic is equal to 18. Hence
we can take the ub = 18.

The branch and bound procedure gives two optimal solutions with a makespan
equal to 18. In one of these two solutions the jobs are sequenced in the first stage in
the order 1,3,2. Job 2 is assigned to the first machine at the second stage and jobs 1
and 3 are assigned to the second machine.
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The computational burden of this procedure becomes excessive for instances with
more then ten jobs.

Conclusion

Motivated by the idea of integrating production and maintenance, and by a scheduling
environment commonly found in many industrial applications which is the hybrid
flow shop, this chapter studies the hybrid flow shop scheduling with availability
constraints. The problem of machine scheduling with availability constraints has at-
tracted much attention in the scheduling field recently. In this chapter, we first present
a detailed survey of hybrid flow shop scheduling and scheduling with availability
constraints. Then we solved to optimality two special cases of HFS with availability
constraints: the two-machine flow shop problem and the two-stage hybrid flow shop
problem with only one machine at the first stage and m machines (m ≥ 1) at the
second stage. We have proposed a dynamic programming to solve the first problem
whose computational time is independent of processing times but exponential in the
number of jobs. The second problem was solved by a branch and bound algorithm.
Only small size instances could be solved in reasonable computational time. In this
chapter, exact methods were investigated. Heuristics and metaheuristics should be
addressed in future works to solve large instances of this problem.
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Chapter 13
A Probabilistic Characterization of Allocation
Performance in a Worker-Constrained Job Shop

Benjamin J. Lobo, Kristin A. Thoney, Thom J. Hodgson, Russell E. King
and James R. Wilson

We analyze a dual resource constrained (DRC) job shop in which both machines
and workers are limited, and we seek to minimize Lmax, the maximum job lateness.
An allocation of workers to machine groups is required to generate a schedule,
and determining a schedule that minimizes Lmax is NP-hard. This chapter details a
probabilistic method for evaluating the quality of a specific (but arbitrary) allocation
in a given DRC job shop scheduling problem based on two recent articles by Lobo
et al. The first article (Lobo et al. 2013a) describes a lower bound on Lmax given an
allocation, and an algorithm to find an allocation yielding the smallest such lower
bound, while the second article (Lobo et al. 2013b) establishes criteria for verifying
the optimality of an allocation. For situations where the optimality criteria are not
satisfied, Lobo et al. (2013b) presents HSP, a heuristic search procedure to find
allocations enabling the Virtual Factory (a heuristic scheduler developed by Hodgson
et al. in 1998) to generate schedules with smaller Lmax than can be achieved with
allocations yielding article 1’s final lower bound. From simulation replications of
the given DRC job shop scheduling problem, we estimate the distribution of the
difference between (a) the “best” (smallest) Lmax value achievable with a Virtual
Factory–generated schedule, taken over all feasible allocations; and (b) the final
lower bound of Lobo et al. (2013a). To evaluate the quality of a specific allocation for
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the given problem, we compute the difference between Lmax for the Virtual Factory–
generated schedule based on the specific allocation, and the associated lower bound
(b) for the problem; then we refer this difference to the estimated distribution to judge
the likelihood that the specific allocation yields the Virtual Factory’s “best” schedule
(a) for the given problem. We present several examples illustrating the usefulness of
our approach, and summarize the lessons learned in this work.

Introduction

In conventional job shop scheduling, system operation is constrained only by the
number of machines that are available to process jobs. This approach does not account
for the additional constraint imposed by the number of workers that are available
to operate the machines. Dual resource constrained (DRC) systems (Treleven and
Elvers 1985) are subject to limits on the availability of both machines and manpower.
Lobo et al. (2013a, b) addressed the problem of minimizing Lmax, the maximum job
lateness, in a DRC job shop. Because the job shop scheduling problem with even a
single constraint is NP-Hard (Lenstra and Rinnooy Kan 1979), the approach of Lobo
et al. (2013a, b) involved the following: (a) seeking the most promising (hopefully
optimal) allocation of the available workers to the machine groups (departments) in
the job shop; and (b) seeking the best achievable schedule for the job shop based on
this allocation.

Given an allocation ϑ of workers to machine groups, Lobo et al. (2013a) derived
a lower bound LBϑ on Lmax for all schedules based on that allocation. They also
developed an algorithm to find an allocation ϑ∗ that yields the smallest value of
LBϑ over all feasible values of ϑ . The authors’ final lower bound on Lmax is LBϑ∗,
and it provides a benchmark for evaluating heuristic solutions to the DRC job shop
scheduling problem. Lobo et al. (2013b) established criteria for verifying that an
allocation is optimal—i.e., the allocation corresponds to a feasible schedule that
minimizes Lmax. For situations in which ϑ∗ does not satisfy the optimality criteria,
the authors developed HSP, a heuristic search procedure designed to find allocations
enabling the Virtual Factory (a heuristic scheduler developed by Hodgson et al.
(1998)) to generate schedules with smaller values of Lmax than can be achieved with
allocation ϑ∗. The Virtual Factory was chosen as the heuristic scheduler because of
its proven track record in successfully generating optimal or near-optimal schedules
in job shop scheduling problems for which the primary objective is to minimize Lmax

(Hodgson et al. 2000, 2004; Schultz et al. 2004; Thoney et al. 2002; Weintraub et al.
1999; Zozom et al. 2003), but Lobo et al. (2013a, b) note that their approach would
work with other heuristic schedulers.

The use of heuristics (in this case, HSP and the Virtual Factory) introduces uncer-
tainty into the properties of the delivered solution: if there is a substantial gap between
Lmax for the Virtual Factory–generated schedule based on an HSP-delivered alloca-
tion ϑHSP and the lower bound LBϑ∗ , then we must have some reliable method for
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evaluating the quality (closeness to optimality) of the allocation ϑHSP. Enumeration
of the allocation search space involves using the Virtual Factory to generate a sched-
ule for every feasible allocation. However, because the size of the allocation search
space grows exponentially with an increase in either the number of machine groups
or the number of workers, enumerating the set of feasible allocations is generally
impractical given the usual constraints on the user’s time and computing budget; see
Lobo et al. (2013b) for experimental results supporting this conclusion.

A “VF-best” allocation ϑVFB enables the Virtual Factory to generate a schedule
whose Lmax value, denoted VFϑVFB , is the smallest Lmax that can be achieved by the
Virtual Factory for a given DRC job shop scheduling problem, taken over all feasible
worker allocations. To gauge the likelihood that a specific (but arbitrary) allocation
is VF-best for the given problem, we consider simulation replications (i.e., randomly
generated instances) of the given DRC job shop scheduling problem that are similar
to the given problem in the following key respects:

• It has the same general pattern of symmetric or asymmetric loading of the machine
groups;

• It has the same level of staffing—i.e., the ratio of the number of workers to the
number of machines expressed as a percentage between 0 % and 100 %; and

• It has the same due-date range.

Each simulation replication involves randomly sampling the processing times and
routes for all the jobs in the given DRC job shop scheduling problem as detailed
in Lobo et al. (2013a); and from these replications we estimate the corresponding
probability distribution of the difference VFϑVFB –LBϑ∗. Now the given DRC job shop
scheduling problem has fixed processing times and routes for all its jobs; thus the
given problem has its own fixed values of the lower bound LBϑ∗, the HSP-delivered
allocation ϑHSP, and the Virtual Factory–generated schedule based on ϑHSP with
Lmax = VFϑHSP. Insofar as the observed difference VFϑHSP − LBϑ∗ for the given
problem can be viewed as another sample from the population of differences of the
form VFϑVFB − LBϑ∗ that could be generated by simulation replications of the given
problem, we can refer the specific realized value of VFϑHSP − LBϑ∗ to the estimated
distribution of differences in order to judge the likelihood that ϑHSP is a VF-best
allocation for the given problem.

This chapter provides a comprehensive examination of the probabilistic analysis
that was briefly introduced by Lobo et al. (2013b). In the second section we review
the relevant literature. The third section contains essential background information
on the DRC job shop scheduling problem and the overall solution approach used
by Lobo et al. (2013a, b). In the fourth section we detail the rationale underlying
our proposed method for evaluating the quality of worker allocations in a DRC
job shop as well as the results of applying the method to 64 data sets. In the fifth
section we present a variety of examples illustrating the usefulness of our method.
The sixth section documents the issues encountered and lessons learned during the
development and experimental evaluation of the method. The main conclusions of
this work and directions for future research are summarized in the final section.
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Literature Review

This work spans two main areas: dual resource constrained systems, and statistical
performance evaluation of heuristics for planning the operation of those systems. A
brief review of the relevant literature follows.

Dual Resource Constrained Systems

The operation of a dual resource constrained (DRC) system is subject to limitations
on the availability of both equipment and manpower (Treleven 1989). According to
Treleven and Elvers (1985), a DRC shop is “one in which shop capacity may be
constrained by machine or labor capacity or both. This situation exists in shops that
have equipment that is not fully staffed and machine operators who are capable of
operating more than one piece of equipment. . . . [Workers] may be transferred from
one work centre to another (subject to skills restrictions) as the demand dictates.”
Gargeya and Deane (1996) note that part of the complexity of scheduling in DRC
systems stems from the need for an effective method to assign manpower to the
machines.

Nelson (1967) documents one of the earliest studies of DRC systems. Treleven
(1989) reviews the literature on DRC systems, summarizing the various models used,
the parameters of the systems investigated, the job dispatching and worker allocation
rules employed, and the different criteria used to evaluate system performance. Hot-
tenstein and Bowman (1998) identify two main questions regarding the allocation of
workers:

• When should workers move from one machine group to another?
• Where (to which machine group) should the workers move?

To address these questions, Hottenstein and Bowman summarize research concerning
worker flexibility, centralization of control, worker allocation rules, queue discipline,
and the cost of transferring workers. More recent work focuses on the effects of
the following factors on various performance criteria for DRC job shops: (a) cross-
training workers to operate machines in different departments (machine groups); and
(b) incorporating more-realistic assumptions about worker behavior—e.g., learning,
fatigue, and forgetfulness (Jaber and Neumann 2010; Kher 2000; Kher et al. 1999;
Malhotra et al. 1993).

Felan et al. (1993) examine the effects of labor flexibility and staffing levels
on several job shop performance measures. The authors consider a homogeneous
workforce whose flexibility is based on each individual’s ability to work in a given
number of departments in the job shop; moreover they assume that for a given
staffing level, each department has the same number of workers assigned to it. They
measure the effects of labor flexibility and staffing level on work in progress (WIP),
due-date performance, and cost criteria. According to Felan et al. (1993), these
criteria “represent the primary drivers for measuring manufacturing performance
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in many organizations.” They find that for a given level of workforce flexibility,
an increase in the staffing level yields an increase in system cost, a decrease in the
WIP, and an improvement in the due-date performance. For a given staffing level, an
increase in the worker flexibility level yields an increase in system cost, a decrease
in the WIP, and an improvement in the due-date performance. The authors conclude
that based on the diminishing returns apparent in the WIP and due-date performance,
job shop performance is optimized with a staffing level of 60 % and a workforce
that has a medium level of flexibility. Although Felan et al. (1993) allow workers to
transfer between departments, they focus on jointly optimizing the levels of staffing
and workforce flexibility. In contrast to this approach, Lobo et al. (2013a, b) focus
on optimizing the allocation of workers to departments for a given staffing level.

The shifting bottleneck heuristic proposed by Adams et al. (1988) is an iterative
procedure for finding a job shop schedule that minimizes the makespan (i.e., the
completion time of the last job to leave the system). The set M0 consists of all
machines in the job shop for which a schedule has been generated so that initially
M0 = ∅; and the procedure terminates when all machines belong to M0. On each
iteration of the heuristic, every machine not belonging to M0 is considered as a
separate 1|rj|Lmax scheduling problem that involves only the sequencing constraints
for the machines currently belonging to M0 and that yields its own minimum value
of Lmax. The bottleneck machine corresponds to the largest such value of Lmax

for the machines not belonging to M0. The bottleneck machine is added to M0;
and then each machine already belonging to M0 is again considered as a separate
1|rj|Lmax scheduling problem that involves only the sequencing constraints for the
other machines currently belonging to M0, including the newly added machine. If
other machines still do not belong to M0 at the end of an iteration of the heuristic,
then a new iteration is performed to schedule the next bottleneck machine, add that
machine to M0, and finally reschedule all the other machines currently belonging to
M0. A more complete explanation of the shifting bottleneck heuristic can be found
in Chap. 7 of Pinedo (2012).

The methodology of Lobo et al. (2013a, b) differs from the shifting bottleneck
procedure in several significant respects. First, Lobo et al. consider a DRC system
that is constrained by the availability not only of machines, but also of the workers
needed to operate the machines. Second, the authors’ method for computing LBϑ∗
allows preemption when determining a bottleneck machine group; and this relaxation
of the original problem enables rapid computation of an effective lower bound on
Lmax for a specific allocation of workers to machine groups. Finally, each iteration
of the heuristic scheduler (i.e., the Virtual Factory) uses estimated queuing times of
all jobs in the job shop to reoptimize the schedule for all machines simultaneously.
By contrast, each iteration of the shifting bottleneck heuristic uses only the job-
sequencing constraints for the machines currently belonging to the set M0.

While there has been extensive research on DRC systems, to our knowledge there
has not been any published work on the problem addressed in this chapter—namely,
the allocation of homogeneous, fully cross-trained workers in a DRC job shop so as
to minimize Lmax.
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Statistical Optimum Estimation

Purely statistical techniques based on extreme value theory can also be used to eval-
uate the performance of a heuristic procedure for determining the worker allocation
in a DRC job shop scheduling problem (Derigs 1985; Golden and Alt 1979; Wilson
et al. 2004). In particular if we seek to estimate the (finite) lower endpoint ω on the
range of feasible values of Lmax for a DRC job shop scheduling problem and if we
have a mechanism for taking a random sample {Xi : i = 1, . . . , n} of size n from
this population of feasible values, then it is natural to use the sample minimum,

Yn = min{Xi : i = 1, . . . , n},
in deriving a useful estimator of ω. We seek a suitably standardized version of the
sample minimum,

Zn = (Yn − ψ
n
)/ζn for n = 1, 2, . . . ,

based on appropriate sequences {ψ
n

: n = 1, 2, . . . } and {ζn > 0 : n = 1, 2, . . . } of
constants that stabilize the location and scale of Zn as n increases. If the standardized
sample minimum Zn has a nondegenerate limiting cumulative distribution function
(c.d.f.),

lim
n→∞Pr{Zn ≤ z} = H (z) for all z, (13.1)

then the Extremal Types Theorem for Minima (Leadbetter et al. 1983, p. 29) ensures
that the limiting c.d.f. in Eq. (13.1) must be a three-parameter Weibull distribution,

H (z) =
⎧
⎨

⎩

0, if z < ω,

1 − exp

[
−
(

z − ω

β

)α]
, if z ≥ ω,

(13.2)

where ω is the distribution’s lower endpoint, α is a shape parameter, β is a scale
parameter, and both α and β are positive.

In applications for which the condition (13.1) is satisfied, the methods of maxi-
mum likelihood or least squares can be used to estimate ω, α, and β from a random
sample {Xi : i = 1, . . . , mn} that has been partitioned into m subsamples each of
size n, where both m and n are sufficiently large. If Yn,j denotes the minimum
observed in the j th subsample of size n for j = 1, . . . , m, then we can fit a three-
parameter Weibull distribution to the sample minima {Yn,j : j = 1, . . . , m} as
detailed in Coles (2001, Sect. 3.1.3), Golden and Alt (1979, pp. 73–74), or Wilson
et al. (2004, Sect. 5). Unfortunately in applications to DRC job scheduling, we have
encountered many situations in which the condition (13.1) is not satisfied because,
for example, the original random variables {Xi} (that is, the values of Lmax deliv-
ered by our simulation-based procedures) have a discrete distribution or merely a
nonzero probability mass concentrated at the lower endpoint ω as discussed in the
fourth section below; and then the three-parameter Weibull model in Eqs. (13.1) and
(13.2) breaks down.
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Even in situations where condition (13.1) is satisfied, there is the challenge of
taking sufficiently large values of m and n so that fitting a three-parameter Weibull
distribution to the sample minima {Yn,j : j = 1, . . . , m} will yield accurate and
reliable point and confidence interval (CI) estimators of the desired lower endpoint ω.
Wilson et al. (2004) find that for many job shop scheduling problems with relatively
large values of m and n, the CI estimator of Golden andAlt (1979) with high coverage
probability is often proved to be invalid when follow-up experimentation with a
more-effective heuristic optimization procedure applied to the problem at hand yields
values of Lmax that lie below the lower limit of the delivered CI estimator for ω. By
contrast, LBϑ∗ is guaranteed to be a valid lower bound on Lmax for the DRC job shop
scheduling problem. Moreover, the results in Lobo et al. (2013b) and in the fourth
and fifth section of this chapter provide good evidence that LBϑ∗ effectively exploits
system-specific information about each individual problem so as to provide a lower
bound on Lmax that can be useful in practice. In summary, we have found that LBϑ∗
consistently outperforms purely statistical estimators of the lower endpoint ω of the
range of feasible values of Lmax for the DRC job shop scheduling problem.

Background on the DRC Job Shop

The DRC job shop scheduling problem is denoted by JM |W |Lmax, where M is the
number of machines, W is the number of workers, and the objective is to minimize
Lmax (Pinedo 2012). Each job has a routing through the job shop, a processing time
on each machine visited, an initial release time, and a due-date. The physical layout
of a job shop naturally leads to organizing the machines into machine groups, where
machines that perform the same or similar operations are located in close proximity to
each other. Moreover, the machines in the same group require the same set of worker
skills for operating each of those machines. Because of the limited availability of
workers, an allocation ϑ for the DRC job shop specifies the number of workers
assigned to each machine group. The work force is assumed to be homogeneous, so
that each worker is able to operate each machine with equal skill and efficiency. Once
a worker allocation ϑ has been specified, a schedule can be generated for the job
shop based on that allocation. A schedule prescribes a specific order for processing
each of the jobs assigned to each machine in the job shop.

To explore fully the properties of allocation ϑ∗ and the associated lower bound
LBϑ∗ on Lmax for the DRC job shop scheduling problem, Lobo et al. (2013a, b) per-
formed a large-scale simulation experiment on a system in which there are M = 80
machines, S = 10 machine groups, and W workers, where W < M . The experimen-
tal design encompassed systematic variation of the following factors: (a) the type of
job shop, as reflected in symmetric (balanced) or asymmetric (unbalanced) loading
of the machine groups; (b) the due-date range of the jobs; and (c) the staffing level
expressed as 100(W/M)%. For the asymmetric (unbalanced) type of job shop, each
machine group received, on average, the percentage of the total workload given in
Table 13.1. The due-date range of the jobs varied from 200 up to 3,000 in increments
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Table 13.1 Percentage of total job shop workload, on average, seen by each machine group.

Machine group 1 2 3 4 5 6 7 8 9 10
Percentage of workload seen, on average 14 14 14 10 8 8 8 8 8 8

of 400. Four staffing levels were considered: 60, 70, 80, and 90 %. Since there were
2 types of job shops, 8 due-date ranges, and 4 staffing levels, there were 64 different
designated DRC job shop scheduling problems in the overall simulation experiment
(i.e., 64 different combinations of factors (a), (b), and (c)).

For a designated DRC job shop scheduling problem, each simulation replication
had 1,200 jobs to be processed; and the key characteristics of each job were assigned
as follows.

(i) The job’s due date was sampled from the discrete uniform distribution with the
lower endpoint equal to zero and the upper endpoint equal to the given due-date
range;

(ii) The job’s number of operations was sampled from the discrete uniform
distribution on the integers from 6 to 10;

(iii) The machine group for each operation was sampled from the appropriate dis-
crete distribution on the integers from 1 to 10 (namely, the discrete uniform
distribution for a symmetric job shop, and the discrete distribution in Table 13.1
for an asymmetric job shop), subject to the condition that each job could have
at most three operations in the same machine group, but those operations could
be nonconsecutive; and

(iv) The processing time for each operation was sampled from the discrete uniform
distribution on the integers from 1 to 40.

To drive the sampling operations (i)–(iv), the authors used the random number gen-
erator of Park and Miller (1988). Moreover, the authors exploited the method of
common random numbers (Law 2007, pp. 578–594) to ensure that for each combi-
nation of job shop type and due-date range, 200 independent simulation replications
of that scenario were obtained via sampling operations (i)–(iv) so as to ensure that
for j = 1, . . . , 200, the j th replication of a given scenario is exactly the same for
each of the four selected staffing levels. This approach enabled the authors to make
a much sharper comparison of the differences in system performance for each of the
staffing levels.

Although LBϑ∗ is guaranteed to be the smallest value of LBϑ taken over all feasi-
ble values of the worker allocation ϑ , the experimental results of Lobo et al. (2013b)
showed that allocation ϑ∗ and the corresponding Virtual Factory-generated sched-
ule with Lmax = VFϑ∗ did not necessarily satisfy either of the authors’ optimality
criteria. Furthermore, allocation ϑ∗ was not necessarily even a VF-best allocation.
Therefore the authors developed a heuristic search procedure (HSP) to seek aVF-best
allocation. Three distinct search heuristics compose HSP: the Local Neighborhood
Search Strategy, and Queuing Time Search Strategies 1 and 2. These search heuris-
tics are performed consecutively, where each search heuristic in turn makes use of
the allocation information obtained by the preceding search heuristic(s). Taking the
best of the allocations found by its three constituent search strategies, HSP finally
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delivers allocation ϑHSP; then based on that allocation, the Virtual Factory generates
a schedule with Lmax = VFϑHSP. An essential complement to the development of HSP
is a reliable method for evaluating our degree of confidence that ϑHSP is a VF-best
allocation for the problem at hand.

A Probability Distribution for Performance to the Lower Bound

To gauge the user’s confidence that the HSP-delivered allocation ϑHSP is in fact
a VF-best allocation for a given DRC job shop scheduling problem, we estimate
the distribution of the difference VFϑVFB − LBϑ∗ for simulation replications of the
designated DRC job shop scheduling problem. To identify a VF-best allocation for
each simulation replication of the given DRC job shop scheduling problem, we
employ the partial enumeration strategy of Lobo et al. (2013b). In the following two
sections, we detail a probabilistic method for evaluating the performance of VF-best
allocations for a designated DRC job shop scheduling problem by using the estimated
probability distribution of VFϑVFB − LBϑ∗ for the designated problem.

A Probabilistic Characterization of Performance
to the Lower Bound

An Empirical Distribution Describing PLB(ϑ)

For each designated DRC job shop scheduling problem, we generate Q independent
simulation replications of the problem, and then we restrict our attention to the Q′
problem instances (where 0 ≤ Q′ ≤ Q) in which allocation ϑ∗ did not satisfy either
of the optimality criteria in Theorems 1 and 2 of Lobo et al. (2013b). For a particular
simulation replication of the designated DRC job shop scheduling problem, we
define the performance of an allocation ϑ relative to the lower bound on Lmax as the
difference

PLB(ϑ) ≡ VFϑ − LBϑ∗. (13.3)

For the ith simulation replication (i = 1, . . . , Q′) whose corresponding allocation
ϑ∗

i does not satisfy the optimality criteria of Lobo et al. (2013b), we use the authors’
partial enumeration strategy to find a VF-best allocation ϑVFB

i whose performance
relative to the lower bound LBϑ∗i is measured by PLB(ϑVFB

i ). A histogram is then
constructed from the resulting data set

{PLB(ϑVFB
i ) : i = 1, . . . , Q′}. (13.4)

The histogram’s horizontal axis represents the range of possible values of the random
variable PLB(ϑVFB); and a segment of the horizontal axis encompassing the observed
values (13.4) is partitioned into equal-width bins on which rectangles are erected to
depict the relative frequencies with which observations fall in the associated bins. The
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area of each rectangle in the histogram is equal to the proportion of the observations
falling in the bin at the base of the rectangle. Scott’s (1979) rule is used to determine
the bin width and the number of bins in the histogram. For each of the designated DRC
job shop scheduling problems considered in this chapter, we examine the histogram
and the associated empirical c.d.f. describing the data set (13.4) obtained through
simulation replications of that designated DRC job shop scheduling problem.

A Theoretical Probability Distribution Describing PLB(ϑVFB)

For a given DRC job shop scheduling problem with a specific allocation ϑ of workers
to machines for that problem (perhaps ϑ is the HSP-delivered allocation ϑHSP), we
seek to estimate our level of confidence that ϑ is a VF-best allocation, given that
ϑ does not satisfy the optimality criteria of Lobo et al. (2013b). Recall that each
simulation replication of the given DRC job shop scheduling problem and the given
DRC job shop scheduling problem itself share the following key properties: (a) the
job shop type (symmetric or asymmetric); (b) the staffing level (ratio of workers to
machines, expressed as a percentage); and (c) the due-date range. Because of these
similarities, we have some reason to expect that in computing the difference

PLB(ϑVFB) = VFϑVFB − LBϑ∗ (13.5)

for either a simulation replication of the given problem or for the given problem itself,
the nuisance effects arising from unique characteristics of the underlying problem
will be common to both terms VFϑVFB and LBϑ∗ in Eq. (13.5) so that the nuisance
effects will cancel out; and the remaining component of the difference (13.5) will
depend mainly on the properties of the VF-best allocation ϑVFB delivered by the
Virtual Factory and on the key characteristics (a)–(c) that are shared by the simulation
replication and the given DRC job shop scheduling problem.

If allocation ϑ for the given problem is in fact a VF-best allocation, then we
may regard the difference PLB(ϑ) = VFϑ − LBϑ∗ defined by Eq. (13.3) as another
observation from the population of differences of the form (13.5). In the spirit of
statistical hypothesis testing, we may therefore test the null hypothesis that ϑ is
a VF-best allocation for the given problem by estimating the probability that for a
simulation replication, the resulting random variable PLB(ϑVFB) in Eq. (13.5) will be
greater than the fixed value PLB(ϑ) for the given DRC job shop scheduling problem.
This upper tail probability can be viewed as the p-value (significance probability)
for the test of the null hypothesis that ϑ is a VF-best allocation for the designated
problem (Bickel and Doksum 2007, pp. 221–223). From a different perspective, we
can interpret this upper tail probability as our level of confidence that ϑ is a VF-
best allocation for the given problem. For example, if approximately 90 % of the
observations in the data set (13.4) are larger than PLB(ϑ) for the given problem, then
we can conclude that allocation ϑ is better than approximately 90 % of the VF-best
allocations for simulation replications of the given problem; and thus we can be 90 %
confident that allocation ϑ is in fact a VF-best allocation for the given DRC job shop
scheduling problem.
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Fitting a Theoretical Distribution to Random Samples
of PLB(ϑVFB)

To facilitate their use in practice, we sought to approximate the histogram and the
empirical c.d.f. based on the data set (13.4) for a designated DRC job shop scheduling
problem by fitting an appropriate standard probability distribution to that data set. We
used the Stat::Fit software (Geer Mountain Software Corp. 2001) for this purpose.
Thus we obtained the following visual representations of the resulting fit:

• A graph of the histogram of the data set (13.4) superimposed on the fitted
probability density function (p.d.f.); and

• A graph of the empirical c.d.f. of the data set (13.4) superimposed on the fitted
c.d.f.

In addition, a p-value for the chi-squared goodness-of-fit test was provided for each
fitted distribution.

Because Q′ varied substantially across the different designated DRC job shop
scheduling problems, care was taken when using the p-values as indicators of the
goodness-of-fit. When Q′ is very large, “practically insignificant discrepancies be-
tween the empirical and theoretical distributions often appear statistically significant”
(Kuhl et al. 2010). On the other hand, very small values of Q′ often result in relatively
large p-values because standard goodness-of-fit statistics have low power to distin-
guish between different distributions based on small samples. These considerations
indicate that the p-value cannot be relied on as the sole goodness-of-fit criterion.
The p-value from the chi-squared goodness-of-fit test and graphs of both the fitted
p.d.f. and the fitted c.d.f. were used to decide which distribution best characterized
a given data set.

If the data set (13.4) could be adequately modeled by a standard continuous distri-
bution, then we fitted the associated p.d.f. to the data set as detailed in the following
section below. In some situations, the data set (13.4) exhibited a substantial percent-
age of observations at zero; and in those situations, we used a mixed distribution with
nonzero probability mass at the origin and with a continuous right-hand tail having
a standard functional form as described below. In other situations we were forced to
use a discrete probability mass function (p.m.f.) to describe the data set (13.4). The
latter situation arose in cases where there were relatively few distinct nonzero values
of PLB(ϑVFB) in the data set. In the fits that follow, Q, the number of simulation
replications for each designated DRC job shop scheduling problem, is 500.

Continuous distributions

For the data set (13.4) associated with each designated DRC job shop scheduling
problem, initially we used Stat::Fit to seek the best-fitting continuous distribution.
When adequate fits were obtained, the following distributions were used:
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• the generalized Beta distribution, denoted as Beta(α, β, a, b), where α and β are
the two shape parameters, a is the lower limit, and b is the upper limit;

• the shifted Gamma distribution, denoted as Gamma(α, β, a), where α is the shape
parameter, β is the scale parameter, and a is the lower limit;

• the bounded Johnson distribution, denoted as Johnson-SB(γ , δ, λ, ξ ), where γ

and δ are shape parameters, λ is the scale parameter representing the range of pos-
sible values of the corresponding random variable, and ξ is the location parameter
representing the lower limit of the distribution (Kuhl et al. (2010));

• the unbounded Johnson distribution, denoted as Johnson-SU(γ , δ, λ, ξ ), where γ

and δ are shape parameters, λ is the scale parameter (but not the range of possible
values of the corresponding random variable, which is infinite in both directions),
and ξ is a scale parameter (but not the lower limit of the distribution, which is
−∞; see Kuhl et al. (2010));

• the shifted Lognormal distribution, denoted as Lognormal(μ, σ , a), where μ

and σ are the mean and standard deviation of the corresponding random variable
respectively, and a is the lower limit; and

• the shifted (three-parameter) Weibull distribution, denoted as Weibull(α, λ, a),
where α is the shape parameter, λ is the scale parameter, and a is the lower limit.

Figure 13.1 depicts four examples of continuous distributions that were fitted to
data sets of the form (13.4). The Appendix contains similar graphs for all relevant
designated DRC job shop scheduling problems. Tables 13.2 and 13.3 summarize the
“best fits” obtained for the relevant designated DRC job shop scheduling problems
corresponding to asymmetric and symmetric job shops, respectively. Note that in the
corresponding graphs for data sets fitted with a continuous distribution, the legend
“Datapoints” identifies the size of the data set, Q′. Both the graphical evidence and the
p-values for the goodness-of-fit tests indicated that in each designated DRC job shop
scheduling problem for which a continuous distribution was used to approximate the
data set, the resulting model was adequate.

Mixed Distributions

If there was a nonnegligible probability mass at PLB(ϑVFB) = 0, then it was not
possible to fit the data set with a standard continuous distribution. In these cases, the
data sets were fitted using a mixed c.d.f. of the form

F (x) = p0F0(x) + (1 − p0)Fc(x) for −∞ < x < ∞,

where: (a) p0 is the proportion of observations of PLB(ϑVFB) that are equal to zero;
(b) F0(x) is the c.d.f. of the degenerate distribution with unit probability mass at the
origin so that

F0(x) =
{

0, for x < 0,

1, for x ≥ 0;

and (c) Fc(x) is the conditional c.d.f. of PLB(ϑVFB) given that PLB (ϑVFB) > 0,
where we may take Fc(x) to be the c.d.f. of any of the distributions listed previously.



13 A Probabilistic Characterization of Allocation Performance . . . 313

PLB(ϑVFB)

PLB(ϑVFB)

PLB(ϑVFB)

PLB(ϑVFB)

PLB(ϑVFB)

PLB(ϑVFB)

PLB(ϑVFB)

PLB(ϑVFB)

Fig. 13.1 Probability distribution fitting, continuous distribution fits
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Table 13.2 All asymmetric job shop probability distribution fits

Due-
date

Best Fit p-
value

Sample
Size

Range Q′

60 % Staffing
200 Gamma(2.68, 19.03, 8.00) 0.818 159
600 Weibull(1.53, 53.58, 7.41) 0.930 151
1000 Weibull(1.51, 55.31, 8.00) 0.522 159
1400 Weibull(1.36, 55.42, 11.49) 0.857 176
1800 Weibull(1.53, 62.28, 11.84) 0.482 191
2200 Gamma(2.28, 26.79, 12.00) 0.581 207
2600 Gamma(3.88, 18.22, 3.17) 0.901 219
3000 Gamma(3.37, 21.60, 8.25) 0.802 242

70 % Staffing
200 0.342F0(x) + 0.658Fc(x), where Fc( · ) ∼ Weibull(1.49, 48.60, 1.00) 0.484 219
600 0.391F0(x) + 0.609Fc(x), where Fc( · ) ∼ Weibull(1.50, 49.14, 0.43) 0.875 258
1000 0.347F0(x) + 0.653Fc(x), where Fc( · ) ∼ Weibull(1.29, 47.88, 0.48) 0.643 291
1400 0.338F0(x) + 0.662Fc(x), where Fc( · ) ∼ Weibull(1.25, 48.01, 0.63) 0.333 311
1800 0.311F0(x) + 0.689Fc(x), where Fc( · ) ∼ Beta(1.12, 2.91, 1.00, 168.74) 0.405 318
2200 0.348F0(x) + 0.652Fc(x), where Fc( · ) ∼ Beta(0.99, 2.20, 1.00, 160.45) 0.614 345
2600 0.258F0(x) + 0.742Fc(x), where Fc( · ) ∼ Beta(0.87, 2.26, 1.00, 175.00) 0.104 361
3000 0.210F0(x) + 0.790Fc(x), where Fc( · ) ∼ Beta(0.87, 2.59, 1.00, 186.00) 0.002 377

80 % Staffing
200 Discrete Probability Mass Function − −
600 Discrete Probability Mass Function − −
1000 Discrete Probability Mass Function − −
1400 Discrete Probability Mass Function − −
1800 Discrete Probability Mass Function − −
2200 Discrete Probability Mass Function − −
2600 0.462F0(x) + 0.538Fc(x), where Fc( · ) ∼ Lognormal(1.43, 0.78, 1.00) 0.601 143
3000 0.399F0(x) + 0.601Fc(x), where Fc( · ) ∼ Lognormal(1.52, 1.00, 0.29) 0.777 188

90 % Staffing
200 Discrete Probability Mass Function − −
600 Discrete Probability Mass Function − −
1000 Discrete Probability Mass Function − −
1400 Discrete Probability Mass Function − −
1800 Discrete Probability Mass Function − −
2200 Discrete Probability Mass Function − −
2600 0.433F0(x) + 0.567Fc(x), where Fc( · ) ∼ Lognormal(1.43, 0.82, 1.00) 0.311 141
3000 0.387F0(x) + 0.613Fc(x), where Fc( · ) ∼ Lognormal(1.46, 1.03, 0.31) 0.095 191

The following are examples of designated DRC job shop scheduling problems
fitted with a mixed distribution: (a) the asymmetric job shop with 70 % staffing and a
due-date range of 1800; and (b) the symmetric job shop with 90 % staffing and a due-
date range of 2600. For each of these designated problems, Fig. 13.2 displays the con-
tinuous distribution that provided the “best fit” to the associated subsample consisting
of the nonzero values of PLB(ϑVFB). Figure 13.2 also shows Q′(1− p0), the size of
the associated subsample (labeled “Datapoints”), and the p-value for the chi-squared
goodness-of-fit test. TheAppendix contains similar graphs for all relevant designated
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Table 13.3 All symmetric job shop probability distribution fits

Due-
date

Best Fit p-
value

Sample
Size

Range Q′

60 % Staffing
200 Gamma(2.27, 10.33, 2.00) 0.994 143
600 Gamma(2.77, 7.30, 1.49) 0.807 121
1000 Lognormal(2.64, 0.64, 3.00) 0.658 114
1400 Gamma(2.87, 6.64, 1.00) 0.203 126
1800 Lognormal(2.73, 0.65, 2.00) 0.873 128
2200 Gamma(2.91, 5.73, 5.00) 0.785 119
2600 Weibull(1.99, 23.90, 3.35) 0.086 132
3000 Johnson-SU( − 0.90, 1.51, 12.45, 18.70) 0.498 151

70 % Staffing
200 Gamma(2.61, 11.42, 5.00) 0.381 282
600 Gamma(4.14, 7.52, 0.27) 0.617 267
1000 Gamma(2.90, 9.62, 5.00) 0.445 267
1400 Gamma(5.11, 7.06, 0.00) 0.187 304
1800 Gamma(6.10, 6.43, 0.00) 0.192 313
2200 Gamma(7.37, 6.13, 0.00) 0.475 349
2600 Gamma(8.48, 6.07, 0.00) 0.808 370
3000 Weibull(2.47, 47.46, 18.17) 0.171 403

80 % Staffing
200 Beta(3.48, 9.20, 0.00, 194.71) 0.029 409
600 Johnson-SU( − 0.89, 2.00, 39.47, 35.83) 0.713 421
1000 Johnson-SB(2.11, 1.79, 233.70, 6.27) 0.193 436
1400 Johnson-SU( − 0.35, 1.51, 31.21, 62.22) 0.522 458
1800 Johnson-SU( − 0.07, 1.50, 32.27, 77.52) 0.602 467
2200 Johnson-SU( − 0.45, 4.40, 116.97, 75.00) 0.296 472
2600 Johnson-SU(0.22, 1.24, 27.01, 106.23) 0.440 486
3000 Johnson-SU(0.83, 1.72, 50.20, 139.93) <0.001 499

90 % Staffing
200 0.429F0(x) + 0.571Fc(x), where Fc( · ) ∼ Weibull(1.30, 38.26, 0.26) 0.244 175
600 0.378F0(x) + 0.622Fc(x), where Fc( · ) ∼ Gamma(1.00, 35.91, 1.00) 0.736 217
1000 0.314F0(x) + 0.686Fc(x), where Fc( · ) ∼ Gamma(1.12, 31.43, 1.00) 0.124 264
1400 0.252F0(x) + 0.748Fc(x), where Fc( · ) ∼ Gamma(1.00, 35.38, 1.00) 0.609 294
1800 0.223F0(x) + 0.777Fc(x), where Fc( · ) ∼ Gamma(1.00, 39.40, 1.00) 0.304 323
2200 0.163F0(x) + 0.837Fc(x), where Fc( · ) ∼ Gamma(1.00, 40.55, 1.00) 0.150 375
2600 0.111F0(x) + 0.889Fc(x), where 0.727 423

Fc( · ) ∼ Johnson-SB(0.99, 0.77, 158.79,−0.33)
3000 Beta(1.35, 2.77, 0.00, 110.91) 0.164 483

DRC job shop scheduling problems. The “best fits” for all relevant designated DRC
job shop scheduling problems are summarized in Tables 13.2 and 13.3 for asym-
metric and symmetric job shops, respectively. Both the graphical evidence and the
p-values for the goodness-of-fit tests indicated that in every designated DRC job
shop scheduling problem for which a mixed distribution was used to approximate
the data set, the resulting model was adequate.
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Fig. 13.2 Probability distribution fitting, part Fc( · ) of the mixed distribution fits

Discrete Distributions

For a number of designated DRC job shop scheduling problems (e.g., the asymmetric
job shop with 90 % staffing and a due-date range of 2200), there were so few values
of PLB(ϑVFB) distinct from zero in the data set that a continuous distribution could
not be reliably fitted to the remaining nonzero values. In this case, we simply used
a discrete distribution on the observed values in the data set, with each distinct
value weighted by the relative frequency of its occurrence in the data set. Table 13.4
shows the discrete p.m.f. for an asymmetric job shop with 90 % staffing and a
due-date range of 2200. Of the Q = 500 simulation replications, there were only
Q′ = 97 instances in which allocation ϑ∗ did not satisfy either optimality criterion.
The data set contained 54 instances for which PLB(ϑVFB) = 0 and 43 nonzero
values of PLB(ϑVFB), which made it an ideal candidate for fitting with a discrete
distribution. All the designated DRC job shop scheduling problems fitted with a
discrete distribution can be found in Tables 13.2 and 13.3.

Fitting a Distribution in General

Recall that the overall experimental design included 64 designated DRC job
shop scheduling problems. In this section we discuss the results of applying our
distribution-fitting procedures to all 64 associated data sets of the form (13.4). More



13 A Probabilistic Characterization of Allocation Performance . . . 317

Table 13.4 Discrete
empirical distribution,
asymmetric job shop, 2200
due-date range, 90 % staffing

Value, x Frequency Probability

0 54 0.557
1 4 0.041
2 4 0.041
3 5 0.052
4 4 0.041
5 7 0.072
6 3 0.031
7 1 0.010
8 1 0.010
9 0 0.000

10 1 0.010
11 1 0.010
12 2 0.021
13 2 0.021
14 1 0.010
15 1 0.010
16 2 0.021
17 0 0.000
18 1 0.010
19 0 0.000
20 0 0.000
21 1 0.010
22 0 0.000
.
.
.

.

.

.
.
.
.

26 0 0.000
27 1 0.010
28 0 0.000
29 0 0.000
30 0 0.000
31 1 0.010
x > 31 0 0.000

than 10 % of the observed values of PLB(ϑVFB) were equal to zero for each of the
following cases: (a) the symmetric job shop with 90 % staffing and a due-date range
of 200 through 2600; (b) the asymmetric job shop with 70 % staffing; (c) the asym-
metric job shop with 80 % staffing and a due-date range of 2600 and 3000; and (d) the
asymmetric job shop with 90 % staffing and a due-date range of 2600 and 3000. In
these cases, a conditional p.d.f. was fitted to the data set composed of the nonzero
values of PLB(ϑVFB). Less than 50 nonzero values of PLB(ϑVFB) were observed in
each of the designated problems: (i) the asymmetric job shop with 80 % staffing and
a due-date range of 200 through 2200; and (ii) the asymmetric job shop with 90 %
staffing and a due-date range of 200 through 2200. In cases (i) and (ii), the observed
values in each data set were used to define a discrete probability distribution.

We found that, in general, the generalized Beta distribution, the shifted Gamma
distribution, the shifted Lognormal distribution, and the shifted Weibull distribution
could be used to characterize the majority of the data sets. The exception to this was
the symmetric job shop with 80 % staffing, where the unbounded Johnson distribution
approximated the left-hand tail of the associated data sets substantially better than
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any of the other standard continuous distributions. (Kuhl et al. (2010) discuss several
diverse engineering applications in which unbounded Johnson distributions yield
superior fits to nonstandard tail behavior.) In the symmetric job shop with 80 %
staffing and a due-date range of 3000 the small p-value was not a concern when the
value of Q′ and the graphs of the fitted p.d.f. and c.d.f. (see Fig. 13.1) were taken
into account.

The practical applicability of our distribution-fitting approach is clearly demon-
strated by the diversity of designated DRC job shop scheduling problems for which
the associated data set (13.4) can be adequately modeled by these six different
probability distributions in a straightforward manner.

Using the Fitted Distributions to Evaluate Allocation Quality

In the next section we present four examples illustrating the use of the fitted dis-
tributions to estimate the user’s degree of confidence that a specific allocation ϑ is
in fact a VF-best allocation for a given DRC job shop scheduling problem. In the
following section we propose an application of the fitted distributions to design a
new probabilistic stopping rule for worker-allocation search heuristics such as HSP.

Using the Theoretical Probability Distribution

One of the major advantages of having fitted the data sets of the form (13.4) using
standard probability distributions is that evaluating the quality of an allocation ϑ

is straightforward. In most of the examples that follow, exact answers can be ob-
tained analytically; and when exact answers are unavailable in a convenient closed
form, accurate numerical approximations to the desired tail probabilities can be read-
ily obtained from public-domain mathematical and statistical software packages,
commercial spreadsheets, etc. For each of the given DRC job shop scheduling prob-
lems described in the sections below, the simulation replications were generated as
detailed previously so that the mean processing time for each operation was 20.5
time units (this is the same configuration used in all our other examples).

Symmetric Job Shop with 60 % Staffing and Due-Date Range of 200

The first example involves a symmetric job shop with 60 % staffing and a due-date
range of 200. From Table 13.3, the fitted c.d.f. corresponding to this given DRC
job shop scheduling problem is F (x) ∼ Gamma(2.27, 10.33, 2.00). The allocation
ϑ∗ returned by LBSA (Lobo et al. 2013a) yielded the following results: LBϑ∗ =
4656;VFϑ∗ = 4727; PLB(ϑ∗) = 71; and ϑ∗ did not satisfy the optimality criteria of
Lobo et al. (2013b). In light of these results, we evaluated

Pr
{
PLB(ϑVFB) ≤ PLB(ϑ∗)

} = F (71)

= 0.985;
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therefore we were only 1.5 % confident that allocation ϑ∗ was a VF-best allocation.
Because of the low level of confidence associated with ϑ∗, we used HSP to search
for a better allocation. The HSP-delivered allocation ϑHSP yielded PLB(ϑHSP) = 17.
From this result we obtained

Pr
{
PLB(ϑVFB) ≤ PLB(ϑHSP)

} = F (17) = 0.346;

therefore we were 65.4 % confident that ϑHSP was aVF-best allocation. We concluded
that ϑHSP was a substantially better allocation than ϑ∗ in this case.

Asymmetric Job Shop with 70 % Staffing and Due-Date Range of 1000

The second example involves an asymmetric job shop with 70 % staffing and a due-
date range of 1000. From Table 13.2, the fitted c.d.f. corresponding to this given
DRC job shop scheduling problem is F (x) = 0.347F0(x) + 0.653Fc(x), where
Fc( · ) ∼ Weibull(1.29, 47.88, 0.48). Allocation ϑ∗ yielded the following results:
LBϑ∗ = 3347; VFϑ* = 3370; PLB(ϑ∗) = 23; and ϑ∗ did not satisfy the optimality
criteria. Consequently we evaluated

Pr
{
PLB(ϑVFB) ≤ PLB(ϑ∗)

} = F (23)

= 0.347F0(23) + 0.653Fc(23)

= 0.347 · 1 + 0.653 ·
[

1 − exp
{
−
(23 − 0.48

47.88

)1.29}]

= 0.553;

therefore we were 44.7 % confident that allocation ϑ∗ was a VF-best allocation.
Procedure HSP was again employed; and in this case the HSP-delivered allocation
ϑHSP yielded PLB(ϑHSP) = 0. For this simulation replication allocation ϑHSP was
both a VF-best allocation and an optimal allocation.

Symmetric Job Shop with 80 % Staffing and Due-Date Range of 2600

The third example involves a symmetric job shop with 80 % staffing and a due-date
range of 2600. From Table 13.3, the fitted c.d.f. corresponding to this given DRC job
shop scheduling problem is F (x) ∼ Johnson-SU(0.22, 1.24, 27.01, 106.23). Allo-
cation ϑ∗ yielded the following results: LBϑ∗=783; VFϑ∗= 841; PLB(ϑ∗) = 58; and
ϑ∗ did not satisfy the optimality criteria. In view of these results, we evaluated

Pr
{
PLB(ϑVFB) ≤ PLB(ϑ∗)

} = F (58)

= �

{
0.22 + 1.24 ln

[(58 − 106.23

27.01

)

+
√(58 − 106.23

27.01

)2 + 1

]}

= 0.074,
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where �( · ) denotes the standard normal c.d.f.; consequently we were 92.6 % confi-
dent that allocation ϑ∗ was a VF-best allocation. Using HSP, we found an allocation
ϑHSP that yielded the results PLB(ϑHSP) = 47 and

Pr
{
PLB(ϑVFB) ≤ PLB(ϑHSP)

} = F (47) = 0.047;

therefore we were 95.3 % confident that allocation ϑHSP was a VF-best alloca-
tion. Even though we obtained a high degree of confidence that allocation ϑ∗
was a VF-best allocation, HSP was able to find an allocation ϑHSP with an even
higher degree of confidence. In this application, it is arguable whether there was
a practically significant difference in the performance of ϑHSP compared with that
of ϑ∗.

Symmetric Job Shop with 90 % Staffing and Due-Date Range of 2200

The fourth example involves a symmetric job shop with 90 % staffing and a due-
date range of 2200. From Table 13.3, the fitted c.d.f. corresponding to this given
DRC job shop scheduling problem is F (x) = 0.163F0(x) + 0.837Fc(x), where
Fc( · ) ∼ Gamma(1.00, 40.55, 1.00). Allocation ϑ∗ yielded the following results:
LBϑ∗ = 977; VFϑ∗ = 1024; PLB(ϑ∗) = 47; and ϑ∗ did not satisfy the optimality
criteria. Consequently we evaluated

Pr
{
PLB(ϑVFB) ≤ PLB(ϑ∗)

} = F (47)

= 0.163F0(47) + 0.837Fc(47)

= 0.163 · 1 + 0.837 · 0.6784 = 0.731;

thus we were only 26.9 % confident that allocation ϑ∗ was a VF-best allocation. The
HSP-delivered allocation ϑHSP yielded the results PLB(ϑHSP) = 2 and

Pr
{
PLB(ϑVFB) ≤ PLB(ϑHSP)

} = F (2) = 0.183;

consequently we were 81.7 % confident that allocation ϑHSP was a VF-best allo-
cation. From the perspective of absolute performance, we concluded that for all
practical purposes ϑHSP was a VF-best allocation because the (unknown) optimality
gap VFϑVFB −LBϑ∗ for the given problem was bounded above by VFϑHSP −LBϑ∗ = 2
time units, which was less than 10 % of an average operation processing time.
Moreover from the perspective of relative performance, there was a practically sig-
nificant improvement in the performance of ϑHSP compared with that of ϑ∗ because
we obtained a reduction of 100[(47 − 2)/47]% = 95.7 % in the performance-to-
lower-bound statistic by using allocation ϑHSP instead of ϑ∗. Providing additional
insights into allocation performance is the main objective of our proposed method for
evaluating the user’s degree of confidence in having obtained a VF-best allocation—
especially in situations for which other methods for absolute or relative performance
evaluation yield ambiguous results.
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A Probabilistic Stopping Rule

The three different heuristic search strategies that constitute HSP all have the same
set of three stopping rules:

(a) An optimal solution has been found (i.e., the allocation satisfies one of the
optimality criteria of Theorems 1 and 2 of Lobo et al. (2013b));

(b) All relevant allocations have been searched; or
(c) The execution time limit has been reached.

In addition to rules (a), (b), and (c) above, the fitted probability distributions can
be used to formulate a probabilistic stopping rule. Let ω denote a user-specified
confidence coefficient such that 0 < ω < 1. The proposed probabilistic stopping
rule requires a confidence level of at least 100(1 − ω)% that for the DRC job shop
scheduling problem at hand, a specific allocation ϑ is a VF-best allocation. If an
allocation is encountered during the search process that satisfies this stopping rule,
then the search process will terminate even if the maximum search time (c) has
not elapsed. Implementation of such a stopping rule should decrease the average
execution time needed by the search strategy. On the other hand, we shall see that
a probabilistic stopping rule must be carefully adapted to the designated DRC job
shop scheduling problem being studied.

For a given value of ω ∈ (0, 1), if F (x) denotes the c.d.f. of PLB(ϑVFB) for a
simulation replication of a given DRC job shop scheduling problem, then both the
functional form of F (x) and the ω quantile of PLB(ϑVFB),

xω = F−1(ω) = min{x : F (x) ≥ ω}, (13.6)

will in general depend strongly on the problem type, the staffing level, and the due-
date range. To illustrate this point, we considered the following three designated
DRC job shop scheduling problems:

1. The symmetric job shop with 80 % staffing, a due-date range of 2200, and the
c.d.f.

F1(x) ∼ Johnson-SU( − 0.45, 4.40, 116.97, 75.00);

2. The asymmetric job shop with 60 % staffing, a due-date range of 1400, and the
c.d.f.

F2(x) ∼ Weibull(1.36, 55.42, 11.49);

and
3. The asymmetric job shop with 90 % staffing, a due-date range of 2600, and the

c.d.f.

F3(x) ∼ 0.433F0(x) + 0.567Fc(x),

where Fc(x) ∼ Lognormal(1.43, 0.82, 1.00).
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For each of the above designated DRC job shop scheduling problems, a given problem
was generated as detailed previously so that the mean processing time for each
operation was 20.5 time units (this is the same configuration used in all our other
examples). To satisfy Eq. 13.6 when ω = 0.05, we have the following requirements:

• For the first given DRC job shop scheduling problem, an allocation ϑ1 is needed
such that PLB(ϑ1) ≤ xω = 42;

• For the second given DRC job shop scheduling problem, an allocation ϑ2 is needed
such that PLB(ϑ2) ≤ xω = 17; and

• For the third given DRC job shop scheduling problem, an allocation ϑ3 is needed
such that PLB(ϑ3) = xω = 0.

Note that for i = 1, 2, and 3, the required values of PLB(ϑi) were determined ana-
lytically; and they have been rounded down because Lmax is integer-valued in these
applications. For the first given problem, the requirement x0.05 = 42 implies that the
corresponding performance-to-lower-bound statistic VFϑ1 − LBϑ∗ must not exceed
two mean operation processing times. For the second given problem, the requirement
x0.05 = 17 implies that VFϑ2 −LBϑ∗ must not exceed 83% of a mean operation pro-
cessing time. Finally for the third given problem, the requirement x0.05 = 0 implies
thatϑ3 must be aVF-best allocation. These examples illustrate the potential complica-
tions in implementing an effective probabilistic stopping rule for a worker-allocation
search heuristic.

Unresolved Problems and Lessons Learned

This section highlights a number of issues faced when implementing the methodology
described in the preceding sections, including some unresolved problems and the
main strengths and weaknesses of our probabilistic approach.

Unresolved Problems

Because of widespread availability of numerous distribution-fitting software pack-
ages, the following questions naturally arise:

• When a user-specified distribution is fitted to a given data set, do these packages
deliver similar results?

• When the user requests automatic selection of the distribution yielding the “best
fit” to a given data set, do these packages deliver similar results?

We examined the following packages in detail: (a) the Arena Input Analyzer (Kelton
et al. 2010); (b) Stat::Fit (Geer Mountain Software Corp. 2001); and (c) ExpertFit
(Law 2011). These software packages differ in the following important respects:
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• The methods used to set the location (i.e., the upper and lower endpoints) and the
number of bins for the histogram depicting the data set to be fitted;

• The methods used to estimate the parameters of each candidate distribution that
will be fitted to the data set;

• The methods used to perform the associated goodness-of-fit tests; and
• The algorithms used for automatic selection of the candidate distribution yielding

the “best fit” to the given data set.

We found that these differences can lead to substantially different results in practice.
The number of bins in the histogram can be manually specified, and this elimi-

nates one source of the discrepancies between the fits obtained by different software
packages when they are applied to the same data set. However, the Arena Input An-
alyzer does not allow the user to fix the location of the histogram by specifying the
lower and upper endpoints of the histogram—that is, the lower endpoint of the first
bin and the upper endpoint of the last bin. In many cases the Arena Input Analyzer
simply takes the smallest and largest observations in the data set as the lower and
upper endpoints of the histogram, respectively; and then it takes the lower endpoint
of the histogram as the “known” value of the shift parameter (lower limit) for any
shifted distribution that is fitted to the data set. This approach can yield fitted dis-
tributions that differ substantially from those delivered by Stat::Fit and ExpertFit.
Moreover, this approach can lead to noticeable differences in the degrees of freedom
and the resulting p-value of the chi-squared goodness-of-fit test for the final fitted
distribution as reported by the Arena Input Analyzer in comparison with the results
reported by ExpertFit and Stat::Fit.

We have also observed significant discrepancies between Stat::Fit and ExpertFit
in their automatic choice of the best-fitting distribution. This is because their algo-
rithms for ranking the quality of the fits obtained with each candidate distribution
are proprietary; thus the user has no basis for judging the reliability of either ranking
in a specific application. For example, when we used Stat::Fit to model the data set
having the form of Eq. (13.4) for the designated DRC job shop scheduling problem
corresponding to a symmetric job shop with 80 % staffing and a due-date range of
2200, the Johnson-SU distribution was recommended as the “best fit.” By contrast,
ExpertFit declared that all the fits to this data set obtained with a continuous distri-
bution were “bad”; presumably this is because all the observations in the data set are
integer-valued. In our judgment, the adequacy of the fitted Johnson-SU distribution
is evident from visual inspection of the histogram overlaid with the fitted Johnson-
SU p.d.f. and of the empirical c.d.f. overlaid with the fitted Johnson-SU c.d.f. in
Fig. 13.14. In our experience, finding a distribution that provides a good fit to a data
set is more complex than simply picking the candidate distribution ranked first by any
automated fitting procedure—the recommendations provided by such a procedure
must be supplemented by careful visual inspection of the fitted distribution as well
as the analyst’s “feel” for the data and for the ways in which the fitted distribution
will ultimately be used.
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Strengths and Weaknesses of the Approach

At the start of the fitting process, a contingency table approach was used to determine
whether for each combination of job shop type and staffing level, a single probability
distribution could be used for all levels of the due-date range. In other words for each
combination of job shop type and staffing level, we sought to test the hypothesis
that the eight data sets having the form of Eq. (13.4) (corresponding to the eight
levels of the due-date range) were all sampled from the same underlying population.
The results indicated that the hypothesis is definitely false—in general for each
combination of job shop type and staffing level, the data sets of the form of Eq. (13.4)
corresponding to different levels of the due-date range were sampled from different
populations. This analysis is confirmed by the results of fitting a distribution to each
data set separately; see Tables 13.2 and 13.3. Consider, for example, the symmetric
job shop with 70 % staffing. A shifted Gamma distribution provides the best fit to each
of the eight data sets; however, the distribution’s estimated parameters change as the
due-date range increases. For a due-date range of 200, the estimates for the shape,
scale and shift parameters are α = 3.00, β = 11.37 and a = 0.89, respectively; on
the other hand for a due-date range of 3000, the corresponding parameter estimates
are α = 10.92, β = 5.53, and a = 0.0, respectively.

In the context of evaluating a specific worker allocation ϑ for a given DRC job
shop scheduling problem, the implication of these results is that a change in the
due-date range will require the following:

(a) Generating simulation replications of the given DRC job shop scheduling prob-
lem with the new due-date range but with the old values of the job shop type and
the staffing level;

(b) Computing the associated data set having the form of Eq. (13.4);
(c) Fitting a new distribution to the new data set obtained in step (b); and
(d) Computing the new level of confidence that ϑ is a VF-best allocation for the

given problem.

This complication can greatly increase the work required to use our approach in
large-scale applications. On the other hand, so long as the given DRC job shop
scheduling problem remains unchanged (i.e., the job shop type, staffing level, and
due-date range remain the same), our approach can be used for rapid evaluation of
our confidence that different candidate allocations are VF-best for the given DRC
job shop scheduling problem.

There are six different probability distributions that were used to characterize
the data sets fit using the methodology outlined previously. However, there is a fair
amount of subjectivity in deciding which distribution provides the “best fit” to a data
set: this decision requires interpreting the p-value for a chi-squared goodness-of-fit
test, judging how well the fitted p.d.f. tracks the histogram of the data set, and judging
how well the fitted c.d.f. tracks the empirical c.d.f. In addition, when two or more
fitted distributions have similar chi-squared goodness-of-fit p-values, and the two
aforementioned graphs indicate fits of similar quality for different probability distri-
butions, there are no definitive tie-breaking criteria. In a number of cases documented
in this chapter, the characterization provided by a shifted Gamma distribution was
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arguably as good as the characterization provided by a shifted Weibull distribution or
a generalized Beta distribution. The point of this observation is that there are cases in
which two probability distributions can be said to provide a “best fit” to a given data
set; and the distribution that is finally selected may be the one that is most familiar
to the user or most easily implemented in practice.

Finally, the probability distributions chosen are continuous even though the data
sets are integer-valued. We chose to use continuous distributions for the following
reasons:

• None of the available parametric discrete distributions provided an adequate fit
to any of the data sets, and there was no theoretical basis for formulating new
parametric discrete distributions that might be used to obtain acceptable fits to
data sets having the form (13.4).

• Although each data set of the form (13.4) is integer-valued, this is an artifact
of the experimental design. To achieve tractability with our model of the DRC
job shop scheduling problem, it was necessary to assume that processing times
were integer-valued; in practice, however, operation processing times are usually
continuous.

• In all the situations for which a continuous distribution was used to approximate
all or part of a data set of the form (13.4), we judged that the continuous dis-
tribution provided an adequate fit to the relevant part of the data set based on
visual inspection of the fitted p.d.f. and c.d.f. when they were superimposed on
the histogram and the empirical c.d.f., respectively.

Conclusions

The use of heuristics in the solution approach to an NP-Hard problem introduces un-
certainty into the solution. The articles by Lobo et al. (2013a, b) address the problem
of finding an allocation of workers to machine groups in a DRC job shop that enable
a schedule that minimizes Lmax. In their approach, both the use of HSP to identify
promising allocations and the use of the Virtual Factory to generate schedules intro-
duce uncertainty into the solution. The first article finds a lower bound on Lmax given
an allocation ϑ , and then identifies how to find the allocation ϑ∗ yielding the smallest
such lower bound. The second article establishes optimality criteria, and in the case
that they are not satisfied, presents HSP, a heuristic that seeks an allocation enabling
the Virtual Factory to generate a schedule with an Lmax value smaller than VFϑ∗ .

In this article, we use simulation replications of a given DRC job shop scheduling
problem to estimate the distribution of the differenceVFϑVFB−LBϑ∗ . This distribution
can then be used to assess the quality of a specific (but arbitrary) allocation for a
given problem: the difference VFϑHSP − LBϑ∗ for a given problem is referred to
the estimated distribution so that the likelihood that the specific allocation is in fact
a VF-best allocation can be assessed. We present theory that addresses estimation
using continuous, mixed, and discrete distributions, and we demonstrate this theory
on 64 different data sets. In addition, we present a number of examples that illustrate
the use of the fitted distribution, and we discuss an application of the distribution
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as a stopping rule for a heuristic search strategy. Finally, we summarize the lessons
learned in this work, detailing unresolved issues and the strengths and weaknesses
of the approach.

One area of further research is the use of the performance to the lower bound metric
as a means of identifying the difficulty of a designated DRC job shop scheduling
problem. Another area of interest arises from the probabilistic analysis: the method
presented makes use of enumeration to generate the data set of PLB(ϑVFB) values
that is then characterized using a theoretical probability distribution. However, this
approach is not viable when the DRC job shop scheduling problems are much larger
than those considered in this article. Because the size of the allocation search space
grows exponentially with an increase in either the number of machine groups or the
number of machines, it is impractical to obtain the necessary data set of PLB(ϑVFB)
values. A revised method that is computationally tractable in problems of realistic size
and complexity is needed, and one such method is presented in Lobo et al. (2013c).

Appendix

Plots of Empirical and Fitted Distributions of PLB(ϑVFB) for All
DRC Job Shop Scheduling Problems

The following figures correspond to the distribution fitting for the experimental de-
sign. For each designated DRC job shop scheduling problem, Q = 500 simulation
replications were generated. The data set of PLB(ϑVFB) values was constructed as
described previously. More than 10 % of the PLB(ϑVFB) values were equal to zero
for each of the following cases: (a) the symmetric job shop with 90 % staffing and a
due-date range of 200 through 2600; (b) the asymmetric job shop with 70 % staffing;
(c) the asymmetric job shop with 80 % staffing and a due-date range of 2600 and
3000; and (d) the asymmetric job shop with 90 % staffing and a due-date range of
2600 and 3000. In these cases, a conditional p.d.f. was fitted to the data set composed
of the nonzero PLB(ϑVFB) values. Less than 50 nonzero PLB(ϑVFB) values were ob-
served in each of the following cases: (i) the asymmetric job shop with 80 % staffing
and a due-date range of 200 through 2200; and (ii) the asymmetric job shop with 90 %
staffing and a due-date range of 200 through 2200. In cases (i) and (ii), we simply
used the observed values in each data set to define a discrete probability distribution.
The “Best Fit” for each of the 64 different job shop type, due-date range, and staffing
level combinations, as determined using the methodology outlined previously, are
given in Tables 13.2 and 13.3.

The p-value given on each graph is the p-value reported for the chi-square
goodness-of-fit test by the Stat::Fit software (Geer Mountain Software Corp. 2001).
On the set of graphs corresponding to a single designated DRC job shop scheduling
problem, the number of “Datapoints” equals Q′ if the data set of the form (13.4)
for that designated DRC job shop scheduling problem was fitted using a continuous
distribution, and equals Q′(1 − p0) if the data set of the form (13.4) for that
designated problem was fitted using a mixed distribution.
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Fig. 13.3 Probability distribution fitting, asymmetric job shop, 60 % staffing



328 B. J. Lobo et al.

PLB(ϑVFB) PLB(ϑVFB)

PLB(ϑVFB)

PLB(ϑVFB) PLB(ϑVFB)

PLB(ϑVFB) PLB(ϑVFB)

PLB(ϑVFB)

Fig. 13.4 Probability distribution fitting, asymmetric job shop, 60 % staffing, contd.
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Fig. 13.5 Probability distribution fitting, asymmetric job shop, 70 % staffing
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Fig. 13.6 Probability distribution fitting, asymmetric job shop, 70 % staffing, contd.
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Fig. 13.7 Probability distribution fitting, asymmetric job shop, 80 % staffing
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Fig. 13.8 Probability distribution fitting, asymmetric job shop, 90 % staffing
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Fig. 13.9 Probability distribution fitting, symmetric job shop, 60 % staffing
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Fig. 13.10 Probability distribution fitting, symmetric job shop, 60 % staffing, contd.
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Fig. 13.11 Probability distribution fitting, symmetric job shop, 70 % staffing
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Fig. 13.12 Probability distribution fitting, symmetric job shop, 70 % staffing, contd.
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Fig. 13.13 Probability distribution fitting, symmetric job shop, 80 % staffing
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Fig. 13.14 Probability distribution fitting, symmetric job shop, 80 % staffing, contd.
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Fig. 13.15 Probability distribution fitting, symmetric job shop, 90 % staffing
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Fig. 13.16 Probability distribution fitting, symmetric job shop, 90 % staffing, contd.
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Chapter 14
Mine Planning Above and Below Ground:
Generating a Set of Pareto-Optimal Schedules
Considering Risk and Return

Carson McFadden and Candace A. Yano

Introduction

Both long-term planning and more detailed scheduling of extraction at mines are
difficult problems. Broadly speaking, mine planning usually involves determining
the three-dimensional volumes of earth to be extracted, and mine scheduling involves
the timing and methods of extraction at a finer level of detail. Over the past five
decades, researchers have developed increasingly more sophisticated techniques to
aid in decision-making, but thus far, researchers have not developed techniques to
support decision-making when both above- and underground mining are involved,
and when uncertainty exists about various factors such as the grade (density) of ore,
ore prices, construction costs, etc.

The goal of this chapter is to develop a procedure to identify Pareto-optimal
solutions with two goals: expected net present value (NPV) and a risk measure such
as standard deviation, value-at-risk, or probability of meeting a profit target. Such
a procedure will allow the decision-maker to be better-informed about the tradeoff
between expected profit and risk considerations without the need to search over the
weights or penalties that are typically used in multiobjective models involving a
tradeoff between risk and return.

We address this problem in the context of a mine planning problem in which the
firm can extract material either above- or underground, or both. We describe our
problem setting in more detail in the next section. Before doing so, we first provide
a review of relevant literature.
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Literature Review

Much research has been done on mine planning and scheduling. The vast majority
of this research has been based on the assumptions that both metal or mineral grades
or density as well as prices are deterministic. Furthermore, among the literature that
takes a deterministic approach, a substantial majority focuses exclusively on either
above-ground (surface) or underground mining; very few papers consider both. We
refer the reader to Osanloo et al. (2007) and Newman et al. (2010) for recent surveys
of this literature.

A limited amount of research has been done that considers excavation both above
and below ground, and to the best of our knowledge, all of this research is based on
deterministic models. For examples of articles on this topic, see Stacey and Terbrugge
(2000); Visser and Ding (2007); Epstein et al. (2010), and Newman, Yano and Rubio
(2013).

It is well known that, a priori, there is uncertainty in both the grade of ore in a
given location and the price that can be obtained from selling it at some future time
when it is extracted; other factors such as capital, excavation or processing costs are
also uncertain. Golamnejad et al. (2006) provide a nice overview of the sources of
uncertainty. Two common methods have been used for capturing grade uncertainty in
the mining literature: kriging, a geostatistical method (see Chiles and Delfiner 2012)
which often utilizes sequential Gaussian simulation (Deutch and Journel 1998), and
conditional simulation (Monte Carlo simulation to generate images of in situ orebody
grades with three-dimension spatial correlation; cf. Dimitrakoupolos 1998).

A great majority of the research on mine planning under uncertainty focuses on
the uncertainty of the ore grade, or equivalently, the ore yield, from extraction of
specified physically-defined volumes of earth. Much of this research is described in
the survey articles by Osanloo et al. (2007) and Newman et al. (2010). To the best of
our knowledge, all of this research addresses surface mining. Typically, the problem
is posed as one of when to mine each production block (a three-dimensional volume
of earth) to maximize NPV subject to constraints on such things as capacity for pro-
cessing the extracted material, satisfying production targets, precedence constraints,
etc., with uncertainty incorporated in various ways. Here, we summarize the various
strategies that have been employed.

Many researchers have used a technique which is called “conditional simulation”
in the mining literature; it is essentially a scenario-based approach in which potential
scenarios are generated via simulation and a solution is somehow constructed based
on solutions for these scenarios. Early methods (see, for example, Ravenscroft 1992,
Denby and Schofield 1995 and most of the references in Dimitrakoupolos 2011) have
developed either ad hoc methods with embedded optimization or metaheuristics to
identify heuristic solutions. As an example, some methods involve generating a
number of scenarios, finding the optimal or an approximate solution for each (now
deterministic) scenario, then using the set of solutions derived from solving these
problems as the basis for choosing or constructing a solution. As one example of
such an approach, Dimitrakopoulos et al. (2007) generate a number of conditionally
simulated orebodies, and for each such orebody, solve the block scheduling problem
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as if the orebody characteristics were deterministic. They then evaluate some of the
resulting solutions with respect to the distribution of return on investment plus other
operational considerations.

It is only fairly recently that researchers have proposed approaches based on
formal optimization modeling and solution techniques. Golamnejad et al. (2006)
propose a chance-constrained approach for block scheduling with the original intent
of imposing a chance constraint in each period. Each chance constraint specifies that
the average grade of blocks mined in that period should exceed a specified threshold
with a specified probability. Their final formulation, however, has an objective like
that of the capital asset pricing model (CAPM), i.e., expected profit less a constant
times the standard deviation of aggregate profit. Under the premise that many blocks
will be mined in each period, the authors appeal to the central limit theorem and
utilize normality assumptions when applying the CAPM model. (In our model, the
extraction of a stratum takes one or more periods and only one stratum is mined at a
time, so multiple strata are not completed in the same period.) They propose, but do
not test genetic algorithms as a solution approach. Kumral (2010) seeks to address a
similar problem, but eventually solves a version of the problem in which two types of
penalties are imposed: penalties for deviations of the profit from its expected value,
and penalties for deviations of actual capacity requirements from prespecified targets
for both mining (extraction) and processing. By varying the values of the penalties,
Kumral is able to generate a spectrum of solutions that vary with respect to the mean
and standard deviation of net present value and deviations from capacity limits.

Boland et al. (2008) develop a sophisticated multiperiod stochastic binary op-
timization model with the goal of maximizing expected net present value. Among
other features, the model handles endogenous uncertainty, i.e., uncertainty that is a
function of the decisions thus far. For example, once some blocks are extracted, the
ore grade of exposed blocks can be determined with much more accuracy than when
they were covered. The authors allow for decisions based on two types of time lags:
(i) decisions that can be made with no implementation time lag, such as deciding
which material to send to the processing plant; and (ii) decisions that can be imple-
mented with a positive time lag, such as which blocks to extract (which cannot be
changed instantaneously). To keep the size of the problem manageable, they aggre-
gate blocks and define the decisions in terms of these aggregated blocks. They use
a scenario-based approach but include nonanticipativity constraints to ensure that
the same decision applies to all relevant scenarios if it would not have been possible
to distinguish between scenarios at the point when the applicable decision would
be made. They characterize properties of the optimal solution, which then allows
them to reformulate the problem and devise efficient algorithms to find near-optimal
solutions.

De Lara et al. (2013) pose the block sequencing problem as a dynamic program and
offer conceptual frameworks for including on-line (updated) information, adaptive
strategies that can utilize this information and decision criteria that could be applied
in the stochastic version of the problem. In addition to expected net present value,
with or without a chance constraint on profit, they suggest two different maximin
criteria. This recent working paper does not report on implementation of any of the
proposed approaches.
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Several authors (e.g., Lemelin et al. 2006, Abdel-Sabour and Poulin 2010, and
Martinez 2006) have developed real-options-based approaches for estimating the
value of a mine. Generally speaking, these methods involve allowing contingent
decisions regarding such things as mining mode, temporary suspension, or aban-
donment in response to observations of factors that were uncertain at the outset but
become known as time progresses. These methods typically are based on the as-
sumption that the material under consideration for extraction and the sequence in
which it is to be extracted are specified in advance, so the result is an expected profit
or NPV of profit for a specific initial plan, but allowing for short-term changes in
execution. The approaches do not seek to determine the best areas to extract or the
associated optimal plan or schedule.

We highlight the fact that virtually all of the articles mentioned above that consider
uncertainty deal with surface mining, and in particular block sequencing. In a typical
formulation for optimizing block sequencing, many blocks can be extracted within
the duration of a basic time period in a typical optimization formulation. Thus, even
when ore grades are correlated in blocks that are near each other, there still may be
some pooling of risk across multiple blocks because the grades are not perfectly cor-
related. In the mine planning and scheduling problem that we address, each stratum
may take several time periods to extract because a stratum represents a much larger
volume of earth. Thus, there is no opportunity for the pooling of risk within a time
period. Furthermore, we consider both surface mining and underground mining, a
context with a high degree of uncertainty because the cost of underground infrastruc-
ture is very significant but must be incurred before any underground extraction takes
place, while the ore grade (or yield) deep underground may be much more uncertain
than in the areas closer to the surface. Thus, there is much more inherent uncertainty
in our problem and fewer ways to mitigate it.

The remainder of this chapter is organized as follows. In Sect. 2, we provide
a description of our problem. In Sect. 3, we describe our solution framework and
methodology, and we present a numerical example that illustrates the approach. We
conclude the chapter in Sect. 4 with a discussion of ways in which our approach can
be implemented, as well as future research directions.

Problem Description

We seek to identify a portion of the Pareto frontier for the objectives of expected
net present value and one or more risk measures selected by the decision-maker.
We accomplish this by finding the extraction plans that yield the k highest expected
net present values and evaluate each of these plans with respect to the selected risk
measures. In choosing this strategy, we are implicitly assuming that the decision-
maker is willing to sacrifice some, but not too much, expected NPV in exchange
for risk reduction. By choosing k large enough, one can generate a wide range of
solutions.
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In the remainder of this section, we briefly describe the deterministic problem
of maximizing the NPV. We then address the problem of finding the solutions with
the k highest expected net present values and the calculation of their associated risk
measures in Sect. 3.

In the mining industry, planners traditionally think in terms of production blocks.
Here, we consider the problem at a slightly higher level of aggregation, and instead
use strata, a collection of production blocks that generally form a horizontal layer.
Each stratum may have a different height, but in practice, they tend to be similar.
We assume that each stratum must be extracted entirely or not at all. The mine
planner must also choose how each stratum is to be mined, and often has choices
of cutoff grade (roughly defined, the minimum ore concentration that will be sent
to the processing plant to recover ore) and may have the choice of mining speed.
(The available methods of extraction vary and are situation-dependent.) We call
each option of how to mine a stratum (e.g., combination of cutoff grade and mining
speed) a mode. In some cases, there are costs for changing from one mode to another,
and/or constraints specifying that all extraction underground must be done using the
same mode. The latter are often a consequence of the need to match underground
infrastructure capabilities with the rate of extraction.

In a typical mine, extraction starts on the surface and a number of strata may be
extracted, but due to the need to maintain stability of the sides of the mining pit, it
is necessary to extract progressively more volume as one extracts deeper strata on
the surface. (Imagine extracting material to form a larger and larger cone.) The ad-
ditional extracted volume with each progressively deeper stratum often yields more
waste (material that is not sent to the processing plant due to the low ore concen-
tration), so eventually it becomes more economical to mine underground. Although
underground extraction may be slower than surface extraction, it can often be tar-
geted toward areas of higher ore density, and generally reduces the amount of waste
material. Before underground mining can begin, however, it is necessary to build
underground infrastructure, whose physical form depends upon the type of ore being
mined. For base metals such as copper, the underground infrastructure generally
includes a shaft with elevators for both employees and ore haulage, and various sup-
porting equipment. This infrastructure is expensive and associated costs are incurred
within a short time frame, so mining firms have a tendency to delay the transition
to underground mining past the optimal time. We restrict consideration to one set of
underground infrastructure. We are aware that a few mines have sunk two or three
shafts to progressively deeper strata, but in these cases, the shafts were sunk decades
apart and the more recent shafts were built after new mining technology became
available, enabling deeper extraction. Geotechnical considerations often limit the
duration when both surface mining and construction of underground infrastructure
are occurring simultaneously. Any limits of this type can be accommodated within
our framework.

To be concrete, in the remainder of this paper, we assume that the method of block
caving (see Hustrulid and Bullock 2001) is used underground. In block caving, the
shaft is sunk to the deepest stratum to be mined and extraction progresses upward
toward the surface. Rock is blasted and it falls to the bottom of the underground
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cave through vertical shafts called drawpoints. “Good” material is transported to the
surface and any material regarded as waste can usually be left behind.

We assume that a single surface pit is under consideration along with some under-
ground extraction below it in a single cave. Typically, the depth of the underground
cave is restricted due to geotechnical reasons; we can account for such restrictions
in our solution approach. Mines rarely shut down unless the price at which they can
sell ore falls below their costs. As most mines sell primarily to satisfy long-term
contracts at fixed prices and it is difficult and expensive to stop and restart mining
due to the need to relocate personnel and to provide security for the mine during
any closures, temporary suspensions of operations are infrequent. For these reasons,
we assume that the mine operates continuously (i.e., there is no idle time during the
extraction of a stratum or between strata). We also assume that ore is sold in the
period in which it is extracted; when ore is sold primarily under long-term contracts
at fixed prices, there is little incentive to hold inventory. Also, for many types of ore,
space considerations limit how much inventory can be held.

In summary, for the single-solution deterministic optimization problem, we seek
a mine plan that specifies (i) which strata are to be extracted on the surface and
the choice of mining mode for each, (ii) the depth (stratum) to which underground
infrastructure should be installed, which also defines the bottom-most stratum ex-
tracted underground, and (iii) the shallowest stratum to be mined underground and
the choice of mining mode for each stratum extracted underground. The goal is to
maximize NPV. For more details on various aspects of the deterministic problem
including the formulation as a longest path network (a network representation of a
dynamic programming problem), see Newman, Yano and Rubio (2013).

Solution Methodology

Our approach to the problem couples a method for finding the k best solutions in
terms of expected NPV and a method for calculating a user-specified risk measure. By
identifying the k best solutions from the standpoint of expected NPV and calculating
the selected risk measure(s) for each, we are able to construct a portion of the
Pareto-optimal frontier. Our approach was motivated by the fact that mine planning
problems—due to their combinatorial nature—have an enormous number of feasible
solutions. Our expectation is that, among the many solutions, there are many that are
near-optimal in terms of expected NPV. If we can identify these solutions, then we
can easily compute risk-related performance metrics for them, even in the presence of
spatial correlation of ore grades and/or time-correlated ore prices, or other risk-related
complications.

In the next subsection, we present our approach for generating the k best solutions
in terms of expected NPV. In the following subsection, we discuss an approach for
estimating the distribution of the NPV, from which many different risk measures can
be derived.



14 Mine Planning Above and Below Ground 349

Finding the k Solutions with the Highest Expected NPVs

Our approach is based on a longest-path network formulation of the problem, which
is a convenient method for finding the optimal mine plan (maximizing net present
value) in a deterministic setting where both above- and underground extraction are
involved. The key decisions are which strata to extract above ground, how deep to
construct the underground infrastructure (which defines the starting point of under-
ground extraction), and how far up (toward the surface) to continue the underground
extraction. If different mining modes are available, then associated decisions must
also be made. The fact that underground extraction proceeds upward instead of down-
ward creates a complication: the network representation of the longest-path problem
must, somehow, carry information about the deepest stratum extracted above ground
because underground extraction cannot proceed past that point. This complication
significantly expands the size of the network. A second complication is that the profit
obtained from a stratum depends upon when it is extracted (due to the effects of dis-
counting), so these effects must be incorporated by representing time explicitly in
the network.

Our problem is more complicated than the standard longest-path problem as we
need to find the k solutions with the highest expected NPVs. We adapt the algorithm
of Yen (1971), which identifies the k longest paths in a loopless network. Due to the
structure of our problem, with the underground mining proceeding upward and the
need to properly account for discounting, we cannot use a straightforward network
representation, but require special “aggregate” strata in the network that represent
different subsolutions corresponding to a set of contiguous strata mined underground.
We next present a formulation of our problem as a longest path network using a
standard representation without aggregate strata. Later, we introduce the special
aggregate strata that facilitate the process of finding the k longest paths.

Each node is defined by the state of the mine and the time period. In addition
to indices for real strata, we also introduce indices for pseudostrata, indicating the
development of underground infrastructure down to a specified stratum depth. The
real strata are numbered 1, . . . , n with stratum 1 being at the surface and stratum n

being the deepest stratum considered for extraction. The state of the mine is defined
by the triple (Ls , Lu, m), where Ls denotes the deepest stratum extracted on the
surface, Lu denotes the shallowest stratum mined underground and m represents the
mode utilized for the most recent stratum extracted. (Note that this state definition
does not fully characterize the physical state of the mine, as we would also need
to know the deepest stratum mined underground. However, this state definition is
sufficient for future decision-making.) We use the following additional notation:
s: index of strata; s = 1, . . . , n, n+1, . . . , 2n, where stratum i+n indicates a pseu-
dostratum denoting construction of underground infrastructure down to the physical
stratum i, i = 1, . . . . , n.
t : index of time periods, t = 1, . . . , T .
S(Ls , Lu): set of strata that are feasible immediate successors if the system state is
(Ls , Lu).
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π (s, m, t): discounted profit from extracting stratum s, s ∈ {1, . . . , n} by mode m

starting at time t , or the cost (negative profit) of developing underground infrastruc-
ture starting in period t to support extraction beginning at pseudostratum s by mode
m for s ∈ {n+ 1, . . . , 2n}.

Given an (Ls , Lu) pair, the most recent location of activity is:

σ =
{

Ls if Lu = 0
Lu otherwise.

(14.1)

Observe that the most recent location of activity can be inferred from the state defi-
nition. We assume that underground extraction is performed via block caving which
requires starting at the deepest point of the cave and working upward. Therefore,
Ls is needed in the state definition so that block caving does not continue past the
bottom of the pit created by surface mining.

The network consists of source and sink nodes, and a node for each four-tuple
(Ls , Lu, m, t) arranged systematically. (One simple arrangement consists of one
column of nodes for each (Ls , Lu) pair, ordered lexicographically.) Within each
such column are all relevant (Ls , Lu, m, t) nodes. A directed arc connects node
(L1

s , L1
u, m1, t1) to node (L2

s , L2
u, m2, t2) if the transition from state (L1

s , L1
u) to (L2

s , L2
u)

is feasible via extraction of a single stratum in S(L1
s , L1

u) and the times and modes
are compatible. Typically, we have either L1

s = L2
s or L1

u = L2
u. Let y(s, m, t) = 1

if stratum s is extracted via mode m starting at time period t and 0 otherwise. Each
stratum can be extracted at most once and using at most one mode; these constraints
are implicit in the construction of the network, the definition of S (which partially de-
fines which arcs exist) and the fact that we have a longest-path problem on a directed
network.

For compatible m and t values, the arc between nodes (L1
s , L1

u, m1, t1) and
(L2

s , L2
u, m2, t2) has a “length” π (L1

s , m1, t1) if L1
s = L2

s or π (L1
u, m1, t1) if L1

u = L2
u,

which is the discounted profit from mining stratum L1
s (respectively, L1

u) starting at
time period t1 via mode m1. For pseudostrata representing underground setups, this
represents the discounted cost of constructing the underground infrastructure for ex-
cavation starting at stratum L2

u. All of these values can be computed from the problem
data. The time duration corresponding to the arcs emanating from each underground
setup node is the net delay between the termination of surface mining and the begin-
ning of underground mining due to construction of the underground infrastructure.
If the underground infrastructure can be constructed during the last few periods of
surface mining and underground mining can start immediately after surface mining
is complete, then the time duration would be zero. If an arc originates at a node with
mode m1 and terminates at a node with mode m2 = m1, costs of switching modes
(as applicable) can be included, and if modes m1 and m2 are incompatible, then no
arc exists between the nodes.

Figure 14.1 illustrates a network for a simple case with three strata and only one
mining mode for each stratum. (The mode index, m, is omitted for simplicity.) In
the network, S denotes the source and T the terminus or sink, and we seek the
longest path between s and t . In this example, strata 1 and 3 take one period to
extract either above- or underground, and stratum 2 takes two periods to extract,



14 Mine Planning Above and Below Ground 351

Time Period
1 2 3 4 5

1,0 2,0 2,U 2,3

1,U 1,2
S T

1,3 1,2

0,U 0,2

0,3 0,2

Fig. 14.1 Standard longest path network for example problem

either above- or underground. We also assume that stratum 1, if extracted, must be
extracted on the surface, and stratum 3, if extracted, must be extracted underground.
For simplicity, we assume that construction of underground infrastructure takes one
period, incurs the same cost irrespective of depth, and no extraction can take place
while the underground infrastructure is being built. With these simplifications, we
need only one pseudostratum for the underground infrastructure, which we label as
U . In the figure, due to space limitations, time is indexed on the horizontal axis but
in a formal network representation, it would be included in the node definition. If a
node appears in a column corresponding to time t , then the corresponding activity
starts at the beginning of period t . Corresponding to each arc going into a node (but
not shown in the figure) is the net present value associated with the corresponding
activity. The ability to account for and distinguish timing is critical here because the
discounted cash flows depend upon when each stratum is extracted and when the
underground infrastructure is built.

The aggregate strata for underground mining are defined by an underground min-
ing plan, including the set of strata to be mined underground, and where applicable,
the mode for each. More specifically, each aggregate stratum represents the optimal
extraction plan for a contiguous set of strata that can be mined underground. Fig-
ure 14.2 illustrates how the network shown in Fig.14.1 changes with the introduction
of aggregate strata. We define the aggregate strata as follows:
A1: underground infrastructure built plus stratum 2 alone extracted underground
A2: underground infrastructure built plus stratum 3 alone extracted underground
A3: underground infrastructure built and strata 3 and 2 extracted underground

Because the aggregate strata define the full underground plan, we no longer need
to carry Lu in the definition of the nodes in the network. Note that we can also
consolidate the construction of the underground infrastructure into the aggregate
strata. Because the timing of events within each underground mine plan is known,
discounting effects can be handled in an “offline” calculation of the discounted profit
for each aggregate stratum. The network with aggregate strata for our example is
shown in Fig. 14.2. (Again, the net present value associated with each activity is not
shown in the figure.)
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Time Period
1 2 3 4 5

1,0 2,0 2,A2

1,A1

S 1,A2 T

0,A1

0,A2

0,A3

Fig. 14.2 Longest path network with aggregate strata for example problem

The network representation with aggregate strata allows us to easily handle limits
on the depth of the underground cave (often called “height of draw”) by excluding
any underground extraction options that exceed relevant limits. Particularly for large
mining projects where it would be technically infeasible to perform all of the ex-
traction exclusively above or exclusively below ground, the use of aggregate nodes
significantly reduces the size of the network. Notice that the network in Fig. 14.2 is
simpler than that in Fig. 14.1. In this example, because there is only one mode for
each activity, the number of paths from S to T is the same in Figs. 14.1 and 14.2,
but more typically, the number of paths in the network with aggregate strata will be
far smaller. Suppose that we had a choice of cutoff grades for underground mining.
Then the standard longest path diagram would show all possible options, but the
longest path network with aggregate strata would retain the same structure as shown
in Fig. 14.2 because each aggregate node represents only the optimized underground
plan for a combination of strata that can be mined underground.

Yen’s algorithm was designed for finding the k shortest (or longest) paths in
a standard acyclic network. It can be applied in a straightforward fashion to our
longest path network with aggregate strata to find the longest path, but it needs to
be adapted to deal with the aggregate strata when searching for the kth longest path,
k > 1. Yen’s algorithm iteratively identifies, for j = 2, . . . k, the j th longest path
essentially by removing the distinctive portions of the first longest through (j − 1)
st longest paths from contention. If, in the course of finding the k longest paths, we
find that the j th longest path includes a node associated with an aggregate stratum,
then an adjustment ofYen’s procedure is needed. Recall that initially, each aggregate
stratum in our network represents the optimal plan for a set of strata that can be
mined underground. As such, the second best plan for that same set of strata could
constitute part of second-best overall plan (i.e., the second longest path). So, in
general, whenever the j th longest path includes a node associated with an aggregate
stratum, before we search for the (j + 1)st longest path, we need to replace the
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information associated with that aggregate stratum with information on the next
best solution for excavating the corresponding set of strata. At each iteration, this
process only needs to be performed for at most a single node associated with an
aggregate stratum, and Yen’s algorithm can be used to find the next best solution for
the associated subnetwork.

We note that there are alternate ways to represent the longest path network and
alternate ways to find the k longest paths, but our approach utilizing aggregate strata
for the underground portion of the mining helps to compartmentalize and simplify
the changes in the network that need to be implemented during the iterations ofYen’s
algorithm.

Calculating Risk Measures

In practice, a decision-maker may be concerned about a variety of different risk mea-
sures. Once the set of k solutions with the highest expected NPVs has been identified,
it would be straightforward to (numerically) calculate any desired risk measure if the
relevant random variables are not too highly linked. Here, we present an example to
show that analytical approximations are possible even when some correlation exists
among the random variables. The tractability is a consequence of performing the
evaluation for a given solution rather than performing the evaluation while trying
to optimize or otherwise construct a solution. This is one of the main motivations
for our approach, and allows the decision-maker to choose almost any risk measure.
Even if analytic approximations are unworkable, Monte Carlo simulation could be
used, although the computational effort would be more extensive.

We illustrate our approach using a simple example with five strata. There is only
one cutoff grade. There is one speed for underground excavation and two speeds
above ground. For simplicity, we assume that the ore prices are represented as a time
series of lognormal distributions and that the ore yields for each plan are also repre-
sented as a time series of lognormal distributions. (The time series of ore distributions
depends upon the mining plan, including the sequence of strata to be extracted and the
mode by which each is extracted.) Historically, ore prices have been autocorrelated
over time, and it is well-established that ore density tends to be spatially correlated.
To capture these two effects in a very approximate way, we assume that the product of
ore price and ore quantity is positively autocorrelated over time. Using hypothetical
parameters and accounting for the assumed autocorrelation, we computed the 95 %
value-at-risk (VaR), i.e., the 5th percentile of profit, for the 10 longest paths in the
network. They are shown in Table 14.1 along with the corresponding expected profit.

In this example, there is considerable disparity among the top ten solutions in
terms of expected profit because the problem itself is small. (There are only a few
dozen paths, even if one considers unrealistic options such as extracting stratum 1
underground.) The best solution in terms of expected profit (Path 1) has a 95 %+
chance of generating a positive profit, but this may or may not be acceptable to the
firm. If the decision-maker wants greater assurance of a positive profit, he or she
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Table 14.1 Solutions with
highest expected profit and
corresponding 95 %
value-at-risk

Path Expected Profit VaR

1 2200 6
2 2060 −72
3 2060 −72
4 2000 312
5 1980 −146
6 1920 −151
7 1910 −340
8 1860 235
9 1860 234
10 1340 274

might choose Path 4, whose expected profit is 10 % smaller than the maximum but
offers a 95 % chance of returning a profit of 312 or higher. Observe also that even
among solutions with quite similar expected profit (e.g., Paths 6–9), the 95 % VaR
varies widely (between -151 and 235) because the paths themselves represent quite
distinct mining plans.

Here, we have presented a simple example for illustration. In practice, the number
of strata varies depending upon the location and dispersion of the ore under consid-
eration for extraction and the granularity with which the firm would like to model the
extraction decisions. Typically, the number of strata would be several to many dozen.
For large problems, we have found that the most challenging aspects are data and
memory management in identifying the k longest paths. This difficulty is exacerbated
when underground extraction proceeds upward rather than downward because of the
need to ensure that extraction does not proceed beyond the deepest stratum mined
above ground. (The network representations are much simpler when all extraction
proceeds downward.) Some of the data management challenges can be overcome via
advanced techniques from computer science, and the challenges related to computer
memory will diminish with advancements in the associated technology.

Conclusions

Mine planning involves many uncertain factors, such as ore grade and yield, ore
prices, and the costs of necessary inputs, such as labor and energy. Mining firms need
to choose a plan that takes into account both expected net present value and various
risk measures. We propose a systematic method to identify a portion of the Pareto
frontier of solutions. Our approach couples a method for finding the k longest paths in
a network, where the path lengths are the net present values of various mining plans,
with methods for evaluating the k longest paths with respect to managerially-selected
risk measures. Our method allows a decision-maker to determine exactly how much
NPV is sacrificed for each unit of risk reduction, and enables the decision-maker to
consider multiple risk measures simultaneously, if desired.

We began this study with the hope of considering multiple types of uncertainty,
but soon discovered how little fundamental statistical theory exists to represent the
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distribution of profit in an easy-to-use form for a realistic instance with characteristics
such as the following: (i) time series of ore prices with a specified volatility and
autocorrelation; (ii) matrix of distributions of underground infrastructure costs (by
stratum depth and time period); and (iii) matrix of distributions of ore yield (by
stratum and extraction mode), with some spatial correlation. As decision-makers
in mining and other capital-intensive industries increasingly wish to consider risk
in making long-term plans, it will be valuable to be able to derive approximate
distributions of economic performance measures (e.g., profit) starting with primitives
that are represented using common distributions. Further development along these
lines will make approaches like ours much more versatile.

More broadly, further research is needed to develop other methods that allow the
decision-maker to consider tradeoffs between risk and return in an explicit fashion,
and to expand upon our approach by including information updating and contingency
options.
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Chapter 15
Multiple-Lot Lot Streaming in a Two-stage
Assembly System

Liming Yao and Subhash C. Sarin

Introduction

Lot streaming is the process of using transfer batches (sublots) to move completed
portions of a production lot to downstream machines so that their operations can be
undertaken in an overlapping fashion. Kalir and Sarin (2000) have shown potential
benefits of lot streaming in the flow shop environment for the three commonly used
performance measures: makespan, mean flow time and average work-in-process. In
this chapter, we address a problem of streaming multiple lots in a two-stage assembly
system to minimize the makespan. We designate this problem as a multiple-lot, two-
stage assembly, lot streaming problem (ML-TSALP). The presence of multiple lots
requires simultaneous determination of sublot sizes and the sequence in which to
process the lots.

The configuration of the assembly system that we consider is illustrated in
Fig. 15.1. The first stage of this system consists of multiple, parallel machines. Each
of these machines produces a particular subassembly type for each production lot.
These subassemblies are then assembled into final products at the second stage.
The example in Fig. 15.1 consists of three subassembly machines at Stage 1 and
two production lots of 50 and 40 items each. A lot-detached setup (that can be
performed before the arrival of the lot) is incurred on every machine at both stages.
For example, these values are assumed to be 40, 40, and 60 units for lot 1 on the
subassembly machines, and 10 units on the assembly machine. Similar numbers
for lot 2 are 30, 20, and 30 units for the setups on the subassembly machines, and
60 units on the assembly machine. The processing times for lot 1 are 1.5, 1, and 1
units per item on the subassembly machines and 1 unit on the assembly machine.
For lot 2, the processing times are 1, 2, and 0.5 units per item on the subassembly
machines and 2 units on the assembly machine.

We depict three schedules (designated Schedule 1, Schedule 2 and Schedule 3) in
Fig. 15.1. Figure 15.1a presents Schedule 1, in which the processing of lot 1 precedes
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subassembly 1:

subassembly 2:

subassembly 3:

assembly:

40  55                   115   145 155 165 185

40 50           90  110   130   150        190

60 70          110      140  160

10                     70 80       115         155                 215  235    255        295

30 40 50   70         110 125                 185

20    40    60          100         140 150        190

30 40 50                 110 120      160

60     80   100       140 150 160    190         230

30 40 50   70         110      140            185

20    40    60          100         140   160      190

30 40 50                 110 130      160

60     80   100      140 150 160 180         220

subassembly 1:

subassembly 2:

subassembly 3:

assembly:

subassembly 1:

subassembly 2:

subassembly 3:

assembly:

Schedule 1

Schedule 2

Schedule 3

Lot 1 Lot 2

Lot 2 Lot 1

Lot 2 Lot 1

10 40 2010 10

10 10 10 2040

10
20

10 40 10 10 20

10 10 20 10 40

10 10 20 10 40

20 10 40

10 10 20 10 40

10 10 20 20 30

10 10 20 20 30

20 20 30

10 10 20 20 30

Fig. 15.1 Example depicting streaming of multiple lots in a two-stage assembly system

that of lot 2. The sublot sizes used for lot 1 are 10 and 40, and those for lot 2 are
10, 10, and 20. Schedule 2 is shown in Fig. 15.1b in which lot 2 is processed before
lot 1, while the sublot sizes used for both the lots are the same as those in Schedule
1. Due to this change in sequence in the processing of the lots, makespan decreases
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from 295 to 230. Note that if we change the sublot sizes for lot 1 to 20 and 30 while
keeping the sequence to be lot 2 followed by lot 1 (Schedule 3 in Fig. 15.1c), the
makespan decreases further from 230 to 220. Our aim is to determine the sequence
of the lots and sublot sizes for each lot so as to minimize the makespan.

The ML-TSALP has not been addressed in the literature. Lee et al. (1993), Hariri
and Potts (1997), and Sun et al. (2003) have addressed the scheduling problem
for the above two-stage assembly system without considering lot streaming. Lee
et al. (1993) have studied a three-machine assembly scheduling problem with two
subassembly machines at Stage 1 and an assembly machine at Stage 2. They have
shown that their problem is strongly NP-hard and have identified special cases of the
problem that are solvable in polynomial time. They also present several heuristics
along with their respective worst-case performance bounds. Hariri and Potts (1997)
have extended the problem to consider an arbitrary number of subassembly machines
at Stage 1, and they have developed a branch-and-bound algorithm for its solution.
Sun et al. (2003) have considered a three-machine assembly scheduling problem
and have presented several heuristics to address the worst-case scenarios presented
in the literature. Recently, Sarin et al. (2011) have presented polynomial-time al-
gorithms to determine the optimal number of continuous and integer-sized sublots,
given a maximum number of sublots, for the single-lot TSALP. Lot streaming in the
presence of multiple lots has also been addressed for two-machine flow shop, which
is a special case of the two-stage assembly system considered here. For this prob-
lem, Baker (1995) and Cetinkaya and Kayaligil (1992) have shown that unit-sized
sublots are optimal for the problem with no setup time, and have solved the resulting
sequencing problem using a modification of Johnson’s algorithm (Johnson 1954).
For the case with lot-detached setup times and sublot transfer times, Vickson (1995)
has shown that the sublot sizing and lot sequencing problems are independent. They
derive optimal sublot sizes and then solve the lot sequencing problem using John-
son’s algorithm. For the case with lot-detached setup and removal times, Cetinkaya
(1994) has also shown that the sublot sizing problem and sequencing problems are
independent, and furthermore, the optimal sublot sizes are geometric. A sequence of
lots is determined using a modification of Johnson’s algorithm based on run-in and
run-out times. Sriskandarajah and Wagneur (1999) have addressed the multiple-lot,
lot streaming problem in a no-wait two-machine flow shop, and they have proved
that the sublot sizing and lot sequencing problems are independent in this case as
well. The optimal continuous sublot sizes are geometric and the optimal lot sequence
can be obtained using an algorithm proposed by Gilmore and Gomory (1964). Kalir
and Sarin (2003) have considered a problem with sublot-attached setups. They have
presented solution procedures for two cases: equal and unequal sublot sizes for all
the lots. For the equal sublot size case, their algorithm iterates over all possible values
of the size of a sublot, and it sequences the lots using a modified Johnson’s algo-
rithm. For the unequal sublot size case, they have proposed a two-phase procedure
in which the construction phase determines the sequence using a modified Johnson’s
algorithm and the improvement phase reoptimizes sublot sizes based on the sequence
obtained. The iteration continues until no improvement can be made.
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This chapter is organized as follows. In the section “Problem Description and
Basic Properties,” we describe the ML-TSALSP and present its useful structural
properties. A mixed integer programming formulation for this problem is presented
in the following section. In the section “A Branch-and-Bound-based Methodology
for the ML-TSALSP,” we propose a branch-and-bound procedure, which includes
the development of various lower and upper bounds and dominance rules that help in
curtailing nodes of the branch-and-bound tree. Results of our computational exper-
imentation demonstrate the efficacy of the proposed branch-and-bound algorithm.
Finally, concluding remarks are made in last section.

Problem Description and Basic Properties

The ML-TSALSP can formally be described as follows. There are N production lots
to be processed in a two-stage assembly system. Each lot j consists of Uj items. There
is a set � of M subassembly machines at the first stage and an assembly machine at
the second stage. The per-unit processing time for the items of a lot can vary over
the machines, and is designated by pjk for lot j on machine k. The unit processing
time is different for different lots on the assembly machine, and is designated by pjA

for lot j. Lot-detached setup times are incurred before each lot j starts its processing
on subassembly machine k, k ∈ �, and the assembly machine A, and are denoted by
tjk , k ∈ �, and tjA, respectively. We assume that all the machines (those at Stage 1
and Stage 2) use the same number of sublots nj , for lot j , j = 1, ..., N , which are
given. We make the following assumptions: (1) all machines are available at time
zero; (2) sublot sizes are continuous; (3) the processing of a sublot on machine A can
be started only after a sufficient number of its components have finished processing
at the first stage; (4) sublot intermingling is not allowed, that is, once a machine
starts processing a lot, it has to finish all items (and hence all sublots) of that lot
before beginning to process the next lot; and (5) each assembly of job j requires one
subassembly of each kind. In case, an assembly of job j requires αk subassemblies
from subassembly machine k, without loss of generality, we can assume p′

jk ≡ αkpjk.

The objective is to determine: (1) the sequence in which to process production lots
and (2) sublot sizes for each lot j for processing on the subassembly and assembly
machines so as to minimize the makespan, that is, the completion time of the last
sublot of the last lot on the assembly machine A. We use the following notation:

Parameters

N—Number of production lots.
M—Number of subassembly machines.
Uj—Number of items in lot j , j = 1, ..., N.

nj—Number of sublots of lot j , j = 1, ..., N.

tjk—Detached setup time of lot j on subassembly machine k, k = 1, ..., M.

tjA—Detached setup time of lot jon the assembly machine.
pjk—Unit processing time of lot j on subassembly machine k, k = 1, ..., M.

pjA—Unit processing time of lot j on the assembly machine.
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Variables

xijk = 1, if lot j is sequenced in position i of the sequence on subassembly machine
k; and 0, otherwise.

xijA = 1, if lot j is sequenced in position i of the sequence on the assembly machine;
and 0, otherwise.

sjuk = Size of sublot u of lot j on subassembly machine k.
sjuA = Size of sublot u of lot j on the assembly machine.
ξik = Completion time of a lot on subassembly machine k if it is sequenced in

position i.
ξiA = Completion time of a lot on the assembly machine if it is sequenced in

position i.

Before presenting a mathematical formulation for the ML-TSALSP, we first mention
the following properties, which help in curtailing the type of sequence and sublot
sizes that we need to consider.

Property 1. There exists an optimal schedule in which the sequences of the lots are
the same on all the machines.
Let μk be a sequence of lots on subassembly machine k, and μAbe a different sequence
on assembly machine A. It is easy to see that we can alter the sequence μk on
each subassembly machine k to conform to μA without worsening the makespan.
Consequently, we can drop the subscripts “k” and “A” from the notation of the
sequencing variables, xijk and xijA.

Property 2. For a given sequence of lots, there exist optimal sublot sizes for each
lot such that each lot’s completion time is minimized.
Clearly, there exists no idle time in between the processing of production lots on each
subassembly machine because, otherwise, the makespan can potentially be improved
by a local left shift. Therefore, the minimization of makespan for the ML-TSALSP
can be considered as the minimization of total idle time on the assembly machine
A. Hence, for a given sequence of lots, the minimization of total idle time on the
assembly machine A is equivalent to minimizing the completion time of each lot in
the sequence.

Property 3. There exists an optimal schedule in which each lot is split into consistent
sublots for processing on subassembly and assembly machines.
By Property 2, the problem of minimizing the completion time of a lot is equivalent to
a two-stage, single-lot, lot-detached setup time makespan minimization lot streaming
problem. Sarin et al. (2011) have shown the optimality of consistent sublots for this
problem. Because of Property 3, we can drop the subscripts “k” and “A” from the
notation of sublot sizes, namely siek and sieA.

Observation Property 3 also establishes the fact that for a given sequence of lots,
the optimality conditions for the two-stage, single-lot lot streaming problem, will be
valid for the ML-TSALSP as well.
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A Mixed Integer Programming Formulation

Our model formulation for the ML-TSALSP is as follows:
ML-TSALSP-M:

Minimize ξNA (15.1a)

Subject to
N∑

i=1

xij = 1, ∀j = 1, ..., N , (15.1b)

N∑

j=1

xij = 1, ∀i = 1, ..., N , (15.1c)

ξik ≥ ξi−1,k +
N∑

j=1

(tjk + pjkUj )xij , ∀i = ..., N , k = 1, ..., M , (15.1d)

ξiA ≥ ξi−1,A +
N∑

j=1

(
tjA + pjAUj

)
xij, ∀i = 1..., N , (15.1e)

ξiA + (1 − xij)
(
(pjk + pjA)Uj

) ≥ ξi−1,k + tjkxij + pjk

e∑

u=1

sju + ρjA

nj∑

u=e

sju,

∀i, j = 1....N , e = 1, ..., nj , k = 1, ..., M , (15.1f)

nj∑

u=1

sju = Uj , ∀j = 1, ..., N , (15.1g)

sju ≥ 0, ∀ = 1, ..., N , u = 1, ...nj, (15.1h)

xij ∈ {0,1} , ∀i, j = 1, ..., N. (15.1i)

Constraints (15.1b) and (15.1c) are assignment constraints that ensure that each lot
is assigned to a position and each position is allocated to only one lot, respectively,
in a permutation of lots. Constraints (15.1d) and (15.1e) ensure that a subassembly
machine at Stage 1 and the assembly machine at Stage 2, respectively, can process
only a single production lot at-a-time, and also they capture the respective completion
times of the lots on the subassembly and assembly machines. Constraints (15.1f)
assert that the completion time of each lot j, if assigned to position i on the assembly
machine, can be no less than the completion time of each of its sublots on assembly
machine A. Specifically, if xij = 1, we have

ξiA ≥ ξi−1,k + tjk + pjk

e∑

u=1

sju + pjA

nj∑

u=e

sju, ∀e = 1, ..., nj , i, j = 1, ..., N ,

k = 1, ..., m,
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which requires the completion time of lot j in position i on assembly machine A to be
greater than or equal to the total time required to complete every sublot of lot j, taking
into consideration its processing on every subassembly machines k, k = 1, ..., M. In
case xij = 0, we have

ξiA +
(
pjk + pjA

)
Uj ≥ ξi−1,k + pjk

e∑

u=1

sju + pjA

nj∑

u=c

sju.

Since (pjk + pjA)Uj ≥ pjk
∑e

u=1 sju + pjA
∑nj

u=e sju, ∀ e = 1, ..., nj , the above con-
straint is redundant. Constraints (15.1g) ensure that the sum of the sublot sizes of lot
j is equal to the number of items in lot j. Constraints (15.1h) represent the nonneg-
ativity of sublot sizes, and constraints (15.1i) represent the binary restriction on the
assignment variables.

A Branch-and-Bound-based Methodology for the ML-TSALSP

In this section, we propose a branch-and-bound-based methodology for the ML-
TSALSP. First, we present a mathematical expression for the makespan that is utilized
in the sequel.

Expression for Makespan

The expression for the makespan of a given sequence of lots relies on the properties
stated in the section “Problem Description and Basic Properties.” Given a feasible
Schedule π , let π (i), i = 1, ..., N , denote the lot located at its ith position. Then,
the makespan can be expressed by

M(π ) = max

⎧
⎨

⎩
max

1≤k≤M

{
max

1≤i≤N

{
max

1≤e≤nπ (i)

{
ψ iek(π )

}}}
,

N∑

j=1

(tjA + pjAUj)

⎫
⎬

⎭
, (15.2)

where ψ
iek

(π ) is the completion time of sublot e of the lot in position i of Schedule
π on machine k, and is given by

ψ
iek

(π ) =
i−1∑

v=1

(
tπ (v)k + pπ (v)kUπ (v)

)+
(

tπ (i)k +
e∑

w=1

pπ (i)ksπ (i)w +
nπ (i)∑

w=e

pπ (i)Asπ (i)w

)

+
N∑

v=i+1

(
tπ (v)A + pπ (v)AUπ (v)

)
(15.3)
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From the definition of makespan, we have the following inequality:

M(π ) ≥ ψ
iek

(π ), ∀k = 1, ..., M , e = 1, ..., nπ (i), i = 1, ..., N. (15.4)

A critical sublot is defined to be a sublot for which the equality holds in (15.4) for
some machine k,while a critical lot is a lot to which the critical sublot belongs. Note
that if the equality holds for some i, e, and k, we define that lot, sequenced in position
i, and its sublot e to be critical with respect to machine k. Also, if a lot is critical,
all its sublots will be critical based on the criticality of sublots in the single-lot,
two-stage assembly lot streaming problem (see Sarin et al. (2011)). For instance, if
a production lot in position c of Schedule π is critical with respect to machine k, we
have

M(π ) = ψ (π )
cek

=
c−1∑

v=1

(
tπ (v)k + pπ (v)kUπ (v)

)

+
(

tπ (c)k +
e∑

u=1

pπ (c)ksπ (c)u +
nπ (c)∑

u=e

pπ (c)Asπ (c)u

)

+
N∑

v=c+1

(
tπ (v)A + pπ (v)AUπ (v)

)
, ∀e = 1, ..., nπ (c) (15.5)

Also, note that when the makespan M(π ) = ∑N
j=1

(
tjA + pjAUj

)
, there will be no

critical sublots and critical lots.
Let τi denote a partial sequence containing a set of lots that has been scheduled up

to position i in the permutation, and τ ′i denote the set of lots yet to be scheduled. In
the branch-and-bound tree (see Fig. 15.2), a node at level i represents a subproblem
in which a partial sequence τi has been fixed, and the remaining sequence needs to
be determined among the lots in set τ ′i in order to minimize the makespan. We denote
such a subproblem by P i

τi
.

Let Ck(τi) and CA(τi) denote the completion times on the subassembly machine
k and the assembly machine A, respectively, for the lot in position i of the partial
sequence τi . At a level i of the branch-and-bound tree, each node corresponds to a
partial permutation in which the lots have been sequenced in the first i positions. If
π is a complete sequence built from a τi , then the makespan of such a sequence is
given by

M(π ) = max

⎧
⎨

⎩
max

1≤k≤M

{
max

i+1≤q≤N

{
max

1≤e≤nπ (q)

{
ψqek(π)

}}}
, CA(τi)+

∑

j∈τ ′ i

(tjA + pjAUj)

⎫
⎬

⎭
,

(15.6)

where ψ
qek

for any position q after i is obtained as follows:

ψ
qek

(π ) = Ck(τi) +
q−1∑

v=i+1

(
tπ (v)k + pπ (q)kUπ (v)

)
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Fig. 15.2 The branch-and-bound tree for the ML-TSALSP

+
(

tπ (q)k +
e∑

w=1

pπ (q)ksπ (q)w +
nπ (q)∑

w=e

pπ (q)Asπ (q)w

)

+
N∑

v=q+1

(
tπ (v)A + pπ (v)AUπ (v)

)
(15.7)

Note that M(π ) ≥ ψ
qek

(π ), ∀k = 1, ..., M , e = 1, ..., π (q), q = 1, ..., N. In case the
equality in the above expressions holds for a lot in position c with respect to some
machine k, then that lot π (c) and its sublots are critical.
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Determination of Lower Bounds

Let C0
A(τi , j ) be the completion time of lot j on machine A if it is sequenced in position

i + 1, assuming that lot j is processed immediately on machine A after the largest
among its completion times on subassembly machines. Similarly, C0

A(π\{j} , j ) is
the completion time of lot j if it is sequenced in the last position assuming that lot j
is processed immediately on machine A after the largest among its completion times
on subassembly machines. We have the following lower bounds:

Lower Bound 1 : LB1(τi) = CA(τi) +
∑

jετ ′2

(tjA + pjAUj ). (15.8)

Lower Bound 2 : LB2(τi) = min
jετ ′1

⎧
⎪⎪⎨

⎪⎪⎩
C0

A(τi , j ) +
∑

qετ ′1,
q =j

(tqA + pqAUq)

⎫
⎪⎪⎬

⎪⎪⎭
. (15.9)

Lower Bound 3 : LB3(τi) = min
jετ ′1

{
C0

A(π\ {j} , j )
}
. (15.10)

Note that LB1(τi), LB2(τi)and LB3(τi)are machine-based lower bounds. Next, we
present a lower bound based on a relaxed version of the original problem. As before,
let τ ′i be the set of remaining lots corresponding to τi , and π∗

k (τ ′i) denote an optimal
sequence of the lots in set τ ′i for a two-machine system consisting of the subassembly
machine k and the assembly machine A. Let Ck(π∗

k (τ ′i)) denote the optimal makespan
obtained for this relaxed problem. We have the following lower bound:

Lower Bound 4 : LB4(τi) = max
1≤k≤M

{
Ck(τi) + Ck(π∗

k (τ ′i))
}
. (15.11)

Next, we present the modified Johnson’s algorithm for a two-machine problem con-
taining machine k and machine A to obtain π∗

k (τ ′i) and Ck(π∗
k (τ ′i)). But, first, we

state the following property (see Cetinkaya (1994).

Property 4. The optimal sublot sizes for a lot j ∈ τ ′i belonging to the optimal se-
quence π∗

k (τ ′i), can be obtained by solving the single-lot lot streaming problem for
a two-machine flow shop containing machine k and machine A, irrespective of the
lot sequence.

As a result of this property, the sublot sizes s∗juk for each lot j in solution π∗
k (τ ′i)

are geometric, and can be obtained as follows:

s∗juk =

⎧
⎪⎪⎨

⎪⎪⎩

(qjk)u−1 − (qjk)u

1 − (qjk)nj
, if qjk = 1,

U

nj
, otherwise, ∀k = 1, ..., Mi , u = 1, ..., nj , j ∈ τ ′,

(15.12)
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where qjk = pjA

pjk
. With the sublot sizes determined, we then calculate run-in and

run-out times for each lot as follows:

RIjk = max
{
0, tjk + pjks∗j1k − tjA

}
, ∀j ∈ τ ′i , k = 1, ..., M (15.13)

ROjA = max
{

pjAs∗jnjk , (tjA − tjk) + Uj(pjA − pjk)
}

, ∀j ∈ τ ′i , k = 1, ..., M (15.14)

The modified Johnson’s rule based on the concept of run-in and run-out times, which
is similar to the algorithm proposed in Cetinkaya (1994), is as follows:

Proposition 1. In a two-machine flow shop with machines k and A, lot u precedes
lot v in solution π∗

k (τ ′i) if the following is true

min {RIuk , ROvA} ≤ min {RIvk , ROuA} , ∀u,v ∈ τ ′i . (15.15)

Determination of Upper Bounds

Given a partial sequence τi , an upper bound can be computed by

UB(τi) = min
1≤k≤M

{
Ck(τi + π∗

k (τ ′i))
}
. (15.16)

Note that τi + π∗
k (τ ′i) constitutes a complete, feasible sequence for each k and

C(τi + π∗
k (τ ′i)) can be obtained by solving a linear programming model for the

permutation sequence τi + π∗
k (τ ′i).

Development of Dominance Rules

In this section, we present some dominance rules that reduce the number of branches
generated for a branch-and-bound-tree-based method.

From Properties 2 and 3, we have that if a permutation of lots is given, then the
problem can be decomposed into N single-lot, two-stage assembly lot streaming sub-
problems (Sarin et al. 2011). Therefore, the optimality conditions developed for that
problem hold for the ML-TSALSP. Given a partial permutation of τi and set τ ′i con-
taining the remaining lots, we consider the problem of assigning a lot to position i + 1.
As noted earlier, for any lot j ∈ τ ′, the criticality of a sublot of j is associated with a
subassembly machine. A subassembly machine may or may not have a critical sublot
associated with it. If there exists a critical sublot for a machine, we call it a pattern-
switching sublot and designate that machine as kd . When more than one sublots are
critical for a machine, then the last of these sublots is a pattern-switching sublot. We
denote the pattern-switching sublot of lot j for machine k by ρjk. This is illustrated in
Fig. 15.3. Let σjkd

represent cumulative sublot sizes of lot j beyond which machine
kd is not critical. Let D(τi , j ) = {k1, k2, ..., kr} be a set of dominant machines of
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lot j, each of which has a pattern-switching sublot associated with it; and let
W (τi , j ) = {ρjk1 , ρjk2 , ..., ρjkr

}
be the sequence of the pattern-switching sublots of

lot j. Suppose all of the subassembly machines are ordered in their nondecreasing
values of unit processing time pjk for lot j , and reindexed from 1 to M. We have
the following optimality condition for the sublots of lot j (see Yao 2008) and Sarin
et al. (2011).

Property 5. Given a partial permutation τi , there exists an optimal sublot-size
solution for a lot j ∈ τ ′ in position i + 1 in which the following conditions hold:

nj∑

u=1

sju = Uj , (15.17)

σjkd−1 <

e∑

u=1

sju ≤ σjkd
, ∀kd−1, kd ∈ D(τi , j ),

∀ρjkd−1 , ρjkd
∈ W (τi , j ), e = ρjkd−1 + 1, ..., ρjk

d
, (15.18)

(
Ckd−1 (τi) + tjkd−1

)+ pjkd−1

ρjkd−1∑

u=1
sju + pjAsjpjk

d−1

= (Ckd
(τi) + tkd

)+ pjkd

ρjkd−1+1∑

u=1
sju,

∀kd−1, kd ∈ D(τi , j ), ρ
jk

d−1
,ρjkd−1, ∈ W (τi , j ),

(15.19)

sj ,u+1 = sjuqjkd
, ∀kd ∈ D(τi , j ), ρjkd

∈ W (τi , j ), u = ρjkd−1 + 1, ..., ρjkd
− 1.

(15.20)

Note that we treat (Ci−1,kd−1 + tjkd−1 ) and (Ci−1,kd
+ tjkd

) as the lot-detached setup
time for lot j to be scheduled in position i + 1. Similarly, we also have the following
property:

Property 6. Given a partial permutation τi , the above conditions (15.18), (15.19)
and (15.20) lead to the following inequality for lot j:

qjkd
sjρjkd−1

≤ sjρjkd−1+1 ≤ qjkd−1sjρjkd−1
,

∀kd−1,kd ∈ D(τij ), ∀ρjkd−1 , ρjkd
∈ W (τi , j ). (15.21)

Properties for the First and the Last Sublots

Consider a subproblem P k
j , which is a two-machine flow shop lot streaming problem

for lot j corresponding to subassembly machine k and assembly machine A, in the
absence of lot-detached setups. Problem P k

j can be easily solved and its optimal
sublot sizes are geometric in nature as shown by Trietsch (1987) and Potts and Baker
(1989). Hence, for problem P k

j , the sizes of the first and last sublots for a given lot j
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Fig. 15.3 Illustration of pattern-switching sublots

are as follows:

sk
j1 =

⎧
⎪⎪⎨

⎪⎪⎩

1 − qjk

1 − (qjk)nj
Uj , if qk = 1,

Uj

nj
, otherwise, ∀k = 1, ..., M , j = 1, ..., N ,

(15.22)

and,

sk
jnj
=

⎧
⎪⎪⎨

⎪⎪⎩

(qjk)nj−1 − (qjk)nj−1

1 − (qjk)nj−1 Uj , if qk = 1,

Uj

nj
, otherwise,∀k = 1, ..., M , j = 1, ..., N.

(15.23)

Without loss of generality, suppose all the subassembly machines are ordered in
nondecreasing order of their unit processing times pjk , k = 1, ..., M , for lot j , and
reindexed from 1 to M. We have

s1
j1 ≤ s2

j1 ≤ ... ≤ sk
j1 ≤ ... ≤ sM

j1, and (15.24)

s1
jnj

≥ s2
jnj

≥ ... ≥ sk
jnj

≥ ... ≥ sM
jnj , (15.25)

since qj1 ≥ qj2 ≥ ... ≥ qjM (see (15.22) and (15.23)). Let lbj1, ubj1, lbjnj and ubjnj

be defined as follows:

lbj1 = min
1≤k≤M

{
sk
j1

} = s1
j1, (15.26)

ubj1 = max
1≤k≤M

{
sk
j1

} = sM
j1, (15.27)

lbjnj
= min

1≤k≤M

{
sk
jnj

}
= sM

jnj
, (15.28)

ubjnj
= max

1≤k≤M

{
sk
jnj

}
= s1

jnj
. (15.29)
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Next, we show that the lbj1, ubj1, lbjnj , ubjnj values defined above constitute lower
and upper bounds on the optimal-sized first and last sublots sj1 and sjnj , respectively,
of lot j.

Proposition 2. Given a partial permutation τi , if lot j is assigned to position i + 1,
then there exists an optimal solution for lot j for which the first sublot size sj1 and
last sublot size sjnj satisfy the following inequalities:

lbj1 ≤ sj1 ≤ ubj1, and lbjnj ≤ sjnj ≤ ubjnj , ∀j = 1, ..., N (15.30)

Proof: We prove this result by contradiction. Our argument relies on the fact that if
the alleged limits for sublot sizes are not met, then the sum of the sublot sizes is either

less than or greater than uj . Let Q1
j =

{
s1
j1, ..., s1

jnj

}
and QM

j =
{
sM
j1, ..., sM

jnj

}
be

two optimal solutions for relaxed problems P 1
j and P M

j , respectively. We have the
following geometric relationships:

s1
ju+1 = qj1s

1
ju, ∀u = 1, ..., nj − 1, (15.31)

sM
ju+1 = qjMsM

ju, ∀u = 1, ..., nj − 1, (15.32)

Let solution Q∗
j be an optimal sublot-size solution

{
s∗j1, ..., s∗jnj

}
for lot j in position

i + 1. Let D(τi) be the set of r dominant machines, each of which has a pattern-
switching sublot associated with it; and let W (τ , j ) = {

ρjk1 , ρjk2 , ..., ρjkr

}
be a

sequence of pattern-switching sublots for lot j. By the order of subassembly machines
in the nondecreasing order of unit processing time, we have the following relationship
among the processing time ratios:

qjM ≤ qjkr
≤ ... ≤ qjk1 ≤ qj1. (15.33)

We have the following four cases: (1) (s∗j1) < s1
j1(= lbj1); (2) s∗j1 > sM

j1(= ubj1);
(3) s∗jnj

< sM
jnj

(= lbjnj
); and (4) s∗jnj

> s1
jnj

(= ubjnj ).
We analyze each of these cases next.

Case (1): s∗j1 < s1
j1(= lbj1).

The geometric relationships among the sublots from 1 to ρjk1 in both Q∗ and Q1,
give s∗ju+1 = qjk1s

∗
ju and s1

ju+1 = qj1s
1
ju, for u ∈ [1, ρjk1 − 1]. By the assump-

tion s∗j1 < s1
j1 and qjk1 ≤ qj1 (see (15.33)), we have s∗ju < s1

ju for u ∈ [1, ρjk1 ].
For sublot ρjk1 + 1 in Q∗

j and Q1
j , we have s∗jρjk1+1 ≤ qjk1s

∗
jρjk1

by (15.21)

and s1
jρjk1+1 = qj 1

s1
jρjk1

by (15.31), respectively. By the fact that s∗jρj
k1

<

s1
jρj k1

and qjk1 ≤ qj1, we have s∗jρjk1+1 < s1
jρjk1+1. Hence, we have s∗ju < s1

ju,

for sublot u, ∀u ∈ [1, ρjk1 + 1]. We can use similar arguments to show s∗ju < s1
ju

for a sublot u in ranges [ρjk1 + 1, ρjk2 + 1], [ρjk2 + 1, ρjk3 + 1], ..., [ρjkr−1 + 1, ρjkr
],

sequentially. This leads to
∑ nj

u=1s
∗
ju < Uj ,which contradicts the feasibility of Q∗

j .�
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Case (2): s∗j1 > sM
j1(= ubj1).

The geometric relationships for sublots from 1 to ρjk1 in both Q∗ and QM , yield
s∗ju+1 = qjk1s

∗
ju and sM

ju+1 = qjMsM
ju, for u ∈[1, ρjk1 −1]. By the assumptions that

s∗j1 > sM
j1 and qjk1 ≥ qjM (see (15.33)), we have s∗ju > sM

ju, for u ∈ [1, ρjk1 ].
For sublot ρjk1 + 1 in Q∗

j and QM
j , we have s∗jρjk1+1 ≥ qjk2s

∗
jρjk1

by (15.21) and

sM
jρjk1+1 = qjMsM

jρjk1
by (15.32), respectively. By the fact that s∗jρjk1

> sM
jρjk1

and qjk2 ≥ qjM , we have s∗jρjk1+1 > sM
jρjk1+1. Hence, we have s∗ju > sM

ju, for

sublot u, ∀u ∈ [1, ρjk1 + 1]. We can use similar arguments to show s∗ju > sM
ju, for

a sublot u in ranges [ρjk1 + 1, ρjk2 + 1], [ρjk2 + 1, ρjk3 + 1], ..., [ρjkr−1 + 1, ρjkr
],

sequentially. This leads to
∑nj

u=1 s∗ju > Uj , which contradicts the feasibility of Q∗
j .

Case (3): s∗jnj
< sM

jnj
(= lbjnj ).

The geometric relationships for sublots from ρjkr−1 + 1 to ρjkr
(= nj ) in both Q∗

and QM , afford s∗ju =
s∗ju+1

qjkr
and sM

ju = sM
ju+1

qjM
, for u ∈[ρjkr−1 + 1, ρjkr

− 1]. By the

assumption s∗jnj
< sM

jnj
and qjkr

≥ qjM (see (15.33)), we have s∗ju < sM
ju, for u ∈

[ρjkr−1 + 1, ρjkr
]. For sublot ρjkr−1r

in Q∗
j and QM

j , we have s∗jρjkr−1
≤

s∗jρjkr−1
+1

qjkr
by

(15.21) and sM
jρjkr−1

=
sM
jρjkr−1

+1

qjM
by (15.31), respectively. By the fact that s∗jρjkr−1+1 <

sM
jρjkr−1+1

and qjkr
≥ qjM , we have s∗jρjkr−1

< sM
jρjkr−1

. Hence, we have s∗ju < sM
ju for

sublot u, ∀u ∈[ρjkr−1,ρjkr
]. We can use similar arguments to show s∗ju < sM

ju for a
sublot u in ranges [1, ρjk1 ], [ρjk1 , ρjk2 ], ..., [ρjkr−2 , ρjkr−1 ], sequentially, in the reverse
order. This leads to

∑nj
u=1 s∗ju < Uj , which contradicts the feasibility of Q∗

j .

Case (4): s∗jnj
> s1

jnj
(= ubjnj ).

The geometric relationships for sublots from ρjkr−1 + 1 to ρjkr
(= nj ) in both Q∗

and Q1, yield s∗ju = s∗ju+1

qj kr
and s1

ju = s1
ju+1

qj1
, for u ∈ [ρjkr−1 + 1, ρjkr

−1]. By the

assumption s∗jnj
> s1

jnj
and qjkr

≤ qj1 (see (15.33)), we have s∗ju > s1
ju, for u ∈

[ρjkr−1 + 1, ρjkr
]. For sublot ρjkr−1 in Q∗

j and Q1
j , we have s∗jρjkr−1

≥
s∗jρjkr−1

+1

qjkr−1
by

(15.21) and s1
jρjkr−1

=
s1
jρjkr−1

+1

qj1
by (15.31), respectively. By the fact that s∗jρjkrr−1+1 >

sM
jρjkr−1+1 and qjkr

− 1 ≤ qj1, we have s∗jρjkr−1
> s1

jρjkr−1
. Hence, we have s∗ju > s1

ju,

for sublot u, ∀u ∈[ρjkr−1 , ρjkr
]. We can use similar arguments to show s∗ju > s1

ju for a
sublot u in ranges [1, ρjk1 ], [ρjk1 , ρjk2 ], ..., [ρjkr−2 , ρjkr−1 ], sequentially, in the reverse
order. This leads to

∑nj
u=1 s∗ju > Uj , which contradicts the feasibility of Q∗

j . �

Dominance Rules (DR)

Proposition 3. (DR1) Let τi and τ̂i be two partial solutions up to position i. If
τ̂i = τi , and their corresponding completion times on the assembly machine A are
such that CA(τi) ≤ CA(τ̂i), then there exists an optimal solution schedule which does
not start with τ̂i .
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Proof : Since CA(τi) ≤ CA(τ̂i), and the same set of lots is contained in τi and τ̂i ,
the completion of τi can never be worse than that of τ̂i . �
Proposition 4. (DR2) Given completion times Ck(τi) and CA(τi) of τi , if there exists
a lot f ∈ τ ′i such that

tfA + pfAUf − (tfk + pf kUf ) ≥ max
j∈τ ′1−{f }

{
pjk(ubj1 − lbj1)

}
, ∀k = 1, ..., M ,

(15.34)

and

Ck(τi) + tfk + pf kubf 1 + pfAUf +
∑

j∈τ ′1−{f }
(tjA + pjAUj ) ≤ LB(τi), ∀k = 1, ..., M ,

(15.35)

then there exists an optimal schedule in which lot f is sequenced in position i + 1.
Proof : We prove this result also by contradiction. Suppose there exists an optimal
solution π∗ in which lot f is sequenced in position f ′, wheref ′ > i + 1. Let π be
a solution obtained by moving lot f from position f ′ to position i + 1. For π , the
makespan can be represented by

M(π ) = max

{

Ck(τi) +
c−1∑

j=i+1

(
tπ (j)k + pπ (j)kUπ (j)

)

+ (tπ (c)k + pπ (c)ksπ (c)1 + pπ (c)AUπ (c)
)

+
N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)
, CA(τi) +

N∑

j=i+1

(
tπ (j )A + pπ (j )AUπ (j )

)
}

(15.36)

for some c(c = i + 1, ..., N ) and k(k = 1, ..., M). For the position c, we have the
following cases: (1) c does not exist from i+1 to N , (2) c = i+1, (3) i+2 ≤ c ≤ f ′,
and (4) c ≥ f ′ + 1. We consider each of these cases next.

Case (1): c does not exist from i + 1 to N .
For this case, the makespan can be represented by

M(π ) = CA(τi) +
N∑

j=i+1

(tπ (j )A + pπ (j )AUπ (j )). (15.37)

Then π is an optimal solution because it is equal to LB1(τi) in (15.8).

Case (2): c = i + 1.

Since sublot f occupies position i + 1 in π , it is a critical sublot. We have

M(π ) = Ck(τi) + tfk + pfksf 1 + pfAUf +
N∑

j=i+2

(
tπ (j )A + pπ (j )AUπ (j )

)

≤ Ck(τi) + tfk + pfkubf 1 + pfAUf +
N∑

j=i+2

(
tπ (j )A + pπ (j )AUπ (j )

)
.
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In view of (15.35), we have M(π ) ≤ LB(τi), which indicates that π is an optimal
solution.

Case (3): i + 2 ≤ c ≤ f ′.
Based on (15.2) and (15.4), for solution π∗, we have

M(π∗) ≥ Ck(τi) +
c−2∑

j=i+1

(
tπ∗(j )k + pπ∗(j )kUπ∗(j )

)

+
(
tπ∗(c−1)k + pπ∗(c−1)ks

∗
π∗(c−1)1 + pπ∗(c−1)AUπ∗(c−1)

)

+
N∑

j=c

(
tπ∗(j )Apπ∗ (j )AUπ∗(j )

)
. (15.38)

Since f is in position i + 1 in π , and it is a position f ′ ≥ c in π∗, and the lots in
position i + 1 to c − 2 in π∗ are identical to those in positions i + 2 to c − 1 in π ,
we have

c−2∑

j=i+1

(
tπ∗(j )k + pπ∗(j )kUπ∗(j )

) =
c−1∑

j=i+1

(
tπ (j )k + pπ (j )kUπ (j )

)− (tfk + pfkUf

)
.

(15.39)

Furthermore, for the lots in position c to N in π∗ and lots in c + 1 to N in π , we
have

N∑

j=c

(
tπ∗(j )A + pπ∗(j )AUπ∗(j )

) =
N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)+ (tfA + pfAUf

)
.

(15.40)

Note that π∗(c − 1) = π (c), which results in,

tπ∗(c−1)k + pπ∗(c−1)AUπ∗(c−1) = tπ (c)k + pπ (c)AUπ (c). (15.41)

By substituting (15.39), (15.40), and (15.41) into (15.38), we have

M(π∗) ≥Ck(τi) +
c−1∑

j=i+1

(
tπ (j )k + pπ (j )kUπ (j )

)− (tfk + pfkUf

)

+ (tπ (c)k + pπ (c)ks
∗
π∗(c−1)1 + pπ (c)AUπ (c)

)+
N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)

+ (tfA + pfAUf

) ≥ Ck(τi) +
c−1∑

j=i+1

(
tπ (j )k + pπ (j )kUπ (j )

)
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+ (tπ (c)k + pπ (c)AUπ (c)) +
N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)+ (tfk + pfkUf

)

− (tfA + pfAUf

)+ pπ (c)Albπ∗(c−1)1. (15.42)

As lbπ∗(c−1)1 = lbπ (c)1 because π∗(c−1) = π (c) (as noted above), and using (15.34),
we have

M(π∗) ≥Ck(τi) +
c−1∑

j=i+1

(
tπ (j )k + pπ (j )kUπ (j )

)

+
(
tπ (c)k + pπ (c)kubπ (c)1 + pπ (c)AUπ (c)

)
+

N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)
.

In view of (15.36), we have M(π ) ≤ M(π∗), which indicates that solution π is at
least as good as π∗.

Case (4): c ≥ f ′ + 1.

In this case, the movement of lot f from position i + 1 to position f ′ can only create a
chance for idle time to increase before position c on machine A. Therefore, we have
M(π∗) ≥ M(π ), which again indicates that solution π is at least as good as π∗. �
Proposition 5. (DR3) Given machine availability times Ck(τi), k = 1, ...,
M and CA(τi), if there exists a lot f such that

tfk − tfA + pfkUf − pfAUf ≥ max
j∈τ ′1−{f }

{
pjA(ubjnj − lbjnj )

}
, ∀k = 1, ..., M ,

(15.43)

and

Ck(τi) +
∑

j∈τ ′1

(tjk + pjkUj ) + pfAubfnf
≤ LB(τi), ∀k = 1, ..., M , (15.44)

then there exists an optimal schedule in which lot f is sequenced last.
Proof: This result can also be shown by contradiction. Suppose there exists an optimal
solution π∗ in which lot f is sequenced in position f ′, wheref ′ < N. Let π be a
solution obtained by moving lot f from position f ′ to the last position N. For π , the
makespan can be represented by

M(π ) = max

{

Ck(τi) +
c−1∑

j=i+1

(
tπ (j)k + pπ (j)kUπ (j)

)

+
(
tπ (c)k + pπ (c)kUπ (c) + pπ (c)Asπ (c)nπ (c)

)

+
N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)
, CA(τi) +

N∑

j=i+1

(
tπ (j )A + pπ (j )AUπ (j )

)}

,

(15.45)

for some c (c = i + 1, ..., N ) and k(k = 1, ..., M). We have the following cases:
(1) c does not exist from i + 1 to N , (2) c = N , (3) f ′ ≤ c ≤ N − 1, and (4)
c ≤ f ′ − 1. We consider each of these cases next.
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Case (1): c does not exist from i + 1 to N.

For this case, the makespan can be represented by

M(π ) = CA(τi) +
N∑

j=i+1

(
tπ (j )A + pπ (j )AUπ (j )

)
.

Then π is an optimal solution because the makespan is equal to LB1(τi).

Case (2): c = N.

The sublot f in position c is critical. We have

M(π ) = Ck(τi) +
N−1∑

j=i+1

(
tπ (j )k + pπ (j )kUπ (j )

)
+
(
tfk + pfkUf + pfAsfnf

)

= Ck(τi) +
N∑

j=i+1

(
tπ (j )k + pπ (j ),kUπ (j )

)
+
(
pfAsfnf

)

≤ Ck(τi) +
∑

j∈τ ′

(
tπ (j )k + pπ (j )kUπ (j )

)
+
(
pfAubfnf

)
.

In view of (15.44), we have M(π ) ≤ LB(τi), which indicates that π is an optimal
solution.

Case (3): f ′ ≤ c ≤ N − 1.

Based on (15.2) and (15.4), for solution π∗, we have

M(π∗) ≥ Ck(τi) +
c∑

j=i+1

(
τπ∗(j )k + pπ∗(j )kUπ∗(j )

)

+
(
tπ∗(c+1)k + pπ∗(c+1)kUπ∗(c+1) + pπ∗(c+1)As∗π∗(c+1)nπ∗(c+1)

)

+
N∑

j=c+2

(
tπ∗(j )A + pπ∗(j )AUπ∗(j )

)
.

(15.46)

Since f is in position N in π , and it is in position f ′ ≤ c in π∗, and the lots in
positions c + 2 to N in π∗ are identical to those in positions c + 1 to N − 1 in π ,
we have

N∑

j=c+2

(
tπ∗(j )A + pπ∗(j )AUπ∗(j )

)
=

N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)
−
(
tfA + pfAUf

)
.

(15.47)

Furthermore, for the lots in positions i + 1 to c in π∗ and in positions i + 1 to c− 1
in π , we have

c∑

j=i+1

(
tπ∗(j )k + pπ∗(j )kUπ∗(j )

)
=

c−1∑

j=i+1

(
tπ (j )k + pπ (j )kUπ (j )

)
+
(
tfk + pfkUf

)
.

(15.48)
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Note that π∗(c + 1) = π (c), which results in,

tπ∗(c+1),k + pπ∗(c+1),kUπ∗(c+1) = tπ (c),k + pπ (c),kUπ (c). (15.49)

By substituting (15.47), (15.48), and (15.49) into (15.46), we have

M
(
π∗) ≥Ck(τi) +

c−1∑

j=i+1

(
tπ (j )k + pπ (j )kUπ (j )

)− (tfk + pfkUf
)

+ (tπ (c)k + pπ (c)kUπ (c)+Pπ (c)As∗π∗(c+1)nπ∗(c+1)

)

+
N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)− (tfA + pfAUf

) ≥ Ck(τi)

+
c−1∑

j=i+1

(
tπ (j )k + pπ (j )kUπ (j )

)+ (tπ (c)k + pπ (c)kUπ (c)
)

+
N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)

+ (tfk + pfkUf
)− (tfA + pfAUf

)+ pπ(c)Albπ∗(c+1)nπ∗(c+1)
.

As lbπ∗(c+1)nπ∗(c+1)
= lbπ (c)nπ (c) because π∗(c + 1) = π (c) (as noted above), and

using (15.43), we have

M
(
π∗) ≥ Ck (τi)+

c−1∑

j=i+1

(
tπ(j)k + pπ(j)kUπ(j)

)

+ (tπ(c)k + pπ(c)kUπ(c) + pπ(c)Aubπ(c)nπ(c)

)+
N∑

j=c+1

(
tπ(j)A + pπ(j)AUπ(j)

)
.

In view of (15.45), we have M(π∗) ≥ M(π ), which indicates that solution π is at
least as good as π∗.

Case (4): c ≤ f ′ − 1.

In this case, the movement of lot f from position N to position f ′ can only create a
chance for idle time to increase after position c on machine A. Therefore, we have
M(π∗) ≥ M(π ), implying that solution π is at least as good as π∗. �
Proposition 6. (DR4) Given machine availability times Ck(τi), k = 1, ..., M
and CA(τi), if there exist two lots f and g such that

tfA − tfk + pfAUf − pfkUf ≥ max
j∈τ ′1−{f }

{
pjk(ubj1 − lbj1)

}
, ∀k = 1, ..., M , (15.50)

and

Ck (τi)+ tfk + pfkubf 1 − tfA ≤ max
{
Ck (τi)+ tgk + pgklbg1 − tgA, CA (τi)

}
,

(15.51)
∀k = 1, ..., M ,
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then there exists an optimal schedule in which lot g is not sequenced in position i + 1.

Proof: Again, we use contradiction to prove this result. Suppose that π∗ is an optimal
solution in which lot g is sequenced in position i + 1 and lot f is sequenced in position
f ′, where f ′ ≥ i + 2. Let π be obtained from π∗ by moving lot f from position f ′
to position i + 1. The makespan for π can be represented by

M(π ) = max

{

Ck(τi) +
c−1∑

j=i+1

(
tπ (j)k + pπ (j)kUπ (j)

)

+ (tπ (c)k + pπ (c)ksπ (c)1 + pπ (c)AUπ (c)
)

+
N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)
, CA(τi) +

N∑

j=i+1

(
tπ (j )A + pπ (j )AUπ (j)

)
}

.

(15.52)

�
If M(π ) = CA(τi) +∑N

j=i+1

(
tπ (j )A + pπ (j )AUπ (j )

)
, then π is an optimal solution

because it is equal to LB1(τ ). Otherwise, we have the following cases: (1) c = i+1,
(2) c = i + 2, (3) f ′ ≥ c ≥ i + 3, and (4) c ≥ f ′ + 1. We consider each of these
cases next.

Case (1): c = i + 1.

The sublot f at position c is critical, and the makespan for π can be rewritten as

M(π ) = Ck(τi) + tfk + pfksf1 + pfAUf +
N∑

j=i+2

(
tπ (j )A + pπ (j )AUπ (j )

)
,

= Ck(τi) + tfk + pfksf1 − tfA +
N∑

j=i+1

(
tπ (j )A + pπ (j )AUπ (j )

)
.

For solution π∗, we have

M(π∗) ≥ max

{

Ck(τi) + tgk + pgks∗g1 + pgAUg +
N∑

j=i+1

(
tπ∗(j)A + pπ∗(j)AUπ∗(j)

)
,

CA(τi) +
N∑

j=i+1

(
tπ∗(j )A + pπ∗(j )AUπ∗(j )

)
}

= max
{

Ck(τi) + tgk + pgks∗g1 + pgAUg − tgA − pgAUg, CA(τi)
}

+
N∑

j=i+1

(
tπ (j )A + pπ (j )AUπ (j )

)

= max
{

Ck(τi) + tgk + pgks∗g1 − tgA, CA(τi)
}
+

N∑

j=i+1

(
tπ (j)A + pπ (j)AUπ (j)

)

≥ max
{
Ck(τi) + tgk + pgklbg1 − tgA, CA(τi)

}+
N∑

j=i+1

(
tπ (j)A + pπ (j)AUπ (j)

)
.

In view of (15.51), we have M(π∗) ≥ M(π ), which indicates that solution π is at
least as good as π∗.
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Case (2): c = i + 2.

The makespan for π can be rewritten as

M(π ) = Ck(τi) + tfk + pfkUf + tgk + pgksg1 + pgAUg +
N∑

j=i+3

(
tπ (j )A + pπ (j )AUπ (j )

)

= Ck(τi) + tfk − tfA + tgk − tgA + (pfk − pfA)Uf

+ pgksg1 +
N∑

j=i+1

(
tπ (j )A + pπ (j )AUπ (j )

)

≤ Ck(τi) + tfk − tfA + tgk − tgA

+ (pfk − pfA)Uf + pgkubg1 +
N∑

j=i+1

(
tπ (j )A + pπ (j )AUπ (j )

)
.

Based on (15.50), we have

M(π ) ≤ Ck(τi) + tgk + pgklbg1 − tgA +
N∑

j=i+1

(
tπ (j )A + pπ (j )AUπ (j )

)
.

For solution π∗,

M(π∗) ≥ Ck(τi) + tgk + pgks
∗
g1 + pgAUg +

N∑

j=i+2

(
tπ∗(j )A + pπ∗(j )AUπ∗(j )

)

≥ Ck(τi) + tgk + pgklbg1 − tgA +
N∑

j=i+1

(
tπ∗(j )A + pπ∗(j )AUπ∗(j )

)
.

(15.53)

This leads to M(π∗) ≥ M(π ), which indicates that solution π is at least as good as
π∗.

Case (3): f ′ ≥ c ≥ i + 3.

Based on (15.2) and (15.4), for solution π∗, we have

M(π∗) ≥ Ck(τi) +
c−2∑

j=i+1

(
tπ∗(j )k + pπ∗(j )kUπ∗(j )

)

+ (tπ∗(c−1)k + pπ∗(c−1)ks
∗
π∗(c−1)1 + pπ∗(c−1)AUπ∗(c−1)

)

+
N∑

j=c

(
tπ∗(j )A + pπ∗(j )AUπ∗(j )

)
. (15.54)
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Since f is in position i+1 in π , and it is in a position f ′ ≥ c, and the lots in positions
i + 1 to c − 2 in π∗ are identical to those in positions i + 2 to c − 1, we have

c−2∑

j=i+1

(
tπ∗(j )k + pπ∗(j )kUπ∗(j )

) =
c−1∑

j=i+1

(
tπ (j )k + pπ (j )kUπ (j )

)− (tfk + pfkUf

)
.

(15.55)

Furthermore, for the lots in positions c to N in π∗ and c + 1 to N in π , we have

N∑

j=c

(
tπ∗(j )A + pπ∗(j )AUπ∗(j )

) =
N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)+ (tfA + pfAUf

)
.

(15.56)

Note that π∗(c − 1) = π (c), which results in

tπ∗(c−1)k + pπ∗(c−1)AUπ∗(c−1) = tπ (c)k + pπ (c)AUπ (c). (15.57)

By substituting (15.56), (15.57), and (15.58) into (15.55), we have

M(π∗) ≥ Ck(τi) +
c−1∑

j=i+1

(
tπ (j )k + pπ (j )kUπ (j )

)− (tfk + pfkUf

)

+ (tπ (c)k + pπ (c)ks
∗
π∗(c−1)1 + pπ (c)AUπ (c)

)

+
N∑

j=c+1

(
tπ (j )A + pπ (j ),AUπ (j )

)+ (tfA + pfAUf

) ≥ Ck(τi)

+
c−1∑

j=i+1

(
tπ (j )k + pπ (j )kUπ (j )

)+ (tπ (c)k + pπ (c)AUπ (c)
)

+
N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)+ (tfk + pfkUf

)− (tfA + pfAUf

)

+ pπ (c)Albπ∗(c−1)1. (15.58)

As lbπ∗(c−1)1 = lbπ (c)1 because π∗(c − 1) = π (c) (as noted above), using (15.50),
we have

M(π∗) ≥ Ck(τi) +
c−1∑

j=i+1

(
tπ (j )k + pπ (j )kUπ (j )

)

+ (tπ (c)k + pπ (c)kubπ (c)1 + pπ (c)AUπ (c)
)+

N∑

j=c+1

(
tπ (j )A + pπ (j )AUπ (j )

)
.

In view of (15.52), we have M(π ) ≤ M(π∗), which indicates that solution π is at
least as good as π∗.
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Fig. 15.4 Flowchart for the proposed branch-and-bound method

Case (4): c ≥ f ′ + 1.

In this case, the movement of lot f from position i+1 to position f ′ can only create a
chance for idle time to increase before position c on machine A. Therefore, we have
M(π∗) ≥ M(π ), which again indicates that solution π is at least as good as π∗. �

Branch-and-Bound-based Algorithm

A flowchart of the proposed branch-and-bound algorithm (ML-TSALSP-BB) is de-
picted in Fig. 15.4. The lower and upper bounds and the dominance rules developed
above appropriately applied as shown. We use the depth-first branching method. At a
node (a partial sequence τi) dominance rule DR1 is first applied to determine whether
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or not to fathom that node. If the node is not fathomed, the proposed lower bounds
are calculated and compared with the best incumbent objective value to further de-
termine whether to fathom the current node. If the node is still active, we apply (1)
dominance rule DR2 to determine whether to fix an appropriate lot at position i+ 1,
(2) dominance rule DR3 to determine whether to fix a lot at the last position, and
hence, to eliminate further consideration of that lot in other positions, and (3) dom-
inance rule DR4 to determine whether or not to eliminate a lot to be sequenced in
position i + 1. If the current node is fathomed, we backtrack to continue branching.
The upper bound of the objective value is updated once a better incumbent solution
has been found.

Computational Experimentation

In this section, we present results of our numerical experimentation conducted to
study the computational effectiveness of the mixed integer formulation (TSA-MSLP-
M) and the proposed branch-and-bound method ML-TSALSP-BB, which was coded
in C#. All the runs were made on an Intel Xeon 3.6 GHz computer. CPLEX Solver
(version 10.1) was used for solving the sublot-sizing subproblem at each node of
ML-TSALSP-BB and for the direct solution of ML-TSALSP-M.

Performance of ML-TSALSP-BB

First, we present results of our computational experimentation to demonstrate the
effectiveness of the proposed method. In particular, our aim is to test the efficacy of
using various dominance rules (i.e., DR1, DR2, DR3, and DR4). Note that if inequal-
ities (15.34), (15.43), and (15.50) hold, then the dominance rules, DR2, DR5, and
DR4, respectively, are likely to be more effective. Therefore, we generated different
combinations of the per-unit processing times on the assembly and subassembly ma-
chines to enable application of various combinations of inequalities (15.34), (15.43),
and (15.50). Three problem sets were generated using uniform distributions for the
number of lots (N), number of subassembly machines (M), number of items in a
lot j (Uj ), number of sublots of a lot j (nj ), and unit processing time for the items of
lot j on subassembly machine k (pjk) and the assembly machine (pjA), as shown in
Table 15.1.

For each combination of N and M, 20 problem instances were generated randomly
by using the uniform distributions shown in Table 15.1. Note that the three problem
sets differ due to different ranges of values for pjA in relation to that for pjk . In Set 1,
the average value of pjA is less than the average of pjk . They are the same in Set 2,
while in Set 3, the average value of pjA is greater than that of pjk .Also, for all problem
sets, the same uniform distributions were used to generate values of Uj , nj and pjk .

Moreover, to clearly determine the impact of the inequalities (15.34), (15.43), and



382 L. Yao and S. C. Sarin

Table 15.1 Sets of Problem Instances

Problem set N M Uj nj pjk pjA

1 (20, 50, 100) (3, 6, 9) U(10, 100) U(1, 10) U(50, 100) U(25, 75)
2 (20, 50, 100) (3, 6, 9) U(10, 100) U(1, 10) U(50, 100) U(50, 100)
3 (20, 50, 100) (3, 6, 9) U(10, 100) U(1, 10) U(50, 100) U(75, 125)

(15.50), the lot-detached setup times at all the machines were set to zero. We used a
central processing unit (CPU) time limit of 500 s.

The results are depicted in Table 15.2. For each problem instance, five combina-
tions of dominance rules, namely, DR1, DR1 + DR2, DR1 + DR3, DR1 + DR4, and
all DRs were tested for their performance. For each combination, information on
four criteria, namely, average CPU time (ACT) in seconds, average number of nodes
(ANN) explored before the algorithm stops, number of problem instances solved
at the root node (NSR), and number of unsolved problems (NU) were gathered to
evaluate relative performance.

Referring to Table 15.2, the following can be observed:

1. For each combination of dominance rules, the computational effort, generally, has
an upward trend against the number of lots and number of subassembly machines.

2. Many problem instances are solved right at the root node due to the tightness of
the lower and upper bounds used. Note that Problem Set 1 has the highest number
of instances that were solved at the root node, followed by Problem Set 2 and
then Problem Set 3.

3. Comparing the results presented in columns 5, 6, and 7 with those in Column
4, dominance rules DR2, DR3, and DR4 are more effective when applied to
instances of Problem Set 3, which is indicated by a greater reduction in the
average CPU time (ACT) required and the number of nodes generated than those
for Problem Sets 1 and 2. This reduction is mixed for instances of Problem Set
2 due to identical average values of pjk and pjA; while it is the least for Problem
Set 1.

4. For instances in Problem Set 3, DR2 is generally more effective than the other
two dominance rules (DR3 and DR4).

5. When the number of subassembly machines increases, the effectiveness of dom-
inance rules decreases as observed from the ACT and ANN values for instances
of Problem Set 2. This is also as expected since an increment in number of sub-
assembly machines decreases the possibility for inequalities (15.34), (15.43), and
(15.50) to hold true.

6. No significant extra computational time is incurred because of the use of domi-
nance rules in contrast to the savings achieved by reduction in nodes generated
(see Problem Sets 1 and 2). Consequently, it is fairly efficient to use all dominance
rules (note the values depicted in the last column of Table 15.2 in relation to those
shown in the others).
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Comparison of ML-TSALSP-BB and Direct Solution of
ML-TSALSP-M

Next, we compare the computational effort required for implementing the ML-
TSALSP-BB method with that for the direct solution of ML-TSALSP-M by CPLEX
10.1 (implemented with default settings). The data set used for this experimentation
is shown in Table 15.3. It is identical to the data set presented in Table 15.1 except
for the values of N. We also used a time limit of 500 s.

The results are presented in Table 15.4. We compare the performance of the two
methods with respect to the following criteria: Average Gap at root node (AGR),
ACT, ANN, NSR, and NU. The instances of Problem Set 6 require the least compu-
tational effort for both ML-TSALSP-M and ML-TSALSP-BB, while the instances
of Problem Set 5 require the largest computational effort for every criterion listed.
Table 15.4 also reveals that ML-TSALSP-BB, generally, requires much less compu-
tational effort to solve the same instances than that required by the direct solution of
ML-TSALSP-M with respect to all criteria. The ML-TSALSP-BB method not only
requires less CPU time and number of nodes explored, it also solves more problem
instances at the root node and leaves fewer instances unsolved within the prespeci-
fied time limit of 500 s. This is also indicated by their AGR values. Therefore, the
ML-TSALSP-BB method outperforms the direct solution of the ML-TSALSP-M
formulation by CPLEX 10.1.

Performance of ML-TSALSP-BB when Applied to Large-sized
Problem Instances

In this section, we present computational results regarding the performance of the
ML-TSALSP-BB method on large problem instances involving 300–1,000 lots. The
rest of data is the same as shown in Table 15.3. We designate these as Problem Sets
7, 8, and 9. Also, the CPU time limit used is 500 s.

The results are presented in Table 5 for AGR, ACT, ANN, NSR, and NU. The
proposed branch-and-bound method is able to solve large problem instances within
a reasonable time. Specifically: (1) the AGR values, the average gap at root node,
are very small for all problem instances, (2) a large portion of instances in Problem
Set 7 and Set 8 are solved at root node, and (3) Problem Set 9 has the fewest number
of instances solved at the root node and the largest number of unsolved problem
instances within the time limit of 500 s. Note that this behavior is identical to that
observed in Table 15.2 for N = 20, 50, and 100. A greater number of unsolved
problems in Table 15.5, especially for the instances in Problem Set 9, is because of
an upper limit on CPU time (500 s) used. Also, in lieu of our observation for instances
of Problem Set 3 in Table 15.2, it is expected that the proposed dominance rules will
be effective for instances of Problem Set 9, beyond the root node. Consequently,
the ML-TSALSP-BB method, with proposed bounding procedure and dominance
properties, is an effective approach for solving large-sized problem instances.
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Table 15.3 Sets of Problem Instances

Problem set N M Uj nj pjk pjA

4 (5, 15, 25) (3, 6, 9) U(10, 100) U(1, 10) U(50, 100) U(25, 75)
5 (5, 15, 25) (3, 6, 9) U(10, 100) U(1, 10) U(50, 100) U(50, 100)
6 (5, 15, 25) (3, 6, 9) U(10, 100) U(1, 10) U(50, 100) U(75, 125)

Table 15.4 Comparison of direct solution of ML-TSALSP-M by CPLEX 10.1 with ML-TSALSP-
BB

ML-TSALSP-M ML-TSALSP-BB

Set N M AGR
(%)

ACT ANN NSR NU AGR
(%)

ACT ANN NSR NU

4 5 3 11.38 1.87 12 1 0 0.01 0.45 11 18 0
6 11.44 3.31 11 0 0 0.001 1.45 18 15 0
9 11.43 5.34 12 0 0 0.001 0.58 3 19 0

15 3 7.31 6.07 80 0 0 0.001 0.29 1 20 0
6 7.12 41.19 2482 0 1 0.001 75.51 899 16 3
9 7.39 168.87 4062 0 4 0.001 50.91 432 18 2

25 3 4.31 284.21 1015 0 3 0.001 25.45 664 19 1
6 5.12 483.04 397 0 18 0.001 25.99 346 19 1
9 4.39 500.67 35 0 20 0.001 51.52 402 18 2

5 5 3 6.34 0.19 20 0 0 0.61 0.32 4 11 0
6 6.94 0.36 28 0 0 0.76 1.14 8 9 0
9 7.65 0.53 28 0 0 0.46 1.66 10 12 0

15 3 3.61 445.24 30526 0 17 1.26 76.42 1158 10 3
6 4.90 476.97 19162 0 19 0.81 167.52 848 7 6
9 5.75 437.67 12196 0 17 0.49 178.96 719 11 7

25 3 2.15 477.61 11670 0 18 0.40 33.49 213 9 1
6 3.32 496.95 3305 0 19 0.32 186.69 771 10 5
9 2.78 500.57 579 0 20 0.30 84.89 315 15 3

6 5 3 2.67 0.17 14 0 0 0.62 0.2 2 10 0
6 5.29 0.21 22 0 0 0.66 0.71 4 8 0
9 6.11 0.31 28 0 0 0.60 1.13 5 10 0

15 3 0.16 87.06 12621 0 3 0.08 1.07 3 7 0
6 0.20 182.89 11261 0 4 0.14 5.48 9 3 0
9 0.26 274.84 7624 0 9 0.14 9.49 9 3 0

25 3 0.08 173.07 6362 0 5 0.05 1.88 4 4 0
6 0.10 379.4 4368 0 13 0.07 11.6 11 3 0
9 0.11 440.04 2542 0 16 0.07 34.91 22 2 0

Concluding Remarks

In this chapter, we have discussed a multiple-lot, lot streaming problem for a two-
stage assembly system. This system consists of M parallel machines at Stage 1
and a single assembly machine at Stage 2. Such a system for the processing of
the lots has been considered in the literature. However, we include a new feature
pertaining to the streaming of the lots over the stages. This adds another level of
complexity to the problem. For a given number of sublots of a lot, we show that the
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Table 15.5 Performance of ML-TSALSP-BB for large problem instances.

Set N M AGR
(%)

ACT ANN NSR NU N M AGR
(%)

ACT ANN NSR NU

7 300 3 0 83.95 1 20 0 700 3 0 19.82 1 20 0
6 0.001 41.92 2 19 1 6 0 42.01 1 20 0
9 0.001 76.25 2 18 2 9 0.001 84.47 1 19 1

400 3 0 11.08 1 20 0 880 3 0 22.43 1 20 0
6 0 23.50 1 20 0 6 0 47.54 1 20 0
9 0.001 64.65 1 19 1 9 0 71.27 1 20 0

500 3 0.001 14.05 1 19 1 900 3 0.001 47.06 1 19 1
6 0 54.35 1 20 0 6 0.001 71.11 1 19 1
9 0.001 71.09 1 19 1 9 0.001 99.92 1 19 1

600 3 0 16.79 1 20 0 1000 3 0.001 48.69 1 19 1
6 0 35.59 1 20 0 6 0.001 53.07 1 19 1
9 0.001 105.81 1 18 2 9 0.001 85.41 1 19 1

8 300 3 0.001 149.35 14 14 5 700 3 0.001 167.58 8 14 6
6 0.001 143.49 6 15 5 6 0.001 137.89 3 16 4
9 0.001 104.76 3 17 3 9 0 67.21 1 20 0

400 3 0.001 139.24 9 14 5 800 3 0.001 200.34 7 13 7
6 0.001 78.30 2 18 2 6 0.001 155.73 2 16 4
9 0.001 90.59 2 18 2 9 0.001 114.66 1 19 1

500 3 0.001 139.18 8 15 5 900 3 0.002 252.97 7 11 9
6 0.001 105.19 3 17 3 6 0.001 184.09 1 18 2
9 0 47.97 1 20 0 9 0.001 144.18 1 18 2

600 3 0.002 212.61 12 12 8 1000 3 0.001 179.24 4 14 6
6 0.001 84.60 2 18 2 6 0.001 141.13 1 17 3
9 0.001 129.22 2 17 3 9 0.001 137.74 1 19 1

9 300 3 0.002 13.79 1 2 0 700 3 0.001 43.47 2 0 3
6 0.002 199.09 12 0 7 6 0.001 142.84 2 0 2
9 0.003 448.62 14 0 17 9 0.001 428.75 2 0 9

400 3 0.001 237.54 1 2 0 800 3 0.001 53.91 2 0 0
6 0.002 146.24 5 0 3 6 0.001 153.71 2 0 2
9 0.002 455.61 10 0 10 9 0.001 420.18 4 0 13

500 3 0.001 32.53 1 1 0 900 3 0.001 60.79 2 0 0
6 0.001 133.31 3 0 3 6 0.001 167.76 2 0 1
9 0.002 417.31 8 0 8 9 0.001 429.45 4 0 8

600 3 0.001 37.23 2 0 0 1000 3 0.001 61.31 2 0 0
6 0.001 167.65 4 0 14 6 0.001 166.57 2 0 2
9 0.001 445.36 7 0 9 9 0.001 484.25 4 0 13

sublot sizes are consistent. We determine lower and upper bounds on the sizes of
the first and last sublots of a lot. We have also derived dominance properties for the
sequencing of the lots. A branch-and-bound method is developed for the solution
of our problem that relies on effective lower bounds (on the makespan values),
which are also established. Results of a detailed computational investigation on the
performance of the proposed branch-and-bound method reveal its efficacy for solving
both small- and large-sized problem instances. Our proposed method outperforms
the direct solution of a mathematical model of the ML-TSALSP by CPLEX 10.1.
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Personal Data

Born: 21 October, 1927
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N.C.
January 1970 to June 1990 Director, Graduate Program in Operations Research
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October 1949 to June 1954 Inspecting Engineer, Foreign Inspection Office of the
Egyptian State Railways in London, Brussels and
Budapest.

Jan. 1949 to October 1949 Teaching Assistant, School of Engineering, Cairo,
Egypt.

Aug. 1948 to Jan. 1949 Plant Manager, The Coca Cola Bottling Co., Cairo,
Egypt

Foreign Experience of Professional Nature

• 5 years in Europe—firsthand experience with the majority of Western European
industry: England, France, Belgium, Holland, Denmark, Norway, Luxembourg,
Federal German Republic, Austria, Italy, and the Hungarian heavy industries.

• Visiting Professor, European Institute for Advanced Studies in Management, in
Brussels, and the Katholic University of Leuven, in Leuven, Belgium, Academic
year 1974–1975.

• Visiting Lecturer, Department of Production Engineering, Alexandria University,
Egypt, December, 1976.

• Principal Scientist, Kuwait Institute for Scientific Research, Kuwait, Academic
years 1981–1983, on leave from NCSU.

• Visiting Professor, The Thomson Chair Professor of Production Management,
Claude Bernard University of Lyon I, Lyon, France, May–June 1991 and May–
June 1992, June–July 1995.

• Visiting Professor, Department of Systems Engineering, Nagoya Institute of
Technology, Nagoya, Japan, December 1997 to March 1998.

• Visiting Professor, CREGI, Faculte Universitaire Catholique de Mons (FUCAM),
Summers of 2000, 2001, 2002, 2003.

• Visiting Professor, University of Paris, SUPMECA, May 2004 and June 2006.
• Chair Professor, Tsinghua University, Beijing, PRC, Spring semester 2005

(January through June).
• Visiting Professor, University de Minho, Guimaraes campus, Portugal, summer

2006 and 2008.
• Visiting Professor, Université d’Artois at Bethune, France, June 2008.
• Visiting Professor, National Chiao Tung University (NCTU), Taiwan, Oct.-

Nov., 2008.

Guest Lecturer

• Belgium: The Center of Operations Research and Econometrics; Université
Catholique de Louvain; Katholieke Universiteit Leuven; Faculté Universitaire
de Mons.
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• Canada: The Univ. of Toronto, Toronto; the University of Montreal and the
Polytechnique University, Montreal; Laval University, Quebec City.

• China: Guest lecturer at the Academy of Science, the Department of Mathemat-
ical Sciences at Tsinghua University, The National Academy of Mathematical
Sciences in Beijing; Zhejiang University in Hangzhou, both in PRC.

• Egypt: The American University of Cairo.
• France: The University of Lille; The University of Grenoble, University of Lyon 1

(Claude Bernard), Lyon, the ISMCM of the University of Paris, and the Université
de Valenciennes et du Hainaut Cambrésis, Valenciennes.

• Germany: The University of Bonn; The Free University of Berlin; The Technical
University of Aachen; the University of Karlsruhe, Karlsruhe

• Holland: The Mathematische Centrum, Amsterdam
• Japan: Nagoya Institute of Technology, Nagoya; Osaka Institute Of Technology,

Osaka; Aoyama Gakuin University, Tokyo; Ashikaga Institute Of Technology,
Ashikaga, Kyoto Institute of Technology, Kyoto

• Portugal: The Technical University of Lisbon, Lisbon; the University of Minho,
Guimaraes

• Saudi Arabia: The University of Petroleum and Minerals, Dhahran
• South Africa: The University of Johannesburg
• Sweden: The Tech. University of Linköping
• Turkey: Bilkent University, Ankara
• UAE: The University of the United Arab Emirates, Dubai
• UK: The Lucas Center for Engineering Production, Birmingham; Brunel

University, London
• US: Over 30 universities in the US, the latest of which is the Louisiana State Univ.

Chancellor’s Distinguished Lecture Series, March 1999.

Membership in Learned and Professional Societies

IIE The Institute of Industrial Engineers
NSPE National Society of Professional Engineers
INFORMS Operations Research Society of America & The Institute of

Management Science
POMS Production and Operations Management Society

Membership in Honorary Societies

Alpha Pi Mu (Industrial Engineering)
Phi Kappa Phi (Science)
Sigma Xi (Scientific Research)
Tau Beta Pi (Engineering)
Sigma Iota Rho (International)
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Special Honors and Awards

• Student Competition of ILS10 has been named after him; Casablanca, Morocco
April 14–17, 2010.

• Elected Fellow, INFORMS, October 2004
• Recipient of the Frank and Lillian Gilbreth Award, IIE, 2003
• Recipient of the Alexander Quarles Holladay Medal for Excellence, NCSU, 2000
• Recipient of Honorary Doctorate, University Claude Bernard Lyon I, Lyon,

France, October 1998.
• Invited as Visiting Professor, Faculté Universitaire Catholique de Mons, Belgium,

the summers of (1999 through 2003).
• Invited as The Thomson Chair Professor of Production Management, Claude

Bernard University of Lyon I, Lyon, France, the summers of 1991, 1992, 1995.
• Recipient of The Kuwait Foundation for the Advancement of Science Distin-

guished Award, May 1990.
• Recipient of The R. J. Reynolds Distinguished Award in Research and Education,

College of Engineering, NCSU, 1987.
• Elected Fellow of the Institute of Industrial Engineers, 1986.
• Operations Research Division Award, IIE, 1980.
• Awarded the David F. Baker Distinguished Research Award, IIE, 1970.
• Recipient of the First Prize, National Center for Education & Research in Equip.

Policy, 1958.
• Recipient of the First Prize, Morse Chain Co. Competition Award, Ithaca, NY,

1957.

Research Grants and Awards (Principal Investigator)

• The Academy of Applied Science (Summer 1980), US$ 2,500
• Alcatel Network Systems (August 1991–July 1993), US$ 230,000 (co-PI)
• The Army Research Office (1972–1978), approximately US$ 130,000
• The Army Research Office (1979–1985) approximately US$ 97,000
• The Army Research Office (1986–1989), US$ 280,000
• Bell Northern Research (1990–1992), US$ 127,000 (co-PI)
• National Aeronautics and Space Administration (1969–1970), US$ 15,000
• Department of Correction (1975–1977), US$ 73,000
• National Science Foundation (1964–1974), approximately US$ 250,000
• National Science Foundation (1978–1981), approximately US$ 102,000
• Northern Telecom (January 1991–December 1991), US$ 18,000
• The Office of Naval Research (1971–1974), approximately US$ 75,000
• Tultex Inc., Martinsville, VA, (Jan. 1992–Dec. 1992), US$ 23,000 (co-PI)
• IBM Corp, RTP, NC (Aug. 1994–May 1995), US$ 43,000
• Glen Raven Mills, Burnsville, NC (Jan. 1991–Dec. 1996), US$ 95,000
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• Northern Telecom, Research Triangle Park, NC. (Jan. 1997–Aug. 1997), US$
40,000

• Glen Raven Mills, Burnsville, NC (Sept. 1992–Dec. 1997), US$ 120,000
• North Carolina Sea Grant (Jan.2001–June 2001), US$ 8,518
• ABB, Centennial Campus (May 22, 2001–July 31, 2001), $7,770, and August

2002 through July 3, US$ 41,310.
• SAS, Cary N. C., Fall 2005, US$ 34,000.
• Hamlin Sheet Metal Co., Benson, NC, 2007–2010, US$ 55,000.

Professional Activities

• Keynote Speaker, INFORMS 2011, Charlotte, NC.
• Keynote Speaker, ILS2010, Casablanca, Morocco, April 14–17, 2010.
• Co-Chairman of Students Research Competition, IESM07 Conference, Bei-

jing, PRC, May 29-June 1, 2007. Also Member of the Conference Scientific
Committee.

• Founder and Editor-in-Chief, Jour. Oper. and Logistics (JOL), I4E2 Society, 2005
to present.

• Co-Chairman of Students Research Competition, Information Systems, Logistics
and Supply Chain (ILS) Conference, Lyon, France, May 15–18, 2005.

• Regional Editor (The Americas), Intern’l Jour. Production Economics (IJPE),
Elsevier, Aug. 1995–2000.

• Co-Founder and Council Member, PMS Intern’lWorkshops, 1988–1998. Keynote
speaker, PMS98, Istanbul, Turkey, July 7, 1998.

• Vice President for education, PMI Research Triangle Chapter, 1991
• Program co-Chairman, POM-91, November 1991
• Member, Board of Advisors, POMS, 1990-present
• Program Chairman, Manufacturing International ’90, Atlanta, Georgia, March

1990
• Member, Advisory Committee of Computer and Mathematics in Engineering

Design, National Science Foundation, Washington, D.C., 1964–1966
• Member, Information Systems Committee, ASEE, 1970–1973
• Director of Research in Production and Inventory Control, Institute of Industrial

Engineers, 1961–1962.
• Research Chairman for the Operations Research Division, AIIE, 1967
• Member, AIIE Membership Board of Review, 1976–1979
• ORSA Lectureship Series, 1972–1973, 1974–1976, 1978–1979
• Associate Editor, Management Science, Theory & Applications, 1968–1976
• Abstractor for International Abstracts in OR, the official publication of IFORS,

1970–1973
• Program Chairman, ORSA National Meeting, Miami, Florida, November 10–12,

1969
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• Member, Advisory Board, Encyclopedia of Computer Science and Technology,
M. Dekker Publishers, 1973–1978.

• Associate Editor, The Transactions of Industrial Engineering, 1969–1972
• Senior Editor, IE Transactions, 1972–1974
• Department Editor, Production Planning/Scheduling/Control, IIE Transactions,

1976–1980 and again 1985–1988. Department Editor, Feature Applications, IE
Transactions, 1989–1992.

• Associate Editor, Opsearch (Indian Journal on Operations Research), 1982-
present SystemsArea Program Chairman, ORSA National Meeting, Atlantic City,
N.J., November, 1972

• Member, Publications Committee, ORSA, 1974–1978
• Regional Counselor, Omega Rho, 1975–1976 (Honor Society for Operations

Research)
• Referee for: Army Research Office, National Science Foundation, The Research

Council of Canada, The Research Council of Belgium, ASME, Euro. J. Oper. Res.,
IE Trans., J. Engr. & Appl. Sci., Management Sci., Nav. Res. Logistics, Omega,
Oper. Res., POMS, Intern’l J. Prod. Res., Annals of Operations Research.

• Member, Board of Advisors, POMS, 1990-present
• Program Chairman, Manufacturing International ’90, Atlanta, Georgia, March

1990
• Member, Advisory Committee of Computer and Mathematics in Engineering

Design, National Science Foundation, Washington, D.C., 1964–1966
• Member, Information Systems Committee, ASEE, 1970–1973
• Director of Research in Production and Inventory Control, Institute of Industrial

Engineers, 1961–1962.
• Research Chairman for the Operations Research Division, AIIE, 1967
• Member, AIIE Membership Board of Review, 1976–1979
• ORSA Lectureship Series, 1972–1973, 1974–1976, 1978–1979
• Abstractor for International Abstracts in OR, the official publication of IFORS,

1970–1973
• Program Chairman, ORSA National Meeting, Miami, Florida, November 10–12,

1969
• Member, Advisory Board, Encyclopedia of Computer Science and Technology,

M. Dekker Publishers, 1973–1978.
• Associate Editor, The Transactions of Industrial Engineering, 1969–1972
• Senior Editor, IE Transactions, 1972–1974

University/College Service

• Senator, N.C. State University Faculty Senate, 1972–1974, 1999–2002.
• Chairman, Graduate Studies Committee, School of Engineering, 1985–1986.
• Member, Administrative Board of the Graduate School, 1988–1994.
• Member, Advisory Council of the Graduate School, 1991–1994.
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• Member, Council of University Professors.
• President, NCSU Chapter of Sigma Xi, 1998.
• Chairman of over twenty ad-hoc committees in the Oper. Res. Graduate Program,

the Ind. Eng. Department, the College of Engineering, and the University at large,
and member of over thirty other ad hoc committees in the University, college,
department of Ind. Eng. and Graduate Program of Operations Research.

Consulting Experience

ABB, Centennial Campus (Raleigh NC)
Cyanamid Co. (Wallingford, Conn.)
Ford Foundation (Cairo, Egypt)
Glen Raven Mills (Burnsville, N.C.)
IBM Co. (Research Triangle Park, N.C.)
Logistics Management Institute, (McLean, VA)
Messier-Dowty (Bidos, France)
Nello-Teer Co. (Durham, N.C.)
Olivetti Co. (Ivrea, Italy)
The Kharafi Construction Co. (Abu Dhabi and Kuwait)
The Kuwait Institute for Scientific Research (Kuwait)
The Kuwait Foundation for the Advancement of Science (Kuwait)
The Kuwait University, College of Engineering
Texasgulf Co. (Raleigh, N.C.)
The TOKTEN program of the UNDP, Egypt
Tultex, Inc., Martinsville, VA
The Western Electric, Co., Research Center (Princeton, N.J.)

Biographical Listings

Who’s Who in the South and Southwest
Who’s Who in America
Men and Women of Distinction
International Who’s Who of Intellectuals
Men of Achievement
American Men and Women of Science
Who’s Who in Engineering
Global Register’s Who’s Who
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PhD Dissertations and Master’s Theses Supervised

Doctor of Philosophy Degree

Name Title Year Graduated

Ramachandra, Girish Optimal resource allocation in Activity Networks Dec., 2006
Matta, Marie E. An empirical and theoretical study of outpatient May, 2004
Karnoub, Razek E. Scheduling problems employing simulation and

genetic algorithm methodologies (co-chair,
Duke

University, Durham NC)
An exact bidirectional approach to the resource
constrained project scheduling problem

May, 2002

Stephanie R. Earnshaw The location/allocation of field representatives
and trainers to sites (co-chair)

May, 2000

Soewandi, Hanijanto Sequencing jobs on two- and three-stage hybrid
flowshop to minimize makespan

May, 1998

Zhang-Lo, Shuzhi ATM topological design and network modification December, 1996
Michael, David J. The optimal representation of activity networks as

directed acyclic graphs
May 1991

Ferrell, William G. Systems dynamics in quality assurance May 1989
Pulat, P. Simin Maximum flow problem for generalized networks May 1984
Dodin, Bajis M. On the completion time of stochastic PERT

networks
May 1982

Salem, Adel M. Optimal time reduction in activity networks under
convex cost functions

May 1980

Sarin, Subhash C. Project planning under constrained resources May 1978
Elimam, Abdelghani A. Makespan minimization on identical parallel

machines
August 1978

McGinnis, Leon F. Approximate and exact solution procedures for a
class of facilities location problems (co-chair)

May 1975

Rihani, Fouad Akil A model for selecting the optimum number, size
and location of highway maintenance yards
(co-chair)

May 1974

Modi, Jamshed A. The use of solution generating systems for
knapsack problems with extensions to general
integer linear programming

August 1973

Mallik, Arup K. The scheduling of a single processor under
deterministic demand for several products

May 1972

Arisawa, Sanji Solution of the hub-wheel scheduling problem in
transportation networks

May 1972

Wig, Monmahan On the stock cutting problem May 1969
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Master of Science Degree

Name Title Year Graduated

Rajneesh Rajneesh Scheduling precedence-constrained jobs on two
resources to minimize the total weighted
completion time

August 2012

Adam J. Rudolph An algorithm for determining the optimal resource
allocation in stochastic activity networks

May, 2008

Clayton D. Morgan Meta-heuristics for resource allocation in activity
networks

Dec., 2006

Ramachandra, Girish Scheduling precedence related jobs on identical
parallel processors

May, 2002

Lightner, Constance Analysis of linear programming models applied to
an emergency vehicle location problem

August, 1997

Taner, Mehmet R. A study of the mean and variance of project duration
in a probabilistic activity network (co-chair)

May, 1998

Thoney, Kristin A. The two-machine stochastic flowshop sequencing
problem

August 1997

Baxter, Elizabeth J. Simulation of a software engineering process May 1993
Reed, Stephanie J. The sequencing of picking stations in a garment

warehouse
May 1993

Schellenberger, Keith W. Sequencing of parallel processors May 1993
Hurchalla, David A. An optimal algorithm for solving the pick-up and

delivery problem with time constraints
May 1991

Singh, Major The modeling of large scale software development May 1991
Johnson, Jerry W. Economic manufacturing quantity with inspection

for processes under the influence of learning
May 1986

Dillery, D. Scott On the optimal partitioning of a seasonal distribution May 1985
Venable, Charles J. Capacity loading and scheduling in a testing facility May 1985
Colby, Anthony H. On the complete reduction of acyclic networks May 1984
Nishimura, Morio Scheduling flow shops of the ordered and

semi-ordered types
May 1980

Samara, Hanan The dynamic economic lot size model with fixed
batch size and sequence dependent change over
costs

May 1979

Dillehunt, Susan L. The optimization of a machine planting system May 1978
Allen, Jerry W., Jr. Sequencing on a single processor with a common

deadline
May 1978

Pulat, P. Simin Optimal project compression with multiple node
due dates

May 1977

Bazzi, Muna A simulation study of the faculty population in a
university

May 1977

Dodin, Bajis M. A branch-and-bound algorithm for scheduling n
products on a single processor under
deterministic demand

May 1975

Worley, Jerry S. The application of legendre polynomials and spline
functions to dynamic programming

May 1974

Dix, Lynn P. Scheduling lot size production with constant
demand

May 1973

Park, Sung H. A branch-and-bound method for the problem and
group theoretic aspects of an integer
programming formulation

May 1971
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Supervised 9 Master of Operations Research and Master of Industrial Engineering
(non-thesis). Currently supervising 3 Master and 1 doctoral candidate in the USA,
and co-advisor of 2 doctoral candidates in Portugal, 1 doctoral candidate in France.

Member of 40 + other Master and doctoral Advisory Committees.

“Member of the Jury” of 6 doctoral students in Europe and Canada. They are,
arranged chronologically:
Jamal Ouenniche, Laval University, Canada, 1998 (External Examiner)
Fouad Riane, Faculte Catholique de Mons, Belgium, 1998 (Rapporteur)
Omar Moursli, Universite Catholique de Louvain, Belgium, 1999 (Rapporteur)
Trond Jorgensen, Norges-Tecknisk Naturvitenskapelige Universitet, Trondheim,
Norway, 1999 (External Examiner)
Anabela Tereso, Universidade do Minho, Braga, Portugal, 2002 (co-Chair)
Hamid Allaoui, Faculte Catholique de Mons, Belgium, 2004 (co-Chair)
Emilie Grandgirard, University Claude Bernard Lyon 1, Lyon, France, November
2007 (External Examiner)

“External Reader” for 4 doctoral theses. They are:
N. R. Achutan, Indian Statistical Inst., Calcutta, India, 1980
V. R. Prasad, Indian Statistical Inst., New Delhi, India, 1982
Kanda, Indian Inst. of Tech., Delhi, India, 1985
V., Suresh, Indian Inst. of Tech., Madras, India, 1994.

Scientific Publications—Books

• Production Capacity: Its Bases, Functions, and Measurement, Chapter I-4 in
Handbook of Production Planning, K. Kempf, P. Keskinocak, and R. Uzsoy, eds,
(2011).

• A Multi-Model Approach for Production Planning and scheduling in an
Industrial Discrete-Continuous Environment, Chaper II-19 in Handbook of
Production Planning, K. Kempf, P. Keskinocak, and R. Uzsoy eds, (2011),
co-authored with A. Artiba, D. Duvivier and V. Dhaevers.

• Operations Research, chapter in Encyclopedia of Physical Science and Tech-
nology, 3rd ed., R. A. Meyers, ed., (2001). Co-authored with S-C. Fang.

• Activity Nets: PERT/CPM and Their Extensions, Section 15.5 in Handbook
of Discrete and Combinatorial Mathematics, K. H. Rosen, ed., (1998).

• The Planning and Scheduling of Production Systems: Methodologies and
Applications; Chapman & Hall, (1997), co-editor with A. Artiba, 367 pages.
This is a book of original readings on the subject.

• Handbook of Operations Research, co-editor with J. J. Moder, Reinhold Van-
Nostrand Publishers, Vol. 1, January, (1978); Vol. 2, April (1978). This handbook
was translated into Russian.



Salah E. Elmaghraby 399

• Advances in Project Scheduling, (1989), Chapter I, Part III, R. Slowinski, J.
Weglarz (Eds.). “The estimation of some network parameters in the PERT model
of activity networks: Review and critique.” Elsevier, Amsterdam, pp. 371–432.

• Operations Research, Chapter in the Encyclopedia of Physical Science and
Technology (1992); co-authored with S-C Fang.

• Activity Networks: Project Planning and Control by Network Methods, John
Wiley & Sons, 443 pages, (1977). This book was translated into Japanese.

• Allocation Models, contributed to the Encyclopedia of Computer Science,
(1974), 371–382; co-authored with M. El-Kammash.

• Scheduling Theory and Its Applications, Editor, Proceedings of Symposium,
Springer-Verlag, (1973).

• Operations Research, Chapter 3 of Section 10 in Industrial Engineering
Handbook, McGraw-Hill, 3rd Ed., (1971), H. B. Maynard, Ed.

• Some Network Models in Management Science, Springer-Verlag Lecture Series
in Operations Research, No. 29, June, (1970).

• The Design of Production Systems, Reinhold Publishing Company, New York
City, 481 pages, May, (1966). This book was translated into Rumanian.

Unpublished Manuscripts:

• Dynamic Programming: Models andApplications; Lecture notes in manuscript
form, to be submitted for publication.

• Risk and Uncertainty in Activity Networks, Lecture notes in manuscript form,
to be submitted for publication.

Scientific Publications—Published Papers (or Accepted for
Publication)

1. “A Note on Production Scheduling by the Use of Transportation Method”,
Letter to the Editor., Oper. Res. 5 (1957), 565–566.

2. “Design of In-Process Storage Facilities”, J. Ind. Eng. 8 (1957); co-authored
with Eugene Richman.

3. “Probabilistic Considerations in Equipment Replacement Studies”, The Engi-
neering Economist, 4, Summer 1958. This paper was awarded first place at
the graduate level in the 1958 contest conducted by the National Center of
Education and Research in Equipment Policy.

4. “A Single-Sample Multiple-Decision Procedure for Selecting the Multinomial
Event Which Has the Highest Probability”, The Ann. of Math. Stat. 38 (1959);
co-authored with R. E. Bechhofer and N. Morse.

5. “An Approach to Linear Programming Under Uncertainty”, Oper. Res. 7
(1959), 208–216.
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6. “Allocation Under Uncertainty When the Demand has a Continuous Distribu-
tion Function”, Management Sci. 6 (1960), 270–294.

7. “On the Feedback Approach to Industrial Systems Design”, Management Sci.:
Models and Techniques, Vol. 1, Pergamon Press, N.Y., (1960), 149–167. Paper
presented to the 6th International TIMS Meeting in Paris, September 1959.

8. “Research in Computerized Production Control Systems”, presented to the
13th Annual Conference, The Institute of Industrial Engineers, and printed in
the Proceedings, (1962), 269–279.

9. “A Note on the Problem of ‘Explosion’and ‘Netting’in the Planning of Material
Requirements”, Oper. Res. 11 (1963), 530–535.

10. “On the Control of Production in Small Job Shops”, J. Ind. Eng. 14 (1963),
186–196; co-authored with R. T. Cole.

11. “On the Dynamic Programming Approach to the ‘Caterer’ Problem”, J. Math.
Anal. And Appl. 8 (1964), 202–217.

12. “AnAlgebra for theAnalysis of GeneralizedActivity Networks”, Management.
Sci. 10 (1964), 494–514.

13. “A Dynamic Model for the Optimal Loading of Linear Multi-Unit Shops”,
Management Tech. 4 (1964), 47–58; co-authored with A. S. Ginsberg.

14. “SensitivityAnalysis of Multi-Terminal Flow Networks”, Oper. Res. 12 (1964),
680–688.

15. “On the Relationship Between the Cut-Tree and the Fundamental Cut-Set of
Multi-Terminal Flow Networks”, Jour. Franklin Inst. 278 (1964), 262–266.

16. “An Operational System for the Smoothing of Batch Type Production”, Man-
agement Sci., Series B. 12 (1966), B433-B449; co-authored with J. Jeske and
R. O’Malley.

17. “On the Generalized Activity Networks”, J. Ind. Eng. 17 (1966), 621–631,
Special issue on Research in Industrial Engineering.

18. “On the Expected Duration of PERT Type Networks”, Management Sci., Series
A, 13 (1967), 229–306.

19. “The Determination of Optimal Activity Duration in Project Scheduling”, J.
Ind. Eng.19 (1968), 48–51.

20. “The One Machine Sequencing Problem with Delay Costs”, J. Ind. Eng. 19
(1968), 105–108.

21. “The Sequencing of ‘Related’ Jobs”, Nav. Res. Log. Quart. 15 (1968), 23–32.
22. “The Role of Modeling in IE Design”, J. Ind. Eng. 19 (1968), 292- 305. Paper

presented to the June 1967 Annual Meeting, ASEE, East Lansing, Michigan.
23. “The Sequencing of n Jobs on m Parallel Processors with Extensions to the

Scarce Resources Problem of Activity Networks”; presented at the Inaugural
Conference, the Scientific Computation Center, Cairo, Egypt, December 17–
20, (1969); and appeared in the Proceedings of the Conference, 230–255.

24. “The Machine Sequencing Problem: Review and Extensions”, Nav. Res. Log.
Quart. 15 (1968), 205–232. Invited paper presented at the Symposium on Pro-
duction Sequencing and Control, Stevens Institute of Technology, December
1967.
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25. “A Loading Problem in Process Type Production”, Oper. Res., 16 (1968); also
published in Cuadernos de Estadistica Aplicado e Investigacion Operative, Vol.
VI, Fasc. 3, Ano. (1969), 902–914.

26. “The Concept of State in Discrete Dynamic Programming”, (1970), J Math.
Anal. & Appl. 29(3): 523–557.

27. “The Scheduling of Lots on a Single Facility”, IIE Trans. 2 (1970), 203–213;
co-authored with A. Mallik and H. L. W. Nuttle.

28. “Theory of Network Models and Management Science, Part I,” (1970),
Management Sci. 17(1): 1–34.

29. “Theory of Network Models and Management Science, Part II,” (1970),
Management Sci. 17(2): B54–B71.

30. “A Graph theoretic interpretation of the sufficiency conditions for contiguous
binary switching (CBS)-rule,” (1971), Nav. Res. Log. Quart. 18(3): 339–344.

31. “Hyperbolic Programming with a Single Constraint and Upper-Bounded
Variables,” (1972), Management Sci. 19(1): 42–45; with S. Arisawa.

32. “On the Sequencing of n Jobs on One Machine to Minimize the Number of
Jobs Late,” (1972), Letter to the Editor, Management Sci. 18(7): 389.

33. “Optimal Time-Cost Trade-Offs in GERT Networks,” (1972), Management Sci
18(11): 589–599; with S. Arisawa.

34. “Optimization of Batch Ordering Under Deterministic Variable Demand,”
(1972), Management Sci. 18(9): 508–517; with V. Y. Bawle.

35. “On the Scheduling of Jobs on a Number of Identical Machines,” (1974), IIE
Trans. 6: 1–13; with S. Park.

36. “The Scheduling of a Multi-Product Facility,” (1973), Proceedings of the
Symposium of Theory of Scheduling and Its Applications, Springer-Verlag,
November, pp. 244–277; with A. K. Mallik.

37. “Sequencing jobs on a single machine to minimize total weighted tardiness
when all jobs have same due date,” (1975), Oper. Res. 23: B371, Suppl.2; with
J. W. Allen and H. L. W. Nuttle.

38. “Branch-and-Bound Revisited: A Survey of Basic Concepts and TheirApplica-
tions in Scheduling”, Modern Trends in Logistics Research, Chapter 8, the MIT
Press, (1976), 133–205, W. H. Marlow, Ed; co-authored with A. N. Elshafei.

39. “The ‘Hub’ and ‘Wheel’ Scheduling Problem. Part I: The ‘Hub’ Scheduling
Problem: The Myopic Case. Part II: The ‘Hub’ Operation Scheduling Prob-
lem (HOSP): Multi-Period and Infinite Horizon, and the Wheel Operations
Scheduling Problem (WOSP)”, Transportation Sci. 11 (1977), Part I: 24–146,
Part II: 147–165; co-authored with S. Arisawa.

40. “An Extended Basic Period Approach to the Economic Lot Scheduling Prob-
lem (ELSP),” Proceedings, the 4th International Conference on Production
Research, Tokyo, Japan, August 27–30, (1977); Proceedings of 4th ICPR.

41. “The Economic Lot Scheduling Problem (ELSP): Review and Extensions,”
(1978), Management Sci. 24(6): 587–598.

42. “Activity Networks: Their Uses and Misuses in Project Planning and Control,”
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