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Preface

The purpose of this text is to provide a foundation for understanding the theory and
mechanisms behind the effects of irradiation on metals and alloys. The subject is
divided into three parts, each of which is subdivided into individual chapters that
together provide a unified picture of how radiation interacts with and alters the
structure and properties of metallic materials. Part I consists of five chapters that
together, focus on the radiation damage process and provide the formalism for the
prediction of the amount and spatial configuration of the damage produced by
bombarding particles. Chapter 1 treats the interactions between particles that result
in the transfer of energy from the incident particle to the target atoms. Chapter 2
focuses on determination of the number of displacements produced by the bom-
barding particles, and Chap. 3 describes the spatial configurations of the resulting
defects. Chapter 4 provides background on the equilibrium concentration of point
defects and their diffusion. Chapter 5 treats diffusion and reactions between point
defects under irradiation that are fundamental to all of the observable effects.

While radiation damage describes the state of the irradiated material, radiation
effects are concerned with defect behaviour in the solid after formation. Part II
(Chaps. 6-11) covers the physical effects of irradiation on metals. Chapter 6
describes radiation-induced segregation, which is a direct consequence of
radiation-enhanced diffusion. Chapters 7 and 8 address the nucleation and growth
of dislocation loops and voids, the defect aggregates that determine much of the
behavior of irradiated alloys. Chapter 9 covers the stability of phases under irra-
diation and irradiation-induced precipitation and precipitate dissolution. Chapter 10
extends the effects of irradiation to the unique processes resulting from ion irra-
diation such as composition changes, sputtering, and exfoliation. Finally, Chap. 11
describes the use of ion irradiation to emulate the effects of neutron irradiation in
reactor components.

Mechanical and environmental effects of radiation damage (Part III) are distin-
guished from physical effects by the application of stress and a corrosive envi-
ronment. Hardening and deformation of alloys under irradiation are discussed in
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Chap. 12. Creep deformation and growth are treated in Chap. 13, and the effect of
irradiation on crack nucleation and propagation resulting either from static or
fatigue loading is discussed in Chap. 14. Irradiation also has a profound effect on
corrosion and stress corrosion cracking as these degradation modes often constitute
the limiting processes for many reactor designs. Chapter 15 includes the basics of
corrosion and stress corrosion cracking that are required for understanding the
combined effects of irradiation, corrosion, and stress discussed in Chap. 16.

The chapters contain examples and illustrations of radiation effects and sample
calculations to quantify and describe the observations. Problems at the end of each
chapter are designed to reinforce the main concepts of each chapter and to challenge
the reader on his or her comprehension of the topics covered within. Taken toge-
ther, the chapter text, examples, illustrations, and end-of-chapter problems provide
a comprehensive treatment of the effects of irradiation on metals and alloys.

The subject matter in this text will likely require two academic terms to com-
plete. Many of the topics rely on a basic knowledge of disciplines that constitute the
underlying basis for irradiation effects: thermodynamics and kinetics of solids,
crystal structure, defects and dislocations, physical metallurgy, elasticity and
plasticity, deformation and fracture and corrosion and stress corrosion cracking.
The text either presents the requisite background for each of these topics, or pro-
vides references of other sources where good treatments can be found.

This book should also be useful to researchers who would like to learn more
about the subject, or who would like a more complete and integrated treatment
of the topics than can be found in individual papers on the subject. While the
chapters are integrated with one another and each chapter builds upon the sum
of the previous chapters, it is possible to read selected chapters for just that topic.

As a final comment, the author would like to note that this book was written by
sorting, organizing, and condensing information from several texts and numerous
journal and conference papers to arrive at a comprehensive description of the
processes constituting radiation materials science. A conscientious effort was made
to acknowledge and give credit to the original sources of the ideas, theories,
mathematical developments, and drawings contained herein. For occasional over-
sights that may have occurred during the condensation process, the author offers his
apologies. He is indebted to the many authors and publishers who provided material
and illustrations for this text.

Finally, the author wishes to acknowledge the many colleagues, students, and
friends who aided and advised him in this work. In particular, special thanks go to
Jeremy Busby, Todd Allen, Michael Atzmon, Roger Stoller, Yuri Osetsky, Ian
Robertson, and Brian Wirth, for their substantive contributions to the content, to
Elaine West, Brian Wagner, Sean Lemecha, Gerrit Vancoevering, and Bryan Eyers
for their work on the illustrations, to Gerrit Vancoevering for completing and
compiling the end of chapter problem solutions, to Cherilyn Davis and Ovidiu
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Toader for their help in manuscript and movie preparation, to Lynn Rehn, Don
Olander, Arthur Motta, Michael Nastasi, Steve Zinkle, K. Linga Murty, Lou
Mansur, and Peter Andresen for their chapter reviews, and to John King and Arden
Bement for providing the inspiration to the author to pursue this field of study many
years ago.

Ann Arbor Gary S. Was
August 2015
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Values of Physical Constants

Name Symbol Value
Atomic mass unit u 1.6605 x 1077 kg
Avagadro’s number Ny 6.0221 x 1023/g mole
Barn - 1072 cm?
Bohr radius ao 52918 x 107"' m
Bohr magnetron Up 9.2730 x 1072* J m*/weber
Boltzmann’s constant k 1.3807 x 107> J/K
8.6173 x 107° eV/K
Classical electron radius 7o 28179 x 107 m
Rydberg energy Eg 13.606 eV
Electric constant € 8.8542 x 1072 F/m
Elementary charge e 1.6022 x 107" C
4.8029 x 107" esu
& 1.44 eV nm (CGS system)
Electron Compton wavelength Ae 24263 x 1072 m
Electron density/mass ratio &/m, 1.7588 x 10'! C/kg
Faraday constant F 96485.3415 C/mole
Gravitational constant G 6.6743 x 107! Nm/kg?
Ionization energy of hydrogen atom Iy 13.6057 eV
Magnetic constant Lo 1.2566 x 107 NA™>
Planck’s constant h 6.6261 x 107 T s
4.1357 x 107" eV s
Quantum/charge ratio e 4.1357 x 107 J s/C
Rest mass
Electron m, 9.1094 x 103! kg
5.4860 x 107 amu
Neutron my, 1.6749 x 1077 kg

1.0089 amu

(continued)
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Values of Physical Constants

(continued)

Name Symbol Value

Proton m, 1.6726 x 1077 kg
1.0073 amu

Rydberg constant R 1.0974 x 10" m™"'

Speed of light c 2.9979 x 10% m/s

Standard volume of ideal gas - 22.4140 1/g mole

Stefan—Boltzmann constant o 5.6704 x 1078 w/m? K*

Universal gas constant R 8.3145 J/g mole K

1.9855 cal/g mole K




Introduction

Radiation materials science describes the interaction of radiation with matter—a
broad subject covering many forms of irradiation and of matter. Some of the most
profound effects of irradiation on materials occur in the core of nuclear power
reactors where atoms comprising the structural components are displaced numerous
times over the course of their engineering lifetimes. The consequences of radiation
to core components include changes in shape and volume by tens of percent,
increases in hardness by factors of five or more, severe reduction in ductility and
increased embrittlement, and susceptibility to environmentally induced cracking.
For these structures to fulfill their purpose, a firm understanding of the effect of
radiation on materials is required in order to account for its effect in design, to
mitigate its effect by changing operating conditions, or to serve as a guide for
creating new, more radiation-tolerant materials that can better achieve their purpose.

The attractiveness of nuclear power as a present-day and future energy source is
due to the vast improvements that have been made in the way reactors are operated
and in our understanding of how these engineering systems degrade and fail. But
the attractiveness of nuclear power is also driven by new concepts for advanced
reactors that offer improvements in safety and reliability, radioactive waste pro-
duction, energy efficiency, and cost-effectiveness. Nuclear power holds the promise
for producing hydrogen in a clean and low-cost process that would power a future
hydrogen economy. Yet all of these improvements come at a cost. That cost is a
greater demand on the materials used to build and operate these reactors. New
concepts that promise better performance from this energy source also include more
aggressive environments, higher temperatures, and greater levels of irradiation. In
his article in Nature, Butler [1] summarizes the challenges facing several promising
advanced reactor concepts. In all of these concepts, material behavior is the leading
challenge in bridging the gap from concept to reality. The pivotal role of material
behavior in the unique radiation environment created in a reactor core makes
radiation materials science a subject of paramount importance in the future of
nuclear energy in the world. It is with this perspective that the objective of this text
was formulated, that is, to provide a sound, fundamental understanding of radiation
effects in structural materials.
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XXiv Introduction

Structural materials in reactor systems are predominantly crystalline, metallic
alloys. Virtually, all of the structural materials in reactors are metallic, and many
of the materials proposed for the more aggressive conditions in advanced reactor
concepts are metals as well. The types of radiation that can alter structural materials
consist of neutrons, ions, electrons, and gamma rays. All of these forms of radiation
have the capability to displace atoms from their lattice sites, which is the funda-
mental process that drives the changes in structural metals described earlier. The
inclusion of ions among the irradiating particles provides a coupling to other fields
and disciplines such as the use of accelerators for the transmutation of nuclear
waste, or in the creation of new materials by ion implantation, ion beam mixing,
plasma-assisted ion implantation, and ion beam-assisted deposition. All of the
concepts developed in this text for the interactions of ions with solids are applicable
to these fields as well.

The effect of irradiation on materials is rooted in the initial event in which an
energetic projectile strikes a target. While the event is made up of several steps or
processes, the primary result is the displacement of an atom from its lattice site.
This book will address primarily crystalline solids in which the atom locations are
defined by the crystalline structure. Irradiation displaces an atom from its site,
leaving a vacant site behind (a vacancy), and the displaced atom eventually comes
to rest in the interstices between lattice sites, becoming an interstitial atom. The
vacancy—interstitial pair is central to radiation effects in crystalline solids and is
known as a Frenkel pair (FP). The presence of the FP and other consequences of
irradiation damage determine the physical effects and, with the application of stress
and the environment, the mechanical and environmental effects of irradiation.

The radiation damage event, detailed in Chap. 1, is concluded when the dis-
placed atom (also known as the primary knock-on atom, PKA) comes to rest in the
lattice as an interstitial. This event consumes about 10~'! s. Subsequent events are
classified as physical effects of irradiation. These effects include such phenomena as
swelling, growth, phase change, and segregation. For example, it is possible to take
a block of pure nickel, 1 cm on a side, irradiate it in a reactor (to a fluence of say,
10?% n/cm?), and measure it to be 1.06 cm on a side, representing a volume change
of 20 %! The volume change, or swelling, is isotropic and is due to the formation of
voids in the solid (see, e.g., Fig. 8.1).

Another example is irradiation growth. Irradiation of a cylindrical rod of ura-
nium, 10 cm in length and 1 cm in diameter (7.85 cm’® ) to a fluence of ~ 10%°
n/cm?, will cause it to grow to 30 cm in length and shrink to 0.58 cm in diameter.
The volume is unchanged (7.85 cm?), but the shape is highly distorted. Distortion at
constant volume under irradiation is referred to as growth.

Phase changes under irradiation are also common. A Ni—12.8at%Al, solid
solution alloy irradiated with 5 MeV Ni* ions to 10'® cm™? will result in the
formation of a Ni3;Al phase, which is separate and distinct from the parent phase
(see, e.g., Fig. 9.3). The formation of a new phase is known as irradiation-induced
phase formation and is of great significance in both ion and neutron irradiation.

A last example of physical changes of irradiation is segregation. If a Ni—1at%Si
alloy is bombarded with Ni* ions at 525 °C, and to a dose of one displacement per
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atom, the result is an enrichment of Si on the surface and at grain boundaries to
values that are 20-60 times the amount in the bulk (see, e.g., Fig. 6.5). This
redistribution of alloying elements to specific sites in the microstructure is known as
radiation-induced segregation and occurs in many alloys to a significant extent
when irradiated at high temperatures.

Irradiation-induced physical changes can indeed be dramatic. But how do they
alter the structural integrity of components? This is the realm of mechanical effects
of irradiation. Mechanical effects manifest themselves only under the application of
a stress. The result is that alloys behave much differently than their unirradiated
counterparts. For example, the impact energy of an irradiated steel can be drasti-
cally reduced. For unirradiated steels, the energy absorbed is a strong function of
temperature, where at low temperatures, little energy is absorbed and the steel
becomes very brittle, but with increasing temperature, the energy absorbing
capacity of the steel increases dramatically. Irradiation of a steel with neutrons can
cause a marked reduction in the strain and a several-fold increase in the strength
of the steel. The result is an increase in strength by a factor of five and a decrease in
ductility by over a factor of ten. Irradiation can also influence the way in which
materials deform at high temperature. Under a constant load, there is almost a
complete loss of creep strength due to severe embrittlement arising from irradiation.

Finally, irradiation to a neutron fluence of >5 X 10%° n/em? (E > 1 MeV) results
in accelerated corrosion and intergranular cracking of iron- and nickel-based aus-
tenitic alloys in light water reactors. This stress corrosion cracking phenomenon is
very pervasive in that it affects most all austenitic alloys in all types of water
reactors. Clearly, any of these effects will have profound consequences on reactor
component integrity. Understanding how they work is the key to designing around
their detrimental effects or to developing new alloys that are more radiation tolerant.
As it turns out, almost all of these effects have a common link: defects such as
isolated vacancies and interstitials, clusters of vacancies and interstitials, dislocation
loops and lines, and voids and bubbles. The reader should keep these defect types in
mind as they progress from the radiation damage event through the physical effects
to the mechanical and environmental effects.

We will address the radiation damage event first as this is the basis for under-
standing all effects of irradiation. We will start by quantifying the extent of radiation
damage and develop a physical description of the interaction process. In quanti-
fying the displacement process, what we are seeking is a quantitative description
of the number of vacancies and interstitials produced by an incoming projectile.
Unless we can do this, we have no hope of understanding the extent of the damage.
The importance of determining the effect of irradiation in terms of the production of
defects is discussed in Chaps. 2 and 3 and is shown here with a simple illustration.

The number of displacements created by a neutron flux is a complicated function
of the energy dependence of that flux. Note in the top graph in Fig. 1 that the
dependence of the yield strength of a 316 stainless steel alloy on the neutron fluence
is highly dependent on the particular neutron flux spectrum [2]. OWR is a test
reactor with a typical LWR neutron spectrum, RTNS-II produced a pure 14 MeV
source of neutrons, and LASREF had a broad spectrum of high neutron energies.
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However, if the yield strength is plotted as a function of the displacement damage in
the alloy (dpa = displacements per atom in the solid), then data from all three
neutron sources collapse beautifully onto a single trend line (bottom graph in Fig. 1)
that is independent of the flux spectrum. The independence of the yield strength—
dpa correlation on the neutron spectrum indicates that dpa is a better representation
of the effect of irradiation on materials properties than is the fluence. This addresses
our first objective; the determination of the quantity R, the number of displacements
per unit volume per unit time:
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R= )dE;, (1)

E
displ t
#disp acgemens N/(]S
cm’

E

where N is the atom number density, £ is the maximum energy of the incoming
particle, £ is the minimum energy of the incoming particle, $(E; is the
energy-dependent particle flux, and o,(E;) is the energy-dependent displacement

cross section:
T
— [ atEv(ryar. @)
T

where 7 is the maximum energy transferred in a collision of a particle of energy E;
and a lattice atom, 7'is the minimum energy transferred in a collision of a particle of
energy E; and a lattice atom, o(E;, T) is the cross section for the collision of a
particle of energy E; that results in a transfer of energy T to the struck atom, and
w(T) is the number of displacements per primary knock-on atom. So, ultimately, we
want to determine:

R= N/E /T¢> o(E, T)v(T)dTdE;. 3)

E

The two key variables in this equation are o(E;, T) and w(T). The term
o(E;, T) describes the transfer of energy from the incoming particle to the first atom
it encounters in the target, the PKA. Determination of this quantity is the goal of
Chap. 1. The second quantity is v(T), the total number of displacements that the
PKA goes on to make in the solid, and its determination is described in detail in
Chap. 2. Taken together, they describe the total number of displacements caused by
an incoming particle of energy E;, and the flux term of Eq. (3) accounts for the
energy distribution of the incoming particles. The result is the total number of
displacements in the target from a flux of particles with a known energy distribu-
tion. We will return to this equation often, as it is the essence of the quantification
of radiation damage in solids.
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Chapter 1
The Radiation Damage Event

The radiation damage event is defined as the transfer of energy from an incident
projectile to the solid and the resulting distribution of target atoms after completion
of the event. The radiation damage event is actually composed of several distinct
processes. These processes and their order of occurrence are as follows:

1. The interaction of an energetic incident particle with a lattice atom.

2. The transfer of kinetic energy to the lattice atom giving birth to a primary

knock-on atom (PKA).

The displacement of the atom from its lattice site.

4. The passage of the displaced atom through the lattice and the accompanying
creation of additional knock-on atoms.

5. The production of a displacement cascade (collection of point defects created by
the PKA).

6. The termination of the PKA as an interstitial.

»

The radiation damage event is concluded when the PKA comes to rest in the lattice
as an interstitial. The result of a radiation damage event is the creation of a col-
lection of point defects (vacancies and interstitials) and clusters of these defects in
the crystal lattice. It is worth noting that this entire chain of events consumes only
about 10™'" s (see Table 1.1). Subsequent events involving the migration of the
point defects and defect clusters and additional clustering or dissolution of the
clusters are classified as radiation damage effects.

What we first need to know in order to understand and quantify radiation
damage is how to describe the interaction between a particle and a solid that
produces displacements, and later on how to quantify this process. The most simple
model is one that approximates the event as colliding hard spheres with displace-
ment occurring when the transferred energy is high enough to knock the struck
atom off its lattice site. In addition to energy transfer by hard sphere collisions, the
moving atom loses energy by interactions with electrons, the Coulomb field of
nearby atoms, the periodicity of the crystalline lattice, etc. The problem is reduced
to the following. If we can describe the energy-dependent flux of the incident
particle and the energy transfer cross sections (probabilities) for collisions between
atoms, then we can quantify the PKA production in a differential energy range and
utilize this to determine the number of displaced atoms.

© Springer Science+Business Media New York 2017 3
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Table 1.1 Approximate timescale for the production of defects in irradiated metals (from [1])

Time (s) Event Result

1078 Energy transfer from the Creation of a primary knock-on atom (PKA)
incident particle

10713 Displacement of lattice atoms by | Displacement cascade
the PKA

107! Energy dissipation, spontaneous Stable Frenkel pairs (single interstitial atoms
recombination, and clustering (SIA) and vacancies) and defect clusters

>107® Defect reactions by thermal SIA and vacancy recombination, clustering,
migration trapping, defect emission

In this chapter, we will concentrate on quantifying the energy transferred between
interacting bodies as well as describing the energy transfer cross section. We will
begin with neutron—nucleus reactions since the neutrality of the neutron makes the
interaction particularly straightforward. Following creation of the PKA, subsequent
interactions occur between atoms, and the positive charge of the nucleus and the
negative charge of the electron cloud become important in understanding how atoms
interact. In fact, atom—atom interaction is the low-energy limit of ion—atom inter-
actions that occur in reactor cores and via ion irradiation using accelerators over a
wide energy range and can lead to the last type of interaction: ionization collisions.

1.1 Neutron-Nucleus Interactions

1.1.1 Elastic Scattering

By virtue of their electrical neutrality, elastic collisions between neutrons and nuclei
can be represented as colliding hard spheres. When neutrons pass through a solid,
there is a finite probability that they will collide with a lattice atom, imparting a recoil
energy to the struck atom. This probability is defined by the double differential
scattering cross section (in energy and angle), o, (E;, Ey, Q), where E; and Ef are the
incident and final energies and & is the solid angle into which the neutron is scat-
tered. We are often only interested in the scattering probability as a function of E; and
the scattering angle. The single differential scattering cross section is as follows:

GS(Ei7Q) = /O’S(Ei,Ef,Q)dEf. (11)
The total scattering probability for neutrons of energy E; is as follows:

oy(E) = /as(Ei, Q)dQ. (1.2)
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Fig. 1.1 Vector velocities (a) lab-before lab-after
(a) in the laboratory and
center-of-mass (CM) systems
and (b) composite diagram
relating velocities in the two
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In the study of irradiation effects, we are interested in the behavior of the struck
atom. So we are seeking o, (E;, T); the energy transfer cross section, or the prob-
ability that a neutron of energy FE; elastically scattering against an atom of mass M,
will impart a recoil energy T to the struck atom. But first it is necessary to find 7 in
terms of the neutron energy and the scattering angle. To do this, let us consider the
dynamics of binary elastic collisions in the center-of-mass and laboratory frames.

Figure 1.1(a) shows the trajectories of a neutron and the target nucleus before
and after scattering, as seen from both the laboratory reference system and the
center-of-mass system. The easiest way to obtain a relationship between the inci-
dent neutron energy, scattering angle, and transferred energy is to analyze the
dynamics of the collision in the center-of-mass (CM) system. When the collision is
viewed in the center-of-mass system, the recoiling particles appear to move away
from each other in opposite directions. Momentum conservation along the axes of
approach and departure yields the following:

vem — V.M =0

1.3
oim — VIM =0, (1.3)
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and conservation of kinetic energy requires that:

1 1 1 1

Using Eq. (1.3) to eliminate v, and v}, we get:
1 (M 2+ Ly 1 (M\® Ly
Zml = Z Zml= Z
2 \m 2 2 \m 2

V. = V., and hence,

/
e

V:= V2, (1.5)

C

Therefore,

(1.6)

Ve =D

Since the target nucleus is at rest in the laboratory system and moving to the left
with speed V. in the CM system, the CM system itself must be moving to the right
relative to the laboratory system with the same speed, V.. Thus, if we use Vv to
denote the speed of the CM system relative to the laboratory system, the magni-
tudes of Vo and V. are the same (but opposite in direction). This can be restated as
follows:

UC:W—VCM:W—VC, (17)

and using Eq. (1.3), we find that:

Vem = (L> . (1.8)

M+ m

Recall that we want to relate 7, the energy transferred to the struck atom, to ¢, the
scattering angle in the CM system. Using vector addition, we can relate the recoil
target nucleus velocity in the laboratory system, V;, to ¢ as shown in Fig. 1.1(b),
which is a composite of the interaction in the laboratory and CM systems as shown
in Fig. 1.1(a). Using the law of cosines:

VP2 = Vi + V2 —2Vem Vi cos ¢, (1.9)

and rewriting the velocities in Eq. (1.9) in terms of energy gives:

2T 2E; m \? 2m
2 2 1 2
Vi Ve Vem _——<—M> , and V7= —ZE’ ,
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and substituting these expressions into Eq. (1.9) gives:

M
r=—""_ 2Ei+ﬁE:n—2 _n (EE )" cos ¢, (1.10a)
(m+M) M m—+M
or
T =mnmkEi+ %E{n — 20y (EEL ) cos ¢, (1.10b)
2

where #; = m/(m + M) and n, = M/(m + M).

Since we want to find the energy transferred, 7, as a function of initial energy
and scattering angle only, we use the relationship between E; and E!, to eliminate
E/ . From Egs. (1.7) and (1.8), we know that:

m M
v, = v — (m—i—M)vé:l)Z(m-l-M). (L.11)

Writing Eq. (1.11) in terms of energy gives:

M 2

Substituting into Eq. (1.10b) and simplifying gives:

T:%Ei(l—cosm (1.13)
where we define
4mM 44
p=— (1.14)

(M+m)*>  (1+A)*

where 1 = m and A = M. Hence, T depends upon only one unknown, ¢. Note the
angular dependence of 7 on ¢ as shown in Fig. 1.2. The energy transferred rises
from 0 at ¢ = 0 to a maximum of yE;at ¢ = m,0r Ty = T= yE;. That is, the
energy transferred is a maximum when the particle backscatters and is a minimum
when it misses the target, resulting in no change in course (¢ = 0).

Example 1.1. Neutron—nuclear interaction
For a neutron incident on a hydrogen atom, Tn_H /E; = 1.0. For a neutron

incident on a uranium atom, Tn_ v/E; = 0.017. Conversely, comparing the
interaction of an iron atom with 100 keV Xe™ ions or electrons, the value of y for
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Fig. 1.2 Energy transfer as a
function of center-of-mass PE. Hrrreer e
scattering angle
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the Xe—Fe interaction is 0.83, yielding a 7 of 83,000 eV. However, the value of y
for e —Fe interaction is 0.00004, giving a 7 of only 4 eV, which, as we will see in
Chap. 2, is not enough to displace an iron atom from its lattice site.

The scattering angles in the laboratory system for the incident particle (6)
and the struck atom (o) can be written in terms of the scattering angle in the
center-of-mass system (¢) using the vector diagram shown in Fig. 1.1(b).
Applying the law of sines to Fig. 1.1(b) for the scattered particle:

/ !
Uy V.

sin(r —0) sin0’

where v/, is given by Egs. (1.6) and (1.7):

Uy
U/C = VCM(E_ 1>,
and using Eq. (1.8), we have:
, M
U = VCM —.
m
Applying the law of cosines to the same triangle gives:

v = 0?2+ Viy — 2Vemv), cos(n — @),

and combining the last three equations to express 6 as a function of ¢ yields:

(M/m) sin ¢

T ) cos
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Applying the law of sines to the vector diagram in Fig. 1.1(b) for the struck
atom gives:

! !
v, _ v,
sinoe  sin¢’

and combining this result with Eqs. (1.6) and (1.9) where the energies are
written in terms of velocities gives:

sin ¢

tan o = .
1 —cos¢

We are still interested in obtaining the probability that a given T will be imparted
to the recoil atom. This depends on the differential cross section. We define o, (E;, ¢)
dQ as the probability of a collision that scatters the incident particle into a
center-of-mass angle in the range (¢, dQ2) where dQ is an element of solid angle
about the scattering direction ¢. Since differential probabilities written in trans-
formed variables are equivalent, o (E;, ¢) can be written in terms of CM variables:

os(E;, $)dQ = o(E;, T)dT. (1.15)

Using Fig. 1.3 to relate d@2 to d¢, we have by definition:

dQ=dA/r, (1.16)
and from Fig. 1.4, we have:
rd¢p(2mr sin ¢) .
dQ:T:Znsmqbdd). (1.17)

Substituting Eq. (1.17) into Eq. (1.15) yields:
os(Ei, T)dT = os(E;, ¢) dQ = 2nos(E;, ¢) sin ¢ d¢p. (1.18)
Fig. 1.3 Scattering into the hollow cone is dQ

solid angular element dQ
defined by dA/r?

do ~
dA
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Fig. 1.4 The solid angle dQ
subtended at the scattering
angle ¢ by the incremental
angle d¢

\ rd¢

Since T = %Ei(l —cos ¢) thendT = %Ei sin ¢ d¢, and we have:

oy(E,,T) :%as(Ei,d)). (1.19)

Figure 1.5 shows the difference in the differential scattering cross section in units of
area per unit solid angle versus area per unit angle as in Eq. (1.18). Although the
number of atoms scattered through an angle increment d¢ about ¢ = m/2 is greater
than that through an angular increment d¢ about ¢ = 0 or z (Fig. 1.5(a)), the number
intercepting the spherical surface per unit of solid angle is constant over all angles,
¢ (Fig. 1.5(b)). Hence, d7/d¢ varies in a sinusoidal manner with ¢, but d7/dQ is
independent of ¢.

Using Egs. (1.2) and (1.18), the total elastic scattering cross section is as follows:

w(B) = [ aBn)d0=2n [ o(id) singas.

If we assume that elastic scattering in the CM system is independent of scattering
angle (i.e., scattering is isotropic), Fig. 1.6, then:

as(E;) = /as(Ei,¢)dQ:27ras(Ei,¢))/sinq’)dd): dnog(Ei, ¢),  (1.20)
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Fig. 1.5 Isotropic differential scattering cross sections in units of (a) area per unit scattering angle
and (b) area per unit solid angle

Fig. 1.6 Differential elastic 103
scattering cross sections for
C'? at 0.5 and 14 MeV
neutrons as a function of the
cosine of the center-of-mass
scattering angle (from [2])
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cos¢
and
S Ei
ou(ET) = BB (1.21)
VE;

which is independent of T! That is, o5 (E;, T), the probability that a neutron of
energy E;, elastically scattering against an atom of mass M, will impart a recoil
energy T to the struck atom does not depend on the recoil energy. Now, the average
recoil energy can be calculated as follows:

B ff os(E;, T)dT

7 SN
— [TTe(E.T)dT T+T T E
7= Jr T B T)dT _ er zE:L. (1.22)
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Applying Eq. (1.22) to the case of a 1 MeV neutron incident on elements of varying
mass, we have the following:

IMeVnonC: y=028 T=0.14MeV
IMeV nonFe: y=0.069 T=0.035MeV
IMeVnonU: y=0.017 T =0.009MeV

In addition to the elastic scattering just discussed, we can have energy transfer by
inelastic scattering, (n, 2n) reactions and (n, y) reactions. The first two reactions
become important above neutron energies of about 1.0 and 8.0 MeV, respectively,
while the latter occurs at thermal neutron energies in **>U.

1.1.2  Inelastic Scattering

Inelastic scattering is characterized by a reaction in which the emitted particle is
experimentally the same as the captured particle, but there is a loss of kinetic energy in
the system. The energy is found in the excitation energy of the product nucleus, e.g.,
N (p, p)N'** or C'*(n, n")C'*". The differences in the energies of groups of scattered
particles correspond to the energy separations of excited levels in the product nucleus:

—0=> KE—Y KE =Y Mdc—» Mc.
f i f i

In an inelastic collision, a neutron is absorbed by the nucleus, forming a compound
nucleus, which emits a neutron and a y-ray. There may be more than one y emitted
and the nucleus may remain in an excited state during the course of an interaction.
The inelastic scattering cross section can be divided into resolved and unresolved
resonance components [3]. For a given resonance (jth resonance) of the target
nucleus, the scattering cross section will be a function of Q;, the y decay energy of
the residual nucleus that is always negative. Analogous to Eq. (1.15), we can write
differential equalities oy; (E;, Q;, T) dT = o; (E;, O;, ¢) d©, so that:
., do
oy(Ei, 0, T) = ay(Ei, Q), ¢) 2nsing . (1.23)
However, the expression for 7 in Eq. (1.13) is not valid for inelastic collisions
since kinetic energy is not conserved. Instead, we focus on the conservation of total
energy. If the target nucleus M is at rest in the laboratory system and the particle

m has energy E;, then the energy balance in CM coordinates is as follows:

M
im i+ 0 = E, +Ey, (1.24)
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where Q; is the reaction energy and E, and E}; are the kinetic energies in CM
coordinates of the exit particle and nucleus, respectively. In order that momentum is
conserved:

mE! = ME}, (1.25)

and combining Eq. (1.24) with Eq. (1.25) (assuming that the masses of the pro-
jectile and target are unchanged after the reaction) yields:

- Q+ME-
" M4m\T M4m !

or
Ej =1y (Q5+ mEs). (1.26)

Recalling the general expression for 7, Eq. (1.10b):
T =mmkEi+ %E:n - 2111(E1E:n)l/2 cos ¢,
2

and substituting in for E from Eq. (1.26) yields:

) , A+1\1"? ,
T(E;, Q;, ¢) = %Ei —é [Ei (E1+QjT)] A% I (1.27)

Now, the expression for d7/d¢ becomes:

dT(EU Q]a ¢)

12
a9 Q’AZ } sin ¢.

:%E [1+ (1.28)

Note that in the case of elastic collisions, Q; = 0 and Eq. (1.27) reduces to
Eq. (1.13).

If we now assume that inelastic scattering is isotropic in the CM system, then we
have:

O-SJ(EU Qj) = / O-SJ(EU Qja ¢) dQ = 47TO'SJ'(E1, Qj7 d)) (129>
Substituting Egs. (1.28) and (1.29) into (1.23) yields:

os;(Ei, )
(1- 4 (130

os;(Ei, 0;,T) =

TE A

for inelastic collisions in the resolved resonance region.
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When the compound nucleus is excited to high enough energies, the resonance
levels overlap and are no longer individually distinguishable. The inelastic scat-
tering cross section is treated as a continuum and is described by an evaporation
model [3] with:

E, E
Oig (Ei’Ell‘n’ T) = Ojs (El) 1f( m) s and
4—(Ei / )1/2
A+1V70m
Erms (1.31)
E, FE
ois (Ei, T) = ois (Ei) / lf( n) dE,

4 (E. E 1/2

0 A“F 1 ( b m)

where f(E;, E|, ) is a distribution function for the energy E/, of the scattered neutron
in the CM system that represents the probability that a neutron is evaporated from
the moving compound nucleus, whose value in the CM system is a Maxwellian of
nuclear temperature Ep = kT:

E, /A
f(Ei,E:n) — ﬁe<’E'"/ED), (1.32)
and
E/max /max
I(E) = E2 [1 - (1 + g—D> e(~En /ED>}, (1.33)

is a normalization factor such that

/max
E m

/ f(E, E,)dE,, = 1. (1.34)
0

The maximum value of E], is given by Eq. (1.26) with Q = Q,, the lowest energy
level, and the minimum value of E/_ is zero.

1.1.3 (n, 2n) Reactions

Reactions such as the (n, 2n) reaction are important in radiation effects since they
produce additional neutrons that can either cause damage or transmutation reactions
in components of interest. Following the 2n model, which is based on work by
Odette [4] and Segev [5], a second neutron can only be emitted if the residual
excitation of the nucleus after emission of the first neutron exceeds the binding
energy of a neutron in the mass M nuclide. The recoil energy after emission of the
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Fig. 1.7 Vector velocities for  (a) After 15t collision (reaction)  (b) After 21d reaction

the (n, 2n) reaction in (a) the
laboratory system and (b) the
center-of-mass system

first neutron is taken to be the average value (cos ¢ = 0 in Eq. (1.10b)) and is shown
in Fig. 1.7(a) in the laboratory system. We next analyze the second reaction
(emission) in the CM system described in Fig. 1.7(b). We begin by using the law of

cosines to relate V!’ to ¢:
V)2 = V24 V"% - 2vV! cos ¢.

From Fig. 1.7(a), we have:

1 _ 2T
“MVP =T, Vi="o
PR VA
and from Fig. 1.7(b), we have:
1 2 » 2E7
5 (M — m) Vé, = El/\//[ or Vil = M—_N[’n .

Conservation of momentum requires:
" __ "
(M —m)V,] =mv],

and squaring gives:

2 2m
V//2 _ ( m ) !)/,/2 _ E”.
¢ M-m/ ¢ M-m) "

Substituting into the law of cosines, Eq. (1.35), gives:

_ 12

2T 2 2 2 =

vir="ty o El -2 o S—EpTy| cosg,
M (M —m) (M —m)"M

(1.35)

(1.36)

(1.37)

(1.38)
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where Ty = n,1n,E;i + (1, /11,)El, is the mean recoil energy after the emission of the
first neutron. Writing V,ﬁ’z in terms of energy gives the recoil energy following the
second emission:

1
T == V//2
L —m)
M 1/2
M T;+ n E” 2( ) (E'T T))"? cos ¢
A—1 1/2 (1.39)
= T4+7EN 2( ) (T(E! )2 cos
A A—1_
= nlEglJr —T,— 2<ﬁ) (TE")"? cos .
A—1mn A Up)

The (n, 2n) reaction cross section is a special case of the inelastic scattering cross
section given in Eq. (1.31):

On2n (Eia E:nv Ell-:n T)

E/ /A E,, "
= onon(Ei) 2 e‘Em/E”imle"sm/ED7 and
e 1 By
O-n72n (Ei, T) (140)
E—U E-U-E,

E, El /E E; E! JE
— _~m - D _"m  -E] pdE’ dE”,
/ 1(E)© / 1(E;, EY,) e
0 0

where I (E;) is given in Eq. (1.33) with E™ = E; — Uand I(E;, E},) is given in
Eq. (1.33) with E[?* replaced by E/™ = E; — U — E/, and for (n, 2n) reactions,
U =0 [3]

1.1.4 (n, y) Reactions

Another class of reactions that can affect the extent of radiation damage involves
photon emission. This reaction is important since the energy of the recoiling
nucleus is sufficient to displace an atom. As we will see later, this type of dis-
placement is particularly important in radiation damage in reactor pressure vessels
in which the gamma flux is more comparable to the fast neutron flux than in the
reactor core. Recalling the momentum and energy conservation laws of Egs. (1.3)
and (1.4) and Fig. 1.1, which for (n, y) reactions, E; ~ 0 (since these reactions occur
with thermal neutrons of energy 0.025 eV), Er = 0O (since there is no scattered
neutron) and Q is the equivalent of the mass difference between the initial particles
and the compound nucleus. When the compound nucleus (CN) de-excites, it emits a
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y-ray with this energy. Conservation of momentum says that the nucleus must recoil
with momentum:

E,
(m+M)V == (1.41)
C

Note that this is an approximation since we have not subtracted the mass defect
from the compound nucleus. Squaring both sides of Eq. (1.41) and dividing by 2

(m + M) gives:

2

b

MV? = —1___
(m+ M)V 2(m+M)c?

1
2

As in the case of elastic scattering, T is given by:

M
T = (Véy + V2 — 2VemV, cos §) <¥> :
but Vem < V, so to a good estimate:
m—+M E2
T = VE = L.
2 ¢ 2(M+m)c?

We will assume further that this value of T represents the maximum recoil energy.
But since not all of Q will be emitted in a single y-ray, we approximate the average
recoil energy as half the value of the maximum recoil energy, giving:

S —— (1.42)

The radiative capture cross section is derived from the Breit—Wigner single-level
formula when the target nucleus has zero intrinsic angular momentum and the
compound nucleus has a neutron width /7, a radiation width I, and a total width I,
and Ej is the resonance energy and /4 is the wavelength [6]:

I,
(Ei — Eo)* +(I'/2)"

0oy (Er) = i (1.43)

Expressing Eq. (1.43) in terms of o(, the maximum value of the radiative capture
cross section (at E = Eo) and taking I, proportional to 1/4 and to /E gives:

- !
= °\E{[<E1—Eo>/<r/z>12+1}' .
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Table 1.2 Energy transfer and energy transfer cross sections for various types of neutron—nuclear
collisions

Types of collision | Energy transfer and energy transfer cross section Equation in

text

Elastic scattering | 7 _ %Ei(l ~ cos ) (1.13)

E; 1.21
Us(EivT):o—S( l) ( )
VE;

Inelastic scattering ) A+1\7"2 o |27
T(E, Q;, $) :%Ei *é |:Ei (Ei TO—— )} cosp+ A-‘,fl
resonance region

o5, (Ei, Q) (1.30)
0u (B0, T) = — i)
(1, Q1A
YEi E A

unresolved resonance region

ma E.E

ois(Ei, T) = ois(E;) (;E'" 7{( ) 2

4——(E,E|
A+l( 1 m)

& (1.31)

(0. 2m) T:LﬂEﬁI+A7 L7, —2(3)1/2(T[E;’n)1/2cos¢ (139
A—1n, A 1
onon(Ei, T) = /E‘ Uie’E'm/ED (140)
' 0 I(E)
x / R e En/EodE dE"
(n, ) . E? (1.42)
r= 4(M +m)c?
our(E) = o0 Eo { 1 2 } (1.44)
Ei | (B - Eo)/(I'/2))" +1

Table 1.2 provides a summary of the energy transfer and the energy transfer cross
sections for the various types of reactions covered in Sect. 1.1.

1.2 Interactions Between Ions and Atoms

Ion—atom or atom—atom collisions are governed by interactions between the elec-
tron clouds, the electron cloud and the nucleus, and between the nuclei. These
interactions are described by what are known as interatomic potentials. In order to
develop descriptions of energy transfer cross sections for interactions between
atoms, we need descriptions of the potential function that governs that interaction.
Unfortunately, there exists no single function that describes all interactions, but
rather, the nature of the interaction is a strong function of the atom energies, and
hence the distance of closest approach of the nuclei. The following section provides
a summary of interatomic potentials adapted from Chadderton [7].
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1.2.1 Interatomic Potentials

The end product of the neutron—nuclear interaction is the creation of the primary
knock-on atom with some amount of kinetic energy. This atom will, of course, make
subsequent collisions with other atoms in the solid. Knowledge of the forces acting
between two colliding atoms represents the most fundamental aspect of radiation
damage, without which a proper description of the primary event and the ensuing
defect structure is impossible. Our interest lies in the forces between like atoms, unlike
atoms, or ions and atoms. The interaction between atoms is described by potential
functions. Recall that the atoms are (usually) electrically neutral but are composed of
positive and negative components that do not cancel at all points in space. It is well
known that the potential energy between two point charges of the same sign separated
by a distance r is described by the well-known Coulomb equation:

S5}

&

V(r) =k—, (1.45)

P
where k, = ﬁ is the Coulomb constant (8.98755 x 10° Nm? C?), ¢, is the
0

electric constant, ¢ is the single unit electronic charge, and &2 = 1.44 eV-nm. When
written in electrostatic units or Gaussian units, the unit charge (esu or statcoulomb)
is defined in such a way that the Coulomb constant, k,, disappears because it has the
value of one and becomes dimensionless, and Eq. (1.45) is often written in
abbreviated form without the Coulomb constant. In the case of atoms, we have a
charged nucleus surrounded by an electron cloud of opposite charge. It is evident
that the potential function describing the interaction between atoms is far more
complicated than that describing neutron—nuclear interaction. Even in the simplest
cases, V(r) has never been determined exactly, but some simple considerations
show that it must be dominated by two distinct contributions over the range of
separation in which we are interested. Perhaps, the simplest of all potential func-
tions is the “hard sphere” approximation. This potential is described as follows:

_JO for r>ry
vir) = {oo for r<ry. (1.46)

This potential function describes an interaction with an infinitely sharp cutoff at the
atomic radius ro. At distances greater than this radius, the interaction vanishes,
while at distances equal to and less than r,, the magnitude is infinity. This
description is analogous to the behavior of billiard balls, and hence, the atoms in
this model are described as acting as such. Clearly, this is not a very realistic
description of atom—atom interaction since we know that the electron shells can
overlap.

Figure 1.8 shows how the interatomic potential actually varies with separation.
At large separation, the principal interaction is supplied by the Coulomb forces,
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Fig. 1.8 Variation of interatomic potential with separation, R. Attractive forces dominate at large
separations (b) and the central repulsive force dominates at small separations, (a) and at
intermediate distances, there is a smooth transition between the two extremes with a minimum
corresponding to the equilibrium separation distance, r. or D

while for smaller separations, the central field repulsive force is dominant. A similar
relationship applies to all crystals regardless of the nature of binding. In all cases,
there is a smooth curve with a minimum at the separation distance corresponding to
the nearest neighbor distance in the lattice, r. (also referred to as D).

In describing the interaction between atoms, we will use two yardsticks for
points of reference. One is the Bohr radius of the hydrogen atom, ag = 0.053 nm,
which provides a measure of the position of the atomic shells. The other is r, the
spacing between nearest neighbors in the crystal (typically ~0.25 nm). When
r K r,, electrons populate the lowest energy levels (closed shells) of the individual
atoms and only the outer valence shells will have empty levels. As two atoms are
brought together, the valence shells begin to overlap and weak attractive forces such
as van der Waals forces may develop. When ay < r < r., the closed inner shells
begin to overlap. Since the Pauli exclusion principle demands that some electrons
change their levels, and hence move to higher energy levels, the extra energy
supplied in forcing the atoms together constitutes a positive potential energy of
interaction. This is known as closed shell repulsion and the potential that most
accurately describes this region is the Born—-Mayer potential:

V(r) = Aexp(—r/B), (1.47)

where A and B are constants determined from the elastic moduli [8]. Although this
function was first used by Born and Mayer to represent core ion repulsion in their
theory of ionic crystals, it is perfectly valid for separations on the order of the
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equilibrium separation, 7., and is useful in treatments of threshold or near-threshold
collisions where the impact parameter is of the order r..

When r < ay, Coulomb interaction between the nuclei dominates all other terms
in V(r):

V(r) = Qv (1.48)

r

At slightly larger distances, the nuclear charges are electrostatically “screened” by
the space charge of the innermost electron shells that have entered the internuclear
space. The potential describing this behavior is known as the screened Coulomb
potential [8—12]:

2
V(r) = (lerzg ) exp(—r/a), (1.49)

is the screening radius and

1/3
where a = <9n2) : o ~ Cao
(

128 212/3 +Zzz/3)1/2 - (Z12,)"/
C = 0.8853. More generally, screening by the electron cloud is described by a
screening function, y(r), that is defined as the ratio of the actual atomic potential at a
radius 7 to the Coulomb potential. The function of y(r) is to moderate the Coulomb
potential to describe the interaction between atoms at all separation distances. For
large distances, y(r) will tend toward zero, and at very small distances, y(r) will tend
toward unity. This is one way in which a single interatomic potential function can
be used to describe all collisions.

We have now described two regimes of interaction. At small separations (r < a),
the screened Coulomb term dominates all others, with the screening effect decaying
exponentially with the separation distance. In the region r < 7., electronic

interaction dominates and is best described by the Born—-Mayer potential. At
intermediate separations, there is no satisfactory description of the nature of atomic
interaction. Unfortunately, it is exactly in this region where information is needed to
provide a proper analytical description of radiation damage.

Nevertheless, we may make a first approximation to the total potential by
summing the controlling potentials at large and small separations:

&2
V(r) = (lerz ) exp(—r/a) + Aexp(—r/B), (1.50)

where A = 2.58 x 107°(Z,2,)'"* eV and B = 1.5a0/(Z,Z,)""® are empirical formulae
suggested by Brinkman [11], consistent with observed compressibilities and elastic
moduli in the noble metals Cu, Ag, and Au. Unfortunately, there is little experi-
mental information about the forces between metal atoms, which is our primary
interest. Figure 1.9 shows that the first term dominates for small separation and the
second for large.
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Brinkman suggested a model for the interaction between two identical atoms in
which the nucleus is surrounded by a rigid charge distribution p,, and it is assumed
that both atoms supply a screened Coulomb field of the same type:

Z%¢? r
Vi) =252 *’/“(1 ——). 151
(=" e _ (151)
This relation approaches the Coulomb repulsion as r approaches zero and changes

sign at r = 2a, becoming a weak attractive potential with a minimum at

r = a(1 4+ +/3). However, this potential predicts a strong interaction energy at large
distances and may not represent the true physical picture for metals. Brinkman
formulated a new potential function:

v AZ,Z,¢* exp(—Br)
r) =
1 — exp(—Ar)

(1.52)

Note that for small values of r, the potential closely approximates the Coulomb
repulsive interaction, i.e.,

Z12,6*
lim V(r) — = 28
r—0 r

3

and at large separation, the potential equation approximates the exponential
repulsion of the Born—Mayer type:

lim V(r) — AZ Z,&* exp(—Br).

The constant B is defined as B = Zif/g /Cag, where Zy = (ZIZZ)I/ 2 and C is of
the order 1.0 or 1.5. The constant A depends on the compressibility and bulk
modulus, which depend on the overlap of closed electron shells. An empirical
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0.95 x 107°
expression for A is A = 72;46 Substituting for A, B, and C (= 1.5) into

ao
Eq. (1.52) gives:

exp (—Zelf/f3r/1 .Sao)
1- exp<—0.95 X 10*6sz/fér/a0> 7

V(r) = 1.9 x 10792}/ Ex

(1.53)

where Eg = £%/2a, is the Rydberg energy (13.6 eV).

It should be noted that although the potential is a reasonably reliable function for
all metals whose atomic number exceeds 25 over the range » < 0.7r,, it should not
be used near r = r, since in the derivation it has been implicitly assumed that all
interatomic distances are close to those of Cu, Ag, and Au. It is therefore not a valid
potential to use in calculating formation and migration energies of point defects.

Two other potentials should be discussed. The first is the Firsov or Thomas—
Fermi two-center potential. This potential function is an improvement over the
screened Coulomb potential by virtue of the fact it takes into account the change in
electron energy connected with the mutual approach of the nuclei. The potential can
be written as follows:

where y(r) is the screening function. In the case of the screened Coulomb potential:

2(r) = yp(r) and

(1) = 2226 exp(r/a), 4
while in the Firsov potential:
10) = me(r) = | (217 + 287, (155)
so that we have:
V(r) = %282% {(z}/z +z;/2)2/3ﬂ , (1.56)

where
12, S1/2\23r
1 (zl + 7! ) .

is a screening function.
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The second potential of interest is the Thomas—Fermi-Dirac two-center potential
(TFD). The Thomas—Fermi—Dirac statistical model of the atom was employed to
calculate a potential from first principles. As a consequence, this potential takes into
account the exchange effects and places a finite boundary, defined by r,, on the
spatial distribution of the electron cloud density p,.. The potential obtained for like
atoms is as follows:

_ 7262 _
v(r) :_91(21/35) oz 4 A, (1.57)
a

r

2
& — . . .
where 222 3.16 x 1073~ and A is a set of integrals over exact single-center

aop
electron densities. Calculations using this potential have shown that for very small
separations of less than ~ 0.3ay, V(r) agrees well with other theoretical curves and
with experiment, while in the range ~0.3a, to 3ag, V(r) agrees with other theo-
retical and experiment results better than the screened Coulomb potential or the
Firsov potential [7].

In selecting the appropriate potential for a specific collision problem, the range of
separation can be determined by equating the available kinetic energy to the potential
and hence obtaining the smallest separation. The important interaction terms for the
calculated separation can then be determined. For interactions between metal atoms at
low kinetic energies, 107! to 10° eV, the Born—-Mayer term alone is sufficient with
constants given in Eq. (1.50). In cases of atom—atom collisions in the collision
cascade, where energies from 10° to 107 eV are involved, an inverse power potential
is extremely convenient. Such a potential can be formulated by fitting a function C/r®
to one of the above potential functions over a limited range of r. For example, one can
fit an inverse square (s = 2) function to the screened Coulomb potential at r = q,
obtaining the same slope, ordinate, and curvature. This function is as follows[13]:

2
_ lez8 Cle_l

. (1.58)

V(r)

r

For a limited range of r, this can be used as an approximate potential. Rewriting
using the expression in Eq. (1.49) for a gives:

V(r) = 2? (2:2,)"6 (“_:)2 (1.59)

. . . . 2F;
A convenient alternative for numerical calculations uses the fact that ——~ = 10 eV,
e

hence:

V(r) = 10(2,2,)"° (%O)zeV. (1.60)
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Table 1.3 Summary of potential functions
Potential Equation for V(r) = Range of Definitions Eq. in
applicability text
Hard 0 for r>ry 107 < T<10° eV | ry = Atomic radius (1.46)
sphere oo for r<rn
Born— V(r) = Aexp (=r/B) 107" < T< 10* eV | A, B determined from | (1.47)
Mayer rsre elastic moduli
Simple 212,62 Light ions of high (1.48)
Coulomb r energy r K ap
Screened 717,62 Light ions r < a ao = Bohr radius (1.49)
Coulomb r exp(—r/a) a = Screening radius
Brinkman | 72¢2 a (1 a L) r<a aay/z'? (1.51)
I r 2a
Brinkman | AZ,Z,¢? exp(—Br) Z>25 0.95%x 107° 76 (1.52)
T axn(—Ar A=s———Z

11 1 — exp(—Ar) r<0.7r a e

B =274 /Caq

CcC~15
Firsov VAV Y 2/3r] |r<a is screening function (1.56)

12y X[(le/z'*'Z;/Z) _} 0 X g
r a
TFD AT Y _ r < rp(3ag) r, = Radius at which the | (1.57)
(731N _

two-center P (Z a) oZ+A electron cloud density

vanishes
Inverse ZB(Z 7z )5/6 <@)2 al2 < r<5a Er = Rydberg (1.59)
square e 12 r energy = 13.6 eV

This potential also applies to heavy ion bombardment in the energy range 10° to
10° eV. In the case of light ions at high energy, such as 5 MeV protons, the simple
Coulomb potential is adequate.

Table 1.3 summarizes the various potential functions and their regions of appli-
cability. But how do we go about verifying a potential function? For example, how do
we determine the constants A and B in the Born—-Mayer potential for a specific
element? Since the Born—Mayer potential is based on small displacements from
equilibrium (i.e., 7.), we can obtain these constants from bulk property measurement
of the solid, e.g., compressibility and elastic moduli. If we expand the potential V(7) as

2 2
Vo + (d_V) r+1/2 (d_V) r2 + ---, then the coefficient of (d_V) is the cur-
dr/, dr? /, ar? ),
vature of the energy—distance curve at r = r. as shown in Fig. 1.8.

How then do we know that a given potential does or does not properly describe
the interaction in a region of r? We can make this determination by scattering
measurements or by measuring the range of ions in solids. Since V(r) describes the
nature of the interaction, it will also tell us about g(E;) that can be determined by
scattering experiments. Also, range measurements give a good indication of how
many interactions must have occurred in order to place the ion in its deposited
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location. Both of these sets of experiments will provide information on the ade-
quacy of the chosen potential function to accurately describe the interaction
between the atoms in the solid.

With some appreciation for the way in which neutral atoms or atoms and ions
interact, we are now prepared to describe a collision between these species, which is
in some ways very similar to and in other ways very different from neutron—nuclear
collisions. The resulting formalism will provide us with the tools to determine the
energy transferred from the incident atom to the struck atom along with the energy
transfer cross section. The following treatment is adapted from Thompson [13].

1.2.2 Collision Kinematics

The orbits of two colliding atoms are shown in Fig. 1.10 relative to the center of
mass of the masses M, and M,. Particle locations are most conveniently denoted in
polar coordinates (7, ) and (75, ¥) for masses M| and M., respectively. The impact
parameter is b, y is the scattering angle of the struck atom in the laboratory system,
and ¢ is the asymptotic scattering angle when the interparticle spacing approaches
infinity. The impact parameter is defined as the distance between the asymptotic
trajectories of the colliding particles as shown in Fig. 1.10. We are interested in
determining the detailed orbits by expressing ¢ as a function of b. This result will
then be used to determine the scattering cross section.

The radial and transverse velocities of mass M, are i and 7/ in polar coordinates,

SN 1/2
and the resultant velocity is (rf +7? lﬁz) . The velocity components are the same for

mass M, with the subscript 2 substituted for 1. Conservation of energy requires that the
total energy of any system remains constant. The energy in the laboratory reference

Fig. 1.10 Collision orbits in
the center-of-mass system
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1 M,
system is just E; = — M v? = Et Recall that Vey = ———— v and that the kinetic
Y ] i =5 M T cM M, + M, [
energy of the center of mass itself (in the laboratory system) is as follows:

2 M,
Ecm = (Ml +M2)VCM = E;.

1
2 M +M;

Hence, the energy in the CM system that is available for transformation is the total
kinetic energy less the motion energy of the CM system:

E = Er — Ecw = E — Eoyi — Ei [ —2 (1.61)
— b7 CM — L4 CM — 1M1+M2 . .

In an elastic collision, the sum of the potential and kinetic energies at any point
in the orbit must equal the asymptotic sum of kinetic energies, so:

EI(MH-Mz) :EMl(r%+rf¢ )+5M2(r§+r%‘ﬁ )+ V(ri4r).

. o . . (1.62)
asymptotic sum of kinetic energy at any point potential
energy in orbit energy
M, M,

Letting = ry + r, be the total separation distance, r; = r, rp= r,
M, +M, M, +M,

and the energy balance of Eq. (1.62) simplifies to:
1 .
nE; = 5”“2 + %) + V(r), (1.63)

2 MM,
M, + M, M, +M,
The law of conservation of angular momentum demands that the value at any
point in the orbit must equal the asymptotic value. Recall that:

=v—Vom = 2 dVv, = = -
) v v and V V ) ,
¢ ¢ cM ( My + M, 2 cM 1 M, + M,

so that the asymptotic value of the angular momentum is given by:

MM,
M, + M,

where n = and u = is the reduced mass.

M11)1b1 —|—M202b2 = < ) l)[(b] +b2) = ,ubl)g. (164)

The angular momentum at any point is given by:

2 2
M]V%I.P“V‘Mzr%l'p: M](L}") +M2(LV) l//
M, +M, M + M, (1.65)

=y,
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hence:
= pbug. (1.66)

Substituting from Eq. (1.66) into Eq. (1.63) to eliminate np and solving for 7, we

obtain:
Q-] e

The algebra for this step is as follows. Multiplying out the terms of Eq. (1.63) gives:

1, 1 vb?
NEi — 5 ui* =S =5 +V(r),
and rearranging gives:
1 U%bz |
NE — S p=rym = S pit 4 V(). (1.68)
Recall that E; = 1/2M, v% and therefore v? = 2E;/M;, and we can eliminate v, so
b’E;
that the second term on the left-hand side of Eq. (1.68) becomes — l;w 21 . Since
A
MM,
=———and u/M, = n, then:
Ay u/My=n
v ui? b? Wi
nk; — ’IEiﬁ == +V(r), and gk (1 - rz) == +V(r),

or

) l-5) v

which is the same as in Eq. (1.67). Note that » reaches the distance of closest
approach, p, when 7 = 0. At this point:

b2
V() = nE, (1 - F)’ (1.69)
and V.« = nE; (at b = 0) which represents a “head-on” collision. So if a particle

strikes a target atom of equal mass, then Vi, = 1/2E;. When r — oo, V(r) —

2

0 and i = (—)nEi, or i? = 2E;/M,, E; = 1/2M,i? (and i = vjatr — oc), so
u

Ei = I/ZMIU%
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Recall that we are looking for ¢ as a function of b. Going back to Eq. (1.67) and
dividing 7 in Eq. (1.67) by { from Eq. (1.66), we have:

) 1/2 5 1/2 5
i:j—&:—(ﬁ) [,uEi(l—[Z—z)—V(r)] Dr%. (1.70)

The minus sign in front of the quantity to the right of the equality is because for the

first half of the orbit, i decreases as y increases. Bringing the term r* under the
square root gives:

1/2
(‘;—; = —ﬁ (%) [E (= 25%) — V()] (1.71)
{4

Dividing the terms under the square root by #E;b” to bring this term out of the
square root gives:

r 1/2 r4 r 1/2
j_l// T vzb (%) (nE)' [bz (1 - ‘1/15:})) - rz} : (1.72)

Since 1/2M, v% = E;, then vy = (2Ei/M1)1/2, and substituting for v, gives:
dr 2 M, V24 V(r) 5 12
= (2 lE 1——2) —r
dys U2E; 2 nE;
121 4 1/2
—_ (%n) - (1 _ VW) _ rZ] (1.73)
H nE;

Substituting for x = 1/r gives:

% = [;2 (1 — ‘;if)) —xl] 1/2. (1.74)

This is the equation of orbit [y = fix)].

The scattering angle ¢ is found by expressing dy as a function of x and dx and
integrating from the limits on y corresponding to x = 0 and 1/p. These limits are ¢/2
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and 7/2, respectively, as shown in Fig. 1.10. Performing this integration for the first
half of the orbit yields:

/2 1/p 12
/}wz/[%O—Z?)—f] dx, (1.75)
$/2 0
and
1p -1/2
¢:n—2/[%(1—%§>—f} dx. (1.76)
0

The quantity p in the upper limit of x is the value of r when y = /2 and hence is the
distance of closest approach. Since dx/dy = 0 when w = #/2, p is given from
Eq. (1.74) by:

nEi:—XI%%. (1.77)
L
I
Equations (1.76) and (1.77) provide the relation between ¢ and b.

We have yet to determine the cross section for our scattering event. This may be
done as follows. If particles M, are bombarding target atoms M5, then in Fig. 1.11,
those ions which cross an area 2zbdb enclosed by circles of radii b and b + db will
be scattered into d¢ about ¢. Since the relation between db and d¢ can be obtained
from Eq. (1.76) by differentiation, the differential cross section is given by:

db d¢p

os(Ei, T)dT =2nbdb and o (E;, T) = an@ﬁ' (1.78)

Knowing V(r) enables ¢ to be written in terms of b using Eq. (1.76) and then in
terms of T using Eq. (1.13). Differentiating gives 2zbdb as a function of T and dT.

Fig. 1.11 Scattering of ions crossing an area 2nbdb into an angular element d¢ about ¢
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Then from Eq. (1.78), the differential cross section for collisions having recoils in
dT about T follows. The total cross section for collisions with T anywhere in the
range T to yE; is as follows:

VE;

o(E) = / o(E;, T)dT. (1.79)

T

The process for finding the energy transfer cross section can be summarized as
follows:

. Select a potential function V(r).

. Use Eq. (1.76) to obtain b as a function of ¢, b = f(¢).

. Use Eq. (1.13) to obtain ¢ as a function of 7, ¢ = g(7).

. Use the relations between b and ¢ and between ¢ and T in Eq. (1.78) to obtain
the energy transfer cross section.

AW N =

The preceding description of the energy transfer cross section emphasizes the
importance of knowing the potential function describing the particular ion—atom or
atom-atom interaction of interest. Without accurate knowledge of the potential
function, further description of the collision process and the ensuing defect structure
become impossible. Unfortunately, explicit evaluation of the integral in Eq. (1.76)
is possible only for simple potential functions. But before looking further at the
various potential functions and their application in determining the energy transfer
cross section, we must first consider the different possible classes of ions and their
corresponding energies.

Classification of Ions

There are three important classes of ions in ion—atom collisions. The first is light
energetic ions with E; > 1 MeV. The second is highly energetic (E; ~ 10* MeV)
heavy ions such as fission fragments (M ~ 10%). The third is lower energy heavy
ions that may be produced by an accelerator or appear as a recoil that results from
an earlier high-energy collision. The energy of these recoils is generally less than
1 MeV.

For each of these interactions, we must decide on the most appropriate potential
function. A convenient guide is p/a, the ratio of the distance of closest approach to the
screening radius as a function of the recoil energy, 7. A rough graph of p/a versus T is
provided in Fig. 1.12 to aid in the selection of the most appropriate potential. The three
curves represent ions of each of the three classes just discussed: (1) 20 MeV protons,
(2) 70 MeV fission fragments, and (3) 50 keV Cu ions. Curve (1) collisions apply to
the regime where p K a and the simple Coulomb potential is adequate. Curve
(2) collisions that are head-on will have p < a also. But for glancing collisions,
p ~ a and the screened Coulomb potential is most appropriate. Curve (3) represents the
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Fig. 1.12 Distance of closest 102+
approach p/a, as a function of e e BornM

T for (1) 20 MeV protons in 10! 50 keV Cu } . orn-Mayer
Cu, (2) 70 MeV Xe* ions in } inverse square

Cu, and (3) 50 keV Cu* } screened
recoils in Cu (from [12]) 10T | e e Coulomb
2 70 MeV Xe*
10
103 20 MeV p* simple
Coulomb
10
10"5 1 1 1 1 1 1 1 1
1 10° 10" 10° 10°
T (eV)

region where a < p < 5a and the inverse square potential or Brinkman potential would
apply since both the Born—-Mayer and screened Coulomb terms must be accounted for.

Hard Sphere-Type Collisions

The hard sphere potential is appropriate for ion energies below about 50 keV and
for near head-on elastic collisions. Here, p ~ r. and atoms will act like hard
spheres. In a head-on collision, b = 0 and from Eq. (1.77), we have:

nk = V(p). (1.80)

When b is not quite zero, the collision may be pictured as shown in Fig. 1.13 where

M
we define R| = ,072 and R, = p

. If p is known, then from the
M + M,

M, +M
figure:

b:pcosg. (1.81)

Now, recalling that:

os(E;, T)dT = 2nbdb

db d¢ (1.82)
oy (E, T) = 21th —
7s( )= d¢dT’
where @ =1/2psin¢/2 from b = pcos¢/2 (using the absolute value of the
o ... db do
derivative to maintain — as a positive value) and - from T =
d¢ dT  yE smqﬁ
VEi 2

3 (l —cos ¢). Thenag(E;, T) _ancos¢/2—sm¢>/2 E s1n¢
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Fig. 1.13 Schematic of
colliding atoms obeying the
hard sphere approximation for
collisions

¢/2 R, CM

np?

VE;

O'S(Ei, T) =

(1.83)

Recall that for neutron—nuclear interactions, oy(E;, T) = o(E;)/yE;. Using this
relation, we can obtain an idea of the size of the energy transfer cross section for

. . . . . GS (EU T)aia
neutron-nuclear interactions versus atom—atom interactions: ————~——— =
Oy (Ei, T)
2 -8)2
i n(10 .

LAY ( 5 4) ~10%, and so the energy transfer cross section for atom—atom
Og (El) 10—
interactions is about eight orders of magnitude greater than that for neutron—nuclear
interactions.

The total scattering cross section is as follows:

VE;i VE;
as(Ei):/ (B, T)dT = /fg dT_ [yE 7] = np?. (1.84)
T T

Note that o4(E;) is independent of E; (because p # f(E;)) and that o4(E;, T) & 1/E; and
is independent of 7. We can find o(E;, T) explicitly by applying the appropriate
potential function to find a value of p (determined by V(7)). Recall from our dis-
cussions in Sect. 1.2.1 that for collisions in which the impact parameter is on the
order of the equilibrium separation of the atoms, the Born—Mayer potential is most
appropriate. This corresponds to energies below about 10 keV. (Note that this
means that we are also backing off from a pure hard sphere model.) Hence, we will
use V(r) = A exp(-r/B), where A and B are defined in Eq. (1.47). Using Eq. (1.80)
gives:

V(p) = Aexp(—p/B) = nki, (1.85)
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or

A
p:Bln(nE), (1.86)

and since b = p cos ¢/2 = BIn(A/nE;)cos ¢/2, the energy transfer cross section is as
follows:

nBz{ Ar
In—| .
VE;

Os (Ei7 T) = nE;
1

(1.87)

The total scattering cross section is then the integral of the energy transfer cross
section between the limits 7" and yE;:

T AT 1
as(Ei):/ B’ [m} —dT. (1.88)
nEi| vE;
T

From this expression, we will be able to calculate the total cross section for dis-
placement scattering events for all allowed 7. Note that the total scattering cross
section depends on E;. Also, for typical values of A, B, and T (40 eV), the value of
o,(E;) for atom—atom interactions is about 10® times that for neutron—nuclear events.

Rutherford Scattering

Let us turn now to a second example in which we will use the pure Coulomb
scattering potential to demonstrate Rutherford scattering. From our classification of
ions according to ion energy and mass, type 1 collisions involve light (m ~ 1-4)
energetic (E > MeV) ions where p < a. Collisions of this sort are adequately
represented by the simple Coulomb potential, which from Eq. (1.48) is as follows:

717>
v(r) =228

r

We will assume that Z; and Z, represent the nuclear charges and that this collision
occurs at high energies so that electrons are stripped from the nuclei and the only
interaction is between the nuclei.

In our description of the trajectories of the particles in the CM system, we found
that at the point of closest approach, dx/dy = 0 and from Eq. (1.77):

Vip)
b
1=z

nE; =
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Substituting in for V(r) gives:

21?32 :17E,-<1 —i—z). (1.89)
Defining:
bo = (2;122182), (1.90)
it follows that:
% =1 —zz, (1.91)
and
p:% 1+<1+%>1/2]. (1.92)

Hence, the distance of closest approach is a function of the impact parameter b, as
expected. For head-on collisions, b = 0 and the minimum value of p depends on E;:

2Z123282
b=0)=p, =by = . 1.93
p( ) = po = bo oy (1.93)

Note that for this type of collision, p depends on E;, in contrast to independence of
E; in the hard sphere model. Going back to the orbital Eq. (1.75), we will now
evaluate it as a definite integral:

$/2 0

/dt//: / {%%xﬁ}_l/zdx. (1.94)

n/2 1/p

Since w = n/2 when r = p(x = 1/p) and v = ¢/2 when r = 00 (x = 0), letting

by .
y:x—i—@glves.
bo
22
s2-m2= [ 1=y (195)
)

b2
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1 b?
where ¢2 = ( + 0). The orbits are then as follows:

b2 4b*
bo
. 1 V92
¢/2 —7n/2 = {sm lz}ib+b_0
pl ol (1.96)

b 1/1 b
. —-1 Po -1 0
= s e sin P (p + 2192>

1/1 b
Since sin~! p <,0 + 2[;)2) = sin~!(1) = 7/2, then:
) b
sinp/2 = Tgc' (1.97)

Substituting for ¢ (from above) into Eq. (1.97) yields:

1
-2
2 = . 1.98
sin® ¢/ yye (1.98)
1+

3
Using trigonometric relations for sin® ¢/2, we have:

b:%cotd)/Z. (1.99)

We now have a relationship between the impact parameter, b, and the asymptotic
scattering angle, ¢. Note that b is a function of E; through b, (Eq. (1.93)).

We now want an expression for the scattering cross section. Using Eq. (1.82) for
o (E;, T), we have:

0y(E;, T)dT = o,(E;, ) dQ = 2nbdb = by cot% db, (1.100)

and substituting for db from Eq. (1.99) gives:

()1
(&0 () o o

which is the Rutherford inverse fourth power scattering law. The cross section for
recoil is exactly the same as for elastic collisions, Eq. (1.13), and since:

dQ
O—S(Eia T) = O—S(Eia ¢)ﬁ7
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we have:

oy(E, T) = =21 (1.102)

Note that unlike neutron—nuclear collisions and hard sphere scattering in general,
the Rutherford scattering cross section is a strong function of 7. This expression
also shows that the scattering cross section o (E;, T) — ©0 as T — 0. But this is just
a reflection of the fact that as ¢ — 0 and b — ©0 and is representative of long-range
Coulomb interactions. In reality, there is a cutoff in b and hence in ¢ due to electron
screening. As we will see later, this cutoff is Ey, the displacement energy. The
average energy transferred is then as follows:

T
[Toy(E,T)AT .
_ Fin(P/T
T=T _ T'ln( /T)' (1.103)
A 1
[ o5 )T =

For T = vE; and T = E, and since yE; » E,, then:

vE;

TzEdln(>, (1.104)

Eqy

which is quite small for all energies E;, reflecting the strong 7~2 dependence in
Eq. (1.102).

The integral of Eq. (1.102) over T gives the total cross section for displacement
events by an ion of energy E;:

T .
T oa dT =k /(T
as(Ei):Zb(z)T F:TO(E_{l)’ (1.105)

Eq
and since at high energies T/ Eg > 1 then we have for T = yE;:

b3 VE;
os(Ei) ~ Togdl,

(1.106)

which is quite large.
A critical question in applying the above results is under what conditions can
Rutherford scattering be applied? The answer is that we must require that during an
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encounter, the major part of scattering occurs in the region where r < a But this is a
qualitative measure. What is needed is a means for determining quantitatively,
when Rutherford scattering applies. To address this question, we consider two
cases.

Case 1: Near ‘“head-on” collisions (high T). For near head-on collision,
po K aor E; » E, where E, is the value of E; that would give py = a assuming a
screened Coulomb potential:

2Eg

M, +M
B= 2 gz M

1.107
Ve (1.107)

which is obtained by rewriting the screened Coulomb potential (Eq. (1.49)) in an
inverse square law form (Eq. (1.59)), with ¢ = 2ayFER and equating at r = a and
M,
M + M,
Case 2: Glancing collisions (low T). Here, we only consider those collisions in
which b < a, or that result in an energy transfer T ~ E4 for b = a. For a simple
Coulomb collision with b = a, we have from Eqs. (1.98) and (1.13):

setting V(r) = nE; = E; for a head-on collision.

2E2 2E2
:eya orEi:ey“

T ) Y
4E; 4T

(1.108)

and giving this value of E; the name E, at T = T, we have

_ E;

E :
T AT

, where T =Ey, (1.109)

and this equation is valid for all E; > E,. Essentially, E}, is the value of E; that
results in a transfer of energy T2 Ej at b = a. Or looking at it another way, values of
E, < E; give T < T and can be neglected since p > a, and these encounters can be
neglected. Table 1.4 provides examples of the values of E, and E,, for different
particle—target atom combinations and energies. From Table 1.4, since E, < E;,, we
can use the criterion that E; must be >> E;, as an extreme test of the validity of the
simple Coulomb scattering description.

In summary, if E; > E,, the simple Coulomb potential may be used for near
head-on collisions. If E; >> E,, it can be used for all collisions of interest in radiation
damage. Light charged particles such as protons and alphas with E; > 1 MeV fall
into this category, while fission fragments are in the regime E, < E; < E;, and recoils
have E; < E,. These will be discussed next. But first, we present an example of
Rutherford scattering.
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Table 1'4. Values .Of Eqand ncident particle Target atom E, (eV) E, (eV)
E,, for various particle—target C 2 % 10° 2 % 10°
atom combinations and 2 -
energies (from [13]) Al Al 1 x 10 2 x 10
Cu Cu 7 x 10* 1% 10°
Au Au 7 % 10° 1 x 10!
Xe §] 5 x10° 3 x 10'°
D C 1.5 x 10> |2x10°
D Cu 1x10° 2 x 104
D C 4 x10° 1x10°

Example 1.2. 2 MeV protons on aluminum
For this case,

4(27
(4)22M6V = 0.28 MeV
(27+1)

We can also calculate E, ~ 200 eV and E;, ~ 2500 eV. (For comparison,
2 MeV He* on Al, E, ~ 1 keV, and E, ~ 16 keV. Also, for 2 MeV H* on
Au, E, ~ 1.6 keV, and E, ~ 24 keV; and for 2 MeV He' on Au,
E, ~ 8keV, and E, ~ 42 keV.) Since E; > E,, the simple Coulomb law is
valid for this type of collision. Incidentally, o(E;) ~ 4 x 10722 cmz, and since
the mean free path between collisions is A = 1/6N and N ~ 6 x 10?* a/em®,
then A ~ 0.04 cm or about 400 um, or about 10 times the length of a 2 MeV
proton track in Al. This means that there is, on average, only one Rutherford
scattering collision for every 10 protons incident on Al

Now, let us investigate the other classes of ion—atom collisions such as heavy
energetic ions, heavy slow ions, and high-energy electrons.

Heavy Energetic Ions
For heavy energetic ions such as fission fragments, Fig. 1.12 shows that an appropriate
potential must account for both screened Coulomb and closed shell repulsion. Let us
look first at the simple Coulomb potential as a rough approximation, knowing that its
use is only justified for recoil energies approaching yE; where p < a. Recall that
2

O'S(Ei):n_boﬁvandbouéyyz MM 3= :

4 Eq VE; (M + M) M, + M,
increase in the cross section compared to the light ion by a factor of

, which gives an
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Z%M]

O-SA,heavy _ Ei
- 2
O light ZIMI
E;

heavy ~ 1 O(,

light

for the same value of E; and for fission fragments at the peaks of the fission yield of

uranium, M{#" ~ 96 amu, E{*" ~ 95 MeV and M"Y ~ 137 amu, E}""Y ~ 55 MeV.
Comparing to the example of the 2 MeV proton on Al, fission fragments have a
cross section that is larger by a factor of 10*! Therefore, the mean free path is 10~
that of a proton in Al

Recall that o4(E;, T) varies as 1/T*. But this is only true near yEi(p K a). At lower
energies, screening will reduce the sensitivity to energy. So we must use a better
description of the interaction between energetic, heavy ions, and target atoms.
Brinkman’s expression, Eq. (1.50), includes both terms, and if this is used in the
impulse approximation (see [13]), the result is as follows:

T_A};;/: [F@,Z) _(1_a)F(1+a,Z)r, (1.110)

where A and B are given in Eq. (1.50) and

b\ b [ —edx
") 78 ] ey
b/a

Xy )

=0

(1.111)

where K(y) is a Bessel function of the third kind. The term a is the ratio of Born—
Mayer and screened Coulomb terms at r = a, so in general, a < 1. T can be found from
b and Eq. (1.110), and by inversion, b is obtained as a function of 7. Differentiation
gives ¢ = 2zbdb. However, because of the complexity of Eq. (1.110), numerical
solutions are required. Nevertheless, we may calculate dN, the number of recoils in
dT at T produced by the fission fragment in slowing down to rest. This is found by:
do [ dE\ '
dN—nadx—ndT( dx) dEdT, (1.112)

where n is the density of atoms, and

E;
o
N(T)dT = —
(DT =n | 7
0

E\ !
<%> dEdT. (1.113)
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Fig. 1.14 The energy 102
spectrum of recoils N(7)
dT produced by fission 1
fragments slowing down to 10
rest in uranium. Two cases are T
shown: M, = 96, % 1
E; =95 MeV; and M, = 137, E
E; =55 MeV (from [13]) 3
= 10!
kS
2
g 107
=
107
10
10

T (eV)

Brinkman carried out these calculations for light and heavy fragments from **°U
fission slowing down in uranium. The results are shown in Fig. 1.14. Note that N
(T) decreases more rapidly than 7™, and hence, the majority of displaced atoms are
produced by low-energy recoils. Therefore, high-energy recoils can be neglected
altogether. Another way of looking at this is that the simple Coulomb potential is
only valid in an energy range that does not contribute significantly to
displacements.

Heavy Slow Ions

These ions are classified by the curve labeled “3” as shown in Fig. 1.12. This is a
very important class of collisions as it covers most of the applications of kV ion
implanters and low MV accelerators in the fields of materials science and radiation
damage that includes such topics as ion implantation and heavy ion radiation effects
simulation. The figure shows that collisions must be dealt with over the range
a < p < 10a. The formalism used for fission fragments in the previous section
applies to glancing collisions, but for head-on collisions, another approach is
needed. The appropriate potential for a/5 < p < 5a is the inverse square approxi-
mation. We use a potential of the form:

2E 2
Vi) =22 2220 (%)’
e r
which is obtained by fitting a screened Coulomb potential to the inverse square
potential and equating at r = a, Eq. (1.59). Substituting this potential function into
the orbital equation (1.76) gives:
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2Ea -1/2
i):l—(H—ZzE) . (1.114)

Using Eq. (1.13) to express ¢ in terms of T gives:

T @’E, 12
2<1+ b2E-> . (1.115)

Expressing b in terms of T and differentiating gives:

T = yE; cos’

4AE,d?
oy(E;, T) = oz o (1.116)
VE (1= 402)"[x(1 — x)]
where x = land ot = cos ™ x'/2.
YL
For small x (low-energy transfer), we have:
2 @E)'?

Note that the energy transfer cross section is dependent on 7. The mean recoil
energy is as follows:

—  JifToy(E,T)dT

_ 2y 1/2
— = (yET)"?. 1.118
78 y(E,, T)dT GET) ( )

The total cross section for displacement is as follows:

VE;

O'S(Ei):/ O'S(Ei7T)dT:

T

22E )"/

BT (1.119)

Relativistic Electrons

Radiation damage from electrons is not so important in reactor core materials, but
more so in the laboratory as they are commonly used in electron microscopes for
radiation damage studies. Due to the low mass of the electron, very high energies
must be attained in order to cause displacements of a lattice atom. These energies
are high enough such that relativistic quantum mechanics must be used to describe
the collision. Even so, the energy transferred is large enough to displace only the
struck atom with no secondary displacements.
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In relativistic form, the momentum of an electron with rest mass m and kinetic
energy E; is as follows:

E.
pg — C_Zl (El + 21’)106‘2).

(1.120)
Since the struck atom (Z, M) recoils non-relativistically, the recoil expression is that
given in Eq. (1.9):

VP2 = Vi + V= 2VemVicos p = 2VZy (1 — cos ¢) = 4V, sin® —,
and conservation of momentum gives:

Pe = (mo +M)VCM =~ MVCM-
Replacing the velocity terms with energies in the expression for V;* yields:

2E; .
T:M—cz(Ei+2m0c2)s1n2§, (1.121)
or
. 2F; 5
An approximate expression for the Dirac equation for light ions [13] yields the
differential scattering cross section:
Ana}Z’E% | —
Os (El ) ¢) = . R ﬁ

m2 ﬁ4

oct
X [1 — f*sin(¢/2) + nafsin(p/2)(1 — sin(¢/2))] (1.123)
x cos(¢p/2) csc®(¢p/2),

where f =v/c and a = Z,/137. This expression approaches the Rutherford scat-
tering law for small B. Using Eqgs. (1.121) and (1.122), the differential scattering
cross section is written in terms of 7 and 7

Ana?ZPE: 1 — B?
(2 (Eia T) = 0 R ﬁ

- [l_ﬁzgﬂg{(g)”ﬂz}]i

2 4
mgc
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Fig. 1.15 Damage cross section for electrons bombarding copper where E4 = 25 eV (from [13])

The total cross section is found by integrating Eq. (1.124) from 7T to 7T*

4na?Z*EZ 1 — B (T ,. T
O-S(Ei) = WT ? —1 — B log?

s A (1.125)
T

T
af2| = —1—log~.
+off (T) g5

For electrons with energies above the damage threshold and T/ T slightly greater
than unity:

2

oy(E;) = 4”“3222E‘2‘ (1 - ﬁ2> (; - 1). (1.126)

mg C4 ﬁ4

Figure 1.15 shows that at high enough energies, E; > moc?, and o,(E;) approaches
an asymptotic value:

8nalZ*E;
O'S(Ej) HW:O—OC. (1127)
It should be emphasized, however, that these cross sections are most accurate for
light elements but seriously underestimate o (E;) for heavy elements (Z > 50).
Table 1.5 provides a summary of the energy transfer and the energy transfer cross
sections for the various types of atom-atom interactions discussed in Sect. 1.2.
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Table 1.5 Energy transfer and energy transfer cross sections for various types of atom—atom

45

collisions
Type of collision Energy transfer and energy transfer cross section Equation
in text
Hard sphere type (Born— B2 A2 (1.87)
Mayer potential) os(Ei, T) = JE; [l“ n E}
~ T —_
p T =E; /2 (1.13)
Rutherford scattering b3 Eyy (1.102)
(simple Coulomb os(E,T) = 4 T2
potential) p K a B )
T~ Eyn (E) (1.104
Eq
Heavy ion (inverse square) 2a? an1/2 (1.117)
al5 <p <5a GS(E“T):W
T — (yEiT)l/z (1.118)
Relativistic electrons 47m%ZzE§ 1— ﬁz (1.124)
os(Ei,T) = — 57— —
myc B
T af(m\"* T\|T
X [1— 2 ~ +7T— = - = e
[ b T p { (T) T||71?

1.3 Energy Loss

Up to this point, we have been treating collisions as discrete events. However,
besides collision with or between nuclei, an ion or atom traveling through the lattice
may lose energy by electronic excitation, by ionization, or by Bremsstrahlung (loss
of energy of an electron passing through the Coulomb field of a nucleus by
emission of X-rays). These events may be viewed as more or less continuous
events. What follows is a treatment of energy loss in solids.

1.3.1 Energy Loss Theory

We are interested in finding the differential energy loss of an ion or atom traveling
through a lattice. We begin by defining the energy loss per unit length as —dE/dx (or
NS(E) where N is the target atom number density and S is the stopping power in
units of energy x distance squared) so that the total energy loss can then be
approximated by a sum of these components:

dE dE dE dE
e T _& ~ ) = NS, +NS. +NS,, (1.128
( dx>ml ( dx)n+< dx>e+( dx>r W+ NS. +NS,, )
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where the subscripts are defined as follows:
n = elastic,

e = electronic, and

r = radiation.

For most of the applications in which we will be interested, energy loss by radiation
will be small and will be neglected.

From our discussion in Sect. 1.2.1, it is evident that in order to accurately
describe the slowing down of an ion or atom over the entire energy range from 7" to
T, where T may be in MeV and 7~ 10 eV, several potential functions would need
to be “pieced” together (see Fig. 1.9). This would cause problems because of
discontinuities at the cuts. Moreover, the cutoff points of these functions often differ
depending on M and Z.

However, we can separate or subdivide stopping power according to the type of
interaction and hence the energy regime. In the high-energy regime, p < a and
S. » S, and these interactions are treated as pure Coulomb collisions. In the
low-energy regime, p ~ a and S, > S.. This is the region of importance in the
deposition of displacement energy. In either case, we can establish a formalism for
calculating stopping power, —dE/dx = NS(E).

If we know the energy transfer cross section a(E;, T) for either S, or S., then we
can calculate the average energy transfer:

—  [TaedT
T =
[ odT

= energy lost or transferred,

1
and the mean free path (mfp) between collisions is A = o Then, the ratio of these
o

two quantities is the energy loss per unit length:

T
Jr To(Ei, T)dT
[+ o(E;, T)dT

_ 7
dE T
= N / o(E;, T)dT

(1.129)

7
:N/TG(Ei,T) dr.
T

Another way to look at this is as follows: Consider a projectile incident on an
amorphous target containing an average of N atoms/unit volume (Fig. 1.16). In
traversing the slab of material between x and x + Ax, the projectile will come within
a distance b, of NAx2nbdb target particles and transfer an energy T (E;, b) to each.
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Fig. 1.16 Schematic of an incident projectile of energy E passing within a distance b; of an
annular ring containing NAx2nb,db atoms

The total energy transferred to all target particles in the slab is obtained by inte-
grating over all possible impact parameters:

AE = NAx/ T2nbdb.
0

Assuming AE K E and dividing by Ax and taking the limit as Ax — 0, we obtain:

AE

Ax

s
Codx

oo
N / T2nbdb.
lim Ax—0 5

We know that o (E;, T) dT = 2mbdb so:
dE f
i N/ To(E;, T)dT,
T

which is the same result as from Eq. (1.129). Let us first consider nuclear stopping,
or energy loss from elastic collisions.

Nuclear Stopping Power

We define (— %) ) or NS,(E;) as the energy lost to target nuclei when a projectile

of energy E; traverses a differential thickness dx of a target of unit density. A simple

formulation of (— (%E) can be made if we assume that each target nucleus acts
n

independently of every other target nucleus in slowing down a projectile. In
essence, we are neglecting any possible interactions between nuclei. This is a fair
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approximation for amorphous targets and a good first approximation for crystalline
targets also.

Case 1: High-energy elastic collisions, p K a.

Rutherford scattering describes this type of interaction accurately. Recall that for
simple Coulomb scattering, the energy transfer cross section [Eq. (1.102)] is as
follows:

Therefore, the stopping power becomes:

dE
dx

=NS(E)=N | T
n T/ (1.130)

2 Ei
= NTCb() '))El In (—’yv ) ;
4 T

2. 172

. g . E

where T = yE; and 7 is the value of T which yields b = a or T}, = EJT“.
i

Substituting for by from Eq. (1.93) gives:

dE NnZ2Z%2* M E;
:M—lln@ ) (1.131)
b

—| = NS, (E;
dx n(E1) E. M,

n

Note that for like atoms, y = 1 and M| = M, so:

7372t (E;
NSy(Er) = YL (B (1.132)
E T,

Substituting for E, from Eq. (1.107) into the expression for T}, gives:

7, — AEX(Z\20) (21 22)°

1.133
L (1.133)

Using a = ao/(Z,Z,)""® and substituting for (Z,2,)"° gives:

. 4ERa}Z*

b =
czain ’
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for Z, = Z,, and since & = 2aER, then Eq. (1.132) becomes:

ANTZ*a?E:  (E;
NSa(E;) = 272 PRy, <—>
b b (1.134)
4N nZ4a(2)E§ czain2
- E; 4alEZZ*

Case 2: Low-energy elastic collisions, p ~ a.

At intermediate and lower energies, pure Coulomb scattering will not correctly
capture the interaction. Here, we must use a screened Coulomb function to account
for the effects of the electrons in the internuclear space. Bohr showed that the
screened Coulomb potential could be accurately described using an inverse power
potential of the form [14]:

Chn
where
2m m
., 27,7562 M,
Cpp = = Amd* — 1.136
2 < a ) <M2) ( )

and 4, is a fitting variable. Inserting the potential function in Eq. (1.135) into
Eq. (1.129) for the stopping power gives:

T
1 (dE Cn Cn,EmT!—™
SW(E)==|—| =— [ T7"dT = , 1.137
( ) N (dx)n m/ 1_ 0 ( )
0
CmEl—Zm )
Su(E) = ﬁ?l ", (1.138)

where y has the usual definition, Eq. (1.14). Lindhard et al. [14] introduced a set of
dimensionless or reduced variables for energy, €, and distance, p,:

M2 a
= F 1.1
© (M) +M,) 212,82 (1.139)

MM,

= N4na272x.
(M +M,)

(1.140)
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They proposed a universal, one-parameter, differential scattering cross section in

. : : . . VAV Y
reduced notation that approximates the interaction potential V(r) = 172 oo(r/a),
r

where ¢ is the Fermi function belonging to a single Thomas—Fermi atom:

raf(12)
6:7 [3/2 s (1141)

where ¢ is a dimensionless collision parameter defined by:
2 22 2
€” (1 —cos¢) =€ sin” ¢/2, (1.142)

and ¢ is proportional to the energy transfer, 7, and to the energy, E;, through €2 / T,
and ¢ is the CM scattering angle. Lindhard et al. [14] treated f(t"%) to be a simple
scaling function where ¢ was a measure of the depth of penetration into an atom
during a collision and large ¢ represents close approach. The function f(r'?) is
plotted in Fig. 1.17, and Winterbon et al. [15] developed an analytical expression
for the function:

—3/2
SRy = 2001 2R (1.143)

|
! Rutherford
scattering
0.5 3 potential
7™~ potential (f=0.5:"12)
(f = 1.300¢1/6)
0.4
. 2 potential
S =
= 03] (f=0.327) i
=
02| |
0.1 [ |
L L
103 102 10! 1 10
€

Fig. 1.17 Reduced differential cross section calculated from the Thomas—Fermi potential.
Abscissa is € = 1'/2/ sin ¢ /2. The thick solid line ranging over 107> < € < 10 is from Eq. (1.141).
The thin solid lines at left and right and the horizontal line in the middle are calculated using the
power law cross section, Eq. (1.144) (after [15])
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where 4’ = 1.309. A generalization of Eq. (1.143) for power law scattering is as
follows:

L*Iﬂ
f@ 7 = 2,2, (1.144)
where Ay3 = 1.309, 4y, = 0.327, and A; = 0.5. Equation (1.144) approximately
describes scattering from a potential of the form V(r) & r—* =y where s is the

power law exponent. At low energies (low €), there is little penetration in the
collision (z is small) and collisions are described by a power law with V(r) & 7~ and
m = 1/3, yielding a r"/° dependence. At higher energies, screening effects are
minimal and are described by a V(r) o r ! potential and m = 1, giving "2
behavior. At intermediate energies, the function (cross section) is slowly varying
and is best described by a power law potential for the form, V(r) & 2, with m = 1/2
giving no dependence on ¢, which means that the cross section is independent of €.
For the case of the inverse square law, m = 1/2 and the stopping power is given by

Eq. (1.138):

M
So(E) = 412y naZ, Zpe? m (1.145)

The reduced stopping cross section, S,(€), is given as follows:

de
S(e) = 1.146
©=5 (1.146)
and a relation between S,(E) and S,(€) is as follows:
de dedp,\ dE
=|—=22) = 1.147
dp, (dE dx> dx ( )

Taking differentials of € with respect to E (Eq. (1.139)), and p, with respect to
x (Eq. (1.140)) gives:

M + M, 1
S = Sn(E 1.148
n(€) M, 4naZ,Z»e n(E) ( )
c
- — S.(E). 1.149
—E () (1.149)

Substituting the expression for S,(E) from Eq. (1.145) into Eq. (1.148) gives:

Sn(€) = 447 = 0.327. (1.150)
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The stopping power can also be written using the energy transfer cross section in
reduced notation from Eq. (1.141) giving:

7 7
1 E 1/2 _ 27"
Sy (E) :_<%) B A G PP /f(tl/z)dtl/z. (1.151)
! 0 0

N 213/2 e?

Substituting the stopping power S,(E) in Eq. (1.151) into Eq. (1.149) for T = yE;
gives:

Sa(€) :é/f(tl/z)dtl/z. (1.152)
0

Setting y = /> in Eq. (1.144), Eq. (1.152) becomes:

€

/Abm 1-2m
= el (1.153)
o 2(1—m)

which is the power law approximation to the reduced nuclear stopping cross sec-
tion. For the case of the inverse square law, m = 1/2 and S,(€) = 41, = 0.327.

Two approximations for S, (E;) for collisions in the intermediate energy regime
are considered. The first is obtained by solving the orbital Eq. (1.76) using the
inverse square potential in Eq. (1.59) [16]:

¢ 1
— =1- .
T azEa 1/2
1
(1+55)
Using Eq. (1.14) to determine T gives:
2Ea 1/2
T = yE; cos? lg <1+ 22—15) . (1.154)

Expressing b” in terms of T and differentiating, and using the relation between oy(E;, T)
and b from Eq. (1.78) gives:

4E,d*o
PEX(1 — 402)” (x(1 — x))"/*

oy (E.,T) = (1.155)
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where x = T/E;, no. = cos ~'/x, and for small x, Eq. (1.155) has the form:

2 E 2

s (EiﬁT) = 8Ei1/2T3/2 '

(1.156)

The total cross section and mean recoil energy are calculated from Eq. (1.156)
taking a cutoff to zero at T = yEj:

T=GET)", (1.157)
w2 a? B,y

os (Ei) = = . 1.158

B) = (1.158)

The stopping power is determined using:
T
Sa(E) = / To(E;, T)dT,

T

and substituting the energy transfer cross section from Eq. (1.158) yields:

1 /dE 2
Sn (E;) :N<E> :Zaz E.y. (1.159)
n

Substitution for E, from Eq. (1.107) gives a value of 0.327 for S,,. This same result
can be obtained using the expression for average energy loss:

— No, T, (1.160)

where 1 =

is the mean free path between collisions, and substituting for
Os

o(E;) and T from Eqs. (1.157) and (1.158).

The second approximation of S, (E;) can be obtained using the Thomas—Fermi
screening function. We will assume that a series of small-angle scattering events are
responsible for most of the energy loss of a projectile in a target. When this is true,
the energy transferred, 7, can be expressed as a function of E; and b by solving
Eq. (1.76) for ¢ using the Thomas—Fermi screening function, Eq. (1.49), and
expanding the solution on the assumption that fis small. Proceeding, we find:

b2 (R0 )] e e

o
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7\ 7Z 2
and for V (r) = 1228

f (r/a), where f (r/a) = a/r, the solution is as follows:

(1.162)

Zl Z2 82(1 -1z
Eg '

d=n—>b [bz +
Solving for b and substituting in the expression:
as(Ei,d)) dQ =2nbdb,

and using Eq. (1.15) to obtain o (E;,T) dT, we can then find S, (E;) from
Eq. (1.129). The result is as follows:

2

M
0 =" 2 z2, L 73 1.163
R A ’ ( )

which is the standard stopping power and is shown in Fig. 1.18. Note that S? is
independent of the projectile energy to a first approximation, and substitution of
Egs. (1.163) and (1.139) into Eq. (1.149) yields a value of 0.327 for Sg. Ranges
estimated from S will be reasonably close when small-angle scattering
predominates.

Recall that the key assumption in deriving Eq. (1.163) was that energy loss of a
projectile can be represented as a series of small-angle scattering events, allowing
us to then assume that f remains small. Table 1.6 gives the scattering angles and
energy loss for a 50 keV silicon projectile incident on a silicon target atom. Note
that for p/a > 1, this assumption is clearly valid.

The nuclear stopping cross section in reduced notation is determined by using
Eq. (1.149) for S,(€) and substituting Eq. (1.129) for S,(E) giving:

T
Sa(€ /Tas E,T)d (1.164)
0

 na UW/E1
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Ta(})le 1.6 lScattleC:ring gggl:ei/ pla = 10 1 0.1

and energy loss for a e -

silicon projectile and a silicon ¢ (radians) 0.004z 0.26m 0.89m

target atom [17] 0 (degrees) 0.36 23.4 80.5
T/E 4x107° 0.16 0.973
T (keV) 0.002 8 49

where the universal screening length ay is substituted for the Thomas—Fermi
screening length a, and using the identity:

7
/as E,T)dT =
0

yields an expression for the nuclear stopping cross section in reduced notation:

Drmax

2nbdb, (1.165)

S

[o.¢]

Sa(€) :52/ sin’ ¢db2 (1.166)

ay
0

Ziegler [18] used the universal screening function, Fig. 1.19:

7y = 0.1818¢73% 40.5099¢ " +0.2802¢ 4% 4-0.02817¢*2"°,
(1.167)

and the numerical integration of Eq. (1.76) and Eq. (1.166) to calculate a universal
reduced nuclear stopping cross section, the ZBL cross section shown in Fig. 1.20.
An expression for the fit is as follows:

0.5In(1+1.1383 €)

S =
(€) (€ 4+0.01321 €0-21226 4 (.19593 €05)’

(1.168)

and for practical calculations, the ZBL universal nuclear stopping for an ion with
energy E; in the laboratory system is as follows:

8.462 x 107152, Z,M S, (€) eV - cm?

Su(Ei) = , 1.169
(E) (M) + M) (202 +Z03B)  atom ( )
where the ZBL reduced energy is as follows:
32.53M,E;
= (1.170)

o lez(Ml +M2)(Z?'23 +Z§)’23) '

Let us now look at electronic energy loss.
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Fig. 1.19 The universal
screening function yy (solid
thick line) from Eq. (1.167) as
a function of x = r/ay, where
ay is the universal screening
length defined by

ay = 0.8854a0/(Z0% + Z323),
along with several other
screening functions (after

[19D)

Fig. 1.20 Nuclear stopping
power in reduced units from
Eq. (1.168)
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The theoretical computation of electronic stopping power is a much more compli-
cated problem than the calculation of S,. For the description of collisions between
ions and electrons, we may use the classical equation (Eq. (1.106)). But here we must
consider that the binary collision is between a heavy moving ion and an electron in a
solid. This approach is valid as long as all electrons participate and the ion velocity
exceeds the velocity of the tightest bound electron. We may define T by:

YAW = “/eEi,

(1.171)
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Me

where 7, = L and hence, T is very small. We will also define a lower limit

(me+M

for ion—electron interactions as the effective mean excitation—ionization level I.' We
also note that we must use the electron density, which is just Z, times the atom density:

n=NZ,. (1.172)

Writing an expression for stopping power due to excitation—ionization interactions
that is equivalent to Eq. (1.130) yields:

VeEi

dE n
——) == [ Toy(E,T)dT
< dx>e Zz/ os(E.T)

T
n nb} v E; (1.173)
=——2y Eln[&
Z 4 n( I )

= Nn@%ln /%El .
Ei me 1

This formula is only approximate. A more exact expression is obtained from a
quantum mechanical treatment based on the Born approximation, which is inter-
preted physically to mean that the perturbation due to the incident particle does not
seriously disturb the electronic motion for large impact parameters. The result of
this analysis is the addition of a factor of 2, which comes from the small-energy
transfer processes where free Coulomb scattering is invalid. The Bethe-Bloch
formula is a good approximation:

dE\  2NnZiZ&* M E\ 2nNZiMe
B Il Y i i ) (1.174)
dx e Ei Mme 1 meEi
where B = Z; In <V‘} > is the stopping number. For relativistic velocities:
E;
B:Z2{ln(yei )—1n(1—/32)—/32}, (1.175)

where § = v/c and c is the speed of light. Note that at high energies, S, and S, vary

as 1/E; very nearly, and:
VeEi
In{ =
S.  2M, “( T )

Sn N meZZ (VE1> .
In(—
Eq

(1.176)

'To a first approximation, I = kZ, where k = 11.5 eV.
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Applying Eq. (1.176) to the case of MeV protons, the value is ~2000 for
I~ 11.5Z, eV, or the electronic stopping power is 2000 times that of the nuclear
stopping power.

At low velocities, electrons in the inner shells contribute less to the stopping
power. Also, the neutralization probability becomes so large that the collision
between the projectiles and the surrounding electrons is almost elastic. The energy
loss becomes proportional to the projectile velocity. Lindhard, Scharff, Schiott
(LSS), and Firsov gave theoretical descriptions for this energy region. The LSS
expression is based on elastic scattering of free target electrons in the static field of a
screened point charge. Firsov’s is based on a simple geometric model of momentum
exchange between the projectile and target atom during interpenetration of electron
clouds. Lindhard and Winther [17] have shown that as long as the ion velocity is
less than the velocity of an electron having an energy equal to the Fermi energy, E¢
of the free electron gas, S. will be proportional to the velocity of the ion or the
one-half power of its energy. Using a potential of the form:

2(212,)" e 12
v(r) :%XTF {1.13(zf/3+z§/3) H (1.177)
0

the Lindhard—Scharff stopping power becomes:

dE\ 1
S.(E) = (— E) N= KE?, (1.178)
7/6
7z
K =3.83 L2 (1.179)

320
M\ (Zf/3 +Z§/3)

where S¢(E) is given in units of 10" eV cm?®/atom and E is in keV. Expressing the
stopping cross section in reduced notation gives:

d
Se(€) = <d—§) =k €'?, where

2/3,,1/2 M\ (1.180)
0.079372,°2) (14 32
1

k =
3/4

The universal nuclear stopping cross section is shown in Fig. 1.18 where a single
curve represents all possible projectile—atom collisions, and the electronic stopping
cross section of Eq. (1.180) results in a family of lines or one for each combination
of projectile and target atom.

An approximate treatment that results in an analytical expression is obtained in
the following analysis. Consider an atom of mass M|, moving with velocity vy,
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which makes a head-on collision with an electron moving in the opposite direction
with velocity v.. The relative initial speed of the two particles is as follows:

Vo = U1 + Ve. (1.181)
After collision, the velocity vector changes but not the magnitude:
vt = — (01 + ve). (1.182)

The speed of the atom following the collision with the electron is given by:

= Vem + e
Lif = — |V
1f CM Ml . rf

Moy — mebe Me
= —_ 1)) +Ue 1.183
M +me <M1+me>( ! ) ( )
2Me e
>~y — )
M,

where m, is neglected compared to M. The change in the energy of the atom due to
the collision is as follows:

1
AE = A(§M10f> =~ Moy (v) — v1f) = 2Me0ey. (1.184)

The electron velocity after the collision is given as follows:

my
Vet = Vem — m Urf
1 e

Moy — mev, 1 (1.185)
S (Ml ere) (01 4 ve) = 201 +ve,
or the increase in the electron velocity is as follows:
Ave = Vef — Ve = 201. (1.186)

The number of conduction electrons in a metal is approximately equal to the atom
number density N. But only those electrons with velocities lying in the range Av, of
the Fermi velocity oy are able to participate in the slowing down process. Therefore,
the effective density of electrons in the metal is as follows:

e =2 N(A'L/Z> - (”—‘)N. (1.187)

g %3
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The current of effective electrons impinging on the atom is as follows:
L. = nedyy = ne(vy + Ve) = ReLe, (1.188)

and the collision rate of effective electrons with a single atom is o.l., where o, is the
cross section for interaction of the moving atom with conduction electrons. The
stopping power is then the energy loss rate of a moving atom to effective electrons
divided by the velocity of the atom:

dE\  o.l.AE
=) = . 1.18
< dx)e V1 (1.189)

Substituting Eqgs. (1.184), (1.187), and (1.188) into the above expression and
writing v, and v, as (2E¢ Ime)? and 2E/M,)">, respectively, yield:

<— (::;)e: 86.N <AW/;1> Ppn kE', (1.190)
where
me 1/2
k:8aeN(M> , (1.191)
and k = 3.0NZ%%e¢V'"’nm for like atoms, or S, = KEY?  where

K =3 x 107°2*° eV'? cm? for like atoms. Both equations are valid for 0 < E
(keV) < 37Z"". For example, for M, = Si, ki ~0.2 x 10~%eV'/2 cm?. Table 1.7
summarizes the nuclear and electronic energy loss rates for the various types of
interactions used in Sect. 1.3.1.

1.3.2 Range Calculations

We have developed expressions for the two major forms of energy loss: (1) colli-
sions of the ion with the target nuclei and (2) interactions of the ion with the
electrons in the solid. We will assume that these two forms of energy loss are
independent of each other. Because of this approximation, we may write the total
energy loss of a single projectile as the sum of the individual contributions:

(— ‘%) = NSy = NIS.(E) +S.(8) (1.192)

This expression can be integrated to give the total distance R that a projectile of
initial energy E; will travel before coming to rest:
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Table 1.7 Summary of energy loss rates for various types of interactions

Type of dE Electronic energy loss rate
interaction Nuclear energy loss rate <7 E)n (7 d£>
dx €
High E ANTZ*a2E} ) @ c*E} (1.134) NTEZIZZZEAMIH Vo Ei (1.173)
Coulomb E; da}ER Z* E  me 1
Low E General expression: (1.169) | x'E\/2 (1.178)
1
8.462 x 10" NZ, Z,M, S, (€) 7/6
23, /023 ,_ 2" 7 1179
(M, + M) (205 + 20%3) K= 3.83—3/2 (1.179)
1/2(,2/3 2/3
Mz +Z3)
Inverse square: (1.159) | kg2 (1.190)
) i
%azNEdy
Thomas—Fermi screening: (1.163) e 1/2
N2122 M1 k= 8(7€N<ﬁ1>
Z\3 My +M, s valid for 0 < E (keV) < 372"
where Z!/3 = (le/3 +Zzz/3)
and
K = (E) Pag=2.8 x 1075 eV . cm?
e
R E;
1 dE
R:/dx:— S — (1.193)
N J [Sh(E) +Se(E)]
0 0

This distance is called the average total range and is a useful quantity for making
estimates of the average penetration depths of ions in amorphous targets. In general,
the total path length due only to nuclear stopping can be obtained by substituting
the nuclear stopping power from Eq. (1.138) into:

E;
dE =
R=[| ——= 1.194
/NSH<E)2’ (1.154)
0
to give:
1—m ,ymfl 5
RE)=|——)—FE™", 1.1
&)= (50) e B (1.195)

and in reduced notation, substituting the stopping power given in Eq. (1.153) into:

€

o= | ;“(; (1.196)
0
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to give:

1 —
=T, (1.197)

p :
Y miy

An estimate of the total path length for the case of nuclear stopping only with
application of the inverse square potential [see Eq. (1.156)] is as follows:

VE;
dE 22E /2
N[ ToyE,T)AT where oy(E,T) =27
dx 8E-1/2T3/2
—n—zazNE
- 4 ay;
S0,
E; E;
I / dE’ / dE’
X = LKiotal = =
dE/dx 2
0 (4E/d), 0 ZazNan (1.199)
4E;
———— where E; <E,.
n2a’NE,y

The quantity of interest is, however, the projection of the total range on the initial
direction of the particle path (Fig. 1.21). In addition, we want to know the deviation
in the projected range, which arises from the fact that all particles do not suffer the
same sequence of collisions. We then define:

R, =  mean projected range and

=

p
er = standard deviation of the projected range.

ion :
—@ > @—> distance
€——— R ———>|
P

target surface

Fig. 1.21 Total path length R and projected range R, for an ion incident on a target
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Methods for computing R, have been developed by Lindhard et al. [16]. In cases
where the energy transfer 7 is small compared to the total energy of the particle, the
differential equation for R, has the solution:

E; E'
— dE’ ex oy (x) dx
%= / @) ™ / A | (1:200)
where o (E) = gNS"éE) ,
()= N[ ) +.(5) - 4B (1.201)

and QX(E) = [;° T22nbdb.

The standard deviation is computed by defining the quantities R (chord range)
and R, (range perpendicular to the initial direction) so that, from Fig. 1.22, we have
the following relation:

2 = %+Ri, (1.202)
and a related quantity:
R-R-ir (1.203)
r — 'p 2 i) .
and for cases where T K E:
EZ ") dE’ 7 3
R,(E")dE (
R(E) = / pl ), exp| [ 329 4 (1.204)
J B2 (E") Ba(x)
Fig. 1.22 Schematic of the
definition of range parameters \\
R, Ry R, Ry
— o
gy
R
=1
—
— |
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and
E R dE
E E
1.2
/N +S (EN]’ (1.205)
0
and then A—Rp is found from:
—, 2R(E)+R}E) —
(ARP)2 = # _ (Rp)27 (1.206)
NuQ;(E)

where o3 (E) = o1(E)/2, fo(E) = B1(E) ——
The integrals can be evaluated numerically for the Thomas—Fermi potential or
analytically if the approximate values of S, and S, are used together with the value:

AM\M
2SO, (1.207)

%) = 3(My+My) "

In LSS formalism, the average total path length can be calculated from:

/ de ; de
PR = 0/ [Sa(€) + Se(€)] 0/ [52(6) +k €77] (1.208)

This expression must be integrated numerically using different values of k. For a
particular Z;, Z,, and E;, we calculate € and k and then read off the value of pr from
Fig. 1.23 and convert to R using Egs. (1.139), (1.140), and pr = 3.06¢:

1/2
CEM, (M, + M) (Zf/ 3.7 3)

R(nm) =
(nm) pZ\ 2, M, ’

(1.209)

where E is in keV and p is in g/cm®. The most interesting range quantity of interest
is the average projected range, R, and this is what is usually measured. At high
energies, S. » S, and R ~ R,,. At low energies where S, ~ S, then R, < R. This
difference gets larger with M,/M,. LSS theory also analyzed this problem.

At low € or pgr (and small values of k):

1

For M,/M,=~; R/Ry~12

[\

My/M; =1; R/R,~16
and Mz/Ml :2, R/RPN22
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Fig. 1.23 Reduced range-energy plots for various values of the electronic stopping parameter, k

At high energies (€ large), R/R, — 1 for all k. Finally as a general approximation
[16]:

~1+4+B—2, (1.210)

where B is a slowly varying function of E and R. In the energy region where nuclear
stopping dominates and M; > M,, B = 1/3. Increased electronic stopping at higher
energies leads to smaller values of B. When M; < M,, large-angle scattering
increases the difference between R and R,,. However, for these collisions, electronic
stopping is appreciable and partially offsets the increase in the difference. Therefore,
B = 1/3 is a reasonable approximation for a wide range of conditions, giving:

R

Ry~y—
P71+ (My/3M))

14

(1.211)

Range straggling can be calculated using the theory of Lindhard et al. [16]. For the
case where nuclear stopping dominates and M; > M,, i.e., small-angle scattering:

2(MM,)"/?
2.5AR, =~ 1.1R, 2MMo) 2 , (1.212)
M, + M,
or
AR, = R,/2.5. (1.213)

For a high-energy ion, the slowing down path is essentially a straight line in the
original direction of motion, since the stopping is electronic with a small amount of
straggle at the end due to nuclear collisions (Fig. 1.24(a)). At lower energies where
S, and S, are more comparable, the ion path follows a zigzag course with many
large deflections with the distance between collisions decreasing as the energy
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Fig. 1.24 Total path length, High-energy ion
projected range, and (a) R,
perpendicular range for o . A >
(a) high-energy ions and incident lon‘ o
(b) low-energy ions incident —o—> R ’9
on a target Ey, M, 1
M,

target surface

(b)

incident ion
——>
Ey, M,

the total path length R is:
M, R = Y.y +ip+ig+...elc.)
target surface

decreases and the cross section increases (Fig. 1.24(b)). The incident particles are
distributed according to a Gaussian as:

N(x) = Npe ™!/, (1.214)

—R
where X = % and AR, is the standard deviation (Fig. 1.25). If the peak con-
P

1
centration is N, at R, then this will fall to 1—/2Np at distances x = R, = AR,,. If we
e

view the target perpendicularly through its surface, then the number of implanted
ions per unit area will be N, given by:

N, = / N(x) dr, (1215)
or since dx = AR,dX and the Gaussian curve is symmetrical, then:
N, = 2AR,N, / e VX ax, (1.216)
0

which can be written as follows:

o0
2
N, = AR,N,V27 \/:/el/zxde : (1.217)
Y
0



1.3 Energy Loss 67

Fig. 1.25 Parameters of the
Gaussian distribution applied
to an ion implantation profile
showing the projected range,
R,, the straggling or standard
deviation, ﬁp, and the
maximum concentration, N,
of the implanted ion

\/

N(x) number of ions per m3 at distance x

distance into solid

The integral inside the bracket is the error function and tends to unity as X — oo,
so that if N is the number of ions/cm? implanted into the target, we have:

N 0.4N;

~

Ny = —— ,
P \Y 27'CARP ARp

(1.218)

so the density of implanted ions is as follows:

_ 2
N(x) = OXZZS exp <—1/2{xApr} ) (1.219)

As an example, if we implant 5 x 10" ions/cm? of 40 keV B into Si, then
R, ~ 160 nm, AR, ~ 54 nm, and N, ~ 4 x 10*° atoms/cm>. Note that from the
properties of the Gaussian, the concentration will fall by one decade at
x = Ry £ 2AR,, and by 2 decades at x >~ R, + 3AR,,.

Using the LSS treatment to describe electronic and nuclear stopping, Littmark
and Ziegler have solved for the ranges of atoms with atomic number between 1 and
92 in all elements [18]. For each atom serving as the target, the mean ion depth,
longitudinal straggling, and transverse straggling are compiled in graphs for pro-
jectiles with 1 £ Z < 92 and over a wide energy range. The following example is
taken from this handbook.

Example 1.3. MeV He implantation into Si

Zeigler [18] plots and tabulates the range parameters for a wide range of ions
and target atoms. For 2 MeV He incident on a Si target, the range and
straggling are 7.32 pm and 0.215 pum, respectively. If we assume a dose of
10" He ions/cm?, then applying Eq. (1.218) gives a peak concentration of
~1.86 x 10" He atoms/cm® at a depth of 7.32 um, which is approximately
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620 appm. Equation (1.219) gives the distribution of deposited He atoms as
follows:

N(x) = 1.86 x 10° exp | —1/24X=7-32 "\ Hefem?
— g 0.215 ’
where x is in units of pm.

In addition to a tabulation of range data, Ziegler has developed a Monte
Carlo-based computer program for calculating the transport of ions in matter [20].
The program is available on the Web at http://www.srim.org, and the reader is
encouraged to try some examples using the SRIM simulation software. This pro-
gram is downloadable at no cost to the user (subject to the terms of use posted on
the site) and may be executed on your personal computer. The following example
uses data taken from the SRIM program.

Example 1.4. Implantation of Al into Ni

A similar example can be worked for lower energy implantation of a heavier
element such as Al, into a nickel target. In this case, we use the output of the
SRIM program. Selecting 200 keV Al in Ni results in a projected range of
~135 nm with a longitudinal straggling of 44 nm. Substitution into
Eq. (1.216) yields a peak concentration of 9.1 x 10" Al/cm® for a dose of
10" Al*/cm®. The SRIM software also yields a quantity that allows the user
to determine concentration. The unit of concentration in the ion range plot is
[atoms/cm3/at0ms cmz], and the range of the implanted ion distribution on
this plot has a maximum of ~8 x 10* atoms/cm®/atoms cm?. Multiplying this
value by the dose of 10'> Al*/cm? gives ~8 x 10" Al/em? which is close to
the analytical solution.

Chapter Review

The chapter began with a description of neutron—nuclear collisions, utilizing the
absence of charge on the neutron to describe the interaction using a hard sphere
approximation. Expressions for the energy transfer in elastic and inelastic scattering
collisions were developed, and (n, 2n) and (n, y) reactions were analyzed as well to
determine the energy transferred. Table 1.2 summarizes the energy transfer and
energy transfer cross sections for these types of reactions. The description of pro-
jectile—target interaction was broadened to include ion—atom and atom—atom col-
lisions which are relevant for two important cases: ion irradiation or implantation
and the interaction between atoms in a lattice after the initial collision with a
neutron in reactor materials. Interatomic potentials form the basis for describing the
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interaction between atoms and also for determining the energy transfer cross sec-
tion. Table 1.3 summarizes the important potentials used to describe these
interactions.

Collision kinematics was then used to develop a description of the orbit of
colliding atoms and hence the transferred energy and the energy transfer cross
section. Because there is not one single interatomic potential that describes the
interaction over the entire distance (energy) range, the energy transfer and energy
transfer cross sections are analyzed in various energy ranges and for various classes
of interactions. Rutherford scattering is used to describe light energetic ions, and
slow heavy ions, energetic heavy ions, and relativistic electrons are all treated
separately. Table 1.5 summarizes the energy transfer and energy transfer cross
section for various atom—atom collisions.

Energy loss theory is developed in order to determine the energy loss of ener-
getic atoms/ions to the solid by elastic/nuclear collisions and by collisions with the
electrons of the target. Collisions are analyzed in terms of their energy range for
both nuclear stopping and electronic stopping. Table 1.7 summarizes the stopping
powers for various types of interactions. Finally, the stopping powers are used to
develop expressions for the range and projected range of ions in solids so that their
penetration depth and concentration distribution can be determined.

Nomenclature

a Screening radius

ao Bohr radius of the hydrogen atom

ay Universal screening length

A Atomic mass, or Pre-exponential constant in Born—-Mayer relation,
Eq. (1.47)

b Impact parameter

B Constant in exponent in Born—-Mayer relation, Eq. (1.47)

C Constant in screened Coulomb potential, Eq. (1.49) = 0.8853
c Speed of light

D Nearest neighbor spacing between atoms

E, Value of E; that yields py = a

E, Value of E; that gives T2 Eqatbh =a

Eq Displacement energy

Ep Maxwellian nuclear temperature = kT

E¢ Final energy

E, Gamma ray energy

E; Incoming particle energy

E{ . Vacancy and interstitial formation energy

EY; Vacancy and interstitial migration energy

E/, Kinetic energy of incoming particle in CM system
E! Energy of neutron after (n, 2n) reaction

Ey Kinetic energy of target particle in CM system

EY Energy of CM after (n, 2n) reaction
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Rydberg energy

Total energy

Excitation—ionization level

Coulomb constant

Mass of incoming particle

Mass of target

Atom number density

Peak implanted ion concentration
Implanted ion density in ions/unit area
Momentum of electron

Excitation energy of nucleus

Nearest neighbor spacing between atoms
Radial velocity in polar coordinates

Range of ion

Recombination radius

Projected range

Standard deviation of projected range

s Power law exponent

Se Electronic stopping power

Sa Nuclear stopping power

t Time, or Dimensionless collision parameter, Eq. (1.142)
T Energy transferred in collision

T Minimum energy transferred
T
T
T,

OF zZzEI&~mD

>X xR Y
=

> o]
o

Maximum energy transferred
Average energy transferred
Energy transferred to target atom after (n, 2n) reaction

V(r) Potential energy

¢ Velocity of incoming particle in CM system

Ve Velocity of target particle in CM system

vl Velocity of incoming particle in CM system after collision

V! Velocity of target atom in CM system after collision

ol Velocity of neutron in CM system after (n, 2n) reaction

v Velocity of target atom in CM system after (n, 2n) reaction

Vem Velocity of CM in laboratory system

) Velocity of incoming particle in laboratory system

vy Velocity of incoming particle in laboratory system after collision
f Velocity of target atom in laboratory system after collision
7 Velocity of target atom in laboratory system after (n, 2n) reaction

z Atomic number

B v/c

x(r) Screening function

XU Universal screening function

e Unit electronic charge

&o Electric constant
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€ Dimensionless, reduced energy parameter, Eq. (1.139)
¢ Asymptotic scattering angle at infinity separation

¢ Scattering angle in CM system

l/'/ Angular velocity in polar coordinates

v Scattering angle of struck atom in laboratory system

A Mean free path between collisions

Am see Eq. (1.144)

N 1.309, Eq. (1.143)

U Reduced mass, Eq. (1.63)

w(T) Displacement function

6 Scattering angle in laboratory system

p Distance between atom centers in a collision

Pe Electron cloud density

Po Distance of closest approach, value of r when y = 7/2
Dr Dimensionless, reduced distance parameter, Eq. (1.140)
o (E) Total atomic collision cross section

o (E, T Differential energy transfer cross section

o (E;, 9) Differential angular collision cross section

o (E;, E4, Q) Double differential collision cross section
o (E;, Qj, ¢) Differential angular cross section for inelastic collisions
o (E;, Q;, T) Differential energy transfer cross section for inelastic collisions

Q Solid angle into which incoming particle is scattered
de Differential solid angular element
1/6
é:e Zl/
Problems

1.1 A 0.5 MeV neutron strikes a target atom with mass A, which is initially at rest.
Calculate the velocity and energy of both particles in the laboratory reference
frame after a head-on collision for A = 27 (Al) and A = 207.2 (Pb).

1.2 A detector of 100 % efficiency (i.e., every particle entering the detector is
registered) and area of 1 cm? is placed at a distance r from a target (taken to be
of zero dimension, i.e., a point). The target is bombarded with neutrons.
Assuming that only elastic scattering occurs, scattering is azimuthally sym-
metric, and the scattering cross section is isotropic:

(a) What is the ratio of the number of particles detected by the detector at
positions 1 and 2 shown in the figure?

(b) What is the ratio of the number of particles scattered through an angular
increment of 10° about 8; = 5° and &, = 85°?

(c) Repeat parts (a) and (b) assuming that instead of being isotropic, the
differential scattering cross section varies as oy(E;, ) = cos 6.
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1.4

1.5

1.6
1.7
1.8
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position 2
0,

position 1
0

A4

df = Increment of scattering angle
dQ = Increment of solid angle about 6
6 = Scattering angle in the lab system

A Ti plate is bombarded with 10'* neutrons per cm” per second at perpen-
dicular incidence. The entire plate is hit by the beam.

(a) Calculate the number of particles scattered per second at

(i) 85°<6=286°and

(i) 5°<0=06°
The plate size is 1 cm® by 0.6 mm thick. Scattering is isotropic with a
total scattering cross section of 2.87 barns (1 barn = 107 cm?).

(b) The same target is bombarded with particles such that the differential
angular scattering cross section is proportional to . Calculate the ratio
of the atomic flux in interval (i) above to that in interval (ii). In both
cases, perform full integration of the differential cross section.

(c) Approximate the integrals in (b) by assuming the differential angular
scattering cross section to be constant in each integration interval and
equal to the value at the interval’s center.

Derive the kinematic factor K, defined as K = E;/E;, where E; is the projectile
energy before the collision and Ey is the projectile energy after the collision.
The following formula relates the scattering angles 8 and ¢ in the laboratory
and center-of-mass frames, respectively:

tan 0 = (M /m)sin ¢/[1 + (M /m) cos @]

where m and M are the masses of the projectile and target, respectively.
Discuss this expression for the following three cases: m = M, m >> M, and
m K M.

Derive Eq. (1.24) in the text.

Derive Eq. (1.39) in the text.

For two colliding particles write expressions for:
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1.9

1.10

1.13

1.14

1.15

(a) Er, the total energy of a system of n particles;

(b) Ecwm, the energy of the center of mass (determined by V\ and the total
mass of the system); and

(c) E, the total energy in the CM system.
Show that £ = Er — Ecy [Eq. (1.61)]

Derive a relation between b and ¢ from Eq. (1.76) for the hard sphere
potential:

VHS(V):O r>r

=00 r<ry

Make sure your answer is correct for b > 7.

As a means of describing atom—atom interaction at intermediate separation,
i.e., between Coulombic repulsion and closed shell repulsion, an inverse
power potential is often employed of the form

V(r) = constant/r".

For example, one can fit an inverse square (n = 2) function to the screened
Coulomb potential at r = a obtaining the same slope, ordinate, and curvature.
This function is as follows:

V(r)=z1z26%a/ (r* exp[1]).

Formulate the cross sections oy(E;, T) and oy(E;, ¢) for atom—atom interac-
tions obeying the inverse square potential function.

Compare your result in Problem 1.10 to that obtained using a Born—-Mayer
potential and a simple Coulomb potential. Comment on the similarities and
differences.

Calculate the average energy transfer from a 100 keV Ni atom colliding with
another Ni atom, using:

(a) The hard sphere potential and
(b) The inverse square potential.

Explain, in physical terms, why the scattering cross section resulting from
Coulombic repulsion depends on the transferred energy, 7, while that for
neutron—nuclear interaction does not.

Assuming a pure Coulomb potential, determine the distance of closest
approach for a 100 keV boron atom on silicon for an impact parameter,
b =1 nm. What is the significance of your answer?

1 MeV Al" ions are accelerated toward a pure Ni target. The ions are directed
normal to the sample surface.
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1.16

1.18

1.19

1.20

1.21
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(a) Calculate the total path length and provide an estimate for the mean
projected range of the ions.

(b) For a dose of 10'® jons/cm?, estimate the maximum Al concentration
and the FWHM of the Al distribution. Use S.(E) = k'E'/?, where k' =2
x 1071 eV cm?.

A 10 MeV Si ion penetrates a Si crystal.

(a) Calculate its energy as a function of distance traveled and its penetration
depth. Assume that electronic stopping dominates.

(b) Write an expression for the depth distribution of implanted Si ions and
give the straggling.

Calculate the energy threshold above which the Rutherford scattering cross
section can be used for: (i) near head-on collisions and (ii) all collisions of
He*™ and H* in Si and Pd.

2 MeV He™ ions are backscattered (6 = 180°) off of a 25-nm-thick gold foil.
Determine the highest and lowest energy values of the backscattered ions as
measured in a detector placed at 180° with respect to the incoming beam.
Use k = 0.14 x 107" eV"? em®,

Determine the stopping power by interpolation or extrapolation based on the
following values of 1/N(dE/dx) (in eV/(10" atoms/cm?)):

Energy (MeV): 1.6 2.0
Au 1223 115.5
Al 47.5 44.25

Assume the stopping power can be described by the following function:

S = C+KE"? where C and K are constants.

(a) Derive an equation for the particle range as a function of energy.
(b) Does the range increase or decrease as:

(i) Energy increases;
(ii) K increases; and
@iii) C increases.

Which increases the high-energy electronic stopping power the most,
increased charge, energy, or mass of the projectile ion?
A 2 MeV proton travels through lead.

(a) Assuming elastic collisions, calculate the maximum energy that can be
transferred from the proton to the lead.
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(b) What energy would a Pb ion need to have the same maximum energy
transfer in a Pb—Pb collision as the proton—Pb collision in part (a)?

1.22  An Fe particle is fired at a block of natural uranium. To get the Fe as close to

the uranium particle as possible, would you be better off using a higher
charge state of Fe or a lighter isotope? Assume Coulomb potentials can be
used.

1.23 A thin film containing F'? is bombarded with 1.85 MeV protons. The fol-

lowing reaction takes place:
Fl9 _|_p N 016 T

The reaction has a Q value of 8.13 MeV. After interaction, an alpha particle
is seen to emerge at a right angle to the incident proton beam. What are the
energies of the alpha particle and the oxygen atom? What is the maximum
energy each of these particles could transfer to a stationary Fe atom?

1.24 A helium atom at 1 MeV is sent into iron. Assuming the electronic stopping

cross section is a constant (88 x 107> eV cm?), what is the energy of the
helium atom after it travels 500 nm? If the He atom collides with an Fe atom
after traveling 500 nm, what is the maximum energy transferred? Assume an
atomic density of 8.5 x 10** atoms/cm® for Fe. Was an assumption of
constant stopping power valid?
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Chapter 2
The Displacement of Atoms

2.1 Elementary Displacement Theory

The struck lattice atom of energy T is referred to as a primary knock-on atom, or
PKA. This atom moves through the lattice encountering other lattice atoms. Such
encounters may result in sufficient energy transfer to displace this lattice atom from
its site resulting in two displaced atoms. If this collision sequence continues,
a series of tertiary knock-ons is produced resulting in a collision cascade. A cascade
is a spatial cluster of lattice vacancies and atoms residing as interstitials in a
localized region of the lattice. Such a phenomenon can have a profound effect on
the physical and mechanical properties of the alloy, as will become evident later.
Here, we are concerned with being able to quantify the displacement cascade. That
is, for a neutron of energy E;, striking a lattice atom, how many lattice atom
displacements will result? We have already discussed in detail the nature of neu-
tron—nucleus and atom-atom collisions. Now, we will develop a model for deter-
mining the number of atoms displaced by a PKA of energy T.

Recall that to quantify radiation damage, we require a solution to the damage
rate equation:

Rd :I\I/Ivf ¢(Ei)JD(Ei) dEi, (21)

where N is the lattice atom number density, ¢ (E;) is the energy-dependent particle
flux, and op (E;) is the energy-dependent displacement cross section. The dis-
placement cross section is a probability for the displacement of lattice atoms by
incident particles:

on(E) = /T o(E,T)v (T)dT, (2.2)

© Springer Science+Business Media New York 2017 77
G.S. Was, Fundamentals of Radiation Materials Science,
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where o(E;, T) is the probability that a particle of energy E; will impart a recoil
energy T to a struck lattice atom, and v(7) is the number of displaced atoms
resulting from such a collision. Chapter 1 provided the energy transfer cross section
appearing in Eq. (2.2) for various types of particles in various energy ranges. This
chapter will be devoted to supplying the second term in the integrand, v(7), the
number of atom displacements resulting from a primary recoil atom of energy 7,
and the limits of T between which displacements occur. Finally, we will develop the
displacement cross section and an expression for the displacement rate.

2.1.1 Displacement Probability

As a first step, we define Py(7T) as the probability that a struck atom is displaced
upon receipt of energy 7. Clearly, there is some minimum energy that must be
transferred in order to produce a displacement. We will call this energy, E4. The
magnitude of Ey is dependent upon the crystallographic structure of the lattice, the
direction of the incident PKA, the thermal energy of the lattice atom, etc. These
considerations will be discussed in detail later. By definition of Ey, the probability
of displacement for T < Ejy is zero. If Ey is a fixed value under all conditions, then
the probability of displacement for T = Ej is one. Hence, our simplest model for the
displacement probability is a step function:

Pd(T) =0 for T<Ey

(2.3)
=1 for T2>E;,

and is shown in Fig. 2.1. However, E; is not constant for all collisions due to the
factors mentioned earlier. The effect of atomic vibrations of the lattice atoms would
be expected to lower the value of E4 or introduce a natural “width” of the order kT
to the displacement probability. Further, as will be discussed later, the effect of
crystallinity will also contribute strongly to the blurring effect on E;. In fact, the
picture in Fig. 2.1 and Eq. (2.3) is only strictly true for an amorphous solid at 0 K.
A more realistic representation is shown in Fig. 2.2 and is represented as:

P (D)

A

1 .....................

0 » T
0 Eg

Fig. 2.1 The displacement probability P4(T) as a function of the kinetic energy transferred to a
lattice atom, assuming a sharp displacement threshold
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>» T

Fig. 2.2 The displacement probability as a function of the kinetic energy transferred to the lattice
atom allowing for a blurring of the threshold due to atomic vibrations, impurity atoms, etc.

Pd(T):O for T<Edmin
=f(T) for Eg, <T<E,4

min —

=1 for T>Ey

(2.4)

max

max 7

where f(T) is a smoothly varying function between 0 and 1. Given the displacement
probability, the next task is to find the number of displacements as a function of the
energy transferred. Kinchin and Pease [1] developed a simple theory to find the
average number of displaced atoms initially created by a PKA of energy T in a
given solid lattice. Their analysis is based on the following assumptions:

1. The cascade is created by a sequence of two-body elastic collisions between
atoms.

2. The displacement probability is 1 for 7 > E4 as given by Eq. (2.3).

3. When an atom with initial energy T emerges from a collision with energy 7’ and
generates a new recoil with energy &, it is assumed that no energy passes to the
lattice and T = T" + ¢.

4. Energy loss by electron stopping is given by a cutoff energy E.. If the PKA
energy is greater than E. no additional displacements occur until electron
energy losses reduce the PKA energy to E.. For all energies less than E,
electronic stopping is ignored, and only atomic collisions occur.

5. The energy transfer cross section is given by the hard sphere model.

6. The arrangement of the atoms in the solid is random; effects due to crystal
structure are neglected.

Assumption 1 is fundamental to all theories of a cascade consisting of isolated point
defects. Elimination of this restriction allows the cascade to be represented by a
displacement spike discussed in Chap. 3. Assumption 2 neglects crystallinity and
atomic vibrations, which will add a natural width or “blurring” effect to the dis-
tribution. Later on, we will relax Assumptions 3, 4, 5 and 6.
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2.1.2 The Kinchin and Pease Model for Atom
Displacements

Consider the two moving atoms created when a PKA first strikes a stationary atom.
After the collision, the PKA has residual energy T — ¢ and the struck atom receives
an energy ¢ — E4, giving:

v(T) =v(T — &) +v(e — Eq), (2.5)

where Ej is the energy consumed in the reaction. By neglecting E, relative to ¢, i.e.,
& » Eq4 according to Assumption 3, then Eq. (2.5) becomes:

vW(T) =v(T — &) +v(e). (2.6)

Equation (2.6) is not sufficient to determine v(T) because the energy transfer ¢ is
unknown. Since the PKA and lattice atoms are identical, € may lie anywhere between
0 and T. However, if we know the probability of transferring energy in the range (e,
de) in a collision, we can multiply Eq. (2.6) by this probability and integrate over all
allowable values of ¢. This will yield the average number of displacements.

Using the hard sphere Assumption 5, the energy transfer cross section is as
follows:

T T
o(T,¢) = ) = # for like atoms, (2.7)

yT
and the probability that a PKA of energy T transfers energy in the range (¢, de) to
the struck atom is as follows:

, (2.8)

for y = 1 (like atoms). Multiplying the right-hand side of Eq. (2.6) by de/T" and
integrating from O to T yields:

W(T) = — /0 V(T — &) +v(e)|de

:% UOTV(T—s)dg+ /OTv(s)ds}

A change in variables from ¢ to ¢’ = T — ¢ in the first integral in Eq. (2.9) gives:

(2.9)

v(T) :%/o v(e')de + %/0 v(e) de, (2.10)
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which is really a sum of two identical integrals. Therefore,

or) =2 /0 v(2) de. (2.11)

Before solving Eq. (2.11), let us examine the behavior of v(¢) near the displacement
threshold, E,. Clearly when T < E4 there are no displacements and:

v(T)=0 for 0<T<Ey. (2.12)

If T is greater than or equal to E4 but less than 2E4, two results are possible. The first
is that the struck atom is displaced from its lattice site, and the PKA, now left with
energy less than E,, falls into its place. However, if the original PKA does not
transfer Ey, the struck atom remains in place and no displacement occurs. In either
case, only one displacement in total is possible from a PKA with energy between Ey4
and 2E,, and:

W(T) =1 for Eg<T<2E,. (2.13)

Using Eqgs. (2.12) and (2.13), we may split the integral in Eq. (2.11) into ranges
from O to E4, E4 to 2Ey, and 2E4 to T and evaluate:

o[ [E 2E, T
vw(T) = T {/0 Ode + /E 1de + /ZE v(s)ds},
d d

yielding:

vw(T) = Z—gd + ;/ZT v(e)de. (2.14)

Eq

We can solve Eq. (2.14) by multiplying by T and differentiating with respect to
T giving:

dv
Td_T =, (2.15)

with the solution:
v =CT. (2.16)

Substituting Eq. (2.16) into Eq. (2.14) gives:

C=— 2.17
= @.17)
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Fig. 2.3 The number of A
displaced atoms in the
cascade as a function of the
PKA energy according to the
model of Kinchin and Pease

T

Number of displaced atoms (v)

0 1 1 >
E; 2E, E,
PKA energy (7)
and therefore:
T
WT) == for2E4<T<E.. (2.18)

~ 2E,

The upper limit is set by E. (Assumption 4). When a PKA is born with 7> E, the
number of displacements is v(T) = E./2E4. So the full Kinchin—Pease (K-P) result is
as follows:

for T <Eq4
1 for Eq <T<2Ey
T
W(T)=<{ — for 2E,<T<E.. (2.19)
2E4
E.
for T>E.
2E,4

Note that if E, is ignored, 7/2E, is a true average since the number of displacements
can range from O (no energy transfers above Ey) to T/Eq — 1 (every collision
transfers just enough), and for large T, T/E4 >>1. So the maximum value of v(T) is T/
E4. The full displacement function described by Eq. (2.19) is shown in Fig. 2.3.

2.1.3 The Displacement Energy

A lattice atom must receive a minimum amount of energy in the collision in order to
be displaced from its lattice site. This is the displacement energy or displacement
threshold, E4. If the energy transferred, 7, is less than Ejy, the struck atom will
vibrate about its equilibrium position but will not be displaced. These vibrations
will be transmitted to neighboring atoms through the interaction of their potential
fields, and the energy will appear as heat. Hence, the potential fields of the atoms in
the lattice form a barrier over which the stuck atom must pass in order to be
displaced. This is the source of the displacement threshold energy.
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Since metals are crystalline, the potential barrier surrounding an equilibrium
lattice site is not uniform in all directions. In fact, there are directions in which the
surrounding atoms will remove large amounts of energy from the struck atom
yielding a high potential barrier. Along directions of high symmetry, there exist
open directions along which the threshold displacement energy is low. Since the
direction of the recoil is determined from the collision event which is itself a
random process, the recoil direction is entirely random. The single value often
quoted for displacement energy in radiation damage calculations then represents a
spherical average of the potential barrier surrounding the equilibrium lattice site.

The value of E4 may be roughly estimated using an argument by Seitz [2]. The
energy of sublimation, E;, for most metals is about 5—6 eV. Since half as many
bonds are broken by removing an atom from the surface of a crystal as opposed to
the interior, the energy to remove an atom from the interior is then 10-12 eV. If an
atom is moved from its lattice site to an interstitial position in the direction of least
resistance and time is allowed for neighboring atoms to relax (an adiabatic
movement), an energy of 2E is needed. Since in reality, the struck atom is not
always projected in the direction of least resistance and time is not allowed for the
relaxation of neighboring atoms, a greater amount of energy (perhaps 4-5 E) is
needed. Thus, we would expect E4 to be 20-25 eV.

Accurate determination of the displacement energy can be made if the interac-
tion potential between lattice atoms is known. This is accomplished by moving the
atom in a given direction and summing the interaction energies between the moving
atom and all other nearest neighbors along the trajectory of the struck atom. When
the total potential energy reaches a maximum, the position corresponds to a saddle
point and the difference between the energy of the atom at the saddle point, E*, and
its energy in the equilibrium position, E., represents the displacement threshold for
the particular direction. Since the interaction energy in these collisions is only tens
of eV, the Born—Mayer potential would be the most appropriate potential to use in
describing the interaction. These calculations can be carried out over all directions
and averaged to obtain a mean Ey4 for a particular solid.

To appreciate the significance of the variation in interaction energies or potential
barriers with crystal direction, we will consider the case of copper. In the cubic
lattice, there are three crystallographic directions that may be considered easy
directions for displacement: (100), {110) and (111). In particular, {110) is the
close-packed direction in the fcc lattice and {(111) is the close-packed direction in
the bec lattice. Figure 2.4 shows how an atom is displaced along each of these
directions in the fcc lattice. In each case, the displaced atom K passes through the
midpoint of a set of “barrier atoms,” B, in the direction of the L atom, with the atom
configuration dependent on the direction. For a K atom displaced in the {110)
direction, the atoms are located at the corners of a rectangle to which the path of K
is perpendicular. When the K atom passes through the barrier, it loses kinetic
energy in glancing collisions, which initially becomes potential energy of the
barrier atoms. The energy need not be shared equally between the four B atoms.
This is illustrated by drawing a set of contours of constant Ey in the place of the B
atoms (Fig. 2.5). Then, if K only receives a quantity of energy E4 (110} in the
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Fig. 2.4 Struck atom, K, and barrier atoms, B, for various directions of the struck atom in the fcc
lattice

Fig. 2.5 Equi-potential
contours in the barrier plane
for a struck atom, K, traveling
close to the <110> direction
and heading toward the
barrier plane defined by the
barrier atoms, B (after [3])

collision event, it will be displaced if its initial direction is contained within a small
cone of solid angle centered about the {110) direction. For small energies, the cone
intersects the B atom plane in a circle, but as the energy transferred increases, the
intersection deviates significantly from a right circular cone (Fig. 2.5). The contours
are in fact generated by the intersection of a complex but symmetrical
three-dimensional surface with a sphere which is described about the atom K as
center. This contour pattern can be constructed by accounting for the interaction
between the K atom and each of the B atoms at every point in time while simul-
taneously accounting for interactions between each of these five atoms and other
atoms in the surrounding region of the crystal. This is a very difficult problem, the
solution of which depends heavily on the interaction potential. In principle, at least,
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Fig. 2.6 Displacement energy as a function of direction in (a) fcc Cu and Au crystal (after [3])
and (b) in copper (after [4])

we can obtain all the information we need about the directional dependence of the
thresholds. Figure 2.6 shows the displacement threshold as a function of direction in
fec copper and gold. Note that displacement threshold energies along (100) and
(110) are low, but the value along {111) is high due to the large distance between
barrier atoms in this direction and the two sets of barriers between the atoms on the
body diagonal of the unit cell.

This dependence will be further illustrated in an example using the fcc lattice and
a parabolic repulsion function. Figure 2.7 shows a lattice atom on the face of a unit
cell in an fcc crystal receiving energy from a collision. Its flight trajectory is in the
(110) direction, which is equidistant from four atoms located on the faces of the
unit cell. In an fcc lattice, each atom is surrounded by 12 nearest neighbors.
Displacement will be dependent on several important factors. They are the number
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Fig. 2.7 Displacement of a lattice atom along the <100> direction in the fcc lattice and the
variation of energy of the atom with position along its path (after [S])

Table 2.1 Parameters used for the determination of Ey in the fcc lattice

Direction # B atoms Impact parameter, z Distance to barrier, y
(100) 4 a a
2 2
(110) 4 V6 V2
4 4
(111) 3 a a
V6 3

of barrier atoms, B, the impact parameter, z (the distance of closest approach to the
B atoms), and the distance from the K atom in its lattice site to the barrier, y. These
quantities are given in Table 2.1 for the fcc lattice. The energy required to displace
an atom will increase with B and y and decrease with z. Since z is smallest for the
(110) direction, this will be the most difficult to penetrate. Also z199 < Z;10 and
Y100 > Y110, SO both factors will make displacement along (110) easier than along
(100). Let us take the specific example of displacement in the (100) direction of the
fcc example and calculate a value for Eg.
The energy of a single atom in a normal lattice site is as follows:

Eeq = —12U, (2.20)

where U is the energy per atom of the crystal. Since only half as many bonds are
broken in the sublimation process, this energy is just:

E, ~6U, (2.21)

and since E;, ~ 4-5 eV, U is about 1 eV.

To describe the interaction of the lattice atoms as they are pushed together in the
solid, we will use a simple parabolic repulsion as opposed to the Born—Mayer
potential:
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(2.22)

where k is the force constant characterizing the repulsive position of the potential.
The force constant can be expressed as [5]:

ka® = % (2.23)
where

k force constant

a lattice constant

v a’/4 = specific volume of an atom

S compressibility

In our example, the equilibrium spacing of the struck atom and the four atoms
forming the square barrier is r.q = a//2. When the atom is at the center of the square,
it interacts with the four atoms at the corners a distance a/2 away. Hence, the energy
at the saddle point is as follows:

a
E = 4V(—) —4
2

U+1(k ?) L1y (2.24)
- —(ka”)|—=—%) |. .

2 N

The displacement energy in the {100) direction is then:

Eq(100) = & — e = 8U +2(ke?) (% - %)2 (2.25)

Typical values for ka” and U for metals are 60 and 1 eV, respectively, yielding Eq
(100) 2 13.1 eV. This value is in reasonable agreement with that given in Fig. 2.6.
Table 2.2 gives values of E, for various metals [6]. Note that for the transition
metals, the accepted value of Ey is 40 eV.

2.1.4 The Electron Energy Loss Limit

Now that we have established a lower limit on the energy transfer necessary to cause
a displacement, Ey, let us turn our attention to the high-energy regime of collisions.
Recall that at low energies (T < 10°eV), S, > S., and we may assume that nearly all
of the energy loss of the PKA goes toward elastic collisions (Fig. 1.18). However, as
the PKA energy increases, the fraction of the total energy loss that is due to electron
excitation and ionization increases until above the crossover energy, Ey, Se > S..
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Table 2.2 Recommended
values of the effective
displacement energy for use
in displacement calculations
(from [6])
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Metal Lattice (c/a) E4, min (eV) Eq (eV)
Al fec 16 25
Ti hep (1.59) 19 30
\% bee - 40
Cr bee 28 40
Mn bce - 40
Fe bee 20 40
Co fec 22 40
Ni fec 23 40
Cu fcc 19 30
Zr hep 21 40
Nb bee 36 60
Mo bee 33 60
Ta bee 34 90
w bee 40 90
Pb fec 14 25
Stainless steel fcc - 40

Our expression for v(7) in Eq. (2.19) must therefore be modified to account for this
variation in the amount of kinetic energy available for displacement collisions.
Figure 2.8 shows (dE/dx), for carbon recoils in graphite using Eq. (1.163) and
Lindhard’s Thomas—Fermi result, the latter showing that Eq. (1.163), which pre-
dicts a constant value of 250 eV/nm, is a good approximation for energies up to at
least E,. Note that at high energies (T > E)), electronic energy losses predominate
by several orders of magnitude. However, at low energies (7 K E,), the situation is

reversed.

Fortunately, because of departures from the hard sphere model, the primary
recoil creates secondaries with average energies far below T/ 2. These will almost

Fig. 2.8 Energy loss from
electronic and nuclear
stopping as a function of
energy (after [7])

(eV/nm)

10° 10° 10* 10° 10° 107
Recoil energy, T (eV)
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always be in the range where electronic excitation can be neglected. To obtain
v(T) to a fair approximation, we calculate the energy E., dissipated in elastic col-
lisions by the PKA:

[T (dE/dx),dE
E = /0 ( (2.26)

dE/dx), + (dE/dx),

We can then use Eq. (1.190) for (dE/dx), and Eq. (1.130) for (dE/dx), with T' = E,.
The modified damage function is the original Eq. (2.19) with T replaced by E.:

— EC
C2E,;’

W(T) (2.27)

As an estimate of E., we can use the maximum energy a moving atom (of energy E)
can transfer to an electron as

4me
M

E, (2.28)

and equating this with the ionization energy of the struck electron belonging to the
target atom, we have:

M
E. =

T dm,

(2.29)

Kinchin and Pease [1] equated E.. and E,, implying that all energy above E, is lost
in electron excitation, and displacements account for all the energy loss below E..
Figure 2.9 shows w(7) for graphite using Lindhard’s (dE/dx),. Note that for recoils
with energy below E, the simple theory gives a fair description, but for 7 > E,, the
losses in electron excitation are important.

Fig. 2.9 Number of
displaced atoms per primary
recoil compared to the simple
K-P result of T/2E, (after [7])

v(T) (atoms per primary recoil)

Recoil energy, T (eV)
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2.2 Modifications to the K-P Displacement Model

2.2.1 Consideration of E; in the Energy Balance

Snyder and Neufeld [8] make the assumption that an energy Ej is consumed in each
collision such that the relation in Assumption 3 of the K—P displacement model will
read:

T=T +¢+Ey, (2.30)

and both atoms move off after collision, no matter how small their energy. When
compared with the Kinchin—Pease model, it may be expected that v(7) would
decrease since an energy loss term is added. However, because atoms are allowed to
leave the collision with energy less than Ey4, an increase in v(T) will occur. Since
these two changes to w(7) nearly cancel, the result is very similar to the K—P model:

T
v(T) = 0.56(1 + E_) forT > 4Ey. (2.31)
d

2.2.2 Realistic Energy Transfer Cross Sections

The weakest point of the K—P displacement model is the assumption of hard sphere
collisions (Assumption 5). In fact, more realistic energy transfer cross sections can
be used while still maintaining the proportionality of Eq. (2.19). Sanders [9] solved
Eq. (2.5) using an inverse power potential (+ ) to obtain:

i T
T) = (2ﬁ— 1) - 232
W1 =s(2-1) 5 (232)
which for the inverse square potential becomes:
(T)=0.52 T (2.33)
v(T) =052 — .
2E,’

reducing the Kinchin—Pease result by a factor of 2.

However, the use of this potential has its shortcomings because it is applied to all
collisions in the cascade, while its region of validity is limited to those values of
T such that p < 5a. Physically, the effect of realistic scattering is to make a larger
number collisions generate 7T in the subthreshold regions below E4 where they are
removed from multiplication chain.

For many years, investigators have been intrigued that Eq. (2.19) appears to
overestimate v(7) in metals by a factor of 2—10 [10] and yet attempts to measure the
energy dependence of v(T) over a large energy range (50-200 keV recoil atoms in
gold) gave a quadratic rather than linear relationship. In 1969, Sigmund [11] took a
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different approach to this problem by considering the recoil density F(T, ¢) de
defined as the average number of atoms recoiling with an energy in (g, ¢ + de) as a
consequence of a primary ion slowing down from T to zero energy. The recoil
density can be expressed in a form that uses the power law approximation of the
Thomas—Fermi differential cross section [12]:

o(T,e) occ T g 17, (2.34)
where 0 < m < 1, giving:

m T
Y(1) =Yl —m) (e Uy)' et +m’

F(T,e) = (2.35)

for T > ¢ > U,, where
Y(x) = d[InI"(x)]/dx, (2.36)

U, is the binding energy lost by an atom when leaving a lattice site, and /(x) is the
gamma function or the generalized factorial function. Since a recoiling atom is
displaced when ¢ > E4 we obtain

W(T) = /E REGEE % (Ul}) (237)

for T >> E4 >> U,. The value of m is chosen in such a way [13] that o(7, €) describes
collisions at low energies, i.e., 2Eq < T < 100Ey4. This constrains m < 1/4. For m =0,
Eq. (2.37) reads:

W(T) = %Uibm(l Uy JEy). (2.38)

This is an upper limit for displacement processes since loss of defects by
replacement collisions has been neglected.

A characteristic feature of displacements in metals is the large recombination
volume of an isolated point defect, of the order of 100 atomic volumes or more.
Hence, E4 is the energy lost to the environment by an atom trying to escape the
recombination volume. This has the consequence that in cascades, many defects are
lost by replacement collisions [14]. The binding energy U, is only a few eV and
thus negligible as compared to Ey4, reducing Eq. (2.38) to:

6T T
T)=—— =122 —— 2.
W(T) =—5 E, (2Ed>’ (2.39)

which is about 22 % greater than the result of Eq. (2.19) which accounted for
replacement collisions.
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2.2.3 Energy Loss by Electronic Excitation

Even for E > E,, collisions of the PKA with electrons compete for energy loss
against collisions with lattice atoms. These two processes can be treated indepen-
dently, and each can be represented by separate energy transfer cross sections. The
formulation originally presented by Lindhard et al. [15] is summarized here as
presented by Olander in [5] as a more realistic treatment of energy loss by electronic
excitation (Assumption 4).

As a PKA traverses a distance dx of a solid, three things may happen: (1) It
collides with an electron, (2) it collides with an atom, or (3) nothing. Let p. de, be
the probability that a collision between the PKA and an electron in the interval
dx transfers energy in the range (., de.) to the electron:

pedee = Noo(T, & )de.dx, (2.40)

where o.(7, &) is the energy transfer cross section from the PKA to the electron.
Similarly, for a PKA and lattice atom:

pade, = Noy(T, g,)de,dx, (2.41)

and the probability that nothing happens in dx is as follows:

_ 1 _ /'eAmax dg _ /'aAmax dS
Po ) Pedée ) Padéy (242)

=1 —Ndx[ae(T) - Ua(T)L

and €e,max and &,,max are the maximum energies transferable to an electron and
atom, respectively, by a PKA of energy 7. We rewrite the conservation equation for
v(T) by weighting with the appropriate probability for the process by which it is
created and integrating over the permissible ranges of energy transfers:

W(T) = /0 (T — &) + v(ea)] pa dea

oo (2.43)
+ / V(T — & )pe dée + pov(T).
0
Substituting for p., p, and pg yields:
€a,max
(0a(T) + 0e(T)W(T) = / (T — £2) + v(ea)]0a(T, £a) de
0 (2.44)

£e,Max
+ / V(T — &)0.(T, &) dee.
0
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Since the maximum energy transferred to an electron is very small compared to T, v
(T — &) can be expanded in a Taylor series and truncated after the second term:

WT — &) = W(T) — %ge, (2.45)

and the last term in Eq. (2.44) can be written as:

/‘7 W(T — &) 0e(T, & )de. = v(T)/‘“ 0e(T, &) dee
0 0

dv £e,Max

AT o

(2.46)
&e0e(T, &) dée.

The first integral on the right of Eq. (2.46) is the total cross section for collisions of
the PKA with the electron and cancels the corresponding term on the left in
Eq. (2.44). The second integral on the right of Eq. (2.46) is the electronic stopping
power of the solid divided by the atom density. Combining Eqgs. (2.46) and (2.45),
we have:

i+ [SL o= [Thr-o e[t e e

where the subscript “a” on T and o has been dropped with the understanding that
these quantities refer to atomic collisions. Equation (2.47) can be solved using the

dE dE
hard sphere assumption, but where (—) is given by Eq. (1.190), i.e., <—> =
dx /. dx /.

kE'/? | giving:

2B 2 [T kT'/? d
WT) =22+ = / v(e)de — iy (2.48)
T ' T )y, oN dT

After simplification, the final result is as follows:

4k

]
oN(2Ey)"?

T
— forT > E, 2.49
<2Ed> ’ oril > Ly, ( )

where k is a constant depending on the atom number density, N, and the atomic
number. The term o is the energy-independent hard sphere collision cross section.
Note that when electronic stopping is properly accounted for in the basic integral
equation, the entire concept of a definite energy, E., separating regimes of elec-
tronic energy loss from atomic collisions can be dismissed.

However, Eq. (2.49) is still plagued by the use of the hard sphere assumption.
Lindhard realized that in order to ensure that reliable predictions are obtained, a
realistic energy transfer cross section must be used. Lindhard also realized that the
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parameter v(T) need not be interpreted solely as the number of displacements
produced per PKA, but could be taken to be that part of the original PKA energy,
which is transferred to the atoms of the lattice (rather than the electrons) in slowing
down. In reality, collisions of the PKA with atoms compete with collisions with
electrons. But the processes can be treated as independent events. Nevertheless, the
expression for v(T) needs to be reformulated.

In 1975, Norgett, Robinson, and Torrens [17] proposed a model to calculate the
number of displacements per PKA according to:

_KkEp k(T —n)

T) =
") =55 = o8

, (2.50)

where T is the total energy of the PKA, # is the energy lost in the cascade by
electron excitation, and Ep, is the energy available to generate atomic displacements
by elastic collisions and is known as the damage energy. The displacement effi-
ciency, x, is 0.8 and is independent of M,, T, and temperature. The quantity Ep is
defined by:

T

o = T kgle)’

(2.51)

and inelastic energy loss is calculated according to the method of Lindhard using a
numerical approximation to the universal function, g(€):

g(€) =3.4008 €'/% +0.40244 ¥ + €

7\ 1/2 (2.52)
ky = 0.13372]/6 <A‘) :
1

where € is the reduced energy given by:

AQT a
e =
A] +A2 Z]ZQSZ

9n2\ '/? 23 | 2/3\-1)2
a = (fg) Llo(Zl +Z2 ) ;

(2.53)

ap is the Bohr radius, and ¢ is the unit electronic charge. If E4 ~40 eV, then
v = 10Ep, where Ep is in keV.

The displacement function can also be written as the Kinchin—Pease result
modified by a damage energy function, &(T), given by:

v(T) = &(T) (2—;) (2.54)
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Fig. 2.10 The effect of electronic energy losses on the energy available for atomic displacements
(after [16])

where

ée) = ! . (259)

7\ /2
140.13372,/° <A—1> (3.4008 €1/ + 0.40244 €3/4 + €)
1

and giving the same result as in Eq. (2.50) except for the exclusion of the dis-
placement efficiency, x. Figure 2.10 shows the effect of accounting for damage
efficiency in the Kinchin—Pease result. Note that the function approaches 1.0 as the
recoil energy is reduced. As energy increases, the damage efficiency drops faster for
light materials.

2.2.4 Effects of Crystallinity

The analysis thus far has assumed that the cascade occurs in a solid composed of a
random array of atoms. However, when the order of a crystal structure is imposed
(Assumption 6), two important effects occur that can alter the number of dis-
placements produced by a PKA; focusing and channeling. Focusing is the transfer
of energy and/or atoms by near head-on collisions along a row of atoms.
Channeling is the long-range displacement of atoms along open directions (chan-
nels) in a crystal structure in which an atom travels by making glancing collisions
with the walls of the channel which are just rows of atoms. Both processes can
result in long-range transport of interstitials away from the initial PKA or the
cascade. Both processes also reduce the number of displacements per PKA, w(T), as
calculated from the simple Kinchin—Pease model.
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Focusing

The effects of focusing were first seen in the directional dependence of the threshold
energy, Eq. In an fcc lattice, for example, displacements occur in the (100) and
(110) directions with the lowest energy transfer of any crystalline direction. Since
the direction of the primary knock-on is random, focusing must be possible for a
sizable range of polar angles off the close-packed direction. If exact head-on col-
lision were required to produce a linear collision chain, the phenomenon would be
of little practical significance since this probability is extremely low.

Focusing along an atomic row can be analyzed using the hard sphere approxi-
mation. The distance between atoms along a particular crystallographic direction is
denoted by D. Figure 2.11 shows two atoms of such a row in which a collision
sequence is initiated by the atom which was initially centered at A. This atom
receives energy T and moves off at an angle 6, to the atomic row. The dashed circle
shows the atom position at the instant it strikes the next atom in the row. The radius
of the colliding sphere, R, is obtained from the Born—-Mayer potential. The impact
transfers some of 7 to the second atom, which then moves off in the direction of the
line joining P and B at an angle 8, to the row. From Fig. 2.11, we can also show that:

APsin 0y = PBsin 0;. (2.56)
If 6y and 6, are small, Eq. (2.56) can be approximated by:
AP0, ~ PBO,, (2.57)
and if 6, and 6; are very small, then:

AP ~AB — PB =D — 2R, andsince PB = 2R (2.58)
(D —2R)0y = 2RO, '
and

0(D — 2R) = 0,(2R). (2.59)

Fig. 2.11 The simple
focusing effect assuming hard
sphere collisions
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If we further define a focusing parameter:

f=01/bo, (2.60)
then by Eq. (2.59):
D
f= R 1. (2.61)

This permits us to write the following inequalities:

for f > 1,D > 4R and |6y| < 6|

(2.62)
for f<1,D < 4R and |0y| > |0y].

Considering further collisions, by the time the momentum pulse reaches atom 7, the
relation between angles is given by:

9,1 :fgn—l
:fzgn—2
=130,
’ (2.63)
D n
— "0 = (ﬁ— 1) 0o,
or finally:
n D !
0= (17t = (55-1) oo (.64)

This last relation shows that if D > 4R, the focusing parameter fis greater than unity
so that the angles 6, will increase in successive collisions. Conversely, if D < 4R, f
is less than unity and the angles 8, converges to zero.

A set of conditions also exist under which the scattering angle 6, will neither
diverge nor converge after successive collisions. These are the conditions for
critical focusing (6, = 6,, . 1 = ...) which can be determined as follows. The recoil
angle of atom B can be related to the initial direction of atom A by applying the law
of sines to triangle APB:

sin(t —60p—6,) D

= 2.
sin O 2R’ (2.65)
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which simplifies to:

sin(@o + 01) D
U= 2.
sin 0 2R (2.66)

The condition for critical focusing is €, = 8,. Applying this equality in Eq. (2.66)
gives:

sin 20, D
m = 2cos 60 = ﬁ’ (267)
and
D
cos bty = cos 0. = iR’ (2.68)

D
or focusing will occur when cos 0y < iR and:

cosl, = — (2.69)

4R’
Equation (2.60) also shows that focusing of momentum is favored along rows of
atoms in the {hkl) directions for which the separation distance D™ is a minimum,
or the close-packed directions.

If we treat the atoms as having an energy-dependent radius, we can determine
the maximum possible energy for focusing at any given collision angle. The key is
to allow the potential between atoms to vary with separation. The critical focusing
energy, EM is defined as that energy below which f< 1 and D < 4R, and focusing
is possible. In the hard sphere model, the relation between kinetic energy, E, and

1
potential energy V(r) for a head-on collision is given by Eq. (1.80) as V(2R) = EE .

If V(r) is described by the Born—-Mayer potential, Eq. (1.47), then V(r) = A exp
(—Br), and:

E =2Aexp(—2R/B). (2.70)
.. D
For a head-on collision, 6, = 0, so cos 0, = iR = 1, and we have:
-D
Efc =2A exp (E) . (271)

This means that any angle greater than zero will result in defocusing for E = Ey. or
that focusing at an energy Ef. can only occur for § = 0°. Clearly then, the critical
focusing angle depends on the energy of the projectile. The relation between angle
and energy is developed by writing the expression for Ef, in terms of D:
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D =2BIn (z—A> (2.72)

fc

Now, for any atom of energy T reaching a separation of 4R:
2A
4R =2BIn <7) (2.73)

Combining these equations gives:

D  In(24/Ex)

2 - MEAER) R 2.74
4R~ % T AT fe (2.74)

Note that the condition of critical focusing can be expressed in two ways:

-D
1. Ey =2Aexp (E) : This condition gives the energy Ef. for which focusing

occurs for a head-on collision (6, = 0).
In(2A/Ex.)
In(24/7T)
a head-on collision 6., at which a PKA of energy 7 can initiate a focused
sequence.

2. cosl, = : This condition gives the maximum angular deviation from

From the first expression, it should be apparent that focusing is a function of
crystallographic direction since D is a function of crystal structure. That is,

i _ thl
EM™ — 24 . 2.7
f eXp( 2B > (2.75)

For example, in the fcc lattice, we have:

pi1ooy _

pio) _ Qa
2

DM = /34

therefore, since D<”0> < D<100) < D(m>, we have E§”0> > E§100> > Eélm.

Typical values for Ef<“0) are 80 eV in copper and 600 eV for gold. In any case,
E¢ is much less than initial PKA energies.

From the preceding discussion, it should be apparent that focusing is only
applicable if a scattered atom is within an angle 6, of an atomic row. Then, a focused
sequence can result. It is therefore important to determine the probability that the
initial direction of a struck atom is within a cone of apex 6, about an atomic row.
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For a random starting direction, the probability of generating a focused collision
sequence at energy 7 is as follows

>

2
P(T) = Zc (2.76)
Expanding cos 6. in Eq. (2.69) gives:
1 D
1—- 592 ~ AR’ for small .. Substituting from Eq. (2.76) gives:

Pi(T) = % (1 - ﬁ)’ (2.77)

or

1
2" In(2A/T)
1 In(2T /Ex,) }

(2.78)
2 Ln(EfC/ZA) + In(T/Ex.)

Pt = - [1 ln(2A/EfC)]

Since E;/2A K 1 and T/E;. ~ 1, then:

1In(T/E.
_ LIn(T/Ee) g

21n(E JA) (2.79)
=0 T >Eg

Py(T)

For n equivalent directions in the crystal:

) = 2 o0

For example, in copper, Ei, ~ 80 eV, and for A ~ 20,000 eV,
P60 eV) ~ 0.026n. For n = 12, then Py ~ 0.3 or 30 %. Focusing refers to the
transfer of energy by elastic collisions along a line, but without involving the
transfer of mass. We will next discuss replacement collisions in which both energy
and mass are transferred.

Replacement Collisions

In addition to energy transfer, mass can be transferred by replacement of the struck
atom with the striking atom if the center of the first atom moves beyond the
midpoint of the two atoms as they reside in the lattice. In our analysis of focusing,
we assumed hard sphere collisions. However, if we assume that there is a softness
to the atom, three things occur:

1. The hard sphere model overestimates the angle of scattering for a particular
impact parameter, and hence, the amount of focusing must be overestimated.
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Fig. 2.12 Head-on collisions in a focused chain when the interaction potential acts continuously
during the collision. (a) Atom positions during the collision initiated by the atom on the /eft.
(b) Separation of atoms A, and A,, , ; during the collision (after [5])

2. Atoms in the row feel the influence of the oncoming disturbance long before it
gets there so the atom is already moving. Since D is decreased, focusing is
enhanced.

3. Replacement becomes possible.

Referring to Fig. 2.12, as the collision proceeds, the distance x between atoms A,
and A, decreases continuously. The velocity of the center of mass (CM) is as
follows:

v M, (M
= ——— | — | U
M= \Mm my) T\ M, )

where v;andv, are in the laboratory system. The relative speed, defined by
g = b] — Ly, gives:

Vew + (=2
D = _—
PEYeM T\, )8

v M,
D — + —
: o™ M, +M, &
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and the total kinetic energy of the two particles is as follows:
KE = 1/2Mv? +1/2M,v3,
and in terms of g and V- is as follows
KE = 1/2(M, + M)V}, +1/2u8%,

MM,
M, +M,
two parts: one due to the motion of the system and another due to the relative
motion of the two particles. Conservation of total energy is given as E, + V(x) = E,
where V(x) is the potential energy at a head-on separation distance of x, E, is the
relative kinetic energy at infinite (initial) separation, and E. is the relative kinetic
energy at any point. Rewriting the kinetic energy in terms of g gives:

where y is the reduced mass = ( ) . The total kinetic energy is divided into

1 1
SHg” +V(x) =5 ugy

and

80=DY10,

where g is the initial speed. This equation should be recognizable from our earlier
analysis in Chap. 1, Sect. 1.2.2. Recall that at x = Xpin, V(Xmin) = 1/24g3, and for
M, = M,, then gy = v;g and V = E/2.

We also assume that the interaction energy at the initial separation is V(D) <
%ug%. The time rate of change of the separation distance is equal to the relative
speed:

% = —g. (2.81)

Taking the collision time as twice the time needed to reach the distance of closest
approach:

Xm dx V(xm) dV
t=—2[] == —2/ , (2.82)
D & V(D) gdV/dx

where x,, is the distance of closest approach.
Since V(x) = A exp(—x/B), then:

dv A Vv
— = —Zexp(—x/B) = —— 2.
=~ Zexp(—a/B) = — 5 (283)


http://dx.doi.org/10.1007/978-1-4939-3438-6_1
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and:

- { [’; - v] ;}1/2 (2.84)

where p = MJ/2 for like atoms and 1/2ug3 = 1/4Mv?, = E/2. Substitution of
Egs. (2.83) and (2.84) into Eq. (2.82) yields:

oM\ V/? [E2 av
=B 7 T Ao 2 (285)
v(ip) V(1 —2V/E)
1/2 1/2
= 2B (2—M) tanh~! {1 — 2‘/—@} . (2.86)
E E

Note that the definition of a hard sphere radius has been used for the upper limit,
i.e., Xy, is taken to be 2R(E). For V(D)/E K 1,

2M\'? [ 2E
tt=B|— ] In|—|. (2.87)
E V(D)
V10 E\'?
Since the speed of the center of mass is - = (ﬁ) , the distance moved by the

CM during the collision time, f., is as follows:

£\

If x> D/2, atom A, will end up to the right of the initial halfway point and replacement
will occur, and A,, will occupy the lattice site occupied by atom A, . . Relating the
distance x to energy by substituting for 7. from Eq. (2.87) into Eq. (2.88) gives:

%: In (ﬁg))) (2.89)

For x = D/2:

(P 2
*P\2B) ~ Aexp(—D/B)’
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Fig. 2.13 Energy scale for focused energy transfer and focused replacement sequence

and the replacement energy becomes:

A -D

According to the above arguments, and comparing to Eq. (2.71), focused
replacement is possible when the energy transported in the collision chain satisfies:

1 D\ 1
E>E —~Aexp( =) = = E. 291
Z =3 exP(w) 4 (291)

Therefore, we get focused replacement, or:
E¢ /4 < T < Eg. focused replacement
T < E¢ /4 focused momentum/energy packet

Hence, mass transfer can occur when E is between E, = E;./4 and E., which from
our previous example is about the same or slightly less than the displacement
energy, Ey. Figure 2.13 shows where focusing and replacement collisions fall on the
energy spectrum of the PKA.

Assisted Focusing

In our analysis of focusing, we have not accounted for the effects of surrounding
atoms or nearest neighbors. Due to their repulsion of the moving atom, they tend to
act as a lens and aid in the focusing process. The net result of this assisted focusing is
to increase the critical energy for focusing, E;., rendering focusing more probable.
Second, the ring of atoms surrounding a focusing event also tends to dissipate energy
by glancing collisions. This effect is augmented by the vibrational motion of the atom
rings, which can be increased with temperature. The length of the replacement chain
and the number of collisions in the chain decrease as the temperature increases. The
increased motion of the surrounding atoms increases the energy loss from the col-
lision sequence. Other effects that destroy the sequence are alloying elements and
defects such as interstitials, vacancies, and dislocations. Figure 2.14 shows the
number of collisions in a focused chain of initial energy E in room temperature copper
along with the focusing probability. Table 2.3 from Chadderton [18] gives the
focusing and replacement energies in various directions in fcc and bcec lattices as
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Table 2.3 (a) Equations for Ef* in the fcc and bec lattices considering assisted focusing
(after [18]). (b) Equations for replacement energies (E™) in the fcc and bec lattices (after [18])

(@)
{hkl) Face-centered cubic Body-centered cubic
(100) A(D'10)? plioy ! ( 111)
pi et =z 2Aexp| ———=
282 CXP( 43) B3
110
(1107 2Aexp<*D‘ ) w1y [ piys\"
exp| —
2B 1582 2v/3B

(111) i 1/2A(D110)2 _im
19 B P\ 2B

19
12

)

piit
2A exp (7 ﬁ)

®

(hki) Face-centered cubic Body-centered cubic
(100) srep( -2 A (2"
(o) (%)
( 11 0) A plo plo
5 %*p (* E) 3Aexp <7 ﬁ)
(1) 4Aexp(—ﬂ) Mexp(—i“)
B3 2B

1 In the (110) plane only
™ Assisted focusing

modified by surrounding atoms (assisted focusing). Note that in all cases, the
focusing energies are larger when the surrounding atoms aid in the focusing process.

Channeling

Channeling is the long distance displacement of energetic knock-on atoms down an
open direction in the crystal lattice. Figure 2.15a shows a schematic of an atom
spiraling down an open channel in a crystal lattice, and Fig. 2.15b shows axial and
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Fig. 2.15 (a) Schematic of an atom moving in a channel in a crystal lattice (after [19]), and
(b) axial and planar channels in the fcc lattice (after [20])
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Fig. 2.16 Trajectory of a channel wall
channeled atom (after [5]) l
z
I A

E
’

Ven | channel
1 | potential
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planar channels along specific crystallographic directions in the fcc lattice. The
walls of the passageway consist of atomic rows. If the rows surrounding the channel
are close-packed, discrete repulsive forces between atoms are “smeared out” and the
atom appears to be traveling in a long cylindrical tube with radius R.,. The value of
R, can be determined by equating ©R?, with the cross-sectional area of the channel.
If the amplitude of the lateral oscillations of the moving atom is small compared to
R.p, the potential well provided by the channel wall is roughly parabolic in the
direction transverse to the channel axis.

The interaction of the moving atom with a channel wall (Fig. 2.16) can be
described by a harmonic channel potential:

Ven(r) = kr?, (2.92)

where r is the lateral distance from the axis, and & is the force constant that depends
on the potential function describing atom—atom repulsion and channel dimension
R Using the Born—-Mayer potential to describe atom—atom interactions in this
energy regime, k becomes:

A (27R R
o= (ZENeh ) exp( et ) (2.93)
DB\ B B

where D is the atom spacing in the rows forming the channels. Moving atoms enter
the channel with a velocity component along the channel axis (Fig. 2.16) given by:

2B\ 12
Vo = (ﬁ) cos 6y, (2.94)
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where (2E/M)"? = V,. The axial velocity is gradually reduced by inelastic energy
loss to the electron cloud. The moving atom undergoes simple harmonic motion in
the r direction with period 7 given by:

M\ 12
T=2n (ﬂ) , (2.95)

and the initial wavelength of the oscillation is equal to V,qt for 8, = 0 or:

1/2
A=2n (%) . (2.96)

The amplitude of lateral oscillation is determined by the injection angle, 8, and the
kinetic energy of the injected atom, E. The r component of the atom velocity as it
enters the channel is as follows:

2ENV2 2B\ 12
Vo = (ﬁ) sin 0y (M) 0o. (2.97)

So the radial component of the kinetic energy is E()(z), which is equal to the potential
energy at the transverse amplitude, k2, . Equating kinetic and potential energies
and solving for rp,,, gives:

12
Tmax = (;) 0o, (298)

and the trajectory of the channeled atom is as follows:

O e

The critical angle below which channeling can occur, 6., is obtained by equating
the transverse amplitude, r,,x, and the channel radius, R.,:

0\ /2
Bch—RCh<E) : (2.100)

Note that 8, decreases as E increases, as expected. When the mean free path between
collisions is of the order of a few atom spacings, large-angle collisions become
probable and channeling dissipates. The channeling probability is difficult to deter-
mine since an atom must be knocked into the channel, but there are no atoms near the
channel axis. The event probably starts with an impact on an atom forming the
channel wall. If the entrance angle is small enough, it may begin to channel.
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There is no upper limit on energy for channeling. Instead, 6., just becomes smaller
as E increases. The minimum channeling energy occurs when the wavelength is ~nD
or a few atom spacings (n ~ 2). Essentially, there develops a resonance between
impulses from channel walls and transverse oscillations. The trajectory terminates in
a violent collision. Recall that our treatment is only valid if A >> D. Solving for E in
Eq. (2.96) and letting A=2D yield E;, ~ 0.1 kD?. For copper, E, is about 300 eV. E,
is larger for large mass because k increases with mass. Channeling is a high-energy
phenomenon and is most significant for light atoms, while focusing is a low-energy
phenomenon that is most significant for heavy atoms.

Effect of Focusing and Channeling on Displacements

The probability of a crystal effect is a function of recoil energy. P(7) is used for
either Py or Py, but since Er ~ 100 eV, Py is quite small. The equation governing
cascade effects can be modified to account for crystal effects by modifying
Eq. (2.14):

W(T) = P(T) +[1 — P(T)] F?‘ + % /2 ) v(e)ds} . (2.101)

The first term on the right of Eq. (2.101) represents the lone displaced atom, which
results if the PKA is channeled or focused on the first collision. The second term
gives the number of displacements created by a PKA that makes an ordinary
displacement on the first collision. Assuming P # P(T), Eq. (2.101) is differentiated
with respect T to yield:

dv
T—=(1-2P P. 2.102
= (1=2P)y+ (2.102)
Integration gives
CT(I—ZP) )
T)=——FFF— 2.103
WT) = S (2.103)

and the constant, C can be found by substitution into Eq. (2.102):

1-P
(2Ed)(172P) ’

resulting in the final solution:

1—p T\ p
T) = — - . 2.104
=73 <2Ed) 1_2pP (2.104)
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It should be noted that the most important crystal effect is channeling, which is most
important at high energies. For example, for P = 7 %, a 10 keV PKA in iron
produces 100 displacements or about half the amount with P = 0. Figure 2.17 shows
where channeling occurs on the PKA energy scale. Note that channeling is a
high-energy phenomenon and that there is a gap between the replacement energy,
below which replacements or focused energy transfer occurs, and the channeling
energy, above which channeling occurs. Given the K-P model for displacement and
the various modifications to the basic model, we now turn to the determination of
the number of displaced atoms.

2.3 The Displacement Cross Section

The results of previous sections may now be used to define the displacement cross
section as:

op(E) = /TT v(T)o(E;, Q;,T) dT, (2.106)

where v(T) is the number of displacements caused by a PKA of energy 7, o(E;, O;, T)
is the general form of the energy transfer cross section, and 7and T are the minimum
and maximum transfer energies. This quantity was first presented in Eq. (2.2) and
gives the average number of displacements produced by an incoming neutron of
energy E;. We can apply this expression to the various regimes of scattering in order
to determine their individual contributions to the total number of displacements.
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We will first determine op(E;) for each type of interaction using the basic K—P result
and then go back and add in the modifications.
2.3.1 Elastic Scattering

Consider ay(E;, T) for elastic scattering. From Eq. (1.19),

4
Js(Eia T) = VEO—S(Ei, ¢)

In the case of isotropic scattering:

ag Ej o, (E;
oy(E, §) = Sin); (. T) /(E)
therefore,
E; VE;
ops(Ei) :M/ v(T)dT. (2.107)
VE; Eq

Should we wish to consider anisotropic elastic scattering in systems such as fast
reactors, the angular dependence of the elastic scattering cross section can be
written in a series of Legendre polynomials:

os(E;)
47

io: ay(E;)Py(cos @), (2.108)

=0

(EH (,‘b

where oy(E;) is the total elastic scattering cross section for incident neutrons of
energy E;, P, is the (th Legendre polynomial, and values of a, are the
energy-dependent coefficients of the cross section expansion. At neutron energies
encountered in thermal or fast reactors, it is sufficient to retain only the first two
terms, £ = 0 and ¢ = 1. Since Py = 1 and P, = cos ¢:

GS(Ei)
4n

os(E;, ¢) = [1+4a;(E;)cos ¢]. (2.109)

Also, given that cos ¢ = 1-2T /yE; and substituting Eq. (2.109) into Eq. (2.106)
gives:

ons(Ei) = asy(g) /EdE v(T) {1 +a(E) <1 - f;ﬂ dr. (2.110)


http://dx.doi.org/10.1007/978-1-4939-3438-6_1
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2.3.2 Inelastic Scattering

Since inelastic scattering is isotropic in the center-of-mass system:

si Eia .
a5(Ei, 0 §) ZW- (2.111)

Equation (1.30) gives the energy transfer cross section for inelastic scattering in the
resonance region as:

(E.. O ‘ “1/2
st(Ean,T)=M{1+%<—I+A)} ,

'))Ei Ei A
so that
a(Ei, ) (L+A\] T T
(E)y=) Q2= Z (o / T)dT 2.112
oou(B) = 7 25N e e
where the minimum and maximum values of T(E;, Q; ¢) are given by Eq. (1.27),
and setting cos ¢ = —1 and 1, respectively, gives:
A_yEi l—|—1+AQ]+ 1+QJ1+A 12
T2 2A E E A
1/2
. VE; 1+AQ; 0i1+A
Ti=—\1+—=—-(1+=— .
N EY E; * E A

2.3.3 (n, 2n) and (n, y) Displacements

The displacement cross section for (n, 2n) reactions can be written as:

T

E—E],
O'D(n,Zn) (E,) = /O a(n,2n) (Ei, T) Z—EddT, (2 1 13)

where o, on) (Ei, T) is given by Eq. (1.40).
The displacement cross section due to (n, y) reactions can be written as:

T
T
opy(Ei) = oy —dT. 2.114
olB) =, | 3 (2.114)


http://dx.doi.org/10.1007/978-1-4939-3438-6_1
http://dx.doi.org/10.1007/978-1-4939-3438-6_1
http://dx.doi.org/10.1007/978-1-4939-3438-6_1
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However, since we have assumed that the lattice atom recoils with an average
energy

and that E, for a given isotope is either known or can be measured, Eq. (2.114) can
be simplified to:

- 2
T E?

L —g 2.115
T2E; ~ VSEJ A+ 1) (2.115)

Opy =

The total displacement cross section due to these forms of neutron interaction then
becomes:

op(Ei) = ops(Ei) + 0pg(Ei) + 0pman) (Ei) + opy

JE) BT 2T
:M/ Z hraE) (1= ar
VEi Jg, 2E4 VE;

d

_ /2 T
st(Einj) % 1+A 1 /]l
2 B | TE\ A " T (2

J
oy (B, T) —dT
+ /0 T nom)( )2Ed
E?
T B AL )

where the terms are for elastic scattering, inelastic scattering in the resonance
region, (n, 2n) reactions and (n, y) reactions, respectively.

2.3.4 Modifications to the K-P Model and Total
Displacement Cross Section

The displacement cross section can be modified to account for the relaxation of the
various assumptions made to the basic K—P model as in Sect. 2.2. These modifi-
cations are summarized in Table 2.4. Applying these correction terms to the basic
K-P result by consolidating Assumptions 1 and 3 into a single constant C' and
using Eq. (2.104) for the effect of crystallinity transform Eq. (2.116) to read:
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Table 2.4 Modifications to the displacement cross section

Assumption Correction to W(T') = T2E, Equation in text
3: Loss of Ey4 0.56(1 N i) Equation (2.31)
2E4
4: Electronic energy loss cutoff T Equation (2.54)
1) 5
d
5: Rea?lstlc energy transfer cross Ci, 052<C<122 Equation (2.33),
section 2E4 (2.39)
6: Crystallinity 1—p /71— 2P) P Equation (2.104)
1—2p (E) T1-2p
7\ —2P) Equation (2.105)
2k,

D[R 1- (1-2P)
JD:asy(Eb?) /E lll— 21; (C’é(T)z_;) - —PZP]
x [1+a1(Ei)(1 _%)}dT
- (1-2pP)
11_21;<c’é(T)2£d> _I—PZP]dT

i}
X/
T

E-E, 1—p 7\ p
E.T C'E(T)=— — dr
T TS )L_ZP( D) o

1 P E2 1-2P p
|— | ) ————— — .
o —2P< < )8Ed(A+1)c2> 1-2p

(2.117)

Using the more simplified expression for the effect of crystallinity, Eq. (2.104)
reduces Eq. (2.117) to:
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Fig. 2.18 The displacement cross section for stainless steel based on a Lindhard model and
ENDEF/B scattering cross sections (after [21])

o =248 [ (st [ (1 20)Jor

ay(Ei, Qj) 0 (1+A -2 ) 7\ (1-2P)
+ZT{1+E< A )] /T (Cé(T)2_Ed> dr

J j

E—E, T (1-2P)
E,T)| C'&T)== dr
+/0 0(n,2n)( ) )< é( )2Ed>

= 1-2p
/ v
toy <C ¢(T) 8&1(14‘*'1)02) :

(2.118)
or,
0D = 0Ds + 0Di + Op(n2n) T ODy- (2.119)

The displacement cross section for stainless steel was calculated by Doran [21]
using the energy partition theory of Lindhard and is shown in Fig. 2.18.
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2.4 Displacement Rates

Recall that the displacement rate was given in Eq. (2.1) as:

R = ﬁEN(b(Ei)O'D(Ei)dEi.

This is the displacement rate density or total number of displacements per unit
volume per unit time [#/cm” s]. To get a rough estimate of the order of magnitude of
this number, let us simplify the displacement cross sections as follows. Neglecting
(n, 2n) and (n, y) contributions to displacements, all modifications to the simple K—
P displacement model (i.e., using v(T) = T/2Ey), and neglecting E4 relative to E;, the
displacement cross section due to elastically and inelastically scattered neutrons
only becomes:

on(E) = @/EE 2—;[1 +a(E) (1 _ 2—T>]dT

vE; 3 vE;
7
T
/ L ar.
T 2E4

oy(E. Q) [, @ (1+A
+ ; vE; + E\ A
Assuming that elastic scattering is isotropic (a; = 0), neglecting inelastic scattering
and integrating between the limits E4 and yE; gives:

i (2.120)

os(E) ("5 T
E)=2 _—_dr, 2.121
T /E 2Eq 2120

and if yE; > E,, then:

o (E) 2E, E. T VE; E
E;) =22 dr —dT dr
oE) = F UE " /2,; T /E 2E, }

2.122
_ o(E) EE E? ( )
_ZVEzEd VEite 2 '
If we choose yE; ~ E. then we have:
VE;
E) ~ s(Ei), 2.123
w(E) ~ (15 ) (B (2123

and Eq. (2.1) becomes:
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Ny [*
Rd = — Gs(Ei)Ei¢(Ei) dEi (2124)
4Ed Ed/:,
VE;
= — 2.12
Noy (4Ed>¢7 ( 5)

where E| is an average neutron energy and ¢ is the total neutron flux above energy
E4ly, and the term in brackets is the number of displacements (Frenkel pairs)
produced per neutron. The validity of assuming isotropic scattering and neglecting
inelastic scattering is shown in Figs. 2.19 and 2.20. Essentially, both approxima-
tions are reasonable at energies below one to a few MeV.

Example 2.1. Neutron irradiation of iron
As an example, let us look at the damage caused by 0.5 MeV neutrons in Fe
in a fast flux that may be representative of the core of a fast reactor:

N = 0.85 x 10** atoms/cm’
o, =3 X 107%* cm?
¢ = 10"5 neutrons cm s~

2B

1

= 350 displaced atoms/neutron

R, is 9 x 10' displaced atoms per cm® per second, or dividing R, by
N gives ~ 107 dpa/s or about 32 dpa/year. This is equivalent to each atom
being displaced from a normal lattice site once every 12 days.

Fig. 2.19 Recoil energy — T 1 T T T T T 1
spectra from the elastic E -
scattering of fast neutrons T

using data from ENDF/B files '
(after [22])

Recoil probability density

TTTTITh
e
—

=5

0 0.2 0.4 0.6 0.8 1.0
Relative recoil energy
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A second example can be worked for the displacement rate in the alu-
minum fuel plates in an MTR-type thermal neutron research reactor. In this
case, we have:

E; ~ 0.5 MeV

N = 0.6 x 10* atoms/cm®

o, =3 x 10 *cm?

¢ =3 x 10" neutrons cm s~
VE;
4Eq

1

= 690 displaced atoms/neutron

Ry is 4 x 10" displaced atoms per cm’ per second, or dividing R, by
N gives ~7 x 107® dpa/s or about 2 dpa/year. Note that even though the
number of displacements per neutron is almost a factor of 2 higher in Al than
in Fe, the damage rate is significantly lower because of the much lower fast
flux in this type of reactor.

2.5 Correlation of Property Changes and Irradiation Dose

The ultimate objective of the calculation of Ry is to provide a prediction of the
extent of change of a particular property of the material under irradiation. The
mechanical property may be yield strength, swelling, degree of embrittlement, etc.
Recall in the introduction that the determination of the number of displaced atoms
was motivated by the inability of particle fluence to account for property changes
(see Fig. 1 in the Introduction). While an improvement over units of exposure such
as neutron fluence, displacement rate alone cannot account for the macroscopic
changes observed, and a semiempirical method of correlating damage with
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macroscopic property changes has evolved known as the damage function method.
In this method, the atom displacement rate is replaced with the change in some
macroscopic property after a time t of irradiation. The displacement cross section is
replaced by the damage function for the particular mechanical property, G;(E),
hence:

AP,;i_// E)¢;(E, 1) dE 1, (2.126)

where AP;; is the change in the property labeled by the index i, during an irradiation
time of ¢ and in a neutron flux where ¢,(E,?) is the jth neutron differential spectrum.
Assuming energy—time separability, ¢(E,;) = ¢,(E,)t, then Eq. (2.126) can be
rewritten as

AP =1 /Gfk> (E);(E) dE, (2.127)

where the superscript refers to the kth cycle of iteration.
The objective is to deduce a single function G;(E) from a set of measured AP;

values. Given APl(.jk) and ¢,(E) as input along with an initial approximation of

Gy(E) or Gi<0>(E), a computer code is used to generate iterative solutions Gi(k) (E).
An appropriate solution is obtained when the standard deviation of the ratios of all
measured-to-calculated values AP;/ APg‘) reaches a lower value that is consistent
with experimental uncertainties. As it turns out, the resultant damage function is
highly sensitive to the initial approximation as shown in Fig. 2.21. But note that
since the shape of G;(E) is the same as the displacement function, it is clear that they
are related. However, this result tells us that we cannot fully understand radiation
effects by only calculating the number of displaced atoms. We cannot treat radiation
effects as a black box. Rather, in order to understand the effect of the damage on the
properties of the material, we must understand the fate of these defects after they are
formed. This realization is reinforced by the property dependence on dose shown in
Fig. 2.22. Note that for the three property changes, resistivity, radiation-induced
segregation, and hardening, the functional dependence on dose is strikingly dif-
ferent between them. While property change certainly relates to displacement
damage, the nature of the change is not uniform but varies considerably depending
on the property measured. The next chapter explores the spatial and temporal
distribution of radiation damage. But before we examine the damage zone in detail,
let us complete our picture of the production of displacements by addressing the
damage created by charged particles such as ions and electrons.
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Fig. 2.21 (a) 60 ksi yield strength damage function for 304 stainless steel irradiated and tested at
480 °C (after [23]) (b) Damage function for a 2.0 x 10~% psi~' /& property change for stainless
steel (after [24])

2.6 Displacements from Charged Particle Irradiation

Displacement from charged particles differs from that due to neutrons because as
they travel through the lattice, they lose energy via electronic excitation in addition
to via elastic collisions. Figure 2.23 shows the trade-off in energy loss mechanism
dominance with energy in the energy range of relevance for ion—solid interaction,



2.6 Displacements from Charged Particle Irradiation 121

A swelling
hardening

Property

resistivity

>

dpa

Fig. 2.22 Dose dependence of swelling, resistivity, and radiation-induced segregation
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Fig. 2.23 Variation in nuclear and electronic stopping powers over the energy range of relevance
to ion—solid interactions
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Fig. 2.24 Residual range of an ion incident on a target and the regimes of electronic and nuclear
stopping dominance

and Fig. 2.24 shows the residual ion energy as a function of ion penetration depth.
Note that electronic stopping will dominate at short depths, but elastic collisions
will dominate near the end of range. An expression for the number of displacements
from a charged particle can be derived from the analysis of energy lost from the
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PKA by electronic excitation given in Sect. 2.2.3 and described by Eq. (2.40)
through Eq. (2.49). Equation (2.44) describes the loss of energy to both atoms and
electrons in the target by the PKA. We can revisit this analysis assuming that the
particle we are tracking is the incident ion. As was done in Eq. (2.45), we can
expand the terms for v(T — ¢,) and W(T — &.) in a Taylor series and truncate the series
after the second term, giving:

d
WT = &) = v(T) = e,

d€ (2.128)
W(T —e)=v(T)— a7

and the integrals involving the terms W(T — ¢,) and (T — &) can both be written in
the general form:

Emax Emax d Emax
/ (T — &)a(T,e)de = v(T) / o(T,¢e)de — _v/ ea(T,¢) de
0 0 dr Jo

dv(T)
- dr

(2.129)
=v(T)o(T)

(1),

where S(7) is the stopping cross section. Since in this treatment, the ion is the
incoming projectile, we will rewrite Eq. (2.129) using our established convention
that the incoming particle is of energy E; and it transfers energy T to the target
atoms and electrons, and the maximum energy transfer is 7"

T T dv T
/0 v(E; — T)o(E;, T)dT = v(Ei)/O a(Ei,T)dT—E \ To(E;, T)dT
= v(E)o(E) — dz(gi) S(E),

(2.130)

where Eq. (1.79) is used to transform the integral of the differential energy transfer
cross section, o(E;,T), to the total collision cross section, o(E;), and Eq. (1.129) is
used to transform the integral of To(E;,T) into the stopping cross section S(E;).
Applying the results of Egs. (2.129) and (2.130) into Eq. (2.44) gives:

dv(E;) = dE)/OTv(T)G(Ei,T) dr. (2.131)

S(E;
Since we are concerned with the(total number of displacements over the entire
range of the ion rather than the specific number of displacements over a distance
dx of the sample, we can integrate Eq. (2.131) over the entire range of ion energy
loss to obtain the number of displacements resulting from an incident ion with
initial energy E;:


http://dx.doi.org/10.1007/978-1-4939-3438-6_1
http://dx.doi.org/10.1007/978-1-4939-3438-6_1

2.6 Displacements from Charged Particle Irradiation 123

(2.132)

and

/ ' W(T)o(E', T)AT = o4(E), (2.133)

d

where E' = E'(x) is the ion energy as a function of the traveled path length x as the
ion travels down to zero energy. We can work a simple example using an
approximation to the treatment given above. We are interested in the number of
collisions made by an ion as it passes through a solid. We will take I as the ion flux
in units of ions/cm” s, and we can write the number of collisions per second in a
volume element of unit cross-sectional area and thickness dx which transfer energy
in the range (7, dT) to atoms of this element as:

NIo(E, T)dx. (2.134)

The number of collisions per unit volume per unit time which transfer energy in (7,
d7) at depth x is NIo(E, T) [collisions/cm3 s]. The number of displaced atoms for
each collision that produces a PKA of energy T is v(T). Therefore, the production
rate of displaced atoms at depth x is as follows:

vE
Rd(x):NI/E o(E, T)v(T)dT [displacements/cm’s]. (2.135)
d

(Note that we have not accounted for the fact that I is a function of x (or E) and that
I(x) # Iy.) E is a function of x since the ion slows down by loss of energy to the
electrons of the target. The functional form of E(x) can be estimated using dE/
dx = kE'? as:

E(x) = (Ei)‘/2—1/2er, (2.136)

where Ej; is the initial energy of the ion when it strikes the target. The number of
. . dpa .

displaced atoms/atom/s is Ry(x)/N, and the (onsienD) at a depth x is Ry(x)/NI. We

will assume that o(E, T) can be described by Rutherford scattering, and using the

Lindhard treatment for v(T) from the K-P model and assuming & = 0.5 gives:
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Ry /”E‘anfZ§e4<M+Mi>21 AMM 1 T
E

NI 2 4 M ) E 2 T2 2E,
i (M -+ M;) ‘ (2.137)
_ nZ373¢ <%> 7E; dpa
4EEq \M)  Eqion/cm®’

Applying this result to 0.5 MeV protons in iron gives ~ 10™'® dpa/(ions/cm?) at the
surface. 20 MeV C* ions incident on nickel produce ~3 x 10™'® dpa/(ions/cm?) at
the surface, but 50 times this amount at the damage peak. These values can be
compared to the damage rate from 0.5 MeV neutrons in iron:

Rq VEi
N <4Ed) »

=350 x3x 107 (2.138)
| displacements

=1x107? -
n/cm

Comparing 0.5 MeV neutrons to 20 MeV C” ions shows that over their range C*
ions produce 3000 times more displacements than do neutrons. Figure 2.25 com-
pares the displacement rates as a function of penetration depth for ions of various
mass and energy. As expected, for the same energy, ions of heavier mass deposit
their energy over a shorter distance resulting in higher damage rates. Note that due

1014 = | L . T T T 1

[ |7 =— 7.5 MeV tantalum

1055 5 3
Y |\7=— 5 MeV nickel =

™Y

10-16 E- 20 MeV carbon 7}
1017 = =
: ra
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k

Calculated dpa/(incident particle) (cm?)

1019 —
E 14 MeV neutrons

1020 E 1 MeV neutrons 3

1021 b=t ==t = ===
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Distance into solid ()

Fig. 2.25 Displacement-damage effectiveness for various energetic particles in nickel (after [25])
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to the large collision mean free path of a neutron as compared to an ion, the neutron
damage energy is low and constant over distances of millimeters.

Nomenclature

a Lattice constant

ao Bohr radius of the hydrogen atom

A Atomic mass

A Pre-exponential constant in Born—-Mayer relation, Eq. (1.47)
B Spacing between barrier atoms in crystal lattice

B Constant in exponent in Born—Mayer relation, Eq. (1.47)
c Speed of light

D Nearest neighbor spacing between atoms

E. Cutoff energys; critical energy for focusing

Ecn Critical energy for channeling

E¢. Critical focusing energy

Eq4 Displacement energy

Ep Damage energy

E; Projectile energy

E. Critical energy for replacement collisions; relative kinetic energy
E; Sublimation energy

E, Gamma ray energy

E; Incoming particle energy

E Kinetic energy of incoming particle in CM system

E! Energy of neutron after (n, 2n) reaction

E* Saddle point energy

Eeq Energy of atom in equilibrium lattice site

f Focusing parameter

g Relative speed v; — v,

G Damage function

T Excitation—ionization level

k Force constant; constant in the electronic energy loss term, kE'/*
m Mass of incoming particle; 1/s in power law expression
M, Mass of the electron

M, Mass of projectile

M, Mass of target

N Atom number density

p, P, P, Probability, referring to electron and atom

Py Channeling probability

Py Displacement probability

Py Focusing probability

0 Excitation energy of nucleus

Teq Equilibrium spacing between atoms

Fmax Transverse amplitude of channeled atom

R Atomic radius
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Radius of channel

Displacement rate [#/cm3 s]

Exponent in the power law approximation

Stopping power electronic, nuclear

Collision time

Energy transferred in collision

Minimum energy transferred

Maximum energy transferred

Average energy transferred

Energy transferred to target atom after (n, 2n) reaction
Energy per atom in a crystal

Binding energy lost by an atom when leaving a lattice site
Potential energy

Velocity of projectile in laboratory system

Velocity of target in laboratory system

Velocity of CM in laboratory system

Distance to atom barrier

Impact parameter

Atomic number

Compressibility

Secondary atom knock-on energy unit charge in Eq. (2.52)
Energy of atom in a normal lattice site

Energy of atom at saddle point

Reduced PKA energy

Neutron flux, fluence

4M\M>/(M; + M2)2

Energy lost to electronic excitation in the NRT model
Displacement efficiency

Reduced mass

Specific volume of an atom

Displacement function

Scattering angle in laboratory system

Critical focusing angle

Critical channeling angle

Total atomic collision cross section

Differential energy transfer cross section
Displacement cross section

Scattering cross section

Inelastic scattering cross section for the jth resonance
Cross section for (n, 2n) reactions

Cross section for (n, y) reactions

Period for oscillation for a channeled atom

Damage energy efficiency, Eq. (2.50)
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Problems

2.1

2.2

23

2.4

25

2.6

(a) Using the simple K-P model and assuming only elastic, isotropic
scattering, calculate the number of displacements per atom (dpa) in
nickel subjected to a fast neutron (2 MeV) fluence of 10%? n/em?

(b) Using the relativistic expression for the electron—atom energy transfer,
calculate the minimum electron energy required to displace an atom in
(i) Al and (ii)) W.

In a (n, 2n) reaction, a second neutron can only be emitted if the residual
excitation of the nucleus after emission of the first neutron exceeds the
binding energy of a neutron in the mass M nuclide. The recoil energy after
emission of the first neutron is taken to be the average value (cos ¢ = 0).
Write an expression for the recoil energy following the second emission.
An *°Fe nucleus undergoes an (n, y) reaction resulting in the release of a
single 7 MeV gamma ray, on average. If a steel component is located in a
reactor where the peak thermal flux is 1 x 10" n/cm? s and the thermal/fast
flux ratio is one (where Ef! > 1MeV), determine the relative displacement
rates by fast neutrons, recoil nuclei, and gamma rays which undergo
Compton scattering. Assume o, 4 ~ 4b, s ~ 3b.

A slab of iron is exposed to a 20 MeV gamma source.

(a) What is the most probable interaction between the gamma and the
electrons in the Fe?

(b) Assume the reaction you chose in part (a) occurs. Can this lead to the
displacement of an Fe atom if the displacement energy is 40 eV?

A thermal neutron causes the following reaction
YAl+n =2 Al+7.

The gamma energy is 1.1 keV. The gamma will interact with lattice
electrons. What is the most probable event? For this event, what is the
maximum energy transferred? Does the resultant electron have enough
energy to displace an aluminum atom (assume the displacement energy is
25 eV). Can the recoil Al atom displace another aluminum atom?

The (n, y) reaction in >°Fe releases a prompt gamma ray of energy
Ey =7 MeV.

(a) What is the recoil energy of the °’Fe product nucleus?

(b) Determine the number of displaced atoms per >’Fe recoil assuming
Ed =40 eV.

(c) If the thermal component of the neutron flux in a fast reactor is
10" n/cm? s, what is the damage production rate due to the (n, 7)
reaction in “°Fe?
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2.7

2.8

2.9

2.10

2.11

2.12

2.13

2 The Displacement of Atoms

(d) If the fast flux is given by ¢¢ (E,) = 10'%8 (E, — 0.5), where E, is in
MeV, what is the damage production rate due to the fast flux in iron?
Use the K-P displacement formula in (c) and (d). The scattering cross section
for 0.5 MeV neutrons is 3 barns. Also, 026 ~ 2.5 barns for part (c).
Assuming that atom—atom interactions can be treated as near head-on col-
lisions, the appropriate potential function is then the Born—Mayer potential.
Write an expression for the threshold energy for unassisted critical focusing
along the [110] direction in fcc nickel in terms of the lattice constant, a.
For iron (equilibrium phase for 400°C), assuming a focusing collision
occurs, how much does the closest approach (the allowed equivalent hard
sphere radius calculated using a Born—Mayer potential) change between a
[100] collision chain and a [110] collision chain?
(a) Calculate the focusing energy of the (111) direction for gold under the
condition of assisted focusing.
(b) Will focusing occur along the {111) direction in the absence of assisted
focusing? Why?
(c) The experimental focusing energy of gold is 21,000 eV for the {111)
direction. Compare your answer with this value.

(a) Determine the critical focusing energy for the {111), {110), and {100)
directions in fcc copper and iron.

(b) Plot 6, as a function of T < E, for the {111) directions in Ni and Fe.
Comment on similarities and differences.

(c) Do the same for the {110) direction of each.

(d) Repeat parts (a) and (b) using the inverse square potential, V(r) = Al
where A = 1.25 eV nm”.

(e) Over what energy range does focused replacement occur? How about
focused energy packets only?

For the focusing process as described in Problem 2.10, give a physical
explanation of why the critical angle for focusing, 6., should depend on the
projectile energy.

A 30 keV ion enters a channel in the solid lattice and loses energy only by
electronic excitation. Using the Lindhard stopping power formula Eq. (1.191),
determine the distance traveled by the ion before it is dechanneled. The
minimum channeling energy is 300 eV. Use k = 3.0NZ** eV"?/nm, where N
is the atomic density of the metal in nm™>.

Show that when channeling is accounted for in the collision cascade, the
average number of displaced atoms w(T) is as follows:

v(T) = (T/2Eq)" ™,

where p is the probability that an atom with energy, E being channeled is lost
to the cascade. Assume that p # (E), T » Eg4, and p K 1.

Assuming that all energy is lost by elastic collisions for 100 keV protons in
nickel determine:
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(a)
(b)

The energy loss per unit length in the solid, dE/dx
The range in the solid.

2.14 A crystal of copper is bombarded with monoenergetic (2 MeV) neutrons.

2.15

2.16

2.17

(@)

(b)

(©)
(d

Calculate the mean atomic displacement rate (displacements/cm’s)
using the simple Kinchin—Pease model and the following data:

Lattice parameter, Cu = 0 361 nm
Atomic weight of Cu = 63.54 amu
Displacement energy for Cu = 40 eV
= 10" n/em®s (2 MeV)

o, =0.5x 107** cm” (2 MeV)

Repeat part (a) but instead of 2 MeV neutrons, use a monoenergetic
thermal neutron beam with the same value of flux, a4, = 3.78 x 107%*
cm? and the recoil energy ~ 382 eV.

What would be the effect on your answer to part (a) by including
Lindhard’s damage energy function &(7)?

How would your answer in part (a) be affected by assuming that the
channeling probability is 1, 5, 10 %?

For the 2 MeV neutron bombardment problem described in Problem 2.14,
how would you go about calculating the threshold energy for unassisted
critical focusing along the [110] direction?

Assume that the copper target in Problem 2.14 was bombarded by a beam of
2 MeV He ions instead of a beam of 2 MeV neutrons. Calculate the dis-
placement rate at the surface of the sample and compare to your result for
Problem 2.14.

The same copper sample as in Problem 2.14 is bombarded with 500 keV Cu*

ions at a flux of 10" ¢cm™

2 571 Calculate:

(a) The displacement rate at the surface
(b) The location of the damage peak.
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Chapter 3
The Damage Cascade

3.1 Displacement Mean Free Path

In our discussion of cascade development, no consideration was given to the spatial
arrangement of displaced atoms. We assumed that every Frenkel pair created was
preserved and that no annihilation occurred. However, the spatial arrangement of
these Frenkel pairs is crucial in determining the number that survive annihilation or
immobilization by clustering. In order to understand what the damaged region looks
like, we need to know whether the displacements are concentrated or distributed.
A helpful tool in this regard is the mean free path for displacement collisions,
i.e., collisions in which the energy transferred is greater than E4. This will tell us
how far apart the displacements occur and hence the separation distance between
Frenkel pairs.

1
By definition, the mean free path /. = No and the corresponding displacement
o

cross section are:

o (E) = / o(E, T)dT. (3.1)

This is the cross section for the transfer of energy in excess of E4 and is given in
terms of the differential energy transfer cross section between lattice atoms. Note
that ¢/; has nothing to do with the projectile, be it a neutron or an ion, or the source
of the damage in general. Using the equivalent hard sphere model to evaluate o,
gives:

Additional material to this chapter can be downloaded from http://rmsbook2ed.engin.umich.edu/
movies/
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a(E)

ET) =
o(E.1) =2

but y = 1, so substituting into Eq. (3.1) and integrating yields:

o\(E) = /E@ﬂ:a(m@ _%> (3.2)

Eq

where o(F) = 4717 is the total collision cross section between lattice atoms, so:
E
o\(E) = 4nr? (1 _Ed)’ (3.3)

and r is the energy-dependent, equivalent hard sphere radius, which, using the
Born—Mayer potential, gives:

d,(E) = nB* {m (%)} 2 (1 - %) , (3.4)

and the mean free path, 4, becomes

)= : . (3.5)

24\ 17 E
NrB?|In( =) | (1-=2
E E
The mean free path and the total collision cross section are plotted in Fig. 3.1 for
copper atoms in copper and show that as the energy of the moving atom drops, the

cross section increases slowly, but the mean free path becomes very small at
energies just above Ey4. Note that the critical region (4 ~ 0.2 nm), or the region in

Fig. 3.1 Displacement mean 10 - ’ ’ 107!
free path and total collision ;
cross section for copper atoms
moving in copper (after [1])

cross section

—>

displacement
mean free path

A (nm)

0.1 : L L 107
oot p 0.1 1 10
E (keV)




3.1 Displacement Mean Free Path 133

Fig. 3.2 Mean free paths of 10% F T T
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which every lattice atom in the path of the knock-on is displaced, lies in the energy
range ~50-100 eV.
The mean free paths for primary recoil atoms of 300 keV and 1 MeV resulting

from self-ion irradiations of Si, Cu, and Au are shown in Fig. 3.2. Recall that
T = %El = % (for n-Cu interactions), where E; is the neutron energy and A is the
atomic mass. Typically, E; ~ 0.5 MeV (for a thermal or fast reactor) and A ~ 60
(stainless steel), giving T ~ 15 keV. So at large recoil energies, the displacements
are well separated (~ 100 nm at 15 keV), but as the recoil energy decreases, the
spacing approaches the atomic spacing, at which point each atom along the recoil
path is displaced.

3.2 Primary Recoil Spectrum

The analysis of displacement mean free path gives us a first glimpse of what the
spatial distribution of defects might look like. Brinkman [3] was the first to picture
the cascade as a displacement spike with a high core density of vacancies sur-
rounded by an interstitial shell (Fig. 3.3). Seeger [4] modified the picture to account
for crystallinity such as focused energy packets (focusons), and long-range trans-
port of mass by replacement collisions and channeling, and termed the vacancy core
the depleted zone (Fig. 3.4).

Two additional quantities are helpful in developing a picture of the distribution
of damage energy. The first is the deposited energy depth distribution, Fp(x),
defined by:

Fp(x) dx = dE = NS,E(x) dx. (3.6)

Using the nuclear stopping power and range given by the power law potential [5]
results in a simple form for Fp(x):
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Fig. 3.3 Original version of
the displacement spike as
drawn by Brinkman (after [3])

Fig. 3.4 Revised version of
Brinkman’s displacement
spike as drawn by Seger (after
[4]) accounting for
crystallinity in the damage
cascade
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where T is the PKA energy, R is the PKA range, and m = 1/s where s is the power
law exponent. If Ny(x) is the number of displacements per unit depth at a depth x,
then using the modified K—P model or the NRT model (e.g., Eq. 2.50) with x = 0.8
and with Fp(x) replacing Ep, we can write that:

Na(x) _ 0.8Fp (x)

p S (3.8)
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and the displacement rate as a function of depth in units of dpa becomes:

~ Ng(x) _ 0.4Fp(x)

dpa(x) = N NE, o. (3.9)

The total dpa produced over the range of the recoil can be estimated by replacing
Fp(x) with the damage energy Ep from Eq. (2.51) over the range of the recoil, R:

0.4E
dpa = P04ED. (3.10)
NREq

The second important concept is the primary recoil spectrum. The density of recoil
atoms with energies between T and T + dT created during irradiation is an important
quantity in radiation damage. The recoil density depends on the projectile energy
and mass and gives a measure of the density of displacement damage in the target.
The density of recoils as a function of recoil energy is known as the primary recoil
spectrum and is given as:

T
P(E,T) :%/G(Ei,T')dT’, (3.11)

Eq

which is the fractional number of recoils between the minimum displacement energy
E4 and energy T, N is the total number of primary recoils, and ¢ (E;, T) is the energy
transfer cross section for a particle of energy E; to create a recoil of energy T.
The fraction of recoils is shown in Fig. 3.5 for 1-MeV projectiles of various mass
incident on a copper target. Note that while higher-mass projectiles produce more
recoils at higher energy, the difference does not appear to be large.

Fig. 3.5 Integral primary 1.0 .
recoil spectra for 1 MeV

particles in copper. Curves o0s L i
plotted are the integral '

fractions of primary recoils

between the threshold energy 0.6 .

and energy, 7, from Eq. (3.11)
(after [2])
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For defect production, it is not the number of recoils of a particular energy that is
of greatest importance; rather, it is the number of recoils weighted by the damage
energy produced in each recoil that is most important. This quantity is determined
by “weighting” the recoil spectra by the number of defects or the damage energy
produced in each recoil:

W(E,T) :EDEEi)/o—(Ei,T')ED(T’)dT’, (3.12)

where Ep(T) is the damage energy created by a recoil of energy T:
T
Ep(E) = / o(E;, T Ep(T') dT’, (3.13)
Eq

and T = yE,.
For the extremes of Coulomb and hard sphere interactions, the differential
energy transfer cross sections are:

M\ (Z1Z,e%)*
ocoul(E, T) = % (3.14)
and
A
UHS(El,T) :E (315)

Ignoring electron excitations and allowing Ep(7) = T and substituting Eqs. (3.14)
and (3.15) into Eq. (3.12) gives the weighted average recoil spectra for each type of
interaction:

InT—InT
W, T =—F———, 3.16
Coul( ) InT —InT ( )
and
T2 — 77
Was(T) :T’ (3.17)

where T = E,. Equations (3.16) and (3.17) are graphed in Fig. 3.6 for 1 MeV
particle irradiations of copper. The Coulomb potential is a good approximation for
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Fig. 3.6 Weighted recoil spectra for 1 MeV particles in copper (after [2]). Curves representing
protons and neutrons are calculated using Eqgs. (3.14) and (3.15), respectively. W(T) for other
particles were calculated using Lindhard cross sections and include electronic excitation

proton irradiation, while the hard sphere potential is a good approximation for
neutron irradiation. The Coulomb forces extend to infinity and slowly increase as
the particle approaches the target. In a hard sphere interaction, the particles and
target do not “feel” each other until their separation reaches the hard sphere radius
at which point the repulsive force goes to infinity. A screened Coulomb is most
appropriate for heavy ion irradiation. The result is that Coulomb interactions tend to
create many PKAs with low energy, while hard sphere collisions create fewer PKAs
but with higher energy. Note the large difference in W(T) between the various types
of irradiations in Fig. 3.6. While heavy ions come closer to reproducing the energy
distribution of recoils of neutrons than do light ions, neither is accurate in the “tails”
of the distribution. This does not mean that ions are poor simulations of radiation
damage, but it does mean that damage is produced differently and that this needs to
be considered when assessing the microchemical and microstructural changes due
to irradiation.

Figure 3.7 illustrates the difference in the types of damage that is produced by
different types of particles. Light ions such as electrons and protons will produce
damage as isolated Frenkel pairs or in small clusters, while heavy ions and neutrons
produce damage in large clusters. For 1 MeV particle irradiation of nickel, half the
recoils for protons are produced with energies less than ~1 keV but with an average
energy of 60 eV, while the same number for Kr occurs at about 30 keV with an
average energy of 5 keV. Recoils are weighted toward lower energies because of
the screened Coulomb potential that controls the interactions of charged particles.
For an unscreened Coulomb interaction, the probability of creating a recoil of
energy T varies as 1/7°. Because neutrons interact as hard spheres, the probability
of creating a recoil of energy T is independent of recoil energy.
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Fig. 3.7 Difference in damage morphology, displacement efficiency, and average recoil energy for
1 MeV particles of different types incident on nickel (after [6])

3.3 Cascade Damage Energy and Cascade Volume
The energy density in a cascade of volume V,,, formed by an energetic projectile of
energy E; is given by [7]:

Ep
NVCZIS ’

Op =~ (3.18)

where Ep is the damage energy defined in Eq. (2.50) and N is the atom density of
the target. To find the volume of the cascade requires knowledge of the depth
distribution of the damage energy. Averback [2] showed that the volume of the
cascade can be approximated by:

_47r

T ((oaxy? +2(5y)2)3/ ! (3.19)

Vcas
where (AX)? and Y? are the longitudinal and transverse moments of the deposited
damage energy distribution for an individual cascade and ¢ is a contraction factor
that accounts for the difference between an individual cascade and the average
cascade determined by transport theory.

While Egs. (3.18) and (3.19) provide a description of the spatial extent of a
cascade, other characteristics of the cascade are the temperature and temporal
lifetime. The effective temperature of the cascade can be estimated by the relation:
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3kBTmax - @D7 (320)

where kg is the Boltzmann’s constant. The lifetime of the cascade or thermal spike
can be estimated by solving the heat equation for the spread of energy from a point
source in three dimensions. The variance in the temperature profile, R?, is given by:

R? = 4Dr, (3.21)

where 7 is the cascade lifetime and D is the thermal diffusivity = x1/C}, where xt is
the thermal conductivity and C,, is the specific heat capacity. The damage energy is
then:

4
Ep =3 TR*U,N, (3.22)

where U, is the energy per atom. The cascade lifetime is determined by combining
Egs. (3.21) and (3.22) to solve for

1/ 3Ep \*?
= — . .2
T (47rNUa> (323)

If we estimate U, from the melting temperature of the target, then U, ~ 0.3 eV and
D ~ 10'2 nm?%/s, and then the lifetime of a 1 keV cascade is of the order 1072 s, or a
few lattice vibration periods.

3.4 Computer Simulation of Radiation Damage

Analytical solutions to the space and time dependence of damage caused by an
energetic particle incident on a target can take us only so far. And as we will see
later, excellent instrumentation exists to observe defect clusters such as transmis-
sion electron microscopy, X-ray scattering, small-angle neutron scattering, and
positron annihilation spectroscopy. But these instruments do not have the resolution
to image individual defects and they cannot capture the temporal development of
the cascade. To gain a better understanding of the spatial and temporal development
of the cascade, we must turn to computer simulation. There are three principal
techniques used to model the behavior of atoms in a displacement cascade; the
binary collision approximation (BCA) method, the molecular dynamics
(MD) method, and the kinetic Monte Carlo (KMC) method [8]. Each will be briefly
discussed.
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3.4.1 Binary Collision Approximation (BCA) Method

BCA simulations are useful for examining the collisional stages of high-energy
cascades in statistically significant numbers. BCA simulations consider only the
interactions between two colliding atoms at a time and in sequence [8]. The
computation follows only the atoms having significant energies and is thus very
efficient. The BCA approach provides a good approximation to the collision stage,
since the neglected many-body interactions make little contribution to the atom
trajectories at collision energies well above the atom displacement energy. At
energies near or even less than the displacement energy, ballistic features of cas-
cades such as replacement collision sequences and focused collision sequences
(focusons) can be reasonably captured by BCA calculations. At primary recoil
energies above approximately 20 keV, cascades may have more than one damage
region. Because the mean free path between high-energy collisions of a recoil atom
increases with energy, higher-energy cascades will consist of multiple damage
regions or subcascades that are well separated in space due to high-energy colli-
sions. Channeling of primary or high-energy secondary recoils also contributes to
subcascade formation when the channeled recoils lose energy and dechannel.

There are two distinct types of BCA models. Those for crystalline targets are
termed BC or binary crystal models and resemble MD models in that they assign all
atoms to well-defined initial positions [9]. Models for materials without long-range
order (amorphous solids) are termed MC or Monte Carlo models and use stochastic
methods to locate target atoms and to determine collision parameters. The MC
models are similar to transport theory models used in analytical theory to track
neutron populations in a medium.

An example of a BC model is the MARLOWE code [10]. The program models
crystalline targets with no restrictions on the crystal symmetry or on the chemical
composition. All collision parameters are calculated from the particle positions.
Several interatomic potentials are available for selection to describe atom collisions.
Inelastic energy losses may be included in either local or non-local form, but the
losses are limited to the velocity-proportional (E'%) range of kinetic energies.
Figure 3.8 shows the spatial configuration of defects from an early computer
simulation using the MARLOWE code for the case of a 200 keV cascade in copper.
This is a very energetic cascade that would only be expected from extremely
energetic neutrons such as are generated in a fusion reactor. The PKA is generated
in the lower right-hand corner (arrow) and proceeds to the left with a kinetic energy
of 200 keV. The dark spheres are displaced atoms, and the lighter spheres are
vacant lattice sites. Note that the full cascade consists of several subcascades.

A second example, given in Fig. 3.9, shows how the cascade can become extended
in space. The recoil trajectories and final configuration of interstitials and vacancies in
bce iron are shown after interaction with a 5 keV PKA at a temperature of O K [11].
All vacancies and interstitials within a sphere containing 30 lattice atom sites were
assumed to recombine spontaneously. Note in Fig. 3.9(a) that the secondary
knock-on in the center of the spike undergoes channeling, making possible the
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Fig. 3.8 Collisional stage of

a 200 keV cascade in copper "és

simulated using the binary o i
collision approximation in 2 . J
MARLOWE (after [8]) ! % ’

fusion neutron damage 1

in copper 4;*?‘.
3

200 keV recoil atom

extension of the cascade into the upper right half of the lattice shown in Fig. 3.9(b).
Essentially, all of the damage to the upper right of the diagonal is due to channeling of
the secondary knock-on.

SRIM [12] (previously called TRIM) is another BCA code that uses Monte
Carlo techniques to describe the trajectory of the incident particle and the damage
created by that particle in amorphous solids and was discussed briefly in Chap. 1.
SRIM uses a maximum impact parameter set by the density of the medium and a
constant mean free path between collisions which is related to this. Stochastic
methods are used to select the impact parameter for each collision and to determine
the scattering plane. The barycentric scattering angle is determined by a “magic”
formula, tested against published integral tables, and represents the scattering from
the ZBL “universal” potential. Inelastic energy losses are based on the effective
charge formalism, using tables distributed with the code. Figure 3.10 shows a
simulation of 3 MeV protons incident on a nickel target. Figure 3.10(a) shows the
trajectories of the incident particles for 10,000 cases (MC runs), and Fig. 3.10(b)
shows the ion concentration profile and the displacement rate profile as a function
of depth.

3.4.2 Molecular Dynamics (MD) Method

Molecular dynamics (MD) is the second major type of methodology used to
describe collision cascades. MD is an atomistic modeling and simulation method in
which the particles are the atoms that constitute the material of interest [13]. The
underlying assumption is that one can treat the ions and electrons as a single,
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classical entity. Thus, atoms behave according to the principles of classical
mechanics as formulated by Newton and Hamilton. In the simplest physical terms,
MD may be characterized as a method of “particle tracking.” Operationally, it is a
method for generating the trajectories of a system of N particles by direct numerical
integration of Newton’s equations of motion, with appropriate specification of an
interatomic potential and suitable initial and boundary conditions.

Using realistic interatomic potentials and appropriate boundary conditions, the
fate of all atoms in a volume containing the cascade can be described through the
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various stages of cascade development. The analytical interatomic potential func-
tions must describe the force on an atom as a function of the distance between it and
the other atoms in the system. The results are physically as meaningful as the
potential V that is used. It must account for both attractive and repulsive forces in
order to obtain stable lattice configurations. When this interatomic potential has
been derived, the total energy of the system of atoms being simulated can be
calculated by summing over all the atoms. The forces on the atoms are obtained
from the gradient of the interatomic potential and are used to calculate acceleration
according to F' = ma, yielding the equations of motions for the atoms, which can be
solved by numerical integration using a suitably small time step. The computer
code solves these equations numerically over very small time steps and then
recalculates the forces at the end of the time step, to be applied in the calculations in
the next time step. The process is repeated until the desired state is achieved.
A typical flowchart for an MD code would look something like Fig. 3.11. Among
these steps, the part that is the most computationally demanding is the force cal-
culation. The efficiency of an MD simulation therefore depends on performing the
force calculation as simply as possible without compromising the physical
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description (simulation fidelity). Since the force is calculated by taking the gradient
of the potential V, the specification of V essentially determines the compromise
between physical fidelity and computational efficiency [13].

Time steps in MD simulation must be very small (5—10 x 10" s, or 5-10 fs), so
MD simulations are generally run for no more than 100 ps. With periodic boundary
conditions, the size of the simulation cell needs to be large enough to prevent the
cascade from interacting with periodic images of itself. Higher-energy events
therefore require a larger number of atoms in the cell. As the initial primary kinetic
energy E increases, larger and larger numerical crystallites are required to contain
the event. While the size of the crystallite is roughly proportional to E, the required
computing time scales roughly as E*. The demand on computing time limits the
statistical capabilities of MD simulation. However, it provides a detailed view of the
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spatial extent of the damage process on an atomic level that is not afforded by other
techniques.

A cascade simulation begins by thermally equilibrating a block of atoms that
constitutes the system to be studied. This process allows the determination of the
lattice vibrations for the simulated temperature and typically requires a simulation
time of approximately 10 ps. Next, the cascade simulation is initiated by giving one
of the atoms a specified amount of kinetic energy and an initial direction. Several
cascades must be run in order to generate enough results that can be used to
represent the average behavior of the system at any energy and temperature.
Statistical variability can be introduced by either further equilibration of the starting
block, choosing a different PKA or PKA direction, or some combination of these.
The number of simulations required at any one condition to obtain a good statistical
description of defect production is not large. Typically, only about 8—10 simulations
are required to obtain a small standard error about the mean number of defects
produced.

One such code used for MD simulations is the MOLDY code written by Finnis
that uses interatomic potentials developed by Finnis and Sinclair [14] and was later
modified by Calder and Bacon for cascade simulations [15]. The code only
describes elastic collisions between atoms and does not account for energy loss
mechanisms such as electronic excitation and ionization. The energy given to the
PKA in the MD simulation (cascade energy, Eyp) is that corresponding to the value
of the damage energy Ep, given in Eq. (2.50). The corresponding values for T and
vnrt for iron and the ratio of the damage energy to the PKA energy are listed in
Table 3.1 along with the neutron energy that would yield 7T as the average recoil

Table 3.1 Typical atomic displacement cascade parameters in iron (from [16])

Neutron Average PKA | Corresponding NRT Ratio: | Simulation
energy, energy, damage energy, displacements | Eg/Eyp | cell size
E; (MeV) T (keV)?* Eq (keV)b ~ Evmp (atoms)
0.00335 0.116 0.1 1 0.8634 | 3456
0.00682 0.236 0.2 2 0.8487 | 6750
0.0175 0.605 0.4 5 0.8269
0.0358 1.24 1.0 10 0.8085 | 54,000
0.0734 2.54 2.0 20 0.7881
0.191 6.60 5.0 50 0.7570 | 128,000
0.397 13.7 10.0 100 0.7292 {250,000
0.832 28.8 20.0 200 0.6954 | ~05M
2.28 78.7 50.0 500 0.6354 | ~25M
5.09 175.8 100.0 1000 0.5690 | ~5-10 M
123 425.5 200.0 2000 04700 | ~10-20 M
14.1¢ 487.3 220.4 2204 0.4523

#Average iron recoil energy from an elastic collision with a neutron of specified energy
®Damage energy defined in Eq. (2.50)
“Relevant to D-T fusion energy production


http://dx.doi.org/10.1007/978-1-4939-3438-6_2
http://dx.doi.org/10.1007/978-1-4939-3438-6_2

146 3 The Damage Cascade

(a) (b)

® Vacancy @ Interstitial

Fig. 3.12 Structure of a typical 20 keV cascade in iron at 100 K; (a) at peak damage state
(0.48 ps) and (b) the final defect configuration (15 ps) (from Ref. [16])

energy in iron. Note that with increasing energy, the difference between the damage
energy, Ep, and the PKA energy, T, increases. In reality, energetic atoms lose
energy continuously by a combination of electronic and nuclear reactions, and the
typical MD simulation effectively removes the electronic component at time zero.
Figure 3.12 shows typical point defect configurations from a 20 keV MD cas-
cade simulation in iron at 100 K. Figure 3.12(a) shows the cascade at the point of
peak disorder, and Fig. 3.12(b) shows the cascade following in-cascade recombi-
nation. Note the sizable reduction in the residual damage between 0.48 ps and
15 ps. This result shows that the actual damage resulting from the PKA is much less
than the total aggregate number of displacements calculated from the K-P or NRT
models. While “still” images of the stages of the cascade are useful in under-
standing how the cascade develops, a much better tool is to view the temporal
evolution of the cascade directly. This can be done by viewing Movie 3.1 via the
Web site at (http://rmsbook2ed.engin.umich.edu/movies/). This MD simulation
shows the development of a cascade from a 20 keV recoil in iron at 100 K through
to cascade quench at ~5 ps. Note the striking difference in the defect density
between the peak ballistic stage (~ 1 ps) and the end of the quench at ~ 5 ps.

3.4.3 Kinetic Monte Carlo (KMC) Method

Our objective is to simulate the dynamical evolution of systems of atoms during and
immediately following the displacement event. The most robust tool in this class of
atomistic simulation methods is molecular dynamics. Integrating the classical
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equations of motion forward in time, the behavior of the system emerges naturally,
requiring no intuition or further input from the user. A serious limitation, however,
is that accurate integration requires time steps short enough (~ 107" s) to resolve
the atomic vibrations. Consequently, the total simulation time is typically limited to
less than one nanosecond, while processes we wish to study (e.g., diffusion and
annihilation of defects after a cascade event or evolution of the void dislocation
microstructures) often take place on much longer timescales, up to many years. This
is the “timescale problem.”

Kinetic Monte Carlo attempts to overcome this limitation by exploiting the fact
that the long-time dynamics of a system typically consist of diffusive jumps from
state to state. Rather than following the trajectory through every vibrational period,
these state-to-state transitions are treated directly. The KMC methods used in
radiation damage studies represent a subset of Monte Carlo (MC) methods that
provide a solution to the Master Equation which describes a physical system whose
evolution is governed by a known set of transition rates between possible states
[17]. The main ingredients of KMC models are a set of objects (point defects, point
defect clusters, solutes, and impurities) and a set of reactions or (rules) that describe
the manner in which these objects undergo diffusion, emission, and reaction, and
their rates of occurrence. The solution proceeds by choosing randomly among the
various possible transitions and accepting them on the basis of probabilities
determined from the corresponding transition rates. The probabilities are calculated
for physical transition mechanisms as Boltzmann factor frequencies, and the events
take place according to their probabilities leading to an evolution of the
microstructure.

Given a set of rate constants connecting states of a system, KMC offers a way to
propagate dynamically correct trajectories through the state space. The basic steps
in a KMC simulation can be summarized as follows:

. Calculate the probability (rate) for a given event to occur.

. Sum the probabilities of all events to obtain a cumulative distribution function.

. Generate a random number to select an event from all possible events.

. Increase the simulation time on the basis of the inverse sum of the rates of all
possible events.

5. Perform the selected event and all spontaneous events as a result of the event

performed.
6. Repeat Steps 1-4 until the desired simulation condition is reached.

BN =

Advantages of KMC models include the ability to capture spatial correlations in
a full 3D simulation with atomic resolution, while ignoring the atomic vibration
timescales captured by MD models. In KMC, individual point defects, point defect
clusters, solutes, and impurities are treated as objects, either on or off an underlying
crystallographic lattice, and the evolution of these objects is modeled over time.
Two general approaches are object KMC (OKMC) and event KMC (EKMC)
[18, 19], which differ in the treatment of timescales or steps between individual
events. OKMC can be further subdivided into techniques that explicitly treat atoms
and atomic interactions, denoted as atomic KMC (AKMC), or those that track the
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defects on a lattice, but without complete resolution of the atomic arrangement, or
lattice KMC (LKMC). The later technique is predominately referred to as object
Monte Carlo and is used in such codes as BIGMA [20] or LAKIMOCA [21].

KMC modeling of radiation damage involves tracking the location and fate of all
defects, impurities, and solutes as a function of time to predict microstructure
evolution. The starting point in these simulations is the primary damage state that is
obtained from MD simulations along with the displacement or damage rate, which
sets the timescale for defect introduction. The rates of all reaction—diffusion events
then control the subsequent evolution or progression in time and are determined
from appropriate activation energies for diffusion and dissociation. The reactions
and rates of these reactions that occur between species are key inputs, which are
assumed to be known. The defects execute random diffusion jumps (in one, two, or
three dimensions depending on the nature of the defect) with a probability (rate)
proportional to their diffusivity. Similarly, cluster dissociation rates are governed by
a dissociation probability that is proportional to the binding energy of a particle to
the cluster. In these simulations, the events which are considered to take place are
thus diffusion, emission, irradiation, and possibly transmutation.

If the rate catalog is constructed properly, KMC dynamics can give the exact
state-to-state evolution of the system, in the sense that it will be statistically indis-
tinguishable from a long molecular dynamics simulation. KMC is the most powerful
approach available for making dynamical predictions at the meso-scale without
resorting to more dubious model assumptions. It can also be used to provide input to
and/or verification for higher-level treatments such as rate theory models or
finite-element simulations. Moreover, even in situations where a more accurate
simulation would be feasible (e.g., using accelerated molecular dynamics or on-the-fly
kinetic Monte Carlo), the extreme efficiency of KMC makes it ideal for rapid scans
over different conditions, for example, and for model studies. The result is that KMC
can reach vastly longer timescales, typically seconds and often well beyond.

An example of the capability of KMC to capture processes on a larger timescale
is given in Movie 3.2 (http://rmsbook2ed.engin.umich.edu/movies/), which shows a
KMC simulation of a 20 keV cascade in Fe—0.2Cu-0.6Si—0.7Ni—12.4Mn (similar to
a pressure vessel steel) at 327 °C. The simulation shows the enrichment of Ni
(green), Mn (black), Si (blue), and Cu (red) at cascade debris (vacancies in yellow)
covering a time period out to several years, or many orders of magnitude longer
than the cascade quench time. Note the pairing of Ni and Si and the accumulation of
solute atoms at the vacancy clusters.

Atomic KMC is a variant of KMC that can be used to simulate the evolution of
materials with complex microstructure at the atomic scale by modeling the ele-
mentary atomic mechanisms. It has been used extensively to study phase trans-
formations such as precipitation, phase separation, and/or ordering [17]. Despite the
fact that the algorithm is fairly simple, the method is most of the time non-trivial to
implement in the case of realistic materials (as opposed to binary alloys for
instance). The total potential energy of the system, that is, the construction of the
cohesive model, is difficult to obtain when the chemistry of the system under study
is complex and involves many species or a complex crystallographic structure.
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Furthermore, the knowledge of all the possible events and the rates at which they
occur is non-trivial. On rigid lattices, the migration paths are easier to determine and
cluster expansion-type methods may be extended to determine the saddle point
energies as a function of the local chemical environment. This can, however, take a
very large amount of calculation time when there is a drastic difference in the local
environment. Furthermore, complicated correlated motions cannot be modeled
within the simple scheme usually followed in AKMC of jumps to 1nn neighbor
sites. Another drawback is that the use of rigid lattices (to gain efficiency) can lead
to an approximate (or even unrealistic) treatment of microstructure elements such as
incoherent carbide precipitates, SIA clusters, or interstitial dislocation loops.

In OKMC, the evolution of individual objects is simulated on the basis of
timescales that encompass individual atomic diffusive jumps, dominated by the
very fast events. This method is not efficient at high temperatures and/or high doses.
The difficulty is the inability to model sufficiently high doses necessary for
macroscopic material behavior due to the focus on fast dynamics. At the moment,
OKMC methods have been mostly used to investigate the annealing of the primary
damage or the effect of temperature change on the damage accumulation. But they
can also be used to study 3D versus 1D motion, mobility of the SIA clusters
[22-25], or corroboration of theoretical assumptions such as the analytical
description of the sink strength [26]. The time step between events is much longer
in EKMC models, which require that a reaction (e.g., clustering among like defects,
annihilation among opposite defects, cluster dissolution, or new cascade intro-
duction) occurs within each Monte Carlo sweep. EKMC can therefore simulate
much longer times and therefore evolution of materials over higher doses.

Taken together, the MD and KMC methods cover the radiation timescale as
shown in Fig. 3.13. MD simulations are practical up to the ns range, and KMC
simulations extend the range to the order of seconds. Much occurs after this
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timescale, and this is generally modeled using rate theory, which will be discussed
in Chap. 5 and beyond.

3.5 Stages of Cascade Development

The final state of the cascade is extremely important because the end of the cascade
is the starting point for defect diffusion, agglomeration, and destruction that forms
the basis for the observable effects of irradiation to be covered in Part II of this text.
Figure 3.14 shows another example in which a 2D cross section of a cascade is
shown at times that correspond to the early stages of the cascade and near the final
state. Here again, the damage state has relaxed to a very large degree between 2 ps
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Fig. 3.15 Pair correlation function for the collision cascades in Fig. 3.14, showing the
amorphous-like character of the displacement cascade zone at 2 ps and the considerable degree of
recovery by 18 ps (calculations performed at the Barcelona Supercomputer Center, courtesy of
M. Catula and Tomas Diaz de la Rubia)

(Fig. 3.14a) and 18 ps (Fig. 3.14b). Figure 3.15 shows the radial pair correlation
function for the two times. The pair correlation function describes the separation of
atoms and will appear as a series of spikes for crystalline solids (by virtue of their
long-range order) and as a smoothly varying function for a liquid or amorphous
solid (in which there is only nearest and second nearest neighbor correlation). As
shown in the figure, the atom arrangement in the core of the displacement spike at
short times is similar to that of a liquid, while the final arrangement is recovering its
crystalline configuration. Figure 3.16 shows that the mean square atomic dis-
placement of atoms in the cascade increases dramatically with time, indicating that
the bulk of the aggregate movement of atoms in the displacement cascade occurs
after the time to reach peak damage! Taken together, the results of Figs. 3.14-3.16
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Fig. 3.16 Integrated diffusion coefficient as a function of distance from the center of the cascade
at the end of the collisional phase, = 0.12 ps (bottom curve), and at the end of the cooling phase,
t = 10 ps (top curve), for a 5 keV cascade in copper (after [27])
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tell us that damage is annealing out with time. This annealing is occurring as the
energy of the cascade is dropping. In fact, annealing occurs at the tail end of the
period during which the cascade energy drops, called the quench stage.

We now have a picture of how the cascade develops in time that we can
describe. Cascades evolve in stages given as follows:

. Collisional
. Thermal spike
. Quenching
. Annealing.

AW N =

In the collisional stage (1), the primary recoil atom initiates a cascade of displacive
collisions that continues until no atom contains enough energy to create further
displacements. At the end of this stage (lasting <1 ps), the damage consists of
energetic displaced atoms and vacant lattice sites. However, stable lattice defects
have not yet had time to form. During the thermal spike stage (2), the collisional
energy of the displaced atoms is shared among their neighboring atoms in the
region of high deposited energy density. The development of the spike requires
about 0.1 ps, and the spike may occupy several zones in which the energy is high
enough so that the atoms resemble molten material. As energy is transferred to the
surrounding atoms, the molten zones return to the condensed, or quenched stage
(3), and thermodynamic equilibrium is established (~10 ps). The quenching stage
may take several ps, and during this time, stable lattice defects form either as point
defects or as defect clusters. But the total number of defects at this stage is much
less than the number of atoms displaced in the collisional stage. The annealing stage
involves further rearrangement and interaction of defects and occurs by thermally
activated diffusion of mobile lattice defects. By definition, the annealing stage
(4) lasts until all mobile defects escape the cascade region or another cascade occurs
within it. Thus, the timescale extends from nanoseconds to months, depending on
the temperature and the irradiation conditions. The annealing stage is the subject of
Part IT on Physical Effects of Radiation Damage and is the link between the damage
cascade and the observable effects of irradiation.

3.6 Behavior of Defects Within the Cascade

The actual number of defects that survive the displacement cascade and their spatial
distribution in the solid will determine their effect on the irradiated microstructure.
We define the displacement efficiency &, as the fraction of the “ballistically” pro-
duced Frenkel pairs (NRT dpa) that survive the cascade quench. MD simulation of
the displacement cascade yields the recoil dependence of the displacement effi-
ciency in iron irradiated at low temperature, as shown in Fig. 3.17. With decreasing
cascade energy, the value of ¢ increases rapidly from zero to > 1 at very low recoil
energies. That & exceeds 1.0 is attributed to the inability of the modified K—P model
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Fig. 3.17 Ratio of MD 1.6 T T T
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to describe displacements in a polycrystalline material at recoil energies near the
threshold displacement energy, Eq4, due to the strong dependence of E4 on crys-
tallographic orientation. The actual displacement threshold varies with crystallo-
graphic direction and is as low as ~ 19 eV in the [100] direction (see Fig. 2.6).
Thus, using the recommended average value of 40 eV for the displacement energy
predicts fewer defects at low energies [28].

As recoil energy increases, ¢ steadily decreases to a value of about 0.3 for 5 keV
cascades in copper. The formation of multiple subcascades at high PKA energies
(above ~20 keV) causes & to remain nearly constant for PKA energies up to
500 keV. Comparing this plot to the recoil and weighted recoil spectra given in
Figs. 3.5 and 3.6 shows that electrons and light ions with a low PKA energy will
generate values of & close to 1, while heavy ions and neutrons that produce high
PKA energies will result in ¢ at the asymptotic value of 0.3.

The displacement cascade efficiency, &, is comprised of several components:
yi-v The isolated point defect fraction
diy Clustered fraction including mobile defect clusters such as di-interstitials
¢ Fraction initially in isolated or clustered form after the cascade quench that

undergoes recombination during subsequent short-term (>107'" s) intracas-
cade thermal diffusion

They are related as follows:
=oity+{=0v+n+{ (3.24)

Figure 3.18 shows the history of defects born, according to the NRT model, as
vacancies and interstitials. The fraction of defects that will be annihilated after the
cascade quench by recombination events among defect clusters and point defects
within the same cascade (intracascade recombination), {, is about 0.07, for a dis-
placement efficiency of 0.3. The clustered fraction, J, includes large, sessile clusters
and small defect clusters that may be mobile at a given irradiation temperature and
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Fig. 3.18 Interdependence of Displacement Cascade Efficiency
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will be different for vacancies and interstitials. For a 5 keV cascade, d; is about 0.06
and J, is closer to 0.18. Some of these defects may be able to “evaporate” or escape
the cluster and become “available” defects (Fig. 3.18).

This leaves v, the isolated point defect fraction as yet to be determined. These
defects are available to migrate to sinks, to form clusters, to interact with existing
clusters, and to participate in the defect flow to grain boundaries that gives rise to
radiation-induced segregation. Because of their potential to so strongly influence
the irradiated microstructure, defects in this category, along with defects freed from
clusters, make up the freely migrating defects (FMDs). Recall that electrons and
light ions produce a large fraction of their defects as isolated Frenkel pairs, thus
increasing the likelihood that they remain as isolated defects rather than in clusters.
Despite the equivalence in energy among the four particle types described in
Fig. 3.7, the average energy transferred and the defect production efficiencies vary
by more than an order of magnitude! This is explained by the differences in the
cascade morphology among the different particle types. Neutrons and heavy ions
produce dense cascades that result in substantial recombination during the cooling
or quenching phase. However, electrons are just capable of producing a few widely
spaced Frenkel pairs (FPs) that have a low probability of recombination. Protons
produce small widely spaced cascades and many isolated FPs due to the Coulomb
interaction and therefore fall between the extremes in displacement efficiency
defined by electrons and neutrons.

The value of y has been estimated to range from 0.01 to 0.10 depending on PKA
energy and irradiation temperature, with higher temperatures resulting in the lower
values. Because of the importance of this parameter, we will estimate the freely
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migrating defect fraction using an analytical treatment by Naundorf [29] that is
based on two factors. The first is that energy transfer to atoms is only sufficient to
create a single Frenkel pair. The second is that the Frenkel pair lies outside a
recombination (interaction) radius so that the nearby FPs neither recombine nor
cluster. The model follows each generation of the collision and calculates the
fraction of all defects produced that remain free. According to Naundorf, the free
single FPs are classified according to the generation i in which they were produced,
i.e., the relative amount #; is that amount that is produced by primary collisions
(first generation), while 7, is the relative amount produced by secondary collisions
(second generation). Thus, the total number of free single FPs produced is:

n= M (3.25)

where that produced by primary collisions is:

VE;

N = (ﬁp/ad) / o(E;, T)dT, (3.26)

Eq

and that produced by secondary collisions is:

1 = (1/0a) / o(Ex, T)Z(T)Ba(T) /oa(T)] AT / o(T.T)dT,  (3.27)

where o(E;, T) is the energy transfer cross section for an incident particle to a lattice
atom, o (T,T") is the energy transfer cross section between like atoms in the solid,
and Z(7) is the total number of secondary collisions produced above E,4 by a PKA
of energy T along its path. The primary displacement cross section for the incident
ion, o, is:
VE;
op = / o(E, T)dT, (3.28)

Eq
and the total displacement cross section gy is given in the Kinchin—Pease model by:

od:/a(E,-,T)v(T)dT. (3.29)

Eq

The distance A between two primary collisions is distributed according to an
exponential law:
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W(2) =1/iyexp(—1i/2p), (3.30)
with the mean distance:
lp = Q/0yp, (3.31)

where Q2 is the atomic volume. The condition that the distance between two con-
secutive collisions must be larger than an appropriate interaction radius r;, (so that
FPs produced near each other neither recombine nor cluster) reduces the amount of
all possible free single FPs by:

By = exp(—rin/2p), (3.32)

and is illustrated in Fig. 3.19 [30]. The model provides the efficiency for the
production of freely migrating defects. Results of this calculation are shown in
Table 3.2 for several ions of varying mass and energy. Values of 7 range from 24 %
for proton irradiation to 3 % for heavy ion (krypton) irradiation.

Applying this model to our illustration in Fig. 3.7 yields the following values
for #:

MeV electrons 1.0
3.4 MeV protons 0.2
5.0 MeV Ni** ions 0.04

Neutrons (fission spectrum) 0.02

These results can also be compared to those calculated by Rehn et al. [31] deter-
mined from the analysis of experiments and are shown in Fig. 3.20. The data in this
figure are arbitrarily normalized to 1.0 for 1 MeV protons. These data along with
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Table 3.2 Calculated va.lues Irradiation 0/0a (%) Neale (%)
for /o4 and of the relative T
1 MeV H 37.0 24.0
amounts 7., of FP —
production in nickel by 2MeV H 30.0 19.2
different kinds of irradiations 2 MeV Li* 27.0 16.9
(Eq = ;‘:Q Z;’ = OZ Qm)l 1.8 MeV Ne* 16.0 8.7
using Lindharc's anaytical 34 v Ni* 5.1 23
differential collision cross =
section (from [29]) 3 MeV Ni 7.5 3.8
3.5 MeV Kr* 5.9 3.0
2 keV O* 42.0 9.8
Fig. 3.20 Relative efficiency 1.2 : : r T
of freely migrating defect
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mass and energy (after [31])
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the results just presented show that at low recoil energies, the fraction of defects that
are freely migrating approaches 1.0, and as the recoil energy increases, that fraction
drops to values in the range 0.02-0.05.

As discussed earlier and shown in Fig. 3.17, recent results [32] have established
that such low values of FMD efficiency for heavy ion or neutron irradiation cannot
be explained by defect annihilation within the parent cascade (intracascade anni-
hilation). In fact, cascade damage generates vacancy and interstitial clusters that act
as annihilation sites for FMD, reducing the efficiency of FMD production. Thus, the
cascade remnants result in an increase in the sink strength for point defects and
along with recombination in the original cascade account for the low FMD effi-
ciency measured by experiment.

While the NRT description of atom displacements provides an estimation of the
number of Frenkel pairs produced by the PKA, it does not accurately describe
atomic interactions in the thermal spike and hence is inadequate for describing the
true configuration of defects. MD simulations can be used for this purpose and have
confirmed that defect production by displacement cascades is not as efficient as
predicted by the NRT formula. In fact, v is about 2040 % of vnrt for cascades
with energy greater than 1-2 keV. From the analysis of MD results for several
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metals [33], the number of Frenkel pairs is found to depend on the kinetic energy of
the PKA, T, as:

VMD — AT", (333)

where A and n are constants that are only weakly dependent on the metal and
temperature. Figure 3.21 shows the dependence of vyp on T for various metals.
Note that the behavior of Frenkel pair production is well represented by this
function over a large damage energy range. Also note that the results all fall below
the NRT value as shown by the solid line in the figure. The lower efficiency is likely
the result of SIA production at the periphery of the disordered core dominating that
at the end of focused collision chains such that the close proximity to the vacancies
and the high kinetic energy of the core during the thermal spike assist in SIA—
vacancy recombination.

From the results shown in Fig. 3.21, there is no noticeable dependence on the
crystal structure, as there are three fcc metals (Al, Ni, Cu), two hcp metals (Ti, Zr),
one bee metal (Fe), and one ordered L1, structure (Ni3Al), and yet the magnitude of
vgp 1s not separated along crystal structure lines. Second, there is a dependence on
atomic mass of the metal as noted in the dependence of vyp and A on T. The
dependence of n on atomic mass is weaker, though evident. The decrease in effi-
ciency with atomic mass is likely due to the enhanced recombination due to thermal
spike effects. As cascade energy increases, there is a tendency for cascades to break
up into subcascades. Since one cascade produces fewer defects than two separate
cascades of the same total energy, subcascade formation will increase the slope of
the plots in Fig. 3.21. The transition to subcascades occurs at lower energy in lighter
metals and may be the cause for the mass dependence on efficiency. Note that n is
only weakly dependent on mass.

Fig. 3.21 Number of Frenkel
pairs produced as a function
of damage energy, 7, for Cu,
Fe, Ti, Zr, and NisAl at 100 K
and for Al and Ni at 10 K
(after [33])

T (keV)
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MD simulation has also been applied to the study of defect production in alloys
[34, 35]. One might expect that the mass difference between solute atoms in an alloy
will interrupt crystallographic processes such as focusing and channeling and result
in the production of more Frenkel pairs as compared to the pure metal case. MD
simulations in copper containing up to 15 at.% gold in solution show that the larger
Au atoms decrease the length of focused displacement events in the ballistic phase
and thereby enhance the intensity and