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Editor’s Foreword
Radiation risks and tools for their estimation relate to the most fundamental concepts
andmethods used in designing a safe system of interaction between humans and nu-
clear radiation technologies. This holds true for normal operation of civilian and mil-
itary facilities as well as for emergency situations (Chornobyl, Fukushima, Kyshtym,
etc.) and extraordinary events (atomic bombings of Hiroshima and Nagasaki). As a
matter of fact, without knowing the quantitative value of radiation risk it is impossible
to construct an acceptable system of safety standards for the personnel of industrial
facilities employing nuclear radiation technologies and for the population involved to
some extent in contact with sources of ionizing radiation.

Quantitative estimation of radiation risks has a long and productive history that
undoubtedly deserves a separate monograph. Here, it is worth to dwell on a rather
specific feature of the risk estimates that we have available and widely use in mod-
ern international and national documents regulating acceptable levels of radiation
for an individual and for the human population as a whole. This peculiarity consists
in that when analyzing the results of numerous radio-epidemiological studies – the
main purpose of which is precisely to determine the radiation risk value – considera-
tion has always been given to a stochastic link between the effects (i.e. the distribution
of various radiation-induced pathologies), on the one hand, and the “exact” values of
the exposure doses, on the other hand. That is, only the stochastic nature of the effects
was taken into account, while ignoring the obvious fact that the “exact” dose values
are unknown to us and that they are substituted for by a point statistical parameter
(e.g. expectation) of the true dose distribution. It is clear that this results in disregard
for errors inevitably arising in the instrumental measurements and in the computa-
tions of doses and their components. This particular approach to risk estimation is
implemented in the best-known and popular interpretive software package EPICURE.
Below, this approach aswell as the estimates themselves will be referred to as “naive.”

As regards risk analysis methods they usually involve mathematical tools that
were quite comprehensively developed already in the fundamental works of David
Cox, where the naive approach was also employed. Further developments, per se,
merely refined the Coxmodels for various versions of epidemiological studies (ecolog-
ical, cohort, “case-control” ones). Again, however, their analysis of results was always
based on thenaive approach; therefore, by definition, the resulting risk estimateswere
also naive.

It is perfectly obvious that under the naive approach, with its disregard for expo-
sure dose errors, the obtained risk estimates can be distorted; the extent of the distor-
tions, however, is a priori unclear. Naturally, the consequences of the naive approach
automatically apply to the bounds of permissible doses and their derivatives. It should
be noted that this problem did not go unnoticed; and so in the past twenty years pub-
lications began to appear in which attempts were made to take into account the dose
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uncertainty in the risk analysis. Unfortunately, the problem has not been completely
solved so far.

These are some of the difficulties that are bound to arise once we try to substitute
dose distributions for their point estimates in the risk analysis procedure.
– Whendeterminingdose estimates, one inevitablyhas touse the results of different

types of measurements, each type involving its own classical or Berkson errors;
and so, special statistical procedures need to be developed for obtaining the final
dose as a result of an overlap of individual distributions. In this case, the dose
distributions are formed due to errors of two types: classical and Berkson. There-
fore, proper risk analysis requires separate estimation of the contributions of the
classical and Berkson errors to the total dose error.

– At present, more or less establishedmethods for risk estimation in the presence of
a mixture of classical and Berkson errors in the exposure doses are still unavail-
able.

It is clear that the above problems cannot be addressed by using the results of field
epidemiological studies with different types of dose error, as there are no such field
studies and none can be conducted in principle. The only way is to widely use the
so-called stochastic experiment which involves simulation modeling.

Since this concerns the estimation of not just risks, but of risks associatedwith ex-
posure, all the above-stated problems can be resolved only through the joint efforts of
dosimetry physicists and mathematical statisticians. That is why the team of authors
of thismonograph ismadeup of experts in the aforementioned fields of science. At the
same time, the material in this book is radically focused on mathematical problems
of estimation of radiation risks in the presence of errors in exposure doses, while the
error level estimation methods (which definitely deserve a separate monograph) are
presented in a shorthand form.

Finally, it should be emphasized that, based on the results obtained in the book, a
software product similar to the above-mentioned EPICURE is worth creating, provided
that it includes risk estimation procedures having regard for dose errors. In that case,
experts engaged in epidemiological data processing would have a convenient tool for
obtaining not only naive risk estimates, but also estimates taking into account the
classical and Berkson errors in covariate.

The material and results presented in this monograph will be useful to epidemi-
ologists, dosimetrists, experts engaged in statistical processing of data or working in
the field of modern methods of Mathematical Statistics, as well as to undergraduate
and graduate university students.

Doctor of Sciences in Physics and Mathematics, Professor I. A. Likhtarov†



Preface
As a result of the Chornobyl accident in 1986, most of the territories of Ukraine, Be-
larus, andRussiawere radio-contaminatedand the residents of these areasunderwent
radioactive exposure. The most affected by the radiation was the thyroid, due to the
intake of iodine radioisotopes, primarily 131I (Likhtarov et al., 1993a, 2005, 2006b).

As early as 5–6 years after the accident, a sharp increase in thyroid cancer inci-
dence among children and adolescents residing in areas with a rather high radiation
exposure of this organ was revealed (Likhtarov et al., 1995a; Buglova et al., 1996; Ja-
cob et al., 2006). In fact, the increase in thyroid cancer incidence among children and
adolescents due to internal thyroid irradiation resulting from Chornobyl’s radioac-
tive emissions was the main statistically significant long-term effect of the Chornobyl
accident. Not surprisingly, this phenomenon generated great interest among radio-
epidemiologists around the world and led to a series of epidemiological studies in
Ukraine, Belarus, and Russia (Likhterev et al., 2006a; Tronko et al., 2006; Kopecky et
al., 2006; Zablotska et al., 2011). The exceptional interest in this problem is also ac-
counted for by the presence of sufficiently complete and reliable information about
the risk of radiation-induced thyroid cancer in case of exposure of this organ to exter-
nal radiation (Ron et al., 1995). As to internal exposure, data on the related radiation
risk value are extremely scarce (Likhterev et al., 2006a; Tronko et al., 2006; Kopecky
et al., 2006; Zablotska et al., 2011).

When interpreting the results of themost radio-epidemiological studies described
in the above-cited papers, a series of general assumptions were made, primarily con-
cerning the estimation of the radiation factor, namely the exposure dose:
– It was noted that the exposure dose estimates contain errors which are usually

significant.
– Even in the case where the variances of dose errors were determined, the analyti-

cal tools of risk analysis ignored this fact.
– In the dosimetric support for radio-epidemiological studies, instrumental mea-

surements of any types were practically always absent.

Thus, the interpretation of the most radio-epidemiological studies was based on risk
estimationmethods failing to take into account the presence of errors in the exposure
doses. One of the consequences of the assumption about the absence of errors in the
doses is a bias of the risk coefficient estimates andadistortionof the formof the “dose–
effect” curve. Note that such distortions result not only from systematic errors in dose
estimates, which is obvious, but also from random errors as well.

It is known that ameasured or estimated dose is inevitably accompanied by errors
of the classical or Berkson type, or by a mixture of them (Lyon et al., 2006; Li et al.,
2007; Kukush et al., 2011;Mallick et al., 2002;Masuk et al., 2016). And at the same time,
there is still no final conclusion as to the impact of a classical, Berkson, or mixed error
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in dose estimates on the end result of risk analysis, which is usually expressed in terms
of relative (ERR) or absolute (EAR) risk (Health Risks from Exposure to Low Levels of
Ionizing radiation, 2006).

A prominent example of the importance and urgency of this problem is the inter-
pretation of the results of long-term radio-epidemiological studies of a cohort of chil-
dren with thyroid exposure caused by the accident at the Chornobyl nuclear power
plant (Jacob et al., 2006; Likhtarov et al., 2006a; Tronko et al., 2006; Zablotska et al.,
2011). It is vital to note that the incidence of thyroid cancer in this cohort were de-
termined quite accurately. Also, there were obtained not only determined (i.e., point)
estimates, but stochastic (i.e., interval) dose estimates as well (Likhtarov et al., 2005,
2006b). However, no more or less acceptable mathematically reasonable computa-
tional procedure for combining two-dimensional error in dose and in effect within a
unified procedure of risk analysis is available at present. EPICURE, the most popular
software package in radio-epidemiology (Preston et al., 1993), operates upon deter-
mined dose values and is not adapted to account for any uncertainty of the input data.

This book is devoted to the problemof estimation of the radiation risk as a result of
the thyroid exposure by radioactive iodine. The focus is primarily on the binarymodel
of disease incidence inwhich the odds function is linear in exposure dose. The thyroid
exposure dose is not measured directly by a device; the estimated dose is based on
primary individual and environmental data, the model of atmospheric radioactivity
transfer, the biokineticmodel of radioiodine transport, individualized thyroidmasses,
and lastly, data from direct individual radioiodinemeasurements of the thyroid made
in May and June, 1986. As a result, the final estimates of exposure doses contain both
classical and Berkson errors. The mixture of measurement errors of different types
makes risk estimation quite a hard task to accomplish. Themain goal of the book is to
develop modern methods of risk analysis that would allow taking into consideration
such uncertainties in exposure doses.

This book describes knownmethods of risk estimation in the binarymodel of dis-
ease incidence in thepresenceof dose errors:maximum likelihood, regression calibra-
tion, and also develops original estimation methods for this model, namely, the cor-
rected score method and SIMEX (simulation–extrapolationmethod). The efficiency of
the methods was tested by a stochastic experiment based on the results of radio-epi-
demiological studies of thyroid cancer incidence rate after the Chornobyl accident.
The essence of the experiment is as follows: the real thyroid doses were contaminated
with generated measurement errors, and also thyroid cancer cases were generated
based on the binary model of disease incidence with realistic risk coefficients. After
that, radiation risk estimation was performed in the presence of errors in exposure
doses. Such a risk analysis requires a deep study of observation models with errors
in covariates which conceptually are not reduced to ordinary regression models and
are characterized by most complicated parameter estimation. Suchmodels are widely
used in various fields of science, particularly in epidemiology, meteorology, econo-
metrics, signal processing, and identification of dynamic systems. Recently, a series
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of fundamental papers devoted to this subject matter was published. Thus, the books
by Schneeweiss and Mittag (1986) and Fuller (1987) study linear models, both scalar
and vector ones; the manual by Cheng and Van Ness (1999) investigates the linear
and polynomial models; the book by Wansbeek and Meijer (2000) discloses the use
of linear and quadratic models in econometrics; finally, both editions of the book by
Carroll et al. (1995, 2006) describe various nonlinear models and their applications in
epidemiology.

This book comprises two parts, a list of references and appednices. The first part
of the book (Chapters 1–4) is based on a special course “Regression Measurement Er-
ror Models” that one of the authors has been teaching for a long time at the Mechanics
andMathematics Faculty of Taras ShevchenkoNational University of Kyiv. The second
part (Chapters 5–7) contains the results of long-term studies performed at the Depart-
ment of Dosimetry and Radiation Hygiene of the Institute of Radiation Hygiene and
Epidemiology of the National Research Center for Radiation Medicine of the National
Academy of Medical Sciences of Ukraine. Chapter 1 provides a general overview of
regression errors-in-variables models and a comparison of the main methods for esti-
mating regression parameters. Chapter 2 presents the mostly used linear model with
the classical error, Chapter 3 analyzes the polynomial regressionmodel, andChapter 4
studies other popular nonlinear models, including the logistic one. Chapter 5 makes
an overview of risk models implemented in the software package EPICURE. Chapter 6
deals directly with radiation risk estimation in the binarymodel with linear risk in the
presence of measurement errors in thyroid doses. It analyzes in detail combined mul-
tiplicative errors in exposure doses as a mixture of the classical and Berkson errors.
Finally, Chapter 7 undertakes a thorough analysis of procedures for thyroid dose esti-
mation and considers a more realistic model for errors in doses, namely, a mixture of
the classical additive and the multiplicative Berkson errors. The four appendices con-
tain the mathematical foundations for the proposed estimation methods. In particu-
lar, Appendix A outlines with mathematical rigor the elements of the theory of unbi-
ased estimating equations, including the conditions for the existence and uniqueness
of a solution, which defines the parameter estimator, and asymptotic properties of the
estimators.

Knowledge of the basics of calculus and probability theory as presented in the
standard obligatory courses (Burkill, 1962; Kartashov, 2007) is sufficient to under-
stand the material. It is desirable to know the Lebesgue integral theory (Halmos,
2013), although utilizing conventional mathematical formalism when calculating
expectations is enough to comprehend most of the contents.

The bookwill be useful to experts in probability theory,mathematical and applied
statistics, specialists in biomedical data processing, epidemiologists, dosimetrists,
and university students enrolled in specialties, “statistics,” “applied statistics,” or
“mathematics”.

Theauthors express their sincere gratitude toDoctor of Technical SciencesLeonila
Kovgan for comprehensive support and assistance in writing this book.





In memoriam
Illya Likhtarov (1935–2017)

Prof. Dr. Illya A. Likhtarov, an outstanding Ukrainian biophysicist, an expert in radia-
tion dosimetry, radiological protection and risk analysis, and a scientist of world level,
passed away suddenly and unexpectedly on January 14, 2017.

Illya Likhtarov was born on February 1, 1935 in the town of Pryluky in Cherni-
hiv Oblast of Ukraine. He spent his childhood in Kyiv, which became his lifelong
hometown. He started his carrier in 1960 with the radiology group of Kyiv Regional
Sanitary–Epidemiological Station. In 1962 he graduated with honors from the All-
Union Correspondence Polytechnic Institute in Moscow as an engineer-physicist.

In 1964, I. Likhtarov enrolled in graduate school at the Leningrad Institute of Ra-
diation Hygiene (IRH). Illya’s early charge was experimental and theoretical work on
the safety of radioactive iodine. This included studies in animals and in humanvolun-
teers, the development of a model of iodine metabolism in the body, the application
of protective agents of stable iodine, and the radiobiological effect of radioiodine in
the thyroid gland. Upon successful completion of this work in 1968, I. Likhtarov re-
ceived his Ph.D. degree.

From 1966 to 1986Dr. Likhtarov led the Laboratory of Radiation Biophysicswithin
the IRH responsible for studying radionuclide metabolism and dosimetry of internal
human exposure. Under his leadership studies were conducted on the metabolism
of tritium, iodine, strontium, calcium, plutonium and other radionuclides in hu-
mans and animals, andmathematical models andmethods for calculation of internal
doses were developed. Radiation safety standards were developed and implemented
for workers and the public. In 1976, Dr. Likhtarov obtained the degree of Doctor of
Sciences with a specialty in Biophysics.

Immediately after the Chernobyl accident on April 26, 1986 Dr. Likhtarov returned
to Ukraine,where hewas an expert advisor to the UkrainianMinister of Health. He su-
pervised thework under emergency conditions of numerous radiationmeasurements,
assessing current and future doses of the populations of the affected areas, and in the
development and implementation of protective measures.

In October 1986, Illya created and headed the Department of Dosimetry and Ra-
diation Hygiene of the newly established All-Union Scientific Center for Radiation
Medicine (now the National Research Center for Radiation Medicine of Ukraine). The
Department became the base of the prolific Ukrainian scientific school of dosimetry
and radiological protection, which has been functioning for over 30 years. As a part
of his legacy, Dr. Likhtarov trained many young professionals in this field.

In the aftermath of the Chernobyl accident Illya Likhtarov andhis teamwere faced
with the task of large-scale assessment of the radiation situation in more than 2,200
towns that were home to more than 3.5 million people. This task was complicated
due to a variety of environmental and social conditions. Under his guidance numer-
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ous measurements of cesium and strontium radionuclides in the body of citizens of
Ukraine were made, and a set of eco-dosimetric models was developed. Appropriate
measures for radiation protection of the population and rehabilitation of Ukrainian
territories were carried out. Dr. Likhtarov’s team also developed and implemented a
system of thyroid dose reconstruction of the entire population of Ukraine.

In 1995 Dr. Likhtarov and his co-workers founded the UkrainianRadiation Protec-
tion Institute (RPI). The RPI has developed into the Ukrainian center of expertise for
radiation protection and dosimetry: Core regulations have been drafted and support
has been provided to the national authorities and industries. During the last 15 years,
the RPI has been providing the occupational safety and internal dosimetry services
for the international project for the erection of the Chernobyl’s New Safe Confinement.
Professor Likhtarov’s team implemented an unprecedented large-scale program of in-
dividualmonitoringof internal exposure,which is focuses on the intakeof transuranic
elements and covers more than 17,000 workers.

In the early 1990s, the incidence rate of thyroid cancer increased in children re-
siding in the affected areas of Ukraine. Initial analysis showed significant correlation
between the thyroid dose caused by ingestion of radioiodine and the cancer incidence
rate. The results were published in 1995 in Nature and attracted the interest of re-
searchers frommany countries. In themid-1990s, a cohort of about 13,000 children (as
of 1986)was formed for a long-termUkrainian–USepidemiological studyof radiogenic
thyroid cancer. The dosimetry team led by Dr. Likhtarov created an original model for
dose assessment that considers individual behavior of subjects and the environmen-
tal characteristics in places of their residence. At the moment when point estimates
of doses were obtained, it became clear that ignoring errors in exposure doses causes
essential underestimation of radiation risks, and therefore, underestimation of harm-
ful effect of ionizing exposure on human health. That is why Dr. Likhtarov organized
a working group on elaboration of methods for radiation risk estimation, which take
into account dose uncertainties. The activity of the group resulted in this monograph,
which shows the way how to estimate correctly the risk of the radiation incidence rate
of thyroid cancer in Ukraine after the Chornobyl accident.

In recognition of Dr. Likhtarov’s scientific achievements, hewas elected amember
of the USSR National Radiological Protection Commission in 1978. Since 1992, he has
headed the Commission on Radiation Standards of Ukraine that developed and im-
plemented into practice basic national regulatory documents. In 1993 he was elected
to Committee 2 (Dosimetry) of the International Commission of Radiation Protection
(ICRP), where he worked successfully until 2005. Since 2002 he was also a member of
the IAEA Radiation Safety Standards Committee (RASSC).

Dr. Likhtarov carriedout extensive international cooperationwith specialists from
the USA, Europe and Japan since the Soviet times and afterwards. He participated in
international congresses and conferences, where his papers and participation in dis-
cussions invariably aroused keen interest of the audience.
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The scientific heritage of Dr. Likhtarov includes more than 600 scientific papers;
among them are articles in prestigious journals, monographs, and documents of the
ICRP, UNSCEAR, WHO and IAEA. Professor Likhtarov is included in the list of the 50
most cited scientists of Ukraine. Under his guidance, 25 students have earned Ph.D.
and 10 have earned Doctor of Science degrees.

Illya Likhtarov is survived by his wife Lionella Kovgan, sons Mikhail and Dmitry,
step daughter Tamila Kovgan, six grandchildren, and his sister Elena. He was pre-
ceded in death by his parents, twin sister Rosa, and his first wife Tamara Likhtarova.
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Summary

Ignoring errors in exposure doses leads to reducing of the radiation risk estimates,
and therefore, is a reason for underestimation of unhealthy action of the exposure.

The first part of the book is devoted to nonlinear measurement error models and
parameter estimation in the models. The second part deals with the problem of risk
estimation in themodelswith errors in exposuredoses.Well-knownmethods andorig-
inal statistical methods of risk estimation are described in the presence of measure-
ment errors in covariates. Efficiency of the methods is verified based on real radio-
epidemiological studies.

The book will be useful to experts in mathematical and applied statistics, spe-
cialists in biomedical data processing, epidemiologists, dosimetrists, and university
students enrolled in specialties, “statistics,” “applied statistics,” or “mathematics”.
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i=1 xiyi Inner product of two vectors in Euclidean space||z|| = √∑n
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trace Trace of a square matrix
A ≥ B, A > B For square matrices, it means that A − B is positive semidefinite

(positive definite); in particular, for a matrix A, A > 0means that
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x⊥⊥y Stochastic independence of random variables or random vectors

x and y
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λ Total risk or total incidence rate
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σ2F Variance of the logarithm of Berkson multiplicative error in ab-

sorbed dose
σ2Q Variance of the logarithm of the classical multiplicative error in

absorbed dose
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CS Corrected score method
95% DI Deviance interval, based on 2.5% and 97.5% quantiles of the estimates
EAR Excess absolute risk
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GLM Generalized linear model
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ML Maximum likelihood
MLE Maximum likelihood estimator
NPFML Non-parametric method of full maximum likelihood
NPRC Non-parametric method of regression calibration
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ORE Orthogonal regression estimator
pdf Probability density function
PFML Parametric method of full maximum likelihood
PRC Parametric method of regression calibration
QLE Quasi-likelihood estimator
q50% 50% quantile of a probability distribution (i.e., median)
RC Regression calibration
SIMEX Simulation and extrapolation method
SLLN Strong law of large numbers

Units

Becquerel (Bq) is a unit of radioactivity, in SI. One Bq is defined as the activity of a
quantity of radioactive material in which one nucleus decays per second.

Gray (Gy) is a unit of absorbed dose of ionizing radiation, in SI; 1Gy = 1 J kg−1.
Terms

Absolute risk is the difference between the frequency of adverse effect among per-
sons exposed to a factor that is studied (e.g., exposure dose) and the frequency of
the effect in a group of persons who are not exposed to the factor.
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Absorbed dose (D) is the energy absorbed per unit mass at a given point. The unit is
the J per kilogram (J kg−1) and is given the special name gray (Gy).

Background (or spontaneous) incidence rate is a component of incidence rate not
associated with the effect of ionizing radiation on humans.

Consistent estimator is a statistical estimator of regression parameters that con-
verges in probability to the true values of the parameters, as the sample size tends
to infinity.

Efficient estimator is the unbiased statistical estimator with the least variance
within the class of all unbiased estimators of a given parameter.

Eventually means with probability 1 for any sample size exceeding certain random
number (see Definition 2.12).

Excess absolute risk (EAR) is the coefficient at exposure dose in the linear model of
absolute risk, which coincides with radiation induced incidence rate if the expo-
sure dose is 1Gy. In SI, the unit is Gy−1.

Excess relative risk (ERR) is the coefficient at exposure dose in the linear model of
relative risk, which shows for how many times the radiation induced incidence
rate is higher than the background incidence rate if the exposure dose is 1Gy. In
SI, the unit is Gy−1.

Incidence rate is the number of cases of a disease, e.g., cancer, recorded during a
year per a certain number of persons (10 000, 100 000 or 1 000 000).

Internal exposure is the exposure of the human body (its separate organs and tis-
sues) by ionizing radiation sources being in the body.

Ionizing radiation is radiation (either electromagnetic or corpuscular), which when
being interacted with substance causes ionization (directly or not) and excitation
of its atoms and molecules.

Naive estimator is a statistical estimator of regression parameters under errors in
covariates, which is obtained by the method where such errors are ignored (e.g.,
by the ordinary maximum likelihood method).

Nuisance parameter is a parameter of regression model but not a regression coef-
ficient (e.g., a parameter of regressor’s distribution or the variance of error in re-
sponse). Nuisanceparameter estimation is not anultimate goal of statistical study.

Organ dose (DT) is a quantity defined in ICRP (1991) in relation to the probability
of stochastic effects (mainly cancer induction) as the absorbed dose averaged
over an organ, i.e., the quotient of the total energy imparted to the organ and the
total mass of the organ:

DT = ET/mT ,

where ET is total ionization energy imparted to the organ or tissue T and mT is
mass of the organ or tissue.

Radiation incidence rate is a component of incidence rate caused by exposure of the
human body (its separate organs and tissues) by sources of ionizing radiation.
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Radiation risk is the probability for a person or his/her descendants to get any harm-
ful effect caused by ionizing radiation.

Regression is a form of link between random variables. It is a law of change for ex-
pectation of a randomvariable in dependency on the values of another one. There
are linear, polynomial, nonlinear, and other kinds of regression.

Regressor is a covariate in regression analysis.
Relative risk is the ratio of the frequency of adverse effect among persons exposed

to a factor that is studied (e.g., radiation dose) to the frequency of the effect in a
group of persons who are not exposed to the factor.

Response is a dependent variable in regression analysis.
Stochastic effects are nonthreshold effects of radiation influence, the probability of

which is positive at any dose of ionizing radiation and increases with dose. The
stochastic effects include malignancies (i.e., somatic stochastic effects) and ge-
netic changes transmitted to descendants (i.e., hereditary effects).

Unbiased estimator is a statistical estimator, with expectation equal to the esti-
mated parameter.
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Part I: Estimation in regression models

with errors in covariates





1 Measurement error models
Consider an ordinary model of nonlinear regression

yi = f(ξi , β) + εi , i = 1, n . (1.1)

Here, ξi ∈ Rd are known (observable) values of regressors;
β is an unknown vector of regression parameters that belongs to the parameter set

Θ ⊂ Rp;
f : Rd × Θ → R is a known (given) regression function;
εi , i = 1, n are random observation errors usually assumed to be independent,

centered (i.e., with zero mean), and having finite variance;
yi , i = 1, n are observable values of the dependent variable, or response.
The regression parameter β should be estimated in frames of the model (1.1) by

observations {yi , ξi, i = 1, n}.
As another example of regressionmodel, consider a binary logistic model. Let the

response yi take two values, 0 and 1, depending on the true value of the regressor ξi,
namely

P{yi = 1|ξi} = λ(ξi)
1 + λ(ξi) , P{yi = 0|ξi} = 1

1 + λ(ξi) , i = 1, n , (1.2)

where
λ(ξi) = λ(ξi , β) = eβ0+β1ξi (1.3)

is the odds function and β = (β0, β1)T is the regression parameter. The observed cou-
ples {(yi , ξi), i = 1, n} are assumed stochastically independent, and the parameter β
should be estimated by the observations.

Themodel (1.2) is widely used in epidemiology and can be interpreted as follows.
yi is an indicator of disease for the subject i of a cohort; in the case yi = 1, the subject i
has obtained a given type of disease during a fixed period of observations; in the case
yi = 0, the subject i has not demonstrated any symptoms of the disease during the
period; ξi is the true value of the regressor that affects on disease incidence.

Anothermodel of the odds function iswidely used in radio-epidemiology, namely,
linear one

λ(ξi , β) = β0 + β1ξi , i = 1, n . (1.4)

Themodel (1.2) and (1.4) serves for the simulations of the incidence rate of oncological
diseases caused by radiation exposure; the regressor ξi is the radiation dose recieved
by the subject i of the cohort during the fixed period of observations. This period in-
cludes also all the registered cases of cancer.

The parameters β0 and β1 to be estimated are the ones of radiation risk. From
mathematical point of view, the model (1.2) and (1.4) is a generalized linear model
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(GLM) of binary observations; it resembles a logistic model (1.2) and (1.3) but some-
what differs from it. Herein the term “generalized linearmodel”means that the param-
eters of the conditional distribution yi|ξi depend on the regressor ξi through a linear
expression β0 + β1ξi, where β0 and β1 are unknown regression parameters. Of course,
the logistic model (1.2) and (1.3) is also a generalized linear regression model.

The main object of this book is a model with errors in the regressor. It is called
also errors-in-variables model ormeasurement error model.

A distinguishing feature of such models is that the true value of the regressor ξi
is unknown to us, but instead we observe a surrogate value xi including apart of ξi, a
randommeasurement error, i.e.,

xi = ξi + δi , i = 1, n . (1.5)

We assume that the errors δi are centered, stochastically independent, and have fi-
nite variance; moreover, the values {ξi, δi , i = 1, n} are stochastically independent.
Such errors are called classical (additive) measurement errors. In the model (1.5), the
unobservable regressor ξi is called also a latent variable.

In particular, equalities (1.1) and (1.5) describe a nonlinear regression model with
measurement errors. Exact assumptions about base units are the following:
– Random vectors and random variables {ξi , εi, δi , i = 1, n} are independent.
– Vector β should be estimated based on observations {yi , xi , i = 1, n}.
In both logistic model with errors in the covariates (1.2), (1.3), and (1.5) and binary
GLMwith errors in the covariates (1.2), (1.4), and (1.5), exact assumptions about basic
values are the following:
– Random variables {(yi , ξi), δi , i = 1, n} are independent.
– Vector β has to be estimated based on observations {yi , xi , i = 1, n}.
From a general point of view, the model with measurement errors consists of three
parts:
(a) the regression model that links the response variable with unobservable ξ and

observable z regressors, respectively;
(b) the measurement error model that connects ξ with the observable surrogate vari-

able x;
(c) the distribution model of ξ .

In particular, the binary model (1.2), (1.4), and (1.5) gives: (1.2) and (1.4) to be the re-
gression model in which there is no regressor z observable without errors; and (1.5) to
be themodel ofmeasurement errors. In regards to the distribution of regressors ξi, one
can assume, e.g., that the ξi, i = 1, n are independent and identically distributed with
normal distribution N(μx, σ2ξ ), wherein the parameters μx, σ2ξ (also called nuisance
parameters) can be either known or unknown.
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A regressor z can be included in the risk model as follows:

λ(ξi , β, γ) = eγTzi (β0 + β1ξi) , i = 1, n . (1.6)

Here, {zi , i = 1, n} are independent random vectors in Rq, and γ ∈ Rq is a vector of
additional regression parameters. The estimators of the regression parameters β and γ
are constructed based on observations {yi , zi , xi, i = 1, n} in frames of the model (1.2),
(1.5), and (1.6). Within the radio-epidemiological risk models, the vector zi compo-
nents may present the age of person i as well as his/her gender along with individual
features of the person. Usually the regressor z is the categorical variable, namely the
one that takes discrete values.

1.1 Structural and functional models, linear, and nonlinear
models

In this section, we assume for simplicity that the observed part of regressors z to be
absent in underlying measurement error models.

Consider the regression model linking the response yi with the regressors ξi . This
model is called structural if the true values of ξi, i = 1, n, are random, moreover, they
are independent and identically distributed in Rd . Usually, we know the form of the
regressor ξ distribution, i.e., the probability density function (pdf) of ξ is known up
to certain parameters. Those values (nuisance parameters) can be either known or
unknown. If they are known, the distribution of ξ is given exactly.

For example, the structural logistic model (1.2), (1.4), and (1.5) usually requires{ξi , i = 1, n} to be independent and identically distributed random variables with
common lognormal distribution LN(μx , σ2ξ ), where the nuisance parameters μξ ∈ R
and σξ > 0 are unknown.

Unlike the structuralmodel, the functional regressionmodel assumes the true val-
ues of {ξi , i = 1, n} to benonrandom.Within the functional errors-in-variablesmodels,
the true regressor values ξi become the nuisance parameters; their number grows as
the sample size n increases making it difficult to perform research.

Actually, the structural models impose stringent restrictions on the behavior of
regressor values. Thus, the assumption that {ξi, i ≥ 1} is a sequence of independent
identically distributed random variables with finite variance ensures, using the law
of large numbers, the existence of finite limits for expressions ξ = 1

n ∑n
i=1 ξi, ξ2 =

1
n ∑n

i=1 ξ2i , and even for
1
n ∑n

i=1 g(ξi), where g is a Borel measurable function such that|g(t)| ≤ const (1 + t2), t ∈ R.
In the framework of the functionalmodels, if, e.g., it is required only to have addi-

tional stabilization of the expressions ξ and ξ2, then it does not follow the existence
of finite limit for the average 1

n ∑n
i=1 sin ξi.

The choice between the structural and functional models relies on an accurate
analysis of the measurement procedure. In epidemiology, the structural models are
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more popular, while modeling physical or chemical experiment where monotonously
changing regressor ξ takes place is more relevant to the functional models.

We give an example of the functional model. In the adiabatic expansion, the gas
pressure and gas volume are related to each other according to Boyle’s law:

pVγ = c . (1.7)

Here, γ and c are some positive constants that we want to estimate by experiment.
Rewrite (1.7) as

ln p = −γ ln V + ln c . (1.8)

Denote
y = ln p , ξ = lnV ; β0 = ln c , β1 = −γ . (1.9)

Then the response y is related linearly to the regressor ξ :

y = β0 + β1ξ . (1.10)

Suppose that we observe y and ξ with additive errors

yi = β0 + β1ξi + εi ,
xi = ξi + δi , i = 1, n . (1.11)

Naturally, regressors ξi = lnVi canbe supposed nonrandombecause the adiabatic ex-
pansion affects on gas volumeVi being increased in time. Thus, the observationmodel
(1.8) is naturally assumed to be the functional one, since the values ξi are nonrandom
although unobservable. The errors {εi , δi, i = 1, n} are assumed independent. By ob-
servations {yi , xi , i = 1, n} the regression parameters β0 and β1 are estimated andnext
the parameters of equation (1.7), namely c = eβ0 and γ = −β1, are estimated as well.

Note that in terms of the original variables pi and Vi, we have a model with mul-
tiplicative errors

pmesi = c(V tr
i )−γ ⋅ ε̃i ,

Vmes
i = V tr

i ⋅ δ̃i , i = 1, n . (1.12)

Here ε̃i = eεi and δ̃i = eδi are the multiplicative errors; Vtr
i is the true value of gas

volume; pmesi and Vmes
i are measured values of the pressure and volume, respectively.

As this, the unknown values V tr
i are assumed to be nonrandom.

Now, we consider an example of the structural model. Let us investigate the crime
rate η in dependence on the average annual income ξ in a certain district of a country.
This dependence we model using a given regression function η = f(ξ, β), where β is
the vector of regression paramers.We randomly select the area i (e.g., the area of a big
city), measure the crime rate (e.g., the number of registered crimes per capita), and
take into account the average annual income ξi (e.g., by interviewing residents). For
obvious reasons, the measurement will be inaccurate. One can assume that measure-
ment errors are additive:

yi = f(ξi , β) + εi ,
xi = ξi + δi , i = 1, n . (1.13)
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It is appropriate to assume that the latent variables ξi are random because we ran-
domly select a particular area for research andnotmoving, say, frompoor to wealthier
areas. The structural regression model naturally describes our experiment.

The regression model (1.1) in which the function f depends linearly on the regres-
sor ξi is called linear. All other models of the regression of response y on the regressor
ξ are called nonlinear. These are, in particular, the model (1.1) in which the regression
function f depends nonlinearly (e.g., polynomially) on ξi, and the binary model (1.2)
with any dependence of the odds function λ on ξi. The linearmeasurement errormod-
els will be studied in Chapter 2, and the nonlinear ones in all subsequent chapters.

1.2 Classical measurement error and Berkson error

Asalreadynoted, the error δi is called the classicalone in the context of themodel (1.5),
if ξi and δi are stochastically independent. The error describes instrumental measure-
ments when some physical quantity to bemeasured using a device is characterized by
a certain fluctuation error.

There is also the Berksonmeasurement model

ξi = xi + δBi , i = 1, n . (1.14)

Here, ξi is the true value of regressor (randomand unobservable), xi is the result of the
observation (random), δBi is the Berkson error (centered), and it is known that xi and
δBi are stochastically independent. The model was named after the American Joseph
Berkson (1899–1982), who first examined it in 1950.

It seems that one can transform the model (1.14) to the classical model (1.5) as
follows:

xi = ξi + δ̃i , δ̃i = −δBi , (1.15)

but then the new error δ̃i becomes correlated with the regressor ξi = xi − δ̃i (remember
that now xi and δ̃i are stochastically independent). Thus, the model (1.14) and the
classical model (1.5) are considerably different measurement models.

The Berkson model occurs particularly in situations where the observation xi
is formed by averaging. Imagine that some part of the observations xi, i = 1,m,
2 ≤ m < n is an average quantity xc:

xi = xc , i = 1,m , xc = 1
m

m∑
i=1

ξi . (1.16)

Then

ξi = xi + δi , xi = xc , δi = (1 − 1
m) ξi − 1

m ∑
j=1,m
j ̸=i

ξj , i = 1,m . (1.17)
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Let {ξi , i = 1,m} be independent with common expectation μξ and positive variance
σ2ξ . Then

Eδi = 0 , Dδi = m − 1
m σ2ξ , Dxc = σ2ξ

m . (1.18)

Since∑n
i=1 δi = 0, and due to symmetry

cov(xc, δi) = 1
m cov(xc, m∑

i=1
δi) = 0 , (1.19)

cov(δi , δj) = −2(1 − 1
m) 1

mσ2ξ + m − 2
m2 σ2ξ = −σ2ξm , i ̸= j . (1.20)

Hence the correlation coefficients are

corr(xc, δi) = cov(xc, δi)√Dxc ⋅ Dδi = 0 , (1.21)

corr(δi , δj) = −σ2ξm (m − 1
m σ2ξ)−1 = − 1

m − 1 , i ̸= j . (1.22)

The values xc and δi are uncorrelated. And δi are almost uncorrelated when m is
large, that is, corr(δi , δj) = 1

m−1 tends to 0. Therefore, in the model (1.17), the val-
ues {xc, δi , i = 1,m} can be considered approximately uncorrelated. If the probability
distributions of ξi are normal, then these variables are close to be independent.

This reasoning shows that the model (1.17), in a certain approximation, can be
considered as theBerksonmodel (1.14). The latter can be realizedwhen the entire sam-
ple x1, . . . , xn is divided into several groups. Inside each group, the data have been
taken as a result of appropriate averaging, namely when one assigns the observation
xi to an average which is close to the arithmetic mean of the corresponding values
of the true regressor. We will often deal with such situations in the measurement of
exposure doses within radiation risk models.

The Berkson and classical measurement errors can be compared with regard to
the efficient estimation of regression parameters. Consider the structuralmodel in two
modifications: the first will have the classical errors (1.5) and the secondwill just have
the Berkson ones (1.14), and let

Dδi = DδBi = σ2δ , i = 1, n . (1.23)

For the first and secondmodifications, we construct the adequate estimates β̂cl and β̂B
of the regression parameter β (we will explain later how to construct such estimates).
Then, the deviation of β̂cl from the true value will (very likely) be more than the corre-
sponding deviation of β̂B 󵄩󵄩󵄩󵄩󵄩β̂cl − β󵄩󵄩󵄩󵄩󵄩 > 󵄩󵄩󵄩󵄩󵄩β̂B − β󵄩󵄩󵄩󵄩󵄩 . (1.24)

Here we use the Euclidean norm. The inequality (1.24) is qualitative in its nature and
indicates the following trend: for the same level of errors, the classical errors strin-
gently complicate the efficient estimation compared with the Berkson ones. Our expe-
rience with the binary model (1.2) and (1.4) confirms this conclusion.
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1.3 Explicit and implicit models

Themodels discussed above are explicit regressionmodels in which the response (de-
pendent variable) and the regressor (independent variable) are separated variables.
The implicitmodels aremoregeneralwhere all variablesunder observationare treated
equally. These models have the form

G(ηi , β) = 0 ,
zi = ηi + γi , i = 1, n . (1.25)

Here the latent variables ηi belong toRm m ≥ 2, γi are the random (classical)measure-
ment errors, the regression parameter β belongs to a parameter set Θ ⊂ Rp, the link
functionG : Rm×Θ → R is known. Onehas to estimate the vector β by the observations{zi , i = 1, n}.

Thus, the true values ηi lie on a given hypersurface

Sβ = {η ∈ Rm : G(η, β) = 0} . (1.26)

In fact, we want to retrieve this surface using the observed points. We impose the re-
strictionm ≥ 2 in order to have at least two scalar variables, components of the vector
η, among which there are some regression relations.

The implicit model (1.25) might be either the functional one where the ηi are non-
random points on the surface Sβ, or the structural one where {ηi , i = 1, n} are inde-
pendent and identically distributed on the surface Sβ .

Here is an example of an implicit model. Suppose that we have to restore a circle
using the observations of points on it. For the true points ηi = (xi , yi)T, it holds that(xi − x0)2 + (yi − y0)2 = r2 , i = 1, n . (1.27)

Here, c = (x0; y0)T is the center and r > 0 is the radius. Instead of the vectors ηi there
are observed vectors zi = ηi + γi, i = 1, n, where γi are independent normally dis-
tributed randomvectorswith variance–covariancematrix σ2I2 (I2 is unit 2×2matrix),
where σ > 0 is nuisance parameter. Based on the observations {zi , i = 1, n} one has
to estimate the vector β = (x0; y0; r)T. This observation model fits exactly the scheme
(1.25). The link function is

G(xi , yi; β) = (xi − x0)2 + (yi − y0)2 − r2 , i = 1, n , (1.28)

and the curve Sβ = {(x; y)T ∈ R2 : (x − x0)2 + (y − y0)2 = r2} is just the circle.
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If the vectors ηi are nonrandom, then we have a functional model, and if, say,{ηi, i = 1, n} are independent and uniformly distributed over Sβ then the model is
structural. Similarmodels occur in meteorology, computer vision as well as in pattern
recognition problems. The book by Chernov (2010) deals with the described problem
on restoring the circle.

It should be noted that the explicit model (1.1) and (1.5) can be transformed to
the implicit one. For this purpose, denote αi = f(ξi , β), G(αi , ξi; β) = αi − f(ξi , β),
ηi = (αi; ξTi )T, zi = (yi; xTi )T, and γi = (εi; δTi )T. Relation (1.25) describing the implicit
model holds true for the new variables. After such transformation, the response and
the regressors are treated on an equal basis.

1.4 Estimation methods

In regression errors-in-variables models, there are several reasonable estimation
methods. Some of them are consistent, i.e., they yield estimators β̂n of the param-
eter β that converge in probability to the true value β as the sample size tends to
infinity. Others yield estimators with significant deviation from β; there are also es-
timators with reduced deviation. For small and moderate samples, the inconsistent
estimators may even be advantageous because the consistent ones sometimes con-
verge to β too slowly. The data of cohort radioepidemiologic studies include samples
of rather moderate size, because if the number n of surveyed persons can reach tens
of thousands then the number of oncological cases, fortunately, will be sufficiently
smaller (about a hundred). From this point of view, the most promising methods are
those that significantly reduce the deviation β̂n − β of the estimators compared with
“rough” estimation methods.

1.4.1 Naive estimators

The naive estimationmethod constructs the estimators by algorithms that lead to con-
sistent estimation in case of the absence of measurement errors, i.e., when the regres-
sor is observed precisely.

Start with either the nonlinear regression model (1.1) and (1.5) or the model (1.1)
and (1.14) with Berkson error. We can construct the naive estimator by ordinary least
squares method using the objective function

QOLS(y1, x1, . . . , yn , xn; β) = n∑
i=1

qOLS(yi , xi; β), qOLS(y, x; β) = (y − f(x, β))2 . (1.29)
The corresponding naive estimator is as follows:

β̂naive = β̂OLS = argmin
β∈Θ

QOLS(y1, . . . , xn; β) . (1.30)
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If the set Θ is open in Rp, then it is convenient to define the estimator by an equation
(the so-called normal equation) instead of optimization (1.30). For this, we introduce
the estimating function

sOLS(y, x; β) = −1
2
∂qOLS(y, x; β)

∂β
= (y − f(x, β))∂f(x, β)

∂β
(1.31)

and define the estimator β̃OLS as one of the solutions to the equation
n∑
i=1

sOLS(yi , xi; β) = 0 , β ∈ Θ . (1.32)

The estimators β̂OLS and β̃OLS do not differ very much from each other. The naive re-
searcher would follow this way if he/she knows nothing about the theory of measure-
ment errors in covariates. Thementioned researcher just neglects the existenceof such
errors and constructs the estimator to be consistent when the errors are absent.

Now, consider the binary model (1.2) and (1.5), where the odds function λ has the
form either (1.3) or (1.4). Should {yi, ξi , i = 1, n} be observed the likelihood function
will be equal to

L(β) = n∏
i=1

Pyi {yi = 1|ξi} ⋅ P1−yi {yi = 0|ξi} = n∏
i=1

λyii
1 + λi

, (1.33)

with λi = λ(ξi , β). The loglikelihood function is
l(β) = n∑

i=1
(yi ln λi − ln(1 + λi)) . (1.34)

The score function is

sOML(y, ξ; β) = ∂
∂β

(y ln λ(ξ, β) − ln(1 + λ(ξ, β))) =
= ( y

λ(ξ, β) − 1
1 + λ(ξ, β) ) ∂λ(ξ, β)

∂β . (1.35)

Here, the index “OML” hints at the ordinary maximum likelihood method. The usual
maximum likelihood estimator is given by the equation

n∑
i=1

sOML(yi , ξi; β) = 0 , β ∈ Θ. (1.36)

Here Θ is an open parameter set in R2.
However, the measurement errors (1.5) (or (1.14)) being present, the regressors ξi

are unavailable. Using the observations {yi, xi , i = 1, n}, we can construct the naive
estimator β̂naive = β̂OML as one of the solutions to the system of equations

n∑
i=1

sOML(yi , xi; β) = 0 , β ∈ Θ. (1.37)
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For example, in the logisticmodel (1.2), (1.3), and (1.5)wehave the following equations
for the naive estimator:

n∑
i=1

(yi − 1
1 + e−β0−β1xi ) ⋅ [1

xi
] = 0 , β ∈ Θ . (1.38)

In themodel (1.2), (1.4), and (1.5) with linear odds function, a counterpart of equations
(1.38) is as follows:

n∑
i=1

( yi
β0 + β1xi

− 1
1 + β0 + β1xi

) ⋅ [1
xi
] = 0 , β ∈ Θ . (1.39)

In more general regression models, the conditional pdf ρy|ξ (yi , ξi; β) of yi given ξi is
defined. This is a density function of the conditional probability with respect to some
measure ν on the real line. It contains the unknown regression parameter β. Then the
score function is equal to

sOML(yi, ξi; β) = ∂ ln ρy|ξ (yi , ξi; β)
∂β = 1

ρy|ξ
∂ρ(y|ξ)
∂β , (1.40)

and the naive estimator is defined by (1.37) and (1.40).
Note that all the naive estimators being discussed in Section 1.4.1 fit into the over-

all scheme with the estimating function (1.40).
If, in the model (1.1), the errors εi follow the normal distribution N(0, σ2ε ), then

ρy|ξ (yi , ξi, β) is the density of the normal law N(f(ξi , β), σ2ε ) w.r.t. the Lebesgue mea-
sure on the real line, and equations (1.37) and (1.40) are reduced to the normal equa-
tions (1.32).

In the binary model (1.2), we have the conditional pdf

ρy|ξ (yi , xi; β) = ( λi
1 + λi

)yi ( 1
1 + λi

)1−yi , λi = λ(ξi , β) . (1.41)

This is the density of yi given ξi w.r.t. the counting measure ν to be concentrated at
the points 0 and 1, namely ν(A) = IA(0) + IA(1), A ⊂ R. Herein IA denotes an indicator
function

IA(x) = 1 , if x ∈ A , and IA(x) = 0 , if x ∉ A . (1.42)

Then the estimating equations (1.38) and (1.39) for the naive estimator correspond to
the general score function (1.40).

The naive estimators β̂naive are inconsistent, as the sample size grows; they have
a significant deviation β̂naive − β for moderate samples as well. However, this does not
mean that they cannot be applied: usually they are evaluated by simple numerical
procedures and under small measurement errors (i.e., when the variance of the er-
rors is small), the naive estimators are quite accurate and can estimate better than the
consistent ones.
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1.4.2 Maximum likelihood estimator (MLE)

In this section, we consider only the structural model with errors in the regressor. Let
the regression of the response y on the scalar covariate ξ be given by the conditional
pdf ρ(y|ξ) = ρ(y|ξ; β) w.r.t. some measure ν on real line and the covariate ξ is random
and has the pdf ρ(ξ) = ρ(ξ; γ), with nuisance parameter γ.
A model with Berkson error
Suppose we have the Berkson measurement error, i.e., x is measured instead of ξ and

ξ = x + δB , (1.43)

the random vector (y, x)T and δB are stochastically independent, and the probability
law of the Berkson error is known, namely, we know the pdf ρ(δB). Consider the in-
dependent copies of model (yi , xi , δBi , ξi), i = 1, n (i.e., all these sets are independent
and have the same distribution as the set (y, x, δB, ξ) from themodel). By the observa-
tions {(yi , xi), i = 1, n}, we estimate the model parameters.

Construct the joint pdf of observed variables

ρ(y, x; β) = ∫
R
ρ(y|ξ)󵄨󵄨󵄨󵄨ξ=x+δB ⋅ ρ(δB) dδB. (1.44)

Then the score function is

sML(y, x; β) = ∂ ln ρ(y, x; β)
∂β = 1

ρ
∂ρ
∂β . (1.45)

In case Θ is open, the MLE satisfies the equation

n∑
i=1

sML(yi , xi; β) = 0 , β ∈ Θ. (1.46)

We note that often the integral (1.44) is not calculated in the closed form, e.g., this
is the case in binary models. Therefore, evaluating the estimating function (1.45) in
the observable points with varying β can be a daunting problem of numerical meth-
ods. For approximate calculation of the integral (1.44), we can apply the Monte Carlo
method.

A model with classical error
Let the relationship between y and ξ be such as described above (in particular, the
conditional pdf ρy|ξ (yi , ξi; β) is given, see Section 1.4.1), but instead of the Berkson
error (1.43), we have a classical measurement error

x = ξ + δ , (1.47)
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such that random vector (y, ξ)T and δ are stochastically independent and the pdf
ρ(δ) of the classical error is known. Consider independent copies of the model(yi , ξi , δi , xi), i = 1, n. By the observations {(yi, xi), i = 1, n}, we estimate the model
parameters.

The joint pdf ρ(y, x; β) is written more complicate than in (1.44) and the nuisance
parameter γ is included in the pdf ρ(ξ; γ):

ρ(y, x; β, γ) = ∫
R

ρ(y|ξ)󵄨󵄨󵄨󵄨ξ=x−δ ⋅ ρ(x|δ) ⋅ ρ(δ) dδ . (1.48)

Because ξ and δ are independent, we have

ρ(x|δ) = ρ(ξ)󵄨󵄨󵄨󵄨ξ=x−δ . (1.49)

For example, if ξ ∼ N(μξ , σ2ξ ), then the conditional law x|δ ∼ N(μξ + δ, σ2ξ ), thus
ρ(x|δ) = 1√2πσξ e−

(x−μx−δ)2

2σ2ξ = 1√2πσξ e−
(ξ−μξ )

2

2σ2ξ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ξ=x−δ = ρ(ξ)󵄨󵄨󵄨󵄨ξ=x−δ . (1.50)

Relations (1.48) and (1.49) imply

ρ(y, x; β, γ) = ∫
R
ρ(y|ξ; β)󵄨󵄨󵄨󵄨ξ=x−δ ⋅ ρ(ξ; γ)󵄨󵄨󵄨󵄨ξ=x−δ ⋅ ρ(δ) dδ . (1.51)

The score function is

sML(y, x; β, γ) = 1
ρ

∂ρ
∂(β, γ) , ρ = ρ(y, x; β, γ) . (1.52)

Here, the partial derivatives are taken in both β and γ. The MLE β̂ML, γ̂ML is a solution
to the system of equations

n∑
i=1

sML(yi , xi; β, γ) = 0 , β ∈ Θ , γ ∈ Θγ . (1.53)

Here, Θγ is a parameter set for the parameter γ.
As we see, the expression (1.51) for the joint pdf is quite complicated, making it

problematic to use thismethod inmodels other than linear. For example, in themodel
(1.1) and (1.5) with ξi ∼ N(μξ , σ2ξ ), εi ∼ N(0, σ2ε ), δi ∼ N(0, σ2δ) under known σ2δ and
σ2ε , it holds that

ρ(y, x; β, γ) = ∫
R

1√2πσε e− (y−f(x−δ))2

2σ2ε × 1√2πσξ e−
(x−δ−μξ )

2

2σ2ξ × 1√2πσδ e− δ2

2σ2δ dδ . (1.54)

Here γ = (μξ , σ2ξ )T.
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In the linear model, f(ξ) = f(ξ, β) = β0 + β1ξ and the integral is calculated in the
closed form, but it is not the case in the incomplete quadratic model f(ξ, β) = βξ2.

So far, besides the computer challenges are still taking place, it is unknown
whether the loglikelihood function l = ln ρ has regularity properties, which provide
the following well-known good features of the maximum likelihood method:
(a) efficiency (realization of the Cramér–Rao inequality), and
(b) consistency of the estimator as the sample size grows.

Since the existence of moments for β̂ML is not guaranteed, the efficiency should be
replaced by asymptotic efficiency. That is, we are looking for the smallest asymptotic
covariancematrix (ACM) of the estimator β̂ML within a quite broad class of estimators.
However, even this asymptotic efficiency for β̂ML is not at all guaranteed.

In the end, we want to draw a conclusion: in models with the Berkson error, the
Maximum Likelihood method is worth realizing, but in nonlinear models with classi-
calmeasurement error, using themethod seems doubtful.Wewill see that in the latter
models, much more reliable estimation methods are developed.

1.4.3 Quasi-likelihood estimator (QLE)

Mean–variance model
Consider the general structural regression model described at the beginning of Sec-
tion 1.4.2 with the vector regressor ξ and the classical error (1.47). One can add condi-
tional mean and conditional variance of y given ξ :

E(y|ξ) = m∗(ξ, β) = ∫
R

y ρ(y|ξ; β) dy , (1.55)

V(y|ξ) = 𝑣∗(ξ, β) = ∫
R

(y − m∗(ξ, β))2 ρ(y|ξ; β) dy . (1.56)

Now, consider the conditional mean of y given the observable variable x:

m(x, β) = E(y|x) = E[E(y|x, ξ)|x] . (1.57)

Classical error in the model (1.47) is nondifferentiable, so it means that under x and
ξ known, only ξ alone contains all the information about the response y (this is a
consequence of the independence of the couple (y, ξ) from δ). Then

E[y|x, ξ] = E(y|ξ) = m∗(ξ, β) , (1.58)

m(x, β) = E[m∗(ξ, β)|x] = ∫
Rd

m∗(ξ, β) ρ(ξ|β) dξ . (1.59)

Here ρ(ξ|x) is the conditional pdf of ξ given x (being evaluated at the point ξ). Later
on, we will consider how to find it.
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Pass to the conditional variance𝑣(x, β) = V(y|x) = E[(y − m(x, β))2|x] . (1.60)

Hereafter, we write briefly m∗(ξ) = m∗(ξ, β), m(x) = m(x, β) and apply that the classi-
cal error is indifferentiable:𝑣(x, β) = E{E[(y − m(x))2|x, ξ]|x} , (1.61)𝑣1 = E[(y − m(x))2|x, ξ] = E[(y − m∗(ξ) + m∗(ξ) − m(x))2|x, ξ] == E[(y − m∗(ξ))2|ξ] + E[(m∗(ξ) − m(x))2|x, ξ] == V(y|ξ) + E[(m∗(ξ) − m(x))2 |x, ξ] . (1.62)

Wemadeuse of the fact that y−m∗(ξ) andm∗(ξ)−m(x) are conditionally uncorrelated:
E[(y − m∗(ξ))(m∗(ξ) − m(x))|x, ξ]= (m∗(ξ) − m(x)) E[(y − m∗(ξ))|x, ξ]= (m∗(ξ) − m(x)) E[(y − m∗(ξ))|ξ] = 0 . (1.63)

Further, by the tower property of conditional expectations (Kartashov, 2007)𝑣(x, β) = E(𝑣1|x) = E[𝑣∗(ξ)|x] + E[(m∗(ξ) − m(x))2|x] . (1.64)

Finally, we have a remarkable equality𝑣(x, β) = V(y|x) = E[V(y|ξ)|x] + V[E(y|ξ)|x] . (1.65)

In the last step, we used the fact that

E[m∗(ξ)|x] = E[E(y|ξ)|x] = E[E(y|x, ξ)|x] = E(y|x) = m(x) . (1.66)

Using the conditional distribution of ξ given x, one can rewrite the conditional vari-
ance as follows:𝑣(x, β) = ∫

Rd

𝑣∗(ξ, β) ρ(ξ|x) dξ + ∫
Rd

(m∗(ξ) − m(x))2ρ(ξ|x) dξ . (1.67)

The functions (1.59) and (1.67) designate the so-called mean–variance model, see
Cheng and Van Ness (1999) and Wansbeek and Meijer (2000).

In this model, the regression of y on the observable covariate x can be written as

y = m(x, β) + ε , (1.68)

where ε = ε(x, y) plays a role of error, such that
E(ε|x) = 0 , V(ε|x) = 𝑣(x, β) , E[m(x, β) ε|x] = 0 , (1.69)

i.e., the error is conditionally uncorrelated with the new regression function m(x, β),
moreover the error is conditionally centered. Such error is also called conditionally
unbiased and its conditional variance depends on a new covariate x and unknown
parameter β. The idea to transform the structural errors-in-variablesmodel to the form
(1.68) and (1.69) is due to Gleser (1990).
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Construction of the estimator
For the model (1.68) and (1.69) (which is a consequence of initial regression model
with classical error), the quasi-likelihood estimator β̂QL is constructed (Carroll et al.,
2006). For this purpose, an estimating function is introduced

sQL(y, x; β) = y − m(x, β)𝑣(x, β) ⋅ ∂m(x, β)
∂β , (1.70)

and the estimator β̂QL is defined as one of the solutions to the following equation:
n∑
i=1

sQL(yi , xi; β) = 0 , β ∈ Θ . (1.71)

Let us explain why the estimating function sQL is selected in such a way. In the re-
gression model (1.68) and (1.69), it seems natural to use the weighted least squares
method, i.e., to take the objective function

qWLS(y, x; β) = (y − m(x, β))2𝑣(x, β) (1.72)

and define the estimator β̂WLS as a minimum point of the function

QWLS(y1, . . . , xn; β) = n∑
i=1

qWLS(yi , xi; β) , β ∈ Θ . (1.73)

If the set Θ is open, then one can consider the estimating function

sWLS(y, x; β) = −12 ∂qWLS
∂β = y − m(x, β)𝑣(x, β) ∂m(x, β)

∂β + (y − m(x, β))2 ∂
∂β (1𝑣 ) (1.74)

and define the estimator β̃WLS as a root of the equation
n∑
i=1

sWLS(yi , xi; β) = 0 . (1.75)

However, the estimating function will be biased (see discussion of unbiasedness in
Appendix A1). Indeed, we have

EβsWLS(y, x; β) = Eβ ( y − m(x, β)𝑣 ∂m(x, β)
∂β

) − Eβ [(y − m(x, β))2𝑣2 ∂𝑣
∂β

] . (1.76)

Further, the first summand is

EEβ ( y − m(x, β)𝑣 ⋅ ∂m(x, β)
∂β

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 x) = E [Eβ[(x − m(x, β)|x] ⋅ ∂m
∂β ] = 0 , (1.77)

and the second one is

EEβ ( (y − m(x, β))2𝑣2 ⋅ ∂𝑣∂β 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 x) = E [Eβ[(y − m(x, β))2|x] ⋅ 1𝑣2 ⋅ ∂𝑣∂β] = E(1𝑣 ∂𝑣
∂β) .

(1.78)
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Thus,
EβsWLS(y, x; β) = −E( 1𝑣(x, β) ∂𝑣

∂β) ̸= 0 . (1.79)

The latter is true actually for nonlinear models wherein the conditional variance 𝑣 =
V(y|x) does depend on β̂WLS. Biasedness (1.79) implies the inconsistency of the esti-
mator β̂WLS (see Appendix A).

At the same time, equality (1.77) states unbiasedness of the estimating function
sQL (see (1.70)) that under regularity conditions ensures the consistency of the estima-
tor β̂QL. We obtain the estimating function sQL from sWLS if we neglect the dependence
of 𝑣 on the parameter β, and then the relations ∂𝑣/∂β ≈ 0 and sWLS ≈ sQL hold. One
can see that this neglect is productive.

Explanation of term
The term quasi-likelihood is a hint at the likelihood function. To clarify this, consider
an idealized situation where the conditional distribution of y given x is normal,

y|x ∼ N(m, 𝑣) , m = m(x, β) , 𝑣 = 𝑣(x, β) . (1.80)

Then

ρ(y|x) = 1√2π𝑣e− (y−m)2
2𝑣 , (1.81)

ln ρ(y|x) = −(y − m)2
2𝑣 − 1

2 ln 𝑣 + const, (1.82)

and the score function is

sML(x, β) = ∂
∂β ρ(y|x) = sQL + 1

2 ((y − m)2𝑣2 − 1𝑣 ) ∂𝑣
∂β . (1.83)

If the sQL is a linear function in the response y, then the extra summand in (1.83) is a
quadratic function in y. This quadratic term is unbiased

Eβ [((y − m)2𝑣2 − 1𝑣 ) ∂𝑣
∂β] = 0 . (1.84)

If we delete it from sML, then we come to the estimating function sQL. We can state
that in the normal case (1.80), the estimating function sQL almost surely coincides
with the score function sML, namely, they differ by a quadratic term which is small if
the conditional variance 𝑣 depends slightly on β. In this sense, sQL is almost surely the
estimating function of the MLE (for the normal case (1.80)).

Finding distribution of ξ given x
To use the formulas (1.59) and (1.67), one should know ρ(ξ|x). In some cases, this con-
ditional pdf can be found explicitly.
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Let ξ and δ be independent scalar variables and

x = ξ + δ , ξ ∼ N(μξ , σ2ξ ) , δ ∼ N (0, σ2δ) . (1.85)

Then the conditional distribution of ξ given xwill be normal aswell (Anderson, 2003):

ξ|x ∼ N(μ1(x), τ2) , μ1(x) = Kx + (1 − K)μξ , τ2 = Kσ2δ . (1.86)

Here K is the so-called reliability ratio in the classical linearmeasurement error model

K = σ2ξ
Dx = σ2ξ

σ2ξ + σ2δ
. (1.87)

For the sake of completeness, we present a simple proof of the relations (1.86) and
(1.87).

We have
ρ(ξ|x) = ρ(ξ, x)∫R ρ(ξ, x) dξ . (1.88)

Write the joint pdf

ρ(ξ, x) = ρ(x|ξ) ρ(ξ) = 1√2πσδ e− (x−ξ)2

2σ2δ × 1√2πσξ e−
(ξ−μξ )

2

2σ2ξ , (1.89)

ρ(ξ, x) = exp{−( ξ2

2τ2
− A(x)ξ)} × C(x) . (1.90)

Here
1
τ2

= 1
σ2δ

+ 1
σ2ξ

, τ2 = σ2ξ σ
2
δ

σ2ξ + σ2δ
= Kσ2δ , (1.91)

where K is the reliability ratio (1.87). Further

A(x) = x
σ2δ

+ μξ
σ2ξ

, ρ(ξ, x) = C1(x) exp{− (ξ − τ2A(x))2
2τ2

} ; (1.92)

τ2A(x) := μ1(x) = σ2ξ
σ2ξ + σ2δ

x + σ2δ
σ2ξ + σ2δ

μξ , (1.93)

μ1(x) = K x + (1 − K) μξ . (1.94)

Then
ρ(ξ, x) = C2(x) 1√2πτ e− (ξ−μ1 (x))2

2τ2 . (1.95)

It immediately follows that ∫R ρ(ξ, x) dξ = C2(x) and taking into account (1.88),
ρ(ξ|x) = 1√2πτ e− (ξ−μ1 (x))2

2τ2 . (1.96)

This proves the desired relationships (1.86) and (1.87).
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We can interpret the conditional distribution (1.86) in the following way. If one
observes x = ξ + δ, see (1.85), then how to estimate the latent variable ξ? The Bayes
estimator of ξ is a random variable ̂ξ ∼ N(μ1(x), τ2), or̂ξ = μ1(x) + τγ , γ ∼ N(0, 1) , x⊥⊥γ . (1.97)

Hereafter, the symbol ⊥⊥ denotes the stochastic independence.
As a point estimator of ξ by a single observation x, we will take

E(ξ|x) = μ1(x) = Kx + (1 − K)μξ . (1.98)

Interestingly, this estimator takes the form of a convex combination a prior estimator
μξ (it is a natural estimator because Eξ = μξ ) and the observed value x (in a sense it
is close to ξ , because Eξ = Ex). If K is close to 1, then σ2δ is small, we really trust in
our observation and μ1(x) ≈ x takes place. If K is close to 0, then σ2δ is large making
the observation unreliable, and μ1(x) ≈ μξ . In an intermediate situation, the point
estimator of ξ ranges between two limit values x and μξ .

The value (1.97) allows us to rewrite the formulas form(x, β) and 𝑣(x, β) in amore
compact form

m(x, β) = E[m∗(μ1(x) + τγ; β)|x] , (1.99)𝑣(x, β) = E[𝑣∗(μ1(x) + τγ; β)|x] + E[(m∗(μ1(x) + τγ; β) − m(x, β))2|x] . (1.100)

In fact, we take the expectations w.r.t. γ ∼ N(0, 1); if necessary, they can be approxi-
mately evaluated by the Monte Carlo method.

Conditional distribution of ξ given x: generalizations
The relation (1.86) can be extended to the case of a vector regressor (the so-called
multiple regression). Let the regressor ξ be distributed in Rd,

x = ξ + δ , ξ ∼ N(μξ , Σξ ) , δ ∼ N(0, Σδ) , ξ⊥⊥δ . (1.101)

Here, μξ ∈ Rd, Σξ , and Σδ are the covariance matrices. Then we have the conditional
distribution

ξ|x ∼ N(μ1(x), T) , (1.102)
μ1(x) = K x + (I − K) μξ , T = KΣδ , K = Σξ (Σξ + Σδ)−1 . (1.103)

The latter matrix is an analog of the reliability ratio for the multiple model with the
classical measurement error.

Another generalization of the formulas (1.86) deals with a model in which the
scalar latent variable is distributed according to a mixture of normal laws. Let

x = ξ + δ , ξ ∼ N∑
i=1

pi N(μi , σ2ξ,i) , δ ∼ N(0, σ2δ) , ξ⊥⊥δ. (1.104)
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Here, {pi , i = 1, N} is a full set of positive probabilities and the distribution of ξ is
a mixture of N normal laws. We can interpret this as follows. We have N classes of
objects A1, . . . , AN characterized by pdfs ρi(ξ) ∼ N(μi , σ2ξ,i), i = 1, N . The number pi
is a prior probability that the object ξ belongs to the class Ai. Then the unconditional
pdf of ξ is ρ(ξ) = ∑N

i=1 piρi(ξ) .
After obtaining the observation x, we have a posterior probability of membership

ξ to the classes A1, . . . , AN

qi(x) = piρi(x)∑N
j=1 pjρj(x) , i = 1, N . (1.105)

Here, ρi(x) is the pdf of x provided ξ belongs to the class Ai, ρi(x) ∼ N(μ(i)ξ , σ2ξ,i + σ2δ).
Then

ξ|x ∼ N∑
i=1

qi(x) × (ξ|x, Ai) . (1.106)

Here, (ξ|x, Ai) is the distribution of ξ provided that ξ belongs to Ai and one gets the
observation x. According to (1.86) we have:(ξ|x, Ai) ∼ N(μi(x), τ2i ) , i = 1, N , (1.107)

μi(x) = Kix + (1 − Ki)μ(i)ξ , τ2i = Kiσ2δ , Ki = σ2ξ,i
σ2ξ,i + σ2δ

. (1.108)

Therefore,

ρ(ξ, x) ∼ N∑
i=1

qi(x)ρ(ξ|x, Ai) , ρ(ξ|x, Ai) ∼ N(μi(x), τ2i ) . (1.109)

The conditional distribution of ξ given x coincides with the distribution of random
variable

N∑
i=1

Ii(x)(μi(x) + τiγ) , γ ∼ N(0, 1) , (1.110)

where Ii(x) = 1 with probability qi(x) and Ii(x) = 0 with probability 1 − qi(x),∑N
i=1 Ii(x) = 1 and γ is stochastically independent of both x and a set of indicators{Ii(x), i = 1, N}.
The sum (1.110) canbe generated as follows: among the numbers from 1 to N select

a random number I = I(x) with posterior probabilities q1(x), . . . , qN(x), and then
evaluate μI(x) + τIγ, where γ ∼ N(0, 1) and γ is independent of the couple (x; I(x)).
As a result ξ|x ∼ μI(x) + τIγ.

If E(f(ξ)|x) is to be computed, we will have
E(f(ξ)|x) = ∫

R

f(ξ)ρ(ξ|x) dξ = N∑
i=1

qi(x) ∫
R

f(ξ)ρ(ξ|x, Ai ) dξ =
= N∑

i=1
qi(x)E[f(μi(x) + τiγ)|x] , γ ∼ N(0, 1) , γ⊥⊥x . (1.111)

This is helpful for calculation by formulas (1.59) and (1.67).
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Pre-estimation of distribution parameters of ξ
Consider the structural model described at the beginning of Section 1.4.2, with the
classical error (1.47). Let the distribution of measurement error δ be known and the
distribution of ξ be known up to the vector parameter γ. The estimating function sQL
presented in (1.70) contains the conditional mean and variance m and 𝑣 that depend
not only on the regression parameter β, but also on the parameter γ. To derive the
QLE, it is possible to pre-estimate γ by the MLM based on the observations {xi, i =
1, N} and then substitute the obtained estimator γ̂ML in formula (1.70). Thus, we get
the estimating function

̂sQL(x, y; β) = y − m̂(x, β)̂𝑣(x, β) ⋅ ∂m̂(x, β)
∂β , (1.112)

m̂(x, β) = m(x; β, ̂γML) , 𝑣̂(x, β) = 𝑣(x; β, ̂γML) . (1.113)

Then the estimator β̂QL constructed using the pre-estimation is one of the solutions to
the equation

n∑
i=1

̂sQL(yi , xi; β) = 0 , β ∈ Θ . (1.114)

The estimating function ̂sQL is asymptotically unbiased, i.e.,
Eβ ̂sQL(y, x; β) P󳨀→ 0 , as n → ∞ . (1.115)

Hereafter, →P means convergence in probability. The convergence (1.115) holds, be-
cause the estimating function (1.70) (under known γ) is unbiased and the estimator
γ̂ML is a consistent estimator of γ. The convergence (1.115) under mild regularity con-
ditions implies the consistency of β̂QL being the root of equation (1.114).

In particular, the normal model (1.85) makes use of the nuisance parameter γ =(μξ ; σ2ξ )T. The MLE of γ takes the form
μ̂ξ,ML = x̄ = 1

n

n∑
i=1

xi , σ̂2ξ,ML = (x − μ̂ξ,ML)2 − σ2δ = 1
n

n∑
i=1

(xi − x̄)2 − σ2δ . (1.116)

Hereafter, the bar means the arithmetic mean being calculated by the observed sam-
ple. Instead of the estimator σ̂2ξ,ML, it is better to use an unbiased modification

σ̂2ξ = 1
n − 1 n∑

i=1
(xi − x̄)2 − σ2δ , n ≥ 2 . (1.117)

Here, the summand σ̂2x = 1
n−1 ∑n

i=1 (xi − x̄)2 is unbiased estimator of the variance of x.
1.4.4 Corrected score (CS) method

Methods considered in Sections 1.4.2 and 1.4.3 are structural, i.e., they work in the
structural models and utilize information about the shape of distribution of the latent
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variable ξ . In this section, we describe the functional method, which can be used in
the functional models. This method is suitable for the structural models as well, in
situations where the shape of the distribution of ξ is unknown.

Suppose we have a functional regression model with the classical error (1.47). Re-
member that in this model, the latent variable ξi from Rd is nonrandom, i = 1, n. The
idea of the corrected score (CS) method is as follows.

Start with some unbiased estimating function s(y, ξ; β) providing consistent esti-
mation of β in the absence of the measurement error in the regressor. Next, the cor-
rected estimating function sC(y, x; β) is constructed such that for all b ∈ Θ,

E[sC(y, x; b)|y, ξ] = s(y, ξ; b) . (1.118)

We define the CS estimator β̂C as one of the solutions to the folowing equation:
n∑
i=1

sC(yi , xi , β) = 0 , β ∈ Θ . (1.119)

The corrected estimating function is unbiased because

EβsC(y, x; β) = EβE(sC(y, x; β)|y, ξ) = Eβs(y, ξ; β) = 0 , (1.120)

and therefore, under some regularity conditions the estimator β̂C is consistent. For the
first time this method was applied by Stefanski (1989) and Nakamura (1990).

Equation (1.118) with unknown function sC is called deconvolution equation. If
ρ(δ) is the pdf of the error δ, then (1.118) can be written as

∫
Rd

sC(y, ξ + δ; b) ρ(δ) dδ = s(y, ξ; b) , y ∈ R , ξ ∈ Rd , b ∈ Θ . (1.121)

The left-hand side of (1.121) is a convolution of the desired function sC(y, x; β) and
ρ(−x) with respect to x. Here, ρ(−x) is the pdf of −δ. That is why equation (1.121) is
called deconvolution equation, i.e., sC is defined by the inverse operation of the con-
volution operation.

If wemake the linear replacement x = ξ +δ in the integral (1.121), then (1.121) takes
the form:∫

Rd

sC(y, x; b) ρ(x − ξ) dx = s(y, ξ; b) , y ∈ R , ξ ∈ Rd , b ∈ Θ . (1.122)

This is a Fredholm integral equation of the first kind with the kernel K(ξ, x) = ρ(x− ξ).
It is known that those integral equations, unlike equations of the second kind, are not
always effectively resolved. That is why the CS method is not universal.

As a special case, consider the functional model (1.1) and (1.5). We will correct the
least squares estimating function sOLS = (y − f(ξ, β)) ∂f(ξ,β)

∂β . Split the deconvolution
equation

E[sC(y, x; b)|y, ξ] = sOLS(y, ξ; b) (1.123)
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in two equations with unknown vector functions g and h

E[g(x, b)|ξ] = ∂f(ξ, b)
∂β

, (1.124)

E[h(x, b)|ξ] = f(ξ, b) ∂f(ξ, b)∂β . (1.125)

If one solves these equations, then the function

sC(y, x; b) = yg(x, b) − h(x, b) (1.126)

satisfies (1.123). Indeed, we will have

E[yg(x, b) − h(x, b)|y, ξ] = yE[g(x, b)|ξ] − E[h(x, b)|ξ] == y ∂f(ξ, b)∂β − f(ξ, b) ∂f(ξ, b)∂β = sOLS(y, ξ; b) . (1.127)

In Section 3, it will be shown that the deconvolution equations (1.124) and (1.125) for
polynomial regression function

f(ξ, β) = k∑
i=0

βiξ i (1.128)

have a unique solution within the class of polynomial functions in x. In Stefanski
(1989), a quite broad class of cases is studied where it is possible to solve the decon-
volution equations of type either (1.124) or (1.125) for the normal error δ.

Now, consider a general regression model of y on ξ described at the beginning
of Section 1.4.2, which is a functional case with the classical error (1.47). Usually the
score function

sOML(y, ξ; β) = 1
ρ(y, ξ; β) ∂ρ(y, ξ; β)

∂β
(1.129)

is corrected. The deconvolution equation will look like

E[sC(y, x; b)|y, ξ] = sOML(y, ξ; b) . (1.130)

1.4.5 Regression calibration (RC)

This is a purely structural method in the presence of the classical error (1.5). Let
s(y, ξ; β) be an unbiased estimating function, which was mentioned at the beginning
of Section 1.4.4. Another way to adjust the naive estimator generated by the estimating
function s(y, x; β) consists in evaluating the conditional expectation

ξ∗ = ξ∗(x) = E(ξ|x) (1.131)
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(see Section 1.4.3) after which the estimator β̂RC is defined as one of the solutions to
the following equation:

n∑
i=1

s(yi , ξ∗i ; β) = 0 , β ∈ Θ , (1.132)

where ξ∗i = ξ∗(xi) = E(ξ|x = xi).
The method is convenient because it does not need an adjustment of the initial

estimating function, instead the observed values xi are corrected. If the nuisance pa-
rameter γ of distribution of ξ is unknown, then it can be estimated as in Section 1.4.3
and substituted in the expression for the conditional expectation (1.132)̂ξ∗i = Ê(ξ|x = xi) , (1.133)

where cap above the expectation means that we substituted the estimator γ̂ instead
of γ when evaluated the conditional expectation; then the estimator β̂RC is defined as
one of the solution to the equation

n∑
i=1

s(yi , ̂ξ∗i ; β) = 0 , β ∈ Θ . (1.134)

Generally speaking, the RCmethod does not yield a consistent estimator of the param-
eter β. However, deviation of the estimator from the true value is much less than the
deviation β̂naive−β. Remember that the naive estimator β̂naive satisfies the uncorrected
equation

n∑
i=1

s(yi , xi; β) = 0 , β ∈ Θ . (1.135)

The RC method is very popular, and it gives good results when the variance σ2δ is rel-
atively small. However, at large σ2δ, this method can produce rather large deviation
β̂RC − β.

1.4.6 SIMEX estimator

Modeling and extrapolation steps
The idea of the method is due to the American mathematicians Cook and Stefanski
(1994). As in Section 1.4.4, consider a general structural model with the classical error
(1.47). Suppose for simplicity that the regressors ξi are scalar and we know the mea-
surement error variance σ2δ .

The unbiased evaluating function s(y, ξ; β) providing consistent estimation of the
parameter β at δi ≡ 0 allows, based on the sample {yi , xi, i = 1, n}, to construct the
naive estimator β̂naive = β̂naive(σδ) as one of the solutions to the equation

1
n

n∑
i=1

s(yi , xi , b) = 0 , b ∈ Θ . (1.136)
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By the Strong Law of Large Numbers, the left-hand side of (1.136) a.s., as n tends to
infinity, converges to the limit function

S∞(b) = Eβs(y, x; β) , b ∈ Θ . (1.137)

If the variance σ2δ is small compared to σ
2
ξ (and we further demand it in this section),

then the naive estimator converges almost surely to a nonrandom vector β∗ = β∗(σδ)
satisfying the limit equation

S∞(β∗) = Eβ(y, x; β∗) = 0 , β∗ ∈ Θ . (1.138)

The main idea of the SIMEX method (pronounced [’sım eks] from SIMulation–EXtra-
polation) is to experimentally investigate the effect of measurement error on the
β̂naive(σδ) by imposing additional noise.

SIMEX is a randomized estimation method, i.e., a method that requires addition-
ally generated random numbers. The estimating procedure consists of two steps. In
the simulation step, we generate additional datawith greater measurement error vari-
ance (1 + λ)σ2δ. At each λ ≥ 0, we define

xb,i(λ) = xi + √λδb,i , i = 1, n , b = 1, B , (1.139)

where {δb,i, i = 1, n, b = 1, B} are computer-generated pseudoerrors to be indepen-
dent of all observable data and independent normally distributed with distribution
N(0, σ2δ). Let β̂b(λ) be the naive estimate evaluated based on {yi , xb,i(λ), i = 1, n}, i.e.
the root of equation (1.136) where instead of xi we substitute xb,i(λ), i = 1, n.

Evaluating the mean

β̂(λ) = 1
B

B∑
b=1

β̂b(λ) (1.140)

completes the simulation step in the SIMEX algorithm.
In the extrapolation step, we approximate the evaluated values {β̂(λm), λm; m =

1,M} by some function G(λ, Γ), λ = λm, m = 1,M, where λ1 = 0 < λ2 < ⋅ ⋅ ⋅ < λM
and Γ ∈ ΘΓ is a vector parameter of a chosen family of analytic functions in λ. The
parameter Γ is estimated by the least squares method:

Γ̂ = argmin
Γ∈ΘΓ

M∑
m=1

󵄩󵄩󵄩󵄩󵄩β̂(λm) − G(λm , Γ)󵄩󵄩󵄩󵄩󵄩2 . (1.141)

Now, we have an approximate equality

β̂(λ) ≈ G(λ, ̂Γ) , λ ≥ 0 . (1.142)

Remember that β̂(λ) corresponds to the averagednaive estimator at the aggregatemea-
surement error variance (1 + λ)σ2δ . We define the SIMEX estimator as the extrapolated
value

β̂SIMEX = G(−1, Γ̂) . (1.143)
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This corresponds to the error variance (1 + λ)σ2δ |λ=−1 = 0, and at zero error, the naive
estimator begins to be consistent.

Thus, the SIMEX estimator provides significant compensation of deviations from
the true value. The estimator is designed mainly for small and moderate samples.

Choice of extrapolating function and values λm
If one is able to find a family of extrapolating functions {G(∙, Γ) , Γ ∈ ΘΓ } so that at
some Γ ∈ ΘΓ the approximate equality (1.142) is accurate, then the estimator β̂SIMEX is
consistent. For the case of linear regression

y = β0 + β1ξ + ε , x = ξ + δ (1.144)

the equality in (1.75) is provided by a rational linear function (Cheng and Van Ness,
1999; Wansbeek and Meijer, 2000)

GRL(λ, Γ) = γ1 + γ2
γ3 + λ , (1.145)

and all the components of the function G have the form (1.145).
In nonlinear models, in addition to the functions (1.145), we can apply either a

quadratic function
GQ(λ, Γ) = γ0 + γ1λ + γ2λ2 , (1.146)

or a polynomial function of higher order

GP,k(λ, Γ) = γ0 + γ1λ + ⋅ ⋅ ⋅ + γkλk . (1.147)

To select the exact class of extrapolating functions is difficult because, in practice,
the SIMEX estimator is inconsistent. However, for small and moderate samples the
inconsistent estimator usually behaves better than common consistent estimators.

As for the choice of values λ = λm in the simulation step, the monographs Cheng
andVanNess (1999) andWansbeek andMeijer (2000) suggest using uniform partition
of the interval [0, λmax], with 1 ≤ λmax ≤ 2.

Note that the SIMEX estimator can perform quite well in functional models, be-
cause in its construction it is not necessary to know the distribution form of the latent
variable.

Confidence ellipsoid
The books by Cheng and Van Ness (1999) and Wansbeek and Meijer (2000) proposed
a method for constructing the ACM of the estimator β̂SIMEX based on the asymptotic
normality of β̂SIMEX at small σ2δ (Carroll et al., 1996). In this section, we describe the
method.

If there were no measurement errors, then under regularity conditions, the naive
estimator would be asymptotically normal:√n(β̂naive(0) − β) d󳨀→ N(0, Σ(0)) , (1.148)
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where the ACM Σ(0) is given by the sandwich formula (see Appendix A2):
Σ(0) = A−1BA−T , (1.149)

A−T = (A−1)T , A = Eβ
∂s(y, x; β)

∂βT
, (1.150)

where B = cov(s(y, x; β)) = Eβs(y, x; β) ⋅ sT(y, x; β) . (1.151)

As a consistent estimator of the matrix Σ(0), the following matrix is used:
τ2(0) = A−1n BnA−Tn , (1.152)

An = 1
n

n∑
i=1

∂s(yi , xi; β̂naive(0))
∂βT

,

Bn = 1
n

n∑
i=1

s(yi , xi; β) ⋅ sT(yi , xi; β)󵄨󵄨󵄨󵄨󵄨β=β̂naive(0) . (1.153)

Similar approximate ACMs can be evaluated for β̂b(λm), b = 1, . . . , B, m = 1, . . . ,M:
τ2b(λ) = An(λ)−1Bn(λ)An(λ)−T , (1.154)

An(λ) = 1
n

n∑
i=1

∂S(yi , xi,b; β̂b(λ))
∂βT

, (1.155)

Bn(λ) = 1
n

n∑
i=1

s(yi , xi,b; β̂b(λ)) s(yi , xi,b; β̂b(λ))T. (1.156)

Let τ2(λ) be the mean of the matrices τ2b(λ) over b = 1, B, and S2∆(λ) be a sample
covariance matrix of the vectors β̂b(λ), b = 1, B (remember that p = dim β),

S2∆(λ) = 1
n − p

B∑
b=1

(β̂b(λ) − β̂(λ))(β̂b(λ) − β̂(λ))T . (1.157)

Then, we can estimate the ACMof the SIMEX estimator by extrapolation of differences
τ2(λ) − S2∆(λ), λ = λ1, . . . , λm to the value λ = −1. Of course for finite sample, the
obtained matrix need not be positive definite. If it is, then the asymptotic confidence
ellipsoid can be constructed by a standard procedure based on the approximate rela-
tion √n(β̂SIMEX − β) ≈ N(0, τ2SIMEX) . (1.158)

If the matrix τ2SIMEX does not come out positive definite but its diagonal entries are(τ2SIMEX)ii > 0, then the asymptotic confidence interval for the i-th component βi of
the vector β is constructed based on the approximate relation√n(β̂SIMEX,i − βi) ≈ N(0, (τ2SIMEX)ii) . (1.159)
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Asymptotic expansion of the estimator for small σ2δ
For small σ2δ, we can explain the SIMEX estimator efficiency by the following asymp-
totic expansionsof the estimators ̂βnaive(σδ)and β̂SIMEX = β̂SIMEX(σδ), proved inGontar
and Kuechenhoff (2008).

Let the naive estimator within the structuralmodel be defined by equation (1.136),
where Θ is a convex compact set in Rp; β is an interior point of Θ; the regressors are
scalar, and for all λ ∈ R, Eeλξ1 < ∞ holds. Regarding the classical error δ, we require
that δ ∼ N(0, σ2δ) where σ2δ > 0 is given.
Theorem 1.1 (Expansion of the naive estimator). With fixed l ≥ 0, assume the follow-
ing.
(1) A measurable, over the set of variables, estimating function is given, s(y, ξ; β) ∈

C2l+2(R×R×U → Rp) (here the smoothness is required in ξ and β), with some open
set U ⊃ Θ.

(2) For any partial derivative Dqs(y, ξ; β) of order 0 ≤ q ≤ 2l+2 in ξ and components β,
it holds that ‖Dqs(y, ξ; β)‖ ≤ c1eC2|ξ|, where c1 and c2 are positive constants; D0s =
s.

(3) There is a unique solution to the equation Eβs(y, ξ; β) = 0, b ∈ Θ, and the solution
is b = β.

(4) The matrix Eβ ∂s(y,ξ;β)∂βT is nonsingular.
Then, there exists a σ > 0 such that for all σδ ∈ (0, σ),

β̂naive(σδ) P1󳨀󳨀→ β∗(σδ) , as n → ∞ , (1.160)

where β∗(σδ) is a unique root of the limit equation (1.138), moreover
β∗(σδ) = β + l∑

j=1

1(2j)! × ∂2jβ∗(0)
∂(σδ)2j + O (σ2l+2δ ) , as σ2δ → 0 . (1.161)

We comment Theorem 1.1. The conditions (1) and (2) provide the desired smoothness
and unboundedness of the estimating function; the condition (3) is a basis for the
strong consistency of the estimator β̂naive(0) in the absence of measurement error; the
condition (4) allows applying the implicit function theorem (Burkill, 1962) and get the
desired smoothness of the root β∗ = β∗(σδ) as a function in σδ ∈ [0, σ). The expan-
sions (1.160) and (1.161) demonstrate that the asymptotic deviation of the naive esti-
mator β∗(σδ) − β begins with members of order σ2δ (if

∂2β∗(0)
∂(σδ)2 ̸= 0, which is realistic).

Theorem 1.2 (Expansion of the SIMEX estimator). Let the extrapolating function G(λ, Γ)
be used in the SIMEX procedure, being composed of polynomials of degree not higher
than m, and l ≤ m ≤ M. Suppose that the conditions of Theorem 1.1 hold. Then

β̂SIMEX(σδ) P1󳨀󳨀→ β∗SIMEX(σδ) , as n → ∞ , (1.162)

with nonrandom limit

β∗SIMEX(σδ) = β + O(σ2l+2δ ) , as σ2δ → 0 . (1.163)
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Theorem 1.2 shows that the asymptotic deviation β∗SIMEX(σδ)−β does not contain terms
of order (σδ)k, k = 1, 2l + 1. Thus, at small σ2δ the asymptotic deviation for the SIMEX
estimator is less than for the naive one.

1.4.7 Comparison of various estimators in models with the classical error

Relative to other estimators, the naive ones are suitable only for small variances σ2δ
but they are less accurate for larger σ2δ.

The structural estimators are: theMLE, theQLE, the estimator obtainedbyRC, and
the functional ones are the CS and SIMEX estimators. The functional estimators are
more stable (robust) against violation of assumption about the distribution of the la-
tent variable. Therefore, if there is no certainty in the latter assumption, the functional
estimators will be the best choice. It is worth mentioning the paper by Schneeweiss
and Cheng (2006), which shows that violation of the assumption about the normal
distribution of ξ disturbs the consistency of the QLE based on the requirement of such
normality.

Now, let us know reliably that ξ has a normal distribution. Under such circum-
stances, it is worth using the QLE estimator, which is optimal in a broad class of con-
sistent estimators (Kukush et al., 2007, 2009). In nonlinear models, it is quite difficult
to compute theMLE andwe cannot guarantee its asymptotic properties. The RC is easy
to use but it does not yield a consistent estimator.

Compare the functional methods. The CS method yields the consistent estimator,
but we cannot always implement it, because rather often the deconvolution equation
(1.118) is difficult or even impossible to solve. Even if itwasdone, theCS is unstable and
requires a small samplemodification (Cheng et al., 2000). At the same time, the SIMEX
estimator is numerically stable and reduces the deviation of estimator, although in
general it is inconsistent.

As we can see, the choice of an appropriate estimator is an art. It depends on the
sample size and on how we trust the assumptions of the observation model.



2 Linear models with classical error
In this chapter, we illustrate the problems arising when estimating regression param-
eters with classical measurement errors using an example of the simplest regression
model, the linear one. It is described by the following two equations:

yi = β0 + β1ξi + εi , (2.1)
xi = ξi + δi , i = 1, n . (2.2)

All the variables are scalar. This model has been used in an example of Section 1.1.
Here ξi is unobservable value of the latent variable (the ξi acts as a regressor), xi is the
observed surrogate data, yi is the observable response, εi is the response error, and
δi is the measurement error in the covariate. We have to estimate the intercept β0 and
the slope β1. Typical are the following assumptions about the observation model.
(i) Random variables ξi , εi , δi, i ≥ 1, are independent.
(ii) The errors εi are identically distributed and centered with finite and positive vari-

ance σ2ε .
(iii) The errors δi are identically distributed and centered with finite and positive vari-

ance σ2δ.

In the structural case, the latent variable is random. Or speaking more precisely, we
require the following:
(iv) Random variables ξi are identically distributed, with Eξi = μξ and Dξi = σ2ξ > 0.
Note that under conditions (i) and (iv), the random variables ξi are independent and
identically distributed.

In the functional case, the next condition holds instead of (iv).
(v) The values ξi are nonrandom.

We try to transform themodel (2.1) and (2.2) to anordinary linear regression. Excluding
the ξi from equation (2.1) we have

yi = β0 + β1xi + τi , τi = εi − β1δi , i = 1, n . (2.3)

Themodel (2.3) resembles an ordinary linear regression, with errors τi. Given (i)–(iii),
the random variables τi are centered, independent, and identically distributed. We
get

Dτi = Dεi + D(−β1δi) = σ2ε + β21σ
2
δ > 0 . (2.4)

As we can see, the new error variance depends on the slope β1. This is the first differ-
ence of the model (2.3) from the ordinary regression, where usually the error variance
does not depend on regression parameters.
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We now find the covariance between the new regressor xi and the error τi using
the assumptions (i)–(iii):

cov(xi , τi) = cov(ξi + δi , εi − β1δi) = cov(δi, −β1δi) = E(−β1δ2i ) = −β1σ2δ . (2.5)

Thus, in case of β1 ̸= 0 (i.e., when in equation (2.1) there is a real dependence between
the response and regressor ξi), we have

cov(xi , τi) ̸= 0 . (2.6)

Inequality (2.6) is the second main difference of the model (2.3) from the ordinary re-
gression, where it is strictly required that the regressor and the error are uncorrelated.
One can see that in essence the model (2.1) and (2.2) does not come to the ordinary
regression. Therefore, the theory of linear measurement error models is substantial.

In the following the structural errors-in-variablesmodelwith assumptions (i)–(iv)
will be mainly under consideration.

2.1 Inconsistency of the naive estimator: the attenuation effect

Choose Θ = R2 in the model (2.1) and (2.2) as a parameter set for the augmented re-
gression parameter β = (β0, β1)T. Such a choice of Θ corresponds to the absence of
a prior information about possible values of regression parameters. According to Sec-
tion 1.4.1, the naive estimator β̂naive = β̂OLS is defined byminimizing inR2 the objective
function

QOLS(β) = n∑
i=1

qOLS(yi , xi; β) = n∑
i=1

(yi − β0 − β1xi)2 . (2.7)

Therefore,
β̂naive = argmin

β∈R2
QOLS(β) . (2.8)

Find an explicit expression for the naive estimator. Denote the sample mean as

x = 1
n

n∑
i=1

xi . (2.9)

Hereafter bar means averaging, e.g.,

xy = 1
n

n∑
i=1

xiyi , y2 = 1
n

n∑
i=1

y2i . (2.10)

The sample variance of the values xi is defined by the expression

Sxx = (x − x̄)2 = 1
n

n∑
i=1

(xi − x̄)2 , (2.11)
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and the sample covariance between xi and yi by the expression

Sxy = (x − x̄)(y − ȳ) = 1
n

n∑
i=1

(xi − x̄)(yi − ȳ) . (2.12)

There are other useful representations of the statistics (2.11) and (2.12):

Sxx = x2 − (x̄)2 , Sxy = xy − x ⋅ y . (2.13)

Theorem 2.1. In themodel (2.1)and (2.2), let the sample size n ≥ 2, andmoreover, not all
the observed values xi coincide. Then the objective function (2.7) has a unique minimum
point in R2, with components

β̂1,naive = Sxy
Sxx

, β̂0,naive = ȳ − x̄ ⋅ β̂1,naive . (2.14)

Proof. A necessary condition for β̂ to be the minimum point of the function QOLS is
the so-called system of normal equations:

∂QOLS(β̂)
∂β0

= 0 , ∂QOLS(β̂)
∂β1

= 0 . (2.15)

It has the form {{{β̂0 + β̂1x̄ = ȳ ,
β̂0 x̄ + β̂1x2 = xy .

(2.16)

Eliminate β̂0 from the second equation:

β̂1 (x2 − (x̄)2) = xy − x̄ ⋅ ȳ , (2.17)

Sxx ⋅β̂1 = Sxy . (2.18)

Since not all the values xi coincide, Sxx ̸= 0. Hence,
β̂1 = Sxy

Sxx
, β̂0 = ȳ − β̂1x̄ . (2.19)

Thus, if a global minimum of the function QOLS is attained, then a minimum point is
β̂ = (β̂0, β̂1)T from (2.19). Now, it is enough to show that

QOLS(β) > QOLS(β̂) , β ̸= β̂ . (2.20)

The function QOLS is a polynomial of the second order in β0 and β1. This function can
be exactly expanded in the neighborhood of β̂ using Taylor’s formula

QOLS(β) = QOLS(β̂) + Q󸀠OLS(β̂)(β − β̂) + 1
2
(β − β̂)TQ󸀠󸀠OLS ⋅ (β − β̂) . (2.21)
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The derivative Q󸀠OLS(β̂) = 0 because β̂ satisfies (2.15), and the matrix of the second
derivatives Q󸀠󸀠OLS does not depend on the point where it is evaluated:

1
2 (1n QOLS)󸀠󸀠 = (1 x̄

x̄ x2
) = S . (2.22)

The matrix S is positive definite, because S11 = 1 > 0 and det S = x2 − (x̄)2 = Sxx > 0.
Therefore, at β ̸= β̂ from (2.21), we have

1
n (QOLS(β) − QOLS(β̂)) = (β − β̂)TS (β − β̂) > 0 . (2.23)

This proves (2.20) and the statement of the theorem.

Remark 2.2. Based on the naive estimator, one can draw a straight line

y = β̂0,naive + ξ ⋅ β̂1,naive . (2.24)

The line will pass through the center of massM(x̄, ȳ) of the observed pointsMi(xi; yi),
i = 1, n. In fact, it follows from the first equation of system (2.16). The line (2.24) is an
estimator of the true line y = β0 + β1ξ in the coordinate system (ξ; y).

Study the limit of the naive estimator, as the sample size grows. Here we consider
the structural model.

Recall that the reliability ratio K = (σ2ξ )/(σ2ξ + σ2δ) has been introduced in Sec-
tion 1.4.3. The almost sure (a.s.) convergence is denoted by P1󳨀󳨀→.

Theorem 2.3. Given (i)–(iv), it holds that

β̂1,naive
P1󳨀󳨀→ Kβ1 , as n → ∞ . (2.25)

Proof. Using the strong law of large numbers (SLLN), we find limit of the denominator
of expression (2.14):

Sxx = x2 − (x̄)2 P1󳨀󳨀→ Ex2 − (Ex)2 = Dx = σ2ξ + σ2δ > 0 . (2.26)

Therefore, the statistic Sxx becomes positive with probability 1 at n ≥ n0(ω) (i.e., start-
ing from some random number); then one can apply Theorem 2.1. Again by the SLLN,

Sxy = xy − x̄ ⋅ ȳ P1󳨀󳨀→ Exy − (Ex)(Ey) = cov(x, y) , as n → ∞ . (2.27)

Here, random variables (x, ξ, δ, ε, y) have the same joint distribution as (xi , ξi, δi ,
εi , yi). As ξ, δ, ε are jointly independent, we have further

cov(x, y) = cov(ξ + δ, β0 + β1ξ + ε) = cov(ξ, β1ξ) = β1σ2ξ . (2.28)

Thus, with probability 1 at n ≥ n0(ω) it holds that
β̂1,naive = Sxy

Sxx
P1󳨀󳨀→ β1

σ2ξ
σ2ξ + σ2δ

= Kβ1 , as n → ∞ . (2.29)

The theorem is proved.
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Relation (2.25) shows that the estimator β̂naive is not consistent, because for β̂1 ̸= 0, the
estimator β1,naive does not converge in probability to β1 (in fact, it converges a.s., and
therefore, in probability, to Kβ1 ̸= β1). The phenomenon that the limit of the slope
estimator is the value Kβ1 located between 0 and β1, is called attenuation effect. It
characterizes the behavior of the naive estimator in any regression model with the
classical error. The effect is plausible by the following argument. Consider the predic-
tive line (2.24). Thanks to the convergence (2.25), the slope of the line is close to Kβ1
at large n. If β1 ̸= 0 and n is large, the line (2.24) passes more flat than the true line
y = β0 + β1ξ . Thus, we conclude that the estimated dependence y of ξ is weaker than
the true one.

In particular, using the naive estimator in the binary incidence model (1.2), (1.4),
and (1.5) leads to theattenuationof dependenceof the odds function λ on the exposure
dose ξi: thus, we will have

λ̂naive(ξ0) = β̂0,naive + β̂1,naive ⋅ ξi , i = 1, n , (2.30)

with the estimated excess absolute risk (EAR) β̂1,naive < β1. It should be noted that the
latter inequality will hold at sufficiently large sample size.

2.2 Prediction problem

Now, it is required that the latent variable and the measurement error be normally
distributed. Thus, we specify the conditions (iii) and (iv).
(vi) The errors δi are identically distributed, with distribution N(0, σ2δ), σ2δ > 0.
(vii) Random variables ξi are identically distributed, with distribution

N(μξ , σ2ξ ), σ2ξ > 0.
The conditions (i), (ii), (vi), and (vii) are imposed. The prediction problem in the model
(2.1) and (2.2) is the following: if the next observation xn+1 of the surrogate variable
comes, the corresponding observation yn+1 of the response should be predicted. The
optimal predictor ŷn+1 is sought as a Borel measurable function of the sample and the
value xn+1 , for which the mean squared error E(ŷn+1 − yn+1)2 is minimal.

From probability theory, it is known that such an optimal predictor is given by the
conditional expectation:

ŷn+1 = E(yn+1|y1, x1, y2, x2, . . . , yn , xn; xn+1) . (2.31)

Thevector (yn+1, xn+1)T is stochastically independent of the sample y1, x1, . . . , yn , xn,
therefore,

ŷn+1 = E (yn+1|xn+1) = β0 + β1 E (ξn+1|xn+1) + E(εn+1|xn+1) . (2.32)

Since εn+1 and xn+1 are independent, we have

E (εn+1|xn+1) = Eεn+1 = 0 . (2.33)
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Further, using the normality assumptions (vi) and (vii) we can utilize the results of
Section 1.4.3 and get

E (ξn+1|xn+1) = Kxn+1 + (1 − K)μξ . (2.34)
Equalities (2.32)–(2.34) yield the optimal predictor

ŷn+1 = (β0 + β1(1 − K)μξ ) + Kβ1xn+1 . (2.35)

At the same time, this predictor is unfeasible because the model parameters
β0, β1, K, μξ are unknown. Relying on the naive estimator one can offer the predictor

ỹn+1 = β̂0,naive + xn+1β̂1,naive . (2.36)

Unexpectedly, this predictor is little different from ŷn+1, for large n.

Theorem 2.4. Assume (i), (ii), (vi), and (vii). Then

β̂0,naive
P1󳨀󳨀→ β0 + β1 (1 − K) μξ , (2.37)

β̂1,naive
P1󳨀󳨀→ Kβ1 . (2.38)

Therefore, the predictor ỹn+1 is close to the optimal one

ỹn+1 = ŷn+1 + o(1) + xn+1 ⋅ o(1) . (2.39)

(Hereafter o(1) denotes a sequence of random variables which tends to 0, a.s.)

Proof. The convergence (2.38) follows from Theorem 2.3. Consider

β̂0,naive = ȳ − β̂1,naive ⋅ x̄ P1󳨀󳨀→ Ey − Kβ1 ⋅ Ex = β0 + β1μξ − Kβ1μξ , (2.40)

whence (2.37) follows. Thus, we finally have

ỹn+1 − ŷn+1 = (β̂0,naive − β0 − β1(1 − K)μξ ) + xn+1(β̂1,naive − Kβ1) == o(1) + xn+1 ⋅ o(1). (2.41)

The theorem is proved.

Interestingly, a consistent estimator β̂ is worse applicable to the prediction problem.
Indeed, we would then construct a predictor

y󸀠n+1 = β̂0 + β̂1xn+1 , (2.42)

which at large n, approaches to β0 + β1xn+1 that is significantly different from the
optimal predictor (2.35). The reason for this phenomenon is as follows: The precise
estimation of model coefficients and accurate prediction of the next value of the re-
sponse feedback are totally different statistical problems. The more so as we need a
prediction based on the value xn+1 of the surrogate variable rather than the value ξn+1
of the latent variable. In the latter case the next conditional expectation would be the
unfeasible optimal predictor:

E (yn+1|ξn+1) = β0 + β1ξn+1 ,

and then the predictor β̂0 + β̂1ξn+1 based on the consistent estimator would be more
accurate than the predictor β̂0,naive + β̂1,naive ⋅ ξn+1 (see Remark 2.2).
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2.3 The linear model is not identifiable

In Section 2.2, randomvariables ξi and δi were normal but εi wasnot necessarily. Now,
consider the normal model (2.1) and (2.2), i.e., the εi will be normal as well.
(viii)Random variables εi are identically distributed, with distribution N(0, σ2ε ) and

σ2ε > 0.
In this section, we solve the following problem: In the model (2.1) and (2.2), assume
the conditions (i) and (vi)–(viii) are satisfied; is it possible to estimate the parameters
β0 and β1 consistently if the nuisance parameters μξ , σ2ξ , σ

2
δ , σ

2
ε are unknown?

In total, we have six unknown model parameters that fully describe the distribu-
tion of the observed normal vector (y; x)T.

Let us give a general definition of a not identifiable observation model. Let the
observed vectors be

Z1, Z2, . . . , Zn , (2.43)

with cumulative distribution function (cdf)

F(z1, z2, . . . , zn; θ) , (2.44)

which depends on unknown parameter θ ∈ Θ, Θ ⊂ Rm.

Definition 2.5. The model (2.43) and (2.44) is not identifiable if there exist θ1, θ2 ∈ Θ,
θ1 ̸= θ2, such that F(z1, . . . , zn; θ1) ≡ F(z1, . . . , zn; θ2). Conversely, the model (2.43)
and (2.44) is identifiable if such a couple of the parameter values does not exist.

Suppose further that the observed vectors (2.43) are independent and identically
distributed. Then

F(z1, . . . zn; θ) = n∏
i=1

F(zi ; θ) , θ ∈ Θ , (2.45)

where F(zi; θ) is cdf of a single observation Zi. In this case, the model is identifiable
if, and only if, the model for a single observation Zi is identifiable.

Remember that by definition a statistical estimator of a model parameter is a Borel
measurable function of the observed sample.

Theorem 2.6. Consider the model (2.43) and (2.44). If this model is not identifiable, then
there is no consistent estimator of the parameter θ.

Proof. Suppose that there exists a consistent estimator θ̂n. Let θ1 ̸= θ2 be the values
of the parameter from Definition 2.5. Then, it is true that θ̂n → θ1 in probability Pθ1
(i.e., provided that θ1 is the true value) aswell as θ̂n → θ2 in probabilityPθ2 . The latter
means that for each ε > 0,

Pθ2 {󵄩󵄩󵄩󵄩󵄩θ̂n(Z1, . . . , Zn) − θ2󵄩󵄩󵄩󵄩󵄩 > ε} → 0 , as n → ∞ . (2.46)
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Identical equality of the cdf of randomvectors implies the equality for the correspond-
ing probability distributions. Therefore, the next follows from the nonidentifiability of
model:

Pθ2{(Z1, . . . , Zn) ∈ A} = Pθ1{(Z1, . . . , Zn) ∈ A} ,
for any Borel measurable set A ⊂ R(dim Z)×n. In particular,

Pθ2 {󵄩󵄩󵄩󵄩󵄩θ̂n(Z1, . . . , Zn) − θ2󵄩󵄩󵄩󵄩󵄩 > ε} = Pθ1 {󵄩󵄩󵄩󵄩󵄩θ̂n(Z1, . . . , Zn) − θ2󵄩󵄩󵄩󵄩󵄩 > ε} . (2.47)

That is why θ̂n → θ2 also in probability Pθ1 . Thus, the estimator θ̂n simultaneously
tends to θ1 and θ2 in probability Pθ1 . A limit in probability is unique, and therefore,
θ1 = θ2. The resulting contradiction proves the statement of the theorem.

This theorem shows that a necessary condition for the existence of consistent estima-
tor is the identifiability of the model. Thus, before one tries to construct a consistent
estimator, it is worth to ensure that the model is identifiable.

It should be noted that the inverse statement to Theorem 2.6 is false: There exists
an identifiable model in which it is impossible to estimate consistently all the model
parameters.

It can happen that some components of the vector parameter θ are identifiable
and some are not.

Definition 2.7. Consider the model (2.43) and (2.44), with the parameter θ = (θ1, . . . ,
θm)T ∈ Θ. The component θi is called identifiableone if there is no θ1 = (θ11, . . . , θ1m)T ∈
Θ and θ2 = (θ21, . . . , θ2m)T ∈ Θ such that θ1i ̸= θ2i and the identity from Definition 2.5
is correct.

Clearly, the model is not identifiable if, and only if, there exists a nonidentifiable com-
ponent of the parameter θ.

Reasoning as in the proof of Theorem 2.6, it is possible to prove the next statement.

Theorem 2.8. Assume the conditions of Theorem 2.6. If some component θi is not iden-
tifiable, then there is no consistent estimator of the component θi.

Thus, the identifiability of the component θi is necessary condition for the existence
of consistent estimator for this component.

Example 2.9. Consider the normal linear model (2.1) and (2.2) under the conditions
(i) and (vi)–(viii). The parameter μξ is identifiable because Exi = μξ , i.e., the cdf of the
observation xi will be affected by change of μξ . Moreover the μξ can be consistently
estimated, because x̄ P1󳨀󳨀→ μξ , as n → ∞.

The question is whether the normal model is identifiable or not, with the model
parameter

θ = (β0, β1, μξ , σ2ξ , σ2δ , σ2ε )T , Θ = R3 × (0, +∞)3 . (2.48)

Theorem 2.10. The normal linearmodel (2.1) and (2.2) under the conditions (i) and (vi)–
(viii), which has six unknown parameters, is not identifiable.
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Proof. Independent identically distributed normal vectors Zi = (xi; yi)T, i = 1, n, are
observed, so a single observation Zi is enough to consider when the identifiability is
touched upon. The latter is a normal vector and its distribution is uniquely defined by
the mean and the covariance matrix C. We have

Ex = μξ , Ey = β0 + β1μξ , (2.49)

C = ( Dx cov(x, y)
cov(x, y) Dy ) = (σ2ξ + σ2δ β1σ2ξ

β1σ2ξ β21σ
2
ξ + σ2ε

) . (2.50)

To prove the nonidentifiability, two different sets of model parameters should be con-
sidered:
(a)

β0 = μξ = 0 , β1 = σ2ξ = σ2ε = σ2δ = 1 . (2.51)

Then,

Ex = Ey = 0 , C = (2 1
1 2

) . (2.52)

(b)
β0 = μξ = 0 , β1 = 2

3 , σ2ξ = 3
2 , σ2ε = 4

3 , σ2δ = 1
2 . (2.53)

For the letter set of parameters, equalities (2.52) hold as well. In particular,

Dy = (2
3)2 ⋅ 32 + 4

3 = 2
3 + 4

3 = 2 . (2.54)

Thus, for both sets of parameters (2.51) and (2.53), the distribution of the observed
vector Z1 is the same, and therefore, the model is not identifiable.

Remark 2.11. Example 2.9 contains a nonidentifiablemodel having an identifiable pa-
rameter.

Explanation of the model nonidentifiability inferred from Theorem 2.10 is quite sim-
ple: the joint distribution of Gaussian observations is uniquely defined by five charac-
teristics Ex, Ey, Dx, Dy, and cov(x, y), whereas the model has more free parameters
(namely six).

Theorem 2.10 implies that without additional information, it is impossible to esti-
mate consistently all the six unknown parameters in the context of the normal linear
measurement error model (this can be done only for the parameter μξ ). Imposing ad-
ditional (prior) relationships among the parameters should improve the situation.

The most common are the two alternative constraints:
(a)

the ratio λ = σ2ε
σ2δ

is known, or (2.55)

(b)
the measurement error variance σ2δ is known. (2.56)
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As we will see later, in both cases the model becomes identifiable (in fact, we narrow
the parameter setΘ). Moreover for these cases,wewill construct consistent estimators
for all the parameters of the model.

The assumption (2.55) is more common than (2.56). For example, if the response
and regressor have the same physical dimension, at that measuring the response and
regressor is being carriedoutby the same (or similar) physical device, theobservations
may be considered as equally precise, i.e., with σ2ε = σ2δ or λ = 1.
2.4 The model with known error variance

This section studies the model (2.1) and (2.2) under the conditions (i)–(iv). The value
σ2δ is assumed known. We will derive the same consistent estimator of the slope β1
using three ways. Also, the consistent estimators for the other model parameters will
be written down.

2.4.1 The adjusted naive estimator of the slope

According to (2.38), β̂1,naive converges to Kβ1 , a.s. We want to adjust this estimator so
that a new estimator is consistent. For this, estimate consistently the reliability ratio

K = σ2ξ
σ2ξ + σ2δ

. (2.57)

The value σ2δ is known to us, and as a consistent estimator one may take

σ̂2ξ = Sxx −σ2δ ; σ̂2ξ
P1󳨀󳨀→ Dx − σ2δ = σ2ξ . (2.58)

In case of the normal model, this estimator is the maximum likelihood estimator
(MLE), see Section 1.4.3.

Then the consistent estimator of the K is

K̂ = σ̂2ξ
σ̂2ξ + σ2δ

= Sxx −σ2δ
Sxx

. (2.59)

The next definition is useful while studying the asymptotic behavior of estimators.

Definition 2.12. Consider the sequence of statements An = An(ω) that depend on an
elementary event ω from a probability spaceΩ. The statement An is said to hold even-
tually if there exists such a random event Ω0, with P(Ω0) = 1, that for each ω ∈ Ω0,
there exists a number n0 = n0(ω) such that for all n ≥ n0, the statement An(ω) holds
true.
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In particular, Sxx > 0 eventually, because Sxx
P1󳨀󳨀→ Dx > 0. Thus, eventually

the estimator K̂ is correctly defined by (2.59). Moreover, K̂ > 0 eventually, because
K̂ P1󳨀󳨀→ K > 0.

Taking into account (2.38), the adjusted estimator is given by the following ex-
pression:

β̂1 = 1
K̂
β̂1,naive = Sxx

Sxx −σ2δ ⋅ Sxy
Sxx

, (2.60)

β̂1 = Sxy
Sxx −σ2δ . (2.61)

It is clear that Sxx −σ2δ > 0,eventually. If it so happens that Sxx(ω) = σ2δ for some n and
ω, then one may set β̂1 = 0. Our estimator β̂1 can be considered as defined by (2.61),
eventually.

Definition 2.13. The estimator (2.61) is called the adjusted least squares (ALS) estima-
tor.

The next theorem follow fromTheorem 2.4 and from our procedure of constructing the
estimator.

Theorem 2.14. In the linear model, assume the conditions (i)–(iv). Then the ALS esti-
mator (2.61) is a strongly consistent estimator of the slope, i.e.,

β̂1 = β̂1,ALS
P1󳨀󳨀→ β1 , as n → ∞ . (2.62)

2.4.2 The corrected score estimator of regression parameters

We apply the CS method described in Section 1.4.4. Our linear model is a particular
case of the model (1.1) and (1.5), with regression function f(ξi , β) = β0 + β1ξi.

The deconvolution equations (1.124) and (1.125) take the form

E[g(x, b)|ξ] = ∂f
∂β = (1

ξ
) , (2.63)

E[h(x, b)|ξ] = f ∂f
∂β

= ( b0 + b1ξ
b0ξ + b1ξ2

) . (2.64)

We search for the solutions in the class of polynomial functions in x. It is clear that
g(x, b) = (1; x)T. To find the second function h is to construct a polynomial t2(x) such
that

E[t2(x)|ξ] = ξ2. (2.65)

It is easy to verify that t2(x) = x2 − σ2δ satisfies (2.65). Indeed

E[(ξ + δ)2 − σ2δ|ξ] = ξ2 + 2ξ ⋅ E[δ|ξ] + E[δ2|ξ] − σ2δ == ξ2 + 2ξ ⋅ Eδ + Eδ2 − σ2δ = ξ2 . (2.66)
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Therefore,

h(x, b) = ( b0 + b1x
b0x + b1x2 − b1σ2δ

) . (2.67)

The estimating function (1.126) takes the form

sC(y, x; b) = y ⋅ (1
x
) − ( b0 + b1x

b0x + b1x2 − b1σ2δ
) . (2.68)

Then the CS estimator of β is given by the equation

1
n

n∑
i=1

sC(yi , xi; b) = 0 , b ∈ R2 , (2.69)

or a system of equations

{{{ȳ − b0 − b1 x̄ = 0 ,
xy − b0 x̄ − b1 (x2 − σ2δ) = 0 . (2.70)

Eliminating b0 from the second equation, we get

b1(x2 − (x̄)2 − σ2δ) = xy − x̄ ⋅ ȳ , (2.71)

β̂1,CS = Sxy
Sxx −σ2δ . (2.72)

As we can see, this estimator coincides with the ALS estimator (2.61), eventually.
The estimator β̂0,CS can be now found from the first equation of the system (2.70)

β̂0,CS = ȳ − β̂1,CS ⋅ x̄ . (2.73)

As with the naive estimator, the estimated straight line y = β̂0,CS+ β̂1,CSξ goes through
the center of massM(x̄; ȳ) for systems of points Mi(xi; yi), i = 1, n (see Remark 2.2). It
is clear that as a consequence of Theorem 2.14, the estimator (2.73) is a strongly con-
sistent estimator of the parameter β0.

2.4.3 Maximum likelihood estimator of all the parameters

Consider the normal linear model, i.e., assume the conditions (i) and (vi)–(viii). To
write down an equation for the MLE of five unknown parameters, there is no need
to write out the pdf of the observed normal vector (y; x)T. Instead, one can use the
so-called functional invariance of the MLE (Kendall and Stuart, 1979, Chapter 18). For
this, the equalities (2.49) and (2.50) should be rewritten in the following manner: the
expectations are replaced by the sample means, and the variance and covariance are



2.4 The model with known error variance | 43

replaced by the sample counterparts as well. Thus, we have a system for the MLE:

x̄ = μ̂ξ , ȳ = β̂0 + β̂1μ̂ξ , (2.74)

Sxx = σ̂2ξ + σ2δ , Sxy = β̂1σ̂2ξ , Syy = β̂21σ̂
2
ξ + σ̂2ε , (2.75)

σ2ξ > 0 , σ2ε > 0 . (2.76)

So, the solution to equations (2.69) and (2.70) is as follows:

μ̂ξ = x̄ , σ̂2ξ = Sxx −σ2δ , (2.77)

β̂1 = Sxy
Sxx −σ2δ , β̂0 = ȳ − x̄ ⋅ β̂1 , (2.78)

σ̂2ε = Syy − (Sxy)2
Sxx −σ2δ . (2.79)

The inequality Sxx > σ2δ holds eventually (see Section 2.4.1), so

σ̂2ξ > 0 , eventually . (2.80)

Further, by the SLLN,

σ̂2ε
P1󳨀󳨀→ Dy − (cov(x, y))2

Dx − σ2δ
= β21σ

2
ξ + σ2ε − β21σ

4
ξ

σ2ξ
= σ2ε > 0 , (2.81)

σ̂2ε > 0 , eventually . (2.82)

Thus, eventually both inequalities (2.80) and (2.82) hold and the expressions (2.77)–
(2.79) are those for the MLE, eventually. The expressions (2.77) and (2.78) were met
by us before, but the estimator (2.79) is new for us. The latter estimator is consistent
without the requirement of normality of errors and ξi.

Theorem 2.15. Assume the conditions (i)–(iv). Then the expression (2.81) is a strongly
consistent estimator of the error variance σ2ε .

The proof follows from the convergence (2.81) which is valid under the assumptions
(i)–(iv).

Remark 2.16. Under the assumptions (vi) and (vii),when n ≥ 2, the expressions (2.78)
and (2.79) are well-defined, almost surely, i.e.,

Sxx ̸= σ2δ , a.s. (2.83)

Proof. Provided (vi) and (vii), the surrogate variables xi are independent with the dis-
tribution N(μξ , σ2x), σ2x = σ2ξ + σ2δ > 0. Therefore,

Sxx = 1
n

n∑
i=1

(xi − x̄)2 ∼ σ2x
n
χ2n−1 , (2.84)
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where χ2ν is a randomvariable having chi-square distribution with ν degrees of freedom,
i.e., χ2ν has the same distribution as∑ν

i=1 γ2i , where γi, i = 1, ν, are independent stan-
dard normal random variables (Seber and Lee, 2003). It is known that χ2ν has a pdf.
Therefore,

P{Sxx = σ2δ} = P{σ2x
n χ2n−1 = σ2δ} = P{χ2n−1 = nσ2δ

σ2x
} = 0 , (2.85)

which proves the statement (2.83).

2.4.4 Asymptotic normality of the estimator for the slope

By the sandwich formula (see Appendix A2), it can be shown that the augmented esti-
mator θ̂ = (β̂0, β̂1, σ̂2ε , μ̂ξ , σ̂2ξ )T of the parameter θ = (β0, β1, σ2ε , μξ , σ2ξ )T is asymptot-
ically normal in the normal linear model, i.e.,

√n(θ̂ − θ) d󳨀→ N(0̄, Σθ) . (2.86)

Here, Σθ being dependent on θ is the asymptotic covariance matrix (ACM). It is posi-
tive definite. The condition that the model is normal can be relaxed significantly. The
expression (2.86) permits to construct an asymptotic confidence ellipsoid for the vec-
tor θ.

However, the use of sandwich formula, in this instance, necessitates cumbersome
calculations. We derive the asymptotic normality only for the ALS estimator of β̂1,ALS
by utilizing its explicit formula.

Here are some known facts from stochastic analysis (Schervish, 1995).

Definition 2.17. A sequence {xn} of random variables is called stochastically bounded
if

sup
n≥ 1

P{|xn| > c} → 0 , as c → +∞ . (2.87)

For such a sequence, we write
xn = Op(1) . (2.88)

Also denote yn = op(1) if yn P󳨀→ 0.

Lemma 2.18 (Slutsky’s lemma). Let ξn
d󳨀→ ξ and ηn

P󳨀→ 0 hold true. Then ξn + ηn
d󳨀→ ξ .

Lemma 2.19. If ξn
d󳨀→ ξ , then ξn = Op(1).

Lemma 2.20. If ξn = op(1), ηn = Op(1), then ξnηn = op(1).
Corollary 2.21. If xn

P󳨀→ a and yn
d󳨀→ y, then xnyn

d󳨀→ ay. Here a is a real number.
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Proof. We have
xnyn = (xn − a) yn + ayn . (2.89)

By Lemmas 2.19 and 2.20, the first summand is op(1) ⋅ OP(1) = op(1), and the second
summand converges in distribution to ay. Then by Slutsky’s lemma, xnyn

d󳨀→ ay.

Theorem 2.22. Assume the conditions (i), (ii), (iv), and (vi). Then the estimator β̂1 =
β̂1,ALS given by formula (2.61) is asymptotically normal, in more detail

√n(β̂1 − β1) d󳨀→ N(0, σ21) , (2.90)

σ21 = 1
σ4ξ

(σ2ε σ2x + β21(σ2xσ2δ + σ4δ)) , (2.91)

σ2x = Dx = σ2ξ + σ2δ . (2.92)

Proof. The sample covariance

Su𝑣 = (u − ū) (𝑣 − 𝑣̄) (2.93)

between two samples u1, . . . , un and 𝑣1, . . . 𝑣n is linear in both u and 𝑣. In particular,
this means that for the sum of two samples w = u + z = (u1 + z1, u2 + z2, . . . , un + zn),
it holds that

Sw𝑣 = Su+z,𝑣 = Su𝑣 + Sz𝑣 . (2.94)

Moreover, if ui = const, i = 1, n, then Su𝑣 = 0.
Since in the linear model,

x = ξ + δ , y = β0 + β1ρ + β1μξ + ε , ρ = ξ − μξ , (2.95)

then, by the linearity of the operator (2.88), we obtain

Sxy = β1 Sρρ + Sρε +β1 Sδρ + Sδε , (2.96)
Sxx = Sρρ +2Sρδ + Sδδ . (2.97)

Consider the denominator of the fraction (2.61):

Sxx − σ2δ
P1󳨀󳨀→ σ2x − σ2δ = σ2ξ , (2.98)

Sxx − σ2δ = σ2ξ + o(1) . (2.99)

Remember that o(1) denotes a sequence of random variables zn that tends to 0, a.s. It
is clear that zn = op(1) as well. We have

√n(β̂1 − β1) = −β1√n(Sxx −σ2δ) + √n Sxy
Sxx −σ2δ , (2.100)

√n(β̂1 − β1) = −β1√n(Sδρ + Sδδ −σ2δ) + √n(Sρε + Sδε)
σ2ξ + o(1) . (2.101)
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Next, √n Sδρ = √n ⋅ δρ − √n ⋅ δ̄ ⋅ ρ̄ = √n ⋅ δρ − 1√n n∑
i=1

δi ⋅ ρ̄ . (2.102)

Using the central limit theorem (CLT) and SLLN, we have

1√n n∑
i=1

δi
d󳨀→ N(0, σ2δ) , 1√n n∑

i=1
δi = Op(1) , (2.103)

ρ̄ P1󳨀󳨀→ Eρ = 0 , ρ̄ = o(1) , ρ̄ = op(1) ,(√n ⋅ δ̄) ⋅ ρ̄ = Op(1) ⋅ op(1) = op(1) . (2.104)

Therefore, √n Sδρ = √n ⋅ δρ + op(1) . (2.105)

Similarly: √n Sρε = √n ⋅ ρε + op(1) ,√n Sδε = √n ⋅ δε + op(1) , (2.106)√n Sδδ = √n ⋅ δ2 + op(1) .
Substituting (2.105) and (2.106) into (2.101), we get

√n(β̂1 − β1) = −β1√n (δρ + (δ2 − σ2δ)) + √n(ρε + δε)
σ2ξ + o(1) + op(1) . (2.107)

Prove the convergence in distribution for the numerator in (2.107). According to the
CLT (Kartashov, 2007),

√n (δρ, δ2 − σ2δ , ρε, δε)T d󳨀→ γ = (γ1, . . . , γ4)T ∼ N(0, S) , (2.108)

S = diag(σ2δσ2ξ ,Dδ2, σ2ξ σ2ε , σ2δσ2ε ) . (2.109)

Here the diagonal entries of the matrix S = (Sij)4i,j=1 are composed of the variances of
random variables that were averaged. In particular,

S11 = D(δρ) = E(δρ)2 = Eδ2 ⋅ Eρ2 = σ2δσ
2
ξ . (2.110)

The off-diagonal elements of the matrix S are equal to 0, because δ, ρ, and ε are inde-
pendent, e.g.,

S12 = Eδρ(δ2 − σ2δ) = Eρ ⋅ Eδ(δ2 − σ2δ) = 0 . (2.111)

Moreover, since δ ∼ N(0, σ2δ),
Dδ2 = Eδ4 − (Eδ2)2 = 3σ4δ − σ4δ = 2σ4δ . (2.112)
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The convergence (2.108) implies that the numerator in (2.107) converges in distribution
to − β1(γ1 + γ2) + γ3 + γ4 ∼ N(0, β21(S11 + S22) + S33 + S44) . (2.113)

Then, by Corollary 2.21 and Lemma 2.18, we have the following from relationships
(2.107), (2.109), and (2.113):

√n(β̂1 − β1) d󳨀→ N(0, σ21) , (2.114)

σ21 = 1
σ4ξ

(β21(σ2ξ σ2δ + σ4δ) + σ2ε σ2ξ + σ2ε σ2δ) , (2.115)

σ21 = 1
σ4ξ

(β21(σ2xσ2δ + σ4δ) + σ2ε σ2x) . (2.116)

This proves the theorem.

The asymptotic variance σ21 contains unknown parameters (only σ2δ is assumed
known). The strongly consistent estimator of the σ21 can be constructed as follows:

σ̂21 = 1
σ̂4ξ

(β̂21(σ̂2xσ2δ + σ4δ) + σ̂2ε σ̂2x) , σ̂2x = σ̂2ξ + σ2δ , (2.117)

with estimators of model parameters being set in (2.77)–(2.79). Under the conditions
of Theorem 2.22, these estimators converge almost surely to the corresponding true
values, and therefore,

σ̂21
P1󳨀󳨀→ σ21 , σ̂1 = √σ̂21 P1󳨀󳨀→ σ1 = √σ21 . (2.118)

To construct a confidence interval of the parameter β1, consider the statistic√n(β̂1 − β1)
σ̂1

= √n(β̂1 − β1)
σ1

⋅ σ1
σ̂1

d󳨀→ N(0, 1) . (2.119)

We took advantage of the convergence in (2.114) and (2.118) and of Corollary 2.21. If the
confidence probability is specified to be 0.99, then the asymptotic confidence interval
can be taken as

In = [β̂1 − 3σ̂1√n , β̂1 + 3σ̂1√n ] . (2.120)

Indeed, (2.119) implies that for γ ∼ N(0, 1),
lim
n→∞P{β1 ∈ In} = lim

n→∞P{ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨√n(β̂1 − β1)
σ̂1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 3} = P{|γ| ≤ 3} ≥ 0.99 . (2.121)

Thus, the asymptotic confidence interval has been constructed.
A disadvantage ofmeasurement errormodels is that evenunder the conditions (i),

(vi)–(viii) of the model normality with known σ2δ > 0, it is in principle impossible to



48 | 2 Linear models with classical error

construct a finite nonasymptotic confidence interval Jn for β1. Such an interval should
satisfy

inf
θ∈Θ

Pθ{β1 ∈ Jn} ≥ 1 − γ . (2.122)

Here 1 − γ > 0 is the confidence probability, θ is the augmented vector of unknown
model parameters. In fact, the left-hand side of (2.122) is equal to 0. This phenomenon
is called Gleser–Hwang effect (Cheng and Van Ness, 1999). It is explained by the fact
that the structural model (2.1) and (2.2), at small σ2ξ , can be arbitrarily close to the
degenerate model

yi = β0 + β1μξ + εi , xi = μξ + δi , i = 1, n . (2.123)

But the latter is not identifiable because for fixed μξ , there are many couples (β0, β1)
providing the fixed value of Eyi = β0 + β1μξ .

The Gleser–Hwang effect disappears if the parameter set Θ is specified so that σ2ξ
is separated away from 0. Namely, it should hold

σ2ξ ≥ const > 0 , for any θ ∈ Θ . (2.124)

2.4.5 Bias of the naive estimator and nonexistence of expectation of ALS estimator

Consider a question on the existence of expectation for the naive estimator and the
ALS estimator.

Bias of the naive estimator
Theorem 2.23. Let the conditions (i), (ii), (vi), and (vii) hold true. Then with n ≥ 3,

Eβ̂1,naive = β1K , K = σ2ξ
σ2ξ + σ2δ

. (2.125)

Proof. Using the linearity (2.94) of the sample covariance operator, we have a.s., that

β̂1,naive = Sxy
Sxx

= β1
Sxξ
Sxx

+ Sxε
Sxx

. (2.126)

Verify that the expectations of both summands are finite. It holds that

| Sxε | = 1
n

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
n∑
i=1

(xi − x̄) (εi − ε̄)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ √1
n

n∑
i=1

(xi − x̄)2√1
n

n∑
i=1

(εi − ε̄)2 = S1/2xx S1/2εε . (2.127)

Therefore, as a result of mutual independence of {xi} and {εi}
E | Sxε |Sxx

≤ ES
1/2
εε

S1/2xx
= E 1

S1/2xx
⋅ E S1/2εε . (2.128)
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Here the second factor is finite but it is not so obvious for the first one. Explain why
this is so. According to (2.84), Sxx ∼ σ2x ⋅ n−1 ⋅ χ2n−1, thus,

E 1
S1/2xx

= √n
σx

E 1√χ2n−1 . (2.129)

Remember that χ2n−1 = ∑n−1
i=1 γ2i , where γi are independent standard normal random

variables. The augmented vector (γ1, . . . , γn−1)T has a pdf
1(√2π)n−1 e− ‖x‖22 , x ∈ Rn−1 . (2.130)

Therefore,

E 1√χ2n−1 = E(n−1∑
i=1

γ2i )−1/2 = const ⋅ ∫
Rn−1

1‖x‖ e− ‖x‖22 dx . (2.131)

In the integral, move the generalized spherical coordinates. The transition Jacobian
contains the factor rn−2 in which r = ‖x‖ is the Euclidean vector norm. Then for n ≥ 3,

E 1√χ2n−1 = const ⋅ ∞∫
0

1
r
e−

r2
2 ⋅ rn−2dr = const ⋅ ∞∫

0

rn−3e−
r2
2 dr < ∞. (2.132)

This justifies the equality in (2.128), and that

E | Sxε |Sxx
< ∞ , and similarly E | Sxξ |Sxx

< ∞ . (2.133)

Further, for x⃗ = (x1, . . . , xn)T, we have
ESxε
Sxx

= EE [ SxεSxx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 x⃗] = 0 , (2.134)

because

E [ SxεSxx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 x⃗] = 1
Sxx

⋅ 1n n∑
i=1

E[(xi − x̄) (εi − ε̄)|x⃗] =
= 1
n Sxx

n∑
i=1

(xi − x̄)E(εi − ε̄) = 0 . (2.135)

In addition, under the normality conditions (vi) and (vii), the relations (1.86) from
Section 1.4.3 hold. Let {γi, i = 1, n} be a set of n independent standard normal random
variables being independent of {xi}. Then,

ESxξSxx
= EE [ SxξSxx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 x⃗] = E 1
Sxx

E[Sxξ |x⃗] =
= E 1

Sxx
E[Sx,Kx+(1−K)μξ+τγ |x⃗] = ESx,KxSxx

+ E[Sx,τγSxx
|x⃗] = KESxxSxx

= K . (2.136)

From the equalities (2.126), (2.134), and (2.136), we finally get (2.125).
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Corollary 2.24. If β1 ̸= 0 and under the conditions of Theorem 2.23, the naive estimator
is biased, i.e.,

Eβ̂1,naive ̸= β1 . (2.137)

Theorem 2.23 strengthens the attenuation effect (see Section 2.1): not only for large n,
the naive estimator is closer to zero than β1, but having fixed n it is also shifted to zero,
i.e., Eβ̂1 is closer to zero (actually it is located between 0 and β1).
Remark 2.25. Consider the ordinary linear regression (2.1) under the conditions (i),
(ii), and (vi). Then with n ≥ 3, the least squares estimator

β̂1,ML = Sξy
Sξξ

(2.138)

is unbiased, i.e.,
Eβ̂1,ML = β1 . (2.139)

The proof follows from fragments of the proof of Theorem 2.23.

Nonexistence of expectation of the adjusted least squares estimator
Theorem 2.26. Assume the conditions (i), (ii), (vi), and (vii). If, in addition, at β1 ̸= 0
and n ≥ 2, then

E|β̂1,ALS| = ∞ . (2.140)

Proof. Suppose that
E 󵄨󵄨󵄨󵄨󵄨β̂1,ALS󵄨󵄨󵄨󵄨󵄨 < ∞ . (2.141)

Then the next expectation is finite

Eβ̂1,ALS = E[β̂1,ALS|x⃗, ⃗ξ] , ⃗ξ = (ξ1, . . . , ξn)T . (2.142)

From formula (2.61), we have almost surely, that

β̂1,ALS = β1
Sxξ

Sxx −σ2δ + Sxε
Sxx −σ2δ . (2.143)

This implies that

E[β̂1,ALS|x⃗, ⃗ξ] = β1
Sxξ

Sxx −σ2δ + 1
Sxx −σ2δ E[Sxε |x⃗] . (2.144)

As we saw in (2.135), the latter conditional expectation is zero. Then, as in (2.136), we
have

E[β̂1,ALS|x⃗, ⃗ξ] = β1
Sxξ

Sxx −σ2δ , (2.145)

Eβ̂1,ALS = β1 E
Sxξ

Sxx −σ2δ = β1 ⋅ K ⋅ E Sxx
Sxx −σ2δ = β1 K (1 + σ2δ E

1
Sxx −σ2δ) ,

(2.146)
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at that, all the expectations are finite. However, similar to (2.129) and (2.132), we have

E 1󵄨󵄨󵄨󵄨󵄨Sxx −σ2δ󵄨󵄨󵄨󵄨󵄨 = const ⋅
∞∫

Rn−1

1󵄨󵄨󵄨󵄨󵄨󵄨 σ2xn ‖x‖2 − σ2δ
󵄨󵄨󵄨󵄨󵄨󵄨e−

‖x‖2
2 dx =

= const ⋅ ∞∫
0

1󵄨󵄨󵄨󵄨󵄨󵄨󵄨r2 − nσ2δ
σ2x

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 r
n−2e−

r2
2 dr . (2.147)

The latter improper integral has got a singularity at point r0 = √ nσ2δ
σ2x
. As r → r0, the

integrand f(r) has such a behavior:
f(r) ∼ const ⋅ 1|r − r0| . (2.148)

Here, the equivalence means that the ratio of the left-hand and right-hand sides tends
to 1, as r → r0. Therefore, the integral (2.147) diverges simultaneously with the im-
proper integral ∫r0+1r0

dr
r−r0 . Thus, expectation in (2.147) is infinite and the last expec-

tation in (2.146) is not finite. The resulting contradiction shows that our assumption
(2.141) is wrong. The theorem is proved.

Remark 2.27. It can be shown that under the conditions of Theorem 2.26, expectation
Eβ̂1,ALS is not well-defined as Lebesgue integral, i.e.,

Eβ̂+1,ALS = Eβ̂−1,ALS = +∞ , (2.149)

β̂+1,ALS = max(β̂1,ALS, 0) , β̂−1,ALS = −min(β̂1,ALS, 0) . (2.150)

Here, β̂+1,ALS and β̂−1,ALS are the positive and negative parts of the function β̂1,ALS(ω),
ω ∈ Ω (ω is an elementary random event, andΩ is a total space of elementary events).

As we see, the naive estimator has the advantage over the consistent Adjusted Least
Squares estimator that it has finite expectation. One can talk about the bias of the
naive estimator, but itmakes no sense to talk about the bias of the estimator β̂1,ALS has
no sense taking into account Theorem 2.26 and Remark 2.27. Therein lies an important
difference betweenmeasurement error models and ordinary regressionmodels. In the
first models, reasonable estimators do not have expectations and in the second ones
they do have (see Remark 2.25).

Theorem 2.26 should be considered in the analysis of numerical simulation re-
sults. Suppose we have N independent realizations of the model (2.1) and (2.2), i.e.,
have N samples of n observations each. For kth realization, we compute the estimate
β̂(k)1,ALS, k = 1, N; these estimators are independent and identically distributed. If the
averaged estimate 1

N ∑N
k=1 β̂
(k)
1,ALS is considered with regard to Remark 2.27, then that

average behaves chaotically, as N → ∞. At the same time, by Theorem 2.23 we have
for the average of the naive estimator:

1
N

N∑
k=1

β̂(k)1,naive
P1󳨀󳨀→ Eβ̂1,naive = Kβ1 , as N → ∞ . (2.151)
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Thus, a table of dependency from n of the values 1
N ∑N

k=1 β̂
(k)
1,naive may illustrate a bias

of the naive estimator and the attenuation effect.
Instead for theALS estimator, it is better touse amedian for the set of the estimates{β̂(k)1,ALS, k = 1, N}. For this purpose, the estimates are arranged in increasing order:

β̂(k(1))1,ALS ≤ β̂(k(2))1,ALS ≤ ⋅ ⋅ ⋅ ≤ β̂(k(N))1,ALS , (2.152)

and we set

med β̂(∙)1,ALS = {{{
β̂(k(m))1,ALS if N = 2m − 1 ,
β̂(k(m))

1,ALS +β̂
(k(m+1))
1,ALS

2 if N = 2m .
(2.153)

Under mild conditions (Beirlant et al., 2004), this value tends to the median of the
estimator β̂1,ALS of a single realization:

med β̂(∙)1,ALS
P1󳨀󳨀→ med β̂1,ALS , as N → ∞ . (2.154)

The estimator β̂1,ALS is strongly consistent, so

med β̂1,ALS
P1󳨀󳨀→ β1 , as n → ∞ . (2.155)

Relations (2.154) and (2.155) show that med β̂(∙)1,ALS approaches to the true value β1,
when N and n are becoming large enough. Thus, when N is taken large enough, a
table of dependence of med β̂(∙)1,ALS on n can illustrate the strong consistency of the
ALS estimator.

In addition to the bias, another common characteristic of the accuracy of an es-
timator θ̂ is the mean squared error Eθ(θ̂ − θ)2. However, for the ALS estimator one
cannot use the empirical mean squared error 1

N ∑N
k=1 (β̂(k)1,ALS − β1)2, because by Theo-

rem 2.26,

1
N

N∑
k=1

(β̂(k)1,ALS − β1)2 P1󳨀󳨀→ E(β̂1,ALS − β1)2 = +∞ , as N → ∞ . (2.156)

Instead, it is quite possible to use the empiricalmedianmed(β̂(∙)1,ALS−β1)2, which tends
to med(β̂1,ALS − β1)2, almost surely, as N → ∞. The latter tends to 0, as n → ∞, be-
cause of the strong consistency of the estimator. For this reason, a table of dependence
ofmed(β̂(∙)1,ALS−β1)2 on n illustrates the strong consistencyof theALS estimator aswell.
It is better even to apply the empirical median of absolute deviation,

med |β̂(∙)1,ALS − β1| = √med(β̂(∙)1,ALS − β1)2 , (2.157)

because it has the same physical dimension as β1.
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2.4.6 The adjusted least squares estimator in the vector model

The vector linear model
Generalize the model (2.1) and (2.2) for the vector case. Suppose, we have the observa-
tions

yi = BTξi + εi , (2.158)
xi = ξi + δi , i = 1, n . (2.159)

Here, ξi is unobservable random vector in Rd, yi is observed response in Rm, εi is a
vector of observation errors of the response, and δi is a vector of measurement errors
in the covariate. The regression coefficientsmatrix B of size d×m should be estimated.

The model (2.158) and (2.159) is called the vector (structural) measurement error
model. In particular case when the response is scalar (m = 1), we call this model as
multiple linear model, meaning that a collection of several scalar regressors is con-
sidered, on which the response depends linearly. In multiple regression models, the
matrix B becomes a column vector and then BTξi is just an inner product of two col-
umn vectors.

Another particular case of the model (2.158) and (2.159) is the vector model with
intercept:

yi = y0 + CTψi + εi , (2.160)
wi = ψi + 𝑣i , i = 1, n . (2.161)

Here, ψi is a random vector in Rd−1 (d ≥ 2), yi is an observed response in Rm, εi is a
vector of errors in the response, 𝑣i is a vector of measurement errors in the covariates.
The intercept y0 ∈ Rm and the regression coefficients matrix C of size (d −1) ×m have
to be estimated. This model is reduced to the model (2.158) and (2.159) if we put

ξi = ( 1
ψi

) , B = [yT0
C
] , δi = (0𝑣i) , xi = ( 1

wi
) . (2.162)

The model (2.158) and (2.159) can be written in a matrix form. Introduce the matrices

Y = [[[[
yT1
...
yTn

]]]] , X = [[[[
xT1
...
xTn

]]]] , Xtr = [[[[
ξT1
...
ξTn

]]]] , (2.163)

Ye = [[[[
εT1
...
εTn

]]]] , Xe = [[[[
δT1
...
δTn

]]]] , Y tr = XtrB . (2.164)

Since the vector model can be rewritten as

yTi = ξTi B + εTi , xTi = ξTi + δTi , i = 1, n , (2.165)
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it is equivalent to the matrix equations:

Y = Y tr + Ye , X = Xtr + Xe , Y tr = XtrB . (2.166)

Here, X is the observed input matrix, Y is the observed output matrix, Xtr and Y tr are
the corresponding true matrices, and Xe and Ye are the corresponding error matrices.
The matrix model (2.166) is also recorded by means of the approximate equality

X
n×d

B
d×m

≈ Y
n×m

. (2.167)

The given matrices X and Y contain additive measurement errors and the unknown
matrix B is estimated. The latter has a fixed size and does not change with increasing
number n of observed rows of the matrices X and Y. The model (2.167) can be inter-
preted as overdetermined system of linear equations. Namely, we have dm unknown
entries of B and n vector equations xTi B ≈ yTi , i = 1, n; if n > dm then there are more
equations than unknowns. Problem of finding B from this system touches upon the
computational linear algebra while the estimation of B under the observation model
(2.158) and (2.159) relates to the theory of linear regression. As evident, from a math-
ematical point of view these two problems are equivalent, if the uncertainties in the
observable matrices X and Y are modeled by means of additive random errors.

The adjusted least squares estimator
The following assumptions about the model (2.158) and (2.159) are common.
(a) Random vectors {ξi , εi , δi , i ≥ 1} are independent.
(b) The errors εi are identically distributed in Rm and centered, with finite second

moments.
(c) The errors δi are identically distributed inRd and centered, with finite and known

variance–covariancematrix
Vδ = Eδ1δT1 . (2.168)

(d) Random vectors ξi are identically distributed in Rd, with finite positive definite
(unknown) correlation matrix

Mξ = Eξ1ξT1 . (2.169)

Hereafter, the inequality A > B for symmetric matrices means that the matrix A − B
is positive definite (this partial order is called Loewner order). In particular, notation
A > 0 indicates that the matrix A is positive definite.

To construct a consistent estimator of the matrix B under conditions (a)–(d), we
apply the Corrected Score method (see Section 2.4.2).

In the case δi ≡ 0, the elementary objective function of the least squares method
is

qLS(y, ξ; B) = 󵄩󵄩󵄩󵄩󵄩y − BTξ󵄩󵄩󵄩󵄩󵄩2 , B ∈ Rd×m . (2.170)
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The estimating function of the least squares method is equal to

sLS(y, ξ; B) = 1
2

∂qLS
∂B . (2.171)

Here, ∂qLS/∂B is a linear functional in the space ofmatricesRd×m (see the technique of
matrix derivatives in the book by Cartan, 1970). In this space, linear functionals have
a representation

fV (U) = trace(UTV) , U ∈ Rd×m , V ∈ Rd×m , (2.172)

where traceA = ∑i aii denotes the trace of a square matrix. The functional fV can be
identified with the matrix V that represents it. Then for arbitrary matrix H ∈ Rd×m,

1
2
∂qLS
∂B (H) = (BTξ − y, HTξ) == trace(HTξ(BTξ − y)T) = trace(HT(ξξTB − ξyT)) . (2.173)

Therefore, the linear functional (2.171) can be identified with the matrix ξξTB − ξyT.
Next, we construct the corrected estimating function sc as a solution to the deconvo-
lution equation

E[sc(y, x; B)|y, ξ] = ξξTB − ξyT , B ∈ Rd×m . (2.174)

The solution in the class of matrix-valued functions to be polynomial in ξ looks like

sc(y, x; B) = (xxT − Vδ)B − xyT . (2.175)

Indeed, for the function (2.175), with x = ξ + δ, we have

E[sc|y, ξ] = (E[xxT|ξ] − Vδ)B − E[x|ξ] ⋅ yT == (ξξT + EδδT − Vδ)B − ξyT = ξξTB − ξyT , B ∈ Rd×m . (2.176)

Then, according to the CS method, the ALS estimator is a measurable solution to the
equation [1n n∑

i=1
(xixTi − Vd)] B − 1

n

n∑
i=1

xiyTi = 0 , B ∈ Rd×m . (2.177)

By the SLLN and in accordance with (2.169), we have

1
n

n∑
i=1

(xixTi − Vδ) P1󳨀󳨀→ ExxT − Vδ = EξξT > 0 , as n → ∞ . (2.178)

So eventually thematrix 1
n ∑n

i=1 (xixTi − Vδ) is nonsingular, and the formula for the ALS
estimator is valid eventually

B̂ALS = ( n∑
i=1

xixTi − nVδ)−1 n∑
i=1

xiyTi . (2.179)
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In terms of matrices (2.163), we have the compact formula

B̂ALS = (XXT − nVδ)−1XTY . (2.180)

This formula is correct eventually, and for any sample size, the estimator can be de-
fined as follows:

B̂ALS = (XXT − nVδ)+XTY , (2.181)

where A+ is the Moore–Penrose pseudoinverse (Seber and Lee, 2003). If a square ma-
trix A is nonsingular then A+ = A−1 and the formula (2.181) is converted to (2.180).

Theorem 2.28. Assume the conditions (a)–(d). Then B̂ALS is a strongly consistent esti-
mator, i.e.

B̂ALS
P1󳨀󳨀→ B , as n → ∞ . (2.182)

Proof. By the SLLN, as n → ∞, we have

1
n

n∑
i=1

xiyTi
P1󳨀󳨀→ E(xyT) = E(ξξTB) = E(ξξT)B. (2.183)

Then the formulas (2.179), (2.178), and (2.183) give eventually

B̂ALS = (1n n∑
i=1

xixTi − Vδ)−1 ⋅ 1n n∑
i=1

xiyTi
P1󳨀󳨀→ (EξξT)−1(EξξT)B = B . (2.184)

The theorem is proved.

Parameter estimation in the vector model with intercept
In the model (2.160) and (2.161), the formula for the estimator (2.179) can be specified
because the matrix B contains y0 and C, see (2.162).

Introduce the appropriate conditions.
(a1) The random vectors ψi , εi , 𝑣i, i ≥ 1, are independent.
(c1) The errors 𝑣i are identically distributed in Rd−1(d ≥ 2) and centered, with finite

and known correlation matrix

V𝑣 = E𝑣1𝑣T1 . (2.185)

(d1) The random vectors ψi are identically distributed in Rd−1, with finite (unknown)
covariance matrix

Sψ = cov(ψ1) = E(ψ1 − μψ)(ψT
1 − μTψ) , μψ = Eψ1 ; (2.186)

Sψ > 0 . (2.187)

Remember that inequality (2.187) means positive definiteness of the matrix Sψ.
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Theorem 2.29. Assume the conditions (a1), (b), (c1), and (d1). Then in the model (2.160)
and (2.161), we have eventually

ĈALS = (Sww −V𝑣)−1 Swy , (2.188)

ŷ0,ALS = ȳ − ĈALSw̄ ; (2.189)

where Sww = 1
n ∑n

i=1 (wi − w̄)(wi − w̄)T ,
Swy = 1

n ∑n
i=1 (wi − w̄)(yi − ȳ)T (2.190)

are the sample covariances;

ȳ = 1
n

n∑
i=1

yi , w̄ = 1
n

n∑
i=1

wi (2.191)

are the sample means. In addition, the estimators (2.188) and (2.189) are strongly con-
sistent, i.e., as n → ∞, it holds that

ĈALS
P1󳨀󳨀→ C , ŷ0,ALS

P1󳨀󳨀→ y0 . (2.192)

Proof. According to formulas (2.162), the model (2.160) and (2.161) is reduced to the
vector model (2.158) and (2.159). Moreover, the conditions (a)–(c) hold true obviously.
It remains to verify the inequality (2.169) in condition (d).

We have ξ = (1ψ), and therefore, the second moments of ξ exist. The required in-
equality

Mξ = EξξT > 0 (2.193)

is equivalent to the linear independence of random variables 1, ψ(1), . . . , ψ(d−1),
where ψ(k) are components of the random vector ψ. Let a0, . . . , ad−1 be real numbers
such that

a0 + d−1∑
k=1

akψ(k) = 0 , a.s. (2.194)

Then 0 = D∑d−1
k=1 akψ(k) = aTSψa, a = (a1, . . . , ad−1)T. Since by the condition (d1) it

holds Sψ > 0, then fromhere a = 0 and further from (2.194)we get a0 = 0. Thus, linear
independence of the randomvariables 1,ψ(1) , . . . , ψ(d−1) is proved, and therefore, the
inequality (2.193) is justified. Thus, the condition (d) follows from the condition (d1).

Aswe can see, the conditions of Theorem 2.29 imply the conditions of the previous
theorem. Hence, the convergence (2.192) is obtained.

To prove the formula for the estimators, transform the estimating equation (2.177).
In view of (2.162), we obtain a couple of estimating equations (cf. with (2.70)):

ȳ = y0 + CTw̄ , (2.195)

w̄yT0 + (wwT − V𝑣) C = wyT . (2.196)

Eliminating y0 from here, we get the estimating equation for ĈALS:(Sww −V𝑣) C = Swy . (2.197)
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As n → ∞,
Sww −V𝑣 P1󳨀󳨀→ cov(w) − V𝑣 = Sψ > 0 , (2.198)

hence, it holds eventually that Sww −V𝑣 > 0. Then (2.197) implies equality (2.188), and
from equation (2.195) equality (2.189) follows. The theorem is proved.

Note that the formula for the estimators is a direct generalizationof the scalar formulas
(2.72) and (2.73).

It is necessary to mention the papers where the results of Section 2.4.6 are ex-
panded. In Sen’ko (2013), more general conditions for the consistency of B̂ALS are
given, and Sen’ko (2014) proves the asymptotic normality of the estimator and con-
structs its small samplemodification. Themodification is computationallymore stable
than B̂ALS for small andmoderate sample, and it has the same ACMas B̂ALS. Finally, in
Cheng and Kukush (2006) it is shown that in the vector model with intercept, it holds
that E‖ĈALS‖ = ∞, i.e., a generalization of Theorem 2.26 holds true.

2.5 The model with known ratio of error variances

Consider the normal linearmodel (2.1) and (2.2) under the conditions (i) and (vi)–(viii)
(the conditions were given at the beginning of Chapter 2 and in Sections 2.2 and 2.3).
Currently, we assume that σ2δ is unknown but the ratio is given

λ = σ2ε
σ2δ

. (2.199)

This permits to overcome the nonidentifiability of themodel (see Theorem 2.10). Since
σ2ε = λσ2δ , then five parameters, namely β0, β1, σ

2
δ, μξ , and σ

2
ξ should be estimated.

2.5.1 The MLE and its consistency

According to the method described in Section 2.4.3, the system of equations for the
MLE is as follows:

x̄ = μ̂ξ , ȳ = β̂0 + β̂1μ̂ξ , (2.200)

Sxx = σ̂2ξ + σ̂2δ ,

Sxy = β̂1σ̂2ξ ,

Syy = β̂21σ̂
2
ξ + λσ̂2δ ,

(2.201)

σ̂2δ > 0 , σ̂2ξ > 0 . (2.202)

From here
μ̂ξ = x̄ . (2.203)
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From equations (2.201), we exclude σ̂2ξ :

β̂1 Sxx = Sxy +β̂1σ̂2δ , Syy = β̂1 Sxy +λσ̂2δ . (2.204)

Eliminating σ̂2δ we get a quadratic equation in β̂1

β̂21 Sxy +β̂1(λ Sxx − Syy) − λ Sxy = 0 . (2.205)

In the normal linear model, Sxy ̸= 0 when n ≥ 2, a.s. Hence the quadratic equation
does not degenerate to a linear one. From here, it holds almost surely, that

β̂1 = Syy −λ Sxx ±√(Syy −λ Sxx)2 + 4λ S2xy
2Sxy

= U
2Sxy

. (2.206)

Further, from the second equation in (2.201),

σ̂2ξ = Sxy
β̂1

= 2S2xy
U

> 0 , (2.207)

hence U > 0, a.s., and in (2.206) for β̂1 one needs to take “plus” before the root. Thus,
β̂1 = Syy −λ Sxx +√(Syy −λ Sxx)2 + 4λ S2xy

2Sxy
. (2.208)

From the second equation (2.204), we have

σ̂2δ = 1
λ
(Syy −β̂1 Sxy) , (2.209)

and from (2.200):
β̂0 = ȳ − β̂1x̄ . (2.210)

To ensure that the estimators (2.203) and (2.207)–(2.210) determine a.s. the solution to
the system (2.200)–(2.202), one must also check the following:

Syy −β̂1 Sxy > 0 , a.s. (2.211)

We have almost surely:

2β̂1 Sxy = U = Syy −λ Sxx +√(Syy −λ Sxx)2 + 4λ S2xy << Syy −λ Sxx +√(Syy −λ Sxx)2 + 4λ Sxx Syy == Syy −λ Sxx + Syy +λ Sxx = 2Syy . (2.212)

Hence, (2.211) holds true, and so do inequalities (2.202) for our solutions, a.s. We have
proved the following statement.
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Theorem 2.30. Assume the conditions (i), (vi)–(viii) and let the ratio (2.199) be known
in the linear model (2.1) and (2.2). Then the MLEs are given by the equalities (2.203) and
(2.207)–(2.210), almost surely.

As in Section 2.4, these estimators are strongly consistent without the normality as-
sumption.

Theorem 2.31. Assume the conditions (i)–(iv) and let the ratio (2.199) be known. Then
the estimators (2.203) and (2.207)–(2.210) are strongly consistent.

Proof. We verify only the consistency of the estimator (2.208); then the consistency
for the estimators of the other parameters can be verified without any problem.
(a) Case β1 ̸= 0. We have

Sxx
P1󳨀󳨀→ σ2ξ + σ2δ ,

Sxy
P1󳨀󳨀→ cov(x, y) = β1σ2ξ ,

Syy
P1󳨀󳨀→ β21σ

2
ξ + λσ2δ .

(2.213)

Then eventually Sxy ̸= 0;
β̂1

P1󳨀󳨀→ (β21 − λ) σ2ξ + √(β21 − λ)2σ4ξ + 4β21σ4ξ
2β1σ2ξ

=
= (β21 − λ) σ2ξ + (β21 + λ) σ2ξ

2β1σ2ξ
= β1 .

(2.214)

(b) Case β1 = 0. It is convenient to convert the formula (2.208) by removing irrational-
ity in the numerator (we assume now Sxy ̸= 0; if not, then β̂1 = 0):

β̂1 = − 2λ Sxy

Syy −λ Sxx −√(Syy −λ Sxx)2 + 4λ S2xy . (2.215)

In view of (2.196), while β1 = 0, it holds that
Sxy

P1󳨀󳨀→ 0 , Syy −λ Sxx P1󳨀󳨀→ −λσ2ξ ; (2.216)

β̂1
P1󳨀󳨀→ − 0−2λσ2ξ = 0 . (2.217)

The strong consistency of the estimator β̂1 is proved in all the cases.

Mention the following. Under the conditions of Theorem 2.30, the estimators (2.203)
and (2.207)–(2.210) are specified by these expressions eventually. In particular, this
means that the expression (2.209) is positive, eventually. For real data, it can happen
that Syy −β̂1 Sxy = 0, and then we set σ̂2δ = 0.
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2.5.2 Asymptotic normality of the slope estimator

Reasoning as in Section 2.4.4, one can show that the augmented estimator(β̂0, β̂1, σ̂2δ , μ̂ξ , σ̂2ξ )T taken from Section 2.5.1 is asymptotically normal. Here, we de-
rive the asymptotic normality only for β̂1 using its explicit formula. We require the
normality of ε and δ, but now the normality of ξ is not mandatory. We exploit the
stochastic calculus introduced in Section 2.4.4.

Theorem 2.32. Assume the conditions (i), (iv), (vi), and (vii). Then for the estimator
(2.208), it holds true that

√n (β̂1 − β1) d󳨀→ N(0, σ21,λ) , (2.218)

σ21,λ = 1
σ4ξ

(σ2ε σ2x + β21σ
2
ξ σ

2
δ) . (2.219)

Proof. We have

β̂1 − β1 = Syy −λ Sxx −2β1 Sxy +√(Syy −λ Sxx)2 + 4λ S2xy
2Sxy

. (2.220)

We confine ourselves to the case β1 ̸= 0 (if β1 = 0, then irrationality in (2.220) has to
be moved in the denominator).

Further, in the proof we write down un ≈ 𝑣n for sequences {un , n ≥ 1} and{𝑣n , n ≥ 1} of random variables, if

un − 𝑣n = Op(1)
n . (2.221)

Then from the condition (2.221) it follows that

√n (un − 𝑣n) = Op(1)√n P󳨀→ 0 , n → ∞ . (2.222)

If exploiting theapproximate equality, one converts the right-hand sideof (2.220), then
the terms, being neglected by us, will not affect the convergence in distribution after
normalization by factor√n (see Slutsky’s Lemma 2.18).

Then in view of (2.96), (2.97), (2.105), and (2.106) we have, with ρ = ξ − μξ :

Sxy ≈ β1σ2ξ + [β1 (ρ2 − σ2ξ ) + β1δρ + ρε + δε] = β1σ2ξ + rxy , (2.223)

Syy = β21 Sρρ +2β1 Sρε + Sεε ≈ β21σ
2
ξ + σ2ε + ryy , (2.224)

ryy = β21(ρ2 − σ2ξ ) + 2β1ρε + (ε2 − σ2ε ) , (2.225)

Sxx ≈ σ2x + rxx = σ2ξ + σ2δ + rxx ,

rxx = (ρ2 − σ2ξ ) + 2ρδ + (δ2 − σ2δ) . (2.226)
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All the residual terms above have the order Op(1)/√n. From here, we get

Syy −λ Sxx ≈ (β21 − λ) σ2ξ + ryy − λrxx , (2.227)

Syy −λ Sxx −2β1 Sxy ≈ −(β21 + λ) σ2ξ + ryy − λrxx − 2β1rxy , (2.228)(Syy −λ Sxx)2 + 4λ S2xy ≈ (β21 + λ)2σ4ξ + 2σ2ξ + 2σ2ξ {(β21 − λ)(ryy − λrxx) + 4β1λrxy} .
(2.229)

To convert the root, the following expansion is applied, with A > 0:√A2 + t = A + t
2A

+ O(t2) , as t → 0 . (2.230)

Therefore, putting A = (β21 + λ) σ2ξ we get
√(Syy −λ Sxx)2 + 4λ S2xy ≈

≈ (β21 + λ) σ2ξ + σ2ξ {(β21 − λ) (ryy − λrxx) + 4β1λrxy}(β21 + λ) σ2ξ .

(2.231)

Substitute (2.223), (2.228), and (2.231) in equation (2.220):

β̂1 − β1 ≈ β1(ryy − λrxx) + (λ − β21) rxy
σ2ξ (β21 + λ) = Λn

σ2ξ (β21 + λ) . (2.232)

From the expansions of the residual terms from (2.223), (2.225), and (2.226), we have

Λn = (β21 + λ) ρε + β1(ε2 − σ2ε ) − β1(β21 + λ)ρδ − β1λ (δ2 − σ2) + (λ − β21) δε . (2.233)

According to the CLT (Kartashov, 2007),√n (ρε, ε2 − σ2ε , ρδ, δ2 − σ2δ , δε)T d󳨀→ γ = (γ1, . . . , γ5)T ∼ N(0, S) , (2.234)
S = diag(σ2ξ σ2ε , 2σ4ε , σ2ξ σ2δ , 2σ4δ , σ2δσ2ε ) = (sij)5i,j=1 . (2.235)

The normality of ε and δ, equality (2.112), and similar equality forDε2 were used here;
this situation is similar to the proof of Theorem 2.22.

Further, the expansion (2.232) implies

√n(β̂1 − β1) = √nΛn

σ2ξ (β21 + λ) + oP(1) . (2.236)

Using the convergence in (2.234) and (2.235), we conclude that the numerator in (2.236)
converges in distribution to(β21 + λ)γ1 + β1γ2 − β1(β21 + λ)γ3 − β1λγ4 + (λ − β21)γ5 ∼ N(0, 𝑣2) , (2.237)𝑣2 = (β21 + λ)2s11 + β21s22 + β21(β21 + λ)2s33 + β21λ

2s44 + (λ − β21)2s55 == (β21 + λ)3σ2ξ σ2δ + (β21 + λ)2σ2δσ2ε . (2.238)
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Then, by Lemma 2.18 and exploiting the relations (2.236)–(2.238), it follows that

√n(β̂1 − β1) d󳨀→ N(0, σ21,λ) , (2.239)

σ21,λ = 𝑣2
σ4ξ (β21 + λ)2 = 1

σ4ξ
(σ2ε σ2x + β21σ

2
ξ σ

2
δ) . (2.240)

The theorem is proved (for the case β1 ̸= 0).
Corollary 2.33. The estimator β̂1,ALS (under known σ2δ) has larger asymptotic variance
than the estimator β̂1,ML (under known λ = σ2ε /σ2δ), if β1 ̸= 0:

σ21,ALS − σ21,λ = 2β21σ
4
δ

σ4ξ
> 0 . (2.241)

Here σ21,ALS = σ21 is given by formula (2.91).

This result illustrates the following. If a statistician deals with a linear errors-in-
variables model, where ε and δ are normally distributed, it is better to design an
experiment with known ratio σ2ε/σ2δ rather than with known σ2δ, because in the first
case, the parameter β1 can be estimated more accurately.

Based on Theorems 2.32 and 2.31, it is possible to construct the asymptotic con-
fidence interval for β1 as we constructed the confidence interval (2.121). For that we
demand the normality of errors ε and δ.

2.5.3 Orthogonal regression estimator (ORE)

To understand the geometric meaning of the estimators (2.208) and (2.210), we reduce
the explicit linear model (2.1) and (2.2) to the implicit one (we follow the way outlined
in the end of Section 1.3).

Denote
ηy = β0 + β1ξ . (2.242)

Then the explicit model can be rewritten as

y = ηy + ε , x = ξ + δ , ηy − β1ξ − β0 = 0 . (2.243)

This is an implicit model of the form (1.25) where

z = (y; x)T , η = (ηy; ξ)T , β = (β0; β1)T , (2.244)

In Cartesian coordinate system (ηy; ξ), the straight line equality
ηy − β1ξ − β0 = 0 (2.245)
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can be rewritten in a canonical form

ηy ⋅ τy + ξ ⋅ τx = d ,

τy = 1√1 + β21
, τx = − β1√1 + β21

, d = β0√1 + β21
. (2.246)

Here τy and τx are the straight line directional cosines.
For arbitrary β0 and β1, the line (2.245) takes any position except vertical. At the

same time, if τy and τx are allowed to get arbitrary values such that τ2y + τ2x = 1, then
the line can take any position, including the vertical one.

The transition from coefficients β0, β1 to τy, τx, d makes variables y, x equal in
rights. This is an advantage of the implicit model compared with the explicit.

Consider the implicit linear model in Euclidean space Rm, with m ≥ 2:
zi = ηi + γi , (2.247)(ηi, τ) = d , i = 1, n . (2.248)

Here zi are observed random vectors in Rm; ηi are latent variables that lie on the hy-
perplane:

Γτd = {u ∈ Rm : (u, τ) = d} , (2.249)

where τ is unit normal vector to the hyperplane and d ∈ R; γi are random errors. By
the observations zi, i = 1, n, we want to estimate the hyperplane (2.249).

Note that the sets τ = τ0, d = d0 and τ = −τ0, d = −d0, where ‖τ0‖ = 1, specify
the same hyperplane.

Definition 2.34. A random vector τ̂ and random variable d̂ define the ORE of the pa-
rameters τ and d, if they provide a minimum of the objective function

Q(τ, d) = n∑
i=1

ρ2(zi , Γτd) , ‖τ‖ = 1 , d ∈ R . (2.250)

The ORE is constructed as follows: we search a hyperplane Γτd for which the sum of
squared distances to the observed points zi is minimal.

Theorem 2.35. In the model (2.247) and (2.248), the ORE τ̂ is a normalized eigenvector
of the sample covariance matrix

Szz = 1
n

n∑
i=1

(zi − ̄z) (zi − ̄z)T , ̄z = 1
n

n∑
i=1

zi , (2.251)

τ̂ corresponds to the smallest eigenvalue λmin(Szz), and the estimator of d is
d̂ = ( ̄z, τ̂) . (2.252)

Proof. We have

Q(τ, d) = n∑
i=1

((zi , τ) − d)2 , (2.253)



2.5 The model with known ratio of error variances | 65

which for fixed τ, attains its minimum at

d = dmin = 1
n

n∑
i=1

(zi , τ) = ( ̄z, τ) ; (2.254)

Q(τ, dmin) = n∑
i=1

(zi − ̄z, τ)2 = τT Szz τ . (2.255)

Therefore,
min
(‖τ‖=1,d∈R)

Q(τ, d) = min
‖τ‖=1

τT Szz τ = λmin(Szz) , (2.256)

andminimum is attainedon thenormalized eigenvector τ̂ that corresponds to λmin(Szz)
(the eigenvector τ̂ = τ̂(ω) canbe chosen so that itwas a randomvector). Finally, equal-
ity (2.252) follows from equality (2.254). The theorem is proved.

Remark 2.36. In the model (2.247) and (2.248), the ORE specifies a hyperplane (z −̄z, τ̂) = 0 containing the center of mass z̄ of the observed points zi, i = 1, n.
Consider a particular case of the implicit linear model in the plane:

m = 2 , zi = (yi; xi)T , i = 1, n , τ = (τx; τy)T . (2.257)

It is to this model, we can bring the linear scalar errors-in-variables model.

Theorem 2.37. If in the two-dimensional model (2.247), (2.248), and (2.257), for some
elementary event ω

Sxy ̸= 0 , (2.258)

then for this ω, there is a single straight line, which corresponds to the ORE, and this is
the straight line

y = β̂0 + β̂1x , (2.259)

having the coefficients given by equalities (2.208) and (2.210) at λ = 1.
Proof. Assume (2.258). The symmetric matrix

Szz = (Syy Sxy
Sxy Sxx

) (2.260)

is not diagonal, hence its two eigenvalues are distinct, and in view of Theorem 2.35,
the ORE specifies a unique straight line.

The number λmin = λmin(Szz) is the smallest root of the characteristic equation
det(Syy −λ Sxy

Sxy Sxx −λ) = 0 ; (2.261)

λmin = Sxx + Syy −√(Sxx − Syy)2 + 4S2xy
2

. (2.262)
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The sought-for unit vector (τ̂y , τ̂x)T satisfies the equation
(Syy −λmin Sxy

Sxy Sxx −λmin) (τ̂y
τ̂x

) = 0 . (2.263)

From here (Syy −λmin)τ̂ + Sxy τ̂x = 0 . (2.264)

Since now Sxy ̸= 0, then τ̂y ̸= 0, i.e., the sought-for straight line is not vertical; its
equation is either yτ̂y + xτ̂x = d̂ or

y = − τ̂x
τ̂y

x + d̂
τ̂y

= β̃1x + β̃0 . (2.265)

Find the slope β̃1 from equality (2.264):

β̃1 = − τ̂x
τ̂y

= Syy −λmin
Sxy

= − Sxx + Syy +√(Sxx − Syy)2 + 4S2xy
2Sxy

. (2.266)

This coincides with β̂1 from the formula (2.208), with λ = 1. Since the desired straight
line goes through the center of mass (see Remark 2.36), it will be exactly the straight
line (2.259). The theorem is proved.

Corollary 2.38. With n ≥ 2, consider the explicit linear model (2.1) and (2.2), assuming
that εi and δi are normally distributed and λ = σ2ε/σ2δ = 1 (themodel can be either struc-
tural or functional). Then almost surely, the estimators β̂1 and β̂0 specified by equalities
(2.208) and (2.210) coincide with the OREs, i.e., the straight line (2.259) minimizes the
objective function (2.250).

Proof. Because of the normality of errors, Sxy ̸= 0 almost surely. Now, the desired
statement follows from Theorem 2.37.

Further the estimators (2.208) and (2.210) are called the OREs. The corresponding ob-
jective function can be set as follows:

QOR(β0, β1) = n∑
i=1

ρ2(Mi , Γβ) , β = (β0, β1)T ∈ R2 . (2.267)

Here,Mi = (xi , yi) and Γβ is the straight line y = β0 + β1x. Thus, the estimator β̂OR is a
minimum point of the function (2.267). If Sxy ̸= 0, then the minimum point exists and
is unique.

If the normality of errors is dropped, then the minimum of function (2.267) does
not necessarily exist. This happenswhen theminimumof the corresponding objective
function (2.250) is attained only by the vertical straight line. From Theorem 2.35 and
in view of matrix (2.260), we conclude that it happens when

Sxy = 0 , Syy > Sxx . (2.268)
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In the case
Sxy = 0 , Syy < Sxx , (2.269)

the ORE is the horizontal straight line, and if

Sxy = 0 , Syy = Sxx , (2.270)

then the matrix Szz is proportional to the unit one, and then any straight line passing
through the center ofmass produces theminimumof the function (2.250). This occurs,
e.g., when the points Mi(xi; yi) are the vertices of a regular polygon.

The comparison of the objective function (2.7) with QOR shows that the OLS es-
timator minimizes the sum of squared vertical distances from the points Mi to the
straight line. At the same time, the ORE minimizes the sum of squared “orthogonal”
distances to the straight line.

The objective function QOR can be written more explicitly using the formula of
distance from a point to a straight line:

QOR(β) = n∑
i=1

(yi − β0 − β1xi)2
1 + β21

. (2.271)

The presence of denominator distinguishes this objective function from the function
(2.7).

Alternatively, the ORE is called the total least squares (TLS) Estimator. This is due
to the fact that the optimization problem from Definition 2.34 can be restated as fol-
lows:

min
n∑
i=1

‖∆zi‖2 , (2.272)

provided there exist such τ, with ‖τ‖ = 1, and d ∈ R that for all i = 1, n,(zi − ∆zi , τ) = d . (2.273)

As a result of the minimization there is formed an estimator of the desired hyperplane(z, τ̂) = d̂ and estimators of the true points η̂i = zi − ∆ ̂zi lying on the hyperplane.
The ORE estimator is very common in the vector model XB ≈ Y, see (2.167).

For independent errors εi and δi stemming from equations (2.165), assume that the
variance–covariancematrices have the form

Vε = EεiεTi = σ2Im , Vδ = EδiδTi = σ2Id , (2.274)

where σ > 0 is unknown and Im, Id are unit matrices of corresponding size. Then a
natural estimator of the matrix B is the ORE estimator B̂TLS, which is a solution to the
optimization problem:

min (‖∆X‖2F + ‖∆Y‖2F), (2.275)

provided that there exists a matrix B ∈ Rd×m such that(X − ∆X) B = Y − ∆Y . (2.276)

Here ‖Z‖F is the Frobenius norm of a matrix Z = (zij): ‖Z‖F = √∑i,j z2ij.
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In functional case, where the matrix Xtr is nonrandom, the estimator β̂TLS is the
MLE, if the errors εi and δi are normal and (2.274) holds.

General conditions for the consistency of β̂TLS are given in Kukush and VanHuffel
(2004). If the matrices X and Y are structured (i.e., they obey an additional structure
likeToeplitz orHankelmatrix), then the estimationmethod for thematrixB taking into
account the availability of such a structure is called the structured total least squares
(STLS). The paper by Markovsky et al. (2004) is devoted to computation of the esti-
mates and the article by Kukush et al. (2005a) deals with their consistency.

2.5.4 The ORE in implicit linear model: equivariance and consistency

We will study some properties of the ORE in the model (2.247)–(2.249).

Theorem 2.39. Let {ηi , i = 1, n} be nonrandom, and {γi, i = 1, n} be independent and
identically distributed in Rm, with distribution N(0, σ2γ Im), where σ2γ > 0 is unknown.
Then the ORE coincides with the MLE of the parameters τ and d.

Proof. The random vector zi has the pdf

ρ(zi) = 1(√2π)mσmγ e
− ‖zi−ηi‖

2

2σ2γ , zi ∈ Rm . (2.277)

The log-likelihood function is as follows:

L(z1, . . . , zn; η1, . . . , ηn) = − 1
2σ2γ

n∑
i=1

󵄩󵄩󵄩󵄩zi − ηi󵄩󵄩󵄩󵄩2 + fn(σγ) . (2.278)

Its maximization in η1, . . . , ηn leads to the optimization problem (2.272) and (2.273),
with ∆zi = zi−ηi, i = 1, n. Therefore, theMLEs τ̂ML and d̂ML are the OREs. The theorem
is proved.

The following statement stems from the geometric meaning of the ORE.

Theorem 2.40. Let Γτ̂d̂ be the hyperplane (2.249), which is the ORE in the model (2.247)
and (2.248); the estimator is based on the sample zi, i = 1, n. Let U be either an orthog-
onal operator, or a translation operator Uz = z+ c, z ∈ Rm, with c ∈ Rm, or a homothetic
transformation Uz = kz, z ∈ Rm, with k ∈ R, k ̸= 0. Then the ORE based on a sample
Uzi, i = 1, n, is the transformed hyperplane UΓτ̂d̂.
The theorem demonstrates the following: a position of the hyperplane Γτ̂d̂ relative to
the observable points zi does not depend of the choice of neither a Cartesian coordi-
nate systemnor a scale (at the same time, the scalehas to be the same inall directions).
Due to these properties of the ORE, this estimator looks natural in pattern recognition
problems. Such concordant variability of an estimator regarding certain transforma-
tion group is called equivariance (Schervish, 1995, Chapter 6).
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Now, we prove the ORE consistency in the structural model.

Theorem 2.41. Consider the model (2.247)–(2.249). Assume the following.
(a) Random vectors ηi, γi, i ≥ 1 are independent.
(b) Random vectors γi, i ≥ 1 are identically distributed in Rm, with zero mean and the

variance–covariance matrix Sγ = σ2γ Im, where σ2γ > 0 is unknown.
(c) Random vectors ηi, i ≥ 1 are identically distributed in Γτd ⊂ Rm, with covariance

matrix Sη of rank m − 1.
Then the ORE (τ̂ ; d̂) is strongly consistent, i.e., as n → ∞,

min {󵄩󵄩󵄩󵄩τ̂ − τ󵄩󵄩󵄩󵄩 + 󵄨󵄨󵄨󵄨󵄨d̂ − d󵄨󵄨󵄨󵄨󵄨 , 󵄩󵄩󵄩󵄩τ̂ + τ󵄩󵄩󵄩󵄩 + 󵄨󵄨󵄨󵄨󵄨d̂ + d󵄨󵄨󵄨󵄨󵄨} P1󳨀󳨀→ 0 . (2.279)

Remark 2.42. The convergence (2.279) is due to the fact that the couple τ = τ0, d = d0
determines the same hyperplane as the couple τ = −τ0, d = −d0.
Proof of the theorem. We have by Theorem 2.35 that

Szz τ̂ = λmin(Szz) ⋅ τ̂ , 󵄩󵄩󵄩󵄩τ̂󵄩󵄩󵄩󵄩 = 1 , d̂ = ( ̄z, τ̂) . (2.280)

By the SLLN,
Szz

P1󳨀󳨀→ cov(z1) = Sη + Sγ = Sη + σ2γ Im = S∞ . (2.281)

Since Sη is positive semidefinite matrix, then

λmin(S∞) ≥ λmin(σ2γ Im) = σ2γ . (2.282)

Next, (η1, τ) = d, because

0 = D(η1, τ) = τTSητ , Sητ = 0 , S∞τ = σ2γ τ . (2.283)

So τ is a normalized eigenvector of the matrix S∞, which corresponds to the smallest
eigenvalue

λmin(S∞) = σ2γ . (2.284)

Show that the eigenvaluehasmultiplicity 1. Indeed, let S∞𝑣 = σ2γ𝑣, ‖𝑣‖ = 1. Then Sη𝑣 =
0. But the kernel KerSη = {z ∈ Rm : Sηz = 0} has dimension
m − rk(Sη) = 1, hence, 𝑣 = ±τ.

ByWedin’s theorem (Stewart and Sun, 1990) on stability of eigenvectors for a ma-
trix, the convergence (2.281) implies that almost surely a sequence {τ̂ = τ̂n(ω), n ≥ 1}
of normalized eigenvectors corresponding to λmin(Szz)may have only two limit points±τ, which are the normalized eigenvectors of the matrix S∞ corresponding to the sim-
ple eigenvalue λmin(S∞).

Suppose that for a fixed ω, the sequence τ̂ = τ̂n(ω) is divided into two subse-
quences τ̂n󸀠(ω) and τ̂n󸀠󸀠(ω), moreover τ̂n󸀠(ω) → τ and τ̂n󸀠󸀠 (ω) → −τ. Then d̂n󸀠(ω) =( ̄z, τ̂n󸀠 ) → (Ez1, τ) = d. The latter is true because Ez1 ∈ Γτd. Similarly, d̂n󸀠󸀠(ω) →−(Ez1, τ) = −d. The resulting convergences justify (2.279).



3 Polynomial regression with known variance
of classical error

In Chapter 1, it was mentioned that the binary observation model (1.2), (1.4), and (1.5)
is widespread in radio-epidemiology. This binary model is the so-called generalized
linear model (GLM). This means that the conditional distribution of the response y
given the true value of regressor ξ is expressed through a linear function in ξ , with
some unknown parameters. The linear function defines the odds function (1.4). For
more information on the generalized linear models, see Chapter 4.

However, a quadratic odds function is used in radio-epidemiology as well:

λ(ξi , β) = β0 + β1ξi − β2ξ2i , i = 1, n , β = (β0, β1, β2)T . (3.1)

The model (1.2), (3.1), and (1.5) serves for modeling the thyroid cancer incidence as a
result of exposure by radioactive iodine: ξi is a radiation dose received by a subject i
from a cohort during a fixed observation period. Positive radiation risk parameters
β0, β1, and β2 are to be estimated. The presence of a negative term member in the
quadratic odds function (3.1) describes the effect of burning out cancer cells at high
exposure doses, which may even lead to some reduction of disease incidence.

The binary regression model (1.2) and (3.1) is no longer the GLM model, because
now the conditional distribution of yi given ξi is expressed through the quadratic (3.1),
but not through a linear function in ξi.

To get a feeling for the effect of polynomial influence of regressor on response,
consider the polynomial regression model with classical measurement error. It is de-
scribed by the two equations:

yi = β0 + β1ξi + ⋅ ⋅ ⋅ + βkξ ki + εi , (3.2)
xi = ξi + δi , i = 1, n . (3.3)

Here, k ≥ 1 is a given degree of the polynomial (at k = 1 we get the linear model from
Chapter 2), ξi is a latent variable, xi is an observed surrogate data, yi is an observed
response, εi and δi are observation errors. The regression parameter

β = (β0, β1, . . . , βk)T (3.4)

has to be estimated.
Introduce the vector function

ρ(ξ) = (1, ξ, . . . , ξ k)T , ξ ∈ R . (3.5)

Now, equality (3.2) can be rewritten in the compact form

yi = ρT(ξi)β + εi . (3.6)

We consider the structural model in which the ξi are random variables. Make the fol-
lowing assumptions about the observation model.
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(i) Random variables ξi , εi , and δi are independent.
(ii) The errors εi are identically distributed with distribution N(0, σ2ε ), σ2ε > 0.
(iii) The errors δi are identically distributed with distribution N(0, σ2δ), σ2δ > 0.
(iv) Random variables ξi are identically distributed with distribution N(μξ , σ2ξ ),

σ2ξ > 0.
The model (3.2) and (3.3), with assumptions (i)–(iv), is called normal structural poly-
nomial model with classical measurement errors. Such models can be used, e.g., in
econometrics (Carroll et al., 2006).

Section 2.3 states that at k = 1 without additional assumptions about the param-
eters, this model (in this case being linear) is not identifiable. From here, it follows as
well that at k ≥ 2, the normal polynomial model is not identifiable, because in the
proof of Theorem 2.10 for the polynomial model, an additional condition for the rest
of the true parameters can be imposed:

β2 = ⋅ ⋅ ⋅ = βk = 0 . (3.7)

In the absence of further restrictions, the normal polynomial model is determined by
a vector parameter θ and the corresponding parameter set Θ:

θ = (βT, μξ , σ2ξ , σ2δ , σ2ε )T ∈ Rk+5 , Θ = Rk+1 × R × (0, +∞)3 . (3.8)

Let it be assumed additionally that k ≥ 2 and condition (3.7) is violated, i.e., the true
regression function

f(ξi , β) = β0 + β1ξi + ⋅ ⋅ ⋅ + βkξ ki (3.9)

is not linear in ξi. Then themodel becomes identifiable due to the fact that the distribu-
tion of the response yi is never normal. In this situation, one can construct consistent
estimators of all the parameters using the method of moments (see discussion for the
quadratic model (k = 2) in Carroll et al., 2006, Section 5.5.3).

If we allow the degeneracy (3.7), then we need some restriction of the parameter
set (3.8) to get the identifiability of the model. In this section, it is required that the
measurement error variance σ2δ is known.

Rarely, the ratio of error variances

λ = σ2ε
σ2δ

. (3.10)

is assumed known. In Shklyar (2008), consistent estimators of model parameters are
constructed for this case.

Note that for k ≥ 2, the ML method in the normal model with assumptions (i)–
(v) is not feasible (see discussion in Section 1.4.2). In particular, even under known σ2ε
(then σ2δ is known aswell as a result of (v)) the joint pdf of the observed variables y and
x is given by the integral (1.54), with the polynomial regression function f(ξ) = f(ξ, β)
as defined in (3.9). The integral is not calculated analytically, which complicates the
usage of theMLmethod andmakes it problematic to study properties of the estimator.
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3.1 The adjusted least squares estimator

3.1.1 The formula for the estimator

The corrected score method was described in Section 1.4.4. Apply it to the model (3.6)
and (3.3). The regression function is

f(ξ, β) = ρT(ξ) β , ξ ∈ R , β ∈ Rk+1 . (3.11)

Since ∂f/∂β = ρ(ξ), the basic deconvolution equations (1.124) and (1.125) take the form
E[g(x, b)|ξ] = ρ(ξ) , (3.12)
E[h(x, b)|ξ] = ρ(ξ)ρT(ξ)β . (3.13)

Within the class of polynomials in ξ , the solutions are unique:

g(x, b) = t(x) , h(x, b) = H(x)β , (3.14)

where the vector function t(x) andmatrix-valued function H(x) satisfy the deconvolu-
tion equations

E[t(x)|ξ] = ρ(ξ) , E[H(x)|ξ] = ρ(ξ)ρT(ξ) . (3.15)

Hereafter, all the equalities for conditional expectations hold almost surely (a.s.). For
the jth component of the function t(x), it holds that

E[tj(x)|ξ] = ξ j , j ≥ 0 . (3.16)

For an entry Hij(x) of the matrix H(x), we have
E[Hij(x)|ξ] = ξ i ⋅ ξ j = ξ i+j , 0 ≤ i, j ≤ k . (3.17)

Below we show that deconvolution equation (3.16) has a unique polynomial solution
tj(x), and then

Hij(x) = ti+j(x) , 0 ≤ i, j ≤ k , (3.18)

is the only polynomial solution to equation (3.17).
A solution to equation (3.16) is given by the Hermite polynomial Hj(x) closely re-

lated to normal distribution. The polynomial can be specified by an explicit formula
through higher derivatives:

Hj(x) = (−1)ne x2
2 (e− x22 )(j) , x ∈ R , j ≥ 0 . (3.19)

In particular,
H0(x) = 1 , H1(x) = x . (3.20)
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The recurrence relation is

Hj(x) = xHj−1(x) − (j − 1)Hj−2(x) , x ∈ R , j ≥ 2 . (3.21)

Applying the formula for j = 2 and j = 3, we get
H2(x) = x2 − 1 , H3(x) = x3 − 3x , x ∈ R . (3.22)

The recurrence relation (3.21) allows us to compute consequently the next Hermite
polynomials; all of them have unit leading coefficient. Let

γ ∼ N(0, 1) . (3.23)

Then for all n,m ≥ 0, the equality holds:
EHn(γ)Hm(γ) = n! δnm . (3.24)

Here, δnm is the Kronecker symbol:

δnm = {{{1 if n = m ,
0 if n ̸= m .

(3.25)

The next Hermite polynomial property is due to Stulajter (1978). We give a simple
proof.

Lemma 3.1. For a standard normal random variable γ, it holds that

EHn(μ + γ) = μn , n ≥ 0 , μ ∈ R . (3.26)

Proof. We use induction. Denote

In = In(μ) = EHn(μ + γ) . (3.27)

(a) For n = 0, we have taken into account (3.20):
I0(μ) = EH0(μ + γ) = 1 = μ0 , (3.28)

and (3.26) holds true. For n = 1, we have, see (3.20):
I1(μ) = EH1(μ + γ) = E(μ + γ) = μ = μ1 , (3.29)

and (3.26) is fulfilled as well.
(b) Derive a recurrence relation for expressions (3.27). If n ≥ 1, we have in view of the

fact that μ + γ ∼ N(μ, 1):
In = ∫

R
Hn(t) 1√2π e− (t−μ)22 dt , (3.30)

I󸀠n(μ) = 1√2π ∫
R
Hn(t) ∂

∂μ e
− (t−μ)22 dt = 1√2π ∫

R
Hn(t)e− (t−μ)22 (t − μ)dt . (3.31)
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Using equation (3.30) and identity (3.21), with j = n + 1, further we get
I󸀠n(μ) = −μIn + 1√2π ∫

R
(Hn+1(t) + nHn−1(t))e− (t−μ)22 dt = −μIn + In+1 + nIn−1 ,

(3.32)

In+1 = I󸀠n + μIn − nIn−1 , n ≥ 1 . (3.33)

(c) Assume that (3.26) holds true, for all n ≤ k, where k ≥ 1 is fixed. Then from equa-
tion (3.33), we will have

Ik+1(μ) = (μk)󸀠 + μ ⋅ μk − kμk−1 = μk+1 . (3.34)

Thus, we obtain (3.26), with n = k + 1.
According to the method of mathematical induction, (3.26) has been proved for all
n ≥ 0, with μ ∈ R.

Corollary 3.2. In case σ2δ = 1, equality (3.16) is valid, with tj(x) = Hj(x).
Proof. By equality (3.26), it follows (now, both ξ and γ are independent and γ ∼
N(0, 1)) that:

E[Hj(x)|ξ] = E[Hj(ξ + γ)|ξ] = ξ j , j ≥ 0 , (3.35)

which proves the desired statement.

Lemma 3.3. In case of arbitrary σ2δ > 0, equality (3.16) holds true, with
tj(x) = (σδ)jHj ( x

σδ
) , j ≥ 0 . (3.36)

Proof. Put δ = σδγ, γ ∼ N(0, 1), then by Corollary 3.2,
E [ (σδ)jHj ( ξ + σδγ

σδ
) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ξ] = (σδ)jE [Hj ( ξ

σδ
+ γ) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ξ

σδ
] = (σδ)j ( ξ

σδ
)j = ξ j , (3.37)

which proves the statement of the lemma.

As we can see, the function (3.36) is the only solution to the deconvolution equation
(3.16) in the class of polynomials in ξ . Now, construct the estimating function (1.126)
by means of the ALS method:

sC(y, x; b) = g(x, b) y − h(x, b) = t(x) y − H(x) b . (3.38)

The ALS estimator β̂C is found from the equation

1
n

n∑
i=1

t(xi)yi − (1n n∑
i=1

H(xi)) β̂C = 0 , (3.39)

β̂C = (H(x))−1 t(x)y . (3.40)
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Here like in previous chapters, bar means averaging over a given sample; the formula
(3.40) is valid when the matrix H(x) is nonsingular. One can weaken the condition
(iv) about the normality of ξ and provide nonsingularity of the matrix eventually, i.e.,
almost surely for all n ≥ n0(ω). Consider the following milder condition.
(v) Random variables ξi are identically distributed, with E(ξ1)2k < ∞; moreover, the

distribution of ξ1 is not concentrated at k or even fewer points.

The latter requirement about the distribution means the following: for each set{a1, . . . , ak} ⊂ R,
P{ξ1 ∈ {a1, . . . , ak}} < 1 . (3.41)

Lemma 3.4. Assume the conditions (iii) and (v). Then, eventually the matrix H(x) is
nonsingular.

Proof. From (3.15), using the SLLN, we obtain (here x =d x1):
H(x) = 1

n

n∑
i=1

H(xi) P1󳨀󳨀→ EH(x) = EE[H(x)|ξ] = Eρ(ξ)ρT(ξ) , as n → ∞ . (3.42)

The limit matrix is the Gram matrix for random variables 1, ξ, . . . , ξ k in the space
L2(Ω, P) of random variables on Ω having finite second moment. In this space, an
inner product is (ξ, η) = Eξη . (3.43)

This Grammatrix is nonsingular if, and only if, the random variables 1, ξ, . . . , ξ k are
linearly independent in L2(Ω, P). Prove that the latter holds.

Suppose that for some real numbers a0, . . . , ak, we have

a0 + a1ξ + ⋅ ⋅ ⋅ + akξ k = 0 , a.s. (3.44)

Then, ξ coincides almost surely with some root of the polynomial p(z) = a0 + a1z +
. . . akzk. If not all coefficients of the polynomial are zeros, then the polynomial has no
more than k real roots, and therefore, ξ almost surely belongs to the set of roots. Thus,
we got a contradiction to condition (v) about the distribution of ξ . So a0 = a1 = ⋅ ⋅ ⋅ =
ak = 0 proving the linear independence of 1, ξ, . . . , ξ k.

Then the matrix Eρ(ξ)ρT(ξ) is nonsingular, and (3.42) implies that
detH(x) P1󳨀󳨀→ det(Eρ(ξ)ρT(ξ)) ̸= 0 . (3.45)

Thus, eventually the matrix H(x) is nonsingular.
Lemma 3.4 shows that under conditions (iii) and (v), the ALS estimator is eventu-

ally given by formula (3.40). In particular, in the case (iv), ξ has a continuous distri-
bution and then condition (v) holds true.
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3.1.2 Consistency of the estimator

The ALS estimator remains strongly consistent without the assumption on normality
of errors εi and regressors ξi . Introduce a weaker assumption.
(vi) The errors εi are centered and identically distributed.

Theorem 3.5. Assume the conditions (i), (iii), (v), and (vi). Then

β̂C
P1󳨀󳨀→ β , as n → ∞ . (3.46)

Proof. Use equality (3.40) that holds eventually.
By the SLLN and the first equality in (3.15), we have

t(x)y P1󳨀󳨀→ Eβt(x)y = Et(x)(ρT(ξ)β + ε) = (Et(x)ρT(ξ))β + Et(x) ⋅ Eε= [EE(t(x)ρT(ξ)|ξ)]β = [EE(t(x)|ξ)ρT(ξ)]β = [Eρ(ξ)ρT(ξ)]β . (3.47)

The condition (v) holds. Thus, according to (3.45), the matrix EρρT is nonsingular. In
equation (3.40), let us tend n to infinity:

β̂C
P1󳨀󳨀→ (EρρT)−1(EρρT)β = β . (3.48)

The proof is accomplished.

3.1.3 Conditional expectation and conditional variance of response

To ensure asymptotic normality of the estimator, we need the existence of the second
moment of errors εi. Assume the following.
(vii)The errors εi are centered with variance σ2ε > 0.
Given (i), (iii), (iv), and (vii), write down the conditional expectation m(x, β) = E(y|x)
and conditional variance 𝑣(x; β, σ2ε ) = V(y|x). Hereafter (y, x, ξ, ε, δ) are the copies of
random variables (y1, x1, ξ1, ε1, δ1) from the model (3.2), (3.3), in particular,

y = ρT(ξ)β + ε , x = ξ + δ . (3.49)

We use relations (1.86) and (1.97). Denote

μ(x) = E[ρ(ξ)|x] = E[ρ(μ1(x) + τγ)|x] . (3.50)

Here, x⊥⊥γ, γ ∼ N(0, 1), and μ1(x) and τ are given in (1.86). We have
μ(x) = (μi(x))ki=0 , μ0(x) = 1 , μ1(x) = Kx + (1 − K)μξ , (3.51)
μ2(x) = E[(μ1(x) + τγ)2|x] = μ21(x) + τ2 , (3.52)
μ3(x) = E[(μ1(x) + τγ)3|x] = μ31(x) + 3μ1(x)τ2 , (3.53)
μ4(x) = E[(μ1(x) + τγ)4|x] = μ41(x) + 6μ21(x)τ2 + 3τ4 . (3.54)
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If one needs, it is easy to find further values of μi(x) using the moments of γ. Next,
m(x, β) = E[ρT(ξ)β|x] = E[ρT(ξ)|x] ⋅ β = μT(x)β . (3.55)

To find the conditional variance, we apply the formula (1.65):𝑣(x; β, σ2ε ) = E[V(y|ξ)|x] + V[E(y|ξ)|x] = σ2ε + V(ρT(ξ)β|x) , (3.56)

V(ρT(ξ)β|x) = E[βT(ρ(ξ) − μ(x))(ρ(ξ) − μ(x))Tβ|x] == βT(M(x) − μ(x)μT(x))β . (3.57)

Here,
M(x) = E[ρ(ξ)ρ(ξ)T |x] = (Mij(x))ki,j=0 , (3.58)

Mij(x) = E(ξ i+j|x) = μi+j(x) , 0 ≤ i, j ≤ k . (3.59)

Thus, 𝑣(x; β, σ2ε ) = σ2ε + βT(M(x) − μ(x)μT(x))β . (3.60)

In the polynomial model (3.49), the variance of y given x does not depend of the in-
tercept β0, because adding a constant to y does not change the conditional variance.
Therefore, the formula for 𝑣(x; β, σ2ε ) can be rewritten. Denote

β0 = (β1, . . . , βk)T , M−0 = (Mij(x))ki,j=1 = (μi+j(x))ki,j=1 , (3.61)

μ−0(x) = (μi(x))ki=1 . (3.62)

Thus, we deleted the null coordinate in vectors β and μ(x) and deleted both zero row
and zero column in the matrixM(x). Then𝑣(x; β, σ2ε ) = σ2ε + βT−0(M−0(x) − μ−0(x)μT−0(x))β−0 . (3.63)

Consider the particular cases of linear (k = 1) and quadratic (k = 2) model.
Lemma 3.6. Assume the conditions (i), (iii), (iv), and (vii). Then in the linear model,

m(x, β) = β0 + μ1(x)β1 = β0 + (Kx + (1 − K)μξ )β1 , (3.64)𝑣(x, β) = 𝑣(β) = σ2ε + τ2β21 = σ2ε + Kσ2δβ
2
1 ; (3.65)

and in the square model,

m(x, β) = β0 + μ1(x)β1 + (μ21(x) + τ2)β2 , (3.66)𝑣(x; β, σ2ε ) = σ2ε + τ2β21 + 4β1β2μ1(x)τ2 + 2β22(2μ21(x)τ2 + τ4) . (3.67)

Proof. The formulas for conditional means stem from equalities (3.55), (3.51), and
(3.52). Next, we use equality (3.63) to find the conditional variances.
(a) k = 1. By formula (3.52) we obtain𝑣(x; β, σ2ε ) = σ2ε + β21(μ2(x) − μ21(x)) = σ2ε + τ2β21 . (3.68)

Therefore, the conditional variance does not depend on x in the linear model.
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(b) k = 2. Find the entries of the symmetric matrix M−0(x) − μ−0(x)μT−0(x) =: N(x) of
size 2 × 2 :

N12(x) = μ3(x) − μ1(x)μ2(x) = 2μ1(x)τ2 , (3.69)
N22(x) = μ4(x) − μ22(x) = 4μ21(x)τ2 + 2τ4 . (3.70)

Here, we used the calculations (3.52)–(3.54). From here,𝑣(x; β, σ2ε ) = σ2ε + τ2β21 + 2β1β2N12(x) + β22N22(x) , (3.71)

and formula (3.67) is proved. As we can see in the square model, the conditional
variance does not depend of x. The lemma is proved.

3.1.4 Asymptotic normality of the estimator

Theorem 3.7. Assume the conditions (i), (iii), (iv), and (vii). Then√n(β̂C − β) d󳨀→ N(0, ΣC) , (3.72)

where the asymptotic covariance matrix (ACM) ΣC is nonsingular and depends on un-
known parameters β−0 and σ2ε ,

ΣC = A−1C BCA−TC , (3.73)
AC = EρρT , BC = E𝑣ttT + E(tμT−0 − H−0)β−0βT−0(tμT−0 − H−0)T . (3.74)

Here 𝑣 is given in (3.63) and t = t(x) = (tj(x))kj=0 is determined in (3.36),
H−0 = H−0(x) = (Hij(x))0≤i≤k ,

1≤j≤k
= (ti+j(x))0≤i≤k ,

1≤j≤k
. (3.75)

Proof. From formula (3.40), we have eventually:√n(β̂C − β) = (H(x))−1 ⋅ √n(t(x)y − H(x)β) . (3.76)

According to (3.42),
H(x) P1󳨀󳨀→ Eρρ−1 = AC > 0 . (3.77)

Remember that the latter notation means that a matrix is positive definite. Further, as
a result of calculation (3.47),

Eβ(t(x)y − H(x)β) = 0 (3.78)

(actually, this is unbiasedness of the estimating function (3.38)), and the CLT can be
applied to the factor in (3.76):

√n(t(x)y − H(x)β) = 1√n n∑
i=1

(t(xi)yi) − H(xi)β) d󳨀→ η ∼ N(0, BC) , (3.79)

BC = covβ(t(x)y − H(x)β) . (3.80)
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Below, for brevity, we omit the argument x; thus, wewritem = m(x, β), 𝑣 = 𝑣(x; β, σ2ε ).
Next,

BC = Eβ(t (y − m) + tm − Hβ) (t (y − m) + tm − Hβ)T == Eβ(y − m)2ttT + E(tμT − H)ββT(tμT − H)T . (3.81)

We used equality (3.55) and the following relation:

Eβ t (y − m) (tm − Hβ)T = EEβ[t (y − m) (tm − Hβ)T|x] == E {t ⋅ Eβ[(y − m)|x] ⋅ (tm − Hβ)T} = 0 . (3.82)

Finally,

Eβ(y − m)2ttT = EEβ[(y − m)2ttT|x] = E {Eβ[(y − m)2|x] ⋅ ttT} = E𝑣ttT . (3.83)

Therefore,
BC = E𝑣ttT + E(tμT − H)ββT(tμT − H)T . (3.84)

For an entry in zero row, we get(tμT − H)i0 = tiμ0 − ti+0 = ti − ti = 0 , (3.85)

because the second term in (3.84) does not depend on β0. This fact allows us to repre-
sent the matrix (3.84) in the form (3.74).

By the vector analogue of Slutsky’s lemma (see Corollary 2.21), we canmove to the
limit in distribution using the convergences (3.77) and (3.79):√n(β̂C − β) d󳨀→ A−1C η ∼ N(0, A−1C BCA−TC ) . (3.86)

The convergence (3.72)–(3.75) is proved.
To prove nonsingularity of the matrix (3.73), it is enough to show that

BC > 0 . (3.87)

The second term in (3.84) is the covariancematrix of a random vector tm −Hβ, so this
term is a positive semidefinite matrix. From here and from (3.56), we obtain

BC ≥ E𝑣ttT ≥ σ2εEttT . (3.88)

The latter matrix is the Gram matrix for random variables 1, t1(x), . . . , tk(x) in the
space L2(Ω, P) (see proof of Lemma 3.4). Show that they are linearly independent in
this space. Suppose that we have a0 + a1t1(x) + ⋅ ⋅ ⋅ + aktk(x) = 0, a.s., for some real
numbers a0, . . . , ak. Then

0 = E( k∑
i=0

aiti(x) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ξ) = k∑
i=0

aiξ i . (3.89)

But ξ is a normal random variable and has a continuous distribution. Therefore, like
in the proof of Lemma 3.4, it follows that a0 = a1 = ⋅ ⋅ ⋅ = ak = 0. This proves the linear
independence of the random variables 1, t1(x), . . . , tk(x). Then EttT > 0 and BC > 0
stems from (3.88). The theorem is proved.
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Remark 3.8. Equality (3.73) is the so-called sandwich formula for the estimating func-
tion (3.38) (we could prove Theorem 3.7 based on Theorem A.26 from Appendix A2,
but instead we demonstrated a straightforward derivation of the formula). Here:

AC = ATC = −Eβ ∂sC(y, x; β)∂bT
, (3.90)

BC = covβ sC(x, y; β) . (3.91)

We state Theorem 3.7 in greater detail for the linear model.

Corollary 3.9. Let k = 1 and the conditions of Theorem 3.7 hold. Then (3.72) and (3.73)
are satisfied, with

AC = ( 1 μξ
μξ μ2ξ + σ2ξ

) , (3.92)

BC = (σ2ε + τ2β21) ⋅ ( 1 μξ
μξ μ2ξ + σ2x

) + β21E( μ1 − t1
t1μ1 − t2

)( μ1 − t1
t1μ1 − t2

)T . (3.93)

Proof. Explain only equality (3.93). We have as a result of (3.68):

E𝑣ttT = 𝑣E(1 t1
t1 t21

) = 𝑣E(1 x
x x2

) = (σ2ε + τ2β21) ⋅ ( 1 μξ
μξ μ2ξ + σ2x

) . (3.94)

Next, examine the second term in (3.74): β−0 = β1,

tμT−0 − H−0 = (1
t1
) μ1 − (H01

H11
) = ( μ1 − t1

t1μ1 − t2
) , (3.95)

(tμT−0 − H−0)β−0βT−0(tμT−0 − H−0)T = β21 ( μ1 − t1
t1μ1 − t2

)( μ1 − t1
t1μ1 − t2

)T . (3.96)

Now, equality (3.93) follows from formulas (3.74), (3.94), and (3.96). The corollary is
proved.

Note that this result generalizes Theorem 2.22.

3.1.5 Confidence ellipsoid for regression parameters

Under the conditions of Theorem 3.7, we will construct consistent estimators for ma-
trices AC and BC. Denote

ÂC = H(x) , (3.97)

B̂C = 1
n

n∑
i=1

(t(xi)yi − H(xi)β̂C) (t(xi)yi − H(xi)β̂C)T . (3.98)
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Then ÂC
P1󳨀󳨀→ AC, since ÂC is a strongly consistent estimator of the matrix AC. In par-

ticular, ÂC > 0, eventually. Further, by Theorem 3.5, β̂C
P1󳨀󳨀→ β, and therefore,

B̂C = 1
n

n∑
i=1

(t(xi)yi − H(xi)β) (t(xi )yi − H(xi)β)T + rn = B(n) + rn ,

‖rn‖ P1󳨀󳨀→ 0 .

(3.99)

By the SLLN, as n → ∞,

B(n) P1󳨀󳨀→ E(t(x)y − H(x)β) (t(x)y − H(x)β)T = BC , (3.100)

B̂C
P1󳨀󳨀→ BC . (3.101)

Hence, B̂C is strongly consistent estimator of the matrix BC. From here

Σ̂C = Â−1C B̂CÂ−TC
P1󳨀󳨀→ A−1C BCA−TC = ΣC , (3.102)

and the matrix Σ̂C is eventually positive definite.
Convergences (3.72) and (3.102) imply that

√n(Σ̂C)−1/2 ⋅ (β̂C − β) d󳨀→ N(0, Ik+1) . (3.103)

If Σ̂C > 0, then (Σ̂C)−1/2 = (√Σ̂C)−1, where√Σ̂C is the only positive definite matrix, with(√Σ̂C)2 = Σ̂C. Further, by the convergence (3.103) we have󵄩󵄩󵄩󵄩󵄩√n(Σ̂C)−1/2(β̂C − β)󵄩󵄩󵄩󵄩󵄩2 = n(β̂C − β)T(Σ̂C)−1(β̂C − β) d󳨀→ χ2k+1 . (3.104)

Here χ2k+1 is χ
2 distribution with k + 1 degrees of freedom.

Fix the confidence probability 1 − α (e.g., 0.95). For the asymptotic confidence
ellipsoid for β, we take the random set

En = {z ∈ Rk+1 : (z − β̂C)T(Σ̂C)−1(z − β̂C) ≤ 1
n
(χ2k+1)α} . (3.105)

Here (χ2k+1)α is the quantile of the χ2k+1 distribution, with
P{χ2k+1 > (χ2k+1)α} = α . (3.106)

We construct the set En only in the case Σ̂C > 0 (this eventually takes place). Then, as
n → ∞, we get

P{β ∈ En} == P{n(β − β̂C)T(Σ̂C)−1(β − β̂C) ≤ (χ2k+1)α} → P{χ2k+1 ≤ (χ2k+1)α} = 1 − α .
(3.107)

The convergence (3.107) means that En is the asymptotic confidence ellipsoid for β
with confidence probability 1 − α.
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3.1.6 Estimator for variance of error in response

We will treat the model (3.6) and (3.3) as a multiple model of regression of the re-
sponse y on the vector regressor ρ, where ρ = ρ(ξ) is given in (3.6):

y = ρTβ + ε , t = ρ + e . (3.108)

Here the vector t = t(x) has the components (3.36) satisfying the deconvolution equa-
tion (3.16). Assume the conditions (i), (iii), (v), and (vii). In the model (3.108), the ob-
served values are yi and ti = t(xi) (denote also ρi = ρ(ξi) and ei = ti − ρi), such that

yi = ρTi β + εi , ti = ρi + ei , i = 1, . . . , n . (3.109)

The observations (3.109) are independent copies of the model (3.108).
The “error” e is not stochastically independent of ρ = ρ(ξ), but

E(e|ρ) = E(t − ρ|ρ) = E(t|ρ) − ρ = E(t|ξ) − ρ = 0 . (3.110)

Thus, the “error” e is conditionally centered given ρ. This fact shows that the vector e
can be viewed analogous to an additive error.

Further, in the model (3.109), we construct the estimator of σ2ε by the method of
moments. In so doing, it is important that by Theorem 3.5, we have the consistent es-
timator β̂C of the parameter β. Find the second moments in the model (3.108):

Ey2 = βT(EρρT)β + σ2ε , (3.111)
Ety = (EtρT)β = EE(tρT|ξ) ⋅ β = E [E(t|ξ) ρT] β = (EρρT)β . (3.112)

From here the unknown matrix EρρT is excluded, and finally
σ2ε = Ey2 − βTEty . (3.113)

As an estimator, we take
σ̂2ε = y2 − β̂TCty . (3.114)

Theorem 3.10. Assume the conditions (i), (iii), (v), and (vii). The estimator (3.114) is
strongly consistent for the parameter σ2ε .

Proof. By the SLLN and Theorem 3.5, we get

σ̂2ε
P1󳨀󳨀→ Ey2 − βTEty = σ2ε . (3.115)

This proves the theorem.

Find the ACM of the estimator (3.114). Denote θ = ( βσ2ε) to be the augmented vector of
parameters to be estimated. Eventually, the estimator θ̂C = (β̂Cσ̂2ε) is a solution to the

system of equations 1
n ∑n

i=1 s
(θ)
C (yi, xi; θ) = 0, with

s(θ)C = ( s(β)C
s(σ

2
ε )

C
) , s(β)C = t(x)y − H(x)β , (3.116)

s(σ
2
ε )

C = y2 − βTt(x)y − σ2ε . (3.117)
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Theorem 3.11. Assume the conditions (i), (iii), (iv), and also the following condition:
(viii)The errors εi are identically distributed and centered with Eε41 < ∞, and moreover,

the distribution of ε1 is not concentrated at two or fewer points.
Then √n(θ̂C − θ) d󳨀→ N(0, Σ(θ)C ) , (3.118)

where the matrix Σ(θ)C is nonsingular, and

Σ(θ)C = ( Σ(β)C Σ(β,σ
2
ε )

C

Σ(σ
2
ε ,β)

C Σ(σ
2
ε )

C
) , (3.119)

where Σ(β)C is ACM of the estimator β̂C given in (3.73) and (3.74), and Σ(β)C is asymptotic
variance of the estimator of σ2ε ,

Σ(σ
2
ε )

C = covθ s(σ2ε )C (y, x; θ) . (3.120)

Proof. (1) By Theorems 3.5 and 3.10, the estimator θ̂C is strongly consistent, i.e.,
θ̂C

P1󳨀󳨀→ θ. The convergence (3.118) follows from the sandwich formula (see Appendix
A2), and

Σ(θ)C = A−1θ BθA−1θ , (3.121)

Aθ = −E∂s(θ)C (y, x; θ)
∂θT

= (EH 0
0 1

) = (EρρT 0
0 1

) > 0 ; (3.122)

Bθ = covθ s(θ)C (y, x; θ) . (3.123)

Here the condition Eε4 < ∞ and the normality of ξ and δ provide finiteness of second
moments for the estimating function s(θ)C (y, x; θ).

(2) In order to prove that Bθ is nonsingular, it is enough to prove the linear inde-
pendence of the components of s(θ)C (y, x; θ) in the space L2(Ω, P) of randomvariables.
For this purpose,wemakea linear combinationof components of this estimating func-
tion s(θ)C (y, x; θ) at the true point θ, and let the combination be equal to 0, a.s.:

aTs(β)C + bs(σ
2
ε )

C = aT(t(x)y − H(x)β) + b(y2 − βTt(x)y − σ2ε ) = 0 . (3.124)

Here a ∈ Rk+1 and b ∈ R. Thus, we obtain, for nonrandom c1 and c2:

0 = E[aTs(β)C + bs(σ
2
ε )

C |ε] = bε2 + c1ε + c2 , (3.125)

and by the condition (viii) about the distribution of ε, it follows that b = 0. Further,
proving Theorem 3.7, we established that the matrix (3.80) is nonsingular, and there-
fore, the components of s(β)C (y, x; β) are linearly independent in L2(Ω, P). Then by
equation (3.124) at b = 0, it is deduced that a = 0. Thus, the components of s(θ)C (y, x; θ)
are linearly independent, and Bθ > 0. This proves nonsingularity of the matrix Σ(θ)C
from formula (3.121).
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(3) It remains to prove (3.120). Let

Bθ = (B11 B12
B21 B22

) , B22 = covθ s(σ2ε )C (y, x; θ) . (3.126)

Then

Σ(θ)C = A−1θ BθA−Tθ = ((EH)−1 0
0 1

) (B11 B12
B21 B22

) ((EH)−1 0
0 1

) =
= ((EH)−1B11(EH)−1 (EH)−1B12

B21(EH)−1 B22
) . (3.127)

From here and the convergence (3.118), it follows that

√n(σ̂2ε − σ2ε ) d󳨀→ N(0, B22) = N(0, Σ(σ2ε )C ) . (3.128)

Taking into account (3.126), we obtain the desired relation (3.120). The theorem is
proved.

Based on the theorem one can, like in Section 3.1.5, construct the confidence ellip-
soid for θ. Now, we indicate only how to construct the asymptotic confidence interval
for σ2ε .

A strongly consistent estimator for the positive number B22 is the statistic

B̂22 = 1
n

n∑
i=1

(y2i − β̂TCt(xi)yi − σ̂2ε )2 , (3.129)

which is positive, eventually. Then from (3.128) it follows that

√ n
B̂22

(σ̂2ε − σ2ε ) d󳨀→ N(0, 1) . (3.130)

When the confidence probability is equal to 1 − α, the asymptotic confidence interval
for parameter σ2ε is constructed in the form (in the case B̂22 > 0):

In = {{{z > 0: |z − σ̂2ε | ≤ √ B̂22
n

⋅ nα/2}}} . (3.131)

Here nα/2 is a quantile of normal distribution, with

P{N(0, 1) > nα/2} = α
2 . (3.132)

3.1.7 Modifications of the ALS estimator

(1) Remember that the ALS estimator β̂C is unstable for a small sample, see Sec-
tion 1.4.7. In Cheng et al. (2000) for polynomial models, amodified estimator β̂MC is
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proposed, which is also consistent and√n (β̂MC − β̂C) P󳨀→ 0. Such two estimators,
β̂C and β̂MC , are called asymptotically equivalent. In view of Theorem 3.7, we will
have √n (β̂MC − β) = √n (β̂C − β) + √n (β̂MC − β̂C) d󳨀→ N(0, ΣC) . (3.133)

Slutsky’s lemma 2.18 is exploited here. Obviously, the estimator β̂MC has the same
ACM as the estimator β̂C. Using β̂MC instead of the β̂C, we do not lose accuracy of
estimation (especially for large samples) and for small andmoderate samples, get
more stable numerical procedures.

(2) The estimator β̂C (and also the β̂MC ) does not use the information on the form of
distribution of ξ . Therefore, this estimator can be well exploited in the functional
polynomial model, where the latent variables ξi are nonrandom. The estimator
remains consistent and asymptotically normal under mild conditions.

(3) One can abandon the normality of the measurement error δ. Instead, for the con-
struction of the ALS estimator, it is necessary that Eδ = 0, Eδ2k < ∞, and the
following moments are known:

m(i)δ = Eδi , 2 ≤ i ≤ 2k . (3.134)

Then one can construct reduced polynomials tj(x) of degree j which are solutions
to the deconvolution problem (3.16), with j ≤ 2k. This allows us to construct the
ALS estimator of β, see Cheng and Schneeweiss (1998).

3.2 Quasi-likelihood estimator

In the polynomial model (3.6) and (3.3) under the conditions (i), (iii), (iv), and (vii), the
conditional expectation m(x, β) and conditional variance 𝑣(x; β, σ2ε ) of the response
are written down in Section 3.1.3. This allows to construct the estimating function
(1.70) for the QLE β̂QL (the estimating function depends on nuisance parameters σ2ε ,
μξ , and σ2ξ ):

s(β)QL (y, x; β, σ2ε ) = μ(x)(y − μT(x)β)𝑣(x; β, σ2ε ) . (3.135)

If the nuisance parameters are known, the estimator β̂QL is defined as a solution to the
equation

1
n

n∑
i=1

1𝑣(xi; β, σ2ε ) (μ(xi)yi − μ(xi)μT(xi)β) = 0 , β ∈ Rk+1 . (3.136)

This nonlinear equation not always has a solution. Define the estimator more accu-
rately.

Definition 3.12. The estimator β̂QL is a Borel measurable function of observations y1,
x1, . . . , yn, xn, for which:
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(a) if equation (3.136) has no solution, then β̂QL = 0;
(b) if there exists a solution to equation (3.136), then β̂QL is a solution with minimal

norm (if there are several such solutions, then we take any of them).
Note that the definition is correct. Indeed, because of continuity in β of the left-hand
side of (3.136), the set Aω of solutions to the equation is closed for each elementary
event ω, and in the case Aω ̸= 0, minβ∈Aω ‖β‖ is attained.
3.2.1 The case of known nuisance parameters

Asymptotic properties of the estimator
In the following we consider only the normal polynomial model.

Theorem 3.13. Let the nuisance parameters σ2ε , μξ , and σ2ξ be knownand the conditions
(i)–(iv) hold true in the model (3.6) and (3.3). Denote by b = (bi)ki=0 the true values of the
polynomial coefficients. Then the following statements hold.
(a) For any R > ‖b‖, equation (3.136) has a unique solution in the ball

B̄R = {β ∈ Rk+1 : ‖β‖ ≤ R} , (3.137)

(b)
β̂QL

P1󳨀󳨀→ b , as n → ∞ , (3.138)

(c)

√n(β̂QL − b) d󳨀→ N(0, Bb) , (3.139)

Bb = (Eμ(x)μT(x)𝑣(x, b) )−1 . (3.140)

Proof. The statements (a) and (b) follow from the theory of estimating equations (see
Appendix A1). We verify only the basic condition about the uniqueness of solution to
the limit equation.

On the set (3.137), the left-hand side of equation (3.136) converges a.s. uniformly
to the function

s∞(β; b) = Eb
μ(x)y − μ(x)μT(x)β𝑣(x, β) , β ∈ B̄R ;

s∞(β, b) = EEb ( μ(x)y𝑣(x, β) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 x) − Eμ(x)μT(x)𝑣(x, β) ⋅ β =
= Eμ(x)μT(x)β𝑣(x, β) − Eμ(x)μT(x)𝑣(x, β) β , (3.141)

s∞(β, b) = Eμ(x)μT(x)𝑣(x, β) ⋅ (b − β) . (3.142)
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The limit equation is

Eμ(x)μT(x)𝑣(x, β) ⋅ (b − β) = 0 , β ∈ BR . (3.143)

Make sure that for each β ∈ Rk+1, the matrix

Φβ = Eμ(x)μT(x)𝑣(x, β) (3.144)

is nonsingular. In fact, this is the Grammatrix of random variables

μ0(x)√𝑣(x, β) , μ1(x)√𝑣(x, β) , . . . , μk(x)√𝑣(x, β) (3.145)

in the space L2(Ω, P). Let {ai , i = 0, k} be real numbers such that almost surely
k∑
i=0

aiμi(x)√𝑣(x, β) = 0 . (3.146)

Then
k∑
i=0

aiμi(x) = 0 , a.s. (3.147)

Since x has normal distribution and μi(x) is a polynomial of ith degree in x, it follows
that a0 = a1 = ⋅ ⋅ ⋅ = ak = 0 (see proof of Lemma 3.4). Thus, the random variables
(3.145) are linearly independent, and the matrix (3.144) is positive definite. Then Φβ
has zero kernel, and equation (3.143) has a unique solution β = b ∈ B̄R . We have just
proved the validity of statements (a) and (b).

The statement (c) follows from the sandwich formula (see Appendix A2). For the
ACM Σb of the estimator β̂QL, we have

Σb = A−1Q BQA−TQ , (3.148)

AQ = −Eb ∂s(β)QL∂βT
(y, x; b) = Eμ(x)μT(x)𝑣(x, b) − Ebμ(x)(y − μT(x)b)∂𝑣−1

∂βT
(x, b) . (3.149)

The latter expectation is equal to

EEb (μ(x)(y − μT(x)b)∂𝑣−1
∂βT

(x, b) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 x) =
= E{μ(x) ⋅ Eb(y − μT(x)b|x) ⋅ ∂𝑣−1

∂βT
(x, b)} = 0 ,

(3.150)

because here the conditional expectation is zero: Eb(y − μT(x)b|x) = 0. Then
AQ = B−1b = Eμ(x)μT(x)𝑣(x, b) . (3.151)
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For a middle part of the “sandwich” (3.148) we get

BQ = covb s(β)QL (y, x; b) = Eb
μ(x)(y − μT(x)b)2μT(x)𝑣2(x, b) , (3.152)

BQ = E{μ(x) ⋅ Eb[(y − μT(x)b)2|x] ⋅ μT(x)𝑣2(x, b) } = E (μ(x)μT(x))𝑣(x, b)𝑣2(x, b) = B−1b . (3.153)

Then Σb = BbB−1b Bb = Bb, and the theorem is proved.

Remark 3.14. According to the recommendations in Cheng and Van Ness (1999) and
Wansbeek and Meijer (2000), as a strongly consistent estimator for the matrix Σb one
can take

Σ̂b = Â−1Q B̂QÂ−TQ , (3.154)

ÂQ = 1
n

n∑
i=1

μ(xi)μT(xi)𝑣(xi , β̂QL) , (3.155)

B̂Q = 1
n

n∑
i=1

(yi − μT(xi)β̂QL)2𝑣2(xi , β̂QL) μ(xi)μT(xi) . (3.156)

The convergence Σ̂b
P1󳨀󳨀→ Σb stems from the strong consistency of the estimator β̂QL

and from the SLLN. Now, like in Section 3.1.5, one can construct the confidence ellip-
soid for the vector b based on the estimator β̂QL.

Calculation technique for the estimate
For numerical solution of the estimating equation (3.136), the iteratively reweighted
least squares method is used. To describe the essence of the method, let us rewrite
(3.136) in another form:

β = ϕn(β) , ϕn(β) := (1n n∑
i=1

μ(xi)μT(xi)𝑣(xi , β) )−1 ⋅ 1n n∑
i=1

μ(xi)yi𝑣(xi , β) . (3.157)

Actually in equation (3.136), the denominators 𝑣(xi , β) are fixed and the equation is
solved as linear in β.

Now, we describe the above-mentioned iterative algorithm in more detail.
(1) The initial value β(0)n = β(0) is taken arbitrary (e.g., β(0) = 0).
(2) Given β(j) from the jth iteration of the algorithm, we find

β(j+1) = ϕn(β(j)) . (3.158)

The algorithm leads to the desired solution β̂QL to equation (3.136). It turns out that for
large n, all the values ϕn(β(j)), j ≥ 0, are well-defined, despite the need to invert some
matrix in (3.158).
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Theorem 3.15. Assume the conditions (i)–(iv). Suppose that the initial values of the al-
gorithm β(0)n are random, and moreover for a real number R > 0,󵄩󵄩󵄩󵄩󵄩󵄩β(0)n 󵄩󵄩󵄩󵄩󵄩󵄩 < R , eventually . (3.159)

Then
lim
j→∞

β(j) = β̂QL , eventually . (3.160)

Remark 3.16. As the initial value β(0), one can take the estimator β̂C defined in (3.40).
Since it is strongly consistent, then the condition (3.159) is satisfied.

Sketch of the proof of Theorem 3.15. (1) Let b be the true value of the parameter β. We
will consider a ball B̄R given in (3.137), where R > ‖b‖ and R satisfies (3.159).

(2) For a sequence of matrices

An(β) = 1
n

n∑
i=1

μ(xi)μT(xi)𝑣(xi , β) , β ∈ Rk+1 , (3.161)

the following is carried out: with probability 1, the An(β) converges uniformly in β ∈
B̄R to a positive definite matrix

BQ(β) = Eμ(x)μT(x)𝑣(x, β) . (3.162)

So eventually the matrix An(β) is positive definite simultaneously for all β ∈ B̄R, and
eventually the function ϕn(β) is well-defined on B̄R.

(3) Using an expansion yi = ρT(ξi)b+ εi and formula (3.157), we can verify directly
that

lim
n→∞ supβ∈B̄R

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂ϕn(β)
∂βT

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 = 0 , a.s. (3.163)

Denote

λn = sup
β∈B̄R

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂ϕn(β)
∂βT

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ; (3.164)

λn
P1󳨀󳨀→ 0 . (3.165)

Then eventually for all β1, β2 ∈ B̄R,󵄩󵄩󵄩󵄩ϕn(β1) − ϕn(β2)󵄩󵄩󵄩󵄩 ≤ λn ⋅ 󵄩󵄩󵄩󵄩β1 − β2󵄩󵄩󵄩󵄩 . (3.166)

(4) By Theorem 3.13, equation (3.157) has eventually a unique solution β̂QL on the ball
B̄R. By the same theorem, β̂QL

P1󳨀󳨀󳨀→ b, that is why for certain ball

B̄(b, ε) = {β ∈ Rk+1 : ‖β − b‖ ≤ ε} ⊂ B̄R , (3.167)

it holds true that β̂QL ∈ B̄(b, ε), eventually. We have eventually that for all β ∈ B̄R,󵄩󵄩󵄩󵄩󵄩ϕn(β) − β̂QL
󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩ϕn(β) − ϕn(β̂QL)󵄩󵄩󵄩󵄩󵄩 ≤ λn

󵄩󵄩󵄩󵄩󵄩β − β̂QL
󵄩󵄩󵄩󵄩󵄩 ≤ ε 󵄩󵄩󵄩󵄩󵄩β − β̂QL

󵄩󵄩󵄩󵄩󵄩 . (3.168)
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Thus eventually,
ϕn : B̄R → B̄R , ϕn(B̄R) ⊂ B̄R . (3.169)

(5) From relations (3.165) and (3.166), it follows that λn < 1
2 eventually, and then even-

tually for all β1, β2 ∈ B̄R, ‖ϕn(β1) − ϕn(β2)‖ ≤ 1
2
‖β1 − β2‖ . (3.170)

The relations (3.169) and (3.170) mean that eventually ϕn is a contraction mapping on
B̄R. Then by the Banach contraction principle, the convergence of iterations (3.160) is
eventually realized. Here, β̂QL is a fixed point of the mapping (3.169).

Remark 3.17. Instead of condition (3.159), one can impose a somewhat weaker condi-
tion

sup
n≥k+1

󵄩󵄩󵄩󵄩󵄩󵄩β(0)n 󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ , a.s. (3.171)

Then convergence (3.160) remains true.

Asymptotic optimality of the estimator
We study two competitive estimators β̂C and β̂QL. Which one is more efficient? In clas-
sical regression theory, estimators are compared by variance. However, this is not ap-
propriate in errors-in-variables models, because in such models, reasonable estima-
tors do not possess finite second moment (see Theorem 2.26). Instead, estimators can
be compared by their ACM.

Remember that for symmetric matrices A and B of the same size, notation A ≥ B
means that A − B is a positive semidefinite matrix, and notation A > B means that
A − B is a positive definite matrix. The partial order A ≥ B is the so-called Loewner
order in the space of symmetric matrices of fixed size.

Suppose we have two estimators β̂(1) and β̂(2) of the parameter β constructed by
the same sample, moreover both are asymptotically normal:√n (β̂(i) − β) d󳨀→ N(0, Σi) , i = 1, 2 . (3.172)

The matrix Σi = Σi(β) is ACM of the estimator β̂(i). From (3.172) the consistency of
estimators follows: β̂(i) P󳨀→ β, i = 1, 2.
Definition 3.18. The estimator β̂(1) isasymptotically more efficient than β̂(2), if for each
true value of β taken from a parameter set, it holds that Σ1(β) ≤ Σ2(β). If the inequality
is always strict (in terms of Loewner order), then the estimator β̂(1) is called strictly
asymptotically more efficient than β̂(2).

The strict asymptotic efficiency is related to making the asymptotic confidence ellip-
soids. Usually, the ACM is nonsingular and continuous in β. Then the convergence
(3.172) implies√nΣ̂−1/2i (β̂(i) − β) d󳨀→ N(0, Im) , i = 1, 2 , m = dim β . (3.173)
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Here Σ̂i = Σi(β̂(i)) P󳨀→ Σi .
Similar to Section 3.1.5, we construct the asymptotic confidence ellipsoids for β:

E(i)n = {z ∈ Rm : (z − β̂(i))T Σ̂−1i (z − β̂(i)) ≤ 1
n (χ2m)α} , i = 1, 2 . (3.174)

Here, 1−α is the confidence probability, and (χ2m)α is a quantile of the χ2m distribution,
see (3.106). Consider the centered ellipsoids

E(i)n,c = {z ∈ Rm : zT Σ̂−1i z ≤ 1
n
(χ2m)α} , i = 1, 2 . (3.175)

The boundary of ellipsoid (3.175), i.e., the elliptic surface is given by the equation

∂E(i)n,c = {z ∈ Rm : zT Σ̂−1i z = 1
n (χ2m)α} . (3.176)

Lemma 3.19. Suppose that (3.172) holds true and the ACMs Σi(β) are continuous in β.
Assume also that the estimator β̂(1) is strictly asymptotically more effecient than β̂(2).
Then
(a)

P{E(1)n,c ⊂ E(2)n,c, ∂E
(1)
n,c ∩ ∂E(2)n,c = 0} → 1 , as n → ∞ , (3.177)

(b) if in addition both estimators β̂(i) are strongly consistent, then it holds eventually:

E(1)n,c ⊂ E(2)n,c , ∂E(1)n,c ∩ ∂E(2)n,c = 0 . (3.178)

Remark 3.20. Relation (3.178) means that one ellipsoid is “strictly” located inside the
other. Lemma 3.19 canbe interpreted as follows: the estimator, which is strictly asymp-
totically more efficient, generates “strictly less” asymptotic confidence ellipsoid.

Proof of Lemma 3.19. Because
Σ1(β) < Σ2(β) , (3.179)

the matrices are continuous in β, and β̂(i) P󳨀→ β, then

P{Σ̂1 = Σ1(β̂(1)) < Σ̂2 = Σ2(β̂(2))} → 1 , as n → ∞ . (3.180)

ByTheorem16.E.3.b from thebookbyMarshall et al. (2011) and inequality 0 < Σ̂1 < Σ̂2,
it follows

Σ̂−11 > Σ̂−12 . (3.181)

Let z ∈ E(1)n,c, then

1
n (χ2m)α ≥ zT Σ̂−11 z ≥ zT Σ̂−12 z ⇒ 1

n (χ2m)α ≥ zTΣ̂−12 z , (3.182)

and we have z ∈ E(2)n,c. From here, in this case, we get E(1)n,c ⊂ E(2)n,c. Next, let u ∈ ∂E(1)n,c,
and we have

1
n
(χ2m)α = uTΣ̂−11 u > uTΣ̂−12 u ⇒ u ∉ ∂E(2)n,c . (3.183)
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Thus,
P{Σ̂1 < Σ̂2} ≤ P{E(1)n,c ⊂ E(2)n,c, ∂E

(1)
n,c ∩ ∂E(2)n,c = 0} , (3.184)

and now the convergence (3.180) implies the convergence (3.177).
The statement (b) is proved similarly, one should just note that under the strong

consistency of estimators Σ̂i
P1󳨀󳨀→ Σi(β), i = 1, 2, it holds eventually Σ̂1 < Σ̂2. The

lemma is proved.

Next, we are going to show that the estimator β̂QL is asymptotically effecient in a broad
class of estimators. We deal with the normal polynomial model (3.6) and (3.3) under
the conditions (i)–(iv).

Consider a linear in y and unbiased estimating function

sL(y, x; β) = g(x, β)⋅y−h(x, β), y, x ∈ R, β ∈ B̄R = {b ∈ Rk+1 : ‖b‖ ≤ R} . (3.185)
Here g and h are Borel measurable functions valued in Rk+1.

Remember that the unbiasedness of sL means the following: for every β ∈ B̄R,

EβsL(y, x; β) = 0 . (3.186)

The estimating functions sC from (3.38) and sQL from (3.135) satisfy the relations (3.185)
and (3.186), respectively. The unbiasedness of sC is provided by the equalities

E[sC(y, x; β)|y, ξ] = sML(y, ξ; β) , EβsML(y, ξ; β) = 0 . (3.187)

where sML is the estimating function of theMLmethod in the absence ofmeasurement
error δ, and the unbiasedness of sQL is fulfilled due to the equality

Eβ[sQL(y, x; β)|x] = 0 . (3.188)

Based on sL, the estimator β̂L is constructed as a measurable solution to the equation

n∑
i=1

sL(yi , xi; β) = 0 , β ∈ B̄R . (3.189)

Weassume that the true value b of the regressionparameter belongs toBR = {z ∈ Rk+1 :‖z‖ < R}. Under mild general conditions (see Appendix A1), equation (3.189) has a
solution with probability that tends to 1, as n → ∞; a solution allows to define well
the estimator β̂L to be consistent (i.e., β̂L

P󳨀→ b) and asymptotically normal (see
Appendix A2). The ACM of the estimator β̂L is given by the sandwich formula

ΣL = A−1L BLA−TL , AL = −E∂sL∂β (y, x; b) , BL = covb sL(y, x; b) . (3.190)

It is required that the matrix AL is nonsingular. Denote by L the class of all estimating
functions of the form (3.185) and (3.186), for which the corresponding estimator β̂L has
all abovementioned asymptotic properties. It is clear that sC and sQL belong to L.



3.2 Quasi-likelihood estimator | 93

Theorem 3.21 (about asymptotic efficiency of the QL estimator). Let sL ∈ L, ΣL and
ΣQL be the ACM of the estimators β̂L and β̂QL, respectively. Then

ΣQL ≤ ΣL . (3.191)

If additionally ΣL = ΣQL, for all the true values b ∈ B̄R, then β̂L = β̂QL eventually.

Proof is given in Kukush et al. (2009).
From this theorem, it follows that the QL estimator is asymptotically more effi-

cient than the ALS estimator. But for these two estimators one can state even more.
Remember the notation β−0 = (β1, . . . , βk)T.
Theorem 3.22. Let ΣC and ΣQL be ACMs of the estimators β̂C and β̂QL in the model (3.6)
and (3.3) under the assumptions (i)–(iv).
(a) If β−0 = 0, then ΣQL = ΣC.
(b) If β−0 ̸= 0, then ΣQL < ΣC.

Proof can be found in Kukush et al. (2006). The statement (a) is verified directly, but
the statement (b) is nontrivial.

Next, consider the behavior of matrices ΣQL and ΣC for small σ2δ. Each of the ma-
trices is expanded into series w.r.t. the measurement error variance σ2δ, as σ

2
δ → 0. We

will see that the difference of the matrices starts only with the terms of order σ4δ.

Theorem 3.23. Under the conditions of Theorem 3.22, for ACMs ΣQL = ΣQL(β) and ΣQL =
ΣQL(β), it holds true that:
(a)

ΣQL = σ2ε (EρρT)−1 + O(σ2δ) , as σ2δ → 0 ; (3.192)

(b)
ΣC = ΣQL + O(σ4δ) , as σ2δ → 0 ; (3.193)

(c) if β−0 ̸= 0, then the matrix limσ2δ→0 σ
−4
δ (ΣC − ΣQL) is positive definite.

Proof of the statements (a) and (b) is given in Kukush et al. (2005b) and of the state-
ment (c) in Malenko (2007).

Note that the statement (c) stems from Theorem 3.22 (b). Theorem 3.23 shows that
for small measurement errors, we almost do not lose the efficiency of estimation, if
instead of the QL estimator, we use the ALS estimator. The reason is as follows: the
distinction of the two ACMs manifests only in the terms of order σ4δ, and the terms
of order (σ2δ)0 and σ2δ do not possess such a distinction. For small σ

2
δ, it is advisable

to use the ALS estimator instead of the QL estimator, because the ALS estimator does
not require the assumption of normality of the latent variable ξ (see discussion in
Section 1.4.7).
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3.2.2 The case of unknown error variance in response and known parameters
of regressor’s distribution

Now, we assume that in the polynomial model (3.6) and (3.3) under the assumptions
(i)–(iv), the variance σ2δ and the parameters μξ and σ2ξ of the distribution of ξ are
known, and at the same time the variance σ2ε is unknown.

Estimation in linear model
Consider the case k = 1. The estimating function (3.135) for β = (β0, β1)T takes the
form (see the formula (3.65)):

s(β)QL = μ(x)y − μ(x)μT(x)β𝑣(σ2ε , β1) , μ(x) = (μ0(x), μ1(x))T , (3.194)

𝑣(σ2ε , β1) = σ2ε + τ2β21 , τ2 = Kσ2δ . (3.195)

Since in the linear model, the conditional variance 𝑣 does not depend of x, it is not
necessary to know σ2ε for estimation of β by the QL method. The reason is as follows:
the estimator β̂QL is defined as a solution to the equation

1
n

n∑
i=1

μ(xi)yi − μ(xi)μT(xi)β𝑣(σ2ε , β1) = 0 , β ∈ R2 , (3.196)

and it is equivalent to the equation

1
n

n∑
i=1

(μ(xi)yi − μ(xi)μT(xi)β) = 0 , β ∈ R2 . (3.197)

Therefore, the equivalent estimating function for β is equal to

̃s(β)QL = μ(x)y − μ(x)μT(x)β . (3.198)

The estimator β̂QL has the form

β̂QL = (μμT)−1 μy . (3.199)

(In our normal model, the matrix μμT is nonsingular, with probability 1.)
Based on equality (3.65), the estimator of σ2ε can be written explicitly. We have:

E[(y − μT(x)β)2|x] = σ2ε + τ2β21 , (3.200)
E(y − μT(x)β)2 = EE[(y − μT(x)β)2|x] = σ2ε + τ2β21 . (3.201)

Therefore, by the method of moments the estimating function for σ2ε is the following:̃s(σ2ε )QL = (y − μT(x)β)2 − σ2ε − τ2β21 . (3.202)
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The estimators β̂QL and σ̂2ε,QL are defined as a solution to the system of equations

1
n

n∑
i=1

̃sQL(xi , yi; β) = 0 , (3.203)

1
n

n∑
i=1

̃s(σ2ε )QL (yi , xi; β, σ2ε ) = 0 , β ∈ R2 , σ2ε > 0 . (3.204)

From here
σ̂2ε,QL = 1

n

n∑
i=1

(yi − μT(xi)β̂QL)2 − τ2 ⋅ β̂21,QL , (3.205)

if the expression is positive. Note that in Cheng and Schneeweiss (1998), it is proposed
to use another estimator:

σ̃2ε,QL = 1
n − 2 n∑

i=1
(yi − μT(xi)β̂QL)2 − τ2 ⋅ β̂21,QL , (3.206)

which is written similarly to the variance estimator in ordinary regression (here, in the
denominator, 2 = dim β). However, the estimators (3.205) and (3.206) are asymptoti-
cally equivalent, i.e., √n (σ̂2ε,QL − σ̃2ε,QL) P󳨀→ 0 . (3.207)
This leads to the fact that the ACMs of the estimators σ̂2ε,QL and σ̃

2
ε,QL coincide.

Remember that the sample covariance of two samplesU1, . . . , Un and V1, . . . , Vn
is denoted by SUV , see the proof of Theorem 2.22. In particular for μ1 = μ1(x), we get

Sμ1y = 1
n

n∑
i=1

(μ1(xi) − μ1(xi))(yi − ȳ) , (3.208)

Sμ1μ1 = 1
n

n∑
i=1

(μ1(xi) − μ1(x))2 . (3.209)

Theorem 3.24. Consider the linear model (3.6) and (3.3), with k = 1, for which the con-
ditions (i)–(iv) are fulfilled and n ≥ 2.
(a) Components of the estimator (3.199) can be found from the equalities, being per-

formed almost surely:

β̂1,QL = Sμ1y
Sμ1μ1

, ȳ = β̂0,QL + β̂1,QL × μ1(x) . (3.210)

(b) The estimators (3.199) and (3.205) are strongly consistent, i.e., it holds for the true
values β and σ2ε :

β̂QL
P1󳨀󳨀→ β , σ̂2ε,QL

P1󳨀󳨀→ σ2ε . (3.211)

(c) The estimators (3.199)and (3.205) of the parameter θ = (βT, σ2ε )T are asymptotically
normal, namely:

Σθ = A−1θ BθA−Tθ , Aθ = ( EμμT 0
0; 2τ2β1 1

) , Bθ = (𝑣 ⋅ EμμT 0
0 2𝑣2) , (3.212)

where 𝑣 is given by equalities (3.195).
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Proof. (a) Since μ0(x) = 1, the system of equations (3.197) for β̂0,QL and β̂1,QL has the
form {{{ȳ − β0 − μ1(x) ⋅ β1 = 0 ,

μ1(x) ⋅ y − μ1(x) ⋅ β0 − μ21(x) ⋅ β1 = 0 . (3.213)

Therefore, the solutions to the system are presented in (3.210), provided Sμ1μ1 ̸= 0
(here the reasoning is similar to the proof of Theorem 2.1). But the latter condition
holds a.s., with n ≥ 2.

(b) The strongconsistencyof the estimator ̂βQL follows fromTheorem3.13(b). How-
ever, we will carry out a straightforward simple proof based on the formula (3.199).

By the SLLN,
μμT P1󳨀󳨀→ EμμT > 0 . (3.214)

The positive definiteness of the latter matrix was explained in the proof of Theorem
3.13. Next, μy = μρT ⋅ β + με,

μy P1󳨀󳨀→ (Eμ(x)ρT(ξ))T + Eμ(x)ε = (EμρT) ⋅ β . (3.215)

But

EμρT = EE(μρT|x) = E [μ(x)E(ρT(ξ)|x)] = (EμμT)β , (3.216)

β̂QL
P1󳨀󳨀→ (EμμT)−1 ⋅ (EμμT)β = β . (3.217)

Then by the formula (3.205), we have

σ̂2ε,QL = 1
n

n∑
i=1

(yi − μT(xi)β)2 + o(1) − τ2β̂21,QL , (3.218)

σ̂2ε,QL
P1󳨀󳨀→ Eβ(y − μT(x)β)2 − τ2β21 == EEβ [(y − μT(x)β)2|x] − τ2β21 = 𝑣 − τ2β21 = σ2ε .

(3.219)

(c) Use the sandwich formula fromAppendixA2. The estimating function ̃s(θ)QL has com-
ponents (3.198) and (3.202). We have

Aθ = −E∂ ̃s(θ)QL
∂θ = ( EμμT 0

0; 2τ2β1 1
) , (3.220)

Bθ = covθ ̃s(θ)QL (y, x; β) = ( Bβ Bβ,σ2ε
Bσ2ε ,β Bσ2ε

) . (3.221)

Here the diagonal blocks correspond to the autocovariance of components of the esti-
mating functions ̃s(β)QL and ̃s(σ2ε )QL , and the off-diagonal blocks to the mutual covariance
of the components. Note that in our linear model, normal random variables ξ , δ, and
ε are independent, and therefore, the conditional distribution of y given x is normal,

y|x ∼ N(μT(x)β, 𝑣) , 𝑣 = σ2ε + τ2β21 . (3.222)
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We obtain

Bβ = covθ μ(x)(y − μT(x)β) = Eθμ(x)(y − μT(x)β)2μT(x) == EEθ [μ(x)(y − μT(x)β)2μT(x)|x] = 𝑣 ⋅ EμμT , (3.223)

Bσ2ε = covθ [(y − μT(x)β)2 − 𝑣]= Eθ(y − μT(x)β)4 − 2𝑣Eθ(y − μT(x)β)2 + 𝑣2= EEθ [(y − μT(x)β)4 |x] − 𝑣2 = 3𝑣2 − 𝑣2 = 2𝑣2 . (3.224)

Here we used the relation (3.222) and the fact that the the fourth central moment of
normal random variable γ ∼ N(m, 𝑣) is the following:

E(γ − m)4 = 3𝑣2 . (3.225)

Finally,

Bσ2ε ,β = Eθμ(x) (y − μT(x)β) ((y − μT(x)β)2 − 𝑣) == Eθμ(x) (y − μT(x)β)3 − 𝑣Eθμ(x) (y − μT(x)β) = 0 . (3.226)

We made use of the fact that, as a result of (3.222), it holds

E [(y − μT(x)β)3|x] = 0 . (3.227)

Then Bβ,σ2ε = BTσ2ε ,β = 0, and the matrix (3.221) indeed has the form (3.212). Now, the
statement (b) follows from the sandwich formula and equality (3.220). The theorem is
proved.

Remark 3.25. Consider the estimated straight line y = β̂0,QL + β̂1,QLξ . In general the
center of mass of the sampleM(x̄; ȳ) does not lie on this straight line (cf. the estimated
straight lines from Chapter 2). Instead, the point M̃(μ1(x); ȳ) is located on the straight
line. Here

μ1(x) = Kx̄ + (1 − K)μξ (3.228)

is a posterior estimator of the expectation ξ (a prior estimator is μξ ).
Estimation in polynomial model
Consider the model (3.6) and (3.3) under the conditions (i)–(iv), with arbitrary k ≥ 1.
Now, only the parameters σ2δ, μξ , and σ

2
ξ are assumed known. When k ≥ 2 the condi-

tional variance 𝑣 = V(y|x) depends not only on σ2ε and β but also on x, see the formula
(3.67) for k = 2. Therefore under unknown σ2ε , the estimating equation (3.136) can
not be exploited for estimation of β. In addition to the estimating function (3.135) one
should form a separate estimating function corresponding to the parameter σ2ε .

To do this, we use equality (3.60). We have

Eβ(y − μT(x)β)2 = EEβ [(y − μT(x)β)2|x] = E𝑣(x; β, σ2ε )= σ2ε + βTE[M(x) − μ(x)μT(x)] ⋅ β . (3.229)
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The additional estimating function is specified as follows:

s(σ
2
ε )

QL (y, x; β, σ2ε ) = (y − μT(x)β)2 − σ2ε − βT[M(x) − μ(x)μT(x)] β . (3.230)

Respectively, we compose an additional equation to define the ALS estimator:

σ2ε = 1
n

n∑
i=1

(yi − μT(xi)β)2 − βT ⋅ 1
n

n∑
i=1

[M(xi) − μ(xi)μT(xi)] ⋅ β ,
β ∈ Rk+1 , σ21 ≤ σ2ε ≤ σ22 . (3.231)

Here, 0 < σ21 < σ22 are given thresholds for the variance of errors in response.

Definition 3.26. The estimators β̂QL and σ̂2ε,QL are Borel measurable functions of ob-
servations y1, x1, . . . , yn , xn such that:
(a) If the system of equations (3.136) and (3.231) has no solution for β ∈ Rk+1 and

σ2ε ∈ [σ21, σ22], then β̂QL = 0, σ̂2ε,QL = σ21;
(b) If the system has a solution for the mentioned set, then β̂QL is a solution for βwith

the smallest possible norm (if there are several such solutions, any of them can
be taken).

We mention that the definition is correct. Indeed, in consequence to the continuity of
the estimating functions s(β)QL and s

(σ2ε )
QL in both β and σ2ε , the set of solutions Aω to the

system (3.136) and (3.231) is closed, for each elementary event ω; hence if Aω ̸= 0, then
min(β,σ2ε)∈Aω

‖β‖ is attained.
Denote

θ = ( β
σ2ε

) , s(θ)QL = ( s(β)QL
s(σ

2
ε )

QL
) . (3.232)

The latter is the augmented estimating function of the parameter θ.

Theorem 3.27. Let the parameters σ2δ, μξ , and σ
2
ξ be known in the model (3.6) and (3.3)

under the conditions (i)–(iv), and moreover we know that σ2ε ∈ (σ21, σ22), with σ21 > 0.
Denote by b = (bi)ki=0 the true values of polynomial coefficients, and by s2ε the true value
of the parameter σ2ε . Then the following statements are valid:
(a) for any R > ‖b‖, the system of equations (3.136) and (3.231) has eventually a unique

solution in B̄R × [σ21, σ22], where the ball B̄R is given in (3.137);
(b)

β̂QL
P1󳨀󳨀→ b , σ̂2ε,QL

P1󳨀󳨀→ s2ε , as n → ∞ ; (3.233)

(c)

√n( β̂QL − b
σ̂2ε,QL − s2ε

) d󳨀→ N(0, Σθ) , (3.234)
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Σθ = Σθ(b, s2ε ) > 0 , Σθ = A−1θ BθA−Tθ , (3.235)

Aθ = −Eb,s2ε ∂s(θ)QL (y, x; b, s2ε )∂θT
, (3.236)

Bθ = covb,s2ε s(θ)QL (y, x; b, s2ε ) ; (3.237)

(d) √n(β̂QL − b) d󳨀→ N(0,(E μμT𝑣(x; b, s2ε ))−1) . (3.238)

Remark 3.28. Thus, the ACM of the QL estimator for the parameter β is just the same
if the variance σ2ε is known or not, see formulas (3.139), (3.140), and (3.238).

Proof of the theorem. The statements (a) and (b) follow from the theory of estimat-
ing equations (see Appendix A1). Here it is important that s2ε lies inside the interval[σ21, σ22]. We will explain only why the limit equation has a unique solution.

On the set B̄R × [σ21, σ22], almost surely, the left-hand side of equation (3.136) con-
verges uniformly to the function (see (3.142)):

s(β)∞ (β, σ2ε ) = E μμT𝑣(x; β, σ2ε ) (b − β) . (3.239)

On the same set almost surely, the function (3.230) converges uniformly to

s(σ
2
ε )∞ (β, σ2ε ) = Eb,s2ε (y − μTβ)2 − σ2ε − βT ⋅ E[M(x) − μμT] ⋅ β . (3.240)

Consider the limit system of equations

s(β)∞ (β, σ2ε ) = 0 , s(σ
2
ε )∞ (β, σ2ε ) = 0 , (β, σ2ε ) ∈ B̄R × [σ21, σ22] . (3.241)

From the first equation, we have β = b (see proof of Theorem 3.13). Then the second
equation takes the form

Eb,s2ε (y − μTb)2 − σ2ε − bTE[M(x) − μμT]b = 0 , (3.242)

or s2ε − σ2ε = 0, s2ε = σ2ε . Thus, the system (3.241) has a unique solution θ = ( bs2ε). This
fact is the basis for the statements (a) and (b) being satisfied.

The statement (c) follows from the sandwich formula (see Appendix A2). We ex-
plain only the nonsingularity of the matrices Aθ and Bθ. We have

Aθ = −Eb,s2ε ∂s(θ)QL∂θT
(y, x; b, s2ε ) = (E μμT

𝑣(x;b,s2ε)
0

A21 1
) . (3.243)
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We used the fact that

Eb,s2ε
∂s(β)QL (b, s2ε )

∂σ2ε
= Eb,s2ε μ (y − μTb) ∂

∂σ2ε
1𝑣 (b, s2ε ) == E [μ Eb(y − μTb|x) ⋅ ∂
∂σ2ε

1𝑣 (b, s2ε )] = 0 ; (3.244)

A21 = −Eb,s2ε ∂s(σ2ε )QL
∂βT

(b, s2ε ) = 2bTE(M(x) − μμT) . (3.245)

(As we saw in the proof of Theorem 3.24, this vector is not identically zero even for
k = 1). The matrix (3.243) is nonsingular because

det Aθ = detE μμT𝑣(x; b, s2ε ) ̸= 0 . (3.246)

Further,

Bθ = covb,s2ε s(θ)QL (b, s2ε ) = (B11 B12
B21 B22

) , (3.247)

B11 = covb,s2ε s(β)QL (b, s2ε ) = E μμT𝑣(x; b, s2ε ) > 0 , (3.248)

B22 = covb,s2ε s(σ2ε )QL , B12 = BT21 = Eb,s2ε s
(β)
QL ⋅ s(σ2ε )QL . (3.249)

We explain why Bθ > 0. The determinant of Bθ is the Gram determinant for compo-
nents of s(θ)QL in the space L2(Ω, P) of random variables. Thus, it is enough to prove the
linear independence of the components in L2(Ω, P).

Suppose that for some c ∈ Rk+1 and d ∈ R, it holds

cTs(β)QL (y, x; b, s2ε ) + d ⋅ s(σ2ε )QL (y, x; b, s2ε ) = 0 , a.s. (3.250)

Then E(cTs(β)QL + d ⋅ s(σ2ε )QL |x, ξ) = 0. The components of s(β)QL are linear in y, and s(σ
2
ε )

QL is
a square function in y. So we get from here (since ε is stochastically independent of x
and ξ):

d ⋅ ε2 + ⋅ ⋅ ⋅ = 0 , a.s. (3.251)

Here, the unwritten terms are either linear in ε or do not contain ε. Since ε has a con-
tinuous (normal) distribution, it follows from (3.251) that d = 0. Then in (3.250) we
have

cTs(β)QL = 0 , a.s. (3.252)

But the components of s(β)QL are linearly independent due to (3.248), whence c = 0. For
this reason, the components of s(θ)QL are linearly independent, and Bθ > 0.

Now, formulas (3.234)–(3.237) follow from the sandwich formula. The nonsingu-
larity of the matrix Σθ follows from the nonsingularity of components of Aθ and Bθ.
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(d) It is necessary to compute the “top left” block of ACM Σθ, which corresponds
to the ACM of the estimator β̂QL. According to (3.243),

Aθ = (A11 0
A21 1

) . (3.253)

It is easy to verify that

A−1θ = ( A−111 0−A21A−111 1
) . (3.254)

The matrix Bθ is written in a block form (3.247). Then

A−1θ Bθ = (A−111B11 ∗∗ ∗) . (3.255)

Hereafter, “∗” denote the unwritten blocks. Finally,
Σθ = A−1θ BθA−Tθ = (A−111B11 ∗∗ ∗) (A−111 −A−111AT21

0 1
) = (A−111B11A−111 ∗∗ ∗) . (3.256)

Then from the convergence (3.234) and formula (3.256), we obtain

√n(β̂QL − b) d󳨀→ N(0, A−111B11A−111) = N(0,(EμμT𝑣 )−1) . (3.257)

This completes the proof of the theorem.

The estimator θ̂QL canbe computed by the iteratively reweighted least squaresmethod
(see Section 3.2.1; we introduce all necessary corrections to the description of the
method when the variance σ2ε is unknown).

Rewrite (3.136) as

β = ϕn(β, σ2ε ) , (3.258)

ϕn(β, σ2ε ) := (1
n

n∑
i=1

μ(xi)μT(xi)𝑣(xi; β, σ2ε ))
−1 ⋅ 1

n

n∑
i=1

μ(xi)yi𝑣(xi; β, σ2ε ) . (3.259)

Denote by ψn(β) the right-hand side of (3.231).
The iterative algorithm is as follows.

(1) We determine arbitrary initial values β(0)n = β(0) (e.g., β(0) = 0) and (σ2ε,n)(0) =(σ2ε )(0) ∈ [σ21, σ22].
(2) Given β(j) and (σ2ε )(j) from the jth iteration of the algorithm, we find

β(j+1) = ϕn(β(j), (σ2ε )(j)) , (3.260)

(σ2ε )(j+1) = P(ψn(β(j+1))) . (3.261)
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Here P is a projector on [σ21, σ22],
P(x) = {{{{{{{

x if x ∈ [σ21, σ22] ,
σ21 if x < σ21 ,
σ22 if x > σ22 .

(3.262)

As in Theorem 3.15, one can prove the statement about convergence of the algo-
rithm.

Theorem 3.29. Assume the conditions of Theorem 3.27. Suppose that initial values β(0)n
and (σ2ε )(0) of the algorithm are random, moreover for some R > 0, it holds that ‖β(0)n ‖ <
R, eventually. Then eventually,

lim
j→∞

β(j) = β̂QL , lim
j→∞

(σ2ε )(j) = σ̂2ε,QL . (3.263)

Remark 3.30. In Cheng and Schneeweiss (1998) instead of the additional equation
(3.231), it is proposed to use a slightly modified equation:

σ2ε = 1
n − (k + 1) n∑

i=1
(yi − μT(xi)β)2 − βT ⋅ 1n n∑

i=1
[M(xi) − μ(xi)μT(xi)] ⋅ β , (3.264)

being written by analogy with the variance estimator in ordinary regression (here in
the denominator, k + 1 = dim β). However, such a change of the estimating function
yields the asymptotically equivalent estimator θ̃QL, i.e.,

√n 󵄩󵄩󵄩󵄩󵄩θ̂QL − θ̃QL
󵄩󵄩󵄩󵄩󵄩 P󳨀→ 0 . (3.265)

Therefore, the ACMs of the estimators θ̂QL and θ̃QL coincide. As a result, in the iter-
ative algorithm, one can use the right-hand side of (3.264) as ψn(β), whereupon the
statement of Theorem 3.29 remains valid.

3.2.3 The case where all the nuisance parameters are unknown

Now, the only parameter σ2δ is known in the model (3.6) and (3.3) under the conditions
(i)–(iv). The augmented parameter is

θ = ( β
σ2ε
γ
) , γ = (μξσ2ξ) . (3.266)

θ has to be estimated. Here, γ is a vector of nuisance parameters in the distribution
of ξ .
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Pre-estimation of the parameters of the distribution of ξ
The vector μ(x) = E(ρ(ξ)|x) depends on the parameter γ, which enters the conditional
distribution

ξ|x ∼ N(μ1(x), τ2) , (3.267)

μ1(x) = Kx + (1 − K)μξ , K = σ2ξ
σ2ξ + σ2δ

, τ2 = Kσ2δ . (3.268)

Therefore, to estimate β and σ2ε we have to construct an aditional estimating function
for γ. In this situation, it is natural to use a preliminary estimation (pre-estimation) of
the parameter γ. Hence, the estimator γ̂ = γ̂QL can be constructed based on the sample
x1, . . . , xn. We use the MLE γ̂QL, with components

μ̂ξ,QL = x̄ , (3.269)

σ̂2ξ,QL = 1
n

n∑
i=1

(xi − x̄)2 − σ2δ . (3.270)

The estimators are strongly consistent and asymptotically normal. (Note that instead
of the estimator (3.270), one can take an unbiased estimator S2ξ = 1

n−1 ∑n
i=1 (xi − x̄)2 −

σ2δ, but at the same time it is asymptotically equivalent to the above estimator σ̂
2
ξ,QL.)

Denote by ̂s(β)QL and ̂s(σ2ε )QL the estimating functions (3.135) and (3.230), where instead of
μ(x), M(x), and 𝑣(x; β, σ2ε ), we substitute the following:
μ̂(x) = μ(x)󵄨󵄨󵄨󵄨γ=γ̂QL , M(x) = M(x)|γ=γ̂QL , 𝑣̂(x; β, σ2ε ) = 𝑣(x; β, σ2ε )󵄨󵄨󵄨󵄨󵄨γ=γ̂QL . (3.271)

The estimators β̂QL and σ̂2ε,QL are now defined according to Definition 3.26, where the

new functions ̂s(β)QL and ̂s(σ2ε )QL are utilized instead of the former estimating functions s(β)QL
and s(σ

2
ε )

QL .

Asymptotic normality of augmented estimator
Theorem 3.31. Let the only parameter σ2δ be known in the model (3.6) and (3.3) under
the conditions (i)–(iv), and moreover it is also known that σ2ε ∈ (σ21, σ22), with σ21 > 0.
Denote by b = (bi)ki=0 the true values of polynomial coefficients, and by s2ε the true value
of the parameter σ2ε . Then the following statements are valid:
(a) for any R > ‖b‖, the system of equations Ŝ(β)QL = 0, Ŝ(σ2ε )QL = 0, eventually has a unique

solution on B̄R × [σ21, σ22], where the ball B̄R is given in (3.137),
(b)

β̂QL
P1󳨀󳨀→ b , σ̂2ε,QL

P1󳨀󳨀→ s2ε , as n → ∞ , (3.272)
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(c) √n(β̂QL − b) d󳨀→ N(0, Σ̃β) , (3.273)
Σ̃β = A−1β + A−1β AβγBγATβγA

−1
β , (3.274)

Aβ = E μμT𝑣(x; b, s2ε , γ) , (3.275)

Aβγ = −E∂s(β)QL
∂γT

(y, x; b, σ2ε , γ) , (3.276)

where Bγ = co𝑣s(γ)QL(x, γ) is the ACM of the estimator γ̂QL defined in (3.269) and
(3.270).

Remark 3.32. Formula (3.274) was obtained in Kukush et al. (2005b) and Shklyar et
al. (2007). It shows that the ACM for the estimator β̂QL increases (in Loewner sense)
if the nuisance parameter γ is unknown. (If γ is known, the ACM of the estimator is
equal to A−1β ≤ Σ̃β.)

Proof of the theorem. The statements (a) and (b) are proved in the same way as Theo-
rem 3.27, and in so doing the strong consistency of the estimator γ̂QL is exploited.
(c) Estimators (3.269) and (3.270) correspond to the estimating function

s(γ)QL = ( x − μξ(x − μξ )2 − σ2δ − σ2ξ
) , (3.277)

i.e., the estimator γ̂QL is defined as a solution to a system of equations

1
n

n∑
i=1

s(γ)QL(xi; μξ , σ2ξ ) = 0 , μξ ∈ R , σ2ξ > 0 . (3.278)

Then θ̂QL is defined by the estimating function

s(θ)QL = ( s(β)QL
s(σ

2
ε )

QL
s(γ)QL

) . (3.279)

By the sandwich formula (see Appendix A2; the formula can be applied due to the
strong consistency of θ̂QL), we have for the true value θ = (bT, s2ε , γT)T:√n(θ̂QL − θ) d󳨀→ N(0, Σθ) , (3.280)

Σθ = A−1θ BθA−Tθ . (3.281)

Here

Aθ = −Eθ ∂s(θ)QL∂θT
(y, x; θ) = ( Aβ 0 Aβγ

Aσ2ε β 1 Aσ2ε γ
0 0 I2

) , (3.282)
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I2 is the identity matrix of size 2 × 2,
Aβ = −Eθ ∂s(β)QL∂βT

(y, x; θ) = E μμT𝑣(x, θ) , (3.283)

Aβγ = −Eθ ∂s(β)QL∂γT
(y, x; θ) . (3.284)

The matrix A−1θ exists and has the form

A−1θ = (A−1β 0 Y
X 1 Z
0 0 I2

) , (3.285)

X = −Aσ2ε βA
−1
β , Y = −A−1β Aβγ , Z = −Aσ2ε βY − Aσ2e γ . (3.286)

The middle part of the “sandwich” (3.281) is equal to

Bθ = Eθ cov s(θ)QL (y, x; θ) = ( Bβ Bβσ2ε 0
Bσ2σβ Bσ2ε 0
0 0 Bγ

) , (3.287)

Bβ = Eθ cov s(β)QL (y, x; θ) = Aβ = E μμT𝑣(x; θ) , (3.288)

Bβσ2ε = Eθs(β)QL s
(σ2ε )
QL = BTσ2ε β , Bγ = covθ s(γ)QL . (3.289)

By the way according to the sandwich formula,

√n(γ̂QL − γ) d󳨀→ N(0, I−12 BγI−12 ) = N(0, Bγ) , (3.290)

so that Bγ is indeed the ACM of the estimator γ̂QL as stated in the theorem.
Then by the formulas (3.281), (3.285), and (3.287) we have

Σθ = (A−1β 0 Y
X 1 Z
0 0 I2

) (Bβ ∗ 0∗ ∗ 0
0 0 Bγ

) (A−1β XT 0
0 1 0
YT ZT I2

) =
= (A−1β Bβ ∗ YBγ∗ ∗ ZBγ

0 0 Bγ

) (A−1β XT 0
0 1 0
YT ZT I2

) , (3.291)

Σθ = (A−1β BβA−1β + YBγY ∗ ∗∗ ∗ ∗∗ ∗ ∗) . (3.292)

The written out block of matrix Σθ is the ACM of the estimator β̂QL. And taking into
account formulas (3.288) and (3.286), the ACM is equal to

Σ̃β = A−1β + A−1β AβγBγATβγA
−1
β . (3.293)
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Finally, we mention that the matrix Bθ is nonsingular, because it is block-diagonal
with nonsingular blocks Bγ (this is strightforward) and

( Bβ Bβσ2ε
Bσ2ε β Bσ2ε

) > 0 (3.294)

(see Theorem 3.27). The nonsingularity of Bθ justifies application of the sandwich for-
mula to the estimator θ̂QL . The theorem is proved.

Iterative procedure for computation of the estimate
To compute the estimates β̂QL and σ̂2ε,QL, when γ is unknown, an iterative procedure
is used similar to the one described in Section 3.2.2. It is only necessary, instead of the
functions ϕn and ψn, to apply the functions:

ϕ̂n = ϕn
󵄨󵄨󵄨󵄨γ=γ̂QL , ψ̂n = ψn

󵄨󵄨󵄨󵄨γ=γ̂QL . (3.295)

In particular (see formula (3.259)),

ϕ̂n(β, σ2ε ) := (1n n∑
i=1

μ̂(xi)μ̂T(xi)𝑣̂(xi , β, σ2ε ))
−1 × 1

n

n∑
i=1

μ̂(xi)yi𝑣̂(xi , β, σ2ε ) . (3.296)

Here, μ̂ and 𝑣̂ are the function from formula (3.271).
For such amodified iterative procedure, the statement of Theorem 3.29 on the con-

vergence of iterations to the QL estimator remains true.

Asymptotic efficiency of the estimator
In the framework of Remark 3.32, it is unclear whether the estimator β̂QL is more
asymptotically efficient than β̂C, under unknown nuisance parameter γ (see Theorem
3.22 for the case of known γ). The answer is positive.
Theorem 3.33. Assume the conditions of Theorem 3.31. The model in (3.5) can handle
polynomials of degree up to k, but suppose that the true polynomial is of degree s (that
is 0 ≤ s ≤ k; for b the true value of the parameter β, bs ̸= 0; bi = 0 for all i such that
s < i ≤ k). Let ΣC be the ACM of estimator β̂C, and ΣQL be the ACM of estimator β̂QL
under unknown σ2ε , σ2ξ , and μξ (both matrices are of size (k + 1) × (k + 1)). Then:
(a) in all the cases ΣQL ≤ ΣC,
(b) if b1 = b2 = ⋅ ⋅ ⋅ = bk = 0, then ΣQL = ΣC,
(c) if s = 1, then rank(ΣC − ΣQL) = k − 1,
(d) if s = 2, then rank(ΣC − ΣQL) = k,
(e) if s ≥ 3, then ΣQL < ΣC.

Proof can be found in Kukush et al. (2009).

Remark 3.34. The statement (c) implies that in the case k = s = 1, it holds that
ΣQL = ΣC. This is natural because one can show that in the linear model under un-
known nuisance parameters, β̂QL and β̂C coincide.
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Theorem 3.35. Under the conditions of Theorem 3.33, the following holds true:
(a)

ΣQL = σ2ε (EρρT)−1 + O(σ2δ) , as σ2δ → 0 , (3.297)

(b)
ΣC = ΣQL + O(σ4δ) , as σ2δ → 0 . (3.298)

Proof is given in Kukush et al. (2005b).
As one can see (cf. Theorem 3.23), these two statements are valid for both known

and unknown nuisance parameters.
Consider the situation where σ2ε is known, and the nuisance parameter γ remains

unknown. In this situation, we estimate the parameter

𝑣 = (β

γ
) = ( β

μξ
σ2ξ

) (3.299)

using the estimating function

s(𝑣)QL = (s(β)QL
s(γ)QL

) , (3.300)

i.e., the component s(σ
2
ε )

QL is deleted from the estimating function (3.279). Then the es-
timator 𝑣̂QL remains asymptotically normal, and moreover for a component β̂QL, the
ACM is specified with the formula (3.274). As we can see, knowledge or lack of knowl-
edge of σ2ε does not affect the asymptotic efficiency of estimator β̂QL.

The estimating function (3.300) is linear in y and unbiased. Like in Section 3.2.1,
consider arbitrary unbiased estimating function being linear in y:

sL(y, x; 𝑣) = g(x, 𝑣)y − h(x, 𝑣) , y, x ∈ R , 𝑣 ∈ Rk+1 × R × (0, +∞) . (3.301)

Here, g and h are theBorelmeasurable functions valued inRk+3, which can involve σ2ε .
Under mild conditions, as it is demonstrated in Appendix A1, the estimating function
(3.301) constructed from the observations y1, x1, . . . , yn, xn, yields the estimator 𝑣̂L
which is consistent and asymptotically normal, and moreover its ACM is given by a
sandwich formula like (3.190). Denote by L the class of all estimating functions (3.301)
for which everything just described above is valid. The class L contains the estimating
function (3.300) and also the estimation function

s(𝑣)C = (s(β)C
s(γ)QL

) . (3.302)

Theorem 3.36 (On asymptotic efficiency of the QL estimator). Let the parameters σ2δ
and σ2ε be known but β and γ unknown in the model (3.6) and (3.3) under the conditions
(i)–(iv). Consider an arbitrary estimating function sL ∈ L, and let Σ(𝑣)L and Σ(𝑣)QL be the
ACMs of the estimators 𝑣̂L and 𝑣̂QL, respectively. Then

Σ(𝑣)QL ≤ Σ(𝑣)L . (3.303)
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If in addition Σ(𝑣)QL = Σ(𝑣)L , for all the true values of the parameter 𝑣, then almost surely,𝑣̂L = 𝑣̂QL.
Proof can be found in Kukush et al. (2009).

In particular, statement (a) of Theorem 3.33 follows from inequality (3.303). Thus,
the QL estimator is asymptotically efficient in a broad class of estimators.

Remark 3.37. A number of results from Chapter 3 do not require the condition (ii) on
normaldistributionof errors εi . Instead, it is often enough to require aweaker assump-
tion (vii) about the centrality of errors and finiteness of the second moment Eε2i .

Remark 3.38. The QL estimator of the parameter β can be constructed under the as-
sumption that ξi are identically distributed and the distribution of ξi is a mixture of
several normal distributions (see Section 1.4.3).



4 Nonlinear and generalized linear models
In previous chapters, we studied some types of nonlinear regression (1.1) and con-
sidered the binary logistic regression models (1.2) and (1.3). It turns out that in these
models, conditional distribution of y given ξ belongs to the so-called exponential fam-
ily.

4.1 Exponential family of densities

Let Y be a random variable, with distribution depending on the parameter η ∈ I. Here
I = R or I is a given open interval on the real line being either finite or infinite. Let μ be
a σ-finite measure on the Borel σ-algebra B(R); σ-finiteness of a measure means that
the real line can be decomposed as R = ⋃∞i=1 An, where An are Borel measurable sets,
moreover μ(An) < ∞, for all n ≥ 1.

For example, theLebesguemeasure λ1 onB(R) is σ-finite becauseR = ⋃∞n=1 [−n, n]
and λ1([−n, n]) = 2n < ∞, n ≥ 1.

Suppose that Y has a density function ρ(y|η)w.r.t. themeasure μ. Thismeans that
for every set A ∈ B(R),

P{Y ∈ A|η} = ∫
A

ρ(y|η) dμ(y) . (4.1)

The latter integral is the Lebesgue integral (Halmos, 2013).

Definition 4.1. A density function ρ(y|η), η ∈ I, belongs to the exponential family if

ρ(y|η) = exp{ yη − C(η)
ϕ

+ c(y, ϕ)} , η ∈ I . (4.2)

Here C(⋅) ∈ C2(I) , C󸀠󸀠(η) > 0 for all η; ϕ > 0 is the so-called dispersion parameter;
c(y, ϕ) is a Borel measurable function of two variables.
It appears that the conditional mean E(Y|η) and conditional variance D(Y|η) are ex-
pressed through the function C(⋅) and ϕ; moreover, E(Y|η) does not depend on ϕ.
Lemma 4.2. Assume that ρ(y|η), η ∈ I, belongs to the exponential family (4.2). Then for
each η ∈ I,

E(Y|η) = C󸀠(η) . (4.3)
D(Y|η) = ϕC󸀠󸀠(η) . (4.4)

Proof. Putting A = R in (4.1), we have the identity

∫
R
exp{ yη − C(η)

φ + c(y, φ)} dμ(y) = 1 , η ∈ I . (4.5)
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Differentiating both sides of (4.5) with respect to η (we assume that the standard con-
ditions allowing to apply the Leibniz rule for differentiation of an integral w.r.t. a pa-
rameter are fulfilled):

∫
R

∂ρ(y|η)
∂η dμ(y) = 0 , (4.6)

∫
R
ρ(y|η) ⋅ ( y − C󸀠(η)

ϕ ) dμ(y) = 0 , (4.7)

∫
R
yρ(y|η)dμ(y) = C󸀠(η) ∫

R
ρ(y|η)dμ(y) , (4.8)

E(Y|η) = C󸀠(η) . (4.9)

To prove formula (4.4), let us differentiate the identity having been found above:

∫
R

yρ(y|η)dμ(y) = C󸀠(η) , η ∈ I . (4.10)

Again, using the Leibniz rule we get

∫
R
yρ(y|η) ⋅ (y − C󸀠(η)

ϕ ) dμ(y) = C󸀠󸀠(η) , (4.11)

∫
R
y2ρ(y|η)dμ(y) − C󸀠(η) ⋅ ∫

R
yρ(y|ϕ)dμ(y) = ϕC󸀠󸀠(ϕ) , (4.12)

E(Y2|η) − [E(y|η)]2 = ϕC󸀠󸀠(η) , (4.13)
D(Y|η) = ϕC󸀠󸀠(η) , η ∈ I . (4.14)

The lemma is proved.

We give several examples of exponential families.

Example 4.3 (Normal distribution). Let Y ∼ N(m, σ2), with m ∈ R and σ > 0. As the
measure μ, we take the Lebesguemeasure λ1 on the Borel σ-algebra B(R). Then, for Y,
the density function ρ(y|m) with respect to λ1 is just the ordinary probability density
function (pdf),

ρ(y|m) = 1√2π e− (y−m)2

2σ2 , y ∈ R . (4.15)

Transform it to the form (4.2)

ρ(y|m) = exp{ ym − m2/2
σ2

− ( y2

2σ2
+ ln(√2πσ))} . (4.16)

Thus, the pdf satisfies Definition 4.1. Here

η = m , ϕ = σ2 , C(η) = 1
2η

2 , c(y, ϕ) = −( y2
2ϕ + ln(√2πϕ)) . (4.17)
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For the normal density function, it holds that ϕ = σ2 = DY, and this fact justifies the
name of ϕ as dispersion parameter. We apply Lemma 4.2:

EY = C󸀠(η) = η = m ,
DY = ϕC󸀠󸀠(η) = ϕ = σ2 .

(4.18)

So, we have come to the correct results.

Example 4.4 (Poisson distribution). Suppose, Y has Poisson distribution Pois(λ),
with parameter λ = eη, η ∈ R. This means that Y takes nonnegative values and

P{Y = y} = e−λ

y! λ
y , y = 0, 1, 2, . . . . (4.19)

As the measure μ, we use the counting measure concentrated at integer points,

μ(A) = |A ∩ (N ∪ {0})| , A ∈ B(R) , (4.20)

i.e., μ(A) is the number of points in the latter intersection. Then expression (4.19) spec-
ifies the density function ρ(y|η) w.r.t. the measure μ

ρ(y|η) = exp{y ln λ − λ − ln(y!)} = exp {yη − eη − ln(y!)} , y ∈ N ∪ {0} . (4.21)

Thus, the density function satisfies Definition 4.1. Here η ∈ R, ϕ = 1, C(η) = eη, and
c(y, ϕ) = c(y) = − ln(y!).

We apply Lemma 4.2:

EY = C󸀠(η) = eη = λ , DY = ϕC󸀠󸀠(η) = eη = λ . (4.22)

Thus, we have obtained the correct result.

Example 4.5 (Gamma distribution). Suppose, Y has the gamma distribution Γ(α, λ),
with the shape parameter α and scale parameter λ > 0. This means that Y takes posi-
tive values, and the pdf of Y is equal to

ρ(y|λ) = λα

Γ(α) yα−1e−λy , y > 0 . (4.23)

The parameter α is assumed fixed.
As the measure μ, we take the Lebesgue measure concentrated on the positive

semiaxis:
μ(A) = λ1(A ∩ (0, +∞)) , A ∈ B(R) . (4.24)

Then expression (4.23) will give us the density function of Y w.r.t. the measure μ.
Transform ρ(y|λ) to the exponential form

ρ(y|λ) = exp{−λy + α ln λ + ((α − 1) ln y − ln Γ(α))} . (4.25)

Set
η = −λ , η < 0 . (4.26)
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Then

ρ(y|η) = exp{yη − (−α ln(−η)) + c(y)} , y > 0 , (4.27)
c(y) = (α − 1) ln y − ln Γ(α) , y > 0 . (4.28)

The density function ρ(y|λ), η < 0, belongs to the exponential family, with
ϕ = 1 , C(η) = −α ln(−η) . (4.29)

Let us utilize Lemma 4.2:

EY = C󸀠(η) = −α
η
= α
λ
, DY = C󸀠󸀠(η) = α

η2
= α
λ2

. (4.30)

Example 4.6 (Exponential distribution). Consider the distribution Γ(α, λ), with α = 1.
This is exponential distribution, with the parameter λ > 0:

ρ(y|λ) = λe−λy , y > 0 . (4.31)

The density function satisfies (4.2), where

η = −λ , ϕ = 1 , C(η) = − ln(−η) , c(y, ϕ) = 0 . (4.32)

According to formulas (4.30), we have

EY = 1
λ
, DY = 1

λ2
. (4.33)

Example 4.7 (Binary distribution, with λ = eη). Suppose that Y has the binary distri-
bution (cf. (1.2)):

P{Y = 1} = λ
1 + λ , P{Y = 0} = 1

1 + λ . (4.34)

Here λ > 0. The distribution is very common in epidemiology (see discussion at the
beginning of Chapter 1).

As the measure μ, we take a point measure concentrated at the points 0 and 1:

μ(A) = IA(0) + IA(1) , A ∈ B(R) . (4.35)

Here IA is the indicator function,

IA(x) = {{{1 , x ∈ A ,
0 , x ∉ A .

(4.36)

With respect to μ, the density function of Y is given as follows:

ρ(y|λ) = ( λ
1 + λ)y ( 1

1 + λ)1−y , y = 0; 1 ; (4.37)

ρ(y|λ) = exp{y ln λ − ln(1 + λ)} , y = 0; 1 . (4.38)
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Put η = ln λ ∈ R:
ρ(y|η) = exp{yη − ln(1 + eη)} , y = 0; 1 . (4.39)

For this density function, (4.2) holds with

ϕ = 1 , C(η) = ln(1 + eη) , c(y, ϕ) = 0 . (4.40)

According to Lemma 4.2, we have

EY = C󸀠(η) = eη

1 + eη = λ
1 + λ

, DY = C󸀠󸀠(η) = eη(1 + eη)2 = λ(1 + λ)2 . (4.41)

The latter equality can be transformed to the classical form

DY = P{Y = 1} ⋅ P{Y = 0} . (4.42)

Examples 4.3–4.7 demonstrate that various distributions belong to the exponential
family.

4.2 Regression model with exponential family of densities and
measurement errors

Given the exponential family (4.2), suppose that the parameter η depends on the re-
gressor ξ and unknown parameter β,

η = η(ξ, β) , ξ ∈ R , β ∈ Θβ ⊂ Rp . (4.43)

Here Θβ is a given parameter set, and the function (4.43) is assumed to be smooth
enough. Formulas (4.2) and (4.43) define the regression of Y on ξ , and β is a regression
parameter, while ϕ is a nuisance parameter.

Definition 4.8. The abovementioned regression model of Y on ξ is called generalized
linear model (GLM), if the relation (4.43) has the form

η = h(β0 + β1ξ) , ξ ∈ R , β = (β0, β1)T ∈ Θβ ⊂ R2 . (4.44)

Here h is a given smooth function.

Usually in the GLM, the parameter setΘβ = R2, i.e., there is no prior information about
the parameters β0 and β1.

4.2.1 Maximum likelihood estimator in the absence of measurement errors

Let {(yi , ξi), i = 1, n} be independent observations in the model (4.2) and (4.43). This
implies that the observed couples are stochastically independent; moreover, the den-
sity function of yi w.r.t. the measure μ is given by equality (4.2), with η = ηi and
ηi = η(ξi , β).
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The values ξi are nonrandom in the functional case, and they are independent
identically distributed random variables in the structural case.

In both cases it holds that

ρ(y|ξ, β) = ρ(y|η(ξ, β)) . (4.45)

Then
∂ρ(y|ξ, β)

∂β
= 1
ϕ
(y ⋅ η󸀠β − C󸀠(η) ⋅ η󸀠β) ⋅ ρ(y|ξ, β) , η = η(ξ, β) . (4.46)

The score function sML is equal to

sML(y, ξ; β) = η󸀠β ⋅ (y − C󸀠(η)) , η = η(ξ; β) . (4.47)

If the parameter set Θβ is open, then the maximum likelihood estimator (MLE) β̂ML is
a measurable solution to the equation

n∑
i=1

sML(yi , ξi; β) = 0 , β ∈ Θβ . (4.48)

Under mild conditions, the estimator is strongly consistent:

β̂ML
P1󳨀󳨀→ β , as n → ∞ . (4.49)

It is also asymptotically normal:√n (β̂ML − β) d󳨀→ N(0,Φ−1) . (4.50)

HereΦ is a positivedefinitematrix of size p×p. In the structural case,Φ is the so-called
Fisher information matrix,

Φ = −Eβ ∂sML(y, ξ; β)∂βT
. (4.51)

Using (4.47), we evaluate the matrix

Φ = −Eβ(y − C󸀠(η))η󸀠󸀠ββ + EβC󸀠󸀠(η)η󸀠β(η󸀠β)T . (4.52)

The first term is zero, because

EEβ [(y − C󸀠(η)) η󸀠󸀠ββ|ξ] = E {Eβ[y − C󸀠(η)|ξ] ⋅ η󸀠󸀠ββ} = 0 . (4.53)

Therefore,
Φ = EβC󸀠󸀠(η)η󸀠β(η󸀠β)T . (4.54)

Since C󸀠󸀠 > 0, the matrix Φ is positive definite, if the components of vector η󸀠β are
linearly independent in the space L2(Ω, P) of random variables. Usually, the latter
holds true.

Indeed, in the GLM (4.44),

η󸀠β = h󸀠(β0 + β1ξ) ⋅ (1; ξ)T . (4.55)

If h󸀠(t) ̸= 0, t ∈ R, and the random variable ξ is not constant, then the components of
vector η󸀠β(ξ, β) are linearly independent in L2(Ω, P), and thus, the informationmatrix
(4.54) is positive definite.
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Remark 4.9. In the functional case (when ξi are nonrandom), the matrixΦ from rela-
tion (4.50) is found as follows:

Φ = − lim
n→∞

1
n

n∑
i=1

Eβ
∂sML(y, ξi; β)

∂βT
, (4.56)

Φ = lim
n→∞

1
n

n∑
i=1

C󸀠󸀠(ηi)η󸀠β(η󸀠β)T , ηi = η(ξi , β) , η󸀠β = η󸀠β(ξi , β) . (4.57)

Come back to the structural case. Having estimated β one can, if necessary, estimate
the dispersion parameter ϕ. From formulas (4.3) and (4.4), we obtain

E(Y − C󸀠(η))2 = ϕ ⋅ EC󸀠󸀠(η) , η = η(ξ, β) . (4.58)

Therefore, the unbiased estimating equation for ϕ takes the form

n∑
i=1

(yi − C󸀠(ηi))2 = ϕ
n∑
i=1

C󸀠󸀠(ηi) , ηi = η(ξi , β) . (4.59)

This equation should be considered in tandemwith equation (4.48). Then the estima-
tor ϕ̂ of the parameter ϕ is equal to

ϕ̂ = 1
n

n∑
i=1

(yi − C󸀠(η̂i))2 : (1n n∑
i=1

C󸀠󸀠(η̂i)) , η̂i = η(ξi , β̂ML) . (4.60)

Due to the convergence (4.49) and the SLLM, one can show that a.s.,

lim
n→∞ ϕ̂ = lim

n→∞
1
n

n∑
i=1

(yi − C󸀠(ηi))2 : (1n n∑
i=1

C󸀠󸀠(ηi)) = E(Y − C󸀠(η))2
EC󸀠󸀠(η) = ϕ , (4.61)

i.e., ϕ̂ is strongly consistent. This fact holds in the functional case as well.

4.2.2 Quasi-likelihood estimator in the presence of measurement errors

Consider the regression model (4.2) and (4.43). Let a surrogate variable x be observed
instead of ξ

x = ξ + δ , (4.62)

the random vector (y, ξ)T and δ be stochastically independent, and also the pdf ρ(δ)
of the classical error be known. It is assumed that Eδ = 0. By the observations {(yi , xi),
i = 1, n}, we estimate the model parameters.

Note that in Section 1.4, we presented estimation methods in the model (1.1) and
(1.5), which is a particular case of the model (4.2), (4.43), and (4.62). This is due to the
fact that the normal pdf belongs to the exponential family (see Example 4.3). Now, we
apply these estimation methods to the general model.
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Thenaive estimator β̂naive is definedby the estimating function (4.47), inwhich the
observed values of the surrogate variable x are substituted instead of the unobserved
values of the latent variable ξ . Thus, β̂naive is a measurable solution to the equation

n∑
i=1

sML(yi , xi; β) = 0 , β ∈ Θβ . (4.63)

The estimator is not consistent even in the linear measurement error model (Theorem
2.3). The reason for the inconsistency is bias of the estimating function sML(y, x; β) (yet
the unbiasedness of an estimating function is a prerequisite for the consistency of an
estimator, see Appendix A1). Indeed,

EβsML(y, x; β) = Eβη󸀠β(y − C󸀠(η)) = EEβ [η󸀠β(y − C󸀠(η))|x, ξ ] == E {η󸀠βEβ (y − C󸀠(η)|x, ξ)} = Eη󸀠β(C󸀠(η(ξ, β)) − C󸀠(η(x, β)) . (4.64)

Here η = η(x, β) and η󸀠β = η󸀠β(x, β); we have exploited the indifferentiability of error δ
(Section 1.4.3) in the calculation

Eβ(y|x, ξ) = Eβ(y|ξ) = C󸀠(η(ξ, β)) . (4.65)

From equality (4.64), it is obvious that in general case, EβsML(y, x; β) ̸= 0, so the esti-
mating function sML(y, x; β) is biased.

The naive estimator can be used under relatively small measurement error vari-
ances σ2δ, then the asymptotic deviation of the estimate β̂naive from the true value will
be small.

To construct the quasi-likelihood (QL) estimator, we write down the conditional
mean and conditional variance of y given x. To do this, assume the following:
(i) The errors δi are identically distributed, with distribution N(0, σ2δ), where σ2δ is

positive and known.
(ii) Random variables ξi are identically distributed, with distribution N(μξ , σ2ξ ),

σ2ξ > 0.
Given (i) and (ii), in the model of regressor’s observations (4.62), we get

ξ ∼ N(μξ , σ2ξ ) , δ ∼ N(0, σ2δ) , ξ⊥⊥δ . (4.66)

Then the conditional distribution of ξ given x is determined by (1.86). This allowswrit-
ing down the conditional expectation and conditional variance of y given x.

Let θ be the total vector of unknown parameters , θT = (βT, ϕ, μξ , σ2ξ ). According
to formulas (1.59) and (4.9) we obtain

m(x, θ) = E(y|x) = E [m∗(ξ, θ)|x] == E [C󸀠(η(ξ, β))|x] = E [C󸀠(η(μ1(x) + τγ, β))|x] . (4.67)

Here γ ∼ N(0, 1), γ⊥⊥x, and the values μ1(x) and τ2 are given in (1.86); τ > 0.
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Notice that the conditional mean m(x, θ) does not depend on ϕ. In fact, the ex-
pectation in (4.67) is taken w.r.t. the variable γ under a fixed x.

Further, according to equalities (1.65), (4.9), and (4.14), we get𝑣(x, θ) = V(y|x) = ϕE[C󸀠󸀠(η)|x] + V[C󸀠(η)|x] == ϕE[C󸀠󸀠(η)|x] + E[(C󸀠(η))2|x] − m2(x, θ) . (4.68)

Here η = η(ξ, β); the latter conditional expectations can be rewritten like in equal-
ity (4.67). As is seen, the conditional variance 𝑣(x, θ) depends linearly on ϕ. Because
ϕ > 0 and C󸀠󸀠(η) > 0, then 𝑣(x, θ) > 0.
Estimation of regression parameter only
Assume now that the parameters ϕ, μξ , and σ2ξ are known (remember that σ

2
δ is also

assumed known by assumption (i)). The QL estimator β̂QL is defined by formulas (1.71)
and (1.70), withm(x, β) and 𝑣(x, β) given in (4.67) and (4.68), respectively. The param-
eter set Θβ is assumed to be compact in Rp. Thus, now the estimating function is as
follows:

s(β)QL (y, x; β) = y − m(x, θ)𝑣(x, θ) ⋅ ∂m(x, θ)
∂β . (4.69)

We write separately the latter column vector of partial derivatives:

∂m(x, θ)
∂β

= E [C󸀠󸀠(η) ⋅ η󸀠β|x] . (4.70)

This formula has been obtained from (4.67) by differentiating with respect to the pa-
rameter being under the expectation sign (we assume that the regularity conditions
being imposed allow to do so); in formula (4.70), the functions η and η󸀠β are evaluated
at point (ξ, β).

Undermild conditions, the estimator β̂QL is strongly consistent (see Appendix A1).
Indeed,

Eβs(β)QL (y, x; β) = 0 (4.71)

(see calculation (1.77)), and the estimating function s(β)QL is unbiased. In addition,when
the strong law of large numbers (SLLN) holds true, we have

1
n

n∑
i=1

s(β)QL (yi, xi; b) P1󳨀󳨀→ Eβ
y − m(x, b)𝑣(x, b) ⋅ ∂m(x, b)

∂β , (4.72)

1
n

n∑
i=1

s(β)QL (yi, xi; b) P1󳨀󳨀→ S(β)∞ (β, b) = Em󸀠β(x, b) ⋅ m(x, β) − m(x, b)𝑣(x, b) . (4.73)

Moreover, the convergence is uniform in β ∈ Θβ, almost surely.
The asymptotic equation,

S(β)∞ (β, b) = 0 , b ∈ Θβ , (4.74)
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should have a unique solution b = β. This is our demand on the regression model,
which holds, in particular, for polynomial regression (see the proof of Theorem 3.13).
Under the demand, it holds indeed that β̂QL

P1󳨀󳨀→ β.
Then just as in the proof of Theorem 3.13, using the sandwich formula it can be

shown that if β is an interior point of Θβ, then

√n (β̂QL − β) d󳨀→ N(0, Bβ) , (4.75)

Bβ = Φ−1β = (E1𝑣 ∂m
∂β (∂m∂β )T)−1 . (4.76)

Here, 𝑣 and ∂m
∂𝑣 are evaluated at the point (x, β). The matrixΦβ is nonsingular, if com-

ponents of the random vector ∂m
∂β (x, β) are linearly independent in the space L2(Ω, P).

We urgently require the latter; this holds true for the polynomial regression (see the
proof of Theorem 3.13).

Estimation of regression parameter and dispersion parameter
Now, suppose that μξ and σ2ξ are known and the parameters z = (βT, ϕ)T are to be
estimated. The estimating function s(β)QL (y, x; β, ϕ) is given by equality (4.69). However,
an additional estimating function s(ϕ)QL has to be constructed for takingϕ into account.
In view of (4.68), we put

s(ϕ)QL (y, x; β, ϕ) = (y − m(x, θ))2 − ϕE[C󸀠󸀠(η)|x] − E[(C󸀠(η))2|x] + m2(x, θ) . (4.77)

Construct the total estimating function

s(z)QL = (s(β)QL
s(ϕ)QL

) . (4.78)

The estimator ẑQL = (β̂TQL , ϕ̂QL)T is defined as a Borel measurable function of obser-
vations y1, x1, . . . , yn, xn, which eventually satisfies the estimating equation

n∑
i=1

s(z)QL(yi , xi; z) = 0 , z ∈ Θz . (4.79)

Here Θz is a given parameter set in Rp × (0, +∞). Usually we set Θz = Θβ × [ϕ1, ϕ2],
whereΘβ is a compact set inRp and0 < ϕ1 < ϕ2. Thus, we assume that the dispersion
parameter ϕ lies between certain bounds ϕ1 and ϕ2.

Explain why the estimating function (4.78) is unbiased. We have

Ezs(β)QL (y, x; z) = Em(x, β) − m(x, β)𝑣(x; β, ϕ) ⋅ ∂m(x, β)
∂β = 0 , (4.80)

Ezs(ϕ)QL (y, x; z) = E[𝑣(x; z) − 𝑣(x; z)] = 0 , (4.81)
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and the estimating function s(z)QL is indeed unbiased. Next, let z0 = (bT, ϕ0)T be the
true value of z. By the SLLN,

1
n

n∑
i=1

s(z)QL(yi , xi; z) = P1󳨀󳨀→ s(z)∞ (z0, z) = Ez0s
(z)
QL(y, x; z) . (4.82)

Moreover, here the convergence is uniform in z ∈ Θz.
Consider the limit equation

s(z)∞ (z0, z) = (s(β)∞ (z0, z)
s(ϕ)∞ (z0, z)) = 0 , z ∈ Θz . (4.83)

The first equation of this system takes the form

Em(x, b) − m(x, β)𝑣(x; β, ϕ) ⋅ ∂m(x, β)
∂β = 0 , b ∈ Θβ , ϕ ∈ [ϕ1, ϕ2] . (4.84)

We demand that for each ϕ ∈ [ϕ1, ϕ2], the equation being an equation in b ∈ Θβ
should have a unique solution b = β (cf. the proof of Theorem 3.13). Given b = β, the
second equation of the system (4.83) is simplified as(ϕ0 − ϕ) EC󸀠󸀠(η(x, β)) = 0 , ϕ ∈ [ϕ1, ϕ2] . (4.85)

This expectation is positive, because C󸀠󸀠 > 0 due to Definition 4.1. So, ϕ = ϕ0 is the
only solution to equation (4.85).

Hence, the limit equation (4.83) has a unique solution z = z0.
This fact and the unbiasedness of estimating function ensure the strong consis-

tency of the estimator ẑQL (Appendix A1). Moreover, by the sandwich formula (Ap-
pendix A2) we have the following. If β0 is an interior point of Θβ and ϕ0 ∈ (ϕ1, ϕ2),
then √n ( ̂zQL − z0) d󳨀→ N(0, Σz) , (4.86)

Σz = A−1z BzA−Tz , Az = −Ez0 ∂s(z)QL∂zT
(y, x; z0) , (4.87)

Bz = Ez0s(z)QL(s(z)QL)T . (4.88)

Here s(z)QL = s(z)QL(y, x; z0).
The matrix Az has the form

Az = ( −E ∂s(β)QL
∂βT 0∗ EC󸀠󸀠(η) ) . (4.89)

The matrix has got a zero upper block because

Ez0
∂s(β)QL
∂ϕ

(y, x; z0) = Ez0(y − m(x, b))∂m(x, b)
∂β

⋅ ∂
∂β ( 1𝑣(x; b, ϕ0)) = 0 . (4.90)
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In addition, − E∂s(β)QL
∂βT

= Φβ > 0 , (4.91)

where the matrix Φβ was introduced in (4.76). Hence,

det Az = (detΦβ)EC󸀠󸀠(η) > 0 , (4.92)

and the matrix Az is nonsingular. Under mild conditions, the matrix Bz is nonsingu-
lar as well. The nonsingularity of the two matrices justifies validity of the sandwich
formula (4.86)–(4.88).

Further, the matrix Bz has a block structure

Bz = (Φβ ∗∗ ∗) . (4.93)

From relations (4.89), (4.91), (4.93), and the sandwich formula (4.87), we obtain, as in
the proof of Theorem 3.27, that

Σz = (Φ−1β ΦβΦ−1β ∗∗ ∗) = (Φ−1β ∗∗ ∗) . (4.94)

Given the convergence (4.86), this means for the component β̂QL of the estimator ̂zQL ,
that √n (β̂QL − b) d󳨀→ N(0,Φ−1β ) , (4.95)

i.e., when μξ and σ2ξ are known, the asymptotic covariance matrix (ACM) of the QL
estimator for the parameter β is equal to Φ−1β and does not depend on whether the
parameter ϕ is known or not (see (4.75) and (4.76)).

The system (4.79) of equations w.r.t. z = (βT, ϕ)T can be solved numerically by an
iterative method, similar to the one from Theorem 3.29. We just describe the method.

Denote by P a projector on [ϕ1, ϕ2],
P(ϕ) = {{{{{{{

ϕ, ϕ ∈ [ϕ1, ϕ2],
ϕ1, ϕ < ϕ1,
ϕ2, ϕ > ϕ2.

(4.96)

(1) Take arbitrary initial values β(0) ∈ Θβ and ϕ(0) ∈ [ϕ1, ϕ2].
(2) Given β(j) and ϕ(j) from the jth iteration of the algorithm, we evaluate β(j+1) as a

solution to the equation
n∑
i=1

yi − m(xi , β)𝑣(xi; β(j), ϕ(j)) ⋅ ∂m∂β (xi , β) = 0 , β ∈ Θβ . (4.97)

(If the equation has no solution, then a point from the compact set Θβ, with the
smallest Euclidean norm of the left-hand side of (4.97), should be taken as β(j+1).)
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Then we find ϕ̃(j+1) as a solution to the linear equation

n∑
i=1

s(ϕ)QL (yi , xi; β(j+1), ϕ) = 0 , ϕ ∈ R , (4.98)

and put ϕ(j+1) = P(ϕ̃(j+1)).
Under mild conditions, we have eventually

lim
j→∞

β(j) = β̂QL , lim
j→∞

ϕ(j) = ϕ̂QL . (4.99)

Note that unlike the case of polynomial regression, (4.97) can be a nonlinear equation,
which has to be solved by corresponding numerical methods.

The case where all the nuisance parameters are unknown
Now, we have to estimate the vector parameter

θ = (zT, γT)T = (βT, ϕ, μξ , σ2ξ )T . (4.100)

Here γ = (μξ , σ2ξ )T is the vector of parameters of the distribution of ξ .
As a preliminary, construct the estimator γ̂QL by formulas (3.269) and (3.270). Next,

denote ̂s(z)QL(y, x; z) = s(z)QL(y, x; z, ̂γQL) . (4.101)

The estimator ̂zQL = (β̂TQL, ϕ̂QL)T is defined as a measurable solution to the equation
n∑
i=1

̂s(z)QL(yi , xi; z) = 0 , z ∈ Θβ × [ϕ1, ϕ2] . (4.102)

The iterative numerical algorithm described in Section 4.2.2 can be obviously adapted
to compute the estimate ̂zQL.

The estimator is strongly consistent. If the true value of β is an interior point of Θβ
and the true value ϕ ∈ (ϕ1, ϕ2), then ẑQL is asymptotically normal estimator. To write
down the ACM of the estimator, we reflect in amanner similar to the proof of Theorem
3.31.

The estimator γ̂QL is a solution to the system, (3.278) and (3.277), hence θ̂QL =( ̂zTQL, γ̂TQL)T is determined by the estimating function
s(θ)QL = (s(z)QL

s(γ)QL
) . (4.103)

Then utilizing the sandwich formula, we get

√n (θ̂QL − θ) d󳨀→ N(0, Σθ) , Σθ = A−1θ BθA−Tθ . (4.104)
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Here

Aθ = −Eθ ∂s(θ)QL∂θT
(y, x; θ) = ( Aβ 0 Aβγ

Aϕβ Aϕϕ Aϕγ
0 0 I2

) , (4.105)

Aβ = Φβ , Aϕϕ = EC󸀠󸀠(η) > 0 . (4.106)

By Sylvester’s criterion, matrix Aθ is positive definite. The inverse matrix has the form

A−1θ = (A−1β 0 Y∗ A−1ϕϕ ∗
0 0 I2

) , Y = −A−1β Aβγ . (4.107)

The middle part of the “sandwich” (4.104) is equal to

Bθ = Eθ cov s(θ)QL (y, x; θ) = ( Bβ Bβϕ 0
Bϕβ Bϕ 0
0 0 Bγ

) , (4.108)

Bβ = Φβ , Bγ = covγ s(γ)QL . (4.109)

Then similarly to the calculations (3.291) and (3.292), we obtain

Σθ = (A−1β BβA−1β + YBγYT ∗ ∗∗ ∗ ∗∗ ∗ ∗) . (4.110)

The written out block of the matrix Σθ is the ACM of the estimator β̂QL, and the ACM is
equal to (see formulas (4.106), (4.107), and (4.109)):

Σ̃β = Φ−1β + Φ−1β AβγBγATβγΦ
−1
β . (4.111)

We obtained a formula similar to (3.293). It shows that lack of knowledge about the
nuisance parameters γworsens the estimation quality for the regression parameter β.

4.2.3 Corrected score estimator

We consider the structural model (4.2), (4.43), and (4.62), under the assumption (i).
The distribution of ξi is not necessarily normal.

Construct the CS estimator β̂C (Section 1.4.4). We start with the unbiased score
sML(y, ξ; β) presented in (4.47), which yields the consistent estimator of β under the
absence of error in the regressor. Let gC(x, β) and hC(x, β) be solutions to the vector
deconvolution equations:

E[gC(x, β)|ξ] = η󸀠β(ξ, β) , (4.112)

E[hC(x, β)|ξ] = C󸀠(η) ⋅ η󸀠β(ξ, β) , η = η(ξ, β) ; β ∈ Θβ . (4.113)
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Now, we assume that there exist smooth enough solutions to these equations. (Later
on, we will reveal that it is not true for the logistic errors-in-variablesmodel, based on
Example 4.7. However, in many concrete models, these deconvolution equations can
be solved.)

Consider the estimating function

SC(y, x; β) = y ⋅ gC(x, β) − hC(x, β) , β ∈ Θβ . (4.114)

We have

E[sC(y, x; b)|y, ξ] = y E[gC(x, b)|ξ] − E[hC(x, b)|ξ]= y ⋅ η󸀠β − C󸀠(η) ⋅ η󸀠β = sML(y, ξ; b) , b ∈ Θβ . (4.115)

The corrected score estimator β̂C eventually satisfies the equation

n∑
i=1

sC(yi , xi; β) = 0 , β ∈ Θβ . (4.116)

Asymptotic properties of the estimator
Undermild conditions, the estimator β̂C is strongly consistent and asymptotically nor-
mal, with the ACM

Σβ,C = A−1β,CBβ,CA−1β,C , (4.117)

Aβ,C = −Eβ ∂sC(y, x; β)∂βT
, Bβ,C = covβ sC(y, x; β) . (4.118)

The latter twomatrices can be written through the conditional mean (4.67) and condi-
tional variance (4.68). Here we assume that either the condition (ii) on the normality
of ξ holds or the distribution of ξ is a mixture of several normal distributions (see
Section 1.4.3). Thus, we get

Aβ,C = E∂hC
∂βT

− Eβy ∂gC∂βT
= E(∂hC

∂βT
− m(x, β) ⋅ ∂gC

∂βT
) , (4.119)

Bβ,C = covβ[(y − m(x, β))gC + (m(x, β)gC − hC)] == E(y − m(x, β))2gCgTC + covβ(m(x, β)gC − hC) == E𝑣(x, β)gCgTC + covβ(m(x, β)gC − hC) . (4.120)

Here we used the fact that for m = m(x, β), it holds that
E(y − m) gC(mgC − h)T = E[gC(mgC − h)T ⋅ E(y − m|x)] = 0 . (4.121)

Of course, the nonsingularity of matrix Aβ,C is required. By formula (4.120), we obtain

Bβ,C ≥ E𝑣(x, β)gCgTC > 0 , (4.122)
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if the components of the gradient η󸀠β(ξ, β) are linearly independent random variables
in the space L2(Ω, P). The latter we certainly demand. Then the matrix Bβ,C is nonsin-
gular as well, and the sandwich formula (4.117) can be applied.

Notice that in the generalized linear model (4.44), if h󸀠(t) ̸= 0, t ∈ R, then the
components of η󸀠β(ξ, β) are linearly independent (Section 4.2.1).
Quasi-likelihood estimator is more efficient than corrected score estimator
Now, assume both conditions (i) and (ii) in the model (4.2), (4.43), and (4.62). The nui-
sance parameters ϕ, μξ , and σ2ξ are assumed known. We are going to compare the
ACMs of estimators β̂QL and β̂C.

Theorem 3.21 on the asymptotic efficiency of the QL estimator is generalized. Con-
sider a linear in y unbiased estimating function

sL(y, x; β) = g(x, β) ⋅ y − h(x, β), y ∈ R, x ∈ R, β ∈ Θβ ⊂ Rp . (4.123)

Here g and h are Borel measurable functions with values inRp. Based on sL, we define
the estimator β̂L as a measurable solution to equation

n∑
i=1

sL(yi , xi; β) = 0 , β ∈ Θβ . (4.124)

Undermild conditions, β̂L is consistent and asymptotically normal estimator, with the
ACM given in (3.190) (see Corollary A.31 in Appendix A2).

Denote by L the class of all such estimating functions that the corresponding es-
timator β̂L has all abovementioned asymptotic properties. It is clear that sC and sQL
belong to L.

Theorem 4.10. Let sL ∈ L, and ΣL , ΣQL be the ACMs of estimators β̂L and β̂QL, respec-
tively. Then ΣQL ≤ ΣL. If in addition, ΣL = ΣQL holds true, for all the true values b ∈ Θβ,
then β̂L = β̂QL, almost surely.

Proof is given in Kukush et al. (2009).
The theorem shows that the QL estimator is asymptoticallymore efficient than the

CS estimator. Later on for concrete models, we will give conditions that ensure a strict
inequality ΣQL < ΣC.

Further, consider the behavior of the matrices ΣQL and ΣC for small σ2δ . Each of
those is expanded in powers of the variance σ2δ, as σ

2
δ → 0. We reveal that the expan-

sion for difference of the matrices starts only with terms of order σ4δ or even higher
order.

Theorem 4.11. For the ACMs ΣQL and ΣC, it holds that
(a)

ΣQL = Φ−1 + O(σ2δ) , as σ2δ → 0 , (4.125)

with the information matrix Φ given in (4.54), and
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(b)
ΣC = ΣQL + O(σ4δ) , as σ2δ → 0 . (4.126)

Proof can be found in Kukush and Schneeweiss (2005a, 2005b).
Please pay attention to the discussion just after Theorem 3.23. The discussion re-

mains in force regarding the models with exponential family of densities.

Remark 4.12. Suppose that ϕ is known, while β, μξ , and σ2ξ are unknown. Then, in
general, one cannot state that Σ̃β ≤ ΣC, where Σ̃β is the ACM of the estimator β̂QL (see
formula (4.111)). But we will see later on that in some models, the inequality holds
true. We have already seen that this is true in the polynomial model.

Estimation of dispersion parameter
Let the form of distribution of ξi be unknown. To construct β̂C, it is unnecessary to
know the parameter ϕ. However, one might need to estimate ϕ, for example, in order
to estimate consistently the ACM of the estimator β̂C.

To construct the estimator β̂C, we write down the conditional second moment of
response on the basis of formulas (4.9) and (4.14):

E(y2|ξ) = (C󸀠)2 + ϕC󸀠󸀠 . (4.127)

Hereafter C󸀠 and C󸀠󸀠 are evaluated at the point η(ξ, β).
Let pC(x, β) and qC(x, β) be solutions to deconvolution equations

E[pC(x, β)|ξ] = (C󸀠)2 , (4.128)
E[qC(x, β)|ξ] = C󸀠󸀠 , β ∈ Θβ . (4.129)

Introduce the estimating function

s(ϕ)C (y, x; β, ϕ) = y2 − pC(x, β) − ϕqC(x, β) , β ∈ Θβ . (4.130)

Denote by ϕ̃C a solution to the linear equation
n∑
i=1

s(ϕ)C (yi , xi; β̂C, ϕ) = 0 , ϕ ∈ R . (4.131)

Set

ϕ̂C = {{{ϕ̃C if ϕ̃C ≥ 0 ,
0 if ϕ̃C < 0 . (4.132)

The estimators β̂C and ϕ̂C eventually satisfy the system of equations
n∑
i=1

s(z)C (yi , xi; β, ϕ) = 0 , β ∈ Θβ , ϕ > 0 , (4.133)

s(z)C = (s(β)C
s(ϕ)C

) . (4.134)
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The estimating function s(z)C is unbiased:

Eβ,ϕs(ϕ)C (y, x; β, ϕ) = EEβ,ϕ[s(ϕ)C (y, x; β, ϕ)|ξ] == E[Eβ,ϕ(y2|ξ) − (C󸀠)2 − ϕC󸀠󸀠] = 0 . (4.135)

Further, as n → ∞,

1
n

n∑
i=1

s(z)C (yi , xi; b, f) P1󳨀󳨀→ S(z)C,∞(β, ϕ; b, f) = Eβ,ϕs(z)C (y, x; b, f) . (4.136)

Consider the asymptotic equation

S(z)C,∞(β, ϕ; b, f) = 0 , b ∈ Θβ , f > 0 . (4.137)

From the first equation S(β)C,∞(β; b) = 0, b ∈ Θβ, we get b = β. Then the second equation
of (4.137) is simplified as (ϕ − f) ⋅ EC󸀠󸀠(η(ξ, β)) = 0 , f > 0 , (4.138)

whence f = ϕ. Therefore, the asymptotic equation (4.137) has a unique solution b = β
and f = ϕ. This fact and the unbiasedness of the estimating function s(z)C provide the
strong consistency of the estimator ̂zC = (β̂TC, ϕ̂C)T, in particular, ϕ̂C is the strongly
consistent estimator of the dispersion parameter.

The ACM of ẑC can be found by the sandwich formula.

4.2.4 Other methods for estimation of regression parameter

Regression calibration method described in Section 1.4.5 can be utilized in the model
(4.2), (4.43), and (4.62) under the conditions (i) and (ii). As unbiased estimating func-
tion s(y, ξ; β), one can take the function sML from formula (4.47), and the vector(μξ , σ2ξ )T plays the role of a nuisance parameter γ. The same method can be used
under unknown ϕ, μξ , and σ2ξ (see the discussion in Section 1.4.5).

In the latter situation, the SIMEX estimator can be applied as well (see Sec-
tion 1.4.6), again with sML(y, ξ; β) taken as an unbiased estimating function.

Remember that both methods do not yield consistent estimator, but they can sig-
nificantly reduce the deviations of the estimate from the true value, compared to the
naive estimate β̂naive (see Section 4.2.2).

4.3 Two consistent estimators in Gaussian model

Now, we turn to the concrete structural regression models with exponential family of
densities and errors in the covariate. Consider Example 4.3, in which we set

η = βTϕ(ξ) , β ∈ Rp , ϕ : R → Rp . (4.139)
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The regression model (4.16), (4.17), and (4.139) is a linear in β Gaussian model:

y = βTϕ(ξ) + ε , ε ∼ N(0, σ2) , ξ⊥⊥ε . (4.140)

Additionally, we assume that instead of ξ , we observe

x = ξ + δ , δ ∼ N(0, σ2δ) . (4.141)

Moreover, it is supposed that ξ , ε, and δ are independent and σ2δ is known.
The polynomial model studied in Chapter 3 is a special case of the observation

model (4.140) and (4.141). But we will consider another choice of the function ϕ:

ϕ(ξ) = (eλ1ξ , . . . , eλpξ)T , λi ̸= λj , i, j = 1, p . (4.142)

For such a function ϕ, we concretize the consistent estimators from Section 4.2.

4.3.1 Corrected score estimator

In the model (4.140), the score sML(y, ξ; β), corresponding to the observations y and ξ ,
is as follows:

sML = ϕy − (ϕϕT)β . (4.143)

The corrected score sC(y, ξ; β) has the form
sC = ty − Hβ , (4.144)

with
E(t(x)|ξ) = ϕ(ξ) , E(H(x)|ξ) = ϕ(ξ) ϕT(ξ) . (4.145)

The basic equation is the following:

E(tλ(x)|ξ) = ϕλ(ξ) = eλξ , λ ∈ R . (4.146)

The function
tλ(x) = eλx

Eeλδ = e− λ2σ2δ2 ⋅ eλx , x ∈ R , (4.147)

satisfies (4.146), because

E(tλ(x)|ξ) = 1
Eeλδ E(eλξ ⋅ eλδ|ξ) = eλξ ⋅ Eeλδ

Eeλδ = eλξ . (4.148)

Then solutions to equations (4.145) are

t(x) = (tλi (x))pi=1 , H(x) = (Hij(x))pi,j=1 = (tλi+λj(x))pi,j=1 . (4.149)

The estimating equation for the estimator β̂C has the form

t(x)y − H(x) β = 0 , β ∈ Rp . (4.150)



128 | 4 Nonlinear and generalized linear models

Theorem 4.13. In the model (4.140)–(4.142), assume the following:
(a)

Ee2λ∗ξ < ∞ , Ee2λ∗ξ < ∞ , (4.151)

where λ∗ = min{0; λi , i = 1, p} , λ∗ = min{0; λi , i = 1, p}.
(b) The cdf Fξ of the regressor ξ is strictly increasing on certain interval [a, b].
Then eventually thematrix H(x) is nonsingular, the estimator β̂C eventually satisfies the
equality

β̂C = (H(x))−1 t(x)y , (4.152)

and β̂C is the strongly consistent estimator of the parameter β.

Proof. Due to condition (a) and equality (4.148), we have

Etλi+λj(x) = Ee(λi+λj)ξ < ∞ , i, j = 1, p . (4.153)

By the SLLN,
EH(x) P1󳨀󳨀→ H∞ = EH(x) = Eϕ(x)ϕT(x) . (4.154)

The matrix H∞ is the Gram matrix of random variables ϕλi (ξ) = eλi ξ , i = 1, p, in the
space L2(Ω, P). We will show that they are linearly independent.

Let a1eλ1ξ + ⋅ ⋅ ⋅ + apeλpξ = 0, almost surely, where a1, . . . , ap are some real num-
bers. Because of condition (b), for all t ∈ [a, b] it holds that a1eλ1t + ⋅ ⋅ ⋅ + apeλpt = 0.
But it is known that the functions ϕλi (t), i = 1, p, are linearly independent on each
interval, when λ󸀠is are distinct. Hence, we get a1 = ⋅ ⋅ ⋅ = ap = 0, which proves the lin-
ear independence of the random variables ϕλi (ξ), i = 1, p. This implies that the Gram
matrix H∞ is nonsingular.

From the convergence (4.154), we infer that the matrix H(x) is nonsingular even-
tually, and the solution to (4.150) is eventually given by equality (4.152).

The proof of the strong consistency of the estimator β̂C is similar to the proof of
Theorem 3.5 and omitted here. The proof of Theorem 4.13 is accomplished.

We write down the ACM of the estimator under the following condition about the nor-
mality of latent variable
(c)

ξ ∼ N(μξ , σ2ξ ) , σ2ξ > 0 . (4.155)

To do this, at first the conditional mean m(x, β) and conditional variance 𝑣(x; β, σ2ε )
of the response y given x should be found. So, we have from equality (4.140):

m(x, β) = E(y|x) = βTE[ϕ(ξ)|x] . (4.156)

Remember that under the additional condition (c), the conditional distribution of ξ
given x is presented in (1.86) and (1.87). Then for λ ∈ R, it holds (here γ ∼ N(0, 1) and
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γ⊥⊥x)
fλ(x) := E(eλξ |x) = E(eλ(μ1(x)+τγ)|x) = eλμ1(x)Eeλ⋅τγ , (4.157)

fλ(x) = exp{λμ1(x) + λ2τ2

2 } . (4.158)

Denote
f(x) = (fλ1 (x), . . . , fλp(x))T , x ∈ R . (4.159)

Then from equations (4.156) and (4.142) it follows

m(x, β) = βTf(x) . (4.160)

Next, we introduce a matrix

F(x) = E[ϕ(ξ)ϕT(ξ)|x] = (Fij(x))pi,j=1 , (4.161)

Fij(x) = E(e(λi+λj)ξ |x) = fλi+λj (x) . (4.162)

Similarly to the formula (3.60) being found for the polynomial model, we deduce the
following in the model (4.140)–(4.142):𝑣(x; β, σ2ε ) = V(y|x) = σ2ε + βT(F(x) − f(x)f(x)T)β . (4.163)

Like in the polynomial model, it holds that𝑣(x; β, σ2ε ) ≥ σ2ε > 0 . (4.164)

Theorem 4.14. In the model (4.140)–(4.142), assume the conditions (b) and (c). Then√n(β̂C − β) d󳨀→ N(0, ΣC) , (4.165)

where ΣC is the nonsingular matrix which depends on β, σ2ε , μξ , and σ2ξ :

ΣC = A−1C BCA−1C , AC = EϕϕT , BC = E𝑣ttT + E(tfT − H)ββT(tf T − H)T . (4.166)
Here 𝑣 is given in (4.163), f in relations (4.158), (4.159), and t and H in equalities (4.147),
(4.148).

Proof is quite similar to the proof of Theorem 3.7 and omitted here.
We mention that formula (4.166) for BC is similar to formula (3.84). The matrix AC

is positive definite as the Grammatrix of linearly independent random variables eλiξ ,
i = 1, p, in the space L2(Ω, P); in addition,

BC ≥ E𝑣ttT > 0 , (4.167)

because the latter matrix is the Grammatrix of linearly independent random variables√𝑣 tλi (x), i = 1, p, in L2(Ω, P).
Remark 4.15. Assume the conditions of Theorem 4.14. Similarly to Theorem 3.10,

σ̂2ε,C = y2 − β̂TCty (4.168)

is a strongly consistent estimator of the parameter σ2ε .
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4.3.2 Quasi-likelihood estimator

Consider the model (4.140)–(4.142) under the conditions (b) and (c). In this model,
we have written down the conditional mean and conditional variance of the response
variable, see (4.160) and (4.163). As in Section 3.2, this allows us to write down the
estimating function for the QL estimator β̂QL (the estimating function depends on the
nuisance parameters σ2ε , μξ , and σ2ξ ):

s(β)QL (y, x; β, σ2ε ) = f(x) (y − f T(x)β)𝑣(x; β, σ2ε ) . (4.169)

If the nuisance parameters are known, the estimator β̂QL is defined as a solution to
equation

1
n

n∑
i=1

1𝑣(xi; β, σ2ε ) (f(xi)yi − f(xi)f T(xi)β) = 0 , β ∈ Rp . (4.170)

Nonlinear equation (4.170) does not always possess a solution. Define the estimator
more accurately.

Definition 4.16. The estimator β̂QL is a Borel measurable function of the observations
y1, x1, . . . , yn, xn, such that
(a) if equation (4.170) has no solution, then β̂QL = 0;
(b) if the equation has a solution, then β̂QL is a solution with minimal norm (if there

are several such solutions then we take any of them).
(Concerning correctness of the definition, see the discussion just after Definition 3.12.)

Without proof, we state an analog of Theorem 3.13.

Theorem 4.17. In the model (4.140)–(4.142), assume that the nuisance parameters σ2ε ,
μξ and σ2ξ are known and the conditions (b) and (c) hold true. Denote by b = (bi)pi=1 the
true value of regression coefficients. Then the following statements hold true.
(a) For any R > ‖b‖, eventually there exists a unique solution to equation (4.170) on

the ball
BR = {β ∈ Rp : ‖β‖ ≤ R} . (4.171)

(b)
β̂QL

P1󳨀󳨀→ b . (4.172)

(c)

√n (β̂QL − b) d󳨀→ N(0, Bb) , (4.173)

Bb = (E f(x)f T(x)𝑣(x, b) )−1 . (4.174)

The estimate can be evaluated similarly to Section 3.2.1. Using methods of Kukush
et al. (2009), one can prove the next analog of Theorem 3.22.
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Theorem 4.18. Assume the conditions of Theorem 4.17. Let ΣC and ΣQL = Bb be the
ACMs of the estimators β̂C and β̂QL in the model (4.140)–(4.142).
(a) If the true regression function bTϕ(ξ) is constant (i.e., the dependence of y on ξ

vanishes), then ΣQL = ΣC.
(b) If the true regression function is not constant, then ΣQL < ΣC.

Now, suppose that the variance σ2ε is unknown and nuisance parameters μξ and σ2ξ
are still known. Then we estimate simultaneously the parameters β and σ2ε , and the
following analog of (3.231) is added to equation (4.170):

σ2ε = 1
n

n∑
i=1

(yi − f T(xi)β)2 − βT ⋅ 1
n

n∑
i=1

[F(xi) − f(xi)fT(xi)] β ,
β ∈ Rk+1 , σ21 ≤ σ2ε ≤ σ22 . (4.175)

Here 0 < σ21 < σ22 are given thresholds for the variance of error in response.
The estimators β̂QL and σ̂2ε,QL are defined by equations (4.170) and (4.175) similarly

to Definition 3.26. The analog of Theorem 3.27 is correct, where the ACM of the QL
estimator for the parameter β does not depend on whether we know the variance σ2ε
or not.

Now, let all the nuisance parameters σ2ε , μξ , and σ2ξ be unknown. Preliminary esti-
mators μ̂ξ,QL and σ̂2ξ,QL are constructed by formulas (3.269) and (3.270). Further, these
estimators are substituted in the expressions for f(x), F(x), and 𝑣(x; β, σ2ε ) in the sys-
tem (4.170) and (4.175); then the system defines new estimators β̂QL and σ̂2ε,QL. The
analog of Theorem 3.31 is correct, which shows that the ACM of the estimator for the
parameter β increases compared to expression (4.174) (cf. formula (3.274) for the poly-
nomial regression). At that, the technique of the paper by Kukush et al. (2009) does
not allow to state that the ACMof the QL estimator for the parameter β does not exceed
the ACMof the CS estimator. The situationhere differs from the polynomial regression,
where the inequality Σ(β)QL ≤ Σ(β)C for the ACMs is still valid after pre-estimation of μξ
and σ2ξ (see Theorem 3.36 and discussion above it).

Remark 4.19. If the functionϕ from the regression equation (4.140) is known to be pe-
riodic, say, with a period 2π, then the function βTϕ(ξ) can bemodeled by the trigono-
metric polynomial

a0
2 + p∑

k=1
(ak cos kξ + bk sin kξ) .

For the correspondingmodel, one can create a theory similar to developed in this Sec-
tion 4.3. The matter is that the sines and cosines are expressed through complex ex-
ponents by Euler’s formula; this makes it easy to find analogs to the functions tλ(x),
see (4.147), and fλ(x), see (4.157).



132 | 4 Nonlinear and generalized linear models

4.4 Three consistent estimators in Poisson log-linear model

We construct a regression model based on Example 4.4. Suppose y has Poisson distri-
bution (4.21):

y ∼ Pois(λ) , λ = eη , η = β0 + β1ξ . (4.176)

Additionally, we demand that instead of ξ , we observe x in accordance with relations
(4.141); moreover ξ and δ are independent, and σ2δ is assumed known. We observe
independent copies of the model (yi , xi), i = 1, n. The parameter β = (β0, β1)T is
under estimation.

4.4.1 Corrected score Estimator

By formula (4.21), we have

ln ρ(y|ξ) = yη − eη − ln y! ,
y ∈ N ∪ {0} , η = β0 + β1ξ .

(4.177)

In the model (4.176), the score function sML(y, ξ; β) corresponding to the observations
y and ξ is equal to

sML = ∂ ln ρ(y|ξ)
∂β = (y − eη)∂η∂β , (4.178)

sML = y (1, ξ)T − (eη , ξeη)T . (4.179)

The corrected score of type (4.114) has the form

sC(y, x; β) = ygC(x) − hC(x, β) , (4.180)

gC(x) = (1, x)T , hC = exp {β0 + β1x − 1
2
β21σ

2
δ} ( 1

x − σ2δβ1
) . (4.181)

Indeed,

E[gC(ξ + δ)|ξ] = E[(1, x)T|ξ] = (1, ξ)T , (4.182)
E[hC,0(ξ + δ, β)|ξ] = E [exp {β0 + β1(ξ + δ) − 1

2β
2
1σ

2
δ} 󵄨󵄨󵄨󵄨󵄨 ξ] = eη = eβ0+β1ξ . (4.183)

We used an expression for the exponential moment of the normal random variable:

Eeβ1δ = exp {12 β21σ2δ} . (4.184)

Next, we differentiate the identity (4.183) with respect to β1:

E [ ∂
∂β1

hC,0(x, β) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ξ] = E[hC,0(x, β) (x − σ2δβ1)|ξ] = ξeη . (4.185)
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Thus, for the other component of the function hC, it holds that

E[hC,1(x, β)|ξ] = E[hC,0(x, β) (x − σ2δβ1)|ξ] = ξeη . (4.186)

From equalities (4.182), (4.183), and (4.186), we get the following relation for the func-
tion (4.180):

E[sC(y, x; b|y, ξ] = sML(y, ξ; b) , b ∈ R2 , (4.187)

and therefore, the function (4.180) is estimating function of the corrected score
method (see formula (1.118) in a general description of the method).

The estimator β̂C is defined by the nonlinear equation

1
n

n∑
i=1

(yigC(xi) − hC(xi , β)) = 0 , β ∈ R2 . (4.188)

Definition 4.20. The estimator β̂C is a Borel measurable function of observations
x1, . . . , yn, for which:
(a) if equation (4.188) has no solution, then β̂C = 0,
(b) if the equation has a solution, then β̂C is a solutionwith the smallest norm (if there

are several such solutions, then we take any of them).

Theorem 4.21. Let the random latent variable ξ be not constant and for each c ∈ R,

Eecξ < ∞ . (4.189)

Then β̂C is strongly consistent estimator of the parameter β.

Proof is based on Theorem A.15 from Appendix A1. Examine only the condition (e) of
the latter theorem about the uniqueness of solution to the limit equation.

Let b = (b0, b1)T be true value of the parameter β. The left-hand side of (4.188)
converges almost surely to the function

S∞(b, β) = Eb(ygC(x) − hC(x, β)) = E(eη0 − eη)(1, ξ)T . (4.190)

Here η0 = b0 + b1ξ and η = β0 + β1ξ . The limit estimating equation is as follows:

S∞(b, β) = 0 , β ∈ R2 . (4.191)

We shall demonstrate that it has the unique solution β = b.
Denote

Φ(β) = Eeβ0+β1ξ (1, ξ)T , β ∈ R2 . (4.192)

By condition (4.189), this vector function is well-defined. Calculate Jacobi’s matrix

Φ󸀠(β) = ( Eeβ0+β1ξ Eξeβ0+β1ξ
Eξeβ0+β1ξ Eξ2eβ0+β1ξ) . (4.193)
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The matrix is positive definite, because its top left entry is positive and

detΦ󸀠(β) = (Eeβ0+β1ξ )(Eξ2eβ0+β1ξ ) − (Eξeβ0+β1ξ )2 > 0 . (4.194)

The latter relation follows from the Cauchy–Schwartz inequality. Here, the strict in-
equality holds, because the random variables ξ exp( β0+β1ξ2 ) and exp( β0+β1ξ2 ) are lin-
early independent.

Consider the inner product

(Φ(b) − Φ(β), b − β) = (b − β)TΦ󸀠(u)(b − β) . (4.195)

Here u is an intermediate point between b and β; the Lagrange theorem has been ap-
plied to the function

q(t) = (Φ(β + t ⋅ ∆β) − Φ(β), ∆β) , ∆β = b − β , t ∈ [0, 1] . (4.196)

Let β be a solution to (4.191). Then from equality (4.195) we get (∆β)TΦ󸀠(u) ⋅ ∆β = 0.
Now, positive definiteness of the matrix Φ󸀠(u) leads to ∆β = 0 and β = b.

We have checked that the limit equation (4.191) has a unique solution. The proof
is accomplished.

Under the conditions of Theorem 4.21, the estimator β̂C is asymptotically normal.
If ξ has normal distribution, then the ACM of the estimator can be found by general
formulas from Section 4.2.3.

Remark 4.22. From the first equation of system (4.188), eβ0 can be expressed through
β1 and substituted to the second one. In so doing, an equation with respect to β1 is
obtained. It can be solved by numerical methods. And it can have many solutions.
Among them one can take a solution with the smallest absolute value. If the estimator
is defined in this way, then it is strongly consistent (although it may differ from the
estimator described in Definition 4.20).

4.4.2 Simplified quasi-likelihood estimator

In Section 4.4.1, we did not specify the shape of distribution of ξ . Now, assume addi-
tionally the following:

ξ ∼ N(μξ , σ2ξ ) , σ2ξ > 0 . (4.197)

The condition allows constructing an estimator of βwhich has a smaller ACM than the
CS estimator.

Using formulas (4.67) and (4.68), wewrite down the functionsm(x, θ) and 𝑣(x, θ),
with θ = (β0, β1, μξ , σ2ξ )T. In the Poisson model, C(η) = eη , η = β0 + β1ξ , and ϕ = 1.
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Then

m(x, θ) = E(y|x) = E(eη|x) = eβ0E(eβ1ξ |x) , (4.198)

m(x, θ) = exp{β0 + β1μ1(x) + β21τ2

2 } , μ1(x) = Kx + (1 − k)μξ , τ2 = Kσ2δ .

(4.199)

We used (4.157) and (4.158). Furthermore,𝑣(x, θ) = V(y|x) = E[C󸀠󸀠(η)|x] + E[(C󸀠(η))2|x] − m2(x, θ) == m(x, θ) + exp{2β0 + 2β1μ1(x) + 2β21τ2} − m2(x, θ) , (4.200)𝑣(x, θ) = m2(x, θ) (eβ21τ2 − 1) + m(x, θ) . (4.201)

Following Shklyar and Schneeweiss (2005), introduce a simplifiedQL estimating func-
tion

sS(y, x; θ) = y − m(x, θ)
m(x, θ) ⋅ ∂m(x, θ)

∂β . (4.202)

The logic is as follows. The QL method requires the presence of 𝑣(x, θ) instead of
m(x, θ) in thedenominator.However, in theabsenceofmeasurement errors (i.e.,when
δ ≡ 0) it holds that 𝑣(x, θ) = V(y|ξ) = eη = E(y|ξ) = m(x, θ) . (4.203)

We made use of a well-known property of the Poisson distribution: its variance and
expectation coincide. Replacing 𝑣(x, θ) by m(x, θ), we lose a bit in efficiency of the
estimator. However, the estimate produced by the estimating function (4.202) is easier
to evaluate.

The simplified QL estimator β̂S, under μξ and σ2ξ known, is given by the following
equation:

n∑
i=1

sS(yi , xi; θ) = 0 , β ∈ R2 . (4.204)

Formally, the estimator β̂S can be defined similarly to Definition 4.20.
If the nuisance parameters μξ and σ2ξ are unknown, they are pre-estimated by

formulas (3.269) and (3.270). The corresponding estimators are substituted in the es-
timating function sS, and then the estimator β̂S is defined by the estimating equation

n∑
i=1

sS(yi , xi; β, μ̂ξ , σ̂2ξ ) = 0 , β ∈ R2 . (4.205)

A formal definition of the estimator is similar to Definition 4.20.
The estimating function sS is unbiased, because

EθsS(y, x; θ) = EEθ[sS(y, x; θ)|x] == E{ 1
m(x, θ) ∂m(x, θ)

∂β
Eθ[y − m(x, θ)|x]} = 0 . (4.206)
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It is, therefore, natural that the estimator β̂S is strongly consistent. The estimator is
asymptotically normal as well. In case of known μξ and σ2ξ , its ACM is determined by
the corresponding sandwich-formula. When the nuisance parameters are unknown,
its ACM becomes a bit larger, namely, an additional “sandwich” appears, like in for-
mula (4.111).

Theorem 4.23. In the Poisson model, assume the condition (4.197). Let ΣC and ΣS be
the ACMs of estimators β̂C and β̂S, under μξ and σ2ξ known. If the true value β1 = 0 then
ΣC = ΣS, and if β1 ̸= 0 then ΣC < ΣS .

Proof is given in Shklyar and Schneeweiss (2005).
Thus, if the nuisance parameters are assumed known, the estimator β̂S is more

efficient compared with β̂C. But under unknown μξ and σ2ξ , the latter statement may
be wrong.

To evaluate the estimator β̂S, we find β0 from the first equation of the system
(4.204):

eβ0 = e−β21τ2 ⋅ ∑n
i=1 yi∑n

i=1 eβ1μ1(xi)
. (4.207)

Substituting this into the second equation of the system, we obtain the equation in β1:∑n
i=1 eβ1μ1(xi) ⋅ μ1(xi)∑n

i=1 eβ1μ1(xi)
⋅ n∑
i=1

yi = n∑
i=1

yiμ1(xi) . (4.208)

Lemma 4.24. Denote I = {i = 1, n : yi ≥ 1}. If not all yi, i = 1, n, are equal to 0 and not
all xi , i ∈ I, coincide, then equation (4.208) has a unique solution.

Proof. Introduce the function

f(β1) = ∑n
i=1 eβ1μ1(xi)μ1(xi)∑n

i=1 eβ1μ1(xi)
, β1 ∈ R . (4.209)

We have

f 󸀠(β1) = (∑n
i=1 μ21(xi)eβ1μ1(xi)) (∑n

i=1 eβ1μ1(xi)) − (∑n
i=1 eβ1μ1(xi)μ1(xi))2(∑n

i=1 eβ1μ1(xi))2 , β1 ∈ R .

(4.210)
From the Cauchy–Schwartz inequality, it follows f 󸀠(β1) ≥ 0; the equality is achieved
only when the sets of numbers

exp {12β1μ1(xi)} , i = 1, n , and μ1(xi) exp {12β1μ1(xi)} , i = 1, n ,
are proportional. By the lemma’s condition, this does not happen, and therefore,
f 󸀠(β1) > 0, β1 ∈ R, and the continuous function f strictly increases. Hence, equation
(4.208) has no more than one solution.

In addition,

lim
β1→+∞

f(β1) = max
i=1,n

μ1(xi) , lim
β1→−∞

f(β1) = min
i=1,n

μ1(xi) . (4.211)



4.4 Three consistent estimators in Poisson log-linear model | 137

With increasing β1 from −∞ to +∞, the left-hand side of (4.208) takes all values from
an open interval (A, B), with

A = S ⋅min
i

μ1(xi) , B = S ⋅max
i

μi(xi) , S = n∑
i=1

yi > 0 . (4.212)

At the same time, the right-hand side of equation (4.208) falls in the interval, because
by the condition, not all μ1(xi), i ∈ I, coincide. Thus, there exists a solution to equation
(4.208) and it is unique. The lemma is proved.

Note that the event “not all xi, i ∈ I, coincide” happens eventually. So, eventually the
estimator β̂S is uniquely defined.

Equations (4.208) can be solved numerically using standard dichotomy. It is as
follows. One finds a segment [β1∗, β∗1] such that at the point β1∗, the left-hand side of
(4.208) is smaller than the right-hand side, and the situation is opposite at the point
β∗1; then one takes the midpoint of the segment and finds the sign of inequality at it;
then one takes the midpoint of that one of the two segments, where the desired root
is located, etc.

4.4.3 Quasi-likelihood estimator

Consider the Poisson model under the condition (4.197). The QL estimating function
s(β)QL (y, x; β) is given by equality (4.69), where the functions m(x, β) and 𝑣(x, β) are
given in (4.199) and (4.201). Let the true value β belong to the parameter set Θ ⊂ R2.
The nuisance parameters γ = (μξ , σ2ξ )T are now assumed known.

Definition 4.25. The QL estimator β̂QL is a Borel measurable function of the observa-
tions y1, x1, . . . , yn, xn, such that
(a) if the equation

1
n

n∑
i=1

s(β)QL (yi , xi; β) = 0 , β ∈ Θ , (4.213)

has no solution then β̂QL = 0;
(b) if the equation has solutions, then β̂QL is one of them.

Definition 4.26. A set A ⊂ Rp is called convex if for any a, b ∈ A, the segment[a, b] = {λa + (1 − λ)b : 0 ≤ λ ≤ 1} (4.214)

is included in A as well.

For instance, for a convex function f : R → R, its “overgraph” {(x, y) : x ∈ R, y ≥
f(x)} is a convex set.
Theorem 4.27. In the Poisson model, assume the condition (4.197). Let the parameter
set Θ be compact and convex inR2, and moreover, for all b, β ∈ Θ0, the next matrix Φbβ
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be nonsingular:

2Φbβ = E
∂m(x,b)

∂β ⋅ ( ∂m(x,β)
∂β )T𝑣(x, β) + E ∂m(x,β)

∂β ⋅ ( ∂m(x,b)
∂β )T𝑣(x, β) . (4.215)

Let the true value β be an interior point of Θ.
Then eventually equation (4.213) has a solution, and β̂QL is the strongly consistent

estimator of β. In addition,

√n (β̂QL − β) d󳨀→ N(0,Φ−1β ) , (4.216)

with Φβ = Φββ, i.e., Φβ is obtained from (4.215), with b = β.

Proof is based on the appropriate theorems from Appendices A1 and A2. Verify only
the basic condition on solutions to the limit equation. Now, let β ∈ Θ0 be true value of
regression parameter.

For all β ∈ Θ, as n → ∞, almost surely the left-hand side of (4.213) tends to the
function

S∞(b, β) = Ebs(β)QL (y, x; β) = Em(x, b) − m(x, β)𝑣(x, β) ⋅ ∂m(x, β)
∂β

. (4.217)

The limit equation is
S∞(b, β) = 0 , β ∈ Θ . (4.218)

We demonstrate that it has the unique solution β = b.
Let β satisfy this equation at a given b ∈ Θ0. Consider the function

q(t) = (S∞(β + t(b − β), β), b − β) , t ∈ [0, 1] . (4.219)

This scalar function is well-defined due to the covexity of Θ. We have q(0) = q(1) = 0.
Then by Rolle’s theorem, for some intermediate point β̄ = β + ̄t(b − β), 0 < ̄t < 1, it
holds that

0 = q󸀠( ̄t) = (b − β)T ∂S∞(β̄, β)
∂bT

(b − β) . (4.220)

Since β ∈ Θ0, then β̄ belongs to Θ0 as well (here we use the convexity of Θ). But by the
theorem’s condition, the matrix

∂S∞(β̄, β)
∂bT

+ (∂S∞(β̄, β)
∂bT

)T = 2Φβ̄β (4.221)

is positive definite. Then equation (4.220) implies β = b. Thus, the limit equation
(4.218) indeed has a unique solution.

Remark 4.28. The condition of Theorem 4.27 concerning the matrix Φbβ is quite re-
strictive. At b = β, the matrix (4.215) is already positive definite. Therefore, Theorem
4.27 can be applied when the parameter set Θ does not allow the parameter b to be
much removed from the true value β.
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Theorem 4.29. Assume the conditions of Theorem 4.27. Let ΣS and ΣQL = Φ−1β be the
ACMs of estimators β̂S and β̂QL, under known μξ and σ2ξ . If the true value β1 = 0, then
ΣQL = ΣS, and if β1 ̸= 0, then ΣQL < ΣS.

Proof is given in Shklyar and Schneeweiss (2005).
Thus, if μξ and σ2ξ are known, the QL estimator ismore efficient than the estimator

β̂S. But the estimator β̂QL ismuchmore difficult to compute. Basedon the estimator β̂S,
one can construct a new estimator β̃QL, which is easy to evaluate and has the same
ACM as β̂QL has.

The idea is as follows. By Newton’s method, we try to solve equation (4.213):

SQL(β) = 0 , SQL(β) = 1
n

n∑
i=1

s(β)QL (yi , xi; β) . (4.222)

As initial approximation, we take the asymptotically normal estimator β̂S. Let usmake
one step according to Newton’s method. For this, we write down an approximation to
SQL(β) in the neighborhood of β̂S following Taylor’s formula:

SQL(β) ≈ SQL(β̂S) + S󸀠QL(β̂S)(β − β̂S) . (4.223)

Equating the latter expression to zero, we find a modified estimator β̃QL:

β̃QL = β̂S − [S󸀠QL(β̂S)]−1SQL(β̂S) . (4.224)

Because of the strong consistency of β̂S, we obtain

S󸀠QL(β̂S) P1󳨀󳨀→ Eβ
∂s(β)QL (y, x; β)

∂βT
= −Φβ < 0 . (4.225)

Hence eventually the Jacobianmatrix S󸀠QL(β̂S) is nonsingular, and the estimator β̃QL is
eventually well-defined by equality (4.224).

Theorem 4.30. In the Poisson model, assume the condition (4.197). Then β̃QL is a
strongly consistent estimator of β, and moreover√n (β̃QL − β) d󳨀→ N(0,Φ−1β ).
The statement of this theorem stems from Theorem 7.75 of the textbook by Schervish
(1995).

We give a practical recommendation: one need not solve the quite complicated
nonlinear equation (4.213), but instead it is much better to compute the estimator β̃QL
having previously calculated β̂S. For that, no prior information on the parameters β0
and β1 is required.

Now let the nuisance parameters μξ and σ2ξ be unknown. Then the estimator β̂QL
has to bemodified in accordancewith recommendations of Section 4.2.2. Pre-estimate
γ = (μξ , σ2ξ )T by means of (3.269) and (3.270) and denotês(β)QL (y, x; β) = s(β)(y, x; β, ̂γQL) . (4.226)
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The estimator β̂QL corresponds to the equation

1
n

n∑
i=1

̂s(β)QL (yi , xi; β) = 0 , β ∈ Θ . (4.227)

A formal definition of the estimator is quite similar to Definition 4.25. An analog of
Theorem 4.27 holds true, but the ACM of the estimator is larger than the matrix Φ−1β
(“additional sandwiches” appear like in formula (4.111)).

Theorem 4.31. Assume the conditions of Theorem4.27and suppose that the parameters
μξ and σ2ξ are unknown. Let ΣC, ΣS, and ΣQL be the ACMs of estimators β̂C, β̂S, and β̂QL,
respectively. If the true value β1 = 0, then ΣC = ΣS = ΣQL, and if β1 ̸= 0, then the
following inequalities hold:

ΣQL < ΣC , ΣQL < ΣS . (4.228)

Proof is carried out by technique of the paper by Kukush et al. (2009), see also Kukush
et al. (2007).

In case β1 ̸= 0, Shklyar (2006) proved a stronger inequality ΣQL < ΣS < ΣC.
Thus, if the nuisance parameters are unknown, the estimator β̂QL is more efficient

than the other two estimators. However, it is difficult to compute. Instead, it is possible
to propose an analog of the estimator (4.224):

β̃QL = β̂S − [Ŝ󸀠QL(β̂S)]−1 ŜQL(β̂S) , (4.229)

ŜQL(β) = 1
n

n∑
i=1

̂s(β)QL(yi , xi; β) , β ∈ R2 . (4.230)

By Theorem 7.75 from themonograph by Schervish (1995), the estimator β̃QL is strongly
consistent and asymptotically normal, and its ACM coincides with the ACM of the es-
timator β̂QL. So, we suggest using the estimator (4.229), if it is known for certain that
the latent variable ξ has normal distribution (though with unknown parameters of the
distribution).

4.5 Two consistent estimators in logistic model

We construct a logistic regression model based on Example 4.7. Suppose that y has
Bernoulli distribution (4.34), with λ = eη:

P{y = 1} = H(η) , P{y = 0} = 1 − H(η) , H(η) = eη
1 + eη ; (4.231)

η = β0 + β1ξ . (4.232)

The regressor ξ is random variable.
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4.5.1 Evaluation of MLE in model without measurement error

Let (yi , ξi), i = 1, n, be observed independent copies of the model (4.231) and (4.232).
We construct the MLE of the regression coefficients β = (β0, β1)T.

By formula (4.38) we get

ln ρ(y|ξ) = yη − ln(1 + eη) , y = 0; 1 . (4.233)

The score function is

sML(y, ξ; β) = ∂ ln ρ(y|ξ)
∂β = (y − H(η))∂η∂β , (4.234)

sML(y, ξ; β) = (y − H(η)) ⋅ (1
ξ
) . (4.235)

The MLE β̂ML satisfies the estimating equation
n∑
i=1

(yi − H(ηi)) ⋅ (1ξi) = 0 , ηi = β0 + β1ξi , β ∈ R2 . (4.236)

Anatural assumption is that the regressor ξ hasfinite varianceDξ = σ2ξ > 0.Under this
condition, equation (4.236) has eventually a unique solution. Formally, the estimator
β̂ML can be defined by equation (4.236) like in Definition 4.25. Then it is the strongly
consistent estimator, and moreover,

√n (β̂ML − β) d󳨀→ N(0,Φ−1) , (4.237)

Φ = −E∂sML(y, ξ; β)
∂βT

= EH󸀠(η) ⋅ (1
ξ
) ⋅ (1, ξ) , (4.238)

Φ = EH(η) (1 − H(η)) (1, ξ)T(1, ξ) . (4.239)

Equation (4.236) can be solved by the iteratively reweighted least squaresmethod. For
the logistic model, the method is described in Myers et al. (2002).

The idea of the method is as follows. Notice that

Eβ(y|ξ) = H(η) , η = β0 + β1ξ ; (4.240)𝑣(ξ, β) = Vβ(y|ξ) = H(η) (1 − H(η)) . (4.241)

We applied formula (4.42) to evaluate the conditional variance.
Further, given the identityH󸀠(η) = H(η) (1−H(η)), rewrite the estimating function

(4.235) in the form

sML(y, ξ; β) = y − H(η)𝑣(ξ, β) ∂H(η)
∂β , (4.242)

sML = −12 ∂
∂β ((y − H(η))2𝑣(ξ, b) )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨b=β , η = β0 + β1ξ . (4.243)



142 | 4 Nonlinear and generalized linear models

Thus, making differentiation we “freeze” the denominator regarding it independent
of the regression parameter β.

Equality (4.243)hints thenext iterationprocedure. Startwith somevalue β(0) ∈ R2.
Put w1(ξ) = 𝑣(ξ, β(0)). The value β(1) is found as a global minimum point of the objec-
tive function

Q(β;w1) = n∑
i=1

(yi − H(ηi))2
w1(ξi) . (4.244)

If β(k) have been already constructed, then put wk+1(ξ) = 𝑣(ξ, β(k)) and find β(k+1) as
a global minimum point of the renewed objective function Q(β;wk ). Construction of
the iterations should last until the convergence criterion is fulfilled:󵄩󵄩󵄩󵄩󵄩β(k+1) − β(k)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩β(k)󵄩󵄩󵄩󵄩 < δ . (4.245)

Here δ is some fixed small number, say 10−6.
Constructing β(k+1) as a minimum point of the function Q(β, wk) can be carried

out by its own iterative procedure using standard linearization of the new “regression
function” f(β) = H(η), see Section 3.3.4 in Myers et al. (2002). Thus, we obtain two
nested iterative procedure for calculation of the estimate β̂ML.

Notice that β(0) is worth determining by the ordinary least squares method, i.e.,
by minimization of the function

Q0(β) = n∑
i=1

(yi − H(ηi))2 , β ∈ R2. (4.246)

4.5.2 Conditional score estimator

Now, assume that regressor is observed with the classical error:

x = ξ + δ , δ ∼ N(0, σ2δ) , σ2δ > 0 . (4.247)

Here ξ and δ are independent, and σ2δ is assumed known.
An attempt to construct the corrected score estimator in the logistics model does

not succeed. Indeed, according to this method, it is necessary to construct the cor-
rected score sC(y, x; β) such that for all β ∈ R2:

E[sC(y, x; β)|y, ξ] = sML(y, ξ; β) = (y − H(η)) (1
ξ
) . (4.248)

To do this, one should find solutions gC and hC to the following deconvolution equa-
tions:

E[gC(x, β)|ξ] = H(η) = 1
1 + e−β0−β1ξ , (4.249)

E[hC(x, β)|ξ] = ξH(η) , β ∈ R2 . (4.250)
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Solutions to such equations are searched as entire functions in x, i.e., the functions
which can be extended to the complex plane C preserving its analyticity. But the right-
hand sides of equations (4.249) and (4.250) at β1 ̸= 0have complex roots in the denom-
inator, in particular, −β0 − β1ξ = iπ, ξ = −β−11 (β0 + iπ)where i is imaginary unit. This
fact does not allow solving the deconvolution equations andmakes the CSmethod not
applicable in this case.

Instead, Stefanski and Carroll (1987) proposed the conditional score method. The
method is as follows. Put

z = x + yσ2δβ1 , η∗ = β0 + β1z . (4.251)

It turns out that in the model (4.231), (4.232), and (4.247),

m∗ = Eβ(y|z) = H(η∗ − 1
2β

2
1σ

2
δ) , (4.252)𝑣∗ = Vβ(y|z) = H (1 − H) , H = H(η∗ − 1

2β
2
1σ

2
δ) . (4.253)

The proof of (4.252) is given in Carroll et al. (2006, p. 158); formula (4.253) is just a
simple consequence of (4.252). A new estimating function sD(y, x; β) is formed out of
the estimating function (4.234) by substitution η∗ instead of η:

sD(y, x; β) = (y − m∗) (1z) . (4.254)

The conditional score estimator β̂D is defined by the equation

n∑
i=1

sD(yi , xi; β) = 0 , β ∈ Θ ⊂ R2 . (4.255)

Estimating function (4.254) is unbiased because

EβsD(y, x; β) = EEβ[sD(y, x; β)|z] = 0 . (4.256)

Here we utilized the equality (4.252). The unbiasedness of the estimating function
causes (under appropriate restrictions on Θ) the consistency and asymptotic normal-
ity of the estimator β̂D. At that, it is necessary that the true value β be interior point ofΘ
and the regressor ξ have a positive and finite variance σ2ξ . The ACM ΣD of the estimator
β̂D can be found by the sandwich formula.

Nonlinear equation (4.255) canbe solved numerically using an iterative procedure
like Newton–Raphson, see details in Carroll et al. (2006, p. 175). As initial approxima-
tion one can take the naive estimator β̂naive, which is a solution to the equation

n∑
i=1

sML(yi , xi; β) = 0 , β ∈ R2 . (4.257)

The method of solving the latter equation was discussed in Section 4.5.1.
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4.5.3 Quasi-likelihood estimator

Additionally, the normality condition is imposed:

ξ ∼ N(μξ , σ2ξ ) , σ2ξ > 0 . (4.258)

Using formula (4.67), we write down the conditional mean m(x, θ), with θT = (β, α),
α = (μξ , σ2ξ )T:

m(x, θ) = E(y|x) = E[H(β0 + β1μ1(x) + β1τγ)|x] . (4.259)

Here γ ∼ N(0, 1), x⊥⊥γ, μ1(x) = Kx + (1− K)μξ , and τ = σδ√K. Let g(t) be the standard
normal pdf, g(t) = 1

√2π exp(− 1
2 t

2). The conditional mean is expressed by an integral
being not calculated in a closed form but only approximately:

m(x, θ) = ∫
R

H(β0 + β1μ1(x) + β1τt) g(t) dt . (4.260)

The conditional variance is𝑣(x, θ) = V(y|x) = E(y2|x) − m2(x, θ) = m(x, θ) (1 − m(x, θ)) . (4.261)

The QL estimating function is

sQL = y − m(x, θ)𝑣(x, θ) ∂m(x, θ)
∂β = y − m

m (1 − m) ∂m∂β . (4.262)

The case where the nuisance parameters μξ and σ2ξ are known
In this case, the estimating function (4.262) is just the estimating function of the ML
method in the logistic model with measurement error (4.247).

Indeed, similarly to formula (4.37), we have

ln ρ(y|x) = y(lnm − ln(1 − m)) + ln(1 − m) , m = m(x, θ) . (4.263)

Further, the estimating function of the ML method is

s = ∂ ln ρ(y|x)
∂β = ∂ ln ρ(y|x)

∂m
∂m
∂β = y − m

m (1 − m) ∂m∂β = sQL . (4.264)

The QL estimator coincides with the MLE and can be formally defined as in Defini-
tion 4.25, with an open parameter set Θ ⊂ R2. A complete analog of Theorem 4.27
holds true. The ACM of the estimator β̂QL is given by the expression

ΣQL = Φ−1β , Φβ = E
∂m
∂β ( ∂m

∂β )T
m (1 − m) , m = m(x; β, α) .

Theorem 4.32. Let the parameters μξ and σ2ξ be known, and ΣD and ΣQL be the ACMs of
the conditional score estimator and QL estimator, respectively. If β1 = 0, then ΣD = ΣQL,
and if β1 ̸= 0, then ΣQL < ΣD.

This theorem follows from the results of Kukush et al. (2009).
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The case of unknown nuisance parameters
In this case, μξ and σ2ξ are pre-estimated by formulas (3.269) and (3.270). DenotêsQL(y, x; β) = sQL(y, x; β, α̂) , α̂ = (μ̂ξ , σ̂2ξ )T . (4.265)

A new estimator β̂QL corresponds to the equation
n∑
i=1

̂sQL(yi , xi; β) = 0 , β ∈ Θ . (4.266)

The ACM of this estimator is larger than the matrix Φ−1β , see formula (4.111). The es-
timator β̂QL constructed in this way will no longer be the MLE. We cannot guarantee
that the ACM of estimator β̂QL does not exceed the ACMof the estimator β̂D. But in case
β1 = 0, the latter ACMs coincide.
4.6 Two consistent estimators in log-linear gamma model

In Example 4.5, put λ = α/ω, ω > 0, and η = −ω−1. Then by formula (4.25),
ln ρ(y|η, α) = yη + ln(−η)

α−1
+ c(y, α) , y > 0 . (4.267)

This pdf belongs to the exponential family (4.2), with η < 0, C(η) = − ln(−η), and
dispersion parameter ϕ = α−1. We get

Ey = C󸀠(η) = −1η , Dy = α−1C󸀠󸀠(η) = 1
αη2

. (4.268)

Log-linear gamma model is given by the relation

ω = eβ0+β1ξ . (4.269)

Instead of ξ , we observe x according to (4.247).

4.6.1 Corrected score estimator

We have η = −e−β0−β1ξ . By (4.47),
sML(y, ξ; β) = (y − eβ0+β1ξ )η󸀠β = (ye−β0−β1ξ − 1) (1

ξ
) . (4.270)

Using formulas (4.183) and (4.185) and reasoning as in Section 4.4.1, we find that the
corrected score is as follows:

sC(y, x; β) = ygC(x, β) − hC(x) , (4.271)
gC(x, β) = exp{−β0 − β1x − 1

2β
2
1σ

2
δ} (1, x + σ2δβ1)T , (4.272)

hC(x) = (1, x)T . (4.273)
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Writing formula (4.272), we utilized the second function of (4.181), where −β0 was sub-
stituted for β0 and −β1 was substituted for β1. The estimating function (4.271) satisfies
equation (4.187), where the right-hand side is taken from (4.270).

The estimator β̂C is defined by the nonlinear equation

1
n

n∑
i=1

(yigC(xi , β) − hC(xi)) = 0 , β ∈ R2 . (4.274)

A formal definition of β̂C is now given by Definition 4.20 word for word.

Theorem 4.33. Let the random latent variable ξ be not constant and for each c ∈ R, the
condition (4.189) holds true. Then the estimator β̂C is strongly consistent.

Proof is conducted in a manner similar to the proof of Theorem 4.21. Let b = (b0, b1)T
be the true value of the parameter β. The left-hand side of (4.274) converges almost
surely to the function

S∞(b, β) = Eb(ygC(x, β) − hC(x)) = EbsML(y, ξ; β) , (4.275)

S∞(b, β) = E(e(b−β0)+(b−β1)ξ − 1) (1
ξ
) . (4.276)

Denote

Φ(β) = E(eβ0+β1ξ − 1) (1
ξ
) , β ∈ R2 . (4.277)

The limit equation (4.191) takes the form

Φ(b − β) = 0 , β ∈ R2 . (4.278)

The derivative Φ󸀠(β) is given by (4.193), whence Φ󸀠(β) > 0, β ∈ R2. As a result of this,
as in the proof of Theorem 4.21, we obtain that the limit equation (4.278) has a unique
solution b = β. This completes the proof.

Everything we wrote above concerning the asymptotic normality and computa-
tion of the estimator β̂C in the Poisson model (see Section 4.4.1) is transferred to the
estimator β̂C in the gamma model.

4.6.2 Quasi-likelihood estimator

Assume the normality condition

ξ ∼ N(μξ , σ2ξ ) , σ2ξ > 0 . (4.279)

Now, in the gamma model

m∗(ξ; β) = E(y|ξ) = eβ0+β1ξ , (4.280)𝑣∗(ξ; β, α) = 1
α e

2β0+2β1ξ . (4.281)
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The conditional mean m(x, θ), θT = (βT, α, μξ , σ2ξ ) is the same as in the Poisson log-
linear model, see (4.199):

m(x, θ) = exp{β0 + β1μ1(x) + β21τ2

2 } . (4.282)

The conditional variance 𝑣(x, θ) can be found by equality (1.65):𝑣(x, θ) = V(y|x) = α−1E[e2β0+2β1ξ |x] + E[(m∗)2|x] − m2(x, θ) , (4.283)
ν(x, θ) = (1 + α−1) exp{2β0 + 2β1μ1(x) + 2β21τ2} − exp{2β0 + 2β1μ1(x) + β21τ

2} == e2β0+2β1μ1(x)+β21τ2 ((1 + α−1)eβ21τ2 − 1) . (4.284)

As seen in Section 4.2.2, the ACM of the QL estimator for the parameter β does not
change if the dispersion parameter α−1 is assumed to be either known or unknown.
Hence, we will only deal with the case of α known.

The estimating function for parameter β is equal to

s(β)QL (y, x; β, μξ , σ2ξ ) = y − m(x, θ)𝑣(x, θ) ∂m(x, θ)
∂β . (4.285)

Under known μξ and σ2ξ , a formal definition of the estimator β̂QL is the same as in
Definition 4.25, with some parameter set Θ ⊂ R2. Theorem 4.27 on the consistency
and asymptotic normality of the estimator β̂QL is word for word transferred to the case
of gamma model. It is possible to compute the estimator β̂QL by Newton–Raphson
method.

Theorem 4.34. In the log-linear gamma model, assume the condition (4.279). Let the
parameters α, μξ , and σ2ξ be known, the true value of β is an interior point of the convex
compact set Θ ⊂ R2, moreover for all b, β ∈ Θ0, the matrix (4.215) be positive definite,
where the functions m(x, β) = m(x, θ) and 𝑣(x, β) = 𝑣(x, θ) are given in (4.282) and
(4.284), respectively. Let ΣC and ΣQL be the ACMs of estimators β̂C and β̂QL, respectively.
If the true value β1 = 0 then ΣQL = ΣC, but if β1 ̸= 0 then ΣQL < ΣC.

The statement follows from results of Kukush et al. (2007).
Now, let the nuisance parameters μξ and σ2ξ be unknown. Then the estimator β̂QL

can be modified by formulas (4.226) and (4.227). In doing so, the ACM of the new esti-
mator will increase.

Theorem 4.35. Assume the conditions of Theorem 4.34, but the parameters μξ , σ2ξ are
unknown, while the parameter α is known. Let ΣC and ΣQL be the ACMs of the estimators
β̂C and β̂QL, respectively. If the true value β1 = 0 then ΣQL = ΣC, but if β1 ̸= 0 then
ΣQL < ΣC.

Proof is given in Kukush et al. (2007).

Remark 4.36. For most concrete models of this section containing the classical mea-
surement error, the pre-estimation of parameters μξ and σ2ξ yields the asymptotically
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efficient estimator β̂QL. Here the asymptotic efficiency is understood in the sense of
Theorem 4.10. In particular, the estimator β̂QL is asymptotically more efficient than β̂C
for such specific models. The exceptions are the Gaussianmodel with exponential re-
gression function and the logistic model. In the latter models, it is more efficient to
estimate the parameters β, μξ , and σ2ξ simultaneously, see Kukush et al. (2007).
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5 Overview of risk models realized in program
package EPICURE

EPICURE is a package of applied interactive computer programs designed on the base
of original programs AMFIT and PYTAB, which were created by D. Preston and D.
Pierce for the analysis of radiation effects in victims of the atomic bombing of Japanese
cities Hiroshima and Nagasaki (Preston et al., 1993). The software package allows es-
timating parameters in generalized risk models and analyzing the data of epidemio-
logical and experimental studies. EPICURE consists of four modules, each of which is
designed for a particular type of data processing:
– binomial data (module GMBO),
– matched data for the case-control study (module PECAN),
– survival data (module PEANUTS),
– grouped data that have Poisson distribution (module AMFIT).

Each module of the software package includes statistical models to estimate the pa-
rameters of the generalized risk λi(xi, θ), which is a function of the vector of covari-
ates xi = {xi,0, xi,1, . . ., xi,4} and the parameters θ = {β0, β1, . . ., β4} of a regression
model for observations with numbers i = 1, 2, . . ., n. Each of xi,0, xi,1, . . ., xi,4 and
β0, β1, . . ., β4 is a vector. Mathematical content of λi(xi, θ) depends on a type of sta-
tistical regression model. The content of each module in EPICURE is described as fol-
lows:
– GMBO – the binomial odds or a function of the odds,
– PECAN – the odds ratio for cases and controls,
– PEANUTS– the relative risk or hazard ratiomodifyinganonparametric underlying

hazard function for censored survival data,
– AMFIT – the Poisson mean or a piecewise constant hazard function for grouped

survival data.

Formally, being programmed in EPICURE a regression model can be specified as the
relative risk

λi(xi , θ) = T0(xi,0, β0) ⋅ (1 + 4∑
j=1

Tj(xi,j, βj)) (5.1)

or the absolute risk

λi(xi , θ) = T0(xi,0, β0) + 4∑
j=1

Tj(xi,j, βj) . (5.2)

Here T0(xi,0, β0) and Tj(xi,j, βj) are products of linear and log-linear functions of re-
gression parameters.
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5.1 Risk analysis of individual data (GMBO module)

Mathematical basis of the software GMBOmodule is regression model with binary re-
sponse Yi that takes two values, usually 0 and 1. The model is used typically if an
epidemiologist has data of individual observations. This situation is common for co-
hort studies, the essence of which is that there is some group (cohort) of individuals
exposed to radiation or other factor. Later on, some subjects of the cohort may get can-
cer disease, i.e., each subject of the cohort can be corresponded to a binary variable
that takes the value 0 (“ith person is not diseased”) or 1 (“ith person is diseased”). It
is assumed that the researcher has complete information on each individual from the
cohort (i.e., the researcher knows his/her age, sex, individual dose, the implementa-
tion time of disease, time elapsed since exposure, age at exposure, etc.). Having data
on each subject of the cohort and using one of the models of absolute or relative risk,
it is possible to write down the risk of disease as¹.

λi(xi , θ) = P(Yi = 1)
P(Yi = 0) = Pi(xi , θ)

1 − Pi(xi, θ) . (5.3)

Here Pi(xi , θ) is probability of 1, or expectation of Yi:
Pi(xi , θ) = P(Yi = 1) = E(Yi) . (5.4)

It is evident that
Pi(xi , θ) = λi(xi , θ)

1 + λi(xi , θ) . (5.5)

Further, based on these probabilities, one can construct the likelihood function,
whose maximum point defines the estimate of the vector θ of unknown coefficients.
The likelihood function for logistic model is given as a product (see Example 4.7):∏

i
Pi(xi , θ)Yi (1 − Pi(xi , θ))1−Yi . (5.6)

Respectively, the log-likelihood function is equal to

l(θ) = ∑i [Yi ln Pi(xi , θ) + (1 − Yi) ln(1 − Pi(xi , θ))] == ∑i [Yi ln λi(xi , θ) − (1 − Yi) ln(1 + λi(xi , θ))] . (5.7)

The gradient of the log-likelihood function is given by the equality

gT(θ) = ∂l
∂θ = ∑

i
[ Yi
Pi(xi , θ) − 1 − Yi

1 − Pi(xi , θ) ] ∂Pi(xi , θ)
∂θ =

= ∑ Yi − Pi(xi , θ)
Pi(xi, θ)(1 − Pi(xi , θ)) ∂Pi(xi , θ)∂θ . (5.8)

1 In the software EPICURE, it is possible also to specify the risk as λi(xi , θ) = Pi(xi , θ) or λ(xi , θ) =
− ln(1 − Pi(xi , θ)).
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Using (5.5), transforming (5.8):

gT(θ) = ∑
i
[ Yi
λi(xi , θ) − 1

1 + λi(xi, θ) ] ∂λi(xi , θ)
∂θ . (5.9)

The Hessian matrix is given as

H(θ) = ∑
i
[ Yi
Pi(xi , θ) − 1 − Yi

1 − Pi(xi , θ) ] ∂2Pi(xi , θ)
∂θ∂θT

+
+∑

i
[ 1 − Yi(1 − Pi(xi, θ))2 − Yi

Pi(xi , θ)2 ] ∂Pi(xi , θ)
∂θ

∂Pi(xi , θ)
∂θT

. (5.10)

Expressing Pi(xi , θ) via the function λi(xi , θ), we get
H(θ) = ∑

i
[ Yi
λi(xi , θ) − 1

1 − λi(xi , θ) ] ∂2λi(xi , θ)
∂θ∂θT

+
+∑

i
[ 1(1 − λi(xi , θ))2 − Yi

λi(xi , θ)2 ] ∂λi(xi , θ)
∂θ

∂λi(xi , θ)
∂θT

. (5.11)

Having expressions for the gradient and Hessian, one can maximize the function l(θ)
using the Newton–Raphson numerical method or another optimization method.

5.2 Case-control study (PECAN module)

The PECAN module is designed for data processing of epidemiological case-control
studies. In contrast to cohort studies, the binary outcome variable in a case-control
study is fixed by stratification. The dependent variables in this setting are one or more
primary covariates, exposure variables in x. In this type of study design, samples of
fixed size are chosen from the two strata defined by the outcome variable. The val-
ues of the primary exposure variables and the relevant covariates are then measured
for each subject selected. At this, the main covariate (dose) and other significant co-
variates (such as gender, age, etc.) are assumed known. The total likelihood function
is the product of stratum-specific likelihood functions, which are dependent on the
probability of getting a subject to the sample with given distribution of covariates. Af-
ter some simple transformations, one can obtain the logistic (or similar to logistic)
regression model, where the response variable will be in reality interesting for a re-
searcher (Hosmer et al., 2013). A key point of the mentioned transformations is Bayes’
theorem.

Let a variable s mean selection (s = 1) or not selection (s = 0) of a subject. The
likelihood function for a sample of n1 cases (subjects with realization of the effect
y = 1) and n0 controls (subjects without realization of the effect y = 0) can be written
as follows:

L = n1∏
i=1

P(xi|yi = 1, si = 1) n0∏
i=1

P(xi |yi = 0, si = 1) . (5.12)



154 | 5 Overview of risk models realized in program package EPICURE

After applying Bayes’ theorem to the individual probabilities from (5.12), we get

P(x|y, s = 1) = P(y|x, s = 1)P(x|s = 1)
P(y|s = 1) . (5.13)

Applying Bayes’ theorem to the first factor in the numerator of (5.13) for y = 1, we have
P(y = 1|x, s = 1) = P(y = 1|x)P(s = 1|x, y = 1)

P(y = 0|x)P(s = 1|x, y = 0) + P(y = 1|x)P(s = 1|x, y = 1) . (5.14)

Similarly for y = 0,
P(y = 0|x, s = 1) = P(y = 0|x)P(s = 1|x, y = 0)

P(y = 0|x)P(s = 1|x, y = 0) + P(y = 1|x)P(s = 1|x, y = 1) . (5.15)

Suppose that the selection of cases and controls is independent from covariates that
influence the disease incidence, i.e., from the vector x. Denote the probability of se-
lection of the case and control by τ1 and τ0, respectively, i.e.,

τ1 = P(s = 1| y = 1, x) = P(s = 1| y = 1) ,
τ0 = P(s = 1| y = 0, x) = P(s = 1| y = 0) . (5.16)

Denote by η(x) the conditional probability of the case:
η(x) = P(y = 1|x) = λ(x)

1 + λ(x) , (5.17)

where λ(x) is the total incidence rate.
Substituting (5.16) and (5.17) to (5.14) and (5.15), we obtain

P(y = 1|x, s = 1) = τ1η(x)
τ0(1 − η(x)) + τ1η(x) ,

P(y = 0|x, s = 1) = τ0(1 − η(x))
τ0(1 − η(x)) + τ1η(x) . (5.18)

Introduce a notation

η∗(x) = τ1η(x)
τ0(1 − η(x)) + τ1η(x) = τ1λ(x)

τ0 + τ1λ(x) = τ1
τ0 λ(x)

1 + τ1
τ0 λ(x) = λ∗(x)

1 + λ∗(x) , (5.19)

with λ∗(x) = τ1
τ0 λ(x) .

Substituting (5.18) with the notation (5.19) to (5.13) and bearing in mind that the
selection of cases and controls is independent of x, we get

P(x|y = 1, s = 1) = η∗(x)P(x)
P(y = 1|s = 1) ,

P(x|y = 0, s = 1) = (1 − η∗(x))P(x)
P(y = 0|s = 1) .

(5.20)

If we denote

L∗ = n1+n0∏
i=1

η∗(x)yi (1 − η∗(x))1−yi , (5.21)
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then the likelihood function (5.12) is written as

L = L∗
n1+n0∏
i=1

P(xi)
P(yi |si = 1) . (5.22)

The first factor L∗ on the right-hand side of (5.22) is constructed in the same man-
ner as the likelihood function for cohort studies, but by the data obtained within the
case-control study. If the distribution of covariate P(xi) does not depend on the model
parameters, and the selection of cases and controls is carried out randomly from the
same subset, i.e., the conditions P(y = 1|s = 1) = n1

n1+n0 and P(y = 0|s = 1) = n0
n1+n0

hold true, then the likelihood function L∗ can be used for the risk coefficients estima-
tion.

Let the total incidence rate take the form:

λi = eα0+α𝑣i (1 + Dieβ0+βzi) , (5.23)

where α0 is baseline risk coefficient, Di is exposure dose, α, β0, β are risk coefficients,
zi is risk modifier, 𝑣i is confounder, i.e., the covariate affecting the baseline risk. If 𝑣i
and zi are column vectors, then α and β are row vectors.

Then

λ∗i = eln τ1
τ0 λi = eln τ1

τ0
+α0+α𝑣i (1 + Dieβ0+βzi) = eα∗0+α𝑣i (1 + Dieβ0+βzi) . (5.24)

Thus, optimizing the function L∗, it is possible to estimate the incidence rate of spon-
taneous α∗0 = ln τ1

τ0 + α0 instead of the true baseline risk α0.

5.2.1 Matched case-control study

An important special case of stratified case-control study ismatched study. This kind
of study is justified in Breslow and Day (1980), Schlesselman (1982), Kelsey et al.
(1996), and Rothman et al. (2008). In this type of study, subjects are stratified bymain
covariates influencing the response. Typically, such covariates are sex and age. Each
stratum is a sample consisting of cases and controls. The number of cases and con-
trols in different strata can be different. However, in most studies of this type, from
one to five controls are included in each stratum. Such research is called 1-M matched
case-control study.

Theoretically the stratum-specific covariates can be included to the regression
model and their influence can be estimated. This approachworks well when the num-
ber of subjects in each stratum is large. But usually in matched case-control study, a
stratum contains a few subjects. For example, in the 1-1 matched design with n case-
control pairs we have only two subjects per stratum. Then for analysis of the model
with p covariates, n + p parameters should be estimated (including constant term,
n − 1 stratum-specific parameters, and p risk coefficients), based on the sample of
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size 2n. It is known that under increasing sample size, the properties of the likelihood
function are improved if the number of estimated parameters is fixed. In Breslow and
Day (1980), it is shown that ignorance of this recommendation can lead to 100% bias
of the estimates. If we consider the stratum-specific parameters as nuisance, then the
conditional likelihood function can be used for estimation of the risk coefficients. In
so doing, the obtained estimators will be consistent and asymptotically normal (Cox
and Hinkley, 1974).

Suppose that all the data consist of K strata, and in kth stratum, k = 1, 2, . . ., K,
there are n1k cases and n

0
k controls, with nk = n1k + n0k .

Assume also that the total incidence rate in kth stratum takes the form

λi = eαk+α𝑣i (1 + Dieβ0+βzi ) . (5.25)

Here αk is stratum-specific parameter, Di is exposure dose, α, β0, and β are risk coef-
ficients, zi is risk modifier, and 𝑣i is confounder.

The conditional likelihood function for kth stratum is probability of the observed
data, provided n1k cases and n

0
k controls got to the stratum. Equivalently, it is the ratio

of probability of the observed data and probability of the observed data under all pos-
sible combinations of n1k cases and n0k controls. The number of combinations in kth
stratum is given by the following formula:

ck = nk!
n1k !(nk − n1k )! . (5.26)

Let in any combination, subjects from 1 to n1k correspond to cases and ones from n1k +1
to nk correspond to controls. Then the conditional likelihood function for kth stratum
can be written as

Lk = ∏n1k
i=1 P(xi|yi = 1)∏nk

i=n1k+1
P(xi |yi = 0)∑ck

j=1 (∏n1k
i=1 P(xi |yi = 1)∏nk

i=n1k+1
P(xi |yi = 0)) . (5.27)

The complete likelihood function is the product of all Lk:

L = K∏
k=1

Lk . (5.28)

By Bayes’ theorem, we find multipliers in the right-hand side of (5.27):

P(xi |yi = 1) = P(yi = 1|xi)P(xi)
P(yi = 1) = λi

1 + λi
P(xi)

P(yi = 1) ,
P(xi |yi = 0) = P(yi = 0|xi)P(xi)

P(yi = 0) = 1
1 + λi

P(xi)
P(yi = 0) . (5.29)

Substituting (5.29) to (5.27), we get

Lk = ∏n1k
i=1

λi
1+λi

P(xi)
P(yi=1) ∏nk

i=n1k+1
1

1+λi
P(xi)

P(yi=0)∑ck
j=1 (∏n1k

i=1
λi

1+λi
P(xi)

P(yi=1) ∏nk
i=n1k+1

1
1+λi

P(xi)
P(yi=0)) = ∏n1k

i=1 λi∑ck
j=1 (∏n1k

i=1 λi) . (5.30)
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Substituting expression (5.25) in (5.30) instead of λi, we find

Lk = ∏n1k
i=1 RRi∑ck

j=1 (∏n1k
i=1 RRi) , (5.31)

where RRi = eα𝑣i (1 + Dieβ0+βzi ) is the relative risk.
After substitution (5.31) in (5.28), finding the logarithm of (5.31), andwriting in ad-

dition index k to indicate the stratum,we obtain the final expression for log-likelihood
function:

l = K∑
k=1

( n1k∑
i=1

ln RRi,k − ln ck∑
j=1

( n1k∏
i=1

RRi,k)) . (5.32)

For example, the log-likelihood function l(α, β0, β) has the following form for 1-M
matched case-control study (i.e., for 1 case andM controls):

l = K∑
k=1

(ln RR1,k − ln M+1∑
i=1

RRi,k) , (5.33)

where RRi,k is the corresponding relative risk for a subject of kth stratum.
Thus, a case-control study can be performed in the following two versions:

– Unmatched, or ordinary, case-control study,
– Matched case-control study.

In the first version, the controls are selected randomly from the same subset as the
cases, in order to reflect with sufficient accuracy the distribution of covariates influ-
encing the incidence. At this, the same numerical algorithms and computer proce-
dures can be used as for ordinary cohort study. Such version of case-control study
allows estimating all risk coefficients (in particular, the confounders and risk modi-
fiers), except of the baseline risk α0. If obtaining estimates for nuisance parameters of
the incidence rate of spontaneous (i.e., confounders) is not a principle question for a
researcher, then it is possible to use the second version, namelymatched case-control
study. In the latter version, for each case a selection of controls is performed, with the
same values of nuisance parameters, as for the case; controls are selected from the
same set as the case. After that, the conditional likelihood function is constructed,
which however, does not allow obtaining estimates of nuisance parameters.

5.3 Survival models (PEANUTS module)

Let a nonnegative random variable T be the waiting time for an event to occur. For
simplicity, we use the terminology from survival analysis. In so doing, the underlying
event will be called death, and the waiting time will be named survival time, although
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the technique beingdiscussed belowhasmuchbroader application. It can beused, for
example, to analyze the morbidity, migration, life expectancy, etc. (Rodríguez, 2008).

Suppose T is continuous randomvariable, with probability density function (pdf)
f(t) and cumulative distribution function (cdf) F(t) = P{T ≤ t}, the latter is probability
that the event occurred before the moment t. It is often convenient to use a comple-
ment to the cdf, which is called the survival function:

S(t) = P{T > t} = 1 − F(t) = ∞∫
t

f(x)dx . (5.34)

It determines probability to survive till the moment t, or in a broad sense, probability
that the event did not occur until the moment t.

An alternative way to characterize the distribution of T is to define the hazard
function, or instantaneous intensity of event’s realization:

λ(t) = lim
dt→0

P{t < T ≤ t + dt | T > t}
dt

. (5.35)

The numerator of this expression is conditional probability that the event will take
place in the interval (t, t + dt) being not happened earlier, and the denominator is
the width of the interval. Dividing one to another, we obtain the intensity of event’s
realization per time unit. Tending the width to zero, we get the instant intensity of the
event’s realization. Conditional probability in the numerator can be written as ratio
of joint probability that T belongs to the interval (t, t + dt) and T > t (of course, this
coincideswith probability of belonging T to abovementioned interval) andprobability
that T > t. The first of these is equal to f(t)dt for small dt, and the latter is S(t) by
definition. Thus,

λ(t) = f(t)
S(t) , (5.36)

i.e., the intensity of event’s realization at moment t is equal to ratio of the pdf at that
moment to probability of survival till that moment.

Equality (5.34) demonstrates that f(t) is a derivative of the function equal to −S(t).
Then equality (5.36) can be written as

λ(t) = − d
dt ln S(t) . (5.37)

By integrating both sides of (5.37) from0 to t and entering a boundary condition S(0) =
1 (this holds true because the event cannot occur before moment 0), we can write
down the probability to survive till the moment t via the hazard function:

S(t) = exp(− t∫
0

λ(x)dx) . (5.38)

The integral in parentheses is called cumulative hazard and denoted as

Λ(t) = t∫
0

λ(x)dx . (5.39)
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5.3.1 Censoring

A peculiarity of survival analysis is censoring, i.e., the phenomenon that the investi-
gated event has occurred for some subjects, and therefore, an exact waiting time is
known, while for others, this event has not occurred and it is only known that the
waiting time exceeds the observation time.

There are several types of censing. In the first type, the sample of n subjects is
observed for a fixed time. That is, each subject has a maximal possible pre-fixed ob-
servation period, which can vary from one subject to another, and the total number of
deaths is random.

In censoring the second type, the sample of n subjects is observed until the event
is not realized for d subjects. In this scheme, the number of deaths d is fixed inadvance
and it can beused as a parameter, but the total duration of study is randomand cannot
be known in advance.

Within a more general scheme called random censoring, every subject has a po-
tential censoring moment Ci and potential duration of life Ti, which are assumed to
be independent random variables. The value Yi = min{Ci, Ti} is observed, as well as
the censoring indicator, often denoted as di or δi, which points out how the obser-
vation was finalized: as a result of death or censoring. All these schemes are united
by the fact that the censoring mechanism is noninformative, and all of them, in fact,
yield the same likelihood function. The weakest assumption, which is required for
getting the likelihood function, is that censoring does not provide any information on
the prospects of survival of a subject beyond the censoring date. That is, all what is
known about the observation being censored at time t, is that the duration of life for
the subject exceeds t.

5.3.2 Likelihood function for censored data

Suppose there are n subjects under observation, with duration of life characterized
by survival function S(t), probability density function f(t), and hazard function λ(t).
Assume also that the subject i is being observed until the moment ti . If the subject
has died at the moment ti, then his/her contribution to the likelihood function is the
value of pdf at this moment, which can be written as the product of survival function
and hazard function: Li = f(ti) = S(ti)λ(ti ). If the subject is still alive at the moment
ti, all what is known under noninformative censoring is that duration of his/her life
exceeds ti. Probability of the latter event is equal to Li = S(ti) and shows the contri-
bution of censored observation to the likelihood function. That is, both contributions
contain the survival function S(ti), because in both cases the subject has survived un-
til the moment ti. Death multiplies this contribution by the hazard function λ(ti) and
censoring does not.
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Let di be the censoring indicator equal to 1 if the object has died at the moment ti,
and 0 otherwise. Then the likelihood function takes the form:

L = ∏
i
Li = ∏

i
λ(ti)di S(ti) . (5.40)

Finding the logarithmof (5.40) andusing (5.38) and (5.39),weobtain the log-likelihood
function for censored data:

l = n∑
i
(di ln λ(ti) − Λ(ti)) . (5.41)

5.3.3 Cox proportional hazards model

The Cox proportional hazards model was first proposed by Cox (1972). In the model,
the hazard function for an individualhaving characteristics xi at themoment t is given
as

λi(t |xi) = λ0(t)eβxi . (5.42)

Here λ0(t) is the baseline hazard function (the incidence rate of spontaneous), and
eβxi is the relative risk, i.e., proportional increase or decrease of the hazard function
associated with a set of covariates xi. If xi is a column vector, then β is a row vector.
Note that increase or decrease of the hazard function is the same for all moments t.²

Note that the proportional hazards model separates the effect of time from the
effect of covariates explicitly. Finding the logarithm of (5.42), it is easy to see that the
proportional hazardsmodel is just a simple additivemodel for the logarithm of hazard
function:

ln λi(t | xi) = α0(t) + βxi , (5.43)

where α0(t) = ln λ0(t) is the logarithm of baseline hazard function. Here like in every
additive model, the same effect of covariates is provided for all moments t.

Integrating both sides of (5.42) from 0 to t, one can obtain the proportional cumu-
lative hazards:

Λi(t |xi) = Λ0(t)eβxi . (5.44)

2 For instance, if the dummy covariate xi meansmembership of an individual to the first of null group,
the hazards model takes the form

λi(t|x) =
{
{
{

λ0(t), if x = 0 ,
λ0(t)eβ , if x = 1 .

Here λ0(t) is the hazard function in the null group, and eβ is ratio of hazard functions in the first group
and the null group. If β = 0, then the hazard functions coincide. If β = ln 2, then the hazard function
in the first group is twice larger compared with the hazard function in the null group.
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Taking exponent of the equality with the opposite sign, we get the survival function:

Si(t |xi) = S0(t)exp(βxi) , (5.45)

where S0(t) is the baseline survival function.
Thus, in the proportional hazardsmodel the effect of covariates xi on the baseline

survival function consists in raising it to power equal to the relative risk.

5.3.4 Partial likelihood function

Toestimate the relative riskparameters β in theproportional hazardsmodel (5.42), Cox
(1972) proposed a method of partial likelihood, which lies in maximizing the partial
likelihood function.

Let n be the number of observations of which k cases fall to the event being as a
result of the subject’s death, and n − k cases do as a result of censoring. Also suppose
that ti , i = 1, . . ., n is the ordered time array of observation points, i.e., t1 < t2 <
. . . < tn. Then the partial likelihood function for observation i is the probability of
happening of the event at moment ti, provided the number of subjects being under
risk until the moment ti is known. In other words, if the event happened, then what
is the probability that ith individual died of those who were under risk? The partial
likelihood function answers this question.

Let R(ti) be a set of subjects being under risk until the moment ti. Then the prob-
ability of death (i.e., realization of the event) of ith object is given by the following
formula (Preston et al., 1993):

P(ti | R(ti)) = eβxi∑j∈R(ti) e
βxj

. (5.46)

Taking into account the contribution of all observations and censoring, we obtain

L = ∏
i
( eβxi∑j∈R(ti) e

βxj
)di

. (5.47)

Finding the logarithm, we get

l = n∑
i
βxi + n∑

i=1
ln( ∑

j∈R(ti)
eβxj) . (5.48)

5.4 Risk analysis of grouped data (AMFIT module)

Mathematical basis for the analysis of grouped data is the Poisson regression model.
Often in the environmental and epidemiological studies, individual characteristics of
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the population are unavailable. Therefore, the population under consideration is di-
vided into groups according to some features (such as sex, age, residence place, etc.),
and for each group, there are known observation time, estimates of mean group ex-
posure doses (or other factors), number of cases, and perhaps some other characteris-
tics (e.g., level of examination, territorial specificity of location). The incidence in each
group is given in the formof absolute or relative risk. The response variable reflects the
number of realizations of the diseases in ith group and can take values 0, 1, 2, . . ., n.
It is assumed that it has Poisson distribution:

P(Yi = k) = μki
k! e
−μi , (5.49)

where μi is the distribution parameter (see Example 4.4).
Such a distribution has a random variable Y being equal to the number of events

that occurred during certain period of time, if the events are independent and happen
at a constant speed (i.e., uniformly in time). This could be, for example, a number
of radioactive decays having occurred during a second or a number of persons who
developed cancer in a year.

In Holford (1980) and Oliver and Laird (1981), it is shown that the Poisson regres-
sion model is equivalent to the proportional hazards model, with piecewise constant
baseline hazard function λ0(t).

Both expectation and variance of the Poisson distribution coincide with the pa-
rameter μi:

E(Yi) = σ2(Yi) = μi . (5.50)

The latter depends on a set of covariates and on unknown parameters:

μi = niλi(xi , θ) . (5.51)

Here, λi(xi , θ) is the hazard function given in (5.1) or (5.2), and ni is the number of
person-years of observations in ith group.

The log-likelihood function for the Poisson regression is

l(θ) = ∑i [Yi ln niλi(xi, θ) − niλi(xi , θ) − ln Yi!] . (5.52)

The gradient and Hessian are as follows:

gT(θ) = ∂l
∂θ = ∑

i
[ Yi
λi(xi , θ) − ni] ∂λi(xi , θ)

∂θ , (5.53)

H(θ) = ∑i [ Yi
λi(xi , θ) − ni] ∂2λi(xi , θ)

∂θ∂θT
−

−∑i
1

λi(xi , θ)2 ∂λi(xi , θ)∂θ
∂λi(xi , θ)

∂θT
.

(5.54)

Optimizing the log-likelihood function, one can estimate the unknown regression co-
efficients in (5.1) or (5.2).



6 Estimation of radiation risk under classical or
Berkson multiplicative error in exposure doses

Aswell known, today themost commonmethods for estimation of radiation risks that
associated with human exposure (Preston et al., 1993; Ron et al., 1995; Jacob et al.,
2006; Likhtarov et al., 2006a; Tronko et al., 2006; Zablotska et al., 2011) use a number
of principle approximations. In particular, the assumption of no uncertainty in indi-
vidual dose, i.e., it is assumed that we have the determined value for the exposure
dose of a subject. It is clear that such a statement is fundamentally wrong, since there
are practically no situations in which being estimated by any method dose would not
have some statistical distribution (Likhtarov et al., 2012, 2013a, 2014). One of the con-
sequences from the assumption of the absence of errors in exposure doses is the bias
of risk estimates anddistortion of the shape of curve “dose–effect” (Carroll et al., 1995,
2006; Kukush et al., 2011; Masiuk et al., 2013, 2016). Note that such distortions of the
risk estimates can be caused not only by systematic errors in dose estimates which
is obvious, but by random errors as well. And although recently repeated attempts to
include dose errors in the risk analysis have been made (Mallick et al., 2002; Kopecky
et al., 2006; Lyon et al., 2006; Carroll et al., 2006; Li et al., 2007; Masiuk et al., 2008,
2011, and 2013; Little et al., 2014), the problem is not fully resolved until the present
time.

It is known that exposure doses estimation is inevitably accompanied by either
the classical or Berkson type errors, or a combination of them (Mallick et al., 2002;
Kopecky et al., 2006; Lyon et al., 2006; Li et al., 2007; Likhtarov et al., 2014, 2015; Ma-
siuk et al., 2016). However, at themoment there is no final conclusion on the impact of
the classical, Berkson, or mixed error in dose estimates to the final result of risk anal-
ysis, usually being expressed in values of either excess relative risk (ERR) or excess
absolute risk (EAR); see Health risks from exposure to low levels of ionizing radiation
(2006).

One of the bright examples of importance of this problem is risk analysis of the re-
sults of long-term radio-epidemiology cohort studies of childrenwith exposed thyroid
due to the accident at Chornobyl nuclear power plant (Tronko et al., 2006; Bogdanova
et al., 2015). It is vital to note that in the studies, absolute and relative frequencies of
thyroid cancer in this cohort have been identified fairly. Not only point but also inter-
val (in a statistical sense) doses estimates have been obtained (Likhtarov et al., 2005,
2006b, 2012, 2013a, 2014). However, due to the lack of a more or less acceptablemath-
ematically grounded computational procedure for combining two-dimensional error
in dose and effect within a single procedure of risk analysis, the risks estimation of
radiation-induced effects was performed by the popular in radio-epidemiology com-
puter package EPICURE (Preston et al., 1993). The latter operates with deterministic
dose values and is not adapted to take into account any uncertainty of input data.
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Chapters 6 and 7 considersmethod taking into account both classical andBerkson
errors in radiation doses for risk estimation in regression with binary response. The
quality of the estimates is verified by means of stochastic simulation experiment for
linear two-parameter risk model.

6.1 General principles for construction of radiation risk models

As known (Health risks from exposure to low levels of ionizing radiation, 2006), at rela-
tively lowdoses the risk of radiation-induced effect either depends on the dose linearly
or contains both linear and quadratic term in dose. Radiobiological theory indicates
that at low doses, the risk of a biological lesion being formed should depend linearly
on dose if a single event is required or on the square of dose if two events are required.
It is commonly held that high linear energy transfer radiation can cause lesions by
the transversal of a single particle, and low linear energy transfer radiation does it by
either one or two photons (or energetic beta particles). At higher doses of radiation,
cell sterilization and cell death competewith the process ofmalignant transformation,
thereby attenuating the risk of cancer at higher doses. The probability of cell death is
subject to ordinary survival laws, i.e., it has a negative exponential dependence on the
dose (or on squared dose). Combining these principles, one can get a general model
for dependence of the radiation risk on the dose D that is widely used in radio-epi-
demiology for low linear energy transfer radiation:

f(D) = (α0 + α1D + α2D2)e−β1D−β2D2 . (6.1)

Here, α0, α1, α2, β1, and β2 are model parameters to be estimated from the data.
The models for dependence on dose are generally incorporated into risk models

by assuming that the excess risk functions are proportional to f(D), where the mul-
tiplicative constant (in dose) depends on such risk modifiers of radio-induction as
sex and age at the moment of exposure. Moreover, for most malignant tumors (other
than leukemia andbone cancer) the risk of disease increases over time of surveillance.
Therefore, as a rule, most of risk estimates are based on the assumption that the risk
increases during the life span of the population.

Themost radio-epidemiologic studies (Likhtarov et al., 2006a; Tronko et al., 2006;
Zablotska et al., 2011; Little et al., 2014) use the following linear models for risk esti-
mation:
– relative risk model:

λ(D, s1 , . . ., sp , z1, . . ., zq) = e∑i αi si (1 + ERR D e∑j γj zj) , (6.2)

– absolute risk model:

λ(D, s1, . . ., sp , z1, . . ., zq) = e∑i αi si + EARD e∑j γj zj . (6.3)
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Here, αi , ERR, EAR and γj are regression coefficients to be estimated, D is radiation
covariate (dose), si are covariates (confounders) that affect the level of background in-
cidence rate (as a confounder there may be the age, sex, level of examination, etc.), zj
are modifying covariates making an effect on the risk of radio-induction (e.g., the age
at the moment of exposure, sex, or the time elapsed since the moment of exposure).
ERR and EAR are treated as excess relative and absolute risk per Gray, respectively.

6.2 Linear two-parameter model

Consider the two-parameter linear in dose regression model with binary response:

P(Yi = 1|Di) = λi
1 + λi

,

P(Yi = 0|Di) = 1
1 + λi

,
(6.4)

where λi is the total risk or total incidence rate,

λi = λ0 + EAR ⋅ Di , (6.5)

or as a version with relative risk:

λi = λ0(1 + βDi) = λ0(1 + ERR ⋅ Di) . (6.6)

Here Di is the individual exposure dose, λ0 is the background incidence rate (i.e., in
the absence of the dose factor), β = ERR is excess relative risk, EAR = λ0β = λ0 ⋅ ERR
is excess absolute risk.

In this instance, λ0 and EAR (or ERR) are positive model parameters to be esti-
mated. The observed sample consists of couples (Yi , Di), i = 1, . . ., N, where Di are
the doses (nonnegative numbers); Yi = 1 in the case of disease within some time in-
terval, and Yi = 0 in the absence of disease within the interval.

Model (6.4) resembles the logisticmodel (4.231) and (4.232), but the latter has total
incidence rate being exponentially (not linearly) dependent on the dose: λi = exp(μ0+
μ1Di).
6.2.1 Efficient estimators of parameters in linear model

From relations (6.4)–(6.6) it follows that

E((1 − Y)(1 + ERR ⋅ D)) = E( Y
λ0

) ,

E(1 − Y) = E( Y
λ0(1 + ERR ⋅ D) ) .

(6.7)
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Replacing the expectations in (6.7) by the empiricalmeans, we get the unbiased equa-
tion (see Appendix A1) for estimation of regression parameters λ0 and ERR:

N∑
i=1

((1 − Yi)(1 + ERR ⋅ Di) − Yi
λ0

) = 0 ,
N∑
i=1

(1 − Yi − Yi
λ0(1 + ERR ⋅ Di)) = 0 . (6.8)

From the first equation (6.8) we have

λ̂0 = λ̂0(ERR) = ∑N
i=1 Yi∑N

i=1 (1 − Yi)(1 + ERR ⋅ Di) . (6.9)

Excluding λ0 from system (6.8), we obtain a relation for the estimator of the parameter
ERR:

N∑
i=1

Yi(Di − Dav)
1 + ERR ⋅ Di

= 0 , ERR > 0 . (6.10)

Here Dav is mean exposure dose for healthy subjects from the sample:

Dav := ∑N
i=1 Di(1 − Yi)∑N
i=1 (1 − Yi) . (6.11)

In more detail, the properties of estimators (6.9) and (6.10) are studied in Appendix B.
Compared to the maximum likelihood estimates (MLEs), the estimates (6.9) and

(6.10) are efficiently computed because their evaluation is reduced to a nonlinear
equation with one variable. As shown in the simulation study, the estimates (6.9) and
(6.10) possess good asymptotic properties as the sample size increases. (This follows
as well from a general theory of estimating equations (see Appendices A1 and A2).)
Therefore, they can be used as initial approximation in computation of the MLE.

6.3 Two types of dose errors

Analyzing the impact of dose errors on the estimation of radiation risks, it is important
to establish the essence mechanism of such errors. There are two basic models of the
errors: the classical and Berkson ones (see Section 1.2). In practice, these two types of
errors are usually realized jointly (Mallick et al., 2002; Masiuk et al., 2016). However,
their impact on the radiation risk estimates cardinally differs. Therefore, it is advisable
to consider the classical and Berkson errors separately from each other.

As a rule, the errors in doses aremultiplicative in their nature. Hence, wewill con-
sider both classical and Berkson errors regarding the logarithms of exposure doses.

Let Dtr be the true value of exposure dose (usually Dtr is unknown), and Dmes be
its measured value.
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6.3.1 Berkson multiplicative error

If we have a multiplicative log-normal Berkson dose error, then

xi = wi + ui ,
ui ∼ N(0, σ2i ) . (6.12)

Here, wi = ln(Dmesi ) is the logarithm of measured doses (known quantity), xi = ln(Dtri )
is the logarithm of true dose (unknown quantity), and ui is normal error with zero
expectation and known variance σ2i .

The variable wi can be either random or deterministic. If wi is random, then both
wi and ui are assumed stochastically independent.

In case of Berkson error, the conditional distribution of the logarithm xi of true
dose is given as

xi|wi ∼ N(wi , σ2i ) , (6.13)

i.e., for each observation there is known the conditional distribution of the true ran-
dom variable (i.e., of the logarithm of dose), but its exact realization is unknown (see
Figure 6.1 (a)). The Berkson error occurs every time when the dose mean value is ap-
plied instead of the dose true value. In particular, if the individual dose values are un-
known, but approximated values of their expectations are known (e.g.,meangroupes-
timates of individual doses (Likhtarov et al., 2005, 2014) obtained by numericalMonte
Carlo procedure), then replacement of the true doses by their approximate expecta-
tions leads to measurement errors of Berkson type.

TheBerkson error (unlike the classical error) possesses a convenient property that
the use of doses withmoderate Berkson errors in the linear (w.r.t. the dose) riskmodel
practically does not bias the risk estimates (Carroll et al., 2006; Kukush et al., 2011;
Masiuk et al. 2013, 2016).

6.3.2 The classical multiplicative error

Let the dose be observed with the classical log-normally distributed multiplicative er-
ror. Then

wi = xi + ui ,
ui ∼ N(0, σ2i ) . (6.14)

Here, xi = ln(Dtri ) is unknown value of the logarithm of true dose, wi = ln(Dmesi ) is
known logarithm of the measured dose; ui is independent of xi normal random vari-
able, with zero expectation and known variance (in other words ui is a random error).

In case of the classical error,

wi |xi ∼ N(xi , σ2i ) . (6.15)
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Fig. 6.1: Illustration to the concepts of Berkson (a) and classical (b) multiplicative errors.

From (6.15), it follows that the conditional distribution of the logarithm of measured
dose wi has known variance and unknown expectation, which is regarded as the log-
arithm of true dose (see Figure 6.1 (b)).

The classical error occurs when the measured dose value (i.e., some computa-
tional and instrumental dose realization including the error) is used instead of the
true dose value. For example, measurements of radioactivity and the results of ques-
tionnaires fluctuate just because of the presence of classical error.

6.3.3 Comparison of the classical and Berkson errors

At first glance, it seems that the classical error stems out from the Berkson one by
simply transferring the value ui to the right-hand side of (6.12):

wi = xi − ui ,
ui ∼ N(0, σ2i ) . (6.16)

In view of the fact that ui and −ui are equally distributed, it seems that (6.16) is equiv-
alent to (6.14). However, there is a significant difference: in (6.14), xi and ui are inde-
pendent random variables, while in (6.16), wi and ui are independent. Therefore, the
two error models (6.14) and (6.16) are quite different.

Thus, in the presence of Berkson error the logarithm wi of measured dose is inde-
pendent covariate, which characterizes the distribution of the logarithm of true dose,
or more precisely, wi is its conditional expectation given the measured dose. On the
other hand, in the presence of the classical error the logarithm wi of measured dose is
a random variable correlated with the logarithm xi of true dose and the error ui.

Berkson error compared with the classical error gives more information about the
true dose.With Berkson error, at least we know the conditional distribution of the true
dose (or of its logarithm xi). And with the classical error, we know only the logarithm
of true dose up to the random error ui.
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6.4 Methods of risk estimation in the models with Berkson
multiplicative error in exposure dose

6.4.1 Full maximum likelihood method

Consider the full maximum likelihood (FML) method for the risk estimation in the
presence of multiplicative error of Berkson type in exposure doses. Assume that in
measured doses, only Berkson multiplicative error is present. Then

lnDtri = ln Dmesi + ui , i = 1, . . ., N ,
ui ∼ N(0, σ2F,i) . (6.17)

Here, Dtri is the true dose (unknown), D
mes
i is the estimated dose (known), and ui is

the normal error.
Find the likelihood function L(Yi , Dmesi , θ) using the following steps. Suppose

P(Yi , Dmesi , Dtri ) is joint probability distribution of random variables Yi , Dmesi , and Di.
Then by the formula of conditional probabilities we obtain

P(Yi , Dmesi , Dtri ) = P(Yi |Dmesi , Dtri ) ⋅ P(Dmesi , Dtri ) = P(Yi | Dtri ) ⋅ P(Dtri |Dmesi ) ⋅ P(Dmesi ) .
(6.18)

Since the multiplier P(Dmesi ) does not bear any additional information on the vector
parameter θ, it can be omitted. In (6.18), passing from the probability distributions to
the likelihood function and using the fact that the conditional distribution Dtri |Dmesi
is log-normal: Dtri |Dmesi ∼ LN(ln Dmesi , σ2F,i), we obtain
L(Yi , Dmesi , Dtri , θ) = ( λi(Dtri , θ)

1 + λi(Dtri , θ))
Yi ( 1

1 + λi(Dtri , θ))
1−Yi exp(− (lnDtr

i −ln Dmes
i )2

2σ2F,i
)

Dtri √2πσF,i .

(6.19)
To get rid of unknown variable Dtri , it is necessary to do convolution with respect to
this variable:

L(Yi , Dmesi , θ) = ∞∫
0

( λi(t, θ)
1 + λi(t, θ) )Yi ( 1

1 + λi(t, θ) )1−Yi exp (−
(ln t−lnDmes

i )2
2σ2F,i

)
t√2πσF,i dt . (6.20)

Thus, the likelihood function, which takes into account the contributions of all obser-
vations, is equal to

L( θ) = N∏
i=1

∞∫
0

( λi(t, θ)
1 + λi(t, θ) )Yi ( 1

1 + λi(t, θ) )1−Yi exp (−
(ln t−lnDmes

i )2
2σ2F,i

)
t√2πσF,i dt. (6.21)

The corresponding log-likelihood function is

l(θ) = N∑
i=1

ln
∞∫
0

( λi(t, θ)
1 + λi(t, θ) )Yi ( 1

1 + λi(t, θ) )1−Yi exp(− (ln t−lnDmes
i )2

2σ2F,i
)

t√2πσF,i dt . (6.22)
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In view of the fact that the variable Yi takes only two values 0 and 1, the latter equality
can be written as:

l( θ) = N∑
i=1

[[[Yi ln
∞∫
0

( λi(t, θ)
1 + λi(t, θ) ) exp (− (ln t−lnDmes

i )2
2σ2F,i

)
t√2πσF,i dt+

+ (1 − Yi) ln ∞∫
0

( 1
1 + λi(t, θ) ) exp(− (ln t−lnDmes

i )2
2σ2F,i

)
t√2πσF,i dt]]] . (6.23)

For each i = 1, . . ., N, change the variable in integrals (6.23):
dz = 1

t√2πσF,i exp(−(ln t − ln Dmesi )2
2σ2F,i

) dt,

z = t∫
0

1
t√2πσF,i exp(−(ln t − lnDmesi )2

2σ2F,i
)dt = Gi(t) . (6.24)

Here t = G−1i (z), and z = Gi(t) is the cumulative distribution function (cdf) of lognor-
mal law. Hence,

z(0) = 0 , z(+∞) = 1 . (6.25)

Substituting (6.24) and (6.25) to (6.23), we obtain

l( θ) = N∑
i=1

[[Yi ln
1∫
0

( λi(G−1i (z), θ)
1 + λi(G−1i (z), θ)) dz + (1 − Yi) ln 1∫

0

( 1
1 + λi(G−1i (z), θ))dz]] .

(6.26)
The integrals in (6.26) have a singularity at the point z = 1, since G−1i (z) → +∞,
as z → 1. Nevertheless, the integrals exist as the absolutely convergent improper Rie-
mann integrals. One can use the Monte Carlomethod for their evaluation. In so doing,
it is possible to use the following relation:

G−1i (z) = exp(Dmesi + σF,iΦ−1(z)) , (6.27)

where Φ(z) is the cdf of standard normal law.
The FMLmethod lies in finding a vector parameter θ at which the likelihood func-

tion (6.26) attains its maximum.

6.4.2 Simulated stochastic experiment

To check the efficiency of the proposed method for estimation the regression param-
eters, the simulated stochastic experiment was done. The simulation was performed
based on epidemiological studies of thyroid cancer incidence in Ukraine (Likhtarov
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et al., 2006a; Tronko et al., 2006; Bogdanova et al., 2015). The absorbed doses of in-
ternal thyroid exposure correspond to those published in Likhtarov et al. (2006b) and
Likhtarov et al. (2014) doses for a real subpopulation of children and adolescents aged
from 0 to 18 years (13,204 persons in total) resided in settlements of Zhytomyr, Kyiv,
and ChernihivOblasts of Ukraine, where directmeasurements of thyroid radioactivity
were conducted in May–June, 1986.

In simulation of the thyroid cancer incidence rate at fixed time interval, the two-
parameter logistic linear model of absolute risk (6.4)–(6.5) was used.¹ The true model
parameters were chosen being close to the estimates obtained during epidemiologi-
cal studies of thyroid cancer in Ukraine (Likhtarov et al., 2006a; Tronko et al., 2006),
namely:

λ0 = 2 × 10−4 cases
person years

,

EAR = 5 × 10−4 cases
Gy ⋅ (person years) . (6.28)

In addition, it was assumed that Berkson multiplicative error in dose is distributed
by lognormal law (6.17). The Berkson error value was set so that the geometric stan-
dard deviation GSD = exp(σF,i) took values from 2 to 10, for all i = 1, . . ., N. In the
simulation, 1000 data sets were generated for each error value.

To estimate the regression parameters λ0 and EAR, the naive estimation method
(i.e., the one that ignores the presence of errors in doses) and the FML method were
used.

Simulation results are presented in Figure 6.2. From it, one can see that at high er-
rors in doses, the naive estimates of background incidence rate λ0 and excess absolute
risk EAR deviate significantly from the corresponding model values (i.e., true values).

The deviations depend on the error variance. Thus, if GSD < 3, the naive estimate
ofEAR is close to themodel value, but further increaseof theGSD yieldspractically lin-
ear decrease of the naive estimate. At GSD = 10, the naive estimate is less than the true
value of EAR almost twice (see Figure 6.2 (b)). As mentioned above, this phenomenon
is called attenuation effect, i.e., the effect of underestimation of the excess absolute
risk in the presence of measurement errors in doses. At the same time, the opposite ef-
fect is observed for the background incidence rate. With significant errors in absorbed
doses of internal thyroid exposure, the naive estimates of λ0 are somewhat larger than
the model (i.e., true) values of this parameter (see Figure 6.2 (a)).

1 In the simulations, the authors used the risk model (6.5) in terms of background incidence rate and
EAR. In the context of measurement errors, this model is more natural compared to the model of rela-
tive risk (6.6). In addition, the EAR characterizes the slope of the dose–effect curve, and for the naive
estimate, there is well-known attenuation effect (Carroll et al., 2006; Kukush et al., 2011; Masiuk et al.,
2016), i.e., effect of attraction of the estimate for EAR to zero; see also Section 2.1. However, it is quite
possible to compute the estimates of ERR and construct the appropriate confidence intervals. A rough
estimate of ERR could be the ratio of the estimates of EAR and λ0.
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Fig. 6.2: Dependence of the estimates of background incidence rate (a) and excess absolute risk (b)
on the level of Berkson multiplicative error in the thyroid absorbed doses.

Thus, in the presence of Berkson errors in doses, the naive estimates redistribute
as follows: for EAR naive estimate is lower than the true value, whereas for λ0 it is
higher. This can be related to the nonlinearity of the log-likelihood function. It should
be noted that in the case of Berkson error, the attenuation effect occurs only when the
error is large, and it is not as significant as in the case of the classical error (Carroll et
al., 2006; Kukush et al., 2011; Masiuk et al. 2013, 2016).

Even with significant errors in doses, the estimates of both regression parameters
λ0 and EAR are significantly improvedwhenwe use the FMLmethod, which takes into
account the Berkson error with help of the convolution integral (6.20).

Thus, stochastic simulation demonstrates that ignoring significant Berkson errors
in doses causes the bias in the estimates of background incidence rate λ0 and excess
absolute risk EAR. At the same time, the biases are much smaller than in the case of
the classical error. Using the FML method improves significantly both estimates.
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6.5 Methods of risk estimation in the models with classical
multiplicative error in exposure doses

In practice, to account for errors in measured dose², the Regression Calibration (Car-
roll et al., 2006; Kukush et al., 2011; Masiuk et al., 2016) is often used. Within this es-
timation method, before statistical processing of epidemiological data the measured
dose is replaced by D∗i = E(Dtri | Dmesi ), the conditional expectation of the true dose
given themeasured dose; then classical regression analysis of epidemiological data is
applied (e.g., using the software package EPICURE).

6.5.1 Parametric regression calibration

Let the doses be observed only with the classical multiplicative error, i.e.,

lnDmesi = ln Dtri + ui , i = 1, . . ., N,
ui ∼ N(0, σ2Q,i) . (6.29)

Within the functional approach, the true value of the covariate Dtri is nonrandom, and
then we get the classical functional errors-in-variables model. If Dtri were assumed
to be identically distributed random variables being independent of the errors ui, we
would obtain the so-called classical structuralmodel.Within the lognormal structural
model,³

lnDtri ∼ N(μ1, σ21) . (6.30)

Since in the case of classical multiplicative error, the conditional distribution
ln Dtri |Dmesi is normal, then

ln Dtri
󵄨󵄨󵄨󵄨󵄨Dmesi ∼ N(σ21 ⋅ lnDmesi + μ1 ⋅ σ2Q,i

σ2Q,i + σ21
,
σ2Q,i ⋅ σ21
σ2Q,i + σ21

) . (6.31)

The moments of distribution (6.31) are found by the formulas for the moments of log-
normal distribution (Koroliuk et al., 1985). If ln η ∼ N(μ, σ2), thenEη = exp(μ+0, 5σ2)
and Eη2 = exp(2μ + 2σ2). Thus,

E(Dtri 󵄨󵄨󵄨󵄨󵄨Dmesi ) = exp(σ21 ⋅ ln Dmesi + μ1 ⋅ σ2Q,i + 0.5σ2Q,i ⋅ σ21
σ2Q,i + σ21

) , (6.32)

E[ (Dtri )2󵄨󵄨󵄨󵄨󵄨 Dmesi ] = exp(2 ⋅ σ21 ⋅ ln Dmesi + μ1 ⋅ σ2Q,i + σ2Q,i ⋅ σ21
σ2Q,i + σ21

) . (6.33)

2 The termmeasureddosemeans thedoseobtainedbydirectmeasurement of the thyroid radioactivity
and using the ecological and dosimetric model of radioactivity transfer through the food chains.
3 The parameters μ1, σ21 can be estimated by observations Dmesi : μ̂1 = 1

N ∑Ni=1 ln(Dmesi ), σ̂21 =
1

N−1 ∑Ni=1 (ln(Dmesi )−μ̂1)2 − 1
N ∑Ni=1 σ2Q,i , where N is number of subjects in the cohort.
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6.5.2 Nonparametric regression calibration

Let a discrete approximation to distribution of the set of variables Dtri , i = 1, 2, . . ., N,
be searched. Assume that according to the estimation results⁴

P(Dtri = exp(xk)) = pk , ∑K
k=1 pk = 1 , (6.34)

where K is number of points at which the distribution of Dtri is concentrated.
Supposing also that (6.34) is the true distribution of Dtri , we obtain the conditional

discrete distribution Dtri |Dmesi :

P(Dtri = exp(xk)󵄨󵄨󵄨󵄨󵄨Dmesi ) = pkli,k∑K
j=1 pj li,j

, (6.35)

where li,k = 1
√2πσQ,i

exp(− (ln Dmes
i −xk)2
2σ2Q,i

) is the probability density function (pdf) of con-
ditional distribution lnDmesi | [Dtri = exp(xk)], which is evaluated at the point Dmesi .

Moments of the conditional distribution Dtri |Dmesi are equal to

E(Dtri 󵄨󵄨󵄨󵄨󵄨Dmesi ) = ∑K
k=1 exp(xk)pkli,k∑K

k=1 pkli,k
, (6.36)

E[ (Dtri )2 󵄨󵄨󵄨󵄨󵄨 Dmesi ] = ∑K
k=1 exp(2xk)pkli,k∑K

k=1 pkli,k
. (6.37)

6.5.3 Full maximum likelihood method and its modification

Evaluate the likelihood function L(Yi , Dmesi , θ) by the following steps. Suppose that
P(Yi , Dmesi , Dtri ) is joint probability distribution of the variables Yi , Dmesi , Dtri . Then by
the formula for conditional probabilities we get

P(Yi , Dmesi , Dtri ) = P(Yi |Dmesi , Dtri ) ⋅ P(Dmesi , Dtri ) = P(Yi | Dtri ) ⋅ P(Dmesi |Dtri ) ⋅ P(Dtri ) .
(6.38)

In (6.38), passing from probabilities to the likelihood function, given the fact that the
conditional distribution Dmesi |Dtri is lognormal, and being within the structuralmodel

4 Here the discrete probabilities pk are estimated by theMLmethod which lies inmaximization of the
functional

N
∏
i=1

P(Dtr = Dtri ) =
N
∏
i=1

K
∑
k=1

pk li,k ,

provided pk ≥ 0, k = 1, 2, . . ., K, p1 + p2 + . . . + pK = 1. The weights li,k are given further.
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(6.30), we obtain

L(Yi , Dmesi , Dtri , θ) = ( λ(Dtri , θ)
1 + λ(Dtri , θ))

Yi ( 1
1 + λ(Dtri , θ))

1−Yi ×
× exp (− (lnDtr

i −μ1)2
2σ21

)
Dtri √2πσ1

exp (− (lnDmesi −ln Dtri )2
2σ2Q,i

)
Dmesi √2πσQ,i . (6.39)

To get rid of unknown covariate Dtri it is necessary to make convolution with respect
to this variable:

L(Yi , Dmesi , θ) = ∞∫
−∞

( λ(t, θ)
1 + λ(t, θ) )Yi ( 1

1 + λ(t, θ) )1−Yi ×
× exp (− (ln t−μ1)22σ21

)
t√2πσ1 exp(− (lnDmes

i −ln t)2
2σ2Q,i

)
Dmesi √2πσQ,i dt . (6.40)

Thus, the likelihood function taking into account the contributions of all observations
is equal to

L(θ) = N∏
i=1

∞∫
0

( λ(t, θ)
1 + λ(t, θ) )Yi ( 1

1 + λ(Dtr , θ))1−Yi ×
× exp (− (ln t−μ1)22σ21

)
t√2πσ1 exp(− (lnDmes

i −ln t)2
2σ2Q,i

)
Dmesi √2πσQ,i dt . (6.41)

The corresponding log-likelihood function is written as

l(θ) = N∑
i=1

ln
∞∫
0

( λ(t, θ)
1 + λ(t, θ) )Yi ( 1

1 + λ(t, θ) )1−Yi ×
× exp(− (ln t−μ1)22σ21

)
t√2πσ1 exp (− (lnDmes

i −ln t)2
2σ2Q,i

)
Dmesi √2πσQ,i dt . (6.42)

Given the fact that the response Yi takes only two values 0 and 1, the latter equality
can be written in the form:

l(θ) = N∑
i=1

[[[Yi ln
∞∫
0

( λ(t, θ)
1 + λ(t, θ) ) exp (− (ln t−μ1)22σ21

)
t√2πσ1 exp (− (lnDmes

i −ln t)2
2σ2Q,i

)
Dmesi √2πσQ,i dt+

+ (1 − Yi) ln ∞∫
0

( 1
1 + λ(t, θ) ) exp (− (ln t−μ1)22σ21

)
t√2πσ1 exp (− (lnDmesi −ln t)2

2σ2Q,i
)

Dmesi √2πσQ,i dt]]] .

(6.43)
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In the integrals (6.43), change variables:

dz = 1
t√2πσ21 exp(−(ln t − μ1)2

2σ21
) dt,

z = t∫
0

1
t√2πσ21 exp(−(ln t − μ1)2

2σ21
)dDtr = G(t) ,

t = G−1(z) .
(6.44)

Since z = G(t) is the cdf of lognormal law, it holds that
z(0) = 0, z(∞) = 1 . (6.45)

Substituting (6.44) and (6.45) into (6.43), we obtain

l(θ) = N∑
i=1

[[[Yi ln
1∫
0

( λ(G−1(z), θ)
1 + λ(G−1(z), θ) ) exp (− (lnDmes

i −ln G−1(z))2
2σ2Q,i

)
Dmesi √2πσQ,i dz+

+ (1 − Yi) ln 1∫
0

( 1
1 + λ(G−1(z), θ) ) exp (− (lnDmesi −ln G−1(z))2

2σ2Q,i
)

Dmesi √2πσQ,i dz]]] . (6.46)

Integrals (6.46) are improper and have singularities at the points z = 0 and z = 1,
since G−1(0) = 0 and G−1(z) → +∞, as z → 1. However, these integrals exist as the
absolutely convergent improper Riemann integrals. For their computation, one can
apply the Monte Carlo method. For the computation of (6.46), it is convenient to use
the equality

G−1(z) = exp(μ1 + σ1Φ−1(z)) , (6.47)

where Φ(z) is the cdf of standard normal law.
The FMLmethod lies in finding such a vector parameter θ at which the likelihood

function attains its maximum:

θ : l( θ) → max . (6.48)

Within the parametric version of the method, the distribution of true doses is parame-
terized as Dtr ∼ LN(μ1, σ21), and therefore, the problem is reduced to the optimization
of expression (6.46) using (6.47).

Peculiarity of the nonparametric modification of the FML method lies in refusal
to parameterize the distribution of Dtr, and the empirical cdf of Dtr is found by means
of relation (6.34). Then in expression (6.46), the function G−1(z) has to be replaced by
the inverse empirical cdf of Dtr.
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6.5.4 SIMEX method and its modification

The estimate obtained by the SIMEX method is randomized, i.e., it is a random func-
tion of observations. Suchmethod of risk parameters estimation was used in Kopecky
et al. (2006), but the approach proposed below allows taking into account more ac-
curately the structure of the measured doses. Note that the SIMEX method does not
require knowledge of the true dose distribution (see overview of the method in Sec-
tion 1.4.6).

In order to take into account the classical error, the following algorithm is used.
Select a natural number B ≥ 2. It is desirable that B is large enough, e.g., B = 100.

Then we generate random perturbations of the logarithms of doses

U∗b,i ∼ N(0, σ2Q,i) , b = 1, . . ., B , i = 1, . . ., N . (6.49)

The perturbations U∗b.i ∼ N(0, σ2Q,i), b = 1, . . . , B, B = 100 are generated so that, for
fixed i, the random variables U∗b,i have normal joint distribution, with

E[U∗b1 ,iU∗b2 ,i] = − σ2Q,i
B − 1 , b1 ̸= b2 . (6.50)

Then it holds that∑B
b=1 U∗b,i = 0, i = 1, . . . , N. The latter requirement yields less span

and less deviation of the estimates from the true value (see Appendix B).
Select a set Λ = {0, 0.2, 0.4, 0.6}. The perturbed doses are computed for each

κ ∈ Λ:
D∗b,i(κ) = Dmesi exp(√κU∗b,i), κ ∈ Λ . (6.51)

Compute the ordinary (naive) estimates for κ = 0, 0.2, 0.4, 0.6 and average the result
over b. For example, for the linearmodel of absolute risk (6.5), the estimates λ̂∗0(κ) and
ÊAR∗(κ) are computed as follows:

λ̂∗0(κ) = 1
B

B∑
b=1

λ̂∗0b(κ) ,
ÊAR∗(κ) = 1

B

B∑
b=1

ÊAR∗b(κ), κ ∈ Λ .
(6.52)

The functions λ̂∗0(κ) and ÊAR∗(κ) are extrapolated numerically to the point κ = −1,
and finally we get the SIMEX estimates for the parameters λ0 and EAR.

Thenumerical extrapolationof the functions λ̂∗0 (κ)and ÊAR∗(κ) canbeperformed
using the least squares method for approximation by the second degree polynomial.
Exact formula for the value of extrapolation polynomial at the point κ = −1 is as fol-
lows:

θ̂∗(−1) = 12.45 θ̂∗(0) − 9.35 θ̂∗(0.2) − 10.65 θ̂∗(0.4) + 8.55 θ̂∗(0.6) . (6.53)

Here θ̂∗(κ) denotes either λ̂∗0(κ) or ÊAR∗(κ).
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Confidence intervals for the SIMEX estimate are constructed using the estimate
of the covariance matrix. The latter estimate is computed by recommendations out-
lined in the monograph by Carroll et al. (2006) (see also Section 1.4.6). We have esti-
mated the variance of estimates θ̂∗b(κ) using Yi and D∗b,i(κ) as the data and applying
the sandwich formula (see Appendix A2). Denote by τ̂2b(κ) the estimate for the vari-
ance of θ̂∗b(κ). Then the estimate of the variance for the SIMEX estimate is the value
of function 1

B ∑B
b=1 τ̂

2
b(κ) − 1

B−1 ∑B
b=1 (θ̂∗b (κ) − θ̂∗(κ))2 being extrapolated to the point

κ = −1.
The efficient SIMEX is a combination of the SIMEXmethod and the corrected score

method. The efficient SIMEX is characterizedby the circumstance that instead of (6.51)
we use the doses

D∗b,i(κ) = {{{Dmesi exp (− σ2Q,i
2 ) , if Yi = 0 ,

Dmesi exp(√κU∗b,i), if Yi = 1 . (6.54)

As a result, the system of equations for estimates of the parameters of linear model
(6.8) for each b = 1, . . . , B , B = 100, takes the form

N∑
i=1

(1 − Yi)(1 + ÊRR∗b(κ)Dmesi exp(−σ2Q,i2 )) = N∑
i=1

Yi
λ̂∗0,b(κ) , (6.55)

N∑
i=1

(1 − Yi) = N∑
i=1

Yi
λ̂∗0,b(κ)(1 + ÊRR∗b(κ)D∗b,i(κ)) . (6.56)

Here, the left-hand side of (6.55) is obtained by virtue of taking into account errors in
doses and correction of the expression∑N

i=1 (1 − Yi)(1 + ERR ⋅ Di) in the first equation
of (6.8), and the right-hand side of equation (6.56) is done by the disturbance of Dmesi
in the expression

N∑
i=1

Yi
λ̂0(1 + ERR ⋅ Dmesi ) .

The above-proposed modification of the SIMEX method is efficient in the computa-
tional sense for the following reasons:
– every naive estimate being derived by solving equations (6.55) and (6.56) is effi-

cient from the computational point of view,
– some computations are common to all naive estimates and are performed only

once.

A more detailed justification of the proposed procedure is presented in Appendix B.

6.5.5 Stochastic simulation of the classical multiplicative error

To check efficiency of the developed (not naive) methods for regression parameters
estimation, the stochastic simulation study was conducted. The simulationwas based
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Fig. 6.3: Histogram of ln(Dtr).

on the epidemiological studiesdescribed inSection6.4.2.When simulating the thyroid
cancer incidence rate at a fixed time interval, the two-parameter linear model (6.5) of
absolute risk was used. The true model parameters were chosen to be close to the
estimates obtained during the epidemiological studies of thyroid cancer in Ukraine
(Likhtarov et al., 2006a; Tronko et al., 2006), namely:

λ0 = 10−4 cases
person years

,

EAR = 5 × 10−4 events
Gy ⋅ (person years) . (6.57)

In the simulation process, it was assumed that thyroid exposure doses were observed
only with the classical multiplicative error. In so doing, various values of measure-
ment error variances were used. Geometric standard deviation GSDQ = exp(σQ,i) of
the classicalmultiplicative error in the absorbed thyroid dose varied in the range from
1.5 to 5.0, for all i = 1, . . ., N.

During the simulation, 1000 data sets were generated. However, the unperturbed
doses Dtri (Figure 6.3) were based on real data and coincided in all realizations.

Estimation of the absolute risk parameters was performed by several methods:
– Naivemethod is theordinaryMaximumLikelihoodone, inwhich the thyroiddoses

were assumed free of errors,
– Parametric full maximum likelihood (PFML), the method which takes into account

the errors in exposure doses using the integral convolution (6.46) under the as-
sumption that the value Dtr has lognormal distribution,

– Nonparametric fullmaximum likelihood (NPFML), themethod inwhich, unlike the
PFML, the distribution of groups Dtr is not parameterized and the empirical dis-
tribution of Dtr is found using relation (6.34),

– Parametric regression calibration (PRC) described in Section 6.5.1,
– Nonparametric regression calibration (NPRC) described in Section 6.5.2,
– Ordinary SIMEX and efficient SIMEX presented in Section 6.5.4.
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Each estimate was computed for 1000 realizations of doses and cases. After this, the
corresponding risk values were averaged (in the form of arithmetical mean).

It is known that statistical inconsistency of estimators (i.e., nonconvergence of
obtained estimators to the true values, as the sample size tends to infinity) takes place
for the naive method and all methods of Regression Calibration. Therefore, instead of
the confidence interval, the deviance interval (95% DI) was computed based on the
2.5 and 97.5 percent quantiles of the estimates for 1000 realizations.

The simulation results are presented in Tables 6.1 and 6.2 and Figures 6.4 and 6.5.

6.5.6 Simulation results

The naive method
Analysis of the simulation results showed that in case of the classicalmeasurement er-
ror, the naive method underestimates the excess absolute risk EAR. At the same time,
the naive estimate of the background incidence rate is overestimated. Similar effect
is known in statistical literature (Carroll et al., 2006) as “attenuation effect” (see Sec-
tion 2.1 for the case of linear model).

For the naive estimate, the attenuation effect increases, as the variance of the clas-
sical error grows. Notice that for sufficiently large variances of the classical errors (for
instance GSDQ = 5), the naive errors of excess absolute risk and baseline risk may
differ from themodel (true) values in several times, moreover the first ones will be un-
derestimated, and the second ones will be overestimated. This effect is clearly seen in
Figures 6.4 and 6.5.

Regression calibration and full maximum likelihood
The estimates obtained by the parametric and nonparametric Regression Calibration
and by the FMLmethod have relatively small bias (see Tables 6.1 and 6.2). When using
parametricmethods, the distribution of group doses was approximated by lognormal
law. For nonparametricmethods, there is noneed to approximate groupdosesbecause
these methods use the empirical distribution of the doses. Since the parametric and
nonparametricmethodsgave similar results,we infer that theparameterizationof true
doses distribution in the methods of regression calibration and FML is adequate. The
estimates of background incidence rate andexcess absolute risk for different variances
of the classical error are shown in Figures 6.4 and 6.5.

SIMEX method
Although the SIMEXmethod is robust, i.e., stable at violation of the assumption about
the distribution of dose group, its behavior deteriorates in case of large errors. Typ-
ically the SIMEX estimates have significant bias for large measurement errors. The
reason is as follows: we use square extrapolation function, but the naive MLE as a
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Fig. 6.4: Estimates of background incidence rate for different variances of classical multiplicative
error in absorbed thyroid doses.
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Fig. 6.5: Estimates of excess absolute risk for different variances of classical multiplicative error in
absorbed thyroid doses.

function of the variance of additional error deviates from quadratic law. In the effi-
cient computational SIMEX procedure, the modified naive estimates are used being
defined by equations (6.55) and (6.56). Such naive estimates depend on the variance
of additional error almost like a quadratic function. As a result, the efficient SIMEX
method yields a relatively small bias even for quite large errors. In simulations, the
maximal level of classical error was GSDQ = 5, and for larger errors of classical type,
the efficient SIMEX estimates can become worse.



7 Radiation risk estimation for persons exposed by
radioiodine as a result of the Chornobyl accident

As a result of the Chornobyl accident in 1986, much of the territories of Ukraine, Be-
larus, and Russia were subjected to radioactive contamination, and inhabitants of
these territories to radioactive exposure. The most significant was the thyroid expo-
sure due to intake of iodine radioisotopes, primarily of 131I (Likhtarev et al., 1993a,
1993b, 1995b).

Already in 5–6 years after the accident a dramatic increase began to be exhibited
in the thyroid cancer incidence of children and adolescents, which resided in the areas
where the estimates of thyroid exposure doses occurred to be quite high (Likhtarev et
al., 1995a; Buglova et al., 1996).

In fact, the growth of thyroid cancer incidence of children and adolescents caused
by internal thyroid exposure from Chornobyl fallout was the main statistically signif-
icant remote effect of the Chornobyl accident. It comes as no surprise that the phe-
nomenon caused enormous interest of radio-epidemiologists all over the world so that
a series of studies was conducted in Ukraine, Belarus, and Russia (Jacob et al., 2006;
Likhtarov et al., 2006a; Tronkoet al., 2006;Kopecky et al., 2006; Zablotska et al., 2011).

The interpretation of results of most radio-epidemiologic studies was based on a
number of assumptions, primarily on the estimates of exposure doses. The assump-
tions include the following:
– It was recognized that the dose estimates include uncertainty which is typically

significant.
– Even in the cases where the level of dose errors turned out to be determined, the

analytical procedures of risk analysis ignored that fact.

As a result of the above-mentioned general properties of the dosimetric support for
epidemiological studies, it was the merely stochastic nature of thyroid cancer cases
that was taken into account in analytical procedures of risk analysis, whereas the ex-
posure doses of subjects were assumed precise.

Studies performed by Kukush et al. (2011) and Masiuk et al. (2016) demonstrated
that the dose uncertainties can be quite correctly taken into account in the process of
risk analysis. Somedifficulty lies in the fact that themain sources of dose uncertainties
are related to errors in estimation of the weight of exposed organ, instrumental mea-
surements of radioactivity of the organ at certain moment, and the ecological compo-
nent of dose. The papers by Kukush et al. (2011) andMasiuk et al. (2016) show that the
estimates of thyroid weight and ecological component of thyroid dose include Berk-
son error, and the instrumental measurements contain the classical error. The size of
Berkson error is easily estimated by the Monte Carlo method (Likhtarov et al., 2014),
while a specific analysis is required to estimate the size of the classical error.
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7.1 Estimation of error level in direct thyroid radioactivity
measurements for children and adolescents exposed by 131I
in May–June 1986

7.1.1 Peculiarities of organization and performance of the mass thyroid
dosimetric monitoring

Conducting any campaign of mass measurement of radioiodine isotopes uptake in
thyroid gland (further called thyroid dosimetric monitoring) is always limited in time
for solely physical reasons. This is due to the fact that the most long-lived radioiso-
tope of iodine 131I has a half-life of 8 days, and within 5–8 weeks after the accidental
emission of radioisotope mixture in the environment the gamma radiation from the
radioiodine gets invisible against the background of cesium radioisotopes. Since the
deployment of thyroid dosimetric monitoring is always associated with necessity to
solve a lot of organizational and technical issues, consequently the monitoring itself
should be carried out in less than a month.

The need for coverage by measurements as many people in the areas undergone
by the accident as possible and being combined with short term of the monitoring
leads to the fact that such a monitoring has significant differences from laboratory
studies. First of all they are: attraction of staff without any experience in dosimetry,
use of nonspecialized equipment and many types of devices, reducing endurance in
themeasurements, and simplified calibrationof devices. All this leads to the values of
measurement errors that are significantly larger than in laboratory studies, and also to
the appearance of new error components, which would be avoided during laboratory
tests.

7.1.2 Implementation of thyroid dosimetric monitoring at the territory
of Ukraine in 1986

The thyroid dosimetric monitoring in the areas affected by the Chornobyl accident
was conducted by special emergency teams under supervision of the Ministry of Pub-
lic Health of the UkSSR. Advisory assistance was provided to them by a team from
the Research Institute of Hygiene ofMaritimeTransport (Leningrad city), which devel-
oped a generalmethod ofmeasurement andprovided emergency crews by the referent
sources of radioisotope 131I necessary for calibration of devices.

The first measurements were taken in mobile radiometric laboratories (MRL), in
which the spectrometers brought from the city of Leningrad were used. The purpose
of these measurements was to obtain initial estimates of doses and estimates of risk
level due to the radioiodine pollution. After obtaining the first results, it was decided
to expand the scopeofmeasurements by connecting to them localmedical institutions
and available equipment.



7.1 Estimation of error level in direct radioactivity measurements | 185

Immediately after the accident, the Ministry of Public Health of the UkSSR got
several specialized gamma-thyroid-radiometers GTRM-01ts; in addition, medical in-
stitutions, sanitary, and epidemiological stations provided a lot of nonprofessional
devices of the two main classes: the so-called window radiometers, which were able
to record gamma exposure in a narrow energy window (DSU, UR, NC), and integrated
radiometers, mainly the scintillation field radiometers SRP-68-01 intended for geo-
logical prospecting. The gauge sources were prepared especially at the Research Insti-
tute of Endocrinology andMetabolism (city of Kyiv) using solutions with 131I obtained
from the production association “Isotope.”

Thus, during the thyroid dosimetric monitoring the measurements were carried
out by devices of twomain types: energy-selective spectrometers (usually single-chan-
nel ones) and integrated radiometers (Likhtarev et al., 1995b; Likhtarov et al., 2015).
Table 7.1 presents data of all the models of spectrometric and nonspectrometric de-
vices that were used in various oblasts of Ukraine, as well as the appropriate number
of measurements performed by the devices.

Table 7.1: The peculiarities of the thyroid dosimetric monitoring in 1986: types and models of the
devices used, the number of measurements, the duration of the monitoring.

Type of devices Model Number of
measurements

Percentage of
all
measurements

Duration of
measurements
in 1986

One-channel and
multichannel
spectrometers

NC-150, NC-350 19321 13.2 14.05–11.06
GTRM-01ts 17834 12.2 17.05–30.06
UR 9745 6.7 17.05– 6.06
DSU-68 4452 3.0 25.05–31.05
DSU-2 1345 0.9 18.05–29.05
MRL 7 < 0.1 8.05–12.05

Integrated radiometers
SRP 68-01 93717 64.0 30.04–25.06
DP-5B 5 < 0.1 8.05–19.05

All devices 146426 100 30.04–30.06

As seen from Table 7.1, more than half of all the measurements were made by in-
tegrated radiometers SRP-68-01. Using devices of this type, the greatest amount of the
measurements was performed in Zhytomyr, Odessa, and Chernihiv Oblasts, and also
in the Crimea. As to measurements made by the spectrometric instruments, the most
of them were done by specialized thyroid radiometer GTRM-01ts (mainly in Chernihiv
and Zhytomyr Oblasts) and also by universal window radiometers NC-150 and NC-350
produced by the plant “Gamma” (Hungary). In whole, the most number of the mea-
surementswere performed in Zhytomyr, Chernihiv,Odessa Oblasts, and in the Crimea.
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As a rule, the scheme of measurements was as follows. The measurements were
carried out in well-ventilated premises with hourly wet cleaning. To reduce back-
ground of radiation, the detectors of devices were protected with lead collimators. For
field radiometers SRP 68-01 with factory kitting without collimator, the homemade
collimators were used made of scrap materials¹. During the measurement, the detec-
tor device was being brought to the neck of a personmeasured, before having cleaned
with a cotton wool wet in alcohol, then single counting the number of pulses or their
intensity was written down in sheet. Every hour or every day the background in the
same point of space was measured and its value was written down to the measuring
list. Also, in order to make a calibration, the count of pulses coming from a bottle
phantom (cylindrical bottle of 10ml containing a reference solution of isotope 131I)
was being fulfilled either hourly or daily.

The results of measurements performed in the same settlement in the same day
and by the same device and by the same team were recorded in so-called measur-
ing list. (A typical list contained the results of 100–200 individual measurements, al-
though in some cases the number of measurements performed by the team during
the day could be about thousand.) In conformity with the established requirements
to the measurement data, there were also to be recorded: the personal data of person
(name, date or even year of birth), information on dosimetric team, on type of measur-
ing device, the results of the device’s calibration (calibration factor), and the value of
radiation background in the room. Unfortunately, usually not all the data mentioned
abovewere written down in the lists. Some of them had to be recovered during several
cycles of the data processing.

Throughout June 1986, the bodies of people residing in contaminated areas were
continuing to accumulate cesium radioisotopes, while 131I was continuing to disinte-
grate quickly. In this regard, in early June the thyroid dosimetric monitoring was de-
cided to be finalized. Some measurements of thyroid activity against the background
of growing cesium exposure lasted until the end of June, but 98%of all measurements
were made up to June 6, i.e., the bulk of the monitoring was held during a period less
than a month.

Thus, a huge organizational work done in short terms gave medical workers a
unique array of data with more than 150 000 measurements of 131I content in the
thyroid of residents from the most contaminated areas of northern Ukraine: Zhyto-
myr, Kyiv, and Chernihiv Oblasts. Of these, about 112 thousand of measurements were
conducted among children and adolescents aged from 0 to 18 years (Likhtarev et
al., 1993a, 1993b, 1995b; Likhtarov et al., 2015). At the beginning of mass measure-
ments of 131I content in the thyroid, a considerable part of children and adolescents

1 Usually a thin sheet of leadwrapped around the detector unit served as collimator. Collimator could
shift to a few centimeters relatively to the end face of detector. The value of this shift is called “colli-
mator depth” or “collimator shift”.



7.1 Estimation of error level in direct radioactivity measurements | 187

from the suffered areas was removed to summer vacation spots in southern, the
least suffered Oblasts of Ukraine, and the population of the 30 km zone adjacent
to the Chornobyl nuclear power plant was evacuated completely. Therefore, about
47,000 measurements were performed at the territory of 10 Oblasts being rather far
from Chornobyl, whereas about 103 000 measurements were made within the three
northern Oblasts of Ukraine, in the areas distinguished by significant radionuclide
contamination.

7.1.3 Calibration of measuring devices

In general, the estimate of the content Q of iodine radioisotopes in the thyroid being
the result of a direct measurement is defined as

Q = Kb ⋅ G(Ith − fsh ⋅ Ibg) , (7.1)

where Kb is a calibration factor (CF) of measuring device from the bottle phantom; G
is correcting coefficient to the CF which takes into account the difference of the mea-
surements geometry between reference source (the bottle phantom) and a subject of
the measurements; Ith and Ibg show the device indication² during the measurement
of thyroid gland and gamma background, respectively; fsh is the coefficient of gamma
background screening by body of the subject and is a function dependent on both the
subjects’ anthropometric parameters and spectral characteristics of the background.
According to the literature, fsh is in the range 0.9–1 (Pitkevich et al., 1996; Zvonova et
al., 1997).

The CF is determined by measurement of the reference radiation source with its
activity Qref being known in advance. When calibrating by the bottle phantom G = 1
(due to the definition of correction coefficient) and fsh = 1, then from (7.1) we have

Kb = Qref
Iref − Ibg

, (7.2)

i.e., CF is numerically equal to radioactivity, which corresponds to the device’s indi-
cation unit and is the value reversed to the sensitivity of the device.

In general, the device sensitivity can vary in time for many reasons (e.g., because
of the temperature dependence of the parameters of electronics). Therefore, to mini-
mize errors in the measurement results it is advisable to calibrate the device immedi-
ately prior to themeasurements of the subjects. This in turn implies that the dosimetric
team should have a reference radiation source.

2 Devices with three types of indication were used during themonitoring: devices with needle indica-
tors registered intensity of pulses, devices with indicators showed percent from intensity of reference
source, and the ones that indicated the number of accumulated pulses.
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Wide geography of the measurements (they were held simultaneously in 14
Oblasts of Ukraine) made it almost impossible to supply all dosimetric teams with
the reference radiation sources for calibration of the instruments. Thus, first of all
such sources were delivered to the teams that worked with spectrometers. Therefore,
for a large part of the radiometers SRP-68-01, the calibration factor was unknown and
required recovery.

During mass monitoring in 1986, the devices’ calibration was performed using a
bottled phantom. The calibration factors Kb obtained through the bottle phantoms
should be corrected by a factor G, which accounts for the influence of geometry of the
measurements, physical characteristics of the thyroid, and coating tissue in the neck
area to a signal of the device’s detector (equation (7.1)).

Since the size of thyroid is a function of person’smass, and therefore, a function of
age and gender, the coefficient G is also dependent on age and gender. For calculation
of the correction coefficients for devices with collimators of any depth, the human
thyroid was modeled as two double-axis ellipsoids of revolution. In this case, the G
is the ratio of intensities registered by a detector of radiation coming from a model
of thyroid and a model of bottled phantom, provided they have the same content of
radioiodine in them.

Figure 7.1 demonstrates the CF value received by phantom experiments and cor-
rected by the value of correcting coefficient G (Likhtarov et al., 2015). For compari-
son, empirical values of the CF are also presented for three age groups obtained in
Kaidanovsky and Dolgirev (1997) on volunteers using SRP-68-01 with absent collima-
tor. Thus, in the absence of calibration procedure for the radiometers SRP-68-01 as a
value of the CF, we used the value Kb = 90Bqh/μR adjusted for the age-dependent
correction factor G.

7.1.4 Estimation of errors for direct measurements of the content
of radioiodine in the thyroid

It is known (Gol’danskii et al., 1959) that at the fixed intensity of emission for a ra-
dioactive source n, the probability to register k counts using ameasuring device (such
as the Geiger–Muller counter) for the time t is defined by the Poisson distributionwith
parameter nt:

pn(k) = (nt)k
k! e−nt, k = 0, 1, 2, . . . . (7.3)

Based on (7.3) and the described above measurement methods of radioactivity 131I in
the thyroid, we obtain

Q = K ( kthtth − fsh
kbg
tbg

) , (7.4)

where Q is the radioactivity of 131I in the thyroid, kth is the number of pulses regis-
tered by the device when measuring the radioactivity of 131I in the thyroid during the
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Fig. 7.1: Comparison between the experimental age-dependent calibration factors K (see formula
(7.5)) for the radiometers SRP-68-01 obtained on volunteers and gained using bottled phantom and
taking into account the age-correcting coefficient G (Likhtarov et al., 2015).

time tth of measurement, kbg is the number of pulses registered by the device when
measuring radioactivity backgroundduring the time tbg ofmeasurement, fsh is screen-
ing coefficient for the background radiation, and K is the age-dependent calibration
factor. The latter is the CF of device from the bottle phantom Kb adjusted with the
age-dependent geometric correcting factor G,

K = Kb ⋅ G . (7.5)

Because for large enough n, the Poisson distribution (7.3) is close to normal law
(Molina, 1973), we can write

nmesth ∼ N (ntrth, σ2th) , nmesbg ∼ N (ntrbg, σ2bg) , (7.6)

where N(m, σ2) is normal law with expectation m and variance σ2; nmesth = (kth)/(tth),
nmesbg = (kbg)/(tbg) are intensities of a radioactive source registeredduring themeasure-
ment of thyroid and background, respectively, and σ2th = (ntrth)/(tth),
σ2bg = (ntrbg)/(tbg) are the variances of measurement errors. Index tr means the true
value, whilemesmeans the measured one.

In addition to the statistical error of registration, the values nmesth and nmesbg contain
one more instrumental error, with variance σ2dev. One can estimate the full variances
of measurement errors for both thyroid and background:

σ̂2th = nmesth
tth

+ σ2dev , σ̂2bg = nmesbg
tbg

+ σ2dev (7.7)
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Based on the method of calibrating the measuring device, one can write the approxi-
mate relation as follows:

Kmes ≈ Ktr(1 + δKγ1) , γ1 ∼ N(0, 1) , (7.8)

where δK is based on the error of reference source 131I and the device’s error.
Using (7.6)–(7.8), expression (7.4) can be modified as

Qmes ≈ Ktr(1 + δKγ1)(ntrth − fshntrbg + σnγ2) , (7.9)

where σn = √σ̂2th + f 2sh σ̂
2
bg and γ2 ∼ N(0, 1).

From (7.9), we get

Qmes ≈ Ktr(ntrth − fshntrbg + (ntrth − fshntrbg)δKγ1 + σnγ2 + δKσnγ1γ2) . (7.10)

Since
Qtr = Ktr(ntrth − fshntrbg) , (7.11)

then substituting (7.11) in (7.10), we get

Qmes ≈ Qtr + Ktr(σnγ2 + (ntrth − fshntrbg)δKγ1 + δKσnγ1γ2) ≈ Qtr + σtrQγ , (7.12)

where σtrQ = Ktr√σ2n + σ2nδ2K + (ntrth − fshntrbg)2δ2K, γ ∼ N(0, 1).
Inasmuch as ntrth and n

tr
bg are unknown, the estimate of σ

tr
Q will be the following:

σmesQ = Kmes√σ2n + σ2nδ2K + (nmesth − fshnmesbg )2δ2K . (7.13)

Finally, we get the observation model of thyroid radioactivity with the classical addi-
tive error:

Qmes = Qtr + σmesQ γ . (7.14)

7.1.5 Errors of the device calibration

The error δK of the age-dependent calibration factor K specified in (7.5) can be found
as

δK = √δ2b + δ2G , (7.15)

where δb is relative error of the device’s calibration using bottle phantom, and δG is
relative error of age-correcting factor G.

For the radiometers SRP-68-01, the value of the relative error δG for geometric cor-
rection is based on empirical data obtained in Kaidanovsky and Dolgirev (1997) and
is estimated as 15%. Since scintillation crystals of the detector spectrometers are lo-
cated significantly farther from the thyroid, therefore the influence of measurement
geometry is less for the detectors. So, for spectrometers, δG was expertly estimated
as 5%.
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The goal of device’s calibration by a bottle phantom is to determine its sensitiv-
ity, i.e., to find out the values nmesref − nmesbg caused by radioactivity Qref of a reference
radiation source. Therefore, δb is specified as

δb = √δ2ref + ( σS
nref − nbg

)2 , (7.16)

where δref is relative error of activity for the reference radioactive source, which is
known from the technical documentation of the provider (here: Production Associ-
ation “Isotope”), and σS is error in measuring the intensity of the reference source.

Since the process of calibration by a bottle phantom is similar to measurement of
radioactivity in the thyroid, then the error σS is calculated similarly:

σS = √σ̂2ref + σ̂2bg , (7.17)

where σ̂2ref = (nmesref )/(tref) + σ2dev is the estimate of error variance for measuring the
intensity of the reference source during the time period tref.

For devices with missing information about the calibration, δb was expertly esti-
mated as 0.2 (i.e., 20%).

7.1.6 Analysis of relative errors in direct measurements
of thyroid radioactivity content

The distribution of activities of radioiodine in the thyroid calculated according to the
aforementionedmethodology has clearly expressed lognormal nature (Figure 7.2)with
a geometricmean (GM) equal to 4.8 kBq and geometric standard deviation (GSD) equal
to 3.8. The spread of the activities occurred to be significant, namely, 90%of all values
of the thyroid radioactivity, are in the range 0.58–47 kBq.

It should be emphasized that there is a deviation of the distribution from the log-
normal one in the regionof small values of radioiodine content. This deviation (the left
side of Figure 7.2) is due to the fact that the results of unreliable measurements were
censored. The measurements were considered reliable, if the probability to detect a
net signal (that is difference between thyroid signal and background signal) on the as-
sumption that its true value equals zero was not more than 25%. This is equivalent to
the condition (nth − fsh ⋅nbg) ≥ 0.68σn. In other words, the critical limit of radioiodine
in the thyroid was accepted at level 0.68σn. In that case, if the result of the measure-
ment was less than the critical limit, it is replaced by a half of the critical limit. With
the proviso that (nth − fsh ⋅ nbg) < 0.68σn, it was accepted that nth − fsh ⋅ nbg = 0.34σn.

The distribution of relative errors of measurements of the thyroid radioactivity is
depicted in Figure 7.3, and its characteristics such as the mean, median, and 5% and
95% percentiles are presented in Table 7.2.

For all the data set, the mean relative error is 0.33, which is essentially higher
than the values of the formal instrument errors given in the technical documentation
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Fig. 7.2: Histogram of the estimates on content of radioiodine in the thyroid in the logarithmic scale
(Likhtarov et al., 2015).

Table 7.2: Characteristics of the distribution of relative errors for the thyroid radioactivity in depen-
dence on the type of device.

Measurements by device’s
types

Percent of all
measurements

Relative error
AM Median 5th–95th percentiles

All measurements 100% 0.33 0.26 0.10–0.61
Measurements performed
by spectrometric devices

36% 0.27 0.22 0.09–0.54

Measurements performed
by radiometers

64% 0.37 0.29 0.20–0.66

of the measuring devices. The majority of values (90%) of the relative errors of the
direct measurements of thyroid radioactivity being calculated according to (7.13) and
(7.15)–(7.17) are in the range 0.1–0.6 (see Figure 7.3).

The complex nature of distribution shown in Figure 7.3 is explained by the combi-
nation inside a single array of measurements made by different types of instruments
(spectrometers and integrated radiometers). Radiometers are the less accurate devices
with relative error for them beginning with magnitudes of 0.2, while spectrometers
show a significant number of measurements with less error. For measurements made
with both types of the devices, there is an important characteristic expressed by signif-
icant right asymmetry of the distributions of relative errors. The analysis demonstrates
that the main component of the relative errors with values above 0.5 is the σn being
the measurement error of the net signal (i.e., the measurement error of difference be-
tween thyroid signal and background signal), which reaches significant values in re-
lation to the useful signal, is close to the background signal. It should be noted that a
small net signal testifies about a negligible content of radioactivity 131I in the thyroid
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Fig. 7.3: Distribution of the relative measurement errors on the content of radioiodine in the thyroid
(Likhtarov et al., 2015).

and respectively about a small dose of the thyroid irradiation. Thus, the large relative
errors correspond to low absolute values of radioactivity 131I in the thyroid and conse-
quently low exposure doses to the thyroid. The errors of the thyroidmeasurements for
subjects who received significant doses are at the left side of the distribution shown
in Figure 7.3.

7.2 A model of absorbed thyroid dose with classical additive and
Berkson multiplicative errors

Estimation of absorbed doses of internal thyroid exposure for residents of Ukrainian
regions suffered from radioactive 131I exposure after the accident on the Chornobyl
nuclear power plant is often a complicated process involving mathematical model-
ing. First it is necessary to estimate the dynamics of 131I fallouts over the area, then
using the model of radioiodine transfer along ecological chain to estimate its content
inmilk and other food, thenbased on the interview to determine the amount and types
of foods consumed by the population, and only then to estimate the ecological dose
(Likhtarov et al., 2015).

Reconstruction of individual exposure doses for people who resided (or still liv-
ing) in the contaminated areas requires detailed information concerning their routine
of behavior: location and environmental conditions, diet, preventive, and prophylac-
ticmeasures. A framework for computing individual thyroid instrumental doses is pre-



194 | 7 Radiation risk estimation for the Chornobyl accident

sented in Figure 7.4. In this scheme, there are two types of the examined doses: the in-
strumental absorbed dose taking into account the data of direct thyroid radioactivity
measurements, and ecological absorbed dose based only on the ecological model of
radioiodine transportation.

As seen from the figure, the individual instrumental absorbed dose of internal
thyroid exposure is computed using primary dosimetry, individual and ecological
data (Kaidanovsky and Dolgirev, 1997), individualized thyroid masses (Likhtarov et
al., 2013b), biokinetic radioiodine transportation models, andmodels of atmospheric
transportation of radioactivity (Talerko, 2005a, 2005b).

According to Likhtarov et al. (2014), the measured individual instrumental ab-
sorbed thyroid dose for the ith person can be represented as

Dmesi = fmesi Qmesi
Mmes

i
, (7.18)

where Mmes
i is the measured thyroid mass, Qmesi is the measured 131I radioactivity in

the thyroid, fmesi is amultiplier derived from the ecologicalmodel of radioactivity tran-
sition along the links of a food chain.

Ecological coefficient fmesi includes the error of Berkson type (Likhtarov et al.,
2014). Denote the factor with Berkson error as fmesi

Mmes
i

= Fmesi . Then relation (7.18) takes
the form

Dmesi = Fmesi Qmesi . (7.19)

The unknown true dose Dtri is decomposed as

Dtri = Ftri Q
tr
i . (7.20)

The connection between Ftri and F
mes
i is determined by Berkson multiplicative er-

ror:

Ftri = Fmesi ⋅ δF,i , EδF,i = 1 , ln δF,i ∼ N(−σ2F,i
2
, σ2F,i) . (7.21)

Here Fmesi and δF,i are stochastically independent, and σ2F,i is the variance of ln δF,i.
Further the values σ2F,i are assumed to be known. Values F

mes
i and σ2F,i can be obtained

by the Monte Carlo procedure described in Likhtarov et al. (2014).
According to (7.14), the individual measured radioactivity in thyroid Qmes

i can be
written as

Qmesi = Qtri + σmesQ,i γi , i = 1, . . ., N . (7.22)

Here γ1, . . ., γN are independent standard normal variables and σmesQ,i are individual
standard deviations of errors in direct measurements of thyroid radioactivity, which
are determined according to (7.13). The quantities σmesQ,i and Qtr

i are independent ran-
dom variables.

Substituting (7.22) to (7.20) and denoting Dtri = Fmesi Qtri , we get

Dmesi = Fmesi Qmesi = Fmesi (Qtr
i + σmesQ,i γi) = Fmesi ⋅ Qtr

i + Fmesi σmesQ,i γi . (7.23)
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Fig. 7.4: Framework for computing individual instrumental doses of internal thyroid exposure for
subjects under direct measurements of thyroid radioactivity in May–June 1986

Random variables {δi, i ≥ 1}, {γi, i ≥ 1} and random vectors {(Fmesi , Qtri ), i ≥ 1} are
jointly independent, but Fmesi and Qtr

i can be correlated. Introduce notations σi =
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Fmesi σmesQ,i and D
tr
i = Fmesi ⋅ Qtri . Then (7.20)–(7.23) takes the form

Dmesi = Dtri + σiγi . (7.24)

Dtri = Dtri δF,i (7.25)

In fact, (7.24) and (7.25) constitute a model of dose observations with the classical ad-
ditive error and Berkson multiplicative error.

It is easy to show that E(Dtri |Dmesi ) = E(Dtri |Dmesi ).
7.3 Methods of risk estimation under classical additive and

Berkson multiplicative errors in dose

In spite of the fact that Regression Calibration and the full maximum likelihood (FML)
method for the classicalmultiplicative errors showed good results (see Section 6.5), for
the classical additive errors in doses they proved to be inefficient (see Appendix D).
Authors are inclined to relate this phenomenon with “unnatural” combination of the
normal law of the classical dose errors in (7.23) and the lognormal law of population
(see Figure 6.3). Therefore, the authors elaborated more appropriate methods of risk
estimation which are presented in this section.

7.3.1 Corrected score method

Let the total incidence rate be given by (6.5). In the absence of dose errors, the likeli-
hood function takes the form (see Example 7.4):

L = ( λ
1 + λ)Y ( 1

1 + λ)1−Y = λY

1 + λ , (7.26)

or
ln L = Y ln λ − ln(1 + λ) . (7.27)

Then for unknown vector parameter θ = (λ0, β)T, the score function is
SML = Y

λ
⋅ ∂λ
∂θ

− 1
1 + λ

⋅ ∂λ
∂θ

. (7.28)

Notice that ∂λ
∂θ is a linear function in D

tr. In order to apply the corrected score method
and construct the estimating function depending on observations (Y, Dmes), we get rid
of the denominator in (7.28) and consider the following function:

S̃ML = λ (1 + λ) SML = Y (1 + λ) ∂λ∂θ − λ ∂λ∂θ . (7.29)
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The estimating function S̃ML is unbiased, because it has zero expectation at the true
point:

EθS̃ML(θ) = Eθ [(Y − λ
1 + λ) (1 + λ) ∂λ∂θ ] =

= EEθ [(Y − λ
1 + λ) (1 + λ) ∂λ

∂θ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Dtr] =
= E [(1 + λ) ∂λ∂θ Eθ [(Y − λ

1 + λ) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Dtr]] = 0 .
A new estimating function S̃C(Y, Dmes) should satisfy the relation

E[S̃C(Y, Dmes)|Y, Dtr] = S̃ML(Y, Dtr) = Y (1 + λ) ∂λ∂θ − λ ∂λ∂θ , (7.30)

for all θ. For this purpose, the two deconvolution problems have to be solved:

E[h1(Dmes)|Dtr] = λ ∂λ
∂θ

,

E[h2(Dmes)|Dtr] = ∂λ
∂θ ,

(7.31)

i.e., we have to find corresponding functions h1 and h2 and set

S̃C = Y(h1 + h2) − h1 = (Y − 1)h1 + Yh2 . (7.32)

Since ∂λ
∂θ is linear in D

tr, then h2 = ∂λ
∂θ |Dtr=Dmes = ∂λ

∂θ (Dmes).
Introduce notation for coefficients in the gradient:

∂λ
∂θ = (1

0
) + ( β

λ0
)Dtr = A + BDtr , (7.33)

then
h1 = λ0A + Dmes(λ0βA + λ0B) + ((Dmes)2 − σ2)λ0βB ,
h2 = A + BDmes .

(7.34)

The corrected score estimator θ̂N is found from equation

N∑
i=1

S̃C(Yi , Dmesi ; θN ) = 0 . (7.35)

The estimating function S̃C is unbiased as well, because

Eθ S̃C = EθE[S̃C |Y, Dtr] = EθS̃ML(Y, Dmes) = 0 . (7.36)

Therefore, as N → ∞, the estimator θ̂N is strong consistent, i.e., almost surely θ̂N →
θ, as N → ∞, where θ is the true vector parameter. The estimator is asymptotically
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normal, namely√N(θ̂N −θ) d󳨀→ N(0, Σ), where the asymptotic covariancematrix Σ can
be found by the sandwich formula (see Appendix A2):

Σ = U−1VU−T , U = E(−∂S̃C
∂θT

) , V = ES̃CS̃TC . (7.37)

The matrices U and V can be estimated consistently by the formulas

ÛN = 1
N

N∑
i=1

(−∂S̃C
∂θT

(Yi , Dmesi ; θ̂)) =
= 1
N

N∑
i=1

((1 − Yi)∂h1(Dmesi ; θ̂)
∂θT

− Yi
∂h2(Dmesi ; θ̂)

∂θT
) ,

V̂N = 1
N

N∑
i=1

((Yi − 1)h1 + Yih2) ((Yi − 1)hT1 + YihT2) .
(7.38)

In the latter equality hk = hk(Dmesi ; θ̂N ), k = 1, 2. Then the estimator for the matrix Σ
is Σ̂N = Û−1N V̂N Û−TN , and approximate relation holds: θ̂N −θ ≈ 1

√N N(0, Σ̂N ). Thismakes
it possible to construct the asymptotic confidence region for θ.

7.3.2 Ordinary SIMEX and efficient SIMEX estimates

The estimate obtained by the SIMEX method is randomized, i.e., it is a random func-
tion of observations. Such a method of risk estimation was used by Kopecky et al.
(2006), but in Masiuk et al. (2016) an approach which can more accurately take into
account the structure of measured doses was proposed. A similar method was used in
the presence of the classicalmultiplicative error (see Section 6.5.4).

In order to take into consideration the classical additive error in exposure doses,
the following algorithm for Ordinary SIMEX is proposed:
(1) Choose a natural number B ≥ 2. It is necessary that B be large enough, for exam-

ple, B = 100. Generate random perturbations for the logarithm of activities

U∗b,i ∼ N(0, σ2i ) , b = 1, . . ., B , i = 1, . . ., N . (7.39)

The perturbations are generated so that the condition∑B
b=1 U∗b,i = 0, i = 1, . . . , N,

holds true, which provides less spread and less deviation of the estimates (see
Appendix B).

(2) Choose a set, for instance Λ = {0; 0.2 ; 0.4; 0.6}.
(3) Using the perturbed activities, compute the perturbed doses for each κ ∈ Λ:

D∗b,i = Dmesi + √κU∗b,i, κ ∈ Λ . (7.40)
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(4) Compute the ordinary (naive) estimates λ̂∗0b(κ) and β̂∗b(κ) for κ = 0; 0.2; 0.4; 0.6
and average in b:

λ̂∗0(κ) = 1
B

B∑
b=1

λ̂∗0b(κ) ,
ÊAR∗(κ) = 1

B

B∑
b=1

λ̂∗0b(κ)β̂∗b(κ), κ ∈ Λ .
(7.41)

Extrapolate numerically the functions λ̂∗0(κ) and ÊAR∗(κ) to the point κ = −1 and
finally get the SIMEX estimates for the parameters λ0 and EAR = λ0β. In extrap-
olation, we approximate λ̂∗0(κ) and ÊAR∗(κ) with quadratic polynomial. Such a
choice of extrapolate function is the simplest one, and it allows to express the
estimates explicitly through λ̂∗0(κ) and ÊAR∗(κ), see (6.53).

In Kukush et al. (2011), the “Efficient SIMEX estimator” of the risk parameters of the
model with multiplicative error was derived as an alternative to the Ordinary SIMEX.
It differed in the way that Dmesi is perturbed only in case Yi = 1. In Masiuk et al.
(2016), this idea in the model with additive errors was developed. In case of the Ef-
ficient SIMEX method, the system of equations for estimation the model parameters
takes the form:

{{{{{
∑N
i=1 (1 − Yi) (1 + β̂∗b(κ)Dmesi ) = ∑N

i=1
Yi

λ̂∗0,b(κ)
,∑N

i=1 (1 − Yi) = 1
λ̂∗0,b(κ)

∑N
i=1

Yi
(1+β̂∗b(Λ))max(0,D∗

b,i(κ))
.

(7.42)

For significant perturbations, the modified dose D∗b,i(κ) = Dmesi + √κU∗b,i , κ ∈ Λ may
be negative, whichmay break down the estimation procedure. Therefore, the negative
doses are changed to zeros, i.e., max(0, D∗b,i(κ)) is used instead of D∗b,i(κ).
7.3.3 New regression calibration

Because of the “unnatural” combination of the normal law of dose errors and the log-
normal law of population Dtr, the traditional regression calibration, including the lin-
ear andparametric ones, did not give an acceptable result (see Appendix D). Then new
regression calibration (NRC) was developed. The idea of the method is as follows: the
additive normal error in doses is replaced with the multiplicative lognormal one, but
with nearly the same conditional variance (Masiuk et al., 2016).

Denote the lognormal error as δL,i, log(δL,i) ∼ N(0, σ2L,i). Equating the variance
of the multiplicative error δL,i to the relative variance of the dose error σ2i /(Dtri )2 and
replacing the unknowndose Dtri with themeasured one Dmesi , we obtain an expression
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for the parameter σ2L,i:

D(δL,i) = exp(2σ2L,i) − exp(σ2L,i) = ( σi
Dmesi

)2
. (7.43)

From here,

σ2L,i = ln(1
2 + √1

4 + ( σi
Dmesi

)2) . (7.44)

Unlike Masiuk et al. (2016) in this version of NRC we are correcting Dmesi to improve
the estimates for large classical error:

DmesL,i = Dmesi exp(−σ2L,i2 ) . (7.45)

After this, the calibration is carried out by the way described in Kukush et al. (2011):

E(Dtri 󵄨󵄨󵄨󵄨󵄨󵄨Dmesi ) ≈ exp(σ2
D
tr logDmesL,i + σ2L,iμDtr + σ2

Dtr
σ2L,i
2

σ2
D
tr + σ2L,i

) . (7.46)

The parameters μDtr and σ2
Dtr
are estimated by formulas from Koroliuk et al. (1985):

μ̂Dtr = log( (m̂Dtr)2√ ̂𝑣Dtr + (m̂Dtr)2) , σ̂2
D
tr = log( 𝑣̂Dtr(m̂Dtr)2 + 1) , (7.47)

where

m̂Dtr = 1
N

N∑
i=1

Dmesi ,

̂𝑣Dtr = 1
N − 1 N∑

i=1
(Dmesi − m̂Dtr)2 − 1

N

N∑
i=1

σ2i .
(7.48)

7.3.4 Taking into account Berkson error

The corrected scoremethod takes into account only the classical error butnot theBerk-
son one. At the same time, the ordinary and efficient SIMEX methods and the NRC
allow to take into consideration the presence of both types of errors.

In order to take into account Berkson multiplicative error when the ordinary
SIMEX method is used, the estimates λ̂∗0b(κ) and β̂∗b(κ) are also computed by the FML
method described in Section 6.4.
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In Masiuk et al. (2016), it is shown that in order to take into account Berkson mul-
tiplicative error in the efficient SIMEX method we must replace equations (7.42) with
(7.49) {{{{{

∑N
i=1

Yi
m(D∗

b,i(κ);λ0,β,σ2F,i)
= N ,∑N

i=1
Yi ⋅D∗

b,i(κ)
m(D∗

b,i(κ);λ0,β,σ2F,i)
= 1

λ̂∗0,b(κ)
∑N
i=1 Dmesi ,

(7.49)

where m(D∗b,i(κ); λ0, β, σ2F,i) = P[Y = 1| Dtri = D∗b,i(κ)].
The perturbed dose D∗b,i(κ) = Dmesi + √κU∗b,i, κ ∈ Λ can be negative. To prevent

the effect of negative doses on the naive estimates, the perturbed doses are censored
by zero from the left.

When the NRC was applied to account for the classical additive errors in thyroid
doses, the latter were precalibrated using (7.44)–(7.48). Further, in order to take into
account Berkson multiplicative dose error, the FML method described in Section 6.4
was applied.

7.3.5 Stochastic simulation of classical additive and Berkson multiplicative errors

A simulation was carried out based on the epidemiological studies of thyroid cancer
incidence in Ukraine (Likhtarov et al., 2006a, 2006b, and 2014; Tronko et al., 2006).
The absorbed doses of internal thyroid exposure correspond to doses for real subpop-
ulation of children and adolescents aged from0 to 18 (totally 13,204 subjects) from set-
tlements of Zhytomyr, Kyiv, and Chernihiv Oblasts of Ukraine, where the direct mea-
surements of thyroid radioactivity were being performed in May and June, 1986. In
simulation of thyroid cancer total incidence rate at a fixed time interval, the absolute
riskmodel (6.5) was used, with parameters close to the estimates obtained during epi-
demiological studies of thyroid cancer in Ukraine (Likhtarov et al., 2006a; Tronko et
al., 2006), namely:

λ0 = 2 × 10−4 cases
person years ,

EAR = 5 × 10−4 cases
Gy ⋅ (person years) . (7.50)

In the framework of the study, there were modeled measured doses (7.24) and (7.25)
observed with the classical additive normal error and Berkson multiplicative error.
The size of classical error was determined by a constant δQ = σmesQ,i

Qtr
i
, for all 1 ≤ i ≤

13,204, and varied from0.2 to 1. The size of Berkson errorwas set so that the geometric
standard deviation GSDF = exp(σF) of the parameter Ftr, with observed Fmes, took the
values: 1 (no error), 1.5, 2, 3, 5, and 8, for each 1 ≤ i ≤ 13,204. All the listed values are
realistic (Likhtarov et al., 2013a).

Simulation study is performed in four steps:
(1) Initial doses Dtri are taken from the real thyroid doses of children and adolescents

internally exposed to 131I in 1986 (see Figure 6.3).
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(2) True dose values Dtri are generated for the cohort by using Dtri and taking into
account the uncertainty levels GSDF given in the first column of Tables 7.3 and 7.4.

(3) Using the data from step 2, as well as the model in equations (6.4)–(6.6) with the
parameter values λ0 and EAR in (7.49), a disease vector is generated.

(4) Initial doses Dtri were perturbed, and thus, the measured doses Dmesi were gener-
ated according to equation (7.24), with the error standard deviation σi = δQ ⋅ Dtri ,
where δQ enters the second column of Tables 7.3 and 7.4. As a result, we obtain
an observationmodel with classical additive and Berkson multiplicative errors in
doses.

It should be noted that under sizable additive errors, some of the generated measured
doses Dmesi could be negative. In the latter case, the doseswere censored, i.e., negative
dose values were substituted with certain small positive number. In the simulation,
1000 data sets were generated.

Based on the measured doses Dmesi , the information of measurement errors GSDF
and δQ, and the disease vector generated in step 3, the parameter values λ0 and EAR
are estimated by the following methods:
(1) The naive method (using the package EPICURE).
(2) The NRC.
(3) Ordinary SIMEX.
(4) Efficient SIMEX.
(5) The corrected score method.

Each estimate was computed for 1000 realizations of doses and cases. Then the me-
dian and the deviance interval (95%DI) were calculated, based on the 2.5% and 97.5%
quantiles of estimates over 1000 realizations. In the cases where the 2.5 percent quan-
tile occurred to be negative, its value was replaced with zero bymere physical reasons
(because the risk coefficients cannot be negative).

7.3.6 Discussion of results

Naive method
The simulation results are given in Tables 7.3 and 7.4. At the same time, Figures 7.5
and 7.6 show the risk estimates behavior for the case GSDF = 1, i.e., when Berkson
error is absent. Analysis of the simulation results shows that the naive estimates are
biased both in the case of the classical additive measurement error and the case of
Berksonmultiplicative error. As this, the estimates of excess absolute risk EAR are un-
derestimated, while the estimates of background incidence rate λ0 are overestimated.
The bias of the naive estimate increases, as the variance of the classical or Berkson
error grows. The impact of the classical error on the risk estimates is quite significant.
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Table 7.3:Medians of estimates (q50%) and 95% deviance intervals (95% DI) of background inci-
dence rate λ0 × 104 for various levels of classical additive and Berkson multiplicative errors.

Error level Estimation method (model value of λ0 × 104 is 2.0)
Naive (EPICURE) NRC Ordinary SIMEX Efficient SIMEX

GSDF δQ q50% 95% DI q50% 95% DI q50% 95% DI q50% 95% DI

1 0.0 1.95 0.99–3.08 1.97 1.00–2.99 1.91 0.65–3.06 1.95 0.99–3.08
0.2 2.04 1.02–3.20 1.97 0.90–3.03 1.98 0.62–3.06 1.92 0.99–3.08
0.4 2.23 1.19–3.42 2.11 1.00–3.26 2.28 1.22–3.56 1.87 0.46–3.24
0.6 2.58 1.47–3.79 2.43 1.24–3.60 3.59 2.26–5.15 2.46 0.20–4.65
0.8 2.91 1.80–4.13 2.68 1.56–3.90 4.75 3.51–5.88 3.52 0.77–6.28
1 3.14 2.01–4.35 2.90 1.75–4.14 4.97 3.75–6.01 4.46 1.28–7.46

2 0.0 1.95 0.84–3.08 1.95 0.92–3.00 1.88 0.82–2.95 1.92 0.93–2.98
0.2 2.06 1.21–3.49 1.96 0.91–3.02 1.93 0.78–3.01 1.92 0.95–3.00
0.4 2.27 1.39–3.70 2.10 1.00–3.18 2.21 1.12–3.47 1.90 0.61–3.27
0.6 2.61 1.70–4.02 2.42 1.14–3.49 2.90 1.80–4.48 2.40 0.07–4.47
0.8 2.94 1.98–4.33 2.71 1.40–3.87 3.61 2.31–5.24 3.56 0.67–6.38
1 3.18 2.21–4.55 2.90 1.56–4.09 4.03 2.69–5.58 4.47 1.57–7.70

3 0.0 2.01 0.96–3.23 1.95 0.94–3.05 1.91 0.75–2.88 1.94 0.86–3.09
0.2 2.08 1.06–3.27 1.95 0.93–3.07 1.94 0.71–2.97 1.92 0.91–3.06
0.4 2.26 1.24–3.46 2.07 0.94–3.22 2.18 0.96–3.22 1.94 0.51–3.48
0.6 2.61 1.55–3.79 2.41 1.22–3.50 2.73 1.71–3.94 2.40 0.06–4.74
0.8 2.93 1.87–4.11 2.70 1.44–3.80 3.31 2.14–4.58 3.55 0.59–6.11
1 3.17 2.09–4.33 2.88 1.59–4.03 3.75 2.46–5.11 4.41 1.03–7.46

5 0.0 2.12 1.19–3.35 1.99 0.90–3.20 1.87 0.66–2.90 1.93 0.88–3.06
0.2 2.17 1.07–3.33 1.98 0.86–3.12 1.90 0.61–2.98 1.94 0.87–3.08
0.4 2.34 1.28–3.52 2.09 0.91–3.23 2.13 0.88–3.29 1.95 0.56–3.38
0.6 2.65 1.50–3.81 2.38 1.17–3.55 2.58 1.56–3.77 2.38 0.19–4.59
0.8 2.94 1.81–4.06 2.67 1.38–3.80 3.03 1.83–4.18 3.53 0.70–5.74
1 3.14 2.01–4.24 2.85 1.51–3.99 3.38 2.09–4.62 4.36 1.21–7.19

8 0.0 2.23 1.23–3.37 1.98 0.95–3.11 1.85 0.76–2.97 1.94 0.86–3.13
0.2 2.27 1.22–3.42 2.00 0.90–3.07 1.87 0.77–2.99 1.94 0.87–3.13
0.4 2.43 1.36–3.58 2.09 1.02–3.17 2.07 1.00–3.13 1.91 0.44–3.43
0.6 2.71 1.62–3.84 2.34 1.20–3.46 2.43 1.40–3.60 2.36 0.18–4.31
0.8 2.96 1.87–4.04 2.59 1.38–3.74 2.79 1.66–4.01 3.27 0.38–5.63
1 3.13 2.07–4.24 2.79 1.47–3.86 3.12 1.99–4.32 4.08 0.91–6.70

Namely, for δQ = 0.4, the bias of EAR (to smaller side) and λ0 (to larger side)
is approximately 10%. Note that for sufficiently high variance of the classical error,
the naive estimates may differ from the model values (i.e., from the true ones) up to
several times. This effect is clearly seen in Figures 7.5 and 7.6. At the same time, the
impact of Berkson error on the risk analysis results is significantly smaller. Namely,
for GSDF ≤ 2, the impact of the latter error is negligible.
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Table 7.4:Medians of estimates (q50%) and 95% deviance intervals (95% DI) of excess absolute risk
EAR × 104 for various levels of classical additive and multiplicative Berkson error.

Error level Estimation method (model value of EAR × 104 is 5.0)
Naive (EPICURE) NRC Ordinary SIMEX Efficient SIMEX

GSDF δQ q50% 95% DI q50% 95% DI q50% 95% DI q50% 95% DI

1 0.0 5.01 3.00–7.04 5.00 3.07–6.74 5.09 3.09–7.21 5.01 3.00–7.04
0.2 4.90 3.09–7.00 5.09 2.98–7.41 5.03 3.03–7.17 5.03 2.99–7.04
0.4 4.59 2.83–6.63 5.21 3.02–7.66 4.51 2.62–6.51 5.10 2.60–7.61
0.6 4.01 2.33–5.83 4.92 2.70–7.32 2.18 0.45–7.27 4.13 1.20–7.44
0.8 3.41 1.85–5.11 4.40 2.31–6.85 0.86 0.00–1.28 2.33 0.00–6.19
1 2.90 1.57–4.49 4.02 1.93–6.36 0.53 0.04–1.11 0.83 0.00–5.47

2 0.0 4.97 3.20–7.23 4.99 3.07–7.04 5.01 2.92–7.43 5.03 3.27–7.21
0.2 4.81 3.22–7.21 5.22 3.19–7.37 4.92 2.79–7.25 5.05 3.21–7.24
0.4 4.52 2.96–6.85 5.35 3.20–7.63 4.48 2.54–6.88 5.08 2.59–7.79
0.6 3.89 2.48–6.10 4.97 2.89–7.23 3.30 1.52–5.36 4.29 1.11–8.35
0.8 3.28 2.02–5.34 4.50 2.46–6.75 2.21 0.60–4.46 2.47 0.00–6.96
1 2.83 1.69–4.72 4.12 2.02–6.30 1.46 0.21–3.46 0.92 0.00–5.01

3 0.0 4.85 2.88–6.64 5.02 2.87–7.14 5.10 2.87–7.47 5.07 3.20–7.37
0.2 4.69 2.82–6.68 5.19 2.98–7.43 4.99 2.83–7.36 5.06 3.22–7.34
0.4 4.41 2.58–6.31 5.38 2.96–7.92 4.58 2.63–7.07 5.06 2.63–7.98
0.6 3.82 2.19–5.47 4.98 2.70–7.54 3.55 1.90–6.09 4.30 0.42–8.21
0.8 3.24 1.77–4.77 4.47 2.33–7.03 2.62 1.18–4.96 2.36 0.00–7.13
1 2.79 1.43–4.24 4.10 1.86–6.57 1.94 0.66–3.64 0.87 0.00–5.72

5 0.0 4.24 2.71–5.73 5.11 2.77–7.18 5.21 2.72–8.46 5.07 2.88–7.48
0.2 4.26 2.47–6.17 5.32 2.89–7.56 5.10 2.69–8.50 5.04 2.83–7.52
0.4 3.94 2.24–5.84 5.47 2.90–8.07 4.69 2.54–8.03 4.99 2.34–8.30
0.6 3.42 1.84–5.17 5.06 2.39–7.78 3.77 2.00–6.59 4.34 0.13–8.53
0.8 2.91 1.50–4.49 4.57 1.97–7.28 2.91 1.37–5.70 2.22 0.00–7.33
1 2.51 1.22–3.97 4.17 1.76–6.93 2.28 0.92–4.62 0.72 0.00–6.00

8 0.0 3.62 1.99–5.10 5.22 2.51–7.67 5.24 2.58–9.08 5.01 2.48–7.78
0.2 3.57 1.79–5.42 5.46 2.53–7.95 5.19 2.60–9.07 5.01 2.42–7.82
0.4 3.30 1.67–5.09 5.68 2.48–8.48 4.78 2.30–8.27 5.01 2.34–8.36
0.6 2.79 1.34–4.50 5.25 2.15–8.33 3.78 1.84–7.61 4.09 0.03–8.59
0.8 2.38 1.04–3.90 4.67 1.88–7.85 3.03 1.35–6.06 2.28 0.00–7.80
1 2.04 0.83–3.40 4.23 1.50–7.35 2.39 0.94–5.36 0.71 0.00–6.48

New regression calibration and SIMEX
Although the parametric regression calibration introduced in Likhtarov et al. (2013)
takes into account the shape of the distribution of Dtr, the estimates computed by
this method are considerably biased, with underestimated background incidence rate
and overestimated excess absolute risk (the results are shown in Appendix D). This is
unexpected effect compared with simulation results from Kukush et al. (2011), where
in case of multiplicative measurement errors in doses, the parametric estimates were
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Fig. 7.5: Background incidence rate estimates for various relative additive errors of classical type in
thyroid absorbed doses.

Fig. 7.6: Estimates of excess absolute risk for various relative additive errors of classical type in
thyroid absorbed doses.

quite acceptable. It seems the reason for that lies in the combined structure of the nor-
mal measurement errors σiγi and the lognormal distribution of D

tr, but we have no
more definite explanation. Estimates obtained by the NRC are much more stable and
less biased compared with the ones obtained by other methods of regression calibra-
tion (see Appendix D), and are quite satisfactory when the classical error in dose is
not too large. Estimates of absolute risk model parameters obtained by the ordinary
SIMEXmethod do not differmuch from naive ones if the impact of the Berkson error is
negligible. The efficient SIMEX method fits the model values only for relatively small
classical errors. The estimates are satisfactory if δQ ≤ 0.4. If δQ ≥ 0.6, bias for the NRC
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Table 7.5: Corrected score estimates of medians (q50%) and 95% deviance intervals (95% DI) of
background incidence rate and excess absolute risk for various levels of classical additive errors.
Model values of λ0 × 104 and EAR × 104 is 2.0 and 5.0, respectively.

Error level Background incidence rate λ0 × 104 Excess absolute risk EAR × 104
δQ q50% 95% DI q50% 95% DI

0.0 1.93 0.00–3.71 5.03 2.34–8.53
0.2 1.95 0.00–3.77 4.97 2.38–8.80
0.4 1.98 0.00–3.89 4.93 2.24–9.16
0.6 1.93 0.00–4.12 4.98 2.00–9.95
0.8 1.90 0.00–4.34 5.02 1.66–11.1
1 1.98 0.00–4.64 5.02 1.28–12.7

method is less than one for the efficient SIMEXmethod. At the same time, those meth-
ods allow taking into account the presence of sizable Berkson errors in the radiation
doses. Another advantage of the methods is as follows: they can be readily adapted to
more complicated risk models.

Influence of Berkson error
For moderate levels GSDF ≤ 2, the effect of Berkson error on ultimate estimates is
insignificant. But if GSDF increases to 3 andmore, then the influence of Berkson error
becomes significant and should be taken into account. Simulation results showed that
for the naive estimates, Berkson error as well as the classical error (but to a smaller
extent) lead to underestimation of EAR and overestimation of λ0.

Corrected score method
The least unbiased estimate (of all ones presented in this chapter) for regressionmodel
with the classical additive error in doses is the corrected score estimate, see Figures 7.5
and 7.6 and Table 7.5. In particular for GSDF ≤ 2, the maximal bias of those estimates
does not exceed 5% within the whole range of relative errors 0.1 ≤ δQ ≤ 1. The cor-
rected score estimateshave ratherwidedeviance intervals, because thebias correction
leads to increasing the variability of estimates.

A disadvantage of this method is as follows: it ignores the presence of Berkson
errors. Using this estimator, only classical error was taken into account. This yields
biased estimates for large Berkson errors (Masiuk et al., 2016).



A Elements of estimating equations theory

A.1 Unbiased estimating equations: conditions for existence
of solutions and for consistency of estimators

Before proceeding to stochastic estimating equations, we first consider deterministic
equations.

A.1.1 Lemma about solutions to nonrandom equations

We state two classical fixed-point theorems.

Definition A.1. For a mapping f , a point x0 is called the fixed point if f(x0) = x0.

Theorem A.2 (Banach fixed-point theorem). Let A be a closed set inRn, and f be a con-
tracting mapping from A to A, i.e., such a mapping that for a fixed λ < 1, it holds that

‖f(x1) − f(x2)‖ ≤ λ ‖x1 − x2‖ . (A.1)

Then f has a fixed point, and the point is unique.

Theorem A.3 (Brauer’s theorem). Let B̄(x0, r) be a closed ball inRn, and f : B̄(x0, r) →
B̄(x0, r) be a continuous mapping. Then f has a fixed point.
Remember some definitions and facts from the course on Calculus, see Burkill (1962).

Definition A.4. Let A ⊂ Rn. A point x0 ∈ A is called the interior point of A if a certain
ball B(x0, r) is a part of A.

A set of all interior points of A is denoted by A0.
A set K ⊂ Rn is compact if, and only if, K is closed and bounded.

Remember that in this book, all vectors are column ones.

Definition A.5. Let A ⊂ Rn and x0 ∈ A0. A vector function f : A → Rm is called dif-
ferentiable at a point x0 if for some matrix L of size m × n, the following expansion
holds:

f(x) = f(x0) + L ⋅ (x − x0) + o(‖x − x0‖) , as x → x0 . (A.2)

Then L is a derivative (or Jacobian matrix) of the function f at the point x0.
Denote the derivative as f 󸀠(x0). Hereafter the notation h(y) = o(‖y‖) means that‖h(y)‖/‖y‖ → 0, as y → 0.

Lemma A.6. Let Θ be a compact set in Rd, β0 ∈ Θ0, and {Sn , n ≥ 1} be a sequence of
continuous functions from Θ toRd being uniformly convergent to a function S∞. Assume
also that the following conditions hold true.
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(1) S∞(b) = 0, b ∈ Θ, if, and only if, b = β0.
(2) The function S∞ is differentiable at the point β0, and its derivative

Φ = S󸀠∞(β0) (A.3)

is nonsingular matrix.
Then for all sufficiently large n, the equation

Sn(b) = 0 , b ∈ Θ (A.4)

has a solution. Denote by β̂n an arbitrary solution to the equation (here ̂βn iswell-defined
for large n). Then

β̂n → β0 , as n → ∞ . (A.5)

Proof. Existence of solution. Introduce a function

fn(b) = b − Φ−1 ⋅ Sn(b) , b ∈ Θ . (A.6)

The function S∞ is differentiable at the point β0 ∈ Θ0, i.e.,

S∞(b) = S∞(β0) − S󸀠∞(β0)(b − β0) + o(‖b − β0‖) = Φ ⋅ (b − β0) + o(‖b − β0‖) , (A.7)

as b → β0. Hence there exists such an ε1 that B̄(β0, ε1) ⊂ Θ and for all b ∈ B̄(β0, ε1),
it holds that ‖S∞(b) − Φ ⋅ (b − β0)‖ ≤ ‖b − β0‖

2 ‖Φ−1‖ . (A.8)

Given the uniform convergence of the functions, we find a number n1 such that for all
n ≥ n1 and all b ∈ Θ, it holds that

‖Sn(b) − S∞(b)‖ ≤ ε1
2 ‖Φ−1‖ . (A.9)

Then for ‖b − β0‖ ≤ ε1 and n ≥ n1 , the inequalities hold true:‖fn(b) − β0‖ = ‖Φ−1(Φ(b − β0) − Sn(b)) ‖ ≤≤ ‖Φ−1‖ ⋅ ( ‖S∞(b) − Φ(b − β0)‖ + ‖Sn(b) − S∞(b)‖ ) , (A.10)

‖fn(b) − β0‖ ≤ ‖Φ−1‖ (‖b − β0‖
2‖Φ−1‖ + ε1

2‖Φ−1‖) ≤ ε1 . (A.11)

Thus, for n ≥ n1, we have fn(B̄(β0, ε1) ⊂ B̄(β0, ε1). By Theorem A.3, the function fn
has a fixed point from the ball B̄(β0, ε1), and the point is a solution to equation (A.4).

Convergence. The function S∞ is continuous as a uniform limit of a sequence of
continuous functions. Therefore, the minimumof function ‖S∞(b)‖ is attained on any
nonempty compact set.

Let us fix ε > 0 and show that for large enough n, it holds that

‖β̂n − β0‖ < ε . (A.12)
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IfΘ ⊂ B(β0, ε), then inequality (A.12) holds because β̂n belongs toΘ. Otherwise, ifΘ is
not a subset of B(β0, ε), then Θ\B(β0, ε) is a nonempty compact set where S∞(b) ̸= 0.
Hence,

min
b∈Θ,‖b−β0‖≥ε

‖S∞(b)‖ > 0 . (A.13)

From uniform convergence we get that for large enough n,

max
b∈Θ

‖Sn(b) − S∞(b)‖ < min
b∈Θ,‖b−β0‖≥ε

‖S∞(b)‖ . (A.14)

For such n, the equation Sn(b) = 0 has no solution on the set Θ\B(β0, ε). For large
enough n, such that Sn(β̂n) = 0 and inequality (A.14) holds true, we get the desired
(A.12). Convergence (A.5) is proved.

Remark A.7. If among the conditions of Lemma A.6, the condition (1) is replaced by
a weaker condition S∞(β0) = 0, then for large n, it would be possible to guarantee
the existence of a solution to equation (A.4). Indeed, in the first part of the proof of
Lemma A.6 (about the existence of solution), we did not utilize the condition (1), but
used only the equality S∞(β0) = 0.
Corollary A.8. Let Θ be an arbitrary closed set in Rd , β0 ∈ Θ0, and {Sn , n ≥ 1} be a
sequence of continuous functions from Θ to Rd being uniformly convergent to a func-
tion S∞ on each compact set K ⊂ Θ. Also assume that condition (1) (for a new Θ) and
condition (2) of Lemma A.6 hold true.

Then for all n large enough, the equation

Sn(b) = 0 , b ∈ Θ , (A.15)

has a solution. Denote by β̃n a solution to the equation having the less norm (if there are
several such numbers then we take any of them; β̃n is well-defined for n large enough).
Then

β̃n → β0 , as n → ∞ . (A.16)

Proof. Existence of solution. The point β0 ∈ Θ0, therefore, for some ε0, it holds that
B̄(β0, ε0) ⊂ Θ. On this closed ball, there is a solution to the equation Sn(b) = 0 for n
being large enough, say n ≥ n0, as a result of Lemma A.6.

Convergence. Let n ≥ n0 and R = ‖β0‖ + ε0. Then

β̃ ∈ Θ1 = B̄(0, R) ∩ Θ . (A.17)

The set Θ1 is closed as an intersection of two closed sets, and it is bounded. Therefore,
Θ1 is a compact subset of Θ, and β0 ∈ Θ0

1. Apply Lemma A.6 to the set Θ1 and get the
desired convergence (A.16).

The next statement is related to Lemma A.6. Assuming additionally the uniform con-
vergence of derivatives S󸀠n we ensure the uniqueness of solution to equation (A.4).
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Lemma A.9. Let Θ be a compact set in Rd, {Sn , n ≥ 1} be a sequence of continuous
functions from Θ to Rd being a uniformly convergent to a function S∞, and the equation
S∞(b) = 0, b ∈ Θ, have a unique solution β0. Suppose that for some ball B(β0, ε) ⊂ Θ,
the following holds true:
(1) For all n ≥ 1, the functions Sn are continuously differentiable on the set B(β0, ε),

and the function S∞ is differentiable on this set as well.
(2) S󸀠n(b) converges uniformly to S󸀠∞(b) on B(β0, ε).
(3) The derivative Φ = S󸀠∞(β0) is nonsingular matrix.
Then for large enough n, equation (A.4) has a unique solution. The sequence of solutions
converges to β0.

Proof. Consider again the function (A.6) and also the function

Rn(b) = Φfn(b) = Φb − Sn(b) . (A.18)

We have
R󸀠n(b) = Φ − S󸀠n(b) , b ∈ B(β0, ε) . (A.19)

From condition (2), it follows that there exists a number n2 such that for all n ≥ n2,

sup
b∈B(β0,ε)

‖S󸀠n(b) − S󸀠∞(b)‖ < 1
4‖Φ−1‖ . (A.20)

The derivative S󸀠∞(b), b ∈ B(β0, ε), is continuous as a uniform limit of continuous
functions. In particular, S󸀠∞(b) is continuous at the point β0. Thus, there exists such
an ε2 < ε that

sup
b∈B̄(β0,ε2)

‖S󸀠∞(b) − S󸀠∞(β0)‖ < 1
4‖Φ−1‖ . (A.21)

Then for all n ≥ n2,

sup
b∈B̄(β0,ε2)

‖R󸀠n(b)‖ = sup
b∈B̄(β0,ε2)

‖S󸀠∞(β0) − S󸀠n(b)‖ < 1
2‖Φ−1‖ . (A.22)

According to Lagrange’s theorem for vector functions (Burkill, 1962, §12.2.2, Theo-
rem 4), for all n ≥ n2 and ‖bi − β0‖ ≤ ε2, i = 1, 2, we get
‖Rn(b1) − Rn(b2)‖ ≤ sup

τ∈(0,1)
‖R󸀠n(b2 + τ (b1 − b2))‖ ⋅ ‖b1 − b2‖ ≤ ‖b1 − b2‖

2‖Φ−1‖ , (A.23)

‖fn(b1) − fn(b2)‖ ≤ ‖Φ−1‖ ⋅ ‖Rn(b1) − Rn(b2)‖ ≤ 1
2 ‖b1 − b2‖ . (A.24)

The conditions of Lemma A.6 are fulfilled on the set B̄(β0, ε2). From the proof of
Lemma A.6, it follows that there exist ε1 ≤ ε2 and n1 ≥ 1 such that for all n ≥ n1, it
holds that fn(B̄(β0, ε1)) ⊂ B̄(β0, ε1). Then according to (A.24), the function fn is a con-
tracting mapping of the closed ball B̄(β0, ε1), for n ≥ max(n1, n2). By Theorem A.2,
the function fn possesses a unique fixed point on the set B̄(β0, ε1) for such n. For the
same n, the equation Sn(b) = 0 has a unique solution on the set B̄(β0, ε1).
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In a similar manner as it was done in the proof of Lemma A.6, it is shown that the
equation Sn(b) = 0 has no solution outside the ball B̄(β0, ε1) for n being large enough.

Thus, for large enough n, equation (A.4) has a unique solution, and it lies on the
ball B̄(β0, ε1) ⊂ Θ.

The convergence of the solution to β0 follows from Lemma A.6.

A.1.2 Existence, uniqueness, and consistency of estimators defined by estimating
equations

Remember that a concept of convex set in the Euclidean space was introduced in Def-
inition 2.3.4.

Let Θ be a convex closed set in Rp, {zk , k ≥ 1} be a sequence of independent
identically distributed randomvectors, with distribution that depends on a parameter
θ ∈ Θ, and the vectors be distributed in a Borel measurable set Z ⊂ Rm. Further we
assume that the true value θ ∈ Θ0. The first n vectors z1, . . ., zn are observed. In order
to construct the estimator of the parameter θ, we use the so-called estimating function
s(z, t), z ∈ Z, t ∈ Θ, with its values in Rp. The function has to be Borel measurable in
the first argument. Form the estimating equation

Sn(t) = 0 , t ∈ Θ ; Sn(t) := 1
n

n∑
i=1

s(zi , t) . (A.25)

A randomvector θ̂ = θ̂n being a solution to equation (A.25) (if such solution exists) will
be called the estimator of the parameter θ corresponding to the estimating function
s(z, t). A more precise definition of the estimator will be presented later.

Remember that for a sequence of random statements, the notion “it holds eventu-
ally” was introduced in Definition 12.2. “Eventually” means the following: something
holds true with probability 1 for all n, beginning with certain random number n0(ω),
ω ∈ Ω. Hereafter (Ω, F, P) is a fixed probability space. We write P = Pθ, if θ is the true
value of desired parameter of underlying observation model.

Further denote by z a stochastic copy of z1, i.e., a random vector on (Ω, F, P) hav-
ing the same distribution as the vector z1.

Theorem A.10 (Existence of a solution to equation). Let the convex parameter set Θ be
compact and the following conditions hold:
(a) almost surely s(z, ⋅) ∈ C1(Θ), and for all t ∈ Θ,

Eθ‖s(z, t)‖ < ∞ , (A.26)

(b)
S∞(t, θ) := Eθs(z, t) , S∞(⋅, θ) ∈ C1(Θ) , S∞(θ, θ) = 0 , (A.27)

(c)
Eθ sup

t∈Θ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∂s(z, t)∂tT
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ , (A.28)
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(d) V := . ∂S∞(t,θ)∂tT |t=θ is nonsingular matrix.
Then eventually with respect to Pθ, there exists θ̂n being a solution to equation (A.25),
i.e., the equality

Sn(θ̂n) = 0 (A.29)
holds almost surely (a.s.), for all n ≥ n0(ω).
Remark A.11. Hereafter the notation f ∈ Ck(Θ) means that the function f is actually
defined on a wider open set U ⊃ Θ, and moreover f is k times continuously differen-
tiable on U.

Proof of the theorem. First we show that almost surely, Sn(t) → S∞(t, θ) uniformly in
t ∈ Θ.

Indeed, according to the strong law of large numbers (SLLN) for each t ∈ Θ, a.s.,

Sn(t) → S∞(t, θ) , as n → ∞ . (A.30)

Moreover, as a consequence of the condition (c), {Sn(⋅), n ≥ 1} are equicontinuous,
almost surely. The latter follows from the convexity of Θ and the relations:

sup
t∈Θ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂Sn∂tT
(t)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 1

n

n∑
i=1

sup
t∈Θ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∂s∂tT (zi , t)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 P1󳨀󳨀→ Eθ sup
t∈Θ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∂s∂tT (z, t)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ , (A.31)

and then a.s.,
sup
n≥1

sup
t∈Θ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂Sn∂tT
(t)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ . (A.32)

The equicontinuity on the convex compact set and point-wise convergence (A.30) en-
sure that a.s., Sn(t) → S∞(t, θ) uniformly in t ∈ Θ.

Now, we explain the latter convergence in more detail. Choose a countable set
T ⊂ Θ being dense in Θ. Then there exists a random event Ω0, P(Ω0) = 1, such that
for all ω0 ∈ Ω0, the following holds true: {Sn(t, ω0), n ≥ 1, t ∈ Θ} are equicontinuous
and Sn(ti , ω0) → S∞(ti , θ), as n → ∞, for all ti ∈ T. Then by the Arzela–Ascoli theo-
rem (Burkill, 1962), the sequence of functions {Sn(⋅, ω0), n ≥ 1} is relatively compact
in the space C(Θ) of continuous functions on the convex compact set Θ with uniform
norm. Let a subsequence Sn(k)(⋅, ω0), k ≥ 1, be uniformly convergent to F(⋅). This limit
function is continuous together with pre-limit functions. Due to the point-wise con-
vergence on T, we have S∞(ti , θ) = F(ti), ti ∈ T. Now, because T is dense and both
functions S∞(⋅, ω0) and F(⋅) are continuous, we get the identity S∞(t, θ) = F(t), t ∈ Θ.
This fact and relative compactness of {Sn(⋅, ω0), n ≥ 1} in the space C(Θ) ensure the
uniform convergence of Sn(⋅) to S∞(⋅, θ), with probability 1.

Next, fix ω0 ∈ Ω0. The sequence of functions {Sn(t, ω0), n ≥ 1, t ∈ Θ} satisfies the
conditions of Remark A.7, and then the equation Sn(t, ω0) = 0, t ∈ Θ, has a solution,
for all n ≥ n0(ω0). This proves the statement.
Definition A.12. In the case of compact set Θ, the estimator θ̂n defined by equation
(A.25) is a Borel measurable function of z1, . . . , zn, such that for thoseω ∈ Ω at which
equation (A.25) has a solution, the equality Sn(θ̂n(ω)) = 0 holds true.
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Remark A.13. The existence of such a Borelmeasurable function follows from the the-
orem in Pfanzagl (1969, p. 252).

Remark A.14. For such ω ∈ Ω that equation (A.25) has no solution, one can set
θ̂n(ω) = tf, where tf ∈ Θ is a fixed value. If for some ω, there exist several solu-
tions, then θ̂n(ω) coincides with one of them, but in such a manner that in whole
θ̂n = fn(z1, . . . , zn) is a Borel measurable function fn of the observations.
Theorem A.10 demonstrates that under the conditions of the theorem, it holds even-
tually that

Sn(θ̂n(ω)) = 0 . (A.33)

Theorem A.15 (Strong consistency of the estimator). Let the conditions of Theorem
A.10 be fulfilled, as well as the following condition.
(e) If S∞(t, θ) = 0 for some t ∈ Θ, then t = θ.
Then the estimator θ̂n is strongly consistent, i.e.,

θ̂n
P1󳨀󳨀→ θ , as n → ∞ . (A.34)

Proof. In the proof of Theorem A.10 we showed that for all ω0 ∈ Ω0, Pθ(Ω0) = 1,
the sequence of functions {Sn(t, ω0), n ≥ 1, t ∈ Θ} satisfies the conditions of Remark
A.7. But taking into account the condition (e), this sequence satisfies the conditions of
LemmaA.6 aswell. Therefore, the sequence {θ̂n(ω0), n ≥ n0(ω0)} of solutions to equa-
tion (A.25) satisfies the relation θ̂n(ω0) → θ, as n → ∞. This proves the convergence
(A.34).

Definition A.16. The estimator θ̂n defined by equation (A.25) in the case of closed un-
bounded Θ, is a Borel measurable function of z1, . . . , zn, such that for those ω ∈ Ω
at which equation (A.25) has a solution, the equality Sn(θ̂n(ω)) = 0 holds true, and
moreover θ̂n(ω) has the lowest norm among the solutions.

Remark A.17. In addition let the estimating function s(z, t) be continuous in t.
Then the function Sn(t) is continuous, and for fixed ω ∈ Ω, the set of solutions{t ∈ Θ : Sn(t, ω) = 0} is closed. If the set is not empty, then there exists a solution
(possibly not unique) and it has the lowest norm. Now, existence of the Borel mea-
surable function from Definition A.16 follows from the theorem published in Pfanzagl
(1969, p. 252).

Theorem A.18 (The case of unbounded Θ). Let the parameter set Θ be convex, closed,
and unbounded. Assume the conditions (a), (b), (d), (e), and the following condition:
(c’) For each nonempty compact set K ⊂ Θ, it holds that

Eθ sup
t∈K

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∂s(z, t)∂tT
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ . (A.35)
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Then there exists an estimator θ̂n in terms of Definition A.16, moreover the equality
(A.29) holds eventually, and

θ̂n
P1󳨀󳨀→ θ , as n → ∞ . (A.36)

Proof. Existence of the estimator was explained in Remark A.17. Similarly to the proof
of Theorem A.10, we get that for all ω0 ∈ Ω0, P(Ω0) = 1, the sequence of functions{Sn(t, ω0), n ≥ 1, t ∈ Θ} satisfies the conditions of Corollary A.8. (Here as compacts
we take the sequence Km = B̄(0,m) ∩ Θ, m ≥ 1, and for each of them construct Ωm,
P(Ωm) = 1, such that for all ω ∈ Ωm, the sequence {Sn(t, ω), n ≥ 1, t ∈ Km} converges
uniformly to S∞(t); further we set Ω0 = ⋂∞m=1 Ωm.) Then by the corollary we obtain
Qn(θ̂n(ω0)) = 0 eventually, and θ̂n(ω0) P1󳨀󳨀→ θ, as n → ∞. This proves the theorem.

Definition A.19. Let s : Z ×Θ → Rp be an estimating function, which is Borel measur-
able in the first argument. The function is called unbiased if for any θ ∈ Θ, it holds
that

Eθs(z, θ) = 0 . (A.37)

In fact, the condition of unbiasedness appears in condition (b), which (together with
other conditions) ensures the consistency of θ̂n. We show that the unbiasedness of an
estimating function is necessary for the consistency of an estimator.

Theorem A.20. Let Θ be a convex set in Rp, which has at least one interior point;
s : Z × Θ → Rp be a Borel measurable estimating function in argument z, moreover
s(z, ⋅ ) ∈ C(Θ) almost surely; θ̂n is an estimator, i.e., a Borel measurable function of
observations. For each θ ∈ Θ0, assume the following:
(1)

θ̂n
Pθ󳨀󳨀→ θ , as n → ∞ . (A.38)

(2)
1
n

n∑
i=1

s(zi , θ̂n) Pθ󳨀󳨀→ 0 , as n → ∞ . (A.39)

(3) For each nonempty compact K ⊂ Θ, it holds that

Eθ sup
t∈K

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂s(z, t)∂tT
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ . (A.40)

(4) The function θ 󳨃→ Eθs(z, θ) is continuous on Θ.
Then the estimating function s(z, θ ) is unbiased.
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Proof. Let θ0 ∈ Θ0. Consider the difference, as n → ∞ (due to the convergence

θ̂n
Pθ0󳨀󳨀󳨀→ θ0 one can assume that θ̂n ∈ K = B̄(θ0, ε) ⊂ Θ):󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩1n n∑

i=1
s(zi , θ̂n) − 1

n

n∑
i=1

s(zi , θ0)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 1
n

n∑
i=1

󵄩󵄩󵄩󵄩󵄩s(zi , θ̂n) − s(zi , θ0)󵄩󵄩󵄩󵄩󵄩 ≤
≤ 1
n

n∑
i=1

sup
t∈K

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂s(zi , t)∂tT
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ⋅ ‖θ̂n − θ0‖ Pθ0󳨀󳨀󳨀→ Eθ0 sup

t∈K

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂s(z, t)∂tT
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ⋅ 0 = 0 . (A.41)

Here we used the convexity of Θ and also the conditions (1), (3), and the SLLN.
Further, using the SLLN we get Pθ0 -almost surely (and therefore, in probabil-

ity Pθ0):
1
n

n∑
i=1

s(zi , θ0) → Eθ0s(z, θ0) , as n → ∞ . (A.42)

From relations (A.41) and (A.42) we obtain, for all θ0 ∈ Θ0:

Eθ0s(z, θ0 ) = 0 . (A.43)

Now, let θ be a boundary point of Θ. Since this is a convex set with nonempty interior,
there exists a sequence {θk} ⊂ Θ0 converging to θ. Passing to the limit in equality

Eθk s(z, θk) = 0 , (A.44)

we have by condition (4):
Eθs(z, θ) = 0 . (A.45)

Since θ is arbitrary boundary point of Θ0, then (A.43) together with (A.45) gives the
desired.

Remark A.21. FromTheoremA.20, it follows the inconsistency of the naive estimators
in structural models with the classic error in covariates, because the corresponding
estimating function is biased (i.e., equality (A.37) holds not for all θ ∈ Θ).
A.1.3 The case of pre-estimation of nuisance parameters

Let a part of components of the parameter θ ∈ Θ ⊂ Rd be consistently estimated by
certain method, and the estimating equation be utilized for estimation of the rest of
components of θ.

Thus, let θT = (β; α), β ∈ Θβ ⊂ Rp, α ∈ Θα ⊂ Rk, p+k = d, andΘ = Θβ×Θα. The set
Θβ is assumed closed and convex, and Θα is assumed open. It is given an estimating
function s : Z×Θ → Rp, where Z is a Borelmeasurable set inRm; the function s(z, t) is
a Borel measurable in a couple of arguments. As before, we observe the first n vectors
of a sequence of independent identically distributed random vectors {zk , k ≥ 1}; the
vectors are distributed in Z and their distribution depends on θ ∈ Θ. Let z =d z1.



216 | A Elements of estimating equations theory

Suppose that there exists a strongly consistent estimator α̂n of the parameter α,
α̂n = α̂n(z1, . . . , zn), i.e., α̂n → α, as n → ∞, Pθ-almost surely. The estimator of the
parameter β will be defined by the equation

Ŝn(b) = 0 , b ∈ Θβ ; Ŝn(b) = Sn(b, α̂n) = 1
n

n∑
i=1

s(zi ; b, α̂n) . (A.46)

Definition A.22. Let Θβ be a compact convex set. The estimator β̂n defined by equation
(A.46) is such a Borel measurable function of z1, . . . , zn that for those ω ∈ Ω at which
equation (A.46) has a solution, the following equality holds true:

Ŝn(β̂n(ω)) = 0 . (A.47)

Theorem A.23. Let Θβ be a compact convex set and β ∈ Θ0
β. Assume the following.

(1) Pθ-almost surely, s(z, ⋅ ) ∈ C1(Θ), and for all t ∈ Θ , Eθ‖s(z, t)‖ < ∞.
(2) S∞(t, θ) := Eθs(z, t) , S∞( ⋅, θ) ∈ C1(Θ) , S∞(b, α; θ) = 0;

b ∈ Θβ if, and only if, b = β . (A.48)

(3) There exists a ball Kα = B̄(α, rα) ⊂ Θα, with

Eθ sup
t∈Θβ×Kα

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∂s
∂αT

(z, t)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ , (A.49)

Eθ sup
b∈Θβ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∂s
∂βT

(z; b, a)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ . (A.50)

(4) Vβ := ∂S∞(β,α;θ)
∂βT is nonsingular matrix.

Then the estimator β̂n (in the sense of Definition A.22) satisfies equality (A.47) eventu-
ally, and

β̂n
P1󳨀󳨀→ β , as n → ∞ . (A.51)

Proof. The estimator α̂n is a Borel measurable function of observations z1, . . . , zn,
hence as a result of the estimating function s(z; β, α) to be Borel measurable, the func-
tion Ŝn(z1, . . . , zn; β) is a Borelmeasurable one of the observations and the parameter
β. Then existence of the estimator β̂n in terms of Definition A.22 follows from the the-
orem in Pfanzagl (1969, p. 252).

Further, we are interested in asymptotic properties of the estimator β̂n. So, α̂n can
be replaced with a random variable α̃n, which is distributed in the ball Kα from con-
dition (3):

α̃n = α̂n , if α̂n ∈ Kα ; otherwise α̃n = α . (A.52)

In consequenceof the strongconsistencyof α̂n , wehave that α̂n = α̃n eventually. There-
fore, we may and do assume that the estimator β̂n fits Definition A.22 for the equation

S̃n(b) = 0 , b ∈ Θβ ; S̃n(b) = Sn(b, α̃n) . (A.53)
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Further arguments resemble the proof of Theorem A.10, with the corresponding
changes. Consider󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩1n

n∑
i=1

(s(zi ; b, α̃n) − s(zi; b, α))󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ ‖α̃n − α‖ ⋅ 1
n

n∑
i=1

sup
t∈Θβ×K

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂s(zi , t)∂αT
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 . (A.54)

We have α̃n
P1󳨀󳨀→ α, as n → ∞, and we get from condition (A.49) by the SLLN:

1
n

n∑
i=1

sup
t∈Θβ×K

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂s(zi , t)∂αT
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 P1󳨀󳨀→ Eθ sup

t∈Θβ×K

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂s(z, t)∂αT
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ . (A.55)

Therefore, the right-hand side of (A.54) tends to 0, a.s., and then a.s. uniformly in b ∈
Θβ,

1
n

n∑
i=1

s(zi , b, α̃n) − 1
n

n∑
i=1

s(zi , b, α) → 0 , as n → ∞ . (A.56)

Further, by condition (1) and condition (A.50), it follows that a.s. uniformly in b ∈ Θβ,

1
n

n∑
i=1

s(zi ; b, α) → S∞(b, α; θ) = Eθs(z; b, α) . (A.57)

From relations (A.56) and (A.57) it follows that a.s. uniformly in b ∈ Θβ,

S̃n(b) → S∞(b, α; θ) , as n → ∞ . (A.58)

Then this uniform convergence holds for all ω ∈ Ω0, P(Ω0) = 1.
Fix ω0 ∈ Ω0. The sequence of functions{S̃n(b, ω0), n ≥ 1, b ∈ Θβ} (A.59)

satisfies the conditions of Lemma A.6 (see conditions (2) and (4) of the theorem), and
hence the equation S̃n(b, ω0) = 0, b ∈ Θβ, has a solution for all n ≥ n0(ω0). This
proves that S̃n(β̂n(ω)) = 0 is performed eventually, and this implies the equality (A.47)
eventually. Finally, by Lemma A.6 any sequence of solutions β̃n(ω0), n ≥ n0(ω0), to
the equation S̃n(b, ω0) = 0 converges to β. This proves that β̃n(ω) P1󳨀󳨀→ β, and then
the desired convergence (A.51) is also valid.

Definition A.24. Let Θβ be an unbounded closed convex set. The estimator β̂n defined
by equation (A.46) is such a Borel measurable function of z1, . . ., zn that for those
ω ∈ Ω for which the equation (A.46) has a solution, the equality (A.47) holds true, and
moreover β̂n(ω) has the lowest norm among the solutions.

Theorem A.25 (the case of unbounded Θβ). Let Θβ bea convex, closed, andunbounded
set. Assume the conditions (1), (2), (4) of Theorem A.23 and the following condition.
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(3󸀠) There exists such a ball Kα = B̄(α, rα) ⊂ Θα that for each nonempty compact Kβ ⊂
Θβ, it holds that

Eθ sup
t∈Kβ×Kα

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∂s
∂αT

(z, t)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ , (A.60)

Eθ sup
b∈Kβ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∂s
∂βT

(z; b, a)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ . (A.61)

Then the estimator β̂n (in the sense of Definition A.24) satisfies the equality (A.47), and
moreover the convergence (A.51) is performed.

Proof. Similarly to the proof of Theorem A.18, we use the functions S̃n(b, ω) defined
in (A.53), with b ∈ Kβ,m = B̄(0,m) ∩ Θβ , m ≥ 1.
A.2 Asymptotic normality of estimators

A.2.1 The sandwich formula

Theorem A.26 (uniqueness and asymptotic normality). Let the conditions of Theorem
A.15 hold true. Furthermore, suppose the following.
(f)

Eθ‖s(z, θ)‖2 < ∞ . (A.62)

(g) s(z, ⋅ ) ∈ C2(Θ) almost surely, and for all i, j = 1, p,
Eθ sup

t∈Θ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂2s(z, t)∂ti∂tj

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ . (A.63)

Then eventually the equation (A.25) has a unique solution that defines the estimator θ̂n
in terms of Definition A.12. The estimator is asymptotically normal, i.e.,

√n (θ̂n − θ) d󳨀→ N(0, Σ) , Σ = V−1BV−T . (A.64)

Here V is specified in condition (d) of Theorem A.10, V−T := (V−1)T, and
B := Eθs(z, θ)sT(z, θ) . (A.65)

Remark A.27. The formula (A.64) for the asymptotic covariancematrix Σ is called the
sandwich formula. For its validity, it is not necessary to have the strong consistency of
the estimator. It is enough to have the consistency θ̂n

Pθ󳨀󳨀→ θ, as n → ∞, and assume
the condition (d) and other regularity conditions.

Proof of the theorem. Uniqueness of the estimator. Let Ω0 be a random event con-
structed in the proof of Theorem A.10, P(Ω0) = 1. Fix ω0 ∈ Ω0. The sequence of
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continuous functions {Sn(t, ω0), n ≥ 1, t ∈ Θ} converges uniformly to S∞(t; θ), t ∈ Θ,
and conditions (b) and (e) for the limit function are fulfilled. In order to apply Lemma
A.9, we verify its second condition. Due to condition (c), we have

∂Sn(t)
∂tT

= 1
n

n∑
i=1

∂s(zi , t)
∂tT

P1󳨀󳨀→ Eθ
∂s(z, t)
∂tT

= ∂S∞(t; θ)
∂tT

, t ∈ Θ . (A.66)

Further, with probability 1 the sequence of matrices { ∂Sn(t,ω)∂tT , n ≥ 1, t ∈ Θ} is equicon-
tinuous due to condition (g). This fact and the pointwise convergence (A.66) ensure
that almost surely

∂Sn(t)
∂tT

→ ∂S∞(t; θ)
∂tT

, as n → ∞ , (A.67)

uniformly in t ∈ Θ. Therefore, we may and do assume that such a convergence is
performed for all ω0 ∈ Ω0.

By Lemma A.9 we have that for all n ≥ n0(ω0), the equation Sn(t, ω0) = 0 has a
unique solution. Thus, eventually equation (A.25) has a unique solution.

Asymptotic normality. The equality Sn(θ̂n) = 0 holds true eventually, and by The-
orem A.15, θ̂n

P1󳨀󳨀→ θ, as n → ∞. By Taylor’s formula, we have

Sn(θ) + ∂Sn
∂tT

(θ) ⋅ (θ̂n − θ) + r(n) ⋅ (θ̂n − θ) = 0 , (A.68)

where the entries of the matrix r(n) are defined as follows:
rij(n) = ∂Sni

∂tj
(θ̄i) − ∂Sni

∂tj
(θ) , i, j = 1, p . (A.69)

Intermediate points θ̄i ∈ Θ lie within the segment which connects θ and θ̂n.
We show that

rij(n) Pθ󳨀󳨀→ 0 , as n → ∞ . (A.70)

We have

|rij(n)| ≤ sup
t∈Θ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∂∂t (∂Sni∂tj
) (t)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ⋅ ‖θ̂n − θ‖ = aij(n) ⋅ ‖θ̂n − θ‖ . (A.71)

Due to condition (A.63), the sequence of random variables {aij(n), n ≥ 1} is stochasti-
cally bounded, and therefore, (A.70) stems from the convergence θ̂n

P1󳨀󳨀→ θ. Thus,

‖r(n)‖ Pθ󳨀󳨀→ 0 , as n → ∞ . (A.72)

From equality (A.68), we get

(∂Sn
∂tT

(θ) + r(n)) √n (θ̂n − θ) = −√n Sn(θ) . (A.73)

From relations (A.67) and (A.72), we have√n (θ̂n − θ) = −V−1√n Sn(θ) + oP(1) . (A.74)
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Due to condition (f) and the CLT, we get

√n Sn(θ) = 1√n n∑
i=1

s(zi , θ) d󳨀→ N(0, B) , (A.75)

where the matrix B is written in (A.65). Finally, from the expansion (A.74) and by Slut-
sky’s Lemma 2.18, it holds that

√n (θ̂n − θ) d󳨀→ N(0, V−1BV−T) . (A.76)

The theorem is proved.

Corollary A.28. Assume the conditions of TheoremA.18 and condition (f). Furthermore,
assume the following:
(g’) Almost surely, s(z, ⋅ ) ∈ C2(Θ) and for each nonempty compact K ⊂ Θ, it holds that

Eθ sup
t∈K

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂2s(z, t)∂ti∂tj

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ , i, j = 1, p . (A.77)

Then for the estimator θ̂n from Definition A.16, relations (A.64) and (A.65) hold true.

Proof. By Theorem A.18, we have θ̂n
P1󳨀󳨀→ θ. As a compact K, one can take the ball

B̄(θ, ε) ⊂ Θ, and we may and do assume that for all n, it holds that θ̂n ∈ K. Next, we
use Theorem A.26, with the convex compact K taken instead of Θ.

Remark A.29. Under the conditions of Theorem A.26 or Corollary A.28, the following
estimator of the ACM Σ can be constructed:

Σ̂n = V̂−1n B̂nV̂−Tn , V̂n = 1
n

n∑
i=1

∂s(zi , θ̂n)
∂θT

, (A.78)

B̂n = 1
n

n∑
i=1

s(zi , θ̂n)sT(zi , θ̂n) , n ≥ 1 . (A.79)

The estimator Σ̂n is strongly consistent, i.e., ‖Σ̂n − Σ‖ P1󳨀󳨀→ 0, as n → ∞.

Theorem A.30 (Asymptotic normality in the case of pre-estimation). Assume the con-
ditions of Theorem A.23. Furthermore, assume the following:
(g”)Almost surely, s(z, ⋅ ) ∈ C2(Θ) and for all i, j = 1, p,

Eθ sup
t∈Θβ×Kα

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∂2s(z, t)∂ti∂tj

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ . (A.80)

(e) A convergence holds √n (Sn(β, α)
α̂n − α

) d󳨀→ N(0, C) , (A.81)

where C is a positive semidefinite matrix.
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Then √n (β̂n − β) d󳨀→ N(0, Σβ) , Σβ = V−1β [Ip; Vα] C [Ip; Vα]T V−1β . (A.82)

Here Vβ is defined in condition (4) of Theorem A.23 and

Vα := ∂S∞
∂αT

(β, α; θ) . (A.83)

Proof. By Theorem A.23, it holds eventually that

Sn(β̂n , α̂n) = 0 , (A.84)

and θ̂n = (β̂Tn , α̂Tn)T P1󳨀󳨀→ θ = (βT, αT)T. We may and do assume that for all n ≥ 1, it
holds that α̂n ∈ Kα = B̄(α, rα), the latter set was introduced in condition (A.49). From
equality (A.84), we obtain eventually using Taylor’s formula:

Sn(β, α) + ∂Sn
∂bT

(β, α) (β̂n − β) + ∂Sn
∂αT

(β, α) (α̂n − α) + r(n) ( ̂θn − θ) = 0 . (A.85)

Here r(n) is a random matrix containing differences of partial derivatives of Sn in the
true point θ and intermediate points. Similarly, as in the proof of Theorem A.26, con-
dition (g”) implies that ‖r(n)‖ Pθ󳨀󳨀→ 0, as n → ∞. Then from equality (A.85), we find

Vβ √n (β̂n − β) = −√n Sn(β, α) − Vα √n (α̂n − α) + oP(1) , (A.86)

√n (β̂n − β) = −V−1β [Ip; Vα]√n (Sn(β, α)
α̂n − α

) + oP(1) . (A.87)

By the condition (e) with Slutsky’s lemma, the desired relation (A.82) is obtained.

Corollary A.31. (Asymptotic normality in the case of unbounded set Θβ, with pre-
estimation.) Assume the conditions of Theorem A.25, condition (e), and the following
condition:
(g”’)Almost surely, s(z, ⋅ ) ∈ C2(Θ) and for the ball Kα from condition (A.60) and each

nonempty compact Kβ ⊂ Θβ, it holds that

Eθ sup
t∈Kβ×Kα

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∂2s(z, t)∂ti∂tj

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞ , i, j = 1, p . (A.88)

Then the convergence (A.82) holds for the estimator β̂n, which satisfies Definition A.24.

Remark A.32. Formodels withmeasurement errors, the formula for the ACMof the es-
timator β̂n with pre-estimation of nuisance parameters was obtained in Section 4.2.2,
see formula (4.111). It waswritten out based on the sandwich formula (A.64), with con-
sideration of the total estimating function for a vector of all unknown parameters of
themodel. If this is impossible under the pre-estimation of nuisance parameters, then
Theorem A.30 can be used instead.
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A.2.2 A class of asymptotically normal estimators in mean-variance model

Let the relationshipbetween the response y andcovariate x begivenby the conditional
mean and conditional variance:

E(y|x) = m(x, y) , V(y|x) = 𝑣(x, θ) . (A.89)

Here θ is a vector parameter to be estimated using observable independent realiza-
tions of the model (xi, yi), i = 1, n.

The parameter θ belongs to a compact set Θ ⊂ Rd. The random variable x has a
density ρ(x, θ)with respect to a σ-finitemeasure on theBorel σ-algebra of the real line.
We assume that 𝑣(x, θ) > 0, for all x and θ, and that the functions (A.89) are smooth
enough. This model is called the mean-variance model, see Carroll et al. (2006).

With the functions g, h : R × Θ → Rd, we introduce the estimating function

sL(x, y; θ) = yg(x, θ) − h(x, θ) . (A.90)

Consider

EθsL(x, y; θ) = EEθ[sL(x, y; θ)|x] = E(m(x, θ)g(x, θ) − h(x, θ)) . (A.91)

The function sL is unbiased (i.e., for each θ, it holds that EθsL(x, y; θ) = 0 ) if, and only
if, E(m(x, θ)g(x, θ) − h(x, θ)) = 0 for all θ.

The estimating function (A.90) generates the estimator θ̂L specified by the equa-
tion

n∑
i=1

sL(xi, yi; θ) = 0 , θ ∈ Θ . (A.92)

Theorem A.33. Consider the model (A.89) and assume the following:
(1) Parameter set Θ is a convex compact set in Rd, and the true value θ ∈ Θ0.
(2) Functions g, h : R × U → Rd are Borel measurable, where U is a neighborhood of

Θ, and moreover g(x, ⋅ ) and h(x, ⋅ ) belong to C2(U), almost surely.
(3) E|m(x, θ)| ⋅ ‖g(x, t)‖ < ∞, for all θ ∈ Θ0, t ∈ Θ;

Em2(x, θ) ⋅ ‖g(x, θ)‖2 < ∞, for all θ ∈ Θ0.
(4) E|m(x, θ)| ⋅ supt∈Θ |D(j)t gk(x, t)| < ∞, for all θ ∈ Θ0, k = 1, d, j = 1, 2;

E supt∈Θ |D(j)t hk(x, t)| < ∞, for all k = 1, d, j = 1, 2, where gk and hk are the
corresponding components of g and h; D(j)t gk and D

(j)
t hk denote partial derivatives

of order j with respect to the argument t of the functions gk and hk, respectively.
(5) For each θ ∈ Θ0, the equality

E(m(x, θ)g(x, t) − h(x, t)) = 0 , t = Θ , (A.93)

holds true if, and only if, t = θ.
(6) The matrix AL = −Eθ ∂sL(x,y,θ)∂θT is nonsingular.
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Then:
(a) there exists such a Borel measurable function θ̂L of observations

x1, y1, . . . , xn , yn that∑n
i=1 sL(xi , yi; θ̂L) = 0 eventually, and

(b) for each such function θ̂L, the following holds:

θ̂L
P1󳨀󳨀→ θ , as n → ∞, (A.94)√n (θ̂L − θ) d󳨀→ N(0, ΣL), (A.95)

ΣL = A−1L BLA−TL , BL = EθsL(x, y; θ)sTL(x, y; θ) . (A.96)

Proof is based on Theorems A.10, A.15, and A.26.

Theorem A.34 (The case of unbounded Θ). Consider the model (A.89) and assume the
following:
(1) Parameter set Θ is a convex closed set in Rd and the true value θ ∈ Θ0.
(2) For each nonempty compact set K ⊂ Θ, it holds that

E|m(x, θ)| ⋅ supt∈K |D(j)t gk(x, t)| < ∞, for all θ ∈ Θ0, k = 1, d, j = 1, 2;
E supt∈K |D(j)t hk(x, t)| < ∞, for all k = 1, d, j = 1, 2.

(3) Conditions (2), (3), (5), and (6) of Theorem A.33 are repeated word-for-word.
Then:
(a) there exists such a Borel measurable function θ̂L of observations

x1, y1, . . . , xn , yn that almost surely, ∑n
i=1 sL(xi , yi; θ̂L) = 0, for all n ≥ n0(ω), and

θ̂L(ω) has the lowest norm of all solutions to equation (A.92);
(b) for each such function θ̂L, relations (A.94)–(A.96) hold true.

Proof is based on Theorem A.18 and Corollary A.28.



B Consistency of efficient methods
Introduce a function

FN (β) = ( N∑
i=1

Yi
1 + βDi

)−1 N∑
i=1

Yi (Di − Dav)
1 + βDi

, β ≥ 0 , (B.1)

where Dav is defined in the formula (6.11). Relation (6.10) is equivalent to the equation
FN(β) = 0, β > 0. The following conditions will be required:
(I) Among the observations with Yi = 1, not all the doses Di coincide;
(II) ∑N

i=1 Yi (Di − Dav) > 0;
(III)∑N

i=1
Yi (Di−Dav)

Di
< 0.

Condition (I) means that not all sick subjects received the same dose. Condition (II)
is natural as well and means that the mean dose for healthy subjects is less than the
meandose for sick subjects. And it can be shown that for the structuralmodel inwhich
the dose distribution is not degenerate to a single point (i.e., for every D0 ≥ 0, the
inequality P(D = D0) < 1 holds true), condition (III) holds eventually.
Lemma B.1. If the condition (I) holds true, then the function FN is strictly decreasing,
and as a consequence, the equation (6.10) has no more than one solution. If conditions
(I)–(III) are fulfilled then equation (6.10) has a unique solution β > 0.
To prove the first statement of the lemma, we have to verify the inequality F󸀠N (β) < 0.
Further, the inequality FN(0) > 0 follows from the condition (II), and relation
limβ→+∞ FN (β) < 0 stems from the condition (III). Therefore, the continuous function
FN(β) equals 0 at some point β > 0.
Theorem B.2. Assume that the dose distribution is not concentrated at a single point.
Then eventually the efficient estimators λ̂∗0 and β̂∗ of the model (6.6) exist and unique,
and the estimators are strongly consistent, i.e., with probability 1 they tend to the true
values: limN→∞ λ̂∗0 = λ0 and limN→∞ β̂∗ = β, almost surely.

Proof. Lemma B.1 implies the existence of the estimators, for all N ≥ N0(ω), almost
surely. Estimating equations for the efficient estimators canbewritten in the following
form:

0 = N∑
i=1

[1 − Yi − Yi/(λ0(1 + βDi))] , (B.2)

0 = N∑
i=1

Di[1 − Yi − Yi/(λ0(1 + βDi))] . (B.3)

(On the set {λ0 > 0 , β > 0} this system of equations is equivalent to (6.8); in partic-
ular, in order to get (B.3) it is necessary to divide by β the difference between the first
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and second equations (6.8).) Equations (B.2) and (B.3) are unbiased, i.e.,

0 = Eλ0,β[1 − Yi − Yi/(λ0(1 + βDi))] ,
0 = Eλ0,βDi[1 − Yi − Yi/(λ0(1 + βDi))] . (B.4)

Hereafter, Eλ0,β denotes expectation under the condition that λ0 and β are the true
values of parameters in the model (6.6). In addition, the limit system of equations

0 = Eλ0,β[1 − Yi − Yi/(ℓ0(1 + bDi))] ,
0 = Eλ0,β[Di(1 − Yi − Yi/(ℓ0(1 + bDi)))] , ℓ0 > 0, b > 0 , (B.5)

has a unique solution ℓ0 = λ0, b = β. This can be shown by using a convex function
q(ℓ0, a) = (1−Y)(ℓ0 +aD)−Y ln(ℓ0 +aD). The functions under the sign of expectation
are equal to the partial derivatives of q(ℓ0, a) at point (ℓ0, a) = (ℓ0, ℓ0b). According to
theory of estimating equations (see Appendix A1), these facts imply the strong consis-
tency of the efficient estimators.



C Efficient SIMEX method as a combination of the
SIMEX method and the corrected score method

The expression ∑N
i=1 (1 − Yi)Dmesi exp(− σ2Q,i

2 ) is an unbiased estimator of the sum∑N
i=1 (1 − Yi)Dtri . Indeed,
E[(1 − Yi)Dmesi exp(−σ2Q,i2 ) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Yi , Dtri ] =

= (1 − Yi)E[Dmesi exp(−σ2Q,i2 ) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Dtri ] = (1 − Yi)Dtri . (C.1)

In derivation of this relation, it was assumed that the multiplicative errors have log-
normal distribution. Thus, equation (6.55) is obtained from the equation

N∑
i=1

(1 − Yi)(1 + ÊRR∗b(κ)Dtri ) = ∑N
i=1 Yi

λ̂∗0,b(κ) , (C.2)

by the corrected score method, see Section 1.4.4.
We introduce the notations:

– θ = (λ0, EAR)T,
– s(θ, Y, D) is an elementary estimating function for the naive estimate,
– θ̂∗b(κ) and θ̂∗(κ) are estimates of the parameter θ being used in the SIMEXmethod.

For ordinary SIMEX, with using fast estimates, the elementary estimating function can
be written as:

s(θ, Y, D) = ( 1 − Y − Y/(λ0 + EAR ⋅ D)(1 − Y − Y/(λ0 + EAR ⋅ D))D) , (C.3)

and for the efficient modification of SIMEX,

s(θ, Y, D) = ( 1 − Y − Y/(λ0 + EAR ⋅ D)(1 − Y)D̂av − YD/(λ0 + EAR ⋅ D)) . (C.4)

A random function θ̂∗b is searched as a solution to the equation
N∑
i=1

s(θ̂∗b(κ), Yi , Dmesi exp(√κU∗b,i)) = 0 . (C.5)

We find the derivative dθ̂∗b
dr |r=0, where r = √κ. For this purpose compute the partial

derivatives s󸀠D and s
󸀠
θ of the estimating function s(θ, Y, D):

∂∑N
i=1 s(θ, Yi , Dmesi er U

∗
b,i )

∂r

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨r=0 = N∑
i=1

s󸀠D(θ, Yi , Dmesi )Dmesi U∗b,i , (C.6)

∂∑N
i=1 s(θ, Yi , Dmesi er U

∗
b,i )

∂θ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨r=0 = N∑
i=1

Yi(θ1 + θ2Dmesi )2 ( 1 Dmesi
Dmesi (Dmesi )2) . (C.7)
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Under the conditions for existence of the efficient estimators, the derivative∑N
i=1 s󸀠θ(θ, Yi , Dmesi ) is nonsingular matrix.
By the implicit function theorem, it holds that

dθ̂∗b(r2)
dr

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨r=0 = −( N∑
i=1

s󸀠θ(θ̂∗b(0), Yi , Dmesi ))−1 N∑
i=1

s󸀠D(θ̂∗b(0), Yi , Dmesi )Dmesi U∗i,b . (C.8)

We mention that θ̂∗b(0) = θ∗1 (0) does not depend of b and find the derivative of the
function θ̂∗(r2) = B−1∑N

i=1 θ̂∗b(r2) at zero point:
dθ̂∗(r2)
dr

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨r=0 = −∑N
i=1 s󸀠D(θ̂∗1(0), Yi , Dmesi )Dmesi ∑B

b=1 U∗b,i
B∑N

i=1 s󸀠θ(θ̂∗1 (0), Yi , Dmesi ) . (C.9)

If the condition ∑B
b=1 U
∗
b,i = 0 holds true, then the derivative dθ̂∗(r2)

dr is equal to 0 at
zero point, and in the expansion

θ̂∗(κ) = θ̂∗(0) + coef1√κ + coef2 κ + coef3√κ3 + . . . (C.10)

the term coef1√κ is vanishing. Then the expansion (C.10) resembles the Taylor series
expansion of the function θ̂∗(κ) with respect to the variable κ. Therefore, the extrap-
olated value θ̂∗(−1), which is actually the SIMEX estimator, is calculated more stably.



D Application of regression calibration in the model
with additive error in exposure doses

Let the doses be observed with the classical additive error (7.23). The basic idea of
regression calibration (RC) (see Carroll et al., 2006) lies in using the conditional ex-
pectations E(Dtri |Dmesi ) instead of the true doses within the framework of the radiation
risk model.

D.1 Parametric regression calibration

Themethod of parametric regression calibration assumes that probability distribution
of the population Dtri , i = 1, . . . , N, is known (or it can be reliably estimated). As a
result of the fact that the thyroid exposure doses are positive and possess left-skewed
distribution (Likhtarov et al., 2014), the lognormal distribution serves as a satisfactory
approximation for the distribution of doses. Therefore,

lnDtr ∼ N(μDtr , σ2
Dtr ) . (D.1)

The parameters μDtr and σ
2
Dtr
are reliably estimated by (7.44) and (7.45). Herewe assume

those parameters to be known.
Denote the pdf of Dtri by ρtr, the pdf of Dmesi by ρmes, the joint pdf of D

tr
i and Dmesi

by ρtr,mes, and the pdf of the measurement error σiγi by ργ. Then

ρtr,mes(Dtri , Dmesi ) = ρtr(Dtri ) ⋅ ργ(Dmesi − Dtri ) , (D.2)

and the conditional pdf is equal to:

ρtr|mes(Dtri ) = ρtr,mes(Dtri , Dmesi )∫∞0 ρtr,mes(t, Dmesi )dt = ρtr(Dtri ) ⋅ ργ(Dmesi − Dtri )
ρmes(Dmesi ) . (D.3)

This implies that

E(Dtri 󵄨󵄨󵄨󵄨󵄨󵄨Dmesi ) = ∞∫
0

tρtr|mes(t)dt = 1
ρmes(Dmesi ) ∞∫

0

tρtr(t) ⋅ ργ(Dmesi − t)dt , (D.4)

and thus, it holds (Likhtarov et. al, 2012):

ρmes(Dmesi ) = 1∫
0

1√2πσi exp(−(Dmesi − G−1(z))2
2σ2i

)dz ,
∞∫
0

tρtr(t) ⋅ ργ(Dmesi − t)dt = 1∫
0

G−1(z)√2πσi exp(−(Dmesi − G−1(z))2
2σ2i

)dz , (D.5)
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where

z = G(t) = t∫
0

1
t√2πσDtr

exp(−(log t − μDtr)2
2σ2

D
tr

)dt (D.6)

is the cdf of lognormal law, with parameters μDtr and σDtr .

D.2 Linear regression calibration

In the case of linear regression calibration, the following linear approximations to
conditional expectations of doses are used instead of the true doses:

E(Dtri 󵄨󵄨󵄨󵄨󵄨󵄨Dmesi ) = ai + biDmesi , (D.7)

where the coefficients ai , bi are found by relations from Likhtarov et al. (2012):

ai = μDtrσ2i
σ2
Dtr + σ2i

, bi = σ2
D
tr

σ2
Dtr + σ2i

. (D.8)

D.3 Results of stochastic experiment

FiguresD.1 andD.2present the results of simulationperformed inaccordancewithSec-
tion 7.3.4 for the case GSDF = 1, i.e., in the absence of Berkson errors in the exposure
doses. The figures demonstrate that the shift of the estimates of EAR being obtained
by the parametric and linear regression calibration is even larger than the shift of the
naive estimates of this parameter. This is explained by an “unnatural” combination
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Fig. D.1: Estimates of background incidence rate obtained by the parametric and linear regression
calibration in the model with classical additive error.
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Fig. D.2: Excess absolute risk estimates obtained by the parametric and linear regression calibration
in the model with classical additive error.

of the normal law of dose errors (7.23) and the lognormal law of the population Dtr

(D.1). Hence, the methods of regression parameter estimation described above are not
applicable for the models, where the normal law of dose errors is combined with the
lognormal law of the population of doses.
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