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Preface to the Second Edition

We present an improved and enlarged version of our book Nonlinear Dy-
namics of Chaotic and Stochastic Systems published by Springer in 2002.
Basically, the new edition of the book corresponds to its first version. While
preparing this edition we made some clarifications in several sections and also
corrected the misprints noticed in some formulas. Besides, three new sections
have been added to Chapter 2. They are “Statistical Properties of Dynamical
Chaos,” “Effects of Synchronization in Extended Self-Sustained Oscillatory
Systems,” and “Synchronization in Living Systems.” The sections indicated
reflect the most interesting results obtained by the authors after publication
of the first edition.

We hope that the new edition of the book will be of great interest for a
wide section of readers who are already specialists or those who are beginning
research in the fields of nonlinear oscillation and wave theory, dynamical
chaos, synchronization, and stochastic process theory.

Saratov, Berlin, and St. Louis V.S. Anishchenko
November 2006 A.B. Neiman

T.E. Vadiavasova
V.V. Astakhov

L. Schimansky-Geier



Preface to the First Edition

This book is devoted to the classical background and to contemporary results
on nonlinear dynamics of deterministic and stochastic systems. Considerable
attention is given to the effects of noise on various regimes of dynamic systems
with noise-induced order.

On the one hand, there exists a rich literature of excellent books on non-
linear dynamics and chaos; on the other hand, there are many marvelous
monographs and textbooks on the statistical physics of far-from-equilibrium
and stochastic processes. This book is an attempt to combine the approach of
nonlinear dynamics based on the deterministic evolution equations with the
approach of statistical physics based on stochastic or kinetic equations. One
of our main aims is to show the important role of noise in the organization
and properties of dynamic regimes of nonlinear dissipative systems.

We cover a limited region in the interesting and still expanding field of
nonlinear dynamics. Nowadays the variety of topics with regard to determin-
istic and stochastic dynamic systems is extremely large. Three main criteria
were followed in writing the book and to give a reasonable and closed presen-
tation: (i) the dynamic model should be minimal, that is, most transparent
in the physical and mathematical sense, (ii) the model should be the sim-
plest which nevertheless clearly demonstrates most important features of the
phenomenon under consideration, and (iii) most attention is paid to models
and phenomena on which the authors have gained great experience in recent
years.

The book consists of three chapters. The first chapter serves as a brief
introduction, giving the fundamental background of the theory of nonlinear
deterministic and stochastic systems and a classical theory of the synchro-
nization of periodic oscillations. All basic definitions and notions necessary
for studying the subsequent chapters without referring to special literature
are presented.

The second chapter is devoted to deterministic chaos. We discuss various
scenarios of chaos onset, including the problem of the destruction of two- and
three-frequency quasiperiodic motion. Different aspects of synchronization
and chaos control as well as the methods of reconstruction of attractors and
dynamic systems from experimental time series are also discussed.
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The third chapter is concerned with stochastic systems whose dynamics
essentially depend on the influence of noise. Several nonlinear phenomena
are discussed: stochastic resonance in dynamic systems subjected to har-
monic and complex signals and noise, stochastic synchronization and sto-
chastic ratchets, which are the noise-induced ordered and directed transport
of Brownian particles moving in bistable and periodic potentials. Special at-
tention is given to the role of noise in excitable dynamics.

The book is directed to a large circle of possible readers in the natural
sciences. The first chapter will be helpful for undergraduate and graduate
students in physics, chemistry, biology and economics, as well as for lecturers
of these fields interested in modern problems of nonlinear dynamics. Special-
ists of nonlinear dynamics may use this part as an extended dictionary. The
second and the third chapters of the book are addressed to specialists in the
field of mathematical modeling of the complex dynamics of nonlinear systems
in the presence of noise.

We tried to write this book in such a manner that each of the three
chapters can be understood in most parts independently of the others. Par-
ticularly, each chapter has its own list of references. This choice is based on
the desire to be helpful to the reader. Undoubtedly, the lists of references are
incomplete, since there exists an enormously large number of publications
which are devoted to the topics considered in this book.

This book is a result of the long-term collaboration of the Nonlinear Dy-
namics Laboratory at Saratov State University, the group of Applied Stochas-
tic Processes of Humboldt University at Berlin, and the Center for Neurody-
namics at the University of Missouri at St. Louis. We want to express our deep
gratitude to W. Ebeling, Yu.L. Klimontovich and F. Moss for their support,
scientific exchange and constant interest. We acknowledge fruitful discussions
with C. van den Broeck, P. Hänggi, J. Kurths, A. Longtin, A. Pikovski and
Yu.M. Romanovski. The book has benefited a lot from our coauthors of the
original literature. We wish to thank A. Balanov, R. Bartussek, V. Bucholtz,
I. Diksthein, J.A. Freund, J. Garćıa-Ojalvo, M. Hasler, N. Janson, T. Kap-
itaniak, I. Khovanov, M. Kostur, P.S. Landa, B. Lindner, P. McClintock,
E. Mosekilde, A. Pavlov, T. Pöschel, D. Postnov, P. Reimann, R. Rozenfeld,
P. Ruszczynsky, A. Shabunin, B. Shulgin, U. Siewert, A. Silchenko, O. Sos-
novtseva, A. Zaikin and C. Zülicke for regular and fruitful discussions, criti-
cism and valuable remarks which give us deeper insight into the problems we
study.

We acknowledge the Series Editor H. Haken for fruitful comments on the
manuscript. We thank P. Talkner, F. Marchesoni, M. Santos and coworkers
and students from the group of Humboldt-University at Berlin for helpful
remarks and comments during proofreading.

We are especially grateful to Ms. Galina Strelkova for her great work in
preparing the manuscript and for translating several parts of this book into
English, and to A. Klimshin for technical assistance.
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1. Tutorial

1.1 Dynamical Systems

1.1.1 Introduction

The knowledge of nonlinear dynamics is based on the notion of a dynamical
system (DS). A DS may be thought of as an object of any nature, whose state
evolves in time according to some dynamical law, i.e., as a result of the action
of a deterministic evolution operator. Thus, the notion of DS is the result of
a certain amount of idealization when random factors inevitably present in
any real system are neglected.

The theory of DS is a wide and independent field of scientific research. The
present section addresses only those parts, which are used in the subsequent
chapters of this book. The main attention is paid to a linear analysis of the
stability of solutions of ordinary differential equations. We also describe local
and nonlocal bifurcations of typical limit sets and present a classification of
attractors of DS.

The structure of chaotic attractors defines the properties of regimes of de-
terministic chaos in DS. It is known that the classical knowledge of dynamical
chaos is based on the properties of robust hyperbolic (strange) attractors. Be-
sides hyperbolic attractors, we also consider in more detail the peculiarities
of nonhyperbolic attractors (quasiattractors). This sort of chaotic attractor
reflects to a great extent the properties of deterministic chaos in real systems
and serves as the mathematical image of experimentally observed chaos.

1.1.2 The Dynamical System and Its Mathematical Model

A DS has an associated mathematical model. The latter is considered to be
defined if the system state as a set of some quantities or functions is deter-
mined and an evolution operator is specified which gives a correspondence
between the initial state of the system and a unique state at each subsequent
time moment. The evolution operator may be represented, for example, as a
set of differential, integral and integro-differential equations, of discrete maps,
or in the form of matrices, graphs, etc. The form of the mathematical model
of the DS under study depends on which method of description is chosen.
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Depending on the approximation degree and on the problem to be studied,
the same real system can be associated with principally different mathemat-
ical models, e.g., a pendulum with and without friction. Moreover, from a
qualitative viewpoint, we can often introduce into consideration a DS, e.g.,
the cardio-vascular system of a living organism, but it is not always possible
to define its mathematical model.

DS are classified based on the form of state definition, on the properties
and the method of description of the evolution operator. The set of some
quantities xj , j = 1, 2, . . . , N , or functions xj(r), r ∈ RM determines the
state of a system. Here, xj are referred to as dynamical variables, which
are directly related to the quantitative characteristics observed and mea-
sured in real systems (current, voltage, velocity, temperature, concentration,
population size, etc.). The set of all possible states of the system is called
its phase space. If xj are variables and not functions and their number N
is finite, the system phase space RN has a finite dimension. Systems with
finite-dimensional phase space are referred to as those with lumped parame-
ters, because their parameters are not functions of spatial coordinates. Such
systems are described by ordinary differential equations or return maps.

However, there is a wide class of systems with infinite-dimensional phase
space. If the dynamical variables xj of a system are functions of some vari-
ables rk, k = 1, 2, . . . , M , the system phase space is infinite-dimensional. As
a rule, rk represent spatial coordinates, and thus the system parameters de-
pend on a point in space. Such systems are called distributed parameter or
simply distributed systems. They are often represented by partial differential
equations or integral equations. One more example of systems with infinite-
dimensional phase space is a system whose evolution operator includes a time
delay, Td. In this case the system state is also defined by the set of functions
xj(t), t ∈ [0, Td].

Several classes of DS can be distinguished depending on the properties of
the evolution operator. If the evolution operator obeys the property of su-
perposition, i.e., it is linear and the corresponding system is linear; otherwise
the system is nonlinear. If the system state and the evolution operator are
specified for any time moment, we deal with a time-continuous system. If the
system state is defined only at separate (discrete) time moments, we have
a system with discrete time (map or cascade). For cascades, the evolution
operator is usually defined by the first return function, or return map. If the
evolution operator depends implicitly on time, the corresponding system is
autonomous, i.e., it contains no additive or multiplicative external forces de-
pending explicitly on time; otherwise we deal with a nonautonomous system.
Two kinds of DS are distinguished, namely, conservative and nonconserva-
tive. For a conservative system, the volume in phase space is conserved during
time evolves. For a nonconservative system, the volume is usually contracted.
The contraction of phase volume in mechanical systems corresponds to lost
of energy as result of dissipation. A growth of phase volume implies a supply
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of energy to the system which can be named negative dissipation. Therefore,
DS in which the energy or phase volume varies are called dissipative systems.

Among a wide class of DS, a special place is occupied by systems which
can demonstrate oscillations, i.e., processes showing full or partial repetition.
Oscillatory systems, as well as DS in general, are divided into linear and non-
linear, lumped and distributed, conservative and dissipative, and autonomous
and nonautonomous. A special class includes the so-called self-sustained sys-
tems.

Nonlinear dissipative systems in which nondecaying oscillations can ap-
pear and be sustained without any external force are called self-sustained, and
oscillations themselves in such systems are called self-sustained oscillations.
The energy lost as dissipation in a self-sustained system is compensated from
an external source. A peculiarity of self-sustained oscillations is that their
characteristics (amplitude, frequency, waveform, etc.) do not depend on the
properties of a power source and hold under variation, at least small, of initial
conditions [1].

Phase Portraits of Dynamical Systems. A method for analyzing oscil-
lations of DS by means of their graphical representation in phase space was
introduced to the theory of oscillations by L.I. Mandelstam and A.A. An-
dronov [1]. Since then, this method has become the customary tool for study-
ing various oscillatory phenomena. When oscillations of complex form, i.e.,
dynamical chaos, were discovered, this method increased in importance. The
analysis of phase portraits of complex oscillatory processes allows one to
judge the topological structure of a chaotic limit set and to make sometimes
valid guesses and assumptions which appear to be valuable when performing
further investigations [2].

Let the DS under study be described by ordinary differential equations

ẋj = fj(x1, x2, . . . , xN ) , (1.1)

where j = 1, 2, . . . , N , or in vector form

ẋ = F (x) . (1.2)

x represents a vector with components xj , the index j runs over j =
1, 2, . . . , N , and F (x) is a vector-function with components fj(x). The set
of N dynamical variables xj or the N -dimensional vector x determines the
system state which can be viewed as a point in state space RN . This point
is called a representative or phase point, and the state space RN is called
the phase space of DS. The motion of a phase point corresponds to the time
evolution of a state of the system. The trajectory of a phase point, starting
from some initial point x0 = x(t0) and followed as t → ±∞, represents a
phase trajectory. A similar notion of integral curves is sometimes used. These
curves are described by equations dxj/dxk = Φ(x1, x2, . . . , xN ), where xk is
one of the dynamical variables. An integral curve and a phase trajectory of-
ten coincide, but the integral curve may consist of several phase trajectories
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if it passes through a singular point. The right-hand side of (1.2) defines the
velocity vector field F (x) of a phase point in the system phase space. Points
in phase space for which fj(x) = 0, j = 1, 2, . . . , N , remain unchanged with
time. They are called fixed points, singular points or equilibrium points of the
DS. A set of characteristic phase trajectories in the phase space represents
the phase portrait of the DS.

Besides the phase space dimension N , the number of degrees of freedom
n = N/2 is often introduced. This tradition came from mechanics, where
a system is considered as a set of mass points, each being described by a
second-order equation of motion. n generalized coordinates and n generalized
impulses are introduced so that the total number of dynamical variables
N = 2n appears to be even and the number of independent generalized
coordinates n (the number of freedom degrees) an integer. For an arbitrary
DS (1.1) the number of degrees of freedom will be, in general, a multiple of
0.5.

Consider the harmonic oscillator

ẍ + ω2
0x = 0 . (1.3)

Its phase portrait is shown in Fig. 1.1a and represents a family of concentric
ellipses (in the case ω0 = 1, circles) in the plane x1 = x, x2 = ẋ, centered at
the origin of coordinates:

ω2
0 x2

1

2
+

x2
2

2
= H(x1, x2) = const. (1.4)

Each value of the total energy H(x1, x2) corresponds to its own ellipse. At
the origin we have the equilibrium state called a center. When dissipation is
added to the linear oscillator, phase trajectories starting from any point in the
phase plane approach equilibrium at the origin in the limit as t → ∞. The
phase trajectories look like spirals twisting towards the origin (Fig. 1.1b)
if dissipation is low and the solutions of the damped harmonic oscillator
correspond to decaying oscillations. In this case the equilibrium state is a
stable focus. With an increasing damping coefficient, the solutions become
aperiodic and correspond to the phase portrait shown in Fig. 1.1c with the
equilibrium called a stable node.

By using a potential function U(x), it is easy to construct qualitatively
the phase portrait for a nonlinear conservative oscillator which is governed
by

ẍ +
∂U(x)

∂x
= 0 .

An example of such a construction is given in Fig. 1.2. Minima of the poten-
tial function conform to the center-type equilibrium states. In a potential well
about each center, a family of closed curves is arranged which correspond to
different values of the integral of energy H(x, ẋ). In the nearest neighborhood



1.1 Dynamical Systems 5

x 2

x1

x
2

x1 x1
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a b c

Fig. 1.1. Phase portraits of linear oscillators: (a) without dissipation, (b) with low
dissipation, and (c) with high dissipation

of the center these curves have an ellipse-like shape but they are deformed
when moving away from the center. Maxima of U(x) correspond to equilibria
called saddles. Such equilibrium states are unstable. Phase trajectories tend-
ing to the saddle Q (Fig. 1.2) as t → ±∞ belong to singular integral curves
called separatrices of saddle Q. A pair of trajectories approaching the saddle
forwardly in time forms its stable maniflod W s

Q, and a pair of trajectories
tending to the saddle backwardly in time its unstable maniflod W u

Q. Separa-

U(x)

x

O21 x =x
1

.
x =x2

u
W

WQ

s

Q

QO

Fig. 1.2. Qualitative construction of the phase portrait of a nonlinear conservative
oscillator using the potential function U(x)
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trices divide the phase space into regions with principally different behavior
of phase trajectories. They can also close, forming separatrix loops (Fig. 1.2).

Phase portraits of nonautonomous systems have some peculiarities. One
of them is that phase trajectories are not located within a certain bounded
region of the phase space, since the time variable t varies from −∞ to +∞. A
periodically driven nonautonomous system can be reduced to an autonomous
one by introducing the phase of the external forcing Ψ = Ω t and by adding
the equation Ψ̇ = Ω. However, if Ψ is taken unwrapped such a new variable
yields nothing and the phase trajectories remain unbounded as before. For
phase trajectories to be bounded, one needs to introduce a cylinderical phase
space (in general, multi-dimensional) taking into account that Ψ ∈ [0, 2π].
Figure 1.3 represents phase trajectories of a nonautonomous system lying
on a cylinder (for visualization purposes only one dynamical variable, x, is
shown).

Consider the Van der Pol oscillator

ẍ − (α − x2)ẋ + ω2
0x = 0 . (1.5)

For α > 0 and as t → ∞, the self-sustained system (1.5) demonstrates peri-
odic oscillations independent of initial conditions. These oscillations follow a
closed isolated curve called the Andronov–Poincaré limit cycle [1]. All phase
trajectories of (1.5), starting from different points of the phase plane, ap-
proach the limit cycle as t → ∞. The only exception is the equilibrium at the
origin. For small α the limit cycle resembles an ellipse in shape and the equi-
librium at the origin is an unstable focus. The corresponding phase portrait
and time dependence x(t) are shown in Fig. 1.4a. With increasing α the limit
cycle is distorted and the character of equilibrium is changed. For α > 2ω0,
the unstable focus is transformed into an unstable node and the duration of
transient process significantly decreases (Fig. 1.4b).

x

0 x0Ψ

Ψ

π

a b

Fig. 1.3. Phase portraits of the nonautonomous system ẋ = f(x) + B sin Ω t
(a) for Ψ = Ω t defined in the interval (−∞, +∞) and (b) for Ψ ∈ [0, 2π]
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Fig. 1.4. Phase portraits and waveforms in the Van der Pol oscillator (1.5) with
ω0 = 1 and (a) for α = 0.1 and (b) for α = 10. x1 = x, x2 = ẋ

Phase portraits of three-dimensional systems are not so illustrative. In this
case it is reasonable to introduce a plane or a surface of section such that
all trajectories intersect it at a nonzero angle. On the secant plane we obtain
a set of points corresponding to different phase trajectories of the original
system and which can give us an idea of the system phase portrait. The
points usually considered are those which appear when the system trajectory
intersects the secant plane in one direction, as shown in Fig. 1.5. The evolution
operator uniquely (but not one-to-one) determines a map of the secant plane
to itself, called the first return function or the Poincaré map [3]. The Poincaré
map reduces the dimension of the sets being considered by one and thus
makes the system phase portrait more descriptive. Finite sequences of points
(periodic orbits of the map) correspond to closed curves (limit cycles of the

x

x

x
2

1

3
S

Fig. 1.5. The Poincaré section
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initial system) and infinite sequences of points correspond to non-periodic
trajectories.

1.1.3 Stability – Linear Approach

The property of stability or instability is one of the important characteristics
of motions realized in a system. There are several notions of stability, namely,
stability according to Lyapunov, asymptotic stability, orbital stability and
stability according to Poisson [2, 4, 5]. The motion x∗(t) is said to be stable
according to Lyapunov if for any arbitrary small ε > 0 there is such δ(ε) that
for any motion x(t), for which ‖x(t0) − x∗(t0)‖ < δ, the inequality ‖x(t) −
x∗(t)‖ < ε is satisfied for all t > t0. The sign ‖o‖ denotes the vector norm.
Thus, a small initial perturbation does not grow for a motion that is stable
according to Lyapunov. If additionally the small perturbation δ vanishes as
time goes on, i.e., ‖x(t) − x∗(t)‖ → 0 as t → ∞, the motion possesses a
stronger stability property, namely, asymptotic stability. Any asymptotically
stable motion is stable according to Lyapunov but, in the general case, the
opposite is not true.

The definition of orbital stability is somewhat different from the definition
of stability according to Lyapunov. In the last case the distance between
phase points of the studied and the perturbed motion is considered at the
same time moments. The orbital stability takes into account the minimal
distance between the phase point of the perturbed trajectory at a given time
moment t and orbit Γ ∗ corresponding to the motion under study. The motion
that is stable according to Lyapunov is always orbitally stable. In the general
case, the opposite statement is not valid.

The weakest requirement is the stability of motion x∗(t) according to
Poisson. Its definition assumes that the phase trajectory does not leave a
bounded region of the phase space as t → ∞. Spending an infinitely long
period of time inside this region, the phase trajectory inevitably returns to
an arbitrarily small neighborhood of the initial point. Return times may
correspond to the period or quasiperiod of a regular motion or represent a
random sequence in the regime of dynamical chaos.

The stability properties of phase trajectories belonging to limit sets, e.g.,
attractors, are of special importance for understanding the system dynamics.
The change of stability character of one or another limit set can lead to a
considerable modification of the system phase portrait.
Limit Sets of a Dynamical System. Let the state of a system be specified
by vector x0 at the time moment t0, and by vector x(t) = T∆tx0 at the instant
t, where T∆t is the evolution operator on the interval ∆t = t − t0. Assume
that there are two sets, V and L ∈ V , where V is a set of all points x0 in the
phase space for which x(t) ∈ L as t → +∞ or t → −∞. We call L the limit
set of DS.

Consider the possible types of limit sets of a dissipative DS. If all points
of set V belong to L in the limit as t → +∞, then limit set L is attracting,
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i.e., an attractor. Consequently, V is the basin of attraction of attractor L.
If points of V belong to L in the limit as t → −∞, set L is repelling, i.e., a
repeller. If set V consists of two subsets, V = W s∪W u, and points belonging
to W s approach L forward in time, while points belonging to W u tend to
L backward in time, then L is called a saddle limit set or simply a saddle.
The sets W s and W u are the stable and unstable manifolds of the saddle,
respectively. Under time inversion, t → −t, regular attractors of the system
become repellers, repellers are transformed into attractors, and the roles of
stable and unstable manifolds of saddles are interchanged [6].

The simplest limit set of a DS is an equilibrium. There are equilibria which
can be attractors (stable focus and stable node), repellers (unstable focus and
unstable node), and saddles (simple saddle or a saddle-focus realized in phase
space with the dimension N ≥ 3). A center-type point is neither attractor
nor repeller nor saddle because there is no set of points tending to the center
forward or backward in time. This is a particular case of the limit set for
which V = L.

A limit set in the form of a closed curve, a limit cycle, can also be an
attractor, a repeller or a saddle. The toroidal limit sets, corresponding to
quasiperiodic oscillations, and the chaotic limit sets are similarly subclassi-
fied.

Linear Analysis of Stability – Basic Concepts. Stability according to
Lyapunov and asymptotic stability are determined by the time evolution
of a small perturbation of a trajectory, namely, whether the perturbation
decreases, grows or remains bounded with time. The introduction of pertur-
bation allows one to linearize the evolution operator in the vicinity of the
trajectory being studied and to perform a linear analysis of its stability.

Let us have an autonomous DS in the form

ẋ = F (x,α) , (1.6)

where x ∈ RN , and α ∈ RM is the parameter vector. We are interested in
analyzing the stability of a solution x0(t). Introduce a small perturbation
y = x(t) − x0(t), for which we may write

ẏ = F (x0 + y) − F (x0) . (1.7)

Expanding F (x0 +y) into a series in the neighborhood of x0 and taking into
account the fact that the perturbation is small, we arrive at the following
linearized equation with respect to y:

ẏ = Â(t)y , (1.8)

where Â is a matrix with elements

aj,k =
∂fj

∂xk

∣
∣
∣
∣
x0

, j, k = 1, 2, . . . , N , (1.9)
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called the linearization matrix of the system in the neighborhood of solution
x0(t), and fj are the components of function F . Matrix Â is characterized
by eigenvectors ei and eigenvalues ρi:

Âei = ρiei, i = 1, 2, . . . , N. (1.10)

The eigenvalues ρi are roots of the characteristic equation

Det
[

Â − ρÊ
]

= 0 , (1.11)

where Ê is a unit matrix. The initial perturbation specified at the time mo-
ment t∗ and along the ith eigenvector evolves as follows:

yi(t) = yi(t∗) exp (t − t∗)ρi . (1.12)

The growth of or decrease in the magnitude of perturbation ‖yi(t)‖ is de-
termined by the sign of the real part of ρi. In general, Â is a matrix with
time-varying elements, and, consequently, its eigenvalues and eigenvectors
also change. Therefore, (1.12) is fulfilled only in the limit t − t∗ → 0, i.e.,
locally, in the neighborhood of x0(t∗). As t∗ is varied, the index of the expo-
nent ρi takes a different value. Hence, in general, it is plausible that a small
perturbation y(t) =

∑N
i=1 yi(t) grows exponentially at some points of the

trajectory under study x0(t), whereas it decreases at others.
Assume that at the time moment t0 we have an infinitesimal initial per-

turbation yi(t0) of the trajectory being studied along the ith eigenvector
of matrix Â and a perturbation yi(t) at an arbitrary time moment t. The
stability of the trajectory along the eigenvector ei(t) is characterized by the
Lyapunov characteristic exponent λi,

λi = lim
t→∞

1
t − t0

ln ‖yi(t)‖, (1.13)

where the bar means the upper limit. If the trajectory x0(t) belongs to N -
dimensional phase space, the linearization matrix has the N × N dimension
and thus N eigenvectors. In this case the trajectory stability is defined by a
set of N Lyapunov exponents. The set of N numbers arranged in decreasing
order, λ1 ≥ λ2 ≥ . . . ≥ λN , forms the so-called Lyapunov characteristic
exponents spectrum (LCE spectrum) of phase trajectory x0(t).

Let us elucidate how Lyapunov exponents are related to the eigenvalues
of the linearization matrix ρi(t). Consider (1.12) at the initial time moment
t∗ = t0 assuming the interval ∆t = t − t0 to be small. Now we move to the
point x(t0 + ∆t) and take the following as the initial perturbation:

yi(t0 + ∆t) = yi(t0) exp ρi(t0)∆t.

We suppose that since ∆t is small, the direction of eigenvectors ei does not
change over this time interval, and vector yi(t0 + ∆t) may be viewed to be
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directed along the ith eigenvector. The initial perturbation yi(t0) is taken
to be so small that it can also be considered to be small at subsequent time
moments. Moving each time along the curve x0(t) with small step ∆t, we
can obtain an approximate expression describing the evolution of the small
perturbation along the ith eigenvector:

yi(t) ≈ yi(t0) exp
∑

k

ρi(tk)∆t . (1.14)

Passing to the limits ‖yi(t0)‖ → 0 and ∆t → 0, we deduce the rigorous
equality

yi(t) = yi(t0) exp
∫ t

t0

ρi(t′)dt′ . (1.15)

Substituting (1.15) into (1.13) we derive

λi = lim
t→∞

1
t − t0

∫ t

t0

Re ρi(t′)dt′ . (1.16)

Thus, the ith Lyapunov exponent λi can be thought of as the value, av-
eraged over the trajectory under study, of the real part of the eigenvalue
ρi of linearization matrix Â(t). It shows what happens with an appropri-
ate component of the initial perturbation, on average, along the trajectory.
The divergence of the flow and, consequently, the phase volume evolution are
determined by the sum of Lyapunov exponents. It can be shown that

N∑

i=1

λi = lim
t→∞

1
t − t0

∫ t

t0

divF (t′)dt′ . (1.17)

If trajectory x0(t) is stable according to Lyapunov, then an arbitrary ini-
tial perturbation y(t0) does not grow, on average, along the trajectory. In this
case it is necessary and sufficient for the LCE spectrum not to contain posi-
tive exponents. If an arbitrary bounded trajectory x0(t) of the autonomous
system (1.6) is not an equilibrium or a saddle separatrix, then at least one
of the Lyapunov exponents is always equal to zero [5, 7]. This is explained
by the fact that the small perturbation remains unchanged along the direc-
tion tangent to the trajectory. A phase volume element must be contracted
for phase trajectories on the attractor. Consequently, the system has a neg-
ative divergence and the sum of Lyapunov exponents satisfies the following
inequality:

N∑

i=1

λi < 0 . (1.18)
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Stability of Equilibrium States. If the particular solution x0(t) of system
(1.6) is an equilibrium, i.e., F (x0,α) = 0, the linearization matrix Â is
considered at only one point of phase space, and, consequently, it is a matrix
with constant elements ai,j . The eigenvectors and the eigenvalues of matrix
Â are constant in time, and the Lyapunov exponents coincide with the real
parts of the eigenvalues, λi = Reρi. The LCE spectrum signature indicates
whether the equilibrium is stable or not. To analyze the behavior of phase
trajectories in a local neighborhood of the equilibrium one also needs to know
the imaginary parts of the linearization matrix eigenvalues. In a phase plane,
N = 2, the equilibrium is characterized by two eigenvalues of matrix Â,
namely, ρ1 and ρ2. The following cases can be realized in the phase plane: (i)
ρ1 and ρ2 are real negative numbers; in this case the equilibrium is a stable
node. (ii) ρ1 and ρ2 are real positive numbers; the equilibrium is an unstable
node. (iii) ρ1 and ρ2 are real numbers but with different signs; the equilibrium
in this case is a saddle. (iv) ρ1 and ρ2 are complex conjugates with Reρ1,2 < 0;
the equilibrium is a stable focus. (v) ρ1 and ρ2 are complex conjugates with
Reρ1,2 > 0, the equilibrium is an unstable focus. (vi) ρ1 and ρ2 are pure
imaginary, ρ1,2 = ±iω; the equilibrium in this case is a center. Figure 1.6
shows a diagram of equilibria which are realized in the plane depending on
the determinant and the trace of matrix Â (respectively, DetÂ = ρ1ρ2 and
SpÂ = ρ1 + ρ2).

Besides the aforementioned states, in phase space with dimension N ≥ 3,
other kinds of equilibria are possible, e.g., an equilibrium state that is unsta-
ble according to Lyapunov, which is called a saddle-focus. Figure 1.7 shows

Det Â

Sp Â

Sp Â( ) 21__
4

Saddle

Center

Saddle

Stable node

Unstable focusStable focus

Unstable node

Fig. 1.6. Diagram of equilibria in the plane (phase portraits are shown in trans-
formed coordinates [1])
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a b

Fig. 1.7. Saddle-foci in three-dimensional phase space: (a) ρ1 is real and negative,
ρ2,3 are complex conjugate with Reρ2,3 > 0; (b) ρ1 is real and positive, ρ2,3 are
complex conjugate with Reρ2,3 < 0

two possible types of a saddle-focus in three-dimensional phase space, which
are distinguished by the dimensions of their stable and unstable manifolds.

To identify which type of limit set the equilibrium is, it is enough to know
the Lyapunov exponents. The equilibrium is considered to be an attractor
if it is asymptotically stable in all directions and its LCE spectrum consists
of negative exponents only (stable node and focus). If the equilibrium is
unstable in all directions, it is a repeller (unstable node and focus). If the
LCE spectrum includes both positive and negative exponents, the equilibrium
is of saddle type (simple saddle or a saddle-focus). In addition, the exponents
λi ≥ 0 (λi ≤ 0) determine the dimension of the unstable (stable) manifold.

Stability of Periodic Solutions. Any periodic solution x0(t) of system
(1.6) satisfies the condition

x0(t) = x0(t + T ) , (1.19)

where T is the period of solution. The linearization matrix Â(t) that is calcu-
lated at points of the trajectory corresponding to the periodic solution x0(t)
is also periodic:

Â(t) = Â(t + T ) . (1.20)

In this case the equation for perturbations (1.8) is a linear equation with
periodic coefficients. The stability of periodic solution can be estimated if it
is known how a small perturbation y(t0) evolves in period T . Its evolution
can be represented as follows [8]:

y(t0 + T ) = M̂T y(t0) , (1.21)

where M̂T is the matrix of monodromy. M̂T is independent of time. The
eigenvalues of monodromy matrix, i.e., the roots of the characteristic equation

Det[M̂T − µÊ] = 0, (1.22)
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are called multipliers of periodic solution x0(t) and define its stability. Indeed,
the action of the monodromy operator (1.21) is as follows: The initial pertur-
bation of a periodic solution, considered in projections onto the matrix Â(t0)
eigenvectors, is multiplied by an appropriate multiplier µi in period T . Thus,
a necessary and sufficient requirement for the periodic solution x0(t) to be
stable according to Lyapunov is that its multipliers |µi| ≤ 1, i = 1, 2, . . . , N .
At least one of the multipliers is equal to +1. The multipliers being the
eigenvalues of the monodromy matrix obey the following relations:

N∑

i=1

µi = SpM̂T ,

N∏

i=1

µi = DetM̂T . (1.23)

They are related to the Lyapunov exponents of periodic solution as follows:

λi =
1
T

ln |µi| . (1.24)

One of the LCE spectrum exponents of a limit cycle is always zero and
corresponds to a unit multiplier. The limit cycle is an attractor if all the
other exponents are negative. If the LCE spectrum includes different sign
exponents, the limit cycle is a saddle. The dimension of its unstable manifold
is equal to the number of non-negative exponents in the LCE spectrum, and
the dimension of its stable manifold is equal to the number of exponents for
which λi ≤ 0. If all λi > 0, then the limit cycle is a repeller.

Stability of Quasiperiodic Solutions. Let a particular solution x0(t) of
system (1.6) correspond to quasiperiodic oscillations with k independent fre-
quencies ωj , j = 1, 2, . . . , k. Then the following is valid:

x0(t) = x0
(

ϕ1(t), ϕ2(t), . . . , ϕk(t)
)

= x0
(

ϕ1(t) + 2πm,ϕ2(t) + 2πm, . . . , ϕk(t) + 2πm
)

, (1.25)

where m is an arbitrary integer number and ϕj(t) = ωjt, j = 1, 2, . . . , k. The
stability of the quasiperiodic solution is characterized by the LCE spectrum.
The linearization matrix Â(t) is quasiperiodic, and the Lyapunov exponents
are strictly defined only in the limit as t → ∞. The periodicity of the solution
with respect to each of the arguments ϕj in the case of ergodic quasiperiodic
oscillations results in the LCE spectrum consisting of k zero exponents. If
all other exponents are negative, the toroidal k-dimensional hypersurface (we
shall use the term “k-dimensional torus” for simplicity) on which the quasi-
periodic trajectory being studied lies is an attractor. When all other expo-
nents are positive, the k-dimensional torus is a repeller. The torus is said to
be a saddle1 if the LCE spectrum of quasiperiodic trajectories on the torus
has, besides zero exponents, both positive and negative ones.
1 This situation should be distinguished from the case of chaos on a k-dimensional

torus, which is observed for k ≥ 3.
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Stability of Chaotic Solutions. A chaotic trajectory, whether it belongs
to a chaotic attractor, or a repeller or a saddle, is always unstable at least
in one direction. The LCE spectrum of a chaotic solution always has at least
one positive Lyapunov exponent. The instability of phase trajectories and
the attracting character of the limit set to which they belong do not contra-
dict one another. Phase trajectories starting from close initial points in the
basin of attraction tend to the attractor but they are separated on it. Hence,
chaotic trajectories are unstable according to Lyapunov but stable according
to Poisson.

Such behavior of trajectories is typical for attractors with a complicated
geometrical structure and, therefore, they are called strange attractors. A
strange attractor can be modeled by a limit set arising in the so-called horse-
shoe map (Smale’s map) [9]: a unit square is contracted in one dimension
and stretched in another one but the area in this case is decreased. The strip
obtained in doing so is bent in the form of a horseshoe and folded again in the
initial square as shown in Fig. 1.8. This procedure is repeated many times.
In the limit, a set with non-zero area is formed which is not a collection of a
countable set of points or lines and has a Cantor structure in its cross-section.

Fig. 1.8. Appearance of a strange attractor in Smale’s horseshoe map

Stability of Phase Trajectories in Discrete Time Systems. Let a dis-
crete time system be described by the return map

x(n + 1) = P (x(n),α) , (1.26)

where x ∈ RN is the state vector, n is a discrete time variable, P (x) is
a vector function with components Pj , j = 1, 2, . . . , N , and α ∈ RM is the
system parameter vector. Analyze the stability of an arbitrary solution x0(n).
Introducing a small perturbation y(n) = x(n) − x0(n) and linearizing the
map in the vicinity of solution x0(n), we deduce the linear equation for
perturbation:

y(n + 1) = M̂(n)y(n) , (1.27)

where M̂(n) is the linearization matrix with elements
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mj,k =
∂Pj(x,α)

∂xk

∣
∣
∣
∣
x∈x0(n)

. (1.28)

It follows from (1.27) that the initial perturbation evolves according to the
law

y(n + 1) = M̂(n)M̂(n − 1) . . . M̂(1)y(1) . (1.29)

By analogy with differential systems we introduce into consideration the Lya-
punov exponents of solution x0(n):

λi = lim
n→∞

1
n

ln ‖yi(n)‖ . (1.30)

Taking into account the fact that

M̂(n)yi(n) = µi(n)yi(n) , (1.31)

where µi is the eigenvalue of matrix M̂(n), corresponding to the ith eigen-
vector, from (1.29) and (1.30) we derive

λi = lim
n→∞

1
n

n∑

k=1

ln |µi(k)| . (1.32)

The stability of fixed points and limit cycles of the map is characterized
by multipliers. The sequence of states x0

1,x
0
2, . . . ,x

0
l is called a period-l-cycle

of the map, or simply l-cycle, if the following condition is fulfilled:

x0
1 = P (x0

l ) . (1.33)

If l = 1, i.e.,
x0 = P (x0) , (1.34)

the state x0 is a fixed point or period-1-cycle. The linearization matrix M̂
along periodic solution x0(n) is periodic, i.e., M̂(n+ l) = M̂(n). The pertur-
bation component yi(1) is transformed in the period l as follows:

yi(l + 1) = M̂(l)M̂(l − 1) . . . M̂(1)yi(1) = M̂ly
i(1) . (1.35)

The matrix M̂l does not depend on the initial point and is an analogue
of the monodromy matrix in a differential system. The eigenvalues µl

i of
matrix M̂l are called multipliers of the l-cycle of the map. They characterize
how projections of perturbation vector onto the eigenvectors of linearization
matrix M̂ change in the period l. The multipliers µl

i are connected with the
Lyapunov exponents by the relation

λi = ln
1
l
|µl

i| . (1.36)

The l-cycle of the map is asymptotically stable if its multipliers |µl
i| < 1,

i = 1, 2, . . . , N . Thus, the LCE spectrum involves negative numbers only.
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If the map under study with the phase space dimension (N − 1) is
the Poincaré map in a section of some N -dimensional continuous-time sys-
tem, then it possesses the following property: The matrix M̂l eigenvalues
µl

i, i = 1, 2, . . . , (N − 1), of the l-cycle, complemented by the unit multiplier
µl

N = 1, are strictly equal to the eigenvalues of the monodromy matrix of the
corresponding limit cycle in this continuous-time system. On this basis, the
stability of periodic oscillations in differential systems can be quantitatively
described by the multipliers of a relevant cycle in the Poincaré map.

1.1.4 Bifurcations of Dynamical Systems, Catastrophes

Mathematical modeling of most of practical problems in nonlinear dynamics
is most often accomplished by using differential equations which depend on
a number of parameters. Variation of a system parameter may cause a qual-
itative change of the system phase portrait, called bifurcation [2, 6, 7, 10]. By
the qualitative change of phase portrait we mean its structural rebuilding,
which breaks the topological equivalence. The parameter value at which the
bifurcation takes place is called the bifurcation value or the bifurcation point.
Besides the phase space, a DS is also characterized by its parameter space.
The particular set of parameter values α1, α2, . . . , αM is associated with a
radius-vector α in this space. In a multi-dimensional parameter space of the
system, bifurcation values may correspond to certain sets representing points,
lines, surfaces, etc. Bifurcation is characterized by conditions which impose
certain requirements on system parameters. The number of such conditions
is called the codimension of bifurcation. For example, codimension 1 means
that there is only one bifurcation condition.

Local and nonlocal bifurcations of DS can be distinguished. Local bifurca-
tions are associated with the local neighborhood of a trajectory on a limit set.
They reflect the change of stability of individual trajectories as well as of the
entire limit set or the disappearance of the limit set through merging with
another one. All the above-listed phenomena can be found in the framework
of linear analysis of stability. For example, when one of the Lyapunov expo-
nents of a trajectory on a limit set changes its sign, this testifies to a local
bifurcation of the limit set. Nonlocal bifurcations are related to the behavior
of manifolds of saddle limit sets, particularly, formation of separatrix loops,
homoclinic and heteroclinic curves, and tangency between an attractor and
separatrix curves or surfaces. Such effects cannot be detected by using the
linear approach only. In this situation one must also take into consideration
the nonlinear properties of the system under study.

Bifurcations can happen with any limit sets, but of considerable interest
are bifurcations of attractors, because they cause experimentally observed
regimes to change. Attractor bifurcations are usually classified into internal
(soft) bifurcations and crises (hard) bifurcations [6,11]. Internal bifurcations
result in topological changes in attracting limit sets but do not affect their
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basins of attraction. Attractor crises are accompanied by a qualitative mod-
ification of the basin boundaries.

The concept of robustness (structural stability) of DS is closely related
to bifurcations. DS are called robust or structurally stable if small smooth
perturbations of the evolution operator lead to topologically equivalent solu-
tions. A DS bifurcation can be thought of as a transition of the system from
one structurally stable state to another one through a nonrobust (structurally
unstable) state at the bifurcation point.

The analysis of DS bifurcations when varying system parameters enables
one to construct a bifurcation diagram of the system. The bifurcation diagram
is a set of points, lines and surfaces in parameter space which corresponds to
certain bifurcations of the system limit sets. If several limit sets are realized
in the same parameter range, the bifurcation diagram appears to be multi-
sheeted. The co-existence of a large (even infinite) number of limit sets is
typical for systems with complex dynamics. In this case the bifurcation points
may appear to be dense everywhere in the parameter space. Under such con-
ditions, the construction of a complete bifurcation diagram of the system
becomes impossible and only its separate leaves and parts can be considered.
Besides bifurcation diagrams in parameter space, so-called phase-parametric
diagrams are often used for descriptive representation. Such a diagram is con-
structed by plotting parameter values as abscissas and dynamical variables
or related quantities as ordinates.

Abrupt changes of system state variables, caused by smooth perturbations
of the evolution operator, in particular, by a slight parameter variation, are
called catastrophes. Thus, crises and catastrophes are very close and proba-
bly identical notions. The theory of catastrophes [12,13], which includes the
ideas of Whitney’s theory of singularities [14], was developed by the topologist
Thom [13]. He showed that there is a small number of elementary catastro-
phes whereby the system behavior can be locally described. A significant
contribution to the development of this theory was made by Arnold [6, 15].

Consider the basic local bifurcations of equilibria.

Saddle-Node Codimension One Bifurcation. The codimension one bi-
furcation can be described by using only one control parameter, α. Assume
that for α < α∗ the system has two equilibria, a stable node Q and a saddle
S, shown in Fig. 1.9a. At α = α∗ the node and the saddle merge to form a
nonrobust equilibrium state called a saddle-node (Fig. 1.9b). The latter dis-
appears for α > α∗ (Fig. 1.9c). Since the attractor (node) disappears in the
bifurcation, the basin boundaries have to be qualitatively modified. Conse-
quently, this bifurcation is referred to as a crisis. The simplest model system
describing this bifurcation can be presented by the first-order equation

ẋ = α − x2 . (1.37)

x0
1,2 =±

√
α are the equilibrium coordinates and ρ1,2 =∓2

√
α are the eigen-

values of the linearization operator at relevant points, i.e., x0
1 is a stable



1.1 Dynamical Systems 19

S Q

a b c

Fig.1.9a–c. Qualitative illustration of saddle-node codimension one bifurcation

equilibrium and x0
2 is an unstable equilibrium. At α = 0, x0

1 = x0
2 = 0, and

the eigenvalues at this point are equal to zero. The bifurcation has codimen-
sion one since it is distinguished by only one bifurcation condition ρ(α) = 0.

Codimension Two Bifurcation – a Triple Equilibrium Point. This
bifurcation consists in merging three equilibria, nodes Q1 and Q2, and a
saddle Q0 located between them and in forming a stable node at the point Q0.
This is illustrated in Fig. 1.10. The codimension two bifurcation is described
by two control parameters. The model system for this bifurcation is defined
by

ẋ = α1 + α2x + x3 . (1.38)

The analysis of equilibria shows that for α2 > 0 and for any α1 the system
possesses the unique equilibrium state Q0 with the eigenvalue ρQ0 < 0, i.e.,
the equilibrium is asymptotically stable. For α2 < 0 there exists a parameter
α1 range (the shaded region in the bifurcation diagram shown in Fig. 1.11a)
where the system has three equilibria, Q0, Q1 and Q2. One of them, Q0, is
unstable since ρQ0 > 0, and the other two, Q1 and Q2, are stable as ρQ1,2 ≤ 0.
The bistability region in the bifurcation diagram of Fig. 1.11a is bounded by
curves l1 and l2, which correspond to saddle-node bifurcations of nodes Q1,2

Q QQ0 21 Q0

a b

Fig. 1.10. Illustration of bifurcation “triple equilibrium”. (a) Two stable nodes
and a saddle before the bifurcation, and (b) one stable node after the bifurcation
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Fig. 1.11. Illustration of triple equilibrium bifurcation. (a) Bifurcation diagram
and (b) phase-parametric diagram

with saddle Q0. The curves l1 and l2 converge to the point A (α1 = α2 = 0)
that is of the cusp type. In this point two bifurcation conditions are fulfilled
simultaneously: ρQ1(α1, α2) = 0 and ρQ2(α1, α2) = 0. Hence, this bifurcation
is called the triple equilibrium and has codimension two. The structure shown
in Fig. 1.11b appears in the phase-parametric space of system (1.38). In the
bistability region the upper and the lower leaves correspond to the stable
equilibria and the central one to the unstable equilibrium.

Andronov–Hopf Bifurcation. In DS with the dimension N ≥ 2 the situ-
ation is possible when a pair of complex-conjugate eigenvalues of the equilib-
rium of “stable focus” type intersects the imaginary axis. This implies that
the bifurcation condition Reρ1,2 = 0 is satisfied. Additionally, Imρ1,2 �= 0.
This case corresponds to Andronov–Hopf bifurcation [1,16] or the limit cycle
birth (death) bifurcation. This bifurcation was first explored by A.A. An-
dronov for the case N = 2 and then generalized by E. Hopf to systems with
arbitrary dimension N . There are two different kinds of Andronov–Hopf bi-
furcation, namely, supercritical, or soft bifurcation, and subcritical, or hard
bifurcation. Supercritical bifurcation is internal; subcritical bifurcation is an
attractor crisis. Andronov–Hopf bifurcation is defined by only one bifurcation
condition and has thus codimension one.

Supercritical Andronov–Hopf bifurcation is illustrated in Fig. 1.12a–c and
is as follows. For α < α∗ there exists a stable focus F , which at the bifurcation
point α = α∗ has a pair of pure imaginary eigenvalues ρ1,2 = ±iω0. For
α > α∗ the focus F becomes unstable (Reρ1,2 > 0), and a stable limit cycle
C0 is born in the near vicinity.

Subcritical Andronov–Hopf bifurcation takes place when at α = α∗ the
unstable (in the general case for N > 2, saddle) limit cycle C0 is “striking”
in the focus F , being stable for α < α∗. As a result, the cycle no longer exists,
and the focus becomes unstable (Fig. 1.12d–f).
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Fig. 1.12. (a–c) Supercritical and (d–f) subcritical Andronov–Hopf bifurcation

The model system for Andronov–Hopf bifurcation has the following form:

ȧ = (α + iω0)a + L1a|a|2 , ω0 �= 0, L1 �= 0 , (1.39)

where a is the instantaneous complex amplitude and L1 is called the first
Lyapunov quantity of equilibrium. If L1 < 0, the bifurcation is supercritical.
If L1 > 0, the bifurcation is subcritical.2 For the real instantaneous amplitude
and phase of oscillations, we derive the following from (1.39):

Ȧ = αA + L1A
3, Φ̇ = ω0, (1.40)

where A = |a| and Φ = Arg(a). From the equation for stationary amplitudes
αA + L1A

3 = 0, we obtain amplitude values for the equilibrium (AF = 0)
and for the limit cycle (A0 =

√

−α/L1). The limit cycle exists provided that
−α/L1 > 0. The quantity ω0 defines its period T = 2π/ω0. The analysis
of the linearized equation for amplitude perturbation enables us to find the
eigenvalues for the solutions A = AF and A = A0: ρF,0 = α + 3L1A

2
F,0. If

L1 < 0, the cycle is thus seen to exist and be stable for α > 0, whereas the
focus is stable for α < 0 and unstable for α > 0. When L1 > 0, both the
unstable cycle and the stable focus exist for α < 0, while only the unstable
focus exists for α > 0.

Bifurcations of Limit Cycles. Consider local codimension one bifurca-
tions of nondegenerate limit cycles which have only one multiplier equal to
1. We eliminate the unit multiplier from our consideration and arrange the
2 The character of bifurcation in a particular (degenerate) case L1 = 0 has to be

additionally analyzed with higher powers of a taken into consideration.
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Fig. 1.13a,b. Saddle-node bifurcation of limit cycles

remaining multipliers in decreasing order in absolute value. In this case limit-
cycle bifurcations are related to one or two (complex conjugate) first multi-
pliers of this sequence, µ1,2. Since codimension one bifurcation assumes only
one bifurcation condition and the change of cycle stability is determined by
the equality |µ1| = 1, we have three different kinds of limit-cycle bifurcations
occurring at the bifurcation parameter value α = α∗: µ1 = +1, µ1 = −1,
and µ1,2 = exp (±iϕ). To analyze the limit-cycle bifurcations, it is more con-
venient to use a Poincaré surface of section technique. Fixed points of the
corresponding Poincaré map are characterized by the same multipliers and
the transition to the Poincaré section makes the analysis more instructive [2].

Saddle-Node Bifurcation. Multiplier µ1 of a stable cycle becomes +1
when the parameter α achieves its bifurcation value α = α∗. We illustrate this
bifurcation using three-dimensional phase space, N = 3. For α < α∗ there
exist two cycles, a stable cycle C1 and a saddle cycle C2 (Fig. 1.13a). They
are associated with stable Q1 and unstable Q2 fixed points in the Poincaré
section. The condition µ1 = 1 determines the bifurcation which is similar
to the saddle-node bifurcation of equilibrium, considered above. At the bi-
furcation point α = α∗ cycles C1 and C2 merge forming a nonrobust closed
trajectory C of the saddle-node type (see Fig. 1.13b). Both cycles disappear
for α > α∗. When varying parameter α in the reverse order, a pair of cycles
C1 and C2 is born from the phase trajectory concentration.

Period-Doubling Bifurcation. Multiplier µ1(α∗) becomes −1 at the crit-
ical point α = α∗ provided that dµ/dα|α∗ �= 0. The latter expression is the
bifurcation condition for period-doubling bifurcation. This bifurcation can be
supercritical (internal) or subcritical (crisis). Supercritical bifurcation is as
follows: Let us for α < α∗ have a stable limit cycle C0 with period T0. When
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α > α∗, cycle C0 becomes saddle, and a stable limit cycle C with period T
close to doubled T0 (T ≈ 2T0) is born in the neighborhood of the former cycle
C0. Phase trajectories C0 and C and their Poincaré sections near the bifur-
cation point are plotted in Fig. 1.14a. Figure 1.14b shows how the waveform
of one of the dynamical variables changes at the moment of period doubling.

When subcritical period-doubling bifurcation occurs, the stable cycle C0

and the saddle cycle C with doubled period, existing for α < α∗, merge at
the bifurcation point, whereupon only cycle C0 having become a saddle one
remains in the phase space.

S
C

x

x

x

2

0

1

e

e
2

1

C0

x

t

T0

T

1 2

a ba b

Fig. 1.14. Supercritical period-doubling bifurcation. (a) Cycles C0 and C and
their Poincaré sections and (b) waveforms before (curve 1) and after (curve 2) the
bifurcation

Two-Dimensional Torus Birth (Death) Bifurcation (Neimark Bifur-
cation). This bifurcation is realized when a pair of complex-conjugate multi-
pliers of a limit cycle go out to the unit circle. At the bifurcation point α=α∗,
the following relation takes place: µ1,2(α∗) = exp (±iϕ), where ϕ ∈ [0, 2π],
and ϕ(α∗) �= 0, π, 2π/3 (so-called strong resonances are excluded). This bi-
furcation can also be supercritical (internal) and subcritical (crisis). Different
situations are realized depending on which kind of bifurcation occurs. In the
case of supercritical bifurcation a stable two-dimensional (2-D) torus T 2 is
born from a stable limit cycle C0, the latter becoming unstable thereafter
(in general, it is of the saddle-focus type). Subcritical bifurcation takes place
when an unstable (in general, saddle) torus T 2 is “sticking” into the stable
cycle C0 at the moment of its stability loss. The torus birth from a limit cycle
is pictured in Fig. 1.15a. A small perturbation y of cycle C0 near the bifurca-
tion point α = α∗ is rotated through angle ϕ in one revolution of trajectory
C0. At the same time, its magnitude remains unchanged since |µ1,2(α∗)|=1.
Thus, a representative point in the Poincaré section moves along a circle L
called the invariant circle of the map. The quantity θ(α) = ϕ/2π is called
the winding number on torus T 2 (or on the corresponding invariant circle).
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Fig. 1.15. Torus birth bifurcation from limit cycle C0: (a) the trajectory Γ on the
torus in the neighborhood of unstable cycle C0, (b) ergodic torus, and (c) resonance
on torus

If the winding number θ(α∗) takes an irrational value, any trajectory C on
the torus does not close on itself and the torus born is ergodic (Fig. 1.15b).
If θ(α∗) = p/q, where p and q are any positive integers, the resonance phe-
nomenon of the order p/q is said to take place on the torus. An example of
resonance on a torus is shown in Fig. 1.15c.

Symmetry-Breaking Bifurcation. The bifurcations of limit cycles, de-
scribed by the conditions µ1(α∗) = ±1 and µ1,2(α∗) = exp (±iϕ), may lead
to the situation when a limit cycle loses its symmetry. Such bifurcations are
typical, for example, for systems consisting of two or more identical partial
subsystems. The symmetry property of a limit set is related to the existence of
some invariant manifold U in the system phase space. For instance, examine
the following two coupled identical subsystems:

ẋ = F (x, α) + γg(y,x),
ẏ = F (y, α) + γg(x,y), (1.41)

where x,y ∈ RN are the state vectors of the subsystems and α is the parame-
ter vector. Function g is responsible for the coupling between the subsystems
and g(x,x) = 0. In this case the subspace x = y is referred to as an invari-
ant symmetric manifold. If multipliers of limit cycles in U are connected with
eigenvalues not lying in U and appear to be bifurcational, then the symmet-
ric attractor undergoes a bifurcation leading to the birth of a nonsymmetric
attractor, i.e., one not lying in U . The bifurcation is said to result in the
loss of attractor symmetry. The symmetry-breaking bifurcations determined
by the conditions µ1(α∗) = −1 and µ1,2(α∗) = exp (±iϕ) are very similar to
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Fig. 1.16. Pitchfork bifurcation in a system with symmetry: (a) projection of limit
cycles after the bifurcation and (b) qualitative illustration of the phase-parametric
diagram

the analogous bifurcations in systems without symmetry. Bifurcation defined
by the condition µ1(α∗) = +1 represents a special case. As a result of this
bifurcation, the symmetric cycle C0 ∈ U still exists but becomes a saddle
one. It gives birth to two stable cycles with the same period. They do not
lie in U but are mutually symmetric. Such a bifurcation is known under the
name pitchfork bifurcation. Figure 1.16a shows phase portraits of cycles after
the pitchfork bifurcation. A phase-parametric diagram of this bifurcation is
sketched in Fig. 1.16b, where the ordinate is the difference of appropriate
coordinates (xs

1 − ys
1) in some section of the cycles.

We have considered the local bifurcations of equilibria and of limit cycles.
More complicated sets (tori, chaotic attractors) also undergo different bifur-
cations. However, their studies are more often based on experimental results,
and the theory of bifurcations of quasiperiodic and chaotic attractors remains
to be developed.

Nonlocal Bifurcations. Homoclinic Trajectories and Structures.
Nonlocal bifurcations are associated with the form of stable and unstable
manifolds of saddle limit sets in phase space. They do not cause the saddle
limit sets themselves to topologically change but may significantly affect the
system dynamics. Consider the basic nonlocal bifurcations [2, 10].

The Separatrix Loop of a Saddle Equilibrium State. This bifurcation
can be realized in its simplest form even in a phase plane. Let us have a
saddle equilibrium Q whose stable W s

Q and unstable W u
Q manifolds come

close together with increasing parameter α and touch one another at α = α∗.
At the tangency point a bifurcation takes place, leading to the formation of
a singular double-asymptotic phase trajectory Γ0, called the separatrix loop
of the saddle point (Fig. 1.17a). The fulfillment of this tangency condition
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Fig. 1.17. Bifurcation of separatrix loop formation (a) at the moment of bifurcation
and (b) after the bifurcation

is conformed by the codimension one bifurcational manifold in parameter
space. The separatrix loop in a dissipative system is a nonrobust structure
and collapses at α �= α∗. What will happen thereafter depends on which
way the separatrices proceed after their splitting, i.e., loop breaking, and on
the saddle quantity σQ of equilibrium at the bifurcation point. The saddle
quantity is specified as σQ(α) = ρ1(α)+ρ2(α), where ρ1,2 are the eigenvalues
of the linearization matrix at point Q. If σQ(α∗) < 0, then when the loop is
broken down in direction A as shown in Fig. 1.17a, the only stable cycle C
arises from the loop (Fig. 1.17b). No cycle is born when the loop is destroyed
in direction B. If σQ(α∗) > 0, the loop Γ0 is called unstable, and as Γ0 is
destroyed, an unstable limit cycle can arise from it.

The bifurcation of separatrix loop formation, considered in reverse order,
may be treated as a crisis of limit cycle C when it touches the saddle Q.
At the moment of tangency the loop Γ0 is created. When approaching the
bifurcation point, the cycle period tends to infinity, and the cycle multipliers
approach zero [17].

A more complicated case of nonlocal bifurcation of similar type is pos-
sible in phase space with dimension N ≥ 3. We confine ourselves to
N = 3. Let Q be a saddle-focus with one-dimensional unstable and two-
dimensional stable manifolds and with the so-called first saddle quantity
σ1(α) = Reρ1,2(α) + ρ3(α), where ρ1,2 = Reρ1,2 ± iImρ1,2 and ρ3 are the
eigenvalues of the linearization matrix at point Q. Let a saddle-focus separa-
trix loop Γ0, shown in Fig. 1.18, be formed at α = α∗ and σ1(α∗) �= 0. Under
the assumptions made, the theorem by L.P. Shilnikov [18] is valid and states
the following:

• σ1(α∗) < 0 (the loop is not dangerous). If the loop destruction corresponds
to case A as shown in Fig. 1.18, a stable cycle Γ arises from it. Nothing
happens when the loop is broken down in direction B.

• σ1(α∗) > 0 (the loop is dangerous). A complicated structure of phase
trajectories emerges in the vicinity of loop Γ0 when it exists and then is
destroyed in any direction. This structure consists of a countable set of
periodic attractors, repellers, and saddles as well as of a subset of chaotic
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Fig. 1.18. Saddle-focus separatrix loop and possible ways to destroy it

trajectories, a so-called nontrivial hyperbolic subset. Such a structure is
connected with the presence of a set of Smale’s horseshoe-type maps in the
vicinity of the loop in the Poincaré section.

If the system to be studied has a saddle-focus with one-dimensional stable
and two-dimensional unstable manifolds, Shilnikov’s theorem can be applied
through replacement of t by −t.

The Saddle-Node Separatrix Loop. This bifurcation is also possible for
N = 2. Assume that for α < α∗ there exist two equilibria, namely, a saddle Q1

and a stable node Q2. In addition, a separatrix loop is formed by the closure
of unstable separatrices of the saddle running to the stable node, as shown
in Fig. 1.19a. At the bifurcation point α = α∗, a saddle-node bifurcation of
equilibria occurs, and a nonrobust equilibrium of the saddle-node type arises.
Here, the saddle-node has a double-asymptotic homoclinic trajectory Γ0, i.e.,
the separatrix loop (Fig. 1.19b). When α > α∗, the saddle-node disappears
and a limit cycle C is generated from the loop (Fig. 1.19c).

This bifurcation, when considered in reverse order, is a bifurcation of cycle
C extinction, leading to the creation of a saddle-node on it. The cycle period
grows infinitely as α → α∗, and the cycle multipliers tend to zero.

The bifurcation described above preserves the boundaries of an absorbing
area (basin of attraction) and is thus an internal bifurcation.
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Fig.1.19a–c. Bifurcation of saddle-node separatrix loop formation



28 1. Tutorial

Q Q

Q

Q

Q
Q

Q

Q

(1)

(1)

(1)

−1

0

(2)

0
1

1

2

2

(1)

(2)
(2)

QW QW
SU

Fig. 1.20. Homoclinic intersection of saddle cycle trajectories (graphical represen-
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Homoclinic Trajectory Appearance of a Saddle Limit Cycle. This
bifurcation is realized when N ≥ 3. In this case there may exist saddle limit
cycles with two-dimensional stable W s and two-dimensional unstable W u

manifolds. Such a cycle corresponds to a saddle fixed point in a secant plane.
This fixed point has one-dimensional stable and unstable manifolds. With
increasing parameter α the manifolds of the cycle approach each other and
touch at α = α∗. This bifurcation being of codimension one results in the
emergence of a nonrobust double-asymptotic curve Γ0, called the Poincaré
homoclinic curve. When α > α∗, the manifolds W s and W u intersect, and
two robust homoclinic curves Γ 0

1 and Γ 0
2 are created. In the secant plane

each homoclinic curve corresponds to an infinite double-asymptotic sequence
of intersection points of separatrices Qn, n = 0,±1,±2, . . . (Fig. 1.20). The
points Qn become denser when approaching the saddle, but they tend to it
only in the limit as n → ±∞.

In [19, 20] it has been shown that a complicated set of trajectories is
generated in the vicinity of a homoclinic curve of a saddle cycle. This set
is called a homoclinic structure which is similar to the structure arising in
the neighborhood of a dangerous saddle-focus separatrix loop and is also
connected with the formation of local horseshoe-type maps in the vicinity of
the loop. Stable, unstable and saddle periodic orbits are dense everywhere in
the vicinity of the homoclinic trajectory. Besides, the homoclinic structure
includes a subset of chaotic trajectories, which, under appropriate conditions,
may become attracting.

A similar structure is characteristic for the neighborhood of a heteroclinic
trajectory which emerges when the unstable manifold of one saddle cycle
touches and then intersects the stable manifold of another saddle cycle.
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1.1.5 Attractors of Dynamical Systems. Deterministic Chaos

It is known that in a dissipative system the phase space volume is contracted
by the time evolution. Because of this, the final limit set of the system always
has zero volume. In addition, the limit set can be a point, or a line, or a surface
or a set of surfaces, which has a Cantor structure in its Poincaré section.

The image of dynamical chaos was associated with a strange attractor for
a long time [21]. More recently, there came the understanding that chaotic
self-sustained oscillations may be substantially different in their properties.
This fact leads to differences in the structures of the corresponding attrac-
tors. It has become clear that a strange attractor is the image of some “ideal”
chaos satisfying a number of rigorous mathematical requirements. The regime
of the strange attractor in the strict sense of mathematical definition cannot
be realized in real systems. What we observe in experiments is more often
the regimes of so-called quasihyperbolic or nonhyperbolic attractors [10, 22].
A distinctive feature of strange, quasihyperbolic and nonhyperbolic chaotic
attractors is exponential instability of phase trajectories and a fractal (nonin-
teger) dimension. The exponential instability serves as a criterium of chaotic
behavior of the system in time. The fractal metric dimension shows that the
attractor is a complex geometric object.

The time evolution of the state of a system with a finite number of degrees
of freedom is described by either a system of ordinary differential equations

dxi

dt
= ẋi = fi(x1, . . . , xN , α1, . . . , αk) (1.42)

or discrete maps

xi
n+1 = fi(x1

n, x2
n, . . . , xN

n , α1, . . . , αk),

i = 1, 2, . . . , N.

Here xi(t) (or xi
n) are variables uniquely describing the system state (its

phase coordinates) and αl are system parameters, fi(x,α) are, in general,
nonlinear functions.

In what follows, we shall consider only self-oscillatory regimes of the sys-
tem (1.42) motion. The latter means that the system demonstrates some
steady-state oscillations whose characteristics do not depend, to a certain
extent, on the choice of initial state. We shall also consider the regime of a
stable equilibrium state as a limiting case of the self-oscillatory regime.

Examine the phase space RN of system (1.42). All values of the system
parameters αl are fixed. Let G1 be some finite (or infinite) region belonging
to RN and including a subregion G0. The regions G1 and G0 satisfy the
following conditions [6, 23–25]:

• For any initial conditions xi(0) (or xi
0) from the region G1 all phase tra-

jectories reach as t → ∞ (or n → ∞) the region G0.
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• The region G0 is a minimal compact subset in the system phase space.
• If a phase trajectory belongs to the region G0 at the time moment t =

t1 (n = n1), it will always belong to G0, i.e., for any t ≥ t1 (n > n1).

If these conditions are satisfied, the region G0 is called an attractor of a
DS (1.42). G1 is called the region (or basin) of attraction of the attractor G0.

Regular Attractors. Before deterministic chaos was discovered only three
types of stable steady-state solutions of (1.42) were known: an equilibrium
state, when after a transient process the system reaches a stationary (non-
changing in time) state; a stable periodic solution; and a stable quasiperiodic
solution. The corresponding attractors are a point in the phase space, a limit
cycle, and a limit n-dimensional torus. The LCE spectrum of a phase trajec-
tory includes zero and negative exponents only.

Non-periodic solutions of (1.42) correspond to strange chaotic attractors
of a complex geometric structure. They have at least one positive Lyapunov
exponent and, as a consequence, a fractal dimension that can be estimated
by using Kaplan–Yorke’s definition [26]:

D = j +
∑j

i=1 λi

|λj+1|
, (1.43)

where j is the largest integer number for which λ1 + λ2 + · · · + λj ≥ 0. The
dimension D calculated from (1.43) is one of the fractal dimensions of the
set and is called the Lyapunov dimension. In the general case, it is a lower
bound for the metric dimension of the attractor [27]. Applying (1.43) to the
three types of the above-listed attractors, we have D = 0 for a point-like
attractor, D = 1 for a limit cycle, and D = n for an n-dimensional torus.
In all cases the fractal dimension is equal to the metric dimension of the
attractors. The aforementioned solutions are asymptotically stable, and the
dimension D is defined by an integer number and strictly coincides with the
metric dimension. All these facts allow us to say that these attractors are
regular. If one of the stated conditions is violated, the attractor is excluded
from the group of regular attractors.

In 1971 Ruelle and Takens rigorously proved the existence of nonperiodic
solutions of (1.42). They also introduced the notion of the strange attractor
as the image of deterministic chaos [21]. Since that time, very often the
phenomenon of deterministic chaos and the concept of the strange attractor
are related to each other. However, under close examination this is not always
correct and needs some explanation.

Robust Hyperbolic Attractors. A proof of the strange attractor exis-
tence was given under the strong assumption that the DS (1.42) was robust
hyperbolic [10,21]. The system is hyperbolic if all of its phase trajectories are
saddle ones. A point as the image of a trajectory in the Poincaré section is
always a saddle. Robustness means that when the right-hand side of (1.42)
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is slightly perturbed or the control parameters are slightly varied, all the
trajectories remain as saddle ones.

Hyperbolic attractors must satisfy the following conditions [24]:

• A hyperbolic attractor consists of a continuum of “unstable leaves”, or
curves, which are dense in the attractor and along which close trajectories
exponentially diverge.

• A hyperbolic attractor (in the neighborhood of each point) has the same
geometry defined as a product of the Cantor set on an interval.

• A hyperbolic attractor has a neighborhood foliated into “stable leaves”
along which the close trajectories converge to the attractor.

Robustness means that these properties hold under perturbations.
Due to the presence of the attractor, unstable manifolds W u of saddle

trajectories appear to be concentrated in the region G0 and may intersect
with stable manifolds W s along which the trajectories approach the attrac-
tor. This leads to the appearance of homoclinic points (surfaces) and the
formation of homoclinic structures which must be robust in robust hyper-
bolic systems. From the topological viewpoint, the intersection structure of
W s and W u must correspond to Fig. 1.21a and should not change qualita-
tively under perturbations. The cases shown in Fig. 1.21b and Fig. 1.21c are
excluded because they characterize two nonrobust phenomena, namely, the
closure of the manifolds with the loop formation (Fig. 1.21b) and the phe-
nomenon of tangency of the stable and the unstable manifolds (Fig. 1.21c).
If the nonlocal properties of manifolds lead to the nonrobust situations pic-
tured in Fig. 1.21b and Fig. 1.21c when the DS is perturbed, bifurcations
of system solutions are possible [10]. However, no bifurcations must occur in
robust hyperbolic systems.

Strange (according to Ruelle–Takens) attractors are always robust hyper-
bolic limit sets. The main feature in which strange chaotic attractors differ
from regular ones is exponential instability of the phase trajectory on the
attractor. In this case the LCE spectrum includes at least one positive expo-
nent. The fractal dimension of an attractor is always more than two and, in
general, is not defined by an integer. A minimal dimension of the phase space
in which a strange attractor can be “embedded” appears to be equal to 3.

In mathematics at least two examples of robust hyperbolic attractors are
known. These are the Smale–Williams attractor [28] and the Plykin attractor
[29]. Unfortunately, up to now the regime of rigorously hyperbolic robust
chaos has not been found in real systems. “Truly” strange attractors are an
ideal but still unattainable model of deterministic chaos.
Quasihyperbolic Attractors – Lorenz-Type Attractors. The hyper-
bolicity conditions stated above are not fulfilled for real DS. Nevertheless,
there are DS whose attractors are very close in their structure and proper-
ties to hyperbolic ones. Such attractors are chaotic, do not enclose stable
regular attractors and preserve these properties under perturbations. Theo-
retically, quasihyperbolic attractors are not structurally stable. At least one
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Fig.1.21a–c. Possible cases of intersection of stable and unstable separatrices of
saddle point Qi in the Poincaré section

of the three hyperbolicity conditions is violated for these attractors. However,
changes in their structures are so minor that they may not be reflected in
experimentally observed characteristics.

Following the definition given in [24] we shall call almost hyperbolic at-
tractors quasihyperbolic. There are quasihyperbolic Lozi, Belykh and Lorenz-
type attractors.

Nonhyperbolic Attractors. These attractors are the most typical in ex-
periments and illustrate experimentally observed chaos [10]. Systems with
nonhyperbolic attractors exhibit regimes of deterministic chaos, which are
characterized by exponential instability of phase trajectories and a fractal
structure of the attractor. From this point of view, characteristics of nonhy-
perbolic attractors are very similar to those of robust hyperbolic and quasihy-
perbolic attractors. However, there is a very essential difference. A distinctive
feature of nonhyperbolic attractors is the coexistence of a countable set of
different chaotic and regular attracting subsets in a bounded element of the
system phase space volume for fixed system parameters. This collection of
all coexisting limit subsets of trajectories in the bounded region G0 of phase
space, which all or almost all the trajectories from the region G1 including
G0 approach, is called a nonhyperbolic attractor of the DS. Hence, nonhy-
perbolic attractors have a very complicated structure of embedded basins of
attraction. But the complexity is greater than this fact. When system para-
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meters are varied in some finite range, both regular and chaotic attractors
demonstrate the cascades of different bifurcations.

DS with nonhyperbolic attractors are structurally unstable. The funda-
mental reason for their existence is the presence of structurally unstable ho-
moclinic trajectories, shown in Fig. 1.21b and Fig. 1.21c. For this situation
we have rigorous results proved by Newhouse [20]:

Theorem 1 (Newhouse). In any neighborhood of a Cr-smooth (r ≥ 2) two-
dimensional diffeomorphism having a saddle fixed point with a structurally
unstable homoclinic trajectory, there exist regions where systems with struc-
turally unstable homoclinic trajectories are dense everywhere.

These regions are called Newhouse regions. When a control parameter of a
structurally unstable DS is varied, a countable set of Newhouse intervals is
registered.

Theorem 2 (Newhouse). Given a sufficiently small control parameter |α0| >
0, the interval (−α0, α0) contains a countable set of Newhouse intervals.

α0 = 0 corresponds to the case of homoclinic tangency.
These results are especially important for solving many problems of non-

linear dynamics. Note that the Newhouse results are generalized for the multi-
dimensional case in [30].

One of the methods to experimentally detect a nonhyperbolic attractor
is to calculate angles between the stable and the unstable manifolds along
a chaotic trajectory [31]. If the angles are different from zero, the attractor
is hyperbolic or quasihyperbolic. Zero angles appear if there is a homoclinic
tangency between the manifolds along the trajectory. In this case the DS is
structurally unstable and the regime being observed is characterized by a
nonhyperbolic attractor.

Consider the well-known Henon map [32]

xn+1 = 1 − ax2
n + yn , yn+1 = bxn . (1.44)

This map is dissipative for 0 < b < 1 and possesses a nonhyperbolic attractor
[33].

When following the evolution of angle ϕ between the manifolds along a
chaotic trajectory of diffeomorphism (1.44), one can calculate the angle prob-
ability distribution P (ϕ). The numerical results are presented in Fig. 1.22a
and testify that the probability of close to zero angles is reliably larger than
zero, i.e., there is a tangency between the manifolds.

The occurrence of homoclinic tangency in the Henon map is caused by
the presence of quadratic nonlinearity ax2

n. Replacing this term in (1.44) by
|xn|, we derive the Lozi diffeomorphism [34]:

xn+1 = 1 − a|xn| + yn , yn+1 = bxn . (1.45)
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Fig. 1.22. Angle probability distribution between the directions of stable and
unstable manifolds of a chaotic trajectory (a) on the Henon attractor for a = 1.179
and b = 0.3 and (b) on the Lozi attractor for a = 1.7 and b = 0.3

The results of angle calculation for the Lozi attractor are shown in Fig. 1.22b
and clearly indicate the absence of tangency. Thus, the Lozi attractor is
quasihyperbolic.

When control parameters are varied, a transition from one type of attrac-
tor to another can be observed. Under this transition a robust hyperbolic
(or quasihyperbolic) attractor may be transformed into a nonhyperbolic one.
This situation can be readily illustrated in the classical Lorenz model.

Strange Nonchaotic and Chaotic Nonstrange Attractors. Chaotic at-
tractors of the three types described above have two fundamental properties:
complex geometric structure and exponential instability of individual trajec-
tories. It is these properties that are used by researchers as a criterium for
diagnostics of the regimes of deterministic chaos.

However, it has been clarified that chaotic behavior in the sense of inter-
mixing and geometric “strangeness” of an attractor may not correspond to
each other. Strange attractors in terms of their geometry can be nonchaotic
due to the absence of exponential divergence of phase trajectories. On the
other hand, there are examples of intermixing dissipative systems whose at-
tractors are not strange in a strict sense, that is, they are not characterized
by the fractal structure and the fractal metric dimension [22,37].

In other words, there are examples of concrete dissipative DS whose at-
tractors are characterized by the following properties:

• An attractor possesses a regular geometric structure from the viewpoint of
integer metric dimension, but individual phase trajectories on the attractor
are exponentially unstable on average.

• An attractor has a complicated geometric structure, but trajectories on it
are asymptotically stable. There is no intermixing.

The first type is called a chaotic nonstrange attractor (CNA). The second
one is referred to as a strange nonchaotic attractor (SNA).
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Consider the modified Arnold’s map [27] as an example of a DS with CNA.
This map is the well-known Arnold’s cat map with a nonlinear periodic term
added to the first equation:

xn+1 = xn + yn + δ cos 2πyn, mod 1,

yn+1 = xn + 2yn, mod 1. (1.46)

When δ < 1/2π, map (1.46) is a diffeomorphism on a torus and maps a
unit square in the (xn, yn) plane to itself. The map is dissipative, and this
property can be easily proved by calculating the Jacobian

J =
∣
∣
∣
∣

1 1 − 2πδ sin 2πyn

1 2

∣
∣
∣
∣
�= 0, δ <

1
2π

. (1.47)

The time-average value |J | < 1, and the LCE spectrum signature is “+” and
“–”, which suggests the presence of intermixing.

In spite of phase volume contraction, the motion of a representative point
of the map is ergodic. As n → ∞, the point visits any element of the unit
square. The metric dimension of the attractor (the capacity according to
Kolmogorov) is equal to 2. Although the points of the map are not uniformly
distributed in the unit square, their density is nowhere equal to zero. Thus, in
spite of the contraction, the attractor of map (1.46) is the whole unit square.
In this sense Arnold’s attractor is not strange, as its geometry is not fractal.

As seen from the phase portrait of Arnold’s attractor, shown in Fig. 1.23,
although the points cover the square practically entirely, their distribution
density is explicitly inhomogeneous. To quantify such inhomogeneity, the in-
formation dimension is often used, 1 < DI < 2. For example, for δ = 0.05
DI � 1.96, and for δ = 0.10, DI � 1.84. In addition, as we have said, the
capacity DC = 2.0 (this is a rigorous result of Y. Sinai). As a consequence
of inhomogeneity of the probability distribution density of the points on the

Fig. 1.23. Chaotic nonstrange attractor in Arnold’s cat map (1.46) for δ = 0.15
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Fig. 1.24. Strange nonchaotic attractor in the map (1.48) for λ = 1.5

attractor, the values of all probability-metric dimensions of Arnold’s attrac-
tor will lie in the interval 1 ≤ D ≤ 2. These dimensions take into account not
only geometric but also dynamical properties of the attractor.

Consider the possibility of realizing the opposite situation, when the sys-
tem demonstrates a complicated nonperiodic oscillatory regime, which is as-
ymptotically stable (without intermixing), but the attractor is not regular
from the viewpoint of its geometric structure. SNAs are typical for quasiperi-
odically driven DS.

SNAs were first found and studied in the following map [37]:

xn+1 = 2λ tanh(xn) cos 2πϕn,

ϕn+1 = ω + ϕn, mod 1. (1.48)

ω is often set to be the inverse of the so-called golden mean: ω = 0.5(
√

5−1).
It was analytically shown in [37] that an SNA in system (1.48) exists for
λ > 1 (Fig. 1.24). SNAs have also been observed in other DS, including the
quasiperiodically forced circle map, logistic map, Henon map, etc. [38, 39].

1.1.6 Summary

In the present section we have considered some of the elements of dynamical
system theory which are highly important for understanding the bifurcation
mechanisms of appearance, structure and properties of chaotic attractors.
The occurrence of chaotic attractors in the system phase space is always
preceded by soft and hard bifurcations of regular regimes. It is important
to determine which kind of chaotic attractor is realized in the system. A
deep understanding of bifurcation phenomena in the system becomes more
significant if the effect of different fluctuations is taken into account. It is
particularly known that noise is inevitably present in dissipative systems. The
dynamics of such systems can be more adequately described by treating them
as stochastic. Consequently, some questions arise. For example: Will noise
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significantly affect the properties of a system? What is meant by bifurcation
of a stochastic system? How does the structure of a chaotic attractor change
in the presence of noise? Sometimes the noise influence does not change the
fundamental dynamical properties of the system. However, there are cases
when noise fluctuations are responsible for the appearance of principally new
regimes of system functioning (noise-induced transitions).

1.2 Fluctuations in Dynamical Systems

1.2.1 Introduction

A purely deterministic description of DS remains incomplete, as noise in-
evitably is present in any real dissipative system [40–42]. Therefore, variables
of DS in the presence of noise should be considered as stochastic processes
which depend in their realization on the particular choice of random numbers
or otherwise require a probabilistic approach.

The reason for the inclusion of stochastic sources is manifold. On the one
hand, the variables of a DS describe properties of a many-particle system.
These variables on a macroscopic scale are permanently subject to thermal
fluctuations. Also the always finite number of particles included in a DS as
well as the quantum character of the micro-particles lead to noise in the
system. This type of noise is usually called internal, being inherently present
in the system [43].

On the other hand, as a DS describes a real process at a certain level
only, one usually distinguishes between the system and its environment. In
this case, the interaction of a low-dimensional system with the environment
is described as external noise affecting the system [44].

Nowadays the inclusion of random sources into the description of DS is
well accepted in equilibrated systems within statistical physics. It leads to the
consideration of fluctuations of variables as deviations from their means and
to the occurrence of dissipative forces counteracting these deviations. Their
common appearance is formulated in fluctuation–dissipation relations of a
different kind, connecting characteristic time scales of the dissipative and
fluctuating forces [45]. However, besides the enormous effort and the suc-
cess of statistical physics at meso- and macroscopic scales, the microscopic
foundation of fluctuation forces is still based on an a priori introduction of
probabilistic concepts into the description [46]. In particular, it is necessary to
introduce such concepts during a coarse graining of the description, during a
decorrelation of modes and events and during the performance of the thermo-
dynamic limit, all involving a loss of precise information and its replacement
by probabilistic assumptions [47–51].

Recently many studies have been devoted to stochastic nonequilibrium
systems. Steady nonequilibrium states always appear due to the action of
external constraints which might be fluctuating. These forces and flows hinder
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the dissipative fluctuating system from approaching the equilibrium. But due
to the large diversity of possible situations, at present there is a lack of a
general theory even at the meso- and macroscopic levels. Nevertheless, many
possibly different nonequilibrium situations have much in common in their
strong interaction with the environment. The majority of studies consider
minimal models where the external perturbations act as independent forces.
Such a situation implies that the behavior of a fluctuating nonequilibrium
DS is controlled by such additional parameters as the intensity or correlation
times of external perturbations. Variations in the parameters of the external
perturbations may strongly affect the response of the DS. The latter has
found its expression in a large number of studies on noise–induced behavior
in nonequilibrium DS [44,52–62].

In this section we formulate only the basic concepts of stochastic DS. We
emphasize that this chapter is addressed to readers interested in applications
of stochastic processes in DS. Most of the mathematical elucidation can be
properly presented within the theory of distributions and measures going
beyond the scope of this book. The reader interested in questions of a rigorous
treatment of stochastic processes is referred to the already large body of
mathematical literature [63–70].

1.2.2 Basic Concepts of Stochastic Dynamics

A phase trajectory of deterministic DS is uniquely defined by the initial
condition. In stochastic dynamics the state x(t) of the system is not uniquely
mapped in time. The mathematical formulation can be given by stochastic
differential equations explicitly including the random sources

ẋξ = f (xξ, ξ(t)). (1.49)

Here ξ(t) is a temporal sequence of subsequent random numbers generated
due to some rule. It makes the time mapping dependent on the generated
number; xξ(t) → xξ(t+dt) depends on choice, and, hence, xξ(t) is a stochastic
process.

Due to the existence of these random forces ξ(t) perturbing the system,
different measurements of phase trajectories starting from the same initial
condition will give different realizations of xξ(t). Therefore, as in statistical
physics, we have to consider an ensemble of N different phase trajectories,
instead of a single one. This ensemble is determined in its turn by an ensemble
of realizations of random sources perturbing the system ξN (t). The statistical
ensemble of N → ∞ realizations defines a stochastic process.

The alternative definition of a stochastic process x(t) can be made in terms
of probability distributions or probability densities. In this case we measure
realizations of the process x1, x2, . . . , xn at times t1, t2, . . . , tn and give the
joint probability density p(x1, t1;x2, t2; . . . ;xn, tn) for their occurrence.
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In the theory of DS this description is based on deterministic equations for
the dynamics of probability distributions P (xξ(t) < x) or its densities p(x, t).
For problems with continuous time the densities obey evolution operators,

∂

∂t
p = L p , (1.50)

being linear with respect to the densities. The operators L contain the infor-
mation of the dynamics and might include an integration over the past. Later
on, we concentrate on the subclass of DS where the operator is memoryless
but can depend on time (Markovian processes).

These two definitions of stochastic processes, in terms of a statistical
ensemble and of a set of joint probability densities, determine two alternative
approaches to the analysis of stochastic DS.

Both kinds of description [(1.49) or (1.50)] can be derived as approximate
descriptions of many-particle systems within statistical mechanics. Well es-
tablished examples in textbooks are Brownian particles in solutions [71, 72]
and the dynamics of lasers [73–76].

Probability Distributions and Densities. The probability distribution
counts the number of realizations xξ at time t smaller than a fixed x:

Px(xξ(t) < x) = lim
N→∞

1
N

N∑

i=1

θ(x − xξi
(t)) =

〈

θ(x − xξ(t) )
〉

. (1.51)

The
〈

·
〉

assigns the mean over N → ∞ different realizations of ξ(t), and θ
stands for the Heavyside function. As a parametric function of x the distri-
bution (1.51) varies between 0 and 1. The probability density of the process
p(x, t) is determined by the amount of realizations in the interval [x, x + dx)
at time t: px(x, t) dx = Px(x ≤ xξ(t) < x + dx). It can be obtained taking
the derivative of (1.51) with respect to x, i.e.,

px(x, t) =
d
dx

Px(xξ(t) < x) =
〈

δ(x − xξ(t) )
〉

, (1.52)

where δ(·) is Dirac’s delta-function.
Several properties of the probability density can be easily listed. Normal-

ization is given as
∫

X
px(x, t) dx = 1, and X is the set of possible values of x.

If y = f(x) one can present it as y =
∫

f(x′)δ(x− x′) dx′ and average results
as
〈

f(x)
〉

=
〈

y(t)
〉

=
∫

f(x′)px(x′, t) dx′, which gives the mean of functions
f of x.

The density of y is

py(y, t) =
〈

δ( y− yξ(t))
〉

=
〈

δ( y− f(xξ(t)) )
〉

=
∫

X

δ( y− f(x))px(x, t) dx.

(1.53)
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If the inverse of y exists, i.e., x = f−1(y) = g(y) (otherwise one may proceed
piecewise), then the δ-function can be integrated, yielding

py(y, t) = px(x, t)
1

∣
∣
∣
df(x)

dx

∣
∣
∣

; (1.54)

x = g(y) must be inserted on the right-hand side everywhere. A generalization
to stochastic dynamics with higher dimensions of x is straightforward. In the
last equation (1.54) the derivative should be replaced by the Jacobian of the
corresponding variable transformation.

Joint and Conditional Probability. If ti is an arbitrary number of sub-
sequent times such that i = 1, 2, . . . , n, i.e., t0 < t1 < t2 < . . . < tn, then the
complete information on the dynamics of the stochastic process x(t) is given
by the infinite sequence of n-time joint probability densities:

pn (x1, t1; . . . ;xn, tn) =
〈

δ
(

x1 − xξ(t1)
)

. . . δ
(

xn − xξ(tn)
) 〉

. (1.55)

Another useful function is the conditional probability density:

pn(xn, tn|x1, t1; . . . ;xn−1, tn−1) =
〈

δ
(

xn−xξ(tn)
)〉

xξ(t1)=x1;...;xξ(tn−1)=xn−1
,

(1.56)
defining the density of the stochastic processes xξ at time tn with known
history by holding xξ fixed at former times ti, i = 1, . . . , n−1. It immediately
yields the relation

pn (x1, t1; . . . ;xn, tn) (1.57)
= pn(xn, tn|x1, t1; . . . ;xn−1, tn−1) pn−1 (x1, t1; . . . ;xn−1, tn−1).

Markovian Processes. It is indeed impossible to calculate a complete set of
n-time joint probability densities. Fortunately, we can extract a special class
of stochastic processes which allows a simplified description. These are the
Markovian processes, for which only the present state determines the future.
A process is called Markovian if the conditional probability density reduces
to the transition probability between two subsequent times independent of
the states at previous times, i.e.,

pn(xn, tn|x1, t1; . . . ;xn−1, tn−1) = p2(xn, tn|xn−1, tn−1). (1.58)

For Markovian processes the transition probability density is the central
value, since it holds that

pn (x1, t1; . . . ;xn, tn) = p2(xn, tn|xn−1, tn−1) . . . p2(x2, t2|x1, t1)p(x1, t1),
(1.59)

with p(x1, t1) given by (1.52). Full information is given by knowledge of the
transition probability density and the probability density at the initial time.
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An important relation between the transition probabilities can be formu-
lated for Markovian processes. Summing all possible densities at time t2 by
integrating as

p2(x1, t1;x3, t3) =
∫

X

dx2 p3(x1, t1;x2, t2;x3, t3) (1.60)

and expanding the two joint probability densities at both sides according to
(1.59) yields

p2(x3, t3|x1, t1) =
∫

X

dx2 p2(x3, t3|x2, t2) p2(x2, t2|x1, t1), (1.61)

which is the Chapman–Kolmogorov equation and the basic evolutionary
equation for Markovian processes. Equation (1.61) can be treated in sev-
eral small time limits, which will be shown for the class of diffusion processes
in Sect. 1.2.4.

A special form of (1.61) distinguishes between transitions out of the given
state and the probability to stay in the state [43]. Let us formally introduce
rates of jumps between different states, ∆x �= 0, by

W (x → x + ∆x, t) = lim
dt→0

1
dt

p2(x + ∆x, t + dt|x, t). (1.62)

The full transition probability may be replaced for short times by

p2(x, t + dt|x + ∆x, t) =
(

1 − dt

∫

dx′ W (x + ∆x → x′, t)
)

δ(∆x)

+W (x + ∆x → x, t) dt + O(dt2), (1.63)

with the first term being the probability remaining in state x with ∆x = 0.
Insertion into the integral of (1.61) by appropriate assignments gives for the
limit dt → 0

∂

∂t
p2(x, t|x1, t1) (1.64)

=
∫

dx′(W (x′ → x, t) p2(x′, t|x1, t1) − W (x → x′, t) p2(x, t|x1, t1)
)

.

This equation is called the master equation, or Pauli equation in the case of
discrete events. It expresses the temporal change of probability at x through
the balance of out- and inflowing probability. The rates (1.62) require further
definition from the physical model under consideration.

Stationarity. A stochastic process is called strictly stationary if the joint
probability density depends on the difference between two subsequent times.
A change of ti → ti + τ for all i does not affect the probability density. One
may also state that the process is independent on the initial time t0.
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As conclusion one gets immediately for the transition probability density

p2(x2, t + τ |x1, t) = p2(x2, τ |x1). (1.65)

It depends on the time difference and is, therefore, time homogeneous.
A minimal but important measure, characterizing stationarity of a process,

is its final stationary probability density. If ergodic, the process loses its de-
pendence on the initial state x0. The transition probability density in the
limit τ → ∞ approaches the stationary probability density

ps(x) = lim
τ→∞

p2(x, τ |x0). (1.66)

We would like to recall stationarity in the wide sense. It requires that
the first moment

〈

xξ

〉

(t) is time independent and the autocorrelation func-
tion depends on the time difference only. The requirements are generally less
restrictive, except that the second moment is finite in the wide sense case.

Asymptotically periodic stochastic processes possess asymptotic probabil-
ity densities which vary periodically in time: p(x, t − t0) = p(x, t + T − t0).
Hence, these processes are invariant with respect to time shifts over one pe-
riod. The usual case describes periodically driven stochastic systems. This
type of processes can be coarse grained into stationary ones. In case of har-
monic temporal forces, an integration over the initial phase ϕ0 = 2πt0/T
of the driving force assumes randomly equidistributed initial phases. Also
averaging over one period T removes the explicit time dependence.

Moments of Stochastic Processes. Several stochastic processes can be
defined by their time-dependent moments. The number of moments which is
sufficient to define the stochastic process gives the number of independent
parameters of the process. It is well known, for instance, that the Gaussian
processes can be characterized through the first and second moment only,
while all higher cumulants vanish. For exponential or Poissonian processes
all higher moments are expressed by the first moment. Reduction of the
description to the first two moments is known as the correlation theory of
stochastic processes [77].

The conditional first moment of the transition probability density is given
by

〈

xξ(t)
〉

xξ(t0)=x0
=
∫

dx x p2(x, t|x0, t0). (1.67)

In the asymptotic limit t0 → −∞, it loses its dependence on the initial time,
〈

xξ(t)
〉

asy
= lim

t0→−∞

〈

xξ(t)
〉

xξ(t0)=x0
, (1.68)

if the transition probability density converges in this limit as
p2(x, t|x0, t0) → p(x, t). For stationary processes this limit is independent
of time, and, therefore, without loss of generality, we can assume

〈

x
〉

asy
= 0.
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An important characterization is given by the second moment defined at
two different times. Again, conditioned with an initial state, xξ(t0) = x0, it
reads

〈

xξ(t)xξ(t+τ)
〉

xξ(t0)=x0
=
∫

dx1 dx2 x1 x2 p2(x2, t+τ |x1, t) p2(x1, t|x0, t0).

(1.69)
It is known as the autocorrelation function of the stochastic process x. It may
be expressed through the conditional first moment as

∫

dx2

〈

xξ(t + τ)
〉

xξ(t)=x1
x1 p2(x1, t|x0, t0). (1.70)

If t0 → −∞ the autocorrelation function approaches its asymptotic limit:

〈

xξ(t)xξ(t + τ)
〉

asy
=
∫

dx1dx2 x1 x2p2(x1, t, x2, t + τ). (1.71)

With τ = 0 it equals the second moments
〈

x2(t)
〉

. On the other hand, if τ
becomes infinitely large (1.71) factorizes in many cases into

〈

xξ(t)xξ(t + τ)
〉

asy
=
〈

xξ(t + τ)
〉

asy

〈

xξ(t)
〉

asy
. (1.72)

For stationary processes the asymptotic values do not depend explicitly
on time, and the stationary autocorrelation function remains a function of
the time difference τ only:

cx,x(τ) =
∫

dx1 dx2 x1 x2 p2(x1, τ |x2) p(x2). (1.73)

The stationary process is invariant to a shift in time t → t− τ , and it follows
that cx,x is an even function in time, cx,x(τ) = cx,x(−τ).

The autocorrelation function gives an important measure of the stochastic
process, the correlation time τc. It may be defined in several ways, but most
often it is defined as

τc =
1

cx,x(0)

∫ ∞

0

dt |cx,x(t)| . (1.74)

A generalization of correlation functions to multi-dimensional stochastic
processes is straightforward. For simplicity, consider the two-dimensional
stochastic process {x(t), y(t)}. Cross-correlations can be similarly introduced
on the basis of the joint probability density px,y(x, t; y, t + τ). For the sta-
tionary processes it immediately gives cx,y(τ) = cy,x(−τ). The absolute value
of the correlation function obeys |cx,y(τ)|2 ≤

〈

x2
〉〈

y2
〉

, which is known as
Cauchy–Schwartz inequality. Particularly, it yields for the autocorrelation
function |cx,x| ≤

〈

x2
〉

.
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Fourier Transform of Correlation Functions. An important measure is
the two-sided Fourier transform of the correlation function:

Gx,x(ω) =
∫ ∞

−∞
dτ cx,x(τ) e−iωτ = 2

∫ ∞

0

dτ cx,x(τ) cos(ωτ), (1.75)

with Gx,x ≥ 0. For multi-dimensional stochastic processes we can introduce
the Fourier transform of the cross-correlation function:

Gx,y(ω) =
∫ ∞

−∞
dτ cx,y(τ) e−iωτ . (1.76)

Both expressions exist if the correlation functions are absolutely integrable
with corresponding inverse transformations. From these the following useful
expressions are obtained:

Gx,x(ω = 0) =
∫ ∞

−∞
dτ cx,x(τ),

(1.77)

cx,x(τ = 0) =
〈

x2
〉

=
1
2π

∫ ∞

−∞
dω Gx,x(ω).

Derivatives and Integrals. The derivative of any given realization x(t) of
a stochastic process is defined as follows:

ẋ(t) =
dx(t)

dt
= lim

ε→0

(
x(t + ε) − x(t)

ε

)

. (1.78)

However, the existence of the limit can be understood in different senses
as well as the existence of the derivative. We will restrict ourselves in the
definition of the limit to the mean square and, consequently, the derivative is

lim
ε→0

〈
∣
∣
∣
∣

x(t + ε) − x(t)
ε

− ẋ(t)
∣
∣
∣
∣

2
〉

= 0. (1.79)

The necessary condition for convergence is the existence of the mixed sec-
ond derivative with respect to t1 and t2 of the correlation function or the
existence of the second derivative of cx,x(τ) for the stationary processes. The
autocorrelation function for the derivative of x(t),

〈

ẋ(t1)ẋ(t2)
〉

=
∂2

∂t1∂t2

〈

x(t1)x(t2)
〉

, (1.80)

and the following equation connect the spectral densities of the stationary
processes, Gẋ,ẋ(ω) = ω2 Gx,x(ω). A similar expression exists for the cross
correlation function

〈

x(t1)ẋ(t2)
〉

= ∂
∂t2

〈

x(t1)x(t2)
〉

and for the cross-spectral
density Gx,ẋ(ω) = iω Gx,x(ω).
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Integrals are also defined in the mean square limit. Let Tn be a partition
in the interval T = [t0, t] which becomes dense in the limit n → ∞ in T .
Then the integral over a stochastic process multiplied by a time-dependent
deterministic function is the stochastic process

If
ξ (t, t0) =

∫ t

t0

ds f(s)xξ(s) = lim
n→∞

q.m.
n−1∑

k=0

f(tk,n)xξ(tk,n)
(

t
(n)
k+1 − t

(n)
k

)

,

(1.81)
with t

(n)
0 = t0, t

(n)
n = t and t

(n)
k ≤ tk,n ≤ t

(n)
k+1. The notation q.m. in (1.81)

stands for the mean square limit. The precise location does not play a role as
long as xξ is piecewise continuous. Sufficient and necessary for the existence
of the integral is the convergence of

〈 (

If
ξ (t, t0)

)2 〉
=
∫ t

t0

∫ t

t0

ds1ds2 f(s1) f(s2)
〈

xξ(s1)xξ(s2)
〉

. (1.82)

A more rigorous approach replaces xξ(tk,n)
(

t
(n)
k+1 − t

(n)
k

)

with the increments

∆Itk
= If=1

ξ (tk+1, tk), which can be considered as a stochastic process with
defined properties. Such a formulation allows the treatment of stochastic
integrals even if the increments are independent and, hence, If=1

ξ (t, t0) is
nondifferentiable. The meaning of a stochastic integral with smooth f(t) was
proven by Ito for the case in which tk,n = t

(n)
k , which is called an Ito inte-

gral [78]

If
ξ (t, t0) =

∫ t

t0

dIs f(s) = lim
n→∞

q.m.

n−1∑

k=0

∆I
t
(n)
k

f(t(n)
k ). (1.83)

Further specification will be necessary if f is random and a function of ξ, as
in the case of multiplicative noise.

Fourier Transform of Stochastic Processes. Power Spectrum. Nu-
merous applications of stochastic integrals are possible by using the spectral
decomposition of xξ(t). But a spectral analysis which gains its importance
from a large success in linear dynamics cannot immediately be formulated
for stochastic realizations. Fourier transforms in the common sense do not
exist for permanently changing xξ(t), because the stochastic integrals do not
converge in the quadratic mean; the integral (1.82) diverges.

Formally, the Fourier transforms exist only for averaged values. Never-
theless, often the Fourier transforms can still be found, interpreted as an
operational algorithm performed in several steps. For a given smooth realiza-
tion xξ(t) one may take xT

ξ (t) = xξ(t) inside |t| ≤ T and outside xT
ξ (t) = 0.

Further on, one defines

xT
ξ (ω) =

∫ T/2

−T/2

dt xξ(t) e−iωt. (1.84)
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The limit T → ∞ of this expression formally gives the spectral decomposi-
tion of the process and can be taken in expressions averaged over different
realizations, if the corresponding integrals exist.

In particular, we look at the power of xξ(t) in the band [ω, ω + ∆ω) of
positive frequencies ω ≥ 0. With ∆ω = 2π/T it is defined by

PT
ξ (ω) =

2
T

|xT
ξ (ω)|2, (1.85)

which is a random variable even in the limit T → ∞. Averaging over different
realizations gives

PT (ω) =
〈

PT
ξ (ω)

〉

=
2
T

∫ T/2

−T/2

dt1

∫ T/2

−T/2

dt2
〈

xξ(t1)xξ(t2)
〉

e−iω(t1−t2).

(1.86)
Even if PT (ω) exists, the random function PT

ξ (ω) does not necessarily con-
verge in the mean square limit if T → ∞. It may still remain in the long time
limit a random variable with finite variance at arbitrary frequencies [79].

For (sufficiently, in the wide sense) stationary processes the integrals in
(1.86) can be simplified, yielding

PT (ω) = 2
∫ T

−T

dτ

(

1 − |τ |
T

)

cxx(τ) e−iωτ . (1.87)

In the long time limit, PT (ω) becomes the average power density called the
power spectrum of xξ(t) and the introduced band of frequencies ∆ω vanishes:

P (ω) = lim
T→∞

PT (ω) = 2
∫ ∞

−∞
dτ cx,x(τ) e−iωτ . (1.88)

As seen for stationary processes, the power spectrum equals the doubled
Fourier transform of the correlation function Gx,x(ω), which is the content
of a theorem by Wiener and Khinchin. Later on, we will call Gx,x(ω) simply
the power spectrum or spectrum of xξ(t), omitting the 2. We emphasize that
in the operation (1.85) information about the absolute phase of the process
is lost.

1.2.3 Noise in Dynamical Systems

Langevin Equations. Paul Langevin invented stochastic differential equa-
tions by adding a fluctuating force in the equation of motion of a Brownian
particle. Langevin assumed a zero average and vanishing correlations between
the position of a particle and the random force at equal times. Later on he
treated the equations in ensemble and obtained ordinary differential equa-
tions for the expectations. In the strong damping limit, after integration, he
found diffusive behavior, i.e., a linear increase of the mean square displace-
ment of a particle in time. Based on equal partition of energy, he derived the
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fluctuation dissipation relation, connecting diffusion with the Stokes friction
coefficient, which was determined by Einstein three years earlier, starting
from an approach based on the kinetic equation for the probability density
of Brownian particles.

Let x(t) = [x1(t), . . . , xn(t)] be the vector of state variables of a DS. In
its most general form the Langevin equation can be written as follows:

ẋi(t) = fi(x1, . . . , xn, t) + gi

(

x1, . . . , xn, ξ1(t) . . . ξm(t), t
)

. (1.89)

There are two distinguished parts in this equation, both generally described
by nonlinear functions: the deterministic part f(x, t) = [fi(x, t), . . . , fn(x, t)],
and the stochastic part, g(x, ξ, t) = [gi(x, ξ, t), . . . , gn(x, ξ, t)] with prop-
erty gi(x, ξ = 0, t) = 0. The multi-dimensional stochastic process ξ(t) =
[ξ1(t), . . . , ξn(t)] represents noise forces acting on the system. We will assume
throughout the book

〈

ξi(t)
〉

= 0.
In the case of internal noise, that is, the system is in thermodynamic equi-

librium, the intensities of noise forces are in specific fluctuation–dissipation
relations with the counteracting dissipative forces. For example, the well-
known Einstein relation connects the intensity of the random force with the
Stokes friction coefficient, which is included in the deterministic part, f(x),
of (1.89). Similarly, the intensity of noise in electronic circuits is given by the
Nyquist theorem, including the resistance as a parameter. The situation is
simplified in the case of external noise, which originates outside the system:
the two parts of the Langevin equations can be considered as independent,
and the characteristics of random forces become additional independent pa-
rameters of the system [46,47].

In this book we consider situations in which noise enters linearly into the
Langevin equations, which simplifies the consideration significantly:

ẋi(t) = fi(x, t) +
m∑

j=1

gi,j(x, t) ξj(t). (1.90)

Additionally, if for a given j all gi,j = const., we speak about additive noise,
as the intensity of the action of ξj on all xi(t) is independent of the actual
state xi(t). The opposite case, when gi,j is a function of state variables is
called multiplicative noise.

Characterization of Noise. There are many possible ways to introduce
random functions ξ(t) with different properties. Generally one distinguishes
between a discrete-valued process, which takes only a discrete set of values,
and a continuous-valued process, which is defined on a continuous set. The
second feature which characterizes the random function is its dependence on
time. Again ξ(t) can vary continuously in time or be defined via jumps at
discrete times only.
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Gaussian Processes. These represent a large subclass of stochastic processes.
The joint probability is given by the Gaussian distribution

pn(x1, t1, . . . , xn, tn)

=
1

√

(2π)nDet[σ]
exp



−1
2

n∑

i,j=1

σ−1
i,j (xi − ai)(xj − aj)



 , (1.91)

with
ai ≡ a(ti) =

〈

x(ti)
〉

, (1.92)

being the time-dependent mean and

σi,j ≡ σ(ti, tj) =
〈

x(ti)x(tj)
〉

− ai aj , (1.93)

the time-dependent covariance. Thus, only two moments are necessary to
fully define a Gaussian process.

Wiener Process. Brownian motion can be described as a Gaussian process.
If Wi is the erratic position of the Brownian particle at time ti, its joint
distribution depends on a single parameter D as

pn(W1, t1, . . . , Wn, tn) =
n∏

i=1

1
√

4πD(ti − ti−1)
exp

(

− 1
4D

(Wi − Wi−1)2

ti − ti−1

)

,

(1.94)
with W0 = 0 and t0 = 0. This process W (t) is named after Norbert Wiener.
It generates nondifferentiable but almost always continuous sample paths. It
is obviously Markovian, since the factors with i ≥ 2 in the product (1.94) are
the transition probabilities between two subsequent positions:

p (Wi, ti |Wi−1, ti−1 ) =
1

√

4πD (ti − ti−1)
exp

(

− (Wi − Wi−1)
2

4D (ti − ti−1)

)

; (1.95)

it is independent of the former history and a solution of the Chapman–
Kolmogorov equation (1.61).

This process is nonstationary, also not in the wide sense. With the initial
condition p(W0, t0 = 0) = δ(W0), one finds for t ≥ 0 the probability density:

p1(W, t) =
∫

dW0p (W, t|W0, t0) δ(W0) =
1√

4πDt
exp

(

− W 2

4Dt

)

, (1.96)

which depends explicitly on time. The first moment of the Wiener process
vanishes,

〈

W (t)
〉

= 0, but the second moment increases linearly in time:

〈W (t1) W (t2)〉 = 2D min (t1, t2) , (1.97)

and for t1 = t2 = t:
〈

W (t)2
〉

= 2Dt. Thus, the introduced parameter D
governs the rate of increasing variance. In the case of Brownian motion this
rate is just the diffusion coefficient.
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An important conclusion can be made for the increments ∆Wt1,t2 =
W (t2) − W (t1) ; t2 > t1. The increments are Gaussian-distributed due to
(1.95) with zero mean,

〈∆Wt1,t2〉 = 0. (1.98)

Moreover, the increments satisfy the stationarity condition,
〈

(∆Wt1,t2)
2
〉

= 2D (t2 − t1) , (1.99)

and independence of the increments and different times,

〈∆Wt1,t2∆Wt2,t3〉 = 0 ; t3 > t2 > t1 . (1.100)

Thus, the increments form a stationary Markovian process since (1.95) is
an exact solution of the Chapman–Kolmogorov equation, hence ∆Wt1,t2 =
∆Wt2−t1 . In its differential form for ti+1 − ti → 0, this equation may be
presented as a diffusive one:

∂

∂t
p(∆W, t|∆W0, t0) = D

∂2

∂∆W 2
p(∆W, t|∆W0, t0). (1.101)

White Gaussian Noise. The Wiener process can be represented as a con-
tinuous sum over subsequent independent increments:

W (t) =
n−1∑

k=0

∆Wtk+1−tk
, (1.102)

with tn = t and t0 = 0, which is a special case of the Ito integral (1.83). The
question which we address now is: What would be the properties of a process
ξ(t) if one represents the Wiener process as a stochastic integral over time
like (1.81),

W (t) =
∫ t

0

ds ξ(s) ? (1.103)

Formally, ξ(t) is the temporal derivative of the Wiener process, ∆W/∆t.
However, this derivative does not exist in the quadratic limit sense if ∆t → 0
since the Gaussian distribution of ∆W/∆t diverges. The integral of ξ(t) over
time achieves sense only if replaced by the sums over the increments as in
(1.83) and (1.102) and using the properties of the increment given above.

Nevertheless, usage of ξ(t) in the Langevin equation is rather common in
the physical literature. A treatment within the calculus of wide stationary
processes gives reasonable properties for ξ(t). This process is Gaussian with
a vanishing average. The correlation functions of the Wiener process (1.97)
are obtained if ξ(t) is delta-correlated as cξ,ξ(t1 − t2) = 2D δ(t1 − t2). In
consequence, the process ξ(t) defined by (1.103) is not correlated at different
times, which expresses the independence of the increments. The power spec-
trum Gξ,ξ(ω) is constant at all the frequencies: Gξ,ξ(ω) = 2D; this is the
reason why ξ(t) is called a white noise.
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White noise has no physical foundation, for example, the integrated power
over all frequencies is infinitely large. It requires complicated mathematics but
there is an enormous advantage. As will be seen, only if the random source
in the Langevin is white noise (1.89), the resulting process x(t) is Markovian.
This important simplification is lost for all other kinds of nonwhite noise.

A possible physical justification to use white noise is based on the sep-
aration of the time scales of random perturbations and the characteristic
temporal scales of noiseless dynamics. The limit case with a noise correla-
tion time τc, vanishingly small compared to the relaxation time τr of the
deterministic system, leads to a process driven by white noise.

The single parameter characterizing Gaussian white noise is its intensity
D. This value changes if the time is rescaled. Transforming t′ = a t gives
ξ(t′) = 1√

a
ξ(t). For the correlation function at the new time scale one finds

cξ,ξ (t′1 − t′2) = 2 (D/a) δ (t′1 − t′2). Hence the intensity scales with the inverse
scaling of time.

Throughout later on we will denote the Gaussian white noise again by ξ(t)
but with

〈

ξ(t) ξ(t+ τ)
〉

= δ(τ) and, correspondingly, for the increment of the
Wiener process we put

〈

∆W 2
∆t

〉

= ∆t. The intensity of the white Gaussian
noise as well as the value of the variance of the increment is presented as a
multiplicative factor explicitly in front of ξ(t) or ∆W∆t.

Poissonian Process. Let N(t) be the number of random events occurring
in the time interval [0, t) and N(0) = 0. It is clear that such a process is
discrete-valued and always increases in time. The probability of finding a
state N at time t is given by the Poissonian distribution:

pN (t) =

(

γt
)N

N !
exp (−γt ) , (1.104)

with t ≥ 0. Then N(t) is called the Poissonian process and is defined only by
the γ. It is, obviously, non-Gaussian. Its first as well as all higher moments
are expressed through γ. We list the mean and the second moment
〈

N(t)
〉

= γ t ,
〈 (

N(t) −
〈

N(t)
〉 ) (

N(t′) −
〈

N(t′)
〉 ) 〉

= γ min (t, t′) .
(1.105)

The Poisson distribution (1.104) is a solution of the master equation

ṖN (t) = −γPN (t) + γPN−1(t) ; N ≥ 1 , Ṗ0(t) = −γP0(t) , (1.106)

describing a birth process N → N + 1 with transition probabilities per unit
time W (N → N + 1) = γ. This master equation is a differential form of
the Chapman–Kolmogorov equation for discrete events. It describes the time
evolution of the probability function. It is important to note that it is possible
to obtain PN (t+∆t) if one knows PN (t). Therefore the Poisson process N(t)
is Markovian.

Like the Wiener process, the Poisson process has independent increments.
The increment ∆N(t) > 0 for the step N0 → N0 + ∆N(t) in the interval
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[t0, t) is independent of the previous history. One finds for the transition
probabilities from ∆N0 = 0 at t = t0 to ∆N(t) at t > t0 again a Poissonian
distribution. But this distribution with γ = const. defines now a Markovian
stationary process ∆N(t) with

P (∆N, t|∆N0 = 0, t0) =
[γ (t − t0)]

∆N

∆N !
exp [−γ (t − t0)] , ∆N ≥ 0.

(1.107)
Another problem is devoted to waiting times: How long does a process

remain in a certain state N = N0 if it is there at t0? For the Poissonian
process the answer is easily given. From (1.105) with

〈

N
〉

= 1 we immediately
conclude that

〈

t
〉

= γ−1. Indeed, the probability that no jump occurs in the
time period [0, τ ] is P0(τ). Therefore

D(τ) = 1 − P0(τ) (1.108)

is the probability that N0 will be left in that time interval. The probability
that the jump will take place in the period [τ, τ + ∆τ ] follows

dD(τ) = −dP0

dτ
dτ = γ exp (−γτ) dτ = wN (τ) dτ . (1.109)

Averaging then yields

〈t〉 =

∞∫

0

τγe−γτdτ =

∞∫

0

τwN (τ) dτ =
1
γ

. (1.110)

In (1.109) we have introduced wN (τ), which is called the density of the
waiting time distribution. It is a powerful concept of describing stochastic
processes and is widely used in the literature for various problems [80,81].

White Shot Noise. Like the Wiener process we present the Poissonian
process as an integral:

N(t) =
∫ t

0

ds ξSN(s). (1.111)

The integrand is called shot noise, and it cannot be Gaussian. It is a sequence
of Dirac δ-functions occurring at random times ti:

ξSN(t) =
∑

i

δ (t − ti) . (1.112)

The times ti are due to a Poissonian distribution with increasing i. Each
delta peak corresponds to a jump ∆N = 1 of N(t). It was introduced by
W. Schottky to describe the impacts of single electrons at cathodes in vacuum
tubes. On average, ξSN(t) possesses a value different from zero,

〈

ξSN(t)
〉

=
γ > 0. Sometime it is more convenient to consider ξSN(t) − γ = ηSN(τ) as a
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white noise with zero average. Due to the independence of increments ∆N ,
the sequence of δ-peaks at times ti should be independent at different times.
It is expressed by the moments

〈

(ξSN(t1) − γ) (ξSN(t2) − γ)
〉

= γ δ (t1 − t2) . (1.113)

Therefore, the Poissonian shot noise, also called Campbell’s process, is white
noise.

Colored Noise: Ornstein–Uhlenbeck Process. As we mentioned previ-
ously, white noise is a mathematical abstraction. That is why it is impor-
tant to study the influence of finite correlation times of random forces on
noise-driven dynamics. To avoid the problem of dealing with non-Markovian
processes, we can introduce a colored noise source (that is, the noise with fi-
nite correlation) using some filtration of white Gaussian noise. In the simplest
case the filter is linear (like RC or RCL circuits, the word filter obviously is
borrowed from electronics).

A simple low-pass filter is described by the following Langevin equation:

ẏ(t) = − 1
τc

y +
√

2D

τc
ξ(t), (1.114)

with zero-mean Gaussian white noise ξ(t) and
〈

ξ(t) ξ(t + τ)
〉

= δ(τ). The
process y(t) governed by (1.114) is called an Ornstein–Uhlenbeck process. It
is easy to check that the Ornstein–Uhlenbeck process is a stationary Gaussian
process in the asymptotic limit with the stationary probability density

P (y) =
√

τc

2πD
exp

(

− τc

2D
y2
)

, (1.115)

and the autocorrelation function

cy,y(τ) =
D

τc
e−

τ
τc , (1.116)

and with the power spectrum

Gy,y =
2D

1 + ω2τ2
c

. (1.117)

The Ornstein–Uhlenbeck process as the noise source has been applied
to DS in many publications. It has been shown that it may significantly
modify the stationary distributions as well as their temporal behavior from
the situation where white noise has been applied [54].

Colored Noise: The Markovian Dichotomic or the Random Tele-
graph Process. The discrete counterpart of the Ornstein–Uhlenbeck process
with an exponentially decaying correlation function in (1.116) is the di-
chotomic Markovian process It. It is the piece-wise constant sequence of two
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states ∆ and ∆′. Transitions between these states are determined by the
exponential waiting time distributions (1.109) with the average time τ∆ for
the transition ∆ → ∆′ and τ ′

∆ for ∆′ → ∆. Then It is Markovian and its
transition probability obeys the master equation

d
dt

P (∆, t |I0, t0 ) = − 1
τ∆

P (∆, t |I0, t0 ) +
1

τ∆′
P (∆′, t |I0, t0 ) , (1.118)

d
dt

P (∆′, t |I0, t0 ) =
1
τ∆

P (∆, t |I0, t0 ) − 1
τ∆

P (∆′, t |I0, t0 ) , (1.119)

with initial state I0. The stationary distribution P 0(I) = P (I, t → ∞|I0, t0 )
follows immediately:

P 0(∆) =
τ∆

τ∆′ + τ∆
, P 0 (∆′) =

τ∆′

τ∆′ + τ∆
. (1.120)

After introducing the correlation time τc

1
τc

=
1
τ∆

+
1

τ∆′
, (1.121)

one simply finds the time-dependent solution of (1.118):

P (∆, t |∆, t = 0) =
τc

2

[
1
τ∆

+
1

τ∆′
exp

(

− t

τc

)]

(1.122)

P (∆′, t |∆, t = 0) =
τc

2
1

τ∆′

[

1 − exp
(

− t

τc

)]

. (1.123)

If I0 is initially distributed stationary according to (1.120), we obtain a sta-
tionary process with the following mean values and correlation function:

〈It〉 =
∆τ∆ + ∆′τ∆′

τ∆ + τ∆′
, 〈(It1 − 〈It1〉) (It2 − 〈It2〉)〉 =

D

τc
exp

(

−|t1 − t2|
τc

)

,

(1.124)
with

D =
τ3
c

τ∆τ∆′
(∆ − ∆′)2 . (1.125)

White shot noise ηSN(t) with zero average is recovered if τ∆′ → 0 in the
limit ∆′τ∆′ = −∆τ∆ = const. Then It stays at ∆ < 0 for mean times τ∆

interrupted by delta-peaks with weights |τ∆∆|. The intensity of this shot
noise is

D = τ∆∆2 . (1.126)

From the shot noise une gets Gaussian white noise in the limit of vanish-
ing weights but with constant intensity D. Indeed τ∆ → 0, ∆ → −∞ with
D = const. generates a fast sequences of switchings between positive and
negative infinite values with zero weight but having the required correlation
function. Higher than second order cumulants scaling with D (τ∆)(n−2) van-
ish; therefore the limiting process is Gaussian. Following van den Broeck,
γ = ∆τ∆ can be defined as a “non-Gaussianity” parameter [82].
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Harmonic Noise and Telegraph Signal. When solving applied problems
one often has to deal with some models of random processes such as noisy har-
monic oscillations and a telegraph signal. The first model is used to describe
the influence of natural and technical fluctuations on spectral and correlation
characteristics of oscillations of Van der Pol type oscillators [77,92,151]. The
model of telegraph signal serves to outline statistical properties of impulse
random processes, for example, random switchings in a bistable system in
the presence of noise (the Kramers problem, noise-induced switchings in the
Schmitt trigger, etc. [77,87,98]). Experience of the studies of chaotic oscilla-
tions in three-dimensional differential systems shows that the aforementioned
models of random processes can be used to describe spectral and correlation
properties of a certain class of chaotic systems. As we will demonstrate below,
the model of narrow band noise represents sufficiently well correlation char-
acteristics of spiral chaos, while the model of telegraph signal is quite suitable
for studying statistical properties of attractors of the switching type, such as
attractors in the Lorenz system [35] and in the Chua circuit [83].

We consider the basic characteristics of the above-mentioned models of
random processes.

Narrow band noise x(t) is a stationary zero-mean random process defined
by the relation [77,92,151]:

x(t) = R0[1 + ρ(t)] cos[ω0t + φ(t)], (1.127)

where R0 and ω0 are constant (mean) values of the amplitude and frequency
of oscillations and ρ(t) and φ(t) are random functions characterizing the am-
plitude and phase fluctuations, respectively. The process ρ(t) is considered
to be stationary. The narrow band noise model assumes that the amplitude
and phase fluctuations are slow functions as compared with cos(ω0t). The
most frequently used simplifying assumptions are as follows: (i) the ampli-
tude and phase fluctuations are statistically independent, and (ii) the phase
fluctuations φ(t) represent a Wiener process:

φ̇(t) =
√

2Bξ(t), (1.128)

where ξ(t) is the normalized Gaussian white noise (〈ξ(t)〉 ≡ 0, 〈ξ(t+τ)ξ(t)〉 =
δ(τ)). The constant B is a phase diffusion coefficient. Under the assumptions
made, the autocorrelation function (ACF) of the process (1.127) is given by
the expression [77,92,151]

ψ(τ) =
R2

0

2
[1 + Kρ(τ)] exp(−B|τ |) cos ω0τ, (1.129)

where Kρ(τ) is the covariance function of the reduced amplitude fluctuations
ρ(t).The Wiener–Khinchin theorem yields a corresponding expression for the
spectral power density.

The generalized telegraph signal is a process that describes random switch-
ings between two possible states x(t) ± a. Two basic types of telegraph
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signals – random and quasirandom – can be considered [77, 85]. A random
telegraph signal has a Poissonian distribution of switching moments tk. For
the stationary case, the mean switching frequency will be constant. For the
Poissonian distribution, the impulse duration θ has the exponential distrib-
ution

p(θ) = ν exp(−νθ), θ ≥ 0 , (1.130)

where ν is the mean switching frequency. The ACF of such a process can be
represented as follows [77,85]:

ψ(τ) = a2 exp(−2ν|τ |). (1.131)

The other type of tepegraph signal (quasirandom) corresponds to random
switchings between the two states x(t) = ±a, which can occur only in discrete
time moments tn = nT0 + δ, n = 1, 2, 3, . . ., where T0 = const and δ is a ran-
dom quantity uniformly distributed on the interval [0, T ]. If the probability
of switching events is equal to 1/2, the ACF of this process decays with time
according to the linear law

ψ(τ) = a2

(

1 − |τ |
T0

)

, if |τ | < T0; ψ(τ) = 0, if |τ | ≥ T0. (1.132)

1.2.4 The Fokker–Planck Equation

Differential Form of the Chapman–Kolmogorov Equation. An al-
ternative approach to describe Markovian processes is based on evolution
equations for the transition probability density p(x, t|x0, t0), which guaran-
tees full knowledge of Markovian dynamics. Let us be concerned with the
derivation of differential operators for this transition probability density.

Generally, there are two different evolution problems, as p(x, t|x0, t0) de-
pends on two tuples of x, t and x0, t0 giving adjoint evolution operators for
the transition probability density. The first “forward” problem is to study
the evolution of the probability density varying the state x at time t > t0,
when fixing the initial state x0 at time t0. Similarly, we can pose the problem
“backwardly”, asking for a variable initial state x0, t0 with constant x, t. The
usage of both evolution operators depends on the particular physical situ-
ation. The backward problem, for example, arises when studying the time
difference t − t0 which trajectories of a stochastic process need to reach a
fixed value x from some initial point x0.

The derivation of both differential operators starts with the Chapman–
Kolmogorov equation and can be found in many books devoted to stochastic
processes (see, for example, [71]). The forward differential form is

∂p(x, t|x0, t0)
∂t

=
∞∑

n=1

(−1)n ∂n

∂xn
Kn(x, t) p(x, t|x0, t0), (1.133)



56 1. Tutorial

where the kinetic coefficients Kn(x, t) are defined as rates of the conditional
averages

Kn(x, t) =
1
n!

lim
dt→0

1
dt

∫

[x′ − x]n p(x′, t + dt|x, t) dx′

=
1
n!

lim
dt→0

〈

dxn
〉

dt x(t)=x
. (1.134)

This equation is known as the Kramers–Moyal expansion of the Chapman–
Kolmogorov equation and is valid for any Markovian processes with existing
coefficients (1.134). The Kramers–Moyal expansion for the backward problem
has the form

−∂p(x, t|x0, t0)
∂t0

=
∞∑

n=1

Kn(x0, t0)
∂np(x, t|x0, t0)

∂xn
0

. (1.135)

The evolution operators in (1.133) and (1.135) are adjoint to each other and
simplify significantly for so-called diffusion processes. For these processes the
two coefficients (1.134) with n = 1 and n = 2 are nonzero only, while Kn = 0
for n > 2 [72]. In this case (1.133) and (1.135) are called the forward and
backward Fokker–Planck equations, respectively. Thus the forward Fokker–
Planck equation (FPE) is

∂p(x, t|x0, t0)
∂t

= LF
x p(x, t|x0, t0) (1.136)

= − ∂

∂x
K1(x, t) p(x, t|x0, t0) +

∂2

∂x2
K2(x, t) p(x, t|x0, t0),

and, analogously, the backward version is

−∂p(x, t|x0, t0)
∂t0

= LB
x0

p(x, t|x0, t0) (1.137)

= K1(x0, t0)
∂p(x, t|x0, t0)

∂x0
+ K2(x0, t0)

∂2p(x, t|x0, t0)
∂x2

0

.

Generalization to the case of many dynamical variables x1, . . . , xn is
straightforward. With p = p(x1, . . . , xn, t|x1,0, . . . , xn,0, t0) and correspond-
ing conditioned averages

Ki
1(x1, . . . , xn, t) = lim

dt→0

〈

dxi

〉

dt x1(t)=x1,...,xn(t)=xn

, (1.138)

Ki,j
2 (x1, . . . , xn, t) =

1
2

lim
dt→0

〈

dxidxj

〉

dt x1(t)=x1,...,xn(t)=xn

, (1.139)

one readily obtains

∂p

∂t
= −

n∑

i=1

∂

∂xi
Ki

1(x1, . . . , xn, t) p +
n∑

i,j=1

∂2

∂xi∂xj
Ki,j

2 (x1, . . . , xn, t) p;

(1.140)
and the case is similar for the backward equation.
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Fokker–Planck Versus Langevin Equations. The kinetic coefficients
can be derived from a corresponding Langevin equation. For a given state
variable x(t) we need to determine the increment dx in linear order of dt from
the Langevin equation only, since higher contributions with O(dt2) vanish in
the definitions of the kinetic coefficient. Such a procedure gives the required
connection between the Langevin and FPE.

The procedure shown below will explain the increment dx formulated in
the sense of an Ito integral (1.83). It means that functions of the stochastic
process x defining the increment dx will be given at times t. Therefore, and
this is the purpose, they will be independent on and, hence, not correlated to
the actual increment dWdt of the noise source at time t. If additionally the
corresponding averages for the particular process under consideration exist,
the stochastic Ito integral as the sum of the increments is mathematically
justified.

For all x at later times s > t this statement is not true and correlations
between x(s) and the increment dWdt at t have to be taken into account. The
reason is originated by the discontinuous behavior of the increments dWdt

which sample path W (t) is not smooth any time. In result a limit from the
sum to an integral is not unique if dt → 0 but depends on the choice of the s
where x(s) is taken inside dt. If s = t, as outlined, there are no contributions
from the correlations, oppositely at s = t+dt the process is already correlated
which results in additional items to the increment dx in O(dt).

Hence every other choice of s different from s = t needs further explana-
tion. We sketch how an arbitrary s can be traced back to the Ito-formulation.
Let us start from a stochastic differential equation

ẋ = f(x, t) +
√

2D g(x, t) ξ(t) (1.141)

for an one-dimensional variable x(t) and white Gaussian noise ξ(t) with
〈

ξ(t)
〉

= 0 and
〈

ξ(t) ξ(t+τ)
〉

= δ(τ). The increment for a small time interval
dt is

dxt = x(t + dt) − x(t) = f
(

x(s), s
)

dt + g
(

x(s), s
)√

2D dWdt, (1.142)

where dWdt is the increment of the corresponding Wiener process at time t
for the interval dt with

〈

dW 2
dt

〉

= dt.
The explicit time dependence of functions f and g can be treated as

a Riemann integral. However, the increment dxt depends on a particular
selection of the grid inside the time interval [t, t + dt] for the sample path
x(s). It is due to the noncontinuous behavior of white noise ξ(t) and the
resulting nondifferentiable Wiener process with increments dWt. Let q be a
constant inside [0, 1] and we put s = q(t+dt)+(1−q)t. Insertion into (1.142)
and expansion of f and g gives

dxt = ft dt + q
∂f

∂x t
dxt dt + gt

√
2D dWdt + q

∂g

∂x t
dxt

√
2D dWdt, (1.143)
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with all functions taken at time t. Nevertheless, the increment dxt still de-
pends on the random dWdt. After re-insertion of dxt, into the right hand side
of (1.143) and omitting third-order deviations we obtain

dxt = ft dt + gt

√
2D dWdt + q

∂g

∂x t
gt 2D dW 2

dt

+
(

q
∂f

∂x t
gt dt + ft gt + q

∂g

∂x t
ft

) √
2D dWdt dt. (1.144)

Stratonovich [84] has shown that additionally to the two first items the term
with 2DdW 2

dt contributes. It is a higher-order term which modifies dxt. In
the short time limit dt → 0 it can be replaced by its expectation 2D dt since
the mean and the second moment of deviations of the stochastic 2D dW 2

dt

from 2D dt vanish. Both moments taken of the remaining term in (1.144) in
the limit dt → 0 are zero as well. We obtain in O(dt)

dxt = f(x, t) dt + 2D dt q
∂g(x, t)

∂x
g(x, t) +

√
2D g(x, t) dWdt . (1.145)

Several important statements can be made from this expression. First, the
increment is independent of the process x(t′) at former times t′ < t. Thus,
a white-noise-driven process is Markovian. Second, the increment is linear
with respect to dWdt and therefore erratic in its time evolution as dWdt. For
example, one may ask for the number of intersections of x(t) with a given
boundary value x0 if the process is in the vicinity of x0. In the limit dt → 0,
the linear dependence on dWdt guarantees unbounded growth of the number
of intersections.

The increment (1.145) is a Ito-formulation of the increment dx. Summing
up the increments between 0 → t gives the stochastic Ito-integral as defined
in (1.83) with the integration grid as shown [85]:

x(t) = x(0) +
∫ t

0

ds

(

f(x, s) + 2D q
∂g(x, s)

∂x
g(x, s)

)

+
√

2D

∫ t

0

dWs g(x, s).

(1.146)
Since Wt is continuous, we obtain continuity also for x(t).

The kinetic coefficients of the FPE that are conditional moments of x(t)
per unit time can be obtained immediately from (1.146) as

K1(x, t) =
d
〈

x
〉

dt
= f(x, t) + 2D q

∂g(x, t)
∂x

g(x, t) (1.147)

and

K2(x, t) =
1
2

〈

dx2
〉

dt
= D g2(x, t). (1.148)

The higher-order coefficient vanishes due to the properties of the Wiener
process (1.100) [84]. Hence, processes defined by the Langevin equation (1.89)
with Gaussian white noise are Markovian diffusion processes.
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Thus, the FPE for the transition probability density p2 = p2(x, t|x0, t0)
corresponding to the Langevin equation (1.141) reads

∂

∂t
p2 = − ∂

∂x

(

f(x, t) + 2D q
∂g(x, t)

∂x
g(x, t)

)

p2 + D
∂2

∂x2
g2(x, t) p2.

(1.149)
In the same way we can obtain kinetic coefficients in the multi-dimensional

case,

ẋi = fi(x1, . . . , xn) +
m∑

j=1

gi,j(x1, . . . , xn) ξj(t), (1.150)

with m white noise sources vanishing in the mean and correlated as
〈

ξi(t) ξj(t + τ)
〉

= 2Di,j δ(τ). (1.151)

From expressions of the conditioned moments for the increments dxi one
obtains

Ki
1 = fi + 2 q

∑

j,k,l

Dj,l
∂gi,j

∂xk
gk,l, (1.152)

Ki,j
2 =

∑

k,l

Dk,l gi,k gj,l. (1.153)

Again insertion of these kinetic coefficients into (1.140) gives the forward time
evolution operator which fully defines the stochastic dynamics of the higher
dimensional process.

This type of evolution operator with a drift and a diffusion term was
first formulated for the motion of a Brownian particle in the phase space by
Fokker, and later the description was supplemented by Planck. In the case
of a single variable first Rayleigh and later Smoluchowski made pioneering
contributions. Klein and Kramers formulated operators for Brownian parti-
cles affected by external forces. A first mathematical foundation goes back
to Kolmogorov. All the listed names can be found as a label for (1.140) for
different cases; a collection of early manuscripts can be found in [86] and
a distinguished description in [72, 87]. Later on, we will use FPE (Fokker–
Planck equation) throughout to abbreviate for the evolution operator for the
Markovian diffusion processes.

We point out that the last term in (1.146) is always defined as the Ito
integral (1.83). But so far the relation between the kinetic coefficients and the
Langevin equation in the case of multiplicative noise depends on the choice
of the grid, i.e., on the constant q. There is no universal approach to selecting
this parameter. It depends how the limit to white noise is taken compared to
dt → 0.

Next we will see that q = 1/2 if the white noise is assumed to be the
small time limit of colored noise with vanishing temporal correlations. It cor-
responds to the Stratonovich calculus for treating stochastic Ito-integrals.
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This choice also possesses the advantage that the relation between the con-
ditional moments and the Langevin equation is invariant with respect to a
variable transformation [66, 85]. For all other values of q the transformation
rules have to be modified, even for the case q = 0. Recently Klimontovich
has shown [50] that the case of q = 1 provides an agreement with results
from statistical mechanics for the equilibrium distribution. In mathematical
literature the preference is given to the case q = 0, which is called the Ito
calculus [66, 70]. In this case the increment dxt relies on the random im-
pact of dWt at t only. It can be justified if the continuous x(t) stands for a
discrete-valued process and the white noise limit is taken prior the continuous
approximation.

Later on we use the Stratonovich calculus with q = 1/2.

FPE from Dichotomic Processes. Let us consider a DS driven by
Markovian dichotomic noise It, which is a symmetric two-state process,
It = ±∆. Transitions between both states occur with the mean time 1/γ.
The Langevin equation in the one-dimensional case is

ẋ = f(x) + g(x) It. (1.154)

As long as It = const. in one of the possible states, the kinetic coefficients
are

K1(x,±∆) = f(x) ± g(x)∆, K2 = 0 . (1.155)

Inclusion of transitions in I leads to the balance of probability p∆(x) and,
respectively, p−∆(x)

∂

∂t
p±∆(x) = − ∂

∂x

(

f(x) ± ∆g(x)
)

p±∆(x) + γ p∓∆(x) − γ p±∆(x).

(1.156)
Since the two equations are linear in p±∆, one can derive equations for the
summed probability p(x, t) = p∆(x, t) + p−∆(x, t):

∂

∂t
p(x, t) = − ∂

∂x

(

f p(x, t) + ∆g(x)Q(x, t)
)

, (1.157)

and the difference of both Q(x, t) = p∆(x, t)− p−∆(x, t). The solution giving
Q with respect to p was obtained in [44,88]:

Q(t) = −∆

∫ t

−∞
ds exp

[

−
(

2γ +
∂

∂x
f
)

(t − s)
]

∂

∂x
g(x) p(x, s). (1.158)

Therein Q(−∞) = 0 was selected and the derivative in the exponential acts
also on g(x) and p(x, s). It finishes the description if inserted into (1.157). In
the Gaussian white noise limit (see 1.126) the exponential function in (1.158)
becomes a δ-function, and the evolution operator for the Markovian process
becomes
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∂

∂t
p(x, t) = − ∂

∂x
f(x) p(x, t) + D

∂

∂x

(

g(x)
∂

∂x
g(x) p(x, t)

)

, (1.159)

with D = ∆2/(2γ).
From this equation we obtain the grid point for the considered limit. To

obtain Gaussian white noise from the limit of a colored noise, we have to take
q = 1/2 [44,66], which gives agreement between (1.159) and (1.149).

The stationary probability density for the problem (1.154) can be easily
obtained by taking ∂p/∂t = 0 in (1.156):

ps(x) = N
g(x)

∆2 g2(x) − f2(x)
exp

(

−2γ

∫ x

dx′ f

f2 − ∆2g2

)

. (1.160)

One-Dimensional Markovian Diffusion Systems. Although the FPE
is linear with respect to transition probability density, the nonlinearity of a
DS is reflected in the dependence of kinetic coefficients on the state vari-
ables. This complicates the analytical treatment in most cases. In fact, only
few model systems allow exact analytical solution of the FPE. Even in the
one-dimensional case, an exact analytical time-dependent solution is only
available for linear systems.

The main information one can extract from the FPE is the stationary
probability density ps(x) by setting ∂p2/∂t = 0. For this purpose it will be
of advantage to introduce the probability flux or current

j(x, t) = f(x) p(x, t|x0, t0) − D g(x)
∂

∂x
(g(x) p(x, t|x0, t0)) (1.161)

which presents the FPE as a continuity equation. In the one-dimensional
case and for additive noise, if g = 1 is in (1.159), a first integration gives a
constant flux of probability

js = f(x) ps − D
∂

∂x
ps(x) = const. (1.162)

For the highly interesting case with js �= 0 we refer the reader to Sections
1.2.6, 1.3.4 and Chapter 3.4. Here we consider the case that boundary condi-
tions allow to put js = 0 which is valid if probability and derivatives vanish at
some position (for example, if x → ∞) or in case of periodic systems without
bias. Then the stationary density is easily obtained and reads

ps(x) = N exp
(

− 1
D

U(x)
)

. (1.163)

In this Boltzmann-like distribution U(x) = −
∫ x dx′f(x′) is called the poten-

tial, and N is the normalization constant,

N−1 =
∫

X

dx′ exp
(

− 1
D

U(x′)
)

. (1.164)
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with X being the set of possible values. The extrema xe of the stationary den-
sity given by ∂ps/∂x = 0 converge with the states of equilibrium of the corre-
sponding deterministic system, given by the roots of the equation f(x0) = 0.
Stable states with f ′(x0) < 0 correspond to the maxima of ps, and unstable
ones with f ′(x0) > 0 to the minima, respectively.

The Boltzmann-like structure of the solution

ps(x1, . . . , xn) = N exp
(

− 1
D

U(x1, . . . , xn)
)

. (1.165)

is also obtained in higher dimensions for the class of so called gradient dy-
namics with symmetric noise which also allows solutions with vanishing prob-
ability flow. That are stochastic DS as

ẋi = − ∂

∂xi
U(x1, . . . , xn) +

√
2D ξi(t), (1.166)

where all Gaussian white noise sources are independent. Again fixed points
correspond to extremal states of the probability. The large class of over-
damped reaction diffusion systems approximated in a box description under
additive noise belongs to this class. Other situations which are solved by
vanishing probability flows were presented in [76]. There a condition of in-
tegrability which connects the kinetic coefficients (1.138) and (1.139) was
derived for this case.

Modification of the correspondence between the state of equilibrium and
extrema of the stationary probability density arises in the case of multiplica-
tive noise. With q = 1/2 the stationary solution also in the case that the flow
js disappears yields

ps(x) = N
1

|g(x)| exp
(

1
D

∫ x

dx′ f(x′)
g2(x′)

)

. (1.167)

This solution is also the Gaussian white noise limit of (1.160). The extrema xe

of ps(x) now depend on the considered multiplicative part, g(x), obeying [89]

h(xe, D) = f(xe) − D g(xe)
∂g(xe)
∂xe

= 0. (1.168)

Thus, the noise intensity D appears to be a new parameter of the system.
The stationary probability density exhibits maxima for h′(xe) < 0 and min-
ima for h′(xe) > 0. Regions in the parameter space with h′(xe) = 0 define
structurally unstable situations. They are called P -bifurcations if the sign of
f ′(x0) changes in the parameter space in the vicinity of xe [70]. As a result
of P -bifurcations the correspondence between attractors of the determinis-
tic dynamics and maxima of the stationary density is lost. Horsthemke and
Lefever [44] introduced the notion of noise-induced transitions for the appear-
ance of maxima after a P -bifurcation by variation of noise intensity D. In
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their book [44], several examples and models were investigated and expres-
sions for the critical noise intensities Dc were derived. Therein the concepts
of noise-induced states are generalized to situations with dichotomic noise
(see (1.156) and when an Ornstein–Uhlenbeck process (1.114) replaces white
noise in the Langevin equation [54,100].

It is obvious from (1.168) that the noise-induced states appear in the
neighborhood of bifurcations of the deterministic dynamics. If ∆a = a − ac

is the distance from a bifurcation point of ẋ = f(x, a) the critical intensity
is Dc ∝ ∆a. Hence, with assumed small D the appearance of noise-induced
maxima is generally restricted to systems in the vicinity of critical points of
the deterministic dynamics.

The concept of noise-induced transitions was criticized because the sta-
tionary mean

〈

x
〉s = xm as a solution of

K1(xm) = f(xm) + D g(xm)
∂g(xm)
∂xm

= 0 (1.169)

differs in its localization from the roots of (1.168). The influence of noise acts
oppositely as expressed by the different size of the second term in (1.169).
Thus the stationary first moment does not reflect a noise-induced transition
defined by the maxima of the stationary density. Additionally, there are a
few other measures for characterizing the influence of multiplicative noise,
as, for example, higher moments or stochastic Lyapunov exponents [70].

1.2.5 Stochastic Oscillators

In this section we will study two-dimensional oscillatory systems driven by
additive noise. Typical phenomena taking place in these systems are bi- and
multi-stability, excitability and self-sustained oscillations [90]. We intend to
summarize the principal effects of additive noise on these phenomena by
looking at minimal models. These models are of high relevance in mechanics,
electronics, chemistry and biology. Mainly we discuss the stationary solutions
of the FPE, while dynamical properties will be discussed in the next chapter
and throughout the book.

We start with a mechanical system, described by the following Langevin
equations:

ẋ = v , v̇ = − γ(x, v) v − ∂

∂x
U(x) +

√
2Dξ(t), (1.170)

where x and v are the position and the velocity of a particle, respectively,
which moves in the potential U(x) with the friction γ(x, v). In the case,
γ = const. we speak about damped conservative oscillators with a nonlinear
potential. The second kind of mechanical oscillator assumes the damping
term to be nonlinear with possible zeros and refers to dissipative nonlinear
systems, with U being a harmonic potential, in most cases [50,90]. The FPE
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for the transition probability density p2 = p2(x, v, t|x0, v0, t0) in the form of
a Boltzmann equation is

∂

∂t
p2 + v

∂

∂x
p2 − ∂U

∂x

∂

∂v
p2 =

∂

∂v
γ(x, v) v p2 + D

∂2

∂v2
p2. (1.171)

In the stationary limit p2 tends to its stationary density, p2 → ps(x, v), with
∂ps/∂t = 0 and does not depend on the initial state.

Amplitude and Phase Description. In the case of harmonic potential
and weak dissipative forces, a successful analytical approach was developed by
Bogolyubov, Krylov and Mitropolsky (BKM) [91]. They proposed to search
for solutions of the deterministic problem by transforming to an amplitude
and phase description. In the regime of small dissipation one may assume
a slow variation of the amplitude A of the oscillations and a shift ϕ of the
phase Φ = Φ0 +ϕ added to the fast motion Φ0 = ω0 t, where ω0 is the natural
frequency of the oscillator.

This approach can be applied to many stochastic oscillators [92–97]. Let
us consider the harmonic potential U(x) = ω2

0x2/2 and the following trans-
formation of variables:

x = A cos(ω0 t + ϕ) , v = −ω0A sin(ω0 t + ϕ). (1.172)

The Langevin equations for the amplitude A and the phase shift ϕ are

Ȧ =
sin(ω0 t + ϕ)

ω0
γ(x, v) v + yA , ϕ̇ =

cos(ω0 t + ϕ)
Aω0

γ(x, v) v + yϕ,

(1.173)
where yA(t) and yϕ(t) are new noise sources:

yA = − sin(ω0 t + ϕ)
ω0

√
2Dξ(t) , yϕ = −cos(ω0 t + ϕ)

Aω0

√
2Dξ(t) . (1.174)

The first term in both equations in (1.173) can be treated by averaging over
one period T = 2π/ω0 under the assumption of constant A and ϕ. This
procedure gives the first-order expansions, fA(a, ϕ) and fϕ(a, ϕ), of the BKM
theory. The noise in (1.173) is multiplicative. In the first kinetic coefficient
(1.152) one obtains from the noise

KA
1 ∝ D

cos2(ω0 t + ϕ)
Aω2

0

, Kϕ
1 ∝ −D

cos(ω0 t + ϕ) sin(ω0 t + ϕ)
A2ω2

0

. (1.175)

After averaging over one period only one nonvanishing contribution
D/(2Aω2

0) remains in KA
1 . The second moments can be calculated following

(1.153) and after averaging over one period the cross-correlations vanish,
i.e., KA,ϕ

2 = 0. The noise sources of the amplitude and the phase shift are
therefore independent Gaussian white noises with the intensities
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KA,A
2 =

D

2ω2
0

, Kϕ,ϕ
2 =

D

2ω2
0A2

. (1.176)

Thus, the FPE in the amplitude–phase variables follows

∂

∂t
p2 = − ∂

∂A

(

fA +
D

2Aω2
0

)

p2 − ∂

∂ϕ
fϕ p2 +

D

2ω2
0

∂2 p2

∂A2
+

D

2ω2
0A2

∂2 p2

∂ϕ2

(1.177)
for the transition probability density p2(A,ϕ, t|A0, ϕ0, t0). The Rayleigh dis-
tribution solves in the stationary case this equation with γ = const. and a
harmonic potential with frequency ω0

ps(A,ϕ) =
1
2π

A

σ2
exp

(

− A2

2σ2

)

(1.178)

and σ2 = D/ω2
0γ.

Energy Representation. In mechanics integrals of motion are widely used,
one being the mechanical energy. Therefore, another important representa-
tion of the FPE uses the energy as a variable [98]. This representation is
preferable for the cases of slow energy variations [72].

Let the friction be linear, that is γ = const. Then the velocity can be
replaced by the energy as

v(x,E) = ±
√

2[E − U(x)], (1.179)

using the definition of mechanical energy. As a result we obtain the Langevin
equations

ẋ = v(x,E) , Ė = − γv2(x,E) +
√

2D v(x,E) ξ(t), (1.180)

with the insertion of v from (1.179). The equation for the energy contains
multiplicative noise, yE,x =

√
2D v(x,E) ξ(t), being the source of fluctua-

tions in this representation. With the Stratonovich interpretation we find the
kinetic coefficients to be

Kx
1 = v(x,E) , KE

1 = − γv2(x,E) + D , KE,E
2 = D v2(x,E). (1.181)

Thus, the FPE in a coordinate and energy representation for the transition
probability density p2 = p2(x,E, t|x0, E0, t0) is

∂p2

∂t
= − ∂

∂x
v(x,E) p2 +

∂

∂E

(

γv2(x,E) − D
)

p2 + D
∂2

∂E2
v2(x,E)p2.

(1.182)
Its stationary solution reads

ps(x,E) =
N

|v(x,E)| exp
(

−γE

D

)

. (1.183)
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Integration over x in regions where E ≥ U(x) removes the dependence of the
stationary probability density on the coordinate:

ps(E) ∝ T (E) exp
(

−γ E

D

)

, (1.184)

with T (E) being the period of a closed trajectory for a given energy E. In par-
ticular, for a Hamilton function containing d quadratic terms, the stationary
probability density is

ps(E) ∝ E
d
2−1 exp

(

−γ E

D

)

. (1.185)

Both latter formulas have to be supplemented by a normalization.

Stochastic Bistable Oscillator. One of the best investigated nonlinear
stochastic DS is the bistable oscillator [87]. It is a damped conservative os-
cillator with two stable equilibria. Without noise its equations of motion are

dx

dt
= v , m

dv

dt
= −γv − ∂U

∂x
, (1.186)

where U(x) is the potential of a bistable external force. Without loss of
generality we consider the symmetric double-well potential

U(x) = − a

2
x2 +

b

4
x4, (1.187)

which gives the force

f(x) = − ∂U(x)
∂x

= ax − bx3 . (1.188)

The simple analysis yields two stable equilibria at

v0 = 0 , x1,3 = ±
√

a

b
, a , b > 0 ; (1.189)

these basins of attraction are divided by two separatrices merging at the
saddle point

v0 = 0 , x2 = 0. (1.190)

For a low damping if γ < 8a, the stable equilibria possess complex eigenvalues
and thus are stable foci. They transform into centers if γ → 0.

In the overdamped case γ → ∞ or for light particles m → 0, the tra-
jectories quickly approach the v = 0 axes. In such a case it is sufficient to
eliminate v(t) and to restrict the study to the dynamics of the coordinate
x(t) only:

dx

dt
=

a

γ
x − b

γ
x3. (1.191)
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The nonlinearity is conservative and part of the external force. The me-
chanical system dissipates its energy permanently. A derivation of the me-
chanical energy with respect to time gives

d
dt

E =
d
dt

(m

2
v2 + U(x)

)

= −γv2 ≤ 0, (1.192)

which vanishes at v0 = 0 in one of the stable equilibria (if it does not start
from the saddle point).

The bistable oscillator is one of the standard examples for describing
complex behavior in low-dimensional systems. Results which will be obtained
later on can be applied in a good approximation for bistable nonequilibrium
systems such as electronic flip-flop devices, bistable optical systems, bistable
nonlinear semiconductors and bistable reaction schemes [99,100].

We add white Gaussian noise to the velocity dynamics as a random force:

dx

dt
= v , m

dv

dt
= −γv − ∂U(x)

∂x
+

√
2D ξ(t). (1.193)

The corresponding FPE, first formulated for this problem by Kramers and
Klein, is as follows:

∂

∂t
p2(x, v, t|x0, v0, t0) + v

∂p2

∂x
− 1

m

∂U(x)
∂x

∂p2

∂v
=

γ

m

∂

∂v
v p2 +

D

m2

∂2p2

∂v2
.

(1.194)
The stationary probability density ps(x, v) describes the long-term behavior
after the stochastic system has equilibrated over the whole phase space and
can be found easily. Assuming that ps = ps

(

E(x, v)
)

gives the unique solution

ps(x, v) = N−1 exp
(

−γm

2D
v2 − γU(x)

D

)

. (1.195)

It is the Maxwell–Boltzmann distribution which is obtained in the equilibrium
if the noise relates to the temperature as D = γkBT by the fluctuation
dissipation theorem.

We mention that the peaks of the probability density coincide with the
stable fixed points, whereas the point x2 = v0 = 0 is shaped like a saddle,
density decreasing in both directions of velocity and, oppositely, increasing in
the coordinate. But the random excitations make the separatrice permeable.
The trajectories are able to perform transitions from one potential well to an-
other and back. Thus we can speak about noise-induced oscillations between
the two attractors.

A first insight into the transition phenomena can be achieved by looking
at the ratio of the probabilities of being in the lowest state, at the saddle point
x2, to the probability of being in one of the potential minima. It yields the
Arrhenius law, determined by the activation energy ∆U = U(x = x2)−U(x =
x1) > 0,
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ps(x = x2, v = v0)
ps(x = x1, v = v0)

= exp
(

− γ∆U

D

)

. (1.196)

It contributes to all characteristic values describing the transition behavior
combined with a time scale.

Stochastic Self-sustained Oscillations. Noise in damped harmonic oscil-
lators pumps energy into the system and enhances damped oscillations, with
the mean energy being proportional to the noise intensity D. The second and
higher moments of energy increase with powers of D. Thereby the relative
energy fluctuations given by the variance always remain equal to 1. The sta-
tionary probability density in the velocity and coordinate representation is
Gaussian.

This picture changes in the case of oscillators which possess a limit cycle
solution. As an example we consider the stochastic Van der Pol oscillator:

ẋ = v , v̇ = ε v (α − βx2 − δv2) − ω2
0 x +

√
2D ξ(t) , (1.197)

with β; δ = O(1) > 0. Two different scenarios to excite a limit cycle are
known, which are hard and soft excitations. A hard excitation occurs if ε
passes zero with α = 1. The oscillator exhibits a limit cycle with amplitude
∝ O(1). In contrast, with ε = 1 and α vanishing a soft generation of a limit
cycle with amplitude ∝

√
α takes place. In both cases for sufficiently small

distances from the bifurcation point, i.e., ε, α � 1, respectively, the system
oscillates with a constant frequency, ω0.

If the noise is also assumed to be a small perturbation the BKM method
can be applied, giving for slowly varying amplitude and phase

Ȧ = ε
A

2
(

α − bA2
)

+ yA , ϕ̇ = yϕ, (1.198)

where the noise sources for the amplitude yA and phase yϕ are given by
(1.174). With b = (β + 3δω2

0)/4, where the noise sources for amplitude and
phase are given by (1.174). Solving the corresponding stationary FPE we
obtain,

ps(A,ϕ) = N A exp
[
2 ε ω2

0

D

(
α

2
A2 − b

4
A4

)]

. (1.199)

Beyond the Hopf bifurcation the stationary density exhibits in the phase
space a crater-like distribution, where the maximal values correspond to the
attracting limit cycle (see Fig. 1.25).

The density (1.199) possesses a maximum for α, ε > 0. On the other hand,
noise only enhances a diffusive motion of the phase near the bifurcation point.
We note that in the case of canonical dissipative systems, where γ(x, v) =
γ(E), if β = δω2

0 , the presented stationary density (1.199) is an exact solution
of the original FPE transformed to amplitude and phase variables.

It is interesting to look at the energy representation. The probability
density can be easily transformed to the energy representation since ω0 is
constant for arbitrary values of energies. Hence with
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x
v

p
s(x,v)

Fig. 1.25. Stationary probability density ps(x, v) of a stochastic self-sustained
oscillator (1.197)

p2(E, t|E0, t0) =
∫ 2π

0

dϕ

∫ ∞

0

dAδ

(

E − A2ω2
0

2

)

p2(A,ϕ|A0, ϕ0), (1.200)

the FPE is

∂

∂t
p2(E, t|E0, t0) = −ε

∂

∂E
2 E

(

α − b

2ω2
0

E

)

p2 + D
∂

∂E
E

∂

∂E
p2. (1.201)

The stationary solution follows:

ps(E) = N exp
{

2 ε

D
E

(

α − bE

ω2
0

)}

; (1.202)

and differs from a canonical form. Important properties can be obtained from
the moments of energy in certain cases. The case of ε < 0 and Es = A2

sω
2
0/2 →

∞ gives a canonical-like density with the first moment D/(2|ε|α) and higher
moments

〈

En
〉

= n!
〈

E
〉n. In particular, the relative energy fluctuations are

〈

∆E2
〉

〈

E
〉2 = 1. (1.203)

Near the bifurcation point the critical energy fluctuations with standard de-
viation 〈

∆E2
〉

〈

E
〉2 =

π

2
− 1 < 1 (1.204)

occur independently on all other parameters. In the case of a strongly nonlin-
ear behavior the density becomes sharply Gaussian around Es = αω2

0/2b as

ps(E) = N exp

{

− 2 b ε

D ω2
0

(

E − ω2
0 α

2 b

)2
}

(1.205)

with relative variance
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〈

∆E2
〉

〈

E
〉2 =

D b

εω2
0 α2

. (1.206)

The quantity εω2
0α2/Db can be considered to be a parameter of strong non-

linearity. If it increases, then the energy distribution around the attracting
manifolds Es = ω2

0 α/2 b becomes vanishingly small and collapses eventually
in a δ-function as, for example, D → 0. This behavior should be generic
for small noise and strong forcing in the case of extended attracting mani-
folds [50]. Otherwise, as for a single state of equilibrium, a lot of probability
is concentrated above the deterministic attracting manifold, reducing the
amount of probability for possible deviations.

1.2.6 The Escape Problem

One can generically claim that additionally to diffusion the qualitatively new
impact of noise in DS consists in the problem of escaping from basins of
attraction of stable manifolds. The question at which times and with which
statistics an attractor will be left or, correspondingly, what the rates of transi-
tions out of a single attractor are is the central topic in the physical literature
where stochastic tools have been applied.

This question was first formulated in nucleation theory [101, 102] and in
the theory of chemical reactions [98]. Nucleation implies the stochastic growth
of a piece of the new phase to a critical size impossible without fluctuations.
In the energetic landscape the critical nucleus forms a saddle-point-like con-
figuration unstable in directions of smaller and larger sizes of the droplet
or bubble. Once the critical size is surpassed, the nucleus grows with high
probability. Similarly, chemical reactions implicate a surmounting of poten-
tial energy across the reaction path to leave a bound state with another
particle. Many other processes include such escapes over barriers, firing of
neurons, transport through many types of ion channels, the enforcement of
populations, and electronic and optical relays, to mention a few only.

Problems of the stochastic escape from a region of attraction can be in-
vestigated with the aid of mechanical oscillators. It was first proposed by
Kramers in his pioneering paper in 1940. For this purpose Kramers calcu-
lated the stationary flux js through certain boundaries in the phase space
x, v, generalizing earlier attempts in nucleation theory to the case of two
variables. He defined the rate r of transitions as

r =
js

n0
, (1.207)

where n0 denotes the probability near the attractor which will be left.
Kramers succeeded in giving rates over an energy barrier ∆U for low, mod-
erate and strong damping γ.

Earlier, in 1933, Pontryagin, Andronov and Vitt [103] extended the
method of the first passage to the escape problem. They defined the proba-
bility distribution
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WΩ(t|x0, t0) =
∫

Ω

dx p2(x, t|x0, t0), (1.208)

for the time t after a start at t0 in x0 when trajectories escape for the first
time out of a region Ω. For stationary processes WΩ as well as its density
wΩ = dWΩ/dt obviously depend on t − t0. Starting from a given evolution
operator of p2(x, t|x0, t0) Pontryagin et al. and, later on, Weiss [104] were able
to derive ordinary differential equations for moments

〈

Tn
〉

of wΩ(t − t0|x0).
Both methods complement each other and their equivalence has been

proven for many problems [87, 105], recently for homogeneous stochastic
processes [106]. It holds

〈

T
〉

Ω
∝ 1

r
. (1.209)

Both methods will be elucidated in this section. We will specify the bistable
oscillator as presented above (1.193) and will be interested in the escape
from the left well near x1. In the flux method we assume an oscillator in
equilibrium fixing D = γ kB T due to the fluctuation-dissipation theorem
which gives the Maxwell–Boltzmann density (1.195)

peq = N exp
(

− v2

2 kB T
− U(x)

kB T

)

. (1.210)

Rates in Equilibrium. A first estimate for the rates assumes the establish-
ment of the time-independent P s(x, v) throughout the phase space without
additional constraints. Even in this case the oscillator still has a permanent
flux of particles from left to right through values x = 0, if v > 0, which is
compensated by a back flux with negative velocities.

This stationary flux of particles with positive velocities from left to right
can be calculated as follows:

jeq =
∫ ∞

0

dv v peq(x = 0 , v) . (1.211)

The rate keq of leaving the left site is defined by (1.207). The probability
distribution under the integral

n0 =
∫ 0

−∞
dx

∫ ∞

−∞
dv peq(x , v) (1.212)

gives its main contribution around the maximum at x1. For low thermal en-
ergy kBT compared to the potential difference ∆U in (1.196) the density can
be approximated as Gaussian around x1, ranging from −∞ to ∞. Therefore
(1.212) can be approximated by taking

U(x) = U(x1) +
1
2

∂2U(x)
∂x2

|x=x1 (x − x1)2 + o
(

(x − x1)3
)

. (1.213)

By assigning the second derivative of the potential in (1.213) as ω2
0 = 2a,

both integrals in (1.211) and (1.212) can be taken and we find that
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req = kTST =
ω0

2π
exp

(

− ∆U

kBT

)

. (1.214)

The obtained expression is often used as first approximation. It results from
several approaches in statistical mechanics and is known as the rate of the
transition state theory (TST) [87]. The prefactor contains information on
the outgoing attractor, whereas the energy state at the barrier enters via the
Arrhenius factor only. In general it overestimates the rate and may serve as
the upper boundary for the rate.

Rice [107] extended this result for arbitrary Gaussian-distributed processes
with given spectra or correlation functions of the velocity and coordinate re-
lated by σv,v(t) = d2σx,x(t)/dt2. He found the rates of exceeding a potential
barrier from the ground state ∆U to be as follows:

req
Rice =

1
2π

√

σv,v(0)
σx,x(0)

exp
(

− ∆U

σv,v(0)

)

. (1.215)

The values of the correlation functions at t = 0 can be expressed by inte-
grals of the corresponding spectra. In the case of white noise this expression
converges to (1.214).

Rates in Nonequilibrium. The question of how rates are modified if the
mechanical system is not fully equilibrated was first addressed by Kramers
[98]. Kramers succeeded in finding the solution in the mechanical model ex-
plicitly including γ, which is the main parameter estimating the relaxation
of the density.

For that purpose one has to assume a time-scale separation between sev-
eral processes: first the density relaxes in the neighborhood of the next at-
tractor; at a longer time scale it escapes realizing a transition from the basin
of attraction to a possible second existing attractor; eventually, at a third
time scale the weights between several attractors become equilibrated.

The escape problem concerns the second step, the surmounting of an en-
ergetic barrier which binds trajectories in the neighborhood of the attractor.
A quasistationary regime is assumed. It is mathematically formulated by im-
posing special boundary conditions with respect to the kinetic equation of the
probability density. Near the attractor the equilibrium density has built up.
All realizations which have surpassed the energetic barrier are absorbed and
reinserted into the attractor region. Hence, the averaged surmounting realiza-
tions give a stationary flux out of the attracting basin before full equilibrium
has been established.

Kramers considered three different regimes of damping: the overdamped
case, the moderate to strong case and the low-damping case. Here we restrict
ourselves to the first case if γ � ωb where ω2

b is related to the curvature
of the potential as ωb = (1/m)|∂2U(x)/∂x2| at the barrier. In the case of
(1.187) at xb = x2 = 0, it follows that ω2

b = a/m. In the following we
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consider overdamped motion. With regard to low friction, the reader will
find an excellent presentation in [87].

In the large-damping case the instantaneous velocities abruptly change
their values without inertia, which is described by neglecting dv/dt in the
Langevin equations (1.193) which then reads

ẋ = v = − 1
γ

∂U(x)
∂x

+

√

2kBT

γ
ξ(t) , (1.216)

and again we made use of the fluctuation–dissipation relation. The evolution
of the probability density p2(x, t|x0, t0) follows the Smoluchowski equation
for a one-dimensional Markovian process:

∂p2(x, t|x0, t0)
∂t

= − ∂

∂x

(

− 1
γ

∂U

∂x
p2

)

+
kBT

γ

∂2p2

∂x2
. (1.217)

The initial value problem of this equation cannot be solved for anharmonic
potentials. Therefore, we look for a stationary approximation ps describ-
ing escapes with a constant circulating flow js as outlined above. Escaped
probability will be absorbed at a position larger than the barrier value
x = xA > x2 = 0, requiring ps(xA) = 0 which is a sink of probability.
The absorbed flow of probability js is reinjected at the stable fixed point x1.
For this purpose a source term is added to (1.217)

0 = − d
dx

(

− 1
γ

∂U

∂x
ps

)

+
kBT

γ

d2ps

dx2
+ jsδ(x − x1) . (1.218)

Left from x1 the probability flow vanishes again and the equilibrium density
will be established ps(x < x1) = peq(x). Continuity at x1 gives the second
necessary boundary condition limε→+0 ps(x1 + ε) = peq(x1).

In this way probability permanently flows through the system between x1

and xA and surpasses the unprobable state x2. The solution of (1.218) is the
Green’s function of the forward FPE-operator. The first integration gives in
the interval [x1, xA]

− 1
γ

∂U

∂x
ps − kBT

γ

d
dx

ps = js Θ(x − x1) . (1.219)

Equation (1.219) can be integrated the second time using the multiplicative
factor 1/peq(x), which yields

d
dx

(
ps(x)
peq(x)

)

= − js 1
peq(x)

γ

kB T
Θ(x − x1), (1.220)

and eventually

ps(x) = − js γ

kB T
peq(x)

∫ x

dx′ 1
peq(x′)

Θ(x′ − x1) . (1.221)
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Usage of the formulated boundary conditions of the stationary nonequilib-
rium density ps defines the value of the constant flow by the relation

1 = js γ

kB T

∫ xA

x1

dx′ 1
peq(x′)

. (1.222)

Further on we use the definition of the rate (1.207) and find the integral
formulation

rK =
kB T

γ
∫ 0

−∞ dx′ ps(x′)

1
∫ xA

x1
dx′ (peq(x′))−1 . (1.223)

The remaining two integrals have to be estimated, and one proceeds in a way
quite similar to the earlier presented case of kTST. The first one gives its main
contribution around x = x1. In this region ps can be replaced by the equilib-
rium distribution peq; as a result of this, the normalization constant under
both integrals drops out. Further on, one uses the Gaussian approximation of
the potential around x1 and extends the integration over the whole range of
coordinates. Oppositely, the function under the second integral approaches
maximal values near the unstable fixed point x2 = 0, and other regions of
integration give vanishingly small contributions. Near x2 one may expand as
(1.213), with U(x) = U(xb)− (m/2)ω2

b(x− xb)2. Again extending the limits
of the second integral to ±∞, the integral results eventually in

rK =
ωb

γ

ω0

2π
exp

(

− ∆U

kBT

)

. (1.224)

Thus the rate of transition decreases for large damping as ∝ 1/γ. As a con-
sequence of the condition γ � ωb the escape rate is always smaller than in
the case of full equilibrium.

Pontryagin Equation. There are several tools in the theory of stochas-
tic processes which characterize the dynamical behavior of a stochastic sys-
tem without explicitly calculating the time-dependent probability density
[63,67,80]. Two of them, the most popular ones, will be considered here: the
probability to reach a certain boundary from a given initial state for the first
time, and the mean time which is necessary for this event.

Let x(t) be a one-dimensional Markovian diffusion process given either
by its Langevin equation or by the corresponding FPE. We will assume sta-
tionarity of this process. Further, let x0 be the initial state at t0 = 0 which
is located inside the interval x0 ∈ (a, b). Then

Pa,b (t, x0) =

b∫

a

p2 (x, t|x0) dx (1.225)

is the probability that x(t) is still inside the region (a, b) at time t > 0.



1.2 Fluctuations in Dynamical Systems 75

Now the problem is modified in such a way that we can find the proba-
bility of reaching the boundaries of the region for the first time. It implies
that trajectories which have reached the boundaries have to be excluded from
returning back into the interval to avoid multiple crossings. The simple way
to do this is to remove them from consideration by applying special bound-
ary conditions. In the case of Markovian diffusion processes every trajectory
which leaves the region has to approach either the value x = a or the value
x = b. This follows from the continuity of the sample paths we have men-
tioned.

Exclusion of these trajectories is realized if we require that the probability
of a transition from the boundaries back into the interval is exactly zero, or
explicitly written, if

p2(x, t|a) = p2(x, t|b) = 0 , x ∈ (a, b). (1.226)

Insertion into (1.225) gives

Pa,b(t, a) = Pa,b(t, b) = 0, (1.227)

and the boundary conditions of this type are called absorbing.
Another boundary condition causes reflection of particles. It means that

the flow of probability j(x, t) (1.161) vanishes at this boundary j(x = a, t) = 0
which gives a condition for the forward problem, the probability density at x
for times t > t0. Application of the property that the forward and backward
FPE-operators are adjoint operators
∫

dx p2(y, ty|x, tx)LF
x p2(x, tx|x0, t0) =

∫

dx p2(x, tx|x0, t0)LB
x p2(y, ty|x, tx)

(1.228)
leads to the formulation of a reflecting boundary condition for the backward
problem [87]. Indeed, taking the integration in (1.228) from −∞, where the
density and its derivative should vanish, to the reflecting boundary b gives
the equality of

p2(y, ty|x, tx) j(x, t) = p2(x, tx|x0, t0)
∂

∂x
p2(y, ty, |x, tx) (1.229)

with x taken at a. Hence, j(a, t) = 0 requires vanishing of the right hand side
and if the density at the boundary does not vanish

∂p2(x, t|x0, t0)
∂x0

∣
∣
∣
∣
x0=a

= 0 . (1.230)

After integration one obtains

∂Pa,b(t, x0)
∂x0

∣
∣
∣
∣
x0=a

= 0 . (1.231)



76 1. Tutorial

Henceforth let Pa,b (t, x0) label the probability that all escaped trajecto-
ries have been eliminated. To find a differential equation for Pa,b, we make use
of the assumption that the dynamics inside the region is not modified due to
the application of the boundary conditions [92] and given by the rates of the
conditioned moments (1.134). It will be valid if trajectories need some finite
time to reach the boundaries, i.e., the probability to be out of the interval
after vanishingly small times τ decreases faster than linear

lim
τ→0

1
τ

(

1 − Pa,b (τ, x0)
)

= 0, x0 �= a, b . (1.232)

Then the moments of the increments (1.142) of the considered process with
the corresponding kinetic coefficients (1.147) and (1.148) can be applied and
are not modified inside the interval. Hence, the Kolmogorov backward and
forward equations can be used inside for the first passage problem.

Taking the backward equation (1.137) and integrating it over the consid-
ered interval, we readily obtain

− ∂

∂t0
Pa,b =

∂

∂t
Pa,b (t, x0) = K1 (x0)

∂

∂x0
Pa,b + K2 (x0)

∂2

∂x2
0

Pa,b. (1.233)

The change in the time derivation to t can be performed with the assumed
stationarity of the stochastic process (comp.(1.65)).

Equation (1.233) is the evolution operator for the probability of staying
inside the considered interval without having contact with the boundaries. It
was first derived by Pontryagin, Andronov and Witt in 1933 [103]. Boundary
conditions and initial conditions have to be added to find solutions for special
physical problems. One then solves (1.233) with respect to Pa,b (t, x0) and
averages over the initial values.

Survival Probability. Several phenomena require one to look for the as-
ymptotic solutions of (1.233), addressing the problem of survival probability.
If at least one absorbing boundary exists which the process can reach in finite
times Pa,b (t → ∞, x0) = 0, then the interval will be depleted with certainty.
Obviously, the function

Wa,b (t, x0) = 1 − Pa,b (t, x0) (1.234)
is the probability of escaping the region for the first time. It obeys the same
evolution operator with corresponding boundary conditions following from
the definition (1.227) and (1.231). With an absorbing state and by waiting for
an infinitely long time under ergodic conditions, being outside is a certainty:

Wa,b (t → ∞, x0) = W as
a,b(x0) = 1 , (1.235)

for arbitrary x0.
One may ask for the asymptotic probability of leaving the interval

by crossing b without reaching before a. Then, b absorbs probability, i.e.,
W as

a,b(b) = 1, but a trajectory reaching a has to be bound within the region
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forever, i.e., it should be unable to leave by reaching b, i.e., W as
a,b(a) = 0. The

asymptotic solution by setting ∂W as
a,b(x0)/∂t = 0 then reads

W as
a,b(x0) =

x0∫

a

dx exp
(

−
∫ x K1

K2
dx′
)

b∫

a

dx exp
(

−
∫ x K1

K2
dx′
)

. (1.236)

Obviously it differs from the certainty due to the implication of formulated
constraint.

Waiting-Time Density. More detailed information will be obtained by in-
vestigating the probability density at time t when the region will be left for
the first time. It is called the density of the waiting time distribution. If
Wa,b (t, x0) is the probability distribution that the interval [a, b] is left for the
first time during the time period t0 and t, then its density is

wa,b (x0, t) ∆t =
∂Wa,b (t, x0)

∂t
∆t = −∂Pa,b

∂t
∆t . (1.237)

We immediately obtain the following equation for the waiting-time probabil-
ity density:

∂

∂t
wa,b = K1 (x0)

∂

∂x0
wa,b + K2 (x0)

∂2

∂x2
0

wa,b , (1.238)

supplemented by the initial and boundary conditions

wa,b (x0, t = 0) = 0 , x0 ∈ (a, b) , wa,b(a, t) = wa,b(b, t) = δ(t), (1.239)

if both boundaries are absorbing. If a is a reflecting boundary, the corre-
sponding boundary condition is replaced by

∂wa,b (x0, t)
∂x0

∣
∣
∣
∣
x0=a

= 0 . (1.240)

Moments of First Escape. The first moment of the waiting time distrib-
ution is called the mean first passage time. It is

Ta,b (x0) =

∞∫

0

twa,b (x0, t) dt, (1.241)

and by definition it simply follows

Ta,b(x0) =

∞∫

0

Pa,b (t, x0) dt. (1.242)
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Averaging over a density of initial states inside [a, b] yields

〈

Ta,b

〉

x0
=

∞∫

0

Pa,b (t, x0) P (x0) dt dx0 . (1.243)

An ordinary differential equation for Ta,b (x0) can be obtained by multiplying
with t and integrating (1.238) with respect to time. It gives on the left-hand
side ∞∫

0

∂

∂t
Pa,bdt = Pa,b (∞, x0) − Pa,b (0, x0) = −1 . (1.244)

and integrating the right-hand side we find eventually

−1 = K1 (x0)
∂

∂x0
Ta,b (x0) + K2 (x0)

∂2

∂x2
0

Ta,b (x0) . (1.245)

This equation [103] solves the problem of after which mean time the region
[a, b] will be left according to the boundary conditions. Absorption in 1D
implies that no time is required to leave if we are initially at the boundary,
i.e.,

Ta,b(a) = Ta,b(b) = 0 . (1.246)

In the case when x = a is a reflectory boundary

∂Ta,b(x0)
∂x0

∣
∣
∣
∣
x0=a

= 0 . (1.247)

It is of interest to introduce higher moments of the mean first passage
problem as [104]

T
(n)
a,b = −

∞∫

0

tn
∂

∂t
Wa,b (t, x0, t0) dt. (1.248)

Again, for these moments one is able to find a chain of coupled differential
equations from (1.238). By denoting T

(0)
a,b = 1 and Ta,b = T

(1)
a,b , one obtains

−nT
(n−1)
a,b = K1 (x0)

∂

∂x0
T

(n)
a,b (x0) + K2 (x0)

∂2

∂x2
0

T
(n)
a,b (x0) (1.249)

with boundary conditions as for T
(1)
a,b .

The solution of (1.249) is as follows: Denoting

u
(n)
a,b =

dT
(n)
a,b

dx0
, (1.250)

it follows from (1.249) with a < b that
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u
(n)
a,b (x0) = exp

(

−Φ(x0)
)



Cn − n

x∫

a

T
(n−1)
a,b (x′)
K2 (x′)

exp
(

Φ(x′)
)

dx′



 , (1.251)

where Cn are constants and

Φ(x) =
∫ x K1(y)

K2(y)
dy . (1.252)

In addition, we can apply boundary conditions and consider special cases:
In the case x = a is a reflectory state and b absorbing, u

(n)
a,b (a) = 0, T

(n)
a,b (b) =

0, one gets

T
(n)
a,b (x0) = n

b∫

x0

exp
(

− Φ(x)
)

(
∫ x

a

T
(n−1)
a,b

K2 (x′)
exp

(

Φ(x′)
)

dx′

)

dx . (1.253)

Particularly, for the first moment we find the expression

T
(1)
a,b (x0) =

b∫

x0

dx exp
(

− Φ(x)
)







x∫

a

dx′ exp
(

Φ(x′)
)

K2 (x′)







. (1.254)

If both a and b are absorbing states, integration of (1.251) gives

T
(n)
a,b (x0) = Cn

x0∫

a

exp
(

− Φ(x)
)

dx −

n

x0∫

a

exp
(

− Φ(x)
)

(
∫ x

a

T
(n−1)
a,b

K2 (x′)
exp

(

Φ(x′)
)

dx′

)

dx,(1.255)

with Cn following from T
(n)
a,b (b) = 0.

The most common situation corresponding to the rate problem in the
overdamped oscillator concerns the probability of leaving a region (−∞, b). It
means that x = b is an absorbing boundary and a is shifted to minus infinity.
The physically relevant situation in that case is that there is no probability at
−∞ and also its derivative vanishes. The flux of probability is exactly zero,
which is called a natural boundary condition of a physical problem.

Evaluation of the integrals in (1.254) with the kinetic coefficients specified
to the bistable oscillator are performed again by local Gaussian approxima-
tions if ∆U � kBT . The internal integral in (1.241) is maximal near the
attractor x = x1. In contrast, the first integrand contributes significantly
near the barrier only. If the initial state x0 is sufficiently far left of the bar-
rier x2 the mean first passage time is simply the inverse of the overdamped
rate (1.224),

T−∞,b(x0) = Q(b)
1
rK

. (1.256)
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Q(b) is a form factor which grows abruptly from zero to one if the final state
b approaches and crosses the position of the barrier x2. At b = x2, Q = 1/2.

A generalization to higher-dimensional cases can be found in [108] and
more recent development is included in [52–62,87,88,106,109–112].

1.2.7 Summary

We have introduced elements of stochastic processes and applied them to
dynamical systems. Despite the fact that the basic knowledge and application
of stochastic processes in physics goes back to the beginning of the 20th
century, the usage of stochastic tools in physics is still a modern, agile and
attracting field.

Nowadays inspiring investigations with stochastic methods come from re-
search related to biophysics, which inherently combines nonlinearities, non-
equilibrium, signals and noise or fluctuations. Some of the methods developed
in statistical physics are helpful in the consideration of the biological sphere.
But, most important, the new area of physical research impacts on the for-
mation of novel stochastic techniques at a qualitatively higher level. The
interested reader is referred to the large amount of published literature and
to Chap. 3.

1.3 Synchronization of Periodic Systems

1.3.1 Introduction

One of the fundamental nonlinear phenomena observed in nature and, partic-
ularly, one of the basic mechanisms of self-organization of complex systems [7]
is synchronization. From the most general point of view, synchronization is
understood as an adjustment of some relations between characteristic times,
frequencies or phases of two or more DS during their interaction. Synchro-
nization has attracted much attention in different fields of natural sciences.
For instance, applications of synchronization in engineering sciences [113]
have achieved great practical importance and are widely employed. More-
over, specifying to biophysics, several kinds of synchronization have been
observed in biological systems. We would like to mention here the behavior
of cultured cells [114] and of neurons [115–117] and, indeed, synchronization
of biological populations [118]. More complex types of synchronization have
been reported recently for the human cardio-respiratory system [119] as well
as in magnetoencephalography [120]. Synchronization of regular, chaotic and
stochastic oscillations has been reported for ensembles of interacting oscilla-
tors [121–131] and for extended systems [132–135].

The classical theory of synchronization distinguishes between forced syn-
chronization by an external periodic driving force and mutual synchronization
between coupled oscillators. In both cases manifestations of synchronization
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are the same. They are determined by an interplay of time scales by phase
locking or, respectively, natural frequency entrainment or due to suppression
of inherent frequencies.

From the mathematical point of view, the theory of phase synchronization
of periodic self-sustained oscillators is well established [1, 113, 136, 137]. If
Φ(t) is the phase of a periodic oscillator and Ψ(t) is the phase of an external
periodic force or, otherwise, the phase of another periodic oscillator coupled
with the first one, then the condition of synchronization can be formulated
as

|mΦ(t) − nΨ(t)| = const. , (1.257)

where m and n are integers. This condition defines the locking of two phases
Φ(t) and Ψ(t) and requires that the phase difference should be constant.
Synchronization is also defined as frequency entrainment, provided that the
frequencies of the oscillator and the driving force are in rational relation.
In this section we mostly consider the simplest case of 1:1 synchronization
(m = n = 1).

Synchronization of periodic self-sustained oscillators in the presence of
noise has been studied in detail by Stratonovich [92]. The theory shows that
noise counteracts synchronization in a sense that under the influence of noise
synchronization occurs only for a limited time interval.

Recent developments in nonlinear dynamics have opened up new per-
spectives for the theory of synchronization. From the modern point of view,
regular (e.g., periodic or quasiperiodic) oscillatory regimes are only a small
fraction of all possible types of dynamical behavior. With an increase in the
degree of nonlinearity and the dimension of the phase space of the forced or
the mutually interacting DS nonperiodic or chaotic behavior is more typi-
cal. The effect of noise on nonlinear systems far from equilibrium is also a
nontrivial problem. Nonequilibrium noise might even change the qualitative
behavior of a DS, inducing new regimes which are absent in the noiseless sys-
tem [44]. Recently, synchronization-like phenomena have been also found in
stochastic systems, such as systems with noise-induced switchings [138–140]
and excitable systems of the neuron model type [131, 141, 142]. Rigorously
speaking, these systems are not self-sustained. Their signals are not periodic,
and the power spectrum may not contain peaks at any distinct frequencies.
However, it has been proved that the concept of phase and frequency locking
can be applied to this case as well. That is why the problem of an extension
of the concept of synchronization to chaotic and stochastic motion is of great
interest and importance.

In this section we describe the results of the classical theory of synchro-
nization of periodic oscillations. Using as an example the Van der Pol oscil-
lator, we consider forced and mutual synchronization, including the analysis
of noise effects. The generalization of the classical theory of synchronization
to chaotic and stochastic oscillations is made and discussed in Sects. 2.2 and
2.3 and in Chap. 3.
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1.3.2 Resonance in Periodically Driven
Linear Dissipative Oscillators

To study synchronization one has to assign a phase to the dynamical vari-
able(s) of the system. First we discuss the notion of a phase for periodic
motions. Later, in the following sections, this notion will be generalized for
more complicated types of dynamics.

The term “phase” was originally introduced for harmonic processes with
x(t) = A cos(ω0t + ϕ0) (see, for instance, [1, 91]). As long as x(t) is strictly
periodic with a constant amplitude, A, one defines Φ(t) = ω0t + ϕ0 as the
instantaneous phase. The amplitude and phase can be found from x(t) and
a second conjugated variable, e.g., its time derivative ẋ(t). This definition
of amplitude and phase corresponds to a transition to the system of polar
coordinates with the radius vector A and the angle Φ given by

A =

√

x2 +
ẋ2

ω2
0

, tan Φ = − ẋ

x ω0
, (1.258)

if ω0 is the circular frequency of the harmonic process which can be found,
for example, by comparing the maximal elongation of the coordinate and the
maximal velocity.

A similar approach is the analytic continuation of a periodic signal into
the complex plane. Instead of the real signal x(t), we introduce

z(y) = x(t)+iy(t) = A exp i (ω0t+ϕ0) = A [cos(ω0t + ϕ0) + i sin(ω0t + ϕ0)] ,

(1.259)
which is now complex. The harmonic oscillation is pictured as a rotation of
the vector A with constant angular velocity ω0 in the complex plane. The
phase of oscillations corresponds to the angle of the vector A, and the angle
ϕ0 at t = 0 is the initial phase.

However, these definitions cannot be directly used in nonlinear dissipative
systems, since the oscillations in such systems are not harmonic. How to
proceed in more complex situations? Several approaches will be discussed
below for different examples. The particular procedure depends on both the
type of process generated by the DS and the structure of the driving force.

Let us consider a linear dissipative oscillator driven by a periodic harmonic
force:

ẍ + γẋ + ω2
0x = a cos(Ωt) , (1.260)

where γ is the damping coefficient and ω0 is the natural frequency of the
oscillator. Without the periodic force it has a single stable attractor at the
origin, x0 = ẋ0 = 0. Let us discuss the dynamical properties of this linear
system in the amplitude–phase description. In the limit of small friction γ �
2ω0 and small amplitude of the driving force, the nonlinear transformation
to the amplitude A(t) and phase Φ(t) by
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x(t) = A(t) cos Φ(t) , ẋ(t) = v(t) = −A(t)Ω sin Φ(t) (1.261)

will give us a well-known asymptotic solution. It is reasonable to decom-
pose the phase variable Φ(t) into two parts of fast and slow motion: Φ(t) =
Ωt + ϕ(t). The new function ϕ(t) represents the phase difference between
the driving force and the response of the system and is a slowly changing
function in comparison with the external force.

We proceed with the usual technique employed in the theory of oscilla-
tions, developed by Bogolyubov and Mitropolski [91]. Inserting (1.261) into
(1.260) gives a DS which describes the time evolution of A(t) and ϕ(t). With
the assumption made about the smallness of the friction coefficient and the
applied force, we can suppose that the amplitude and the phase difference
change on time scales larger than the period of the applied force. This gives
the possibility to average the dynamics of A and ϕ over one period, fixing
their values during this period. As a result we derive the following approxi-
mate, so-called reduced amplitude–phase equations:

Ȧ = −γ

2
A − µ sin ϕ , ϕ̇ = ∆ − µ

A
cos ϕ . (1.262)

Therein µ = a/2Ω is the normalized amplitude of the force and ∆ = (ω2
0 −

Ω2)/2Ω ≈ ω0 − Ω is the frequency mismatch or the detuning between the
natural frequency of the autonomous system (1.260) and the frequency of the
external signal.

The long-term asymptotics of the amplitude and the phase are given by
the stationary solutions of (1.262):

A0 =
a

√

(ω2
0 − Ω2)2 + γ2Ω2

, ϕ0 = arctan
γΩ

Ω2 − ω2
0

, (1.263)

which fully characterize the response of a linear dissipative oscillator to a har-
monic force. We note that expressions for the stationary amplitude and the
phase shift (1.263) obtained in the framework of the amplitude–phase approx-
imation are in full agreement with the exact theory discussed in textbooks.

The phenomenon of resonance manifests itself in the abrupt increment of
the amplitude of the forced oscillations when the external frequency Ω nearly
coincides with the natural frequency ω0 of the oscillator. In detail, the peak
is located at Ω = ωp =

√

ω2
0 + γ2/2 ≈ ω0. Resonance is characterized by this

typical dependence of the amplitude A0(Ω), which is called the resonance
curve.

It is important to note, that the phase of the periodically driven damped
harmonic oscillators is completely defined by the external force. In contrast, in
the next section we consider so-called self-sustained oscillators with periodic
behavior located on a limit cycle. Their natural frequency and amplitude
without external forcing are given by the internal parameters of the oscillator.
The phase gives the geometrical position on the limit cycle. Contrary to
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the linear driven oscillator with fixed phase as considered above, the phase
variable of self-sustained oscillators possesses a zero Lyapunov exponent along
the limit cycle.

1.3.3 Synchronization of the Van der Pol Oscillator.
Classical Theory

The Van der Pol model is the simplest example of a Thomson-type generator.
It is the prototype for many mechanical, electronic and biological systems
exhibiting self-sustained oscillations. It is a generic model for an investigation
of the different types of synchronization which can occur when the oscillator
is periodically driven by or coupled with another oscillator.

First we discuss the unperturbed regime of the autonomous Van der Pol
oscillator. Afterwards we elucidate different types of bifurcations and elabo-
rate when synchronization to an external periodic force appears. Finally, we
consider mutual synchronization of two coupled Van der Pol oscillators.

The autonomous Van der Pol oscillator is described by the second order
differential equation

ẍ − ε(1 − x2)ẋ + ω2
0x = 0 , (1.264)

where ε is a small parameter characterizing the degree of nonlinearity and
corresponding to the feedback strength in an electronic realization of the
oscillator and ω0 is the frequency of the oscillator. For −2ω0 < ε < 0 this
system possesses a single stable state of equilibrium of the focus type at the
origin with the eigenvalues

s1,2 =
ε

2
± iω0

√

1 −
(

ε

2ω0

)2

. (1.265)

For ε > 0 the limit cycle is the single stable limit set of the system, and its
basin of attraction is the whole phase plane.

From the physical point of view, the notion stable “limit cycle” corre-
sponds to self-sustained oscillations. The properties of this regime, e.g., am-
plitude and frequency, do not depend on initial conditions and are fully de-
termined by the internal properties of the system. For 0 < ε < 1 the period
of self-sustained oscillations is

T =
2π

|Im s1,2|
, Im s1,2 = ω0

√

1 −
(

ε

2ω0

)2

, (1.266)

i.e., the frequency of oscillations is close to the natural frequency ω0 of the
resonance circuit.

To discuss synchronization we add a periodic force to (1.264) and consider
the dynamics of the periodically driven Van der Pol oscillator whose equation
is written in the form
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ẍ − ε(1 − x2)ẋ + ω2
0x = a cos(Ωt) . (1.267)

We consider the case of small nonlinearities 0 < ε < 1 and introduce in-
stantaneous phase and amplitude according to the nonlinear transformation
(1.261) with Φ(t) = Ωt + ϕ(t). Sufficient conditions for slow amplitude and
phase evolution are ω0 � Ω, small feedback ε and that the amplitude of the
periodic force also scales with ε.

The exact equations for the phase and the amplitude contain fast oscillat-
ing terms which can be neglected, taking into account frequency selectivity
of the Van der Pol oscillator, by averaging over the period of the external
force. Omitting this procedure of straightforward but tedious transforma-
tions [91], we further discuss the slow dynamics of the first approximation
for the instantaneous amplitude A(t) and phase ϕ(t):

Ȧ =
εA

2

(

1 − A2

A2
0

)

− µ sin ϕ , ϕ̇ = ∆ − µ

A
cos ϕ , (1.268)

again with µ = a/2Ω, the frequency mismatch ∆ = (ω2
0 −Ω2)/2Ω ≈ ω0 −Ω

and A0 = 2 being the amplitude of the stable cycle of the autonomous case.
A stationary fixed point of the system (1.268) corresponds to the peri-

odic solution of the initial system (1.267), and a periodic solution of (1.268)
corresponds to a quasiperiodic one of (1.267).

Now we turn to the bifurcation analysis of the mechanism of synchroniza-
tion. Assume that the system (1.268) has a fixed point Ȧ = 0, ϕ̇ = 0 as a
solution which is stable. The condition ϕ̇ = 0 means that Φ̇ = Ω, that is,
the frequency of the forced oscillations coincides with the frequency of the
external force. Thus, the generator is tuned to the external signal frequency
and the effect of forced synchronization takes place.

This phenomenon can be studied in more detail. The phase space of the
DS (1.268) is a two-dimensional cylinder. Setting the right-hand sides of the
system (1.268) equal to zero, we find the coordinates of the stationary fixed
points pictured in Fig. 1.26a. One easily finds three different points with
amplitudes A > 0: a stable node at O1, a saddle at O2 and an unstable node
at O3.

The presence of a stable point O1 corresponds to the regime of 1:1 syn-
chronization (A = const., ϕ = const.). Increasing the detuning parameter ∆,
the points O1 and O2 approach each other, merge and disappear through a
saddle-node bifurcation at a certain critical value of ∆ (see Fig. 1.26b). As
a result, a limit cycle C1 of the second kind (that is, surrounding the whole
cylinder) is born. This bifurcation corresponds to a loss of synchronization,
and a regime with two frequencies appears in the original system (1.267).
Indeed, if ϕ(t) changes periodically, then Φ̇ �= Ω. The region in the space
of control parameters ∆ and µ, in which the fixed point O1 remains stable,
represents a synchronization region with frequency relation 1:1.

In order to find the boundaries of this region one solves the linearized
equations of (1.268) in the vicinity of the fixed point O1 for its eigenvalues.
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Fig. 1.26. Structure of the phase space of system (1.268) for different values of the
parameters: (a) ε = 0.1, µ = 0.042, ∆ = 0.02; (b) ε = 0.1, µ = 0.042, ∆ = 0.032

A vanishing real part of the eigenvalues indicates the values of the control
parameters where the stability of this point is lost or O1 disappears. This
problem can be solved analytically, and the results are shown in Fig. 1.27.

Inside the first synchronization region (region I) the fixed point O1 is a
stable node. On the lines la a saddle-node bifurcation of O1 and O2 takes
place. Moving from I to III by crossing the lines la corresponds to the birth
of a limit cycle C1. Thus, the synchronous regime is destroyed by increasing
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Fig. 1.27. Bifurcation diagram for systems (1.267) and (1.268). Lines la and lc cor-
respond to the saddle-node bifurcation in (1.268); lb denotes the line of Andronov–
Hopf bifurcation in (1.268); ld is the bifurcation line of a cycle C2 crisis; lh is the
bifurcation line of torus birth from the resonant cycle in the original system (1.267)
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Fig. 1.28. Phase portraits of the system (1.268) for different values of the para-
meters: (a) ε = 0.1, µ = 0.056, ∆ = 0.028; (b) ε = 0.1, µ = 0.056, ∆ = 0.031;
(c) ε = 0.1, µ = 0.056, ∆ = 0.033

the absolute frequency mismatch or decreasing the effective amplitude of the
external force. Bifurcation points B and C are of the cusp type where all three
fixed points O1, O2 and O3 merge. The line lc corresponds to the merging and
disappearance of another pair of the fixed points, O2 and O3. This line can
be determined by a stability analysis of these points. However, since the fixed
point O1 is unaffected by this local bifurcation, it still exists and is stable
above the line lc (see Fig. 1.28a). Therefore, inside region II synchronization
still takes place.

Furthermore, let us increase the absolute value of the detuning with fixed
µ and ε above lc in the region II. Starting from a certain critical value of
|∆| the point O1 looses its stability through the Andronov-Hopf bifurcation
indicated in Fig. 1.27 by the lines lb. Outside the region bounded by lb a stable
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limit cycle C2 of the first kind (lying fully within the surface between −π
and π) appears. This bifurcation again destroys synchronous oscillations as
the original system (1.267) performs quasiperiodic oscillations [see Fig. 1.28b].

As the detuning is increased further, the re-building of quasiperiodic
regime C1 into C2 can be observed (see Fig. 1.28c). Above the line lc the
Andronov–Hopf bifurcation of equilibrium takes place at lines lb shown in
Fig. 1.27. At lines ld C2 is transformed into C1.

Thus, regions of 1:1 synchronization for the Van der Pol oscillator are
bounded by the bifurcation lines la below points B, C and by the lines lb
beyond these points. Inside the regions of synchronization the original sys-
tem (1.267) exhibits a stable limit cycle whose frequency coincides with the
frequency of the external force. This fact means that both the frequency and
the phase are locked by the external force.

Let us summarize the bifurcations described above. Assume that the para-
meters of the oscillator are inside region I of Fig. 1.27. As seen from Fig. 1.26a,
inside region I the separatrices of the saddle O2 are pointing into the stable
node O1. Both points lie on the closed invariant curve l going around the
full cylinder. This curve is the image of a two-dimensional resonant torus in
the original system (1.267). The stable point corresponds to the synchronous
regime of the oscillator. At the onset of the saddle-node bifurcation on lines
la of Fig. 1.27, curve l takes the form of an ergodic curve, being the image of
a two-dimensional ergodic torus in the original phase space. In region III the
motion is quasiperiodic and is represented by an ergodic torus in the phase
space of the system.

On line lc the torus is destroyed and the invariant curve disappears. How-
ever, the point O1 exists and is stable. Therefore, the synchronization regime
in region II is no longer related to a resonance on the torus, but to a stable
limit cycle of the original system (1.267). At the transition from region III to
region II, the synchronous regime is realized by passing through the bifurca-
tion lines lb. Quasiperiodic oscillations in system (1.267) disappear softly, and
the regime of the stable limit cycle arises. This mechanism is called synchro-
nization via asynchronous suppression of oscillations. In terms of the reduced
equations (1.268) this mechanism corresponds to a suppression of periodic
oscillations with an amplitude A(t) and to the appearance of the regime with
A = const. The bifurcation lines la and lb converge at points D, which are
called Bogdanov–Takens points [137].

It is clear that the phenomena for higher values of the parameter µ, espe-
cially the crisis, cannot be described exactly by the reduced equations (1.268)
derived under the assumption of small forcing. In this case, numerical meth-
ods should be applied to the original system (1.267) to build the bifurcation
lines. The results of a numerical study are incorporated in Fig. 1.27. For
the case of weak external driving (µ ≤ 0.05 in region I) numerical and ana-
lytical results coincide completely. Also lines of the Andronov–Hopf bifurca-
tion (lines lh into Fig. 1.27) and Bogdanov–Takens points D were confirmed
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numerically. However, this good quantitative agreement disappears above and
left and right, respectively, from the points D (torus birth lines). Nevertheless,
it is important to emphasize that the numerically obtained bifurcations inside
region I coincide with results of the analytical study of the reduced dynamics.
Moreover, these bifurcations are typical for any periodic self-sustained oscil-
lator synchronized by an external periodic force in the case of small detuning.

Synchronization as Phase and Frequency Locking. Though the bifur-
cation scenario significantly depends on the dynamics of the instantaneous
amplitude, synchronization can be well represented by the long-term behav-
ior of the instantaneous frequency of the oscillator (1.267). The instantaneous
frequency is given by the time derivative of the instantaneous phase

ω(t) =
d
dt

Φ(t). (1.269)

Obviously, this additional reduction of the dynamics, allowing a consid-
eration of the phase dynamics only, requires further assumptions on the am-
plitude dynamics. It will be valid for the interesting situation of a small
amplitude of the external periodic force: µ/(A0ε) � 1 or respectively,
ε � a/(2ΩA0). This condition can be established in region I of the bifurca-
tion diagram Fig. 1.27. It is possible to show that in this case the amplitude
changes much faster than the phase (to do so we compared coefficients of
the linear terms, which define relaxational time scales). That is why we can
substitute ϕ = const. into the first equation of the system (1.268) and use
the unperturbed amplitude A0 in the equation for the phase:

d
dt

ϕ = ∆ − µ

A0
cos ϕ . (1.270)

This equation is one of the canonical ones in the theory of phase synchro-
nization [143]. It can be re-written in a potential form: ϕ̇ = −dU(ϕ)/dϕ with
the potential U(ϕ) = −∆ ·ϕ+ µ

A0
sin ϕ. Therefore, the dynamics of the phase

difference ϕ can be viewed as the motion of an overdamped particle in the
tilted potential U(ϕ) (see Fig. 1.29). The detuning parameter ∆ determines
the slope of the potential, and µ/A0 gives the height of the potential barriers.
For ∆ < µ/A0 the minima of the potential ϕk = arccos (∆ · A0/µ) + 2πk,
k = 0,±1,±2, . . ., correspond to synchronization as the instantaneous phase
difference remains constant in time.

The instantaneous frequency is constant and matches the driving fre-
quency in the regime of synchronization. Otherwise it changes in time and
we have to calculate the mean frequency as 〈ω〉 = limT→∞ 1/T

∫ T

0
ω(t)dt.

The dependence of the frequency difference 〈ω〉 − Ω on detuning is shown
in Fig. 1.30 by the solid line. As clearly seen from this figure, the mean fre-
quency coincides with the external frequency Ω in a finite range of ∆. The
plateau in Fig. 1.30 corresponds to the synchronization region. Outside this
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Fig. 1.29. Potential profile U(ϕ) in the case of phase locking for ∆ �= 0
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Fig. 1.30. Dependence of the difference between the mean frequency of oscillations
in system (1.270) and the frequency of the external signal versus the detuning
parameter for different values of the noise intensity D

region, 〈ω〉 differs from the external frequency and two-frequency oscillations
occur.

If we increase the detuning further, then higher-order regimes of synchro-
nization can occur. To study these regimes, we introduce the ratio of the
driving frequency to the mean frequency of the oscillator, θ = Ω/〈ω〉, also
called the winding number. This ratio tells us how many periods of external
force are within one period of the oscillator. Up to now we have studied the
regime of 1:1 synchronization when θ = 1. As we already know, this situation
corresponds to the existence of the resonance stable limit cycle on a two-
dimensional torus. However, with an increase of the driving frequency Ω, θ
also increases and can take both rational and irrational values. The structure
of the phase trajectories on the torus will undergo bifurcations. Irrational
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Fig. 1.31. (a) Typical resonance regions for the indicated values of winding number
for the system (1.267); (b) Winding number Θ versus detuning parameter δ for the
circle map

numbers of θ belong to ergodic motion on the torus. In this case the phase
trajectories cover the whole surface of the torus. Rational values of θ conform
to resonant limit cycles lying on the torus surface.

Such resonant motion on the torus is unambiguously related to synchro-
nization, with locked frequency relations corresponding to the winding num-
ber. Some regions of high-order synchronization for different winding numbers
are presented in Fig. 1.31a. These regions are called “Arnold tongues”. The
rational values m:n of the winding number are indicated by the numbers in
the plot. As additionally seen from the figure, the tongues are topologically
equivalent to the synchronization region at the basic tone 1:1.

The phenomenon of synchronization, whose mathematical image is repre-
sented by a resonant torus with winding number Θ =m:n, can be described
using the circle map. The Poincaré section along the small torus circle gives
rise to a one-dimensional map of the circle onto itself. It has the following
form:

ϕn+1 = ϕn + f(ϕn) , f(ϕn) ≡ f(ϕn + 2π k) . (1.271)

Each iteration of the map corresponds to one turn of a phase trajectory along
the large torus circle, and in general leads to a shift of a representative point
on the circle at a certain angle ϕ. If a finite number of points is fixed on the
circle as n → ∞, we can observe the image of a resonant torus. If the number
of points is infinite and they cover the circle densely, we deal with the image
of an ergodic torus in the form of an invariant circle.

The circle map is governed by the following difference equation:

xk+1 = xk + δ − K

2π
sin (2π xk), mod 1. (1.272)

For K = 0 the parameter δ represents the winding number, which charac-
terizes the ratio of two frequencies of uncoupled oscillators. If 0 < K < 1,
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the δ is the frequency detuning. The map (1.272) may have a period n cycle
(n = 1, 2, . . .). In this case we deal with the effect of synchronization. To
illustrate this, let us calculate the winding number Θ,

Θ = lim
k→∞

xk − x0

k
, (1.273)

as a function of the parameter δ (in addition one needs to exclude the opera-
tion mod 1). The results are shown in Fig. 1.31b and indicate the presence of
plateaus, which correspond to the synchronization regions with different ra-
tional winding numbers Θ = m : n. The graph in Fig. 1.31b also demonstrates
the property of self-similarity. The self-similarity manifests itself through the
fact that between any two plateaus with winding numbers Θ1 = r : s and
Θ2 = p : q there always exists one more region of synchronization with wind-
ing number Θ = r+p

s+q . For this reason, the dependence Θ(δ) in Fig. 1.31b is
called the “devil’s staircase”. On the parameter plane (K, δ) synchronization
regions, inside which the winding number Θ = m : n is rational, form Arnold
tongues.

Mutual Synchronization: Two Coupled Van der Pol Oscillators. So
far we have been concerned with forced synchronization when the driving
influence on the oscillator is unidirectional without a feedback to the force.
However, let us imagine the periodic force originates from a second Van der
Pol oscillator and both generators interact but have different natural fre-
quencies, ω01 and ω02. The interaction is symmetric, and we assume that one
oscillator is driven by the second one with strength γ and in proportion to
the difference of their coordinates. From the physical point of view it may be
realized by a spring with constant γ which tries to synchronize the motion of
the two oscillators. The particular equations are

ẍ1 − ε(1 − x2
1)ẋ1 + ω2

01x1 = γ(x2 − x1) ,

ẍ2 − ε(1 − x2
2)ẋ2 + ω2

02x2 = γ(x1 − x2) , (1.274)

and starting from here we call γ the coupling parameter.
The question to be sketched here is: Is it possible to observe the effect of

synchronization in this case and what are its peculiarities?
The answer can be given qualitatively by means of an analysis of the

bifurcations in system (1.274). The structure of the bifurcation diagram for
the system (1.274) is pictured in Fig. 1.32. As seen from the figure, the
bifurcation diagram for the case of the two coupled oscillators is topologically
equivalent to the situation in Fig. 1.31a. From the viewpoint of a bifurcation
analysis the case of mutual synchronization is completely equivalent to the
earlier studied case of forced synchronization.
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Fig. 1.32. Resonance regions for the system (1.274) in the “detuning–coupling”
parameter plane. The parameters are p = ω02/ω01 and ε = 2.0

1.3.4 Synchronization in the Presence of Noise.
Effective Synchronization

The above considered problems do not take into account the presence of
random perturbations. Noise is inevitably present in any real system in the
form of natural (or internal) fluctuations caused by the presence of dissipation
as well as in the form of random perturbations of the environment.

The introduction of a phase in a noisy oscillating system requires a prob-
abilistic approach. With the transformation (1.261), the instantaneous am-
plitude and phase change into stochastic variables since x(t) and ẋ(t) are
stochastic. With noise taken into account, the amplitude and phase dynam-
ics is described by stochastic differential equations including a noise term,
ξ(t).

To extract information from the stochastic dynamics we have to calcu-
late the moments of A(t), Φ(t) and ω(t) = Φ̇(t) or consider the transition
probability density p(A,Φ, t |A∗, Φ∗, t0) which is sufficient for Markovian ap-
proximations. It gives the conditional probability to observe the amplitude A
and the phase Φ at time t if started at time t0 with A∗ and Φ∗, respectively.

In noisy systems the phase Φ(t) as well as the difference with respect to
the external driving ϕ(t) = Φ(t)−Ωt performs motion similar to a Brownian
particle in the potential U(ϕ) (see Fig. 1.29). The stochastic process ϕ(t) can
be decomposed into two parts: a deterministic part given by its mean value or
the mean value of the instantaneous frequency and a fluctuating part char-
acterized, for example, by the diffusion coefficient around its mean value.
Synchronization as a fixed relation between two phases is always interrupted
by randomly occurring abrupt changes in the phase difference, also known as
phase slips. Therefore, in noisy oscillating systems the notion of synchroniza-
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tion must be mathematically expressed by relations and conditions between
the moments of the fluctuating phase or its corresponding probability density.

Langevin Equation Description. The stochastic force ξ(t) is added to
the deterministic differential equation of a periodically driven Van der Pol
oscillator as

ẍ − ε(1 − x2)ẋ + ω2
0x = a cos Ωt +

√

2D0 ξ(t) . (1.275)

For simplicity we argue that the noise is part of the external driving force.
We assume ξ(t) to be normalized Gaussian white noise with zero mean, and
the new parameter, D0, is the noise intensity.

Following [92] with the ansatz (1.261) we can obtain reduced equations
for the stochastic amplitude and phase difference (comp. (1.173) and the
following elucidation and (1.198)) :

Ȧ =
εA

2

(

1 − A2

A2
0

)

− µ sin ϕ +
D

A
+
√

2Dξ1(t) ,

ϕ̇ = ∆ − µ

A
cos ϕ +

√
2D

A
ξ2(t) , (1.276)

where (1.276) is an Ito equation and ξi are statistically independent Gauss-
ian noise sources obeying 〈ξi(t)ξj(t + τ)〉 = δi,jδ(τ) and 〈ξi(t)〉 = 0 for both
i, j = 1, 2. D = D0/(2Ω2) denotes the common intensity of the two trans-
formed noise sources ξ1,2.

Again let us consider the most interesting situation corresponding to re-
gion I in Fig. 1.27. For small noise, D � εA2

0/2 and a weak external signal this
probability distribution is narrowly centered at A ≈ A0, i.e., the amplitude
will be very close to its unperturbed value A0. This gives us the possibility
to consider the second equation of (1.276) separately by substitution of A0

instead of A:

ϕ̇ = ∆ − µ

A0
cos ϕ +

√
2D

A0
ξ2(t) . (1.277)

Therefore, the dynamics of the phase difference ϕ can be viewed as the mo-
tion of an overdamped Brownian particle in the tilted potential U(ϕ) (see
Fig. 1.29), with the slope defined by the detuning. The parameter µ/A0 = ∆s

gives the height of the potential barriers. The presence of noise leads to the
diffusion of the instantaneous phase difference in the potential U(ϕ), that is,
ϕ(t) fluctuates for a long time inside a potential well (which means phase
locking) and rarely makes jumps from one potential well to another (i.e.,
displays phase slips) changing its value by 2π.

Time series of the phase difference for different values of the noise inten-
sity D obtained numerically by integrating (1.277) are shown in Fig. 1.33.
As clearly seen from this figure, for small noise intensities (D = 0.02) the
instantaneous phase difference remains bounded during a long observation
time. The increase of the noise intensity leads to a decrease of the average
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Fig. 1.33. Time dependence of the instantaneous phase difference for the indicated
values of noise intensity. Other parameters are ∆ = 0.06, µ = 0.15 and A0 = 1

duration of residence times inside a potential well and causes the hopping
dynamics of the phase difference (D = 0.07). Although the phase locking
epochs, ϕ ≈ const., are clearly seen, the mean value of the phase difference
increases in time. Evidently, for a large slope (detuning) and for a small
value of the periodic force amplitude, the jumps from one metastable state
to another become very frequent, and the duration of phase locking segments
becomes very short. This leads to the growth of phase difference (see the
dependences of ϕ(t) for D = 0.22), causing a change of the mean frequency
of oscillations.

Fokker–Planck Equation Description. The FPE corresponding to the
stochastic differential equation (1.277) is

∂p(ϕ, t)
∂t

= − ∂

∂ϕ

[

(∆ − ∆s cos ϕ) p(ϕ, t) − Q
∂p(ϕ, t)

∂ϕ

]

, (1.278)

where Q = D/A2
0. The phase difference ϕ is an unbounded variable and

the stochastic process defined by (1.278) is nonstationary. However, since
coefficients of the FPE are periodic with respect to ϕ, we can introduce the
probability distribution P (ϕ, t) of the wrapped phase, which is bounded in
[−π, π]:

P (ϕ, t) =
∞∑

n=−∞
p (ϕ + 2πn, t) . (1.279)

The FPE for P (ϕ, t) has the same structure as (1.278), but now we can find
the stationary probability density Pst(ϕ), taking into account the periodic
boundary conditions P (−π, t) = P (π, t) and the normalization condition
∫ π

−π
P (ϕ, t)dϕ = 1 [92]:
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Pst(ϕ) = N exp
(

∆ · ϕ − ∆s sin ϕ

Q

)∫ ϕ+2π

ϕ

exp
(

−∆ · ψ − ∆s sin ψ

Q

)

dψ ,

−π ≤ ϕ ≤ π, (1.280)

where N is the normalization constant. In the particular case when ∆ = 0,
e.g., when the natural frequency of the oscillator exactly matches the driving
frequency, the stationary probability density of the wrapped phase difference
takes a simple form:

Pst(ϕ) =
1

2πI0(∆s/Q)
exp

(
∆s

Q
cos(ϕ + π/2)

)

, −π ≤ ϕ ≤ π, (1.281)

where I0(z) is the modified Bessel function. For a large noise intensity,
I0(∆s/Q) ≈ 1 and exp [(∆s/Q) cos (ϕ+π/2))] ≈ 1; thus the stationary prob-
ability density tends to the uniform one, Pst(ϕ) = 1/2π. This situation in-
deed corresponds to the absence of synchronization. Otherwise, for very weak
noise, cos(ϕ+π/2) ≈ 1− (ϕ+π/2)2/2, I0(∆s/Q) ≈ exp (∆s/Q)/

√

2π∆s/Q,
and the stationary probability density has a Gaussian shape: Pst(ϕ) =
exp (−∆s(ϕ+π/2)2/2Q)/

√

2π∆s/Q centered at ϕ0 = −π/2. The pronounced
Gaussian peak in the stationary probability density of the phase difference
indicates phase locking. In the limit Q → 0 the probability density becomes
a δ-function, i.e., limQ→0 Pst(ϕ) = δ(ϕ + π/2).

The mean frequency of oscillations 〈ω〉 can be found via the stationary
probability density Pst(ϕ) of the wrapped phase difference:

〈ω〉 = 〈ϕ̇〉 + Ω =
∫ π

−π

(

∆ − ∆s cos ϕ
)

Pst(ϕ)dϕ + Ω , (1.282)

where Ω is the frequency of a synchronizing signal. The difference between
the mean frequency and the external frequency versus detuning parameter
is presented in Fig. 1.30 (curves 2 and 3) for different values of the noise
intensity. With an increase in noise intensity the region of frequency lock-
ing shrinks, which is another manifestation of noise-induced breakdown of
synchronization in the Van der Pol oscillator.

Let us now go back to Fig. 1.33, where the noise-induced motion of the un-
wrapped phase difference is shown. Let the distribution of the phase difference
be initially concentrated at some initial value ϕ0, i.e., p(ϕ, t = 0) = δ(ϕ−ϕ0),
so that 〈ϕ2(t = 0)〉 = 0. Due to noise the phase difference diffuses according
to the law 〈ϕ2(t)〉 ∝ Deff · t [92], where Deff is the effective diffusion constant
which measures the rate of diffusion:

Deff =
1
2

d
dt

[

〈ϕ2(t)〉 − 〈ϕ(t)〉2
]

. (1.283)

In the absence of noise there is no phase diffusion, Deff = 0. With the increase
in noise intensity the effective diffusion constant also increases, so that the
diffusion is enhanced. In Fig. 1.33 this situation corresponds to very frequent
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phase slips. The effective diffusion constant is therefore connected to the
mean duration of the phase locking epochs: the longer the phase locking
segments, the slower the spreading of the phase difference, and, thus, the
smaller the effective diffusion constant. The effective diffusion constant can be
estimated analytically for the case of (1.277) by solving the Kramers problem
[87] regarding the escape from a well of the potential U(ϕ) [92]:

Deff =

√

∆2
s − ∆2

2π

[

1 + exp
(

−2π∆

Q

)]

× exp
[

− 2
Q

(
√

∆2
s − ∆2 − ∆ · arcsin

∆

∆s

)]

. (1.284)

Thus, the effective diffusion measures the average number of 2π-jumps of the
phase difference per unit time and grows exponentially with an increase of
the noise intensity.

1.3.5 Phase Description

To discuss synchronization in complex systems as an entrainment of frequen-
cies and phases an instantaneous phase Φ(t) has to be assigned to aperiodic
processes. Compared with harmonic and quasiharmonic oscillations this will
require new concepts. Therefore, we first look for possible generalizations of
the notion of an instantaneous phase as introduced in Sect. 1.3.2. The pro-
posed approaches do not account for generality. A lot of other alternatives
exist. The usage of various definitions strongly depends on the DS and the
signals under consideration.

Later on, we show their applicability for the purpose to find synchroniza-
tion in stochastic systems, specifically for examples of stochastic resonance
(SR). With a given stochastic Φ(t), stochastic synchronization will be defined
by making use of the mean velocity or mean angular frequency,

〈ω〉 = lim
T→∞

1
T

∫ t0+T

t0

dΦ(t)
dt

dt = lim
T→∞

1
T

(Φ(t0 + T ) − Φ(t0)), (1.285)

and the effective diffusion coefficient defined by (1.283).

Phases in the Analytic Signal Representation. One new concept is
found from a generalization of the analytic expansion of oscillations and was
successfully applied to a description of chaos synchronization. For a signal
x(t) one constructs an analytic signal w(t) in the complex plane by

w(t) = x(t) + iy(t) = A(t)eiΦ(t). (1.286)

Then by definition the instantaneous amplitude and phase straightforwardly
follow:

A(t) =
√

x2(t) + y2(t) , Φ(t) = arctan
(y

x

)

+ πk, k = 0,±1, . . . (1.287)
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Immediately, one can define the instantaneous frequency as

ω(t) =
d
dt

Φ(t) =
1

A2(t)
[x(t)ẏ(t) − y(t)ẋ(t)]. (1.288)

Until now the choice of y(t) has not been specified. The key point in the
analytic signal representation [144–146] is the usage of the Hilbert transform
of x(t) in the definition of y(t). It is not a unique choice of selecting the
conjugated variable. Therefore, let a short motivation support this selection
showing that it generally complies with well-known definitions.

In case of harmonic processes one adds the signal x(t) = A cos(ωt) to the
conjugated signal y(t) = A sin(ωt) to obtain the correct phase Φ = ωt. In
more detail, this map x → y can be found by x taking y = −ẋ sign(ω)/ω.
Hence, it differs for positive and negative frequencies, but the map effects a
phase shift, only. For positive frequencies y advances x by +π/2; in contrast
to the case of ω < 0 where it is delayed by −π/2.

Additionally one requires that y(t) results from a convolution of x(t), i.e.,

y(t) =
∫ ∞

−∞
K(t − τ)x(τ)dτ. (1.289)

What does the convolution kernel look like for the harmonic process? Convo-
luting x(t) means, in the spectral representation, multiplication of the Fourier
transforms of x and K to obtain that of y. According to the convolution the-
orem of Fourier transforms:

yω = Kω xω. (1.290)

The necessary phase shift is obtained by multiplying xω by ± i. Hence, the
Fourier transform of the kernel is

Kω = −i sign(ω) (1.291)

with sign(0) = 0. Performing the inverse Fourier transform gives

K(t) =
1
πt

. (1.292)

The described procedure for harmonic signals can be generalized to com-
plex processes and gives an advice how to construct the analytic signal. With
the kernel y(t) is given by the Hilbert transform as

y(t) = H[x] =
1
π

∫ ∞

−∞

x(τ)
t − τ

dτ =
1
π

∫ ∞

0

x(t − τ) − x(t + τ)
τ

dτ. (1.293)

The integral in the latter expression is taken in the sense of the Cauchy
principal value.
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As a linear transformation H[x] obeys several useful properties. Every
Hilbert transform of a linear superposition of two signals is the superposition
of the separate Hilbert transforms. If the time of the signal is shifted by some
amount, it also shifts the argument of the Hilbert transform. The Hilbert
transform of a Hilbert transform gives the negative original signal. Even
functions give odd Hilbert transforms and vice versa. The original signal and
the Hilbert transform are orthogonal. The full energy of the original signal,
the integral of x2(t) over all times, is equal to the energy of the transformed
one.

Hilbert transforms can also be performed for stochastic variables. In the
case of a stochastic signal x(t), the convergence of this integral should be un-
derstood in the sense of the mean square [147]. One finds that the transformed
signal is correlated in the same manner as the original signal. But both are
anticorrelated, with the correlation function being the Hilbert transform of
the autocorrelation function.

In some special cases a simpler definition can be used to introduce the
instantaneous amplitude and phase of oscillations [150]. This approach may
be understood as a generalization of the classical phase definition to the case
when the phase trajectory rotates irregularly about an unstable equilibrium
point with some time-dependent velocity. In this case the instantaneous phase
can be defined as the rotation angle of a radius vector projection on some
plane of variables (x, z). The radius vector specifies the phase point location
and usually originates from the equilibrium point. One can introduce the
following change of variables:

x(t) = A(t) cos Φ(t),
z(t) = A(t) sin Φ(t). (1.294)

Instantaneous phase Φ(t) and amplitude A(t) are determined by a formula
similar to (1.287), but the Hilbert transform y(t) is replaced by the dynam-
ical variable z(t). Again, the instantaneous frequency ω is introduced as a
derivative of the instantaneous phase and the mean frequency 〈ω〉 is given by
(1.285).

Phases for Discrete Events. Stochastic bistable dynamics at the global
scale can be well approximated as a discrete process. We will interpret changes
of the phase as a hopping between attractors. These events occur at random
times tk given by a distribution function or a dynamical process. Thus the
stochastic bistable system is reduced to a simple point process.

The time between two successive crossings is τ(t) = tk+1 − tk, tk < t <
tk+1. The instantaneous phase of x(t) can be defined as

Φ(t)lin = π
t − tk

tk+1 − tk
+ π k, tk < t < tk+1, (1.295)

which is a piecewise linear function of time. The mean frequency is
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〈

ω
〉

= lim
M→∞

1
M

M∑

k=1

π

tk+1 − tk
. (1.296)

Another definition neglects the linear interpolation between two subse-
quent events. One takes

Φ(t)discr = πk(t) = π
∑

k

θ(t − tk), (1.297)

with k(t) being a sequence of increasing integers and tk is again subject to
some dynamics or distribution. θ(x) stands for the Heavyside function. The
mean frequency of this definition takes the form of an average of a sequence
of delta pulses:

〈ω〉 = π
〈∑

k

δ( tk − t )
〉

. (1.298)

Correspondingly, the continuous stochastic process is mapped on a di-
chotomic process

x(t) = exp[iΦ(t)discr]. (1.299)

It represents a time sequence of successive states +1 and −1, as in a two-state
approximation. The monotonous increase in the phase Φ(t) characterizes the
temporal structure of the time sequence. Generally, it may be periodic or
random or somewhere in between as in the case of SR. Thus, we are speaking
about dichotomic periodic and random sequences, respectively.

Let us compare the definitions of the phase (1.295) and (1.297) with that
of the analytic signal concept [148]. For this purpose we analytically calcu-
late the Hilbert transform of a dichotomic process x(t) (even k stands for a
transition −1 → +1)

y(t) =
1
π

∑

k

(−1)k ln
∣
∣
∣
∣

t − tk
t − tk−1

∣
∣
∣
∣
=

2
π

∑

k

ln
∣
∣
∣
∣

t − t2k

t − t2k+1

∣
∣
∣
∣
. (1.300)

For t < tk, x(t) = −1, and the Hilbert transform y(t) decreases monotonously
and reaches −∞ at t = tk. At this moment x switches to +1, and y(t) starts
to grow, becoming +∞ at t = tk+1. Thus an arrow following x and y in phase
space completes a circle during two subsequent transitions, returning to the
initial state x = −1. According to definition (1.287) the instantaneous phase
from the analytic signal reads

Φ(t)Hilbert = πk(t) + arctan
y(t)
x(t)

, (1.301)

with y(t) given by (1.300).
Figure 1.34 compares the three different phases graphically. Both, the

piecewise linear and the piecewise constant definition perfectly shadow ΦHilbert

from the analytic signal. Hence, we find that the phase concept in stochastic
point processes well approximates the findings from the analytic signal [148].
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Fig. 1.34. Comparison of the three different definitions of the instantaneous phase.
Both the linear interpolation and the definition by piecewise constant segments
approximate the phase from the analytic signal well

The above-described definitions of the instantaneous phase and the mean
frequency can be used to develop a concept of phase–frequency synchro-
nization of both chaotic oscillations and stochastic processes in bistable and
excitable systems. A generalized definition of phase synchronization, which
can also be applied to these cases, is based on the restriction [149,150]:

lim
t→∞

|nΦ1(t) − mΦ2(t)| < const. (1.302)

Numerical experiments indicate that, although the precise values of in-
stantaneous phases and frequencies defined in different approaches may be
slightly different, the behavior of the mean frequencies practically proves to
be the same. Hence, any of the above-listed definitions of an instantaneous
phase can be used to identify the phase–frequency synchronization. The mean
frequency is related to a characteristic time of the system. For the regime of
spiral chaos, the characteristic time is represented by the average return pe-
riod 〈T 〉 of a phase trajectory to some secant surface. The following equality
is valid:

〈T 〉 =
2π

〈ω〉 . (1.303)

Moreover, in this case the mean frequency of oscillations 〈ω〉 practically,
i.e., within the calculation accuracy, coincides with the basic frequency ω0

occurring in the power spectrum.

1.3.6 Summary

Concluding this section we point out that the analysis of different types of
synchronization allows us to formulate some fundamental properties and cri-
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teria of synchronization. The fact that we first considered the case of forced
synchronization is not of principal importance. It was important that the
external force is periodic. This follows, in particular, from the qualitative
consideration of the dynamics of two symmetrically coupled generators. It
is known that oscillations in real generators are periodic but not harmonic.
The basic indication of both forced and mutual synchronization is the appear-
ance of the oscillatory regime with a constant and rational winding number
θ = m:n which holds in some finite region of the system’s parameter space.
This region is called the synchronization region and is characterized by the
effects of phase and frequency locking. Frequency locking means a rational
ratio of two initially independent frequencies ω1/ω2 = m:n everywhere in the
synchronization region. Phase locking means that the instantaneous phase
difference is constant in the synchronization region (ϕ̇ = 0, ϕst = const.).

The influence of noise on an oscillator leads to destruction of the synchro-
nization regime in the sense of the above-given definition. However, if the
noise intensity is relatively small, the main physical properties of synchro-
nization may survive.

Due to phase diffusion, the definition of synchronization in the presence
of noise appears to be “blurred”. That is why the conditions of synchroniza-
tion should be defined in a statistical way, by using the notion of effective
synchronization [151]. This can be done by imposing a certain restriction on
some statistical measures of corresponding stochastic processes. In particular,
a definition of effective synchronization can be based on the following items:

• The stationary probability density of the wrapped phase difference. In this
case a peak in Pst(ϕ) should be well expressed in comparison to the uniform
distribution.

• The mean frequency. This should match the driving frequency (up to some
small statistical error).

• The effective diffusion constant. This measure should be small enough so
that the phase locking segments are much longer than one period of the
external force. In other words, this restriction requires that the oscillator
phase is locked during a considerable number of periods of the external
signal and can be expressed as

Deff � Ω

n
, (1.304)

where n � 1 is the number of periods of the external force.
Utilizing these definitions of effective synchronization, we can define syn-

chronization regions in the parameter space.
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2. Dynamical Chaos

2.1 Routes to Chaos

2.1.1 Introduction

A dynamical system (DS) displays its nonlinear properties in different ways
with variation of system control parameters. An increase in the influence
of nonlinearity causes the dynamical regime to become complicated. Simple
attractors in the phase space of a dissipative system are replaced by more
complicated ones. Under certain conditions, nonlinearity can lead to the on-
set of dynamical chaos. Moving along a relevant direction in parameter space,
one can observe a set of bifurcations resulting in the appearance of a chaotic
attractor. Such typical bifurcation sequences are called the bifurcation mech-
anisms, or the scenarios of the transition to chaos.

The first scenario of transition to nonregular behavior was proposed by
L.D. Landau in 1944 [1] and independently by E. Hopf [2] when attempt-
ing to explain the onset of turbulent behavior in fluid flow with increasing
Reynolds number. The corresponding bifurcation mechanism was called the
Landau–Hopf scenario. The latter involves a sequence of bifurcations (of the
Andronov–Hopf bifurcation type), each giving rise to a new incommensurate
frequency. As a result, a multi-frequency quasiperiodic regime appears fol-
lowing a multi-dimensional torus in the phase space of a DS. If the number k
of bifurcations is large enough and if one takes into account fluctuations in-
evitably present in real systems, the power spectrum of the process becomes
practically continuous. However, such multi-frequency oscillations, even in
the presence of noise, are not chaotic, since the Landau–Hopf scenario does
not involve the development of instability and intermixing in the system.
Besides, this scenario is not able to explain the onset of oscillations with
continuous spectrum in low-dimensional systems.

In the early 1970s the idea of developing turbulence through quasiperiodic
oscillations was revised by D. Ruelle, F. Takens and S. Newhouse [3,4]. They
connected turbulent behavior with chaotic dynamics and were the first to
introduce the notion of a strange attractor (SA) as the mathematical image
of chaos in a DS. It was also shown that a strange attractor can arise in
low-dimensional systems (N ≥ 3).
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By now there are three known major routes to chaotic attractors: (i) the
period-doubling cascade route; (ii) the crisis and the intermittency route;
and (iii) the route to chaos through quasiperiodicity destruction. These bi-
furcation mechanisms can already be realized in three-dimensional phase
space [5–9]. Each transition to chaos has universality properties, i.e., cer-
tain generalities, independent of a particular form of the evolution operator.
In the present section we describe these three routes to chaos in detail. In
the framework of the quasiperiodic route attention will be given to the pecu-
liarities of the development of nonregular dynamics in systems with a robust
ergodic two-dimensional torus.

2.1.2 Period-Doubling Cascade Route. Feigenbaum Universality

A large number of various DS, ranging from the simplest maps to distributed
systems demonstrate the transition to chaos through a cascade of period-
doubling bifurcations [10–17]. Since the period-doubling is a codimension one
bifurcation, this route assumes a one-parametric analysis and is as follows:
Let α be the control parameter of a DS, and at some α = α0 the system has
a stable limit cycle C with period T0(α). As α is increased to α1, the su-
percritical period-doubling bifurcation takes place, and a period-2 cycle (2C)
appears. At α = αk, k = 1, 2, 3, . . ., the system exhibits an infinite sequence
of period doublings of 2kC. The power spectrum shows new components that
appear at subharmonics of the natural frequency ω0 = 2π/T0, and thus the
period-doubling bifurcation sequence is sometimes called the subharmonic
cascade. When k → ∞, the bifurcation points accumulate to some critical
value α = αcr, at which the period becomes infinite and the power spectrum
continuous. For α > αcr, there occur aperiodic oscillations which are un-
stable according to Lyapunov. These oscillations follow a chaotic attractor in
the system phase space. Figure 2.1 exemplifies the changes which happen in
the generator with inertial nonlinearity (GIN) of Anishchenko–Astakhov [14]
during the period-doubling route to chaos. The generator is governed by the
following system of equations:

ẋ = mx + y − xz ,

ẏ = −x , (2.1)
ż = −gz + gΦ(x) ,

where Φ(x) = x2 for x ≥ 0 and Φ(x) ≡ 0 for x < 0.
It has been experimentally established that in all continuous-time sys-

tems, a chaotic attractor arising through the period-doubling route has frac-
tal dimension 2 < d < 3, and its section resembles a horseshoe in shape. In
this case a Poincaré surface of section map can be modeled, for example, by
the simplest and well-known Henon map [18]:

xn+1 = 1 + yn − ax2
n ,

yn+1 = bxn . (2.2)
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Fig. 2.1. Period-doubling cascade route in a GIN (2.1). (a) Projections of phase
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The map (2.2) is invertible and contracts a square element for b < 1. As one
of the system control parameters a or b is varied, the Henon map demon-
strates the period-doubling route to chaos. If the square element is strongly
contracted, then the transverse Cantor structure of a horseshoe can be ne-
glected and points in the map can be considered to lie on one smooth bent
curve. Introducing a new coordinate along this curve one can arrive at a non-
invertible model map of an interval to itself, which is defined by a smooth
first return function with a single extremum. The map stretches an interval
element and then “folds” it into the same interval. Since the first return func-
tion is assumed to be smooth everywhere, then, as in the case of horseshoe,
there exists a region near the extremum for which stretching is absent. The
existence of such a region causes the birth of stable periodic orbits inside
a chaotic zone, so-called stability windows. Periodic windows can be elimi-
nated provided that the map stretches everywhere. An example is the tent
map. However, in such models periodic windows disappear together with a
period-doubling cascade. The theory of the period-doubling route to chaos
was developed by M. Feigenbaum on the basis of one-dimensional model
maps [19–21], and thus, this bifurcation mechanism was named the Feigen-
baum scenario.

The simplest model for studying the Feigenbaum scenario is the logistic
map

xn+1 = f(xn) = r − x2
n , (2.3)

where r is a parameter.
The logistic map may also be re-written in another form which can be

reduced to (2.3) by a linear change of variables, e.g.,

xn+1 = αxn(1 − xn) , x′
n+1 = 1 − βx′2

n . (2.4)

Consider how the map (2.3) evolves as the parameter r increases. The
map has a fixed point x0 > 0, also called a period-1 cycle, or 1-cycle,
with coordinate x0 = −1/2 +

√

r + 1/4. The fixed point x0 is stable in
the interval r ∈ [−1/4, 3/4], and its multiplier µ1 is equal to −2x0. At
r = r1 = 3/4, we have µ1 = −1, and the first period-doubling bifur-
cation takes place, giving rise to a stable period-2 cycle. The latter con-
sists of two points x1,2 = 1/2 ±

√

r − 3/4. The 2-cycle has a multiplier
µ2 = f

′

x(x1)f
′

x(x2) = 4(1 − r) and is stable in the range r ∈ [3/4; 5/4].
At r = r2 = 5/4, the second period-doubling bifurcation occurs, and a
period-4 cycle is created, etc. By this means, map (2.3) generates the se-
quence of period-doubling bifurcation values of the parameter r, namely,
r1 = 3/4, r2 = 5/4, r3 ≈ 1.368099, r4 ≈ 1.394046, r5 ≈ 1.399637, . . ., with
the accumulating point rcr ≈ 1.40115 . . .. When k → ∞, the convergence rate
of the bifurcation values tends to some finite limit

δ = lim
k→∞

rk+1 − rk

rk+2 − rk+1
= 4.669201 . . . (2.5)
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Fig. 2.2. Phase-parametric diagram of dynamical regimes for the map (2.3)

Figure 2.2 shows a phase-parametric diagram for the logistic map (2.3), which
appears to be typical for systems exhibiting the period-doubling route to
chaos. Such a diagram is called Feigenbaum’s tree. The bifurcation diagram
readily illustrates the scale splitting of the dynamical variable as well as
scaling properties, i.e., scale invariance, when the same image element repro-
duces itself under an arbitrary small change in scale. Denoting the distances
between similar points of the tree branches by ∆k (see Fig. 2.2), we can in-
troduce the scaling factors ak = ∆k/∆k+1, which in the limit as k → ∞
converge to

a = lim
k→∞

∆k

∆k+1
= −2.5029 . . . 1 (2.6)

Numerical investigations have shown that the values of δ and a do not
depend on the particular form of a map. However, it is necessary for the map
to be unimodal, i.e., it must have a single extremum, and for the extremum
to be quadratic.

Feigenbaum explained the universal character of quantitative regularities
of the period-doubling route and created the universality theory [19–21]. For
analyzing maps of the logistic parabola type he applied a renormalization-
group (RG) method, which is as follows: Assume that at the critical point
r = rcr we have the map

xn+1 = f0(xn) , (2.7)

1 The negative sign means that the vector that connects similar points reverses its
direction each time.
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where f0 is an arbitrary unimodal function with a quadratic extremum at
xn = 0, and f0(0) = 1. Applying the map (2.7) twice we obtain a map
xn+1 = f0

(

f0(xn)
)

. Re-scale the variable x → x/a0 so that the new map is
also normalized to unity at the origin, i.e., a0 = 1/f0

(

f0(0)
)

. Denote the new
map as xn+1 = f1(xn) = a0f0

(

f0(xn/a0)
)

. Repeating this procedure many
times we derive the renormalization-group equation

fi+1(x) = aifi

(

fi(x/ai)
)

, (2.8)

where ai = 1/fi

(

fi(0)
)

. Due to the self-similarity, the following limits exist
at the critical point:

lim
i→∞

fi(x) = g(x) , lim
i→∞

ai = a . (2.9)

Function g(x) represents a fixed point of the functional Feigenbaum–Cvitanovic
equation:

T̂ g(x) = ag
(

g(x/a)
)

= g(x) , (2.10)

where T̂ is a doubling operator and a = 1/g
(

g(0)
)

. For the critical point
corresponding to the period-doubling transition to chaos, the boundary con-
ditions for (2.10) are g(0) = 1 and g′x(0) = 0. The function g(x) is universal
because it does not depend on a particular form of the original map and
is defined by the order of extremum only. Taking into account the variable
x renormalization, this function yields an asymptotic form of 2i-times the
applied evolution operator at the critical point as i → ∞. The constant a
involved in the fixed point equation is also universal. The fixed point solution
of (2.10) was numerically found by Feigenbaum under the assumption of a
quadratic extremum and of the above-stated boundary conditions. It is given
by

g(x) = 1 − 1.5276330x2 + 0.1048152x4 + 0.0267057x6 − 0.0035274x8

+0.0000816x10 + 0.0000254x12 − 0.0000027x14 . (2.11)

The universal Feigenbaum constant, a appears to be equal to
−2.502907876 . . .

If the evolution operator f(xn) is slightly perturbed due to a small devi-
ation of the parameter from its critical value, the doubling operator T̂ and
the function g(x) turn out to be perturbed as well. Having linearized T̂ at
the point g(x) for r = rcr, one can obtain an operator L̂g which defines the
behavior of perturbations as well as the equation for eigenfunctions h(x) and
eigenvalues ρ of the linearized operator:

L̂gh(x) = a
[

g′
(

g(x/a)
)

h(x/a) + h
(

g(x/a)
)]

= ρh(x) . (2.12)

The behavior of perturbations will be mainly determined by the eigen-
values exceeding unity in modulus. In the case of quadratic extremum,
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there is one such value corresponding to an unremovable component of the
perturbations. This value defines a second universal Feigenbaum constant,
ρ1 = δ = 4.6692016091 . . .

Maps with a nonquadratic extremum are characterized by different values
of the universal constants [22–25]. However, computer and physical experi-
ments performed for a variety of continuous-time systems, including distrib-
uted ones, with the Feigenbaum scenario to chaos have shown that the scal-
ing factor a and the convergence rate of the bifurcation sequence δ coincide
within the experimental error with the theoretical values found for maps with
a quadratic extremum. Evidently, the typical case is when a map generated
by the evolution operator of a continuous-time system in the neighborhood
of the critical point may be approximated by a one-dimensional map with a
quadratic extremum. Other cases are considered to be atypical.

The Feigenbaum scenario is universal and its universality manifests itself
in the behavior of spectral amplitudes of subharmonics which appear with
each period doubling. The ratio of amplitudes of subharmonics ω0/k and
ω0/(k + 1) in the limit as k → ∞ is a universal constant [6, 26].

At r = rcr, the logistic map (2.3) generates a limit set of points, which
is called the Feigenbaum attractor. It is strange since its capacity dimension
is fractal but nonchaotic because the Lyapunov exponent λ is zero at the
critical point. The universal properties also hold in a supercritical region
r > rcr both for model maps and for continuous-time systems. The Lyapunov
exponent having become positive beyond the critical point grows according
to the universal law [27]

λ ∼ εγ , γ =
ln 2
ln δ

≈ 0.4498, (2.13)

where ε = r−rcr is the supercriticality parameter. By analogy with the theory
of second-type phase transitions, the coefficient γ is called the critical index
of the transition to chaos. Figure 2.3 shows numerically computed Lyapunov
exponents as a function of the control parameter for the logistic map and for
GIN.

Beyond the critical point, systems with period doubling demonstrate a
cascade of merging bifurcations. This kind of bifurcation consists in merging
parts, or bands, of a chaotic attractor, which are visited by a phase point in a
certain order. Each attractor-band-merging bifurcation is accompanied by the
disappearance of appropriate subharmonics in the power spectrum. A frag-
ment of the band-merging bifurcation cascade observed in system (2.1) [8,28]
is illustrated in Fig. 2.4 with phase portraits and corresponding power spec-
tra. For a one-dimensional map, the band-merging bifurcation looks like the
merging of neighboring intervals which are filled with points of a chaotic set.
Denote by rk the parameter values corresponding to the merging bifurca-
tions, where index k = 1, 2, . . . increases when approaching the critical point
from right to left. 2i-periodic orbits exist on intervals to the left of the criti-
cal point, whereas 2i-band chaotic attractors are realized in the parameter r
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Fig. 2.3. Lyapunov exponents versus the control parameter (a) for the logistic map
and (b) for GIN with g = 0.3 (λ2(m) ≡ 0)
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range to the right of rcr. Thus, the parameter r-axis is divided into two ranges
which appear to be symmetric with respect to the critical point. Segments of
multi-band chaotic sets at relevant points of each interval possess a property
of similarity, with scaling factors tending to the universal constant a. The
values rk accumulate to the critical point with a rate equal to the universal
constant δ.

Apart from chaotic trajectories, in a supercritical region the logistic map
has a set of periodic orbits with different periods. In 1964, A.N. Sharkovsky
established a hierarchy for cycles of a smooth noninvertible map of an interval
[29]. A cycle of period M is considered to be more complicated than that of
period N if the existence of the N -cycle follows from the existence of the
M -cycle. Their periods are said to be in the ratio of order M → N . In
correspondence with Sharkovsky’s theorem, this ratio arranges cycles in a
certain order, the so-called Sharkovsky series:

3 → 5 → 7 → 3 · 2 → 5 · 2 → 7 · 2 → . . . → 3 · 22

→ 5 · 22 → 7 · 22 → . . . → 23 → 22 → 2 → 1. (2.14)

A 3-cycle appears to be most complicated in the sense of Sharkovsky. Its
existence implies the existence of any period cycles. Independently, T. Li
and J.A. Yorke came to the analogous result in 1975 [30]. In their work en-
titled “Period three implies chaos”, they also proved that a map having a
3-cycle can be characterized by the presence of chaotic sets. However, nei-
ther Sharkovsky’s theorem nor Li–Yorke’s theorem tells us about the stabil-
ity of cycles. Stability regions, or periodic windows, of cycles with different
periods are arranged in the supercritical region according to the sequence:
6, 5, 3, 6, 5, 6, 4, 6, 5, 6, . . . As a rule, the window width and bifurca-
tion parameter values corresponding to window boundaries are different for
various DS. However, the regularity of stability window emergence with in-
creasing supercriticality is so universal that it does not depend even on the
order of extremum of the first return function. The widest periodic window
corresponds to a 3-cycle generated by a tangent bifurcation. With increasing
parameter the doubling process of the 3-cycle occurs, resulting in the onset
of chaos. Cycles of higher periodicity arise and evolve in periodic windows in
a similar manner. Generally speaking, in the supercritical region one can find
a stability window of a certain cycle in an arbitrary small neighborhood of
any parameter value. The cycle can have a very high period, and its stability
window can be so narrow that the cycle cannot be detected even in numerical
experiments. However, this fact implies that a chaotic attractor arising via
the period-doubling cascade is nonrobust towards small perturbations and
nonhyperbolic. The Lyapunov exponent dependences, shown in Fig. 2.3, are
also typical for nonhyperbolic attractors.
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2.1.3 Crisis and Intermittency

As knowledge of dynamical chaos developed, it has been established that a
transition from regular oscillations to chaos may suddenly occur as a result of
only one bifurcation. Such a mechanism for chaos onset is said to be hard and
is accompanied by the phenomenon of intermittency. The latter is a regime
when chaotic behavior (turbulent phase), immediately appearing after pass-
ing the border of chaos, is interspersed with periodic-like behavior (laminar
phase) in an intermittent fashion. Figure 2.5 illustrates a time realization of
oscillation process x(t) typical for intermittency. The abrupt transition to
chaos and the intermittency phenomenon were first considered in the works
of I. Pomeau and P. Manneville [31,32]. The corresponding bifurcation mech-
anism of the chaos onset was thus called the Pomeau–Manneville scenario.

In the intermittency route, the sole bifurcation of a periodic regime may
cause drastic qualitative changes of the structure of phase space as well as of
the structure of the basin of attraction of an attractor. Such attractor bifurca-
tions are called crises [33,34]. Typical crises of periodic regimes (limit cycles)
are related to certain kinds of local codimension one bifurcations, namely,
tangent (saddle-node), subcritical period-doubling and subcritical torus birth
bifurcations (the Andronov–Hopf bifurcation in the Poincaré map). In the
case of tangent bifurcation a stable limit cycle disappears through merging
with a saddle cycle. In the two other situations, the limit cycle still exists
after a bifurcation but becomes unstable, i.e., a saddle one.

Suppose that for α < αcr a system has an attractor in the form of a
limit cycle C. When any of the aforementioned bifurcations takes place at
α = αcr, the attractor C disappears. For α > αcr, phase trajectories coming
from the local vicinity of the former cycle C must fall on another attractor
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Fig. 2.5. Intermittency in the Lorenz system (ẋ = σ(y − x), ẏ = −xy + rx − y,
ż = xy − bz) for r = 166.1, σ = 10, b = 8/3
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which either already exists in the system for α < αcr or is generated by the
bifurcation. Assume that the system already possesses one more attractor. In
this case the bifurcation results in a simple transition from one attractor to
another. Intermittency does not arise even if the new regime is chaotic. This
fact can be explained as follows: The chaotic attractor is not created through
a limit cycle crisis and does not capture the local neighborhood of cycle C.
Phase trajectories leave this region and never return. The question is: What
are the conditions under which the limit cycle crisis results in the appearance
of intermittent chaos? Evidently, this situation may happen when at the
bifurcation point α = αcr there already exists a chaotic set which becomes
attracting for α > αcr and encloses the local vicinity of cycle C, so that
a phase trajectory moving on the chaotic attractor returns to this vicinity
from time to time. Such system behavior is realized provided a saddle limit
set which is involved in the cycle C crisis possesses a homoclinic structure. As
an example, Fig. 2.6 illustrates the tangent bifurcation of cycles, leading to
chaotic intermittency. The saddle cycle has a pair of robust homoclinic orbits.
At the bifurcation point α = αcr, a nonrobust saddle-node orbit is created
which possesses a homoclinic structure in its vicinity. Phase trajectories move
away from it and approach it along double-asymptotic homoclinic curves
(they correspond to the intersection points of the manifolds in the section
shown in Fig. 2.6). For α > αcr the nonrobust closed orbit disappears and
the non-attracting homoclinic structure becomes attracting. As a result, a
chaotic attractor emerges in the system phase space. Trajectories lying on
this attractor are concentrated in the region of the former saddle-node orbit
and repeat the motion on it for a long period of time. This motion testifies
to a laminar phase of intermittent chaos.

Intermittency related to the tangent bifurcation of cycles is most typical
for a variety of DS [31, 32, 35]. This phenomenon was revealed and studied
much earlier than other types of intermittency and is called type-I intermit-

CC

a b
Fig. 2.6. Qualitative picture of the Poincaré section for the tangent bifurcation of
stable and saddle cycles, leading to the emergence of chaos via intermittency: (a)
before the bifurcation and (b) at the bifurcation point
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tency. To analyze its properties the following one-dimensional model map is
usually used:

xn+1 = f(xn) = ε + xn + β|xn|p + “return”. (2.15)

Here, the parameter ε denotes the supercriticality (α−αcr) of the system since
in (2.15) a tangent bifurcation occurs at ε = 0. p is an integer number and
defines the order of an extremum of the first return function. The return of a
phase point to a bounded interval of x values can proceed in different ways.
For example, for the map presented in Fig. 2.7 the branch of the return func-
tion graph on the interval AB serves to return the phase point. Figure 2.7a
shows the map at the moment of tangent bifurcation, ε = 0. The dashed lines
constructed by using Lamerei’s diagram indicate a double-asymptotic trajec-
tory of a saddle-node. The map displayed in Fig. 2.7b corresponds to the
case ε � 0. In the neighborhood of the former fixed point, a so-called channel
opens up along which the phase point moves for a long period of time. This
motion reflects the laminar phase of intermittency. When the point leaves the
channel, a turbulent phase is observed in the course of which the point must
reach the interval AB, the latter providing its return to the channel again.

The study of maps in the form of (2.15) reveals certain quantitative fea-
tures of the type-I intermittency, e.g., how the average duration of laminar
phase depends on the supercriticality. These regularities are universal in the
sense that they do not depend on a particular form of a map and are de-
termined by the order of an extremum p. For a typical case p = 2, these
features are in good agreement with results of numerical and experimental
investigations of the type-I intermittency in continuous-time systems. The
RG method has been applied to study this type of intermittency [7]. Let
us consider a map at the critical point and restrict ourselves to the interval

xn

xnf(    ) xnf(    )

xnA B0 0

a b

Fig. 2.7. The map modeling type-I intermittency (a) at the bifurcation point and
(b) immediately after the bifurcation
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xn ∈ [0, 1], where the map is defined by a monotonic function of the form
xn+1 = f0(xn), with f0(0) = 0 and f ′

0(0) = 1. Repeating all the arguments
as in the case of Feigenbaum scenario one can derive the same Feigenbaum–
Cvitanovic equation (2.10) but with different boundary conditions: g(0) = 0
and g′(0) = 1. The RG method enables us to theoretically determine the
asymptotic behavior of the average duration of laminar phase, which reads

Tl ∼ ε−ν , ν =
p − 1

p
. (2.16)

For p = 2, we have Tl ∼ 1/
√

ε, which concurs well with results of numerous
experiments.

As already mentioned, other types of intermittency are associated with a
subcritical Andronov–Hopf bifurcation in the Poincaré section and to a sub-
critical period doubling. They are called type-II and type-III intermittency,
respectively [9]. Type-II intermittency is modeled by the map of the plane,
defined in polar coordinates:

rn+1 = (1 + ε)rn + βr3
n + “return”,

φn+1 = φn + Ω , mod 1 . (2.17)

For ε = 0, the map displays the subcritical Andronov–Hopf bifurcation in
which an unstable invariant circle and a stable focus merge. The unstable
invariant circle corresponds to a saddle torus in a continuous-time system
with dimension N ≥ 4. For type-II intermittency the asymptotic behavior of
the average duration of laminar phase is defined by

Tl ∼
1
ε

, (2.18)

where ε = α − αcr is the supercriticality parameter.
Type-III intermittency can be described by a one-dimensional model map

in the form
xn+1 = −(1 + ε)xn − βx2

n + “return” . (2.19)

For ε = 0, the subcritical period-doubling bifurcation of a period-1 cycle
occurs in the map. This type of intermittency has been observed experimen-
tally [36]. The average duration of laminar phase is evaluated approximately
by the same ratio as in the case of type-II intermittency.

2.1.4 Route to Chaos via Two-Dimensional Torus Destruction

According to the Ruelle–Takens–Newhouse scenario, the transition from qua-
siperiodicity to chaos occurs after the third frequency birth when unstable,
according to Lyapunov chaotic trajectories appear on a three-dimensional
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torus [3,4]. However, the study of particular DS has shown that the appear-
ance of chaos following the destruction of two-frequency quasiperiodic motion
is also a typical scenario of the transition to chaos. According to this route,
a two-dimensional (2-D) torus, T 2, in phase space is destroyed, and trajec-
tories fall in a set with fractal dimension 2 + d, d < 1. This set is created
in the vicinity of T 2 and thus called a torus-chaos [37]. Such a route may be
thought of as a special case of the quasiperiodic transition to chaos.

Unlike the Feigenbaum scenario, the transition T 2 → strange attractor
(SA) requires a two-parameter analysis. This is associated with the fact that
the character of quasiperiodic motion depends on a winding number θ, which
determines the ratio of basic frequencies of oscillations. If the frequencies are
rationally related, i.e., the winding number θ has a rational value, resonance
on a torus takes place and, consequently, periodic oscillations are realized. If
the frequencies become irrationally related, the motion on the torus will be
ergodic. The transition from the torus T 2 to chaos at a fixed winding num-
ber can be realized only by controlling simultaneously at least two system
parameters. On the torus birth line, specified by the bifurcation condition
µ1,2 = exp(±jφ), where µ1,2 is a pair of complex conjugate multipliers of a
limit cycle, the winding number is defined as θ = φ/2π. Resonance regions
on a two control parameter plane have a tongue-like shape and originate
from relevant points on the torus birth line. Such regions are called Arnold
tongues (in honor of V.I. Arnold, who studied the structure of resonance
regions [38,39]). Each direction of the paths on the parameter plane is char-
acterized by its own sequence of bifurcations associated with the appearance
and disappearance of different resonances on the torus.

Two-Dimensional Torus Breakdown. The results obtained by mathe-
maticians in the framework of the qualitative theory of DS play an important
role in understanding the mechanisms which lead to the destruction of T 2 and
to the birth of torus-chaos. One of the basic results was described in [40,41]
and is concerned with the breakdown of T 2 as well as possible routes to chaos
from T 2.

Consider an N -dimensional DS (N ≥ 3):

ẋ = F (x,α) , (2.20)

where components of the vector-function F belong to the smoothness class
Ck, k ≥ 3, and α is the system parameter vector.

(i) Suppose that at α = α0 a smooth attracting torus T 2(α0) exists in
some region of the phase space of system (2.20) and has a robust struc-
ture consisting of stable and saddle cycles. This case corresponds to a
resonance region. The surface of the resonance torus is formed by the
closure of the unstable manifold W u of the saddle cycle Csd(α0) run-
ning to the stable cycle Cst(α0), i.e., T 2(α0) = W u(α0)

⋃
Cst(α0). The

Poincaré section of a resonance torus is shown in Fig. 2.8a. Assume that
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Fig. 2.8. (a) The section of resonance torus T 2 and (b) the qualitative bifurcation
diagram for the breakdown of T 2. Routes of torus destruction are indicated by A, B
and C

the invariant torus does not exist at α = α1. Then, for the continuous
curve α(s), where s ∈ [0, 1], α(0) = α0, α(1) = α1, there exists a
value s = s∗ such that at α(s∗) the torus T 2 is destroyed and no longer
exists in system (2.20) at least for some arbitrary values of s, close to
s∗, s > s∗;

(ii) Let for all 0 ≤ s < s∗ the attracting set of (2.20) coincides with the
torus T 2

(

α(s)
)

;
(iii) Suppose that in the limit s → s∗ the unstable manifold W u

(

α(s)
)

of the
saddle cycle does not enclose periodic orbits, different from Cst and Csd.

Under the above assumptions, the theorem on two-dimensional torus
breakdown which asserts the following three possible mechanisms of the T 2

destruction is valid: (i) due to the loss of cycle Cst stability; (ii) as a result of
the emergence of a homoclinic tangency between W u and W s of Csd; and (iii)
due to a tangent bifurcation of Cst and Csd on T 2. Before being destroyed, T 2

loses its smoothness for s > s∗∗, i.e., T 2
(

α(s∗∗ < s < s∗)
)

is homeomorphic
but not diffeomorphic to the torus.

Figure 2.8b shows a sketch of the qualitative bifurcation diagram in the
two parameter (α1 – α2) plane. The directions indicated in Fig. 2.8b by
A,B,C correspond to the three routes of the resonance torus destruction.
In the diagram the curve l0 corresponds to the bifurcation of T 2 birth. The
phase-locking region is bounded by the two bifurcation curves l1 related to
a tangent bifurcation of Cst and Csd on T 2. On the curve l2 the resonance
cycle Cst loses its stability inside the synchronization region. The bifurcation
lines lh correspond to a tangency of W s and W u of Csd. Outside the phase-
locking region, T 2 is destroyed on the curves shown in Fig. 2.8b as dashed
lines. Actually this boundary has a complicated fractal structure. Moving
along the route C ′ results in a tangent bifurcation on the curve l1 without
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torus destruction. In this case a transition from the phase-locked T 2 to an
ergodic T 2 takes place.

Route A. On the bifurcation curve l2, Cst on T 2 becomes unstable due to
either period doubling or a 2-D torus birth. Before this, the resonance torus
T 2 loses its smoothness (in the cycle Cst points) when a pair of multipliers of
the cycle becomes complex conjugate or one of the multipliers is negative. At
the moment of bifurcation, the length of an invariant curve in the Poincaré
map becomes infinite (Fig. 2.9a), and the torus is destroyed. The transition
to chaos along route A can come either from a period-doubling bifurcation
cascade or via the breakdown of a torus occurring from Cst on the curve l2.

Route B. When moving along route B W u, which forms the torus sur-
face, of Csd is distorted and on the bifurcation curve lh a tangency of W u and
W s occurs. This is illustrated in Fig. 2.9b. At this moment (s = s∗) a struc-
turally unstable homoclinic trajectory arises and T 2 does not exist above the
bifurcation curve lh. For s > s∗ two robust homoclinic orbits appear, and a
homoclinic structure of the cycles and of chaotic trajectories is formed in their
vicinity. However, Cst is still stable and remains as an attractor. A chaotic
attractor may arise either through the disappearance of Cst or when it loses
its stability. When we cross the synchronization region above the curve lh, a
transition to chaos appears accompanied by type-I intermittency.

Route C. In this case W u is also distorted when approaching Cst. T 2

is destroyed as our route intersects the curve l1 corresponding to a tangent
bifurcation. Suppose that an invariant curve in the Poincaré section of the
torus becomes unsmooth at the bifurcation point (Fig. 2.9c). This means that
when applying the Poincaré map successively, the image of a small segment
of the unstable separatrix of a saddle-node bends in the form of a horseshoe.
The disappearance of the saddle-node leads to the emergence of a Smale
horseshoe map in its vicinity. This map generates a countable set of saddle
cycles as well as a continuous set of aperiodic hyperbolic trajectories. Under
certain additional conditions these trajectories can be transformed into a
chaotic attractor.

Cst

CsdCsd

Cst

a b c

Fig. 2.9. Qualitative illustration of the invariant curve in the Poincaré section at
the moment of torus destruction when moving along the routes (a) A, (b) B and
(c) C indicated in Fig. 2.8b
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Thus, the mechanisms of resonance torus destruction leads to the emer-
gence of a chaotic set in the vicinity of the torus, and this set may become
attracting. The chaotic attractor originates from a horseshoe-type map with
a smooth bend and is nonhyperbolic [42, 43]. The bifurcation scenarios of
the transition to chaos described are concerned with the bifurcations of reso-
nance cycles on T 2. They do not cause the absorbing area to change abruptly
and thus represent the bifurcation mechanism of a soft transition to chaos.
All conclusions of the torus breakdown theorem are generic, which has been
verified by physical experiments and computer simulations for a variety of
discrete and continuous-time systems [44–51]. If we consider the evolution of
an invariant curve in the Poincaré section of a torus by changing system para-
meters in such a way that the winding number is kept irrational, the following
phenomena can be observed: First, the invariant curve in the Poincaré map
of the ergodic torus is distorted in shape and repeats the unstable manifold
of a resonance saddle cycle [50]. Then the ergodic torus loses its smoothness
and is destroyed. However, a chaotic motion does not yet appear, since in
the neighborhood (in parameter space) of the former torus with an irrational
winding number there always exist other resonance tori, remaining as attrac-
tors of the system. Hence, a resonance on T 2 always precedes the transition
to chaos. The torus destruction line in a two control parameter plane is char-
acterized by a complex structure. It consists of a countable set of intervals, on
which the resonance torus is destroyed according to the scenarios indicated
by the theorem, and of a set of points corresponding to the breakdown of an
ergodic torus and having a joint zero measure.

Soft Transition from Quasiperiodicity to Chaos In the general case,
the motion on a two-dimensional torus can be modeled by an isomorphic
dissipative map of the ring Q into itself. For different parameter values of the
map the following cases are possible [52]:

(i) Inside the ring there is a closed contour L (Fig. 2.10a) which is trans-
formed into itself. In other words, there exists a closed invariant curve cor-
responding to a two-dimensional torus in a continuous-time system. On
the contour L a new map can be defined which will be one-dimensional
and homeomorphic to the circle map:

φn+1 = Φ(φn,α), mod 1, (2.21)

where α is the vector parameter of the circle map.
(ii) A horseshoe-type map arises generating a countable set of periodic orbits

and a continuous set of aperiodic hyperbolic trajectories. Such a structure
is created when some part of the region Q, denoted by σ, is transformed
into σ̃ as shown in Fig. 2.10b. In this case the closed contour L no longer
exists and the model map (2.21) becomes noninvertible.
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Fig. 2.10. Ring map (a) in the case of the existence of invariant closed curve L
and (b) in the case of formation of a local horseshoe-type map

The circle map is often defined as follows:

φn+1 = Φ(φn, Ω,K) = φn + Ω − K

2π
sin (2πφn), mod 1. (2.22)

The angle φ is determined in the interval [0, 1]; K ≥ 0 and Ω ∈ [0, 1]
are considered as parameters of the map. Generally speaking, the form of
function Φ(φ) is not so important (as in the case of the logistic map) but
the following conditions must be satisfied: (i) Φ(φ + 1) = 1 + Φ(φ); (ii) for
K < Kcr, Φ(φ) and its inverse function Φ−1(φ) exist and are differentiable,
i.e., the map is a diffeomorphism of the circle; (iii) at K = Kcr the inverse
function Φ−1(φ) becomes nondifferentiable at the point φ = 0, and the single-
valued inverse function no longer exists for K > Kcr. All these conditions are
fulfilled for (2.22) with Kcr = 1.

Dynamics of a point in the circle map is characterized by the winding
number θ, which is given by

θ = lim
n→∞

Φn(φ0) − φ0

n
. (2.23)

This number represents the mean angle about which a phase point rotates on
a circle in one iteration. For a smooth one-to-one map, i.e., when 0 ≤ K < 1,
the limit (2.23) exists and does not depend on the initial point φ0. From the
above statement it follows that for K < 1 the map (2.22) has no fixed points
if the winding number is irrational. When θ takes a rational number θ = p/q
with p, q being integers, the circle map possesses an even number of stable and
unstable fixed points of q multiplicity, i.e., at least one stable and one unstable
q-cycle of the map. The numerator p determines the number of full turns along
a circle in q iterations. The resonance structure corresponding to a rational
value of the winding number is robust [53]. Each rational value of θ remains
unchanged within a certain range of parameter variation, the so-called Arnold
tongue. The dependence of the winding number on the parameter Ω is known
as the devil’s staircase and represents a fractal curve consisting of an infinite
number of “steps” corresponding to rational numbers of θ and a set of isolated
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points for which θ is irrational. At K = 0 the winding number for (2.22)
coincides with Ω and has a set of rational values of measure zero. When
0 < K < 1, there are both rational and irrational values of the winding
number, and their number is not equal to 0. With increasing K the number
of rational values grows, while the number of irrational values decreases and
vanishes at the critical line K = 1 (the sum of all step lengths becomes equal
to 1). However, a countable set of points with irrational winding numbers
still exists at K = 1.

For K > 1 the circle map does not exhibit quasiperiodic motion. The
dependence θ(Ω) that corresponds to the overlapping of Arnold tongues be-
comes ambiguous. In a supercritical region the circle map describes reso-
nances on a torus as well as chaotic motions in the vicinity of the former
torus T 2. The map demonstrates the scenarios of torus breakdown and ap-
pearance of chaos, indicated in the Afraimovich–Shilnikov theorem. Inside
the Arnold tongues, the stable resonance cycle loses its stability in a period-
doubling bifurcation and a transition to chaos via the Feigenbaum scenario
occurs. In the regions where the resonance tongues are overlapped, crises may
take place, leading to the merging of chaotic attractors which appear from
different resonance cycles. As a result, torus-chaos is created. Figure 2.11
shows the diagram of dynamical regimes for (2.22) in the Ω − K plane [54]
and reflects the complicated self-similar structure of Arnold tongues.

As ergodic quasiperiodic motions are destroyed, map (2.22) exhibits cer-
tain quantitative universal properties, independent of a particular form of
Φ(φ), provided that Φ(φ) satisfies the above-mentioned conditions [55, 56].
However, these features depend on θ.

An irrational number can be represented in the form of a continued frac-
tion [38]:

θ =
1

m1 + 1
m2+

1
...

= 〈m1,m2, . . . , mk, . . .〉 . (2.24)

If only the first k expansion terms are taken into consideration, one obtains
a rational number θk = pk/qk, which is called the rational approximation of
θ of order k. In this case the irrational number can be defined as the limit of
a sequence of rational numbers:

θ = lim
k→∞

θk . (2.25)

The irrational number called the golden mean2, θg = 0.5(
√

5 − 1) =
〈1, 1, 1, . . .〉, has the simplest expansion into a periodic continued fraction.

Certain regularities are characteristic for irrational numbers of θ, having a
periodic (at least from some mk) expansion into a continued fraction. Assume
Ωk(K) to be the value of Ω at some fixed K, for which θ = θk and the point
2 For the golden mean, pk and qk are the sequential terms of the main Fibonacci

series, namely, pk = Fk, qk = Fk+1, and, consequently, θg = limk→∞ Fk/Fk+1.
The Fibonacci series are determined by the recurrent formula Fk+1 = Fk−1 +Fk,
where (F0, F1) are the base of the series. The main series has the base (0, 1).



128 2. Dynamical Chaos

Fig. 2.11. Diagram of dynamical regimes of the circle map. Periodic regimes are
realized in shaded regions and their periods are indicated by numbers [54]

φ = 0 belongs to a stable limit cycle with period qk. In other words, Ωk is
defined by the relation Φqk(0, Ωk,K) = pk, where Φqk is a function applied
qk times. The values of Ωk converge to some value Ω∞(θ,K) according to a
geometric progression law with the rate δ:

δ = lim
n→∞

Ωk − Ωk−1

Ωk+1 − Ωk
. (2.26)

The magnitude δ is a universal constant and depends on θ and K only. For the
golden mean, δ = −2.6180339 . . . = −θ−2

g for K < Kcr and δ = −2.83362 . . .
at K = Kcr.

The scale given by dk = Φ
qk−1
Ωk

(0, Ωk,K) − pk−1 is characterized by the
limit

lim
k→∞

dk

dk+1
= a , (2.27)

where a is a universal constant. For θ = θg, a = −1.618 . . . = −θ−1
g for

K < Kcr and a = −1.28857 . . . at K = Kcr.
The spectrum of the circle map at K = Kcr also demonstrates a number of

universal properties. If θ can be presented in the form of a periodic continued
fraction, the spectrum has the property of scaling. For θ = θg, the frequencies
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of spectral components, reduced to the interval [0, 1], satisfy the following
relation:

ν = |Fk+1θg − Fk|, (2.28)

where Fk, Fk+1 are the sequential terms of one of the Fibonacci series. The
spectral series, arranged in decreasing order with respect to their amplitudes,
correspond to the Fibonacci series with the following bases: main series –
(0,1); 2nd one – (2,2); 3rd one – (1,3); 4th one – (3,3); 5th one – (1,4); 6th
one – (2,5), etc. The reduced spectral power for the lines of each series has a
limit as j → ∞:

Si = lim
j→∞

Sj
i

ν2(j)
= const. (2.29)

The normalized spectrum aj
i = Sj

i /
(

S1
1ν2(j)

)

, represented in the coordinates
log aj

i − log ν, is divided into identical intervals located between relevant lines
of each series.

The above-mentioned and other quantitative regularities of two-frequency
quasiperiodicity destruction appear to be typical not only for model one-
dimensional maps but also for invertible maps and continuous-time systems.
These properties have been observed within the given accuracy in full-scale
experiments and in computer simulation of various DS [49,51,57,58].

The RG method has been applied to analyze maps in the form of (2.22)
[56, 59–63]. For θ = θg, one can derive a functional equation for the fixed
point, which reads

Φ∗(φ) = aΦ∗(aΦ∗(φ/a2)
)

, (2.30)

where Φ∗(φ + 1) = Φ∗(φ) + 1. Its solution Φ∗(φ) is a universal function
and the scaling multiplier a represents a universal constant. Equation (2.30)
has the linear solution Φ∗(φ) = φ − 1, for which a1,2 = 0.5(±

√
5 − 1). The

value of a, found numerically for K < Kcr, coincides with the solution a2 =
0.5(−

√
5 − 1) = −θ−1

g ≈ −1.618. At K = Kcr the linear solution does not
obey (2.30). Since Φ(φ) has a cubic inflection point at zero, the universal
function Φ∗(φ) must contain a cubic term φ3. A nontrivial function of this
sort has been deduced numerically in the form

Φ∗(φ) = 1 + c1φ
3 + c2φ

6 + . . . (2.31)

The value of a found agrees with numerically obtained results. One of eigen-
values of the linearized equation at the fixed point coincides with the constant
derived numerically from (2.26). This fact explains the universal character of
the constant δ. Results obtained for θ = θg by means of the RG method have
been generalized to the case of an arbitrary irrational winding number, which
can be presented in the form of a periodic continued fraction. With this, the
form of Φ∗(φ) as well as the values of a and δ naturally depend on θ [62].



130 2. Dynamical Chaos

2.1.5 Route to Chaos via a Three-Dimensional Torus.
Chaos on T 3. Chaotic Nonstrange Attractors

In the previous section we considered the quasiperiodic route to chaos, which
did not assume the emergence of a third independent oscillation frequency.
Consequently, the route to chaos described may already occur in continuous-
time systems with the phase space dimension N = 3. However, this scenario
does not rule out the appearance of third, fourth, etc., independent frequen-
cies, provided that the system has a phase space of appropriate dimension.
Multi-frequency quasiperiodic regimes have been observed and studied in
a large number of numerical and experimental works [5, 64–66]. Thus, the
Ruelle–Takens–Newhouse scenario can be confidently realized in systems with
dimension N ≥ 4. However, the theorems proved in the works of Ruelle, Tak-
ens, and Newhouse do not explain the bifurcation sequences which lead to
chaos. They only give evidence that motions on T 3 are structurally unstable
and, therefore, will be converted into chaotic motion if the system is per-
turbed. Besides, the strange attractor that appears belongs to the flow on
T 3, i.e., the torus is not destroyed.

Numerical investigations have shown that the transition to chaos from
three-frequency quasiperiodicity is quite similar to the route to chaos via
quasiperiodic motion on T 2 [67–72]. To visualize the evolution of T 3 in a
system with continuous time the double Poincaré section is usually used. In
discrete-time systems, three-frequency quasiperiodic motion is represented by
an attractor in the form of an invariant T 2. Applying the Poincaré section
in a map we obtain a one-dimensional closed curve corresponding to a T 3 in
a continuous-time system. Investigations have shown that an invariant curve
in the double Poincaré section of T 3 behaves like an invariant curve in the
Poincaré section of T 2 [71]. Distortion of the invariant curve and resonances
on T 3 precede the emergence of a chaotic attractor.

The motion on T 3 is often modeled using invertible maps of a unit square.
The Poincaré section of T 3 gives birth to a map of T 2 to itself, which may
be written as follows:

xn+1 = Φ(xn, yn), mod 1,

yn+1 = Ψ(yn, xn), mod 1. (2.32)

The phase space of such a map is a square with sides equal to 1, which repre-
sents a development of T 2. If the map is invertible, one can associate it with
a flow on T 3. If the map becomes non-invertible for certain parameter values,
this implies that T 3 is destroyed. Regular regimes on T 3 are characterized
by two winding numbers which define the relation of three basic frequencies.
For map (2.32) the winding numbers are introduced as follows:

θx = lim
n→∞

Φn(xn, yn)
n

,

θy = lim
n→∞

Ψn(xn, yn)
n

. (2.33)
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Partial and full resonances on T 3 are distinguished. Partial resonances are ob-
served when only one of the winding numbers becomes rational or when both
winding numbers are irrational but a multiple relation is kept between them.
In this case ergodic two-dimensional tori exist on T 3. If both winding num-
bers take rational values, a full resonance occurs and periodic orbits appear
on T 3. However, the limits (2.33) may not always exist and be unambiguous.
Unlike the circle map, the torus map (2.32) can exhibit chaotic dynamics and
remain invertible. This fact gives evidence that a chaotic motion can occur
on T 3.

The motion on T 3 is often described by a system of two coupled circle
maps:

xn+1 = xn + Ωx − K

2π
sin 2πyn , mod 1,

yn+1 = yn + Ωy − K

2π
sin 2πxn , mod 1. (2.34)

This map may be thought of as representing the phase dynamics of three in-
teracting oscillators. The parameters Ωx and Ωy denote the frequency shifts
and govern the winding numbers θx and θy. K is the strength of nonlinear-
ity. For K < 1 the map (2.34) is a diffeomorphism. For K > 1 the map is
noninvertible and T 3 is destroyed. As K increases, the measure of ergodic
three-frequency motions decreases, while the measure of partial and full res-
onances increases. Different kinds of chaotic behavior can also be observed
in map (2.34), even when K < 1. Bifurcations of the map (2.34) for K < 1,
which are related to resonance fixed points and invariant curves, have been
studied theoretically and numerically in [73]. Three different kinds of chaos
on T 3 have been distinguished, namely, contractible, rotational, and toroidal.
The distinction is made basing on different behavior of manifolds of saddle
fixed points inside the complete synchronization regions and, correspondingly,
on different behavior of the limits (2.33) [73]. Figure 2.12 displays phase por-
traits of the different chaotic attractors observed in map (2.34).

Toroidal chaos can develop into an ergodic chaotic attractor whose points
densely fill the torus surface everywhere. Such an attractor is characterized
by an integer capacity dimension and is thus called a chaotic nonstrange
attractor [74]. Such regimes have been observed numerically in a system of
coupled circle maps [75].

Many conservative, i.e., preserving phase space volumes, diffeomorphisms
of a torus exhibit chaotic dynamics. For example, the toroidal chaos (in this
case it is impossible to speak of an attractor) filling all the torus surface
can be realized in the well-known Arnold’s map, often called Arnold’s cat
map [76]:

xn+1 = xn + yn, mod 1,

yn+1 = xn + 2yn, mod 1. (2.35)
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Fig. 2.12. Chaos in map (2.34): (a) contractible; (b) rotational; (c) toroidal

Arnold’s cat map is a robust hyperbolic system (the Anosov cascade). Adding
the nonlinear term δ sin 2πxn to the first equation of (2.35), we arrive at the
dissipative map

xn+1 = xn + yn + δ sin 2πxn, mod 1,

yn+1 = xn + 2yn, mod 1, (2.36)

which is invertible for δ < 1/2π. As was shown in [77], for small δ the map
(2.36) has a chaotic attractor with integer capacity dimension DC = 2. The
stable and the unstable manifolds of saddle fixed points of Arnold’s map bend
around the torus surface, intersecting transversally so that no tangencies
occur. Evidently, such behavior of manifolds holds for the perturbed map
(2.36) when δ is small. In this case a chaotic attractor in (2.36) may appear
to be an example of a robust hyperbolic attractor.

Thus, different kinds of chaotic motion including such unusual ones as
chaotic nonstrange attractors are possible on T 3. However, the results pre-
sented are concerned with maps on a two-dimensional torus. The question
of to what extent such maps can reflect the behavior of a flow on T 3 is still
open. Nevertheless, in [78] the authors tried to detect chaotic attractors on
T 3 when simulating a continuous-time system in the form of coupled oscil-
lators. Unfortunately, their attempts failed. Up to now, a chaotic motion on
T 3 has not been found in flow systems. The most typical case is when T 3

is broken down before chaos sets in. But the possibility of the existence of
chaos on T 3 cannot be excluded.

The quasiperiodic route to chaos in high-dimensional systems allows the
emergence of fourth, fifth, etc., independent frequencies of oscillations. How-
ever, due to nonlinear interaction between the oscillatory modes of the sys-
tem, a measure of ergodic multi-frequency regimes is associated, as a rule,
with the appearance of resonance structures on high-dimensional tori.
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2.1.6 Route to Chaos via Ergodic Torus Destruction.
Strange Nonchaotic Attractors

As mentioned above, the resonance phenomena always preceding the onset of
chaos play an important role in the quasiperiodic scenario of the transition
to chaos. But there is a whole class of systems for which ergodic quasiperi-
odic motion is robust and the transition to chaos is not accompanied by the
emergence of resonant periodic motions. This class encloses quasiperiodically
forced systems. A quasiperiodic forcing with a fixed irrational relation be-
tween frequencies imposes an irrational winding number upon the system,
independent of its internal properties. Consider the simplest case when one
of the forcing frequencies coincides with the natural frequency of periodic
oscillations of the system. With this, a robust two-frequency quasiperiodic
regime with a fixed winding number can be observed in a synchronization re-
gion of natural oscillations. This winding number is defined from the outside
and supposed to be irrational. Varying system parameters and the amplitude
of the external forcing one can achieve T 2 destruction and the transition
to chaos. The transition from an ergodic torus to chaos is characterized by
its own peculiarities as compared with the above-considered case when the
torus destroyed had an arbitrary varying winding number. Numerous studies
of flow systems and maps with quasiperiodic forcing [74, 79–84] have shown
that the appearance of a special class of attractors, the so-called strange non-
chaotic attractors (SNA), is typical for such systems. An SNA is defined as
an attracting limit set of a DS, which is not a manifold and for which there
is no exponential divergence of phase trajectories.

In order to study the mechanisms of transition from an ergodic torus to
chaos, it is convenient to use quasiperiodically forced maps presented in the
following form:

xn+1 = F (xn, φn,α),
φn+1 = φn + θ, mod 1. (2.37)

Here, x ∈ RN is the state vector of an autonomous system, F ∈ RN is
periodic in argument φ with period 1, α is the parameter vector of the system.
φ denotes the phase of the forcing, and θ is the winding number. The forcing is
quasiperiodic if θ is irrational. The winding number is usually chosen to be the
golden mean, θ = 0.5(

√
5−1). One-dimensional maps (N = 1) are most easy

to use. A two-dimensional torus in map (2.37) corresponds to an invariant
closed curve. As θ is irrational, this curve is densely covered everywhere
by points of phase trajectories. Since no resonance structure arises on the
torus and there is no need to control the winding number, the bifurcation
mechanisms of T 2 destruction and the appearance of chaos allow in this case
a one-dimensional analysis. Hence, we consider α to be a scalar.

Suppose that at α = α0 there exists an ergodic T 2 with a strictly fixed ir-
rational winding number, whereas at α = α1 a chaotic attractor (CA) arises.
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What is the scenario of transition to chaos in this case? Investigations have
shown that the destruction of a robust ergodic T 2 leads initially to the ap-
pearance of an SNA that is then transformed into a CA [80, 82–85]. In the
map, the invariant curve is first deformed and then loses its smoothness. Ac-
cording to the theorem [41], a resonance torus also loses its smoothness before
it is destroyed. This happens on a finite set of fixed points of the invariant
curve, corresponding to the points of the stable resonance cycle. Such an
“nonsmooth torus” can exist for some time in the system phase space before
its destruction takes place.

In the case of an ergodic torus, the invariant curve has no fixed points,
and at some α = αcr1 it loses its smoothness simultaneously on an every-
where dense set of points. As a result, the invariant curve is destroyed, and a
set that is not a manifold appears. However, the torus destruction does not
automatically lead to the emergence of exponential instability of the motion.
The dynamics becomes chaotic later when α = αcr2 > αcr1. Thus, there ex-
ists a finite range of parameter α values, αcr1 < α < αcr2, where an SNA is
observed. The regime of the SNA possesses the properties of being interme-
diate between quasiperiodicity and chaos. In order to establish that an SNA
is really observed, one has: (i) to calculate the Lyapunov exponents and (ii)
to check that the attractor is not of regular type. The first task is relatively
simple, because there are reliable methods for calculating the Lyapunov ex-
ponents, and if there is no positive exponent, then one can be sure that the
attractor is nonchaotic. The second problem is much more difficult. The nu-
merical criteria available do not allow one to confidently detect whether the
set under study is an SNA or a strongly deformed but still smooth torus.

The most reliable numerical methods for diagnosing the regime of an SNA
have been proposed in works by Pikovsky et. al. [86, 87]. The first approach
is related to the rational approximation of the winding number. The second
method is based on the property of phase sensitivity of the SNA. The latter
deals with the criterium of local Lyapunov exponents. Consider (2.37) for the
case of N = 1. The map attains the following form:

xn+1 = f(xn, φn, α),
φn+1 = φn + θ, mod 1. (2.38)

Using this map, we explore the destruction of an invariant curve in a phase
plane. The rational approximation method is based on the bifurcational analy-
sis of cycles arising in the map under the rational approximation of the wind-
ing number θk = pk/qk, limk→∞ θk = θ. In this case the behavior of the
map strongly depends on the choice of the initial phase φ0. If for sufficiently
large (theoretically for arbitrary large) k the cycles exhibit bifurcations as
φ0 changes, one can conclude that an SNA exists in (2.38). When using this
method, a phase-parametric diagram x(φ0), φ0 ∈ [0; 1/qk], is constructed
for θ = θk. This diagram was called the approximating attracting set in [86].
Indeed, at θ = θk, the dependence of attractors’ coordinates of the map on
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φ0 approximates a small segment of an ergodic attractor. The fact that the
approximating set is smooth testifies to the quasiperiodic regime of the map,
whereas the presence of points of nonsmoothness corresponds to an SNA.

Another approach is based on the sensitivity of the dynamical variable to
the phase of the external forcing. The map is now considered for an irrational
value of the winding number. The derivative ∂xn/∂φ0 is calculated along a
trajectory, and its maximum is estimated. For (2.38) it is easy to obtain

∂xn

∂φ0
=

n∑

k=1

fφµn−k(xk, φk) + µn(x0, φ0)
∂x0

∂φ0
, (2.39)

where

µm(xk, φk) =
m−1∏

i=0

fx(xk+i, φk+i), µ0 = 1, (2.40)

is a “local multiplier” of the phase trajectory. Map (2.38) has one Lyapunov
exponent

λ = lim
n→∞

1
n

ln |µn|, (2.41)

which is not equal to zero. Since it is negative in the regime of the SNA,
the local multiplier must tend to zero with n. Taking this into account, the
derivative (2.39) may be re-written as follows:

∂xn

∂φ0
=

n∑

k=1

fφ µn−k(xk, φk). (2.42)

Introduce the quantity Γn:

Γn = min
x0,φ0

max
0≤i≤n

∣
∣
∣
∣

∂xi

∂φ0

∣
∣
∣
∣
, (2.43)

where the maximum is sought in all points of a single trajectory, and the
minimum is determined with respect to randomly chosen initial points. The
fact that the value of Γn grows infinitely with n means that the derivative
∂xn/∂φ0 does not exist, i.e., the invariant curve loses its smoothness and an
SNA appears. Figure 2.13 shows dependences of Γn on n obtained in [86] for
the map

xn+1 = 2σ(tanhxn) cos (2πφn) + α cos
(

2π(φn + β)
)

,

φn+1 = φn + θ, mod 1, (2.44)

for θ = θg = 0.5(
√

5 − 1) and for different α. As seen from the graphs, the
SNA exists only for α = 0. Γn may be presented as

Γn ∼ nη. (2.45)
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Fig. 2.13. Values of Γn versus n for the system (2.44) for θ = θg, σ = 1.5, β = 1/8
[86]

Here, η is called a phase sensitivity exponent. In [86] it has been proved that
η = 1 in the regime of the SNA.

Phase sensitivity is connected to the existence of a nonzero measure of pos-
itive local Lyapunov exponents. The local Lyapunov exponent is a Lyapunov
exponent of a trajectory which is calculated on a finite time interval [86]. For
(2.38) the local Lyapunov exponent reads

Λn(x, φ) =
1
n

ln |µn(x, φ)|, (2.46)

where µn(x, φ) is defined by (2.40). It is clear that both the value and the sign
of the local Lyapunov exponent depend on the initial point (x0, φ0). Since
the SNA is nonsmooth and the local multiplier µn is unbounded, a measure
of positive values Λn must be different from zero even for sufficiently large n.
With this, limn→∞ Λn = λ < 0, because the attractor is nonchaotic.

Unfortunately, the criteria considered can be mainly applied to one-
dimensional discrete models with quasiperiodic forcing and are little suited
to systems with continuous time. The exception may be the criterium of pos-
itive local Lyapunov exponents. But its application is associated with the
problem concerning a minimal time interval for which the local exponents of
a quasiperiodic regime of the system under study cannot be already positive.
Other numerical criteria for the existence of SNA have also been proposed.
They are related to the properties of the spectrum and autocorrelation func-
tion [79, 87]. However, in most cases they also do not provide unambiguous
results. Therefore, the mechanism of ergodic torus destruction should be ex-
plored with caution by using as many available criteria of SNA as possible.

The reasons why an invariant curve in model maps loses its smoothness
and then is destroyed have been analyzed, and two mechanisms leading to
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Fig. 2.14. Band merging crisis of the invariant curve in map (2.47) for ε = 0.1, θ =
θg. A segment of the invariant curve before tangency (α = 3.271) (a) and after
tangency (α = 3.272) (b) with the repeller (dashed line)

the appearance of SNA have been revealed: (i) a crisis of an ergodic torus
at α = αcr1 through a nonlocal bifurcation and (ii) a gradual evolution of
the torus, leading to its loss of smoothness and destruction at α = αcr1 [85].
The ergodic torus crisis occurs when a stable torus touches an unstable torus
or its stable manifold, the latter playing the role of a separatrix surface.
In one-dimensional models with quasiperiodic forcing (2.38) a saddle torus
corresponds to an unstable invariant curve (repeller). The crisis may be con-
nected with the merging of bands of a quasiperiodic attractor.3 The point
is that as a result of torus doubling bifurcation in one of the periods, the
invariant curve in the torus section will consist of 2k bands. These bands are
visited by a representative point in a strictly defined order and separated
by a separatrix surface. The latter can be represented by a surface in the
section of the stable manifold of a saddle torus. In terms of one-dimensional
maps, a separatrix corresponds to an unstable invariant curve. Figure 2.14
illustrates the band merging crisis of an invariant curve in the logistic map
with quasiperiodic parameter modulation [82]:

xn+1 = α(1 + ε cos 2πφn)x(1 − x),
φn+1 = φn + θ, mod 1. (2.47)

The invariant curve exists for α < αcr1 and consists of two bands separated by
a repeller. A representative point visits each band in one iteration of the map.
The distortion of the invariant curve leads to the situation that at α = αcr1

3 From the viewpoint of crisis definition, such a merge is not a crisis since it does
not cause the absorbing area to change. But in this case the term “crisis” is
commonly accepted.
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the invariant curve touches the repeller separating the attractor bands. At
the moment of tangency, the stable invariant curve loses its smoothness and
is destroyed. For α > αcr1 there exists an SNA uniting both bands of the
curve destroyed, which are now visited by the representative point randomly.
This mechanism of torus destruction restricts the sequence of ergodic torus
doublings, which is typically finite.

Torus crisis can also be related to the merging of different quasiperiodic
attractors [84, 85]. The situation is possible when the crisis occurs without
collision of quasiperiodic attractors or bands of a single attractor. This case
is especially typical for a resonance on T 3 whose one winding number has
a fixed irrational value and whose other is varied arbitrarily. The distortion
of the shape of invariant curves in the section of stable and unstable two-
dimensional tori on T 3 results in a crisis of tangency at separate points instead
of a tangency bifurcation of the tori on the boundary of the synchronization
region. Such a crisis has been found and studied in [83].

Smoothness loss and destruction of an ergodic torus can also take place
without bifurcations related to a separatrix tangency. In this case, as the
control parameter α is varied, the shape of an invariant curve in a torus
section is gradually distorted, which causes the phase sensitivity to increase.
The derivative with respect to the initial phase is no longer bounded at
the critical point α = αcr1. If the winding number is replaced by rational
approximations, the dynamics of the map turns out to be chaotic at some
φ0 values and remains regular at other φ0 values. However, the Lyapunov
exponent still converges to a negative value when n → ∞. In this case the
approximating set cannot be smooth and an SNA is observed within some
interval αcr1 ≤ α ≤ αcr2. Such an evolutionary mechanism for the appearance
of SNA has been studied in [84,85].

It is assumed that an SNA arising from a crisis or by evolution exists on a
nonzero measure in parameter space. But this statement is difficult to prove.
It is known that on the interval α ∈ [αcr1, αcr2] an SNA can degenerate into an
invariant curve which possesses a finite number of points of discontinuity and
then appear again [85]. The bifurcation mechanism of transition from SNA to
chaos is still not understood. The well-studied scenarios of chaos formation
assume the presence of homoclinic trajectories of saddle cycles or dangerous
separatrix loops of a saddle-focus. In their neighborhood a horseshoe-type
map arises and a chaotic set of trajectories can be created. When the winding
number θ is kept constant and has an irrational value, a system possesses
neither equilibrium states nor limit cycles. In this case a homoclinic structure
must be connected to a tangency and intersection of manifolds of saddle
tori. At the present time, homoclinics of this sort have not been adequately
explored.
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2.1.7 Summary

In the present section we have described three typical routes to chaos: (i) the
period-doubling cascade route (Feigenbaum scenario); (ii) the crisis of peri-
odic oscillations and the intermittency transition route (Pomeau–Manneville
scenario); and (iii) different kinds of quasiperiodic routes to chaos (Ruelle–
Takens–Newhouse scenario). It is worth noting that for the same system
different routes to chaos can be observed corresponding to different regions
and directions in parameter space. Moreover, the bifurcational sequences be-
ing observed may be combined in a complex way. Thus, to imagine the full
picture of the appearance of chaotic motion, one should not restrict oneself
to a one-parametric analysis. It is necessary to have an idea, at least in gen-
eral terms, of the bifurcation diagram of dynamical regimes of the system
in parameter space, what happens on its different “leaves”, where they are
“sewed”, etc.

The scenarios considered are typical in the sense that they are observed
for a wide class of DS with both low- and high-dimensional phase space, as
well as for distributed systems for arbitrarily chosen control parameters and
for different types of variation. Evidently, other scenarios for chaos forma-
tion may also be possible, but they are not typical. They may be related to
some peculiarities (degenerations) of DS or to a special choice of directions
of motion in parameter space which pass through high-codimension critical
points [54,88].

2.2 Statistical Properties of Dynamical Chaos

2.2.1 Introduction

Dynamical chaos, as a random process, requires a statistical description. As
chaotic systems are studied in laboratory experiments or simulated numeri-
cally, some probabilistic characteristics are normally calculated or measured,
such as the stationary probability distribution over the attractor, correla-
tion functions, power spectra, etc. Chaotic oscillations, which can be math-
ematically represented by chaotic attractors of various types, differ in their
statistical properties and their sensitivity to the influence of noise.

From the standpoint of rigorous theory, hyperbolic chaos is frequently said
to be the “ideal” chaos. Its structure is topologically homogeneous and stable
against perturbations [3, 89–91]. However, as a rule, the strange chaotic at-
tractors of dynamical systems do not behave as structurally stable hyperbolic
systems. Nearly hyperbolic (quasi-hyperbolic) attractors include unstable or-
bits of the separatrix-loop type. The generation and disappearance of such
orbits do not affect the characteristics of chaos such as the phase portrait of
the attractor, the power spectrum, the Lyapunov exponents, etc. Dynamical
systems in chaotic regimes can be characterized by an invariant measure that
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is independent of the initial distribution and completely specifies the statisti-
cal properties of the attractor. The existence of an invariant measure has been
proven theoretically for structurally stable hyperbolic and quasi-hyperbolic
systems [92–97].

However, most chaotic attractors that have been studied numerically
and/or experimentally are not hyperbolic [42,98,99]. The problem of the exis-
tence of an invariant measure on a nonhyperbolic chaotic attractor encounters
serious difficulties because a stationary probability distribution independent
of the initial distribution cannot be introduced in general. The nonhyper-
bolic attractor is the maximal attractor of the dynamical system; it includes
a countable set of regular and chaotic attracting subsets [42, 98]. Therefore,
one can consider the invariant measure of a nonhyperbolic attractor only if the
influence of external noise is present [100]. As a rule, nonhyperbolic attrac-
tors change their properties dramatically under the action of noise [101–104],
whereas hyperbolic and quasi-hyperbolic attractors are stable against noise
perturbations [101,102,105,106].

The statistical description of noise-affected nonhyperbolic chaotic attrac-
tors is an important problem of the theory of dynamical chaos that still
remains unresolved. Among other things, the time of relaxation to a station-
ary distribution should be investigated. A number of fundamental questions
that have not yet been clearly answered arise. What is the actual relaxation
time for a stationary distribution? What are the factors controlling this time?
What characteristics could be used to quantitatively estimate the relaxation
time to the stationary measure? How do the noise statistics and noise in-
tensity affect the law of establishment of the stationary distribution? Is the
process of relaxation related to the dynamics of the system? These questions
were partly answered in [107,108] by means of computer simulation.

The process of establishing a stationary distribution can be described by
Fokker–Planck-type or Frobenius–Perron-type evolutionary equations. The
eigenvalues and eigenfunctions of the evolution operator specify the relaxation
process and the characteristics of mixing, which are linked to the relaxation
to the invariant probability measure. However, if the dimension of the DS
is high (N ≥ 3), the Fokker–Planck and Frobenius–Perron equations are
virtually unsolvable, even in a numerical form. For this reason, the studies
described in [107,108] used the technique of stochastic differential equations.

By definition, chaotic dynamics implies mixing and, therefore, a posi-
tive Kolmogorov entropy. As a result of mixing, autocorrelation functions
(ACF) decrease to zero (correlation splitting). States of the system sepa-
rated by a sufficiently long time interval become statistically independent
[93, 95, 109–111]. It is important to note that any system with mixing is
ergodic. The temporal splitting of correlations in chaotic DS is related to
the exponential instability of chaotic trajectories and to the system’s prop-
erty of generating a positive Kolmogorov entropy [93,95,109–113] . Although
the correlation properties of chaotic processes are very important, they have
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not yet been adequately explored. It is commonly assumed that the ACF
of chaostic systems decay exponentially at a rate determined by the Kol-
mogorov entropy [109]. It is then assumed that the Kolmogorov entropy HK is
bounded from above by the sum of positive Lyapunov exponents [95,113,114].
Regrettably, this estimate proves to be wrong in the general case of hyperbolic
systems.

It has been proven for certain classes of discrete maps with mixing (ex-
panding maps with a continuous measure and the Anosov diffeomorphism)
that the time decrease in the correlations is bounded from above by an ex-
ponential function [96, 115–117]. Various estimates have been obtained for
the rate of this exponential decay, which are not always related to the Lya-
punov exponents [107, 118–120]. As regards systems with continuous time,
no theoretical estimates for the rate of correlation splitting are available as
yet [121].

Experimental studies of some particular chaotic systems testify to a com-
plex behavior of the correlation functions, which is controlled not only by
the positive Lyapunov exponents but also by the properties of the chaotic
dynamics of the system [107, 118, 120, 122]. It is important to reveal spe-
cific parameters of the chaotic dynamics that are responsible for the decay
rate of the autocorrelations and for the spectral-line width of the fundamen-
tal frequency of the chaotic attractor. In this section we summarize our re-
sults [107, 108, 123–125] obtained recently in studying classical systems with
nonhyperbolic and quasi-hyperbolic attractors [126–129]. These results in-
clude a technique for diagnosing nonhyperbolic chaos, noise effects on non-
hyperbolic attractors, some probabilistic aspects of chaotic dynamics (such
as the features of the relaxation to the stationary probability distribution
and the mixing rate), and a spectral-correlation analysis of various types of
chaotic oscillation regimes. Particular attention is given in this section to the
influence of external noise on the statistical properties of chaos.

2.2.2 Diagnosis of Hyperbolicity in Chaotic Systems

Strange attractors in finite-dimensional systems can be divided into three ba-
sic classes: structurally stable (robust) hyperbolic, nearly hyperbolic (quasi-
hyperbolic), and nonhyperbolic [42,98,99]. The property of robust hyperbol-
icity of a chaotic attractor implies that all its trajectories are of the same
saddle-point type, and their stable and unstable manifolds are everywhere
transverse, i.e., the structure of the hyperbolic attractor is homogeneous at
any point of the attractor. Furthermore, small perturbations of the parame-
ters of the system preserve these properties. But structurally stable hyper-
bolic attractors are rather typical of idealized objects such as the Smale–
Williams solenoid [130] or the Plykin attractor [131]. The existence of a ro-
bust hyperbolic attractor has not been proven for dynamical systems specified
by differential equations or discrete maps. Nevertheless, several examples of
nearly hyperbolic attractors are known for such systems. These are the Lorenz
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attractor [132] and the Shimizu–Morioka attractor [133] in flow systems and
the Lozi attractor [134] and the Belykh attractor [135] in discrete maps.
Singular phase trajectories are characteristic of these systems. For example,
the Lorenz attractor is characterized by the presence of a set of separatrix
loops of the saddle-point-type equilibrium state, whereas the Lozi attractor
includes non-robust homoclinic curves without contacts between stable and
unstable manifolds. However, these peculiar trajectories do not generate sta-
ble motions, and the quasi-hyperbolic and hyperbolic attractors are similar
from the viewpoint of numerical simulation.

Most chaotic attractors of DS are nonhyperbolic [42, 98, 99]. Nonhyper-
bolic attractors include chaotic limit sets and stable periodic orbits that,
as a rule, are difficult to detect in numerical simulations, because they
have extremely small attracting basins. If the whole collection of properties
is considered, nonhyperbolic attractors differ substantially from hyperbolic
ones [99, 136, 137]. Therefore, the diagnosis of the attractor type is of para-
mount importance for the analysis of nonlinear systems in both the theoretical
and practical contexts [103,138–143].

The direct technique of determining the conditions of hyperbolicity in-
cludes the calculation of the angles φ between the stable and unstable man-
ifolds along a phase trajectory. A numerical procedure of computing these
angles was proposed by Lai et al. [144] as a tool for diagnosing the hyper-
bolicity of chaotic saddle points in two-dimensional systems. This technique
consists of transforming an arbitrary vector by the evolution operator in both
direct and reverse time, which makes it possible to find the angle between
the directions of stability and instability for various points of chaotic sets.

Manifolds are one-dimensional in two-dimensional systems, and hence di-
agnosing the effect of homoclinic contact does not present major difficulties.
The problem is more complex for three-dimensional systems, because the
manifolds are two-dimensional in this case. We have suggested a method for
diagnosing hyperbolicity in three-dimensional differential systems [145]. It
was found that systems such as the Rössler system, the Chua circuit [146],
and the Anishchenko–Astakhov oscillator are typically nonhyperbolic, i.e.,
structurally unstable systems [98]. The Lorenz system can be considered an
exception. The Lorenz attractor is nearly hyperbolic in a certain parameter
range. The stable and unstable manifolds of the attractor trajectories inter-
sect transversally [145]. However, as the parameters are varied, the Lorenz
system exhibits a bifurcational transition to a nonhyperbolic attractor [147].
Figure 2.15a shows the probability distribution of angles p(φ) for the Lorenz
attractor in the system [127]

ẋ = −σ(x − y), ẏ = rx − y − xz, ż = −βz + xy. (2.48)

It can be seen from the upper graph that the probability of homoclinic tan-
gency is exactly zero [p(φ) = 0]. As the region where the Lorenz attractor
exists recedes, the effect of homoclinic tangency emerges (Fig. 2.15b). This
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Fig. 2.15. Calculation results for Lorenz system (2.48) at σ = 10 and β = 8/3.
(a) Probability distribution of angles for the Lorenz attractor at r = 27; (b) the
minimum angle φmin as a function of the parameter r. The vertical line marks
the theoretically determined onset of the transition from the Lorenz attractor to
nonhyperbolic attractors

effect largely accounts for the properties of nonhyperbolic chaos, which are
considered in subsequent parts of this section.

2.2.3 Chaos in the Presence of Noise

Nonlinear stochastic problems are of fundamental and practical importance.
Two basic approaches to the analysis of stochastic systems are known
[148–151]. The first is based on solving stochastic equations and is called
the Langevin method. Any particular solution to stochastic equations, even
for the same initial state, generates a new realization of the random process.
This method allows obtaining an ensemble of a large number of realizations
and finding a statistical characterization of the process. Averaging can be
done over one, sufficiently long, realization, because the chaotic process is er-
godic. The second approach consists in solving the evolutionary equations for
the probability measure, such as the Chapman–Kolmogorov equation, the ki-
netic equation, or the Fokker–Planck equation. This requires that the random
process in the system be at least Markovian, which poses some constraints
on the noise sources. For the process to be Markovian, random actions must
be independent. In this case, the Chapman–Kolmogorov equation is valid.
If the noise is Gaussian, the process is diffusive, and the probability density
obeys the Fokker–Planck equation. Of the noise sources satisfy the corre-
sponding requirements, the method of stochastic equations and the method
of evolutionary equations yield equivalent results [148–150,152].

The problem of statistical characterization of dynamical chaos and the
role of fluctuations in chaotic systems is of particular interest [93, 94, 105,
128,152–156]. For systems with hyperbolic-type chaotic dynamics, statistical
description is possible even in purely deterministic cases, i.e., in the absence
of noise [93,94,105,156]. This means that the stationary solution of the evo-
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lutionary equation for the probability density allows the existence of the limit
as d → 0, where D is the noise intensity; therefore, a solution for the proba-
bility measure can be obtained even in a purely deterministic case. As shown
in [93, 105], small fluctuations (D � 1) in hyperbolic systems give rise to
small variations in the structure of the probability measure. From this view-
point, so-called quasi-hyperbolic (nearly hyperbolic) attractors, such as the
Lozi attractor and the Lorenz attractor [42, 98], do not virtually differ from
hyperbolic attractors. This is because neither quasi-hyperbolic nor hyperbolic
attractors contain stable periodic orbits. A rigorous proof of the existence of
a probability measure in the Lorenz attractor in the absence of noise, was
given in [94].

The effects of noise are important for nonhyperbolic systems. As shown
in [102], the mean distance between an orbit with noise and a nonhyperbolic
attractor without noise is much larger than in the hyperbolic case and de-
pends on the information dimension of the attractor. It is well known that
noise can induce various phase transitions in systems with nonhyperbolic at-
tractors [128, 129, 157, 158]. As sources of Gaussian noise are added to the
system, the attraction basins of the coexisting attractors merge. This results
in the establishment of a stationary probability density, which is independent
of the initial state [100]. A statistical description of nonhyperbolic chaos en-
counters fundamental difficulties. Strictly speaking, a stationary probability
measure independent of the initial distribution does not exist in nonhyper-
bolic chaotic attractors without noise. The continuum limit as D → 0 cannot
be implemented in those case [100]. Moreover, probabilistic characteristics of
nonhyperbolic chaos are highly sensitive even to tiny variations in the para-
meters of the system [99, 128, 145, 159]. Thus, the existence of a stationary
probability measure in a nonhyperbolic attractor is only possible if the system
is affected by noise.

2.2.4 Relaxation to a Stationary Probability Distribution for
Chaotic Attractors in the Presence of Noise

Models and numerical techniques. We consider the chaotic attractors
of such well-known systems as the Rössler oscillator [126]

ẋ = −y − z +
√

2Dξ(t), ẏ = x + ay, ż = b − z(m − x) (2.49)

and the noise-affected Lorenz system (2.48) [127]

ẋ = −σ(x − y) +
√

2Dξ(t), ẋ = rx − y − xz, ż = −βz + xy. (2.50)

In both models, ξ(t) is the source of Gaussian white noise with the mean
value 〈ξ(t)〉 ≡ 0 and correlation 〈ξ(t)ξ(t+ τ)〉 ≡ δ(τ), where δ(τ) is the Dirac
delta-function. The parameter D denotes the noise intensity. For the Rössler
system, we fix the parameters a = 0.2 and b = 0.2., varying the parameter
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m within the range [4.25, 13]. For the Lorenz system, we choose two different
regimes – a quasihyperbolic attractor (σ = 10, β = 8/3, and r = 28) and a
nonhyperbolic attractor (σ = 10, β = 8/3, and r = 210).

The chaotic attractors of systems (2.49) and (2.50) have been studied
in detail and are classical examples of quasihyperbolic and nonhyperbolic
chaos, respectively [129, 160]. Thus, the results obtained for systems (2.49)
and (2.50) can be generalized to a broad class of dynamical systems.

To study the processes of relaxation to a stationary distribution in these
systems, we analyze the time evolution of a collection of points initially lo-
cated in a cube of a small size δ around an arbitrary point of a trajectory that
belongs to the attractor of the system. We choose the size of this cube to be
δ = 0.09 and fill the cube uniformly with points whose number is n = 9000.
In due course, they spread over the entire attractor. To characterize the con-
vergence to a stationary distribution, we trace the time evolution of the set
of points and calculate the ensemble average

x(t) =
∫

W

p(x, t)xdx =
1
n

n∑

i=1

xi(t), (2.51)

where x is one of the dynamical variables of the system and p(x, t) is the
probability density of the variable x at time t, which corresponds to the
initial distribution. We introduce the function

γ(tk) = |xm(tk+1) − xm(tk)|, (2.52)

where xm(tk) and xm(tk+1) are successive extrema of x(t). The function
γ(tk) characterizes the amplitude of fluctuations in the mean of xm(t). The
successive time moments tk and tk+1 in (2.52) correspond to the extrema of
x. The temporal behavior of γ(tk) gives an idea of the regularities and rate
of relaxation to the probability measure on the attractor. We calculated the
largest Lyapunov exponent λ1 of a chaotic trajectory on the attractor and
the normalized autocorrelation function of the well-established oscillations
x(t):

Ψ(τ) =
ψ(τ)
ψ(0)

, ψ(τ) = 〈x(t)x(t + τ)〉 − 〈x(t)〉〈x(t + τ)〉. (2.53)

Here, the angular brackets 〈. . .〉 denote time averaging.
Instead of γ(tk) and Ψ(τ), we plot their respective envelopes γ0(tk) and

Ψ0(τ), to make the figures more informative and visual.

Relaxation to a Stationary Distribution in the Rössler system. Ef-
fects of Noise on the Mixing Rate. The nonhyperbolic chaotic attractor
that appears in the Rössler system (2.49) at fixed a = b = 0.2 and at m
values within the interval [4.25, 8.5] is a well-known example of a spiral (or
phase-coherent) attractor. The phase trajectory in a spiral attractor winds
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Fig. 2.16. Behavior of the function γ0(tk) for the attractors in Rössler system
(2.49): (a) for the spiral attractor (a = b = 0.2, m = 6.1) at D = 0 (curve
1), D = 0.001 (curve 2), and D = 0.1 (curve 3); (b) for the funnel attractor
(a = b = 0.2,, m = 13) at D = 0 (solid curve) and D = 0.01 (dashed curve)

around one or several saddle foci. The ACF is oscillatory, and the narrow-
band peaks stand out in its power spectrum; they correspond to the mean
winding frequency and its harmonics and subharmonics [129,161–163].

As the parameter m is increased, the attractor of system (2.49) changes
qualitatively. An incoherent attractor arises within the interval 8.5 < m ≤ 13,
which is called a funnel attractor [128,162]. The phase trajectories behave in
a more complex way in it. As a result, the ACF of the funnel attractor decays
much more rapidly than in the case of spiral chaos, and the power spectrum
does not contain pronounced peaks.

Calculations carried out for m ∈ [4.25, 7.5] (spiral chaos) and for m ∈
[8.5, 13] (funnel chaos) without including noise suggest that an invariant
probability measure exists at these parameter values4. Qualitatively, all ef-
fects observed in system (2.49) for each attractor type are preserved as the
parameter m is varied.

Figure 2.16 shows a typical behavior of the function γ0(t) for the spiral and
the funnel attractor of system (2.49). It has been found that noise strongly
affects the mixing rate in the spiral-attractor regime. The relaxation time
considerably decreases with the increase in the noise intensity (Fig. 2.16a).
The situation is radically different in the case of the funnel attractor. Inco-
herent chaos is virtually insensitive to noise influences. The behavior of γ0(t)
does not change substantially as noise is added (Fig. 2.16b). Numerical sim-
ulations show that the correlation times are also quite different for these two
chaotic regimes: in the absence of noise effects, they differ by two orders of
magnitude. For spiral chaos, the correlation time is considerably shorter in
the presence of noise (Fig. 2.17a), while the ACF for the funnel attractor in
the deterministic case virtually coincides with the ACF in the presence of
noise (Fig. 2.17b). Therefore, nonhyperbolic incoherent chaos exhibits some

4 Stable trajectories have vanishingly small basins of attraction and do not mani-
fest themselves, since the accuracy of computations is finite.
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Fig. 2.17. Envelopes of the normalized ACF Ψ0(τ) for the attractors in system
(2.49): (a) at m = 6.1, for D = 0 (solid curve) and D = 0.01 (dashed curve); (b)
at m = 13, for D = 0 (solid curve) and D = 0.01 (dashed curve)

properties of hyperbolic chaos, i.e., as Sinai notes [93], “dynamical stochas-
ticity” proves to be stronger than the stochasticity enforced from outside.

We also note another result. It has been found that a positive Lyapunov
exponent is weakly sensitive to fluctuations effects for both spiral and funnel
chaos (Fig. 2.18) and slightly decreases as noise is intensified. The correlation
time can, however, vary significantly under the influence of noise in this case.
Thus, mixing in the regime of spiral chaos is determined not only and not
so much by the degree of exponential instability. Other, weightier factors are
present. We analyze them below.

For this, we use the notions of instantaneous amplitude and phase of
oscillations [163]. Unfortunately, neither is universal. For spiral attractors,
these quantities are quite reasonably introduced as

x(t) = A(t) cos Φ(t), y(t) = A(t) sin Φ(t). (2.54)
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Fig. 2.18. Largest Lyapunov exponent λ1 for the spiral (triangles) and funnel
(circles) attractors as a function of the noise intensity D for the Rössler system
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Fig. 2.19. (a) Time dependence of the instantaneous-phase variance σ2
Φ for spiral

chaos (m = 6.1) at D = 0 (curve 1) and D = 0.1 (curve 2) and for incoherent
chaos (m = 13) at D = 0 (curve 3) and D = 0.1 (curve 4). (b) The effective phase
diffusion coefficient Beff as a function of the noise intensity D for spiral (curve 1)
and incoherent (curve 2) chaos

The instantaneous phase, as it follows from (2.54), is determined by the
relation

Φ(t) = arctan
y(t)
x(t)

+ πn(t), (2.55)

where n(t) = 0, 1, 2, . . . are the numbers of windings of the phase trajectory
around the equilibrium state.

We have found that the component of mixing in the direction of the flux
of trajectories is associated with the instantaneous-phase variance σ2

Φ, which
controls phase diffusion. Figure 2.19a illustrates the time dependence of the
instantaneous-phase variance σ2

Φ on the ensemble of initially close trajectories
for the spiral and funnel attractors of system (2.49). It can be seen that in
the time intervals considered, the variance grows in a virtually linear manner
both with and without the presence of noise. The assumption that the time
dependence of the instantaneous-phase variance for chaotic oscillations in the
Rössler system is linear was made in [161]; however, it was justified neither
theoretically nor numerically. For spiral chaos without noise (curve 1), σ2

Φ is
small and grows much more slowly than in the other cases under study. The
linear growth of the variance allows determining the effective phase-diffusion
coefficient (first introduced by Stratonovich [164])

Beff =
1
2

〈dσ2
Φ

dt

〉

, (2.56)

where the angular brackets denote time averaging of fast oscillations.
The diffusion coefficient Beff as a function of the noise intensity is pre-

sented in Fig. 2.19b for the spiral and funnel attractors in Rössler system
(2.49). It can be seen that Beff grows with D in both cases, but this growth
is stronger for spiral chaos.
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Fig. 2.20. Behavior of the function γ0(tk) for chaotic attractors in Lorenz system
(2.50): (a) for r = 28, D = 0 (solid curve) and D = 0.01 (dashed curve); (b) for
r = 210, D = 0 (heavy curve) and D = 0.01 (light curve). The other parameters
are σ = 10 and β = 8/3

Relaxation to the probability measure in the Lorenz system. The
well-known quasihyperbolic attractors in three-dimensional differential sys-
tems, such as the Lorenz attractor and the Shimizu-Morioka attractor [133],
are switching-type attractors. The phase trajectory switches chaotically from
the vicinity of one saddle equilibrium state to the vicinity of another. Such
switching involves random phase changes even in the absence of noise. Adding
noise does not substantially modify the phase dynamics and does not there-
fore affect the rate of relaxation to the stationary distribution.

Figure 2.20 shows the behavior of the function γ0(tk) for the quasi-
hyperbolic and nonhyperbolic chaotic attractors of system (2.50) with and
without noise influences. It has been discovered that noise has virtually no ef-
fect on the relaxation rate for the Lorenz attractor (Fig. 2.20a). The situation
is radically different for the nonhyperbolic attractor in the Lorenz system. In
this case, noise strongly affects the settling rate of the probability measure
(Fig. 2.20b).

We now assess the dependence of the Lyapunov exponent and correla-
tion time on the level of noise influence. For the same chaotic attractors in
the Lorenz system, the highest Lyapunov exponent λ1 and the normalized
autocorrelation function Ψ(τ) (τ = t2 − t1)) of the dynamical variable x(t)
were calculated for various noise intensities D. It was found that within the
accuracy of computations, λ1 is independent of the noise intensity for either
type of chaotic attractor. Similarly, noise has virtually no effect on the ACF
of the quasihyperbolic attractor (Fig. 2.21a). However, in the regime of the
nonhyperbolic attractor, the ACF declines more rapidly with the presence of
noise (see the curves in Fig. 2.21b).
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Fig. 2.21. Envelopes of the normalized autocorrelation function Ψ0(τ) for the
attractors in system (2.50): (a) r = 28, D = 0 (solid curve) and D = 0.01 (dashed
curve); (b) r = 210, D = 0 (solid curve) and D = 0.01 (dashed curve)

2.2.5 Spectral-Correlation Analysis of Dynamical Chaos

Spectral-correlation analysis of spiral chaos. From the physical point
of view, spiral-type chaotic attractors largely resemble noisy limit cycles. It
should be kept in mind in this context that spiral attractors are present in
completely deterministic systems, i.e., without fluctuation sources. We con-
sider the regime of spiral chaos in Rössler system (2.49) at a = b = 0.2
and m = 6.5. With this aim in view, we introduce the instantaneous am-
plitude A(t) and phase Φ(t) according to (2.54) and, by means of numeri-
cal simulation, we determine the normalized ACF of the chaotic oscillation
x(t) (Fig. 2.22, points in shaded region 1), the covariance function of am-
plitude fluctuations KA(τ), and the effective phase-diffusion coefficient Beff .
Figure 2.22 shows the results for Ψx(τ) in system (2.49) with and without
the presence of noise. The decay of the ACF is virtually exponential both in
the absence (Fig. 2.22a) and in the presence of noise (Fig. 2.22b). Further-
more, as can be seen from Fig. 2.22c, an interval exists for τ < 20 where
the ACF decreases much more rapidly. The envelope of the computed ACF,
Ψx(τ), can be approximated using equation (1.129). For this, we substitute
the calculated characteristics KA(τ) and B = Beff into the expression for the
normalized envelope Ψ0(τ):

Ψ0(τ) =
KA(τ)
KA(0)

exp(−Beff |τ |). (2.57)

The calculation results for Ψ0(τ) are represented by the points of curves 2
in Figs. 2.22a and 2.22b. It can be seen that the behavior of the envelope of
the ACF, Ψx(τ), is described well by formula (2.57). We note that taking the
factor KA(τ)/KA(0) into account yields a good approximation for all τ � 0.
This means that the amplitude fluctuations are important in short time in-
tervals (τ < τcor), whereas the slow decrease in the correlation is mainly
determined by phase diffusion. The surprisingly good agreement between the
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Fig. 2.22. The normalized ACF of the oscillation x(t) in system (2.49) at m = 6.5
(points in the shaded region 1) and its approximation (2.57) (points on curve 2) for
D = 0 (a) and D = 10−3 (b); (c) envelopes of the ACF on a logarithmic scale for
D = 0 (curve a), D = 0.001 (curve b), and D = 0.01 (curve c)

numerical results for spiral chaos and the data for the classical model of har-
monic noise is noteworthy. At the same time, this good agreement is quite
difficult to explain. First, relation (1.129) was obtained under the assumption
that the amplitude and phase of fluctuations are statistically independent. It
is absolutely clear that this assumption is not applicable to a chaotic regime.
Second, formula (1.129) was derived taking into account that the phase fluc-
tuations can be described in terms of a Wiener process. In the case of chaotic
oscillations, Φ(t) is a more complex process, with unknown statistical prop-
erties. It is especially important to emphasize that the results in Fig. 2.22a
were obtained for the regime of purely deterministic chaos (without noise),
which additionally confirmed the similarity between chaotic self-sustained
oscillations and a random process.

It follows from the results presented in Fig. 2.22 that the envelope of
the ACF for chaotic oscillations at τ > τcor can be approximated by the
exponential factor exp(−Beff |τ |. According to the Wiener–Khinchin theorem,
the spectral peak at the mean frequency ω0 must have a Lorentzian profile
with the width determined by the effective phase diffusion coefficient Beff :
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Fig. 2.23. A fragment of the normalized power spectrum of the oscillation x(t) in
system (2.49) at a = b = 0.2, m = 6.5 (solid curve) and this spectrum approxima-
tion by expression (2.58) (dashed curve) for the noise intensity D = 10−3

S(ω) = C
Beff

B2
eff + (ω − ω0)2

, C = const. (2.58)

The calculation results shown in Fig. 2.23 confirm this assertion. The fun-
damental spectral line can be approximated by expression (2.58), which is
supported by the numerical results for the power spectrum of the oscilla-
tion x(t). The results presented in Figs. 2.22 and 2.23 for the noise intensity
D = 10−3 were reproduced for different D in the interval 0 < D < 10−2

and for the range of the parameter m that corresponds to the spiral-chaos
regime. We note that the above-presented approximation results for the ACF
and the profile of the fundamental spectral line of the spiral attractor in the
Rössler system were completely confirmed by studies of spiral attractors in
other dynamical systems [124,125].

Correlation Parameters of the Lorenz Attractor. The narrow-band-
noise model cannot be used to analyze the ACFs of switching-type chaotic
oscillations, which have a continuous spectrum without pronounced peaks
at any distinguished frequencies. Such attractors are quite complex in their
structure [168]. The Lorenz attractor is a classical example of a switching-
type attractor [127]. We consider the Lorenz system in the quasihyperbolic-
attractor regime at r = 28, σ = 10, and β = 8/3.

There are two saddle foci in the phase space of the Lorenz system, which
are located symmetrically about the z axis and are separated by the stable
manifold of the saddle point at the coordinate origin. The stable manifold
has a complex structure, which is responsible for random switching between
the saddle foci in peculiar paths [98, 168] (Fig. 2.24). The phase trajectory,
spiraling around a saddle focus, approaches the stable manifold and, with a
certain probability, can subsequently enter the vicinity of the other saddle
focus. The winding about the saddle foci does not make a significant con-
tribution to the time dependence of the ACF, while the random switching
substantially affects the correlation time.
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Fig. 2.24. A qualitative illustration of the structure of the manifold in the Lorenz
system
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Fig. 2.25. Telegraph signal (solid curve) obtained for the oscillation x(t) (dashed
curve) in the Lorenz system at σ = 10, β = 8/3, and r = 28

We consider the time dependence of the x coordinate illustrated in
Fig. 2.25. If the winding about the saddle foci is eliminated using the
symbolic-dynamics method, we can obtain a signal similar to the telegraph
signal [123,125].

Figure 2.26 shows the ACF of the oscillation x(t) for the Lorenz attractor
and the ACF of the corresponding telegraph signal. A comparison between
these two graphs indicates that the correlation-decay time and the behavior of
the ACF on this time scale are mainly determined by the switching, while the
winding about the saddle foci does not contribute considerably to the ACF
decay. It is important to note that the ACF decay law is virtually linear at
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Fig. 2.26. ACF of the oscillation x(t) (a) and the telegraph signal (b)
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Fig. 2.27. The distribution of pulse duration for the telegraph signal (a) and the
probability distribution of switching within times that are multiples of ξ0 (b)

short times. This fact is remarkable, because a linear decline in the ACF
corresponds to a discrete equidistant probability distribution of residence
times in the form of a set of delta peaks, and the probability of switching
between two states should be 1/2 [166,167].

Figure 2.27 shows the distribution of residence times computed for the
telegraph signal presented in Fig. 2.25. As can be seen from Fig. 2.27a, the
distribution of residence times indeed has a structure close to an equidistant
discrete distribution. At the same time, the peaks are not δ-like spikes but
have finite widths. Figure 2.27b shows the probability distribution of switch-
ing that occurs at values that are multiples of ξ0, the minimum residence
time for one state5. This dependence demonstrates that the probability of a
transition within the time ξ0 (within one trajectory winding) is close to 1/2.

5 The time ξ0 corresponds to the duration of one trajectory winding about the
saddle focus in the Lorenz attractor.
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The discrete character of switching can be accounted for by the properties of
the manifold structure in the Lorenz system (see Fig. 2.24). The manifolds
split into two sheets near the coordinate origin x = 0, y = 0. As a result,
the probability of switching between two states within one winding about
a fixed point is approximately 1/2. Because of this particular aspect of the
dynamics, the ACF of the oscillations x(t) and y(t) on the Lorenz attractor
has the form specified by expression (1.132). However, the finite width of
the distribution peaks and deviations of the probability P (ξ0) from 1/2 can
result in the ACF not linearly decreasing to zero (see Fig. 2.27).

2.2.6 Phase Diffusion in an Active Inhomogeneous Medium
Described by the Ginzburg–Landau Equation

Extended systems are among the most interesting subjects of investigation
in theoretical physics. First and foremost, this is due to wave processes that
occur only in extended systems. Numerous studies have been dedicated to
the dynamics of continuous media, including the onset of turbulence. An ir-
regular behavior of the medium in space and time can develop because of its
spatial nonuniformity [169–171]. Effects of spatial nonuniformity have been
studied, for example, in ensembles of coupled self-sustained oscillatory sys-
tems [172, 173] that can be regarded as models approximating an extended
active medium. In ensembles with a spatial frequency gradient, the emergence
of frequency clusters – groups of oscillators with equal or close mean frequen-
cies – is typical. Accordingly, perfect (with equal frequencies) or imperfect
(with differing frequencies) clusters are considered.

Frequency clusters can also form in a continuous inhomogeneous active
medium [174, 175]. In contrast to ensembles, which consist of discrete sets
of oscillators, a regime with a continuous coordinate dependence of the fre-
quency is possible in a medium with imperfect clusters. This corresponds to
the effect of emergence of imperfect clusters with a continuous power spec-
trum of oscillations. Because this phenomenon can be observed in a purely
deterministic medium in the absence of fluctuations, it implies the onset of
deterministic chaos in an extended medium. We here consider the onset of
chaotic temporal behavior of a continuous inhomogeneous medium and com-
pare the details of the dynamics of the inhomogeneous medium with the
above-described emergence of phase diffusion in finite-dimensional systems.

As an example, we study a one-dimensional self-sustained oscillatory
medium that obeys the Ginzburg–Landau equation with a coordinate-
dependent frequency,

at = iω(x)a +
1
2
(1 − |a|2)a + gaxx, (2.59)

where i is the imaginary unit, a(x, t) is the complex amplitude of oscillations,
t is the time, x ∈ [0, l] (l = 50) is the spatial coordinate, and g is the diffusion
coefficient.
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As g → 0, oscillations at different points of the medium have different
frequencies specified by the function ω(x). We consider the case where the
frequency depends linearly on the spatial coordinate, ω(x) = x∆max; in ex-
periments, ∆max is set to the fixed value 0.2. The boundary conditions have
the form

ax(x, t)|x=0;l ≡ 0. (2.60)

The initial state of the medium is chosen at random near some uniform
distribution a0 = const. Equation (2.59) is integrated numerically using an
implicit finite-difference technique with a forward–backward marching pro-
cedure [176]. We calculate the real oscillation amplitude

A(x, t) = |a(x, t)| (2.61)

and the phase
φ(x, t) = arg a(x, t). (2.62)

The mean oscillation frequency is computed as the mean time derivative of
the phase,

Ω(x) = 〈φt(x, t)〉. (2.63)

If no mismatch is present (∆max = 0), only uniform self-sustained os-
cillation regimes are possible in medium (2.59): a(x, t) ≡ a(t). At a given
mismatch ∆max, the formation of perfect and imperfect frequency clusters
can be observed in a certain range of diffusion-coefficient values (Fig. 2.28).
Time-periodic oscillations correspond to perfect clusters. In the regime of im-
perfect clusters, the time variation in the oscillation amplitude A at any fixed
point in the medium x is quite complex and resembles a chaotic process.

This effect can be illustrated by calculating the power spectra for the
regimes of perfect and imperfect clusters shown in Fig. 2.29. As the regime
evolves from perfect to imperfect clusters, a transition from multifrequency
regular oscillations to complex oscillations with a continuous spectrum are
observed in the medium at any spatial point.

We also calculate the temporal ACFs of the process A(x, t) for different
points in the medium,
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Fig. 2.28. Variation in the mean oscillation frequency Ω along the medium for a
perfect cluster structure at g = 1.0 (a) and for an imperfect structure at g = 0.85 (b)
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Fig. 2.29. Normalized spectral power densities of the process A(x1,2, t): (a) in the
regime of perfect clusters (g = 1.0) at the point x1 = 25 (cluster center); (b) in the
regime of imperfect clusters (g = 0.85) at the point x1 = 25 (cluster center)

ψA(x, τ) = 〈A(x, t)A(x, t + τ)〉 − 〈A(x, t)〉2, (2.64)

where the angular brackets denote time averaging and 〈A(x, t)〉 is t-indepen-
dent. We consider the normalized ACF (correlation coefficient)

ΨA(x, τ) =
ψA(x, τ)
ψA(x, 0)

. (2.65)

An ACF is exemplified in Fig. 2.30a. Our calculations demonstrate that
in the imperfect-cluster regime, ΨA(x, τ) decreases with time at any point in
the medium x, ultimately approaching zero (Fig. 2.30a). This testifies to the
presence of mixing. Two time scales can be distinguished in the ACF-envelope
decay law. At small τ (of several oscillation periods), the correlation declines
rapidly. At longer times, an exponential decrease with a certain damping rate
α is a fairly good approximation. The damping rate varies within the range
α = (0.15−0.4)×10−3, depending on the point in the medium. If the cluster
structure is perfect, periodic or quasi-periodic processes occur in the medium,
with corresponding correlation functions.

Because no noise sources are present in the model under study, only the
onset of dynamical chaos – an absolute exponential instability of oscillations
in the medium – can be responsible for mixing. To analyze the stability of the
oscillations, we jointly integrate equation (2.59) and the linearized equation
for a small perturbation u(x, t) of the complex amplitude a(x, t):

ut = iω(x)u +
1
2
(1 − 2|a|2)u − 1

2
a2u∗ + guxx, (2.66)

where u∗ is the complex conjugate to u. The boundary conditions for the
perturbation are given by

ux(x, t)|x=0;l ≡ 0. (2.67)

For any time t, the Euclidean perturbation norm ||u(x, t)|| is considered,
which reduced to the sum of a finite number of terms because of the discretiza-
tion of the spatial coordinate. Our calculations have shown that the decay
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Fig. 2.30. (a) Normalized autocorrelation function of the process A(x1,2, t) in the
regime of imperfect clusters (g = 0.85) at the point x1 = 25 (cluster center). The
dashed curve represents the exponential approximation of the envelope of the ACF:
C exp(−ατ), α = 0.0003, C = const. (b) Time dependence of the perturbation
norm ||u(x, t)|| for the oscillation of the medium (2.59) in the regime of imperfect
clusters at g = 0.85 (curve 1) and in the regime of perfect frequency clusters at
g = 1.0 (curve 2). The dashed straight line corresponds to the exponential function
exp(0.0023t)

of the ACF in the regime of imperfect clusters is accompanied by an expo-
nential temporal growth (on average) in the perturbation norm (Fig. 2.30b).
The rate of the exponential growth λmax obtained for g = 0.85 has the value
λmax ≈ 0.002. We note that this λmax exceeds the damping rate of the ACF
by an order of magnitude.

To check the presence of exponential instability in the medium, we cal-
culate the maximal Lyapunov exponent λmax, based on the time series of
data, using the algorithm suggested in [177]. The calculations yield a pos-
itive value of the maximal Lyapunov exponent, which weakly depends on
the parameters of the numerical scheme. The results corresponding to differ-
ent points in the medium differ to a certain extent but are all of the order
10−3. For instance, at the optimum parameters of the numerical scheme, the
reconstruction technique yields

λmax = 0.002 ± 0.0002 (2.68)

for the point x1 = 25, which agrees very well with the results of the linear
stability analysis. Thus, it can be safely said that the regime of imperfect
frequency clusters corresponds to chaotic oscillations in time.

The estimates of the maximal Lyapunov exponent obtained suing two
different methods agree well with each other, but differ substantially (by an
order of magnitude) from the estimate for the exponential-damping rate of the
correlations in the corresponding regime. According to the above discussion,
for a broad class of chaotic systems with lumped parameters, the rate of
correlation splitting at long time intervals and the width of the basic spectral
line are determined by the effective diffusion coefficient for the instantaneous



2.2 Statistical Properties of Dynamical Chaos 159

0 2000 4000 6000 8000 10000
t

0.0

1.0

2.0

3.0

4.0

σΦ
2

Fig. 2.31. Variance of the instantaneous phase computed for the regime of imper-
fect clusters (g = 0.85) at the point x = 25 (cluster center), Beff ≈ 0.00016. The
approximating straight line is shown dashed

phase of the fluctuations,

y(t) = A(t) − 〈A(t)〉. (2.69)

To verify this assertion, we study the dynamics of the instantaneous phase
defined as

Φ(t) = arctan
(

yh(t)
y(t)

)

± πk, k = 0, 1, 2, . . . , (2.70)

where yh(t) is the Hilbert-conjugate process. The choice of an integer k in
expression (2.70) is dictated by the continuity condition for the function Φ(t).

For an ensemble of segments of a sufficiently long realization Φ(t), we
calculate the variance

σ2
Φ(t) = 〈Φ2(t)〉 − 〈Φ(t)〉2, (2.71)

where the angular brackets denote ensemble averaging. The variance of the
instantaneous phase is plotted as a function of time in Fig. 2.31. The variance
grows with time almost linearly in the interval t ∈ [0, 10000]. A least-square
estimate of the angular growth factor makes it possible to determine the
effective diffusion coefficient for the phase Φ(t) (2.56).

In the regime of imperfect clusters, the obtained Beff values range within
the interval [0.000 16, 0.000 38], depending on the spatial coordinate x. A more
accurate, direct calculation of Beff based on formula (2.56) proved to be quite
complicated because of the need of averaging over a vast dataset.

Our numerical investigation reveals a number of important new facts.

(1) The development of chaos and turbulence in a continuous self-sustained
oscillatory medium can result from the inhomogeneity of the medium,
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which specifies a continuous coordinate dependence of the self-sustained
oscillation frequency.

(2) The self-sustained oscillations of the medium in the regime of imperfect,
partial (cluster) synchronization are mixable, i.e., they are exponentially
unstable, with splitted temporal correlations.

(3) The damping rate of the correlation functions at long times is not directly
determined by the Lyapunov exponent but is related to the diffusion of
the instantaneous oscillation phase. This testifies to the generality of the
correlation splitting laws in finite-dimensional and distributed chaotic
systems.

2.2.7 The Autocorrelation Function and Power Spectrum
of Spiral Chaos in Physical Experiments

Our experiments were carried out using a setup that included a radio gener-
ator with inertial nonlinearity (Anishchenko–Astakhov generator [129]) and
the fundamental frequency 18.5 kHz, a fast-ADC computer with the dis-
cretization frequency 694.5 kHz, and a generator of broadband Gaussian
noise in the frequency 0 to 100 kHz [178]. The behavior of the ACF was
also analyzed in the presence of external noise. With this aim in view, a sig-
nal from an external noise generator with controlled noise intensity was fed
to the system. The generator with inertial nonlinearity can be described by
the three-dimensional dissipative dynamical system

ẋ = mx + y − xz − δx3, ẏ = −x, ż = −gz + gI(x)x2, (2.72)

I(x) =
{

1, x > 0,
0, x ≤ 0.

At certain m and g, the system realizes spiral-chaos regimes [129].
The first important question to be unambiguously resolved in the ex-

periment is whether the Wiener-process approximation can be used to de-
scribe the statistical parameters of the instantaneous phase, as assumed
in [107, 123, 125, 161]. The instantaneous phase used to determine the dif-
fusion coefficient Beff is based on the concept of analytical signal with the
application of the Hilbert transform of experimental realizations of x(t) [163].
The phase variance σ2

Φ(t) is then computed by averaging over an ensemble of
N realizations. The effective phase-diffusion coefficient is determined by the
temporal-growth rate of the variance.

The time dependence of the phase variance shown in Fig. 2.32a is not
strictly linear, as should be expected for a Wiener process. However, the linear
growth dominates over small fluctuations in the phase variance. Therefore,
the process under consideration can be associated with a Wiener process
whose diffusion coefficient is Beff .

The next stage of the experiment is the measurement of the ACF for the
chaotic oscillations of the generator with inertial nonlinearity. Several dozen



2.2 Statistical Properties of Dynamical Chaos 161

0 100 200 t

0.1

0.2

0.3

0.4

0.5
σ2

(t)

0 5000 10000 15000τ
10

−3

10
−2

10
−1

10
0

lnΨ(τ)

1

2

3

a b

Fig. 2.32. (a) Time dependence of the phase variance in the presence of noise
with the intensity D = 0.001 mV and the linear least-squares approximation of
this dependence (the nondimensional time t is equal to the number of oscillation
periods). (b) The ACF envelopes (solid lines) obtained experimentally for different
values of the noise intensity: 1 – D = 0, 2 – D = 0.0005 mV, 3 – D = 0.001 mV;
with their experimental approximations (straight lines) for the respective damping
rates Beff = 0.00024, Beff = 0.00033, and Beff = 0.000439. The other parameters
of the numerical calculations are N = 100, n = 262144, and p = 1/(2n)

realizations of the signal x(t), with a duration of 10 s each, were recorded by
the fast ADC. The total length of the realization was (3−5)×105 oscillation
periods with a discretization step ∆t corresponding to 37 points per period.
The ACF was calculated as follows. First, we computed the time-averaged
value of the x variable for each of N realizations of the process x(t):

x =
1
n

n∑

i=1

x(ti). (2.73)

Next, time averaging was used to obtain the mean product 〈x(t)x(t + τ)〉,

Kl(τ) =
1
p

p
∑

i=1

x(ti)x(ti + k∆t), τ = k∆ti, k = 0, 1, . . . , n − p, (2.74)

where l = 1, . . . , N is the realization number. Since the correlation-decay rate
is not high in the regime under consideration, the ACF should be calculated
for a very long time interval. To achieve high accuracy in the calculation of
the ACF, the data obtained were averaged over N realizations:

ψ(τ) =
1
N

N∑

i=1

Kl(τ) − x2. (2.75)

The ACF was normalized to the maximum value at τ = 0, i.e.,

Ψ(τ) =
ψ(τ)
ψ(0)

. (2.76)
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Experimental graphs of the envelopes of the normalized ACF for various
external-noise intensities are shown in Fig. 2.32b. The dependences obtained
were approximated by the exponential law

Ψapp(τ) = exp(−Beffτ), (2.77)

where Beff is the experimentally determined effective instantaneous-phase
diffusion coefficient. The approximations are shown by symbols in Fig. 2.32b.

We now analyze the results of the power-spectrum measurements. The
power spectrum of a diffusive process has a Lorentzian profile whose width is
determined by the effective phase-diffusion coefficient. For a normalized spec-
trum, the Lorentzian is given by formula (2.58). Experimentally, the diffusion
coefficient can be independently determined by measuring the width of the
spectral peak. To obtain a more accurate value of the diffusion coefficient,
we approximated the spectral peak using formula (2.58) and varying Beff .
We choose the Beff value at which the approximation error was minimum
(Fig. 2.33a). Figure 2.33 presents experimental power spectra of the genera-
tor with inertial nonlinearity. The spectrum was computed using the standart
technique of the fast Fourier transform (FFT) with averaging. The principal
result is that the values of the effective phase-diffusion coefficient based on
the power-spectrum measurements agree well with the Beff values obtained
from the linear approximation of the growth of the instantaneous-phase vari-
ance. The corresponding values of the effective phase-diffusion coefficient are
given in the table for three values of the external-noise intensity.

Thus, we have found experimentally that in the spiral-chaos regime, the
instantaneous-phase variance of chaotic oscillations grows on average linearly
with the diffusion coefficient Beff . In the absence of noise, this coefficient is
controlled by the chaotic dynamics of the system. If noise is present, the
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Fig. 2.33. (a) Experimentally obtained power spectrum of the oscillation x(t) in
system (2.72) and its theoretical approximation (2.58) at Beff = 0.00 033 in the
presence of noise with D = 0.0005; (b) power spectra for D = 0.001 (curve 1) and
D = 0 (curve 2)
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Table 2.1. Comparison of the phase-diffusion coefficients obtained using various
techniques with the inclusion of noise of different intensity

D, mV Beff (Hilbert) Beff (spectrum)

0 0.000244 0.000266
0.0005 0.000330 0.000342
0.001 0.000439 0.000443

growth of the phase variance is also linear, but Beff increases. The ACF of
spiral chaos decreases exponentially with time, as exp(−Beffτ). The spectral-
line width of oscillations at the fundamental frequency ω0 is determined by
the phase-diffusion coefficient according to expression (2.58). The correspond-
ing values of the effective phase-diffusion coefficient are given in Table 2.1 for
three values of the external noise intensity.

2.2.8 Summary

Our results have shown that there is a class of spiral-type nonhyperbolic at-
tractors for which noise has a pronounced effect on the rate of relaxation
to the stationary distribution and on the correlation time but, virtually,
does not influence the value of the positive Lyapunov exponent. The rate
of mixing on nonhyperbolic attractors is determined not only and not very
much by the exponential instability but depends on the complex dynamics
of the instantaneous phase of chaotic oscillations. In the spiral-chaos regime,
noise substantially increases the rate of relaxation to the stationary distrib-
ution. For chaotic attractors with an irregular behavior of the instantaneous
phase, noise has virtually no effect on the mixing rate. This is the case for
nonhyperbolic funnel and switching-type attractors such as the quasihyper-
bolic Lorenz attractor. Spiral nonhyperbolic attractors can appear not only in
finite-dimensional but also in extended systems. An inhomogeneous medium
modeled by the Ginzburg–Landau equation can serve as an example. A char-
acteristic feature of spiral attractors is that they correspond to a complex
process of irregular self-sustained oscillations whose statistical properties can
be described in terms of the classical model of narrow-band noise. In essence,
spiral chaos is similar in its properties to a noisy limit cycle (e.g., a noise-
affected Van der Pol generator). The autocorrelation function and power
spectrum of a spiral attractor are completely determined by the fluctuations
in the instantaneous amplitude and phase of oscillations. The amplitude fluc-
tuations control the decay rate of the correlations at short time intervals and,
accordingly, the noise pedestal in the power spectrum. The phase fluctuations
broaden the spectral line at the fundamental frequency in the spectrum and
result in an exponential decay in the autocorrelation function, which is de-
termined by the effective diffusion coefficient Beff . The phase-diffusion coef-
ficient in a noise-free system is determined by its chaotic dynamics and does
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not directly depend on the positive Lyapunov exponent. The following im-
portant conclusion can be deduced: in dynamical systems with spiral chaos,
the Kolmogorov entropy as a quantitative characteristic of the mixing rate
is mainly controlled by the growth rate Beff of the instantaneous-phase vari-
ance rather than by the positive Lyapunov exponent, as is generally assumed.
Analyses of the statistical properties of the Lorenz attractor have shown that
the properties of the ACF are mainly determined by the random-switching
process, depending weakly on winding about the saddle foci. The classical
model of the telegraph signal can be used to describe the statistics of the
Lorenz attractor. In particular, this model provides a good approximation
of the interval of linear decrease in the ACF, which enables us to theoret-
ically calculate the correlation time. The fact that the ACF decay rate for
the Lorenz attractor is virtually constant both in and without the presence
of noise results from the statistics of the switching process. The probability
of switching in the Lorenz attractor is nearly 1/2 and virtually independent
of the level of noise influence.

2.3 Synchronization of Chaos

2.3.1 Introduction

Accumulation of the knowledge on chaotic dynamics of nonlinear systems has
led to the necessity of extending a classical concept of synchronization to the
case of chaotic oscillations. Earlier synchronization and deterministic chaos
were thought of as quite opposite tendencies in the behavior of DS [179]. In
a series of works based on the above opinion, synchronization of chaos was
understood as a transition from chaotic oscillations to periodic ones under
external periodic force on the system [180, 181]. However, numerous recent
studies have shown that the effect of synchronization can also manifest itself
in systems with chaotic dynamics. In the contemporary literature three major
kinds of chaos synchronization are well described, namely, complete synchro-
nization, phase–frequency synchronization (or synchronization in the sense
of Huygens [182]), and generalized synchronization. The complete synchro-
nization phenomenon is most often discussed in the literature [183]– [188].
It is observed when identical chaotic oscillators interact and manifests it-
self in that time dependences of the dynamical variables of the interacting
systems completely coincide as the coupling strength increases. In this case
the systems oscillate completely “in-phase”. The concept of complete syn-
chronization can be applied not only to self-sustained systems but also to
nonautonomous nonlinear oscillators, e.g., periodically driven Duffing oscil-
lators [187], as well as to discrete time systems, i.e., coupled maps [183,184].
When interacting systems have a slight parameter mismatch in the presence
of sufficiently strong coupling, one can observe a phenomenon close to the
complete synchronization effect [189]. The ideas on phase–frequency chaos
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synchronization in self-sustained systems are developed in [190–197]. They
are based on a generalization of the classical notion of synchronization as
natural frequency entrainment or suppression and the occurrence of certain
phase relations between oscillations of interacting oscillators. Another kind
of chaos synchronization, namely, generalized synchronization, is introduced
in [189, 198–200]. By generalized synchronization of chaotic oscillations we
mean the appearance of a functional dependence between the instantaneous
states of partial systems. In slightly nonidentical chaotic self-sustained sys-
tems a regime can appear where the states of the subsystems are completely
identical but shifted in time. This effect is called the lag synchronization [201].
Different aspects of chaos synchronization, discussed in recent works, are well
described in the reviews [202,203].

Synchronization of chaos has been found for ensembles consisting of a
large number of interacting chaotic oscillators [204–213]. It has resulted from
a saturation of the growth of the attractor dimension in arrays of oscillators
and leads to the formation of stable spatial structures. The possibility of re-
alizing synchronous regimes with different phase relations is closely related to
the phenomenon of multistability, i.e., the co-existence of a set of attractors,
both regular and chaotic, in the phase space of interacting systems [208]. In
turn, the multistability leads to attractor crises, fractalization of their basins
of attraction, etc. All these phenomena explain a great variety and complex-
ity of the cooperative dynamics of ensembles of nonlinear systems. The study
of distributed systems described by partial differential equations shows that
spatio-temporal structures can also be synchronized [214–216].

The comprehensive study of synchronization of complex oscillations evokes
great interest in connection with the development of mathematical models
and the wide application of nonlinear dynamics methods in biophysics (neural
networks, interacting populations, etc.) [217–222]. Besides, experimental in-
vestigations of biological systems, for which there is still no satisfactory math-
ematical description, show phenomena very similar to the well-known effects
of synchronization [223, 224]. Due to the variety and complexity of synchro-
nization manifestations in various interacting systems, this effect gains a more
rich and universal content. The problem of extending the basic notions un-
derlying the classical approach to synchronization has been considered in
order to develop a unified concept reflecting all the aspects of this important
phenomenon.

2.3.2 Phase–Frequency Synchronization of Chaos.
The Classical Approach

The most consistent extension of the synchronization concept is the devel-
opment of a classical concept which is based on the adjustment of a relation
between characteristic frequencies and time scales of DS. The classical con-
cept of synchronization can easily be extended to the case of oscillators in
the regime of spiral (phase-coherent) chaos [8, 162]. The power spectrum of
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spiral chaos contains a well-pronounced peak at the frequency close to that
of periodic oscillations (a limit cycle producing a chaotic attractor through a
subharmonic bifurcation sequence). This frequency is referred to as the basic
oscillation frequency ω0, and one can investigate the effect of entrainment or
suppression of the basic frequency as well as introduce a certain analogue for
phase locking of chaotic oscillations. Such effects are called synchronization
in the sense of Huygens, or phase–frequency synchronization. This kind of
synchronization can be realized in systems which are considerably different
in their mathematical description as well as in their behavior. One can also
observe forced chaos synchronization in the sense of Huygens, including that
which occurs under periodic forcings.

The first attempt to extend the classical notion of synchronization as fre-
quency locking or frequency suppression to the case of interacting chaotic os-
cillators was made in [190–194,225]. It was found that in a plane of parameters
which govern the strength of coupling and the frequency mismatch, one is able
to identify regions of chaos synchronization which resemble Arnold’s tongues.
Inside these regions chaotic oscillations (synchronous chaos) are qualitatively
different from the chaos outside them (nonsynchronous chaos).

In [195, 196] several methods were proposed to introduce an instanta-
neous phase of chaotic oscillations. It has also been shown that in case of
interacting chaotic oscillators with a certain frequency mismatch an increas-
ing coupling can bound the instantaneous phase difference of the oscillators.
This fact testifies to the effect of phase locking. Obviously, the frequency and
phase locking effects in the case of chaotic oscillations, as well as for periodic
oscillations, are closely interrelated.

We exemplify frequency synchronization of chaotic oscillations with ex-
periments performed for two interacting radio-technical chaos generators with
basic frequency mismatch [191,192]. A block diagram is shown in Fig. 2.34.

The interacting self-sustained generators being considered are described
by the following system of differential equations:

ẋ1 = (m1 − z1)x1 + y1 + γ1(x2 − x1 + y1 − y2/p),
ẏ1 = −x1,

ż1 = g1

(

f(x1) − z1

)

, (2.78)
ẋ2/p = (m2 − z2)x2 + y2 + γ2(Bx1 − x2 + y2 − Bpy1),
ẏ2/p = −x2,

ż1/p = g2(f(x2) − z2).

Parameters m1,2 and g1,2 govern the dynamics of partial generators; p =
C1/C2 is the resonance frequency mismatch of the Wien bridges and deter-
mines the frequency mismatch of the partial systems. Parameters γ1,2 charac-
terize the strength of coupling, and B is the transfer coefficient of the buffer.
A choice of γ1 = 0 and B = 3 corresponds to unidirectional coupling, and
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Fig. 2.34. Block diagram of the system of two coupled Anishchenko–Astakhov
generators. 1 – linear amplifiers with controlled amplification coefficients, 2 – inertial

nonlinear transformers, and 3 – the coupling block for unidirectional (3
′
) and mutual

(3
′′
) coupling

in this case the first generator is acting on the second one. When γ1 = γ2

and B = 1, the generators are mutually and symmetrically coupled. Function
f(x) determines the nonlinearity of inertial transformers and is equal to x2

for x ≥ 0 and 0 for x < 0.
We start by considering forced synchronization of chaotic oscillations with

the basic frequency ratio f1 : f2 = 1 : 1, which was observed in full-scale
experiments with unidirectionally coupled generators. Figures 2.35 and 2.36
illustrate the evolution of power spectra corresponding to two mechanisms of
synchronization, namely, via locking and suppression of the basic frequency,
respectively.

A similar spectrum evolution has also been observed for mutual synchro-
nization of symmetrically coupled generators. A portion of the experimentally
constructed bifurcation diagram in this case is presented in Fig. 2.37. With-
out coupling, each generator demonstrates the regime of spiral chaos which is
produced by a period-3 cycle. The diagram illustrates the left half of the ma-
jor synchronization region inside which the basic frequencies are in the 1 : 1
ratio. On the line l21, corresponding to the region boundary of synchronous
oscillations with period 2T0, the basic frequencies are mutually locked. Lines
lk2 , k = 1, 2, 4, denote the period-doubling bifurcations of synchronous cycles
with period kT0, respectively. On lines lk0 , k = 1, 2, one of the basic frequen-
cies is suppressed (f1 for p < 1 and f2 for p > 1), and periodic oscillations
with period kT0 emerge. In the diagram the regions of periodic oscillations
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Fig. 2.35. Spectra of x2(t) oscillations in
the case of forced synchronization through
the basic frequency locking (full-scale ex-
periment). (a) Forcing signal spectrum; (b)
spectrum of autonomous oscillations of the
second oscillator; (c–g) spectra of oscilla-
tions of the second oscillator for different
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Fig. 2.36. Spectra and phase por-
traits in the case of forced syn-
chronization via the basic frequency
suppression of chaotic oscillations
(full-scale experiment). (a) Forcing
signal; (b–f) oscillations of the sec-
ond oscillator for a fixed frequency
mismatch and for different coupling
strengths. The coupling parameter
grows from the top to the bottom
[192]

are unshaded and labeled by kT0, k = 2, 3, 4, 8, . . ., where kT0 is the period of
oscillations and T0 denotes the region of periodic oscillations with period T0

which is determined by the basic frequency f1 = f2 = f0. Besides, in the dia-
gram one can see synchronization zones of higher order with the 5:4 and 4:3
frequency ratios. Three regions of synchronous chaos, CA0, CA′

0, and CA3,
and the region of nonsynchronous chaos CA2 are distinguished in the dia-
gram. The results of numerical studies of model (2.78) are in full agreement
with the experimental results [192].
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Fig. 2.37. Experimental bifurcation diagram for the system of two coupled gener-
ators (2.78) in the plane “frequency mismatch – coupling strength” (G = γ1 = γ2)
[192]

The notions of instantaneous amplitude and phase of oscillations are very
important for a deeper understanding of the effect of synchronization. Even
in the simplest case of Thomson’s generator we need to introduce into consid-
eration the amplitude and the phase as functions of time. For a more general
case when oscillations are nonharmonic and even nonperiodic, there is no
unique definition of instantaneous amplitude and phase (see Sect. 1.3.5).

We examine how different characteristics of phase–frequency synchroniza-
tion behave using as an example a nonautonomous Rössler oscillator in the
regime of weakly developed chaos. The oscillator is described by the following
equations:

ẋ = −Ωy − z + γ sin ωst,

ẏ = Ωx + αy, (2.79)
ż = β + z(x − µ).

The frequency of the external signal is fixed at ωs = 1. The parameter Ω
governs the frequency mismatch between the self-sustained oscillations and
the external signal. Figure 2.38a,b shows the winding number θ as a function
of parameter Ω. In Fig. 2.38a, the winding number is calculated as the ra-
tio of the characteristic times, i.e., 〈T 〉/2π, and in Fig. 2.38b it is computed
as the ratio of the basic frequencies ωs/ω0 = 1/ω0. The dependence of Deff

for the phase difference versus parameter Ω is plotted in Fig. 2.38c. The
instantaneous phase is introduced according to the third definition (1.294).
For the parameter values chosen, the transition “synchronous chaos – non-
synchronous chaos” can be observed at the boundaries of the main synchro-
nization region. The parameter values corresponding to the synchronization
region boundaries, Ω = Ω1,2, are determined from the dependences shown
in Fig. 2.38a–c and are very close to one another. A minor difference may
be related to numeric errors. Within the accuracy of numeric calculations,
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Fig. 2.38. Winding number as a function of parameter Ω, calculated for (2.79)
when (a) θ = 〈T 〉/2π and (b) θ = ω−1

0 . (c) The effective diffusion coefficient versus
Ω. The system parameters are α = 0.2, β = 0.2, µ = 4, and γ = 0.02

all the considered characteristics are found to yield the same values of Ω1,2,
corresponding to the boundaries of the synchronization region.

The change of a chaotic attractor at the synchronization region bound-
ary can also be distinguished “by eye” when projections of phase trajectories
and their Poincaré sections6 are analyzed. Chaotic self-sustained oscillations
are suppressed for larger values of the external force amplitude and the fre-
quency mismatch. In this case one can observe periodic oscillations inside the
synchronization zone, while its boundary corresponds to the torus-birth bi-
furcation from a limit cycle (as in the classical case of suppression of periodic
self-sustained oscillations).

6 In the case of forced synchronization it is more reasonable to project phase
trajectories onto the plane of dynamical variables, one of which is the external
force.
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As outlined above, the concept of phase-frequency synchronization is more
applicable to chaotic self-sustained oscillators in the regime of coherent chaos.
However, recent studies indicate that the effect of phase synchronization can
also be realized in chaotic systems whose power spectrum has no pronounced
peaks and, therefore, no basic frequencies. An example is the well-known
Lorenz system [226]. In such systems so-called effective synchronization oc-
curs, being similar to the phenomenon of stochastic synchronization.

2.3.3 Complete and Partial Synchronization of Chaos

Consider a system of interacting oscillators which are described by the fol-
lowing equations:

ẋ1 = F (x1,α1) + γ1g(x1,x2),
ẋ2 = F (x2,α2) + γ2g(x2,x1), (2.80)

where x1,2 ∈ RN ; α1,2 are the vector parameters of partial systems and γ1,2

are the coupling parameters. Function g determines the type of coupling, and
if x1 = x2, we have g(x1,x2) = 0. If α1 = α2 = α, the partial oscillators are
completely identical. In this case, for certain values of the coupling parame-
ters γ1,2 the partial oscillations can completely coincide, x1(t) ≡ x2(t), but
remain chaotic. In several works [183, 186] such an effect was called chaotic
synchronization. Unlike the phase-frequency synchronization discussed above,
this effect would be more correctly referred to as complete (in-phase) syn-
chronization. According to this definition all other manifestations of chaos
synchronization may be called effects of partial synchronization. The com-
plete synchronization in systems of type (2.80) can be observed both in the
case of symmetric (γ1 = γ2 = γ) and nonsymmetric (γ1 �= γ2) coupling, as
well as for unidirectional coupling (γ1 = 0) of partial systems.

For α1 = α2 = α, in the phase space of system (2.80) there exists an
invariant manifold U : x1 = x2, which is referred to as a symmetric subspace.
Phase trajectories lying in U correspond to completely synchronized oscilla-
tions. The complete synchronization effect is realized if a limit set belonging
to U attracts phase trajectories not only from U but also from some neigh-
borhood of the symmetric subspace. The complete synchronization manifests
itself for interacting systems, each demonstrating not only phase-coherent
chaos but also other kinds of chaotic dynamics (e.g., the Lorenz attractor [227]
and Chua’s “double scroll” attractor [188]).

Complete chaos synchronization can also be observed in a case when an
active controlling system acts on a passive controlled system [186]. The con-
trolling system is decomposed into two subsystems,

v̇ = p(v,y1),
ẏ1 = q(v,y1), (2.81)
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and the controlled system is chosen to be identical to one of them. In this case
two interacting systems (drive and response) are described by the following
equations:

v̇ = p(v,y1),
ẏ1 = q(v,y1),
ẏ2 = q(v,y2), (2.82)

where v ∈ Rm and y1,2 ∈ RN−m. In the regime of complete synchronization
y1(t) ≡ y2(t).

A growing interest in the problem of complete synchronization is related to
its possible application in secure communication [228–232]. The information
signal is transmitted by using a broadband carrier which can be represented
by a chaotic signal of some DS. At the receiver the information signal can be
recovered in the regime of complete synchronization. With this, it is assumed
that the receiver knows exactly the parameter values of the chaotic system
used and that the regime of complete synchronization itself is robust with
respect to different kinds of perturbations.

When there is a parameter mismatch of partial systems, the symmetric
subspace no longer exists and complete synchronization cannot be realized
at some finite value of γ. However, if the parameter mismatch does not cause
the structure of a chaotic attractor to change and only the basic frequency
of chaotic oscillations is varied, then, starting from a certain value of the
coupling, the so-called lag synchronization effect can be observed [201]. It
consists in coinciding shifted in time states of two systems, i.e., x1(t) ≡
x2(t + τd), where τd is the time delay. In the case of lag synchronization the
chaotic attractor is topologically equivalent to the “in-phase” attractor in the
regime of complete synchronization. Hence, the lag synchronization can be
treated as an extension of the complete synchronization notion to systems
with a slight parameter mismatch.

Thus, for the case of interaction of chaotic oscillators with frequency mis-
match three types of chaos synchronization can be distinguished, namely,
phase–frequency synchronization, lag synchronization, and complete synchro-
nization. The border of a synchronization region is determined by synchro-
nization in the sense of Huygens, i.e., it corresponds to locking of instanta-
neous phases and basic frequencies of chaotic oscillations of partial systems or
to suppression of self-sustained oscillations of one of the oscillators (for large
values of the mismatch). In the last case, although each of the partial au-
tonomous systems behaves chaotically, periodic oscillations occur inside the
synchronization region. With decreasing mismatch and increasing strength of
the coupling there may appear a stronger effect of synchronization, namely,
lag synchronization. The transition from phase–frequency synchronization to
lag synchronization is a complicated process whose bifurcation mechanism is
not sufficiently understood yet but is likely to be similar to the mechanism of
destruction of complete synchronization [233]. Without detuning and starting
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from a certain value of the coupling strength, one can observe the complete
synchronization effect when chaotic trajectories lying in the symmetric sub-
space become stable in the full phase space of the system.

Different quantitative characteristics are used to evaluate the synchrony
of partial oscillations for two near-identical interacting oscillators. To char-
acterize synchronization of the processes x1(t) and x2(t) of partial systems,
it is proposed in [201] to use the minimum of a similarity function

κ = minτ S(τ), (2.83)

where S(τ) is the similarity function derived from the relation

S2(τ) =

〈(

x2(t + τ) − x1(t)
)2〉

√
(〈

x2
1(t)
〉〈

x2
2(t)
〉) . (2.84)

The angle brackets mean time averaging. κ is equal to zero in the case of
complete and lag synchronization. κ grows as the mismatch increases and
the coupling strength decreases.

Another characteristic for identifying synchronization of chaotic oscilla-
tors is the mutual normalized autocorrelation function

Rx1x2(τ) =
〈x1(t)x2(t + τ)〉 − 〈x1(t)〉〈x2(t + τ)〉

√
(

〈x2
1(t)〉 − 〈x1(t)〉2

)(

〈x2
2(t + τ)〉 − 〈x2(t + τ)〉2

) . (2.85)

The quantity η = maxτRx1x2(τ) is equal to unity in the case of lag synchro-
nization (and, clearly, complete synchronization) and vanishes when x1(t)
and x2(t) become statistically independent. The degree of synchronous mo-
tion can be revealed by analyzing the probability density of the instantaneous
phase difference, ∆Φ(t) = Φ1(t)−Φ2(t). The instantaneous phases in this case
are defined on the interval [−π, π]. Synchronization can also be quantified by
using the effective diffusion coefficient, Deff , of the instantaneous phase dif-
ference, the variance of the instantaneous phase difference, defined in the
interval [−π, π], or the entropy of its distribution, which corresponds to a
fixed sampling step of ∆Φ values.

The degree of synchrony can also be estimated in the context of the spec-
tral approach. For this purpose the coherence function is used [192]:

rx1x2(ω) =
|Wx1x2(ω)|

√

Wx1(ω)Wx2(ω)
, (2.86)

where Wx1 and Wx2 are the power spectra of fluctuations x1(t) − 〈x1〉 and
x2(t) − 〈x2〉; Wx1x2 is the mutual fluctuation spectrum. If the processes
x1(t) and x2(t) are statistically independent, then rx1x2 ≡ 0, and when
they are linearly interrelated, we have rx1x2 ≡ 1. A quantitative frequency-
independent characteristic can be introduced by considering the mean value
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of the coherence coefficient in the frequency interval being studied, i.e.,
r =

(

1/(ω2 − ω1)
) ∫ ω2

ω1
rx1x2(ω)dω.

In [192] it is suggested to characterize the degree of phase coherence of
different spectral components of the signals x1(t) and x2(t). The phase spectra
φ1,2(ω) = arg

[∫ T/2

−T/2
x1,2(t) exp(−jωt) dt

]

of x1(t) and x2(t) are considered
on finite time T , and the current phase difference is then introduced for each
spectral frequency:

∆φ(ω) = φ1(ω) − φ2(ω), ∆φ ∈ [−2π, 2π], (2.87)

A set of functions ∆φ(ω) obtained for different initial conditions on an attrac-
tor is used for estimating a probability density p(∆φ,ω). In the case of com-
plete and lag synchronization the probability density looks like a frequency-
independent δ-function. When the lag synchronization is destroyed, the dis-
tribution has a finite width and shape which are different at distinct frequen-
cies. To quantify synchronization of oscillators one can utilize the variance
averaged over all frequencies as well as the entropy of the phase difference
distribution.

As an example consider a system of two coupled Rössler oscillators, which
is written in the form:

ẋ1 = −Ω1y1 − z1 + γ(x2 − x1),
ẏ1 = Ω1x1 + αy1,

ż1 = β + z1(x1 − µ), (2.88)
ẋ2 = −Ω2y2 − z2 + γ(x1 − x2),
ẏ2 = Ω2x2 + αy2,

ż2 = β + z2(x2 − µ).

Here, the parameters Ω1,2 = Ω0 ±∆ determine the frequencies of the partial
oscillators, ∆ denotes the frequency mismatch, γ is the strength of coupling,
and the parameters α and µ govern the dynamics of each oscillator. For
this system three of the above-listed characteristics of synchronization, are
calculated and plotted in Fig. 2.39a–c as functions of the coupling parameter
for a fixed frequency mismatch.

Another kind of synchronization, namely, generalized synchronization,
was introduced in [198–200]. Two systems are considered to be synchronized
if there is some functional relation between their states. A theory of general-
ized synchronization is proposed in [199] for unidirectionally coupled chaotic
systems which are described by the following equations:

ẋ = F (x),
ẏ = G(y,v) = G

(

y,h(x)
)

. (2.89)

x ∈ RN and y ∈ Rn are the state vectors of the first and second systems,
respectively. Vector v ∈ Rk is defined by the instantaneous state of the first
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Fig. 2.39. Dependences of different quantitative characteristics of synchronization
of interacting oscillators (2.88) versus the coupling parameter for α = 0.165, β =
0.2, µ = 10, Ω0 = 0.97, and ∆ = 0.02. (a) The minimum of similarity function κ(γ);
(b) the effective diffusion coefficient Deff(γ); and (c) the mean value of coherence
coefficient r(γ). The dashed lines l1 and l2 indicate the borders of phase and lag
synchronization, respectively

system, i.e., v = h(x). The first partial system is called the drive, and the
second one is called the response. In the regime of generalized synchronization
the instantaneous states x and y are connected by the relation y = Q(x),
and all phase trajectories from some basin of attraction B approach the
manifold M = {x,Q(x)}. If Q is an identity transformation, generalized
synchronization degenerates into complete synchronization. It is shown that
the generalized synchronization effect can occur in (2.89) if and only if the
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response system ẏ = G
(

y, h(x)
)

is asymptotically stable, i.e., for any initial
conditions y1(0) and y2(0) from some open subset By the following limit
exists:

lim
t→∞

||y
(

t,x(0),y1(0)
)

− y
(

t,x(0),y2(0)
)

|| = 0. (2.90)

If this condition is satisfied, the effect of generalized synchronization is real-
ized even if the drive and response systems are completely different. Synchro-
nization can easily be detected by using conditional Lyapunov exponents

λj
con = lim

t→∞

1
t

ln ||zj
(

t,x(0),y(0)
)

||, j = 1, 2, . . . , n, (2.91)

where zj is the jth fundamental solution of the linearized system

ż =

[

∂G
(

y,h(x)
)

∂y

]

y=Q(x)

· z. (2.92)

In the regime of synchronization all the λj
con must be negative.

2.3.4 Phase Multistability in the Region of Chaos Synchronization

The presence of a multistability region of periodic and chaotic regimes inside
an Arnold’s tongue is a peculiarity of mutual synchronization of oscillators
in which onset of chaos follows the Feigenbaum scenario [183, 192, 194, 208,
234–237]. Such multistability can be called phase multistability because it
is related to mutual synchronization of oscillations whose spectrum contains
subharmonics of basic frequency and which are distinct in their phases. The
larger is the number of the basic frequency subharmonics contained in the
spectrum, the larger the number of possible synchronous regimes which are
distinguished by a phase shift between partial oscillators.

For initial (generating) periodic oscillations with period T0 the phase dif-
ference φ0 between partial oscillators is given as φ0 ± 2πm, m = 1, 2, . . .
The spectrum of double period (2T0) oscillations contains the subharmonic
ω0/2, and in this case the phase differences φ0 and φ0 + 2π correspond to
two different limit cycles in the phase space of interacting systems. The num-
ber of possible period-2nT0 limit cycles can grow up to 2n. They are distin-
guished by a phase shift between partial oscillators, which can take the values
φ0 + 2πm with m = 2k, where k = 0, 1, . . . , n − 1. Phase multistability in
the region of periodic oscillations can also be observed in a chaotic zone if
the chaotic attractor consists of 2n bands around a saddle-focus. A hierarchy
of phase multistability in dissipatively coupled identical systems has been
explored in detail in numerical simulation of the dynamics of coupled logis-
tic maps [234,236], as well as in full-scale experiments with in-phase excited
nonlinear radio-technical circuits [235]. The hierarchy has certain universal
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features which can also manifest themselves under a dissipative interaction
of continuous-time self-sustained systems [192,194,237].

Phase multistability in dissipatively coupled identical oscillators with the
period-doubling route to chaos can be studied by using, as a base model, the
system of two coupled logistic maps [183,234,238]:

xn+1 = r − x2
n + γ(x2

n − y2
n),

yn+1 = r − y2
n + γ(y2

n − x2
n). (2.93)

Here, r is the control parameter and γ is the strength of coupling. For this
discrete-time system the phase shift is understood as a shift between the time
realizations in the subsystems by m iterations. Oscillations for which m = 0
are called in phase, and the corresponding limit sets belong to the symmetric
subspace x = y. Otherwise, oscillations are out of phase and do not lie in the
symmetric subspace.

With increasing parameter r the phase multistability evolves as follows:
The initial cycle loses its stability and becomes a saddle. As r grows, the
saddle cycle undergoes a period-doubling bifurcation, which is a symmetry-
breaking event. The period-2 cycle being born is no longer in the symmetric
subspace but has mirror symmetry with respect to the line x = y. This
cycle is initially a saddle one and becomes stable as the parameter r is fur-
ther increased. Each of the in-phase cycles gives rise to its own branch of
out-of-phase regimes. Out-of-phase cycles emerging from the in-phase ones
always undergo a torus birth bifurcation. A resonance on the torus results
in the appearance of new pairs of cycles, and so on. Multistability can also
be observed in the region of chaotic regimes. Figure 2.40 illustrates phase
portraits of limit cycles of system (2.93), which correspond to different m,
and of chaotic attractors produced by these cycles.

The evolution of different types of oscillations is schematically shown in
Fig. 2.41 for a small fixed value of γ and under variation of parameter r.
Solid lines indicate stable regimes, and dashed lines correspond to unstable
ones. The bifurcational transitions are marked in Fig. 2.41 by points. Symbol
2nCm labels a period-2n cycle and corresponds to a shift by m iterations
between oscillations of the subsystems. A 2n-band chaotic attractor which
emerges from a cycle with a shift m is symbolized by 2nCAm. Four branches,
A,B,C and D, are distinguished in the diagram. Branch A indicates the
evolution of in-phase regimes (m = 0) and B,C and D correspond to the
evolution of out-of-phase regimes (m �= 0). At the points of branching, the
initial cycles lose their stability and become saddle ones. Inside the chaotic
zone a sequence of band merging bifurcations of chaotic attractors 2nCAm is
realized as the parameter increases. At the same time, the number of chaotic
attractors decreases in reverse order to the emergence of cycles 2nCm. On
each of the branches the band-merging sequence results in attractors whose
n and m numbers are the same as indices of resonance cycles on a torus. As r
is further increased, relevant pairs of attractors merge, namely, 4CA1 and
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Fig. 2.40. Illustration of phase multistability in system (2.93) for γ = 0.002. (a)–
(d) Cycles with different phase shift m for r = 1.3; and (e)–(h) chaotic attractors
generated by these cycles for r = 1.415

4CA3 on branch B, 8CA2 and 8CA6 on branch C, and so on. The attractor
merging is accompanied by the phenomenon of “chaos–chaos” intermittency
and results in the appearance of chaotic attractors 2nCAm, with n and m
being equal to the indices of a cycle generating a given branch. Starting
with large n and m the remaining chaotic sets merge at the points marked
with a cross. In addition, one of the two sets becomes nonattractive before
they merge. Thus, a crisis “chaotic attractor – chaotic saddle” occurs at
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Fig. 2.41. Evolution of different types of oscillations in map (2.93) under variation
of the parameter r and for fixed γ = 0.002 [234]

these points. All chaotic sets eventually coalesce to produce a unified chaotic
attractor CAΣ corresponding to the regime of hyperchaos.

The picture described is realized for small values of the coupling strength γ.
With increasing γ out-of-phase families “die out” gradually and only those
limit sets which lie in the symmetric subspace remain.

In the case of coupled self-sustained continuous-time systems one can in-
troduce the frequency mismatch between partial systems and explore a region
of phase synchronization. When the parameter mismatch is introduced, the
symmetry relations of limit sets are violated and certain bifurcations of limit
cycles change their character [239]. The study of system (2.88) and other
similar systems has shown that the presence of a small frequency mismatch
under weak coupling [for (2.88) ∆ ≤ 0.001 with γ ≈ 0.02] does not consider-
ably change the evolution scheme of different kinds of oscillations found for
the discrete-time model (2.93). If the frequency mismatch is large enough,
the order and the character of bifurcations of periodic and chaotic regimes
can significantly change.

Depending on the choice of parameter values of (2.88), the boundary of
phase synchronization may pass into the region of multistability or of merged
chaos CAΣ . Figure 2.42 shows a fragment of the bifurcation diagram in the
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Fig. 2.42. A sketch of the bifurcation diagram of system (2.88) near the phase
locking boundary and in the presence of chaotic multistability. The parameter values
are α = 0.165, β = 0.2, γ = 0.02 and Ω0 = 1

∆−µ plane near the synchronization region boundary for system (2.88). Two
chaotic attractors, 4CA0 and 4CA1, exist in the shaded region. Attractor
2CAΣ emerges when chaotic sets of two families merge (before this, 4CA1

becomes a chaotic saddle).
The presence of different attracting and saddle limit sets of out-of-phase

families for small coupling strengths makes the behavior of interacting chaotic
oscillators essentially complicated. In such systems one can observe various
phenomena, including multistability, fractality of basin boundaries, riddled7

basins of attraction and crises of chaotic attractors, the latter being accom-
panied by intermittency and a transition to hyperchaos. With increasing
strength of the coupling “nonsymmetric” limit sets are degenerated and the
transition to the region of lag synchronization or complete synchronization
(for ∆ = 0) takes place. In this region there is only one chaotic attractor,
2nCA0, which is topologically equivalent to the chaotic attractor in a partial
oscillator.

2.3.5 Bifurcation Mechanisms of Partial and Complete Chaos
Synchronization Loss

The transition from synchronous chaotic regimes to nonsynchronous ones has
a certain peculiarity. Such transitions result from a sequence of hidden (at
first glance) internal bifurcations of a chaotic attractor due to the presence

7 A detailed explanation of the notion “riddling” will be given in Sect. 2.3.5.
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of embedded unstable cycles (periodic saddles and repellers) in it. Moreover,
mechanisms of complete synchronization destruction prove to be in many
ways similar to those of phase–frequency synchronization loss.

We start by considering a recently studied problem concerning the loss of
the complete chaotic synchronization in a system of coupled identical oscil-
lators of type (2.80).

There is a large body of works where authors analyze the robustness
of complete chaos synchronization regime and mechanisms of its destruc-
tion [239–250]. It is examined how the symmetric subspace U of the system,
in which an “in phase” chaotic attractor lies, becomes nonattracting. The
stability of trajectories of (2.80), belonging to U , with respect to a small
transverse perturbation u = x2 − x1 is determined by the conditional Lya-
punov exponents [186]:

λj
con = lim

t→∞

1
t

ln ||uj
(

t,x1(0)
)

|| , j = 1, 2, 3, . . . , N, (2.94)

where uj is the jth fundamental solution of the linearized system

u̇ =
∂

∂x2

[

F (x2, α) + γ2g(x1,x2) − γ1g(x2,x1)
]
∣
∣
∣
∣
x2=x1

· u. (2.95)

If all the λj
con, j = 1, 2, . . . , N , are negative, the regime of complete chaotic

synchronization is asymptotically stable. When at least one of the λj
con be-

comes positive, the symmetric subspace U is no longer stable. As a result,
the complete chaos synchronization regime is destroyed in a so-called blowout
bifurcation [244]. This process is usually accompanied by the phenomenon of
transient (on finite time intervals) or “true” intermittency (Yamada–Fujisaka
intermittency or “on–off” intermittency) [241–244,251].

However, the conditional Lyapunov exponents are averaged over attractor
characteristics which cannot reflect all the local changes in the structure of
the limit set. In [240–244] it was shown that before the transverse direction
becomes unstable, a set of points of zero measure appears in the symmetric
subspace U , at which the transverse instability occurs. These points belong
to some of the unstable cycles lying in U . Having fallen into the neighborhood
of such a cycle, the phase point, if it does not strictly lie in U , moves away
from the symmetric subspace. If for these parameter values the system does
not possess another attractor, except the “in phase” one, i.e., lying in U , in
some time the trajectory will return to its neighborhood and then reach the
symmetric subspace. At the same time, a long transient process of “on–off”
intermittency can be observed. The effect of weak noise on “in phase” chaos
causes the intermittency process to be constantly renewed. Due to the noise
influence an experimentally observed chaotic attractor no longer lies in the
symmetric subspace and one can observe dynamics with temporal bursting.
This phenomenon is referred to as attractor bubbling [241–244].

The presence of unstable cycles embedded in the “in phase” chaos is
responsible for the formation of certain regions which have a tongue-like
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Fig. 2.43. Repelling tongue in the basin of an “out of phase” period-2 cycle (points
Q1,2), which originates from the repeller R in the symmetric subspace U (bisecting
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shape in their sections and originate from the points of the unstable cycles
[241, 242, 248]. The trajectory from such a tongue is repelled from the “in
phase” attractor. If for the same parameter values the system has some “out of
phase” attractor, the trajectory falls on it. Figure 2.43 shows a typical tongue
on the phase plane. The emergence of a countable set of tongues in the phase
space leads to the “riddling” of the local neighborhood of the chaotic attractor
lying in U . This phenomenon is thus called riddling [241–246]. The chaotic
attractor in U is no longer attracting in the usual sense and is called a Milnor
attractor [252]. Figure 2.44 demonstrates the riddled neighborhood of the
chaotic attractor in U (on the bisecting line) for the system of coupled logistic
maps. For the given parameter values the transverse Lyapunov exponent
is still negative, i.e., a blowout bifurcation does not yet occur. When the
transverse direction becomes unstable, on average, over the attractor, the
chaotic limit set in the symmetric subspace is no longer attractive even in
the Milnor sense. This situation corresponds to the blowout bifurcation.

Bifurcations of saddle cycles embedded in a synchronous attractor play
an important role in the appearance and destruction of phase–frequency syn-
chronization. In [192] it was found that on the control parameter plane the
lines corresponding to tangent bifurcations of saddle cycles of different pe-
riodicity are accumulated on the boundary of chaos synchronization. The
boundary itself can be treated as a critical line which the tangent bifurcation
points of cycles with increasing periods approach. The role of saddle cycles
embedded in a chaotic attractor has been considered in detail in [196] us-
ing a noninvertible two-dimensional map, which models synchronization of a
chaotic oscillator by an external periodic force. The map has the following
form:
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Fig. 2.44. Bistability and riddling in the system of coupled logistic maps (2.93).
There exist the chaotic “in phase” attractor, located on the bisectrix x = y, and
the “out of phase” stable period-2 cycle (points Q1,2). The basin of attraction of
the “out of phase” attractor is marked by black points

xn+1 = f(xn, φn),
φn+1 = φn + Ω + ε cos

(

2πφn + g(xn)
)

, mod 1, (2.96)

where φ describes the phase difference of the oscillator and the external force,
Ω is the frequency mismatch, and ε denotes the amplitude of the external
force. Function g(x), which defines chaotic modulation of the phase, is taken
to be δ · x, and f(x, φ) describing the amplitude dynamics of the chaotic
oscillator is set to be f(x, φ) = 1 − a|x| + ερ sin(2πφ). A similar map has
been also studied in [197]. Saddle cycles forming a skeleton of synchronous
chaos undergo tangent bifurcations together with relevant periodic repellers.
The latter create a skeleton of a chaotic repeller that touches the chaotic
attractor at separate points, namely, at the points of saddle and unstable
cycles at the moments of their merging. Each pair of the skeleton cycles
belongs to an unstable invariant curve corresponding to a saddle torus in a
continuous-time system. As a result of tangent bifurcation, the motion on the
invariant curve becomes ergodic. This means that there appears a direction
along which the phase point is repelled from the synchronous attractor and
after a revolution along the invariant curve returns again. With this, the
phase difference changes by 2π.

It may take a long time to detect numerically the disappearance of cer-
tain pairs of cycles and the occurrence of instability directions. Neverthe-
less, the accumulation of local changes in the synchronous chaos structure
ultimately leads to the complete destruction of phase synchronization. The
corresponding bifurcation is similar to the blowout bifurcation. It can be
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clearly identified from the behavior of Lyapunov exponents. One of the nega-
tive Lyapunov exponents of synchronous chaos becomes equal to zero at the
boundary of the phase-locking region [195, 253]. Figure 2.45 illustrates de-
pendences of the two largest Lyapunov exponents on the detuning calculated
for the nonautonomous Rössler oscillator (2.79) when one crosses the bound-
ary of the phase-locking region. One of the exponents, which corresponds to
periodic perturbations, is identically equal to zero. Outside the main synchro-
nization region either only one exponent (Fig. 2.45a) or two exponents are
equal to zero (Fig. 2.45b). In any case there are two zero Lyapunov exponents
at the synchronization boundary.

Numerical experiments carried out with the nonautonomous Rössler sys-
tem and described in [254] verify the assumed bifurcation mechanism of phase
locking of chaotic oscillations. Synchronous oscillations being shifted in phase
relative to the periodic external force by θ(t) and θ(t) + 2π are considered as
belonging to two co-existing chaotic attractors R and L. The basin boundary
of these attractors gives an idea of where a chaotic saddle may be located.
The chaotic saddle collides with a chaotic attractor and phase synchroniza-
tion is destroyed. Figure 2.46, taken from [254], shows projections of attractor
R and a part of the attractor L basin of attraction on the plane of instan-
taneous amplitude r and phase difference θ. It is seen that the tongues of
the basin of attraction of L approach R. Unstable cycles (saddle cycles in
a continuous-time system) are arranged at the ends of these tongues. If the
initial point falls into one of the tongues, the trajectory is repelled from R
and a phase slip occurs.

2.3.6 Summary

Synchronization is one of the fundamental phenomena in nature and is ob-
served in a variety of chaotic systems. A unified concept of chaotic syn-
chronization is practically complete and is based on classical methods and
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Fig. 2.46. Crisis of an attractor and a chaotic saddle in the nonautonomous Rössler
oscillator. The chaotic saddle is located at the boundary of the grey zone [254]

approaches and includes knowledge of complete (in-phase) and partial chaos
synchronization. However, a large number of problems is still insufficiently
studied. They include synchronization of certain kinds of chaos (for example,
torus chaos), bifurcation mechanisms of partial and complete synchronization
destruction and numerous synchronization-related phenomena in ensembles
of oscillators and in distributed systems.

The comprehensive study of the synchronization effect of complex DS and
ensembles has principal importance not only in the framework of nonlinear
dynamics but also for the whole range of natural sciences. This research di-
rection allows us to gain deep insight into the mechanisms of self-organization
of interacting systems.

2.4 Effects of Synchronization in Extended
Self-Sustained Oscillatory Systems

2.4.1 Introduction

Studying dynamics of nonlinear extended systems is one of the basic di-
rections in development of the theory of oscillations and waves. Spatially
extended systems can be represented by continuous media usually described
by differential equations in partial derivatives as well as by ensembles of in-
teracting elements (oscillators, self-sustained oscillators, maps, etc.) locally
coupled in chains and arrays. In the latter case spatial coordinates are dis-
crete, i.e., they take a countable set of values corresponding to numbering
of ensemble elements. Chains and arrays consisted of a large number of
nonlinear elements with regular, chaotic, or stochastic behavior are widely
applied in mathematical modeling of physical, optical, and radio-electronic
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extended systems [179,204,205,255–265], as well as of chemical and biological
processes [217–219, 221, 222, 255, 266–271]. Nonlinear phenomena in models
of self-sustained oscillatory media with continuous spatial coordinates have
also been studied extensively. Especially a large number of works have been
devoted to such basic models as the Ginzburg–Landau equations [272–275]
and the Kuramoto-Sivashinsky equations [267,276,277].

Synchronization of elements of a medium or an ensemble is the major fac-
tor in dynamics of extended self-sustained oscillatory systems that leads to an
ordered spatiotemporal behavior. Synchronization effects in ensembles of self-
sustained oscillators and phase oscillators with local coupling have been stud-
ied in [172,217,218,278–283] and in many other papers and monographs. Par-
tial frequency–phase synchronization in chains and arrays of quasi-harmonic
self-sustained oscillators and phase oscillators manifests itself in the forma-
tion of phase and frequency clusters in the presence of basic frequency mis-
match [172, 173, 218, 284–287]. Similarly, the partial phase synchronization
can also lead to cluster formation in a chain of spiral chaos oscillators [213].
A large number of publications are devoted to the study of global and partial
synchronization, to the formation of clusters of synchronous states and of or-
dered spatial structures in chains and arrays of identical chaotic self-sustained
oscillators and in model chaotic maps [207,282,288–293].

Synchronization in extended self-sustained oscillatory systems serves as
a reason that restricts the growth of attractor dimension [205, 294–296].
The possibility of realizing synchronous regimes with different phase shits
is closely related with a phenomenon of multistability that implies the coex-
istence of a set of regular and chaotic attractors in phase space [208]. Multi-
stability in turn can lead to crises of attractors, to fractalization of basins of
attraction, and to other nontrivial effects.

Forced synchronization of a continuous self-sustained oscillatory medium
has been studied in [297, 298]. Mutual synchronization of spatiotemporal
regimes in interacting extended systems has been considered in [215,299–302].

Despite a large number of works dedicated to effects of synchronization in
extended systems, this research area still contains a lot of insufficiently stud-
ied problems. They are related to investigation of inhomogeneous media, to
study of effects induced by noise and local external forcings, to revealing the
role of anharmonicity, to analysis of multistability of synchronous spatiotem-
poral regimes, etc. This section is devoted to the effects of frequency cluster
formation in an inhomogeneous extended system, to the influence of noise
on cluster synchronization regime, and to generalization of the effective syn-
chronization notion to the case of spatially extended systems. These effects
are analyzed in models of different level, i.e., in chains of oscillators each
being described by truncated amplitude and phase equations, in chains of
phase oscillators and in an inhomogeneous self-sustained oscillatory medium
defined by the Ginzburg–Landau equation. We also study mutual synchro-
nization of cluster structures in two interacting inhomogeneous media and
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forced synchronization of a chain of chaotic oscillators by external harmonic
force. Effects of synchronization and multistability are described in a ring
of identical quasiharmonic and relaxation oscillators as well as of chaotic
oscillators with Feigenbaum’s scenario of chaos development.

2.4.2 Cluster Synchronization in an Inhomogeneous Chain
of Quasiharmonic Oscillators

Consider an inhomogeneous chain of diffusively coupled quasiharmonic oscil-
lators, being an analog of the chain studied in [173]. The model can be defined
by the following system of equations with respect to complex amplitudes:

ȧj = r(1 − |aj |2)aj + iωjaj + g(aj+1 + aj−1 − 2aj), i =
√
−1 . (2.97)

This system can also be rewritten in terms of real amplitudes ρj and phases
Φj as follows:

ρ̇j = r(1 − ρ2
j )ρj + g(ρj−1 cos(Φj − Φj−1) + ρj+1 cos(Φj+1 − Φj) − 2ρj),

Φ̇j = ωj + g

(
ρj+1

ρj
sin(Φj+1 − Φj) −

ρj−1

ρj
sin(Φj − Φj−1)

)

, (2.98)

where ρj = |aj | =
√

(Re aj)2 + (Im aj)2 and Φj = arctan(Im aj/Re aj)±πk,
k = 0, 1, 2, . . .. The quantity ±πk is added as the phase changes continuously
in time. In Eqs. (2.97) and (2.98), j = 1, 2, 3, . . . ,m denotes the number of
an oscillator (the discrete spatial variable), r is the parameter of excitation
being the same for all oscillators, and ωj is the frequency of self-sustained
oscillations of the jth oscillator without interaction (the unperturbed basic
frequency). The values of basic frequencies are distributed linearly along the
chain:

ωj = ω1 + (j − 1) · ∆, (2.99)

where ∆ = ωj+1 − ωj is the frequency mismatch of neighboring oscillators.
ω1 is the frequency of the first oscillator and can take any value since the
variables and the time here are dimensionless. In this case distributions of
both unperturbed frequencies and average frequencies of oscillations in the
presence of coupling are simply shifted on the corresponding quantity. In
what follows, we put ω1 = 0. The boundary conditions are defined in the
form

ρ0 = ρ1, Φ0 = Φ1, ρm+1 = ρm, Φm+1 = Φm. (2.100)

The length of the chain is fixed as m = 100 for the parameter of excitation
r = 0.5.

When oscillators interact at g �= 0, the frequencies of self-sustained oscil-
lations change. Since oscillations of partial oscillators are, in general, nonpe-
riodic, average frequencies can be introduced as follows:
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Ωj = |〈Φ̇j(t)〉| = lim
T→∞

|Φj(t0 + T ) − Φj(t0)|
T

. (2.101)

When the basic frequencies of oscillators ωj are linearly detuned along
the chain, regimes of partial synchronization can be observed in a certain
parameter region (∆, g). The partial synchronization manifests itself in the
formation of frequency clusters which represent groups of oscillators with
strictly equal average frequencies Ωj = Ω(k), where j ∈ [jmin, jmax] is the
number of an oscillator in the chain, and k = 1, 2, . . . , kmax is the cluster
number (Fig. 2.47a). Such structures are called perfect clusters8. In the regime
of perfect clusters the oscillators behave regularly in time [173]. Amplitudes
and phases fluctuate periodically with respect to their average values. Spectra
of amplitude and phase fluctuations of any oscillator exhibit only lines at
the intercluster frequency ∆Ω = Ωk+1 − Ωk, being the same for any k, as
well as at its harmonics. Figure 2.47b exemplifies the power spectrum of
amplitude fluctuations ρ̃j(t) in the 50th oscillator that corresponds to the
perfect clusters shown in Fig. 2.47a. For a more illustrative presentation of
oscillations, a projection of trajectories on the plane (ρ̃j(t),Hρ̃j(t)) is shown
in Fig. 2.47c for j = 50. Hρ̃j(t) is the Hilbert transform:

Hρ̃j(t) =
1
π

∫ ∞

∞

ρ̃j(τ)
t − τ

dτ . (2.102)

When the parameters are varied, perfect structures with different num-
bers of clusters alternate with imperfect (intermediate) ones for which the
average frequencies Ωj of certain groups of oscillators are quite close but do
not completely coincide (see Fig. 2.47d). Such groups of the oscillators can
be considered as frequency clusters if the cluster frequency Ω(k) is equal to
the average frequency value at the center of the kth group. A group of os-
cillators is located in the intercluster area, and the boundaries of clusters
and of intercluster regions are defined arbitrarily. In the case of imperfect
clusters oscillations are irregular [173]. The spectra of amplitude and phase
fluctuations become continuous and the basic spectral frequency depends on
how close the considered oscillator is located to the cluster center. The power
spectrum of amplitude fluctuations ρ̃j(t) is presented in Fig. 2.47e for the
50th oscillator and corresponds to the imperfect cluster structure depicted in
Fig. 2.47d. A projection of oscillations on the plane (ρ̃j(t),Hρ̃j(t)) for j = 50
is shown in Fig. 2.47f.

The results presented in Figs. 2.47e and f enable one to assume that self-
sustained oscillations in the inhomogeneous chain of oscillators are chaotic in
the regime of imperfect clusters. The dynamical chaos mode can be strongly
defined from a linear analysis of stability of oscillations in the chain. For this
8 It is worth taking into account that it is the average values of oscillation frequen-

cies that are used here. The spectrum of oscillations in each spatial point will
contain the same set of frequency components but the spectral powers of these
components will be redistributed according to which cluster is considered.
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Fig. 2.47. Distribution of average frequencies Ωj , the normalized power spectrum
of oscillations ρ̃j(t) for j = 50 and projection of phase trajectory on the plane
(ρ̃j(t), Hρ̃j(t)) for j = 50 in the regime of perfect clusters at ∆ = 0.002, g = 1.2
(a), (b), (c) and in the regime of imperfect clusters at ∆ = 0.002, g = 1.45 (d),
(e), (f)

purpose, the equations of chain (2.97) are integrated simultaneously with a
system of linearized equations that describe the evolution of perturbations of
complex amplitudes uj(t) = a′

j(t) − aj(t) along a given solution. Equations
for the perturbations read

u̇j = r(1 − 2|aj |2)uj + iωjuj − ra2
ju

∗
j + g(aj+1 + aj−1 − 2aj), (2.103)

where the mark * denotes the complex-conjugate quantity. The boundary
conditions for (2.103) have the form u0 = u1, um+1 = um.

Our calculations indicate that the perturbation norm
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||u(t)|| =





m∑

j=1

(Re uj(t))2 + (Im uj(t))2





1/2

(2.104)

grows, on the average, exponentially in the regime of imperfect clusters,
whereas it remains bounded in the regime of perfect clusters. The average in-
crement of growth of ||u(t)|| is the maximal Lyapunov exponent of the studied
solution aj(t), j = 1, 2, . . . , m. The temporal dependence of the perturbation
norm is shown in Fig. 2.48 for the above considered regimes of perfect and
imperfect clusters. The maximal Lyapunov exponent λ1 in the regime of im-
perfect clusters (for ∆ = 0.002 and g = 1, 45) is positive and takes the value
of λ1 ≈ 0.0029.

The number of clusters decreases with increasing coupling strength g. If
the following condition is satisfied

∣
∣
∣
∣

∆m2

8g

∣
∣
∣
∣
< 1, (2.105)

the global synchronization takes place. In this case, all the oscillators are
synchronized at the same frequency.

2.4.3 Effect of Noise on Cluster Synchronization in a Chain
of Quasiharmonic Oscillators

In this part we present numerical results concerning the influence of noise
on regimes of cluster synchronization and generalize the notion of effective
synchronization, i.e., synchronization in the presence of fluctuations [148,165],
to spatially extended systems [303].



2.4 Extended Self-Sustained Oscillatory Systems 191

Taking into account external fluctuations, the equations for the
inhomogeneous chain of quasiharmonic oscillators (2.97) can be written as
follows:

ȧj = r(1 − |aj |2)aj + iωjaj + g(aj+1 + aj−1 − 2aj) +
√

2Dξj(t), (2.106)

where ξj(t) = νj(t) + iηj(t) is the normalized random force affecting the jth
oscillator. Imaginary and real components of random forces are defined by
uncorrelated sources of normalized white Gaussian noise 〈νj(t)〉 ≡ 〈ηj(t)〉 ≡
0; 〈νj(t)νk(t + τ)〉 ≡ 〈ηj(t)ηk(t + τ)〉 ≡ δjkδ(τ); 〈νj(t)ηk(t + τ)〉 ≡ 0, where
the brackets 〈. . .〉 denote statistical averaging, δjk is the Kronecker symbol,
and δ(τ) is the Dirac function. Parameter D characterizes the intensity of
random forces, which is assumed to be the same for all oscillators. The nu-
merical calculations are carried out for r = 0.5 in the chain with boundary
conditions (2.100). The initial conditions for oscillators are chosen to be ho-
mogeneous and randomly distributed within the range [0.9, 1.1].

Consider the effect of noise on the structure of frequency clusters in the
chain of oscillators whose basic frequencies are linearly distributed along the
spatial coordinate according to relation (2.99). The numeric results are pre-
sented in Fig. 2.49 for two different values of the coupling strength g and for
the mismatch ∆ = 0.002.

It is clearly seen in the graphs that when noise intensity synchronization
increases, clusters are destroyed for both values of the coupling strength.
Weak noise (parts (II)) leads to the flattening of the boundaries of cluster
steps. As the noise intensity D grows, the flattening and gradual destruction
of clusters are started with the middle of the chain. If the noise intensity is
strong enough (parts (III)), all the middle clusters are completely destroyed.
Numerous numerical calculations performed for different values of the para-
meters ∆ and g have shown that two boundary clusters are highly stable
toward the influence of noise. They can be destroyed only by applying a very
strong noise.

The presence of fluctuations destroys the sharp boundary of phase
synchronization. Numerical experiments demonstrate that without noise the
phase difference of oscillators belonging to different clusters grows, on the av-
erage, linearly in time. However, the phase difference of oscillators from the
same cluster remains constant excluding oscillations within the range [−π, π]
with respect to the average value. The influence of noise causes the phase
difference of any neighboring oscillators to increase indefinitely in time but
this growth is not linear for any j. The mean rate of the phase growth is dif-
ferent for various j. However, one can distinguish certain parts of the chain
for which this rate is small. As a result, it becomes possible to define clusters
of effective synchronization in the presence of noise [165].

The boundaries of effective synchronization clusters in the presence of
noise can be estimated by using the effective diffusion coefficient Deff of the
phase difference of neighboring oscillators [148]. Its mean value for the jth
and (j + 1)th elements of the chain reads
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Fig. 2.49. Distribution of average frequencies of oscillators Ωj in chain (2.106) for
∆ = 0.002 and for two values of the diffusive coupling: (a) g = 0.55 and (b) g = 3.8.
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Deff(j) = lim
t→∞

1
2

(

σ2
θj

(t)

t

)

, (2.107)

where σ2
θj

(t) = 〈θ2
j (t)〉 − 〈θj(t)〉2.

Dependences of the effective diffusion coefficient on the spatial coordi-
nate within a single cluster (39 ≤ j ≤ 62) are shown in Fig. 2.50 for different
values of the noise intensity D. The graphs testify that the cluster bound-
aries are gradually destroyed when the noise intensity increases. It can
be mentioned that the dependence Deff on j is similar (taking into ac-
count that the variable j is discrete) to the known dependence of the
effective diffusion coefficient of the phase difference between a self-sustained
oscillatory system and an external forcing on the mismatch. The boundaries
of the effective synchronization cluster can be defined if a certain maximally
admissible diffusion level Dmax

eff is given. In this case one can conclude that
the oscillators for which Deff ≤ Dmax

eff belong to the same cluster. Such a de-
finition of cluster boundaries is sufficiently arbitrary since the value of Dmax

eff

can be set in different ways depending on the problem under consideration.
However, in any case the cluster length will decrease as the noise intensity
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Fig. 2.50. Effective diffusion coefficient as a function of the spatial coordinate j
for D = 10−8 (thin dashed line), D = 10−5 (thin solid line), and D = 10−3 (thick
solid line). The horizontal dot line marks the level of diffusion coefficient Dmax

eff that
defines the cluster boundaries. The mismatch and coupling strength are ∆ = 0.002
and g = 3.8

grows. For example, if we set Dmax
eff = 0.001, the boundaries of the cluster

shown in Fig. 2.50 for D = 0.001 correspond to the chain elements with
numbers j = 43 and j = 56.

Thus, perfect frequency clusters cannot exist in the presence of random
forces and are transformed into imperfect ones. The following question arises:
What is the character of self-sustained oscillations that corresponds to noise-
induced imperfect cluster structures? It is difficult to claim that self-sustained
oscillations in the noisy inhomogeneous chain will be always chaotic. However,
for the chosen parameter values of ∆ = 0.003 and g = 3.8, and of the noise
intensity D = 0.001 the solution of linearized system (2.103) confirms that the
norm ||u(t)|| grows exponentially. Evaluating the mean rate of the exponential
growth of ||u(t)|| enables one to define the maximal Lyapunov exponent λ1 ≈
0.0005. In other words, in this case the destruction of perfect clusters in the
presence of noise is accompanied by the appearance of noise-induced weak
chaos. Figure 2.51 illustrates the corresponding power spectrum of amplitude
fluctuations ρ̃j(t) in the 50th oscillator and a projection of oscillations on the
plane (ρ̃j(t),Hρ̃j(t)) for j = 50.

Studying dynamics of ensembles of oscillators is often restricted to phase
equations only. With this, amplitudes of oscillators are considered to be equal
and constant in time. Such an approach enables one to qualify phenomena
related with frequency-phase locking and in some cases to solve the task
analytically [172, 267, 284, 285, 304]. However, neglecting amplitude relations
can lead to the loss of certain effects, such as, for example, the effect of
“oscillation death” [173,213,305–307]. The influence of amplitude relations on
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Fig. 2.51. Characteristics of oscillations in the chain of self-sustained oscillators
in the regime of noise-induced chaos for ∆ = 0.002, g = 3.8, and D = 0.001. (a)
The normalized power spectrum for ρ̃(t) for j = 50, (b) projection of the phase
trajectory on the plane (ρ̃j(t), Hρ̃j(t)), j = 50

the formation of cluster structures was mentioned in [173]. In the course of our
studies, we compare the peculiarities of cluster synchronization in the chain
of oscillators that is described by the total system of truncated equations
for amplitudes and phases (2.106) and by the corresponding system of phase
equations. The latter system can be easily derived from (2.106) by setting
ρ̃j = 1 for any j, i.e., by fixing amplitudes of all oscillators to be equal to
their unperturbed value. The system of phase equations reads

Φ̇j = ω1 + (j − 1)∆ + g(sin(Φj+1 − Φj) −
− sin(Φj − Φj−1)) +

√
2Dηj(t), (2.108)

j = 1, 2, . . . , m.

We use the following boundary conditions: Φ0 = Φ1, Φm+1 = Φm. The
calculation results for the frequency distribution along the chain described
by system (2.108) are presented in Fig. 2.52 for ∆ = 0.002 and for different
values of the coupling strength g.

Figure 2.52a illustrates the frequency distribution for g = 0.55 and
without noise, D = 0. In contrast to the result obtained in a similar case
for system (2.106) (see Fig. 2.49a), here one can see only two clusters ad-
joining the chain boundaries. The middle clusters appear for a stronger cou-
pling (see Fig. 2.52b,c). However, the formed cluster structures slightly differ
from those that were observed in the chain described by the total system
of truncated equations for amplitudes and phases (2.106). In the case being
considered the extreme clusters are lengthened but the middle ones become
shorter. The height of cluster steps (the frequency difference in neighboring
clusters) is less here than for system (2.106) and decreases rapidly as the cou-
pling grows. Thus, when only the phase dynamics is taken into account, the
region where the cluster synchronization exists is significantly contracted. Be-
sides, the cluster structure is appeared to be less stable toward the influence
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Fig. 2.52. Distribution of average frequencies in the chain of oscillators described
by equations (2.108) for ∆ = 0.002 and different values of the coupling strength: (a)
g = 0.55, (b) g = 0.7, and (c) g = 1.5. Graphs (a)–(c) correspond to the absence
of noise, D = 0. Graph (d) is obtained for g = 1.5 and D = 10−5

of fluctuations. Introducing weak noise D = 10−5 immediately leads to the
destruction of the middle clusters (see Fig. 2.52d).

2.4.4 Cluster Synchronization in an Inhomogeneous
Self-Sustained Oscillatory Medium

Consider an inhomogeneous self-sustained oscillatory medium being
analogous to the discrete model (2.97). An equation for the medium can
be derived by passing to the limit from the chain of self-sustained oscillators
to a continuous spatial coordinate. This equation represents the Ginzburg–
Landau equation with real parameters and the oscillation frequency linearly
depending on the spatial coordinate:

at = iω(x)a +
1
2
(1 − |a|2)a + gaxx +

√
2Dξ(x, t). (2.109)

Here, a(x, t) is the complex amplitude of oscillations, independent variables t
and x ∈ [0, l] are the time and the normalized spatial coordinate, respectively.
at is the first temporal derivative, axx is the second derivative with respect
to the spatial coordinate, and ξ(x, t) = ν(x, t) + iη(x, t) is the normalized
random force acting at each point of the medium. The imaginary and real
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components of the random force ν(x, t) and η(x, t) are assumed to be statis-
tically independent Gaussian forcings being temporarily and spatially uncor-
related: 〈ν(x, t)〉 ≡ 〈η(x, t)〉 ≡ 0; 〈ν(x1, t1)ν(x2, t2)〉 ≡ 〈η(x1, t1)η(x2, t2)〉 ≡
δ(x2 − x1)δ(t2 − t1); 〈ν(x1, t1)η(x2, t2)〉 ≡ 0, where the brackets 〈. . .〉 denote
statistical averaging, and δ(. . .) is the Dirac function. Parameter D charac-
terizes the random force intensity that is considered to be constant in time
and space. In numerical experiments the medium length is fixed as l = 50.
The diffusion coefficient g is assumed to be the same in every point of the
medium. For g → 0, oscillations in various points of the medium possess dif-
ferent frequencies which are given by the function ω(x) = x∆

l , where ∆ is the
maximal mismatch (the mismatch between boundary points of the medium).
The boundary conditions are set in the form ax(x, t)|x=0,l ≡ 0. The initial
condition of the medium is chosen randomly near some homogeneous distri-
bution a0 = const. An analogous model of the medium was studied in [174]
in the deterministic case (D = 0).

Passing to spatio-continuous model (2.109) and to a different scheme of
numerical integration enables one to answer the following question: How much
a chain composed from a finite (and, strictly speaking, not very large) num-
ber of self-sustained oscillators can adequately reflect the phenomena being
characteristic for an inhomogeneous self-sustained oscillatory medium and
can designate more validly a class of such effects.

Equation (2.109) is integrated numerically by means of the finite difference
method with regard to the influence of random forces [308] and according
to an implicit scheme of forward and backward sweeps. The real amplitude
ρ(x, t) and the phase Φ(x, t) of oscillations are calculated as follows:

ρ(x, t) = | a(x, t) |=
√

(Re a)2 + (Im a)2,

Φ(x, t) = arg a(x, t) = arctg
Im a

Re a
± πk, k = 0, 1, 2, . . . .

The average frequency of oscillations in a medium point with coordinate x is
estimated in a similar way with (2.101):

Ω(x) = 〈Φt(x, t)〉 = lim
T→∞

Φ(x, t0 + T ) − Φ(x, t0)
T

. (2.110)

The temporal dynamics in fixed points of the medium is analyzed by
calculating the power spectra of fluctuations ρ̃(x, t). For a more illustrative
presentation of oscillations projections of a phase trajectory are drawn on the
plane of variables (ρ̃, Hρ̃), where Hρ̃ is the Hilbert conjugate process. Besides,
the maximal Lyapunov exponent λ1 is calculated for different oscillatory
regimes of the medium. For this purpose, Eq. (2.109) is integrated together
with a linearized equation for a small perturbation u(x, t) of the complex
amplitude a(x, y) that has the following form:

ut = iω(x)u +
1
2
(1 − 2|a|2)u − 1

2
a2u∗ + guxx. (2.111)
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The maximal Lyapunov exponent is introduced as an average over time in-
crement of exponential growth of the Euclidean perturbation norm ||u(x, t)||.
Taking into account that the spatial coordinate is discrete, ||u(x, t)|| is re-
duced to the sum of a finite number of terms:

||u(x, t)|| =

(
∫ l

0

((Re u(x, t))2 + (Im u(x, t))2)dx

)1/2

≈

≈
(

m∑

k=1

(Re u(xk, t))2 + (Im u(xk, t))2
)1/2

, (2.112)

where m is the number of integration steps hx all along the medium length.
Analyze the basic characteristics of oscillatory regimes of the medium

(2.109) in a purely deterministic case (D = 0). In contrast to a more general
case of the Ginzburg–Landau model with complex parameters, a turbulent
regime cannot arise in the homogeneous medium described by Eq. (2.109).
Without frequency mismatch, medium (2.109) can demonstrate the homo-
geneous regime, a(x, t) ≡ 1, only. The introduction of frequency mismatch
causes the mean frequency of oscillations to change along the spatial coor-
dinate x. In some ranges of parameter ∆ and g values, regimes of partial
synchronization can be realized which are accompanied by the formation
of perfect frequency clusters. They are separated by regions where interme-
diate (imperfect) cluster structures exist. Qualitatively, cluster structures in
the continuous medium (2.109) are completely similar to the analogous struc-
tures in the chain of self-sustained oscillators (2.97). The behavior of medium
(2.109), as well as of chain (2.97), depends on the character of cluster struc-
ture. In the regime of perfect clusters, oscillations are regular (periodic or
quasiperiodic). The destruction of perfect clusters leads to a chaotic tempo-
ral dynamics. Figure 2.53 illustrates the basic characteristics of oscillations in
the fixed spatial point x = 25 (the center of the middle cluster) for regimes
of perfect and imperfect clusters. Distributions of mean frequencies Ω(x)
along the medium are shown in Fig. 2.53a,d and indicate the character of
the cluster structure. Normalized power spectra of amplitude fluctuations
ρ̃(t) testify to a periodic behavior of the amplitude in the regime of perfect
clusters (Fig. 2.53b) and to an irregular process in the regime of imperfect
clusters (Fig. 2.53e). The basic frequency of the fluctuation ρ̃(t) spectrum is
equal to the intercluster frequency ∆Ω = Ωj+1 − Ωj that is the same for
all neighboring clusters. On the plane (ρ̃(t),Hρ̃(t)), a limit cycle corresponds
to perfect clusters (Fig. 2.53c), while in the regime of imperfect clusters the
phase trajectories obtained are similar to a chaotic attractor of the saddle-
focus type (Fig. 2.53f). If to compare the results presented in Figs. 2.53 and
2.47, one can conclude that the behavior of medium (2.109) and of chain
(2.97) are completely similar in the regimes of perfect and imperfect clusters.

There is no point in speaking about spatial order or disorder in the sys-
tem being studied as the system length includes only two or three spatial
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Fig. 2.53. Distribution of average frequencies, normalized power spectrum of os-
cillations ρ̃(t) at point x = 25 and projection of the phase trajectory on the plane
(ρ̃(t), Hρ̃(t)) at point x = 25 in the regime of perfect clusters for ∆ = 0.02 and
g = 1.0 (a) and in the regime of imperfect clusters for ∆ = 0.02 and g = 0.85 (b).
Discretization steps are ht = 0.01 and hx = 0.001

oscillations for the chosen values of the parameters g and Ω. We cannot
respectively judge about turbulence since the latter notion implies a nonreg-
ular behavior of the medium both in time and space. However, as the system
length l increases or the parameter g decreases, the medium with imperfect
clusters can also exhibit a spatial disorder.

Analyzing such characteristics as power spectra, projections of phase tra-
jectories as well as autocorrelation functions of oscillations in the regime of
imperfect clusters, one can conclude a chaotic temporal behavior of the sys-
tem. However, the dimension of this limit set is not large. The time series
analysis of the process ρ(x, t) in fixed spatial points, performed by means
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Fig. 2.54. Effect of noise on the dynamics of inhomogeneous medium (2.109) in
the regime of perfect clusters for ∆ = 0.2 and g = 1.0. (a) Maximal Lyapunov
exponent λ1 as a function of the noise intensity D; (b) imperfect frequency clusters
for D = 0.5 × 10−4

of reconstruction techniques, indicates that the embedding space dimension
is of order 3–5 in all the considered cases of irregular behavior. The linear
analysis of stability shows that the maximal Lyapunov exponent is positive
in the regime of imperfect clusters. For example, for ∆ = 0.2 and g = 0.85,
the Lyapunov exponent has the value λ1 ≈ 0.002 [309].

Our numerical studies have shown that the influence of noise on an in-
homogeneous medium leads to the destruction of perfect clusters. In this
respect as well as in some other aspects medium (2.109) behaves in a simi-
lar way as the inhomogeneous chain of self-sustained oscillators. The linear
analysis of stability of self-sustained oscillations in (2.109) testifies that the
nosie-induced destruction of perfect clusters is accompanied by the appear-
ance of chaotic temporal dynamics. Figure 2.54a illustrates the dependence
of maximal Lyapunov exponent λ1 on the noise intensity for ∆ = 0.2 and
g = 1.0 that correspond to the existence of three perfect clusters without
noise (see Fig. 2.53a). The effect of noise on a perfect cluster structure is
exemplified in Fig. 2.54b.

Analyze in more detail the transition of the medium to a chaotic behavior
in the presence of noise. Figure 2.55 illustrates the spectrum of amplitude
fluctuations at point x = 25 and the corresponding phase projection for
∆ = 0.2, g = 1.0, and D = 0.5 × 10−4. This regime represents a weak noise-
induced chaos with Lyapunov exponent λ = 0.0 00 18± 10−5. The trajectory
on the plane (ρ̃(t),Hρ̃(t)) is mainly rotated in the vicinity of a limit cycle
corresponding to D = 0 but can go sufficiently far away from this area (see
Fig. 2.55b). Such behavior indicates that in the system without noise there
exists some unattracting chaotic set in the vicinity of the regular solution.
Weak noise excites the system state and demands trajectories to move along
this set. An analogous mechanism of noise-induced chaos is well known for
major finite-dimensional systems (see, for example, [310]).

Thus, the noise “activates” the same chaotic set that becomes attracting
as a result of the hard bifurcation taking place in the deterministic case.

The studies performed have shown that the discrete model of inhomoge-
neous self-sustained oscillatory medium (2.97), even for a not large number
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Fig. 2.55. Characteristics of noise-induced chaotic oscillations of medium (2.109)
for ∆ = 0.2, g = 1.0, and D = 0.5 × 10−4 in fixed spatial point x = 25. (a)
Normalized power spectrum of oscillations ρ̃(t), (b) projection of phase trajectory
on the plane (ρ̃(t), Hρ̃(t)) (the white curve corresponds to a limit cycle for D = 0)

of elements (m = 100), can demonstrate all the effects of partial synchroniza-
tion that are observed in the continuous model (2.109). The addition of noise
plays a significant role for both models because it destroys perfect cluster
structures and leads to chaotization of regular oscillations. Thus, the behav-
ior of both models is completely analogous in the framework of qualitative
description.

2.4.5 Cluster Synchronization in Interacting
Inhomogeneous Media

Two interacting extended systems can be mutually synchronized. Effects of
mutual synchronization of spatiotemporal dynamics of interacting extended
systems are described in a series of publications (for example, [301,311–313]).
However, the majority of works consider mutual synchronization of homoge-
neous systems and media. We have studied numerically effects of synchroniza-
tion of interacting active media in regimes of frequency clusters. The results
obtained were first published in [314] and are presented below.

For our research we choose a system of two coupled Ginzburg–Landau
equations (2.109) without noise sources:

at = iω1(x)a +
1
2
(1 − |a|2)a + g1axx + ε(b − a), (2.113)

bt = iω2(x)b +
1
2
(1 − |b|2)b + g2bxx + ε(a − b).

Here, a(x, t) and b(x, t) are complex amplitudes of the first and second sys-
tems, and ε is the parameter of coupling that characterizes the degree of
interaction at each spatial point. The frequency mismatch at different points
of each separate medium is defined by functions ω1(x) and ω2(x), respectively,
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Fig. 2.56. Average frequencies Ω1,2 as a function of spatial coordinate x for fixed
δ = −0.08 and for different values of the coupling strength: (a) ε = 0, (b) ε = 0.005,
(c) ε = 0.03, and (d) ε = 0.045. Curves 1 and 2 correspond to the first and second
medium

and ∆1,2 is the maximal mismatch (i.e., the detuning of the boundary points
of the medium). The length l is set to be constant l = 50 and the same for
both systems. We integrate numerically Eqs. (2.113) and find how the mean
frequency of oscillations for each partial system (Ω1 and Ω2, respectively)
depends on the spatial coordinate x.

Consider two media (2.113) in the regime of frequency clusters. We fix
g1 = g2 = 0.9, ∆ = 0.16 and vary ∆2 and ε. We analyze spatial distrib-
utions of average frequencies Ω1,2(x) depending on the mismatch between
corresponding elements of the two media, δ = ∆1 − ∆2, and of the coupling
strength ε. When ε = 0 and ∆2 = ∆1, both systems demonstrate spatial
structures with three perfect frequency clusters. However, if ∆1 �= ∆2, the
average frequencies of oscillations in the corresponding points of the two me-
dia do not coincide. For large values of the mismatch δ, the second medium
contains N = 2 or N = 4 clusters depending on the sign of δ.

Choose the value of mismatch δ in such a way that the uncoupled partial
media can demonstrate regimes with different numbers of perfect clusters as
shown in Fig. 2.56a.

For ε �= 0 the elements of both media tend to synchronize their oscilla-
tions at equal frequencies. With increasing ε the transition to synchroniza-
tion of the two media can be observed. With this, the synchronization begins
from the left boundary (for small x) since the frequency mismatch ω1 − ω2

is minimal for the initial segments of the media. When oscillations of the
initial segments become synchronized, perfect clusters are destroyed and in-
termediate structures are formed. Then, more and more elements of the two
media are involved in the synchronization process. While coupling is small
enough, the number of imperfect clusters remains the same in both media
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Fig. 2.57. Region of cluster synchronization on the parameter plane (δ, ε) for
∆1 = 0.16 and g1,2 = 0.9. The gray region corresponds to synchronization in each
spatial point of the media. Inside the region bounded by dashed lines both media
have an equal number of clusters. Figures denote the numbers of clusters in the
first and second media

(see Fig. 2.56b,c). Starting with a certain value of the coupling strength, de-
pendences of average frequencies on the spatial coordinate Ω1,2(x) become
completely identical (Fig. 2.56d). The resulting synchronized cluster struc-
tures are similar to those observed at ε = 0 and ∆ = 0.

Figure 2.57 illustrates a portion of the diagram of regimes for two inter-
acting media (2.113) on the (δ, ε) plane. Two main regions are marked in
the Figure. In the first region shown in gray, cluster structures are strongly
synchronized. This means that the oscillation frequencies of the subsystems
are strongly equal to each other at each spatial point, Ω1(x) ≡ Ω2(x). In
this case the synchronization of spatial structures are directly related with
the classical phenomenon of frequency locking that can be observed at each
point of self-sustained oscillatory media. The region of synchronization has a
tongue-like form that is typical for regions of classical synchronization [315].

Besides, inside the area bounded by dashed lines both media are charac-
terized by the same number of clusters but their frequencies do not coincide.
Hence, the observed clusters are imperfect (Fig. 2.48b,c). The synchroniza-
tion region is expanded as the coupling strength ε increases. For a sufficiently
strong coupling (the boundary over points A) there exists only the region
of strong synchronization of the two media. In this case, with decreasing
mismatch δ, the transition into the synchronization region leads to a sharp
rebuilding of cluster structures from “3-4” to “3-3” clusters. This change
is accompanied by strong frequency locking of the partial systems at each
spatial point.
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2.4.6 Forced Synchronization
of a Chain of Chaotic Self-Sustained Oscillators

Consider the phenomenon of forced synchronization in a chain of unidirec-
tionally coupled identical chaotic Rössler oscillators [316]. When the first
element is subject to an external force, the chain of chaotic oscillators can
demonstrate the effect of frequency–phase synchronization. The system under
study reads

ẋ1 = −ω1y1 − z1 + C sin ωext,

ẏ1 = ω1x1 + αy1,

ż1 = β + z1(x1 − µ),
ẋj = −ωjyj − zj + γ(xj−1 − xj), (2.114)
ẏj = ωjxj + αyj ,

żj = β + zj(xj − µ),
j = 2, 3, . . . , m,

where j is the oscillator number (discrete spatial coordinate), m is the length
of the chain, and γ is the coupling coefficient. Parameters α, β, and µ define
the dynamics of partial systems, ωj are parameters controlling the frequencies
of oscillators, and C and ωex denote the amplitude and the frequency of the
external harmonic force affecting the first element of the chain. The system
consists of 50 oscillators possessing equal basic frequencies, ωj = ω1 = 0.924.
The fixed values of the parameters α = 0.2, β = 0.2, and µ = 4 correspond
to the regime of spiral chaos [8, 162] in the Rössler system. The initial con-
ditions of the oscillators were chosen with small random deviations from a
homogeneous state.

To introduce instantaneous amplitudes ρj and phases Φj of chaotic oscil-
lations, the following change of variables is used:

xj = ρj cos Φj , yj = ρj sin Φj , (2.115)
j = 1, 2, 3, . . . ,m.

Mean frequencies Ωj of oscillations were calculated according to relation
(2.101). Without external signal, the mean frequencies of oscillations are
equal in all chaotic oscillators, Ωj = ω0 ≈ 0.9981, j = 1, 2, . . . , m. The
frequency of basic maximum in the power spectrum coincides with the mean
frequency ω0 within the accuracy of numerical calculations. When the exter-
nal signal frequency ωex is close to ω0, the phenomenon of forced frequency–
phase synchronization can be observed in the chain of chaotic oscillators. The
instantaneous phase of chaotic oscillations of the jth oscillator is considered
to be locked if the following condition is fulfilled:

lim
t→∞

|Φj(t) − Φex(t)| < ∞. (2.116)
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This relation means that the phase difference is bounded. Here Φex = ωext
denote the phase of external signal. The mean frequency of oscillations of
the jth oscillator is locked simultaneously with phase locking, Ωj = ωex. The
frequency ratio defines the rotation number for each oscillator of the chain
Wj = Ωj/ωex, j = 1, 2, . . . , m. In numerical simulation, the jth element of
the chain is assumed to be synchronized if the condition |Wj − 1| ≤ ε holds,
where ε = 10−4.

Consider the process of synchronization of chain elements when the am-
plitude C and external signal frequency ωex are varied and the coupling co-
efficient is fixed, γ = 0.01. On the parameter plane (C,ωex) synchronization
regions of each element of the chain with j ≥ 2 have the same form. The
region boundaries basically coincide and cannot be distinguished within the
accuracy of numerical experiments. The region S of global synchronization
(i.e., synchronization of all the elements) on the plane (C,ωex) is shown in
Fig. 2.58 for the chain with 50 oscillators. It is worth noting that we have
not studied the problem on the existence of synchronization threshold [197].
Even if such a threshold exists, it approaches zero for the chosen parameter
values, and the region S in Fig. 2.58 rests virtually on the abscissa axis.

Fig. 2.58. Region of global synchronization S for chain (2.115) with m = 50 on the
parameter plane (C, ωex). The other parameters are α = β = 0.2, µ = 4, ωj = 0.924,
j = 1, 2, . . . , 50, γ = 0.01. The marked directions R and Q correspond to different
mechanisms of global synchronization
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Fig. 2.59. Rotation number Wj as a function of external signal frequency ωex for
the j = 2nd and j = 50th elements of the chain at γ = 0.01 and C = 0.08

The rotation number Wj as a function of frequency ωex is presented in
Fig. 2.59 for fixed coupling coefficient γ = 0.01 and external signal ampli-
tude C = 0.08. As seen, for any jth oscillator this dependence possesses a
horizontal part (step) that corresponds to Wj = 1.

Without external force (C = 0) the chain being considered demon-
strates a robust spatially homogeneous chaotic regime of oscillations for which
xj(t) = xk(t), yj(t) = yk(t), zj(t) = zk(t) (j, k = 1, 2, . . . , m). The external
force applied to the first element of the chain induces the appearance of inho-
mogeneity. In the phase locking region the mean frequencies of all oscillators
of the chain are equal to the external signal frequency and the instantaneous
phases are locked. However, synchronous chaotic oscillations are not spatially
homogeneous.

Figure 2.60 illustrates (x1, xj) projections of phase portraits of synchro-
nous and nonsynchronous chaotic oscillations for several values of spatial
coordinate j. Groups of (a) and (b) in the figure correspond to global phase
synchronization of the chain at the external force frequency ωex = 0.992.
It can be mentioned that the time-average phase shift 〈Φ1(t) − Φj(t)〉 be-
tween synchronous chaotic oscillations of the first and jth oscillators of the
chain is finite but different for various j values. For example, projections for
j = 9, 11, 13 combined in group (a) indicate the presence of average phase
shift that is close to ±2πk, π/2±2πk, π±2πk, (k = 0, 1, 2, 3, . . .), respectively.
The form of projections for j = 42, 44, 47 collected in group (b) virtually re-
peats the one for the group (a) projections. Such a behavior can be explained
by the fact that the average phase shift 〈Φ1(t) − Φj(t)〉 either monotonically
grows or decreases (depending on the value of ωex) along the chain. Thus,
one can claim that a running phase wave is propagated along the chain of
chaotic oscillators. Projections of phase portraits of nonsynchronous oscilla-
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Fig. 2.60. Projections of synchronous ((a) and (b) groups) and nonsynchronous
(group (c)) oscillations for different values of spatial coordinate j and for C = 0.1
and γ = 0.006

tions obtained for ωex = 1.025 are shown in Fig. 2.60c. They differ noticeably
from the projections corresponding to synchronous oscillations.

Chaotic dynamics of the chain elements was identified from the form of
phase projections and by Lyapunov characteristic exponents. When the el-
ements are unidirectionally coupled in the chain, each successive element
can be individually considered as an nonautonomous oscillator subjected to
a complex signal. Thus, the Lyapunov characteristic exponent (LCE) spec-
trum is divided into partial exponent spectra produced by individual elements
of the chain. The presence of a positive exponent in the LCE spectrum of
the first oscillator already indicates a chaotic behavior of all the subsequent
oscillators. They, in turns, may add their positive exponents (regime of hy-
perchaos) into the total LCE spectrum or not (in the case of complete or
general synchronization [189,190,198]). For the parameter values chosen, the
chain can exhibit a hyperchaotic regime both in the case of frequency–phase
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synchronization of all elements and outside the synchronization region. Each
element of the chain adds its positive characteristic exponent into the total
LCE spectrum. Inside the synchronization region of all the chain elements,
the total LCE spectrum contains m positive, 2m negative, and only one zero
exponents that is related with the external periodic signal.

2.4.7 Synchronization and Multistability in a Ring
of Anharmonical Oscillators

Synchronization in ensembles of coupled oscillators with limit cycles is re-
ferred to as one of the well-known classical tasks [278, 317–319]. It has been
revealed that such systems typically exhibit regimes of running waves. In the
majority of papers these regimes were studied in chains of quasiharmonic
or phase oscillators, their existence and stability were analyzed theoreti-
cally [283, 320–323]. It appears to be important and interesting to explore
the influence of anharmonicity on the behavior of running waves in a chain
of limit cycle oscillators.

Consider this problem using as an example a chain of diffusively coupled
Van der Pol oscillators with periodic boundary conditions. This system can
demonstrate both nearly harmonic oscillations for small nonlinearity and
anharmonical and relaxational ones for larger values of nonlinearity. The
chain of oscillators is described by the following equation:

ẍi − (ε − x2
i )ẋi + xi − γ(ẋi+1 − 2ẋi + ẋi−1) = 0, (2.117)

i = 1, 2, . . . , N ; x1 = xN+1, ẋ1 = ẋN+1.

Parameter ε defines dynamics of an individual oscillator, and γ is the coupling
coefficient. For zero coupling, the chain of oscillators demonstrates periodic
oscillations with equal amplitudes and arbitrary initial phases. As the chain
is closed in a ring, the total phase shift along the chain must be proportional
to 2π:

N∑

i=1

(ϕi+1 − ϕi) = 2πk, k = 0, 1, 2, 3, . . . .

We deal with regimes having an equal phase difference between oscillations
of neighboring oscillators, i.e., running waves propagating directly with a
constant phase velocity along the ring (∆ϕ ≥ 0). Since the extended system
is discrete, the wavelength must be integer and is defined as Λk = 2π/∆ϕk =
N/k. The values of k can change from 0 to N/2. For definiteness, set N = 30.
In this case we have k = 0, 1, 2, 3, 5, 6, 10, 15. The value of k = 0 corresponds
to a spatially homogeneous regime while the other values of k associate with
regimes of running waves with wavelength Λk = 30, 15, 10, 6, 5, 3, 2.

Consider the regions where the aforementioned wave modes exist and
are stable, provided each oscillator exhibits quasiharmonic oscillations. This
task can be solved analytically by using standard methods (see, for instance,
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[320,322]). Our case is conveniently studied by passing to truncated equations
for amplitudes and phases:

ρ̇i =
ε

2
ρi −

ρ3
i

8
+

γ

2
(ρi+1 cos(ϕi+1 − ϕi) + ρi cos(ϕi − ϕi−1) − 2ρi),

ϕ̇i =
γ

2

(
ρi+1

ρi
sin(ϕi+1 − ϕi) −

ρi−1

ρi
sin(ϕi − ϕi−1)

)

, (2.118)

ρ1 = ρN+1, ϕ1 = ϕN+1.

As all elements of the ring are identical, in Eqs. (2.118) one can assume that
all amplitudes are equal to ρ and phase differences between any neighboring
oscillators are equal to ∆ϕk. Then ρ and ϕi obey the following equations:

ρ̇(k) =
έk

2
ρ(k) − (ρ(k))3

8
,

ϕi+1 − ϕi = ∆ϕk = 2π
k

N
= const., (2.119)

where έk = ε− 2γ(1− cos ∆ϕk), index k denotes that the solution represents
a wave with index k. The amplitude equation (2.119) is identical in form with
a truncated equation of the single Van der Pol oscillator. Correspondingly,
as in case of a single oscillator, when the parameter έk passes through zero,
the solution ρ(k) = 0 loses its stability that conforms to the Andronov–Hopf
bifurcation for an equilibrium at the origin in the initial system (2.117).
The resulting new solution ρ(k) = 2

√
έk corresponds to a running wave with

a given value of index k. Thus, lines ε = 2γ(1 − cos ∆ϕk) are bifurcational.
With increasing parameter ε, the bifurcational condition ε = 0 is first satisfied
that results in a spatially homogeneous regime, ∆ϕ = 0. Then, at ε = 2γ(1−
cos(2π/N)) the bifurcational condition is fulfilled for regimes with k = ±1.
They are associated with waves running in opposite directions and having
the length Λ1 = N . Similar bifurcations occur for the overall sequence of
possible indexes k. With this, new regimes that appear are unstable (except
the homogeneous state). Finally, a pair of unstable running waves with Λ15 =
2 arises at the line ε = 4γ. Hence, a stable fixed point is born on the line b0

(see Fig. 2.61) and corresponds to a spatially homogeneous regime xi(t) =
2
√

ε cos (t). Saddle fixed points appear on the lines b1–b15 and are associated
with running along the ring self-sustained waves xi(t) = 2

√
έk cos (t − 2πk

N i).
These spatially periodic regimes can become stable for certain values of the
controlling parameters. The stability conditions can be derived by means of
a standart method from the first approach. The application of this method
is described in [322] for a ring of harmonic oscillators. Analyzing the system
(2.118) stability one can obtain the eigenvalues for a linearization matrix that
are as follows:

λ
(k)
0,1 = 0, (2.120)

λ
(k)
0,2 = −έk, (2.121)
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λ
(k)
i,1 = − έk

2
+

√

έ2
k

4
+ γ2 sin2(∆ϕk) sin2

(
2πi

N

)

− γ cos(∆ϕk)
(

1 − cos
(

2πi

N

))

, (2.122)

λ
(k)
i,2 = − έk

2
−

√

έ2
k

4
+ γ2 sin2(∆ϕk) sin2

(
2πi

N

)

− γ cos(∆ϕk)
(

1 − cos
(

2πi

N

))

, (2.123)

i =
1

N − 1
.

The zeroth eigenvalue λ
(k)
0,1 results from the fact that system (2.118) solutions

are invariant with respect to the choice of the initial phase. The transition of
eigenvalues λ

(k)
0,2 through zero corresponds to the fixed point birth from the

bifurcation of the equilibrium at the origin.
Analysis of expressions (2.122) and (2.123) yields the following conditions

for regions of stability of running waves in the chain of harmonic oscillators:

ε > γ

[

2 − 4 cos(∆ϕk) +
1 + cos( 2π

N )
cos(∆ϕk)

]

, cos(∆ϕk) > 0. (2.124)

The associated birth and stability lines for the spatially periodic regimes
under consideration are constructed in Fig. 2.61. The line ε = 0 separates
regions where stable long-wave C0 – C6 (γ > 0, cos(∆ϕk > 0)) and short-
wave C10, C15 (γ < 0, cos(∆ϕk < 0)) regimes exist.

First consider the region where the coupling parameter takes positive val-
ues. The solid line b0 corresponds to the birth of a stable regime of spatially
homogeneous oscillations. Unstable oscillatory regimes with different spatial
periods are born on lines shown dashed in Fig. 2.61 and marked by letters bk,
where k = 1, 2, 3, . . . is the index of an appropriate running wave. On lines
s1, s2, s3, s5, and s6 regimes with relevant values of k become stable. Thus,
inside the cone enclosed by the lines γ = 0 and s6 and shown in the figure
in dark, there exist stable regimes of running waves C0, C,1 C2, C3, C5, and
C6 with wavelengths Λ = ∞, 30, 15, 10, 6, and 5, respectively. In the region
between the lines s6 and s5 regime C6 is no longer stable that results in the
occurrence of five coexisting waves C0, C,1 C2, C3, C5. Furthermore, after
line s5 four regimes C0, C,1 C2, C3 remain stable, and so on. In the para-
meter space an embedding structure is formed that consists of the regions
where running waves with different wavelengths are stable. The shorter the
wavelength, the closer the stability region of appropriate oscillatory regime
is located to the line γ = 0. For strong coupling, i.e., below the line s1, the
system can demonstrate only a spatially homogeneous oscillatory regime.

When the coupling is negative (γ < 0), all the above considered regimes
become unstable. On the line s15 a stable regime with wavelength Λ = 2 is
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Fig. 2.61. Bifurcation diagram of the regimes in system (2.118). Solid line b0

corresponds to the birth of a spatially homogeneous regime of oscillations; dashed
lines bk mark the region boundaries where regimes of running waves with wave
number k exist; solid lines sk indicate the boundaries of regions inside which the
corresponding wave regimes are stable. The regions of stable regimes of running
waves are shown in gray: the darker background corresponds to the area where a
shorter-wave regime is stable

born from the equilibrium at the origin when neighboring oscillators oscillate
in antiphase, xi = −xi+1 = −xi−1, ẋi = −ẋi+1 = −ẋi−1. This kind of wave
is observed for any values of the parameters ε > −4γ, γ < 0. It can be easily
seen that antiphase oscillations emerge for negative values of the parameter
of excitation ε when a single oscillator does not oscillate yet. Then, on the
line b10 (γ < 0) and in the vicinity of the already unstable equilibrium state
a regime C10 with wavelength Λ = 3 appears at which phase differences
between neighboring oscillators are equal to 2π/3. The given regime becomes
stable above the line s10.

The two-parameter analysis carried out for stability regions of harmonic
running waves has shown that the considered system is multistable. The
parameter space consists of overlapping leaves each of which is unbounded
on the parameter ε but is bounded on the coupling γ. When ε is fixed and
the coupling increases, one can detect typical transitions from shorter-wave
regimes to longer-wave ones, which are described in [323]. The absence of
restrictions for stability regions on the parameter of excitation leads to the
fact that for any ε > 0 a sequence of these transitions appears to be the
same, i.e., one-parameter analysis of stability is sufficient for harmonic waves.
However, this conclusion is not valid for anharmonic waves.

We now turn to the analysis of the original system (2.117) behavior. With
increasing ε, the oscillation amplitudes grow and the form of oscillations also
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changes that is resulted in generation of new harmonics in the oscillation
spectrum. With this, the truncated equations are inadequate properly to de-
scribe the system dynamics. The regions of existence and stability of running
wave regimes in system (2.117) were defined by numerical methods. The
Poincaré section is best suited for our study. Dynamical variable values of all
the oscillators in the ensemble {xi} are fixed in the time moments when time
derivative of one of the dynamical variables, for example, ẋ1, is equal to zero.
By this means one can get instantaneous “snapshots” of the oscillator states
, i.e., the profile of a running wave, at the time moments corresponding to
a certain phase of the basic element (x1 in our case). Regimes with different
wavelengths are presented in Fig. 2.62.

The oscillatory regimes shown in Fig. 2.62 do not exhaust all possible
stable regimes that can be found in system (2.117). In particular, it is possible
to detect running waves whose oscillation amplitudes and phase difference
between neighboring oscillators are not constant along the chain. This is
typical for the cases when the chain length is not divisible by the wavelength
of the regime under consideration.

The numerical results for stability regions of running waves are shown
in Fig. 2.63 for positive values of the coupling coefficient. The wave regimes
presented in Fig. 2.62 are born strictly at the same lines b1–b15 as their asso-
ciated stationary states in truncated equations (2.118) (see Fig. 2.61). This is
so indeed since the oscillations are harmonic at the moment of their birth and,
consequently, are described by truncated equations. However, with increasing
ε the form of oscillations becomes anharmonic, and the oscillation spectrum
exhibits harmonics at multiple frequencies. Thus, as we recede from the gen-
eration threshold, the initial system of Van der Pol oscillators (2.117) behaves
differently than the simplified model (2.118). Correspondingly, the stability
regions for running waves, presented in Fig. 2.63, qualitatively differ from the
corresponding regions depicted in Fig. 2.61. For comparison, in Fig. 2.63 the
boundaries of stability regions s1–s6 are duplicated from Fig. 2.61 as dashed.
If to compare Figs. 2.61 and 2.63, one can see that unlike harmonic oscilla-
tors, each wave regime, except the spatially homogeneous one, in the chain of
full equations possesses a finite stability region. For weak coupling, the lower
boundaries of these regions (lines l1–l6) nearly coincide with relevant bound-
aries (s1–s6) for system (2.118). A difference begins for large values of γ and is
especially well marked in the case of short-wave regimes. Consider, for exam-
ple, the stability region boundaries (lines l5 and l6) for a running wave with
length Λ = 6. Before coupling γ � 0.5, the lower boundary of stability of the
considered regime in (2.117) nearly matches the dashed line s5. However, for
a strong coupling, it deviates significantly from the straight line. Besides, for
each of the studied regimes, except the spatially homogeneous one, there is a
borderline bounding the stability region above. The upper and lower bound-
aries of the stability region, together with the bifurcational line γ = 0, close
the stability region for the running wave under question. Figure 2.63 shows a
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Fig. 2.62. Oscillatory regimes in system (2.117). (a) Spatially homogeneous oscil-
lations and regimes of running waves propagating directly with wavelength Λ = 30
(b), Λ = 15 (c), Λ = 10 (d), Λ = 6 (e), and Λ = 5 (f). The order numbers of
oscillators in the chain (discrete spatial coordinate) are laid off as abscissa, and the
value of a dynamical variable of the given oscillator in the section ẋ1 = 0 is laid
off as ordinate. The dashed line in (b) shows the wave profile propagating in an
opposite direction
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Fig. 2.63. Stability region boundaries for running wave regimes in system (2.117).
lk and hk are the lower and upper boundaries of stability region for the wave Ck.
Stability regions are shown in gray; a darker color corresponds to shorter-wave
regimes. Dashed lines mark the corresponding boundaries of stability regions s1–s6

for harmonic oscillators (2.118)

fragment of stability regions for coupling coefficient 0 ≤ γ ≤ 1, which includes
the entire stability regions for waves Λ = 5 and Λ = 6. Stability regions for
longer wave regimes behave similarly but their upper and lower boundaries
close when the coupling coefficient is larger than 1. Thus, the diagram of
regimes for the chain of Van der Pol oscillators (2.117) represents an embed-
ding structure of bounded regions. Stability regions of shorter waves regimes
are arranged inside stability regions for regimes with larger wavelengths. The
lower boundaries of stability regions emerge from the point with coordinates
γ = 0 and ε = 0 and represent straight lines for weak coupling (as in the case
of harmonic oscillators). The upper boundaries for weak coupling are nearly
straight lines each issuing out of its own point with coordinates γ = 0 and
εk

u, where k is the wave number of running wave.
Hence, the chain of Van der Pol oscillators demonstrates the developed

multistability in a definite range of controlling parameter values. It can be as-
sumed that besides the above described running wave modes, the system can
exhibit simultaneously another oscillatory regimes. Therefore, the following
regular equation arises: How much the above mentioned regimes of running
waves are typical? By a typical aspect is meant a probability of reaching
one or another oscillatory regime at randomly defined initial conditions. The
studies performed have shown that in this case the system demonstrates only
the above indicated wave regimes. Probabilities of reaching different spatial
modes are plotted in Fig. 2.64. Clearly the parameter values were chosen so
that all the above mentioned modes are stable. Probabilities of two longest
wave regimes with k = 0 and k = 1 are practically equal and close to 0.5.
It is precisely these modes that the system reaches in the majority of cases.
With increasing k the probability for other regimes decreases nearly expo-
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Fig. 2.64. Probability of reaching spatiotemporal regimes corresponding to differ-
ent values of index k at initial conditions xi randomly chosen within the interval
x ∈ [0.1]. The other parameters are ε = 2.0 and γ = 0.1

nentially (for a more illustrative presentation the y-axis is logarithmically
scaled). Regimes with k = 5 and k = 6 have not been reached in our nu-
merical simulation. As can be assumed from Fig. 2.64, their probability is
approximately one and two orders, respectively, less than the probability for
the regime with k = 4. Unfortunately, the calculation time taken in this case
is beyond the possibilities of computer experiments. A similar dependence of
the probability on index k are also observed for different values of parameters
ε and γ. For large values of coupling, the probability of reaching the spatially
homogeneous regime starts to slightly prevail over the probability of reaching
the regime with k = 1.

Of particular interest is to define the basin of attraction of an attractor
associated with one or another spatiotemporal regime. Clearly that since the
system is of a high dimension, it is practically impossible to construct com-
plete basins of attraction. Regions of attraction can be certainly estimated
if initial conditions are chosen with a specific phase shift with respect to the
spatial coordinate:

xi = ρ sin(iφ), yi = ρ cos(iφ).

Varying ρ and φ one can get a characteristic diagram for basins of at-
traction, which is shown in Figs. 2.65 and 2.66 for two different values of the
coupling coefficient.
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Fig. 2.65. Diagram of basins of attraction for different spatial modes (ε = 2.0,
γ = 0.1)

Fig. 2.66. Diagram of basins of attraction for different spatial modes (ε = 2.0,
γ = 0.42)

As the coupling grows, zones of short-wave modes are narrowed or com-
pletely disappear (the mode with k = 6 in Fig. 2.66), while zones of long-wave
regimes are correspondingly widened. It is seen from the diagram that when
angle φ values are less than 90◦, the regions of attraction of different modes
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are structured regularly enough: they fill the sectors adjacent to the angle
value that is equal to the phase difference between oscillations of neighboring
oscillators for a given regime. For angle values less than 90◦, stability regions
behave less predictable.

If the parameter of nonlinearity is chosen sufficiently large (ε ∼ 10), then
in parallel with the already described regimes of running waves one can ob-
serve running waves with moving ”defects.” Such defects reflect phase and
amplitude slips (i.e., a spatial point and the number of oscillators for which
the phase difference differs from a characteristic value for a given mode)
that move along the ring with a constant velocity. One of such examples is
shown in Fig. 2.67. In the presence of one defect, the temporal dynamics rep-
resents two-frequency quasiperiodic oscillations. If there are several defects,
then they move with their own velocity and a multidimensional torus is ac-
cordingly formed in the phase space. If the chain of oscillators is long enough,

Fig. 2.67. (a) Initial wave without “defect” with k = 2, (b) wave with phase “de-
fect,” (c) dependence of the phase difference between oscillations of neighboring
oscillators in two different time moments, and (d) autocorrelation function com-
puted from time series of one of the oscillators. The parameters are ε = 10, γ = 0.01
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then the resulting tori can be of a high dimension. In this case the presence
of weak noise can lead to the behavior being very similar to a chaotic one.

The regions of parameter space where regimes with phase defects can be
observed exist for large nonlinearity and weak coupling. To reach a regime
with phase defects that is formed from wave Ck it is necessary to choose pa-
rameter values when a “pure” regime is stable and to cross the upper stability
boundary of the initial wave by increasing the parameter ε. The transition
between the “pure” regime and a regime with defects can be accompanied
by hysteresis, i.e., both regimes coexist in a certain region of the parameter
space.

2.4.8 Synchronization and Multistability in a Ring
of Oscillators with Period Doubling

In this part we will study the evolution of phase waves in a ring of oscillators
with period doubling when controlling parameters are varied. The following
questions are planned to be discussed. Which regimes of phase waves can
be observed in chains of chaotic oscillators? How the complexity of temporal
dynamics of a partial system can affect the change of spatial structures?
How the destruction of spatial structures is connected with synchronization
between neighboring oscillators?

As a model we consider a chain of resistively coupled electronic Chua’s
oscillators

ẋi = α(yi − xi − f(xi)),
ẏi = xi − yi + zi + γ(yi−1 + yi+1 − 2yi),
żi = −βyi, (2.125)
f(xi) = bxi + 0.5(a − b)(|xi + 1| − |xi − 1|),
i = 1, 2, . . . , N

with periodic boundary conditions, x1 = xN+1, y1 = yN+1, z1 = zN+1.
The behavior of system (2.126) is analyzed depending on parameter α

and coupling coefficient γ values for fixed a = −8/7, b = −5/7, and β = 22.
At α < 8.78, the system does not oscillate. When α increases, α ≥ 8.78,

and the coupling coefficient and initial conditions are varied, the system can
exhibit nearly harmonic temporal oscillations with different spatial periods
along the chain. These spatially periodic structures are characterized by equal
amplitudes and definitive phase shifts between oscillations of the chain ele-
ments. The given regimes represent phase waves propagating along the ring
with a constant phase velocity. As in case of the chain of Van der Pol oscilla-
tors, the Poincaré section will be used to visualize spatial structure of phase
waves. For this purpose, values of dynamical variables xi of each oscillator
are fixed at the time moment when the variable y1 crosses a zero level from
positive values to negative ones.
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Fig. 2.68. Simplest spatial structures with different wavelengths: (a) n = 1, (b)
n = 2, (c) n = 3, and (d) n = 5

The simplest structureswith different spatial periods are shown in Fig. 2.68.
These states correspond to phase shifts between oscillations of neighboring
oscillators by π/15, 2π/15, π/5, and π/3. In our case (the chain of 30 os-
cillators), among the possible structures, one can also observe regimes with
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n = 6 and n = 15 in addition to the aforementioned structures. The latter
case corresponds to a complete antiphase synchronization. Regimes with the
given spatial periods, Λ = 5 and Λ = 2, have not been revealed in the chain
under study within the considered intervals of parameter values.

The temporal dynamics in each oscillator of the chain becomes more com-
plicated as the parameter α increases. The states presented in Fig. 2.68 un-
dergo bifurcations. Period doubling and torus birth bifurcations for regular
attractors as well as band-merging bifurcations for chaotic attractors can oc-
cur in the chain. Figure 2.69 illustrates the complexity of regular spatially
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Fig. 2.69. Complexity of regular phase waves with increasing parameter α: (a)
α = 1.14, γ = 0.02, (b) α = 11.48, γ = 0.02, (c) α = 11.54, γ = 0.1, and (d)
α = 11.4, γ = 0.2
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periodic regimes with increasing α. One can see the evolution of regimes
from the initial condition with spatial period Λ = N/2 (Fig. 2.68b). When
phase waves are complicated in each oscillator, the temporal dynamics also
becomes more complicated. Period-two cycle 2CN/2 (Fig. 2.69,a), period-four
cycle 4CN/2 (Fig. 2.69b), doubled torus 2TN/2 (Fig. 2.69,c), and torus 1TN/2

(Fig. 2.69d) can be observed. Figure 2.69 presents spatial structures and pro-
jections of phase portraits on the planes (x1 − y1) and (x1 − x16). The latter
projection shows that the regular regimes listed are precisely spatially peri-
odic, xi = xi+15. It is seen that the increase of the temporal period does not
cause the spatial period to change, and temporal quasiperiodicity does not
induce spatial quasiperiodicity. In this case temporal regimes are developed
from the initial spatial structure that is destroyed only after transition to a
temporal chaotic behavior of the oscillators.

The evolution of chaotic regimes are depicted in Fig. 2.70 where four-band
(Fig. 2.70a), two-band (Fig. 2.70b) and one-band (Fig. 2.70c) attractors can
be seen. Temporal chaotic regimes are not spatially periodic that can be seen
from the mutual projection (x1 − x16) that is no longer a thin line on the
bisectrix and has a finite “thickness.” Projections of phase portraits for multi-
band chaotic attractors are sufficiently thin and are located in the vicinity
of bisectrix, i.e., these regimes remain nearly periodic in space. As the chaos
develops, the projections become “thicker” and the structures are no longer
spatially periodic. In the regime of a developed one-band chaotic attractor,
the phase trajectory does not stay in the vicinity of bisectrix and fills the
whole square (Fig. 2.70c). The mutual projections of phase portraits and
spatial diagrams demonstrate that chaotic oscillations are no longer spatially
periodic. However, as will be shown below, they remain spatially periodic on
the average.

Stability of phase waves depends on their wavelength and the coupling
strength. The increase of coupling coefficient γ can cause the stability loss by
short-wave modes and the transition to longer wave regimes.

Figure 2.71 shows stability regions for a set of regimes originating from
the phase waves presented in Fig. 2.68. When the upper boundaries marked
by symbols are crossed, the relevant spatial structure is destroyed as a result
of the development of temporal chaotic dynamics. When passing through
the right boundaries indicated by lines a given regime loses its stability and
a sharp transition to a spatiotemporal regime with a larger wavelength is
realized. A set of regimes with spatial period N (see Fig. 2.68a) is bounded
by the line 1. It goes practically horizontal to the abscissa. Only a spatially
homogeneous regime can exist below this line. Families of regimes with spatial
periods N/2, N/3, and N/5 are bounded by the lines 2, 3, and 4, respectively.
These regimes are observed to the left of the indicated lines. The system
under study demonstrates the phenomenon of multistability. Beyond the line
4 families of regimes with wavelengths N/5, N/3, N/2, and N coexist with
spatially homogenenous states. Regimes with wavelengths N/3, N/2, and N



2.4 Extended Self-Sustained Oscillatory Systems 221

5 10 15 20 25 30

i

0

1

2

x
i

0 1 2
x

1

0

1

2

x
16

0 1 2
x

1

-0,4

-0,2
0

0,2

0,4

y
1

5 10 15 20 25 30

i

0

1

2

x
i

5 10 15 20 25 30

i

0

1

2

x
i

0 1 2
x

1

-0,4

-0,2
0

0,2

0,4

y
1

0 1 2
x

1

-0,4

-0,2
0

0,2

0,4

y
1

0 1 2
x

1

0

1

2

x
16

0 1 2
x

1

-0,4

-0,2
0

0,2

0,4

y
1

0 1 2
x

1

0

1

2

x
16

5 10 15 20 25 30

i

0

1

2

x
i

0 1 2
x

1

0

1

2

x
16

a

b

c

d

Fig. 2.70. Development of chaotic phase waves with increasing parameter α (γ =
0.05): (a) α = 11.57, (b) α = 11.61, (c) α = 11.66, and (d) α = 11.79

and spatially homogeneous regimes coexist inside the region between the lines
3 and 4. Spatially homogeneous regimes and modes with wavelengths N/2
and N coexist between the lines 2 and 3. Spatially homogeneous regimes can
be observed for any values of the coupling coefficient. It is seen that stability
of phase waves depends on the coupling strength. With increasing coupling,
regimes with small spatial periods lose their stability. Typical bifurcational
transitions and a structure of the controlling parameter plane are described
in detail in [324] for a family of spatially periodic regimes.

It has already been mentioned that the exact spatial periodicity is de-
stroyed when passing to a temporal chaotic behavior. There is no exact pe-
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Fig. 2.71. Regions of stability for a family of regimes with different wavelengths

riodicity in the chaotic region but spatial structures retain their periodicity
on the average in time. Averaged spatially temporal diagrams are presented
in Fig. 2.72 when the coupling decreases.

It is seen that the averaged spatial periodicity of structures is gradu-
ally destroyed. The temporal behavior is associated with a one-band chaotic
attractor. For strong coupling, the averaged spatial diagram looks like the
initial strongly periodic regime. Then, with decreasing γ, the spatial struc-
ture has a more plane form but the initial picture with two maxima is still
retained. Further for small values of coupling, the averaged spatial periodicity
is destroyed only in the regime of developed temporal chaos.

From a viewpoint of mutual synchronization of oscillators, spatial peri-
odicity of structures is broken down as follows. Before passing to a chaotic
temporal behavior, complete synchronization takes place. These regimes are
characterized by rigorous equalities xi(t) = xi+N/2(t) and xi(t) = xi+1(t+τi)
for each oscillator in the chain. With increasing parameter α when oscilla-
tions turn to be chaotic, these equalities become approximate and are then
violated. It has been shown in [324] that in this case a quantitative measure of
synchronization decreases from 1 (completely synchronous oscillations) to 0
(lack of synchronization). It has also been established that spatial periodicity
is connected with coherence of oscillations at the basic spectral frequencies.
While the oscillation spectrum contains the frequencies at which motions are
completely coherent, the chain still possesses spatial structures being peri-
odic on the average. If the coherence function decays for each frequency, the
spatially periodic structure is destroyed.
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Fig. 2.72. Averaged spatial structures for α = 11.78 and different values of γ: (a)
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2.4.9 Summary

In the presented section we have considered effects of synchronization in ex-
tended systems, such as chains of locally coupled self-sustained oscillators
and a self-sustained oscillatory medium described by the Ginzburg–Landau
equation. Particularly, formation of frequency clusters has been studied for
inhomogeneous extended systems. It has been revealed that cluster struc-
tures in a chain with a finite number of elements qualitatively correspond
to those in a medium with a continuous spatial coordinate. The chain and
the medium demonstrate similar regimes. The influence of noise on the chain
and the medium also leads to the same effects. Thus, a medium can be justly
modeled by a chain of moderate length (m = 100) to study qualitatively
the medium dynamics. It has been established that both in the chain of self-
sustained oscillators and in the medium the transition to chaotic dynamics
is accompanied by the destruction of perfect clusters.

We have also analyzed the influence of noise on inhomogeneous systems in
the regime of cluster synchronization. Noise typically causes perfect clusters
to destroy that is accompanied by transition to noise-induced chaos. The no-
tion of effective synchronization introduced for a single Van der Pol oscillator
and characterized by the effective diffusion coefficient can be generalized for
the case of cluster synchronization in extended systems.

The studies performed have shown that the amplitude dynamics can play
an essential role in forming cluster structures. Cluster synchronization can
also be observed in a chain modeled by phase equations only. However, this
effect is realized within a significantly narrow range of coupling parameter
values. Besides, the appearing cluster structures are more sensitive toward
the influence of noise.

The phenomenon of synchronization of cluster structures has been re-
vealed and studied in interacting inhomogeneous self-sustained oscillatory
media. This effect is based on a classical mechanism of frequency locking of
relevant elements of the two media.

The effect of forced frequency–phase synchronization has been detected
in a chain of unidirectionally and diffusively coupled chaotic oscillators. The
region of global phase locking of the chain has been constructed on the plane
of controlling parameters “external signal amplitude – external signal fre-
quency.”

The influence of anharmonicity on multistability of spatially periodic
regimes has been explored in a ring of oscillators with limit cycles. It has been
demonstrated that different wave modes can typically appear for random and
spatially periodic initial conditions. The regularities of their disappearance
have also been studied.

Dynamics of spatially periodic regimes has been analyzed in a ring of
identical oscillators with period doubling. A map of typical regimes has been
constructed on the plane of controlling parameters and typical bifurcational
transitions have been studied.
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2.5 Synchronization in Living Systems

2.5.1 Introduction

The phenomenon of synchronization considered above was studied in rather
simple generic dynamical systems using methods of oscillation theory. In-
deed, synchronization phenomena are ubiquitous in living systems [255,325–
327, 338]. Synchronization was observed and studied on various levels of bi-
ological systems, starting from processes in single cells and cell communica-
tions to collective dynamics of complex networks and population dynamics of
biological organisms. Synchronization effects may have an important physio-
logical significance. For example, synchronization is believed to play a crucial
role in the processing of sensory information [328, 329]. Neuronal synchrony
has recently been suggested as a collective mechanism for intentional selec-
tion [330]. On the other hand, several human neurological disorders such
as essential tremor and tremor caused by Parkinson’s disease appear to be
caused by abnormal synchronization of neuronal populations [331].

In this section we present examples of two experimental studies of syn-
chronization of biological systems by external perturbations. Both systems
are rather complex. The first system is represented by electroreceptors of
paddlefish and is synchronized by external electric field. The second example
is synchronization of human cardiorythms by external stimulation. Presently,
no detailed mathematical models exist for these systems. Nevertheless, as we
will see both systems show fundamental synchronization phenomena which
can be understood in the framework of the theory of oscillations using simple
generic models.

2.5.2 Stochastic Synchronization of Electroreceptors
in the Paddlefish

The paddlefish (Fig. 2.73a), Polyodon spathula, named for its long flattened
spatula-like appendage extending in front of the head, the “rostrum.” The
rostrum is covered with tens of thousands of sensory receptors [332], mor-
phologically similar to the ampullae of Lorenzini of sharks and rays. Clusters
of electroreceptors also cover the head and the gill covers. It was established
that paddlefish uses electrosense to locate prey such as Daphnia during feed-
ing behavior [333,334]. Electroreceptors in paddlefish form a passive sensory
system, meaning that paddlefish only receive signals from external sources.
An external opening (pore) in the skin, 80–210 µ diameter, leads into a short
canal ≈200 µ long. The pores are organized into clusters of 5–30 on the ros-
trum (see enlarged part of the rostrum in Fig. 2.73). The internal end of each
canal is covered with a sensory epithelium. The epithelium contains two types
of cells: hair cells and support cells. It is the hair cells which are considered
electrosensensitive, named for their kinocilium projecting into the lumen of
the ampulla. The number of receptor cells per epithelium is ≤400. On the
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(a)

(b)

(c)c

Fig. 2.73. (a) Photo of a small paddlefish, Polyodon spathula. (b) Photo of the
underside of the rostrum from a 21 cm paddlefish. (c) Enlarged photo of clusters
of electroreceptor pores

basal side of the epithelium, the hair cells make excitatory chemical synapses
onto “primary afferent” axons. The synapse from each hair cell, together with
the spiking properties of the primary afferent endings, converts the analog
signal from the hair cells into spike trains (series of action potentials), coding
the electrosensory information as a time series (the intervals between afferent
spikes).

The term “electroreceptor” unifies a complex structure of pore + canals
+ epithelium + primary afferent neuron. A key feature of the spike trains
recorded from the primary afferents of an electroreceptor is their spontaneous
quasiperiodic firing pattern. It was shown that the electroreceptors in paddle-
fish possess a novel type of organization of being composed from two distinct
types of oscillators [335]. One oscillator resides in a population of epithelial
cells and is unidirectionally coupled with the second oscillator, located in the
afferent terminal. The fundamental frequency of epithelial oscillator is 25–27
Hz at 22◦C for different electroreceptors, while the mean firing rate for differ-
ent afferents varies in a wide range of 30–70 Hz. The unidirectional coupling
of these oscillators results in a specific biperiodic firing patterns.

In vivo electrophysiological experiments have been performed with pad-
dlefish 35-40 cm in length. A detailed description of the experimental setup
and procedures can be found in [335]. In brief, extracellular recordings were
performed using tungsten microelectrodes. Stimulation with time-dependent
external electric field was performed by placing a small dipole electrode near
(5 mm) receptive field on the rostrum of the fish or by parallel plates placed
at the ends of the epxerimental chamber.

Electroreceptors are tuned to respond to low frequency signals with the
maximal frequency response at about 5 Hz [333]. Thus, we can expect that
synchronization of higher frequency (30–70 Hz) afferent neurons by low fre-
quency periodic stimuli should occur in the form of high order mode locking.
The phase of the periodic signal is Ψ(t) = 2πf0t. Since recordings of neuron
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Fig. 2.74. Synchronization of an electroreceptor by 5 Hz electric field. Each of the
three columns in the graph corresponds to the indicated values of the electric field
amplitude. Each column shows: (a) electric field waveform and raw recordings from
the afferent (below); (b) synchrograms, φk(tk), and (c) distributions of the cyclic
phase

activity are represented by stochastic point processes, it is natural to present
the phase difference as a Poincaré “stroboscopic” map [344]: we calculate the
phase of the stimulus at the moments of time, tk, when the neuron fires and
then define the result on a circle [0 : 2π]:

φk = [Ψ(tk) mod 2π] . (2.126)

Plotting the “cyclic” phase, φk against the firing times tk results in so-called
synchrograms plots [344].

A representative example of synchronization of an electroreceptor is shown
in Fig. 2.74. For small amplitude electric field (1.1 µV/cm) the cyclic phase
is distributed uniformly. With the increase of the amplitude (9.1 µV/cm) the
firing frequency of the neuron became modulated. However, no synchroniza-
tion occurs as position of individual spikes with respect to stimulus changes
continuously from cycle to cycle. Situation changes with further stimulus in-
crease (15.5 µV/cm) when individual spikes are locked to specific positions
with respect to the stimulus period, demonstrating synchronization pattern
of 1:10, that is there are exactly 10 spikes per period of stimulation. Indeed,
synchronization is still stochastic due to noise in the system, which is indi-
cated by finite width of the peaks in the phase distribution.

For afferent neurons with a low variability a different synchronization
pattern was observed [336], when synchronization occurs without significant
modulation of the firing rate.

Another interesting type of synchronization occurs when a population
of electroreceptors are exposed to a common electric field. Individual elec-
troreceptors are not coupled [332] and are characterized by a distribution of
natural frequencies of their afferent neurons, as we noted above. Nevertheless,
apparently electroreceptors shares a common slow time scale which is revealed
by broad-band stimuli [337]. Noise electric field induces qualitative change in
the firing pattern of afferent neurons, which changes from quasiperiodic to
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Fig. 2.75. Example of simultaneous recording from a pair of electroreceptor affer-
ents stimulated with a computer generated exponentially correlated noise with the
correlation time of 2 ms

bursting mode. Bursting mode is characterized by two well separated time
scales: short interspike intervals inside bursts and long intervals of no firing
between bursts. This slow time scale is similar for different electroreceptors
and thus they can be synchronized by common noise stimulus. That is, com-
mon noise synchronizes onsets of bursts, while the infrastructure of bursts is
still incoherent [337]. Figure 2.75 shows an example of noise-induced burst
synchronization. A common broad-band noise stimulus was introduced to
the whole population of electroreceptors and simultaenous recordings from
a pair of electroreceptors afferents were obtained. Noise with large enough
amplitude induced transition to bursting mode in both electroreceptors with
consequent synchronization of onsets of bursts.

Small paddlefish use electrosensitivity to find and feed on individual
zooplankton, which generates electric fields having prominent periodic low-
frequency (5 to 12 Hz) components. The synchronization effects could be a
possible mechanism that the animal uses to detect and track its target prey.
However, further experiments are necessary to verify connections between the
feeding behavior of the fish and electrophysiological data.

2.5.3 Synchronization of Cardiorhythm

Cardiovascular system (CVS) of a human is one of the examples of the most
complicated nonlinear oscillatory system. CVS can be obviously treated as
self-sustained that is proven by the existence of nondamping oscillations. At
the same time, the mechanism of oscillations of CVS has not been completely
understood yet. It is known that oscillations of the heart of a human (or
animals) are not strictly periodic [338–340]. This can be a consequence of the
influence of different noise sources on CVS as in the case of self-sustained
oscillations of noisy Van der Pol oscillator that was considered in Sect. 1.3.4.
However, there are reasons to assume that aperiodicity of heart oscillations
can be principally stipulated by chaotic dynamics of CVS [338, 340, 341].
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Besides, one should also take into consideration that different subsystems
of an organism can consistently affect the CVS that significantly complicate
analysis and modeling [327].

Mutual Phase Synchronization of Cardio-Respiratory System. In
[344–346] the effect of synchronization between respiration and cardiorhythm
was revealed and studied. From the viewpoint of theory of oscillations, we
can speak about the effect of mutual synchronization between two oscillatory
subsystems of human organism, respiratory and cardiovascular. It is known
that the frequency of respiration of a relatively healthy human is, on the
average, 3–5 times less than the frequency of heart beats. Since the indicated
subsystems are naturally interconnected in a whole organism, synchronization
phenomena between respiration and heart beats are observed when their
frequencies become integer multiple.

Leaving the details of experiments described in [344–346] the following
important results should be noted. First, it was established that phase syn-
chronization of the cardio-respiratory system of a human takes place and
corresponds to complex resonances 3 : 1, 5 : 2, and 8 : 3. Second, it was
shown that the effect of phase and frequency locking occurs during finite
epochs exceeding the average period of respiration and, consequently, the
average duration of cardio-interval.

Phase Synchronization of Cardiorhythm by External Periodic Forc-
ing. To study synchronization of cardiorhythm by external stimuli the fol-
lowing experiment protocol was proposed [342,343]. A human was subjected
to a weak external signal represented by periodic light flashes on a computer
monitor and simultaneously by a weak sound coming from the computer
speaker. These stimuli were derived from a periodic sequence of rectangular
pulses with the frequency of periodic fF which was close to the average fre-
quency of heart rate of the subject 〈fH〉. The duration of pulses τ was � 10%
from the average duration of one cardio-interval (Fig. 2.76). The experimental
scheme is illustrated in Fig. 2.77.

Effects of synchronization were studied by processing numerically the elec-
trocardiogram (ECG). The ECG of the subject was registered both at rest
and in the presence of external stimulation. The duration of stimulation was
300–600 s. Data collected from EEG and from the stimulus sequence were
then analyzed by computing the instantaneous phase difference between the
stimulus and the ECG of the subject. The calculations were performed with
discrete sequences of RR-intervals of the ECG and by applying the instanta-
neous phase definition (1.295). Forty experiments were undertaken in which
16 young people without signs of any heart disease took part.

In Fig. 2.78a a representative temporal dependence of the 2π normalized
instantaneous phase difference is presented for the case of 3% detuning be-
tween the average heart rate of the subject and the external forcing. The
instantaneous phase difference remains bounded and close to zero or to an
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Fig. 2.76. (a) Typical human ECG. Ti indicates a RR interval. (b) Rectangular
pulses were converted to light flashes on a computer monitor and to sound clicks.
τ indicates the duration of the stimulation pulse

Fig. 2.77. Illustration of experimental scheme
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Fig. 2.78. Synchronization of cardiorythm by external periodic stimulus. (a) Rep-
resentative example of instantaneous phase difference between external periodic
stimulus and a RR interval sequence of the ECG of a subject for the case when
∆ = |〈fH〉 − fF|/fF = 3%. (b) The dependence of the ratio of external forcing
frequency to average heart rate fH/fF versus frequency detuning ∆, indicating
the effective phase synchronization, (c) the same graph as (a) but for the case of
aperiodic forcing

integer of 2π in the time interval ∆t � 150 s (approximately 150 cardio-
intervals), indicating effective synchronization. The region of frequency lock-
ing was determined experimentally by increasing or decreasing the frequency
of external stimulus with respect to the average frequency of heart rate of
the subject at rest. The results are shown in Fig. 2.78b and indicate that the
average frequency of heart rate appears to be locked by the external signal
within the frequency range ±5% of average heart rate without forcing. The
calculations have shown that the effective diffusion coefficient of the phase
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difference Deff had a well-pronounced minimum being close to 10−2 in the
synchronization region and grows abruptly when leaving the region.

Phase Synchronization of Cardiorhythm by External Aperiodic Sig-
nal. It is interesting to study whether the phase locking phenomenon can be
observed when a subject is forced aperiodically. In our experiments an exter-
nal signal applied to a subject was defined by the sequence of RR intervals
of the ECG of another human subject. Moreover, the human subjects were
chosen such that the average durations of RR intervals of the controlling and
controlled subjects should differ more than 5%. This means that synchroniza-
tion might occur not at the basic tone. Below we consider the results obtained
in the case when the average frequency of heart rate of the controlling ECG
was 1 Hz and the average heart rate of the controlled individual (without
forcing) was 0.85 Hz.

If the average frequencies of controlling and controlled oscillatory processes
are noticeably different, then the condition for phase synchronization obeys
the following general relation:

lim
t→∞

|mΦ1(t) − nΦ2(t)| < M = const., (2.127)

where m, n are integers, and Φ1,2(t) are instantaneous phases of the compared
oscillatory processes.

Typical experimental results are shown in Fig. 2.78c. The plot illustrates
the temporal dependence of phase difference for m = 7 and n = 6. The phase
difference is close to zero in the time interval ∆t � 50 s and does not exceed
2π in the interval ∆t � 100 s. Thus, we can speak about effective phase
synchronization with m : n = 7 : 6. Synchronization by aperiodic forcing was
verified in 19 of the 20 performed experiments. Note that from the viewpoint
of condition (2.127), the results of the previous section is treated as effective
synchronization on the basic tone when m = 1 and n = 1.

2.5.4 Summary

The presented results of the study of paddle-fish electroreceptors and of car-
diorhythm of a human demonstrate that the nonlinear dynamics methods
can be successfully applied to complicated systems that are quite difficult to
be modeled or cannot be simulated at all. For example, our investigations
convincingly show that effects of forced and mutual synchronization of car-
diorhythms do not qualitatively differ from the classical phenomena of syn-
chronization of van der Pol oscillator. This fact, particularly, proves that the
cardiovascular system of a human organism can be treated as a self-sustained
oscillatory system. This conclusion enables one to confidently use the non-
linear dynamics methods for deeper studies in experimental physiology and
other sciences.
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2.6 Controlling Chaos

2.6.1 Introduction

Until recently, chaos was associated with absolutely unpredictable and un-
controlled processes and the combination of words “chaos control” sounded
nonsensical. But over the last decade this view has fundamentally changed.
Chaotic systems are highly susceptible to controlling perturbations and in-
clude a wider range of possible regimes of oscillations as compared with sys-
tems exhibiting regular dynamics only. To significantly change the dynamics
of a nonchaotic system one needs, as a rule, to change considerably the con-
ditions of its performance. In a system which behaves chaotically, the same
results can be achieved by making small specifically defined controlling per-
turbations. In addition, a chaotic attractor has embedded densely within it
a countable set of unstable periodic orbits. This fact provides an unbounded
choice of possible regimes of system function. Small perturbations enable not
only the transitions between these states but also the duration of transient
processes to be controlled. All the advantages listed are first conditioned by
the structure and properties of chaotic attractors. Chaotic oscillations are en-
countered very often and can occur in various systems. In practice, however,
it is often desirable for chaos to be avoided and/or the system performance
to be improved or changed in some way. Thus, the ability to control chaos
is of much practical importance. This problem is one of the typical ones in
control theory formulated for chaotic systems.

Controlling chaos is often associated with the problem of suppression of
chaotic oscillations, i.e., transformation of a system into either stable periodic
motions or equilibrium states. In a wider sense, the control of chaos consists
in converting the chaotic behavior of the system to a periodic or chaotic
motion with different properties.

The problem of control of chaos was first stated in the papers of Hübler
and Lüscher [370] and Jackson [371,372], and in what has become the classical
paper of Ott, Grebogi, and Yorke (OGY) [373]. References to earlier papers
on the chaos control problem may be found in the review [374]. The effec-
tive method of controlling chaos, proposed by Ott, Grebogi, and Yorke, has
attracted the attention of many researchers. This method has been widely im-
plemented in a variety of systems [375–391] including hydrodynamical [378],
mechanical [388, 390], chemical [383], and biological and medical [382, 385]
systems.

The idea of the OGY method is that there exists an infinite number of
unstable periodic orbits embedded in a chaotic attractor and the trajectory
eventually enters the neighborhood of each orbit. Once inside, the small care-
fully chosen control perturbation is applied to a system parameter so that
the trajectory remains near the desired periodic orbit. As a result, the sys-
tem will execute the periodic motion. Thus, the problem of chaos control is
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reduced to one of stabilizing certain (desired) periodic orbits contained in the
attractor.

It is worth noting that presently proposed techniques for controlling chaos
are not restricted to the OGY method, which consists in stabilizing the al-
ready existing unstable periodic orbits. Detailed surveys of ideas and methods
of controlling chaos are given in monographs and papers [203,392–398].

The issues of chaos control in interacting systems are closely related to
the problem of controlled synchronization. By applying appropriately chosen
perturbations, certain chaotic subsets corresponding to synchronous motions
of identical oscillators can be made stable in some eigendirections while they
remain unstable in others. As a result, a controlled transition can be accom-
plished from nonsynchronous chaotic oscillations to the regime of complete
chaos synchronization [399–406].

Formulation of the problem on controlling spatio-temporal chaos is a nat-
ural extension of this research direction [407–414]. Certain advances have
been made towards the solution of this very important and complicated prob-
lem. However, most of them are concerned with the simplest models of dis-
tributed systems in the form of coupled map chains. A review of the studies
on chaos control in ensembles of coupled systems as well as in distributed
systems is given in [415]. Approaches utilized for controlling spatio-temporal
chaos are based, as a rule, on the control techniques elaborated for systems
with a few degrees of freedom. Some specific algorithms for controlling chaos
in distributed systems were proposed in [416,417]. One of the approaches con-
sists in combining identical systems which exhibit both regular and chaotic
dynamics into a chain of unidirectionally coupled elements. Such a construc-
tion enables the suppression of chaotic oscillations and thus the conversion of
the motion to a periodic behavior. Another specific technique assumes the in-
troduction of asymmetric coupling between elements in an ensemble. Chaotic
oscillations can be suppressed by changing the homogeneity of couplings, e.g.,
when the coupling strength between elements becomes inhomogeneous for
different parts of the chain.

In this section we are concerned with controlled transitions in interacting
chaotic systems. We study anti-phase synchronization in interacting chaotic
symmetric systems by using, as an example, a system of dissipatively cou-
pled cubic maps. The regularities of controlled transitions from developed
chaos to periodic oscillations are examined for two symmetrically coupled
self-sustained systems.

We also discuss the issue of synchronization of chaotic systems by means
of a parametric periodic forcing on the coupling element. Specifically, we
pay attention to the possibility of synchronizing a chain of identical chaotic
oscillators with periodic boundary conditions.

Finally, we describe a method of controlling spatio-temporal chaos in cou-
pled map lattices. Particularly, the form of spatio-temporal perturbations of
system parameters is determined to stabilize the desired unstable spatio-
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temporal states in one- and two-dimensional logistic map lattices with differ-
ent kinds of coupling.

2.6.2 Controlled Anti-Phase Synchronization of Chaos
in Coupled Cubic Maps

So-called complete chaos synchronization is one of the simplest kinds of co-
herent motions of interacting chaotic systems [183,189,239,248,250,418,419].
For coupled identical oscillatory systems the situation is possible when above
a threshold value of the coupling parameter the subsystems oscillate identi-
cally, i.e., x = y. Here, x and y are the vectors of dynamical variables of
the first and second oscillators, respectively. Thus, the regime of complete
synchronization corresponds to a chaotic attractor located in the symmetric
subspace x = y of the total phase space of coupled systems. However, there
is a wide class of chaotic DS, e.g., coupled cubic maps, Duffing oscillators
and Chua’s generators, which are symmetric both with respect to the change
x → y and the substitution x → −y. For such systems there exist two
symmetric subspaces, namely, x = y and x = −y, and we may distinguish
between two kinds of complete chaos synchronization, each corresponding to
the motion inside its own symmetric subspace. Oscillations in the first sub-
space are referred to the regime of complete in-phase synchronization, and
motions in the second one correspond to the regime of complete anti-phase
synchronization. Anti-phase chaos synchronization was described in [420] for
unidirectionally coupled systems in the form of discrete maps and ordinary
differential equations. In this paper, following Carroll and Pecora [186], the
authors consider “master–slave” synchronization of chaos. It should be noted
that the effect of anti-phase chaos synchronization has practical importance.
New possibilities appear for developing methods for secure communication,
and this aspect is discussed in detail in [420].

It is well known that stable and robust regimes of in-phase synchronization
of chaos can be realized only for certain kinds of coupling and above a par-
ticular threshold value. However, for many kinds of interactions in-phase and
anti-phase synchronous chaotic motions can occur in a system within a wide
range of coupling strengths. These motions are unstable to perturbations di-
rected transversely to the symmetric subspace. In such cases nonsynchronous
chaotic oscillations can be synchronized by using the chaos control methods.
By this means, certain chaotic sets corresponding to in-phase and anti-phase
synchronous motions can be made stable in one eigendirection while they
remain unstable in others.

We consider a system of coupled maps in the form:

xn+1 = f(xn) + γ
(

f(yn) − f(xn)
)

,

yn+1 = f(yn) + γ
(

f(xn) − f(yn)
)

, (2.128)

where xn and yn are the dynamical variables of the first and second subsys-
tems and γ is the strength of coupling. The dynamics of a partial system is
described by the map
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xn+1 = f(xn) = (a − 1)xn − ax3
n, (2.129)

where a is the control parameter of the partial system.
Without coupling (γ = 0) and for 0 < a < 2, the system (2.129) has a

stable fixed point C0 with coordinate x = 0. At a = 2 its eigenvalue µ = a−1
becomes equal to +1 and C0 undergoes the symmetry-breaking bifurcation
(the pitchfork bifurcation). As a result, point C0 loses its stability and a pair
of stable symmetric fixed points C1 and C2 is born in its neighborhood. Their
coordinates are x1 = {(a − 2)/a}1/2 and x2 = −{(a − 2)/a}1/2, respectively.
When a is further increased, points C1 and C2 undergo a cascade of period-
doubling bifurcations and at a = 3.3 two symmetric chaotic attractors arise.
At a = 3.6 they merge, forming a single chaotic attractor.

When coupling is introduced, the dynamics of (2.128) becomes compli-
cated. Note that this system is symmetric with respect to the changes of
variables x ↔ y and x ↔ −y. We shall call the symmetric subspace x = −y
the “anti-symmetric” subspace. The motions in the subspace x = y of the
total phase space of interacting systems correspond to complete in-phase syn-
chronization. The motions in the subspace x = −y correspond to complete
anti-phase synchronization. Synchronous in-phase and anti-phase oscillations
are observed in the system if the corresponding limit sets are transversely
stable with respect to the symmetric or the anti-symmetric subspace. Their
stability depends on the sign of the transverse Lyapunov exponent. If the
exponent is negative, the synchronous oscillations are transversely stable.
Otherwise, they are transversely unstable and cannot be observed in exper-
iments. The studies show that in-phase synchronous chaotic oscillations can
occur in the system of coupled maps in a certain coupling parameter range. At
the same time, anti-phase synchronous chaotic oscillations are not observed.

We try to explore in detail how anti-phase chaos synchronization can be
realized in the system. In this case it is convenient to use new variables

u =
x + y

2
, v =

x − y

2
. (2.130)

Adding and subtracting the equations in (2.128) we derive

xn+1 + yn+1

2
=

1
2
[

f(xn) + f(yn)
]

, (2.131a)

xn+1 − yn+1

2
=

1
2
[

(1 − 2γ)(f(xn) − f(yn))
]

. (2.131b)

Suppose that the phase point is in the neighborhood of the anti-symmetric
subspace:

x =
x − y

2
+ ∆x, y =

y − x

2
+ ∆y,

where ∆x and ∆y are small. In this case, we can expand f(x) and f(y) into
a Taylor series in the neighborhood of (x− y)/2 and restrict ourselves by the
linear expansion terms
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f(x) = f

(
x − y

2

)

+ f ′
(

x − y

2

)(

x − x − y

2

)

,

f(y) = −f(−y) = −f

(
x − y

2

)

− f ′
(

x − y

2

)(

−y − x − y

2

)

.

Substituting these relations into (2.131a) and (2.131b), we derive

un+1 = f ′(vn)un, (2.132a)
vn+1 = (1 − 2γ)f(vn). (2.132b)

Equation (2.132b) describes the motion inside the anti-symmetric subspace.
Unlike the in-phase synchronization, the form of synchronous oscillations
depends on the coupling γ. Stability of oscillations inside the anti-symmetric
subspace (for tangent perturbations) is determined by the tangent Lyapunov
exponent

Λ‖ = lim
N→∞

1
N

N∑

n=1

ln |(1 − 2γ)f ′(vn)|. (2.133)

Equation (2.132a) governs the dynamics in the direction normal to the anti-
symmetric subspace. It implicitly depends on the coupling parameter through
the variable v. The solution u = 0 of (2.132a) corresponds to anti-phase os-
cillations. Its stability determines the transverse stability of anti-phase oscil-
lations and is defined by the transverse Lyapunov exponent

Λ⊥ = lim
N→∞

1
N

N∑

n=1

ln |f ′(vn)|. (2.134)

From (2.133) and (2.134) it follows that both Lyapunov exponents are related
to each other:

Λ⊥ = Λ‖ − ln |1 − 2γ| . (2.135)

In our computation, the coupling strength is taken to be positive and small,
0 ≤ γ ≤ 0.5. With this, ln |1 − 2γ| ≤ 0 and, consequently,

Λ⊥ ≥ Λ‖ .

This relation shows that all oscillatory regimes whose limit sets are
arranged in the anti-symmetric subspace first become transversally unstable
and only then lose their stability in the tangent direction. Above the chaos
critical line, a chaotic limit set is formed in the anti-symmetric subspace,
and its tangent Lyapunov exponent is always larger than zero. With this,
according to (2.135) the normal Lyapunov exponent is also positive. Hence,
the anti-phase chaotic oscillations in the system of diffusively coupled maps
cannot be transversally stable, and thus the anti-phase self-synchronization
cannot be realized in such a system.
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In order to stabilize previously unstable anti-phase chaotic oscillations
we use an additional feedback controlling influence. Adding a feedback term
r
(

f(xn)+f(yn)
)

to the right-hand side of the first equation of system (2.128),
we derive

xn+1 = f(xn) + γ
(

f(yn) − f(xn)
)

+ r
(

f(xn) + f(yn)
)

,

yn+1 = f(yn) + γ
(

f(xn) − f(yn)
)

. (2.136)

The controlling perturbation is chosen so that the additional term van-
ishes when control, i.e., the anti-phase synchronization, is achieved. Con-
sequently, the controlling function does not change the form of anti-phase
oscillations but affects their stability in the transverse direction.

Having passed to the new variables u and v, we write the linearized equa-
tions:

un+1 = (1 + r)f ′(vn)un, (2.137a)
vn+1 = (1 − 2γ)f(vn) + rf ′(vn)un. (2.137b)

In the case of anti-phase oscillations we have un = 0 and (2.137b) transforms
to (2.132b). Using (2.137a) we can determine the normal Lyapunov exponent
for the system with control:

Λa
⊥contr = lim

N→∞

1
N

N∑

n=1

ln |(1 + r)f ′(vn)| (2.138)

or
Λa
⊥contr = Λ⊥ + ln |1 + r|. (2.139)

Setting r to be close to −1, we can achieve an arbitrary small value for the
normal Lyapunov exponent and thus stabilize the anti-phase oscillations.

The normal Lyapunov exponent is plotted in Fig. 2.79a as a function of
the control parameter r. The other parameter values correspond to the regime
of a nonsynchronous united chaotic attractor (for r = 0). The transition to
anti-phase synchronization can be accomplished as follows: We fix a = 3.8
and γ = 0.04 for which the nonsynchronous chaos regime is realized (see
Fig. 2.80a) and choose initial conditions from the basin of attraction of the
chaotic attractor. At every time moment we estimate the distance between
the phase point and the anti-symmetric subspace, ρ = |x + y|, and compare
it with a given threshold value δ. If ρ > δ, the phase point is far from the
anti-symmetric subspace and control is not activated. When the phase point
enters the small neighborhood of the anti-symmetric subspace (for ρ ≤ δ), the
controlling perturbation begins to act on the system. With this, if the chosen
value of r is located within the interval where Λ⊥contr < 0, the chaotic set in-
side the anti-symmetric subspace becomes transversally stable and the phase
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Fig. 2.79. (a) Normal Lyapunov exponent (solid line) as a function of the control
parameter r for a = 3.8 and γ = 0.04. Dashed line denotes the values of the tangent
Lyapunov exponent. (b) The same dependence on a larger scale with regions of
controlled synchronization

trajectory is attracted to the subspace. In this case the controlling perturba-
tion tends to zero. In our computation, we take δ = 0.01. Figure 2.80 illus-
trates system phase portraits and the corresponding time series u of the sys-
tem without control and in the presence of controlling perturbations. With-
out control, the trajectory uniformly covers a square-like region (Fig. 2.80a).
When the controlling perturbation is applied, the diagonal x = −y becomes
visible in this domain (Fig. 2.80c), and one can observe intervals of synchro-
nous behavior (Fig. 2.80d). Finally, if the parameter r is chosen such that the
normal Lyapunov exponent is negative, the system demonstrates the regime
of completely synchronous chaos (Fig. 2.80e,f).

Intervals of the parameter r where the controlled synchronization is
achieved are shown in Fig. 2.79b for different noise levels. The dark region cor-
responds to larger noise intensities. Without noise the controlled synchroniza-
tion region completely coincides with the parameter r range where the normal
Lyapunov exponent is negative. The addition of noise results in shrinking of
the controlled synchronization domain. In several works [239, 248, 250, 418]
where the mechanisms of loss of complete in-phase chaos synchronization
are studied for symmetrically coupled systems with period-doubling, it was
shown that the synchronization loss occurs according to a certain scenario.
The first step in the desynchronization of chaos is attractor bubbling, when
in the presence of arbitrary small noise the phase trajectory leaves from time
to time the small vicinity of the symmetric subspace (turbulent bursts) [242].
The attractor bubbling can be followed by the riddled basin of its attraction,
when tongues of other basins of attraction appear near the chaotic attrac-
tor [246].

It is reasonable to elucidate whether the loss of controlled anti-phase
chaos synchronization is accompanied by the bubbling phenomenon and rid-
dled basins of attraction. To answer this question we consider the evolution of
a chaotic attractor as the controlling parameter r is varied. In numeric simu-
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Fig. 2.80. Phase portraits and time series of oscillations (a,b) without control,
(c,d) with partial control and (e,f) in the regime of contr olled synchronization

lation the initial conditions are chosen near the anti-symmetric subspace and
the controlling perturbation is always activated. When −1 < r < −0.525, the
chaotic attractor located inside the anti-symmetric subspace is transversally
stable. The initially chosen perturbation decreases in time, and the phase
trajectory is attracted to the subspace. Adding weak noise does not cause
a significant change of the systems behavior. With increasing r (r > −0.525)
a bubbling attractor is observed in the system. The chaotic attractor in the
anti-symmetric subspace remains transversally stable but the duration of
transient process becomes extremely large and is very sensitive to the initial
conditions. When a small amount of noise is added to the system, the phase
portrait of the attractor is significantly modified. The attractor achieves a
finite transversal size. The phase trajectory begins to switch between the
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chaotic sets, and the time series in this case is very similar to on–off intermit-
tency [421]. Figure 2.81a–d shows phase portraits and the corresponding time
series u(t) without and in the presence of noise. In the latter case the phase
point first evolves for a long time in the neighborhood of the anti-symmetric
subspace. Then there is a short burst away from it, after which the phase tra-
jectory returns again to the neighborhood of the anti-symmetric subspace.
The mean frequency of the bursts increases as the parameter r approaches
the boundary of the synchronization region. Finally, at r = −0.406 a blowout
bifurcation occurs when the chaotic attractor inside the anti-symmetric sub-
space is no longer attractive in the normal direction and is transformed into
a chaotic saddle [241]. The synchronous oscillations cannot be observed in
the system both without and in the presence of noise. The phase portrait of
the chaotic attractor is similar to that of the bubbling attractor (Fig. 2.81e).
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Fig. 2.82. A portion (−0.005 ≤ u ≤ 0.005) of the basin of attraction (white color)
of the chaotic attractor inside the anti-symmetric subspace for a = 3.8, γ = 0.04
and r = −1.485. Trajectories starting from black points approach the attractor at
infinity

When the parameter r decreases, i.e., r < −1.472, the basin of attrac-
tion of the attractor in the anti-symmetric subspace is riddled by the holes
from the basin of attraction of the attractor at infinity. Figure 2.82 shows
a portion of the basin of attraction of the chaotic attractor located in the
anti-symmetric subspace (white color). Black points indicate the basin of at-
traction of the attractor at infinity. The anti-symmetric subspace (u = 0) is
marked by the dashed line.

2.6.3 Control and Synchronization of Chaos
in a System of Mutually Coupled Oscillators

There are a lot of methods of controlling chaos whose main idea is to convert
the chaotic behavior to a periodic time dependence by making small pertur-
bations to the system. Techniques allowing the stabilization of saddle cycles
embedded in a chaotic attractor are often complicated enough because they
are related to the search for saddle cycles and their manifolds and to the
determination of an appropriate form of controlling perturbations. For a sys-
tem of two interacting identical oscillators, which possesses several kinds of
symmetry, a procedure for stabilizing a certain subset of saddle cycles can be
significantly simplified for certain types of coupling. As an example we con-
sider the system of two coupled via capacity identical Chua’s circuits [422]:
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ẋ1,2 = α[y1,2 − x1,2 − h(x1,2)],
ẏ1,2 = x1,2 − y1,2 + z1,2 + γ[(x2,1 − x1,2) − (y2,1 − y1,2) + (z2,1 − z1,2)],
ż1,2 = −βy1,2, (2.140)

where x1,2, y1,2 and z1,2 are dynamical variables of the first and second sub-
systems; h(x1,2) = bx1,2 + 0.5(a− b)(|x1,2 + 1| − |x1,2 − 1|); α, β, a and b are
the parameters; and γ denotes the coupling coefficient.

The system (2.140) is symmetric with respect to the change of variables
X1 = (x1, y1, z1) ←→ X2 = (x2, y2, z2) and X1 = (x1, y1, z1) ←→ −X2 =
(−x2,−y2,−z2). Its behavior depending on the parameters α and γ and for
fixed a = −8/7, b = −5/7, β = 22 is described in detail in [422].

In this system a chaotic phase trajectory can be stabilized in different
symmetric subspaces of the total phase space by applying small controlling
perturbations to one of the subsystems. By this means, we can convert non-
symmetric chaotic oscillations to periodic motions or synchronize both in-
phase and anti-phase chaotic oscillations [423].

The system under study has a peculiarity which allows one to control
its chaotic behavior. When the subsystems are coupled and the coupling be-
tween them is finite, chaotic dynamics arises for essentially smaller values of
α of a partial oscillator than in the uncoupled case. The system of interacting
oscillators can already exhibit developed chaos, whereas the individual sys-
tem still oscillates periodically, i.e., it contains stable cycles. This means that
these cycles also exist in the system of mutually coupled oscillators but as
unstable ones. They are located in the symmetric subspace X1 = X2 of the
total phase space and are stable to symmetric perturbations and unstable to
transverse perturbations. If for finite coupling a chaotic attractor is created
in the system and contains the saddle symmetric cycles, the phase trajectory
can easily be stabilized in their neighborhood. In this case the problem re-
duces to the stabilization of the phase trajectory in the symmetric subspace
X1 = X2 by applying small perturbations to one of the oscillators. Since the
saddle cycle of interest is stable to symmetric perturbations, in some time the
phase trajectory will eventually come close to it and then will evolve on the
cycle as long as the control is activated. The perturbations for stabilizing the
phase trajectory in the symmetric subspace can be determined in a simpler
way than those used to stabilize it in the neighborhood of the saddle cycle.
If without coupling each of the partial systems demonstrates chaotic oscilla-
tions, stabilization of the phase trajectory in the given symmetric subspace
leads to the regime of chaos synchronization.

It should be pointed out that in systems possessing several kinds of sym-
metry the chaotic trajectory can be stabilized in different symmetric sub-
spaces, e.g., not only in X1 = X2 but also in X1 = −X2. Which kind of
motion with the indicated symmetry properties will be stabilized depends
on whether the given subspace contains saddle cycles stable to symmetric
perturbations or not.
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In order to determine conditions for stabilizing symmetric motions we
proceed as follows. First we use the new variables u = (x1 − x2)/2, v = (y1 −
y2)/2, w = (z1−z2)/2, u1 = (x1+x2)/2, v1 = (y1+y2)/2andw1 = (z1+z2)/2,
and we re-write the system (2.140) as follows:

u̇ = α[v − u − c(u)], (2.141a)
v̇ = u − v + w − 2γ[u − v + w], (2.141b)
ẇ = −βv, (2.141c)
u̇1 = α[v1 − u1 − c(u1)], (2.141d)
v̇1 = u1 − v1 + w1, (2.141e)
ẇ1 = −βv1, (2.141f)

where c(u) = [h(x1) − h(x2)]/2, c(u1) = [h(x1) + h(x2)]/2.
In this system the evolution of symmetric motions X1 = X2 (X1 =

−X2) is described by (2.141d–f) [(2.141a–c)] and their stability is determined
by (2.141a–c) [(2.141d–f)].

We intend to stabilize symmetric regimes X1 = X2. We add controlling
perturbation F (u) = ru to (2.141a) and use the Rauth–Hurwitz criterium to
define the values of r at which the equilibrium u = v = w = 0 is stable. Thus,
we can determine the stabilization conditions for the symmetric regimes of
system (2.140).

From the stability analysis it follows that the chaotic trajectory can be
stabilized in the subspace X1 = X2 when parameter r satisfies the inequality

r < α(c − 0.5) + 0.5ξ −
√

0.25(ξ − α)2 − ξ(β − α), (2.142)

ξ = 1 − 2γ, c =
{

1 + a, |x| ≤ 1,
1 + b, |x| > 1.

The character of symmetric oscillations (regular or chaotic) depends on
the dynamics of the partial system in the uncoupled case.

Adding controlling perturbation F1 = r1u1 to (2.141d) we can determine
the stability conditions for the equilibrium u1 = v1 = w1 = 0. In this case
anti-phase oscillations X1 = −X2 will be stabilized.

As already noted, the system of coupled self-sustained oscillators can pos-
sess chaotic attractors in a certain parameter range. The phase point evolving
on them enters from time to time a small neighborhood of one of the sym-
metric subspaces. If at this moment the corresponding perturbation, F or F1,
is applied to one of the subsystems, the symmetric motions will be settled in
the system.

To stabilize synchronous motions X1 = X2, controlling perturbation F =
r(x1−x2) is added to the first equation of the first oscillator (2.140). Control
is initiated when the phase point falls within a given small neighborhood
of the symmetric subspace. This means that magnitude of the controlling
perturbation is always kept small.
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a b

Fig. 2.83. Time series X1(t), controlling perturbation F (t) and projections of phase
portraitsunder controlled transitions from the chaotic behavior (upper panels) (a) to
a symmetric period-2 cycle for α = 11.4 and γ = 0.2 and (b) to synchronous chaotic
motions for α = 12.7 and γ = 0.2 (lower panels). The middle panels illustrate the
intermediate stages in the transitions

Figure 2.83 illustrates controlled transitions from the chaotic behavior to
regular and in-phase chaotic symmetric motions for different values of α and
for fixed γ = 0.2. Other parameters are: a = −8/7, b = −5/7, β = 22.

From the figure it can be seen that the controlling perturbations be-
gin to act on the subsystem when the phase trajectory enters the given ε-
neighborhood of the symmetric subspace. As a result, the phase trajectory
is attracted to the symmetric subspace and remains there. Two situations
can be realized depending on the value of α, namely, the symmetric period-
two cycle (Fig. 2.83a) and the synchronous chaotic motions corresponding to
a “double scroll” attractor (Fig. 2.83b). The chaos control procedure used
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Fig. 2.84. Regions of symmetric regimes emerging in system (2.140) after control
is achieved

enables a chaotic trajectory to stabilize in the symmetric subspace and does
not affect the dynamics of the system when it evolves in this subspace. Thus,
after control is achieved, the system will demonstrate the symmetric motion
which is attractive in the symmetric subspace. Depending on the values of α,
one can stabilize either cycles of different periodicity or chaotic attractors.
Both cases are illustrated in Fig. 2.83.

Results of the detailed study of controlled transitions are summarized in
Fig. 2.84. On the (α − γ) plane, the region is schematically drawn (above
the line l) where the system of coupled oscillators behaves chaotically in
the absence of controlling perturbations. When control is activated, different
regimes can be stabilized, namely, symmetric cycles with period 1, 2 and 4
(C0, 2C0, and 4C0), a symmetric chaotic attractor of the Rössler type (SAr),
and a chaotic “double scroll” attractor (DS) located in the symmetric sub-
space. Controlled transitions to symmetric cycles of high periodicity (8, 16)
have also been observed but within very narrow parameter ranges. These re-
gions are not shown in the figure. The dashed line marks the boundary above
which the synchronous chaotic motions occur in the system.

Similar controlled transitions can be realized in the symmetric subspace
X1 = −X2. To stabilize the chaotic trajectory in this subspace we intro-
duce controlling perturbation F1 = r1(x1 + x2) into the first equation of the
first generator (2.140). Figure 2.85 exemplifies the controlled transition from
developed chaos to the regime of symmetric anti-phase chaotic oscillations.
However, in contrast to the previous case, varying parameters α and γ we
are not able to stabilize regular motions. The application of controlling per-
turbations always results in the appearance of symmetric anti-phase chaotic
motions.

This peculiarity can be explained as follows: For the values of α and γ,
which correspond to chaotic regimes in coupled oscillators, the subspace
X1 = −X2 does not contain saddle cycles that are stable to symmetric anti-
phase perturbations. A chaotic set is already created which attracts phase
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Fig. 2.85. Controlled transition from the developed chaos (DS) to the regime of
anti-phase chaotic oscillations for α = 12.7 and γ = 0.2

trajectories from this subspace, and the system achieves this state when the
control is applied.

Bifurcational transitions of unstable motions have been studied as follows:
We choose initial conditions in the neighborhood of the subspace under study
and apply the controlling perturbation F1. By varying α and γ only those
oscillatory regimes which are stable to anti-phase perturbations can be ob-
served. This result shows that the methods for stabilizing motions in certain
subspaces of the total system phase space can be reliably used to perform the
bifurcational analysis of a certain kind of saddle motions. Such an approach
can significantly expand the possibilities of full-scale experiments.

Note that the effect of small additive noise on system (2.140) has not
qualitatively changed the obtained results.
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2.6.4 Controlled Chaos Synchronization
by Means of Periodic Parametric Perturbations

The idea of using parametric perturbations to synchronize coupled chaotic
systems is based on a well-known classical problem of the pendulum with
oscillating suspension [38,424,425]. In such a system, beginning from certain
threshold values of amplitude and frequency, the parametric perturbations
change the unstable equilibrium state into a stable one.

Consider two coupled identical nonautonomous oscillators [291,426]:

ẍ1,2 + αẋ1,2 + f(x1,2) − γ(x2,1 − x1,2) = B sin(ωt), (2.143)

where f(x) = (b − 1)x + 0.5(b − a)(|x − 1| − |x + 1|), α is the dissipation
parameter, γ denotes the coupling coefficient, and B and ω are the amplitude
and the frequency of the external force, respectively.

When γ = 0, we have the equation of a partial system. Without external
force (B = 0), system (2.143) describes a nonlinear damping oscillator with
three equilibria: P1(x1 = 0, y1 = 0), P2,3

(

x2,3 = ±(b−a)/(b−1), y2,3 = 0
)

. If
the following inequalities are satisfied, namely, 0 < a < 1, b > (1+α2/4), α >
0, then point P1 is a saddle and points P2,3 are stable foci. When the external
force is introduced, the nonlinear oscillator demonstrates chaotic oscillations
in a certain parameter range. The coupled oscillators (γ > 0) show different
forms of regular and chaotic motions, including the regime of nonsynchronous
chaotic oscillations.

In system (2.143) synchronization of chaotic oscillations can be achieved
by applying a periodic parametric perturbation to the coupling element. Sup-
pose that the coupling coefficient γ can be varied periodically in time about
a constant level γ0, i.e.,

γ = γ0 + F (t), (2.144)

where F (t) is a periodic function with period T = 2π/Ω (Ω is the frequency
of parametric perturbations). In order to demonstrate the mechanism of sta-
bilization of symmetric motions, we take the parametric perturbations in the
following form:

F (t) = εΩ2sgn
(

sin(Ωt)
)

, (2.145)

where ε is the amplitude of the parametric perturbations.
Taking into account (2.144) and (2.145) we can re-write the equations for

coupled oscillators (2.143) as follows:

ẋ1,2 = y1,2,

ẏ1,2 = − αy1,2 − f(x1,2) +
[

γ0 + εΩ2sgn
(

sin(Ωt)
)]

× (x2,1 − x1,2) + B sin(ωt). (2.146)

Using the variable changes u = (x1 − x2)/2, u1 = (x1 + x2)/2, v = (y1 −
y2)/2, v1 = (y1 + y2)/2 we arrive at the following system of equations:
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u̇ = v, (2.147a)
v̇ = −αv − ω2

0(t)u, (2.147b)
u̇1 = v1, (2.147c)
v̇1 = −αv1 − f(u1) + B sin(ωt), (2.147d)

where

ω2
0(t) = A + 2γ0 + 2εΩ2

0sgn
(

sin(Ωt)
)

, f(u1) =
(

f(x1) + f(x2)
)

/2,

A =
{

a − 1, |x| ≤ 1,
b − 1, |x| > 1.

Equations (2.147c,d) describe synchronous motions (u = 0, v = 0) of
the coupled oscillators, while (2.147a,b) determine the evolution of small
deviations from the synchronous motions or the equilibrium (u = 0, v = 0).
In order to define the stabilization conditions of symmetric motions of chaotic
oscillators, we explore how small perturbations evolve in the neighborhood
of the equilibrium (u = 0, v = 0) in the external force period T . This can be
done by using the well-known algorithms (see, e.g., [38]).

We split the period of the parametric perturbation into two intervals,
namely, [0;T/2] and [T/2;T ]. On each interval, (2.147a,b) are linear and can
be solved analytically. The perturbations at the time moments 0 and T/2
and at T/2 and T are connected through the matrices

[
u(T/2)
v(T/2)

]

= [M1]
[

u(0)
v(0)

]

,

[
u(T )
v(T )

]

= [M2]
[

u(T/2)
v(T/2)

]

.

The stability of solution (u = 0, v = 0) is defined by the eigenvalues of the
matrix [M ] = [M2][M1], which read

µ1,2 = exp(απ/Ω)(0.5S ±
√

0.25S2 − 1), (2.148)

where

S = 2(coshβ1coshβ2 + Ksinhβ1sinhβ2),

β1 = (π/Ω)
√

0.25α2 − A − 2γ0 − 2εΩ2,

β2 = (π/Ω)
√

0.25α2 − A − 2γ0 + 2εΩ2,

K =
0.25α2 − A − 2γ0

√

(0.25α2 − A − 2γ0)2 − 4ε2Ω4
.

The symmetric motions are stable if |µ1,2| < 1. In addition, this condition
must be satisfied for all values of the dynamical variables in the neighborhood
of the symmetric subspace, i.e., both for A = a − 1 and for A = b − 1.
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Fig. 2.86. Stability region of synchronous regimes on the parameter plane “ampli-
tude – frequency” of the parametric perturbations

The stability condition for symmetric motions is fulfilled inside the shaded
region on the (ε − Ω) plane, as shown in Fig. 2.86. The values of other
system parameters ((B = 1.5, α = 0.1, ω = 1, γ = = 0.1, a = 0.5, b = 2)
correspond to the case when nonsynchronous chaotic oscillations occur in the
unperturbed system (ε = 0).

Numeric experiments with the system (2.146) have verified that synchro-
nization of chaotic oscillators can be achieved through periodic perturbations
on the coupling element. Chaotic oscillations are synchronized at the same
amplitude and frequency values of the parametric perturbations as predicted
theoretically. Numeric simulation has been carried out as follows. For the
above parameter values, the initial conditions are chosen within the small
vicinity of the symmetric subspace: x1(0) = x2(0) + ∆x, y1(0) = y2(0) + ∆y.
Usually, we set ∆x = 0.02 and ∆y = 0.02. Then projections of phase portraits
and temporal dependences of oscillation regimes are plotted for different val-
ues of amplitude ε and frequency Ω. At ε = 0 the phase trajectory leaves the
neighborhood of the symmetric subspace and nonsynchronous chaotic oscil-
lations are observed (Fig. 2.87a). In the presence of parametric perturbation
the initial deviations ∆x and ∆y decrease and the phase trajectory enters
into the symmetric subspace and evolves therein (Fig. 2.87b) if the values of
ε and Ω are in the shaded region of Fig. 2.86. If the values are taken outside
this region, the initial deviations increase in time and synchronization is not
achieved.

As can be seen from Fig. 2.86, the stabilization effect of symmetric mo-
tions has a threshold character. The frequency of the parametric perturba-
tions Ω must be several times as large as the characteristic frequency of the
unperturbed motion (in the considered case it is the frequency ω = 1). The
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Fig. 2.87. Phase portraits of oscillations (a) without and (b) in the presence of
parametric perturbations

smaller the amplitude of the parametric perturbation, the larger its frequency
Ω. In order to achieve the synchronous regime in the system under study, it
is sufficient for the coupling coefficient to be slightly perturbed (ε accounts
for 20% of γ0 = 0.1) at frequency Ω, the latter exceeding the frequency ω = 1
by 15 − 20 times (Fig. 2.86).

The effect of chaos synchronization can also occur when the phase point
is placed far from the symmetric subspace at the moment when the paramet-
ric perturbation is applied. However, in this case the duration of a transient
process to the synchronous chaotic regimes substantially increases. In the per-
turbed system the time needed to reach the neighborhood of the symmetric
subspace, where the stabilization mechanism starts to work, is significantly
larger than that in the unperturbed system.

2.6.5 Stabilization of Spatio-Homogeneous Motions
by Parametric Perturbations

This section addresses the possibility of synchronizing a chain of chaotic
oscillators by applying periodic parametric perturbations to the coupling el-
ements.

Consider the chain of nonlinear identical nonautonomous oscillators [427]:

ẋm = ym, (2.149)
ẏm = −αym − f(xm) + (γ/2)(xm+1 − 2xm + xm−1) + B sin(ωt),
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with periodic boundary conditions x0 = xN , y0 = yN , xN+1 = x1, yN+1 =
y1, where m = 1, . . . , N , and N is the number of elements in the chain. An
individual element of the chain is represented by the same nonlinear nonau-
tonomous oscillator as in the previous section. The parametric perturbations
are defined by (2.144) and (2.145). Thus, for N = 2, the system (2.149) is
reduced to (2.146).

We want to find the stability conditions of synchronous motions depending
on the amplitude and the frequency of parametric perturbations. We first
linearize (2.149) in the neighborhood of spatio-homogeneous state xm = x̄,
ym = ȳ. As a result, we derive the equations for perturbations with respect
to x̄ and ȳ:

η̇(1)
m = η(2)

m , (2.150a)

η̇(2)
m = −αη(2)

m − [A + 2Γ (t)]η(1)
m + Γ (t)

[

η
(1)
m+1 + η

(1)
m−1

]

, (2.150b)

where η
(1)
m = xm − x̄, η

(2)
m = ym − ȳ, Γ (t) = (1/2)

[

γ0 + εΩ2sgn
(

sin(ωt)
)]

and

A = f ′(x̄) =
{

a − 1, |x| ≤ 1,
b − 1, |x| > 1.

Using the change of variables

ξ
(1)
j =

1
N

N∑

m=1

e−kmη(1)
m , ξ

(2)
j =

1
N

N∑

m=1

e−kmη(2)
m ,

where k = i(2πj/N), i2 = −1, j = 1, . . . , N , we can re-write (2.150a,b) as
follows:

ξ̇
(1)
j = ξ

(2)
j ,

ξ̇
(2)
j = −αξ

(2)
j − ω2

0(t, j)ξ(1)
j , (2.151)

where ω2
0(t, j) = A +

[

γ0 + εΩ2sgn
(

sin(Ωt)
)][

1 − cos(2πj/N)
]

.
Equations (2.150a,b) describe the dynamics of spatial perturbations in the

neighborhood of synchronous state xm = x̄, ym = ȳ. Spatio-homogeneous
perturbations correspond to j = N , and spatio-inhomogeneous ones to
j = 1, . . . , N − 1. The synchronous state is stable if all possible out-of-phase
perturbations decay in the chain.

Note that (2.150a,b) have the same form as (2.147a,b), which describe
the dynamics of transverse perturbations in two coupled oscillators and fully
coincide with them for N = 2 and j = 1. Thus, the results obtained in
the previous section can be used to determine the eigenvalues µ1,2, which
characterize the evolution of the jth transverse perturbation in a period of
parametric perturbation T = 2π/Ω. The eigenvalues are expressed as follows:

µ1,2(j) = e−απ/Ω
[

0.5S(j) ±
√

0.25S2(j) − 1
]

, (2.152)
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where

S(j) = 2cosh[β1(j)]cosh[β2(j)] + K(j)sinh[β1(j)]sinh[β2(j)],

β1,2(j) = (π/Ω)
√

C1(j) ∓ C2(j),

K(j) =
2C1(j)

√

C2
1 (j) − C2

2 (j)
,

C1(j) =
α2

4
− A − γ0[1 − cos(2πj/N)],

C2(j) = εΩ2[1 − cos(2πj/N)].

Synchronous motions in the chain of coupled chaotic oscillators are stable
if for all j = 1, . . . , N − 1 the condition |µ1,2(j)| < 1 is satisfied both for
A = a − 1 and for A = b − 1.

In Fig. 2.88 the straight vertical lines indicate the regions of amplitude
ε values, where the stability conditions of synchronous motions are fulfilled
in chains with different numbers of elements N and for fixed Ω = 25. The
values of other system parameters (B = 1.5, ω = 1, α = 0.1, γ0 = 0.1,
a = 0.5, b = 2) correspond to a case when regimes of spatio-temporal chaos
are observed in the absence of parametric perturbations (ε = 0). It is seen that
as the number of elements N increases, the synchronization region decreases
gradually and its lower boundary is shifted up in amplitude. When the chain
contains more than 10 oscillators, the parametric perturbation with Ω =
25 cannot suppress all transverse perturbations. The synchronous state can
be stabilized with respect to the transverse perturbation only in a certain
finite interval of amplitude ε values. The boundaries of these intervals do not
coincide. Synchronization in the chain can appear only in a case when there
exists a common (belonging to each of the intervals) domain of values of ε.
When N > 10, a portion of the intervals is not overlapped.

These theoretical results show good agreement with numerical ones. Al-
most all the amplitude values at which synchronization is observed in the
chain lie in the stability intervals plotted from theoretical data. Several points
marked by crosses in Fig. 2.88 are arranged outside these intervals. This fact
can be explained as follows: When analyzing the stability of synchronous mo-
tions we require the modulus of eigenvalues to be less than unity both for
A = a − 1 and for A = b − 1, i.e., at every point of the phase trajectory. In
fact, this requirement is overestimated. For the inhomogeneous state to be
stable, it is sufficient that the averaged magnitudes of the eigenvalues be less
than unity in modulo. Therefore, numerical calculations yield wider regions
of synchronization than those found theoretically.

Modulating periodically the coupling coefficient we can stabilize spatio-
homogeneous motions only in chains of a finite length. The maximal number
of oscillators for which synchronization can be observed depends on the fre-
quency of the parametric perturbations. For example, for Ω = 15, 25, 50 and
100 this number does not exceed 8, 10, 15 and 21, respectively. In cases when
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Fig. 2.88. Stability intervals for regimes of spatio-homogeneous chaotic oscillations
in different length chains

the length of a chain is larger, the parametric perturbations provide only a
partial stabilization. The spatio-homogeneous state to be stabilized becomes
stable with respect to only some transverse perturbations.

2.6.6 Controlling Chaos in Coupled Map Lattices

Coupled map lattices are the simplest models of spatio-distributed systems
and can demonstrate numerous typical spatio-temporal phenomena which are
observed in a variety of systems.

Spatio-temporal chaos in chains and lattices can be effectively controlled
through small spatio-distributed perturbations of a system parameter. Such
local control of chain elements, which is called “pinning control” in the liter-
ature, enables to be stabilized preliminary chosen unstable spatio-temporal
structures.

Consider the chains of coupled logistic maps with two kinds of coupling
[428,429]:

xn+1(i) = α − x2
n(i) + γ

(

2x2
n(i) − x2

n(i − 1) − x2
n(i + 1)

)

, (2.153)

xn+1(i) = α − x2
n(i) + γ

(

2xn(i) − xn(i − 1) − xn(i + 1)
)

, (2.154)

where α is the nonlinearity parameter, γ is the coupling coefficient, xn(i) is a
value of the dynamical variable in the point with discrete coordinate i and at
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discrete time moment n, and N is the number of elements in the chain (i =
1, 2, . . . , N ; n = 0, 1, 2, . . .). The systems have periodic boundary conditions
xn(1) = xn(N+1). In this case there exist parameter regions where developed
spatio-temporal chaos occurs which is preceded by complicated bifurcational
transitions between different spatio-temporal regimes [207,430–432].

In order to realize controlled transitions from the regime of spatio-
temporal chaos to different regular spatial and temporal structures, con-
trolling perturbations in an ensemble of interacting oscillators must satisfy
certain requirements. They must stabilize certain periodic motions in each
oscillator as well as synchronize these motions in certain phases throughout
the ensemble.

Suppose that for the control parameter values corresponding to the
developed spatio-temporal chaos in the chain there exist instable spatio-
homogeneous states with temporal period T = s and unstable spatio-periodic
structures with wavelength λ = 2 and temporal period T = 2, λ = 3 and
T = 2, and λ = 5 and T = 4.

The spatio-homogeneous regimes with T = s are most simple. Assume
that the ith element of the chain (2.153) enters a small neighborhood of the
point x̄k of the orbit with period s. Then the dynamical variable can be repre-
sented in the form xn+k−1(i) = x̄k + x̃n+k−1(i), xn+s(i) = x̄1 + x̃n+s(i), k =
1, . . . , s, where x̃n+k−1(i) is a small perturbation of the dynamical variable
near the point x̄k. Suppose also that the nonlinearity parameter α is able to
be controlled. Write it in the form

α = αn+k−1(i) = α0 + α̃n+k−1(i), k = 1, . . . , s, (2.155)

where α̃n+k−1(i) is a small perturbation of the parameter near its nominal
value α0.

Taking into account the suggestions made, re-write the system (2.153) as
follows:

x̄k+1 + x̃n+k(i) = α0 + α̃n+k−1(i) −
(

x̄k + x̃n+k−1(i)
)2

+γ
(

2
(

x̄k + x̃n+k−1(i)
)2 − 2x̄2

k

)

− γ
((

x2
n+k−1(i + 1) − x̄2

k

)

+
(

x2
n+k−1(i − 1) − x̄2

k

))

, (2.156)

where k = 1, . . . , s.
Suppose, the values of the neighboring (i − 1)th and (i + 1)th elements

differ from the value of fixed point x̄k by such a magnitude that the last term
in (2.156) is comparable with x̃n+k−1(i). Then, we write the equations for
the fixed point and for the evolution of the dynamical variable perturbation
of the ith element:

x̄k+1 = α0 − x̄2
k, x̄s+1 = x̄1, (2.157)
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x̃n+k(i) = α̃n+k−1(i) − 2x̄k(1 − 2γ)x̃n+k−1(i)

−γ
((

x2
n+k−1(i + 1) − x̄2

k

)

+
(

x2
n+k−1(i − 1) − x̄2

k

))

, (2.158)

where k = 1, . . . , s.
Let the parameter perturbations of the ith element depend on its variable

and on the variables of the two neighboring elements as follows:

α̃n+k−1(i) = a1x̃n+k−1(i)+a2

((

x2
n+k−1(i+1)− x̄2

k

)

+
(

x2
n+k−1(i−1)− x̄2

k

))

.

(2.159)
Substituting (2.159) into (2.158) we can obtain coefficients a1 and a2 at

which the perturbations of the dynamical variable of the ith element decrease
in time. The form of the parameter perturbation of the system (2.153) to
convert it from the regime of spatiotemporal chaos to the spatio-homogeneous
regime with temporal period T = s is as follows:

α̃n+k−1(i) = 2(1 − 2γ)x̄k

(

xn+k−1(i) − x̄k

)

+γ
((

x2
n+k−1(i+1)−x̄2

k

)

+
(

x2
n+k−1(i−1)−x̄2

k

))

, (2.160)

where k = 1, . . . , s.
To test the obtained results, numeric simulation has been carried out with

the coupled logistic map chain (2.153). Let us convert the chaotic behavior
to spatio-homogeneous with T = 1. At first, we determine from (2.157) the
value of the fixed point x̄1. Then, having set the values of the parameters
α = 1.6 and γ = 0.01, which correspond to the regime of spatiotemporal
chaos, we wait for the moment in the evolution of the system when the value
of one of the elements falls within the ε-neighborhood of the x̄1. After that,
the magnitude γ

((

x2
n(i + 1) − x̄2

1

)

+
(

x2
n(i − 1) − x̄2

1

))

is evaluated. If it
is less than the given ε, the parameter perturbation in the form (2.160) is
introduced to influence this element. When other elements enter the given
neighborhood, the perturbations begin to act on their parameters, if the
above-mentioned condition is satisfied. Gradual transition of the elements to
the chosen state is observed. At first, there appear small randomly distrib-
uted spatio-homogeneous patterns. Then, they gradually expand and, as a
result, occupy the whole chain, and a stationary spatio-homogeneous regime
is observed in the system. The process of control is consistently illustrated in
Fig. 2.89a. The parameter perturbations having been turned off, the system
naturally returns to the regime of spatiotemporal chaos.

Chaotic behavior can be converted to a spatio-homogeneous regime with
larger temporal period in a similar way. In this case the form of the parameter
perturbation becomes complicated as seen from (2.160). To convert the sys-
tem to the regime with temporal period-2 we need to use two kinds of pertur-
bations. One of them acts when the system elements enter the neighborhood
of the point x̄1, while the other perturbation acts at the next iteration when
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Fig. 2.89. Controlled transitions from the spatio-temporal chaos to the (a)–(c)
spatio-homogeneous and (d)–(f) spatio-periodic regimes

they enter the neighborhood of the point x̄2. For the regime with temporal
period-4, there are four similar expressions of the perturbations, every one
of which influences the system parameter at the determined time moment
and so on. The transition of the system from the spatiotemporal chaos to
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the spatio-homogeneous regime with temporal periods T = 2 and T = 4 is
illustrated in Fig. 2.89b,c.

It should be mentioned that small patterns of inhomogeneous behavior
remain uncontrollable when the system is converted to spatio-homogeneous
regimes with temporal periods larger than one. To eliminate these disloca-
tions we apply weak noise to them. As a result, the whole chain is converted
to the regimes of spatio-homogeneous motions.

The more complicated situations are controlled transitions of the chain
to spatio-periodic structures with λ = 2 and T = 2, λ = 3 and T = 2, and
λ = 5 and T = 4. In this case our approach is as follows: We decompose all
elements of the lattice in λ groups. The elements of every such group, located
at the distance pλ (p = 1, 2, . . .) from each other, have equal values of the
dynamical variable xn(i) = xn(i + pλ). Having written the equation (2.153)
for every group of the elements we obtain the system of equations:

xn+1(λm + 1) = α − x2
n(λm + 1) + γ

(

2x2
n(λm + 1) − x2

n(λm + 2)

−x2
n(λm)

)

,

xn+1(λm + 2) = α − x2
n(λm + 2) + γ

(

2x2
n(λm + 2) − x2

n(λm + 3)

−x2
n(λm + 1)

)

,

xn+1(λm + λ) = α − x2
n(λm + λ) + γ

(

2x2
n(λm + λ) − x2

n(λm + λ + 1)

−x2
n(λm + λ − 1)

)

, (2.161)
[

m = 0, 1, . . . , (N/λ) − 1
]

. Then, using (2.161) and applying the approach
considered for spatio-homogeneous regimes to every such group of the ele-
ments, we derive expressions for the parameter perturbations to convert the
coupled map chain (2.153) from the regime of spatio-temporal chaos to the
spatio-periodic structures mentioned above.

For example, for the controlled transition to the state with λ = 2 and
T = 2, the following form of perturbations can be utilized:

α̃n(i) = 2p1(i)(1 − 2γ)
(

xn(i) − p1(i)
)

+ γ
((

x2
n(i + 1)

−p2
2(i)
)

+
(

x2
n(i − 1) − p2

2(i)
))

,

α̃n+1(i) = 2p11(i)(1 − 2γ)
(

xn+1(i) − p11(i)
)

+ γ
((

x2
n+1(i + 1)

−p2
21(i)

)

+
(

x2
n+1(i − 1) − p2

21(i)
))

,

p1(i) =
{

x̄1,
x̄2,

p2(i) =
{

x̄2, if i = 2m + 1,
x̄1, if i = 2m + 2,

p11(i) =
{

x̄11,
x̄21,

p21(i) =
{

x̄21, if i = 2m + 1,
x̄11, if i = 2m + 2,
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where x̄1, x̄2, x̄11, x̄21 are values of the fixed points, m = 0, 1, 2, . . . , (N/2)−1.
Forms of the parameter perturbations to convert the system to the spatio-

periodic structure with λ = 3 and T = 2 and with λ = 5 and T = 4
can be obtained in a similar way. Figure 2.89d–f demonstrates the results of
numerical simulation of the controlled transition from spatio-temporal chaos
to the spatio-periodic structure with λ = 2 and T = 2 (Fig. 2.89d), λ = 3
and T = 2 (Fig. 2.89e), and λ = 5 and T = 4 (Fig. 2.89f). In principle,
the procedure of control is the same as in the case of spatio-homogeneous
states. Only the form of the parameter perturbations becomes complicated:
the form of the chosen structure is more complicated and the character of
the perturbation is more complicated. It depends on both a coordinate i
and an iteration n, when a value of the dynamical variable falls within the
neighborhood of the fixed point.

In the situations considered, the effect of control also occurs when we use
only some of the conditions on the parameter perturbations. However, in this
case the duration of the transient process grows extremely.

The approach suggested for controlling spatio-temporal chaos can be ap-
plied to chains with other kinds of coupling. For example, it is easy to obtain
expressions for the parameter α perturbations to convert system (2.154) to
different spatio-homogeneous and spatio-periodic regimes.

Numeric investigations have shown that spatio-temporal chaos in the
linear coupled logistic map chain can be converted to the same spatio-
homogeneous and spatio-periodic states considered in system (2.153).

Efficiency of controlling chaos in the coupled map chains (2.153) and
(2.154) depends on the magnitude of the nonlinearity parameter α and the
coupling coefficient γ. For example, transformation of system (2.153) to the
spatio-homogeneous regime with temporal period-1 in the interval of parame-
ter values 1.6 < α < 1.9 and 0 < γ < 0.4 during 15 000 iterations at N = 20 is
reached only in the parameter range shown in Fig. 2.90 by shading. We could
not transfer the system from the chaotic regime to the spatio-homogeneous
one during 15 000 iterations if γ was more than 0.04. However, transition of
the system to spatio-periodic regimes has been feasible outside the allocated
domain.

It is evident that the possibility to convert the system from the regime of
spatiotemporal chaos to the desired spatio-temporal structure depends on the
probability of the chain element entering the ε-neighbourhood of the corre-
sponding fixed point. From Fig. 2.91 one can see that the largest magnitudes
of the probability density are located in the domain where the controlled
transition to the spatiotemporal state with T = 1 is observed (see Fig. 2.89).

The suggested approach can be used to control spatio-temporal chaos in
lattices of higher dimension.

Consider the two-dimensional coupled logistic map lattice

xn+1(i, j) = α − x2
n(i, j) + γ

(

4x2
n(i, j) − x2

n(i − 1, j)

−x2
n(i + 1, j) − x2

n(i, j − 1) − x2
n(i, j + 1)

)

, (2.162)
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Fig. 2.90. Region on the (α − γ) plane where the transition to the spatio-
homogeneous regime with T = 1 is observed

Fig. 2.91. Dependence of the probability density of finding the element of the
chain (2.154) at the fixed point x̄1 on the parameters α and γ

with periodic boundary conditions xn(1, j) = xn(N + 1, j), xn(i, 1) =
xn(i,N + 1), where i, j = 1, 2, . . . , N , and N × N is the size of the lattice.

When the parameters α and γ are varied, complex spatio-temporal dy-
namics is observed in the lattice. Without detailed discussion, we shall only
note that there exist parameter value areas with developed spatio-temporal
chaos. It is preceded by complicated bifurcational transitions between differ-
ent spatio-temporal regimes [207,432].

To convert the lattice from the regime of spatio-temporal chaos to regu-
lar states, we determine the form of the parameter perturbations in the same
way as for the chains. As an example, we write the forms of perturbations
for controlled transition to spatio-homogeneous regimes with temporal pe-
riod T = s and to the so-called “checkerboard structure”. In this structure
neighbouring elements of the lattice oscillate out of phase with temporal pe-
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riod T = 2. The prototype of this regime in the one-dimensional lattices is a
zigzag structure which is a spatio-periodic regime with λ = 2 and T = 2.

From the analysis of the evolution equations of the dynamical variable per-
turbations in the neighborhood of the noted unstable regimes, it is seen that
to convert the lattice (2.162) to the previously unstable spatio-homogeneous
regimes with T = s we have to add the perturbation

α̃n+k−1(i, j) = 2x̄k(1 − 4γ)
(

xn+k−1(i, j) − x̄k

)

+ γ
((

x2
n+k−1(i − 1, j) − x̄2

k

)

+
(

x2
n+k−1(i + 1, j) − x̄2

k

)

+
(

x2
n+k−1(i, j − 1) − x̄2

k

)

+
(

x2
n+k−1(i, j + 1) − x̄2

k

))

, (2.163)

to the nonlinearity parameter of the system. Here, k = 1, 2, . . . , s and x̄k is
the fixed point of the orbit with T = s.

If the perturbation has the form

α̃n(i, j) = 2p1(i, j)(1 − 4γ)
(

xn(i, j) − p1(i, j)
)

+ γ
((

x2
n(i + 1, j)

−p2
2(i, j)

)

+
(

x2
n(i − 1, j) − p2

2(i, j)
)

+
(

x2
n(i, j − 1)

−p2
2(i, j)

)

+
(

x2
n(i, j + 1) − p2

2(i, j)
))

,

α̃n+1(i, j) = 2p11(i, j)(1 − 4γ)
(

xn+1(i, j) − p11(i, j)
)

+ γ
((

x2
n+1(i + 1, j)

−p2
21(i, j)

)

+
(

x2
n+1(i − 1, j) − p2

21(i, j)
)

+
(

x2
n+1(i, j − 1)

−p2
21(i, j)

)

+
(

x2
n+1(i, j + 1) − p2

21(i, j)
))

,

p1(i, j) =
{

x̄1,
x̄2,

p2(i, j) =
{

x̄2, if (i + j) is even,
x̄1, if (i + j) is odd,

p11(i, j) =
{

x̄11,
x̄21,

p21(i, j) =
{

x̄21, if (i + j) is even,
x̄11, if (i + j) is odd

(where x̄1, x̄n, x̄11, x̄12 are the fixed points), one can stabilize the checkerboard
structure.

Figures 2.92 and 2.93 show the results of numeric simulation of spatio-
temporal chaos control in the two-dimensional coupled logistic map lattice.
The lattice with 20×20 elements has been used in the experiments. We have
chosen α = 1.7 and γ = 0.01 when the regime of spatio-temporal chaos is
realized in the lattice (Figs. 2.92a and 2.93a). The procedure of control in
the lattice is similar to that in the chain. Following the value of the vari-
able of every element in the lattice, we wait for the moment when it enters
the chosen ε-neighbourhood. Then, the corresponding perturbations of the
system parameter are introduced if the conditions on the values of the near-
est neighboring elements are satisfied. The figures consistently illustrate the



262 2. Dynamical Chaos

Fig. 2.92. Controlled transition from the regime of spatio-temporal chaos (a) to
the spatio-homogeneous one with T = 1 (d) ((b) and (c) are intermediate stages)

controlled transitions from the regime of spatio-temporal chaos to the spatio-
homogeneous one with T = 1 (Fig. 2.92d) and to the checkerboard structure
(Fig. 2.93d). The transient process is the same as in the chains. At first, there
appear small randomly distributed patterns, expanding step by step and as
a result, occupying the whole lattice.

2.6.7 Summary

In this section we have described some problems on controlling chaos in cou-
pled DS.

We have considered controlled anti-phase synchronization of chaos in cou-
pled cubic maps. We have determined the stability regions of regular synchro-
nous regimes and found the relation between the normal and the tangent Lya-
punov exponents. It has been shown that diffusively coupled discrete maps
cannot demonstrate anti-phase self-synchronization of chaos. Using, as an ex-
ample, a system of coupled cubic maps, we have demonstrated the method
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Fig.2.93a–d. Controlled transition to spatio-periodic structure

of controlled anti-phase chaotic synchronization for such systems. The addi-
tion of a feedback term to the system enables anti-phase chaotic oscillations
within a bounded control parameter region to be stabilized. Outside this do-
main, the synchronization regime is destroyed. When r > −1, this process is
accompanied by the chaotic attractor bubbling and completed by a blowout
bifurcation. When r < −1, the loss of synchronization leads to the riddled
basin of its attraction.

We have also shown that the chaotic phase trajectory of a system of two
symmetrically coupled self-sustained oscillators can be stabilized by applying
small controlling perturbations to one of the oscillators. By this means, we
can realize (i) the controlled transitions from nonsynchronous chaos to the
regimes of periodic oscillations and (ii) the regime of chaos synchronization
in the form of both in-phase and anti-phase chaotic oscillations.

The results presented in this section testify that chaotic systems can be
synchronized by means of parametric periodic perturbations on the coupling
elements. It has been found that parametric perturbations with certain am-
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plitude and frequency values can stabilize spatio-homogeneous motions in
chains consisting of a finite number of identical chaotic oscillators.

We have also described the method of controlling spatio-temporal chaos in
coupled map lattices and explored the controlled transitions from the regime
of spatio-temporal chaos to the desired regular spatio-temporal structures.

2.7 Reconstruction of Dynamical Systems

2.7.1 Introduction

One of the methods for studying various processes and phenomena in real life
is the construction and exploration of their mathematical models. Knowledge
of the model equations for a system under consideration significantly extends
the possibilities for its study, allowing one to solve the problems of prediction
of the system’s temporal behavior and evolution of the functioning regime of
the system under variation of its control parameters. Theoretically, modeling
of systems contains no problems if information about the real DS is known.
For example, let the system under study be some radio-technical circuit. Usu-
ally a circuit diagram is set up, and then on the basis of physical laws the
equations are formulated describing its dynamics with a certain approxima-
tion. These equations represent a model DS.

However, when exploring real processes and phenomena, the researchers
may often encounter situations when all of the information about the internal
arrangement and operation of a system under study cannot be obtained due
to some objective reasons. Moreover, there also arise the problems of adequate
determination of system state variables, the latter being a set of time-varying
quantities. In general, the time evolution of the system’s state may correspond
to deterministic or stochastic processes, or to their superposition. This fact
should be taken into account when formulating the notion of a DS.

There are two approaches for defining a DS. The first definition is mathe-
matical, according to which a DS is an evolution operator for state variables.
In the classical theory of DS a DS is defined as a set of first-order ordinary
differential equations. For such a system, the state is unambiguously deter-
mined as a set of independent variables at a given time moment, while the
equations themselves define the temporal evolution of the state. The number
of state variables (or the order of a system of equations) defines the dimension
of a DS.

The study of real evolutionary processes in the natural sciences requires
extension and generalization of the classical notion of DS. A more general
concept of DS should include the influence of noise and provide the possibility
of using DS as evolution equations of statistical theory. From the physical
point of view, we can deal with DS even in the case when one is unable to
write the equations of a DS although the time evolution of the state of a
physical system can be observed experimentally.
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From the viewpoint of experimentalists, a DS is thought of as a really
existing system for which one can introduce the notion of a state at every
time moment and assume that there exists a continuous or discrete operator
approximately describing its evolution (in time and/or in space). With this,
noise can be understood as internal or external fluctuations or the influence
of a large number of factors weakly affecting the system’s behavior and,
therefore, ignored when specifying a state. In this case the minimal number
of independent coordinates which is sufficient to describe the system state
in the given approximation is called the dimension of the system. We shall
further call such systems “real” DS (RDS).

In practice, the situation when the time dependences of all coordinates of
the system state can be measured is encountered very rarely. It is more likely
that a limited number of the characteristic quantities can be measured. In
typical situations, only one state coordinate, a(t), is available for measure-
ments. The dependence of a quantity, describing the system state, on some
independent variable, very often represented by the time or a space coordi-
nate, is named the realization (observable) of the system. It so happens that
knowledge about the system under study can be obtained from its realiza-
tions only and any other information is unavailable. This circumstance has
led to the notion of a “black box”. Any DS is a “black box” if all available
information about it is contained in the input and output signals only. Be-
sides, the presence of the input signal is not necessary. The realization a(t)
(observable) sampled with some step ∆t is called the one-dimensional time
series a(i∆t) = ai, i = 1, . . . , N .

At present the problem of reconstruction of DS encloses a wide class of
scientific problems which are aimed at obtaining partial or possibly maximal
information about the properties of a “black box” from its experimentally
measured one-dimensional time series ai. This problem includes reconstruc-
tion (restoration) of attractors topologically equivalent to the initial system
attractor, determination of the quantitative characteristics of the dynamics
(attractor dimension, Lyapunov exponents, probability measure, etc.) and,
finally, global reconstruction of a DS under study. The global reconstruction
problem implies restoration of the model equations of DS, which with the
given accuracy reproduce the experimentally measured time series. In the
present section we shall consider some of the problems stated above, describe
the relevant reconstruction algorithms, and illustrate their applications with
several examples.

2.7.2 Reconstruction of Attractors from Time Series

Analysis of Continuous Signals. Suppose that the dependence a(t) is a
one-dimensional projection of a phase trajectory of some DS defined as a set of
ordinary differential equations (ODE). We assume that the phase trajectory
belongs to a system attractor A of dimension d. Until 1980 it was assumed
that to describe nonlinear DS in terms of phase space one should know the



266 2. Dynamical Chaos

time series of all the state coordinates. Packard et al. [433] outlined techniques
for reconstructing the phase portrait of a DS from its scalar time series ai

provided that the remaining coordinates of the state vector are specified by
the same time series but taken with some delay. Mathematical results on delay
coordinates for nonlinear systems were first published by Takens in 1981 [434].
He stated the following: Assume that a DS has a chaotic attractor A and a(t)
is its one-dimensional realization. Let A belong to a smooth M -dimensional
manifold. Then, the set of vectors x(t) in Rn

x(t) = Λn[a(t)] =
(

a(t), a(t + τ), . . . , a
(

t + (n − 1)τ
))

= (x1, x2, . . . , xn) ,

(2.164)
obtained by means of the delay method, can be viewed as an n-dimensional
reconstruction AR of the original attractor. Besides, n should satisfy the
condition of the Mañé theorem [435]:

n � 2M + 1 , (2.165)

where M is the nearest integer number to the attractor dimension d. In
accordance with Takens’ theorem, the map Λn : A → AR is smooth and
invertible on AR for almost any delay τ (if N → ∞). The number n is called
the embedding dimension.

Takens’ theorem was proved under conditions that a DS under study is
autonomous and noise-free and that a time series was measured with a high
accuracy and over an infinite time interval. Thus, this theorem cannot be
formally applied to RDS (i.e., noisy systems) and real experimental conditions
(any time series can be measured over a finite time interval and with a finite
accuracy). In spite of this fact, since its appearance, Takens’ theorem has
been used by experimentalists for restoring phase portraits and estimating
on their basis various characteristics of attractors of DS. Only in 1997 did
Stark et al. [436] prove the theorem that extends Takens’ theorem to systems
driven by an external force and to noisy systems.

Takens’ theorem has opened wide possibilities for solving the problems
of prediction of the system’s state [437–439] and calculation of the met-
ric [440,441] and dynamical [442,443] characteristics of the original attractor.
In 1987, Cremers and Hübler [444], and independently Crutchfield and Mc-
Namara [445], proposed a method for restoring the equations of a DS on its
one-dimensional realization (method of global reconstruction), which will be
discussed in detail below.

The embedding dimension n can be determined from (2.165) if the at-
tractor dimension d is known. In practice such a value of n may often be
overestimated [446], and the embedding space with a lower dimension may
be enough. There are also methods to immediately estimate the embedding
dimension, which do not require the attractor dimension and are based on
the Karhunen–Loeve theorem [447]. To estimate the attractor dimension d
the so-called correlation dimension is often used. It is defined as follows:
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Dc = lim
ε→0

lim
N→∞

lnC(ε,N)
ln ε

, (2.166)

where C(ε,N) = N−2
∑

i=j v(ε− | xi − xj |) is the correlation integral, ε is
the size of a partition element of phase space, N is the number of points used
to estimate the dimension, v is the Heaviside function, and xi = x(i∆t); x is
a phase vector, reconstructed from ai, in an n-dimensional space, and n varies
from the smallest possible value (e.g., 2) to the largest one, which is supposed
to be an upper limit. The correlation integral is actually the number of pairs
of points, separated by less than ε, and which are normalized by N2. One can
numerically estimate the correlation dimension Dc as the slope of the best
fit straight line to a numerical plot of lnC(ε,N) versus ln ε. In addition, the
dependence of Dc on the embedding dimension can also be analyzed. If the
dimension of the original attractor is finite, then as n increases, the value of
Dc saturates.

It is known that when calculating the correlation dimension some restric-
tions are imposed on the value of ε. If ε approaches the size of the attractor
εmax, the dependence ln C(ε,N) on ln ε undergoes saturation. This can be
explained as follows: When ε is larger than the attractor size, the distances
between all the points on the attractor are certainly less than ε, and start-
ing from ε = εmax we have C(ε,N) = 1 and, consequently, lnC(ε,N) = 0.
On the other hand, with decreasing ε there is a value of εmin such that for
ε < εmin the structure of the attractor is unresolved. As a consequence, the
dependence ln C(ε,N) versus ln ε becomes nonlinear again.

Despite the fact that Takens’ theorem holds for any τ , the choice of delay
may significantly affect the value of Dc. To obtain the truest information
about the metric characteristics of an attractor, numerous ways of choosing
an optimal value of τ have been proposed (the most complete review of them
is given in [448]). If τ is too small, the ith and the (i + 1)th coordinates of
a phase point are practically equal to each other. In this case, the recon-
structed attractor is situated near the main diagonal of the embedding space
(“identity line” [448]), the latter complicating its diagnostics. When a value
for τ is chosen that is too large, the coordinates become uncorrelated, and the
structure of reconstructed attractor is lost [449]. The value of τ can be cho-
sen based on the calculation of the function of mutual information [450], the
first minimum of the logarithm of the generalized correlation integral [451],
etc. In some cases τ is determined by a less rigorous way, namely, from the
geometry of the reconstructed set (to prevent an expansion of the attractor
in all directions).

Another problem in evaluating the dimension is the choice of n and τ .
Instead of fitting individual values of n and τ , it is appropriate to consider
the size of time window nτ . At the same time, one should take into account
certain fundamental limitations for estimating Dc [452], which are defined by
the formula

Dmax =
2 ln N

ln(1/r)
, r =

ε

εmax
. (2.167)
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The latter expression means that the value of Dc, derived using the algorithm
for dimension estimation, cannot be larger than Dmax for a given number
N of points. In other words, if r = 0.1 and N = 1000, then Dmax � 6,
and if N = 100 000, then Dmax � 10. As a result, certain difficulties arise
when distinguishing in a system with a sufficiently large number of degrees
of freedom a deterministic process from a purely stochastic process.

In agreement with Takens, a state vector can be specified by the method
of delays (2.164) or the method of successive differentiation:

x(t) =
(

a(t),
da(t)
dt

, . . . ,
dn−1a(t)
dtn−1

)

= (x1, x2, . . . , xn) . (2.168)

Since the values of ai are known only at discrete time moments i∆t, the
coordinates xj of vector x are defined by numerical differentiation of the
initial time series using approximate mathematical expressions. Obviously,
the accuracy of derivative computation depends on the sampling step ∆t. A
disadvantage of this method consists in its high sensitivity to noise, the latter
limiting its applicability for embedding spaces of higher dimension (at least
without pre-filtering).

A large number of methods have been developed (see the good survey
in [453]) which allow one to identify a state vector. Among them we point
out the method of integral filtration [454], assuming restoration of the phase
coordinate as follows:

x(t) =
∫ t

0

a(t1) exp
(

t − t1
β

)

dt1 . (2.169)

This method provides smoothing of the initial realization and noise filtering.
The same feature is characteristic for the method of moving averages [453]:

xi(k) =
1

2k + 1

k∑

j=−k

ai+j , (2.170)

where k is a constant parameter.

Analysis of Interspike Intervals. There are two ways of obtaining exper-
imental data. The traditional way is to fix the sampling step ∆t and store the
values of observables corresponding to the time moments i∆t. This method
has been discussed above. In the framework of the second method, one im-
poses a certain condition on the value of the observable a(t) and records
the intervals between the time moments for which the condition is fulfilled.
This method for obtaining experimental data is often used for analyzing the
systems generating “events” which represent striking changes in the physical
variables that are repeated more or less regularly. This situation typically
arises in the biological sciences and is encountered in neurobiology (neuron
firings corresponding to voltage spikes [455]), in cardiology (R-peaks of elec-
trocardiograms [456]), in membrane biology (bursting oscillations of the cell
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membrane potential [457]), etc. Systems with this type of dynamics are of-
ten analyzed by processing time intervals between the relevant events (for
example, interspike intervals (ISI) [455]).

Different models of spike generation are known. Within the framework of
integrate-and-fire (IF) models [458]– [462], a signal a(t), being a function of
the variables of a low-dimensional DS, is integrated from some moment T0.
The times Ti when spikes occur can then be defined by the equation

∫ Ti+1

Ti

a(t)dt = θ , Ii = Ti+1 − Ti , (2.171)

where θ is a firing threshold, and Ii are the IF ISI. When the specified thresh-
old θ is reached, a sharp pulse is generated (Fig. 2.94a), and the value of the
integral is reset to zero.

Threshold-crossing (TC) models [460], on the other hand, assume the
existence of a threshold level θ, which defines the equation of a secant plane
a = θ [a(t) is now a variable of a DS], and measure time intervals between
successive crossings of the given level by the signal a(t) in one direction, e.g.,
from below and to above (TC ISI) (Fig. 2.94b). From the viewpoint of DS
theory, TC ISI are the times when the phase trajectory returns to the secant
plane.

The ISI analysis is important when, for whatever reason, the full signal
a(t) cannot be recorded, and only a sequence of firing times is available in the
course of the experiment. A sensory neuron that transforms a time-varying
input signal a(t) into the resulting output spike trains may serve as a classical
example. This transformation has previously been investigated within the
framework of information theory.

A sensory neuron represents a threshold device with input and output: at
the input a signal of complex structure is received; at the output a series of
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Fig. 2.94. Models of spike generation: (a) integrate-and-fire, and (b) threshold
crossing. Black dots indicate the time moments when a threshold level is reached.
A sequence of spikes representing the output signal is given at the bottom of each
figure
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pulses is measured. Since the output pulses are identical and their shape does
not depend on an external force, the information about the properties of the
input signal can be encoded only in time intervals between neuron firings (in-
terspike intervals of the action potential trains or ISI). A question arises: How
can a characterization of the input signal be provided when processing a spike
train only? Recently this topic has become of interest from the viewpoint of
reconstruction of DS [458]– [464]. When applying a reconstruction technique
to a point process (a process in which the dynamical information is carried
by a series of event timings) one needs to answer the following question [459]:
If the point process is a manifestation of the underlying deterministic system,
can the states of this system be identified from the information provided by
the point process? When dealing with a sensory neuron subject to an exter-
nal force, this question is as follows: Can the state of the forcing system be
identified from an output ISI series?

An answer was first given by Sauer [459]. An ISI may be considered as a
new state variable allowing one to characterize the low-dimensional dynamics
at the input of a neuron from the observed spike train. Following Sauer [459],
the attractor of a chaotic system can be reconstructed using a sequence of
time intervals only, and deterministically driven IF ISI sequences can be dis-
tinguished from stochastically driven series on the basis of calculation of the
prediction error. Sauer [458] also proved the embedding theorem for IF ISI.
Following Hegger and Kantz [463] this theorem is valid for return times as
well. From [463] it also follows that the map of return times (i.e. the set of vec-
tors reconstructed from return times by means of the delay method (2.164))
is topologically equivalent to the Poincaré section of the initial system. A de-
tailed study of how different properties of a chaotic forcing are reflected in an
output IF ISI series was performed by Racicot and Longtin [462]. In [464] the
possibility was demonstrated of evaluating the largest Lyapunov exponent of
a chaotic attractor using the sequences of TC time intervals.

To reveal the interrelation between the return times and phase variables
of a DS, consider the concept of the instantaneous phase. In [197] three ways
of introducing the instantaneous phase of chaotic oscillations are described.
The first two ways are connected with the existence of a projection of a
system’s attractor on the plane (x, y), reminiscent of a smeared limit cycle.
If this projection exists then one is able to introduce the Poincaré secant so
that it will pass through an equilibrium point of the system.

According to the first definition, the phase is defined as follows:

ϕm(t) = 2π
T − Ti

Ti+1 − Ti
+ 2πi , Ti � T < Ti+1 , (2.172)

where Ti are the time moments of trajectory’s crossings of the secant surface.
Following the second definition the phase is introduced as

ϕp = arctan
(y

x

)

. (2.173)
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In the general case the two phases ϕm and ϕp do not coincide, and only
the mean frequency defined as the average of dϕp/dt coincides with 2π/I,
where I is the average return time, I = 1

n

∑n
i=1 Ii.

The third definition of an instantaneous phase is based on the analytic
signal concept and the Hilbert transform [465]. The Hilbert transform of
the real signal a(t) is also a real signal aH(t), such that the signal z(t) =
a(t) + i aH(t) = A(t) exp

(

iϕH(t)
)

is analytic, i.e.,

aH(t) =
1
π

∫ ∞

−∞

a(τ)
t − τ

dτ , (2.174)

A(t) = (aa + aHaH)1/2 , ϕH(t) = arctan
(

aH(t)
a(t)

)

. (2.175)

In (2.174) the integral is taken in the sense of the Cauchy principal value, i.e.,
it is supposed that the limit limA→−∞,B→∞

∫ B

A
f(x) dx may not exist, while

the limit limA→∞
∫ A

−A
f(x) dx exists. The modulus A(t) of the signal z(t)

represents the envelope of the original function, and argument ϕH(t) defines
the instantaneous phase.

It is known that the Hilbert transform (2.174) shifts each spectral com-
ponent of the original signal by −π/2 [466]. Function aH(t) is an inertial
transformation of a(t) and can be, in principle, used for embedding, i.e., for
reconstruction of the phase portrait in the variable space (a, aH).

In agreement with Takens’ theorem, one can reconstruct the original at-
tractor from a realization of one of the phase variables. In this case, instead
of a projection on the plane (x, y) of the original attractor, we can consider a
projection of the attractor, reconstructed from the one-dimensional realiza-
tion a(t). If the Hilbert transform aH(t) is used as the embedding method,
then the two latter definitions of phase coincide.

Note that consideration of instantaneous amplitude and phase (or fre-
quency)

ωH(t) =
dϕH(t)

dt
=

ȧHa − ȧaH

a2 + (aH)2
(2.176)

as new independent variables instead of
(

a(t), aH(t)
)

means substitution of
coordinates which are smooth everywhere except at the origin

(

a(t) = 0,
aH(t) = 0

)

. If the trajectory does not cross the origin, this substitution leads
to topological equivalence of the attractors in the variable space (a, aH) and
(ωH, A). Therefore, one could use either the instantaneous frequency ωH(t)
or the amplitude A(t) to reconstruct the original attractor.

Now we turn to experimental data measured as time intervals between
intersections by a realization a(t) of some threshold level θ. Suppose that the
plane defined as a(t) = θ can be treated as a Poincaré secant. Then we can
use the first method to introduce the instantaneous phase ϕi and frequency
ωi, i.e., we can attribute to each time moment Ti the value of
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ωi(Ti) =
2π

Ii
, (2.177)

where ωi(Ti) denotes the value of instantaneous frequency ωH(t) averaged
over time Ii. ωi(Ti) can be qualitatively treated as the points of the new co-
ordinate reconstructed from ωH(t) by means of averaging (2.170) with varying
window size.

Knowing ωi only at discrete time moments Ti and trying to know for
sure how the averaged instantaneous frequency behaves itself between the
time moments Ti, one can interpolate the values of ωi(Ti) with some smooth
curve. By all means, we would never obtain exactly the true dependence,
but we hope that the time series obtained in such a way will qualitatively
reproduce in certain case the behavior of one of the system’s coordinates and
thus allow us to reconstruct approximately the view of the original attractor
and its dynamical and geometrical properties.

As an example, consider the famous Rössler system,

dx

dt
= −(y + z) ,

dy

dt
= x + ay ,

dz

dt
= b + z(x − c) , (2.178)

in the chaotic regime a = 0.15, b = 0.2, c = 10.0. Instantaneous frequency
ωH versus t as well as its averaged value

〈ωH〉(t) =
1
Ii

∫ Ti+1

Ti

ωH(t) dt, (2.179)

calculated from the system’s coordinate x(t), are shown in Fig. 2.95a. The
qualitative correspondence between ωi(t) and 〈ωH〉(t) is demonstrated in
Fig. 2.95b. Here, we plot the dependence ωi(Ti) for the values of Ii mea-
sured as time intervals between zeroes crossings of the coordinate x(t) and
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Fig. 2.95. (a) Time dependence of instantaneous frequency ωH obtained from
the Hilbert transform (dashed line) and the result of averaging 〈ωH〉 (solid line).
(b) Black dots connected by a dashed line are the points of average instantaneous
frequency 〈ωH〉; open circles connected by a solid curve represent the result of an
interpolation ωi(t)
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Fig. 2.96. Phase portraits on the planes (a) (x, xH), where x is the first coordi-
nate of the system (2.178) and xH is Hilbert transform of x; (b) (A, ωH), where
A and ωH are the instantaneous amplitude and frequency, respectively; and (c)
(

ωi(t), ωi(t + τ)
)

, where ωi(t) is a time dependence obtained by interpolation

by using interpolation technique we yield the smooth curve through all this
points. Thus, a system’s coordinate is reconstructed from TC ISI. The re-
constructed phase portraits in coordinates

(

a(t), aH(t)
)

,
(

A(t), ωH(t)
)

, and
(

ωi(t), ωi(t + τ)
)

are shown in Fig. 2.96.
The box-counting algorithm [440] was used to compute the fractal di-

mension of the attractors reconstructed from the x-coordinate of the Rössler
system and from the signals ωi(t). The plots of log M versus log ε, where M
is the number of nonempty boxes and ε is the size of a box, are given in
Fig. 2.97a. It is seen that the linear segments of these two graphs are par-
allel to each other, and thus the dimensions of the corresponding attractors
coincide.

It has been also studied how the choice of the threshold level θ (or the
choice of the secant plane) influences the possibility of recovering the dy-
namical invariants from the TC ISI series. These investigations have been
carried out in terms of an estimation of the largest Lyapunov characteristic
exponent (LCE) λ1. Consider the equations of the Rössler system (2.178)
and introduce a secant plane x = θ. The largest LCE computed from TC
ISI at different values of the threshold level demonstrates a dependence on
θ as illustrated in Fig. 2.97b. The values λ1 are estimated as follows [464]:
First, the transition from a set of time intervals Ii = Ti+1 − Ti to the points
ω(Ti) = 2π/Ii appropriate to the values of the instantaneous (angular) fre-
quency averaged over a return time is carried out. Here, Ti are the moments
of TC. Second, the series of points ω(Ti) is interpolated by a smooth function
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Fig. 2.97. (a) Plot for estimation of the Hausdorff dimension. The solid line is
obtained from the x-coordinate of system (2.178), the dashed line is obtained from
the zero-crossing ISI. (b) The largest LCE computed from TC ISI versus threshold
level Θ

(cubic spline) ωint(t) to transform it into a signal with constant time step for
attractor reconstruction. Third, λ1 is computed from ωint(t) using the algo-
rithm suggested by Wolf et al. [442] with the replacement procedures after a
fixed time I = 1

N

∑N
i=1 Ii. The dynamical properties of the chaotic attractor

can be estimated with good accuracy if |θ| � 13 (the error of estimation of
λ1 does not exceed 12% and may be less if the length of the time series is
increased). The values of λ1(θ) in Fig. 2.97b has been obtained for a series
of about 2000 return times. We conclude that the sequence of time intervals
reflects the dynamical properties of the chaotic attractor even in the case
when some of the loops of the phase trajectory fail to cross the secant plane.
We conclude that the value λ1 is insensitive to the choice of a threshold level,
provided that I does not exceed some temporal scale. Of course, when speak-
ing about the sensitivity of dynamical characteristics, we understand that the
largest LCE can be estimated only with some accuracy, taking into account
both the finite amount of data and the dependence of the applied algorithm
on the parameters of the numerical computations.

The above conclusion is not trivial. We see from Fig. 2.98 that shifting
of the secant plane results in essential changes of the structure of the return
times map. Even though for the correct choice of the secant (when all the
phase trajectories cross it), the return times map is similar to some extent
to the Poincaré map (Fig. 2.98a,b), shifting of the threshold level produces a
very different phase portrait (Fig. 2.98c).

The detailed explanation of these results can be found in [464]. If the value
of the average time interval I exceeds some characteristic scale (a measure
of predictability [437] or the Lyapunov time), it is obviously impossible to
estimate the largest LCE.
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Fig. 2.98. (a) Poincaré map of the Rössler system; (b) and (c) return times maps
appropriate to Θ = 0 and 11, respectively

2.7.3 Global Reconstruction of DS

History and Statement of the Problem. The problem of recovering a
DS from its one-dimensional realization refers to the problems of synthesis,
or inverse problems. Unlike the problem of analysis, the task of synthesis is
ambiguous, since there is an infinite number of DS of different types and
complexity which can reproduce the signal under study with the given accu-
racy. The goal of the researcher who searches for an appropriate dynamical
description for the real system under consideration consists in obtaining an
approximate form of a DS producing the quantitative characteristics of the
signals under study. At present only common recommendations have been
developed which could help the researchers to choose one of various possible
models (when the original system is not too complicated). However, there is
no unified approach for solving the stated problem in the general case.

The authors of pioneering works [444, 445] proposed a method for global
reconstruction of the equations of a DS from its one-dimensional realization.
The suggested method that will be described in detail below is as follows:
Assume that a DS is represented by a “black box” and we can measure its one-
dimensional realization. First the measured time series is used to restore the
phase portrait topologically equivalent to the initial system attractor [434].
In the second stage the form of equations describing the initial system is
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stated a priori and the unknown coefficients of the set are fitted by means of
the least-squares method.

Later, the idea of global reconstruction was developed and improved in
other papers. For example, for reconstruction of dynamical equations from
experimental time series with a broadband continuous spectrum, the authors
of the work [439] used additional information about the dynamical and statis-
tical properties of the original system, which is contained in the time series.
In particular, they took into account Lyapunov exponents and the probabil-
ity distribution density calculated from the initial time series. However, the
resulting evolution equations had an awkward form and were inconvenient to
use. The paper of Breeden and Hübler [467] is devoted to the use of hidden
variables to write model equations. A method of synchronization between
the model and initial data was described in [468]. In [469], Bünner et al.
proposed an algorithm for the restoration of a scalar differential equation for
time-delay systems. The use of the methods described above was illustrated
using simple low-dimensional model systems when the result of global recon-
struction is known a priori. Nevertheless, compared with the method [444] no
significant advantages were provided by any improved (and, as a rule, algo-
rithmically very complicated) technique. The methods described are tested
on well-studied low-dimensional model systems with simple enough right-
hand sides to the equations, which can be easily reconstructed also by means
of simpler methods [444]. Therefore, all arguments in favor of new complex
algorithms appear to have little force until their workability is demonstrated
with complex time series generated by real “black boxes”. Unfortunately,
practically no publications are available devoted to the application of the
described procedures to signals from real systems whose evolution operator
is unknown. Analyzing the works [470–475] one can state that the simplest
originally proposed method subjected to minor modifications proves to be
the most effective way for restoring DS from real experimental data. A far
more complete presentation of methods of reconstruction of system dynamics
can be found in [476].

Description of the Reconstruction Algorithm. The aim of this algo-
rithm is to construct the mathematical model of a system under study which
is assumed to be dynamical. Taking into account that the available time se-
ries is discrete, one is able to specify the sought-after DS in the form of an
n-dimensional discrete map:

x1,i+1 = F1(x1,i, x2,i, . . . , xn,i)
. . . . . . (2.180)

xn,i+1 = Fn(x1,i, x2,i, . . . , xn,i) ,

where xj,i are the coordinates of a state vector at the time moments i∆t and
Fj are the nonlinear functions.

If the embedding dimension is found and the phase portrait of the original
system is restored, then the main problem at this stage is to fit the functions
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Fj into the right-hand sides of the sought-after equations. The general form of
nonlinear functions Fj is stated a priori. The situations are possible when the
form of the evolution operator can be figured out using additional knowledge
of the system, but they are encountered rarely. The functions Fj are more
frequently searched for by considering all available and known methods for
their representation. Usually Fj are presented in the form of a superposition
of some basis functions Xk:

Fj(x1,i, x2,i, . . . , xn,i) =
L∑

k=1

Ck,jXk(x1,i, x2,i, . . . , xn,i) . (2.181)

The most popular way to fit Fj is to represent the sought-after functions
as the polynomials of νth order:

Fj(xi) =
ν∑

l1,l2,...,ln=0

Cj,l1,l2,...,ln

n∏

k=1

xlk
k,i ,

n∑

k=1

lk ≤ ν , (2.182)

where Cj,l1,l2,...,ln are the unknown coefficients to be found. This method is
based on the Taylor theorem about the expansion of functions into a poly-
nomial series in the vicinity of a certain point x0. The Taylor series can be
restricted to a certain finite number of the expansion terms provided that
the function values have a relatively small finite deviation from the given
point (this condition is realized in self-sustained systems when a trajectory
returns into the neighborhood of any attractor point, and the attractor itself
is located in a bounded region of the phase space). Varying the number of the
expansion terms left, one can change the error of function approximation in
the neighborhood of the given point. The functions can be approximated by
the Legendre polynomials [444] as well as by a more complicated procedure
described in [472]. To define Fj we shall use the expression (2.182).

The system of equations (2.180) can be written for any i. To find the
coefficients of each function Fj , one needs to solve the system of N ordinary
differential equations,

xj,i+1 =
ν∑

l1,l2,...,ln=0

Cj,l1,l2,...,ln

n∏

k=1

xlk
k,i , i = 1, . . . , N, (2.183)

with unknown Cj,l1,...,ln , where N is the number of points of a scalar time
series, used for approximation of the right-hand sides and ν is the polynomial
order.

For given n and ν, in general the number of coefficients K of the polyno-
mials (2.182) can be estimated from the formula K = (n + ν)!/(n!ν!). As a
rule, N � K. Hence to determine the evolution operator the system of equa-
tions (2.183) is solved by means of the least-squares method. The resulting
mathematical model looks awkward enough, but its solution can reproduce
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the signal with high accuracy provided that the general form of the nonlinear
functions is correctly chosen.

In a similar manner, DS can be reconstructed not only in the form of
discrete maps but also as systems of first-order ODE:

dx1

dt
= F1(x1, x2, . . . , xn)

. . . . . . (2.184)
dxn

dt
= Fn(x1, x2, . . . , xn) .

The functions on the right-hand sides have the same meaning as before. The
implementation of the reconstruction algorithm at its first stage means that
all xi are known. Consequently, their derivatives can be found numerically.
Hence the set (2.184) really represents a system of algebraic equations, the
latter being linear with respect to unknown coefficients.

If the state vector is specified by the successive differentiation method, the
restored mathematical model can have a simpler form, since the interrelation
between the coordinates is uniquely determined by the equalities (2.168):

dx1

dt
= x2 ,

dx2

dt
= x3 , . . . ,

dxn

dt
= f(x1, x2, . . . , xn) . (2.185)

Therefore, the algorithm described above allows one to assign the math-
ematical model to a scalar time series. Figures 2.99 and 2.100 exemplify the
restoration of the dynamical description for two test model systems, namely,
the Van der Pol oscillator,

dx

dt
= y ,

dy

dt
= a (1 − bx2) y − x , (2.186)

and the Rössler system (2.178) in the chaotic regime.
The detailed study of different test models by means of the global recon-

struction technique can be found, for example, in [472].

Peculiarities and Disadvantages of the Reconstruction Algorithm.
The main problem which can arise when applying the algorithm of global re-
construction in practice is the choice of nonlinear functions on the right-hand
sides of model equations. If the method of successive differentiation is used for
defining the coordinates of the state vector, the mathematical model will con-
tain only one unknown function. As has been already indicated, the simplest
method for fitting the nonlinearity consists in a polynomial approximation.

With this, the legitimacy of the statement above may be questioned. As
an example, consider the famous Rössler model. As was shown in [472], only
in the case when the second coordinate alone is given, the Rössler system
(2.178) can be reduced to the form (2.185) by substituting the variables,
where f is a polynomial defined by (2.182). If another coordinate is chosen
as the initial one, then f represents a ratio of polynomials P/Q.
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Fig. 2.99. (a) Initial realization and (b) projection of the phase portrait of system
(2.186) for a = 1.0, b = 0.3; (c) the realization and (d) the projection of the
attractor of the corresponding DS (n = 2) reconstructed from the first coordinate
with ∆t = 0.01 by the method of delays with ν = 3
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Fig. 2.100. (a) Initial realization and (b) projection of the phase portrait of the
Rössler system in the chaotic regime; (c) the realization and (d) the projection of the
attractor of the corresponding DS (n = 4) reconstructed from the first coordinate
with ∆t = 0.01 by the method of differentiation with ν = 3
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In [477] it is suggested that a mathematical model be searched in the
following form:

gj
dxj

dt
= Fj(x1, x2, . . . , xn) . (2.187)

The system (2.187) is derived from (2.184) by multiplying the latter by gj =
gj(x), i.e., by one of the functions 1, xj , x

2
j , xjxk, j, k = 1, 2, . . . , n.

In some situations such an approach may appear to be very useful. How-
ever, when dealing with experimental time series generated by a DS with
unknown evolution operator, the problem of fitting nonlinearities remains
extremely complicated.

Another problem is associated with the necessity of operating with noisy
data when processing experimental time series. On the one hand, the method
of successive differentiation is more preferable for restoring a phase trajectory,
since the resulting model contains in the general case n times less coefficients
on different nonlinearities as the one reconstructed by the method of de-
lays. But differentiation inevitably causes a noisy component in high-order
derivatives to increase. Without pre-filtering the time dependence even of
the second derivative may appear to be a noisy process. Besides, the tradi-
tionally used embedding methods (2.164) and (2.168) demonstrate evident
disadvantages when analyzing highly inhomogeneous realizations, i.e., the
signals containing segments with quick motion followed by the segments with
slow motion. Such time series are typical for systems with “pauses” and may
often be encountered in biology and medicine.

Let us remark again that an arbitrary choice of nonlinearities does not
always allow one to perform a good reconstruction. In particular, in [472]
three typical cases were outlined. They are as follows:

(i) Restored equations give a local description of initial signals. With this,
the reconstructed model is unstable in the sense that the solution of the
obtained equations reproduces the signal under study over a short time
interval only.

(ii) There exists a bad local predictability of the phase trajectory. Never-
theless, a visual similarity of the phase portraits can be observed. The
solution of restored equations is stable according to Poisson. In this case
the attractor of the reconstructed model has metric characteristics close
to those of the initial attractor.

(iii) There exists a good local predictability of the phase trajectory from any
of its points over the times exceeding a characteristic correlation time.
The phase portrait of the reconstructed model is identical to the initial
one, and the system itself is stable according to Poisson.

Recently, the global reconstruction technique has been used not only for
obtaining mathematical models but also for classifying dynamical regimes
[478–480]. The dynamical classification method supposes a transition from
the phase space of the initial DS to a space of coefficients of restored equa-
tions. A feature of this approach is that the reconstruction procedure applied
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to experimental data does not require one to find a model, which is capable
of reproducing the initial signal. Coefficients in the obtained equations rep-
resent quantitative characteristics which carry information about linear and
nonlinear correlations in the initial signal. After approximating coefficients
on realization segments, the researcher obtains a set of points in a coefficient
space. It is shown that nonoverlapping regions in this space correspond to dif-
ferent classes of DS. Thus, the technique described can be effectively utilized
for classification of DS.

2.7.4 Reconstruction from Biological Data

Reconstruction from Inhomogeneous Realizations. As has been men-
tioned in Sect. 2.4.2, there are different methods for restoration of the phase
portraits of DS. The most popular are the method of delays (2.164) and the
method of successive differentiation (2.168).

In this section we consider different methods for phase portrait restora-
tion from the viewpoint of convenience of their application for further global
reconstruction. The method of successive differentiation may be preferable
as it leads to the simplest form (2.185) of the sought-after system. But the
evident disadvantage of this method is that a noisy component of the initial
realization is enhanced with each subsequent step of differentiation. One more
negative peculiarity of this method is revealed when one deals with highly
inhomogeneous realizations. The inhomogeneity consists in alternating seg-
ments with “quick” and “slow” motions. A typical example is the human
electrocardiogram (ECG) shown in Fig. 2.101. Differentiation of a “quick”
segment (between P and T waves) gives a quicker time dependence while
differentiation of a “pause” (between T and the next P waves) gives a slower
function of time. Thus, each subsequent phase coordinate restored by the
method (2.168) becomes more and more inhomogeneous. As a consequence,
the reconstructed phase portrait will be also inhomogeneous. This leads to
the fact that the region with slow motion will contribute significantly to the
approximation of the coefficients of a model, while the other regions of the
phase space, although often being more informative, will not greatly influence
the problem. Thus, to effectively apply the least-squares method the initial
phase portrait should be sufficiently homogeneous.

Figure 2.102 shows phase portraits constructed from an ECG (Fig. 2.101)
by using the methods of delays and differentiation. The use of the successive
differentiation method leads to a smooth but sharply inhomogeneous phase
portrait (Fig. 2.102a). When applying the method of delays we can choose
the particular value of time lag τ for which the restored phase portrait is
smooth (Fig. 2.102b), but in this case it is also inhomogeneous. To obtain a
smooth attractor we have to take small values of τ , namely, much less than
the duration of the “pause”. Resolution of the problem of inhomogeneity by
means of a special choice of delay will lead to a new problem. As seen from
Fig. 2.102c, the obtained phase portrait becomes nonsmooth at some points.
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Fig. 2.101. Typical human ECG (after noise filtration)
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Fig. 2.102. Phase portraits restored on an ECG (a) by means of successive differ-
entiation; (b) by the method of delays with τ being much less than the duration of
the “pause”; and (c) by the method of delays with τ being close to the duration of
the “pause”

The latter means that to approximate the flow at these points one needs a
quickly varying function on the right-hand sides of the sought-after equations
which when expanded into a Taylor series does not permit restriction to a
small number of expansion terms.

In [481] a simple method was described and applied allowing one to restore
the most homogeneous phase portrait possible and to derive a simple form
of the reconstructed differential equations (2.185). This method is considered
to be a limiting case of the integral filtration technique (2.169).

The increase in effectiveness of the method for restoring a homogeneous
phase portrait is achieved by increasing the values of β. β = ∞ is the limiting
case, when the reconstructed coordinate is an integral of the initial realization.
Passing to the limit of β has an important advantage: a significant decrease
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in the calculations necessary to restore coordinate x. This is explained by the
fact that the exponential multiplier in the integrand of (2.169) disappears.

Consider a typical experimental realization a(t) which can often be qual-
itatively presented as a sum of four terms:

a(t) = O(t) + S(t) + ξ(t) + C , (2.188)

where O(t) is a stationary component of the self-sustained process with zero
average, S(t) is the “floating” of the average level (usually low frequency)
which may be caused by nonstationarity, ξ(t) is the additive noise, and C is
a constant shift of the whole realization.

After pre-processing of the experimental realization, which includes filter-
ing of the low frequency spectrum range to avoid a trend, noise reduction,
and transformation of the initial signal to zero average, the signal a(t) will
consist of an oscillatory component only. Consider the integral of the whole
realization a(t),

a1(t) =
∫ t

0

a(t1)dt1 =
∫ t

0

O(t1)dt1, (2.189)

as one of the coordinates of the state vector. Since integration of “slow”
segments gives quickly varying time dependences and vice versa, the phase
portraits restored as follows will be more homogeneous than when using only
the method of delays (2.164) or differentiation (2.168):

x(t) =
{∫ t

0

a(t1)dt1, a(t),
da(t)
dt

, . . . ,
dn−2a(t)
dtn−2

}

(2.190)

or

x(t) =
{∫ t

0

a(t1)dt1, a(t), a(t + τ), . . . , a(t + (n − 2)τ)
}

. (2.191)

Moreover, as one uses the embedding (2.190), the reconstructed ODE have
the simplest form (2.185).

Examples of Reconstruction from Medical and Biological Data. The
time series measured from real systems of medical and biological origin are
often inhomogeneous. One of the simplest examples is the time dependence
of a coordinate of a point on the surface of an isolated frog’s heart, which
is shown in Fig. 2.103a. This realization has a rather simple shape but is
inhomogeneous at the same time because of the existence of “pauses” in it.

We apply the integration embedding method (2.190) to this time series
to restore the phase portrait of the system in four-dimensional phase space
(Fig. 2.103b). The fitted DS of the form (2.185) modeling the given regime
possesses an attractor identical to the initial one (Fig. 2.103d), whose solution
is shown in Fig. 2.103c.
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Fig. 2.103. (a) Initial realization of mechanical oscillations of a point on the surface
of an isolated frog’s heart; (b) projection of phase portrait constructed from this
realization by the method (2.190); (c) the realization and (d) projection of the
attractor of the corresponding reconstructed DS

Now we move to a more complicated experimental signal, namely, the
ECG of a human heart. Since a typical ECG is inhomogeneous, we use the
embedding method (2.190) or (2.191) instead of (2.164) or (2.168). Taking
into account the fractal dimension estimates for the ECG attractor made
in [482], the embedding dimension should be not less than at least 5. When
restoring the phase portrait by means of the methods (2.164) or (2.191), the
increase in embedding dimension leads to a more complicated form of model
equations. The use of (2.168) or (2.190) even for filtered data increases the
errors of computation of high-order derivatives, which leads to additional
problems when fitting the right-hand sides of a model.

One of the peculiarities of an ECG of a healthy human heart is the fact
that its characteristic period, i.e., the repeating sequence P,Q,R, S, T peaks
– “pause” (see Fig. 2.101), contains all the information about the structure of
QRS complex, the P and T waves being enough to diagnose certain patholog-
ical changes. Therefore, we can first formulate a simplified problem, namely,
to model a DS whose solution will be a periodic signal reproducing with high
accuracy a single beat of ECG. Consider two different electrocardiograms
from which noise was pre-filtered (Figs. 2.104a and 2.105a). For each of them
a single beat was arbitrarily chosen and repeated many times to obtain a
periodic time series of sufficient length. The interval between two successive
R waves corresponds to the initial period of each realization.
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Unlike the method (2.190), for these realizations we successively compute
two integrals. Let a(t) be the initial signal. We compute

b(t) =
∫ t

0

a(t1)dt1 , c(t) =
∫ t

0

b(t1)dt1 . (2.192)

c(t) may be considered to be the initial realization. By means of successive
differentiations, the remaining coordinates of the phase vector were restored,
the latter finally having the following form:

x(t) =
{

c(t) ,
dc(t)
dt

,
d2c(t)
dt2

, . . . ,
dn−1c(t)
dtn−1

}

. (2.193)

It is obvious that d2c(t)/dt2 is the initial signal a(t).
The phase portrait projections restored in the described way on the chosen

beats of two different ECGs are shown in Figs. 2.104b and 2.105b. This
method allows one to obtain more homogeneous phase portraits as compared
to those ones restored by traditional methods. On this basis the method of
least squares can be considered to be the most effective way for fitting the
coefficients of the right-hand sides of a model. For the two cases being studied
we reconstruct two models (3- and 4-dimensional) in the form of the systems
of ODE (2.185), whose solutions are given in Figs. 2.104c,d and 2.105c,d.
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Fig. 2.104. Results of reconstruction of a DS from an ECG. (a) Initial periodic re-
alization obtained by “closing” a single beat of a real ECG of the first type; (b) pro-
jection of phase portrait restored on this realization by the method (2.193); (c) the
realization and (d) projection of the attractor of the reconstructed 3-dimensional
model
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Fig. 2.105. Results of reconstruction of a DS from an ECG. (a) Initial periodic real-
ization obtained by “closing” a single beat of a real ECG of the second type; (b) pro-
jection of phase portrait restored on this realization by the method (2.193); (c) the
realization and (d) projection of the attractor of the reconstructed 4-dimensional
model

The proposed method (the use of two integrals of the signal which is ob-
tained by repeating a single beat of ECG) allows one to reconstruct robust
mathematical models in the form of systems of discrete maps, to model dif-
ferent pathologies, etc. The presented results demonstrate the possibility of
restoration of a sufficiently homogeneous attractor from inhomogeneous data,
testifying the advantage of the used method.

2.7.5 Global Reconstruction in Application
to Confidential Communication

Let us consider a particular case of the global reconstruction of DS consisting
in the presence of a priori information about the DS producing the signal
under study. The mathematical model of the DS generating the signal under
observation can be written as follows:

dx

dt
= F (x,µ), x ∈ Rn, µ ∈ Rm, (2.194)

where µ = (µ1, . . . ,µm) is the control parameter vector.
Suppose that the explicit form of nonlinear vector function F (x,µ) is

known a priori. In this case the problem of global reconstruction consists in
determination of unknown values of parameters µi. Such a supposition may
be treated as a particular case of the problem under study, but it may be effec-
tively applied in a series of practical tasks. Thus, the method of reconstruction
may be successfully used for multichannel confidential communication.
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Recently, several methods for secure communication were suggested based
on exploiting broadband chaotic oscillations as a carrying (or masking) sig-
nal [228–231,386,483–488]. The authors of works on this topic used the phe-
nomenon of chaotic systems synchronization to extract the information signal
from the chaotic one [186]. The methods based on the effect of synchroniza-
tion suppose the existence of identical chaotic oscillators in the transmitter
and the receiver. If the corresponding parameters of both oscillators differ by
more than 2%, then, as indicated in [488], the algorithms proposed become
ineffective.

Consider an alternative method for multichannel confidential communi-
cation based on the technique of global reconstruction. The first attempts
to use the method for reconstruction in communication were made in [489].
However, that work demonstrated the possibility of extracting only a single
additive influence on the system.

The method proposed in [490] is more universal and at the same time
rather simple. By analogy with Parlitz and co-workers [484,485], information
signals perform modulation of parameters of a DS. The difference consists in
the method for demodulation. Instead of the auto-synchronization phenom-
enon, in [490] the technique of reconstruction is used.

Let us take a dynamical chaos oscillator G1 as a transmitter whose math-
ematical model has the form (2.194). Let us restrict ourselves to the class of
DS whose equations may be transformed to the form (2.185) by means of vari-
able substitution. Many well-known models such as that of Lorenz, Rössler
systems, Chua’s circuit, etc. (see, e.g., [472]), satisfy this requirement. We
consider relatively slow parameter µi modulation, the latter allowing us to
transmit m messages simultaneously:

µ∗
i (t) = µ0

i + µi(t), i = 1, . . . , m. (2.195)

In (2.195) µ0
i are the constant values of control parameters of system (2.185)

and µi(t) are the information signals. The condition of slow modulation may
be written as follows: ∣

∣
∣
∣

dµi

dt

∣
∣
∣
∣

�
∣
∣
∣
∣

dxj

dt

∣
∣
∣
∣
, (2.196)

for any i and j.
Taking into account (2.195), (2.194) have the form

dx

dt
= F

(

x,µ∗(t)
)

. (2.197)

To realize the message’s demodulation from the carrier, which is a one-
dimensional realization x1(t) of the system (2.197), the recipient of the in-
formation has to know the form of the nonlinear vector function F (x, µ).
The condition (2.196) allows one to choose the temporal window t∗, inside
which the values of µ∗

i are practically constant. The latter means that nonau-
tonomous properties of system (2.197) may not be taken into account during
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the time interval t∗. Shifting the temporal window along the carrier signal
x1(t), the recipient of the information who knows the mathematical model of
oscillator G1 may extract the modulation signals µi(t) in real time.

In practice, determination of the current values of µi(t) is realized as
follows: The signal x1(t) of oscillator (2.197) observed during t∗ is differenti-
ated n times to compute the temporal dependences xj(t), j = 2, . . . , n, and
the left-hand sides of system (2.185). Since a scalar time series of numbers
is observed x1,i = x1(i∆t), i = 1, . . . , N∗, N∗ = t∗/∆t, all the derivatives
are computed at discrete time moments i∆t using approximate formulas for
numerical differentiation. As a result, one should solve

dxn,i

dt
= f(xi,µ

∗) (2.198)

to define the parameters µ∗
i . This is an algebraic equation since the value

of dxn,i/dt is computed by means of n-times differentiation of the initial
signal. By writing (2.198) for i = 1, . . . , N∗ and solving such a system of
N∗ algebraic equations with m unknown variables by means of least squares
method (N∗ � m), the recipient of the information obtains the current values
of µ∗

i .
The method discussed above is also valid for discrete DS. An advantage of

working with discrete maps is that one may not take into account the errors
of numerical differentiation. By analogy with continuous systems one must
choose a mathematical model which can be transformed into the following
form:

xn+1,1 = xn,2, xn+1,2 = xn,3, . . . , xn+1,n = f(xn,µ) . (2.199)

Consider the equations of the well-known Hénon map

xn+1 = 1 − ax2
n + yn , yn+1 = bxn . (2.200)

Bearing in mind that the sequence of numbers yi, i = 1, . . . , N∗, is available
for the researcher, rewrite (2.200) as follows:

yn+1 = zn , zn+1 = b − az2
n/b + byn . (2.201)

In fact, it is enough to know the values yn, yn+1, yn+2 and yn+3 to deter-
mine the unknown parameters a and b. A priori information about the general
form of the mathematical model allows one to solve the global reconstruction
problem for a very short scalar time series.

An example of multichannel communication on the basis of the Hénon
map is presented in Fig. 2.106. Two chaotic signals [the coordinates x(t) and
y(t) obtained by integrating the Rössler model] perform modulation of the
parameters a and b of the system (2.200). At each iteration the values of
a and b change according to the law shown in Fig. 2.106a,b. The restored
signals are presented in Fig. 2.106d,e.



2.7 Reconstruction of Dynamical Systems 289

0 9000

1.42

1.38

a

n 0 9000

0.32

0.28

b

n

a b

0 9000
−0.6

0.6

y

n

n

c

0 9000
1.38

1.42

a

n 0 9000
0.28

0.32

b

n

d e

Fig. 2.106. Example of multichannel communication on the base of the Hénon
map. (a) and (b): Information signals; (c) signal in the channel of communication;
(d) and (e): restored signals

Let us turn to the systems with continuous time and choose the modified
oscillator with inertial nonlinearity (Anishchenko–Astakhov oscillator) as a
test model

dx

dt
= m0x + y − xz ,

dy

dt
= −x ,

dz

dt
= −g0z + 0.5g0(x + |x|)x . (2.202)

Choose the one-dimensional realization y(t) of the system (2.202) as a carrier.
The equations of oscillator (2.202) may be written in the form

dY

dt
= Z ,

dZ

dt
= X ,

dX

dt
= f(X,Y, Z,µ) , µ = (m0, g0) , (2.203)

f(X,Y, Z,µ) =
X(X + Y )

Z
+ (m0g0 − 1)Z − g0(X + Y )

+0.5g0(|Z| − Z)Z2 , (2.204)

by means of the following variable substitution:

Y = y , Z = −x , X = −m0x − y + xz . (2.205)

Let us illustrate the possibility of simultaneous transmission of two inde-
pendent messages in a single carrier. We modulate the parameter m0 by a
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Fig. 2.107. Two-parametric modulation of the equations of oscillator (2.202). (a)
and (b) information signals; (c) signal in the channel of communication; (d) and
(e) restored signals

broadband chaotic signal from the Rössler system, while the parameter g0 is
modulated by an harmonic signal. To test the method used for its robustness
in the presence of noise, we add a normally distributed random value with
variance 10−5 to the equations of oscillator (2.202) and to its parameters.

The temporal dependences of the parameters of oscillator (2.202) are
shown in Fig. 2.107a,b. The results of demodulation presented in Fig. 2.107d,e
testify the reliability of the method in the case of simultaneous transmission
of two independent messages in the presence of fluctuations.

The workability of the method used can clearly be demonstrated by trans-
mitting graphic images. We choose the dependences obtained by scanning
with a resolution of 200 × 250 two fragments of “Virgin of the Rocks” by
Leonardo do Vinci (Fig. 2.108a,b) as information signals. The modulating
signals were represented in the form of stepwise temporal dependences. The
range of control parameter variation was split into 256 subranges, each cor-
responding to the shade of the black-and-white image. The signal in the
communication channel (Fig. 2.108c) is the coordinate y(t) of the Rössler
system. Figure 2.108d,e illustrate the images reconstructed by the global re-
construction technique.
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Fig. 2.108. Simultaneous transmission of two fragments by modulating parameters
b and c of the Rössler system. (a) and (b): Initial images; (c) the signal in the
communication channel; (d) and (e): restored images

To realize the proposed method for signal demodulation in practice, the
recipient of the information must possess a specialized processor or computer
and an analog-to-digital converter. We suppose that such a method for con-
fidential communication may find effective application for the exchange of
information over short-enough distances using a cable network, so that noise
would not be created while broadcasting.

2.7.6 Summary

In the present section we have described an algorithm for global reconstruc-
tion of DS and demonstrated in principle the possibility for restoration of
robust DS on signals from test models as well as on time series measured
in real medical and biological experiments. Unfortunately, we were able to
consider only a limited number of problems concerned with the global recon-
struction of DS, which appear to be very promising.

In recent years the interest of specialists in nonlinear dynamics in the
systems of biological origin has been growing. Biological systems are a wide
field of research where the achievements of DS theory can find their practical
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application. Besides, the complexity and the presence of specific peculiar-
ities of the signals from such systems can stimulate the development and
improvement of techniques for time series analysis, including the methods
for reconstruction of DS. Thus, in the section much attention has been paid
to the reconstruction problem in application to highly inhomogeneous real-
izations, which are encountered very often among the signals of medical and
biological origin, and to a human electrocardiogram, in particular.

At present, various possible applications of the global reconstruction tech-
nique are being studied yet. This can be confirmed by the fact that the au-
thors of the majority of works on mathematical modeling use the method for
global reconstruction to study test systems only. This algorithm is still rarely
and not always successfully applied to experimental signals because of the
complexity and ambiguity of the problem of synthesis of DS. Presently, one
of the current and modern research problems is to find possible applications
of the reconstruction methods. Of particular interest are applications of the
global reconstruction technique for the purpose of diagnostics in medicine and
biology. This problem is closely connected with construction of model sys-
tems, since a large variety of criteria, being either approximation coefficients
of nonlinear functions in restored equations or any characteristics reflecting
the peculiarities of a signal under study, can be used for diagnostics.

In connection with this the study of ISI data attracts great interest. Re-
cently, the problem of attractor reconstruction from a sequence of time inter-
vals has begun to be discussed in publications [458–463], and it offers a wide
field of research for specialists in nonlinear dynamics.

We have also considered the transition from a sequence of discrete values
to a smooth realization, the latter having the meaning of averaged instan-
taneous frequency, and possibilities of calculating the metric and dynamical
characteristics for principally discrete signals. These facts allow one to believe
that the nonlinear dynamics methods will complement a set of quantitative
characteristics traditionally computed from ISI data for the purposes of di-
agnostics. In other words, the study of such signals can strengthen the role
of nonlinear dynamics when solving the problem of analysis of time series of
different origin.
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3. Stochastic Dynamics

3.1 Stochastic Resonance

3.1.1 Introduction

The word “noise” is ordinarily associated with the term “hindrance”. It was
traditionally considered that the presence of noise can only make the op-
eration of any system worse. There are well-known classical radio physical
problems related to limitations of the sensitivity of amplifiers and a finite-
ness of the pulse bandwidth of oscillators due to the presence of natural and
technical noise [1–3] (cf. Sect. 1.3).

In contrast, it has recently been established that noisy sources in nonlin-
ear dynamical systems (DS) are able to induce completely new regimes that
cannot be realized without noise. These effects were called noise-induced tran-
sitions [4], one beautiful example of which are noise-induced self-sustained
oscillations [5]. The diversity and complexity of these transitions in nonlin-
ear DS raised the following question: Does noise always bring disorder to a
system’s behavior, or are there cases when noise enhances the degree of or-
der in a system or evokes improvement of its performance? The answer to
this question is clear: Yes. Various studies have convincingly shown that in
nonlinear systems increasing noise can induce new, more ordered behavior.
Quite unexpected it can lead to the formation of more regular temporal and
spatial structures, increase the degree of coherence, cause the amplification
of weak signals accompanied by growth of their signal-to-noise ratio (SNR)
or induce directed motions in systems with vanishing mean external forces.
In other words, noise can play a constructive or beneficial role in nonlinear
dynamics.

Stochastic resonance (SR) is one of the most shining and relatively simple
examples of this nontrivial behavior in nonlinear systems under the influence
of noise. The term was introduced in [6–8] in 1981–1982 in a study exploring a
model proposed to explain the almost periodic recurrences of the Earth’s ice
ages. The temporal evolution of Earth’s climate was modeled as the motion
of an overdamped particle in a symmetric double-well potential driven by a
periodic force. The two states of the system corresponded either to an ice
period or to a warm climate on Earth, both being stable due to reflection or
adsorption of energy, respectively, with respect to the present coverage of the
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dx/dt=f(x,s(t),D)
s(t) x(t)

Fig. 3.1. General scheme of a stochastic resonator: A nonlinear noisy system with
time scale depending on the noise intensity D is forced by an ordered signal s(t).
The output becomes similar (ordered) to the input for optimally selected noise
values

Earth by ice. The periodic force refers to tiny oscillations of the eccentricity
of Earth’s orbit changing the energy balance with a period of about 105 years.

Estimations have shown that the actual amplitude of this periodic force is
far too small to cause the drastic climate change. The possibility of switchings
was achieved by introducing additional random forces into their model arising
from fluctuations of the atmosphere. Not surprisingly, as Brownian particles
hop in a double-well force field from one stable state to the other, atmospheric
fluctuations induce transitions in the climate from stable cold to warm periods
and vice versa. But remarkably, as the fundamental result of their model
the authors found a sequence of temporally ordered transitions. The climate
almost followed the vanishingly small external periodic perturbation for an
assumed finite noise strength of the atmosphere.

The general scheme of SR is depicted in Fig. 3.1. It stands for phenomena
for which the ordered response of a system with respect to weak input sig-
nals can be significantly increased by appropriately tuning the noise intensity
to an optimal but nonvanishing value. Quantitatively, SR implies that some
integral characteristics of the output, such as, e.g., the sharp peak in the
output power spectrum located exactly at the frequency of the input (spec-
tral power amplification, SPA), the SNR or input/output cross-correlation
measures have well-marked maxima at a finite noise level. Also, the entropy-
based measure of disorder attains a minimum, exemplifying the increase in
noise-induced order [9].

Today SR is a well-known behavior of nonlinear stochastic dynamics [10–
18]. It has been found and studied in a large variety of different physical
systems, namely, in the electronic Schmitt trigger [19], in a ring laser [20],
in magnetic systems [21], in passive optical bistable systems [22], in systems
with electronic paramagnetic resonance [23], in experiments with Brownian
particles [24], in experiments with magneto-elastic ribbons [25], in a tunnel
diode [26], in superconducting quantum interference devices (SQUIDs) [27],
and in ferromagnetics and ferroelectrics [28–30]. SR has been observed in
chemical systems [31–33]. Finally, the most exciting applications of SR are
in various biological systems. SR was observed on the level of single sensory
neurons [34–36] and even on the level of ion channels [37]. Additionally, SR
has been studied in human psychophysics [38] and experiments on animal
behavior [39,40].
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SR was realized in bistable [6, 41] and monostable oscillators [42] and
excitable dynamics as well as in nondynamical threshold systems [43–45] and
in chaotic systems [46,47].

In this chapter we will be mainly concerned with bistable models. In the
following chapters we discuss various aspects of SR in noisy excitable systems
and in noisy media or coupled networks of stochastic resonators.

3.1.2 Stochastic Resonance: Physical Background

The physical mechanism of SR is rather evident and simple. Contrary to
a linear system, by definition a nonlinear system always possesses different
frequencies or different time scales. Application of noise, even of an additive
one, may populate different modes with different probability, which is differ-
ent from traditionally studied linear systems. Hence, a change in the level of
noise might change the temporal behavior of the nonlinear dynamics.

The secret of SR consist in the dependence of a single time scale on
the intensity of the noise. Specifying to bistable overdamped dynamics, one
controls the switching events between the two metastable states when tuning
the noise level. We have studied this escape problem in detail in Sect. 1.2.6.

Indeed, the motion of a Brownian particle in a system with a symmetric
double-well potential U(x) is qualitatively characterized by two time scales.
The first defines relaxations of fluctuations in the linear regime around the
stable fixed points, called the intrawell or local dynamics. In the case of deep
wells and noise that is not too strong, this time scale is independent of noise.

The second time scale characterizes the mean time of barrier crossings,
also called the global dynamics. As outlined (see Sec. 1.2.6) it corresponds
to the inverse of the rate of escape from a stable state. In the case of white
noise a strong dependence on noise is expressed by the Arrhenius law [48,49]:

rK = a0 exp(−∆U0/D).

The prefactor a0 is given by the curvature of the potential wells. At the
same time it defines the relaxation rate in the linear regime near one of the
fixed points. This relaxation time is always small compared with the global
dynamics. Separation of the two time scales and hence a nonlinear regime
dependent strongly on the noise level is achieved if the barrier height ∆U0 is
large compared with the noise intensity D.

The amplitude of the periodic force A is assumed to be sufficiently small.
Transitions between the potential wells should still be excluded in the ab-
sence of noise. Nevertheless, at a first glance the presence of a small periodic
force induces a small modulation of the barrier height, ∆U � ∆U0 +A sin Ωt
(Fig. 3.2), which results because of the exponential dependence in nonlinear
modulation of the rates. Figure 3.3 presents the time series and the power
spectrum of a reduced two-state-approximation. As a result, the power spec-
trum of the output signal shows a delta-peak at the modulation frequency



310 3. Stochastic Dynamics

Fig. 3.2. A bistable potential with weak periodic modulation. The shape of the
potential can vary, for example, as shown by the “hard” and “soft” curves. The
particle symbolized by the ball can overcome the potential barrier ∆U0 only in the
presence of external or internal noise

Fig. 3.3. (a) A time series at the output of a bistable system; (b) a similar time
series which has been “two-state filtered”; (c) the power spectrum of the filtered
signal
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and at its odd harmonics. Even small amplitudes cause periodic structures
at the global time scale, and the output contains periodic components.

Generally, this is not astonishing, since every dynamics, even a linear
one, responds periodically to a periodic driving force. But the main point
is in the nonmonotonous behavior of the response. In the nonlinear system
the maximal periodic component is found for a finite optimally selected noise
intensity.

The response curve with respect to the noise intensity resembles resonance
of a linear damped harmonic oscillator. This was the reason the phenomenon
was called stochastic resonance. The noise intensity replaces the mismatch of
the driving and the eigenfrequency.

This replacement makes sense since the change of the noise level leads to
a merging of time scales for low frequencies, those smaller than the relaxation
rate. Let us look at the unperturbed time scale 1/rK as a function of D. When
the noise intensity is small, the mean escape times are large and considerably
exceed the modulation signal period. In contrast, in the case of high noise
there is a large probability that the system switches several times within
one signal period. For moderate noise intensity, one can ensure a regime
for which the mean barrier crossing time is close to the modulation signal
period. Switching events will occur on average with the time scale of the
external periodic force. Hence, varying the noise intensity tunes the stochastic
bistable system to a regime of time merging, and even a tiny modulation of
the barriers maximizes the signal power amplification.

This has been confirmed theoretically and experimentally for many situ-
ations for arbitrary small signals. One should mention that in this consider-
ation the “eigen”-dynamics of the system is unaffected by the value of the
driving amplitude, as in the case of normal resonance of a linear oscillator.
In Sect. 3.3 we consider the bounds of this picture, including the modulation
of the internal dynamics by the external dynamics.

3.1.3 Characteristics of Stochastic Resonance

The quantization and, therefore, the proper definition of SR depend in many
respects on the physical situation under consideration. The character of the
input signal as well as the noise used and the kind of nonlinear system driven
defines which quantitative characteristics of SR are measured in the experi-
ments and calculated analytically or numerically.

In the present section we will address harmonic signals in noisy bistable
dynamics. For this situation the SPA η [50, 51], the SNR [19] and the
residence-time distribution density of a particle in one of the potential wells
p(τ) [52,53] give important information. Note that the mentioned quantities
have to be averaged over the initial phase of the harmonic input to become
stationary values as we will consider them (cf. Sect. 1.2.2).

The spectral power amplification η (SPA), introduced in [50], is defined
as the ratio between the signal powers at the output and at the input, i.e.
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η = Pout/Pin . (3.1)

In the case of weak harmonic input of frequency Ω, the output power spec-
trum of the process x(t) can be decomposed into the signal part and the noise
background, G

(0)
x,x(ω). The signal part is represented by the delta-functions

centered at the frequencies ±Ω: δ(ω − Ω) + δ(ω + Ω). In this case Pout is
the integrated power stored in delta peaks at frequencies ±Ω in the power
spectrum of the output. The input signal carries the total power Pin = A2.

In experiments the signal power is determined as an integral of the power
spectral density over the range of measured frequencies. In experiments with
harmonic signals, the frequency range corresponds to Ω ± ∆ω, where the
frequency bin ∆ω determines the frequency resolution of a measurement. The
power spectral density at the signal frequency S(Ω) is represented in the form
of regular and noisy components. Thus, the signal power can be calculated
by the corresponding subtraction, i.e. Ps = 2[Gx,x(Ω) − 〈G(0)

x,x〉]∆ω, where
〈G(0)

x,x〉 is the noise spectral density averaged over the neighboring frequency
bins around Ω.

We use a definition of the signal-to-noise ratio (SNR) as the ratio of the
total signal power to the noise power spectrum [12]. In the case of a harmonic
signal it reads

SNR =
1

G
(0)
x,x(Ω)

2
∫ Ω+∆ω

Ω−∆ω

Gx,x(ω)dω , (3.2)

where the noise background G
(0)
x,x is calculated at the frequency of the signal,

ω = Ω. In analytical calculations we have to apply a limit of ∆ω → 0 to
the expression for the SNR. In practice, the value of G

(0)
x,x(Ω) is calculated

by averaging G
(0)
x,x(ω) over the neighboring frequency bins around the signal

frequency. Results can be presented using either linear (units) or logarithmic
(dB) scales.

As a result of random switchings, the output of a stochastic bistable
system without considering the intrawell dynamics can be represented by
a stochastic telegraph signal (see Fig. 3.3b). The residence time for one of
the potential wells is a random quantity whose probability density p(τ) in
the absence of modulation shows evidence of an exponentially decreasing
function [52]. When a modulation signal is added, the probability density
becomes structured and contains a series of Gaussian-like peaks centered at
τ = nTs/2, n = 1, 3, 5, . . ., where Ts is the modulation signal period. The
maxima of p(τ) decay exponentially with n. In the regime of SR the peak
of p(τ) at τ = Ts/2 is the largest: the switchings between the potential
wells are in phase with the external periodic signal, and the mean residence
time 〈τ〉 is closest to the half signal period. The description of SR based
on the residence-time distributions, therefore, reflects a synchronization of
system switchings by an external periodic force [53, 54]. Since the statistical
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properties of a telegraph signal depend on the noise intensity, the probability
density structure can be controlled by noise variation. In this connection we
have an alternative approach to analyzing the mechanisms of SR, based on
the studies of residence-time statistics.

Characteristics and properties of SR must undoubtedly depend on the
structure of signals applied to a nonlinear system. This concerns in equal
degree both information and noisy signals. The modulation signal can be
harmonic, can consist of several frequencies or represents a narrow-band sto-
chastic process [55], or even be purely noisy. The stochastic force can be sim-
ilar to white noise but can also have a finite correlation time and a bounded
spectrum [56,57]. Depending on the signal properties, noise and the particular
properties of nonlinear systems, SR is characterized by specific measures. At
the same time without regard to the system characteristics and the structure
of signals, SR is determined by its generic property of increasing the degree
of order in the output signal for some optimal level of noise [9, 15,58].

3.1.4 Response to a Weak Signal. Theoretical Approaches

Consider an overdamped bistable oscillator. It has become canonic for study-
ing SR if additively driven by a periodic force. In this case the equation of
motion in dimensionless variables reads

ẋ = x − x3 + A cos(Ωt + ϕ0) +
√

2D ξ(t). (3.3)

It describes the overdamped motion of a Brownian particle in a double-well
potential U0(x) = −x2/2 + x4/4, driven by white Gaussian noise ξ(t) with
the intensity D and periodic force A cos(Ωt + ϕ0). The ϕ0 is a randomly
distributed initial phase. The corresponding Fokker–Planck equation (FPE)
for the probability density p(x, t|x0, t0;ϕ0) is

∂ p

∂ t
= − ∂

∂ x
{[x − x3 + A cos(Ωt + ϕ0)] p} + D

∂2 p

∂ x2
. (3.4)

This equation can be also written in the operator form

∂ p

∂ t
= [L0 + Lext(t)] p, (3.5)

where L0 = − ∂
∂ x (x − x3) + D ∂2

∂ x2 is the unperturbed Fokker–Planck op-
erator (A = 0) and Lext(t) = −A cos(Ωt + ϕ0)∂/∂ x refers to the periodic
perturbation.

The rapid progress of SR studies has caused the development of a general
theory of stochastic diffusion processes with periodically varying coefficients
of drift and diffusion. Such a theory was proposed in [51, 59, 60] and is an
extension of the Floquet theory to the case of FPE with periodic coefficients.
One of the main conclusions of this theory is that the probability in the
asymptotic limit t0 → −∞ can be expanded into a Fourier series
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pasy(x, t;ϕ0) =
∞∑

n=−∞
pn(x) exp [ i (nΩt + ϕ0)]. (3.6)

Time inhomogeneity is removed by averaging over an equally distributed ini-
tial phase with the result

〈

pasy

〉

ϕ0
= p0(x). The periodic nonstationarity can

also be resolved by extending the system phase space using as an additional
variable θ = Ωt + ϕ0. Formally the process becomes stationary in x, θ whose
stationary density agrees with previous results if integrated over θ.

The asymptotic but time-dependent mean 〈x(t)〉 or the nonlinear response
of the stochastic system to the harmonic force can be found from (3.6) to be

〈x(t)〉asy =
∞∑

n=−∞
Mn exp [ i (nΩt + ϕ0)]. (3.7)

Therein Mn are complex-valued amplitudes connected with the multiple fre-
quencies of the external force frequency. They depend on the noise intensity
D, the signal frequency Ω and the amplitude A. The output power at the
fundamental frequency is defined by the |M1|2 at positive and negative Ω.
Hence, the SPA η according to (3.1) reads [50]

η =
(

2|M1|
A

)2

. (3.8)

Analytical expressions for the amplification coefficient can be derived via
some approximations. One of the main ones is a weak signal approximation
when the response can be considered to be linear. Other approximations
impose some restrictions on the signal frequency. We shall further study two
approximate theories of SR, namely, the two-state theory proposed in [61]
and the linear response theory [62–65].

Two-state Theory of Stochastic Resonance. The two-state theory, or
the adiabatic theory [61], was the first theoretical description of SR. Since
this theory is simple and elegant, it is used in the majority of studies on SR.

Let us approximate the global dynamics of a symmetric bistable system
with attractor position at ±xm by a two-state dynamics with discrete vari-
ables σ(t) = ±xm. Setting σ = +xm we define:

p(x, t|x0, t0) = p(σ|σ0, t0) δ(x − xm) + p(−σ, t|σ0, t0) δ(x + xm). (3.9)

Herein p(σ, t|σ0, t0) are the conditional probabilities of residing in one of the
states σ at time t which satisfy normalization conditions.

Furthermore, by introducing the transition probabilities per unit time
of switchings from one state to the other, Wσ(t), we arrive at the simplest
master equation [cf. (1.65)]:

dp(σ, t|σ0, t)
dt

= −Wσ(t) p(σ, t|σ0, t) + W−σ(t) p(−σ, t|σ0, t). (3.10)
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Using the normalization this set of equations can be solved analytically for a
given initial density.

The following transition probabilities make sense for a periodically driven
bistable dynamics with assumed low frequencies compared to the local dy-
namics:

Wσ(t) = rK exp
(

−Aσ

D
cos Ωt

)

. (3.11)

Without external forcing (A = 0) the transition probabilities coincide with
the Kramers rate rK, which is in the case of (3.3)

rK =
1√
2 π

exp
(

− 1
4D

)

. (3.12)

The ansatz (3.11) is a Kramers rate with periodically modulated ∆Ueff =
∆U0±Axm cos Ωt and ∆U0 = 1/4. Sufficiently small amplitudes ∆U0−A �
D still yield time scale separation between the local and global dynamics
rK � 1/(

√
2π).

The given conditional probabilities allow calculation of the autocorrela-
tion function. In order to simplify the explanation [61] we assume a weak
signal, in detail Axm � D, which introduces a lower limit on D. In this case
one can expand the expressions (3.11) in a Taylor series of A. Retaining the
linear term the time-dependent conditional probabilities are approximately

p(σ, t|σ0, t0) =
1
2

[

exp[−2rK(t − t0)]
(

2 δσ0,σ − 1 − 2rKAxm cos(Ωt0 + ψ)
D
√

4r2
K + Ω2

)

+1 +
2rKAxm cos(Ωt + ψ)

D
√

4r2
K + Ω2

]

, (3.13)

where ψ = − arctan(Ω/2rK).
Of great importance is the mean value characterizing the system re-

sponse. From (3.9) one obtains the conditioned first moment 〈x(t)|x0, t0〉 =
∫

xp(x, t|x0, t0) dx. In the asymptotic limit t0 → −∞, it follows the periodic
but phase-shifted response,

〈x(t)〉asy = A1(D) cos [ Ωt + ψ(D)]. (3.14)

The amplitude A1(D) as well as the phase shift ψ(D) depend on the intensity
of the noise. Explicitly they read

A1(D) =
Ax2

m

D

2 rK(D)
√

4r2
K(D) + Ω2

, (3.15)

ψ(D) = − arctan
Ω

2 rK(D)
, (3.16)

where we have pointed out the noise dependence of the Kramers rates.
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As in (3.8) the SPA in the case of a harmonic output is expressed in terms
of the resulting amplitude (see 3.1):

η =
4r2

Kx4
m

D2(4r2
K + Ω2)

. (3.17)

With (3.12) and (3.17) it follows that the SPA attains a single maximum as
a function of noise intensity D.

We proceed similarly to find the conditioned autocorrelation function
〈x(t + τ)x(t)|x0, t0〉 and its asymptotic limit for t0 → −∞. However, by
virtue of periodic modulation of the transition probabilities, it depends not
only on the time shift τ but also on the explicit time t. Thus, again one needs
to perform an additional averaging over the period of the external force, a
procedure which is equivalent to averaging over an equally distributed ran-
dom initial phase. After Fourier transformation the expression for the spectral
density Gσ,σ(ω) has the form

Gσ,σ(ω) = G(0)
σ,σ(ω) +

π

2
A2

1(D) [ δ(ω − Ω) + δ(ω + Ω)]. (3.18)

It contains two items, namely, a periodic one represented by the δ-functions
with weight proportional to the SPA, and a Lorentzian-like background
G

(0)
σ,σ(ω):

G(0)
σ,σ(ω) =

4rKx2
m

4r2
K + ω2

(

1 − A2
1(D)
2x2

m

)

. (3.19)

As seen from the last expression, the background is represented by the sum
of the unperturbed spectrum and an additional term of order A2. The ap-
pearance of the additional term is due to the signal which suppresses the
noise background. It arises due to the application of Parseval’s theorem in
the two-state theory.

By computing the SNR according to (3.2) this term should be neglected
in the linear approximation. Therefore, within this limit the SNR for the
two-state model is

SNR = π

(
Axm

D

)2

rK. (3.20)

It exhibits a single maximum at noise value D = DSNR
max = ∆U/2 = 1/4.

Surprisingly, this last expression does not reflect the dynamical explanation
of the time-scale merging in the case of maximal amplification as explained
above. This circumstance is included in the SPA only. Approximately we find
in the low- and high-frequency limits for the SPA, respectively,

ηΩ→0 =
4x4

m

D2
, ηΩ→∞ =

4r2
Kx4

m

D2 Ω2
. (3.21)

The outgoing curve η(D) due to (3.17) is always located below the two limits.
The coincidence of both limits may serve to approximate the location of
the maximal SPA yielding 2r2

K = Ω, with the resulting DSPA
max explicitly

expressing the dynamical origin [12].
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Linear Response Theory of Stochastic Resonance. In case of a weak
external force f(t) the response of a nonlinear stochastic system 〈x(t)〉 in the
asymptotic limit is determined by the linear integral relation [62,63,66]

〈x(t)〉asy = 〈x〉st +
∫ ∞

−∞
κ(t − τ,D) f(τ) dτ. (3.22)

Here 〈x〉st is the mean value of the unperturbed state variable [f(t) = 0];
later on we set 〈x〉st = 0. The function κ(t) in (3.22) is called the response
function and the assumption made is called the linear response theory (LRT).

The relation (3.22) accounts for arbitrary weak perturbations but one can
consider a harmonic driving force without loss of generality. Since κ(s) = 0
for s < 0 the system response is expressed through the susceptibility χ(ω),
which is the Fourier transform of the response function. Formally, it reads

〈x(t)〉 = A |χ(Ω)| cos (Ωt + ψ), (3.23)

with the phase shift ψ found from

ψ = − arctan
Im χ(Ω)
Re χ(Ω)

. (3.24)

Consequently, the SPA is found as

η = |χ(Ω)|2. (3.25)

Likewise in the two-state approximation there is a noise background G
(0)
x,x(ω)

with neglected signal suppression, and the periodic output contributes to the
spectral density. The latter gives δ-peaks with the SPA as weight, resulting
in [cf. (3.18)]

Gx,x(ω) = G(0)
x,x(ω) +

π

2
A2 |χ(Ω)|2 [ δ(ω − Ω) + δ(ω + Ω)]. (3.26)

The power at ω = Ω > 0 is the sum of the multipliers in front of the δ-peaks
at ±Ω. The SNR in LRT is in agreement with (3.2)

SNR =
πA2|χ(Ω)|2

G
(0)
x,x(Ω)

, (3.27)

and the susceptibility χ(ω) occurs as the main quantity in all expressions.
LRT has delivered an elegant solution to determine χ(ω). The solution can

be realized via the fluctuation–dissipation theorem (FDT). As first shown by
Kubo for systems in equilibrium [66], the response function in the case of weak
perturbations is connected with the correlation function of the unperturbed
system. Later on, this important connection was generalized by Hänggi and
Thomas [63] to a wide class of stochastic processes where the perturbation
operator in the corresponding master operator is of the gradient type as in
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(3.4). Therefore, LRT should be applicable for SR, too, which indeed was
proven by a lot of studies on different problems. But first we sketch the
application to the overdamped bistable system (3.3).

The response function κ(t) is connected with the autocorrelation function
c
(0)
x,x(t) of the unperturbed system as follows [50,51]:

κ(t) = −Θ(t)
D

d
dt

c(0)
x,x(t), (3.28)

where Θ(t) is the Heaviside function. Hence, the FDT relates two principally
different processes: the statistical properties in the perturbed state with the
linear response to an external driving force. The determination of the suscep-
tibility requires an expression for the unperturbed autocorrelation function
c
(0)
x,x(τ,D).

Unfortunately, so far there is no exact determination, even for the well-
studied bistable systems. However, there exist several good approximate so-
lutions. The most precise approach is based on the expansion of the Fokker–
Planck operator in terms of eigenfunctions [41, 67]. The correlation function
can be represented by a series gj exp(−λjτ), where λj are the eigenvalues of
the Fokker–Planck operator and gj are the coefficients which are computed by
averaging the corresponding eigenfunctions over the unperturbed equilibrium
distribution.

In the simplest case, when calculating the correlation function one only
may take into account the smallest nonvanishing eigenvalue λm, which is
related to the Kramers rate of escape from a potential well:

λm = 2 rK =
√

2
π

exp
(

− 1
4D

)

. (3.29)

Then the correlation function and the spectral density simplify to

c(0)
x,x(τ,D) ≈ 〈x2〉st exp(−λmτ), G(0)

x,x(ω) =
2λm〈x2〉st
λ2

m + ω2
, (3.30)

where 〈x2〉st is the stationary second cumulant. Such an approximation cor-
responds to the two-state approach and only takes into account the global
dynamics.

Improvements with the inclusion of the intrawell dynamics in the corre-
lation function can be made by adding an additional exponential term in
(3.30). It describes fast fluctuations within the potential wells. In this case
the correlation function reflects both the global dynamics (factor λm) and
the local intrawell dynamics [51]:

c(0)
x,x(τ,D) = g1 exp(−λmτ) + g2 exp(−ατ), (3.31)

where α stands for the relaxation rates in the potential minima. For the
particular example (3.3), α = 2. The coefficients g1,2 in (3.31) are determined
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from the expression for the correlation function and its derivative for τ = 0
and are equal to [51]

g1 = 〈x2〉st − g2, g2 =
λm〈x2〉st
λm − α

+
〈x2〉st − 〈x4〉st

λm − α
. (3.32)

The susceptibility in the two-state or single-exponent approximation reads

χ(ω, D) =
1
D

λm〈x2〉st
λ2

m + ω2
(λm − iω), (3.33)

and with regard to the intrawell dynamics

χ(ω, D) =
1
D

(
g1λ

2
m

λ2
m + ω2

+
g2α

2

α2 + ω2

)

− iω
(

g1λm

λ2
m + ω2

+
g2α

α2 + ω2

)

. (3.34)

With the derived susceptibilities one may readily find expressions for the
SPA (3.25) and the SNR (3.27). For the single-exponent approximation, the
SPA and the SNR coincide with corresponding expressions in the two-state
theory ((3.17,3.20):

η (Ω,D) =
1

D2

(〈x2〉stλm)2

λ2
m + Ω2

, SNR =
πA2

2D2
〈x2〉stλm. (3.35)

Taking into account the intrawell dynamics yields the following expres-
sions [51]:

η(Ω,D) =
(g1λm)2 (α2 + Ω2) + (g2α)2 (λ2

m + Ω2) + 2g1g2αλm(αλm + Ω2)
D2(λ2

m + Ω2)(α2 + Ω2)
,

(3.36)

SNR =
π A2

2D2

(g1λm)2 (α2+Ω2) + (g2α)2 (λ2
m+Ω2) + 2g1g2αλm(αλm+Ω2)

g2α(λ2
m + Ω2) + g1λm(α2 + Ω2)

.

(3.37)

As seen from Fig. 3.4a, the two approximations yield similar results in the
range of maximal amplification at optimal noise. Differences arise for small
noise intensities. In the single-exponent theory η vanishes when D → 0. The
inclusion of the intrawell dynamics corrects this limit. The time scale of the
global dynamics becomes exponentially large. During the duration of many
external periods, the system is unable to respond on the global scale. Hence,
the amplification behaves as 1/(α2 + Ω2), as in a linear system with the
relaxation time 1/α.

When the driving frequency decreases, the maximum of the amplification
shifts to the area of smaller noise intensities. But in case of smaller noise,
the modulation of the rates (not of the barrier!) becomes effectively stronger
and, therefore, the amplification factor itself increases. Figure 3.4b shows the
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Fig. 3.4. (a) Spectral power amplification η (3.36) as a function of the noise inten-
sity D for different values of the external periodic signal frequency; the dependences
(3.35) obtained without regard to the intrawell dynamics are shown by circles and
squares. (b) Susceptibility versus the noise intensity D and signal frequency Ω

amplification coefficient (3.36) as a function of the noise intensity and driving
frequency. As follows from Fig. 3.4, the amplitude–frequency characteristic
rises in the low-frequency range. This property follows from the nature of the
fluctuations in the bistable systems. The bistable stochastic resonator is a
low-frequency device. The noise enhances slow dynamics at the global scale,
much smaller compared to the intrawell dynamics. The fluctuation spectrum
is almost located in the low-frequency range with a width determined by the
Kramers rate, which is limited from above by the relaxation time in the wells.

The SNR (3.37) as a function of noise intensity is displayed in Fig. 3.5. As
seen, the SNR diverges for small values of D. This can be explained by the
contribution of periodically modulated local dynamics inside the potential
wells [61]. For sufficiently low driving frequencies the SNR achieves its max-
imum at D ≈ 1/8 (note ∆U = 1/4) and is, practically, independent on Ω.
However, with increasing Ω, the SR effect disappears as the SNR becomes a
monotonically decaying function of the noise intensity. Thus we see that the
two SR measures, namely, the amplification coefficient and the SNR, again
demonstrate different behavior. The SPA possesses a maximum even at high
frequencies, while the SNR displays the SR effect only for frequencies low
enough.

3.1.5 Array-Enhanced Stochastic Resonance

An often met physical situation is networks of coupled systems. Compared
to the former case the coupling strength appears as a new control parameter.
The question immediately following is how coupling affects SR.

Of course there will be different answers for the various systems. But
in a series of papers it was shown that when stochastic bistable dynamics
are coupled and driven in parallel the SPA and the SNR can be enhanced



3.1 Stochastic Resonance 321

10
−2

10
−1

10
0

D

10
−3

10
−2

10
−1

10
0

S
N

R

Ω=0.01
Ω=0.1
Ω=0.5.
Ω=1.0

SNR

D

-1.5
-1

-0.5
0

0.1

0.3

0.5

0.7

0.9
1

0.001

0.01

0.1

1

10

log10(D)

Ω

SNR

a b

Fig. 3.5. (a) Signal-to-noise ratio (3.37) as a function of the noise intensity D
for different values of the external periodic signal frequency (the dependence (3.33)
obtained with neglecting the intrawell dynamics is shown by circles. (b) SNR versus
D and Ω)

[68–72, 75, 76]. Lindner et al. [77] introduced the notion of “array-enhanced
stochastic resonance” for this coupling-induced increase in the SNR achieving
a maximum at a finite coupling strength. Likewise for large noise a strong
coupling lets the response fall off. But, apart from the noise strength in a
single stochastic resonator, the coupling strength controls SR as well.

Coupling Enhanced Response in Spin-chains. As an easy way to illus-
trate this topic we present results from an analysis of a chain of ferromag-
netically coupled two-state resonators [78,79]. Thereby Glauber’s model of a
stochastic Ising model [80] is widely employed.

In fact, the coupled magnetic spin system represents a good candidate for
SR, as was shown in [81–83]. Coupling creates barriers for the spin flipping.
Therefore, if a periodic force is applied for a given coupling strength, the
temperature has to be chosen optimally to achieve the best periodic response
of the system. But an increase of the coupling strength weakens monotonously
the value of the peak in the spectrum; thus, weak coupling shows the best
performance.

Alternatively, coupled bistable elements may be modeled as a connected
chain of two-state resonators, where a barrier ∆U still exists for the single
uncoupled element. In each element the periodically modulated but noise-
dependent expression (3.11) has to be used. Coupling between these locally
bistable elements can be introduced á la Glauber, which favors with γ > 0 a
parallel ( γ < 0: antiparallel) alignment of the states.

Then the rates for a transition σi → −σi of the ith spin in a chain are

Wi(σi) = rK(D)
(

1 − σi
A

D
cos(Ωt + ϕ0)

)(

1 − γ

2
(σi−1 + σi+1)σi

)

. (3.38)

These rates define the dynamics of the chain and should be inserted in the
master equation
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ṗ(σ̄) =
∑

k

Wk(−σk) p(. . . ,−σk, . . .) −
∑

k

Wk(σk) p(. . . , σk, . . .) (3.39)

for the probability function p(σ̄, t) to find the chain in a particular configu-
ration σ̄ = (....., σk−1, σk, σk+1, .....) at time t. We further introduce the spin
coupling parameter J by γ = tanh 2J/D, giving without perturbation the
stationary distribution of an Ising model.

The stochastic process can be easily simulated. Numerically generated
realizations [84] (see also [11]) are presented in Fig. 3.6. A best periodic
response of the chain is obtained if ∆U = 0.25 near D ∝ 0.5 and J ∝ 0.6.

From the master equation the SPA can be determined, and the correla-
tion function in the unperturbed case has been given by Glauber [80]. Both
expressions in turn are obtained via the equation derived for the conditioned
average from (3.39). One finds

1
2rK

d
dt

〈σi(t)|σ̄〉 = − 〈σi(t)|σ̄〉 +
γ

2
[〈σi+1(t)|σ̄〉 + 〈σi−1(t)|σ̄〉]

+
A

D

(

1 − γ

2
(ri−1,i + ri,i+1)

)

cos(Ωt + ϕ0). (3.40)

with the time-dependent ri,j(t) =
〈

σi(t)σj(t)
〉

.
Let us briefly report the unperturbed (A = 0) case. The solution of (3.40)

is (τ ≥ 0)
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〈σi(t + τ)|σ̄(t)〉 = e−2rKτ
∞∑

m=−∞
σm(t)Ii−m(2γrKτ), (3.41)

with In being the modified Bessel function. Insertion into

〈σi(t)σj(t + τ)〉 =
∑

σ̄

〈σj(t + τ)|σ̄(t)〉σip(σ̄, t), (3.42)

yields

〈σi(t)σj(t + τ)〉 = e−2rKτ
∞∑

m=−∞
ri,m(t)Ii−m(2γrKτ). (3.43)

For the second moments, if i �= j (ri,i = 1), one derives in the limit A = 0

1
2rK

d
dt

ri,j = −2ri,j +
γ

2
(

ri,j−1 + ri,j+1 + ri−1,j + ri+1,j

)

. (3.44)

Assuming isotropy and translational invariance, ri,j can be functions of ∆ =
|i − j| only. Then (3.44) reads

1
2rK

d
dt

r∆ = −2r∆ + γ
(

r∆−1 + r∆+1

)

(3.45)

and r0 = 1. In the asymptotic stationary limit it gives a recurrence relation,
which is solved by r∆ = ρ∆, where ρ is given by

ρ2 − 2γ−1ρ + 1 = 0. (3.46)

The physically relevant solution is [80]

ρ =
(

1 −
√

1 − γ2
)

γ−1 = tanh(J/T ). (3.47)

Ending this brief passage, one is able to write down the stationary correlation
function of Glauber’s spin chain for arbitrary τ :

〈σi(t)σj(t + τ)〉 = e−2rK|τ |
∞∑

m=−∞
η|i−j+m|Im(2γrK|τ |). (3.48)

TheFourier transform of this expression defines the noisy background spectrum.
The conditioned averages are calculated asymptotically with t0 → −∞.

Since ri,j in (3.40) is multiplied by A/D, it will be sufficient in LRT to
take their asymptotic expressions from (3.47). Then in the asymptotic limit
solutions 〈σi(t)〉asy of the conditioned averages can be written as follows:

〈σi(t)〉asy = A1(D) cos (Ωt + ϕ0 + ψ(D)) . (3.49)

The amplitude A1(D) of these oscillations reads

A1(D) =
A

D

2rK

√

1 − γ2

√

Ω2 + [4 rK (1 − γ)]2
, (3.50)
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and the phase shift ψ(D) is given by

tan ψ(D) =
Ω

2rK(1 − γ)
. (3.51)

The response of the local spin embedded in the chain can be transferred to
the two-state result (3.15) by replacing the rate as rK → rK(1−γ) and scaling
the full expression by

√

(1 + γ)/(1 − γ).
The SPA is presented in Fig. 3.7 and can be brought into the shape

η =
ηs

1 + Ω2

4 r2
K [1−tanh( 2J

D )]2
, (3.52)

with

ηs =
1

D2
exp

(
4J

D

)

(3.53)

being the static response of the chain on a constant force. With increasing
coupling J , this static response grows, whereas the second factor in (3.52)
displays the dynamic inability to follow the signal. The larger the frequency
the smaller the weight of the delta peak in the spectrum. Both dependences
result in a bell-shaped curve for the SPA, since the static prefactor increases
linearly in γ whereas the dynamic response decreases with γ−2.

A discussion of the SNR should distinguish between two principal arrange-
ments of the output shown in Fig. 3.8. For the summed output

M(t) =
N∑

i

σi(t) (3.54)

the noise part of the spectrum can be calculated explicitly [80] in the limit
of an infinitely long chain, N → ∞. The SNR per element monotonously
decreases with increasing coupling
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Fig. 3.8. Different schemes of coupled resonators. Whereas in the left scheme for
the global output the SNR decreases monotonously, with increasing coupling the
response of a single element in the coupled chain exhibits optimal coupling for the
best SNR

SNRM = π
A2

D2
rK

√

1 − γ2. (3.55)

Alternatively, in Fig. 3.9 the SNR of a single element with the coupled
chain is presented for different couplings. Array-enhanced response can be
seen. With moderate coupling a single element inside the chain exhibits a
larger SNR compared to the uncoupled resonator J = 0, which is the result
of the McNamara–Wiesenfeld theory (3.33).
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Fig. 3.9. SNR of a single element embedded in an infinitely long chain versus D
for different couplings J (Ω = 0.02)



326 3. Stochastic Dynamics

Estimates of the SNR of a single element can be given for the low- and
high-frequency limits:

SNRΩ→0 = SNR0(1 + γ)2 = SNR0

(

tanh
(

2J

D

)

+ 1
)2

, (3.56)

SNRΩ→∞ = SNR0

√

1 − γ2 = SNR0 cosh−1

(
2J

D

)

, (3.57)

where SNR0 is the SNR with vanishing coupling identical to the SNR of the
two-state model. Since the SNR for finite frequencies can never exceed the
low-frequency expression, we are able to find the upper limit of array-induced
SR. The coupling-induced improvement of the SNR is bounded by the factor
4 compared to the uncoupled element.

Stochastic Resonance of Front Motion. A typical situation in systems
with two stable phases or in bistable diffusively coupled dynamics is front
propagation. The front represents a wave of transition between the two states
dividing the two phases by a narrow moving interface. A lot of problems
in high-energy physics, structural phase transitions, chemical dynamics and
magnetization dynamics can be analyzed in the framework of this model
[85–91].

Let a bistable reaction–diffusion system identical with a Landau–Ginzburg
equation,

τ
∂u(r, t)

∂t
= f(u) + r2

0

∂2u(r, t)
∂r2

= 2u(r, t)(1 − u(r, t)2) + r2
0

∂2u(r, t)
∂r2

, (3.58)

be the starting point of the analysis. The density of the bistable medium is
labelled u(r, t). It possesses two homogeneous stable fixed points u1,3 = ±1
and an unstable one u2 = 0. In (3.58) τ defines the characteristic time scale
of evolution, r0 is the diffusion length.

If boundary conditions u(r → ±∞) = u1,3 are applied a solitary front of
transition from u1 to u3 will be established [86, 90, 91]. A narrow interface
of thickness l of order r0 divides two regions with homogeneous u1 and u3

and is moving with velocity c. A general expression for the velocity has been
derived [92]:

c =

∫ u3

u1
f(u)du

τ
∫ +∞
−∞

(
∂u0

∂r

)2
dr

. (3.59)

where u0 is the solution of (3.58) with the applied boundary conditions. With
f(u) being a polynomial of third degree, this solution is well known [93]:

u0(r, t) = u1 + (u3 − u1)
1

1 + exp [(r − ct)/l]
. (3.60)

The velocity can be calculated, c = r0
τ (u3 + u1 − 2u2), and the interface

thickness is l = r0/(u1 − u3). For the special choice in (3.58) the front will
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be at rest, c = 0, u0 = u0(r) = tanh(r/r0), and the width of the interface l
is given by diffusion length via l = r0/2.

The solution (3.60) is stable with respect to fluctuations of the stationary
front profile. It is marginally stable to shifts of the front position. Both cir-
cumstances are expressed by the eigenvalue spectrum when considering the
linear stability of the front solution. As a result one obtains one vanishing
eigenvalue, belonging to the Goldstone mode u0

r = ∂u0/∂r. The other dis-
crete eigenvalue and the continuous spectrum describing front deviations are
well separated from zero [86,94].

Therefore, not surprisingly an additionally applied noise first affects the
position of the front, which is without a restoring force. The velocity (3.59)
becomes a stochastic time-dependent process cη = c

(

η(t)
)

with given prop-
erties dependent on the applied noise. Assuming weak noise there might be
a noise-induced shift and nonvanishing second moments, the latter yielding
diffusion of the front position [95–98]. Therefore, in a first approximation the
front position behaves like a Brownian particle.

The second ingredient to control the position of the front is stationary
inhomogeneities, for example, those of rate coefficients entering into (3.58).
They can pin the front on centers or amplify the motion out of repelling
regions. Reducing again the description to that of the front position, one
obtains a picture of a particle moving in an external force field.

As a “canonical” example, we introduce a double-well-shaped inhomo-
geneity, which should model two adjacent attracting inhomogeneities. This
kind of inhomogeneity is typical for a variety of physical situations [99–102].
Taking additional noise, we therefore obtain a Kramers problem for the front
position. Noise generates transitions of the interface between the two inho-
mogeneities. The rate of those will be of the Arrhenius type for sufficiently
strong inhomogeneities and if the distance between the two centers is large
compared to the front thickness.

The situation displayed above represents a good prototype for SR in
distributed systems if subject to temporal periodic forces. It was studied
in [103, 104] and also called solitonic stochastic resonance [105]. Since a mo-
tion of fronts is often accompanied with radiation it should be experimentally
accessible. One can imagine that the ordered hopping of fronts between pin-
ning centers can be employed as a technical device for transmitting periodic
signals and could deliver experimental data about the existing defects in the
present physical system.

The two adjacent regions attracting the front are introduced by an inho-
mogeneous term in (3.58). We assume a localized double well

h(r) = ε
(

−δ2r2/2 + r4/4 − 2δ4
)

, |r| < 2δ (3.61)

and 0 otherwise. The parameter δ stands for the distance between the two
wells and ε determines the depth. To achieve stability of the front profile, the
strength of the inhomogeneities εδ4 should be small, i.e., (2εδ4 � 1).
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To have stochastic resonance of the front motion the model is completed
by adding Gaussian white noise and periodic forces. In summary we obtain

τ
∂u

∂t
= 2u(1 − u2) + r2

0

∂2u

∂r2
+ 2h(r)u + A cos (Ωt + ϕ0) +

√
2Dξ(t). (3.62)

Fronts as Brownian Particles. The motion of fronts in dissipative bistable
media has many similarities to the motion of solitons [86,106–109]. As well as
solitons the solitary behavior of fronts has proven to be robust with respect to
slowly varying external fields and spatial perturbations having characteristic
length scales larger than the interface thickness of the front solution [110].
For relevant experiments, see, e.g., [111].

The front position R(t) may be defined by the location of the unstable
value, i.e., u

(

R(t), t
)

= u2. Derivation with respect to time yields

∂

∂t
u(R, t) +

∂

∂R
u(R, t) Ṙ = 0. (3.63)

Hence for the front velocity Ṙ it is sufficient to know the derivatives for
r = R(t).

Let φ = r−R(t) be the relative coordinate in the system of a resting front.
Multiplying (3.62) by the Goldstone mode u0

r(φ) with assumed stationarity
of the front u(r, t) → u0(φ) is one of several techniques used to reduce the
dynamics to R(t). Then in a first approximation all functions depend on time
via R(t). For sharp interfaces (ur(φ))2 is nonzero at the position of the front
r = R or φ = 0 only, and one can approximately write

∫ ∞

−∞
dr

∂u0

∂t

∂u0

∂r
=
∫ ∞

−∞
dr

∂u0(r,t)
∂t

∂u0(r,t)
∂r

(
∂u0

∂r

)2

≈ − Ṙ

∫ ∞

−∞
dr (u0

r )2.

(3.64)

As a result (3.62) and (3.64) yield the following first approximations:

τṘ =
2
∫ +∞
−∞ dru0

r(φ)u0h(r)
∫ +∞
−∞ dr(u0

r)2
+ Ã cos(Ωt + ϕ0) +

√

2D̃η(t), (3.65)

with rescaled noise intensity D̃ = 9r2
0D/4 and amplitude Ã = 3r0A/2; we can

recall that the deterministic velocity vanishes in the considered case, c = 0.
The first item may be formulated as an external force,

τṘ = −dUr0(R)
dR

+ Ã cos(Ωt + ϕ0) +
√

2D̃η(t). (3.66)

with potential still dependent on R(t) by φ(t) and defined by

−dUr0(R)
dR

=
3
2

∫ +∞

−∞
h(r)sech3(φ/r0) sinh(ξ/r0)dr. (3.67)
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Fig. 3.10. (a) Sketch of the front in the inhomogeneous potential h(r), see (3.61);
(b) The potential U(R) for δ = 4: r0 = 0.5 (dashed line), r0 = 1.0 (solid line),
r0 = 1.5 (dotted line)

This dependence can be calculated explicitly. Replacing in (3.65) the deriv-
ative u0

r(r − R) by −u0
R(r − R), this derivation can be brought out of the

integral. As a result the potential reads

Ur0(R) =
3r2

0

2

∫ +∞

−∞
h(r)

1
2r0

sech2[(r − R)/r0]dr, (3.68)

with constant contributions omitted.
For r0 → 0 the second expression under the integral is known to be a

representation of Dirac’s delta function, sech2[(r − R)/r0]/2r0 → δ(r − R).
In the limit of vanishing r0, it yields U0(R) = 3r2

0h(R)/2. The potential can
also be defined for nonvanishing r0. Substituting in (3.68) x = (r − R)/r0,
one is able to obtain (R < 2δ)

Ur0(R) =
3
2

εr2
0

[

−1
2

(

δ2 − 3r2
0π

12

)

R2 +
R4

4

]

. (3.69)

Since the inhomogeneous perturbation term h(r) has a double-well shape,
the potential Ur0(R) achieves a double-well structure as long as r0 is smaller
than 2δ/

√
π. If R > 2δ the potential is constant. The potential is shown for

different r0 in Fig. 3.10.

The Signal-to-Noise Ratio. The front behaves similarly to an overdamped
Brownian particle moving in a periodically modulated double-well potential.
We first estimate the mean escape rate from a metastable state of the poten-
tial (3.69) in the absence of the periodic field. For weak noise we use Kramers
formula (1.214), yielding

rK =
r2
0

2
√

2τπ
ε
(

4δ2 − πr2
0

)

exp
[

− 1
6D

τε
(

δ2 − π

4
r2
0

)2
]

. (3.70)

Insertion into the SNR expression from the two-state theory (3.20) leads to
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Fig. 3.11. (a) The SNR for three different values of r0: 1.5 (dashed); 1.0 (solid);
0.5 (dash-dotted); (b) Numerically determined SNR versus D for different values
of coupling strength: r2

0 = 1.5 (triangles), r2
0 = 1 (circles), r2

0 = 0.5 (squares). The
dashed line represents the theoretical estimation from adiabatic theory for r0 = 1.
Other parameters value are r0 = 1.0, D = 0.2, δ = 4, ε = 0.0005, A = 0.01, Ω = 0.1
and τ = 0.05

SNR =
A2τ2

6D2
√

2
ε
(

4δ2 − πr2
0

)

exp
(

− τε

6D

[

δ2 − π

4
r2
0

]2
)

. (3.71)

In Fig. 3.11a we present the theoretical curve. The maximum of the SNR is
located at

Dmax =
1
12

τε
(

δ2 − π

4
r2
0

)2

, (3.72)

which shifts with increasing coupling r0 to smaller values of D. Similar to the
case of array-enhanced SR the maximum increases with stronger coupling.

We note a good qualitative agreement with the results of the numerical
simulations (Fig. 3.11b). The weak dependence of the SNR on the coupling
strength r0 results from the increase of the interface of the front (see (3.60)]
if r0 is becoming larger. Fronts with finite interfaces are more sensitive to
fluctuations. The main result is a shift of the minimum of the effective po-
tential Ur0(R) if the interface thickness comes closer to the distance of the
minimum of the external inhomogeneity δ. Hence, for the front it becomes
easier to overcome the barrier between the two inhomogeneities. Therefore,
the mean escape rate increases with the increase in the coupling strength [see
e.g., (3.70)]. As a consequence the matching condition for SR (matching of
the mean escape time and a half-period of the periodic force) can be achieved
for a smaller noise intensity where the SNR peaks at higher values. Therefore,
the output SNR should increase with an increase in the coupling strength.
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3.1.6 Doubly Stochastic Resonance in Systems
with Noise-Induced Phase Transition

This section connects SR with noise-induced phase transitions in systems with
multiplicative noise. Such kind of noise was intensively investigated in the
1970s and 1980s in time-dependent dynamics. As shown in the Chap. 1 (1.161)
multiplicative noise yields the appearance of new maxima in the probability
distribution without counterparts in the deterministic description [4]. The
excitation of noise-induced oscillations [112–114] also belongs to this class of
zero-dimensional systems.

Creation of a noise-induced mean field in spatially extended systems is an-
other new example where noise supports spatial structure formation [98,115–
133]. Various experimental applications are proposed in [134–136,138,139]. A
good description of the various noise-induced inhomogeneous structures can
be found in [98] and references therein.

It is well known that a noise-induced bistability in zero-dimensional sys-
tems is unable to serve as a stochastic resonator. The effective barriers defin-
ing the escape rates between the two states are too small to respond signif-
icantly to the variation of a signal and an external noise. However, as was
reported in [141], bistable noise-induced states in extended systems possess
time scales sufficiently separated from relaxation times. This is due to an
existing strong interaction between the coupled or neighboring cells in the
medium, which also serves as one of the conditions for a noise-induced phase
transition.

We briefly sketch a periodically driven system with two noise-induced
phases. An additive noise controls the escape time between the two states.
The SR occurring is called doubly stochastic resonance since the phases are
due to the multiplicative noise and the additive noise exhibits the SR.

Noise-Induced Phase Transitions. First we address the occurrence of
noise-induced phase transitions. For this purpose a nonlinear lattice of cou-
pled stochastic overdamped oscillators is studied [120,126,131]:

ẋi = f(xi) +
√

2Dmg(xi)ξi(t) +
γ

2d

∑

j

(xj − xi) +
√

2Daζi(t). (3.73)

In this coupled set of Langevin equations xi(t) represents the state of the ith
oscillator. i = 1, ..., Ld labels N = Ld cells of a cubic lattice with size L in d
dimensions. The sum in (3.73) runs over nearest neighbors, with γ being the
strength of the coupling. ξi(t) and ζi(t) are mutually uncorrelated Gaussian
noise sources, with zero mean and uncorrelated both in space and time,

〈ξi(t)ξj(t′)〉 = δi,jδ(t − t′), 〈ζi(t)ζj(t′)〉 = δi,jδ(t − t′), (3.74)

The first is multiplicative noise responsible for the phase transition; the sec-
ond is the additive noise which controls the escape times between the two
attracting states induced by the multiplicative noise.

The functions f(x) and g(x) are specified to be of the form [120]
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f(x) = −x(1 + x2)2, g(x) = 1 + x2. (3.75)

We point out that this kind of dynamics does not create new maxima in a
zero-dimensional system.

The model (3.73) can be handled analytically within mean-field theory
[90, 98]. This mean-field approximation consists in the replacement of the
neighboring states xj by the global average of the system m. In this way,
one obtains a one-dimensional FPE parametrically dependent on m and,
hence, including a symmetry break. Assuming a quick relaxation to a value
m = const. the following steady-state probability distribution Pst is obtained:

Pst(x,m) =
C(m)

√

Dmg2(x) + Da

exp





x∫

0

f(y) − γ(y − m)
Dmg2(y) + Da

dy



 . (3.76)

C(m) is a normalization constant. Afterwards, the mean field m is determined
self-consistently by

m =
∫ ∞

−∞
xPst(x,m) dx, (3.77)

which is the equation of definition of m with dependences on the noise and
coupling intensities.

Solving (3.77) numerically with respect to m, one determines transitions
between ordered (m �= 0) and disordered (m = 0) phases. Transition bound-
aries between different phases are shown in Fig. 3.12 and the corresponding
dependence of the order parameter on Dm is presented in Fig. 3.13. The in-
fluence of additive noise results in a shift of this line as shown. For Da = 0
an increase in the multiplicative noise causes a disorder–order phase transi-
tion, which is followed by the reentrant transition to disorder [120]. In the
ordered phase the system occupies one of two symmetric possible states with

0 2 4 6 8 10
2Dm

5

10

15

20

γ
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2

3

Fig. 3.12. Transition lines between ordered and disordered phases on the plane
(Dm; γ) for different intensities of additive noise: Da = 0 (1), 0.5 (2), and 2.5
(3). A mean field different from zero exists above the curves shown. The black dot
corresponds to γ = 20, Dm = 1.5
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Fig. 3.13. The order parameter |m| versus the intensity of multiplicative noise for
γ = 20 and Da = 0 (1), 0.5 (2), and 2.5 (3)

the mean fields m1 = −m2 �= 0, depending on initial conditions. We under-
line that although the phase transition is created by multiplicative noise this
phenomenon is quite different from the case of zero-dimensional systems and
disappears with vanishing coupling.

Doubly Stochastic Resonance. Now let us turn to the problem of how
the system (3.73) responds to periodic forcing:

ẋi = f(xi)+
√

2Dmg(xi)ξi(t)+
γ

2d

∑

j

(xj−xi)+
√

2Daζi(t)+A cos(Ωt+ϕ0),

(3.78)

with amplitude A, frequency Ω and random initial phase ϕ. In [141] a set
of parameters (Dm; γ) was taken within the region of two coexisting ordered
states with nonzero mean field, in particular, values given by the dot in
Fig. 3.12 were chosen. Simulations were performed on a two-dimensional lat-
tice of L2 = 18 × 18 oscillators under the action of the harmonic external
force. Runs were averaged over equally distributed initial phases.

Time series of the mean field and the corresponding periodic input signal
are plotted in Fig. 3.14 for three different values of Da. The current mean

field is calculated as m(t) =
1
L2

N∑

i=1

xi(t). The series resembles a picture of

SR. For small values of Da transitions between the two symmetric states m1

and m2 are rather seldom without relation to the external force. For medium
noise the transitions occur with the periodicity of the external force. If Da is
increased further, the ordered time sequence is destroyed.

Figure 3.14 illustrates that additive noise is able to optimize the signal
processing in the system (3.78). In order to characterize this SR effect the
SNR from the power spectral density S(ω) was computed. Its dependence on
the intensity of the additive noise is shown in the Fig. 3.15; its dependence
is also shown in a two-state approximation where m(t) was approximately
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Fig. 3.14. Example of input/output synchronization. The time evolution of the
current mean field (output) and the periodic external force F (t) (input) for different
intensities of additive noise (from top to bottom): Da = 0.005, 0.5 and 2.5. If the
intensity of the additive noise is close to their optimal value (middle row), hops
occur with the period of the external force. The remaining parameters are A = 0.1,
Ω = 0.1, γ = 20 and Dm = 1.5

replaced by m(t) = +1 or m(t) = −1, respectively. Both curves exhibit the
well- known bell-shaped dependence on Da typical for SR.

The Effective Potential and the Signal-to-Noise Ratio. Let us first ad-
dress the situation without signal and additive noise when A and Da vanish.
In the case of strong coupling the first moment can be regarded as homoge-
neous and its time evolution is given by the drift part in the corresponding
FPE:

〈ẋ〉 = 〈f(x)〉 + Dm〈g(x)g′(x)〉. (3.79)

The mechanism of the noise-induced transition in coupled systems can be
explained by means of a short-term evolution approximation [126]. Starting
with an initial Dirac δ-function the dynamics are as follows:



3.1 Stochastic Resonance 335

0 1 2 3 4 5
2Da

0

50

100

S
N

R
, S

N
R

N

Fig. 3.15. The dependence of SNR on the additive noise intensity from numer-
ical simulations (solid circles for the continuous dynamics and open circles for a
two-state approximation) compared to the analytical estimation SNRN (solid line),
parameters as in Fig. 3.14, and the processing gain G = 0.7

ṁ = f(m) + Dmg(m)g′(m), (3.80)

where averages of products were replaced by the products of averages. It is
valid if f(〈x〉) � 〈δx2〉f ′′(〈x〉). This required suppression of fluctuations is
again due to the strong coupling [128]. The behavior is well approximated by
Gaussian distributions whose maxima follow (3.80), which is an equation of
dissipative dynamics with one or three fixed points.

In addition, an effective potential Ueff(m) can be introduced:

Ueff(m) = U0(m) + Unoise = −
∫ m

dm′ f(m′) − Dmg2(m)
2

, (3.81)

where U0(m) is a monostable potential. Unoise represents the influence of
the multiplicative noise and exhibits bimodality of the potential above a
critical value of Dm in this approximative picture. We can see the strong
similarity of the potential (3.81) with the effective potential of a Mathieu–
Kapiza pendulum [142].

Returning to the additively driven situation with small amplitudes A and
varying noise Da a typical SR situation arises. Let us look at a sufficiently
large multiplicative noise. It implies that transition times between the two
noise-induced states without additive noise are much larger than the period
of the driving force Tper = 2π/Ω. Of course, an increase in additive noise will
reduce the escape times, and if they are of the order of the period SR occurs.

Application of the adiabatic two-state theory [61] neglecting again in-
trawell dynamics yields in LRT the SNR as

SNR1 =
πA2

D2
a

rK, (3.82)

where rK is the Kramers rate,
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rK =

√

U ′′
eff(mmin)|U ′′

eff(mmax)|
2π

exp
(

− ∆Ueff

Da

)

, (3.83)

for surmounting the potential barrier ∆Ueff by additive noise. Further, rescal-
ing this value by the number of oscillators N in the lattice [78] and taking
into account the processing gain G and the bandwidth ∆ in the power spec-
trum [61], the SNRN of the N elements reads

SNRN = SNR1
NG

∆
+ 1. (3.84)

This dependence is shown in the Fig. 3.15 and demonstrates good agree-
ment with the results of the numerical simulations despite the rough approx-
imation. Nearly exact agreement is found at the location of the maximum as
well as for the quantitative values of the SNR.

It should be remarked that additive noise also changes the properties
of the effectively bistable system (see Figs. 3.12 and 3.13) which leads to
limitations. As a consequence, the amplitude of the output decreases, and
even bistability might disappear for large noise intensities Da. Experimental
realizations of this interesting topic were proposed in [143].

3.1.7 Stochastic Resonance for Signals with a Complex Spectrum

In the majority of studies on SR the external force is a harmonic signal of
small amplitude. Hence, a natural problem arises in studying the system re-
sponse to multifrequency and noisy signals. This is especially important for
biological and engineering applications. Signals recognized by living organ-
isms are often noisy and may not contain strongly periodic components. An
investigation of the system response to a quasiharmonic signal with a finite
spectral linewidth, resulting from the fluctuation contribution, seems to be
more realistic.

An advantage of LRT is that it can be naturally extended to the case of
signals with a complex spectral composition [144]. The spectral density at
the output takes the form

Gx,x(ω) = G(0)
x,x(ω) + |χ(ω)|2 Gs,s(ω), (3.85)

where Gs,s(ω) is the spectrum of the signal. Below we shall discuss a series
of examples which are of practical importance.

Response of a Stochastic Bistable System to Multifrequency Sig-
nals. Let us consider a weak signal possessing a discrete spectrum. The ex-
ternal force s(t) can be represented in the form of a Fourier series

s(t) = A

M∑

k=1

bk cos Ωkt , (3.86)

where Abk � 1 are the small amplitudes of the harmonics, and Ωk are their
frequencies. According to LRT the system response is
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〈x(t)〉 = A

M∑

k=1

bk|χ(Ωk, D)| cos [(Ωk + ψk) t]. (3.87)

The response 〈x(t)〉 (3.87) contains the same spectral components (3.86) but
with different amplitudes and phases. In (3.87) phase shifts ψk for each har-
monic are given via the susceptibility as

ψk(Ωk, D) = − arctan
Im χ(Ωk, D)
Re χ(Ωk, D)

. (3.88)

In accordance with LRT, SR measures, such as the SPA and the SNR, are
determined as follows [51,64]:

η (Ωk, D) = |χ(Ωk, D)|2, (3.89)

SNR (Ωk, D) =
π (Abk)2|χ(Ωk, D)|2

G
(0)
x,x(Ωk, D)

. (3.90)

The frequency dependence of the susceptibility provides frequency dis-
tortions of the output signal. The magnitudes of those distortions can be
estimated by using the ratio of the amplitudes of different harmonics at the
output and at the input:

E(Ωk, Ωj , D) =
|χ(Ωk, D)|
|χ(Ωj , D)| . (3.91)

As follows from (3.33-35), the overdamped bistable oscillator (3.3) rep-
resents an amplifier with low-frequency filtering of a signal at the output.
The parameters of such an amplifier (the SPA and the SNR) are controlled
by the intensity of an external noise. A question arises: Is it possible, using
such a device, to provide an amplification of information- carrying signals
(for instance, amplitude- and frequency-modulated signals) without signif-
icant distortions? This problem has been discussed in [145, 146], where an
affirmative answer has been given to this question. If the signal is weak and
if its effective frequency range does not exceed 25% of the carrier frequency,
then all the frequency components of the signal will be amplified almost simi-
larly and the output signal will contain practically no linear distortions [147].
Evidently, the requirements for undistorted amplification impose special re-
strictions on the frequency range of amplitude modulation (or on the index of
frequency modulation), which determine an effective width of the frequency
range of the information signal.

Stochastic Resonance for Signals with a Finite Spectral Linewidth.
Actual periodic signals always possess a finite spectral linewidth due to the
presence of amplitude and phase fluctuations of the oscillator. Will SR be
observed for such signals and which features may it lead to if one takes into
account the finite width of the spectrum? The answer to these questions is
of great importance in practical applications.
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As a model of a signal with a finite spectral line width we took so-
called “harmonic noise” [148–154]. Harmonic noise is represented by a two-
dimensional Ornstein–Uhlenbeck process and is governed by the system of
two stochastic differential equations (SDE):

ṡ = y, ẏ = −Γy − Ω2 s +
√

2εΓ ξ2(t), (3.92)

where ξ(t) is a Gaussian white noise, 〈ξ2(t)ξ2(t′)〉 = δ(t − t′), Γ is the para-
meter of dissipation, and ε is the intensity of harmonic noise. The spectral
density Gs,s(ω) is known and has a Lorenzian shape:

Gs,s(ω) =
2ε Γ

ω2Γ 2 + (ω2 − Ω2)2
. (3.93)

For Ω > Γ/2, the spectral density (3.93) possesses a peak at the frequency

ωp =
√

Ω2 − Γ 2/2 (3.94)

and is characterized by the width ∆ωin determined at the half height of the
peak maximum:

∆ωin =
√

ω2
p + Γω1 −

√

ω2
p − Γω1, ω1 =

√

Ω2 − Γ 2/4. (3.95)

Another quantity characterizing the spectrum (3.93) is the quality factor of
the spectrum. It is defined as the ratio of the peak frequency to the spectral
width ∆ω:

Qin =
ωp

√

ω2
p + Γω1 −

√

ω2
p − Γω1

. (3.96)

Let us turn again to the bistable overdamped oscillator that is governed
by the SDE [55]:

ẋ = x − x3 +
√

2D ξ1(t) + s(t) (3.97)

with ξ1(t)being independent of ξ2(t). SDE (3.92) and (3.97) represent a three-
dimensional Markovian process, for which the following FPE for the proba-
bility density p(x, s, y, t) is valid:

∂ p

∂ t
= − ∂

∂ x
[(x − x3 + s) p ] − ∂

∂ s
(y p) +

∂

∂ y
[(Γ s + Ω2 y) p ]

+ D
∂2 p

∂ x2
+ ε Γ

∂2 p

∂ y2
. (3.98)

The previous case (3.4) corresponds to a random process inhomogeneous in
time, while the FPE (3.98) describes a homogeneous random process, which
has the stationary statistical characteristics.

In a weak signal approximation ε � 1, and according to LRT the expres-
sion for the spectral density at the output is

Gx,x(ω) = G(0)
x,x(ω, D) + |χ(ω, D)|2 Gs,s(ω). (3.99)
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Fig. 3.16. The spectral power density at the output and at the input (circles) for
different values of the noise intensity. The parameters of the harmonic noise are
ε = 10−3, Ω = 0.2 and Γ = 0.008

We take into consideration only the global dynamics of switchings between
the potential wells in the SR regime. With this, the susceptibility and the
correlation function of the unperturbed system are given by (3.33) and (3.30),
respectively. Hence, the spectral density at the output of the bistable system
reads

Gx,x(ω) =
2〈x2〉stλm

ω2 + λ2

(

1 +
〈x2〉stλm

D2

ε Γ

ω2Γ 2 + (ω2 − Ω2)2

)

. (3.100)

As seen from Fig. 3.16, the spectrum of the output signal also attains a max-
imum at a certain frequency ωm. It is clear that SR is realized for harmonic
noise, i.e., the peak height is maximal at a certain optimal noise intensity, D.

Let us explore in more detail the properties of the output spectrum. Since
the amplitude–frequency properties of the bistable oscillator significantly de-
pend on the noise intensity, the frequency ωm at which a peak appears in the
output spectrum and the spectral width ∆ωout also become functions of D.
To quantify the parameters of the output spectrum we introduce the quantity
R as the ratio between the spectral widths at the output ∆ωout and at the
input ∆ωin:

R(D) =
∆ωout(D)

∆ωin
. (3.101)

This quantity is determined from the expression for the spectral density
(3.100).

The relative spectral linewidth R possesses its minimum at a certain noise
intensity, as seen from Fig. 3.17a. The magnitude of this intensity depends on
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Fig. 3.17. (a) Relative spectral linewidth R and (b) the SNR (3.103) as functions
of the noise intensity for different values of Γ . The parameters of the harmonic
noise are ε = 10−3 and Ω = 0.2

the damping coefficient Γ . When Γ is decreased these dependences disappear.
For a signal in the form of harmonic noise, a certain ambiguity appears in the
SNR definition, because the signal itself is a narrow-band random process.
Let us introduce another characteristic, namely, the product of the quality
factor Qout and the peak height h:

C(D) = Qout(D) · h(D), (3.102)

which is called the measure of coherence. The dependence of the coherence
measure C(D) on the noise intensity has a characteristic maximum typical
for the SR phenomenon. The amplification of SR is achieved by increasing
the quality factor of the input signal.

In this case the SNR can be defined, for instance, as the ratio of the peak
height to the value of the unperturbed spectral density at the peak frequency:

SNR = 1 +
〈x2〉stλm

D2

ε Γ

ω2
mΓ 2 + (ω2

m − Ω2)2
. (3.103)

Its dependence on noise intensity D shown in Fig. 3.17b demonstrates a
maximum typical for SR.

Aperiodic Stochastic Resonance. The notion of stochastic resonance can
be extended to purely stochastic signals. This has been done in [155], and the
effect was termed aperiodic stochastic resonance(ASR). In this case, when the
spectral density of the signal does not possess any peaks, the input–output
cross-correlation functions must be used rather than conventional measures
of SR, e.g., the SPA and the SNR.

For a weak aperiodic signal s(t), LRT can be used for ASR [156]. In the
limit of LRT the spectral density at the output Gx,x(ω) is given by (3.85),
while the cross-spectrum Gs,x(ω) between input and output is defined as
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Gs,x(ω) = χ(ω)Gs,s(ω), (3.104)

where χ(ω) is the susceptibility of the system. The measure of ASR, that is
the correlation coefficient, is thus given by

C =

〈

s x
〉

√
〈

x2
〉〈

s2
〉 , (3.105)

where
〈

s x
〉

=
∫∞
0

Gs,x(ω)dω. In particular, for the symmetric stochastic
bistable system with the susceptibility (3.33) and an exponentially correlated
Gaussian signal s(t) (Ornstein-Uhlenbeck-process, see Sect. 1.2.3) with the
spectral density Gs,s(ω) = γQ/(γ2 + ω2), we obtain the following simple
expression for the correlation coefficient (in the limit of weak signal, Q → 0)
[156]:

C =
λmQ

D(γ + λm)
, (3.106)

where λm is due to (3.29). The coefficient of correlation (3.106) possesses a
single maximum as a function of noise intensity D and therefore reflects ASR.
Enhancement of Stochastic Resonance by Additional Noise. In [157,
158] the application of two different signals onto the noisy dynamics has
aimed at controlling SR. As it was shown two harmonic inputs with the same
frequency and both modulating the system’s threshold are able to enhance
a variety of different behaviors. A change of the phase shift between the two
signals evokes either enhancement or suppression of the response.

The known ability to manipulate the rates of a stochastic threshold system
by dichotomic noise [159, 160] opens another possibility of controlling SR.
In this case two uncorrelated inputs are used [161]. A first quick telegraph
signal affects the rates of the noisy nonlinear system, causing a better or
worse amplification of the second harmonic signal at lower frequencies.

In fact, the model possesses two statistically independent noise sources:
(i) “thermal” white noise, which is responsible for stochastic switching be-
tween metastable states, and (ii) dichotomic noise, influencing the switching
events between states of the system. The magnitude of dichotomic noise is
always small, so that it cannot induce transitions by itself, and the presence
of thermal noise is always necessary.

Analysis in a bistable system can be performed by reducing it to again
two symmetric states σ(t) = ±1, which represent position of a particle in the
right or left well of a bistable potential with barrier ∆U . Dichotomic noise
λ(t) = ±1 with magnitude B and flipping rate 0 < γ � a0 modifies the
transition rate [162,163]:

W0(σ, λ) = a0 exp
(

−∆U + σλ B

D

)

. (3.107)

We obtained a 4-state system with two states each for the output and input.
It is described by the master equation
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d
dt

p(σ λ) = −W0(σ, λ) p(σ, λ) + W0(−σ, λ) p(−σ, λ) + γ [p(σ,−λ) − p(σ, λ)] .

(3.108)
The next step is to add a weak periodic signal s(t) = A cos(Ωt + ϕ0). For

sufficiently slow (Ω < γ � a0) and weak A � ∆U − B the harmonic force
leads to the following time-dependent rates in LRT [161]:

W (σ, λ) = W0 exp
(

−Aσ

D
cos(Ωt + ϕ0)

)

≈ W0

(

1 − Aσ

D
cos(Ωt + ϕ0)

)

.

(3.109)
The autocorrelation function with an amplitude-independent noise part and
signal part of order ∝ (A/D)2 can be obtained from the equations for the con-
ditioned mean and for the cross-correlation function 〈σ(t)λ(t′)〉. Both have
to be solved with the initial conditions

〈

σ(t)2
〉

= 1 and the stationary corre-
lator [162]

〈

σλ
〉

stat
=

a2 − a1

a1 + a2 + 2γ
. (3.110)

In the latter expression we have introduced the abbreviations (a0 = 1)

a1,2 = exp [−(∆U ± B)/D] . (3.111)

This autocorrelation function yields after averaging over the initial phase ϕ0

and after a Fourier transform the power spectrum Gσ,σ(ω) = G
(0)
σ,σ(ω) +

A2πηδ(ω − Ω) [161] with the background

G(0)
σ,σ(ω) = 4

a1 + a2

(a1 + a2)2 + ω2

(

1 +
(a2 − a1)2

4γ2 + ω2

)

− 4
(a2 − a1)2

(a1 + a2 + 2γ)(4γ2 + ω2)
(3.112)

and the SPA

η =
1

D2

(

a1 + a2 −
(a2 − a1)2

(a1 + a2 + 2γ)

)2 1
(a1 + a2)2 + Ω2

. (3.113)

The SPA and the SNR are presented in Fig. 3.18 versus thermal noise
intensity for fixed values of the flipping rate γ and the signal frequency Ω
but for different values of the magnitude of dichotomic noise. We immediately
conclude that both the SPA and the SNR are enhanced for a large enough B in
comparison with the conventional case, when dichotomic noise is absent (B =
0). The optimal value of the noise intensity which maximizes SPA and SNR
shifts towards smaller values with increasing magnitude of dichotomic noise.
Moreover, the behavior of the SPA and the SNR versus thermal noise intensity
is qualitatively different from the conventional case, as both measures possess
two maxima.

An interpretation of the enhancement as well as of the two maxima can
be given by looking at the mean escape rate between the two states when
perturbed by a dichotomic process [159,160]. For this purpose it is useful to
consider two limiting cases. For a fast dichotomic noise the escape is mainly
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Fig. 3.18. (a) SPA and (b) SNR versus noise intensity D for different values of the
magnitude of dichotomic noise B: B = 0 (dashed line), B = 0.1 (dash-dotted line),
B = 0.2 (dotted line) and B = 0.24 (solid line). Other parameters are γ = 0.1 and
Ω = 0.001

governed by the larger rate a2 with the lowered barrier ∆U − B. At lower
barriers the merging condition between the input frequency shifts to a smaller
noise level, with a better performance, as shown previously for the two-state
model. That is why SR is greatly enhanced. This explains the first enhanced
maximum in the SPA and SNR. In contrast, for vanishingly slow dichotomic
noise and large noise intensity with γ � a1, a2 the system performs many
transitions in a static asymmetric potential during one round-trip of the
dichotomic noise. Forward and backward transitions occur together with a
common rate ∝ exp(−∆U/D)/ cosh(B/D) ≈ a1. This explains the second
maximum. But it is known that SR is gradually suppressed with the increase
in asymmetry of a bistable system and that the position of the maximum
does not depend on signal frequency [164].

3.1.8 Stochastic Resonance in Chaotic Systems
with Coexisting Attractors

One of the typical properties of systems demonstrating dynamical chaos is
the coexistence of different attractors in phase space [165]. Basins of attrac-
tion of coexisting attractors are separated by separatrix hypersurfaces in the
phase space. Without external noise a phase trajectory belongs to either one
or the other attractor depending on the initial conditions. The influence of
external noise leads to the appearance of random switchings between coex-
isting attractors of the system. The statistics of these switchings is defined
by the properties of the noise and the DS.

A theoretical consideration of the influence of external noise on the
regimes of dynamical chaos is available in the limits of small [166, 167] and
large [168] Gaussian noise. The theory of random perturbations of DS [169]
is based on the notion of a quasipotential and has been extended to systems
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with complex dynamics [170–172]. Suppose that a DS has an attractor and
for the latter there exists an invariant probability measure. Let the system
be subjected to a weak Gaussian noise with intensity D and be described by
the set of SDE

ẋi = fi(x) + ξi(t), i = 1, . . . , N, (3.114)

where 〈ξi(t)ξj(0)〉 = 2D δi,jδ(t). Then the stationary probability density p(x)
can be written via the quasipotential (or nonequilibrium potential) Φ(x) as
follows:

p(x) ∝ exp
(

−Φ(x)
D

)

. (3.115)

The quasipotential, being an analog of the free energy for the nonequilibrium
stationary state [173], depends only on the state variables and the parameters
of the system and not on the noise intensity D. The quasipotential takes its
minimal values on the attractor. If a few attractors coexist in the phase space
of the system Φ(x) possesses local minima corresponding to these attractors.
In this case for a weak noise we may formulate the Kramers problem of escape
from the basin of attraction of an attractor. For D � 1, the motion of a sys-
tem involves a slow time scale related to the mean escape time from the basin
of attraction of the attractor. The dependence of the mean escape time upon
the noise intensity is characterized by an exponential law τ ∝ exp(∆Φ/D). If
additionally to external noise we apply a weak periodic signal to the system,
which cannot evoke transitions between attractors in the absence of noise,
the phenomenon of SR should be observed [46,47].

A principally different effect called deterministic stochastic resonance has
been recently revealed for systems with chaotic dynamics [46,47]. It is known
that with the variation of control parameters of a nonhyperbolic system a
crisis of its attractors may occur. As an example we can mention here the
phenomenon of two attractors merging, leading to a “chaos–chaos” dynamical
intermittency [174]. In this case a phase trajectory spends a long time on each
of the merged attractors and rarely makes irregular transitions between them.
We note that such random-like switchings occur in the absence of external
noise and are controlled via the deterministic law [175,176]. For the systems
with “chaos–chaos” intermittency, the mean residence time Ti of a phase
trajectory to be on an attractor obeys a universal scaling law [175,177]:

Ti ∝ (a − acr)γ , (3.116)

where a is a control parameter, acr is its bifurcation value at which a crisis
occurs and corresponds to the onset of intermittency and γ is the scaling
exponent. Hence, in this case the control parameter plays the role of noise
intensity. It controls a slow time scale and, consequently, the spectral prop-
erties of the system [177]. If the system is driven by a slow periodic signal,
then via variation of its control parameter, one can obtain a situation in
which the driving period and the mean time of switching from one attractor
to the other one coincide, i.e. the conditions of SR are realized. Note that



3.1 Stochastic Resonance 345

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x

0.00

0.05

0.10

p
(x

)

a=2.5
p(x)

x −2.0 −1.0 0.0 1.0 2.0
x

0.00

0.01

0.02

p
(x

)

a=2.84
p(x)

x
a b

Fig. 3.19. Stationary probability distribution density of trajectories on the attrac-
tors of map (3.117) with A = D = 0, b = 10 for the parameter a values: (a) 2.5 and
(b) 2.84

the regimes of dynamical intermittency exhibit an exponential sensitivity to
external noise [176, 177], which makes a realization of the conventional SR
possible.

We shall illustrate deterministic SR using a simple example of a discrete
system demonstrating a crisis of chaotic attractors:

xn+1 = (axn − x3
n) exp(−x2

n/b) + A sin Ωn +
√

Dξ(n). (3.117)

The system (3.117) is a one-dimensional cubic map driven by a weak periodic
signal (A � 1) and a delta-correlated noise of intensity D. The exponential
term is introduced to prevent escape of phase trajectories to infinity.

Let us describe the behavior of the unperturbed map (A = D = 0). At
a < acr = 2.839 . . ., two chaotic attractors are separated by the saddle point
xn = 0 and coexist in the phase space of the system. At a = acr, these
attractors merge with the onset of “chaos–chaos” dynamical intermittency,
as seen in Fig. 3.19.

First we study the conventional SR before the crisis a < acr, when the
switching events occur due to external noise. As seen from the numerical
results in Fig. 3.20a, both the SPA and the SNR pass through a maximum
at optimal noise levels. The simulations have confirmed that the Kramers
rate is close to the external signal frequency at the optimal noise intensity
D = Dopt.

Now we exclude noise (D = 0) and consider the system reaction to pe-
riodic disturbance in the regime of “chaos–chaos” intermittency, when the
parameter a is slightly larger than its critical value, a > acr. According to
simulations, the mean switching frequency monotonically increases with in-
creasing parameter a. Figure 3.20b shows the dependences of the SPA and the
SNR on a. The graphs illustrate the effect of deterministic SR, i.e., maxima
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of the SPA and the SNR can be obtained by tuning the control parameter
in the range 2.85 < a < 2.88, when the Kramers rate matches the external
signal frequency.

The effects described above have a generic character, which was verified
by numerical simulations of various discrete and flow systems demonstrat-
ing both noise-induced intermittency and a crisis [46]. As an example we
discuss SR in the Lorenz model [178] in the regime of noise-induced inter-
mittency. The Lorenz system is a suitable model for studying the influence
of noise, since noise sources can be included into the equations of motion
using fluctuation–dissipation relations [179]. The ergodicity of a stochastic
Lorenz model has been proved in [180]. Furthermore, in the system para-
meter space there are regions of the Lorenz attractor and a nonhyperbolic
attractor [181]. The stochastic Lorenz model is described by the following
system of SDE:

ẋ = −σ x + σ y + ξ1(t),
ẏ = −y + r x − x z + ξ2(t), (3.118)
ż = −b z + x y + ξ3(t),
〈ξi(t)ξj(0)〉 = D δi,j δ(t).

With standard parameter values σ = 10, r = 210, b = 8/3, correspond-
ing to the existence of a nonhyperbolic attractor, noise induces “chaos–
chaos” intermittent behavior of switchings between two symmetric attrac-
tors [182].

In the absence of noise, two symmetric attractors are realized in the sys-
tem for different initial conditions. When D �= 0, these attractors merge. For
small noise intensities the phase trajectory is retained on each of the attrac-
tors for a long time and rarely makes transitions between them. As a result,
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there appears a slow time scale – the mean residence time of the phase tra-
jectory to be on each of the merged attractors. For D � 1 this time scale
depends on the noise intensity according to the Arrhenius law. Evidently, the
presence of the slow time scale leads to a qualitative change in the struc-
ture of the power spectrum which evolves to the low-frequency domain. Its
low-frequency part has a Lorentzian shape [182].

Neglecting the local chaotic dynamics on these attractors and taking into
consideration only the switchings between them (two-state approximation),
the correlation function exponentially decreases: cx,x(τ) ∝ exp

(

− 2r(D)
)

,
where r(D) is the mean escape rate from the effective potential well. The
susceptibility of the Lorenz system can be estimated by the same expression
as for the overdamped bistable oscillator.

Add a weak periodic signal A sin(Ωt) to the first equation of the set
(3.118). In this case the spectral density will contain a delta-peak at the
signal frequency.

The simplest estimate for the SNR at the system output is

SNR ∝ r(D)
D2

=
1

D2
exp

(

−∆Φ

D

)

, (3.119)

where ∆Φ is the barrier height of the corresponding effective potential.
Numerical calculations of the SNR based on (3.118) and (3.119) are pre-

sented in Fig. 3.21. As seen from the figure, the expression (3.119) is rather
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Fig. 3.21. SNR as a function of the noise intensity for the Lorenz system at A =
1.0, Ω = 0.1. The numerical results are shown by circles; the solid line corresponds
to the results of an approximation using (3.119) with ∆Φ = 0.24
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universal and describes the SNR for simple bistable systems as well as for sys-
tems with complex dynamics. Note that the Lorenz model can be transformed
into the form of a bistable oscillator with inertial nonlinearity [165,183]:

ü + γ u̇ + u3 + (v − 1)u = 0, v̇ = h (βu2 − α v), (3.120)

where γ = (1 + σ)/
√

σ(r − 1), h = (r − 1)−1/2, β = (2σ − b)/
√

σ and
α = b/

√
σ. For large values r � 1, variable v(t) is slow and after excluding

it from (3.120) we arrive at the equation for a bistable inertial oscillator no
longer containing the nonlinear inertial term:

ü + γ u̇ +
α + β

α
u3 − u = 0. (3.121)

Thus, in the limit of large r the Lorenz system can be described in terms of
a bistable oscillator. This fact guarantees the existence of SR.

3.1.9 Analog Simulation

SR has now been repeatedly observed in a large variety of experiments. The
very first experimental verification of the SR phenomenon was realized in
an electronic circuit, in a simple Schmitt trigger [19], and in a bistable ring
laser [20]. Since then, SR has been verified experimentally in different bistable
systems [58]. In the majority of the experimental works the dependences of
the SNR on the noise intensity at the system output were measured and then
compared with theoretical conclusions. This is obvious since the definition of
SR is based on the shape of this dependence.

As has been shown above, the SR effect is also characterized by the reso-
nant dependence of the amplification factor of the input signal on the noise
intensity [see (3.17) and (3.35)]. In connection with this we consider the ex-
perimental results for the amplification coefficient of a harmonic signal of
small amplitude with the variation of noise intensity in an electronic circuit
modeling the classical bistable oscillator (3.3) [184–186]. A schematic of the
electronic circuit corresponding to (3.3) is given in Fig. 3.22. The scheme
consists of operational amplifiers D1 − D4, resistors R0 − R8, capacitor C
and two anti-phase connected diodes. The input signal in the form of a sum
of harmonic A sin(2πft) and noisy ξ(t) signals is applied to resistor R1. Both
signals are fed into the simulation circuit by means of suitable voltage gener-
ators. The system response x(t) is measured at the output of the scheme. The
main point of this experiment is to approximate the nonlinear function which
describes the shape of a bistable potential U(x). The anti-phase connection
of two identical diodes and a suitable selection of resistors in the scheme pro-
vided the possibility to model the characteristic which approximates with a
high level of accuracy the classical bistable potential in the interval of state
variable variation −1.5 < x < 1.5 (variable x is normalized):

−dU(x)
dx

= ax − bx3. (3.122)
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Fig. 3.22. Electronic analog for the overdamped bistable oscillator. Values of
scheme elements are R0 − 5.11 kΩ, R1,4,6 − 10 kΩ, R2 − 51.2 kΩ, R3 − 2.2 kΩ, R5 −
0.5 kΩ, R7 − 1.1 kΩ, R8 − 57 kΩ, C = 150

In this equation the coefficient a depends on the resistor R2 values and the
coefficient b is determined by the values of resistors R3, R5 and R8 [186].

To compare correctly the experimental and theoretical (3.17) results, one
needs to ensure that the condition of the adiabatic approximation is fulfilled,
i.e.,

2πf � τ−1 = U ′′(xmin), (3.123)

where τ is the relaxation time of the oscillator (3.3). The external force period
must be significantly larger than the relaxation time. In this case we can apply
the two-state approach. The condition (3.123) imposes certain restrictions on
the coefficients a and b in (3.122) and, consequently, on the resistors values.
For the values indicated in Fig. 3.22, from (3.123) it follows that the external
frequency must be bounded, e.g., f � 12.5 kHz. This restriction was also
found in experiments.

Theoretical and experimental dependencies of the amplification coeffi-
cient versus noise intensity and external frequency are in good qualitative
agreement with each other but differ quantitatively due to the error of mea-
surement of about ±5% (see Fig. 3.23a). It should be noted, however, that
these differences exceed on average the indicated experimental error for at
least two reasons: (i) the nonlinear characteristics of the scheme are differ-
ent from the cubic polynomial (3.122), although special measurements have
shown that this difference is minor in the operating range |x| ≤ 2 (it does not
exceed 1%); (ii) the influence of internal noise of the scheme has not been
taken into account in experiments. The direct numerical simulation of the
system (3.3) dynamics allows one to exclude the reasons mentioned above.
Numerical results are shown in Fig. 3.23b in comparison with theoretical
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Fig. 3.23. The amplification coefficient as a function of the noise intensity, obtained
experimentally (solid line) and theoretically (dashed line) (a) for different values of
the input signal frequency and (b) from numerical simulation of the system (3.3)
dynamics (solid line) and theoretically (dashed line). The amplitude of the input
signal is A = 20mV; the normalized frequencies f1 and f2 correspond to 60 Hz and
400Hz in the experiment

ones. As seen graphs, the differences between theoretical and calcu-
lated data are tly less and are entirely within the error of numerical
calculations, which is due to the finiteness of the time series used for their
statistical processing.

3.1.10 Summary

The results presented in this section readily illustrate one of the interesting
effects in nonlinear dynamics of stochastic systems – SR as a noise-induced
transition in bistable systems. In the regime of SR certain characteristics
of a system can be optimized by varying the noise intensity. Undoubtedly,
the quantitative SR measures depend on the structure of the external signal,
noise statistics and dynamical properties of the bistable system. But the
physical essence of the phenomenon principally does not change. One of the
characteristic times of the system has to be a nonlinear function of the noise
intensity. In this case it is evident that by varying the noise intensity one
can control the system response to an external force and obtain an optimal
result.

An understanding of the physical mechanism of SR allows one to first
assume and then experimentally demonstrate the possibility of realizing a
similar effect in deterministic chaotic bistable systems. The mean switching
time in the regime of “chaos–chaos” intermittency in such systems is a non-
linear function of the system control parameter which plays the role of noise
intensity. By varying the control parameter, one can control the response of
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the chaotic system to an external force and observe an SR-like phenomenon
in the absence of external noise.

The presented results are generally illustrated by using the simplest model
of a one-dimensional overdamped oscillator. This model allows one to pro-
vide the most complete theoretical description of the SR effect, perform direct
numerical computations and set up a suitable full-scale experiment. The com-
parison of theoretical, numerical and experimental results for the overdamped
bistable oscillator demonstrates surprisingly good agreement. One may hope
that these results will serve as a great stimulus for further studying the SR
effect in more complex nonlinear stochastic systems.

3.2 Synchronization of Stochastic Systems

3.2.1 Introduction

One of the main aims in nonlinear dynamics is a generalization of the no-
tion of synchronization to driven or coupled chaotic and stochastic systems.
Intuitively we understand synchronization as an adjustment of rhythms of
coupled systems due to their interaction. This adjustment is indicated by
various measures. It is accompanied by a suppression of some oscillation
modes, by a shrinkage of the possible excursions of phase trajectories in the
phase space and results in the reduction of a number of degrees of freedom
which are necessary to describe the system dynamics.

In general, there are two different origins for oscillating modes in simple
noisy dissipative dynamics. First, oscillations exist due to the internal de-
terministic dynamics of the system or due to external periodic forcing. The
effect of noise in this case is just broadening of the spectral peaks of damped
or self-sustained deterministic periodic motion so that the coherence of oscil-
lations is usually degraded by noise. Noise also destroys synchronization for
this type of system. A representative of this type of DS is the van der Pol
oscillator.

Second, oscillations are evoked by noise. For example, one can consider an
overdamped system with one or a few attractors at finite distance. These sys-
tems does not possess deterministic natural frequencies but solely relaxation
times. As in the previous case the noisy forces enhance a continuous spectrum
corresponding to a variety of stochastic oscillatory motions. The essential dy-
namics of these type of systems is the returns over energetic barriers. The
return time depends on the level of noise. When a weak periodic signal is
applied, SR predicts an amplification of the weak periodic signal for an opti-
mal noise intensity (see Sect. 3.1). Intuitively the system at the optimal noise
should exhibit stochastic returns which are in phase with the signal.

How does that picture merge with the notion of synchronization? Linear
response theory (LRT) has not brought sufficient insight into the discussion
of this topic. There are, however, a few other approaches giving an indication
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that during the amplification of the switchings other motions are suppressed.
One of them is the nonlinear response theory where the signal suppresses the
noise background [187]. Another hint for the occurrence of synchronization is
based on the waiting-time densities [188] and is called bona fide resonance [54].
The peak over the first harmonics undergoes a maximum, decreasing the
probability for faster and slower processes.

A treatment closely following the theory of nonlinear oscillations has given
evidence that synchronization accompanies SR [162,163,189–191]. It is based
on the introduction of an instantaneous phase for the stochastic trajectories
as also proposed for chaos synchronization. Such a description opens up the
possibility of returning to synchronization as a phenomenon of phase relation
between interacting systems.

In this section it will be shown that the stochastic switching processes
lock to periodic forces. We discuss the criteria, mechanisms, and regulari-
ties of this effect. Since the dynamics is fully induced by the acting noise
and is not destroyed over a large range of intensities, we call it stochastic
synchronization.

3.2.2 Synchronization and Stochastic Resonance

Let us consider again the overdamped bistable system prioritized in stud-
ies of SR. Adding a Gaussian white noise changes the situation qualitatively
compared to the noiseless case. The stochastic system has a new physical fea-
ture: Under the influence of noise the particle begins to perform jumps from
one deterministically attracting states to the other one and back. Despite the
fact that the jumps occur according to a Poissonian waiting-time distribution
one can call these returns stochastic self-sustained oscillations. The random
oscillations are permanently generated, and their statistical properties in the
asymptotic limit do not depend on its initial conditions, i.e. they perform a
stationary process being invariant to a time shift.

Then it is natural to pose the question of synchronization. Is it possible to
synchronize the random oscillations in the bistable dynamics by an additional
harmonic force? If yes, what are the features of this effect?
Analytical Signal Approach to the Overdamped Kramers Oscilla-
tor. To answer the questions posed above and to prove the existence of syn-
chronization in the periodically driven random oscillators, we consider again
the overdamped Kramers oscillator and apply the analytic signal approach
described in Chap. 1.

The stochastic differential equation (SDE) of periodically driven over-
damped Kramers oscillator is given by

ẋ = αx − βx3 +
√

2D ξ(t) + A cos(Ωt + ϕ0). (3.124)

Without periodic driving this system has no natural deterministic frequency.
At the same time, the stochastic dynamics of this bistable system is char-
acterized by the noise-controlled mean return time (see Sect. 1.2.6). In the
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frequency domain this time scale defines the mean switching frequency of the
system. The added periodic signal with amplitude A represents an external
“clock” with frequency Ω and initial phase ϕ0. (Later on, we shall perform
averaging over an equally distributed phase ϕ0.)

Suppose that α, β > 0 and for the moment ϕ0 = 0 in (3.124) and the
periodic modulation amplitude A is always sufficiently small, so that tran-
sitions do not occur without noise. Furthermore, we will suppose that the
modulation frequency is low as compared to the intrawell relaxation rates.

We introduce the analytic signal w(t) = x(t) + iy(t), where y(t) is the
Hilbert transform of the original process x(t):

y(t) = H[x] =
1
π

∫ ∞

−∞

x(τ)
t − τ

dτ =
1
π

∫ ∞

0

x(t − τ) − x(t + τ)
τ

dτ. (3.125)

The instantaneous amplitude and phase are defined as the absolute value and
the argument of the complex function w(t), respectively:

w(t) = R(t) exp[iΦ(t)]. (3.126)

The direct application of the analytical signal concept to (3.124) gives the
following SDE for the analytical signal w(t):

ẇ = α w − β

4
(3R2 w + w3) + ψ(t) + AeiΩt, (3.127)

where ψ(t) = ξ(t) + i η(t) is the analytical noise with η(t) being the Hilbert
transform of ξ(t). From (3.127) it is easy to derive the SDE for the instanta-
neous amplitude and phase:

Ṙ = α R − β

2
R3 [1 + cos2(φ + Ωt)] + A cos φ + ξ1(t),

φ̇ = −Ω − A

R
sin φ − β

4
R2 sin[2(φ + Ωt)] +

1
R

ξ2(t), (3.128)

where φ(t) = Φ(t) − Ω t is the instantaneous phase difference. The noise
sources ξ1,2(t) are defined by the following expressions:

ξ1(t) = ξ(t) cos Φ + η(t) sin Φ,

ξ2(t) = η(t) cos Φ − ξ(t) sin Φ. (3.129)

As seen, the second SDE in (3.128), describing the evolution of the phase
difference, is similar to the equation for the phase of a synchronized van der
Pol oscillator with noise (1.268). However, in contrast with the van der Pol
case, the term corresponding to the natural frequency in the frequency mis-
match is absent. Instead, the item Ω occurs singularly in (3.128). This is
another indication that the system has no deterministic time scales. The cor-
responding rotation term is hidden in (3.128) and will occur after averaging.



354 3. Stochastic Dynamics

0 100 200 300 400 500 600
t/T

−100

−80

−60

−40

−20

0

20

40

60

80

100

φ(  )

D=0.44

D=0.80

D=1.05

t

0

φ (t)

t/T0
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

D

0.00

0.01

0.02

0.03

0.04

0.05

<ω>

1

2

3

4

<ω>

D
a b

Fig. 3.24. (a) Instantaneous phase difference φ versus time for the indicated values
of the noise intensity for A = 3; (b) the mean frequency (solid line) and the mean
switching frequency (circles) versus noise intensity for different values of the driving
amplitude: 1 – A = 0, 2 – A = 1, 3 – A = 2, and 4 – A = 3. Other parameters are
α = 5, β = 1 and Ω = 0.01 [191]

Phase Synchronization of Switchings by the Periodic Signal. Nu-
merically computed phase differences versus time defined by means of the
analytic signal concept are shown in Fig. 3.24a for different values of the
noise intensity. The slope of the curves gives the difference between the in-
stantaneous frequency of x and Ω. As seen there exists an optimal noise level
for which the frequencies converge, i.e., the slope vanishes. Additionally, for
this noise and the selected amplitude of the driving the phase is locked during
the observation time.

Deviations from this optimal noise intensity lead to phase differences,
and the appearance of the phase slips, which leads to a systematic nonva-
nishing slope of the curves. Resulting mean frequencies defined via 〈ω〉 =
limT→∞

1
T

∫ T

0
d Φ(t)

dt dt are presented in Fig. 3.24b for different values of the
amplitude of the signal A and versus noise intensity D. These curves demon-
strate locking of the mean frequency of the output

〈

ω
〉

for optimal noise. It
was firstly reported in [190] for the case of the stochastic Schmitt trigger (see
Sect. 3.2.3).

Fig. 3.24b illustrates both the presence of a threshold for synchronization
and the broadening of the synchronization region with growing amplitudes of
the modulating force. In the absence of the signal the mean frequency grows
monotonically in accordance with Kramers rate for the overdamped case
multiplied by π. For larger amplitudes starting about A ∝ 1 the dependence
〈

ω
〉

versus D has a twist where
〈

ω
〉

does not depend on D. A further increase
in the amplitude leads to the broadening of the synchronization region [190,
191].
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Fig. 3.25. The effective diffusion coefficient as a function of the noise intensity for
the indicated values of the driving amplitude; other parameters are α = 5, β = 1
and Ω = 0.01 [191]

As outlined above the occurrence of the frequency entrainment is accom-
panied by at least a small number of phase slips. Therefore, not only the
mean frequency is locked but the mean phase difference is minimized, too.
In accordance with the introduced definition (see Sect. 1.3.5) one might call
x effectively synchronized with the input external periodic force.

Next, we prove that one has to calculate the effective diffusion constant

Deff =
1
2

d
dt

[

〈φ2(t)〉 − 〈φ(t)〉2
]

(3.130)

using phases defined via the analytical signal. As we already discussed in
Chap. 1, the effective diffusion measures the quality of synchronization: the
smaller the effective diffusion constant, the longer the durations of phase-
locking epochs. Results from computer simulations are presented in Fig. 3.25.
With the growth of the amplitude A the presence of the minimum in the
dependence of Deff versus noise intensity becomes strongly pronounced. The
quantitative values of Deff testify that phase and frequency locking takes
place over about 103 periods T1 = 2π/Ω of the driving signal.

Therefore, the presence of the effective synchronization at the basic tone
was verified for the standard example of SR. It manifests itself in the mean
frequency locking by the external signal and minimal diffusion coefficients. It
is an important fact that the introduction of noise into the system leads to
the ordering of its phase dynamics: the increase in the noise intensity causes
the deceleration of the phase difference diffusion.

Two-State Description of Synchronization. Interestingly enough, the
time-dependent rates (3.11) of the two-state model treated by McNamara
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and Wiesenfeld [61] can be recast to show an explicit dependence on the
phase difference φ(t) between the dichotomic output phase Φout(t) = N(t)π
and the input phase Φin(t) = Ωt

φ(t) = Φout(t) − Φin(t) (3.131)

Applying a trigonometric theorem it yields

cos(Φout) cos(Φin) =
1
2

[cos(φ) + cos(2Φout − φ)] = cos(φ) (3.132)

since the phase of the output Φout takes over multiple values of π, only. Thus
we find that the rates of output switches of the two-state dynamics 3.11 reads
in dependence on the unwrapped phase difference φ [163]

W out
φ (t) = rK(D) exp

(

−A

D
cos[φ(t)]

)

, (3.133)

with A being the amplitude of the input.
From this point on we will consider dichotomic signals for the input as

well as already done for the output. This restriction defines the 2 × 2-state
system [see (3.107) and later] if the phase difference is taken to be mod(2 π).
Here the unwrapped phase is a sequence

φ(t) = k(t)π (3.134)

and k(t) is defined by a simple Markovian birth and death process, k → k+1
being output switches and k → k − 1 changes of the input, respectively. We
briefly denote pk(t) as the probability of observing a phase difference kπ at
time t (conditioned by φ0 = 0 at time t0 = 0).

Hence, the stochastic dynamics is governed by the following master equa-
tion:

∂pk(t)
∂t

= W in
k+1 pk+1 − W in

k pk + W out
k−1pk−1 − W out

k pk, (3.135)

There are two states for the output and, respectively, for the input. We are
left with the two noise-dependent rates for changes of the output

W out
keven

= a1 = rK(D) exp
(

−A

D

)

, W out
kodd

= a2 = rK(D) exp
(

A

D

)

(3.136)
corresponding to the in-synchrony and out-of-synchrony transitions due to
output switchings k → k + 1, respectively.

The first two items on the right-hand side standing for backwardly running
k if the input changes. They are independent on k. In the case of dichotomic
periodic driving it reads

WDPP
k (t, ϕ0) = π

∞∑

n=−∞
δ

(

t − nπ + ϕ0

Ω

)

. (3.137)
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Here, the nonstationary rate depends explicitly on the initial phase ϕ0 of the
signal. Averaging over this initial phase eventually yields a stationary process
with

〈

WDPP
k

〉

ϕ0
=

1
2π

2π∫

0

WDPP
± (t, ϕ0) dϕ0 = Ω . (3.138)

A similar rate is used in the case of aperiodic driving by a stationary di-
chotomic Markovian process. With γ being the inverse mean time τ of a
single stochastic input change, the mean angular velocity reads

WDMP
k =

2π

2τ
= πγ. (3.139)

Both stationary rates are constants which allows a common analysis of their
mean frequency. A common treatment is impossible when calculating the
effective phase diffusion coefficient since second moments of the DPP and
DMP differ even in the stationary limit [163].

Noise-Induced Frequency Locking. From the master equation (3.135)
we can compute the mean frequency

〈

φ̇
〉

and find

〈 d
dt

φ
〉

= −
〈

ωin

〉

+
〈

ωout

〉

= −
〈

ωin

〉

+
π

2
(a1 + a2) −

π

2
(a2 − a1) 〈cos(φ)〉 ,

(3.140)
with

〈

ωin

〉

= γπ for the DMP and
〈〈

ωin

〉〉

ϕ0
= Ω for the DPP.

Equation (3.140) is in close analogy to the averaged Adler equation
(1.268). By comparison we see that the frequency mismatch corresponds to

∆ = π
a1 + a2

2
−
〈

ωin

〉

, (3.141)

whereas the difference π(a2 − a1)/2 is the analogue of the nonlinearity para-
meter µ. Note that now both parameters are noise dependent, which explains
the fact that frequency locking is noise induced. Moreover, we stress the fact
that the dependence of µ on the ratio A/D is nonlinear.

The first item in (3.141) defines the required frequency of the driven
stochastic bistable dynamics. It increases monotonously with growing noise,
starting from zero in the case of absent noise. With vanishing amplitudes
a1 = a2 = rK. Therefore, in analogy to oscillators the Kramers rate multiplied
by π can be called the eigenfrequency of the stochastic oscillations in the two-
state picture.

In general, the term
〈

cos φ
〉

is time dependent and its evolution is de-
termined by the initial preparation. However, the asymptotic value is unique
and can be derived as the stationary value of the related master equation

lim
t→∞

〈cos(φ)〉 =
〈

σstat
〉

=
a2 − a1

2

〈

ωin

〉

π
+ a1 + a2

. (3.142)
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Fig. 3.26. The mean frequency of the output [cf. (3.140)] in units of π for the DMP
with γ = 0.001 and for the DPP with Ω/π = 0.001 for three signal amplitudes:
A1 = 0, i.e., vanishingly small, (solid line), A2 = 0.1 (dotted line) and A3 = 0.2
(dashed line). For sufficiently large amplitudes (with α0 = 1 and ∆U = 0.25), a
plateau around γ = Ω/π is formed which – in connection with a suitable definition
– gives rise to the tongue like structures shown in the inset

As was shown in [162] this value equals the stationary correlation coefficient
of the input and output of the 2 × 2-state model.

In Fig. 3.26 we show the asymptotic mean output frequency with (3.142)
inserted,

〈

ωstat
out

〉

=
π

2







a1 + a2 − (a2 − a1)2

2

〈

ωin

〉

π
+ a1 + a2







, (3.143)

in units of π as a function of noise intensity D for the DMP with γ = 0.001 and
for three amplitudes A1,2,3 < ∆U = 0.25. For sufficiently large amplitudes we
see the formation of a plateau around the frequency of the input signal. This
picture resembles the frequency-locking graph in noisy self-sustained oscilla-
tors. The range of noise intensities yielding values belonging to this plateau –
a criterion which we pinpoint by the demand of a small slope – in dependence
on the signal amplitude A shapes the tongue-like structures shown in the in-
set of Fig. 3.26. These results identically apply to the DPP when setting
Ω/π = γ. We note that similarities to nonlinear oscillators would become
complete if plotting with respect to the noise-dependent eigenfrequency πrK

instead of noise intensity.
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Noise-Induced Phase Synchronization. We define a diffusion coefficient
of the phase difference by virtue of

Deff =
1
2

d
d t

(〈

φ2
〉

−
〈

φ
〉2
)

=
π2

2
d
d t

(〈

k2
〉

−
〈

k
〉2
)

. (3.144)

In principle the computation of the diffusion coefficient is straightforward,
starting from the master equation (3.135). However, for the periodic driving
a mathematical subtlety occurs. This is caused by the fact that, while the
mean of functions of φ for the DMP is smooth in time, related averages in
the case of the DPP are still discontinuous across jumping times tn [163].

The resulting expressions read for the two cases

DDMP
eff =

π2

2

(

γ +

〈

ωstat
out

〉

π
− (2γ − (a1 + a2))

〈

σstat
〉2

−1
2
(a2 − a1)

〈

σstat
〉

(1 +
〈

σstat
〉2)

)

,

DDPP
eff =

π2

2

(〈

ωstat
out

〉

π
−
(

2
Ω

π
− (a1 + a2)

)
〈

σstat
〉2

−1
2
(a2 − a1)

〈

σstat
〉

(1 +
〈

σstat
〉2) +

Ω

π

〈

σstat
〉

)

.

Its general structure is Deff = Din + Dout −Dcoh. Therein the last coherence
term scales with

〈

σstat
〉n (n = 1, 2, 3). Only this term can reduce the effective

phase difference diffusion for the optimal noise intensity.
Effective phase synchronization reveals itself by the extended duration of

locking episodes. We can determine the average duration of a locking episode
〈

Tlock

〉

from the ansatz

〈

φ2
〉

=
〈

dφ

dt

〉2
〈

Tlock

〉2 + 2Deff

〈

Tlock

〉

= π2 . (3.145)

From this we find

〈

Tlock

〉

= Deff

〈
dφ

dt

〉−2




√
√
√
√1 +

(

π

Deff

〈
dφ

dt

〉2
)

− 1



 . (3.146)

In Fig. 3.27 we plot the dependence of
〈

Tlock

〉

on the noise intensity D for
the DMP and DPP. In both plots we find huge maxima around noise inten-
sities where frequency locking also occurs, indicating the region of effective
phase synchronization. Let us note that the onset of phase synchronization is
triggered by a sharp increase in

〈

σstat
〉

. However, even beyond the region of
effective phase synchronization the correlator maintains a large value; thus,
it is not an equivalent measure.



360 3. Stochastic Dynamics

0.00 0.02 0.04 0.06 0.08
D

10
2

10
3

10
4

T
lo

ck

a

0.00 0.02 0.04 0.06 0.08
D

10
2

10
3

10
4

T
lo

ck

b

Fig. 3.27. The average duration of locking episodes
〈

Tlock

〉

[cf. (3.146)] for (a) the

DMP and (b) the DPP both for signal amplitudes: A1 = 0 (solid line), A2 = 0.1
(dotted line) and A3 = 0.2 (dashed line). Pronounced maxima with logarithmic scale
occur around noise intensities which coincide with the frequency-locking condition
(cf. Fig. 3.26). For the DPP we find a maximum even for A → 0+ around the noise
intensity at which the Kramers rate coincides with the signal frequency because the
phase diffusion coefficient increases rather slowly

3.2.3 Forced Stochastic Synchronization of the Schmitt Trigger

In this section we describe an experimental study of noise-induced synchro-
nization in a stochastic Schmitt trigger driven by a weak periodic signal. The
Schmitt trigger is one of the experimentally and theoretically best investi-
gated examples of nonlinear stochastic dynamics exhibiting SR [19,192].

Results of experimental investigations and numerical simulations of the
mean switching frequency for the Schmitt trigger are presented and discussed
in [190]. Noise with a cutoff frequency fc = 100 kHz and a periodical signal
with frequency f0 = 100Hz were applied to the Schmitt trigger with a thresh-
old voltage ∆U = 150mV.

The mean switching frequency,
〈

f
〉

= limM→∞
1
M

∑M
k=1

π
tk+1−tk

, is cal-
culated from the random telegraph signal of the output, which is recorded
by a computer. The results of measurements are shown in Fig. 3.28a. For
a weak signal, the dependence of the mean frequency on the noise inten-
sity obeys Kramers law, i.e., it exponentially grows when the noise intensity
increases. With increasing signal amplitude, the dependence is qualitatively
different. There appears a range of noise intensities in which the mean fre-
quency practically does not change with increasing noise and, within the
limits of experimental accuracy, coincides with the signal frequency. Thus,
the effect of mean switching frequency locking is observed [190].

Repeating the measurements of the mean frequency for different values of
the amplitude and phase of the signal one may obtain synchronization regions
in the parameter plane “noise intensity – amplitude of periodic force”. Inside
these regions the mean frequency matches the signal frequency. Synchroniza-
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Fig. 3.28. Mean frequency of the output signal of the Schmitt trigger obtained
(a) experimentally and (b) from numerical simulation of the system (3.147) as a
function of the noise intensity for different signal amplitudes: A = 0mV (�), A =
60mV (�), A = 100mV (�) with K = 0.2 and Ω = 0.5

tion regions resembling Arnold’s tongues are shown in Fig. 3.29. As seen from
this figure, there is a threshold amplitude, Ath, of the external signal beyond
which the synchronization of switchings is observed. When the threshold is
achieved, the periodic signal starts to effectively control the stochastic dy-
namics of switchings. With increasing signal frequency, the synchronization
is adversely affected: the synchronization regions shrink, and the threshold
values of the signal amplitude increase (see Fig. 3.29).

Figure 3.30 illustrates the residence-time probability density p(t) of the
trigger in one of the metastable states for different noise intensities. For a
weak noise (VN = 35 mV), p(t) exhibits peaks centered at odd multiples of
the half signal period. Inside the synchronization region (VN = 70 mV) the
mean residence time in one of the states coincides with the half period and
the residence-time distribution density possesses a single well-marked peak
at t = T0/2. For strong noise (VN = 115mV), beyond the synchronization
region, the mean time for switchings is much less than the half period. In
one period the system switches repeatedly from one state to another and
a peak corresponding to short switching times appears. The peak centered
at the half signal period is smeared, and coherence of the output signal is
destroyed.

The Schmitt trigger is modeled by the equation

x(t + ∆t) = sign [K x(t) − D y(t) − A sin(Ω t)] , (3.147)

where K = 0.2 characterizes the operating threshold of the trigger, y(t) is an
Ornstein–Uhlenbeck process correlation time, τc = 10−2 and unit intensity.

The dependence of the mean switching frequency of the trigger ver-
sus noise intensity obtained by numerical simulation of (3.147) are shown
in Fig. 3.28b and completely verify the experimental results presented in
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Fig. 3.28a. The dynamics of the phase difference resulting from definition
(1.286) for A = 0.1 is pictured in Fig. 3.31a. At an optimal noise level
(D = 0.06), the phase difference remains constant over the observation time.
Beyond the synchronization region (D = 0.04, D = 0.08), the phase jumps
are much more frequent. This leads to fast phase diffusion and, consequently,
to the lack of synchronization.

If the signal amplitude is small (A ≤ Ath), the effect of mean switching
frequency locking is not observed. Calculation results of the instantaneous
phase difference also indicate the lack of phase synchronization, i.e., there
are relatively short locking segments, and time series of the instantaneous
phase difference display random-walk-like behavior [191].

The numeric results of the diffusion coefficient are shown in Fig. 3.31b.
The dependence Deff(D) is characterized by a minimum that results from
the effect of stochastic synchronization.

From the findings presented above it follows that an external periodic sig-
nal of sufficient amplitude synchronizes the stochastic dynamics of switching
events. This phenomenon is accompanied by instantaneous phase and mean
frequency locking.
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3.2.4 Mutual Stochastic Synchronization
of Coupled Bistable Systems

Now consider the simplest case of two symmetrically coupled overdamped
bistable oscillators which are governed by the following SDE [70,189]:

ẋ = α x − x3 + γ (y − x) +
√

2D ξ1(t),

ẏ = (α + ∆) y − y3 + γ (x − y) +
√

2D ξ2(t). (3.148)

In (3.148) the parameter α determines the Kramers frequency of the first
subsystem without coupling, ∆ is the parameter of detuning of the second
system with respect to the first, and γ is the coupling coefficient. The white
noise sources ξ1(t) and ξ2(t) are assumed to be statistically independent:
〈ξi(t)ξj(t + τ)〉 = δi,j δ(τ). The latter means that for γ = 0 the stochastic
processes x(t) and y(t) in the subsystems will also be statistically indepen-
dent. We also assume the intensities of uncorrelated noises to be identical,
e.g., D1 = D2 = D.

The Fokker–Planck equation (FPE) for the probability density p(x, y, t),
corresponding to the SDE (3.148), has the form

∂p

∂t
= − ∂

∂x
[αx − x3 + γ(y − x)] p (3.149)

− ∂

∂y
[(α + ∆)y − y3 + γ(x − y)] p + D

(
∂2p

∂x2
+

∂2p

∂y2

)

.

In this case the stationary solution p(x, y) of the FPE can be found ana-
lytically as the coefficients of drift and diffusion of FPE (3.149) obey the
potential conditions [67,193]. The stationary probability density is

p(x, y) = C exp
(

−U(x, y)
D

)

, (3.150)

U(x, y) = −α
x2

2
+

x4

4
− (α + ∆)

y2

2
+

y4

4
+

γ

2
(x − y)2,

where C is the normalization constant. Hence, the SDE (3.148) and the FPE
(3.149) describe overdamped Brownian motion in a two-dimensional potential
U(x, y). The fact that the system is potential one (comp (1.163)) facilitates its
bifurcation analysis. In this case qualitative changes in the probability density
structure (the change in number of extrema) correspond to the bifurcations
of the deterministic system (see Sect. 1.2.5).

Since individual subsystems are bistable, we assume the processes x(t)
and y(t) to be synchronized if the transitions between metastable states in
the subsystems occur at the same times. Figure 3.32 displays time series of
the processes in the subsystems for two values of the coupling coefficient.
The value of detuning parameter ∆ = −0.5 represents faster motion in the
second subsystem y(t). For weak coupling the processes in the subsystems
are nonsynchronized. By increasing the coupling coefficient the process in
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Fig. 3.32. Time series x(t) and y(t) of the system (3.148) for (a) γ = 0.05 and (b)
γ = 0.5. Other parameters are α = = 1.0, ∆ = −0.5 and D = 0.07

the second subsystem is being slowed down, and for a sufficient value of γ
the processes in the subsystems become coherent.

To quantify the synchronization process we use the coherence function
defined by the expression

Γ 2(ω) =
|Gx,y(ω)|2

Gx,x(ω)Gy,y(ω)
, (3.151)

where Gx,y(ω) is the mutual spectral density of the processes x(t), y(t), while
Gx,x(ω) and Gy,y(ω) are the power spectra of x(t) and y(t), respectively.

The coherence function obtained from numeric simulation of the SDE
(3.148) is shown in Fig. 3.33a for different values of the coupling coefficient.
With increasing coupling coefficient γ the stochastic processes x(t), y(t) be-
come coherent in the low-frequency range, which corresponds to the Kramers
frequencies of the subsystems.

We now explore the evolution of the Kramers frequencies of the subsys-
tems as one varies the coupling coefficient. For γ = 0, the natural time scales
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of the coupling coefficient, and (b) the mean switching frequencies rx,y as functions
of the coupling coefficient for parameters α = 1.0, ∆ = −0.5 and D = 0.1

of the subsystems are represented by the Kramers rates (frequencies) rx, ry

of escape from a metastable state:

rx =
√

2α

π
exp

(

− α2

4D

)

, ry =
√

2(α + ∆)
π

exp
(

− (α + ∆)2

4D

)

. (3.152)

Consider the mean switching frequencies in each subsystem, taking into
account the coupling between them. These quantities can be obtained nu-
merically by fixing the time moments txi , tyj when the processes x(t) and y(t)
intersect the zero axis in a positive direction, respectively:

rx,y = lim
N→∞

1
N

N∑

i=1

2π

tx,y
i+1 − tx,y

i

. (3.153)

The mean switching frequencies versus γ are shown in Fig. 3.33b. As can be
seen, with increasing coupling strength the mean frequencies of the partial
subsystems come closer together.

The coherence function characterizes only a linear dependence and con-
tains no information about the phases of the processes. The instantaneous
phase of the processes in the subsystems can be introduced on the basis of
switching times txi , tyj as introduced in section 1.3.5. Thus we define

Φx(t) = 2π
t − txi

txi+1 − txi
+ 2πi, txi < t < txi+1,

Φy(t) = 2π
t − tyj

tyj+1 − tyj
+ 2πj, tyj < t < tyj+1. (3.154)

Numerical simulation of the dynamics of instantaneous phase difference
φ(t) = Φx(t) − Φy(t) shows the effect of phase locking for γ > 1: the phase
difference remains constant over long time intervals.
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3.2.5 Forced and Mutual Synchronization
of Switchings in Chaotic Systems

Deterministic SR is realized in chaotic systems in the regimes of “chaos–
chaos” intermittency. In this case the mean frequency of irregular switching
events is governed by a system’s control parameter (see Sect. 3.1).

If, from the physical viewpoint, these phenomena have a deep physical
generality, then in chaotic systems with strong interactions one must observe
the effect of synchronization of switchings which is qualitatively equivalent
to that described above for stochastic bistable systems. Our recent studies
have confirmed this assumption. For illustrative purposes we shall further
discuss forced and mutual synchronization of switching events in systems
with deterministic chaotic dynamics [9, 194].

Forced Synchronization. Consider the one-dimensional cubic map

xn+1 = (axn − x3
n) exp(−x2

n/b) + A sin(Ωn) (3.155)

in the regime of “chaos–chaos” intermittency when a > acr = 2.839 . . . Sup-
pose that the map (3.155) is driven by a periodic force with a large enough
amplitude A, and explore the system dynamics in the absence of external
noise. In this case the switching process is principally nonlinear, and its sta-
tistics essentially depends on the parameter a. Applying the two-state method
we evaluate the evolution of the residence-time probability density p(τ) in a
single potential well as the parameter a is varied. τ is n given in units of
the period of the signal 2π/Ω. The results are shown in Fig. 3.34 and agree
qualitatively with the data obtained for the Schmitt trigger (Fig. 3.30). At an
optimal value a = 8.34 the distribution possesses a single Gaussian-like peak
with a maximum at τ = 0.5. This means that the mean switching frequency
between chaotic attractors coincides with the external force frequency.

The effect of mean switching frequency locking by the external signal is
illustrated in Fig. 3.35a for different values of parameter a. With increasing
signal amplitude, the synchronization region expands as expected. As seen
from Fig. 3.35b, this region represents a typical synchronization zone, as
for the Schmitt trigger (Fig. 3.29), and also demonstrates the presence of a
threshold for the synchronization. Hence, the effect of forced synchronization
of the switching frequency in a deterministic chaotic system is confidently
observed and proves to be equivalent to the effect of noise-induced stochastic
synchronization.

The effect of mean switching frequency locking is universal and manifests
itself in a wide class of DS with intermittency. As an example we study
the nonlinear Chua’s system realizing the regime of dynamical intermittency
[146]. Chua’s circuit is described by the following set of equations:

ẋ = α[y − h(x)],
ẏ = x − y + z, (3.156)
ż = −βy + F (t),
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frequencies of the external driving. The behaviour remembers on the dynamics of
a stochastic Schmitt trigger (see Fig. 3.30). τ is given in units of the period of the
external force

where h(x) = m1x + 0.5(m0 − m1)(|x + 1| − |x − 1|) is the piecewise-linear
characteristic of the system with fixed parameters m0 = −1/7, m1 = 2/7,
and F (t) = A cos (Ωt) is the external periodic force.

As was shown in [46], the switching process in the chaotic bistable system
(3.156) can be either noise-induced or of a purely dynamical nature. We again
apply the two-state approach. Let parameter β be fixed, namely, β = 14.286.
The dynamics of the system depends on α as well as on the amplitude A and
the frequency Ω of the external signal. Without the driving signal (A = 0) an
intermittency is realized for α ≈ 8.8. With increasing α, when α > 8.8, the
mean switching frequency monotonically increases. We choose the amplitude
value A = 0.1 when the system response to the external force is, in principle,
nonlinear. The results of numerical calculations of the return-time probability
density p(τ) are shown in Fig. 3.36 for different values of α [195]. One can see
a surprising similarity to the data obtained for the Schmitt trigger (Fig. 3.30)
an to the data displayed in Fig. 3.34. For a certain value, α = 8.8325, the
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tude of the external signal A and on α from (3.156) for the three frequencies Ω of
the signal

probability density p(τ) has a single Gaussian-like peak near τ = 1. This
means that the mean return frequency coincides with the frequency of the
external force. The effect of forced synchronization which manifests itself in
the mean switching frequency locking by the periodic signal is registered.

Figure 3.37 illustrates synchronization regions obtained in full-scale exper-
iments with Chua’s circuit. These regions are qualitatively similar to Arnold’s
tongues, as in the case of the Schmitt trigger (Fig. 3.29). The only difference
is that, as the signal frequency increases, the threshold of the synchroniza-
tion practically does not change and the width of the synchronization regions
is increased. These differences are caused by the nonlinear properties of the
system (3.156) and do not relate to the nature of the observed phenomenon.
More detailed calculations testify that the effect of mean switching frequency
synchronization in systems (3.155) and (3.156) corresponds to the effect of
phase synchronization, the latter being completely equivalent to the cases of
the Schmitt trigger and the overdamped oscillator considered above.

Mutual Synchronization. To illustrate mutual synchronization of switch-
ing events we examine the dynamics of two coupled Lorenz models [196]:

ẋ1 = σ(y1 − x − 1) + γ(x2 − x1),
ẏ1 = r1x1 − x1z1 − y1,

ż1 = x1y1 − z1b, (3.157)
ẋ2 = σ(y2 − x2) + γ(x1 − x2),
ẏ2 = r2x − 2 − x2z2 − y2,

ż2 = x2y2 − z2b.
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We choose the parameters to be: σ = 10, r1 = 28.8, r2 = 28 and b = 8/3, when
the Lorenz attractor is realized in each subsystem [181]. The Lorenz attractor
in an individual system may be treated as a generalized bistable oscillator
where irregular switching events occur with a mean frequency controlled by
the parameter γ [182]. The introduction of coupling (γ > 0) must cause the
changes of the mean switching frequencies in each of the subsystems and lead
to the effect of mutual synchronization of switchings.

We perform numerical simulation using the two-state approximation. The
calculation results show that the mean switching frequencies 〈f1〉 and 〈f2〉
practically coincide for a coupling coefficient γ > 5 (Fig. 3.38). Moreover,
numerical simulation of the dynamics of the instantaneous phase difference
between processes x1(t) and x2(t) has confirmed the effect of mutual syn-
chronization, e.g., for γ > 5, the phase difference approaches zero at times
significantly exceeding the mean switching time [196]. Therefore, the effect of
mutual synchronization takes place for strong coupling between two chaotic
bistable oscillators.
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3.2.6 Stochastic Synchronization of Ensembles
of Stochastic Resonators

The effect of SR can be significantly enhanced if an array of coupled bistable
systems is taken instead of a single one (see Sect. 3.1.5). It has been found out
that at optimal values of the noise intensity and the coupling coefficient, the
SNR in an array attains its maximal level, demonstrating an array-enhanced
SR effect. First we consider the case of extremely weak coupling when the
interaction between individual stochastic resonators can be neglected.

The model under consideration is schematically shown in Fig. 3.39 and
contains N subsystems, each demonstrating SR. Each resonator SRk is sub-
jected to the same input signal s(t), which may be aperiodic, and includes
an internal Gaussian noise source ξk(t). In addition, the internal noises in
the subsystems are statistically independent. The outputs of the elements
converge onto a summing center, giving a collective response xM (t):

xM (t) =
1
N

N∑

k=1

xk(t). (3.158)

This model is widely used in practice as the simplest method for increasing
the signal-to-noise ratio (SNR). When the number of elements in the array
is sufficiently large (N � 1), the internal noises at the collective output
disappear due to averaging, and the SNR increases proportionally to the
number of elements. This model is truly nontrivial because each element is
treated as a stochastic resonator. Hence, besides enhancement of the SNR
[197], it is also possible to significantly amplify the signal. Synchronization of
an ensemble by an external signal is also of great interest. This model seems
to be generic for a number of applications and, in particular, for a simple
network of sensory neurons [198] and a model of ion channels [199]. A similar
model, where self-sustained systems were used as individual elements, has
been studied in [200,201].

Linear Response Theory for Arrays of Stochastic Resonators. In the
case of a weak signal s(t) the statistical properties of the response of a single
stochastic system can be calculated via LRT. The problem is to compute the
spectral characteristics of the collective response xM (t) [156].

Denote the spectral density at the output of the kth element by Gk,k(ω),
the cross-spectral density of the kth and mth elements by Gk,m(ω), and the
spectral density at the summing output by GM,M (ω). The spectral density
GM,M (ω) is derived immediately from (3.158) as follows:

GM,M (ω) =
1

N2






N∑

k=1

Gk,k(ω) +
N∑

k=1

N∑

m=1
k �=m

Gk,m(ω)




 . (3.159)

In absence of the signal one has Gk,m(ω) = 0 by virtue of the statistical
independence of the internal noises in the elements. Each element of the
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array has a known susceptibility χk(ω, D), where D is the intensity of the
internal noise. For the spectral density at the output of the kth element we
have

Gk,k(ω) = G
(0)
k,k(ω, D) + |χk(ω, D)|2 Gs,s(ω), (3.160)

where G
(0)
k,k(ω, D) is the spectral density of the kth element in absence of

a signal, and Gs,s(ω) is the spectral density of the input signal. The cross
spectral density Gk,m(ω) is determined as [156]

Gk,m(ω) = χ∗
k(ω, D)χm(ω, D)Gs,s(ω), (3.161)

where the symbol ∗ denotes complex conjugation. In the absence of the signal
Gk,m(ω) = 0. Substituting (3.153-154), into (3.159) we obtain the spectral
density of the collective output:

GM,M (ω) =
1

N2

N∑

k=1

G
(0)
k,k(ω, D) +

Gs,s(ω)
N2

N∑

k=1

N∑

m=1

χ∗
k(ω, D)χm(ω, D).

(3.162)
The cross-spectral density of the collective output and the input signal
Gs,M (ω) is

Gs,M (ω) =
Gs,s(ω)

N

N∑

k=1

χk(ω, D). (3.163)

The relations obtained allow us to determine all the necessary SR mea-
sures, in particular, the coherence function and the SNR. To simplify our
analysis we consider an array of identical elements with susceptibility χ(ω, D)
≡ χk(ω, D) and unperturbed spectral density G

(0)
x,x(ω, D) ≡ G

(0)
k,k(ω, D). For

this case we have the following expressions for the spectral densities

GM,M (ω) =
1
N

G(0)
x,x(ω, D) + |χ(ω, D)|2 Gs,s(ω), (3.164)
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Gs,M (ω, D) = χ(ω, D)Gs,s(ω). (3.165)

In the limit of large N , the first item in (3.164), being responsible for the
internal fluctuations in the elements of the array, becomes vanishingly small
and the whole ensemble behaves as an equivalent linear system with the
transfer function χ(ω, D).

Let a weak input signal s(t) be the sum of the periodic and noise compo-
nents, i.e., s(t) = A sin Ωt + n(t). The SNR at the input is fixed:

SNRin =
πA2

Gn,n(Ω)
, (3.166)

where Gn,n(ω) is the spectral density of the noisy component. The spectral
density of the collective output will also consist of a noisy background and a
delta-peak corresponding to the periodic part of the signal:

GM,M (ω) =
1
N

G(0)
x,x(ω, D)+ |χ(ω, D)|2

[

Gn,n(ω) + πA2 δ(ω − Ω)
]

. (3.167)

The SNR of the collective output, SNRout, can be easily derived from the last
expression. However, of much interest is the ratio of the SNR at the output
to the SNR at the input:

η =
SNRout

SNRin
= 1 − G

(0)
x,x(Ω,D)

G
(0)
x,x(Ω,D) + N |χ(Ω,D)|2 Gn,n(Ω)

. (3.168)

This ratio is always less than 1, unless N tends to infinity. In the latter
case input and output SNRs coincide. Although, as follows from the analysis
above, the SNR at the output of the ensemble of stochastic resonators cannot
be improved compared to the SNR at the input, the periodic component of the
signal can be significantly amplified by |χ(Ω,D)| times.

Estimation of the number of elements necessary to achieve a given ratio
η is of practical importance. This number can easily be found from (3.168):

N =
G

(0)
x,x(Ω,D)

|χ(Ω,D)|2 Gn,n(Ω)
η

1 − η
. (3.169)

Consider again the array of bistable stochastic oscillators subjected to the
input signal s(t) = n(t) + A sin Ωt, where n(t) is the Gaussian colored noise
with spectral density Gn,n(ω) = γQ/(ω2 + γ2). We obtain

η = 1 − Ω2 + γ2

D2 (Ω2 + γ2) + N λm 〈x2〉st Qγ
(3.170)

and

N =
D2 (Ω2 + γ2)
λm 〈x2〉st Qγ

η

1 − η
, (3.171)
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where N is the number of elements in the array necessary for calculating the
ratio η.

The results are summarized in Fig. 3.40, where the ratio η is shown as a
function of the internal noise intensity D and the number of elements N . In
this figure one can also see the lines of constant levels, which can be defined
by the expression (3.171). It is clear that the dependence N(D) possesses
a minimum at a certain optimal noise intensity. Hence, at an optimal noise
level the required value of the ratio η can be reached for a minimal number of
elements in the array. Besides, Fig. 3.40 reflects the SR effect without tuning,
i.e., for large N the ratio η practically does not depend on D.

Synchronization of an Ensemble of Stochastic Resonators by a
Weak Periodic Signal. Numerical Simulation. In the limit of an in-
finite number of elements in the array and in the absence of external noise,
the collective response of the array to a weak periodic signal is a periodic
function of time:

x∞
M (t) = A |χ(Ω,D)| cos (Ωt + ψ), (3.172)

where ψ is the phase shift defined by

ψ = − arctan
Im χ(Ω, D)
Re χ(Ω,D)

. (3.173)

Of great interest are the situations when the number of elements is large
but finite. Such cases can be often encountered in biology, for example,
populations of neuroreceptors [198] and arrays of ion channels in cell mem-
branes [199]. The following question arises: How much does the process at
the collective output of the ensemble reflect the input signal? The previous
sections have answered this question only in terms of the averaged charac-
teristics, such as the SNR and the coherence function. As has been shown
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above, for a single stochastic resonator, synchronization of the output and
input is possible for a large enough amplitude of periodic signal. The collec-
tive output of an array of stochastic resonators can be synchronized by an
arbitrary weak periodic signal for optimally tuned internal noise [202].

We start by discussing the results of numerical simulation. As an example
we refer to an ensemble of Schmitt triggers:

xk(t + ∆t) = sgn [K xk(t) − ξk(t) − η(t) − A sin Ωt], (3.174)

where K is the operating threshold of the triggers, ξk(t) is the internal noise
in the kth element, and η(t) is a weak external noise. In the numerical sim-
ulations with K = 0.2, the internal noise was assumed to be Gaussian ex-
ponentially correlated noise with correlation time τc = 0.01 and intensity D.
The external noise was also Gaussian colored noise with the same correlation
time and intensity Q = 0.03 (OUP). We chose the amplitude of the periodic
signal A = 0.03 and the frequency Ω = 0.5, at which the phenomenon of
stochastic synchronization did not occur in a single element. The numerical
simulation was carried out using a CRAY super-computer and a SUN-Ultra/4
workstation.

To quantify the synchronization of the collective output we use the notions
of the mean frequency and the instantaneous phase. The mean frequency 〈ω〉
is shown in Fig. 3.41a as a function of the internal noise intensity for different
numbers of elements N in the array. For a single element N = 1, the depen-
dence 〈ω〉(D) is exponential. However, with an increasing number of elements
the exponential law is violated, and for a large enough N (N ≥ 100) mean
frequency locking takes place. This effect is similar to the synchronization of a
single bistable resonator as the signal amplitude increases (see Figs. 3.24a and
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Fig. 3.41. (a) Mean frequency 〈ω〉 of the collective output for the ensemble of
Schmitt triggers as a function of the internal noise intensity D for different numbers
of elements N in the ensemble. The frequency of the external signal is Ω = 0.5; (b)
time series of the phase difference between the collective output and the periodic
input for an ensemble of 500 Schmitt triggers for different values of the internal
noise intensity
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3.29). But in our case the signal amplitude is small and the synchronization
can be achieved by increasing the number of elements in the array.

The synchronization effect is also verified by calculations of the instan-
taneous phase difference of the collective output and the periodic signal.
The results are shown in Fig. 3.41b. At an optimal internal noise intensity
(D ≈ 0.06), the phase difference remains constant over long time intervals.
We already noted earlier that the mean value of these time intervals can be
estimated using the effective diffusion coefficient Deff of the phase difference.
As the calculations have shown, the effective diffusion coefficient is minimal
for an optimal noise intensity. When the number of elements N in the array
increases, the absolute value of the diffusion coefficient decreases, and the
optimal intensity D of internal noise shifts to the range of smaller values.

The synchronization phenomenon described above is observed for any
elements demonstrating SR with variation of the internal noise, including
the elements represented by neuron models.

3.2.7 Stochastic Synchronization as Noise-Enhanced Order

One of the major motivations for SR research is the idea of gaining infor-
mation through an optimally tuned stochastic bistable filter. The most ap-
propriate measure describing the information transmission through a bistable
system is the spectrum of Shannon conditional entropies [203,204]. In contrast
to other measures (a linear version of transinformation), used in [35,205] and
quantifying the degree of linear dependence between the input and the out-
put of the system, the hierarchy of Shannon conditional entropies [206, 207]
characterizes correlations of all higher orders and in the limit is considered
to be a measure of the order (disorder) in the system.

The information–theoretical analysis requires the introduction of a sym-
bol alphabet corresponding to the stochastic dynamics of the system. For
bistable stochastic systems, a binary alphabet is natural. It consists of two
symbols, for instance, ‘0’ and ‘1’, which correspond to the state of the system
to the left and to the right with respect to the barrier. Let in = i1, . . . , in
be a binary subsequence of length n or a word of length n (n-word). The
stationary probability (estimated from its relative repetition frequency) of
such an n-word is denoted by p(in). If a sequence contains a periodic com-
ponent, then temporal correlations will be reflected by a highly structured
n-word distribution function. In order to quantify the degree of order that
rules these structures we employ the Shannon entropy [206] which is applied
to the n-word distribution

Hn = −
∑

(in)∈{0,1}n

p(in) log2 p(in). (3.175)

The n-block entropy Hn is interpreted as the average information necessary
to predict the appearance of the n-word (i1, . . . , in).
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The conditional or dynamical [207, 208] entropies are introduced for n =
1, 2, . . . in the following way:

hn = Hn+1 − Hn = 〈−
∑

in+1

p(in+1|in) log2 p(in+1|in)〉(in), (3.176)

where 〈 〉 indicate averaging over the prehistory in. This definition is sup-
plemented by “the initial condition” h0 = H1. In (3.176), p(in+1|in) denotes
the appearance probability for the symbol in+1 conditioned by the n preced-
ing symbols in. The dynamical entropies hn are interpreted as the average
information necessary to predict the symbol in+1 (or gained after its obser-
vation) with given prior knowledge of in. In other words, hn characterizes the
uncertainty in prediction of the next symbol in a sequence in. This amount
of information is usually decreased by correlations between symbols in a se-
quence. The limit hn when n → ∞, i.e.,

h = lim
n→∞

hn, (3.177)

is named the source entropy [209]. The source entropy determines the minimal
amount of information necessary to predict the next symbol in a sequence
with given knowledge of the whole prehistory of the process.

We apply the information–theoretical approach to the experimental data
obtained for the Schmitt trigger (see Sect. 3.2.3). Binary random sequences
generated by a Schmitt trigger were stored in a computer via an analog-to-
digital converter. Simultaneously we recorded the input sequences (the signal
and the signal plus noise) which were represented by 0’s and 1’s depending
on their sign. In all experiments the length of sequences was 15 000∆t, where
∆t is the sampling step. The optimal sampling step was chosen to be approx-
imately a twelfth of the signal period: ∆t = T0/12 ≈ 8.33× 10−4 s. We chose
the regime of synchronization of stochastic switchings of the trigger when the
mean switching frequency is locked. This regime occurs for a signal amplitude
A = 100mV.

It is reasonable to suggest that a symbolic sequence generated by the
Schmitt trigger will be maximally ordered in the regime of stochastic syn-
chronization or SR. Hence, one may expect the following scenario for the
source entropy behavior: For very weak noise, when the trigger switching
events are very rare, the sequence is characterized by a large redundancy,
and the entropy is small. With increasing noise, the entropy should increase
and then decrease, attaining a minimum due to SR, and rise again when the
dynamics of the system is fully controlled by noise.

The picture described above was completely verified by the calculations
performed from experimental data [203,204]. All entropy measures were com-
puted by averaging over 20 time series of length 1500∆t. The results are
shown in Fig. 3.42a. The curves in this figure display a well-marked min-
imum around the expected noise intensity. Thus, the predictability of the
output sequences can be maximized by tuning the noise intensity. This im-
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Fig. 3.42. (a) Dynamical entropies hn (n = 0, 1, . . . , 15) versus noise intensity.
h6(D) at the trigger input is shown by squares; h6(D) at the output is shown
by circles. (b) Source entropy of a binary sequence generated by an ensemble of
Schmitt triggers versus internal noise intensity for different numbers of elements in
the ensemble

portant effect cannot be principally observed at the output of conventional
linear filters.

The increase of predictability implies an enhancement of ordering in the
output sequence. With application to SR, entropies reflect an amplification
of a periodic component of the output signal, and for a certain optimal noise
level we may speak of noise-enhanced order in time. The most ordered state
means that a maximal amount of switching events takes place during a time
equal to half the signal period, and the output is characterized by the longest
correlations.

Note that the minimum of the dependence of the source entropy on the
noise intensity is observed only for large-enough amplitudes of the periodic
signal, when the synchronization phenomenon of trigger stochastic switch-
ings occurs. In the case of a weak signal, when the response of a stochastic
system to the signal is basically linear, the entropy monotonically grows with
increasing noise and tends to 1 in the limit of high noise level [203,204].

The fact that the degree of order is enhanced in the regime of SR is also
verified when analyzing the collective output of an ensemble of stochastic
resonators driven by a weak periodic signal. In order to calculate the source
entropy of the collective output of an array, we introduce the symbolic de-
scription

u(t) =
{

0, if xM (t) < 0,
1, if xM (t) ≥ 0.

(3.178)

The calculated results for the source entropy h are shown in Fig. 3.42b. For
a single element N = 1, the entropy monotonically increases with increasing
internal noise intensity D until it saturates. When the number of elements
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goes up, the behavior of the entropy qualitatively changes. For weak internal
noise, the residence times are exponentially large and the symbolic sequence
generated by the array is characterized by a high redundancy. As a result,
the entropy is close to zero. With increasing D, the source entropy rises
and reaches a maximum at the internal noise intensity corresponding to the
boundary of the synchronization region, when the mean frequency is locked.
Starting from this value the source entropy falls, approaches a minimum at
a certain optimal noise intensity, and finally rises again. Hence, with increas-
ing internal noise intensity the collective output of the array of stochastic
resonators becomes more ordered. We emphasize that in contrast to the syn-
chronization of a single element by a periodic signal with large amplitude,
in the case of an ensemble of stochastic resonators the entropy decreases for
weak signals and, hence, single elements remain nonsynchronized. Extensive
numerical investigations have shown that the values of the noise intensity
which minimize the source entropy are the same as the optimal noise level
maximizing the output spectral power amplification of a single element.

3.2.8 Summary

The results presented in this section give a positive answer to the main ques-
tion formulated in Sect. 3.2.1. The synchronization effect of switching events
takes place in noisy bistable systems. It is principally nonlinear (it can be
observed only for finite force amplitudes and for sufficiently strong coupling)
and can be described on the basis of a generalized knowledge of the phase
synchronization theory. The influence of noise which causes random switch-
ings requires the introduction of the notion of effective synchronization when
the time over which the phase difference is locked is finite and depends on
the noise intensity.

Knowledge of stochastic synchronization can be extended with reference
to ensembles of interacting bistable oscillators. Moreover, by analogy with the
SR phenomenon, the problem of switching synchronization can be stated and
solved as applied to deterministic chaotic systems with a generalized type of
bistable behavior.

As in the classical oscillation theory, the effects of both external (forced)
synchronization and mutual synchronization of switching events are realized
in bistable stochastic and chaotic systems. The important result is that in
the SR regime it is the synchronization effect that leads to an enhancement
of the degree of order (self-organization) when the entropy of the output
signal has a well-marked minimum. This means that both synchronization
and self-organization in bistable systems in SR regimes are realized for suf-
ficiently strong interaction only. These phenomena are principally nonlinear
and cannot by studied in the frame of linear approximation, in particular, on
the basis of LRT.
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3.3 The Beneficial Role of Noise in Excitable Systems

So far our attention has been paid to the properties of noisy nonlinear dy-
namics with a relatively unstructured behavior. In systems with SR the main
origin of structure is located outside the system. Ordered behavior is observed
as a response to periodic or random correlated inputs. In this section we con-
sider another situation where noise enhances coherence of inherent oscillatory
modes of the system.

3.3.1 Coherence Resonance Near Bifurcations
of Periodic Solutions of a Dynamical System

The SR regime allows one to optimize the degree of coherence of the input
and output signals by choosing an optimal noise intensity to control the
switching events of a bistable system. Similar phenomena can be observed
in DS with noise but without bistability. In this case the system must be
oscillatory and the corresponding Fokker–Planck operator must have complex
eigenvalues. Moreover, noise can be used to enhance coherence of oscillations
even without external periodic signals. An example of such a phenomenon
has been described in [210], where a limit cycle was enhanced near a Hopf
bifurcation but before the deterministic dynamics exhibits periodic cycles.
This effect became more pronounced when colored noise was applied [211,
212].

In [213] a noise-induced fluctuation peak in the spectrum of a nonlinear
oscillator with small friction was investigated. Noise-induced coherent motion
has also been observed in a self-sustained oscillator near the saddle-node
bifurcation [214–216] and in neuron models [217, 218]. In these studies the
fluctuation spectrum peak possesses optimal characteristics, that is the peak
has maximal height and minimal width, at a certain optimal noise level. This
phenomenon is very similar to SR and may be called coherence resonance
[219]. In the present section, we study coherence resonance near the local
bifurcations of periodic solutions, and we substantiate the fact that a simple
mechanism of this effect is universal for a wide class of DS [220].

Consider a situation in which noise perturbes a nonlinear DS near a bifur-
cation of its periodic solution. Assume that a noise-induced peak of height h
appears in the spectral density at the frequency ωp so that a noisy precursor
of the bifurcation can be observed [221]. The following question arises: What
will happen with the spectrum shape when the noise intensity is varied? To
answer this one should take into account two competitive effects: (i) when the
noise level is increased, the system phase trajectories go far away from the
stable periodic trajectory (this is the reason for induced oscillations at the
frequency ωp) and the peak height h grows (the growth of h must be bounded
due to nonlinearity); (ii) since amplitude and phase fluctuations increase, the
noise growth leads to a spreading of the spectrum, e.g., the relative spectral
width W (D) = 1/Q = ∆ω/ωp grows or its quality factor Q decreases. The
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spreading of the spectral line makes difficult detection of the noise-induced
peak and destroys the coherent motion at the frequency ωp.

It is reasonable to suppose that there exists an optimal noise level at
which the peak in the spectrum has a sufficient height and is narrow enough
so that it can be clearly observed on the noise background.

To quantify the degree of coherence of a system, introduce into consider-
ation the quantity C(D) [214]:

C(D) = h(D)/W (D) = Q(D) · h(D), (3.179)

where Q(D) is the quality factor of the peak. We show below that the coher-
ence measure C(D) attains its maximum at a certain noise level.

Consider the logistic map perturbed by noise:

xn+1 = 1 − ax2
n +

√
Dξn, (3.180)

where a is the control parameter and D is the intensity of white noise ξ(n).
Without noise the cascade of period-doubling bifurcations 2k takes place for
a = ak: a1 = 0.75, a2 = 1.25, a3 = 1.368099, . . . For a = 1.24 and in the
absence of noise (D = 0) the map (3.180) has a stable period-2 fixed point,
and a delta-peak is observed in the spectrum at the frequency ω0 = π. In the
presence of noise there appears a noisy precursor of the bifurcation, a period-
4 cycle. In the spectrum one can distinguish an additional characteristic peak
at the subharmonic frequency ωp = π/2 [222]. With increasing D this peak
becomes more and more pronounced over the noise background. However, a
further increase in the noise intensity broadens the peak so that it cannot be
practically observed over the noise background.

The dependence of the coherence degree C(D) is shown in Fig. 3.43a and
confirms the presence of coherence resonance in the system. As seen from
Fig. 3.43b, its relative width W increases linearly with D [1]. At the same
time, the peak height grows linearly for small noise intensity, then its growth
is slowed down and, finally, is saturated. Therefore, the dependences h(D)
and W (D) can be approximated by the following expressions:

W (D) ∝ W0 + D, h(D) ∝ 1 − exp(−αD), (3.181)

where W0 and α are certain constants. The competition between an increase
in the peak height and the relative spectral width yields the maximal coher-
ence:

C(D) ∝ 1 − exp (−αD)
W0 + D

. (3.182)

We are also interested in the behavior of noisy precursors of the bifur-
cation when varying the control parameter. Introduce the parameter of su-
percriticality ε = ak − a, where ak is the bifurcation point. For any noise
intensity D the dependence of the coherence measure on supercriticality ε
can be described by the law C(ε) ∝ ε−3. This description shows agreement
with theoretical predictions in [221]. Hence, the effect must be enhanced
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Fig. 3.43. (a) Coherence measure C as a function of the noise intensity for different
values of the control parameter a of the logistic map: 1.2 (◦); 1.22 (�); 1.23 (�).
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when one approaches the bifurcation point. Note that the optimal noise in-
tensity Dopt is shifted to large values when parameter a moves away from
the bifurcation point (see Fig. 3.43a). Numerical simulations have shown that
the optimal noise intensity and the parameter of supercriticality are related
linearly, i.e., Dopt ∝ ε. A qualitatively similar behavior has also been ob-
served for subsequent period-doubling bifurcations. Indeed, the same effect
can be observed for other precursors, for example, near the Hopf bifurca-
tion [220].

3.3.2 Coherence Resonance in Excitable Dynamics

FitzHugh–Nagumo Dynamics. An interesting system which exhibits co-
herence resonance is the FitzHugh–Nagumo (FHN) model. It is a simplified
version of the well-known Hodgkin–Huxley neuron model, which accounts
for the main essentials of the regenerative firing mechanisms in a nerve
cell [223, 224]. On the other hand, this model is a representative of the so-
called activator–inhibitor system. Its dynamics is given by

ε ẋ = x − x3 − y , ẏ = γx − y + b, (3.183)

where x is the fast variable (activator or voltage variable), y is the slow
variable (inhibitor or recovery variable) and ε is the ratio of the activator
to inhibitor time scales. These equations can be re-written in an oscillatory
form as

ε ẍ = (1 − ε − 3x2) ẋ + (1 − γ)x − x3 − b. (3.184)

The FHN system possesses a rather complex bifurcation behavior with multi-
ple fixed points and limit cycles. For our purposes we will focus on the simplest
bifurcation of limit cycle birth. The parameters b and γ determine the position
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of the fixed points and a single fixed point is realized if (γ−1)3/27+b2/4 > 0.
If 4εγ > (ε + 1 − 3x2

0)
2 this fixed point at x0 possesses complex eigenvalues

and undergoes a Andronov–Hopf bifurcation if 3x2
0 + ε− 1 changes its sign.

The behavior of the FHN model can be understood in terms of the null
clines of x and y (cf. Fig. 3.44), i.e., the cubic function in x with maximum
Pmax = (x+, y+) and minimum Pmin = (x−, y−) and the straight line in y.
The former consists of three distinct regions, separated by Pmax and Pmin: the
stable left and right branches and the unstable middle branch. By choosing
proper values of γ and b, both null clines intersect only once on the left stable
branch (excitable regime), providing a single fixed point in (xfix, yfix). In the
original work by FitzHugh [223] this point corresponds to the resting state of
the nerve cell, while points on the right branch belong to the excited state and
the points largely above the fixed point on the left-hand side to a refractory
state.

We note that the voltage variable possesses a much shorter time scale than
the recovery variable (ε � 1/γ), i.e., the system is forced to relax quickly
to the x-null cline. Since the middle branch is unstable, the motion of the
system is restricted to a narrow region around the left and right branches
and the two connecting lines between them.

The deterministic system started at an appropriate initial state (for in-
stance with y < y−) will make one long excursion in the phase space. First
the trajectory quickly reaches the right branch, moving along this branch up-
wards until it reaches its top; afterward it switches to the left branch, where
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it relaxes into the fixed point (which takes an infinite time). Then in the
voltage variable one “spike” or “pulse” is observed.

FitzHugh–Nagumo Dynamics under the Influence of Noise. In re-
ality, neurons are permanently affected by various sources of different kinds
of noise, e.g., the fluctuating opening and closing of ion channels within the
membrane of the cell, noisy presynaptical currents and fluctuations of the
distinct conductivities in the system, to name only a few. As a source of fluc-
tuations we include additive white noise in the equation of y. The location
of the noise in the dynamics is rather unimportant because the noise shifts
the null clines in a relatively qualitatively similar way. We also introduce the
adiabatically slow signal s.

ε ẋ = x − x3 − y + s , ẏ = γx − y + b +
√

2D ξ(t). (3.185)

Later on we set, without loss of generality, s = 0. The sensitivity of the
FHN model with respect to adiabatically slow signals in the current can
be expressed through the dependence on b. Transformation of the recovery
variable y → y − s (neglecting time derivatives of s) leads to a modified
b → b − s.

The fluctuations cause a sequence of stochastic excitations. The spike
train and its properties have attracted much interest in recent studies on the
constructive role of noise in nonlinear systems. For instance, if signals are
input into the dynamics, SR [225–229] as well as synchronization with the
input signals [162,231] can be observed. Bursting behavior, as in real neurons,
takes place if additionally harmonic noise is implied in the system [232].

Similar to bistable dynamics the application of stationary noise in ex-
citable systems evokes a new time scale, the mean excitation time of the
occurrence of new spikes. Its value and properties depend significantly on the
characteristics of the applied noise, and hence noise controls that time scale.
On the other hand, the inherent recovery time of relaxation into the fixed
point after firing does not vary much with the action of the noise.

Consequently, excitable systems driven by white noise exhibit the phe-
nomenon of coherence resonance [219]. Intuitively, the neuron is unable to fire
during the recovery state, and if it becomes excited at the same time scale
nearly oscillatory behavior is observed. Since the excitation time depends
strongly on the noise, an optimal noise level with respect to the regularity of
the spike train exists.

Quantification of Coherence Resonance. With D �= 0 and starting in
the fixed point, fluctuations allow the system after a typical activation (exci-
tation) time to overcome the inherent threshold at (x−, y−) and – as in the
deterministic case – to perform the excursion in the phase space, returning
back to the vicinity of the fixed point. In the course of time a stochastic spike
train of the voltage variable is generated (cf. Fig. 3.45), which on one hand
can be characterized by the pulse rate measured by time averaging:
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r = lim
T→∞

N

T
. (3.186)

On the other hand, it can be characterized by the mean time between two
pulses (mean interspike interval (ISI)),

〈T 〉 = lim
N→∞

1
N

N∑

i=1

Ti,

where Ti is the time between the ith and (i + 1)th spike.
Both measures give the same information, since in the long-term limit

r = lim
N→∞

(T0

N
+

1
N

N∑

i=1

Ti +
TN+1

N

)−1

=
1

〈T 〉

with T0 and TN+1 being the time intervals until the first and after the last
spike, respectively.

As shown above a slow signal s decreases the value of the parameter b.
Therefore, the dependence of the rates on b can be thought of as a transfer
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function with respect to s. In [229] it was shown that the slope of the trans-
fer function is proportional to the “power norm” introduced in [227]. This
quantity measures the correlation of the output, i.e., the pulse rate of the
FHN model, to a sufficiently small signal s. Consequently, the sensitivity of
the response to an adiabatically slow signal is characterized by the function

λ =
dr

ds
= −dr

db
. (3.187)

To characterize the variability of the spike train, Pikovsky et al. [219] used
the coefficient of variation, e.g., the ratio of the standard deviation of the ISI
to the mean ISI:

R =

√

〈T 2〉 − 〈T 〉2
〈T 〉 . (3.188)

The coefficient of variation can be considered to be the noise-to-signal ratio
for our problem. For Poissonian sequences with independent single excitations
R approaches unity. If R < 1 the sequence becomes more regular, and R van-
ishes for periodic deterministic excitations, for example, in the deterministic
limit cycle regime of (3.185). In the case in which R < 1 excursions of the
trajectories in the phase space can be interpreted as motion on a stochastic
limit cycle [123,210].

This effect has been studied numerically by different authors [219,233,234]
and experimentally in an excitable electronic circuit [235]. In addition, nu-
merical simulations with coupled neurons were performed, and the exis-
tence of optimally selected noise intensities and coupling coefficients were
proven for a synchronously oscillating (ordered) response to the coupled net-
work [123,133,236].

We would like to mention that the occurrence of ordered sequences of
excitations could also be discussed with respect to spectral measures or cor-
relation functions [210]. For our purposes the quantity (3.188) is advanta-
geous since it requires the first two moments of the ISI distribution. Both
moments will be available using the approach discussed below for arbitrary
noise intensity.

Fokker–Planck–Equation Analysis. Since the FHN model is a nonpo-
tential system [237, 238], even the analytical solution of the corresponding
stationary FPE is still a nontrivial problem. A particular analytical solution
was reported in [239], assuming a special relationship between the parameters
of the applied noise and those of the dynamics. The authors of [240] proposed
a perturbative approach to nonpotential systems in the bistable regime of an
FHN model.

We consider the FHN model in the limit of a fast voltage variable (ac-
tivator) and with a noise source in the recovery variable (inhibitor) [241].
In this limit, following a method by Melnikov [242], we find analytically the
stationary marginal probability density of the nonpotential system and the
rate of spikes in the voltage variable (pulse rate) [241].
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The corresponding FPE for the probability density P (x, y),

∂tP = −1
ε
∂x(x − x3 − y)P + ∂y(y − γx − b + D∂y)P, (3.189)

cannot be solved analytically, even in the stationary case. Also not available
are the marginal densities

ρ(x) =

+∞∫

−∞

dyP (x, y) , p(y) =

+∞∫

−∞

dxP (x, y),

which reveal how an ensemble of independent neurons is distributed over the
excited and resting states or the recovery variable, respectively.

However, all these functions may be achieved by time averaging of a sim-
ulation of (3.185). We have used a simple Euler procedure with time step
∆t, which is two orders of magnitude smaller then ε, and shall compare the
analytical findings with numerical results.

With a look at the simulations at ε = 10−4 in Fig. 3.45 one notes that the
dynamics becomes effectively one dimensional in the limit ε → 0. In that case
at least p(y), ρ(x), r,dr/db, T and R can be calculated analytically by solving
two one-dimensional FPE connected by appropriate boundary conditions and
showing a constant flux through the system.

In this limit the FHN system closely resembles a Schmitt trigger driven
by an Ornstein–Uhlenbeck process (OUP) [19, 242]. The recovery variable y
replaces the input variable of a Schmitt trigger centered around γ x(t)− b as
can be seen in Fig. 3.46.
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+

Fig. 3.46. Schematic of the system for ε → 0. Depicted are the effective potentials
Ul(y), Ur(y) (solid lines) as functions of the slow inhibitor y for γ = b = 1.5 and
the absorption points y+, y−; the dashed lines indicate the two branches. Although
the scheme resembles a Schmitt trigger, note that in this case the output depends
on the slow variable y and is not constant
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On the other hand, there are fundamental differences between the ex-
citable system and a Schmitt trigger. First and most importantly, the ex-
cited state is a dynamics without a fixed point. Its effective potential does
not possess a minimum. Hence, the excited state is left even without noise.
Second, the output is not a binary value. x(y) depends strictly on the value
of the slow variable. In addition, the dynamics at both branches are highly
nonlinear.

Probability Density. For small ε the voltage variable x relaxes quickly
toward one of the stable branches of the null cline y = x−x3, where x obeys
the inverse of the cubic function on the left- or right-hand side, respectively,

xl(y) = 3y− cos
(1

3
arccos(y/y+)

)

,

xr(y) = 3y+ cos
(1

3
arccos(y/y−)

)

. (3.190)

In the limit ε → 0 the motion is restricted to these two lines. The two-
dimensional Markovian system separates into two one-dimensional subsys-
tems exchanging probability by currents Jrl, Jlr infinitely quickly via the
straight lines l1, l2 (see Fig. 3.44). In this limit there is no finite probabil-
ity on these lines. Thus we obtain two coupled FPE; this was introduced
for the first time by Melnikov [242], who considered the stochastic Schmitt
trigger.

The FPE of the two systems do not only contain the usual drift and
diffusion terms, but additional sources and sinks of probability, changing the
probabilities at y+ or y−, respectively. They read

∂tPl(y) = ∂y(y − b − γxl(y) + D∂y)Pl + Jrlδ(y − y+)
(3.191)

∂tPr(y) = ∂y(y − b − γxr(y) + D∂y)Pr + Jlrδ(y − y−),

and Pmin and Pmax become now absorbing boundaries for the left and right
branches, respectively. This implies

Jlr = D∂yPl(y), Jrl = −D∂yPr(y), (3.192)

while in y → ±∞ the densities obey natural boundary conditions on the
respective branches. Furthermore, the sum of probabilities on both sides is
conserved:

∞∫

y−

Pl(y)dy +

y+∫

−∞

Pr(y)dy = 1. (3.193)

In steady state the currents have to be constant and coincide with each other
and with the pulse rate introduced in (3.186):

Jlr = Jrl = r. (3.194)
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With (3.186-187) one finds the solutions of the coupled FPE (3.191) [241]:

Pl(y) =
r

D
exp

(

−Ul(y)/D
)

y∫

y−

dz exp
(

Ul(z)/D
)

· Θ(y+ − z), (3.195)

Pr(y) =
r

D
exp

(

−Ur(y)/D
)

y+∫

y

dz exp
(

Ur(z)/D
)

· Θ(z − y−), (3.196)

with the effective potentials Ul(y), Ur(y) explicitly given by

Ul(y) =
(y − b)2

2
− γ

xl(y)
4

[3y − xl(y)],

Ur(y) =
(y − b)2

2
− γ

xrmr(y)
4

[3y − xr(y)]. (3.197)

Taking into account the change of the volume element, the marginal den-
sity ρ(x) is given by ρ(x) = p(y)

∣
∣
∣
dy
dx

∣
∣
∣. It does not exhibit any contribution

between xmin and xmax, since, as assumed in our approach, there is no prob-
ability on the straight lines between the branches. In contrast, simulations at
finite ε provide a small amount of probability within that range, which be-
comes comparably small by a decrease in ε in the logarithmic plot (Fig. 3.47).
The density around the maxima agrees fairly well with the numerical data.

The Pulse Rate. The pulse rate is obtained by (3.193) as follows [241]:
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Fig. 3.47. Density p(y), simulations at different values of ε compared to the ap-
proximation. Log plot of ρ(x), simulations at different values of ε compared to the
approximation. Parameters are D = 0.1, γ = 1.5, b = 1.5 and ε = 10−3 (squares)
and ε = 10−5 (circles). Note that the right branch is due to noise-induced excursions
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r = D





y+∫

y−

du

∞∫

u

dv exp
(

Ul(u) − Ul(v)
D

)

(3.198)

+

y+∫

y−

du

u∫

−∞

dv exp
(

Ur(u) − Ur(v)
D

)




−1

.

For extremely small D this may be simplified to an Arrhenius-like shape:

r ≈ U
′′

l (yfix)

√

∆Ul

πD
exp

(

−∆Ul

D

)

, D � ∆Ul. (3.199)

For large D one finds the rate obeying

r ≈
√

2D

4y+
√

π
, D � ∆Ul. (3.200)

The pulse rate and its dependencies on the noise intensity and on the slope
of the second null cline γ are compared to numeric simulations in Fig. 3.48.
For sufficiently small ε the approximation gives satisfactory agreement. At
finite ε one notices that (3.198) overestimates the rate. Two reasons are seen
for these deviations: obviously the transition between the two branches takes
a finite time; additionally, a finite ε originates subthreshhold-oscillations, di-
minishing the rate as well.
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Fig. 3.48. (a) Pulse rate versus noise level D, with γ = 0.8, b = 0.9, ε = 10−4.
Approximation (3.198) (solid line) compared to simulations (circles) and to the
simplified expressions (3.199) (dashed line) and (3.200) (long-dashed line). (b) Pulse
rate versus the slope γ, while D = 0.1 and the fixed point is fixed to xfix = −0.8,
therefore b = b(γ). Approximation (3.198) (solid line) compared to simulations with
ε = 10−4 (thin solid line) and ε = 10−5 (circles)
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Aperiodic Stochastic Resonance in the FitzHugh–Nagumo Model.
An increase in the parameter b changes the position of the fixed point, in-
ducing an enlargement of the distance to the threshold. Therefore, growing b
diminishes monotonously the pulse rate. This rate acts as a transfer function
for adiabatically slow signals.

The slope of the transfer function r at a finite b is found by

dr

db
=

−

y+∫

y−

du

[
∞∫

u

dv (v − u) exp
(

Ul(u)−Ul(v)
D

)

+
u∫

−∞
dv (v − u) exp

(
Ur(u)−Ur(v)

D

)
]

(
y+∫

y−

du

[
∞∫

u

dv exp
(

Ul(u)−Ul(v)
D

)

+
u∫

−∞
dv exp

(
Ur(u)−Ur(v)

D

)
])2 .

and exhibits a nonmonotonous behavior with respect to D as shown in
Fig. 3.49. The latter is a fingerprint of aperiodic stochastic resonance. The
slope is in a linear approximation proportional to the “power norm”, tak-
ing account of the cross-correlation between an adiabatically slow signal
b = b0 − b1(t) and the output firing rate [229]. The value of the noise Dmax

where the maximum occurs can be estimated as

Dmax ≈ 2(2 −
√

3) · (∆Ul)2 (3.201)

and is indicated in Fig. 3.49 by an arrow.

Noise-to-Signal Ratio. The mean time between two spikes, i.e., the mean
ISI is given by the sum of the passage times from injection to absorption point
on each branch. Therefore in estimating the time sequence of the spikes one
deals with the classical mean first passage time (MFPT) problem and can
use standard formulas [193].
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Fig. 3.49. Absolute value of the derivative of the pulse rate with respect to b versus
noise strength D for b = 0.7 and γ = 1.0. Expression (3.201) (solid line) and and
small noise approximation (dashed line) compared to simulations with ε = 10−3

(circles). The arrow indicates the maximum calculated by (3.201)
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The first and second moments on both branches are statistically indepen-
dent and obey

〈Tl(y+)〉 =
1
D

y+∫

y−

du exp
(

Ul(u)
D

) ∞∫

u

dv exp
(

−Ul(v)
D

)

, (3.202)

〈T 2
l 〉 =

2
D

y+∫

y−

du exp
(

Ul(u)
D

) ∞∫

u

dv exp
(
−Ul(v)

D

)

〈Tl(v)〉, (3.203)

and analogously for 〈Tl〉, 〈T 2
l 〉 with appropriate integration boundaries for

the right branch and potentials according to (3.197). Equation (3.202) proves
again the equality of current (pulse rate) and the inverse of the sum of the
passage times, i.e., the mean ISI.

With (3.195-196) the noise-to-signal ratio (3.188) can be calculated as
follows:

R(D) =

√

〈T 2
l 〉 + 〈T 2

r 〉 − 〈Tl〉2 − 〈Tr〉2
〈Tl + Tr〉

. (3.204)

This quantity exhibits a minimum with respect to the noise strength
(Fig. 3.50), indicating a coherent (i.e., most regular) spike train for a particu-
lar noise level. Results of the simulations, depicted in the same figure, confirm
the analytical findings, particularly the rough position of the maximum as
well as its depth. It is remarkable that a finite ε deepens the minimum and
shifts it toward larger values of D. Because there is no doubt that the coher-
ence is destroyed for larger values of ε, there should be a critical value of ε
for which R becomes minimal.
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Fig. 3.50. Relative fluctuations versus noise strength D, with γ = 0.8 and b = 0.9.
Approximation (solid line) compared to simulations with ε = 10−3 (squares) and
ε = 10−4 (circles)
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3.3.3 Noise-Enhanced Synchronization
of Coupled Excitable Systems

In the previous section we described how the inherent oscillatory regimes of an
excitable system can be controlled by externally applied noise: the coherence
of inherent oscillations can be maximized at a nonzero noise level, while the
mean frequency of oscillation (e.g., the mean firing rate) is a function of
noise intensity. What would be the synchronization effects in a system of
coupled excitable elements, each of which demonstrating the phenomenon of
coherence resonance? First results have shown that coupled identical FHN
elements exhibit collective oscillations, indicated by a well-developed peak
in the spectrum [133]. In this section we describe mutual synchronization of
locally coupled nonidentical FHN oscillators [236]. This discrete network of
diffusely coupled oscillator mimics a noisy excitable media which is of high
interest in biology, chemistry and physics. It is described by the following set
of stochastic differential equations:

ε ẋ(t, n) = x − x3

3
− y + γ

∑

n′

[x(t, n′) − x(t, n)] ,

ẏ(t, n) = x + a(n) +
√

2D ξ(t, n), (3.205)

where x(t, n) and y(t, n) are again the fast and slow variables, respec-
tively. For the one-dimensional case these variables are defined on a chain
n = 1, . . . , N , while in the two-dimensional case x and y are defined on a
square lattice. The sum over the neighbors stands for the discrete Laplace
operator in one and two dimensions, modeling the local interactions with
coupling strength γ. The parameter a(n) depends on the spatial variable n
and is assumed to be a uniformly distributed random variable. In this way we
simulate a network of nonidentical FHN elements. Further, we assume sto-
chastic forcing by Gaussian white noise ξ, statistically independent in space
and with zero mean

〈

ξ(t, n) ξ(t + τ,m)
〉

= δm,n δ(τ).
The number of parameters in the model can be reduced by introducing the

spacing of the lattice, l, and then scaling it as l =
√

γ l0. Then the coupling
factor in front of the Laplacian becomes one, but the noise intensity changes.
As a result the effect of the noise and the dependence on the coupling strength
can be discussed with regard to a common parameter Q = D/

√

γd, where d
equals 1 or 2 for the one- or two-dimensional case, respectively. For example,
strong coupling decreases the action of the noise and the large noise case
corresponds to the weak coupling limit. That is why in the following we fix
γ and use the noise intensity as a control parameter.

We expect that for coupling that is strong enough the firing events of
particular elements will be synchronized. In our numerical simulations we
fixed ε = 0.01 and γ = 0.05, while the activation parameters a(n) are random
numbers distributed uniformly on [1.03, 1.1]. This leads to a distribution of
spiking times if noise is applied. We also use a free boundary and random
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initial conditions. In the absence of noise any initial state of the system evolves
to an equilibrium state. Depending on noise intensity D, for a sufficiently
large value of the coupling strength three basic types of space–time behavior
can be observed. For a small noise centers of excitation are nucleated very
seldom in random positions in the medium, giving rise to propagating target
waves. Collapse of such waves cannot exhibit stable spiral waves since the
velocity of the waves at the intersection is always directed outside of the
intersecting region. Therefore no new open spirals may occur. However, in
the case of parametric noise the propagating fronts may locally backfire small
directed spots which break propagating excitations and make spirals possible
[243, 244]. In this case different cells in the medium are correlated only on
the short time scale of the mean time of wave propagation, and there is no
synchronization between distant cells.

For a large noise strength, the nucleation rate is very high and the medium
is represented by stochastic firing cells. However, for an optimal noise inten-
sity the medium becomes phase coherent: firings of different and distant cells
occur almost in phase. Those three cases are shown in Fig. 3.51.

t t t1 2 3

Fig. 3.51. Snapshots of a two-dimensional 200 × 200 system (3.205) for three
moments in time t1 < t2 < t3. The white color corresponds to the excited states.
For the optimal noise intensity (second raw) the medium exhibits collective noise
induced oscillations. First raw: D = 1.1 10−4, second raw: D = 3.12 10−4 and third
raw: D = 5 10−3
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At the optimal noise level the whole medium oscillates nearly periodically
(see the middle row in Fig. 3.51). Finally, the case with large noise is repre-
sented by randomly flushing clusters. The same behavior has been observed
in a model of the visual cortex [245].

To study this phenomenon of noise-induced global oscillations we describe
this effect for the one-dimensional case in terms of phase synchronization.
We introduce the instantaneous phase Φ(t, n) of the nth element using the
analytic signal representation. We choose the central cell in the media (n =
N/2) as a reference element and then calculate the phase differences φ(t, k) =
Φ(t,N/2) − Φ(t,N/2 + k), k = −N/2, . . . , N/2. Our numerical simulations
have shown that for the optimal noise level the phases of different oscillators
are locked during the time of computations. In the case of large distances
between oscillators the phase fluctuations do indeed grow. Nevertheless, the
phase difference is still bounded during long periods of time in a certain
range. For non-optimal noise intensities a partial phase synchronization with
randomly occurring phase slips can be observed only between neighboring
elements. For larger distances the diffusion of the phase differences becomes
very strong and synchronization breaks down.

In our case an appropriate measure of stochastic synchronization is the
cross-diffusion coefficient defined as

Deff(k) =
1
2

d
dt

[〈

φ2(t, k)
〉

−
〈

φ(t, k)
〉2]

. (3.206)

This quantity describes the spreading in time of an initial distribution
of the phase difference between the (N/2)th element and all other elements.
If this diffusion constant decreases, a longer phase-locking epoch appears
and, therefore, phase synchronization becomes stronger. A single measure is
obtained by averaging Deff(k) over the spatial distance:

Deff =
1
N

N/2
∑

k=−N/2

Deff(k). (3.207)

The dependence of this averaged effective cross-diffusion constant versus noise
intensity is shown in Fig. 3.52; it demonstrates a global minimum at a nonzero
noise level. Thus, phase synchronization can be enhanced by tuning the noise
intensity.

Synchronization is also defined as a frequency-locking effect. In the
case of a stochastic excitable system one must use the mean frequencies
〈

ω(n)
〉

=
〈

Φ̇(t, n)
〉

of the oscillators [1]. Due to the given distribution of
a(n), the elements in the network have different randomly scattered frequen-
cies for vanishing coupling. We have numerically built the distribution of the
mean frequencies, calculated for every element across the network, P (

〈

ω
〉

),
for different noise intensities. The results are shown in Fig. 3.53. A remark-
able effect of noise-enhanced space–time synchronization can be seen from
this figure. For the optimal noise intensity, when the phases of different oscil-
lators are locked for long periods of time, the mean frequencies are entrained
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Fig. 3.52. The averaged effective cross-diffusion constant versus noise intensity.
The dashed line corresponds to the uncoupled array (γ = 0)

and the distribution of the mean frequencies becomes extremely narrow. For
nonoptimal noises the mean frequencies show rather wide distributions, indi-
cating the lack of synchronization. Figure 3.53 clearly indicates noise-induced
space–time ordering in the system based on synchronization mechanism. This
behavior can be quantified further by calculating the mean square deviation,
shown in Fig. 3.54, of the mean frequencies averaged over the network, which
shows a deep minimum at the same optimal noise intensity as the effective
diffusion constant [236].

The mechanism of noise-induced synchronization is rooted in the behav-
ior of a single uncoupled element. The noise-induced oscillations are most
coherent at a nonzero noise intensity, and the quality factor of the noise-
induced peak in the power spectrum is maximal. In this regime the mean
firing rate (or the mean frequency) of the system approaches the peak fre-
quency in the power spectrum. In the case of weak noise the mean firing rate
depends exponentially on the control parameter a (a > 1). However, with
the increase in noise the dependence of the mean frequency on a becomes
very weak. That is why with the increase in noise from a very low level the
mismatch between characteristic frequencies of elements in the coupled array
decreases, providing better conditions for mutual synchronization. On the
other hand, the noise-induced oscillations becomes more coherent. These ef-
fects will tend to facilitate synchronization among elements in the network.
Large noise, however, destroys again the coherence of local stochastic oscil-
lations (the frequency and phase fluctuations grow rapidly) and also leads to
the destruction of spatially coherent structures. The optimal noise intensity
at which synchronization is most pronounced depends on the range of the
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Fig. 3.53. Distribution of the mean frequencies of oscillators for the three values
of noise. From left to right: D = 1.1 10−4, D = 3.12 10−4 and D = 5 10−3
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Fig. 3.54. Variance of the mean frequencies of oscillators for the indicated values
of noise variance

distribution of activation parameters a(n): with the increase in the range of
disorder, the optimal noise intensity shifts towards smaller values.

3.3.4 Summary

We have presented analytical and numerical results for the FHN model driven
by white noise [241]. In the limit of a fast voltage variable, we could calculate
the stationary probability densities as well as the mean ISI and the variance
of the ISI [219]. Analytical study has revealed that the pulse rate exhibits
a maximum versus the slope of the recovery null cline and has proven the
existence of a minimum of the coefficient of variation (noise-to-signal ratio).
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Excitable systems have enormous importance in studies related to ion
channels and neuronal activity. Studies of the stochastic FHN model which
mimics the complex behavior of excitable biophysical units can nevertheless
help in the understanding of noise in such devices. They also bridge the
gap between research in biophysics and noise-induced structure formation in
nonlinear chemistry and in analog electronic devices, for which experiments
have been performed on this interesting topic [134–136,138,139].

In [122] the phenomenon of spatio-temporal SR was demonstrated numer-
ically in a model of excitable media driven by a soliton wave as a signal and
experimentally in a photosensitive Belousov–Zhabotinsky reaction.

3.4 Noise-Induced Transport

3.4.1 Introduction

Most mechanical and heat engines perform a directed motion as a periodic
repetition of a temporal sequence in response to an external force or energy
supply. This periodicity is required to permanently extract work from the
applied forces and sources. In simple cases such behavior can be mapped
onto mechanical systems, with coordinates and velocities characterizing the
motion in given periodic force fields. With dependence on the value of friction
one is left either with a periodic oscillator or its overdamped pendant.

Let us specify to the situations in which the dissipative force is linear. A
counter example with nonlinear friction, which acts as an energy pump into
the system, was studied in [246]. Here we look at the overdamped motion of
conservative nonlinear oscillators driven by external forces and given by

ẋ = − ∂V (x, t)
∂x

+
√

2Dξ(t) . (3.208)

The potential consists of two parts V (x, y) = U(x) + W (x, t). The first is
stationary and periodic, U(x + L) = U(x), with one or more extrema in the
period. The second describes the influence of the external driving scaling with
F0. In the case of an additive force W = −F0 x y(t) with a given temporal
variation y(t) different from and generally uncorrelated with the Gaussian
white noise ξ(t).

The existence of directed motion in equilibrium is forbidden by the sec-
ond law of thermodynamics if no bias is applied to the system, i.e., F0 = 0.
First Smoluchowski [247] and later on Feynman [248] pointed out that even
rectifying configurations are unable to extract work from equilibrium fluctu-
ations.

The situation qualitatively changes if F0 is set different to zero in (3.208)
and, therefore, perturbed externally and brought out of equilibrium. Then the
existence of directed fluxes is general if translational invariance in space or in
time is broken and as a result detailed balance is violated. Which symmetry
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Fig. 3.55. Typical sawtooth-like potential U(x) with period L = 1 and broken
reflection symmetry.

classes of forces excite directed motion in dependence on the properties of
the potential U(x) is discussed intensely in [249].

We will consider stochastic problems with translational invariance in time.
Then, noise and fluctuations achieve a fundamental role in two cases. First,
the external driving is random in time, for example, an Ornstein–Uhlenbeck
process (OUP) (see Sect. 1.2.3) with correlation time τ or a dichotomic
process. Second, the driving force is too small in their finite-valued elon-
gation, and the presence of white noise ξ(t) makes it possible to escape over
maxima of U(x) only.

With the assumed stationary and symmetric noise [all odd moments of
y(t) vanish], a symmetry-breaking ingredient will be required to select a di-
rected motion of Brownian particles. It will be the broken reflection symmetry
of the periodic potential, i.e., U(x) �= U(−x) for arbitrary values x over one
period. This broken symmetry is usually introduced by the choice of a pe-
riodic but asymmetric potential, a so-called ratchet, washboard or sawtooth
potential (see Fig. 3.55).

As will be shown in this section unbiased but nonthermal fluctuations
and a broken reflection symmetry are sufficient prerequisites for the molecular
transport mechanism. Such devices have recently attracted interest [250–281]
in view of novel mass separation techniques [282–286] and of potential biologi-
cal transport applications, such as muscle contraction [267,277] or the motion
of actin on myosin [287], kinesin molecules on microtubuli [288], biotrans-
port [287–296] and transmembrane transport [297–301]. In addition, there
are reports on physical experiments proving that nonequilibrium fluctuations
are able to induce directed motion [302–307]. A generalization of the con-
sidered effects to fluxes of magnetic phases in SQUIDs [308] or of chemical
species in configurational spaces is possible, as was shown in [256]. It is worth
mentioning that noise-induced directed current has implicitly been observed
experimentally in one-dimensional organic conductors as early as in the late
1970s [309] via the occurrence of a finite stop-voltage.

Depending on the system under consideration the coordinate may be a
continuous spatial axis or a discrete reaction coordinate. Transport in spa-
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tially continuous systems can be described by means of a Fokker–Planck
equation (FPE) [67]. Alternatively, for the case of discrete events master
equations are employed, for example, for birth-and-death processes defined
by rates [310].

Within both frameworks the central quantity of interest, the station-
ary current, can be formulated rigorously. Additionally, the consideration
of diffusion around the averaged motion gives more precise information. A
lot of investigations are concerned with the possible efficiency of such de-
vices [248, 311] which it will not be discussed here. We propose looking at
the quality of the directed transport by the relation between conductive and
convective transport expressed by the mean flux over diffusive motion over
one period [312].

3.4.2 Flashing and Rocking Ratchets

One has to mention that already ancient water pumps have made use of
situations with broken reflection symmetry. Nowadays ratchet-like devices
with deterministic dynamics are widely used as rectifiers [313]. Here the new
point under consideration are objects in ratchets if noise or fluctuations are
applied. They are to be used to induce diffusional motion or to escape over
existing barriers and model thermal noise, stochastic external forces or in
general, stochastic changes of the reaction of the object in the ratchet.

At present two different stochastic prototypes of ratchets are subject to
investigation [259, 261]. In the first prototype external temporal force fields
are applied to mechanical oscillators with thermal noise. The fields vanish
on average. Investigations evolve along the theory of stochastic mechanical
oscillators including rate theory. This class of systems is the so-called rocking
ratchets [255]. Additive forces are periodic or random with nonwhite or non-
Gaussian correlations.

The second class is characterized by a switching between different pro-
files of the potential energy. They are called flashing ratchets and Brownian
motion in this temporally changing potentials is considered. Such fluctuating
or periodically changing potentials, for example, may be caused from exter-
nally driven chemical reactions which result in configurational changes of the
considered molecules [254, 256]. In theoretical minimal models the temporal
variation does not affect the periodicity of the potential. It is motivated be-
cause chemical reactions can modify the potential landscapes but as scalar
processes they do not induce directed forces. In most biophysical applications
flashing ratchets are considered as birth-and-death processes with temporally
varying rates.

Not every ratchet can be integrated in that system. An early investiga-
tion by Büttiker [314] proved the existence of a particle flux if the phase
of multiplicative noise in periodic systems is shifted relative to the periodic
potential. In addition, instead of varying potentials, temperature or noise
intensities might be varied from outside [315].
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Fig. 3.56. Brownian motion in rocked ratchet. Solid lines show the potentials
V (x, t) = U(x) − F0y(t) for y-values with different sign. The dashed lines indi-
cates the unperturbed U(x) for comparison. Arrows indicate the different energetic
barriers for a stochastic escape to the left or right, respectively. In the case of
adiabatically slow driving y(t) the mean transport is directed to the left

Brownian Motion in Rocking Ratchets. The main working principle
of a rocking ratchet is easily understood and is illustrated in Fig. 3.56. The
potential U(x) for different y(t) is turned by the part W (x, t) = −F0y(t)
around the origin of coordinates. If the maximal elongation is sufficiently
small, the energetic barriers to the left and right do not disappear and without
application of noise the particles are unable to move to the next minimum.
With noise stochastic escapes over the remaining barriers are possible. Escape
rates define the time scale of these stochastic motions to the neighboring
minima of the potential.

As seen in Fig. 3.56 due to the broken reflection symmetry, the barriers
have different magnitude despite a symmetric driving y(t). The left barrier
in the left plot is remarkably smaller than the right barrier in the right
plot. Therefore, particles have a preferred direction and move with higher
probability to the left.

The process is strictly noise induced in the case of dichotomic or periodic
driving if the figures present maximal elongations of F0y. For vanishingly
small additive noise the motion effectively disappears. For large intensities
the difference between the barriers becomes insignificant. There exist medium
noise values for which the differences amplified in the corresponding Arrhe-
nius factors come into operation and an averaged motion to the left takes
place.

Described here is the picture of overdamped motions when the driving
changes at scales slowly compared to all other times. It should be mentioned
that faster variations from outside or underdamped particles can exhibit a
more complex behavior with one or more current reversals when noise is
varied.

Brownian Motion in Flashing Ratchets. In the most simple case the
temporal variation of the periodic potential consists in a switching on–off
process of potential. As a continuous process this can be described by the
Langevin equation
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Fig. 3.57. Three subsequent steps of the evolution of probability density for the
position in a flashing ratchet. Initially the density is concentrated near the min-
imum. If by external perturbation the potential is switched off the particle can
freely diffuse. After switching on again differently sized portions (hatched) of the
tails of the density go to the left and right neighbors, respectively. In the case of
adiabatically slow switchings the mean transport is directed to the right. Dashed
lines show the flashing potential

ẋ = − ∂

∂x
U(x) y(t) +

√
2D ξ(t), (3.209)

and y(t) = 1, 0 is a dichotomic periodic or Markovian process. This situation
is depicted in Fig. 3.57, and we draw a small amplitude of the “off” state for
ease of comprehension.
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The transport in the case of slow variation of y(t) can be understood
quickly as in the previous case. Being localized in the “on” state of the po-
tential near a minimum of the potential, particles start to diffuse in the “off”
state. After switching the potential due to the asymmetry “on” again a larger
part of the probability is cut at the right tail compared to that at the left
one. These hatched portions move to neighboring minima of the potential,
inducing an effective flux to the right.

Again in the case of vanishing D the particles will not diffuse and no net
transport occurs. Also for a large noise the difference between the hatched
regions is negligible. Hence, an optimal noise takes care of the asymmetry
and realizes the effective flux.

On the other hand, for finite noise D �= 0, slow switchings let the particles
diffuse over long regions and the asymmetry does not count. Similarly, no
transport is realized if the switchings are very fast. The particles simply have
no time to freely diffuse. Therefore there exists a moderate switching time
which exhibits a maximal current.

3.4.3 The Adiabatic Approach

Analytical results for mean values of fluxes can be given in discrete approx-
imations, as will be shown below. In the case of a continuous coordinate,
solutions are available if the driving y(t) is either slowly or quickly chang-
ing [255, 259], for piece-wise linear dynamics [256, 260] and if the ratchet is
forced by white shot noise [316,317]. Here the first situation will be presented
for rocked ratchets with an additive force in concrete considerations. Slowly
varying forces imply that the system is able to adiabatically follow the vari-
ations of the external perturbation. Then in the asymptotic limit t → ∞
analytic expressions can be given. The analysis follows modified approaches
as given in Sects. 1.2.6 and 1.3.4.

The FPE corresponding to (3.208) reads

∂

∂t
P (x, t) = − ∂

∂x

(

−∂V (x, t)
∂x

P (x, t)
)

+ D
∂2

∂x2
P (x, t). (3.210)

From the periodicity of U(x) = U(x + L) it follows that the asymptotic
density Pasy(x, t) will be periodic as well. Then (3.210) with ∂Pasy/∂t = 0
has to be solved only in the interval [0, L] with periodic boundary conditions.
Its solution implicitly depends on time via y(t).

The expression under the derivative of the right-hand side of (3.210),

J(x, t) = − ∂V (x, t)
∂x

P (x, t) − D
∂

∂x
P (x, t), (3.211)

can be interpreted as the instantaneous probability flux, which must be in-
dependent of x in the asymptotic limit J(x, t) → Jasy(t). Multiplication of
(3.210) by x and integration over the support gives the mean velocity
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〈ẋ(t)〉L =

L∫

0

J(x, t) dx (3.212)

giving asymptotically
〈

ẋ
〉

L
= LJasy(t). As in problems of stochastic reso-

nance for periodic driving the mean velocity has to be averaged over one
period. In contrast, for stochastic stationary y(t) the asymptotic values are
time independent but should be averaged over the stationary density of the
driving.

The asymptotic solution of the FPE (3.210) valid for slow variation of
y(t) reads [1]

Pasy(x, y) = P 0(x, y)



C(y) − Jasy(y)
D

x∫

0

dx′ 1
P 0(x′, y)



 (3.213)

with P 0(x, y) = exp[−Φ(x, y)] where Φ(x, t) = V (x, y)/D. The flux Jasy(y)
and C(y) are adiabatically taken integration constants dependent on time via
the temporal driving y. One relation between them follows from the periodic
boundary condition:

Jasy(y) = C(y)D

(

1 − P 0(0, y)
P 0(L, y)

) (∫ L

0

dx
1

P 0(x, y)

)−1

. (3.214)

Taking into account normalization C(y) is

C(y) =

(
∫ L

0

dx P 0(x, y)
∫ x+L

x

dx′ 1
P 0(x′, y)

)−1 ∫ L

0

dx
1

P 0(x, y)
. (3.215)

Insertion gives after some straightforward manipulations the mean asymp-
totic velocity [255]:
〈

ẋ(y)
〉

L

LD
=
(

1 − P (0, y)
P (L, y)

) (∫ L

0

dx P 0(x, y)
∫ x+L

x

dx′ 1
P 0(x′, y)

)−1

.

(3.216)
This velocity still has to be averaged over the external force:

〈 〈ẋ〉L〉y =
∫

dy
〈

ẋ(y)
〉

L
ρ(y), (3.217)

with the given distribution ρ(y). Explicitly in the case of periodic driving
with y(t) = A cos(ωt + ϕ0), it yields

〈
〈

ẋ
〉

L
〉y =

1
2π

∫ 2π

0

dϕ0

〈

ẋ(A cos(ωt + ϕ0))
〉

L
, (3.218)

which is not dependent on ω as a result of the adiabatic approach.
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Fig. 3.58. Typical sketch of the piece-wise linear potential

In the application of this approach we study a piece-wise linear dynamics
[130]:

f(x) = − ∂

∂x
U(x) =

{
a1 for nL < x < nL + x1,

−a2 for nL − x2 < x < nL,
(3.219)

driven by a periodic additive force with amplitude A and small frequency.
The potential is shown in Fig. 3.58. U0 = a1x1 = a2x2 is the height of the
potential barrier, x1 + x2 = L. In the small amplitude case

max y(t) � a1a2

a2 − a1
min

(

1,
D

U0

)

, (3.220)

one finds approximately the averaged velocity [318]

〈ẋ〉 ≈ U2
0 (a2 − a1)A2

8D2a1a2 sinh2(U0/2D)

(
U2

0

4D2 sinh2(U0/2D)
+

U0

2D tanh(U0/2D)
− 2
)

(3.221)
which vanishes for large noise and in the absence of noise.

Examples of 〈ẋ〉/A2 on D/U0 approximated by evaluations of the cor-
responding integrals [318] are shown in Fig. 3.59 for different A. For A <
min(a1, a2) and A > min(a1, a2) the physical situation changes. In the first
case a maximum is observed with respect to D/U0 which becomes smaller
for increasing amplitudes A. In the second case the normalized mean velocity
tends to a certain finite value as D/U0 → 0, which was calculated within
the theory of noise-free vibration transport [281, 313]. For A < 0.5 the de-
pendences found are almost coincident with small amplitude approximation
(3.221).

One has to remark that periodically rocked ratchets were solved numer-
ically in [255] by using the matrix continued fraction (MCF) technique. For
low frequencies the numerical results coincide with the adiabatic approxi-
mation. Otherwise, in the case with high frequencies current reversals arise
which cannot be obtained in the adiabatic theory.
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Fig. 3.59. Mean velocity 〈ẋ〉/A2 on D/U0 in the adiabatic theory. a1 = 1.25,
a2 = 5, x1 = 0.8, x2 = 0.2, and A = 0.1 (curve 1), A = 1 (curve 2), A = 2 (curve
3) and A = 5 (curve 4) [130]

3.4.4 The Overdamped Correlation Ratchet

In most applications in biophysics the particle moves in a highly viscous
medium. Therefore, the overdamped situation has general importance. In
[250] it was proposed that an OUP with finite correlation time serving as
additive force can induce directed motion of Brownian particles in a ratchet
potential. An analysis of this noise-induced motion was given in [266]. Here
some results should be summarized.

Let us look at

ẋ =
1
γ

(

−U ′(x) + F + y(t) +
√

2Dξ(t)
)

, (3.222)

giving the overdamped dynamics for a Brownian particle subject to high
friction γ.

Therein y(t) stands for the exponentially correlated random force

〈y(t)y(t′)〉 =
Q

τ
exp

(

−|t − t′|
τ

)

. (3.223)

τ is the correlation time and Q its intensity (see Sect. 1.2.3. We are interested
in the mean velocity 〈ẋ〉 or the steady-state probability current J0 = 〈ẋ〉/L,
and its dependence on the noise parameters, the loading force and the friction.
Unfortunately, the corresponding FPE for the Markovian dynamics in the
two-dimensional phase space x, y cannot be solved explicitly.

Equations (3.215-216) can be treated by way of computer simulation using
a fast algorithm developed by Fox et al. [149,319,320]. A more advanced tech-
nique in determining the flux by solving high-dimensional FPE was developed
by Risken, Jung and Bartussek using MCF [67, 321]. In that semianalytical
approach the stationary nonequilibrium density and the flux is expanded in a
set of appropriate eigenfunctions. It yields an infinitely large algebraic system
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Fig. 3.60. Particle current versus correlation time and noise strength Q. Parame-
ters: γ = 1.0 and D = 0.1 [320]

of equations for the amplitudes of the eigenfunctions which converges best if
represented as MCF.

Results [320] of this approach using about 50 eigenfunctions show the
influence of the noise parameters Q and τ . Let first F be zero and γ = 1 and
we choose the ratchet potential as in Fig. 3.55:

U(x) =
1

(2π)
[sin(2πx) + 0.25 sin(4πx)] . (3.224)

The dependence of the mean velocity on the noise strength and the cor-
relation time is given in Fig. 3.60. It possesses maxima with respect to Q
and τ . The current is zero for vanishing (white noise) and infinite correlation
time if

〈

y2
〉

= 0. Taking τ to be fixed yields a maximum in Q since vanishing
as well as infinitely large amplitudes destroy the weak ratchet effect. Current
reversal does not appear for this simple potential but was shown for more
complex potentials with three Fourier modes [266] or in the case of more
complicated driving [154,265,269].

A particularly appealing feature of Brownian motors is their ability to sep-
arate particles of differing friction strength or mass [261]. The overdamped
model allows a discussion of the influence on friction. Variation of friction
models different sizes of particles by Stokes law. With increasing γ the mo-
bility decreases as well as the impact of the white noise. The first reduces the
mean velocity; the second lessens the velocity in most parts of the parameter
regime.

A possible separation of particles with different size [322] includes an
additional constant force F �= 0 in (3.222). This force should be directed
against the preferred direction of the ratchet. For finite correlation times
the ratchet effect overwhelms the effect of the force and the particles move
“uphill”. The correlation times will be different for different friction, which
means that large particles still follow the bias, whereas the smaller ones move
uphill. MCF results confirm these expectations. In a region around τ = 0.1,
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indicated by the arrow in Fig. 3.61, the weak currents of two particles have
different size.

3.4.5 Particle Separation by Ratchets Driven by Colored Noise

A more detailed discussion about properties of particles can be gained from
studies taking care of mass dependence of the flux. Investigations on such
devices including dynamical inertial effects can be found in a few studies,
only, considered in [322–327].

As will be seen, inertial ratchets possess current reversals as a function
of the mass of the particle. That is why these ratchets are ideally suited
to separate particles of differing masses, and thus allow for the conceptual
operation of molecular shuttles [325]. Therein an inertial Brownian carrier is
able to move back and forth massive cargo along pre-assigned routes.

To start, the model for the inertia ratchet which was studied in [327]
is presented. Let x and v denote the space coordinate and velocity of the
particle of mass m, with γ being the viscous friction strength. The stochastic
dynamics of the ratchet then reads

ẋ = v, mv̇ = −γv − U ′(x) + F + y(t) +
√

2Dξ1(t). (3.225)

Here, y(t) is the colored, unbiased noise (OUP) and models stochastic non-
equilibrium forces and ξ1(t) accounts for thermal fluctuations of strength D.
The scaling

t̃ =
t

t0
, x̃ =

x

x0
, ṽ =

vt0
x0

, ỹ =
yV0

x0
, V (x̃) =

U(x)
V0

, F̃ =
x0F

V0

leads to a dimensionless formulation of the dynamics in a potential V with
V (x̃) = V (x̃ + 1). We choose t0 = γx2

0/V0 to obtain a dimensionless friction
coefficient equal to one. Rescaled mass and noise parameters are given as
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µ =
mV0

x2
0γ

2
, D̃ =

D

V0γ
, Q̃ =

Q

V0γ
, τ̃ =

τV0

γx2
0

.

The new dimensionless dynamics reads

ẋ = v, µv̇ = −v−V ′(x)+F+y(t)+
√

2Dξ1(t), ẏ = −y

τ
+
√

2Q

τ
ξ2(t); (3.226)

tildes are omitted here and hereafter.
The quantity of foremost interest is the mean velocity 〈v〉 or the steady-

state probability current of immersed Brownian particles. We are interested
in its dependencies on the noise parameters, but particularly on the particle
mass, and present results for the potential (3.224).

The three-dimensional Markovian dynamics can be treated by several
methods. An adiabatic approach was performed in [326] and first contri-
butions to an expansion ∝ 1/γ with respect to high friction were given
in [325]. It can be studied by means of analytical approximation schemes
such as a unified colored noise approximation (UCNA) or a path integral
approach [327]. Numerically, it can be investigated either by direct computer
simulations of (3.226) or by applying again the MCF method to the corres-
ponding FPE.

Unified Colored Noise Approximation. The objective in the UCNA is
to formulate an approximate Markovian description of a generally intractable
non-Markovian dynamics [328]. This approximation has been developed for
overdamped stochastic dynamics driven by OUP [329] in a common way valid
for small and large correlation times τ . Refined and generalized approaches
put forward in [149, 330] were applied in [154, 266] to colored-noise-driven
directed transport.

First, a nonlinear coordinate transformation of x, v, y to linearly uncouple
stochastic variables is performed. In a second step, a Markovian description
for the coordinate x only is achieved via separation of time scales for these
new variables, admitting the adiabatic elimination of the “fast” ones.

Adapting this general line to (3.226) yields a single Langevin equation
with white noise sources. One finds expressions for small correlation times
τ and, simultaneously, for a strongly overdamped dynamics µ → ∞. In the
Stratonovich interpretation the following was found [320]:

ẋ =
1

g(x)

(

−V ′(x) + F +
√

2(Q + D) ξ(t)
)

, (3.227)

where the state- and mass-dependent function g(x) reads

g(x) = 1 +
d
dx

τ Q [V ′(x) − F ]
(D + Q)(1 + µ/τ) + τV ′′(x)

. (3.228)

Afterward, the steady-state probability current J can be calculated fol-
lowing standard approaches [1]. With 〈v〉 = 〈ẋ〉 = J we find
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〈ẋ〉 =
L (Q + D)

[

1 − exp
(

Φ(1)/(Q + D)
)]

1∫

0

dx g(x) exp
(

− Φ(x)/(Q + D)
) x+1∫

x

dy g(y) exp
(

Φ(y)/(Q + D)
)

.

(3.229)
In this expression the effective potential

Φ(x) =
∫ x

0

g(y) [V ′(y) − F ] dy (3.230)

occurs. In the white noise limit τ → 0 it follows from (3.228) that g(x) → 1.
The current 〈ẋ〉τ=0 thus vanishes accordingly to [309, 331] if F �= 0, inde-
pendent of the mass µ. Otherwise, that is for 0 < τ < ∞, the current is
generically nonzero for nonsymmetric potentials V (x), even for F = 0. The
asymptotic behavior of (3.229) for small τ and zero load F = 0 is obtained
as

〈ẋ〉 = − τ̂2 Q

A(0)(D + Q)2

∫ 1

0

V ′(y)V ′′(y)2 dy, (3.231)

A(F ) =

1∫

0

dx

x+1∫

x

dy exp
(

[V (y) − V (x) + (x − y)F ]/(D + Q)
)

. (3.232)

The µ dependence of the UCNA result (3.229) can be completely absorbed
into the renormalized correlation time τ̂ = τ/(1 + µ/τ).

A comparison of the UCNA-results with results of numeric simulations of
the corresponding Langevin equations 3.225 is made in Fig. 3.62 for different
µ values. The maximum of the approximation shifts in agreement with the
simulations towards larger τ with increasing mass. The maximal value of the
current in the UCNA is unaffected by mass due to the mentioned dependence
through τ̂ .
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Fig. 3.62. Comparison of (a) the UCNA and (b) the path-integral method with
numeric simulations. Solid lines are from simulations of the Langevin-equations
(3.225). Dashed lines correspond to the analytic approximations a (3.232) and
b (3.235)
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Path Integral Approach for Inertia Ratchets. As in quantum mechan-
ics a reformulation of stochastic dynamics yields a compact representation by
path integrals [332]. Within the restriction of weak thermal noise the current
of the Brownian particles can be approximated by a rate description:

〈ẋ〉 = k+ − k−, (3.233)

where k+ (k−) is the noise-activated hopping rate to the next right (left)
neighboring well with an Arrhenius-like dependence k± = ζ± exp−∆Φ±/D.
The ∆Φ± stands for effective barriers independent of D, with x# being the
position of the local maximum of V (x) − xF , and x+ and x− = x+ − 1
the locations of the corresponding neighboring minima to the right and left,
respectively. In the case of small τ [333] the explicit results read [327]

∆Φ±(τ) = ∆Φ
(0)
± + ∆Φ

(1)
± (τ) (3.234)

=
V (x#) − V (x±) + (x± − x#)F

1 + R
+ τ2 R

(1 + R)2

∫ ∞

−∞
q̈2
±(t) dt

and R = Q/D. The functions q±(t) are saddle-point trajectories found from
the noise-free dynamics µq̈±(t) = −q̇±(t) − V ′(q±(t)) + F with initial con-
ditions at the maximum with vanishing velocity and ending in one of the
possible minima as t → ∞.

The prefactors ζ± can be approximated in the zeroth order ζ(τ) � ζ(τ = 0)
with the effective noise (D + Q) [334]. We thus infer that

〈ẋ〉 = k0
+

[

exp
(

− ∆Φ
(1)
+ /D

)

− exp
(

− [∆Φ
(1)
− + LF/(1 + R)]/D

)]

, (3.235)

where k0
+ = k+(τ = 0), which corresponds to escape over the barrier ∆Φ

(0)
+

with two white noise sources [cf. (1.213)].
It is interesting to note that ∆Φ

(1)
+ −∆Φ

(1)
− can change its sign depending

on µ in the low-damping regime. Therefore, (3.235) predicts a reversal of the
current direction in the underdamped case (µ � 1), as will be confirmed
by the MCF analysis. However, the reversal occurs in the energy-diffusion-
limited regime, where (3.235) fails qualitatively. In this case long excursions
over multiple barriers appear which are not taken into account by (3.233).
Their occurrence is given in good approximation by the rates k± and depends
on the asymmetry of the ratchet potential; it might serve as an indicator for
a reversal of the current.

The path integral prediction (3.235) was compared with numerical simula-
tions (see Fig. 3.62). Apart from its absolute value, which is better estimated
by the UCNA, the mean flux converges satisfactorily up to about τ = 0.5.
The shift with respect to τ and the change of the maximum with increasing
inertia µ are qualitatively described.

Matrix Continued Fraction Analysis. The MCF analysis starts by ex-
panding the steady-state density P (x, v, y) in Hermité-functions along v and
y, and Fourier modes in the coordinate x, and solves algebraic equations for



3.4 Noise-Induced Transport 413

0.01
1

100m 0.01

1

100

t
0

0.004

0.008

0.012
<v>

0.01
1

100m 0.01

1

100

t
0

0.004

0.008

0.012
<v>

Fig. 3.63. Currents from the MCF analysis with respect to mass and correlation
time: (a) Q/D < 1 and (b) Q/D > 1 where Q and D are the intensities of the
stochastic external force (OUP) or of the white noise in 3.225

the amplitudes. Precise values for currents calculated for two different values
of Q are depicted in Fig. 3.63 with the intensity Q chosen smaller and larger
than D.

Finite inertia causes a complex behavior of the current as can be deduced
from all following figures. The current vanishes for µ → ∞ as well as for small
and large τ . Starting with small values of µ one observes in a certain range
of τ a novel unexpected increase in the current with respect to µ. A global
maximum with respect to both µ and τ appears for finite mass not predicted
by the analytical approximations.

A further increase (µ ≈ 0.1) results in a rapid decrease in the current.
The maximum with respect to τ for a given µ shifts toward larger values, in
agreement with the UCNA and the path integral approximation. This drop
of the current is understandable. Fluctuations and the forces have a weaker
effect on a larger mass, increasing the mass the particle motion is slowing
down; this can be compensated by a larger correlation time τ , which explains
the shift of the maximum.

In the strongly underdamped case at arbitrary R, negative velocities ap-
pear for moderate τ . For moderate values of µ a double reversal of the velocity
is obtained with respect to the correlation time Fig. (3.64a). Negative cur-
rents are observed for a finite interval of τ . For larger µ the current exhibits
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Fig. 3.64. Current reversals with respect to correlation time τ . (a) Moderate values
of µ with multiple current reversals, (b): heavy particles with a single reversal
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Fig. 3.65. Currents reversal for underdamped particles from (a) MCF analysis and
(b) simulations in the underdamped regime (see text)

a single reversal only (Fig. 3.64b). But one sees in Fig. 3.65 immediately that
the absolute values of the reversed currents are rather small compared to the
maximal current for small masses.

The current reversal in the underdamped case was verified by simulations
[327]. A time span for two individual trajectories demonstrates the effect of
strong inertia (Fig. 3.65b). One can generally distinguish between “running
states” and “locking states” in the underdamped case. But, as was checked
numerically and supported by the path integrals, the reason for the reversal
arises from the asymmetry of the potential. It is expressed by the inverted
difference of rates k+ and k− for transitions from the locked state into the
left- or right-running state.

3.4.6 Two-Dimensional Ratchets

The majority of theoretical ratchets models address one-dimensional periodic
structures. In these devices the time-dependent forces act in parallel to the
motion of the induced flows. On the other hand, most of experiments on
transport in sawtooth-like potentials address two-dimensional devices. For
example, a directed motion of particles was observed in the 2D “Christmas
tree”-like structure of obstacles in [302,303,307].

The motivation for constructing such systems comes from the need for an
effective technique to separate macromolecules [283–285,335,336]. It has been
found that 2D systems with constant forces in the presence of obstacles with
a ratchet-like geometry can excite a transport orthogonally to the applied
force. Moreover, if the shape of the obstacles is symmetric in the direction
of the applied force the induced flux is an even function of the driving force
[336]. This feature makes the phenomenon even more interesting for practical
applications since the flux does not depend from the direction of the force
and hence also periodic forcing can be applied [335].
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Fig. 3.66. The 2D potential V (x, y) with A = 0.3, L = 1, F = 0 and k = 0.8

Noise-Induced Motion Transverse to the Applied Force. We look at
the following physical situation [337]: The symmetry of the 2D sawtooth-like
potential is broken in the x-direction. A constant bias acts in the y-direction
and drives the system into nonequilibrium. Periodic boundary conditions are
applied, in both x and y.

A potential V (x, y) which fulfills our requirements in x ∈ [0, 1], y ∈ [0, L]
is shown in Fig. 3.66. Explicitly we will use in calculations

V (x, y) = V0(x, y) − F y =
{

1 − A sin(2πy/L)
}

U(x) − F y. (3.236)

U(x) is a 1D piecewise linear ratchet potential of unit height with the para-
meter of asymmetry k ∈ (0, 1) if k = 1/2 then U(x) is symmetric. U(x) is
periodically modulated in the y-direction with an amplitude A. The linear
term stands for the constant bias which drives the system out of equilibrium.

The dynamics is given by the dimensionless overdamped Langevin
equations,

ẋ = fx(x, y) +
√

2Dξx(t), ẏ = fy(x, y) +
√

2Dξy(t), (3.237)

and the Gaussian white noise ξi is independent in both components. fi(x, y)
are the force fields generated by the potential (3.236). From these equations
the 2D Smoluchowski equation for the evolution of the probability density
p(x, y, t) can be immediately formulated.

Using the finite element method (FEM) [337,338] the Smoluchowski equa-
tion was numerically solved in the asymptotic case with periodic boundary
conditions ps(x, y) = p0(x + 1, y) , ps(x, y) = ps(x, y + L). The stationary
density pS(x, y) contains all of the relevant information for determining the
stationary flows in the system, namely

Jx(x, y) = fx(x, y)ps(x, y) − Dx
∂

∂x
ps(x, y),

Jy(x, y) = fy(x, y)P 0(x, y) − Dy
∂

∂y
P 0(x, y). (3.238)
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Fig. 3.67. Vector field of the probability current [Jx(x, y), Jy(x, y)]. Arrows and
lines show the direction of the flow, which at the background is a potential without
tilt. (a) Isotropic diffusion with D = 0.2, A = 0.8, L = 1, F = 5 and k = 0.8. (b)
Complex local fluxes in a system with Dx = 0.3 and Dy = 0.01. F = 1, L = 1,
k = 0.8 and A = 0.8

The total transport over one period in the x-direction can be quantified by
determining the average velocity 〈vx〉. Taking into account the normalization
condition, the average velocity is expressed by the total current via

〈vx〉 = J tot
x =

∫ 1

0

∫ L

0

Jx(x, y)dxdy. (3.239)

Nonzero tilt F �= 0 induces mean flows in the system. As well as the
expected flow in the y-direction, a current appears in the x-direction. The
vector field of the probability flux density is presented in Fig. 3.67. Directions
of the flow on the entire plane [0, 1] × [0, L] are drawn by arrows of unit
length. One sees that the x-component of the local current adopts positive
and negative values.

The main contribution to the total current comes from the flow through
the saddle point of the potential (x = 0.8 and y = 0.75). Globally a flux
to the left side dominates. Fig. 3.68a presents the averaged velocity. Due to
the symmetry of V0(x, y) in the y-direction the flow does not change replac-
ing F → −F . The current J tot

x (F ) is O(∝ F 2) for small F [336]. Increasing
F induces a negative flow, and J tot

x reaches its maximal absolute value at
F � 5.5. It is near the critical value of the force, above which the poten-
tial monotonously decays in the y-direction. Larger values of F suppress the
effect.

Monte-Carlo simulations of the Langevin equations (3.237) have been in-
cluded in Fig. 3.68a and confirm the findings. Good agreement with indepen-
dent numerical sources ensures the validity of the algorithms used. However,
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Fig. 3.68. (a) Total flux in the x-direction versus driving force F . Error bars
depict the results of Monte-Carlo simulations. (b) Comparison of the 1D flashing
ratchet with the 2D ratchet with symmetric and nonsymmetric diffusion constant.
The remaining parameters are Dx = 0.3, k = 0.8 and A = 0.8

it was underlined in [337] that the Monte-Carlo simulations are in general
less precise and require much more computing power compared to the FEM
solution of the Smoluchowski equation.

Comparison with One-Dimensional Flashing Ratchets. The consid-
ered 2D ratchet system can be interpreted as an extension of the concept of
the 1D flashing ratchet. The particles moving in the y-direction underly a pe-
riodic modulation in the same way as a particle in a periodically flashing 1D
potential. This correspondence becomes exact if the dynamics of the second
Langevin equation (3.237) can be replaced by ẏ = F .

The situation can be modeled by introducing anisotropic noise in the x-
and y-directions, Dx and Dy, respectively. In Fig. 3.68b three situations with
such kind of noise are compared: the 1D flashing ratchet Dy = 0 and the
2D ratchet with isotropic diffusion (Dx = Dy) and with anisotropic diffusion
(Dx � Dy = 0.01).

First, one sees for forces larger than a threshold (F � 5) the values of
the currents become similar. If F is of the order of 10 then both Dy = 0.3
and Dy = 0.01 are negligible and a situation similar to that for a periodically
flashing potential is realized.

However, for smaller F the behavior of the 2D systems changes and differs
from the simple model. The 2D ratchet with isotropic diffusion gives a smaller
current than the flashing one. It is due to the fact that the motion of the
particle in the y-direction is significantly disturbed by forces coming from
the potential V0, and a regime with a constant mean velocity along y is left.
This motion is hindered by high barriers, and particles can move forwardly
in y only, escaping barriers by thermal activation.

In the anisotropic case, Dx � Dy, the behavior is even more complex. An
unexpected phenomenon takes place: for small values of F the total current
becomes positive, which is qualitatively different from the behavior of the
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1D flashing ratchet. In this situation the local probability current indicates a
complicated dynamics of the Brownian particles (see Fig. 3.68b). The current
reversal is accompanied with the occurrence of circulating flows. The vector
field now has multiple singularities.

We underline the fact that such circulations appear only in the case of
anisotropic diffusion. They persist for vanishing forces F but without total
current. Oppositely, higher values of F remove this complex pattern of the
local current and the flow becomes laminar again.

3.4.7 Discrete Ratchets

This section presents results concerning directed transport with discrete
jumps. Especially biophysical situations with particle numbers and the re-
duction of the dynamics of macromolecules or ion channels to a small
set of discrete configurations require such consideration. We have included
in this section basic models which can be generalized to applied situa-
tions.

The goal is to study a simple ratchet given by specific rates of transition
Wσ(i → i ± 1) for the discrete events. The suffix σ = ±1 stands for external
temporal driving. As will be seen, even basic systems allow the discussion
of interesting phenomena such as the relation between directed transport
and diffusion, disordered ratchets and coupled ratchets with the ability to
structure formation.

The Minimal Discrete Flashing Ratchet. A broken reflection symmetry
with zero flux in equilibrium requires at least three states over one period
[339]. Subject to periodic boundary conditions the mass action law is obeyed if
multiplication over forward rates equals the product of backward rates. Then,
in the case of two states obviously symmetric rates obey the mass action law
and periodicity only. Hence, ratchet models with two states include external
forces and motion even in equilibrium [268].

Let us assume that the transition rates between the different states i =
1, 2, 3 can be represented as exponentials and a common prefactor scales
time. One obtains periodicity and broken reflection symmetry if two rates
of forward jumps i → i + 1 are smaller than 1; in contrast the remaining is
larger than 1. It will be sufficient to take

Wσ(1 → 2) = Wσ(2 → 3) = kσ (3.240)

and
Wσ(3 → 4) = k−2

σ = 1/[Wσ(1 → 2) × Wσ(2 → 3)], (3.241)

and by periodicity state “4” equals state “1”. The backward jumps will be
defined as the inverse

Wσ(i → i − 1) =
1

Wσ(i − 1 → i)
. (3.242)
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Fig. 3.69. The two alternating potentials σ = + (upper) and σ = − (lower)
together with periodic boundary conditions (1 ↔ 3) motivate the selected choice of
transition rates

Flashing or rocking of the ratchet implies a temporal driving expressed by
temporal variations of the rates. Here, specifying to the simplest flashing
mode, σ = 1 corresponds to potential “on” and σ = −1 to potential “off”.
One may assume two alternating set of rates (cf. Fig. 3.69) between the
system switches with rate γ.

With the notation used, σ = 1 stands for rates k < 1, and for σ = −1 we
set simply k = 1. In this situation simple diffusion remains. Hence, we are
left with two basic constants – k and the switching rate γ – setting in the
following the period L = 1.

With periodic boundary conditions a six-state model, as introduced in
[312, 339], is a minimal discrete flashing ratchet. Stochastic switchings be-
tween the two potentials are modeled by assuming σ(t) is a dichotomic process
specified by the switching rate γ. The evolution of the time-dependent proba-
bility Pσ(j, t) to meet a single particle at position j experiencing the potential
σ is defined by the following master equation:

∂Pσ(j, t)
∂t

= Wσ(j + 1 → j)Pσ(j + 1, t) + Wσ(j − 1 → j)Pσ(j − 1, t)

− [Wσ(j → j + 1) + Wσ(j → j − 1)] Pσ(j, t) − γPσ(j, t) + γP−σ(j, t) .

(3.243)

The transition rates Wσ(i → j) can be represented by considering two
alternating potentials, as shown in Fig. 3.69, and defining

kσ = exp
(

− σ(t) + 1
2

∆U/D
)

. (3.244)

The product of rates thus transforms to the sum over exponents of the
piece-wise linear segments, which should be zero. Setting the potential in the
switched-off case to zero is justified by the scaling of time.
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One may even discuss the origin of nonequilibrium with the aid of this
figure [263]. Assumption of constant rates γ between different potential land-
scapes independently of the value of the potential at different i serves as a
source of nonequilibrium. Equilibrium would require specific rates γi with
Arrhenius-like dependence.

The master equation (3.243) for the six states can be cast in form of a
matrix equation:

Ṗ = WP , (3.245)

with the vector P comprising the six states and W being the transition
matrix. As can be easily seen by summing all the lines of the matrix, the
rank of W is less than six. It expresses conservation of probability. However,
the normalization condition provides the independent sixth equation.

The stationary solution of (3.245) with Ṗ = 0 can thus be achieved an-
alytically by solving linear algebraic equations. The current J(i, t) between
states i and i + 1 reads

J(i, t) = [ W+1(i → i + 1) P+1(i, t) − W+1(i + 1 → i) P+1(i + 1, t) ]
+[ W−1(i → i + 1) P−1(i, t) − W−1(i + 1 → i) P−1(i + 1, t) ] .

(3.246)
Of course, the stationary current J0 if t → ∞ does not depend on the location,
i.e., J0 = J(1) = J(2) = J(3). It is depicted in Fig. 3.70 versus the switching
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Fig. 3.70. The stationary current for varying switching rate γ and for three dif-
ferent transition rates: k = 0.1 (dashed line), k = 0.2 (solid line) and k = 0.4
(dotted line); note that the maximum means vanishing current, whereas the mini-
mum around ω ≈ 2 and k ≈ 0.2 corresponds to a maximum current directed to the
left
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rate γ and on the transition rate k. The nonmonotonic structure of the curves
becomes transparent when considering the limits. For a vanishing switching
rate the statistical problem corresponds to two uncoupled ensembles with the
two different potentials, respectively. Since in every ensemble no net transport
occurs due to detailed balance there is, evidently, no flux taken the both
ensembles together. Alternatively, for very high switching rates the current
tends towards zero because then the time spent in the switched-off state
σ = −1 is much to small to reach a neighboring barrier by diffusion. In
between there exists an optimal switching rate, with which diffusion to the
right minimum but not to the left one is most effective.

Setting the rate to k = 1 means choosing a flat potential in the state
σ = +1 as well. However, then the spatial asymmetry and, as a consequence,
also the current vanish. The case for which k → 0 corresponds to raising
the barriers in the switched-on state beyond all limits. The concentration of
the distribution in the minimum cannot be overcome by diffusion; hence the
current vanishes. Again, in between there exists an optimal transition rate.

Envelope Description of Discrete Ratchets. When considering a chain
of identical ratchets one may ask for the evolution of some initially sharp
distribution. On a coarse-grained scale one would expect the distribution
envelope to drift with the mean velocity in the direction determined by the
asymmetry of the potential and at the same time to broaden due to diffusion
[312,323,340].

The observation of an enveloping Gaussian was also the basis for an ap-
proximating description applied to a dichotomic flashing overdamped ratchet
[272]. The same approach has been adapted to the discrete 3-state model in-
troduced above [312], having the advantage that velocity and diffusion coeffi-
cient can be analytically related to system parameters as given in a different
context in [341,342].

Diffusion counteracts the desired transport of a molecular system, which
requires the cargo to be delivered at its destination reliably, i.e., within a small
time interval. Large diffusion means large variance of the times of arrival,
i.e., low reliability. In addition, in separation devices diffusion affects the
efficiency of the separation mechanism [284,335].

The competition between drift v and diffusion D in advection–diffusion
problems is often expressed by a dimensionless number, the Peclet number:

Pe =
|v|L
D

. (3.247)

Here L is a typical length scale, in our case the length of a single ratchet
element. The larger the Peclet number the more net drift predominates over
diffusion. The break-even point, beyond which drift wins over diffusion, de-
fines a critical length Lc = 2D/v. Demanding this length to be not larger
than the length of a ratchet unit a requires Peclet numbers not smaller than 2.

A systematic way to account for this envelope evolution starts from a
gradient expansion ansatz:
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Fig. 3.71. Envelope approximation of Brownian motion in a ratchet

Pσ(x, t) =
∞∑

n=0

pn
σ(x)∂n

xP(x/λ, t) . (3.248)

Here, the time-independent functions pn
σ(x) reflect the periodicity of the po-

tentials, whereas the function P(x/λ, t) describes the envelope which evolves
in time on some coarse-grained scale λ � L (see Fig. 3.71). The refined struc-
ture of the exact solution which possesses sharp bends is accounted for by
the higher derivatives of the envelope ∂n

xP(x/λ, t).
The envelope evolution on the coarse-grained scale λ is reflected by an

effective FPE:
∂tP(x/λ, t) = ∂x(v − D∂x)P(x/λ, t) , (3.249)

which is valid only in an approximated sense in powers of 1/λ. The parame-
ters v and D are the drift velocity and diffusion coefficient of the spreading
Gaussian. Their relation to the outgoing dynamics is made by inserting the
ansatz (3.248) into the basic dynamical equation, the master equation (3.243).

This connection can be obtained by the following expansion:

P (x, σ, t) =
∞∑

n=0

p(n)(x, σ)∂n
xP(x/λ, t) . (3.250)

It consists of an infinite set of periodic functions p(n) of period L. Small n
terms describe the smooth components, and, hence, one obtains only the first
functions p(0), p(1) and p(2) to be involved in the envelope description. Indeed,
equating terms of order 1/λn yields

[W + Γ ] p(0) = 0, (3.251)
[W + Γ ] p(1) = −(v − V̂ )p(0), (3.252)
[W + Γ ] p(2) = (D − T̂ )p(0) − (v − V̂ )p(1), (3.253)

with V̂ and T̂ being two operators (matrices) involving rates w(n → m,σ)
and γ (see [312]). Equation (3.251) reveals that p(0) is the stationary solution
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of (3.243). Taking traces and obeying correct normalization,

Tr{p(n)} =
+1∑

σ=−1

3∑

i=1

p(n)(i, σ) = δn,0, (3.254)

yields the desired relations for the effective coefficients:

v = Tr{V̂ p(0)} (3.255)
D = Tr{T̂ p(0)} − Tr{V̂ p(1)} . (3.256)

The fact that the function p(2) is not involved becomes transparent when
taking the traces of (3.244-246). Due to the norm-conserving property of the
operator [W + Γ ] traces of the left sides vanish identically. The functions p(0)

and p(1) are obtained by solving (3.251) and (3.252), respectively. All manip-
ulations necessary to yield (3.255) and (3.256) can be done in the framework
of linear algebra. They can be performed by an algebraic computer program.
The resulting expressions are rather long and cannot be simplified. How-
ever, they still grant the benefit of being analytically exact and explicit. In
particular, exact limits can be evaluated.

Diffusion versus Drift. Without going into the details of the analogous
calculations we cite the final expressions for the velocity v and the diffusion
coefficient D [312]:

v =
1
3

∑

σ=±

∑

i=1,2,3

[Wσ(i → i + 1) − Wσ(i → i − 1)]p0
σ(i) , (3.257)

D =
1
6

∑

σ=±

∑

i=1,2,3

[Wσ(i → i + 1) + Wσ(i → i − 1)]p0
σ(i)

−1
3

∑

σ=±

∑

i=1,2,3

[Wσ(i → i + 1) − Wσ(i → i − 1)]p1
σ(i) . (3.258)

We note that the velocity v is identical to the stationary current J0 as could
be expected. The stationary solution p0

σ(i) as well as p1
σ(i) can be achieved

by solving two linear equation systems. The necessary algebra was done em-
ploying a computer algebra program (maple). The explicit formula for v(k, γ)
and D(k, γ) comprise an abundance of terms. Nevertheless, the value of this
model system lies in its analytical accessibility.
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Fig. 3.72. The diffusion coefficient of the envelope as a function of the switching
rate γ for three different transition rates: k = 0.1 (dashed line), k = 0.2 (solid line),
k = 0.4 (dotted line); note that the stationary current and the diffusion coefficient
simultaneously peak for γ ≈ 2

In addition to the dependence of the velocity on the switching rate γ
depicted in Fig. 3.70 we plot the diffusion constant D(k, γ) for the same range
of γ and parameters k in Fig. 3.72. It can be seen that the diffusion coefficient
becomes independent of γ for k = 1, which is obvious since this corresponds
to the case of flat potentials in each of the two alternating cases. There its
value is D(k = 1, γ) = 1/3. With increasing γ the diffusion becomes more and
more restricted because the frequently switched-on potential always contracts
the distribution in the minimum. For very small k, i.e., rather steep slopes,
a local maximum for nonvanishing γ occurs. When viewing this result in the
context of an effective separation device the maximum current condition for
k ≈ 0.2 and γ ≈ 3 unfortunately is connected with rather high diffusion; in
fact, the maximum absolute value of v and the relative maximum of D nearly
coincide.

In Fig. 3.73 we depict the related Peclet numbers, Pe. We see that Peclet
numbers never reach values of the order of 1. This basic example clearly
demonstrates that diffusion effects are far from negligible. We mention that
the same qualitative result was found in the analysis of a discrete rocking
ratchet by formulating appropriate rates in the master equation.

Therefore as a general feature it is found that maximal drift is linked with
rather high diffusion [312]. The limitation by diffusion imposes on the trans-
port efficiency can be considered quantitatively in terms of the dimensionless
Peclet number.
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Fig. 3.73. The Peclet number, Pe, for the flashing ratchet when varying the flashing
rate γ for three different asymmetry parameters: k = 0.1 (dashed line), k = 0.2
(solid line) and k = 0.5 (long-dashed line)

3.4.8 Sawtooth-like Media

The previous section was devoted to a single sawtooth with a periodic bound-
ary condition. Obviously, such kinds of ratchet models describe also station-
ary fluxes in potential landscapes consisting of many sawteeth which flip
coherently between the two states. At any place on the landscape the po-
tential is either switched “on” or it is switched “off”. Hence, giving a single
sawtooth an individual number of its switching state σi, where i is the posi-
tion of a single sawtooth; the previous model assumes σi = σj for arbitrary
i, j. We call this situation a correlated ratchet.

Crossing now from a single ratchet to a chain consisting of many saw-
teeth, it is obviously not the exclusive situation for the switching possibili-
ties. One possible way to generalize the problem is the inclusion of failures in
the periodic arrangement of the chain of sawteeth [272]. Another approach
supposes different spatial correlations between the states of the neighboring
sawteeth [339]. Possible limiting cases are

(i) correlated: σi+1 = σi

(

〈σi+1 σi〉 = 1
)

;
(ii) anticorrelated: σi+1 = −σi

(

〈σi+1 σi〉 = −1
)

;
(iii) uncorrelated: 〈σi+1 σi〉 = 0.

The angular brackets denote averaging over the dichotomic noise. Case (i)
corresponds to the coherent switching of all segments as formerly discussed.
In the anticorrelated case (ii) again the chain adopts two states, only. Indeed,
the potential has a period of two sawteeth. In the first state, for example, the
left sawtooth is switched “on” and the right one is “off”. Respectively, in the
second state the right one is “on” and the left one is “off”.
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Fig. 3.74. In the uncorrelated ratchet every sawtooth i switches “on” (σi = +1)
and “off” (σi = −1) independently of its neighbors. The points should hint schemat-
ically at the three energy levels of the discrete model

Compared with former investigations a qualitatively new situation is the
uncorrelated case (iii). The switching of each sawtooth is independent from
its adjacent sawteeth, as illustrated in Fig. 3.74.

The analysis of the new situations is quite similar, as described below
[339]. It can be reduced to the treatment of a single sawtooth. It is exact
for the anticorrelated case. For the uncorrelated case we make a mean field
assumption. The new point of the analysis consists in a proper formulation
of the boundary conditions which connect the left-hand side of the sawtooth
with the right-hand side and an adopted solution of the stationary master
equation. That solution now depends on the selected switching rules by the
corresponding states σi±1 of the neighboring sawteeth.

For the anticorrelated choice we have to apply antisymmetric boundary
conditions. If the ith sawtooth is “on”, the neighbor is “off” and vice versa.
It means that the probability fluxes at σi = 1 have to be linked with those of
σi±1 = −1. It gives a simple picture for one sawtooth, the outwards pointing
fluxes are the inputting fluxes at the other end of the sawtooth but into the
state with different σi.

The balance of probability fluxes can be formulated in the same way for
the uncorrelated case. But now these probability fluxes are random. They
depend on the present state of the adjacent sawteeth. Let J(σi − 1, σi) label
the four possible fluxes between states n = 3 for the (i − 1)th sawtooth and
n = 1 of the ith one and pointing from i − 1 → i. These J(σi − 1, σi) are
given by

J(σi−1, σi) = W (3 → 1, σi−1)P σ̄i−1(3, σi−1) − W (1 → 3, σi−1)P σ̄i(1, σi),
(3.259)

with P σ̄i(n, σi) being the probability function for the state n, σi of the ith
element. It depends on the given environment σ̄i = {σi−1, σi+1}.

Therewith a general formulation of the boundary condition can be given
as

J(σi−1, σi) =
1
2
(1 + σi−1σi)J(σi, σi) +

1
2
(1 − σi−1σi)J(−σi, σi); (3.260)

for the general formulation at the right side between sawteeth with numbers
i and i + 1. In the case of correlated elements the second item vanishes; in
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contrast, for anticorrelated neighboring sawteeth the first item disappears.
In the case of an uncorrelated medium an approximated expression can be
found by averaging, for example, assuming equal probability of both “on”–
and “off”–states of the neighbors and no correlation with the sawtooth con-
sidered.

Insertion of the three possible switching states considered closes the set of
boundary conditions. For cases (i) and (ii) the product is replaced by +1 and
−1, respectively. In both cases the dependence on σ̄i is formal and defined by
the present state σi. In the uncorrelated state we average over the possible
states of the adjacent sawteeth. The product σi−1σi vanishes in the average,
and the dependence on σ̄i is lost.

Figure 3.75 shows the stationary fluxes of the three cases for a given value
of k = 0.2 [339]. For all switching rates γ the absolute value of the flux for
uncorrelated and anticorrelated situations increases compared to the usually
considered correlated case. This remains valid qualitatively for all relevant
values 0 < k < 1. The larger flux results from the following: In the correlated
case a diffusive transport of a particle between different segments takes place
in the “off” case only. The particle has to stay at least the time τ = γ−1 of
the “on” state within one segment. Hence, the transport is interrupted. On
the contrary, in the other cases a transport might take place at any time. In
the limiting anticorrelated case the particle is able to reach the next but one
segment during two switching times τ .

A stronger enhancement of the particle flux is observed if the sign of the
potential is changed [U(x) → −U(x)] or, equivalently, by the replacement
k → k−1. The fluxes are shown in Fig. 3.76. While in the correlated situa-
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Fig. 3.75. Current J versus switching rate γ (k = 0.2) for correlated, uncorrelated
and anticorrelated ratchets (from top to bottom). The lines are the analytical calcu-
lations described in the text, while the points are obtained by computer simulations
(N = 10)
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Fig. 3.76. The fluxes of particles if the potential is reversed

tion only the direction of the current changes, leaving the value of the flux
unchanged; the uncorrelated and anticorrelated chains strongly enhance the
absolute value of the flux. In the latter case the current increases nearly by
one order of magnitude. This is shown in Fig. 3.76 for k = 5.0. This behavior
is caused by the shape of the potential. While in the original (U > 0), areas
of constant plateaus (no force) are embedded by repelling segments, in the
image (U < 0), they are surrounded by attracting forces.

3.4.9 Making Spatial Structures Using Ratchets

The three states of the minimal ratchet can be interpreted as configurational
states of a molecule undergoing a circular chemical reaction:

Da ↔ Ds ↔ Dr ↔ Da. (3.261)

To realize flashing one additionally may imagine the action of external tem-
poral perturbations switching between two states σ(t) = ±1 with a mean
time τ .

In particular, we will consider that the effect of the perturbation results
in a temporal change of the rates of the transition between different config-
urations. As previously, let us suppose that for both states σ the set of rates
obey the mass action law. Hence, adiabatically slowly driven (τ → ∞), the
reaction approaches in both states an equilibrium given by detailed balance.
In equilibrium the circular reaction has no net flux.

But with asymmetrically chosen rates the circular reaction represents a
prototype of a ratchet. For medium switching times τ a clock-wisely directed
flow of the reaction is induced. As will be seen this circular flow causes a
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nonequilibrium pattern formation [343]. Discarding the perturbation, τ → ∞,
or if switching infinitely fast, τ → 0 the structure disappears. Hence, we
presume and intend to show that the ratchets can be considered as the origin
of nonequilibrium structure formation [344].

Circular Chemical Reactions and Ratchets. Let a second passive chem-
ical obstacle S be connected to the circular reaction. Da is able to react with
the obstacles S, forming a complex Ds when the obstacle is removed from
the surface.

Da + S
α+

←→
α−

Ds. (3.262)

α+ is the rate of the forward reaction, α− the rate of the backward reaction.
The complex Ds will be assumed to be the second state of the particles

D. If this complex collides during its random walk with another obstacle S,
the complex decays to a particle D in its third state Dr and an obstacle S,
which is placed in the neighborhood of the colliding obstacle, i.e.,

Ds + S
β+

←→
β−

Dr + 2S. (3.263)

As in the first case (3.262) the reaction can be performed in the opposite
direction. β+ and β− denote the rates in the forward and backward directions,
respectively.

In a last step the particles in state Dr convert back to state Da with
a certain rate γ+ and become active again. The rate of the corresponding
backward reaction is γ−.

Dr
γ+

←→
γ−

Da. (3.264)

The overall numbers N of agents D and M of obstacles S is conserved. De-
noting by small letters the densities of D and of S, respectively, the following
equations are obtained:

1
A

∫

A

dA (da + ds + dr) = 1;
1
A

∫

A

dA (s + ds) = 1 , (3.265)

where
∫

A

dA denotes the integral over the surface A and summed densities are

normalized to 1.

External Driving: The Ratchet. For the moment we simplify matters
by setting s = const. in this subsection. Let σ(t) be the dichotomic Markov
process. We suppose that all forward and backward rates depend on the
actual realization of the two possible values of σ. For every σ, three kinetic
equations for the reaction system can be formulated:
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ḋa
σ = −(α+

σ s + γ−
σ + 1

τ ) da
σ + α−

σ ds
σ + γ+

σ dr
σ + 1

τ da
−σ,

ḋs
σ = α+

σ s da
σ − (α−

σ + β+
σ s − 1

τ ) ds
σ + β−

σ s2 dr
σ + 1

τ ds
−σ,

ḋr
σ = γ−

σ s da
σ + β+

σ s ds
σ − (β−

σ s2 + γ+
σ + 1

τ ) dr
σ + 1

τ dr
−σ.

(3.266)

Here da,s,r
σ are the densities for the three states of D, and ασ, βσ, γσ the rates

for a given σ. For constant s the system (3.266) can be solved analytically
in the stationary limit following (3.243) and (3.246). In detail we obtain the
current given by

J =
〈

α+
σ s da

σ − α−
σ ds

σ

〉

=
〈

β+
σ s ds

σ − β−
σ s2 dr

σ

〉

=
〈

γ+
σ dr

σ − γ−
σ da

σ

〉

,

(3.267)
where stationary densities have to be inserted and 〈. . .〉 means summation
over σ.

The current J is shown in Fig. 3.77 as a function of the switching time τ for
three densities of the obstacles s. With respect to τ a bell-shaped dependence
is obtained. Fluxes vanish for slow and fast driving. Therefore, we obtain that
for an optimal τ the chemical reaction is maximally forced by the external
perturbation to approach a nonequilibrium state. A stationary, irreversible
exchange in the forward direction exchange,

Da → Ds → Dr → Da, (3.268)

takes place. The effective velocity of the reactions scales with the current J .

0 2 4 6 8 10
1/τ

0.00

0.05

0.10

0.15

0.20

J

s=0.1
s=0.2
s=0.8

Fig. 3.77. Stationary current in the configuration space versus the mean switching
time τ for three values of obstacle density s, α+

+1 = β+
+1 = 10 and α+

−1 = γ+
−1 = 10,

other parameters according to α+
σ = 1/α−

σ ; β+
σ = 1/β−

σ ; γ+
σ = 1/γ−

σ = 1/(α+
σ β+

σ )
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The Distributed System: Nonequilibrium Pattern Formation. We
call the D molecules agents which may move diffusively on a two-dimensional
plane. They are simulated as Brownian particles by solving numerically the
Langevin equation [345,346]:

ẋi =
√

2 ε ξx
i , ẏi =

√
2 ε ξy

i . (3.269)

Here ξx,y
i are Gaussian white noise sources and i = 1, . . . , N labels the num-

ber of the agents. Diffusive motion is modeled, with ε being the diffusion
coefficient of the agents D. In simulations we took ε = 104.

While the motion of the agents D is continuous in space, the positions of
the obstacles S are bound to an underlying grid with box length ∆L = 1,
size 200 × 200 and periodic boundary conditions. Each cell of the grid can
contain one or no obstacle, meaning that the obstacles have a volume in the
size of the cell. Each time step we check whether a particle resides in a cell
containing an obstacle or in a cell which does not contain an obstacle. If
the particle is situated in a cell with an obstacle, the reactions which need
an obstacle will be performed according to the given rates. Otherwise only
reactions which do not need an obstacle can take place.

Initially the obstacles as well as the agents are distributed randomly on
the surface with uniform probability. Application of temporal switchings of
the dichotomic signal σ results in an effective forward flux of the reaction
coordinate. The system now shows cluster formation of obstacles S in a spe-
cial range of the switching time τ . The sequence of snapshots in Fig. 3.78
demonstrates this for a switching time τ = 1.25. The first snapshot (up-
per left image) has been taken after time t = 500, which corresponds to
100 000 iterations. A formation of dense areas has already started. The fol-
lowing images show the development of the system over more dense regions

Fig. 3.78. Temporal sequence of forthcoming snapshots of a simulation with
τ = 1.25. Black dots indicate positions of obstacles S. Other parameters: ε =
104 and rates as in Fig. 3.77. From the upper left to the lower right: t =
500, 1000, 2000, 4000, 8000, 9000. At about t = 9000 a single stable cluster arose
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up to several clusters, which end up in one single spherical cluster after
t = 9000.

Simulations with different switching times τ demonstrate that this cluster
formation of obstacles is most pronounced for maximal current J at an op-
timal switching time. No clusters are formed in the case of vanishingly small
currents for very high and very small switching times τ , respectively.

Ratchets Making Structures. The origin of the structure formation is
given by the nonequilibrium flux between different states of the agents D. To
prove this fact let us look at the simplified model (3.268) including diffusion.
For this system a directed flow with forward rates α+, β+, γ+ ∝ J(τ) and
vanishing backward rates α− = β− = γ− = 0 is considered. Addition of
diffusion of the D agents and of the obstacles S yields

ḋa = γ+ dr − α+s da + ε∆da , ḋs = α+s da − β+s ds + ε∆ds,

ḋr = β+s ds − γ+ dr + ε∆dr , ṡ = β+s ds − α+s da + ε0ε∆s,

(3.270)

where ε0 � 1 is the ratio between the mobilities of the agents and the obsta-
cles (a small mobility of S should mimic the finite volume of the obstacles).

Equations (3.270) possess maximally three homogeneous solutions. Usual
stability analysis proves either monostability for a positive stationary solu-
tions sstat > 0 and da,s,r

stat > 0 or bistability with an additional stable state
located at sstat = 0.

The stable state of free obstacles with nonvanishing density sstat �= 0 can
be destabilized by diffusing agents D in the case of a nonvanishing flux J . In-
deed, allowing nonhomogeneous perturbations, one can prove the instability
of this state by varying J/(ε ∗ k2), with k being the wave number of inhomo-
geneous perturbations. Interestingly, the region of instability is increased if
the flux J (3.267) of the three-state reaction is increased.

Analytic results of the stability analysis are shown in Fig. 3.79. The pre-
sented curve indicates critical values of εcrit

0 (the ratio of the mobility of
agents and obstacles) plotted versus J/(ε ∗ k2). Below the curve drawn the
system amplifies inhomogeneous perturbations. Thus for a finite given ε0 an
overcritical flux J of the reaction is necessary for ε ∗ k2 > 0.

Increasing τ starting from a first critical value induces a required cur-
rent J . Above a second critical τ the current again becomes small and no
structure will be excited. For optimal overcritical J slightly inhomogeneous
distributions with finite wave numbers occur very soon (see Fig. 3.78). Later
on, beyond our linear stability analysis the competition of those arising clus-
ters leads to a small number of larger clusters and the system ends up with
one large cluster consisting of all obstacles S. In this region the s-dependence
of the rates cannot be neglected as we have done in the given approximation.
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Fig. 3.79. Results of the stability analysis of the nonvanishing stable homogeneous
state of (3.270). Below the plotted critical values of ε0 inhomogeneous perturbations
are amplified. Rates α+ = J α0, β+ = Jβ0 and γ+ = Jγ0, with α0 = β0 = γ0 = 1

3.4.10 Summary

In addition to the many possible biophysical applications these studies on
noise-induced motion address fundamental problems in statistical physics.
Violation of detailed balance in the kinetic equations is most clearly expressed
within the frame of these investigations. Models as presented above allow the
detailed inspection of the transition from equilibrium to nonequilibrium and
the occurrence of a minimal order.

The most advanced studies about ratchets address a connection and com-
bination with the other nonlinear stochastic phenomena studied in this chap-
ter. Of course, synchronization as rotation of phases can be interpreted as
an ordered flux in periodic landscapes and might be characterized by Peclet
numbers [347]. Another direction was started was in [349–352]. Therein, noise-
induced phase transitions and ratchets were interconnected as was done also
with stochastic resonance (see Sect. 3.1.6) [141]. Such coupling of different
noise-induced phenomena will deliver a lot of interesting and surprising re-
sults in the future and shed new light on the fascinating role of noise in
nonlinear dynamics and dynamics far from equilibrium.
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18. J. A. Freund, T. Pöschel (eds.), Stochastic Processes in Physics, Chemistry
and Biology, Lecture Notes on Physics, Issue 557 (Springer, Berlin, Heidelberg
1997).

19. S. Fauve, F. Heslot, Phys. Lett. A 97, 5 (1983).
20. B. McNamara, K. Wiesenfeld, R. Roy, Phys. Rev. Lett. 60, 2626 (1988).
21. A.N. Grigorenko, P.I. Nikitin , A.N. Slavin, P.Y. Zhou, J. Appl. Phys. 76,

6335 (1994).
22. M.I. Dykman, A.L. Velikovich, G.P. Golubev, D.G. Luchinsky, S.V. Tsupikov,

JETP Lett. 53, 193 (1991).
23. L. Gammaitoni, M. Martinelli, L. Pardi, S. Santucci, Phys. Rev. Lett. 67,

1799 (1991).
24. A. Simon, A. Libchaber, Phys. Rev. Lett. 68, 3375 (1992).
25. M.L. Spano, M. Wun-Fogle, W.L. Ditto, Phys. Rev. A 46, R5253 (1992).
26. R.N. Mantegna, B. Spagnolo, Phys. Rev. E 49, R1792 (1994).
27. A.D. Hibbs, E.W. Jacobs, A.R. Bulsara, J.J. Bekkedahl, F. Moss, IL Nuovo

Cimento 17, 811 (1995).
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92. F. Schlögl, Z. Phys. 253, 147 (1972).
93. E.W. Montroll, In: Statistical Mechanics, ed. by S.A. Rice, K.F. Freed, and

J. C. Light (Chicago University Press, Chicago 1972).
94. L. Schimansky-Geier, H. Hempel, R. Bartussek, C. Zülicke Z. Phys. B Cond.
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132. A.A. Zaikin, J. Garćıa-Ojalvo, L. Schimansky-Geier, Phys. Rev. E 60, R6275

(1999).
133. H. Hempel, L. Schimansky-Geier, J. Garćıa-Ojalvo, Phys. Rev. Lett. 82, 3713–
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311. J.M.R. Parrondo and P. Español, Am. J. Phys. 64, 1125 (1996); K. Sekimoto,

J. Phys. Soc. Jpn. 66, 1234 (1997); J.M.R. Parrondo, J.M. Blanco, F.J. Cao,
R. Brito, Europhys. Lett. 43, 248 (1998); J.M.R. Parrondo. Phys. Rev. E. 57,
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