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Preface

When I was a graduate student, I studied plasma physics. My thesis for D.Sc.
was concerned with transport properties of plasmas. This study needed infor-
mation of elementary collision processes in the plasma. Since the plasma consi-
dered was a fully ionized, hydrogen plasma, collisions were only the Coulomb
scattering among plasma particles (i.e., electrons and protons). Therefore, no
atomic physics was involved in the study. After my graduation, I started a
theoretical study of atomic collisions. Among a variety of collision processes, I
was particularly interested in electron–molecule collisions. Molecules are much
more complicated than atoms. A detailed study of electron–molecule collisions
was somewhat behind the study of electron–atom collisions. At first, my study
of atomic collisions had no relation to plasma physics. Eventually, however,
I realized that the electron–molecule collision is a fundamental elementary
process in gaseous discharges. In fact, scientists engaged in the research of
gaseous discharges, or more generally weakly ionized plasmas, are very much
interested in electron–molecule collisions. I began to contact those scientists.

Then came an era of plasma processing. In the 1990s, a weakly ionized
plasma found a wide range of applications. Requests of information of
electron–molecule collisions and related subjects have arisen from industry.
Personally, I have been asked to give a talk of atomic collisions to the com-
munity of application fields. They often want to have a text book on atomic
collisions they can refer to. The present book is my answer to the request.

Many text books on plasma physics include sections for atomic collision
processes, but usually they give only a general feature of the processes. On
the other hand, many text books are available on the atomic and molecular
collisions. Usually, however, they are too much detailed to be referred for
application problems. This book has been written from the stand points of
atomic physics. Nothing is mentioned about plasma physics. But the examples
shown have been selected with an intension to the application in molecular
plasmas. The description of atomic physics is as much compact as possible.
But, if anyone wants to know more details, he/she is directed to a proper
reference. In this sense, this book serves as a guide to atomic physics that is
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necessary to understand the molecular processes in plasmas. From the side of
applications, the items sought after are cross-section data. Considering that
situation, this book would also serve as a guide for cross-section data on
molecular processes.

During the preparation of this book, many scientific colleagues in the world
provided the results of their theoretical and experimental research on atomic
collisions. I am very much grateful, particularly, to Professor H. Tanaka of the
Sophia University, Tokyo. He not only made available the detailed results of
the experiments of his group, but also kindly offered me technical help for the
preparation of the manuscript.

Tokyo, March 2007 Yukikazu Itikawa
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1

Introduction

Plasma is an ionized gas which contains equal amounts of positive and neg-
ative charges. Positive charges are carried by positive ions. Negative charges
are usually supplied by electrons, but in some cases negative ions have a
contribution. Plasmas are broadly classified into two classes. One is a high-
temperature, fully ionized plasma. The other is a low-temperature, weakly
ionized one. This book is concerned with a molecular plasma, i.e., a plasma
containing neutral molecules. In most cases, a molecular plasma belongs to
the class of low-temperature, weakly ionized plasmas. But, although belonging
to the class, plasmas composed only of atoms (e.g., rare gases) are not dealt
with in this book. Some of the high-temperature, fully ionized plasmas have
a supply of molecules from outside and partly become a molecular plasma.
For example, a plasma in a fusion device has a very hot core region, but also
contains a large amount of molecules in its boundary region (see Sect. 2.4).

This book deals with molecular processes in the molecular plasmas.
A molecular process literally means an elementary collision process involving
molecules. In this book, however, it means a collision between charged parti-
cles (i.e., ions and electrons) and molecules. Electron collisions with molecular
ions are also discussed in this book. Collisions involving only neutral molecules
are primarily a subject of chemistry and less concerned with plasmas.

One of the typical examples of molecular plasmas is the ionosphere on
the Earth and other planets. In the ionosphere, atoms and molecules are ion-
ized mainly by the UV or X-ray photons from the Sun. Most regions of the
Universe are in a state of plasmas. A stellar atmosphere, for example, is a kind
of high-temperature plasmas, but molecules are often found there. Interstellar
space is filled with very-low density matter. In the space, a clump of matter is
found and called an interstellar cloud. Those clouds contain a variety of mole-
cules. They also have ions and electrons. In that sense, the interstellar clouds
are molecular plasmas. Although their fraction is very small, the charged par-
ticles play an important role in the interstellar cloud. Many of the laboratory
plasmas are low-temperature, weakly ionized ones and generated from a mole-
cular gas. In recent years, plasmas are utilized for a wide range of industrial
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purposes. Many of these plasmas are molecular. Fluorocarbon molecules, for
instance, are used for plasma etching of microelectronics. Hydrocarbon mole-
cules are the main ingredient of the plasma for the deposition of carbon lay-
ers. Atmospheric plasmas (i.e., plasmas generated from atmospheric gases)
are widely used for pollution control or surface modification.

Molecular processes play fundamental roles in the plasmas. The produc-
tion of positive ions (and free electrons) is of primary importance in generating
and maintaining plasmas. An electron-impact ionization of molecules is the
main process for that. In laboratory plasmas, electrons are accelerated by an
applied electric field. On the other hand, those electrons lose their energy
through collisions with plasma particles (mainly with molecules). As a result
of balance of these two processes (i.e., acceleration and deceleration), the elec-
trons have a stationary distribution of their energies. The resulting electron
energy distribution function (EEDF) determines the transport properties of
electrons and the rates of various electron–collision processes. In some cases
(e.g., in the ionosphere), ions are produced by photoionization processes. The
photoelectrons produced usually have a finite kinetic energy. Upon collisions
with plasma particles, the photoelectrons degrade their energy to reach a ther-
mal distribution of energies. The last, but not the least, important role of the
molecular processes is the production of active species. Those products are
ions, excited atoms and molecules, radicals, reactive atoms such as O and F,
and high-energy photons. Some of the products even have a significant amount
of kinetic energy (i.e., being “hot”). These species are the source of actions of
practical importance.

The aim of this book is to list up all possible processes of collisions between
charged particles (i.e., ions and electrons) and neutral molecules (and molecu-
lar ions). A brief description with figures of examples is given for each process.
The descriptions are not too much detailed, but are intended to give an overall
picture of the process. An emphasis is placed on the features which are tended
unnoticed when the processes are considered for applications. Keeping in mind
those collisions in a molecular plasma, discussions are concentrated on low-
energy collisions. Collision energies considered are mostly in the range from
thermal energy at room temperature (=0.026 eV) to 100 eV for electrons and
to 10 eV for ions. For the understanding of the collision processes, the basic
ideas and the fundamental quantities in the physics of atomic collisions are
presented. Furthermore, specific features of molecular targets are summarized
and a simple theory of electron–molecule collisions is given.

The plan of this book is as follows. Chapter 2 presents four exam-
ples of molecular plasmas: Earth’s ionosphere (Sect. 2.1), interstellar clouds
(Sect. 2.2), gaseous discharges (mainly for plasma processing) (Sect. 2.3), and
edge plasmas in fusion devices (Sect. 2.4). Chapters 3 and 4 give the funda-
mental ideas and quantities in the physics of atomic collisions and, in par-
ticular, a brief theory of electron–molecule collisions. These are the minimum
essence of the atomic collision physics, necessary for understanding the molec-
ular processes described in the following chapters. Chapter 5 is devoted to the
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electron–molecule collision processes. Seven different processes are stated sep-
arately. Four related subjects (i.e., the total scattering, momentum–transfer,
emission, and stopping cross-sections) are also described in additional sec-
tions. Most of the collision processes described in this chapter are those
for the target molecules in their ground state. In the practical applications,
the information is needed about the collisions involving targets in excited
states. Those information are scarcely available. The situation is summarized
in the last section of Chap. 5. Next chapter (Chap. 6) deals with ion collisions
with molecules. The ion–molecule collisions are much more complicated than
the electron–molecule ones. Besides the same processes as in the electron–
molecule collisions, charge changing processes and rearrangement of atomic
components are possible in the ion–molecule collisions. The description of
the ion–molecule collisions are broadly divided into three parts: momentum–
transfer processes (Sect. 6.2), inelastic collisions with no change of collision
system (Sect. 6.3), and rearrangements, including charge changing processes
(Sect. 6.4). Chapter 7 briefly reviews the electron collisions with molecular
ions. This process is not necessarily major in molecular plasmas, but has
a special feature as a collision of two charged particles. After the descrip-
tion of the general feature of the electron collisions with molecular ions,
recombination processes are separately described in Sect. 7.2. To make this
book more informative, useful tables and a guide for cross-section data are
attached as appendices. Appendix A gives tables showing magnitudes of typi-
cal macroscopic quantities derived from cross-sections. Appendix B tabulates
molecular parameters needed to understand the cross-section data. A simple
theory of cross-section calculation is the Born approximation. It is not nec-
essarily accurate, but very useful to analyze the physics under the collision
process. Appendix C presents how to use the Born approximation, particu-
larly for the electron-impact excitation of rotational and vibrational states of a
molecule. For the demonstration of the variety of electron–molecule collisions,
Appendix D graphically shows sets of cross-sections for four simple molecules
(H2, N2, H2O, and CO2). The last three appendices (Appendices E, F, and G)
are a guide to readers who want to find cross-section data. It is not a complete
guide, but gives a clue when they search necessary data.

A few important collision processes in molecular plasmas or related phe-
nomena are out of the scope of this book. In a weakly ionized plasma, colli-
sions among neutral particles (i.e., molecule–molecule collisions) may have as
much a significance as the collisions involving charged particles. In particular,
collisions of active neutral species (particularly, radicals and excited mole-
cules) with other molecules often play a decisive role for plasma activity in
applications. Those neutral–neutral collisions are too complicated to summa-
rize in a chapter or two and hence totally excluded from this book. Another
processes not mentioned here are the elementary processes on the surface of
the apparatus or electrodes. The surface processes are sensitively dependent
on the condition of the surface. It is difficult to state those processes without
specifying the surface conditions.
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In this book, many examples of cross-sections are shown graphically or
tabulated. These examples are primarily presented to show the general fea-
ture of the respective processes. Although they have been carefully selected
as reliable data, they are not necessarily the best (i.e., the most accurate)
values for applications. In other words, this book is not a compilation of cross-
section data. This would, however, serve as a guide to find and understand
the cross-section data.
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Plasmas Involving Molecules

2.1 Ionosphere

A part of the atmosphere of the Earth and other planets is ionized by solar
radiation and precipitating particles from outside. The part of rather high
density of electrons is called an ionosphere. This is a typical example of mole-
cular plasmas in nature. Here we consider the ionosphere on the Earth. For the
ionospheres on the other planets, as well as details of the Earth’s ionosphere,
see the text book of Schunk and Nagy [144].

The Earth’s ionosphere is located at the height of 60–1,000 km. The struc-
ture of the ionosphere is different for the day side and night side (more
precisely, depending on the local time). It is severely affected by the solar
activity. Figure 2.1 shows one example of ionic composition and electron den-
sity of the day side ionosphere at the minimum of solar activity [85]. This
is a composite picture based on a few rocket and satellite measurements in
1963 and 1964. The absolute value of ion number density is normalized to
the electron number density measured separately. Typical value of the elec-
tron density is ∼105 cm−3 at 100 km and ∼106 cm−3 at 200 km. These values
are compared with the density of atmosphere: ∼1013 cm−3 at 100 km and
∼1010 cm−3 at 200 km. In the region of ionosphere, the Earth’s atmosphere
is composed mainly of N2, O2, and O. Above about 200 km, atomic oxygen
dominates over the molecular components.

In the day side region at the height of about 100 km, the ionospheric plasma
is maintained in the following manner:

(1) Ionization by solar radiation, particularly by the radiation of short
wavelength

Solar radiation + N2 → N+
2 + e(ph)

Solar radiation + O2 → O+
2 + e(ph)
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Fig. 2.1. Ion composition and electron density of the day side ionosphere on the
Earth, reproduced from [85]. Ordinate is the height in km above the ground

The electrons produced are called photoelectrons (denoted by e(ph)).
They have a rather high kinetic energy (20–30 eV or more). The N+

2 is,
however, immediately transformed into NO+ by the reaction

N+
2 + O → NO+ + N

As a result, the most abundant ions at the height around 100 km are O+
2

and NO+ as is shown in Fig. 2.1. Above about 150 km, an atomic ion, O+,
dominates. This ion is produced by the photoionization of atomic oxygen.

(2) Recombination of ions with the thermal electrons.

The photoelectrons lose their energy through the collisions with the
atmospheric particles (N2, O2, O). They eventually join the thermal electrons,
whose temperature is around 1,000 K. This slowed-down photoelectron is the
source of the thermal electrons in the ionosphere. The energy degradation
process of photoelectrons is discussed later in this section. The ions produced
in (1) are recombined with the thermal electrons (denoted here by e(th))

NO+ + e(th) → N + O

O+
2 + e(th) → O + O



2.1 Ionosphere 7

Even O+ disappears through these recombination processes. First it is trans-
formed into molecular ions through the processes:

O+ + N2 → NO+ + N

O+ + O2 → O+
2 + O

Then the molecular ions, NO+ and O+
2 , recombine with electrons as above.

In the region at around 100 km, these processes (i.e., photoionization, elec-
tron energy-degradation, and electron–ion recombination) take place locally.
As the height increases, the atmospheric density decreases rapidly and the
transport (diffusion) of electrons dominates over those collision processes. In
other words, nonlocal effects must be considered for the maintenance of the
ionosphere.

Electron–molecule collisions play a significant role in the ionosphere.
Examples are the following.

2.1.1 Energy Degradation of Photoelectrons

The photoelectrons lose their energy by the collisions with atmospheric atoms,
molecules, ions, and electrons. Because of the large density of the neutral par-
ticles, the degradation process is so fast that a steady-state distribution of
electron energy is established. The resulting distribution (i.e., the electron
energy spectrum) can be observed by rockets or satellites. One example is
shown in Fig. 2.2. The figure shows the energy distribution observed with a
satellite at the height of 150–282 km by Lee et al. [99]. It corresponds to the
daytime ionosphere at the solar minimum condition. Most of the structure
in the distributions reflects the structure in the spectrum of solar radiation.
To understand the energy degradation, we need information of all the colli-
sion processes between the electrons (in the energy range 1–100 eV) and the
molecules N2 and O2 (and O) (see, for example, [155]). With the use of the
information, calculations of the energy distribution of ionospheric electrons
have been performed several times (see, for example [8]). Those calculations
generally could reproduce the observed spectra of electron energy. For exam-
ple, the sharp dip at around 2 eV in the energy spectra at the lower altitudes
(e.g., at 150 km) was ascribed to the large cross-section of the vibrational
excitation of N2 due to the resonance process (see Sect. 5.5). Once electrons
acquire the energy (∼2 eV) for the resonance to occur, they quickly lose that
energy through the resonant vibrational excitation of N2.

2.1.2 Optical Emission

Optical emission from the atmosphere (called airglow) is caused by various
processes. One of them is the excitation (and excitation following dissocia-
tion) of molecules by energetic photoelectrons (see [110]). (Others are resonant
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Fig. 2.2. Energy distribution of photoelectrons in the Earth’s ionosphere, repro-
duced from [99]. The photoelectron flux per unit energy, observed by a satellite, is
shown for the heights from 150 to 282 km
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scattering of sunlight, photoexcitation by solar radiation, chemical reactions
of atmospheric atoms and molecules, etc.)

For example, Broadfoot et al. [16] observed the emission in the range
115–900 nm. They identified some part of the spectra as the emission from
N2 induced by electron impact. They were the emissions associated with the
transitions:

C3Πu → B3Πg

B3Πg → A3Σ+
u

a1Πg → X1Σ+
g

The emission cross-sections for these transitions are dealt with in Sect. 5.9.
If the emission mechanism is known, the observed spectra can be used for the
diagnostics of the atmosphere. That is, we can deduce atmospheric composi-
tion, density, temperature, etc. from the analysis of the observed spectra of
airglow.

Aurora is another example of atmospheric emission (see, for example,
[162]). It is caused by high-energy charged particles (usually electrons) precipi-
tating from outside of the atmosphere. Those charged particles (with energies
above about 1 keV) are generated in the magnetosphere, transported along
the line of magnetic field, and injected into the high-latitude atmosphere. The
roles of the electron–molecule collisions in the auroral emission is twofold:
energy degradation of fast electrons and emission of radiation. The incom-
ing high-energy electrons quickly reach the lower-range of the ionosphere.
Since the atmospheric density increases rapidly with decreasing height, those
electrons lose their energies mostly in the lower region (at around 100 km).
During the slowing down processes, the electrons collide with molecules to
emit radiation. The radiation intensity is proportional to the emission cross-
section and the number of emitting molecules. The emission cross-section
depends on the electron energy, which, in turn, is determined by the degra-
dation processes.

To understand aurora, modeling calculations have been performed many
times. One example is the Monte Carlo simulation by Onda et al. [126].
Starting from the measured energy spectra of the incident high-energy elec-
trons, they simulated the thorough behavior of the electrons until they join
the thermal electrons of the ionosphere. They obtained the emission spectra,
particularly for the transition:

N+
2 (B2Σ+

u ) → N+
2 (X2Σ+

g )

This transition is mainly caused by an electron-impact ionization–excitation
process:

e + N2 → e + N+
2 (B2Σ+

u ) + e

The agreement between the calculated and observed spectra was fairly good.
The emission spectra are sensitively dependent on the energy spectra of the
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incident high-energy electrons. The notable point of the work of Onda et al. is
that the energy spectra of the incident electrons was simultaneously measured
with the observation of the auroral spectra and used as an input of the model
calculation. By doing so, they could avoid any ambiguity associated with the
incident high-energy electrons. Most of other modeling studies assume some
model spectra for the incident electrons.

2.1.3 Energy Balance and Transport Phenomena
in Thermal Electrons

The thermal electrons in the ionosphere are usually assumed to have a Maxwell
distribution of energy. The electron temperature is determined by the balance
of heating and cooling. The source of heating is the collision with photoelec-
trons produced by the solar radiation. Cooling of the thermal electrons is
due to the collision with atmospheric molecules. Since the electron temper-
ature is not high (∼1,000 K), the dominant processes are elastic scattering
and rotational and vibrational excitations. In the higher region of ionosphere,
electron–ion collisions are the dominant cooling process of electrons. Elec-
tric conductivity of the ionosphere is determined by the electron collisions
with the atmospheric molecules. More generally, the propagation of radio
wave in the ionosphere is governed by the electron–molecule collisions. In
these cases, the most important process is a momentum–transfer collision
(see Sect. 5.3).

As is already shown, ion–molecule collisions are also important in the
ionosphere. The ions produced by the solar radiation are transformed into
other ions, through the following processes:

N+
2 + O → NO+ + O

O+ + N2 → NO+ + N

These reactions often result in the products in their excited state. Such reac-
tions, therefore, act as a source of airglow emission. Ions in the ionosphere are
heated by the collision with the thermal electrons. The cooling of the ions is
mostly due to the collisions between ions and the neutral molecules. The most
important process in this case is the momentum–transfer collisions between
ions and molecules.

2.2 Interstellar Cloud

Matter in the Universe is mostly in the state of a plasma. On the other hand,
molecules are found in many places in the Universe (see [156]). It is natural,
therefore, to encounter a molecular plasma in the Universe. One example is
the interstellar cloud.
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The space between the stars is empty, but not entirely so. It is filled with
matter, although very tenuous. Its density is not uniform. Some part of the
interstellar space has rather dense matter and is called interstellar cloud. Most
of the interstellar clouds are molecular and ionized. They are composed mostly
of (atomic and molecular) hydrogen. Its density is 102–104 cm−3. The gas
temperature of the cloud is extremely low (10–100 K). The degree of ionization
is very low (∼10−8), but the charged particles still play a significant role.

A wide variety of molecules have been found in the interstellar clouds.
Molecular species found are different depending on the cloud and the condition
of the observation. For illustration, we present in Table 2.1 a list of abundant
molecules. The abundance shown is the result of a model calculation [113],
but generally consistent with observation. In the model, the cloud is assumed
to have H2 density of 104 cm−3 and temperature of 10 K. It should be noted
that some of the molecules (e.g., N2) obtained by the model calculation have
not yet been observed. They have no transitions of the energy states suitable
for spectroscopic observation.

The formation of the interstellar molecules are thought to follow the
scheme described below. Here we consider the so-called molecular cloud, which
is of a rather high density (∼104 cm−3) and a low temperature (∼10 K).
Table 2.2 shows the molecular abundance observed in a typical molecular
cloud TMC-1 (cited in [113]). In such a cloud, very unsaturated species such
as radicals CnH are dominant. The molecular clouds are important as a source
of star formation. Because of the low gaseous density, only two-body collision
occurs in the cloud. (In contrast to this, three-body collisions are the main
process of molecule formation in laboratories.) Furthermore, only the reactions

Table 2.1. Fractional abundance (with respect to H2) of interstellar molecules based
on a model calculation [113]

Species Abundance Species Abundance Species Abundance

H2 1.0 CO2 3.0(−6)a CHOOH 2.6(−8)

CO 1.4(−4) H2O 2.3(−6) H2CO 1.4(−8)

O2 8.4(−5) SO2 3.0(−8) C4H 7.1(−9)

N2 2.0(−5) HNC 6.8(−9) C3H2 5.7(−9)

NO 3.3(−6) HNO 4.1(−9) C3H 2.2(−9)

OH 9.6(−7) HCN 4.0(−9) HCO+ 1.3(−8)

SiO 5.5(−9) NH2 3.7(−9) H+
3 7.1(−9)

SO 5.2(−9) OCN 2.4(−9) H3O
+ 2.4(−9)

PO 2.9(−9) NH3 1.4(−7) e 4.4(−8)

CS 2.7(−9) CH4 1.3(−7)

HCl 2.1(−9) C2H2 6.2(−8)
a 3.0(−6)=3.0 × 10−6.



12 2 Plasmas Involving Molecules

Table 2.2. Fractional abundance (with respect to H2) of interstellar molecules
observed in the cloud TMC-1

Species Abundance Species Abundance Species Abundance

CO 8(−5)a CH 2(−8) NH3 2(−8)

OH 3(−7) HCN 2(−8) CS 1(−8)

C2 5(−8) HNC 2(−8) C3H2 1(−8)

C2H 5(−8) CCCCH 2(−8) HCO+ 8(−9)

CN 3(−8) H2CO 2(−8)
a 8(−5)=8 × 10−5.

with no activation energy are possible in such a cold space. The two-body ion–
molecule reaction satisfies this condition (see Sect. 6.4). The possible scheme
of molecule formation in the interstellar cloud is as follows [62]:

(1) Ions are produced by collisions of cosmic-rays with interstellar atoms and
molecules. Reflecting the abundance, most of the nascent ions are H+

2 .
Because of the rapid reaction

H+
2 + H2 → H+

3 + H (2.1)

the H+
2 is immediately transformed into H+

3 , which is, therefore, the start-
ing point of a series of ion–molecule reactions in the interstellar cloud.

(2) Through a chain of ion–molecule reactions, larger, as well as complex,
molecules are created.

(3) A part of ions disappear through the collision with electrons (i.e., the
electron–ion recombination). The recombination is mostly dissociative, so
that some simple molecules are produced as a product of this process.

One simple route to the formation of water molecules is as follows:

H+
3 + O → OH+ + H2 (2.2)

OH+ + H2 → H2O+ + H (2.3)

H2O+ + H2 → H3O+ + H (2.4)

H3O+ + e → H2O + H (2.5a)

OH + H2 (2.5b)

OH + H + H (2.5c)

O + H + H2 (2.5d)

In the interstellar clouds, the ion–molecule reactions involving H or H2 are
of primary importance. Such processes as (2.3) and (2.4) above produce new
molecules having an additional hydrogen. The electron–ion collisions like (2.5)
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are very rare in the interstellar clouds, but still very important, because they
produce such small molecules as OH, CO, and H2O. For example, the forma-
tion of CO proceeds through the route:

H+
3 + C → CH+ + H2 (2.6)

CH+ + H2 → CH2
+ + H (2.7)

CH2
+ + H2 → CH3

+ + H (2.8)

CH3
+ + O → HCO+ + H2 (2.9)

HCO+ + e → CO + H (2.10)

In the last process (2.10), productions of C + OH and CH + O are also possible,
but their probability is known to be very small (see Sect. 7.2).

Finally it should be noted that recent, more refined, models include addi-
tional processes: two-body neutral–neutral collisions involving radicals and
reactions on a surface of interstellar grains [63,64].

2.3 Gaseous Discharges

Discharge in a molecular gas is a typical example of molecular plasmas. The
discharge plasmas are widely used in applications, some of which are:

– Production of active molecules (e.g., ozone synthesis)
– Pollution control (destruction of NOx and SOx, cleaning of flue gas, etc.)
– Light sources (lightings, gaseous lasers and plasma displays)
– Deposition of materials (production of thin films)
– Etching for semiconductor devices
– Surface modification and treatment
– Plasma sterilization (inactivation of microorganisms)

These applications are possible, because the plasma is in the state of non-
equilibrium. That is, the mean energy of electrons much exceeds the gaseous
temperature. An applied electromagnetic field supplies energy to keep the
nonequilibrium state of the plasma. Thus the plasma serves as a converter
of electromagnetic energy into useful materials. Depending on the purposes,
different plasmas are produced. It is impossible to fully describe the details of
all those plasmas. Here we summarize the roles of molecular processes in those
plasmas. More details of the discharge plasmas can be found, for example, in
the text book of Lieberman and Lichtenberg [100].

2.3.1 Production and Maintenance of Plasmas

Production of ions needs energy. The energy is supplied from outside mainly
through the application of electromagnetic field. Electrons are accelerated
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by the field to have enough energy to produce ions. There are two ways of
ionization: direct and indirect. Direct ionization is

e + AB → AB+ + 2e

The incident electron must have an energy above the ionization potential
of AB. Indirect process of ionization takes place through an excitation of a
molecule followed by an ionization of the excited molecule:

e + AB → AB∗ + e

e + AB∗ → AB+ + 2e

In this case the excited molecule must have a long lifetime. Or more precisely,
the lifetime of AB∗ should be longer than the mean collision time for the
ionization process. In the indirect ionization, the electron energy is not neces-
sarily above the ionization potential. When the gaseous pressure is high, the
following process is also possible:

AB∗ + AB → (AB)2
+ + e

This is called an associative ionization of molecules. It should be noted that,
even when the associative ionization dominates, the ionization process is
started by the collision of accelerated electrons with the gaseous molecules
(for the production of excited molecules).

In a discharge plasma, ions (and electrons also) disappear on the surface
of the apparatus. Electron–ion recombinations in a bulk plasma usually play a
minor role in the annihilation of ions in a laboratory plasma. But the recom-
bination process may be effective for the production of small radicals, as in
the case of the formation of interstellar molecules (see Sect. 2.2).

2.3.2 Determination of Electron Energy Distribution Function

The statistical behavior of electrons in a plasma is governed by the electron
energy distribution function (EEDF). Transport properties of electrons are
directly dependent on EEDF. Rate coefficients of any electron–molecule col-
lision process are evaluated with the EEDF. In the nonequilibrium plasma
used for applications, the EEDF is normally non-Maxwellian. Theoretically
EEDF can be obtained by solving the Boltzmann equation. According to the
equation, the EEDF is determined by the balance between the acceleration
of the electrons by the applied field and the deceleration of them through the
collisions with plasma particles (i.e., electrons, ions, and neutral molecules).
In a low-temperature, molecular plasma, the electron–molecule collisions play
the central role in determining EEDF. Particularly important are the elastic
scattering and the rotational and vibrational excitations of molecules. The
latter two processes are specific to a molecular gas. To show that, Capitelli
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Fig. 2.3. Electron energy distribution functions for N2 and N plasmas, calculated
at different E/N values (in 10−16 V cm2) (reproduced from [21])

et al. [21] solved the Boltzmann equation separately for molecular nitrogen
(N2) and atomic nitrogen (N). The resulting EEDF is presented in Fig. 2.3.

In the Boltzmann equation, the strength of the applied field E appears
only in the combination with the gas density N in the form E/N . The EEDF
is calculated at a constant value of E/N . The figure shows EEDF for several
different values of E/N . According to the convention, this EEDF has been
normalized as ∫ ∞

0

√
ε f(ε) dε = 1 , (2.11)

where ε is the electron energy. In both the cases of atomic and molecular nitro-
gens, the gaseous temperature was assumed to be so low that all the atoms
and molecules are in the ground states. The EEDF in the molecular plasma
has a peculiar feature compared with the atomic case. In the energy region
below about 6 eV, the number of electrons is remarkably reduced. This reflects
the significant energy loss of electrons due to the rotational and vibrational
excitations of nitrogen molecules. Because of this effect, the mean energy of
electrons in the molecular plasma is smaller than the corresponding value in
the atomic plasma. (For example, at E/N = 3 × 10−16 Vcm2, the mean
electron energies for the molecular and atomic plasmas are 1.06 and 1.78 eV,
respectively.) In an actual plasma of nitrogen molecules, an accumulation of
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vibrationally excited molecules has a significant effect on EEDF. Electrons
can gain an energy by the collision with the vibrationally excited molecules
(i.e., the super-elastic collision). The behavior of the excited molecules are
also affected by their collisions with neutral molecules. In a weakly ionized
molecular plasma, therefore, the EEDF and the kinetics of molecules should
be treated simultaneously (see, e.g., [21]).

2.3.3 Production of Active Species

Energy supplied from outside through the applied field mainly goes to the elec-
trons. Those electrons (and sometime ions) collide with molecules to produce
various active species in the plasma. They are ions, radicals, active atoms,
excited atoms and molecules, and high-energy photons. Those active species
are utilized for practical applications mentioned above. They collide with other
plasma particles to generate secondary products. In this manner, the electron
and ion collisions serve as a trigger of a series of chemical reactions.

To show what kinds of active species are produced, we present in Fig. 2.4
the result of a model calculation of CH4 plasma by Tachibana et al. [153].
This is an RF plasma and the gas pressure is 0.22 Torr. The number density
of the species shown was determined by solving a set of rate equations. The
rate coefficient of each reaction was evaluated with the EEDF observed by
themselves (i.e., not a theoretical one). All possible reactions were taken into
account. But some of them have a rate coefficient of large uncertainty, because
of a lack of relevant experimental data. The most abundant radical is CH3. It
is produced mainly by the collision of electrons with CH4. The other radicals,
CH2, CH, and C, are also produced by the electron collision with CH4. But,
due to the fast radical–molecule reactions, the number density of those radicals
is small. The authors investigated the effect of attachment of radicals on the
surface. There was no definite information about the sticking probability of
CH3 on a surface. They took two different values for the sticking probability
to see the effect. They found that the radical density is very sensitive to the
surface condition.

Later a similar modeling calculation of CH4 plasma was made by Herre-
bout et al. [65]. They obtained the electron energy distribution function by
solving the Boltzmann equation. The result of Herrebout et al. is not nec-
essarily the same as that of Tachibana et al. The most abundant radical in
the model of Herrebout et al. is CH3 as in the model of Tachibana et al.
But, in the model of Herrebout et al., higher order hydrocarbons (i.e., C2H4

and C2H6) are relatively more abundant than the model of Tachibana et al.
Herrebout et al. produced even C3H8, which was not included in the calcu-
lation of Tachibana et al. Herrebout et al. ascribed the difference to the fact
that different reactions were considered in the two models. This confirms the
importance of the reliable knowledge of the elementary processes.
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Fig. 2.4. Number densities of radicals and other species produced in a CH4 plasma.
They are plotted as a function of the RF power applied, for two different values of
sticking probability of CH3 on a surface: unity (solid line) and 10−3 (dashed line).
(Reproduced from [153])

2.4 Fusion Plasma

Fusion plasma is the plasma developed for achieving thermonuclear fusion.
The central part of the fusion plasma has a temperature of as high as 10 keV
(or 108 K) and is fully ionized. The plasma in the boundary region is relatively
cool and includes neutral particles. Most of the large fusion devices are now
equipped with a divertor, which pulls out the ash of the burnt material and the
generated heat from the core plasma. Since contacting special boundary plates
(divertor plates), the plasma in the divertor includes molecules originated from
the plate. The plasma in the boundary region, including the divertor, is often
called the edge plasma. It is a kind of molecular plasma, whose temperature
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is normally less than 100 eV. The following two molecular species are involved
in the edge plasma:

(1) H2. It is ejected from the wall of the fusion device (or divertor) as a result
of an H+ impact. When a H+ hits on the wall, it reacts with hydrogen
atoms on the wall surface or in the wall materials to produce H2. The
resulting molecule is ejected from the surface promptly or at the impact
of another H+.

(2) CnHm. This is generated by a chemical sputtering of H+ on the carbon
coated surface, which is widely used in the current fusion devices.

The study of edge plasma is important (see, e.g., [28]):

(1) To establish the boundary condition of the whole fusion plasma. The tem-
perature and density of the bulk plasma are controlled by the boundary
condition.

(2) To investigate the interaction between the plasma and the wall of the
device. This is necessary for the protection of the wall materials.

(3) To understand the behavior of the impurities (e.g., C atoms) in the
plasma. They are originated from the bounding surface.

The study of the molecular processes in the edge plasma is different from other
cases. Here the plasma itself is given as an extension of the bulk plasma. We
investigate the behavior of neutral molecules in such a plasma. The density of
molecules is usually smaller than the density of electrons, which is equal to the
ion density. To know the behavior of hydrogen molecules (or any other neutral
particles) in the plasma, we always resort to spectroscopy. From the analysis
of the spectra of the radiation measured, we directly obtain the population
of the molecules in particular states. To deduce plasma parameters from the
population, we need the knowledge of the mechanism of generating the popula-
tion. The best way to do so is to solve the equations of the collisional-radiative
model of the molecule [58]. It is a set of rate equations for electron-impact and
ion-impact excitations (and de-excitations, if necessary) and radiative transi-
tions. We need cross-sections (or rate coefficients) for all possible processes of
excitation (and de-excitation) of rotational, vibrational, and electronic states
of the relevant molecule. An example of the collisional-radiative model was
the study of hydrogen plasma by Sawada and Fujimoto [141].

One particular topic of molecular processes in the edge plasma is the
behavior of hydrocarbon molecules in a divertor. This study is needed to
understand the erosion mechanism of wall materials and the behavior of the
C-impurity in the bulk plasma. It is also of significance in the estimate of the
loss of hydrogen atoms. Hydrocarbon molecules are ionized in the plasma
and eventually return to the wall. Hydrogen atoms are lost as a compo-
nent of the molecules deposited on the wall. For example, Alman et al. [6]
made a model calculation of the behavior of CnHm in the edge plasma. They
took into account all the possible processes of electron- and proton-collisions
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with 16 hydrocarbon molecules (i.e., CHn with n = 1–4, C2Hm and C3Hm

with m = 1–6). They also included the (dissociative) recombination processes
between electrons and hydrocarbon ions, leading to the production of small
hydrocarbon radicals.

Another special topic of the molecular process in the edge plasma is the
molecule assisted recombination. The main component of the fusion plasma,
i.e., H+, is annihilated through the recombination with the plasma electrons
in such a way as

H+ + e → H + hν

This is a radiative process and very slow. If a molecular hydrogen is present
in the plasma, a charge transfer collision can transform H+ into a molecular
ion

H+ + H2 → H+
2 + H

Then the molecular ion induces the dissociative recombination

H+
2 + e → H + H

This process is much faster than the radiative recombination of H+. Further-
more the last two processes may be enhanced, if the molecules or molecular
ions are vibrationally excited. This two-step recombination process of H+

is called a molecule assisted recombination (MAR). In a real plasma, many
other processes compete with MAR. To estimate the effect of MAR, we need a
complicated model calculation of hydrogen plasmas. Krasheninnikov [93], for
example, carried out one such calculation. He obtained the frequency of the
recombination through MAR at the electron temperature Te ∼ 1–4 eV and
the electron density Ne = 1014 cm−3 to be

νMAR = 3 × 10−10 cm3 s−1 × NH2 (in cm−3)

When we assume the number density of hydrogen molecules to be of the
order of Ne (i.e., ∼1014 cm−3), the νMAR has the value by about 100 times
larger than the frequency of the radiative recombination. Kubo et al. [94]
investigated the behavior of H2 in the divertor of a large fusion device, JT-
60U, with using spectroscopy. They confirmed that the MAR is, at least, as
important as the radiative recombination of H+.

One of the methods of heating the fusion plasma is an injection of fast
neutral (usually atomic hydrogen) beam into the plasma. To produce the
fast (∼1 MeV) H beam, a fast H− beam is used, because an acceleration of
ions is easy and H− has a high neutralization (H− → H) efficiency even at
such a high beam energy. For that purpose, we need an ion source which
efficiently generates a large amount of H−. It is now well known that an
electron (dissociative) attachment of H2 has a large cross-section, once the
hydrogen molecule is vibrationally excited (see Sect. 5.13)

e + H2(v > 0) → H− + H
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If we have any efficient method to produce vibrationally excited H2, then
we can adopt this process for the H− source we need. The direct vibrational
excitation of H2 by electron impact is not efficient. One promising process is
the two-step process such as

e + H2 (X, v = 0) → H2(n, v′) + e

H2(n, v′) → H2(X, v > 0) + hν

The electronic state, n, is connected with the ground state, X, through a
dipole-allowed transition. An H− source based on this mechanism has been
developed and tested (see a review by Bacal et al. [9]). To understand the
physics in the ion source and to improve its operation, a modeling of H2

plasma has been made by a number of authors (e.g., [22]). In the modeling,
a knowledge is needed for the collision processes involving H2 in its vibra-
tionally excited state. One controversial problem is whether the electronically
excited molecule can also enhance the production of H−. To make clear this
problem, we need information about the collision processes involving H2 in its
electronically excited state.
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Collision Cross-Sections
and Related Quantities

3.1 Definitions and Fundamental Relations

Consider a collision between particles A and B (see Fig. 3.1). Here B is a target
fixed in space and A is a projectile incident along z-axis. (Collisions between
two moving particles are treated in Sect. 3.4.) The flux of the incident particle
is denoted by jin. The number of particles coming out per unit time and per
unit solid angle in the direction (θ, φ) is denoted by Jout(θ, φ). (Note that
Fig. 3.1 shows a case of axial symmetry and the φ-dependence is omitted.)
The quantity Jout is proportional to the incident flux jin. We denote the
proportionality constant by q(θ, φ), namely

q(θ, φ) =
Jout(θ, φ)

jin
. (3.1)

This is the definition of the differential cross-section (DCS) for the collision.
The integral cross-section is defined by

Q =
∫

q(θ, φ) dΩ , (3.2)

where Ω is the solid angle and dΩ = sin θ dθ dφ.
The corresponding collision frequency can be defined as

νcoll =
∫

Jout(θ, φ)dΩ . (3.3)

With the use of (3.1) and (3.2), νcoll is expressed in terms of the cross-
section by

νcoll = jin Q . (3.4)

When a beam of particles A with a constant velocity vin collides with the
target B (Fig. 3.2), the incident flux is obtained as

jin = Nvin , (3.5)
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Fig. 3.1. Collision system for the definition of cross-section
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B

Fig. 3.2. A beam of particles A colliding with a fixed target B

A

N(A)

vin

B

Fig. 3.3. A particle B colliding with a group of particles A fixed in space

where N is the number density of particle A. In this case (i.e., Fig. 3.2), the
(3.4) is rewritten in the form

νcoll = Nvin Q . (3.6)

Let us consider inversely the case where a particle B (with velocity vin)
comes into a group of particles A, which are now fixed in space (Fig. 3.3).
The number density of A is given by N . The frequency for B to collide with
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the field particles A is given by the same equation as (3.6). The number of
collisions per unit path-length of B is given by

ξ = νcoll × 1
vin

= NQ . (3.7)

Then the mean free path of the particle B moving in a group of particles A is
calculated to be

λmfp =
1
ξ

=
1

N Q
. (3.8)

The mean collision time, which is defined as an inverse of collision frequency,
is given by

τcoll =
1

νcoll
=

1
NvinQ

. (3.9)

The mean collision time is a useful quantity, when we ask if the collision
process dominates over other dynamic processes (e.g., transport of particles).
Also we can use the mean collision time to estimate the life of an excited
state. Usually an excited state decays through an emission of radiation. But,
if the collision time is shorter than the radiative lifetime of the state, the
state decays through collisions with other particles. This is the case shown
in Fig. 3.2 and N in (3.9) is taken as the number density of the colliding
particles.

As is shown in the later sections, there are various kinds of collision
processes (i.e., excitation, ionization, dissociation, etc.). We have the same
definition of the cross-section for each process as above. That is, instead of
(3.1), we have

qs(θ, φ) =
Jout,s(θ, φ)

jin
, (3.10)

where the subscript s specifies each collision process and Jout,s is the number
of the particles coming out after the collision process s. Equation (3.2) is
replaced by

Qs =
∫

qs(θ, φ) dΩ . (3.11)

When we are not interested in the details of the collision process, the total
scattering cross-section, Qtot, is a useful quantity. It is defined by

Qtot =
∑

s

Qs . (3.12)

This cross-section is simply a measure of the strength of the collision (i.e., how
strongly or how often the collision occurs). The related quantities introduced
above (i.e., ν, ξ, λ, τ) can be defined either with Qs or with Qtot.

Sometimes collision cross-section is interpreted as a collision “probability”.
Strictly speaking, however, a probability, which is a number between 0 and 1,
should be defined more rigorously. Consider a beam of particles B (of velocity v
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and intensity I) passing through a group of particles A (of density N and fixed
in space). The number of collisions of B with A during an infinitesimally short
path dx is given by dx/λmfp, where λmfp is the mean free path given by (3.8).
As a consequence of collisions, the beam loses its intensity by (dx/λmfp)I.
Or we have a relation

dI

I
= − dx

λmfp
. (3.13)

The minus sign on the right-hand side of (3.13) means that the intensity
decreases with increasing x. After passing over a finite distance L, the beam
intensity becomes

I(L) = I0 exp
(
− L

λmfp

)
, (3.14)

where I0 is the intensity at x = 0. With the use of (3.8), we have

I(L) = I0 exp(−NQL) . (3.15)

Inversely, the beam intensity remaining after passing through the distance
L is

(1 − exp(−NQL)) I0 . (3.16)

The factor in front of I0 can be interpreted as the collision probability, i.e.,

Pcoll = 1 − exp(−NQL) . (3.17)

This relation implies that, if the cross-section is large, we have a large (almost
unity) collision probability, but there is no proportionality between the two
quantities.

Consider collisions (of process s) between a group of particles B (whose
number density is NB) and a group of particles A (with number density NA).
In a case where particles A are fixed in space but particles B have a velocity
distribution f(v), the number of collisions per unit time (i.e., the rate of the
collision) is given by

Rs = NA NB

∫
v Qs(v) f(v) dv . (3.18)

Defining the rate coefficient by

ks =
∫

v Qs(v) f(v) dv . (3.19)

we have a relation
Rs = NA NB ks . (3.20)

This can be applied to the case of chemical reaction

A + B → C + D .
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In this case, the velocity v is meant to be the relative velocity between A
and B. Since the velocity distribution depends on the gas temperature, the
“reaction rate coefficient” kA+B→C+D is a function of the temperature.

To help a quantitative estimate of the effect of a certain collision process,
we show in Appendix A the representative values of mean free path (λmfp),
mean collision time (τcoll), and collision frequency (νcoll). There we assume
a typical value of the cross-section to be 10−16 cm2 (i.e., the size of typical
atoms). The order of magnitude of rate coefficient is also shown there.

In this book, differential cross-sections (DCSs) are not explicitly shown,
except in a few special cases. Lots of data are available on DCSs, but they
are too detailed to be summarized in a compact form. Typical examples of
DCS can be found in a review paper on electron collisions with diatomic
molecules written by Brunger and Buckman [17]. DCS is not less important
than the integral cross-sections. The angular dependence of the cross-section
reflects the physics underlying the collision process. DCS is of importance
also as basic data. Monte Carlo simulation needs the information of angular
distribution of scattering. In solving the Boltzmann equation, DCS is needed
if inelastic collisions are expected to dominate. In such instances, the angular
distribution is often assumed to be isotropic or concentrated in the forward
direction. These assumptions, however, are normally not valid (see the review
by Brunger and Buckman). When DCSs are needed, one should find them in
the relevant original literature.

3.2 Cross-Section in the Quantum Theory

Here the collision is considered as a stationary problem. A group of particles
(with mass μ) constantly flow over a fixed target B. The wavefunction of the
colliding system, A+ B, is set to have the following boundary condition at the
separation of the two particles:

Ψ
r→∞−→ eik·r + fs(k → ks|θ, φ)

eiksr

r
. (3.21)

Here the origin of the coordinates is taken at the position of particle B and r
is the position vector of particle A from the origin. The first term of the right-
hand side of (3.21) represents the incident free particle (i.e., a plane wave)
and the second one the scattered particle (i.e., an outgoing spherical wave).
The quantity fs is called a scattering amplitude (with subscript s indicating
the collision process considered) and k and ks are the wave vectors of the
incident and scattered particles, respectively.

To evaluate the DCS (i.e., (3.1) or (3.10)), we need jin and Jout. In the
quantum mechanics, a particle flux is obtained by

j =
h̄

2μi
(Φ∗ ∇Φ − Φ∇Φ∗) . (3.22)
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Inserting Φ = exp(ik · r) into (3.22), we have the incident flux. By definition,
the flux is along the z axis. Its magnitude is calculated to be

jin =
h̄k

μ
. (3.23)

To calculate Jout, we first evaluate the outgoing flux jout, which is directed
in the direction (θ, φ) from the origin. The flux is obtained by inserting Φ =
fs exp(iksr) /r into (3.22). We only need the flux in the limit r → ∞. Then
we have

jout(r → ∞) =
h̄ks

μ

1
r2

|fs|2 . (3.24)

This is the number of outgoing particles per unit area on the surface of a
sphere of radius r. The quantity Jout has been defined as the number of
outgoing particles per unit solid angle. Thus we have

Jout = r2 jout =
h̄ks

μ
|fs|2 . (3.25)

From (3.10), (3.23), and (3.25), we finally have the DCS in the form

qs(θ, φ) =
ks

k
|fs(k → ks |θ, φ)|2 . (3.26)

The integral cross-section is obtained by integrating qs(θ, φ) over the scatter-
ing angles. It should be noted that the present formula of the cross-section
(3.26) has been derived under the boundary condition (3.21). We can set other
boundary condition to the wavefunction, but in that case we have a different
form of cross-section.

3.3 Scattering from a Spherical Potential

To illustrate how to evaluate cross-sections quantum mechanically, we here
consider a particle (with mass μ and energy E) scattered from a spherical
potential, V (r). The motion of the particle is determined by a wave equation
(i.e., the Schrödinger equation)(

− h̄2

2μ
∇2 + V (r)

)
Ψ = EΨ . (3.27)

According to the standard way of solving a partial differential equation, we
separate the variables. In the present case, it is natural to expand the wave
function in terms of angular basis functions. Because of the axial symmetry of
the problem, we now expand the solution in terms of the Legendre function P�:

Ψ =
1
r

∑
�

u�(r)P�(cos θ) . (3.28)
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Here � is regarded as an angular momentum quantum number of the incom-
ing particle. Inserting this into (3.27) and using the orthonormality of the
Legendre functions, we have an equation for the radial function u� in the
form [

d2

dr2
− �(� + 1)

r2
− 2μ

h̄2 (V − E)
]

u� = 0 . (3.29)

When we assume
V (r) r→∞−→ 0, (3.30)

we can set an asymptotic form of the solution of (3.29) as

u�
r→∞−→ A� sin(kr − �π

2
+ η�) , (3.31)

or, with using (3.28),

Ψ
r→∞−→ 1

r

∑
�

A� sin(kr − �π

2
+ η�)P�(cos θ) . (3.32)

In (3.31) and (3.32), A� is a normalization constant, and k is the wave number
of the incident particle and related to the energy by

E =
h̄2 k2

2μ
. (3.33)

The quantity η� in (3.31) and (3.32) is called a phase shift and represents
the amount of distortion of the incoming wave due to the presence of the
target potential. To derive the scattering cross-section, we compare (3.32)
with (3.21). Then we have (see, for example, [117])

f(k|θ) =
1
k

∑
�

(2� + 1) exp(iη�)(sin η�)P�(cos θ) . (3.34)

From this, the differential cross-section is calculated to be

q(θ) =
1

4k2

∣∣∣∑
�

(2� + 1) [exp(2iη�) − 1] P�(cos θ)
∣∣∣2 . (3.35)

Because of the axial symmetry of the system, the differential cross-section
does not depend on φ. The integral cross-section is obtained as

Q =
4π

k2

∑
�

(2� + 1)(sin η�)2 . (3.36)

Thus the cross-section in this particular case can be calculated only with the
phase shift η�, which in turn is determined from the solution of (3.29) under
the boundary condition (3.31).
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In principle the summation over � in (3.28) (and other equations) should
be taken over 0−∞. But, in practice, the upper limit of � (denoted by �max) is
finite. To estimate �max, we simply take a classical picture. The scattered par-
ticle follows a trajectory specified by an initial condition of impact parameter
b and velocity v. The scattering is possible only if the impact parameter is
smaller than the size (denoted by a) of the interaction potential. The orbital
angular momentum of the incident particle can be obtained by a relation

L = μv b = h̄kb . (3.37)

Using the definition of the quantum number, i.e., L = �h̄, we have

b =
�

k
. (3.38)

From the above condition for the scattering (i.e., b < a), we simply have

� < ka = 5.12
√

μ

me

√
E(eV)a(nm) , (3.39)

where me is the electron mass. When an electron of 1 eV collides with a
molecule and a typical value a = 0.5 nm is taken as a size of the interaction
region, then we have � < 3. Therefore, we need to consider only a few partial
waves in this case. As can be seen from the relation (3.39), many partial waves
have to be taken into account in the collision between an ion and a molecule,
but even in that case, the total number of the partial waves can be finite.

3.4 One-Body vs. Two-Body Problems

So far in the present chapter, we have assumed that the target particle is
fixed in space. Now we consider a more general case: a collision of two moving
particles. The two particles have masses m1 and m2 and velocities v1 and v2.
Define their velocities in the center of mass (CM) frame of reference by

g1 = v1 − G , (3.40)

g2 = v2 − G , (3.41)

where G is the velocity of the gravity center

G =
m1

M
v1 +

m2

M
v2 (3.42)

with
M = m1 + m2 . (3.43)
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Inserting (3.42) into (3.40) and (3.41), we have

g1 =
m2

M
v , (3.44)

g2 = − m1

M
v (3.45)

with the relative velocity
v = v1 − v2 . (3.46)

Or we have
v1 = g1 + G =

m2

M
v + G, (3.47)

v2 = g2 + G = −m1

M
v + G . (3.48)

Thus a set of two independent variables, (v1,v2), is expressed by another set
of variables, (v, G).

Now we define the total kinetic energy in the laboratory and the CM
frames in such a way as

Elab(tot) =
1
2
m1v

2
1 +

1
2
m2v

2
2 , (3.49)

ECM(tot) =
1
2
m1g

2
1 +

1
2
m2g

2
2 . (3.50)

Further we introduce the kinetic energy of relative motion defined by

Erel =
1
2
μ12v

2 , (3.51)

where μ12 is the so-called reduced mass

μ12 =
m1m2

M
. (3.52)

Inserting (3.44) and (3.45) into (3.50), we have

ECM(tot) = Erel . (3.53)

Recalling the relation (3.42), we finally have

Elab(tot) = ECM(tot) + EG

= Erel + EG , (3.54)

where EG is the energy of the motion of the gravity center and defined by

EG =
1
2
MG2 . (3.55)
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During the collision, the motion of the gravity center does not change. We
cannot use that part (i.e., EG) of the total collision energy for any acti-
vity (e.g., excitation, ionization, etc.). Only the other part (i.e., ECM(tot)
or equivalently Erel) is physically usable.

In the quantum mechanics, the same relation as (3.54) holds for the kinetic-
energy operator, i.e.,

1
m1

∇2
1 +

1
m2

∇2
2 =

1
μ12

∇2
r +

1
M

∇2
G . (3.56)

Here the coordinates of the relative position of the two particles, r, and the
gravity center, rG, are introduced by

r = r1 − r2 , (3.57)

rG =
m1

M
r1 +

m2

M
r2 , (3.58)

where r1 and r2 denote the positions of the two particles. The corresponding
Laplacian operators are ∇2

r and ∇2
G. The relation (3.56) can be easily derived

in the differential calculus or simply from the correspondence principle in the
quantum mechanics. When we solve a general 2-body problem, we need a
solution of the equation(

− h̄2

2m1
∇2

1 −
h̄2

2m2
∇2

2 + V (r1, r2)
)

Ψ(r1, r2) = E Ψ(r1, r2) . (3.59)

With use of the relation (3.56), this equation is separated into two: one for
the motion of the gravity center and the other for the relative motion of
the two particles. Since we do not need to solve the former equation, we
have to solve only the latter (i.e., the equation of the relative motion). Now
we have the following conclusion. Whenever we consider a collision of two
particles (2-body problem), we only need to solve the equation of relative
motion (1-body problem) in the form(

− h̄2

2μ12
∇2

r + V (r)
)

Ψ(r) = Erel Ψ(r) . (3.60)

Note that the interaction between the two particles depends only on their
relative position, r. The equation (3.60) is a wave equation for one particle
in the potential V , but the mass of the particle is μ12, instead of either m1

or m2.
The definition of the cross-section presented in the previous sections do

not need to be changed for the collisions of two moving particles, if we replace
the mass with the relevant reduced one. In other words, cross-section is a
quantity defined for a relative motion of the colliding particles. Other quanti-
ties introduced in Sect. 3.1 need to change their definitions, if necessary. For
example, let us consider the case of Fig. 3.3, but with the field particles A
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moving with the velocity distribution f(vA). The collision frequency is now
evaluated in the form

νcoll(B → A) = N(A)
∫

dvA v Q(v) f(vA) , (3.61)

where v (= |vB − vA|) is the absolute magnitude of the relative velocity.
The mean free path of the incoming particle B is obtained with this collision
frequency in such a way as

λmfp(B → A) =
vB

νcoll(B → A)
. (3.62)

Now we consider an experiment where particle 1 collides with particle 2,
but particle 2 is fixed in space before collision. Then we have

v2 = 0 , (3.63)

v1 = v . (3.64)

The total kinetic energies in the laboratory and CM frames are given by

Elab(tot) =
1
2
m1v

2
1 , (3.65)

ECM(tot) = Erel =
1
2
μ12v

2
1 . (3.66)

Then we have a relation

Erel =
m2

M
Elab(tot) . (3.67)

Only a fraction (i.e., m2/M) of the collision energy given before collision can
be spent on the process induced by the collision. In this sense, cross-sections
in the literature are often expressed as a function of Erel, instead of Elab.
The former is called the collision energy in the CM frame, or simply the CM
energy. It should be noted that the relation (3.67) can be used only in the case
where the conditions (3.63) and (3.64) are satisfied before the collision. When
we consider “electron–molecule” collisions, the reduced mass can be regarded
as the electron mass and ECM and Elab have essentially the same values.

Following the above statement, we have a relation:

Erel − E′
rel = W , (3.68)

where the superscript “prime” denotes the quantity after the collision and
W represents the inelasticity of the collision or the increase of the internal
energy of the colliding system (either in particle 1, particle 2, or both). Again
we consider the collision in the laboratory frame specified by (3.63) and (3.64).
We denote the initial kinetic energies of particle 1 (projectile) and 2 (target)
in the laboratory frame by E1 and E2, respectively. In the present collision
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system, E2 = 0. Those energies after the collision are denoted by E1
′ and E2

′.
The change of the kinetic energy of particle 1 (projectile) is calculated in the
form

ΔE1 = E1 − E1
′ = E2

′ + W , (3.69)

where E2
′ is the recoil energy of the target. This relation means that the

change (e.g., a loss) of the incident–particle energy (in laboratory frame) con-
sists of two parts: the change (e.g., a gain) of internal energies and the recoil
energy of the target.

Let us evaluate W in terms of the energies of the incident particle. After
the collision, the relative velocity becomes (see (3.47))

v′ =
M

m2
(v1

′ − G) . (3.70)

In the present case, the velocity of gravity center is given by (see (3.42) with
v2 = 0)

G =
m1

M
v1 . (3.71)

From (3.70) and (3.71), we have

v′ =
M

m2
v1

′ − m1

m2
v1 . (3.72)

Then the square of (3.72) gives

v′2 =
( M

m2

)2

v1
′2 +

(m1

m2

)2

v2
1 − 2

Mm1

m2
2

v1
′v1 cos θlab , (3.73)

where θlab is the scattering angle of particle 1 with respect to its incident
direction (i.e., the scattering angle in the laboratory frame). Rewriting (3.68)
into the form

W =
1
2
μ12 (v2 − v′2) =

1
2
μ12(v2

1 − v′2) , (3.74)

and using (3.73), we finally have

W = (1 − γ)E1 − (1 + γ)E1
′ + 2γ

√
E1 E1

′ cos θlab , (3.75)

where γ = m1 /m2.
Consider an experiment under the laboratory conditions, (3.63) and (3.64).

Measure the intensity I1 of particle 1 after the collision as a function of its
energy E1

′, at fixed values of incident energy E1 and scattering angle θlab.
When we plot I1 against E1

′, we have peaks at the positions E1
′ = E1

′(W ),
which is derived from the relation (3.75) with a certain internal energy change
W (due to excitation or de-excitation of the particles). This is the principle
of the translational energy spectroscopy.
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One specific example of (3.75) is the elastic scattering (i.e., W = 0) of
electrons from molecules (i.e., γ � 1). In this case, the energy loss of the
incident electron can be calculated from (3.75), to the first-order of γ, as

ΔE1 = E1 − E1
′

= 2γE1 (1 − cos θlab) for elastic electron collisions. (3.76)

3.5 Experimental Methods to Obtain Cross-Sections

There are a variety of methods to experimentally determine cross-sections.
To provide accurate cross-section data, it is necessary to have reliable experi-
mental methods. From this point of view, experimental methods for atomic
collisions were reviewed in a special volume of Advances in Atomic, Molecular,
and Optical Physics [73]. To help the understanding of the following chapters,
we briefly summarize in this section the principles of five representative meth-
ods used for electron collisions. All of them are used also for ion collisions,
for which more sophisticated methods are employed for specific processes.
Here an emphasis is placed on the points to be considered when we evaluate
the accuracy of the cross-sections obtained by the respective methods. An
issue of particular importance is how to determine the absolute value of the
cross-section. Technical details of the experimental methods are found in the
review articles mentioned above.

3.5.1 Measurement of Energy Loss of Electrons

The most straightforward manner to obtain cross-sections is the measurement
of energy loss of electrons. The principle exactly follows the definition of the
DCS (see Fig. 3.1) (see [161]). Prepare an electron beam with energy E. Shoot
the beam into a box filled with target molecules. (Many of the experiments
use a beam of target molecules to clearly define the collision point. It is called
a crossed-beam experiment.) Detect electrons scattered in the direction (θ, φ)
with respect to the incident beam. Analyze the energy (E′) of the scattered
electrons and draw a diagram of the intensity of the scattered electrons (ordi-
nate) against the amount of energy loss of the electrons (= E−E′, abscissa).
This diagram is called an electron energy loss spectrum (EELS). The spectrum
shows several peaks corresponding to the excitation of discrete states of the
molecule. This is a special example of the translational energy spectroscopy
described in Sect. 3.4. If a continuous energy-loss (e.g., ionization) occurs, we
have a broad peak. The intensity of the nth peak is written in the form

In(θ, φ |E) = qn(θ, φ |E)IeF (E′)G(rcoll). (3.77)

Here Ie is the current of the incident electron, the function F is the apparatus
function determining the transmission efficiency of the scattered electron, and
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G is the number of target molecule at the collision point rcoll. To obtain an
absolute value of the differential cross-section for the excitation of the nth
state, qn(θ, φ), we need to know the functions F and G. They are difficult to
determine. In many cases, the same experiment is carried out with a standard
collision system (e.g., electron collisions with He) for which an accurate cross-
section is already known. The relative intensity for the elastic scattering (i.e.,
n = 0) from the target gas A and the standard gas (say, He) is obtained as

IA
0 (θ, φ |E)

IHe
0 (θ, φ |E)

=
qA
0 (θ, φ |E)

qHe
0 (θ, φ |E)

IA
e FA GA

IHe
e FHe GHe

. (3.78)

Here IA
e and IHe

e can be accurately measured. Since the function F is specific
to the apparatus, we simply have FA = FHe. By adjusting the flow condi-
tion of the target gas, we can determine GA/GHe from the relative pressure
measurement. Finally we obtain qA

0 from the measured ratio IA
0 /IHe

0 , pro-
vided that we have qHe

0 . This is called the relative flow method. The inelastic
cross-sections are determined from the relative measurement of IA

n /IA
0 with

the elastic cross-section now obtained.
With varying the detection angle (θ, φ), we can determine the angular dis-

tribution of the cross-section. Integrating the DCS over the scattering angles,
we finally have the (integral) cross-section Q. In ordinary beam-type experi-
ments, forward (near θ = 0◦) and backward (near θ = 180◦) scatterings cannot
be measured, because of the geometrical constraint of the apparatus. To get
the integral cross-section, we need extrapolations of the measured DCS to the
forward and backward directions. This introduces uncertainty in the resulting
cross-section. To avoid this problem, a new technique, called the magnetic
angle changer (MAC), has been developed [137]. In this method, the electron
trajectory is changed by an applied magnetic field so that the DCS can be
measured all over the scattering angles (i.e., 0–180◦). Because of technical
difficulties, this method has not been extensively used yet, particularly for
molecular targets.

3.5.2 Detection of Collision Products

Cross-section can be determined by a detection of the collision product. Let
us consider an ionization as an example. We introduce an electron beam with
energy E into a gas of target molecules (see Fig. 3.4). Along the beam tra-
jectory, electron collides with molecules. Some of the collisions produce ions.
The number of ions produced per unit time is evaluated as

Iion = Qion NLIe . (3.79)

Here Qion is the ionization cross-section, N is the number density of target
molecules, L is the length of the collision region, and Ie is the current of the
incident electron. By using (3.79), we can determine the cross-section Qion

from the measurement of the product ion, provided that we have N, L, Ie.



3.5 Experimental Methods to Obtain Cross-Sections 35
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–

Fig. 3.4. A method of measurement of ionization cross-section

To have a correct value of the cross-section, we have to be careful about detect-
ing all the ions produced. A problem may arise, when the collision product
has a kinetic energy (e.g., in the case of dissociative ionization). When several
different ions are produced, we can identify them with a mass spectrometer
installed in front of the ion collector.

3.5.3 Beam Attenuation Method

When an electron beam passes through a molecular gas of density N , the
beam intensity I decreases due to the collision with the molecule (Fig. 3.5).
The intensity decrease over a distance L can be evaluated by the formula (see
(3.14) and the discussion about the equation)

I(L)
I(0)

= exp(−L

λ
) . (3.80)

Here λ is the mean free path of the incoming electron and given by

λ =
1

N Q
. (3.81)

(Note that, in the case of electron–molecule collisions, we can ignore the veloc-
ity distribution of molecules in (3.61), unless the electron energy is too small.)
From the measurement of I, we can obtain the cross-section Q, provided that
we know the density of the molecule N . It is clear from the principle that
the quantity measured is the total scattering cross-section Qtot introduced in
(3.12). One of the advantages of this method is that we can obtain the absolute
value of the cross-section without any normalization procedure. Furthermore,
we do not need to measure the absolute value of the beam intensity I. It is
sufficient to measure the relative change of the beam intensity.
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I(0) I(L)

N

Fig. 3.5. Beam attenuation experiment

In this experiment, it is assumed that electrons must be lost from the
beam once they collide with molecules. Some electrons move in the forward
direction even after the collision. The intensity I(L) should not include these
scattered electrons. It is not easy to make corrections for this effect. The
reliability of the resulting cross-section, therefore, can be judged by asking if
this forward-scattering effect is properly taken into account or not.

3.5.4 Merged Beam Method

In this method, two interacting beams of particles are made to travel in parallel
with each other for some finite distance (see the review by Phaneuf et al. [131]).
By so doing, the chance of collisions is increased. When collisions involve
active species, it is difficult to accumulate them dense enough for a collision
experiment and hence a merged beam technique is often employed. The best
example is the electron collisions with ions. The most unique advantage of
the method is its ability to access low relative (or, in other words, center-of-
mass) energies. Since the two beams are collinear, the relative speed can be set
arbitrarily small with controlling the laboratory speeds of the beams. Collision
cross-sections depend only on the relative energy (or velocity) of the colliding
particles. The merged beam method, therefore, is particularly useful for the
process having a large cross-section at very low relative energies (e.g., electron–
ion recombination). When fast primary beams are used, the collision products
are also travelling fast. Those fast products are easily detectable, even when
they are neutral particles. Compared with other experimental methods, the
merged beam method has several inherent difficulties. The method needs to
have high-quality fast beams and we should precisely control those beams.
It is usually difficult to know accurately the effective number of the target
density. Because of these and other difficulties of the method, we need special
care when we use the result obtained by the method.
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3.5.5 Swarm Experiment

This method is completely different from others. Prepare a chamber filled with
target molecules. Introduce an ensemble of electrons into the chamber. Apply
a uniform electric field from outside. The electrons are continuously acceler-
ated by the field, but occasionally collide with the molecules. When colliding
with a molecule, an electron loses its energy and deviates from its trajec-
tory. After the collision, the electron is again accelerated by the field and
recovers its energy and momentum. As a whole a swarm of electrons move
towards the anode with a constant mean velocity (called a drift velocity). The
electrons also spatially spread by diffusion. We measure the drift velocity and
the diffusion coefficient as a function of the strength of the applied field, E .
More precisely those quantities (called the transport coefficients) depend on
the so-called reduced field E/N , N being the number density of the gaseous
molecules. In principle the transport coefficients are resulted from the bal-
ance between the applied field and the degree of electron–molecule collisions.
We can, therefore, relate the measured values of the transport coefficients
to the cross-sections of relevant collision processes. In other words, we can
derive cross-sections from the measurement of the transport coefficients. For
a general review, see [32].

The electron transport in a gas involves various collision processes. All of
them should be considered simultaneously when we derive cross-sections. This
results in an ambiguity of the cross-sections derived (i.e., a non-uniqueness
problem). Transport properties of electrons are primarily determined by the
electron energy distribution function (EEDF). The EEDF is a solution of
the Boltzmann equation. It is almost established how to solve the equation,
although approximately. Before solving the equation, however, we need to
have sufficient knowledge of the collision processes involved. Otherwise the
non-uniqueness problem makes the resulting cross-sections less reliable.

The mean energy of electrons, < ε >, depends on E/N . Usually when E/N
decreases, < ε > decreases. Since it is rather easy to decrease E/N (compared
to the lowering of electron energies in the ordinary EELS measurement), the
swarm method is suitable to obtain cross-sections for low-energy collisions.
Furthermore, at the lower energies, fewer inelastic processes occur so that the
non-uniqueness problem becomes less serious. Accordingly, more reliable cross-
sections are derived from the swarm experiment at the low collision energies.
Another advantage of the swarm method is that an absolute value of the cross-
section is obtained without any additional procedure such as normalization.
For these reasons, the swarm method may serve as a complementary to the
EELS measurement.
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Molecule as a Collision Partner

4.1 Molecular Structure and Energy Levels

Compared with an atom, a molecule has two or more nuclei. This leads to the
following characteristics of a molecule:

1. We have to consider a relative motion of nuclei. The motion appears as a
rotational and vibrational degrees of freedom of the molecule.

2. The wave function of the molecule depends on the configuration (i.e., the
relative positions) of the nuclei. Accordingly the molecular energy and
the distribution of molecular electrons are dependent on the nuclear con-
figuration. In particular, the charge distribution of the molecule becomes
anisotropic.

3. As an extreme case of vibration, a molecule can dissociate into two or
more fragments. It is noted that dissociation is regarded as a continuum
state of vibrational motion, in such a way as an ionization is regarded as
a continuum state of the motion of the bound electron.

The energy levels of a molecule are composed of three parts: rotational,
vibrational, and electronic components. Each of them is briefly described
below for the understanding of the following chapters. More details can be
found in any textbook of molecular structure or quantum chemistry. A sim-
ple explanation of molecular structure and spectra is found in the book of
Khristenko et al. [90]. For more details, see the textbooks of Herzberg [66–68].

The rotational motion of a molecule is classified into three types, according
to the relative magnitudes of the three moments of inertia of the molecule.
They are a linear rotor, a symmetric top, and an asymmetric top. If all three
moments of inertia are equal, the molecule is called a spherical top, but this is a
special case of symmetric top. The energy levels of each type are given below.
Here we assume a rigid rotor (i.e., no coupling between the rotational and
vibrational motions) and no angular momentum for bound electrons. More
general cases are described, for example, in a textbook of Herzberg [67].
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(a) Linear rotor
In this case, the molecule has only one moment of inertia, IB. The energy
level is given by

Erot(J) = BJ(J + 1), (4.1)

where B is the rotational constant and J is the rotational quantum number
of the molecule. We have a relation

B =
1

2IB
. (4.2)

(b) Symmetric top
Here two of the moments of inertia have the same value (IB). The third
one is denoted by IA. Then the rotational constants are defined by

A =
1

2IA
, B =

1
2IB

. (4.3)

The rotational energy is given in the form

Erot(J,K) = BJ(J + 1) + (A − B)K2, (4.4)

where K is the quantum number of the angular momentum component
along the symmetry (top) axis of the molecule. For a given J , the quantum
number K takes a value in the range (−J,−J +1, . . . , J − 1, J). If K �= 0,
the states with K and −K are degenerate.

(c) Spherical top
This is a symmetric top, but with A = B. The energy is specified only by
the quantum number J as

Erot(J) = BJ(J + 1). (4.5)

All the states with same J but different K are degenerate.
(d) Asymmetric top

The energy level is labeled by a quantum number J and a pseudoquan-
tum number τ . The pseudoquantum number takes a value in the range
(−J,−J + 1, . . . , J − 1, J). The structure of the energy levels is a compli-
cated function of the three moments of inertia (IA, IB, IC). As an example,
the rotational energy of H2O is tabulated in Table 4.1 (from the review by
Itikawa and Mason [81]). Due to the molecular symmetry, the rotational
energy levels of H2O are separated into two groups: one with even values
of τ (called para levels) and the other with odd values of τ (called ortho
levels). Transitions between the two groups can occur neither by pho-
toabsorption nor by electron impact. Table 4.1 gives all the levels with
J = 0–3. They cannot be expressed with any simple function of J and τ .
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Table 4.1. Rotational energy levels of H2O

Para Ortho

Jτ Energy Jτ Energy

(meV) (meV)

00 0.0 1−1 2.950

10 4.604 11 5.253

2−2 8.690 2−1 9.856

20 11.800 21 16.726

22 16.882 3−3 16.956

3−2 17.640 3−1 21.495

30 25.578 31 26.304

32 35.363 33 35.387

When the molecular gas is in thermal equilibrium with temperature Tgas,
the rotational states satisfy the Maxwell–Boltzmann distribution. In the case
of linear rotor, for example, the fraction of a state with J is given by

fJ = FrotgJ exp
(
− E(J)

kBTgas

)
, (4.6)

where kB is the Boltzmann constant,

E(J) = BJ(J + 1), (4.7)

and Frot is a normalization constant to give∑
J

fJ = 1. (4.8)

In (4.6), gJ is the statistical weight of the state J . For a nonsymmetric linear
molecule (e.g., a heteronuclear diatomic molecule), we have

gJ = 2J + 1. (4.9)

As an example, we show in Fig. 4.1 the distribution of rotational states of HCl
at 300 K. The most probable state is J = 3. At 300 K, only 5% of HCl are
populated in the ground rotational state.

In the case of homonuclear diatomic molecules, we have to take into
account the symmetry property of the wave function. An interchange of nuclei
does not change the wave equation of the molecule. The rotational wave func-
tion, therefore, is either symmetric or antisymmetric with the interchange of
nuclei. Accordingly the rotational states are separated into two sets. Transi-
tions between the states belonging to the different sets are forbidden. This rule



42 4 Molecule as a Collision Partner

0.20

0.15

0.10

0.05

0.00

fr
ac

tio
n

151050

J

HCl  at 300 K

fraction of state J

Fig. 4.1. Fraction of the rotational states of HCl at 300 K

is applied to the transition induced by electron collisions, as well as photoab-
sorption. Consider the case of N2. The rotational states are separated into
the group with even J (called “ortho” states) and that with odd J (called
“para” states). Any electron impact cannot change an even-J state into an
odd-J state or vice versa. Furthermore, we have to consider nuclear spins,
which affect the nuclear symmetry. The statistical weight is now given by [66]

gJ = 2 (2J + 1) for J = even
= 2J + 1 for J = odd. (4.10)

Figure 4.2 shows the fraction of the rotational states of N2 at 300 K. In this
case the state with J = 6 has the largest population.

The vibrational energy of a diatomic molecule is written by

Evib(v) = hcG(v). (4.11)

Here v is the vibrational quantum number and G is the corresponding term
value, which is given by, to the first order of anharmonicity,

G(v) = ωe

(
v +

1
2

)
− ωexe

(
v +

1
2

)2

. (4.12)

We call ωe and ωexe the vibrational frequency and the anharmonicity constant,
respectively. The transition energy from the state v to v + 1 is given by

ΔE(v → v + 1) = hc ΔGv+1/2, (4.13)
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with

ΔGv+1/2 = G(v + 1) − G(v)
= ωe − 2ωexe(v + 1). (4.14)

It is noted that, once the anharmonicity is taken into account, the level sepa-
ration decreases with increasing v. The energy of the lowest vibrational tran-
sition is

ΔE(v = 0 → 1) = hc(ωe − 2ωexe). (4.15)

We show in Appendix B ΔE(v = 0 → 1) for some molecules.
A polyatomic molecule has two or more normal modes of vibration. The

number of modes is given by

mvib = 3Nnuc − 6 (or 5 for a linear molecule), (4.16)

where Nnuc is the number of nuclei in the molecule. It should be noted that
some of the modes are often degenerate and the number of independent modes
is less than the value given by (4.16). If we ignore anharmonicity, each mode
(designated by index s) has an energy

Evib,s = hcωe

(
vs +

1
2

)
. (4.17)

Due to possible couplings among different modes, anharmonicity effects are
very complicated in polyatomic molecules. There have been extensive stud-
ies of the vibrational motion of polyatomic molecules (see [67]). The result
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depends sensitively on the structure (nuclear configuration) of the molecule.
It is impossible to make any general statement here. We only show in
Appendix B the energy of the lowest (i.e., fundamental) transition of each
vibrational mode, ΔE(vs = 0 → 1), of several polyatomic molecules. They
have been determined from the infrared or the Raman spectroscopy.

As in the case of rotation, the distribution of vibrational states in thermal
equilibrium is determined by the Maxwell–Boltzmann formula. Particularly
the ratio of the number of molecules in the first to that in the ground vibra-
tional state is given by

n(v = 1)
n(v = 0)

= exp
(
−ΔE(v = 0 → 1)

kBTgas

)
. (4.18)

Table 4.2 gives the ratio for some molecules. At room temperature most of
the molecules are populated in the vibrationally ground state. But, even at
room temperature, some polyatomic molecules (e.g., CF4 in the table) have a
relatively large population of vibrationally excited states.

The electronic energy levels of a molecule depend on the nuclear config-
uration of the molecule. In the case of a diatomic molecule, the electronic
energy levels can be drawn as curves in the graph of the electronic energy Ee

against the internuclear distance R (see Fig. 4.3). Since the electronic energy
serves as a potential for the nuclear motion, these curves are called potential
diagrams. For the state to be stable, the potential curve must have a min-
imum as a function of R. The states 1 and 2 in Fig. 4.3 have their minima
at R = R̄1 and R = R̄2, respectively. The quantities R̄1 and R̄2 are called
the equilibrium internuclear distances. Usually the molecule is located at its
equilibrium position. In most cases, R̄2 does not coincide with R̄1. When an

Table 4.2. Population ratio of the first (v = 1) to the ground (v = 0) vibrational
states

Molecule Mode of vibrationa n(v = 1)/n(v = 0)

Tgas =300 K Tgas =1,000 K

H2 2.15 × 10−9 2.51 × 10−3

N2 1.40 × 10−5 3.50 × 10−2

CO2 ν1 1.69 × 10−3 0.147

ν2 4.03 × 10−2 0.382

ν3 1.29 × 10−5 3.42 × 10−2

CF4 ν1 1.26 × 10−2 0.269

ν2 0.124 0.534

ν3 2.13 × 10−3 0.158

ν4 4.89 × 10−2 0.404
aFor modes and energies of vibrational states, see Appendix B.
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Fig. 4.3. Electronic energy levels of a diatomic molecule, reproduced from [100]

electric dipole transition is allowed between state 2 and state 1, state 2 is
unstable against the radiative decay (i.e., having a short lifetime). Otherwise
state 2 is designated to be metastable. State 3 in Fig. 4.3 is repulsive. Once the
molecule is excited to state 3, it promptly dissociates into two atoms. Each
attractive electronic state accompanies a series of rotational and vibrational
energy levels. Strictly speaking a transition between state 2 and state 1 takes
place between one rotational–vibrational level of state 1 and one rotational–
vibrational level of state 2. In other words, any transition of electronic states
accompanies transitions of rotational–vibrational states. In the figure, ΔE1 is
the dissociation energy of the molecule. Above this energy (i.e., the horizontal
dashed line in Fig. 4.3), the vibrational levels belonging to state 1 become con-
tinuum. The dissociation of the molecule can also occur through the transition
to this continuum.

4.2 Interaction of Charged Particles with Molecules

The main part of the interaction between an incident charged particle (electron
or ion) and a molecule consists of electrostatic (Coulomb) interactions between
the incident particle and the electrons and nuclei in the molecule. Other parts
of the interaction, particularly for electron–molecule collisions, are described
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in Sect. 4.3. For simplicity, we consider a diatomic molecule as a target. Then
the electrostatic interaction is expressed in the form

V (r;R) = qe

∫
ds ρ(s;R)

1
|r − s| . (4.19)

Here r and qe denote, respectively, the position and the charge of the incident
particle (e.g., q = −1 for an electron). The quantities s and ρ(s) represent
a position in the target and the charge density at the position, respectively.
The origin of the coordinates r and s is located at the gravity center of the
molecule. The internuclear vector is denoted by R. The molecular charge den-
sity and, hence, the interaction potential depend on the nuclear configuration
of the target molecule (i.e., R in this case). The molecular charge density is
written as

ρ(s;R) = −e ρe(s;R) +
∑

n

Zneδ(s − Rn), (4.20)

where ρe(s;R) is the density of molecular electrons, and Zne and Rn are the
charge and the position of the nth nucleus in the molecule. Now we introduce
a relation

1
|r − s| =

∑
λ,μ

rλ
<

rλ+1
>

4π

2λ + 1
Yλμ

∗(r̂)Yλμ(ŝ), (4.21)

where Y is the spherical harmonic function and r< (r>) is the smaller (larger)
of (r, s). The quantity r̂ represents the angular part of r (or, equivalently, the
unit vector in the direction of r). The ŝ has the same meaning. When we
take the z-direction along the molecular axis, the molecular charge density is
symmetric around the z-axis. Hence only the term with μ = 0 appears in the
summation and we have

V (r;R) = qe

∫
ds ρ(s;R)

∑
λ

rλ
<

rλ+1
>

Pλ(cos r̂ · R̂)Pλ(cos ŝ · R̂), (4.22)

where r̂ · R̂ and ŝ · R̂ indicate the angles of the vectors, r and s, with respect
to the molecular axis. Equation (4.22) can be written as

V (r;R) =
∑

λ

vλ(r;R)Pλ(cos r̂ · R̂), (4.23)

with

vλ(r;R) = qe

∫
ds ρ(s;R)

rλ
<

rλ+1
>

Pλ(cos ŝ · R̂). (4.24)

When the incident particle is located far from the molecule (i.e., r 	 s), we
have

V ≈ V L =
∑

λ

vL
λ(r;R)Pλ(cos r̂ · R̂), (4.25)
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with

vL
λ(r;R) = qe

∫
ds

sλ

rλ+1
ρ(s;R)Pλ(cos ŝ · R̂). (4.26)

We call V L the long-range part of the interaction or simply the long-range
interaction. Here we introduce a quantity Mλ, which is defined by

Mλ(R) =
∫

ds sλρ(s;R)Pλ(cos ŝ · R̂). (4.27)

With use of this, (4.26) is rewritten in the form

vL
λ(r;R) =

qeMλ(R)
rλ+1

. (4.28)

The quantity Mλ is the permanent electric multipole moment, i.e., M1, M2, . . .
are the dipole, quadrupole, . . . moments of the molecule. The interaction (4.28)
decays with a power law of the distance. This is in contrast to the electron–
atom interaction, which decays exponentially with the distance.

Summarizing the formulation presented so far, we have the following
conclusions.

First, for electron–molecule collisions:

1. The interaction potential (see (4.23)) has a term with λ �= 0. This term
causes rotational transition.

2. The interaction potential V , or more precisely vλ, depends on the nuclear
configuration (in the present case, the internuclear distance R). When
nuclear configuration changes, the charge distribution in the molecule
changes. Through this change of the charge distribution, the interaction
potential changes. In a reverse manner, a change in the interaction poten-
tial induces a change of nuclear configuration. This is the mechanism of
vibrational excitation of molecules.

3. An electron interaction with electric multipole moments of the molecule
gives rise to a long-ranged interaction. This interaction is particularly
important at low energies of incident electron, because most of the low-
energy electrons cannot come close to the target.

For ion–molecule collisions, the situation is much more complicated. The
projectile ion has its own electrons and nuclei. The electrostatic interaction
between the ion and the molecule consists of the Coulomb interactions between
the electrons and nuclei of the ion and the electrons and nuclei of the target
molecule. The term (4.19) is only a part of it. The above conclusions about
electron–molecule collisions also hold for ion–molecule ones. But they are not
the dominant features of ion–molecule collisions. For ion–molecule collisions,
a more general treatment as atom–molecule or molecule–molecule interactions
is necessary (see, e.g., [117]).
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4.3 Electron Collision with a Diatomic Molecule

An outline of the treatment of electron–molecule collisions is presented here for
a diatomic molecule as a target. Special features of polyatomic molecules are
summarized in Sect. 4.4. Details of the theory for electron–molecule collisions
(including polyatomic molecules) can be found, for example, in a review by
Gianturco et al. [54].

The Hamiltonian for the collision system is given by (see (3.60))

H = − h̄2

2me
∇2

r + Hmol + V. (4.29)

The first term on the right-hand side of (4.29) is the kinetic energy operator
of the relative motion of the electron and the target molecule. In the present
case, the reduced mass of the collision system can be taken as the electron
mass. The position of the electron relative to the target is denoted by r. The
second term, Hmol, is the Hamiltonian of the target molecule, including its
nuclear motion. As the interaction between the electron and the molecule,
we assume here the electrostatic interaction introduced in Sect. 4.2. Other
parts of the interaction are mentioned at the end of the present section. The
total wave function of the system is expanded in terms of the molecular wave
function (i.e., the eigenfunction of the molecular Hamiltonian) in the form

Ψ(r, rm, R) =
∑

F (n, v, JM |r)ψn(rm)χv(R)YJM (R̂). (4.30)

The nuclear coordinates of a diatomic molecule are denoted by the internuclear
vector R. Its angular part is represented by R̂. The coordinates of molecular
electrons are collectively given by rm. The wave functions for the electronic
and vibrational motions of the molecule are denoted by ψ and χ, respectively.
The rotational motion is expressed by the spherical harmonic function, Y .
The function F in (4.30) describes the motion of the incident electron relative
to the molecule. The summation on the right-hand side of (4.30) is taken over
all the quantum numbers.

Inserting (4.30) into (4.29) and using the orthonormality of the molecular
wave functions, we have a set of coupled equations for F

(∇2
r + k2

nvJ

)
F (n, v, JM |r)

=
2me

h̄2

∑
n′,v′,J ′M ′

〈n, v, JM |V |n′, v′, J ′M ′〉F (n′, v′, J ′M ′|r). (4.31)

The wave number of electron on the left-hand side is defined by

k2
nvJ =

2me

h̄2 (E − EnvJ ) , (4.32)
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where EnvJ is the energy of the molecule in the state specified by the quantum
number (nvJ). The quantity on the right-hand side of (4.31) is the interaction
matrix defined by

〈n, v, JM |V |n′, v′, J ′M ′〉
=

∫
drm

∫
dR

∫
dR̂ {ψn χv YJM}∗ V {ψn′ χv′ YJ ′M ′}. (4.33)

To obtain the cross-section for the transition ν0 → ν (ν being the collective
expression of (n, v, JM)), we set an asymptotic condition

Ψ
r→∞−→ eikν0 ·r {ψn0 χv0 YJ0M0} +

∑
ν′

fν0→ν′(kν′)
eikν′r

r
{ψn′ χv′ YJ ′M ′}.

(4.34)

Correspondingly the asymptotic form of the solution of (4.31) is set to be

F (ν′) r→∞−→ eikν0 ·r δν0ν′ + fν0→ν′(kν′)
eikν′r

r
. (4.35)

Solving the set of (4.31) to have a solution with the asymptotic form (4.35),
we calculate the differential cross-section for the transition in the form

qν0→ν =
kν

kν0

|fν0→ν(kν)|2. (4.36)

It is noted that kν is the electron wave vector after the collision and specifies
the scattering angle. Usually target molecules are randomly oriented in the
space. Correspondingly to that, an average of the cross-section, (4.36), is taken
over the azimuthal components of the rotational angular momentum.

For further discussions, we derive here a formal solution of (4.31). When
expressing (4.31) in the form

(∇2
r + k2

ν

)
F (ν|r) =

2me

h̄2

∑
ν′

〈ν |V |ν′〉F (ν′|r), (4.37)

we can derive a formal solution with an asymptotic form of outward spherical
wave, exp(ikν′r)/r, as (see, e.g., [117])

F (ν′|r) = − me

2πh̄2

∫
dr′

∫
drm

∫
dR

exp(ikν′ |r − r′|)
|r − r′|

×{ψn′ χv′ YJ ′M ′}∗ V Ψ(r′, rm,R). (4.38)

Here the function Ψ on the right-hand side of (4.38) is meant to have the
correct asymptotic form (4.34). From the asymptotic form of this solution, we
obtain the scattering amplitude for the transition ν0 → ν

f(kν) = − me

2πh̄2

∫
dr

∫
drm

∫
dR exp(−ikν · r)

×{ψn χv YJM}∗ V Ψ(r, rm,R). (4.39)
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Since this expression includes an unknown function Ψ in the integral, this
does not directly give the cross-section we want. However, this can be used to
provide an approximate value of the cross-section, if an approximate solution
is inserted into the Ψ in the integral.

The interaction matrix (4.33) includes an integral over the molecular
orientation ∫

dR̂ YJM (R̂)∗ V YJ ′M ′(R̂). (4.40)

As is shown in (4.23), the interaction potential includes the function Pλ(cos r̂ ·
R̂). Through this, the potential V depends on the molecular orientation R̂.
The above integral indicates that the transition among the rotational states
are induced by this part of the interaction.

For the vibrational excitation, we have the interaction matrix∫
dR χv(R)∗ V χv′(R). (4.41)

Equation (4.23) indicates that the potential depends also on the internuclear
distance R through the function vλ(r;R). The above integral shows that this
R-dependence of V causes the transition among the vibrational states of the
molecule.

Since the electron mass is much smaller than the nuclear mass, the collision
duration (i.e., the time spent by the incident electron during the interaction
with the target) is smaller than the time scale of nuclear motion, unless the
electron speed is extremely low. In the first-order approximation, therefore,
the nuclei can be assumed to be fixed in space during the collision. This is the
principle of “adiabatic approximation of nuclear motion”. Now we consider
the adiabatic approximation of the rotational–vibrational transition. First,
in the fixed-nuclei approximation, we have the wave function of the collision
system in the form

ΨFN = FFN(r |R)χv(R)YJM (R̂). (4.42)

Here FFN represents the wave function for the incident electron elastically
scattered from the molecule fixed in space (with the internuclear vector R).
We insert ΨFN into the general expression of scattering amplitude (4.39).
Then we have the scattering amplitude for the relevant rotational–vibrational
transition in the form

fAN(v, JM → v′, J ′M ′) =
∫

dR {χv′ YJ′M ′}∗ fFN(k → k′|R) {χv YJM}.
(4.43)

The quantity fFN is the amplitude of the electron scattered elastically from
the molecule fixed in space and derived from the asymptotic form of the
function FFN(r |R). With the formula (4.43), we can obtain cross-sections for
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any inelastic processes of rotational and vibrational transition of a molecule.
Only we need is the calculation of elastic scattering. The elastic-scattering
calculation is carried out for the molecule fixed in space. But, to evaluate the
integral in (4.43), we have to repeat the elastic-scattering calculation with
varying the molecular orientation R̂ and the internuclear distance R.

It should be noted here that the adiabatic approximation can be used
only when the electron energy is much above the respective threshold of
the rotational–vibrational transition. When the collision energy is not high
compared with the vibrational energy but still much exceeds the rotational
energy, the adiabatic approximation is applied only to the calculation of rota-
tional transitions. In this case, the method is called the adiabatic-nuclear
rotation (ANR) approximation. Since the rotational energy of a molecule is
very small (i.e., of the order of meV), this approximation is widely used and
found successful.

The threshold energy of the excitation of electronic states is relatively high.
For the excitation of electronic states, electrons must be fast and the nuclear
motion in the molecule can be assumed to be fixed during the collision. Anal-
ogously to the adiabatic approximation for the rotational–vibrational transi-
tion, we can obtain the amplitude for the excitation of electronic states in the
form

fAN(n, v, JM → n′, v′, J ′M ′)

=
∫

dR {χn′
v′ YJ ′M ′}∗ fFN(n → n′|R) {χn

v YJM}. (4.44)

It should be noted that the vibrational function χv depends on the electronic
state. The quantity fFN(n → n′ |R) is the scattering amplitude for the exci-
tation n → n′ of the molecule fixed in space. If we evaluate the scattering
amplitude fFN(n → n′ |R) at the equilibrium internuclear distance R = R̄
for all the transitions n → n′ (i.e., ignoring the R-dependence of fFN), we
have the excitation cross-section in the form

q(n, v → n′, v′) = Fnn′
vv′ qFN(n → n′), (4.45)

where

qFN(n → n′) =
kn′

kn

∣∣fFN(n → n′ | R̄)
∣∣2 (4.46)

and

Fnn′
vv′ =

∣∣∣∣
∫

dR χn′
v′ (R)∗ χn

v (R)
∣∣∣∣
2

. (4.47)

Here rotational transitions have been ignored. The quantity (4.47) is called the
Franck–Condon factor and the relation (4.45) is named the Franck–Condon
factor approximation.
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Finally we summarize the interaction between an electron and a diatomic
molecule. Generally we consider three different types of interaction:

1. Electrostatic interaction
This is the Coulomb interaction between the incoming electron and the
molecular electrons and nuclei. It is given by (4.19) and fully discussed
in Sect. 4.2. Particularly important is its long-range part (see (4.25) and
(4.28))

V L =
∑

λ

−eMλ

rλ+1
Pλ(cos r̂ · R̂). (4.48)

This is the interaction between the incident electron and the electric mul-
tipoles of the molecule. This does not exist in the case of electron–atom
collisions.

2. Electron-exchange effect
In the quantum theory, we cannot distinguish the incoming electron
from the bound electrons in the target molecule. To properly take into
account this, we should antisymmetrize the right-hand side of (4.30) with
respect to all the electronic coordinates. This leads to a set of coupled
integrodifferential equations, instead of coupled differential ones (4.31).
It is possible to solve the resulting equations, but the calculation is very
time-consuming. There are several approaches to approximately take into
account the exchange effect. The simplest way is to introduce a model
(local) potential. A number of models have been proposed (see, for exam-
ple, [54]). The exchange effect is important only when the electron comes
close to the target.

3. Polarization interaction
When an electron approaches the target molecule, the molecule gets
polarized. The polarized molecule in turn exerts an attractive force to the
incoming electron. This gives rise to the polarization interaction. If we
include all the target states in the sum on the right-hand side of (4.30),
this interaction is automatically taken considered. In fact the polarization
interaction is caused as a virtual excitation of the energetically inacces-
sible states of the target. Since, in practice, it is impossible to consider
all the inaccessible states, several approximate methods have been pro-
posed to take into account the polarization interaction effectively (see, for
example, [54]). The simplest way is the model of the adiabatic polarization
potential. If we fix the incident electron at a distance r from the target, we
can easily calculate the target polarization. Then an interaction is eval-
uated between the electron and the polarized molecule. This interaction
depends on r. When r → ∞, the potential of the polarization interaction
has an asymptotic form such as

V pol → − e2α

2r4
− e2α′

2r4
P2(cos r̂ · R̂). (4.49)
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In the case of molecule, the target polarizability depends on the direc-
tion relative to the molecular axis. A diatomic molecule has two different
components of the polarizability: the polarizability in the direction parallel
to the molecular axis (α‖) and that perpendicular to the axis (α⊥). Those
in (4.49) are the isotropic and anisotropic parts of the polarizability defined,
respectively, by

α =
1
3

(α‖ + 2α⊥) (4.50)

and
α′ =

2
3

(α‖ − α⊥). (4.51)

An effective model potential of the polarization interaction is taken as the
asymptotic form (4.49) with a cut-off at a certain distance near the origin.
This and other approximate methods are summarized in a compact form in a
paper by Feng et al. [41].

4.4 Remarks on the Collision with Polyatomic Molecules

Polyatomic molecules are different from diatomic ones in the following aspects:

(A) Rotational states
Except for linear molecules, rotational motion of polyatomic molecules is
represented by either a symmetric or an asymmetric top. Although the
structure of the energy levels is complicated, the rotational wave function
is well known. Essentially those wave functions are expressed by a lin-
ear combination of spherical harmonic functions. The interaction matrix
includes the term like (4.40). The electron impact excitation of rotational
states of polyatomic molecules, therefore, involves no new physics com-
pared with that of diatomic molecules.

(B) Vibrational states
Polyatomic molecules have multiple normal modes of vibration. Once nor-
mal coordinates are introduced for nuclear motion, vibrational wave func-
tion is expressed as a harmonic function defined separately for individual
modes. If we consider each normal mode independently, the treatment of
the vibrational excitation of polyatomic molecules is almost similar to the
case of diatomic one. Real vibrational motion has a deviation from the
harmonic motion. Because of this anharmonicity, different normal modes
can couple with each other. This mode coupling may give rise to a new
phenomenon, which does not exist in the case of diatomic molecule.

(C) Electronic states
The nuclear configuration of polyatomic molecules is complicated. Even
in the simplest case of a triatomic molecule, three independent variables
are needed to specify its nuclear configuration. Furthermore, the equi-
librium nuclear configuration of electronically excited states may be dif-
ferent from that of the ground state. In other words, the symmetry of
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the molecule may be different for each electronic state. In principle, the
Franck–Condon factor approximation can also be applied to the transi-
tion of electronic states of polyatomic molecules. But, in reality, it is very
difficult to calculate the relevant Franck–Condon factors for polyatomic
molecules.

4.5 The Born Approximation

One of the simplest ways to solve the wave equations (4.31) (or (4.37)) is
the Born approximation. Assume that the right-hand side of (4.31) is very
small. Then we can apply the perturbation theory to solve the equations. This
method is called the Born approximation. It does not always provide an accu-
rate value of the cross-section. (Its validity is discussed later in this section.)
But the method is useful in the following points. First the Born cross-section
is very easy to calculate. Once the interaction potential is given analytically, it
is only needed to evaluate integrals. It is not needed to solve differential equa-
tions. When neither experimental nor theoretical cross-sections are available,
the Born approximation is sometimes used to estimate the magnitude of the
relevant cross-section. The simplicity of the calculation means the easiness of
the understanding of the physics involved. The Born cross-section is directly
proportional to the interaction potential squared. Hence it is easy to relate
the result to the cause.

Now a general formula in the Born approximation is derived for an elec-
tron scattering from a diatomic molecule. (Polyatomic molecules can be simi-
larly treated. See Chap. 5.) Furthermore only the transitions among rotational
and vibrational states of the molecule are considered. It is straightforward to
extend the method to the excitation of electronic states. For simplicity of pre-
sentation, the system of atomic units (a.u.) is used in the present section. The
definition of the units is given in Appendix C.

When we ignore the right-hand side of (4.37), we have a zeroth-order
solution in the form

F (0)(ν) = δν0 exp(ikν · r), (4.52)

where ν = 0 means the initial channel. Insert this into the general form
of the scattering amplitude (4.39) and the first-order solution in the Born
approximation is obtained as

fBorn
0→ν = − 1

2π

∫
dr exp(iK0ν · r) 〈ν|V |0〉, (4.53)

where K0ν = k0 − kν and

〈ν|V |0〉 =
∫

dR {χv YJM}∗ V {χv0 YJ0M0}. (4.54)
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From (4.53), we obtain the differential cross-section as

qBorn(0 → ν) =
1

4π2

kν

k0

∣∣∣∣
∫

dr exp(iK0ν · r) 〈ν|V |0〉
∣∣∣∣
2

. (4.55)

In Chap. 5, we apply this formula to the long-range interaction, i.e., we
take the form (see (4.25) and (4.28))

V = V L = −
∑

λ

Mλ(R)
rλ+1

Pλ(cos r̂ · R̂). (4.56)

Here Mλ is the electric multipole moment of the target molecule. The matrix
element of the interaction potential can be evaluated from

〈ν|V |0〉 =
∑

λ

−1
rλ+1

〈v|Mλ|v0〉 〈JM |Pλ|J0M0〉, (4.57)

with
〈v|Mλ|v0〉 =

∫
dR χ∗

v Mλ(R)χv0 , (4.58)

and
〈JM |Pλ|J0M0〉 =

∫
dR̂ Y ∗

JM Pλ(cos r̂ · R̂)YJ0M0 . (4.59)

Detailed formulas for the rotational and vibrational transitions are given in
the respective sections (i.e., the rotational cross-section in Sect. 5.4 and the
vibrational one in Sect. 5.5).

Finally we summarize the validity of the Born method. In principle the
Born approximation can be employed whenever the right-hand side of (4.31)
is very small compared with other terms on the left-hand side of the equation.
This condition is satisfied in the following cases:

(1) A high-energy collision
When the collision energy (i.e., k2 on the left-hand side of (4.31)) is very
large compared with the interaction potential, the Born method gives a
good result. Although depending on the process, the Born approximation
can give a reliable result at the collision energy of 1,000 eV or higher.

(2) A distant collision
When the colliding electron is located far from the target, the interaction
is weak so that the perturbation theory can be used. In other words,
the Born approximation can be applied to the collision process where the
long-range interaction dominates. As is shown in Sect. 4.2, an electrostatic
long-range interaction (through the electric multipoles) exists between an
electron and a molecule. It dominates in the low-energy collision. (When
the incoming electron is very slow, it is difficult to come close to the
target.) The Born method, therefore, is expected to give a good result in
such a low-energy electron–molecule collision.
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Electron Collisions with Molecules

5.1 Collision Processes

When an electron collides with a molecule, the following processes take place.
Here, for simplicity of illustration, the target molecule is assumed to be
diatomic. The attached symbols (Qelas, etc.) are used to represent the relevant
cross-sections in this chapter:

(1) Elastic scattering (Qelas)

e + AB → e + AB.

(2) Rotational transition (Qrot)

e + AB(J) → e + AB(J ′),

where J (J ′) is the rotational quantum number of the initial (final) state
of the molecule.

(3) Vibrational transition (Qvib)

e + AB(v) → e + AB(v′),

where v (v′) is the vibrational quantum number of the initial (final) state
of the molecule.

(4) Excitation of electronic state (Qexc)

e + AB → e + AB∗.

(5) Dissociation (Qdis)
e + AB → e + A + B(∗).

(6) Ionization (Qion)
e + AB → 2e + AB+(∗)

or
e + AB → 2e + A + B+(∗).
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(7) Electron attachment (Qatt)

e + AB → A + B−

or
e + AB + M → AB− + M.

Here we denote a molecule (or an atom) in its electronically excited state by
AB* (or B*). The asterisk in brackets (*) means that the particle is either in
its ground or in its excited state.

When an electron collides with a polyatomic molecule, a similar, but more
complicated, process occurs. For instance, a dissociation of a triatomic mole-
cule ABC can be in the form

e + ABC → e + A + BC
e + AB + C
e + AC + B
e + A + B + C.

Each product of the dissociation may be in its excited state.
In the present chapter, the above seven processes are described separately

in each section. Furthermore, four sections are added for the following related
subjects.

(8) Momentum–transfer cross-section (Qm)
This quantity gives the degree of momentum–transfer during the colli-
sion. It plays a fundamental role in determining electron transport in
plasmas.

(9) Emission cross-section (Qemis)
In some collision processes, the final product (molecule, atom, or ion)
emits radiation immediately after the collision. This emission can be
easily detected. The cross-section for the emission of particular radiation
is called an emission cross-section. This cross-section is not necessar-
ily the same as the cross-section for the excitation of a specific state
(i.e., the process (4)). There may be a cascade contribution to the emis-
sion. The relation between Qemis and Qexc is given in the relevant section
(Sect. 5.9).

(10) Total scattering cross-section (Qtot)
This is defined as a sum of all the cross-sections for the individual
processes (1)–(7). This cross-section can be measured independently from
any individual processes.

(11) Stopping cross-section (S)
This indicates the amount of energy transfer during the collision. Or
more precisely it shows how much the incoming electron loses its energy.

Most of the experimental studies have been made at room temperature
and concerned with the target molecules in the ground state. In the following
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sections, therefore, we implicitly assume the target molecules in the ground
state, unless otherwise stated. In a real plasma, excited molecules may be
present and the information is needed for the electron collisions with those
excited molecules. Section 5.13 is devoted to the information.

In the following sections, typical examples of the cross-sections are graphi-
cally shown for a number of simple molecules. There are many papers report-
ing cross-sections for electron collisions with molecules. It is not easy to select
one for presentation. As far as possible, the cross-sections are selected from
those recommended or suggested in the reviews or data compilations published
recently. A list of the data reviews and compilations is given in Appendix E.
It should be noted, however, that the data shown here are not necessarily
regarded as the best values available at present. Because of constant devel-
opment of experimental techniques and theoretical methods, the quality of
the cross-sections is continuously improved. When one wants to have the best
value of some cross-section, a resurvey of the original, particularly more recent,
literature should be strongly recommended.

5.2 Elastic Scattering

In the elastic scattering, the internal state of the molecule does not change
during the collision. In other words, the kinetic energy of the relative motion
is conserved. In the laboratory frame, the kinetic energy of each partner of
the collision system can be changed even in elastic collisions. Consider the
laboratory frame where the target molecule is fixed in space before collision.
According to the theory in Sect. 3.4, the change in the kinetic energy of elec-
tron ΔEe is given by (see (3.69))

ΔEe = Ee − E′
e = E′

mol + W, (5.1)

where Ee (E′
e) is the energy of the electron before (after) the collision, E′

mol

is the energy of the target molecule after the collision (i.e., the recoil energy),
and W is the gain of the internal energy of the molecule. In the elastic collision,
W = 0, but, due to the recoil of the target, ΔEe is not equal to zero. With
use of the fact of small mass ratio of the electron and the molecule, we have
(see (3.76))

(ΔE)elas = 2
me

M
Ee (1 − cos θ ). (5.2)

Here me and M are the masses of electron and the molecule, respectively, and
θ is the scattering angle. It should be noted that, in the electron–molecule
collision, the scattering angle in the laboratory frame is the same as that in
the CM frame. Equation (5.2) has been derived to the first order of the mass
ratio me/M . For most of molecules, the ratio has a value of the order of 10−4.
Because of a finite energy resolution, the energy loss (ΔE)elas is regarded to
be zero in any measurement of electron energy loss spectra (EELS).
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The transition energy of rotational state of a molecule (ΔE)rot is nor-
mally of the order of meV or less (see Appendix B). It is much smaller than
the experimental energy resolution, so that it is difficult to discriminate the
rotational transition from the elastic scattering in the electron energy loss
measurement. Thus the elastic cross-section determined with an EELS mea-
surement includes the cross-section for rotational transitions. The measured
value of the elastic cross-section is therefore expressed as

Qexp
elas =

∑
J

Qrot(J0 → J), (5.3)

where the initial and final rotational states of the molecule are denoted by J0

and J , respectively. As shown in Sect. 4.1, molecules are populated over a wide
range of rotational states. The distribution of rotational states is specified by
the gas temperature Tgas. When we consider this, the experimental value of
the elastic cross-section should be regarded as

Qexp
elas =

∑
J0

FJ0(Tgas)
∑

J

Qrot(J0 → J), (5.4)

where FJ0 is the fraction of the molecule in the rotational state J0. We often
call this cross-section a “vibrationally” elastic cross-section. In the present
section, Qelas means Qexp

elas, unless otherwise noted. In the same manner, the
pure elastic cross-section is given by

〈Qelas〉 =
∑
J0

FJ0(Tgas)Qrot(J0 → J0). (5.5)

Here the angle brackets indicate the average over the rotational states. This
is sometime called “rotationally” elastic cross-section. Examples of this are
presented in Sect. 5.4.

Figure 5.1 shows examples of elastic (or more precisely, vibrationally
elastic) cross-sections for typical diatomic molecules (H2, N2, O2, CO, and
NO). Examples for polyatomic molecules (CO2, CH4, and H2O) are shown in
Fig. 5.2. All of them but those for H2O are the cross-sections recommended
by Buckman et al. [19] in their data compilation. For H2O, improved val-
ues are taken from the review by Itikawa and Mason [81]. Here the figures
show the cross-sections at the energies above 1 eV. All the recommended val-
ues have been determined on the basis of the data obtained with beam-type
experiments (i.e., the EELS measurement).

Many of the Qelas shown in the figures have a clear peak. Cross-sections for
N2 and CO have a large peak at around 2–3 eV. Cross-section for CH4 has a
peak at 8 eV and CO2 has a small one at 3 eV. Cross-section for H2 shows a
broad peak at 3 eV. All of these peaks are attributed to a shape resonance.
A molecule forms an electrostatic potential for an incoming electron. In some
cases, the potential may have a bound state with positive binding energy.
In other words, an electron having a specific energy (i.e., the energy matching
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Fig. 5.1. Elastic scattering cross-sections for H2, N2, O2, CO, and NO. For N2, the
fine structure in the resonance peak is smoothed out
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Fig. 5.2. Elastic scattering cross-sections for H2O, CO2, and CH4

to the binding energy) can be captured by the molecule and forms a nega-
tive ion

e + AB → (AB−)∗∗.

Here the right-hand side indicates such a negative ion. This ion is in an unsta-
ble excited state (indicated by the double asterisk) and eventually decays into
an electron and the molecule

(AB−)∗∗ → AB(∗) + e.
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The resulting molecule AB may be either in its ground state (i.e., elastic
scattering) or in excited one. This is called a shape resonance (for details,
see [143]).

In many cases, the shape resonance enhances the respective cross-section
(see Figs. 5.1 and 5.2). Moreover, the cross-sections for N2 have a complicated
structure as a function of electron energy. That structure arises from a subtle
interaction between electronic and nuclear motions. It is discussed in Sect. 5.5
in relation to vibrational excitations. The Qelas for N2 in Fig. 5.1 are those
with the structure smoothed out. As is understood from the above statement,
the shape resonance can appear also in the cross-sections for the excitation
of rotational and vibrational states. Those are discussed in Sects. 5.4 and 5.5,
respectively.

Another peculiar feature is seen in the Qelas for H2O (Fig. 5.2). The cross-
section increases prominently with decreasing energy. This is an effect of rota-
tional transition. Due to its large electric dipole moment, H2O has a large
rotational cross-section (see Sect. 5.4). CO and NO are also polar molecules,
but their dipole moments are small (see Appendix B). They also show an
increase of Qelas with decreasing energy, but only at very low energies of elec-
trons (not shown in the figure). In the electron collisions with CO and NO
at the energy of 1 eV or above, other (shorter-ranged) interactions dominate
over the (long-ranged) electron–dipole interaction.

Since the elastic scattering has no threshold, Qelas has a considerable mag-
nitude even at a very low energy. As the electron energy decreases below 1 eV,
it becomes very difficult to do an EELS measurement. Some special technique
is required to obtain reliable experimental data on Qelas at Ee < 1 eV. Two
of them are the following:

1. Total scattering cross-section
When Ee is below the threshold of vibrational excitation, the total scat-
tering cross-section, Qtot, is given by (see Sect. 5.11)

Qtot = Qelas + Qrot. (5.6)

The right-hand side of (5.6) is equal to the definition of Qexp
elas (i.e., (5.3)).

As is described in Sect. 5.11, Qtot can be measured directly with a beam
attenuation method. The method is rather simple and relatively easy to
extend to lower energy. For example, Ferch et al. [42] measured Qtot for H2

at the energies down to 0.02 eV. Considering the data, Buckman et al. [19]
extended their recommended value of Qelas for H2 to the lower energy
region, as is shown in Fig. 5.3. (In this and the following two figures,
momentum–transfer cross-sections are also shown for a comparison. They
are explained in Sect. 5.3.)

2. Modified effective range theory
In the case of spherical potential, cross-sections are calculated with the
scattering phase shift (see Sect. 3.3). For a short-range potential, the low-
energy limit of the phase shift is well known. The energy dependence of
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the phase shift at low energies is obtained with the use of the effective
range theory (see, for example, [117]). O’Malley et al. [124] extended the
theory to the scattering of a charged particle by a polarizable target.
It is called the modified effective range theory (MERT). According to
the theory, the phase shift at a small electron energy can be analytically
expressed as a function of energy (or more precisely, wave number). For
the s- and p-wave phase shifts, we have

tan η0 = −Ak − π

3a0
αk2 − 4

3a0
αAk3 ln(ka0) + O(k3), (5.7)

tan η1 =
π

15a0
αk2 − A1 k3 + O(k4). (5.8)

Here k is the wave number of the electron, α is the polarizability of the
molecule, and a0 is the Bohr radius. The coefficients A (called a scattering
length) and A1 are numerical constants. The phase shifts of higher partial
waves are calculated by using the perturbation theory.

Mann and Linder [106] measured elastic cross-sections for CF4 at the ener-
gies down to 0.3 eV, by using a crossed-beam EELS experiment. Assuming a
spherical interaction potential, they derived phase shifts from their experi-
ment. They fitted the experimental phase shifts to the formulas (5.7) and
(5.8) to obtain the unknown coefficients in the formulas (i.e., A and A1, and
higher-order terms, if necessary). With the use of the resulting analytical
expression, they extended their phase shifts to the energies below 0.3 eV. Then
they obtained the elastic cross-sections in the lower energy region. As is easily
understood, Mann and Linder ignored rotational transitions in their deriva-
tion of phase shifts. If we consider the symmetry of the molecule, it is not
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Fig. 5.4. Elastic scattering and momentum–transfer cross-sections for CF4

likely to have a significant rotational transition in CF4. Figure 5.4 shows the
Qelas for CF4 recommended by Christophorou et al. [24]. In the energy region
below 0.5 eV, they totally relied on the result of Mann and Linder.

In the electron collisions with heavy rare gas atoms (i.e., Ar, Kr, and Xe),
the elastic cross-section has a minimum at a certain energy below 1 eV. This
is known as the Ramsauer minimum. Retain the first two terms on the right-
hand side of (5.7). If we have a negative scattering length (A) and a not too
small polarizability, the s-wave phase shift can become zero at a finite value
of k. This results in the Ramsauer minimum [125]. The Ramsauer minimum
is also observed in the electron–molecule collisions. Figure 5.5 shows the Qelas

for CH4 recommended by Buckman et al. [19]. This cross-section shows a mini-
mum at around 0.6 eV, which is interpreted as the Ramsauer effect. Buckman
et al. determined their cross-section in the low-energy region mainly from
the total scattering cross-section measured by Ferch et al. [43]. Gianturco
et al. [53] made a detailed theoretical study of the electron scattering from
CH4. They concluded that the polarization interaction is the main reason for
the cross-section minimum. The minimum of Qelas for CF4 (in Fig. 5.4) is also
suggested to be the Ramsauer effect (see [74]).

5.3 Momentum–Transfer

The momentum–transfer cross-section for elastic scattering is defined by

Qm = 2π
∫ π

0

(1 − cos θ) qelas(θ) sin θ dθ, (5.9)
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Fig. 5.5. Elastic scattering (Qelas) and momentum–transfer (Qm) cross-sections for
CH4. The Qelas above 1 eV is the same as in Fig. 5.2

where qelas(θ) is the differential cross-section for the elastic scattering. In the
present section, we consider only the elastic momentum–transfer cross-section.
The momentum–transfer in inelastic processes is discussed at the end of this
section.

In a plasma, electron transport is primarily governed by Qm. Consider, for
instance, electric conduction. Under the application of electric field, electrons
move along the direction of the field. Upon a collision with a molecule, the
electron starts to move away from the field direction. The deviation of the
electron trajectory from the field direction is determined by the momentum–
transfer during the collision. Thus Qm comes to enter into the formula of
electric conductivity. If Qm is large, the deviation from the field direction
is large and the electron motion less contributes to the conduction of elec-
tricity. In a simple theory (see, for example, [75]), the DC conductivity is
given by

σDC =
Nee

2

meνeff
, (5.10)

with

ν−1
eff =

8
3π1/2N

(
me

2kBTe

)5/2 ∫ ∞

0

v3

Qm(v)
exp

(
− me v2

2kBTe

)
dv, (5.11)

where me, Te, and Ne are the electron mass, temperature, and density, respec-
tively, kB is the Boltzmann constant, and N is the number density of the
gaseous particles. The quantity νeff is an effective frequency of momentum
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–transfer collisions. Another effective collision frequency has been introduced
for AC conductivity, which is expressed in the form [75]

σAC =
Nee

2

me(〈νeff〉 + iω)
, (5.12)

with

〈νeff〉 =
8N

3π1/2

(
me

2kBTe

)5/2 ∫ ∞

0

v5 Qm(v) exp
(
− me v2

2kBTe

)
dv. (5.13)

Here ω is the frequency of the AC field and (5.12) has been obtained for a
high-frequency field (i.e., ω 	 〈νeff〉). More generally, propagation (reflection
and attenuation) of radio wave in a plasma is controlled by Qm (see [163]).
The formulas (5.10)–(5.13) have been derived for a Maxwellian distribution
of electron velocity. (Conventionally the electric conductivity is defined for a
small deviation from the equilibrium.) Other transport properties of a plasma
(e.g., thermal conductivity) also depends on the momentum–transfer cross-
section, but the form of dependence on Qm is different for different properties.
It should be noted that different definitions of the effective collision frequency
of momentum–transfer are used in different literature. Whatever definition
is used, however, we need the detailed knowledge of the momentum–transfer
cross-section.

There are two different ways of experimental determination of Qm: beam
method and swarm experiment. In the beam method, the differential cross-
section for the elastic scattering, qelas, is measured first. Then the differential
cross-section is inserted into (5.9) to obtain Qm. As is described in Sect. 5.2,
the experimental elastic cross-section includes an effect of rotational transi-
tion. Another problem inherent in the beam method is the uncertainty of the
cross-section for the backward scattering (i.e., the scattering at the angles
near 180◦). It is clear from the definition (5.9) that the backward scattering
contributes much to the integral. In a standard beam method, the backward
scattering cannot be measured because of the geometrical constraints of the
apparatus. The measured values of the differential cross-section have to be
extrapolated toward the backward angles. This introduces an uncertainty in
the resulting qelas, which affects much the reliability of the resulting Qm. For
the same reason, the differential cross-section for the forward directions (near
θ = 0◦) also cannot be measured. (At θ = 0◦, the elastically scattered electron
beam cannot be separated from the unscattered incident beam, so that the
measurement of qelas at θ = 0◦ is intrinsically impossible.) From the defini-
tion (5.9), however, the uncertainty in the forward direction has a much less
effect on the determination of Qm.

In principle, a swarm technique is suitable for the experimental determi-
nation of Qm. If no inelastic collision occurs, the Boltzmann equation depends
solely on the quantity Qm. Therefore, we can reliably derive Qm from a swarm
experiment, as far as we can assume less importance of any inelastic processes.
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In the low-energy region (say, < 1 eV), the most significant inelastic process
is the rotational transition. Effects of rotation can be separated out in the
swarm analysis, though approximately. For this reason, the swarm method
has been applied to the determination of Qm for a number of molecules.

Figure 5.6 shows the Qm for several diatomic molecules (N2, O2, and
CO). Examples of Qm for polyatomic molecules (H2O and CO2) are given in
Fig. 5.7. In Sect. 5.2 Qm is compared with Qelas in the low-energy region (for
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H2 in Fig. 5.3, CF4 in Fig. 5.4, and CH4 in Fig. 5.5). The Qm shown for H2,
O2, CO, CO2, and CH4 are those recommended by Elford et al. [34] in their
compilation. The cross-sections for N2, H2O, and CF4 are taken, respectively,
from [83], [81], and [24]. All the recommendations are based on a combination
of the results of the beam and swarm methods. Elford et al. [34] give a brief,
but useful, review on the momentum–transfer cross-section. As in the case
of Qelas, some molecules show a peak of shape resonance. In particular, the
cross-sections of N2 have a peak with complicated structure. The Qm shown
in Fig. 5.6 are the cross-sections with the structure smoothed out.

Here it is worth noting the relation between Qm and Qelas. By definition,
these two are different quantities. Depending on the angular distribution of
elastic scattering, we have the following relations between them:

Qm = Qelas for isotropic scattering,

Qm < Qelas for the dominance of small-angle scattering,

Qm > Qelas for the dominance of large-angle scattering.

In Figs. 5.3–5.5, we compare Qm with Qelas for three different molecules. Dif-
ferent molecules have different relations between Qm and Qelas.

Finally we discuss the momentum–transfer in inelastic collisions. Consid-
ering the relation me/M � 1, the velocity change of the incident electron is
given by

(Δv)e =
(

1 − v′

v
cos θ

)
v. (5.14)

Here v and v′ are the electron speeds before and after the collision. Then the
momentum–transfer cross-section for inelastic processes is obtained by

Qinel
m = 2π

∫ π

0

(
1 − v′

v
cos θ

)
q(θ) sin θ dθ, (5.15)

where q(θ) is the differential cross-section for the respective inelastic process.
In the analysis of electron transport in a plasma, momentum–transfer in
inelastic processes is treated in several different ways, depending on how to
solve the Boltzmann equation:
Case A. Contributions of inelastic processes are completely neglected for
momentum–transfer. This may cause a significant error at least for a high
reduced electric field, E/N .
Case B. Inelastic cross-sections are assumed to be much less than the elastic
one. Furthermore, the inelastic scattering is assumed to be isotropic. Instead
of (5.15), the integral cross-section

Q = 2π
∫ π

0

q(θ) sin θ dθ (5.16)

is used for momentum–transfer in inelastic scattering.
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Case C. When E/N increases, contributions of inelastic processes become
large and the velocity distribution of electrons is getting highly anisotropic.
In such a case, angular distributions of scattered electrons, both for elastic
and inelastic processes, must be taken into account more explicitly (see, for
example, [132]).

Usually the Boltzmann equation is solved under the assumption that elas-
tic collisions dominate over inelastic ones. In this assumption, the momentum–
transfer in the inelastic process is ignored (Case A). When E/N increases,
inelastic processes have more importance. Then the effect is considered
approximately (Case B, see [59]). In the case of high E/N , the momentum
change in the collision cannot be taken into account by the quantity Qinel

m

(neither (5.15) nor (5.16)). More sophisticated treatment of the angular dis-
tribution is necessary (see [132]).

5.4 Rotational Transition

Itikawa and Mason [82] published a comprehensive review on the electron-
impact rotational transition of molecules. They surveyed theoretical and
experimental studies on the subject through the end of 2004. The present
section is mostly based on this review article.

Level spacings of the rotational states of a molecule are very small (except
for hydrogen). It is difficult to experimentally resolve individual rotational
states. As is stated in Sect. 4.1, molecules are distributed over a wide range
of rotational states, even at room temperature. This leads to an additional
difficulty in measuring state-to-state cross-sections for rotational transition.

Rotational cross-sections are not necessarily small (see the following fig-
ures in this section). Since the charge distribution in a molecule is anisotropic,
the incoming electron exerts a torque on any molecule to rotate. When the
molecule has a permanent electric dipole moment, the electron–dipole inter-
action is the primary cause of the rotational transition (see Sect. 4.2). This
interaction has a long range so that the electron collision at low energies can
have a large cross-section. This is shown later in this section. The smallness
of the transition energy is also favorable to the collisions at low energies.

As is described in Sect. 5.2, the elastic peak in the measured electron energy
loss spectra includes a contribution of rotational transitions. That is, the inten-
sity of the elastic peak is proportional to the cross-section in such a way as

Ielas ∝ qexp
elas =

∑
J0

FJ0

∑
J ′

qrot(J0 → J ′). (5.17)

Here FJ0 is the fraction of the molecule in the rotational state J0 and
qrot(J0 → J ′) is the differential cross-section for the rotational transition
J0 → J ′. If the incident energy is sufficiently large compared with the
rotational transition energies, we can apply the adiabatic approximation to
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the rotational motion (see Sect. 4.3). In this approximation (so-called the
adiabatic-nuclear rotation (ANR) approximation), we can express a rotational
cross-section for any transition J0 → J ′ as a linear combination of the cross-
sections for the transitions from the ground state (i.e., 0 → J) in the form
(see [82])

qANR
rot (J0 → J ′) =

∑
J

A(J0, J
′ : J) qANR

rot (0 → J). (5.18)

The coefficient A depends only on the rotational quantum numbers and the
associated energies, and not on the details of the electron–molecule interac-
tion. Using this relation, we have

Ielas ∝
∑

J

aJ qANR
rot (0 → J), (5.19)

with
aJ =

∑
J0

∑
J ′

FJ0 A(J0, J
′ : J). (5.20)

If the experimental energy resolution is sufficiently high, it is possible to decon-
volute the elastic peak (i.e., Ielas) to derive individual terms, qANR

rot (0 → J).
Once we obtain the cross-section for the transition 0 → J , it is easy to eval-
uate rotational cross-section for any transition with the use of (5.18) within
the ANR approximation. With this procedure, Ehrhardt and his group suc-
ceeded to measure the differential cross-section for the rotational transitions
0 → J in the molecules N2, CO, Cl2, HCl, HF, and CH4 [57,118,136]. (They
reported, however, no integral cross-sections.) They made their experiment at
the energies above 0.5 eV.

When an electron energy is very low (or more precisely below the thresh-
old of any vibrational excitation), only possible inelastic process is rotational
transition. The swarm technique, therefore, is expected to be suitable to derive
rotational cross-sections in the low-energy region. Since molecules are popu-
lated over a number of rotational states, however, several different rotational
transitions can occur. Furthermore a possible interference between elastic
scattering and rotational transition may make it difficult to separately deter-
mine the cross-sections for the two processes. Despite these problems, a swarm
method has been employed to obtain rotational cross-sections at low energies.

To see the general feature of the rotational cross-section, two examples
of the molecule (H2 and N2) are selected. Figure 5.8 shows the cross-section
for the rotational transition J = 0 → 2 of H2, recommended by England
et al. [38]. (Due to the molecular symmetry, only the transition with ΔJ =
even occurs in a homonuclear diatomic molecule.) England et al. carried out a
swarm experiment of parahydrogen (i.e., hydrogen molecules with even J) at
77 K. Since the rotational level spacing of H2 is exceptionally large, almost
all the molecules in this case are populated in the rotationally ground (i.e.,
J = 0) state. Thus they could derive Qrot(J = 0 → 2) accurately, pro-
vided that the electron energy is below the vibrational threshold (i.e., 0.5 eV).
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Fig. 5.8. Rotational cross-section Qrot(J = 0 → 2) for H2

England et al. found that their swarm result is in good agreement with the
theoretical cross-section obtained by Morrison et al. [115], which is thought to
be the most elaborate calculation so far performed (see [82]). Then England
et al. determined their recommended cross-section by smoothly merging their
swarm data for E < 0.5 eV to the theoretical values in the higher energy
region. The resulting cross-sections are those shown in Fig. 5.8. England et al.
also reported cross-sections for the transitions 1 → 3, 2 → 4, and 3 → 5.

Robertson et al. [138] made an elaborate swarm experiment with N2. They
measured the electron transport coefficients in a gas mixture of N2 and Ne
at 77 K. In this case, 12 rotational states of N2 had a significant population.
Among them, only the transitions with ΔJ = ±2 were assumed to occur. They
chose the fraction of Ne so much that the elastic momentum–transfer of elec-
trons was determined mainly by the collision with Ne, for which an accurate
cross-section was known at that time. Thus, when Robertson et al. solved the
Boltzmann equation, only unknown quantities were rotational cross-sections
of N2. In this way, they could obtain the Qrot(J = 0 → 2) for N2 with less
ambiguity at the collision energies below 0.2 eV. The result is shown in Fig. 5.9.

In the higher energy region, no experimental data are available for Qrot

of N2. To see the general trend of the cross-section, we show in Fig. 5.9 the
result of a calculation by Kutz and Meyer [95]. They did a comprehensive
calculation and reported the rotational cross-section of N2 for the transitions
J = 0 → 0, 2, 4, 6 over a wide energy range (0.01–1,000 eV). Figure 5.9 shows
their result for J = 0 → 0, 2, 4. They found several specific features of Qrot

for N2:

1. In the energy region above 1 eV, Qrot(J = 0 → 2) has a considerable
magnitude (of the order of 10−16 cm2).
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Fig. 5.9. Rotational cross-sections Qrot(J = 0 → J ′) for N2. The result of swarm
experiment for J ′ = 2 [138] and theoretical cross-sections for J ′ = 0, 2, 4 [95] are
shown

2. The cross-section has a sharp peak at around 2.3 eV. This is due to the
shape resonance described in Sect. 5.2.

3. At the resonance, Qrot for higher-order transitions (ΔJ > 2) have a mag-
nitude comparable to Qrot(J = 0 → 2). Below the resonance region, those
cross-sections are much smaller than Qrot(J = 0 → 2), but above the
region the difference is small.

In their review article [82], Itikawa and Mason made detailed discussions
about Qrot for HCl, H2O, and CH4, as well as for H2 and N2. There are very
few experimental data available on Qrot, but a large number of theoretical
calculations have been performed for the rotational transitions in those mole-
cules. Figure 5.10 compares the theoretical cross-sections selected by Itikawa
and Mason (Qrot for H2O from [40,55], HCl from [130,146], N2 from [95], H2

from [115], and CH4 from [109]). For N2, the values recommended by Brunger
et al. [18] are also shown for comparison. Their recommendation is mainly
based on the swarm result shown in Fig. 5.9. All the cross-sections are for
the lowest rotational transition from the ground state. (Due to the molecular
symmetry, the lowest transition for CH4 is J = 0 → 3.) For more details
of each cross-section, see the review article by Itikawa and Mason [82]. It is
seen from the figure that Qrot for polar molecules (e.g., HCl and H2O) have
a peculiar feature. They increase enormously with decreasing energy. This
is due to the electron interaction with the molecular dipole. As is stated in
Sect. 4.2, the electron–dipole interaction is strongly anisotropic and of long
range. Due to this interaction, even the electrons passing very far from the
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target can induce rotational transition. As the electron energy decreases, the
contribution of such a distant collision increases in the rotational transition.
From the propensity rule of the electron–dipole interaction, transitions with
ΔJ = ±1 dominates over others. (In the first-order perturbation theory, only
the transition with ΔJ = ±1 can occur. See (5.22).) As is seen in Fig. 5.10,
Qrot(J = 0 → 1) for polar molecules reach the value as much as 10−13 cm2 at
the electron energy of about 0.01 eV.

As is stated in Sect. 4.5, the Born approximation is expected to be well
applied to the low-energy electron–molecule collision. Consider an electron
scattering from a diatomic molecule. (Polyatomic molecules can be treated
similarly. See [52].) Assuming an electron–multipole interaction, the Born
cross-section for the rotational and vibrational transition is obtained from
(4.55) with (4.57). (Note that all the Born cross-sections are expressed in
atomic units. See Appendix C for atomic units.) With ignoring the vibra-
tional transition, the Born cross-section becomes

qBorn
rot (J0 → J) =

1
4π2

kJ

k0

1
2J0 + 1

×
∑
M0

∑
M

∣∣∣∣∣
∫

dr exp(iK0J · r)
∑

λ

〈Mλ〉
rλ+1

〈JM |Pλ|J0M0〉
∣∣∣∣∣
2

, (5.21)

where k0 and kJ are the electron wave numbers before and after the col-
lision, and 〈Mλ〉 is the multipole moment of the molecule evaluated at its
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equilibrium internuclear distance. Since, in experiments, target molecules are
oriented randomly in space, an average has been taken in (5.21) over the
azimuthal quantum numbers of the rotational state. From the matrix element
〈JM |Pλ|J0M0〉, each term of the interaction potential induces the rotational
transition satisfying the relation

|J0 − J | ≤ λ ≤ J0 + J, J0 + J + λ = even. (5.22)

For the first few terms, we have:

1. For λ = 1 (dipole interaction), J = J0 ± 1.
2. For λ = 2 (quadrupole interaction), J = J0 ± 2, J0. (But 0 → 0 is not

allowed.)

We consider the contribution of each term of interaction separately. For the
dipole interaction, (5.21) gives the differential cross-section for the rotational
transition J0 → J0 + 1 in the form (see, for example, [154])

qBorn,dipole
rot (J0 → J0 + 1; θ) =

4
3

kJ

k0
〈M1〉2 J0 + 1

2J0 + 1
1

K2
, (5.23)

where
K2 = (K0J )2 = k2

0 + k2
J − 2k0kJ cos θ. (5.24)

The corresponding integral cross-section is (see [154])

QBorn,dipole
rot (J0 → J0 + 1) =

8π

3k2
0

〈M1〉2 J0 + 1
2J0 + 1

ln
∣∣∣∣k0 + kJ

k0 − kJ

∣∣∣∣ . (5.25)

Similarly we have

QBorn,dipole
rot (J0 → J0 − 1) =

8π

3k2
0

〈M1〉2 J0

2J0 + 1
ln

∣∣∣∣k0 + kJ

k0 − kJ

∣∣∣∣ . (5.26)

The long-range dipole interaction dominates in the electron collision with
a polar molecule at low energies. The Born method must be satisfactorily
applied to the calculation of the rotational cross-section of the polar mole-
cule. Figure 5.11 compares the Born cross-section and the result of the best
theoretical calculations shown in Fig. 5.10 for the 0 → 1 transition of HCl.
(See Appendix C for the numerical calculation of the Born cross-section.)
The Born cross-section well reproduces the theoretical one up to about 10 eV.
There are no experimental data to be compared with them. A beam-type
measurement, however, was made to obtain differential cross-sections (DCS)
at the energies above 0.5 eV. Figure 5.12 shows the differential cross-section
qrot(J = 0 → 1) for HCl at 5 eV. The figure compares the results of the
Born calculation, an elaborate calculation by Shimoi and Itikawa [146], and
the experimental data obtained by Gote and Ehrhardt [57]. At the scattering
angles smaller than 90◦, the Born result agrees well with the experimental
values. When the long-range dipole interaction dominates, collisions at a long
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Fig. 5.11. Rotational cross-sections for HCl. Theoretical values [130,146] are com-
pared with the Born result
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distance give the main contribution. Those collisions are so weak that most
of the electrons are slightly scattered from the forward direction. In the Born
formula (5.23), the angular dependence is given by

1
K2

=
(

1
(k0 − kJ )2 + 2k0kJ (1 − cos θ)

)2

. (5.27)



76 5 Electron Collisions with Molecules

When k0 ≈ kJ (i.e., when the collision energy much exceeds the rotational
transition energy), this term becomes very large at the forward scattering
angle (i.e., θ ≈ 0◦). This is seen in Fig. 5.12 as a sharp peak at θ = 0◦. In the
small-angle region (say, θ < 30◦), the Born cross-section almost completely
coincides with the theoretical value of Shimoi and Itikawa. There is some
difference between the theory and the experiment in the large-angle region.
This may arise from the experimental uncertainty (see [82]).

For the quadrupole interaction, the Born cross-sections are obtained as
(see [154])

QBorn,quad
rot (J0 → J0 + 2) =

8π

15
kJ

k0

(J0 + 1)(J0 + 2)
(2J0 + 1)(2J0 + 3)

〈M2〉2, (5.28)

QBorn,quad
rot (J0 → J0 − 2) =

8π

15
kJ

k0

(J0 − 1)(J0)
(2J0 − 1)(2J0 + 1)

〈M2〉2, (5.29)

QBorn,quad
rot (J0 → J0) =

16π

45
kJ

k0

(J0)(J0 + 1)
(2J0 − 1)(2J0 + 3)

〈M2〉2. (5.30)

Since the process J0 → J0 is a rotationally elastic transition, kJ should be
equal to k0 in (5.30). Here 〈M2〉 is the quadrupole moment (in a.u.) of the
molecule. Figure 5.11 presents also the cross-sections for the 0 → 2 transi-
tion of HCl. The Born cross-section shows a fairly good agreement with the
theoretical one in the threshold region, but the agreement deteriorates with
increasing energy. The range of the interaction of the electron with the quadru-
pole moment of a molecule is not so long as in the case of dipole interaction.
Probably shorter-range interactions may compete with the quadrupole term
for the 0 → 2 transition.

A comment is given here on the treatment of rotational transition in the
solution of the Boltzmann equation. To derive the electron energy distribu-
tion function (EEDF), the Boltzmann equation is solved. In principle, rota-
tional transition should be taken into account in the collision term of inelastic
processes. In practice, however, the following simple approximation is often
employed (see, for example, [49]). First, because of small value of transition
energy, the rotational transition is regarded as a continuous process like elas-
tic scattering. Then Qrot is replaced with the corresponding value calculated
in the Born approximation. As is shown above, the Born method gives a
good cross-section for the rotational transition in polar molecules. Even for
nonpolar molecules, it gives fairly reasonable result at least near threshold.
Accordingly the second part of the approximate method of the treatment of
rotational transitions seems not much unreliable. However, the first part of the
approximation needs some caution. The assumption of ignoring the inelastic-
ity of rotational transitions is not valid near the threshold of the rotational
transition.

When rotational cross-sections are derived from a swarm experiment, rota-
tional transitions are treated as inelastic processes. However, in that case, an
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assumption is often made that the energy dependence of the cross-section
is the same as that of the Born cross-section. Then the absolute magnitude
of the cross-section is determined so as to reproduce the measured values of
transport coefficients. The resulting cross-section may be not much different
from the correct value, but its validity should be tested in some way (e.g.,
with the help of any elaborate theory).

Finally we mention the rotationally elastic cross-section, Qrot(J = 0 → 0).
As is stated in Sect. 5.2, the elastic cross-sections obtained experimentally are
mostly the vibrationally elastic ones (see (5.4)). On the other hand, theory
can give information about the pure elastic (or rotationally elastic) cross-
section. Figures 5.9 and 5.11 show theoretical values of Qrot(J = 0 → 0)
for N2 and HCl, respectively. In the case of nonpolar molecules (e.g., N2),
the Qrot(J = 0 → 0) is always larger than any rotationally inelastic cross-
sections. For polar molecules (e.g., HCl), however, Qrot(J = 0 → 1) exceeds
the rotationally elastic one at least in the low-energy region (say, < 1 eV),
except in the region near threshold of the rotational excitation. This means
that the experimental elastic cross-section for polar molecules, at least in
the low-energy region, is composed mostly of the contribution of rotationally
inelastic processes.

5.5 Vibrational Transition

It is possible to measure vibrational cross-sections with a beam-type experi-
ment (i.e., an EELS measurement). Since the threshold of vibrational exci-
tation is located below 1 eV, however, it is difficult to do the measurement
near threshold. Instead a swarm technique is often applied to the measure-
ment of the cross-section near threshold. To derive vibrational cross-sections
from a swarm experiment, rotational transitions should be taken into account
simultaneously. In many cases of swarm analysis, however, vibrational cross-
sections are obtained simply with ignoring rotational processes. The resulting
vibrational cross-section must have some uncertainty.

As an example, Fig. 5.13 shows the vibrational cross-sections for v = 0 → 1
for several diatomic molecules (H2, O2, CO, and NO). The cross-sections for
O2, NO, and CO are those recommended by Brunger et al. [18]. The data
for H2 are taken from a more recent review by Yoon et al. [167]. All the
cross-sections shown in Fig. 5.13 have a peak as a function of electron energy.
They are ascribed to the shape resonance (see Sect. 5.2). If the experimental
energy resolution is high enough, the resonance peak often shows complicated
structure. In this regards, the vibrational cross-section of N2 is discussed later.
An envelop of those structured cross-sections are plotted in Fig. 5.13.

As is stated in Sect. 4.1, a polyatomic molecule has multiple modes of
vibration. Some of the modes have very close transition energies. It is diffi-
cult to resolve those modes experimentally. For example, the lowest excited
levels of the symmetric (ν1) and antisymmetric (ν3) stretching vibrations of
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Fig. 5.13. Vibrational excitation cross-sections for v = 0 → 1 for H2, O2, NO,
and CO
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Fig. 5.14. Vibrational excitation cross-sections for the lowest transition in H2O.
Bend : bending mode, stretch: combined cross-sections for the symmetric and anti-
symmetric stretching modes

H2O are located at 0.4534 and 0.4659 eV, respectively. The excitations of the
two levels cannot be experimentally separated, unless an elaborate technique
is used. Experimental data are obtained as a sum of the cross-sections for
the two vibrational excitations. Figure 5.14 presents the vibrational cross-
sections for H2O recommended by Itikawa and Mason [81]. The figure shows
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the cross-section for the bending mode (ν2) and the combined cross-section for
the symmetric and antisymmetric stretching modes. Both the cross-sections
have a sharp peak at the respective thresholds. Immediately above the thresh-
old, the electron after collision is very slow and interacts strongly with the
molecular dipole. This strong interaction may make the threshold peak. For
hydrogen halides (e.g., HF), this kind of threshold phenomena are studied in
details [70].

Another example of vibrational cross-section of polyatomic molecules is
given in Fig. 5.15. The figure shows the vibrational cross-sections for CH4.
Methane molecule has four normal modes of vibration: ν1 with the transition
energy of 0.362 eV, ν2 of 0.190 eV, ν3 of 0.374 eV, and ν4 of 0.162 eV. Exper-
iment cannot resolve ν1 and ν3, and ν2 and ν4. Experimental data are given
for the combined cross-section for ν1 and ν3 (indicated as ν13) and that for ν2

and ν4 (ν24). Figure 5.15 shows those combined cross-sections recommended
by Brunger et al. [18].

In the electron-impact excitation, different modes of vibration show dif-
ferent behaviors. In particular an infrared (IR)-active mode has a relatively
large cross-section in the low-energy region. An IR-active mode is the vibra-
tional mode which can be excited through an absorption of IR radiation. This
implies that the mode of vibration can be strongly coupled with the elec-
tromagnetic field of radiation. A collision with an electron, particularly at a
long distance, can be interpreted as a sort of application of electric field. As is
stated below, the Born approximation shows that the vibrational cross-section
for an IR-active mode is proportional to the IR absorption intensity of the
mode. Among the four normal modes of vibration of CH4, ν3, and ν4 are
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Fig. 5.15. Vibrational excitation cross-sections for the lowest transitions in CH4.
ν13: combined cross-sections for the ν1 and ν3 modes, ν24: those for the ν2 and ν4

modes
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Fig. 5.16. Theoretical values of the vibrational excitation cross-sections for the
lowest transitions of each mode in CH4 [123]

IR-active. Figure 5.16 presents the vibrational cross-sections for each mode
of CH4, calculated by Nishimura and Gianturco [123]. (Experimentally those
four modes cannot be fully separated, as is seen in Fig. 5.15.) Near the respec-
tive thresholds, the IR-active modes have a large cross-section compared with
other modes. As the collision energy increases, other effects (especially the
shape resonance) mask the dominance of the IR-active modes. This is a gen-
eral trend of an IR-active mode of vibration (see, for more details, a review
by Itikawa [80]).

The Born cross-sections for the rotational transitions, derived in Sect. 5.4,
can easily be extended to the vibrational transitions. Here we consider only
the dipole interaction between the incident electron and the molecule. Taking
into account the vibrational transition v0 → v, the Born cross-section for
J0 → J0 + 1 in (5.25) is rewritten as (all the Born results being expressed in
atomic units)

QBorn,dipole(v0, J0 → v, J0 + 1)

=
8π

3k2
0

|〈v|M1|v0〉|2 J0 + 1
2J0 + 1

ln
∣∣∣∣k0 + kν

k0 − kν

∣∣∣∣ . (5.31)

Similarly we have

QBorn,dipole(v0, J0 → v, J0 − 1)

=
8π

3k2
0

|〈v|M1|v0〉|2 J0

2J0 + 1
ln

∣∣∣∣k0 + kν

k0 − kν

∣∣∣∣ . (5.32)
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If we do not discriminate any rotational transition (i.e., we ignore the rota-
tional energy compared with the vibrational one), we take a sum of these two
cross-sections to obtain the vibrational cross-section in the form

QBorn,dipole
vib (v0 → v) =

8π

3k2
0

|〈v|M1|v0〉|2 ln
∣∣∣∣k0 + kv

k0 − kv

∣∣∣∣ . (5.33)

Here kv is the wave number of the electron after the collision and 〈v|M1|v0〉 is
the matrix element of the dipole moment with respect to the initial and final
vibrational states. This matrix element also determines the absorption and
emission of IR radiation by the molecule. In fact, the IR absorption intensity
A is given by the formula (see, e.g., [14])

A(v ← v0) =
2πω

3h̄c
|〈v|M1|v0〉|2 , (5.34)

where ω is the corresponding IR frequency and c is the speed of light. The IR
intensity is generally obtained from the IR spectroscopy [14]. The dipole
matrix element for the fundamental transition (i.e., v = 0 → 1) can be
obtained from the spectroscopic data on the IR intensity with the relation

|〈v = 1|M1|v = 0〉|2 (a.u.) = 0.061757
A(km mol−1)

ω(cm−1)
. (5.35)

The values of the dipole matrix element squared are tabulated in Table B.5
for a number of molecules.

So far the Born cross-section for the vibrational transition (5.33) has
been derived for a diatomic molecule (i.e., from the corresponding formula
(4.55)). A more general derivation of the Born cross-section has been given
by Itikawa [76] for vibrational transitions in polyatomic molecules. The vibra-
tional cross-section for any IR-active mode of any polyatomic molecule can be
expressed in the same form as (5.33), if the Born approximation is employed.
The matrix element 〈v|M1|v0〉 in this case is evaluated with respect to the
respective IR-active modes. Or it is replaced with the corresponding IR inten-
sity according to the relation (5.34). Itikawa [76] also derived the Born cross-
section for vibrational transitions through other types of interaction (e.g., the
quadrupole interaction).

To understand the mechanism of the vibrational excitation, we investigate
some details of the interaction matrix element (for more details, see [77]).
Consider only the long-range dipole interaction. The matrix element for the
transition in the sth normal mode is written as

〈v(s)|M1|v(s)
0 〉 =

∫
dξ(s) χ(s)

v (ξ(s))∗ M1 χ(s)
v0

(ξ(s)). (5.36)

Here ξ(s) is the normal coordinates of the sth mode and χ
(s)
v is the vibrational

wave function of the mode. (In the case of diatomic molecule, the normal coor-
dinate corresponds to R − R̄, with R̄ being the equilibrium internuclear dis-
tance.) Unless we consider transitions involving very high vibrational states,
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all molecular nuclei are located near their equilibrium positions (i.e., ξ(s) = 0).
Then we expand the dipole moment M1 in terms of ξ(s) around the position
ξ(s) = 0. To the first order, we have

M1(ξ(s)) = M1(ξ(s) = 0) +
(

∂M1

∂ξ(s)

)
ξ(s)=0

ξ(s). (5.37)

It should be noted that M1 depends also on the normal coordinates of other
modes, but those coordinates are assumed to take their equilibrium values.
Inserting (5.37) into (5.36), the matrix element becomes

〈v(s)|M1|v(s)
0 〉 = M1(0) 〈v(s)|v(s)

0 〉
+

(
∂M1

∂ξ(s)

)
ξ(s)=0

〈v(s)|ξ(s)|v(s)
0 〉. (5.38)

Because of the orthogonality of the vibrational wave functions, we have

〈v(s)|v(s)
0 〉 = δ

v(s)v
(s)
0

, (5.39)

and hence the first term on the right-hand side of (5.38) vanishes. The vibra-
tional transition of the respective mode can occur only under the condition(

∂M1

∂ξ(s)

)
ξ(s)=0

�= 0. (5.40)

This is equivalent to the statement that the sth mode is IR-active. It is
clear from the present argument that the vibrational transition is concerned
not with the dipole moment itself, but with the derivative of the dipole
moment with respect to the nuclear coordinates. There are many polyatomic
molecules which have no dipole moment (i.e., M1(0) = 0) but have a number
of IR-active vibrational modes satisfying the condition (5.40). This conclu-
sion is extended to more general cases. Any interaction term can be put into
the place of M1 in (5.36). Vibrational transitions through the interaction can
occur, if we have a nonzero value of the derivative of the term with respect to
the nuclear coordinates.

To see the effectiveness of the Born approximation, we show in Fig. 5.17 the
cross-sections for the vibrational excitations of the two IR modes (ν3 and ν4)
of CH4. (See Appendix C for the calculation of the Born cross-section.) In the
figure, the Born cross-section is compared with the calculation by Nishimura
and Gianturco [123] (the same as shown in Fig. 5.16). In the energy region
near threshold, the Born cross-section for the ν3 mode agrees well with the
theoretical one. The agreement becomes worse with increasing energy. This
is probably due to the effect of resonance (see Fig. 5.16). For the ν4 mode,
the Born result is by about a factor of 2 smaller than the cross-section of
Nishimura and Gianturco. After a survey of many other cases, Itikawa [80]
concluded that, for the electron-impact vibrational transition of IR-active
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Fig. 5.17. Vibrational excitation cross-sections for the lowest transition of IR-active
modes of CH4. The Born cross-sections are compared with the theoretical result of
Nishimura and Gianturco [123]

mode, the Born method gives a fairly reasonable result (probably within a
factor of 2) at the collision energies near threshold. Furthermore, also for the
vibrational transition, the Born approximation always provides an accurate
value of differential cross-section at the small scattering angles (see the discus-
sion for the rotational transition in Sect. 5.4). How large a scattering angle at
which the Born method can be applied depends on the competition between
the dipole and other interactions.

As is mentioned before, a shape resonance is a common phenomenon in the
electron-impact vibrational excitation of molecules. Almost all the vibrational
cross-sections have peaks as a function of electron energy. Most of them are
interpreted as a shape resonance. Some of the peaks have fine structure. A
typical example is the cross-section of N2, which is shown in Fig. 5.18. The fig-
ure shows two sets of cross-sections. One is the recommended cross-section by
Brunger et al. [18], who determined the cross-section from the results of beam-
type measurements. In a beam experiment, DCS at a fixed collision energy
are measured first with varying scattering angles. After the integration of
the resulting DCS over the scattering angles, the integral cross-section at the
energy is obtained. Thus, it is difficult to derive a detailed form of energy
dependence of the (integral) cross-section with a beam-type experiment.
Figure 5.18 presents another set of cross-sections, which was obtained by a
swarm experiment. In a swarm experiment, cross-sections are derived directly
as a function of collision energy. Campbell et al. [20] analyzed the swarm result
very carefully to derive accurate values of the vibrational cross-section. The
resulting cross-section shows fine structure. The two sets of the cross-section
in Fig. 5.18 are generally consistent with each other. The difference can be
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Fig. 5.18. Vibrational excitation cross-section, Qvib(v = 0 → 1), for N2. Two sets
of experimental data are shown: one by beam-type experiments and the other from
swarm experiment

ascribed to the uncertainty of both the experiments. The structure was first
found by Schulz in 1964 [142]. Since then many theoretical studies have been
performed to understand the structure. Briefly summarizing those theoretical
results, the structure is caused by a strong interference between the electronic
and nuclear motions in the molecule. In this case, the lifetime of the reso-
nance state (i.e., an electronically excited state of the negative molecular ion,
N−

2 ) is comparable to the period of the vibrational motion. In other words,
the decay of the electron captured competes with the nuclear motion. Some
time the molecule establishes a stationary state of vibrational motion before
ejecting the electron, but other time it does not. It depends on the incident
electron energy. One of the specific features of the resonance is the excitation
of high vibrational states (i.e., v > 1). In the resonance region, the electron
collision is known to induce an excitation of vibrational states up to v = 17
(see Table 5.1).

Finally, comments are given on the role of vibrational excitation in the
electron transport in a molecular plasma. The vibrational cross-section has
a sizable magnitude in the energy region below about 10 eV. The transition
energy is not so small as in the case of rotational excitation. In this sense the
vibrational excitation is the most important energy loss process of electrons
in a low-temperature molecular plasma (see the discussion of stopping cross-
section in Sect. 5.12). Or it is the most significant process of deposition of the
electron energy to the plasma. Once vibrationally excited, the molecule decays
to the lower state through emission of radiation. If the vibrational mode is
not IR-active, the excited molecule remains for a long time. The vibrationally
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Table 5.1. Vibrational excitations of N2

Transition Energy Cross-section

(eV) (cm2)

0 → 1 1.95 5.6(−16)a

0 → 2 2.00 3.7(−16)

0 → 3 2.15 3.1(−16)

0 → 4 2.22 2.1(−16)

0 → 5 2.39 1.3(−16)

0 → 6 2.48 7.1(−17)

0 → 7 2.64 3.8(−17)

0 → 8 2.82 1.6(−17)

0 → 9 2.95 6.1(−18)

0 → 10 3.09 2.2(−18)

0 → 11 3.30 6.3(−19)

0 → 12 3.87 1.4(−19)

0 → 13 4.02 4.5(−20)

0 → 14 4.16 1.3(−20)

0 → 15 4.32 3.6(−21)

0 → 16 4.49 9.1(−22)

0 → 17 4.66 2.4(−22)

Maximum cross-sections with the corresponding electron energy, measured by Allan
[5], are given for the transitions from the ground to the excited (v = 1, 2, . . . , 17)
states. a5.6(−16) = 5.6 × 10−16.

excited molecule behaves differently from the molecule in the ground state.
Through collisions with other particles in a plasma, they release their internal
energy and start other (secondary) collision processes (see Sect. 5.13).

5.6 Excitation of Electronic State

First we deal with a diatomic molecule. An electronic energy of a diatomic
molecule depends on the internuclear distance of the molecule. Any transition
between two electronic states is accompanied by a transition of rotational and
vibrational ones. We have to consider a transition like

AB(n, v, J) → AB(n′, v′, J ′), (5.41)

where n and n′ denote the electronic states before and after the collision, and
(v, J) and (v′ J ′) indicate the associated vibrational and rotational states. As
is stated in Sect. 4.3, we can apply the Franck–Condon factor approximation
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to the electron-impact transition of the electronic states of a molecule. Then
we can write the cross-section for the transition (5.41) in the form

Q(n, v → n′, v′) = Fnn′
vv′ Qexc(n → n′). (5.42)

Strictly speaking, this relation holds under the fixed-nuclei approximation (see
Sect. 4.3). For simplicity of notation, however, we ignore the suffix FN here.
In (5.42), we do not consider rotational transitions, because, in most of the
experiments, it is impossible to resolve the rotational transition. The quantity
F in (5.42) is the Franck–Condon factor introduced in Sect. 4.3. It is given by

Fnn′
vv′ =

∣∣∣∣
∫

dR χn′
v′ (R)∗ χn

v (R)
∣∣∣∣
2

, (5.43)

where χn
v is the vibrational wave function of the state v associated with the

electronic state n. In most of the literature, Qexc is given simply as the cross-
section for the excitation of electronic state. In particular, almost all the theo-
retical calculations so far are based, explicitly or implicitly, on the fixed-nuclei
assumption, so that they produce Qexc.

To see how to experimentally determine Qexc, the experiment with H2

by Wrkich et al. [166] is shown here. They employed a standard method of
measurement of EELS. They made the experiment at room temperature, so
that the hydrogen molecule is in the vibrationally and electronically ground
state. Their measurement was done at an energy resolution of 25–40 meV.
They did not resolve rotational states. Upon collisions with electrons, H2 is
excited to an electronic state n and one of the associated vibrational states v.
The measured EELS has a number of peaks corresponding to the excitation
of the states designated with a certain pair (n, v).

One example of the EELS obtained by Wrkich et al. is shown in Fig. 5.19.
This shows the region of energy loss from 11.0 to 14.5 eV. This was obtained at
the collision energy of 20 eV and the scattering angle of 20◦. Several different
states n are excited at this collision energy. Each transition 0 → n accompa-
nies a number of different vibrational transitions v = 0 → v. The measured
spectrum is shown in the lowest panel of the figure (black dots). It was inter-
preted as a superposition of excitations of six electronic states (B 1Σ+

u , c 3Πu,
a 3Σ+

g , C 1Πu, E, F 1Σ+
g , and e 3Σ+

g ). With the use of the Franck–Condon fac-
tors, Wrkich et al. decomposed the spectrum into six sets of spectra shown in
the upper panels of the figure. Each spectrum corresponds to the cross-section
(actually the DCS at 20◦) for the transition (0, 0) → (n, v). The peaks of each
panel correspond to the vibrational states v of the electronic state indicated.
The relative heights of the peaks are proportional to the Franck–Condon fac-
tors F 0n

0v with different v. With the relative flow technique for normalization
(see Sect. 3.5), the absolute values of the DCS were derived. The resulting
values of the DCS for the four representative states are shown in Fig. 5.20.
The measurement was done over the scattering angles from 5◦ to 130◦.
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Fig. 5.19. Electron energy loss spectra of H2 at the collision energy of 20 eV and
the scattering angle of 20◦, reproduced from [166]
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Extrapolating the DCS in the forward and the backward directions, the
integral cross-sections Qexc were obtained. Wrkich et al. measured the cross-
section at three points of energy (17.5, 20, and 30 eV). Their Qexc for the B
1Σ+

u and C 1Πu states are shown in Figs. 5.21 and 5.22, respectively. For these
states, Liu et al. [104] derived Qexc from an emission measurement (for the
method, see Sect. 5.9). Figures 5.21 and 5.22 compare the results of Wrkich
et al. with those of Liu et al. The agreement of the two sets of cross-sections
is very good.
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Fig. 5.21. Excitation cross-sections for the B 1Σ+
u state of H2, obtained by an

EELS measurement [166] and an emission measurement [104]
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Fig. 5.22. Same as Fig. 5.21, but for the state C 1Πu
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Fig. 5.23. Excitation cross-sections for the a 3Σ+
g state of H2, obtained with an

EELS measurement by Wrkich et al. [166] and Khakoo and Trajmar [89]

Figure 5.23 shows the cross-section for the excitation of the a 3Σ+
g state

of H2. The result of Wrkich et al. is compared with the measurement of the
same group in 1986 [89]. The latter measurement was done at the energies
20–60 eV. The two sets of cross-sections are in good agreement. One specific
feature of the excitation of the a 3Σ+

g state is that the cross-section decays
rapidly with increasing energy. In other words, the cross-section has a sharp
peak immediately above the threshold. The optical transition between the
ground (X 1Σ+

g ) and a 3Σ+
g states is dipole forbidden. Usually cross-sections

for the electron-impact excitation of dipole-forbidden transitions have a sharp
peak above the threshold and decay rapidly with increasing energy. On the
other hand, cross-sections for the dipole-allowed transitions (e.g., X-B and X-C
transitions) have a broad peak and decay slowly (see Figs. 5.21 and 5.22).

As is seen from the above procedure, the derivation of Qexc from the mea-
sured EELS usually relies on the deconvolution of the measured spectra with
the use of the Franck–Condon (FC) factors. To do that, we need an accurate
knowledge of the FC factor. In the experiment of Wrkich et al. [166], they
theoretically obtained the FC factors by themselves. They collected accurate
potential curves for the electronic states of H2. From them, accurate vibra-
tional wave functions were determined to be inserted into the formula (5.43).
Even with reliable FC factors, ambiguity often accompanies the deconvolu-
tion procedure. Uncertainty arises also from the method of extrapolation of
the measured DCS to the region where experimental data are not available.
One should be careful about these problems when using the experimental data
on Qexc.

An excitation of electronic states of polyatomic molecules is not much dif-
ferent from that of diatomic ones. In principle, the FC factor approximation
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like (5.42) can also be used for polyatomic molecules. Since a polyatomic mole-
cule has multiple modes of vibration, the FC factor depends on the vibrational
quantum numbers in a complicated manner. Correspondingly the EELS has a
complicated fine structure arising from the vibrational transitions. In reality it
is almost impossible to decompose the EELS into each vibrational component,
because of finite experimental resolution of the electron energy. The excitation
cross-sections obtained for polyatomic molecules are mostly the one summed
over the final vibrational states (sometime called manifold cross-section).

As an example, Fig. 5.24 shows an electron energy loss spectrum of H2O.
The spectrum was obtained at the collision energy of 100 eV and the scatter-
ing angle of 3◦. It is known that H2O has at least 13 electronic states with
the excitation energy below 10.75 eV (i.e., the region shown in Fig. 5.24) [81].
It is, however, difficult to identify all of those states in the measured spectrum.
This is partly because the experimental resolution of the electron energy is
not sufficiently high to resolve the vibrational structure of those electronic
states. Furthermore, many of the electronic states are unstable against dis-
sociation. Those states have a broad peak, which overlaps with other peaks.
For example, the very broad peak at 7–8 eV of the energy loss in Fig. 5.24
corresponds to the excitation of the lowest triplet (1 3B1) and singlet (1 1B1)
states. These two states are thought to contribute to the dissociation process,
H2O → H + OH(X) [56]. With a deconvolution of their measured EELS,
Tanaka and his colleagues obtained the Qexc for several electronically excited
states of H2O [157,158]. One of them is shown in Fig. 5.25. This is the cross-
section for the excitation of 1 1B1 (or in other notation, Ã 1B1) state of H2O.
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Fig. 5.24. Electron energy loss spectrum of H2O, measured by Tanaka and his group
at the collision energy of 100 eV and the scattering angle of 3◦ (kindly provided by
Tanaka)
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Fig. 5.25. Excitation cross-sections for the 1 1B1 state of H2O, obtained with an
EELS measurement by Thorn et al. [157]. A scaled Born cross-section is also shown

In the figure, a scaled Born cross-section (proposed by Kim [91]) is shown for
a comparison. The latter well reproduces the experimental data.

Finally we mention the fate of the electronically excited molecules. They
decay either through emission of radiation or through dissociation. If neither
of the two decay processes has a considerable probability to occur, they change
their states via collisions with other plasma particles or by hitting to the wall
of the apparatus. For the radiative decay to occur, the excited state has to
be connected with lower states through dipole-allowed transitions. The life-
time against such a radiative decay is of the order of 10−10 to 10−8 s. The
dissociative decay of a molecule proceeds through two different manners (for
more details, see Sect. 5.10). If the excited state is repulsive, the molecule
dissociates promptly after excitation (direct dissociation). If the excited state
is attractive but crossed with a repulsive state, dissociation occurs with a
finite probability. This is called a predissociation. The lifetime against the
dissociation is normally 10−15 to 10−14 s.

5.7 Ionization

An ionization of molecules produces several different ion products. We show
this for a diatomic molecule:

1. Production of parent molecule ion

e + AB → AB+ + 2e.
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2. Dissociative ionization

e + AB → A+ + B + 2e,

A+ + B+ + 3e.

As is easily expected, various kinds of ions are produced in the ionization
of polyatomic molecules (see Fig. 5.28). In some polyatomic molecules (e.g.,
CF4), no parent molecule ions are produced. Whenever any electron is picked
out from such a molecule, it dissociates.

Here we denote the ionization cross-section for a specific product by
Qion(M+) (e.g., in a diatomic molecule, M = AB, A, or B). These cross-sections
are called partial ionization cross-sections. Each partial cross-section is mea-
sured by a detection of the specific ion. When electron energies increase, mul-
tiply charged ions (e.g., A2+) appear. A special caution is needed for multiply
charged molecular ions. Many of the multiply charged molecular ions (par-
ticularly those of simple molecules) are unstable and have a finite lifetime.
Whether they can be detected, therefore, depends on the experimental proce-
dure. If the ion reaches the detector within its lifetime, it is detected. When
use is made of the experimental cross-section for the multiply charged molec-
ular ion like AB2+, this point should be taken into account (see the discussion
about N2+

2 below).
The total ionization cross-section is defined by the sum of all the partial

cross-sections in such a way that

Qion(tot) = Qion(AB+) + Qion(A+) + · · ·
+Qion(AB2+) + Qion(A2+) + · · · . (5.44)

The easiest way to experimentally obtain the ionization cross-section is a
measurement of ion current. In this method, we count ionic charge and hence
obtain a cross-section defined by

Qion(tot.count) = Qion(AB+) + Qion(A+) + · · ·
+ 2Qion(AB2+) + 2Qion(A2+) + · · · . (5.45)

Here each partial cross-section is multiplied by the number of the ionic charge.
This is called the total counting cross-section. Since the ionization cross-
sections for the production of multiply charged ions are usually small, the
difference between the two cross-sections, Qion(tot) and Qion(tot.count), is not
of practical significance.

Examples of ionization cross-sections are shown in Figs. 5.26 (N2), 5.27
(CO), and 5.28 (CF4). In all the figures, both the partial and the total ioniza-
tion cross-sections are shown. For CF4, no parent molecule ion (i.e., CF+

4 ) is
known to be produced. All of the Qion shown in the figures are those recom-
mended by Lindsay and Mangan [103]. The partial cross-sections have been
obtained by a detection of the respective product ions. In such experiments,
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a special care should be taken to have all the product ions detected. This
is important because most of the fragment ions have a significant kinetic
energy and tend to elude detection. Also important is to confirm that the
Qion(tot) obtained as a sum of the partial cross-sections is consistent with the
Qion(tot.count) derived from the measurement of total ion current. Lindsay
and Mangan surveyed all the available experimental data and evaluated them
particularly from these points of view.

Experimental data on partial ionization cross-sections need a special cau-
tion. Spectrometrical detection cannot distinguish the ions with the same
(or close) charge-to-mass ratio. For example, the signal of N+ includes that of
N2+

2 . Therefore, the partial cross-section for N+ in Fig. 5.26 includes that for
N2+

2 , although the latter contribution should be small. For the same reason,
Qion(CF+) in Fig. 5.28 has a contribution of CF2+

3 .
As is stated above, a multiply charged molecular ion is often unstable and

dissociates promptly into fragments. As a result, we sometime have two (or
more) fragment ions simultaneously:

e + AB → A+ + B+ + 3e.
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The measured quantity Qion(A+) includes a contribution of this process. Tian
and Vidal [159, 160] measured A+ and B+ in coincidence and thus distin-
guished the above process from

e + AB → A+ + B + 2e.

Their results for N2 and CO are tabulated in Tables 5.2 and 5.3, respectively.
Tian and Vidal measured the cross-sections up to 600 eV. Here samples of their
values are shown at 100 and 200 eV. As is stated above, the signals of N+ and
N2+

2 cannot be distinguished from each other. The ground electronic state
of N2+

2 supports several vibrational states. If the N2+
2 is produced in one of

such vibrational states (particularly lower ones), it has a long lifetime against
dissociation and can be detected as it is. Although Table 5.2 has no entry
for N2+

2 , some amount of such metastable N2+
2 may be actually produced and

mixed in the signal of N+. (Note that, due to the finite lifetime, the actual
detection of N2+

2 may depend on the apparatus.) If N2+
2 are produced in other

states, they are unstable and immediately dissociate. The experiment showed
that a symmetric breaking of N2+

2 (→N+ + N+) is much more likely than an
asymmetric one (→N2+ + N). The table also shows that about 60% of N+

Table 5.2. Cross-sections (in 10−19 cm2) for different channels in the ionization of
N2, measured by Tian and Vidal [159]

Products At 100 eV At 200 eV

Single ionization N+
2 1,961 1,741

N+ + N 471 380

Double ionization N+ + N+ 119 114

N2+ + N 6 11

Triple ionization N2+ + N+ 1 6

Table 5.3. Cross-sections (in 10−19 cm2) for different channels in the ionization of
CO, measured by Tian and Vidal [160]

Products At 100 eV At 200 eV

Single ionization CO+ 1.82× 103 1.54× 103

C+ + O 218 157

C + O+ 138 109

Double ionization CO2+ 8.21 6.97

C+ + O+ 118 118

C2+ +O 5.36 8.14

C + O2+ 1.15 2.78

Triple ionization C2+ + O+ 0.99 4.82

C+ + O2+ 0.15 1.32
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comes from the dissociation of N+
2 . The dissociation of N2+

2 contributes to the
remaining 30%.

In the ionization of CO, CO2+ can be discriminated from other ions. A part
of CO2+ produced, however, is unstable and dissociates. From Table 5.3, less
than 10% of CO2+ produced are detected and other CO2+ dissociates, mostly
into C+ + O+. This is consistent with the picture shown in Fig. 5.27. At its
maximum, the partial cross-section, Qion(CO2+), is less than 1% of the total
ionization cross-section. Tian and Vidal [160] also reported quadruple ioniza-
tions of CO (but not shown here, because of very small cross-sections).

Ionization cross-sections are used in many application fields. It is very
helpful to have any simple formula to calculate them. The essential part of
the mechanism of ionization is the impact of the incident electron on the
molecular electrons. If the molecular electron acquires enough energy to break
its bond to the nucleus, it can come out from the molecule. On the basis of
this idea, various kinds of approximate formulas have been proposed for the
calculation of the ionization cross-section. Two of them are shown here:

1. Binary Encounter-Bethe (BEB) model
Kim and his colleagues (see [71]) combined the classical two-body colli-
sion (binary encounter) theory with an asymptotic form of the quantum
mechanical cross-section in the limit of high-energy collision (i.e., the
Bethe formula). They assumed that the Coulomb collision between the
incident and the molecular electrons can be well described by the classical
theory. The resulting formula, however, shows no correct behavior at high
energy. At the high energy of collision, the quantum mechanical pertur-
bation theory can be applied to the cross-section calculation. Kim et al.
corrected the high-energy part of the classical binary encounter theory
with the Bethe asymptote obtained quantum mechanically. To take into
account the characteristics of each molecule, they incorporated into their
formula the binding and kinetic energies of the molecular electrons. Those
molecular properties are obtained from quantum chemical calculation of
the molecule.

2. Semiclassical Deutsch–Märk model
Deutsch and Märk (see [33]) also used the classical theory for the collisions
between the incident and the molecular electrons. They sum up the contri-
bution of each bound electron with taking a weighting factor. The weight-
ing factor has been determined empirically from comparisons of the model
cross-sections with the available experimental data.

In most (not all) cases, these model calculations can reasonably well reproduce
the experimental cross-sections.

When an electron ionizes a molecule, we have two free electrons after the
collision. (Here we ignore a multiple ionization for simplicity.) In principle,
we cannot distinguish those two electrons. By convention, we call the fast one
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the primary electron and the slow one the secondary electron. The balance of
energy before and after the collision is written as

E0 = Ip + E1 + E2 (E1 > E2). (5.46)

Here E0 is the energy of the incident electron, E1 and E2 are the energies of
the primary and the secondary electrons, respectively, and Ip is the ionization
potential of the molecule. We define the excess energy Ex by

Ex = E0 − Ip. (5.47)

The two outgoing electrons share the excess energy

Ex = E1 + E2. (5.48)

The problem is how the two electrons share the excess energy.
Now we consider the energy distribution of the secondary electron. Once

the energy of the secondary electron (i.e., E2) is known, the energy of the
primary electron (i.e., E1) is obtained from the relation (5.48). The energy
distribution of the secondary electron is expressed as the differential cross-
section q(E0, E2), which is defined by

Qion(E0) =
∫ Ex/2

0

dE2 q(E0, E2). (5.49)

The quantity q(E0, E2) is called the singly differential cross-section (SDCS).
(It is contrasted with the doubly differential cross-section, which represents
the angular, as well as energy, dependence of the secondary electron.) The
upper limit of the integral on the right-hand side of (5.49) is taken as a half
of the excess energy, because, by definition, E2 should be smaller than E1.

Experimental data on SDCS are available for a number of molecular
species. Opal et al. [127] measured the angular and energy distribution of
the secondary electrons. From the measurements, they derived the SDCS for
N2, O2, H2, CO, NO, H2O, CO2, NH3, CH4, and C2H2. For N2 and O2, the
measurements were done with the incident electron beam of 50–2,000 eV, but
only the beam of 500 eV was used for other molecules. (Numerical values of
the measured data are tabulated in [128].) Figure 5.29 shows the SDCS for
N2 measured at E0 = 50, 100, and 200 eV.

The quantity actually measured is the energy of the electrons coming out
after the ionizing collision. The curves shown in the figure above Ex/2 (e.g.,
17.2 eV in the case of E0 = 50 eV) correspond with the energy distributions
of the primary electrons. If the excess energy is shared symmetrically by the
two electrons, we have E1 = E2 = Ex/2. But the energy sharing is very
asymmetric. Most of the secondary electrons have energies of a few tens of eV
or less. Accordingly a large portion of the excess energy goes to the primary
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electron. Opal et al. found that the measured SDCS can be fitted to an analytic
function such as

q =
C(E0)

1 + (E2/D)α . (5.50)

Three fitting parameters are included in the function. Among them, α and
D are almost independent of the incident energy, and C is the normalization
constant depending on the incident energy. In Fig. 5.29, we fit the SDCS of
N2 at E0 = 100 eV with

q(E0 = 100 eV) =
17.3

1 + (E2/13)2
× 10−18 cm2 eV−1. (5.51)

Here E2 is expressed in eV. The fitting is good for the secondary electron
energies below about 30 eV.

Bolorizadeh and Rudd [15] measured the energy and angular distribution
of the ejected electrons for H2O. Their measurements were done with the
incident electron energies 50–2,000 eV. At 500 eV, their result agrees with the
measurement by Opal et al. [127]. In Fig. 5.30, we show the SDCS obtained
by Bolorizadeh and Rudd at the incident electron energies of 50, 100, and
200 eV. In each curve, the part on the right side of the minimum is the energy
distribution of the corresponding primary electrons.

Finally we should mention the energy loss of the incident electron in the
ionizing collision. By definition, the energy loss is given by

(ΔE)ion = E0 − E1 = Ip + E2. (5.52)
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The energy loss is not a constant value, but continuously distributed according
to the function q(E0, E2). If we observe an electron energy loss spectrum
(EELS), the contribution of ionization appears as a broad peak. The shape of
the peak depends on the incident energy. The mean energy loss is calculated as

〈(ΔE)ion〉 =
1

Qion

∫ Ex/2

0

dE2 (Ip + E2) q(E0, E2)

= Ip +
1

Qion

∫ Ex/2

0

dE2 E2 q(E0, E2). (5.53)

5.8 Electron Attachment

Some (not all) atoms and molecules can bind one more electron to form a
negative ion. Those atoms and molecules are said to have a positive elec-
tron affinity (EA). In electron–molecule collisions, there are three different
processes of electron attachment:

1. Radiative attachment

e + AB → AB− + hν.

2. Three-body attachment

e + AB + M → AB− + M.

3. Dissociative attachment (DA)

e + AB → A + B−.
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Since the radiative attachment has a very small cross-section, we describe here
only the other two processes.

Negative ions play particular roles in molecular plasmas. In the lower
region (below about 90 km) of Earth’s ionosphere, most of the ions are nega-
tive ones. Atmospheric pollution involves a complicated scheme of negative ion
reactions. Electron-attaching gas (e.g., SF6) is commonly used as an insulator
in high-voltage technology. An electronegative plasma is a source of negative
ion beams, which are then converted into beams of neutral particles. The
presence of negative ions alters the discharge operation. The dominance of
negative ions much distorts the electron energy distribution and particularly
the structure of plasma sheath. Thus, it is a fundamental issue to know what
kind of, and how many, negative ions are present in the molecular plasma
considered. Electron attachment has been reviewed many times (for exam-
ple, [27, 72]).

5.8.1 Dissociative Attachment

Dissociative attachment is a kind of resonance process. It proceeds through a
(doubly) excited state of the negative molecular ion in such a way as

e + AB → (AB−)∗∗ → A + B−.

One typical example of the potential diagram for a DA process is illustrated in
Fig. 5.31. In this case the negative ion state is repulsive and crosses the ground
state of the neutral molecule at the internuclear distance R = Rx. When R
is smaller than Rx, the negative ion is unstable against the autodetachment
of electron (i.e., AB− → AB +e). Once R exceeds Rx, the dissociation to
A + B− occurs automatically. When the neutral molecule AB is initially in its
vibrationally ground state, the attachment takes place only for the electron

Fig. 5.31. Potential diagram of a diatomic molecule for the mechanism of dissocia-
tive attachment, reproduced from [100]
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energies in the region from Ethr to E ′
thr. The width of the energy range depends

on the steepness of the repulsive potential curve. Sometimes the dissociative
attachment has a finite value of cross-section only in a very narrow range of
electron energy. When the negative ion state has an attractive potential, DA
can occur through the excitation to the vibrational continuum of the negative
ion (i.e., the state located above the dissociation limit of AB−).

A measurement of the DA cross-section is rather easy. It is suffice to detect
negative ions. As in the case of positive ion production (see Sect. 5.7), we
have two kinds of cross-sections: partial and total. The partial cross-section is
defined for the production of a specific negative ion. The total cross-section
is the sum of all the partial ones. To obtain partial cross-sections, an identi-
fication of the product ion has to be made spectrometrically. The total cross-
section can be independently determined by the measurement of the negative
ion current. Since no multiply charged negative ions are produced in electron–
molecule collisions, we have no counting cross-section in this case. When one
evaluates the quality of the experimental data on the DA cross-section, care
should be taken particularly about the following points. First, as is in other
cases of resonance, cross-sections may have fine structure as a function of
electron energy. Any beam-type experiment should be made with energy res-
olution high enough to resolve the structure. Secondly, the product negative
ion, particularly light one (e.g., H−), often has a significant speed. In that
case, one should be careful to have all the product ions detected. Otherwise
the resulting cross-section may be too small.

As an example, we show in Fig. 5.32 the DA cross-sections for H2O. When
an electron collides with H2O, three different negative ions (H−, O−, and
OH−) are produced. In the figure, the DA cross-section is shown separately
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for the production of each ion. These are the recommended values reported in
a compilation by Itikawa [79]. They are the result of a beam-type experiment.
DA cross-sections are also obtained with a swarm method. A small amount of
the electron-attaching gas is added in an ordinary swarm experiment. From
the measurement of the effect of the attachment process on the electron cur-
rent, the DA cross-section is derived. With this method, only the total DA
cross-section is determined. Figure 5.33 gives the cross-section for HCl recom-
mended by Itikawa [79]. That was originally obtained with a swarm method
by Petrović et al. [129]. From HCl, we can have two different negative ions:
H− and Cl−. Because of a large EA, Cl− can appear at very low collision
energies of electrons. The cross-section shown in Fig. 5.33 must correspond to
the production of Cl− (see [79]). DA cross-sections for other molecules can be
found in Itikawa’s compilation [79].

Dissociative electron attachment has a special practical importance. The
threshold energy of DA is lower than that of ordinary dissociation by the
amount of the binding energy of the negative ion (i.e., electron affinity). That
is, the threshold of DA is given by

ΔE(AB → A + B−) = D(AB → A + B) − Eaff(B → B−). (5.54)

Here D and Eaff are the dissociation energy and the electron affinity, respec-
tively. If EA of B is sufficiently large, DA can occur even at zero-energy
of electrons. In the case of CCl4 → Cl−, for example, we have D(CCl4 →
CCl3 + Cl) = 3.17 eV and Eaff(Cl) = 3.61 eV. Then the threshold of DA is
−0.44 eV (see [72]). Reflecting this fact, the DA cross-section for CCl4 →
CCl3 + Cl− increases with decreasing energy and reaches 4.6× 10−13 cm2 at
0.001 eV (see [79]). Thus molecules can be dissociated at relatively low colli-
sion energies, if a dissociative attachment is possible. Since a large fragment
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molecule has a possibility to have a large EA, the dissociation via DA is a hot
issue in the study of electron collisions with large biomolecules.

5.8.2 Three-Body Attachment

When a molecule AB itself has a positive EA, a negative ion of the parent
molecule, AB−, can be formed. In principle, a two-body collision, e + AB,
cannot produce AB−, because the conservation of energy and momentum
is violated. (For an exceptional case, see Sect. 5.8.3.) But if a third body
is participated in the collision and takes away the excess energy from the
colliding two-body system, the product AB− is stabilized to appear. The rate
of the electron attachment is proportional to the number density of the third
body, M, as

k3-att = κ(3) N [M]. (5.55)

At room temperature, κ(3) has a value of ∼ 10−31 cm6 s−1 (see [72]). When
we consider a gas with the standard temperature and pressure (i.e., N ∼
1019 cm−3), the rate coefficient for the three-body attachment is given by

k3-att ∼ 10−12 cm3 s−1. (5.56)

This is rather small compared with the rate coefficient for other collision
processes (see Appendix A). It should be noted, however, this is the only
effective process to produce a negative ion of the parent molecule (but see
Sect. 5.8.3).

5.8.3 Metastable Negative Ion

In some cases of large polyatomic molecules, an incoming electron can be
captured with no third body present. Such molecules have a large number
of normal modes of vibration. The energy gained by the attachment of elec-
tron is spent on the excitation of those vibrational motions. The energy is
distributed widely over the vibrational modes, so that it is difficult to recover
the energy to return to the state before the collision (i.e., detachment of elec-
tron). The resulting negative ion of the parent molecule is not stable, but
has a rather long lifetime. Two examples are SF6 and C6F6. The lifetimes of
the negative ions SF−

6 and C6F−
6 are 1× 10−5 and 1.3× 10−5 s, respectively

(see [72]). In an ordinary system of experiment, those negative ions survive to
detect. Figure 5.34 shows the attachment cross-section for SF6 recommended
by Christophorou and Olthoff [25]. Note that the cross-section increases with
decreasing energy. The data are mainly based on the experiment by Hotop
and his group [92] with an electron beam produced by a laser photoioniza-
tion of rare gas atoms. By tuning the photon energy to be slightly above the
ionization threshold, they succeeded to have a very low-energy electron beam
with a high resolution of energy.
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5.9 Emission

When molecules are excited, many of them emit radiation to decay to the
lower states. The process is schematically expressed as

e + AB(0) → e + AB∗(n)

followed by
AB∗(n) → AB∗(m) + hν(λnm),

where the molecule is assumed to be in the ground state (denoted by 0) before
the collision. The state m is not necessarily the ground state. The wavelength
of the emitted radiation is related to the energies of the initial and final states
of the transition

λnm =
h c

En − Em
. (5.57)

We introduce an emission cross-section, Qemis, which is defined for the emis-
sion of radiation upon collision with electrons.

Emission of radiation from a plasma is one of the main mechanisms of
energy loss (i.e., cooling) of the plasma. It plays an important role in the
energy balance of the plasma. Emission is also important in the diagnostics
of a plasma [39]. Detection of radiation with a specific wavelength implies the
presence of a specific atom or molecule. The spectrum of the radiation provides
us with the information of the emission mechanism. From the spectroscopic
measurement, we obtain the data on the plasma parameters, such as density
and temperature. The knowledge of collisional emission is fundamental in the
analysis of emissions from a plasma.
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Since the detection of radiation is rather easy, Qemis has been measured
many times. Many of early measurements of cross-sections were done with
this method. Emission measurement has several difficulties, however, to obtain
reliable quantitative data. First it is not easy to determine the absolute mag-
nitude of the intensity of radiation. The standard method is to normalize the
measured intensity with an emission source of known intensity. The resulting
cross-section relies on the quality of the standard source used. In principle, we
should detect all the radiation of the specific wavelength emitted. We need to
correct the loss of the radiation, if any, between the emitter and the detector.
Detection of radiation is made from one direction (often at the right angle
to the direction of the incident electron beam). If the emission is anisotropic,
we need a correction for that. An emission of radiation from a molecule is
not an instantaneous process. It has a short, but finite, lifetime. The detector
may miss the radiation, if the emitter moves fast (e.g., an emission from a
dissociation fragment). Considering these difficulties, the experimental data
on Qemis (particularly old ones) need a careful scrutiny.

To see the magnitude of the emission cross-section, we show in Fig. 5.35
the Qemis for the electron collision with N2. Each cross-section is specified by
the transition

(n, v(n)) → (m, v(m))

and the wavelength of the radiation. Spectroscopically it is possible to resolve
rotational states. When dealing with the emission cross-section, however, we
simply ignore the rotational states. The state energies En and Em in (5.57)
are meant to include the respective vibrational energies. Figure 5.35 shows
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three strong emissions from N2 (and one from N+
2 , which is discussed later).

They are:

1. c′4
1Σ+

u → X 1Σ+
g (0,0) band at 95.8 nm

2. a 1Πg → X 1Σ+
g (3,0) band at 135.4 nm

3. C 3Πu → B 3Πg (0,0) band at 337.1 nm

The numbers in the brackets are (v(n), v(m)). Those cross-sections are taken
from the data compilation for the process e + N2 by Itikawa [83]. There are
many other emissions reported for N2, but their cross-sections are small (of
the order of 10−19 cm2 or less) (see [83]).

We have a close relation between the Qemis and Qexc. There are two dif-
ferent ways of the emission of radiation of a certain wavelength λnm:

(a) Direct excitation

e + AB(0,0) → e + AB∗(n, v(n))

followed by

AB∗(n, v(n)) → AB∗(m, v(m)) + hν(λnm).

(b) Cascade
e + AB(0,0) → e + AB∗(p, v(p))

followed first by

AB∗(p, v(p)) → AB∗(n, v(n)) + hν(λpn)

and then by

AB∗(n, v(n)) → AB∗(m, v(m)) + hν(λnm).

The state p is one of those states which are located above the state n and
connected to n with a dipole-allowed transition. The emission cross-section is
given by

Qemis(λnm) =
Anm(v(n), v(m))

An(v(n))
Qapp(n, v(n)), (5.58)

where Qapp is the so-called apparent cross-section and defined by

Qapp(n, v(n)) = Q(0, 0 → n, v(n)) + Qcascade(n, v(n)), (5.59)

with

Qcascade(n, v(n)) =
∑

p

∑
v(p)

Apn(v(p), v(n))
Ap(v(p))

Q(0, 0 → p, v(p)). (5.60)

In the above equations, Anm(v(n), v(m)) is the transition probability for
(n, v(n)) → (m, v(m)) and An(v(n)) is the sum of Anm(v(n), v(m)) over all
possible states (m) below n, i.e.,
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An(v(n)) =
∑
s<n

∑
v(s)

Ans(v(n), v(s)). (5.61)

If we can ignore the cascade contribution in (5.59), we have

Qemis(λnm) =
Anm(v(n), v(m))

An(v(n))
Q(0, 0 → n, v(n)). (5.62)

With the Franck–Condon factor approximation (see (5.42)), we can derive
Qexc from Qemis in such a way as

Qexc(0 → n) =
(

Anm(v(n), v(m))
An(v(n))

F 0n
0,v(n)

)−1

Qemis(λnm). (5.63)

One example is shown in Fig. 5.36. In the figure, two sets of Qexc for the C
3Πu state of N2 are compared with each other. One is Qexc derived from the
measurement of radiation C 3Πu → B 3Πg (shown in Fig. 5.35), with the rela-
tion (5.63) (i.e., under the assumption of no cascade contribution). The other
is the cross-section recommended by Itikawa [83], who determined that from
the measurements of EELS. The agreement between the two is good. The
difference in the peak region arises probably from the uncertainties of the two
experiments (see [83]). Another example is shown in Figs. 5.21 and 5.22. In
those figures, the Qexc deduced from the emission measurement is compared
with the result of an EELS measurement. In that case the cascade effects were
carefully taken into account in the derivation of the excitation cross-section.
(See, for the emission measurement, [104].) Again the agreement of the two
sets of cross-sections is very good. One of the advantages of the emission mea-
surement is that the experiment is easily done over a wide range of collision
energy.
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When an electron collides with a molecule, radiation can be emitted simul-
taneously with ionization or dissociation. It means that the product of ioniza-
tion or dissociation emits radiation. One example is an emission accompanied
by ionization of N2

e + N2(X) → e + N+
2 (B 2Σ+

u ) + e

followed by
N+

2 (B) → N+
2 (X 2Σ+

g ) + hν.

The Qemis for the (0,0) band of this transition at 391.4 nm is shown in Fig. 5.35.
This emission is rather intense and one of the main features of the aurora (see
Sect. 2.1).

An example of emission from a dissociation fragment is given in Fig. 5.37.
This is the emission following dissociation of methane:

(1)
e + CH4 → H(n)

followed by

H(n = 3) → H(n = 2) + hν (656.28 nm) (Hα )

and
H(n = 4) → H(n = 2) + hν (486.13 nm) (Hβ )

and
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(2)
e + CH4 → CH(A 2Δ)

followed by

CH(A 2Δ) → CH(X 2Π) + hν (420–440 nm).

The experiment was done by Motohashi et al. [116]. Since these radiations are
in the visible range of wavelength, they are useful for the diagnostics of CH4

plasma. From the emission measurement alone, it is impossible to know the
fragmentation pattern. For example, the dissociation partner of CH (A) may
be H2 + H or 3H or their ions. Motohashi et al. studied the fragmentation
scheme with the detailed measurement of the appearance potentials of each
emission.

5.10 Dissociation

Dissociation is a process specifically associated with a molecular target. It is
of practical importance, because most of the dissociation products are active
species (e.g., radicals) and have a considerable kinetic energy. Dissociation
of a molecule is a transition to the continuum state of energy of molecular
vibration. When an electron collides with a molecule in its electronically and
vibrationally ground state, AB(X, v(X) = 0), different schemes of dissociation
are possible:

(1) Transition to the vibrational continuum of the electronically ground state

AB → AB(X, v(X)=continuum)

(2) Transition to the vibrational continuum of an electronically excited state

AB → AB∗(n, v(n)=continuum)

(3) Transition to a repulsive electronically excited state

AB → AB∗(repulsive)

(4) Predissociation through the coupling of bound and repulsive excited states

AB → AB∗(p, v(p))
→ AB∗(repulsive)

(5) Two-step process through the radiative decay of the excited state

AB → AB∗(p, v(p))
→ AB∗(n, v(n) = continuum) + hν
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Here the excited molecule AB* is assumed to include a molecular ion in its
excited state, AB+∗. Process (1) is an extension of the vibrational excitation
of a molecule in its electronically ground state. It has a small cross-section.
Since the radiative transition needs a finite time (≈ 10−8 s), process (5) is very
slow compared with other processes. In most textbooks, it is not regarded as
a collisional dissociation. But it plays an important role in the production
of radical fragments. In the present section, we deal only with the processes
(2)–(4) and a mix of them.

Some of the dissociation fragments have a (positive or negative) charge.
The charged particles are easy to detect and separately treated in other
sections (dissociative ionization in Sect. 5.7 and dissociative attachment in
Sect. 5.8). The subject of the present section is, therefore, concentrated on the
production of neutral species, particularly those in the ground or metastable
state. Figure 5.38 shows a general feature of dissociation. A comparison is
shown there for

e + H2O → H+ + OH + 2e
H− + OH
H + OH + e.

The corresponding cross-sections are taken from a review of Itikawa and
Mason [81]. Dissociative ionization has a higher threshold. Dissociative attach-
ment takes place in a limited range of electron energy and normally has a
small cross-section. As is stated below, it is difficult to detect neutral frag-
ments. The process shown in the figure (i.e., H2O→H +OH) is one of the
exceptional cases for which experimental cross-section is available.

There is no standard method of detection of neutral particles, except for a
detection of emission from excited particles. (Dissociative emission is not the
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subject of this section but dealt with in Sect. 5.9.) Various attempts, depend-
ing on the processes, have been made to experimentally obtain the dissociation
cross-section for neutral products. Several of them, particularly those having
a possibility of wide applications, are described below:

(A) Measurement of total dissociation cross-section
A total dissociation cross-section is defined here as the sum of the cross-
sections for the ionic and neutral products. The cross-section for the
production of neutral fragments is denoted by “neutral dissociation cross-
section”. Consider an experiment where an electron beam is injected into
a box filled with molecules to dissociate. If a special metal or metallic
compound is chosen as the surface of the box, the dissociation fragments
(being active) are adsorbed on the surface. Then the gaseous pressure in
the box is reduced. By the measurement of the pressure change, we can
deduce the total dissociation cross-section. Subtracting the ionic contri-
bution from the result, we can determine the neutral dissociation cross-
section. Two examples are shown in Figs. 5.39 (H2) and 5.40 (N2).
Corrigan [29] obtained the dissociation cross-section for H2. He deter-
mined the cross-section (shown in Fig. 5.39) by the measurement of pres-
sure decrease in a closed system where the dissociation fragments are
trapped on a getter (MoO3) surface. He claimed that his result includes
ionization cross-section. Yoon et al. [167] subtracted their recommended
values of ionization cross-section from the Corrigan’s original result to
obtain the contribution of neutral fragments. The result is also plotted
in Fig. 5.39. A similar experiment was done by Winters [165] for N2.
He measured the pressure decrease by the adsorption of the dissociation
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fragments on a metallic surface. He derived the dissociation cross-section
of N2, but, as he reported, the result includes the cross-section for the dis-
sociative ionization of N2. We subtract the dissociative ionization cross-
section from the result of Winters. The resulting values are plotted in
Fig. 5.40. Winters and his colleagues applied the same method to the
measurement of dissociation cross-section for several hydrocarbon and
fluoroalkane molecules (see the recent paper on C2F6 and references
therein [45]).

(B) Measurement of energy loss spectrum
A dissociation process appears as a broad peak in an electron energy
loss spectrum (EELS). If it is certain that no other peaks overlap with
the broad peak, we can derive dissociation cross-section from the mea-
surement of EELS. This is the case of the excitation of b 3Σ+

u state of
H2. The b state is repulsive (i.e., process (3) in the above list). Yoon et
al. [167] confirmed that the Qexc obtained from an EELS measurement
for the b 3Σ+

u state agrees with the neutral dissociation cross-section
obtained by Corrigan (see Fig. 5.39) in the energy range below the peak.
In the energy region above the peak, some highly excited states also have
a contribution to the dissociation.
From all the inelastic peaks in an EELS, we can determine a total inelastic
cross-section, Qtot.inel, defined by

Qtot.inel = Qion + Qdis +
∑

Qexc. (5.64)

If we know the total cross-section for the ionization, Qion, and the sum
of all the excitation cross-section, Qexc, then we can derive the neutral
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dissociation cross-section, Qdis, from Qtot.inel. This is the principle taken
by Mi and Bonham [111] when they determined the dissociation cross-
section of N2. Their result is shown in Fig. 5.40. They obtained the cross-
section only at two points of energy. Their cross-sections agree well with
other data. It should be noted that, in this case, rather detailed data
were available for Qexc. The same authors applied the technique to the
electron collision with CF4 [112]. In the case of CF4, it is known that
all the excitations of electronic state lead to dissociation. Hence Qexc in
(5.64) can be ignored.

(C) Detection of fast neutral particles
If having a sufficient kinetic energy, even a neutral particle can be
detected. Cosby [31] produced a fast N2 beam (3–5 keV) with a charge
exchange of N+

2 . With using an electron beam crossed with the fast N2

beam, he dissociated N2 into two nitrogen atoms. Since the product N
atoms almost keep the velocity of the N2 beam, they can be detected
with a detector sensitive to a high speed particle. Cosby measured the
two atoms in coincidence to confirm that they come from the dissocia-
tion of N2. Thus he obtained the neutral dissociation cross-section for
N2, which is also plotted in Fig. 5.40. The cross-section of Cosby agrees
with the cross-section measured by Winters (corrected with the ion con-
tribution) within the uncertainties of the two experiments. He applied
the same method to the dissociation of CO [30].

(D) Laser-induced fluorescence
With a laser of a proper wavelength, we can excite a neutral particle
(atom or molecule) to an excited state. The excited particle immediately
emits radiation to decay. With detecting the radiation, we can identify
the particle. The intensity of radiation is proportional to the number den-
sity of the emitting particles. This is the principle of the laser-induced
fluorescence (LIF). To determine the absolute value of the number den-
sity, we need to resort to some normalization procedure. Detecting OH
radicals in the ground state with the LIF, Harb et al. [60] determined
the dissociation cross-section for the process, H2O → H + OH(X). The
result is shown in Fig. 5.41 (and Fig. 5.38). Below the threshold of neu-
tral dissociation (→ H +OH), the dissociative attachment (→ H− + OH)
occurs. In that energy region, the absolute number of OH can be obtained
by a comparison to the DA cross-section, which is already known (see
Sect. 5.8). The resulting calibration of the apparatus can be used at other
energies.
Another example of the LIF method is the detection of Si(1S) from the
dissociation of SiH4. For the system, Abramzon et al. [2] did the experi-
ment and obtained a peak cross-section of 4.5× 10−17 cm2 at 60 eV. The
LIF method seems useful for any dissociation process, but we need a
laser with the wavelength corresponding to the excitation energy, and a
reliable normalization method.
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(E) Threshold ionization method
Another method to detect neutral particles is an ionization of them and
detection of the charged product. If the ionization cross-section is known,
an absolute number of the neutral particles can be determined with this
method. For example, we consider the following process

e + CH4 → CH3 + H + e.

We can detect CH3 by the electron-impact ionization

e + CH3 → CH+
3 + 2e.

If we know the ionization cross-section of the latter process, we can deter-
mine the number of CH3. In the present case, CH+

3 is also produced
from the ionization of CH4 (i.e., dissociative ionization). The threshold
of the dissociative ionization (14.3 eV) is above the ionization threshold
of CH3 (9.8 eV). If we tune the energy of the electron beam for the dis-
sociation to be below the threshold of the dissociative ionization, we can
exclude the CH+

3 from the parent molecule. This method was applied
by Makochekanwa et al. [105] to obtain the dissociation cross-section
for the process CH4 → CH3 + H. The result is shown in Fig. 5.42. It is
noted that the cross-section was made absolute without resorting to any
normalization procedure. The cross-section has peaks at around 9.6 and
11.5 eV. The authors concluded that these peaks are caused by the exci-
tation of different electronic states of CH4, which lead to the production
of CH3.
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5.11 Total Scattering Cross-Section

The total scattering cross-section is defined by

Qtot =
∑

s

Qs

= Qelas + Qion(tot) + Qdis(tot) +
∑
exc

Q, (5.65)

where the last term on the right-hand side means the sum of all the exci-
tation (i.e., rotational, vibrational, and electronic) cross-sections. Some of
the excitation processes are known to lead to dissociation. Those excitation
processes should be excluded in the summation of excitation cross-sections.
When an electron attachment process is possible, (total) attachment cross-
section should be included on the right-hand side of (5.65). But usually it has
a minor contribution. The Qtot can be measured directly with the beam atten-
uation method (see Sect. 3.5). Since the method is simple and rather easy to
perform, Qtot has been measured since 1930s. As a result, reasonably accurate
cross-sections are available over a wide range of energy (see the review and
compilation by Karwasz et al. [87]).

The importance of Qtot is twofold. First it serves as the upper limit of
cross-section of any process (except for the momentum–transfer cross-section).
If any cross-section exceeds the Qtot (after consideration of the respective
uncertainties), the experimental method to obtain the former cross-section
must be unreliable. One of the advantages of the beam attenuation method is
that the absolute value of the cross-section is directly obtained (i.e., without
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Table 5.4. Cross-section set for electron collisions with CH4 [86]

Energy Qelas Qvib Qexc Qion Qdis Summed Qtot

1.0 1.66 0.24 1.90 2.13

2.0 5.61 0.21 5.82 5.24

3.0 9.25 0.46 9.71 9.06

5.0 18.0 0.83 18.8 18.9

8.0 26.3 1.33 27.6 26.4

10 23.0 1.02 0.31 24.3 25.9

20 14.4 0.31 1.75 1.22 17.7 20.0

30 11.3 1.75 2.56 15.6 16.5

50 6.57 1.2 3.60 11.4 13.3

100 3.2 0.67 3.92 7.79 9.56

200 2.56 0.37 3.17 6.10 6.31

300 1.63 0.26 2.55 4.44 4.76

500 1.33 0.17 1.85 3.35 3.18

Energy is given in eV and cross-sections are in 10−16 cm2.

any normalization procedure). The total scattering cross-section, therefore,
is used to normalize other cross-sections. Secondly, when we have a set of
cross-sections for a specific molecule, the relation (5.65) is used to test the
consistency of the member cross-sections of the set. Such a test has been made
when the recommended cross-section sets in Appendix D were determined.
As is stated in Appendix E, Zecca and his group made an extensive data
compilation for a number of molecules. When possible, they summed their
selected cross-section values to compare with the available data on the Qtot.
One example of such a comparison is shown in Table 5.4. This is a set of
cross-sections for CH4. These cross-sections are taken from the table in the
data compilation of Zecca’s group [86] and shown only for illustration of the
comparison. They are not exactly the same as the corresponding cross-sections
presented in other places of the present chapter, but the difference is not
significant.

In the case of Table 5.4, the summed values of the individual cross-sections
agree well with the total scattering cross-section, except in the region 50–
100 eV. At 50 and 100 eV, the summed values are notably smaller than Qtot,
which, according to the compilation [86], may be ascribed to the underestimate
of the elastic cross-section.

An extensive data compilation of Qtot has been made by Karwasz
et al. [87]. After carefully evaluating the available data, they determined
the best values of Qtot for a large number of molecules. Figure 5.43, for
example, gives their Qtot for O2 and CF4. The cross-section for CF4 has a
sharp peak at around 9 eV. This arises from a resonance scattering. At the
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peak, Qtot for CF4 is much larger than the corresponding elastic cross-section
shown in Fig. 5.4. The difference comes from the vibrational excitation, which
has a large resonance cross-section at the same energy (see the review by
Christophorou et al. [24]). Figure 5.44 compares the Qtot for C2H4 and C2F4

measured by Szmytkowski et al. [151]. In the energy range above 100 eV, Qtot

for any molecule has a similar trend. It decreases with increasing energy. In
the lower energy range (i.e., < 100 eV), Qtot reflects the characteristics of each
molecule. The cross-section of C2H4 has a sharp peak at around 2 eV. This
may be due to a resonance. C2F4 has a larger number of electrons than C2H4.
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This may be reflected in the cross-section at the higher collision energies.
That is, the Qtot for C2F4 is larger than that for C2H4 in the high-energy
region. At the lower energies, the magnitude of Qtot seems to have no relation
to the number of molecular electrons.

The beam attenuation method directly determines the energy dependence
of the integral cross-section. It is suitable to study fine structure in the
energy dependence of the cross-section. One example is the detailed struc-
ture caused by a resonant scattering. Figure 5.45 shows the Qtot of N2 in the
resonance region (1–5 eV). This is a part of the cross-section recommended
by Itikawa [83]. The cross-section was originally determined by Kennerly [88]
with a beam attenuation experiment. The corresponding cross-sections for
the elastic scattering and the rotational and vibrational excitations are shown
in the respective sections (i.e., Qelas in Fig. 5.1, Qrot in Fig. 5.9, and Qvib in
Fig. 5.18). The mechanism of the structure formation is described in Sect. 5.5
in relation to the vibrational cross-section.

5.12 Stopping Cross-Section

Stopping cross-section, defined below, gives a measure of energy transfer dur-
ing a collision, in the same way as the momentum–transfer cross-section gives
a measure of momentum–transfer. The stopping cross-section is defined by

S(E) = ΔE Q(E), (5.66)

where ΔE is the energy transferred to the target molecule and Q(E) is the
corresponding cross-section. For ionization, we have to take into account the
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secondary electron, which takes away an energy E2 (see Sect. 5.7). The stop-
ping cross-section for ionization is given by

Sion(E) =
∫ Ex/2

0

dE2 (Ip + E2) q(E, E2), (5.67)

where q(E, E2) is the energy distribution of the secondary electrons (i.e.,
the singly differential cross-section for the ionization), Ip is the ionization
potential of the molecule, and Ex = E − Ip. In the case of elastic scattering,
the energy transfer is given by (3.76) in Sect. 3.4. Then the stopping cross-
section is written as

Selas(E) =
2me

M
E Qm(E), (5.68)

where Qm is the (elastic) momentum–transfer cross-section defined in
Sect. 5.3.

Using the stopping cross-section, the mean energy loss of an electron per
unit path-length in the molecular gas is given by

−dE

dx
=

∑
N S(E), (5.69)

where N is the number density of the gaseous molecule and the summation is
taken over all the possible collision processes. This is also called the stopping
power of the gas, leading to the name of the quantity S. It should be noted
that the stopping cross-section is not the ordinary cross-section introduced in
Sect. 3.1. It has the dimension of energy times area.

When the target molecule is in its excited state, a deexcitation process
can occur. In that case ΔE should be negative. Molecules are populated in
rotationally excited states even at room temperature. The stopping cross-
section for rotational transition is thus calculated by

Srot =
∑
J0

∑
J

FJ0 ΔE(J0 → J)Qrot(J0 → J), (5.70)

where FJ0 is the fraction of the molecule in the rotational state J0.
We show examples of stopping cross-sections in Figs. 5.46 (N2) and 5.47

(H2O). Above the threshold of the excitation of the lowest electronically
excited state (called the first excitation threshold), the stopping cross-section
is governed by the excitation of electronic states. (In the higher energy region,
ionization also has a significant contribution.)

Here we show the energy region below the first excitation threshold, where
electron–molecule collisions have a special feature (see below). Figures 5.46
and 5.47 show the stopping cross-sections for elastic scattering, and rotational
and vibrational excitations. To show an example of electronic state excita-
tion, the stopping cross-sections for the excitation of the lowest excited states
(A 3Σ+

u state for N2 and 1 3B1 state of H2O) are also presented there. All
the stopping cross-sections shown in the figures have been calculated with the
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recommended values of the relevant cross-sections (see [83] for N2 and [81] for
H2O). In Fig. 5.47, vibrational cross-sections for H2O are shown separately
for the bending mode (vib2) and the sum of stretching modes (vib13). Since
no experimental data are available for the excitation of 1 3B1 state of H2O,
theoretical values have been adopted for them [56]. From these two figures,
we draw the following conclusions:

1. In the case of electron–molecule collisions, the stopping cross-sections
below the first excitation threshold are dominated by the rotational and
vibrational excitations. The contribution of elastic scattering is negligibly
small (except in the very low-energy region below the threshold of rota-
tional excitation, which is not shown here). Accordingly electrons lose a
significant amount of their energy even when the energy is very low (say,
much less than 1 eV). This is in clear contrast to the case of atomic targets.

2. In the case of polar molecules, the contribution of rotational transition
is very large to the electron energy loss. It even increases with decreas-
ing electron energy. Once in its rotationally excited state, a polar mole-
cule emits microwave radiation to decay to the lower state. This means
that a gas of polar molecules is very effective for cooling low-energy
electrons.

5.13 Collisions with Excited Molecules

Most of the experiments for electron–molecule collisions are carried out at
room temperature. It is implicitly assumed that the target molecules are in
their ground state of energy. All of the previous sections in this chapter deal
with the electron collisions with molecules in ground state (except for rota-
tional states), although not necessarily say so. In a real plasma, however,
we often have a considerable number of molecules in their excited states. In
that case, we need information of the electron collisions with those excited
molecules.

Consider a collision process

e + AB(1) → e + AB(2)

and its reverse one
e + AB(2) → e + AB(1).

We have the following relation of the cross-sections for the two processes

g1 E Q(1 → 2|E) = g2 E′ Q(2 → 1|E′). (5.71)

Here g1 and g2 are the statistical weights of the initial (1) and the final (2)
states, respectively, and E and E′ are the electron energies before and after the
collision of the process 1 → 2. We have a relation E = E′ + ΔE(1 → 2), where
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ΔE(1 → 2) is the transition energy of the process 1 → 2. The relation (5.71)
is called “the principle of detailed balancing”. Once we have the cross-section
for the excitation process, 1 → 2, then we can evaluate the cross-section for
the deexcitation process, 2 → 1, from the relation (5.71). This is one simple
way to obtain cross-sections for the excited targets.

In a plasma we have two ways of production of excited molecules: thermal
excitation and electron-impact excitation. When a molecular gas is in thermal
equilibrium, the energy state of the molecule is distributed according to the
Maxwell–Boltzmann distribution function. If the excitation energy of the low-
est excited state is large compared with the thermal energy (i.e., kBTgas), only
the ground state is populated. At room temperature, therefore, molecules are
almost in the vibrationally and electronically ground states. However, rota-
tional states are widely distributed even at room temperature (see Sect. 4.1).
Furthermore, it is usually impossible to experimentally resolve each rotational
state. Any cross-section measured should be regarded as an average over the
rotational states

〈Q〉 =
∑
J0

FJ0 QJ0 , (5.72)

where QJ0 is the cross-section for the target molecule in its rotational state
J0, the fraction of which is given by FJ0 . The fraction is a function of the gas
temperature. In this sense, any cross-section measured depends on Tgas. No
information of the J0 dependence of a cross-section is available, except for the
dissociative attachment (which is discussed later). Most of the processes in the
electron–molecule collision are believed to depend slightly on the rotational
state of the target.

When the gas temperature increases, vibrational states are also thermally
excited. Collisions with the vibrationally excited molecules are of particular
importance for polyatomic molecules. Large polyatomic molecules often have
vibrational modes with small excitation energy. Those modes are excited even
at room temperature (see Table 4.2). Upon excitation, some vibrational modes
of polyatomic molecules significantly change the nuclear configuration from
that of the ground state. Simply saying, the shape of the molecule is changed
by the vibrational excitation. In such cases, collision mechanism might be dif-
ferent for the targets in excited state and those in ground one. One of the
experimental evidence is shown in Fig. 5.48. Ferch et al. [44] measured the
total scattering cross-section for CO2 at two values of Tgas (250 and 520 K).
At 250 K almost all the molecules are in the vibrationally ground state. At
520 K, 69% of CO2 is in the ground state, but 27% is in the first excited state
of bending vibration (its excitation energy being 82.8 meV). The remaining
(a few percentage) molecules are in the excited states of other modes. From
the analysis of their experimental result, Ferch et al. derived the total scat-
tering cross-section for the ground state, Qtot(g), and that for the excited
state, Qtot(v). Figure 5.48 shows them. Over the energy range considered, the
Qtot(v) is larger than Qtot(g). This may be simply due to the difference in
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the electrostatic interaction, caused by the change in the molecular shape.
The peak position of the shape resonance is shifted by about 0.3 eV. Shape
resonance is sensitive to the symmetry of the collision system. The difference
in the resonance peaks may arise from the change in the symmetry.

Electron impact itself can excite molecules. In a plasma, we usually have a
condition that electron temperature is much higher than the gas temperature.
As long as the power supply from outside continues, electrons keep exciting
molecules. Most of the excited molecules emit radiation to decay to the ground
state, or dissociate. Some of the excited molecules (called metastable ones)
have a long lifetime. One example is the electronic state A 3Σ+

u of N2. It has
a lifetime of 1.9 s. Armentrout et al. [7] made an experiment of an electron
collision with N2(A 3Σ+

u ). They produced the metastable molecule by a charge
exchange collision between N+

2 and NO. About half of the N2 produced were
in the metastable state. Then they hit an electron beam to the resulting N2

to ionize them. They obtained the ionization cross-section for

e + N∗
2(A) → N+

2 + 2e .

The resulting cross-section is shown in Fig. 5.49. In the figure, the ionization
cross-section for the production of N+

2 from the ground-state nitrogen is also
shown (see Fig. 5.26). The ionization threshold is decreased for N∗

2(A) by its
internal energy. The absolute magnitude of the ionization cross-section for
N∗

2(A) is much smaller than that for the ground state. This difference may be
ascribed to the change in the molecular orbitals participating in the ionization
process.
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When electrons excite vibrations of IR-active mode, the excited molecules
immediately emit IR radiation to decay to the ground state. When the vibra-
tion is not IR-active (e.g., in the case of homonuclear diatomic molecules), the
vibrationally excited molecules have a long lifetime. Electron collisions with
those excited molecules are expected to play significant roles in a molecular
plasma. At least at present, however, no experimental data are available for
the process (except for those shown in Fig. 5.48).

Finally we show one special process which is known to depend strongly on
the internal state of the molecule. It is the dissociative electron attachment
(DA) (see Sect. 5.8 for the general feature of DA). One typical case is the
electron collision with a hydrogen molecule:

e + H2(v) → H− + H.

Allan and Wong [4] measured the yield of the negative ion with varying the
temperature of the hydrogen gas from 300 to 1,600 K. With increasing tem-
perature, the ion yield increased enormously, when the electron energy was
in the range of 1–5 eV. They attributed this enhancement of ion yield to the
vibrational excitation of the hydrogen molecules (and rotational excitations to
some extent). From the analysis of their experimental result, Allan and Wong
derived the relative magnitudes of the DA cross-sections over the vibrational
states from v = 0 to 4. The ratio of the DA cross-sections for the molecule in
v = 4 to v = 0 was found to be as much as 4× 104. It is not easy, however,
to experimentally determine the absolute value of the DA cross-section for
each vibrational state. On the other hand, there have been many theoretical
attempts to obtain the cross-section. Figure 5.50 shows the result of one such
calculation by Horáček et al. [69]. They reported a similar dependence of the
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DA cross-sections on the rotational states. But the rotational states have a
much less effect than the vibrational ones. They claimed that, using their
theoretical result, they could reproduce the temperature dependence of the
ion yield observed by Allan and Wong. However, the individual cross-sections
shown in Fig. 5.50 have never been confirmed by experiment. When H2 is
vibrationally excited, the internuclear distance has more probability of hav-
ing a large value. Then the resonance (negative ion) state has a larger chance
of dissociation to produce H− (see the potential diagram in Fig. 5.31). This
is a simple qualitative argument for the enhancement of the DA cross-section
for high vibrational states of initial molecule. This enhancement of the DA
cross-section is now being used for the construction of an efficient H− source.
An electron attachment to other excited molecules is summarized in a review
by Christophorou and Olthoff [26].



6

Ion Collisions with Molecules

6.1 Characteristics of Ion Collisions Compared
with Electron Collisions

The most prominent characteristic of an ion is that its mass is much larger
than the electron mass. Under the same electric field, the ion is much less
accelerated than the electron. An ion loses a large fraction of its energy at
a collision with neutral molecules, even in an elastic collision. Thus the ions
in a molecular plasma do not much deviate from the thermal equilibrium
with the neutral molecules, unless the applied field is too strong. This means
that the mean energy (i.e., the temperature) of ions is often close to the gas
temperature. According to the estimate by Phelps [134], the ion temperature
is less than 10 eV, unless the reduced electric field, E/N , exceeds 103 Td (1 Td
= 10−17 V cm2). In the present chapter, we mostly deal with the ion–molecule
collisions at the ion energies below about 10 eV.

Another characteristic of an ion is the availability of a wide range of species.
This is in contrast to the case of electrons (i.e., only one species of electron
being available). Most of the ions in a molecular plasma are produced by
the electron collisions with molecules. According to Sect. 5.7, an ionization
process of AB gives not only the parent molecule ion, AB+, but also dissoci-
ation products A+ or B+ or both. High-energy electrons, if any, can produce
multiply charged ions (A2+, etc.). Multiply charged molecular ions (AB2+,
etc.) are also possible. But most of them are unstable or metastable and have
a finite lifetime. An electron attachment process (Sect. 5.8) results in nega-
tive ions (AB−, A−, etc.). For such processes to occur, the relevant molecules
or atoms must have a positive electron affinity. The specific importance of
those negative ions is discussed in Sect. 5.8 in relation to the process of elec-
tron attachment.

One of the particular features of the ion–molecule collision is its ability of
transformation of one species of ion into another species. It is possible through
a charge-transfer (charge-changing) collision or a rearrangement one. Because
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of the presence of these processes, we have to consider a wider range of ions
than those we expect from the constituent molecules of a plasma. For example,
as is shown later, we have to consider H+

3 , in addition to H+
2 and H+, in a

H2-plasma.
In the present chapter, we separate the ion–molecule collisions into three

categories:

1. Momentum–transfer collision
2. Inelastic collision with no change of the incident ion
3. Rearrangement (including charge changing) collision

Each category is described in the following three sections, respectively. The
categories (1) and (2) are essentially the same as those in the case of electron–
molecule collisions. The category (3) is specific to the ion collisions. For the
purpose of illustration, only the collision with positive ions are considered
in the following. Very similar processes, however, are possible also for nega-
tive ions.

When we consider cross-sections for ion–molecule collisions, we should
be careful particularly about the following two points: the definition of the
collision energy and the details of the collision products. Unlike in the case of
electron collisions, we have to specify the frame of reference where we consider
the collision system. The collision energy in the laboratory frame is different
from the relative energy (or the energy in the center of mass (CM) frame)
(see Sect. 3.4). For a collision between Particle 1 (with mass m1) and Particle
2 (with mass m2), the relative energy or the energy in the CM frame, is
obtained as

ECM =
1
2
μ12v

2, (6.1)

where v is the relative velocity between the two particles and μ12 =
m1m2/(m1 + m2) is the reduced mass. The laboratory energy, Elab, depends
on the laboratory system. Here we consider the system where a beam of
particle (Particle 1) collides with a fixed target (Particle 2). The laboratory
energy is given by

Elab =
1
2
m1v

2
1 , (6.2)

where v1 is the velocity of Particle 1 (projectile). In this particular case of
laboratory system, we have v = v1 and hence

ECM =
m2

m1 + m2
Elab. (6.3)

The CM energy is more important in understanding the physics involved. The
laboratory energy is more suitable to express experimental results. Whenever
we see cross-section data, we should note which energy is used to specify the
data. (In the case of electron collisions with molecules, we have m1 � m2

and hence no significant difference between ECM and Elab.)
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Another point to be noted is the collision product. Take a simple system
for illustration. When a molecular ion A+

2 collides with a molecule B2, we have

A+
2 + B2 →

A2B+ + B (a)
AB+

2 + A (b)
AB+ + AB (c)
A+

2 + B2 (d)
A+

2 + B+
2 + e (e)

A2 + B+
2 (f)

A+
2 + B + B (g)

A + A + B+
2 (h)

A+ + A + B2 (i)
A2 + B+ + B (j)

Here any collision product can be in its excited state, although it is not shown
explicitly. Then Process (d) means a simple elastic scattering or an excitation
of the target molecule or projectile ion. Process (e) is the ionization of the
target molecule. Processes (g) and (i) are dissociations of the target and pro-
jectile, respectively. All others are a rearrangement, a charge transfer, or a mix
of them. In principle we need to indicate the details of the collision products
when we specify any of the cross-sections. To make a matter more complicated,
a sort of degeneracy arises when A = B. For example, the process

H+
2 + H2 → H+

3 + H

can be either the process (a) or (b) (i.e., a transfer of H or H+). The two
processes are physically different, but difficult to experimentally distinguish.
Similarly

H+
2 + H2 → H2 + H+

2

is a mix of the three processes (c), (d), and (f). We should take into account
this kind of degeneracy, when we interpret the experimental result.

As in the case of electron collisions (see Sect. 5.13), an excitation of internal
states affects the collision process. Besides the target molecule, the incident
molecular ion may be in its excited state. The distribution of the internal
(particularly the vibrational) states of the ion strongly depends on the method
of production of the ion. When ions are formed by electron impact, their
population of vibrational states is usually determined by the Franck–Condon
principle similarly to those in the case of excitation of electronic states. Ions
are often generated through charge-transfer collisions. In this case, the Franck–
Condon rule does not necessarily hold and a more careful analysis is needed.
Accordingly the experimental cross-section depends, in principle, on the ion
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source used in the experiment. In the evaluation of experimental data for ion
collisions, this point should be taken into account.

Because of the complexity and the wide variety of the collision system, it is
very difficult to do any comprehensive study of ion–molecule collisions. There
are very few systematic compilations of cross-section data for ion–molecule
collisions. The cross-sections shown in the following sections are not necessar-
ily the best available ones. In many cases, the cross-section is selected only
for the illustration of typical behavior of the collision process.

6.2 Momentum–Transfer

As is in the case of electrons, the velocity distribution of ions in a plasma
satisfies the Boltzmann equation. Since the mass of ions is not small compared
with the mass of molecules, it is difficult to solve the equation. On the other
hand, ions do not deviate much from the thermal equilibrium with molecules,
unless a very strong field is applied. In many cases of molecular plasmas,
therefore, the velocity distribution of ions can be taken to be Maxwellian. More
details of ion kinetics are found in the text book of Mason and McDaniel [107].

In the kinetic or transport phenomena of ions in a plasma, the momentum–
transfer cross-section Qm plays a central role, in such a way as in the case of
electrons (see Sect. 5.3). There are three different ways to determine Qm for
ions. They are

1. Theoretical calculation
2. Estimate from the measured values of transport coefficients
3. Integration of the differential cross-sections (see (5.9))

Since reliable experimental data on the differential cross-section for ion–
molecule collisions are available only at high energies (say, > 1 keV), the last
method is not mentioned here.

A calculation of Qm for ion–molecule collisions is a rather complicated
problem. We have various levels of approximation. In the simplest way, the
ion–molecule collision is assumed as a potential scattering. A spherical model
potential is mostly used, but in some cases a more realistic (i.e., anisotropic)
model is adopted. To choose a potential scattering means that any inelastic
process is ignored in the collision. But, in reality, inelastic collisions (partic-
ularly rotational and vibrational transitions) may affect momentum–transfer.
The effect of inelastic processes arises in two ways. First, an inelastic colli-
sion itself accompanies momentum–transfer. Secondly, a possibility of inelastic
processes has to be taken into account when elastic cross-sections are calcu-
lated. Furthermore, charge transfer and rearrangement collisions may also
have an effect on the momentum–transfer. All of these effects can be taken
into account only in the quantum mechanical calculation. But semiclassical
or classical theories are often used for the calculation of Qm.



6.2 Momentum–Transfer 131

0.01 0.10 1.00 10.00
W (eV)

0.001

0.010

0.100

1.000
σ M

 (
nm

)2 2

4

6
8

10
12

14

Fig. 6.1. Momentum–transfer cross-sections (in (nm)2 = 10−14 cm2) for Li+ + H2

(as functions of relative energy) for the rotational transitions J = 0 → J ′ with
J ′ = 0, 2, . . . , 14, calculated by Røeggen et al. [139] (kindly provided by Skullerud)

Figure 6.1 is the result of one elaborate calculation. It shows Qm for Li+

+ H2 calculated by Røeggen et al. [139]. They made a quantum mechanical
calculation with taking transitions among rotational states of H2 into account.
They constructed the interaction between Li+ and H2 as accurately as possi-
ble. They calculated Qm for each rotational transition J = 0 → J ′. The figure
presents the result for J ′ = 0, 2, . . . , 14. The elastic process (J = 0 → 0) has
the cross-section much larger than those for inelastic processes. With using
their own cross-sections, Røeggen et al. evaluated the mobility of Li-ions in a
hydrogen gas. To take an account of inelastic processes more correctly, they did
not take a simple method based on Qm, but took a more detailed method using
differential cross-sections for angular distribution. Furthermore they measured
the corresponding ion mobility by themselves. Figure 6.2 shows the compar-
ison of the theory and experiment. (The figure shows the reduced mobility,
i.e., the mobility normalized to the standard temperature and pressure.) At
least at the values of E/N below 220 Td (1 Td = 10−17 V cm2), the agreement
between theory and experiment was very good. They measured the mobility
up to 400 Td (not shown in the figure). Above 220 Td, the agreement becomes
worse. The disagreement may be ascribed, at least partly, to the neglect of
vibrational motion in the theory. They tested the effects of (1) anisotropy of
the interaction and (2) inelasticity of the collision. The curve A in Fig. 6.2 is
the result obtained using only the isotropic part of the interaction potential.
The curve B is the result of the calculation in which the correct form of the
interaction is used in the cross-section calculation but the inelastic loss of the
energy is ignored in the transport calculation. The anisotropy of the interac-
tion has a significant effect all over the values of E/N . The inelastic effect is
important only at high E/N .
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For molecular ions, the interaction potential is so complicated that any
elaborate calculation is very difficult to do. Nelson et al. [121] made a simple
calculation to obtain Qm for O+

2 + N2. They assume a spherical potential for
the interaction and employed a semiclassical approach to calculate the cross-
section. Figure 6.3 shows the result. They calculated Qm also for several other
systems (e.g., H2O+ + H2O, CO+

2 + N2, etc. [13,120]). With the use of these
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cross-sections, they calculated mobilities and other transport coefficients for
those ion–molecule systems by a Monte Carlo method.

Phelps [133] took a simpler method to obtain Qm. He derived the cross-
section from experimental data on ion mobility with the use of an approximate
relation between Qm and mobility (see, for such relations, [107]). The experi-
mental data on ion mobility was taken from the compilation by Ellis et al. [35].
(Data on ion mobility are available also from [36], [37].) Figure 6.4 presents
Qm for H+ + H2 thus determined by Phelps [133]. In the figure, cross-sections
for rotational and vibrational excitations of H2 are shown for comparison. The
validity of these cross-sections is discussed in Sect. 6.3.

In the low-energy limit, we have one universal formula for Qm. When the
ion energy is very low, the polarization interaction dominates in the ion–
molecule collision. It is the interaction of the incoming ion and the dipole
moment induced by the ion in the molecule. The interaction potential is
written in the form

Upol(r) = −αqe2

2r4
, (6.4)

where qe is the ionic charge, α is the polarizability of the target molecule, and
r is the distance of the ion from the target. Here we consider, for simplicity,
only the spherical part of the polarizability. In principle, (6.4) can be used
also for the scattering of negative ions. But in that case qe should be the
absolute value of the ionic charge. Consider scattering of an ion from the
polarization potential. To obtain a representative value of the cross-section,
we employ a classical theory, where the motion of the ion is specified with its
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impact parameter, b, and incident velocity, v0 (i.e., the relative velocity of the
collision system). The ion motion is governed by an effective potential

Ueff = Upol + Uc. (6.5)

Here Uc is the centrifugal potential given by

Uc =
μb2v2

0

2r2
=

ECMb2

r2
, (6.6)

where μ and ECM are the reduced mass and the relative kinetic energy of the
collision system. The effective potential (6.5) has a maximum value

Ueff(max) =
(ECMb2)2

2αqe2
. (6.7)

When ECM < Ueff(max), the ion is repelled by the potential, but, when
ECM > Ueff(max), the incident ion can hit the target. The relation ECM =
Ueff(max) defines a critical impact parameter b0, which is given by

b0 =
(

2αqe2

ECM

)1/4

. (6.8)

Any trajectory with the impact parameter b < b0 goes to the scattering
center. The incident ion with this trajectory must collide with the molecule.
Now we introduce the Langevin cross-section defined by

QL = πb2
0 = π

(
2αqe2

ECM

)1/2

. (6.9)

We can easily assume that any cross-section for the ion–molecule collision
at very low energies has the value of the order of QL. Heiche and Mason [61]
made a rigorous calculation of an ion scattering from the potential Upol in the
semiclassical theory. They obtained the momentum–transfer cross-section of
the form

Qpol
m = 2.2137π

(
αqe2

μv2
0

)1/2

. (6.10)

In practical units, it is rewritten as

Qpol
m = 18.7 × 10−16 cm2

(
qα (Å

3
)

ECM (eV)

)1/2

. (6.11)

As an example, the formula (6.11) is applied to the collision systems shown
in Figs. 6.1, 6.3, and 6.4.

For Li+ + H2, Qpol
m = 168 × 10−16 cm2 at ECM = 0.01 eV,

For O+
2 + N2, Qpol

m = 247 × 10−16 cm2 at ECM = 0.01 eV,

For H+ + H2, Qpol
m = 64.8 × 10−16 cm2 at Elab = 0.1 eV

(i.e., ECM = 0.067 eV).
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Compared with the more realistic results shown in the figures, the formula
(6.10) or (6.11) gives fairly reasonable (within a factor of two) values of Qm

at the low energies of ion.
Finally we mention the effect of charge-transfer collision on the

momentum–transfer cross-section. When an ion moves in its parent gas,
a symmetric (or sometimes called resonant) charge-transfer process

AB+ + AB → AB + AB+

can occur. In principle, this cannot be distinguished from the simple elastic
scattering of AB+ from AB. Hence this process affects much the momentum–
transfer cross-section. To illustrate the effect, we evaluate Qm in a simple
semiclassical theory. In the theory, the nuclear motions are assumed to follow
classical trajectories. For each trajectory (specified with the impact para-
meter b), the electron transfer takes place with a probability Pex. Then the
momentum–transfer cross-section is written in the form (see [107])

Qm = 4π
∫ ∞

0

Pexb db + 2π
∫ ∞

0

(1 − 2Pex)(1 − cos θ)b db, (6.12)

where θ is the scattering angle of the incident ion. If Pex is small, this for-
mula gives the conventional definition (in the semiclassical theory) of the
momentum–transfer cross-section. Essentially an electron exchange is a result
of a close collision. If a long-range interaction dominates, the probability Pex is
small. As is stated above, the long-range polarization interaction dominates at
low energies of ion–molecule collision. In that case, the charge-transfer process
has a minor effect on the momentum–transfer. On the other hand, the second
integral in (6.12) is small when electron exchange is dominant. It is because
Pex ≈ 1/2 for small impact parameters and cos θ ≈ 1 for large impact parame-
ters. (In a close collision, the processes with and without charge transfer can
be assumed to occur with equal probability. In a distant collision, the inter-
action is so weak that the ions slightly deflect.) As a result, when electron
exchange is dominant, we have an approximate relation

Qm ≈ 2Qex, (6.13)

where the charge-transfer cross-section Qex is calculated from

Qex = 2π
∫ ∞

0

Pexb db. (6.14)

When the ion energy is fairly large and the charge-transfer process has a
significant probability, we have to use the expression (6.13) for the evaluation
of the momentum–transfer cross-section. In such a case, the velocity of the
incident ion is high and, hence, the slow ion produced by the charge-transfer
process can be distinguished from the incident one. Thus the charge-transfer
cross-section Qex can be experimentally determined. More detailed treatment
of the charge-transfer process (particularly in the quantum mechanical theory)
is given in the text book by Mason and McDaniel [107].
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6.3 Inelastic Scattering

The processes dealt with in Chap. 5 for electron–molecule collisions (except
for electron attachment) are also possible in the ion–molecule collisions. The
essential features of those collision processes are the same in both the collision
systems, although the ion–molecule collision is more complicated. Since we
concentrate our discussion on the collisions at low energies of ions, we consider
here only the ion-impact rotational and vibrational excitations of molecules.
For other processes, useful information and typical examples are found in the
review papers by Phelps for the collisions H+, H+

2 , H+
3 + H2 [133] and N+,

N+
2 + N2 [134]. On the basis of the review by Phelps [133] and other original

literature, Tabata and Shirai produced their recommended cross-sections in
analytic forms for the collisions of H+, H+

2 , H+
3 , H, H2, and H− with H2 [152].

First we consider the simplest case, H+ + H2. Figure 6.4 presents the
cross-sections for the rotational (J = 0 → 2) and the vibrational (v = 0 → 1)
transitions in H2 by H+-impact. They are the values recommended by
Phelps [133]. He determined the cross-sections from the theoretical and experi-
mental data available at that time. To understand the behavior of these cross-
sections, we compare them, in Figs. 6.5 and 6.6, with the corresponding values
for the electron collisions with H2. The electron cross-sections are taken from
Chap. 5 (i.e., the rotational cross-section from Fig. 5.8 and the vibrational
cross-section from Fig. 5.13). For the rotational excitation, the H+ impact has
a much larger cross-section than the electron impact. At the low energies,
the electron–molecule collision is dominated by a (weak) long-range inter-
action of the electron with the molecular multipole moment (see Sect. 4.2).

0.01

0.1

1

10

cr
os

s 
se

ct
io

n 
(1

0−1
6  c

m
2 )

0.1 1 10 100

collision energy in LAB system (eV)

H2  rot  J = 0-2

electron impact
proton impact
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tion and H+-impact one is shown
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In the ion–molecule collision, the (strong) short-range part of the interac-
tion dominates even at such low energies. The ion–molecule interaction is
also strongly anisotropic. (Recall the molecular shape of H+

3 .) These are the
reasons why the ion impact rotational excitation has a large cross-section at
the low energies.

The mechanism of vibrational excitation of a molecule (except for a res-
onant process) is as follows. First the incoming charged particle distorts the
electron cloud of the molecule. Then the nuclei in the molecule move to adjust
their positions to the new configuration of the electron cloud. This results in
the excitation of vibrational motion of the molecule. Crudely speaking the dis-
tortion of the electron cloud depends on the speed of the incident particle. If it
is too fast, the distortion is too small to excite vibrational motion. On the other
hand, if the ion speed is too slow, the distortion is caused adiabatically and
recovered after the collision. In the present case of vibrational excitation, the
most effective energy of ions is around 100 eV. Because of strong short-range
interaction, the ion-impact vibrational excitation has a large cross-section. In
the e + H2 system, the broad peak in the vibrational cross-section is thought
to be due to a shape resonance.

Šimko et al. [147] made a Monte Carlo simulation of hydrogen plasmas.
On the basis of the recommended cross-sections of Phelps, they calculated
the transport coefficients (i.e., mobilities and diffusion coefficients) for the
ions (H+ and H+

3 ) in the plasma and compared them with measurements.
They obtained a good agreement between the calculated and the measured
values. In this sense, the cross-sections shown in Fig. 6.4 (rotational and vibra-
tional cross-sections, as well as momentum–transfer one) were confirmed to
be reliable.
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As is described in Sect. 6.2, Røeggen et al. [139] made a quantum mechani-
cal calculation of the rotational transitions in the system Li+ + H2. Besides the
momentum–transfer cross-sections shown in Sect. 6.2, they obtained the cross-
section for the rotational transitions J = 0 → J ′. Figure 6.7 presents their
result for J ′ = 2, . . . , 14. The magnitude of the cross-section for J = 0 → 2 is
very large. It is comparable to that of the rotational cross-sections for H+ +
H2, shown in Fig. 6.5. Probably the same mechanism of rotational excitation
works for the two collision systems.

The general behavior of the cross-section for a complex (molecular) ion
may be much different from the case of atomic ions presented above. When a
molecular ion collides with molecules, the ion itself can be excited rotationally
and vibrationally. We show one example. That is the vibrational transitions
in the collision of N+

2 and N2

N+
2 (v1) + N2(v2) → N+

2 (v1
′) + N2(v2

′),

where v1 and v2 are the vibrational quantum numbers of the two molecules
before collision. Even if we restrict the initial states to the ground one (i.e.,
v1 = 0, v2 = 0), many sets of final states (v1

′, v2
′) are possible. Figure 6.8

shows the cross-section summed over all possible final states. This cross-section
is taken from the review by Phelps [134]. He based this on the calculation by
Moran et al. [114]. According to the calculation, the largest contribution comes
from the sets (v1

′, v2
′)=(1, 0) and (0, 1). The cross-sections for the two final

sets have a comparable magnitude. Moran et al. made a similar calculation for
other systems such as O+

2 + O2, CO+ + CO, and NO+ + NO.
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Initially both the N2 and N+
2 are in their ground vibrational states

To show one difficulty in treating a collision of molecular ions, we mention
some details of the above process. The same combination of products can be
obtained in two ways

N+
2 (fast, v1) + N2(slow, v2) → N+

2 (fast, v1
′) + N2(slow, v2

′) (direct)
N+

2 (fast, v1) + N2(slow, v2) → N2(fast, v2
′) + N+

2 (slow, v1
′) (charge transfer)

Here we distinguish the charge-transfer process by the difference in the ion
speed after the collision. The theoretical calculation providing the cross-
section shown in Fig. 6.8 took account of the possibility of both the processes.
When the incident ion is fast, charge-transfer cross-sections can be measured.
The total (i.e., summed over all the vibrational transitions) charge-transfer
cross-sections obtained in the present calculation were compared with the
experimental data at the ion energies 30–2,200 eV [46]. A fairly good agree-
ment was obtained between the theoretical and experimental results. This is
an indirect confirmation of the reliability of the cross-section shown in Fig. 6.8.

6.4 Reaction

In ion–molecule collisions, electric charge can be transferred and atomic com-
position of molecules can be changed. In some cases, both the processes (i.e.,
charge transfer and rearrangement) take place simultaneously, as is shown in
Sect. 6.1. We categorically call them “ion–molecule reactions”. Depending on
the collision system, a wide variety of reactions are possible to occur. A large
number of theoretical and experimental studies have been performed for the
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reaction processes (see, for example, a review by Lindinger et al. [102]). It is
impossible to summarize them here. In the present section, we show only a
few characteristic features of the process. For readers’ convenience, available
compilations of cross-sections (or rate coefficients) are listed in Appendix G.

In most of the reactions among neutral particles, an energy is needed
to activate the reactions. This is called an activation energy. Even for the
exothermic processes we need an activation energy. It is spent to overcome
the potential barrier between the initial and final states of the collision sys-
tem. In the ion–molecule reactions, however, we normally need no activa-
tion energy, because ions are already active (i.e., in the state of high internal
energy). This means that an ion–molecule reaction is possible even at a very
low temperature.

First we approximately estimate the rate coefficient of ion–molecule reac-
tions at low temperature, with the use of the so-called Langevin model. As is
stated in Sect. 6.2, the interaction between an ion and a molecule at the low
collision energy is dominated by the polarization interaction. We employ the
classical theory of collisions, as in Sect. 6.2. Each collision is specified with an
impact parameter b. We compare this with the critical value, b0, defined by
(6.8). When b > b0, the incident ion is scattered away by the target, but,
when b < b0, the ion comes into the center of the target to make a reac-
tion possible. Thus the Langevin cross-section QL (6.9) can be regarded as
a representative value (more precisely an upper limit) of the reaction cross-
section at low energies. We evaluate the corresponding rate coefficient (called
the Langevin rate coefficient) by

kL = 〈vQL〉, (6.15)

where the brackets mean an average over the distribution of relative velocity.
Since QL is inversely proportional to v, the product vQL becomes independent
of v. Then we do not need to know any details of the velocity distribution
and have

kL = 2.34 × 10−9 cm3 s−1

(
qα (Å

3
)

μ (amu)

)1/2

. (6.16)

This rate coefficient does not depend on temperature and gives the value of
the order of 10−9–10−10 cm3 s−1, even in the limit T → 0.

In the following, we show a few examples of ion–molecule reactions.
First example is the process in which the atomic composition is changed (a
rearrangement process). That is

H+
2 + H2 → H+

3 + H

Due to this reaction, the most abundant ion species in a plasma of hydrogen
molecules is H+

3 , instead of H+
2 . Upon collisions with H2, the plasma elec-

trons produce H+
2 first. But soon the above process transforms H+

2 into H+
3 .
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Figure 6.9 shows the cross-section recommended by Linder et al. [101].
They determined this after a survey of available experimental data. With the
use of this cross-section, Stancil et al. [149] evaluated the rate coefficient to be

k = 2.24 × 10−9 cm3 s−1

(
T

300

)0.042

exp
(
− T

46, 600

)
. (6.17)

Here T is expressed in K. This equation gives

k = 2.23 × 10−9 cm3 s−1 at 300K,

which is compared with the Langevin rate coefficient in this case

kL = 2.10 × 10−9 cm3 s−1.

Unlike the Langevin rate coefficient, the value (6.17) decreases slowly with
decreasing temperature. For the low-energy cross-section, Linder et al. took
the experimental result of Gentry et al. [50]. With a merged-beam method,
they obtained the cross-section down to the relative energy of 0.01 eV. In the
low-energy region, their cross-sections have an energy dependence of E−0.46.
This is slightly different from the Langevin’s formula, E−0.5. This difference
may be the effect of the interaction other than the polarization.

As mentioned in Sect. 6.1, the above reaction can proceed by two ways. If
two hydrogen atoms are distinguished by HA and HB, we have

(HA)+2 + (HB)2 → (HA)+2 HB + HB (a)
(HA)+2 + (HB)2 → H+

A(HB)2 + HA (b)

The process (a) is the atom (H) transfer and (b) is the proton transfer. If both
the reactants are in the ground vibrational state before collision, the latter
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process has a larger exothermicity. Accordingly the proton transfer process
must contribute much to the present reaction. However, any experimental
confirmation of that is difficult.

As is stated in Sect. 2.1, the most abundant ion species in the lower region
of the Earth’s ionosphere is NO+. The most abundant neutral molecule in the
region is N2 and, hence, the solar radiation produces N+

2 most. But due to
the reaction process

N+
2 + O → NO+ + N,

the ion N+
2 is quickly changed into NO+. McFarland et al. [108] measured the

rate coefficient for this process with a drift tube method. In the experiment,
the reaction proceeded while the ions were drifting in the tube filled with
the reactant molecules. The measured value of the rate coefficient is shown
in Fig. 6.10 as a function of mean relative kinetic energy (equivalent to the
temperature). In this case we have the Langevin rate coefficient

kL = 6.56 × 10−10 cm3 s−1.

This seems too large compared with the measured value. But, if the temper-
ature decreases further, the measured rate coefficient probably reaches some-
where around the Langevin value. In this collision system, a charge-transfer
process

N+
2 + O → N2 + O+.

is also possible. McFarland et al. measured the branching ratio of the products
and found that 93% of the process goes to NO+ + N.

Finally we show an example of reaction in which the final set of the collision
system looks completely the same as the initial one. It is a symmetric charge
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transfer. For example, Fig. 6.11 shows the cross-section for

N+
2 + N2 → N2 + N+

2 .

This cross-section was obtained by Nichols and Witteborn [122] with shoot-
ing a beam of N+

2 into a nitrogen gas. The product ion is slow compared with
the incident one. Then the charge-transfer process can be separated from the
elastic collision. If the ion energy is sufficiently high, the measurement of the
charge-transfer cross-section is easy to perform. Stebbings et al. [150] mea-
sured the cross-section at the ion energy 30–1,000 eV. Nichols and Witteborn
fitted the cross-section with a formula

QCT = (6.48 − 0.24 ln E(eV))2 × 10−16 cm2. (6.18)

An extension of the formula to the lower energies gives the solid line
in Fig. 6.11. Above about 3 eV, the measured values agree with the fitted
formula. At the lower energies, the experimental data may have a large
uncertainty, because it is difficult to produce such a low energy ion beam.
Phelps [134] determined his recommended cross-section for the same charge-
transfer process, on the basis of his own extrapolation of the result of the high-
energy experiment. His values are not much different from the data shown in
Fig. 6.11. Another comment is concerned with theoretical calculation. In rela-
tion to the data shown in Fig. 6.8, we have mentioned the calculation of the
charge-transfer cross-section by Flannery et al. [46]. Since they reported no
results in the low energy region, their calculation cannot be compared with
the values in Fig. 6.11.
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Another example of the symmetric charge transfer is

H+
2 + H2 → H2 + H+

2 .

We show in Fig. 6.12 the cross-section recommended by Linder et al. [101].
At the relative energy of 1 eV or less, the collision H+

2 + H2 also leads to H+
3 +

H (see Fig. 6.9). Considering a possible interference between the two processes,
Phelps [133] suggested that the cross-section for the charge transfer (i.e., H+

2

+ H2 → H2 + H+
2 ) decreases with decreasing energy below about 5 eV. If we

take into account the symmetry of the charge-transfer process, however, the
cross-section might increase with decreasing energy. In any case, we have no
clear experimental information about the cross-section of the charge transfer
in the energy region below 1 eV.

Ion–molecule reactions are affected by the internal degrees of motions (i.e.,
rotational and vibrational states) of the molecule. When molecular ions are
involved, cross-sections are dependent also on the rotational and vibrational
states of the ion. There is a fairly large amount of information of the effects of
rotational and vibrational excitations on the rate coefficients or cross-sections
of ion–molecule reactions [12,102,164]. Rotational energy is efficient at driving
endothermic reactions. Exothermic reactions are affected by the rotational
motion, only when the collision partner has a large rotational constant. Vibra-
tional effects are much sensitive to the collision systems. In some cases, the
vibrational energy has a large effect, but in other cases it does not. Vibrational
effects are often significant in charge-transfer collisions.
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Electron Collisions with Molecular Ions

7.1 General Remarks

In the present chapter, an electron collision with positive molecular ions is con-
sidered. If ignoring negative ions, the density of ions is equal to the electron
density. Since the electron density is much smaller than the density of neutral
molecules in most of molecular plasmas, the electron collision with ions is
much less frequent than the electron collision with molecules. Accordingly the
electron–ion collisions are less important in molecular plasmas. Furthermore
it is difficult to do any experiment of electron–ion collisions, because ions can-
not be accumulated enough to serve as the collision target. In fact, very few
experimental data are available for the electron–ion collisions. One exception
is the electron–ion recombination. It is separately described in Sect. 7.2. In a
plasma, the production of ions is balanced with the annihilation of them. In
a laboratory plasma, ions attach the surface of the apparatus or electrodes
to disappear. In a space plasma, ions annihilate through the recombining
collisions with electrons. For example, the ionosphere on the Earth is main-
tained by the balance of the ionization by solar radiation and the recombina-
tion by electron–ion collision. As is shown in Sect. 7.2, most of the molecular
ions recombine with electrons through dissociative processes. The recombi-
nation process, therefore, produces radicals and reactive atoms. That is, the
electron–ion recombination may play a significant role in the production of
active species.

Electron–ion collisions can be important in a plasma with high density
of ions (e.g., the edge plasma in fusion devices). Mechanism of electron–ion
collisions is essentially the same as that of the electron collisions with neutral
particles. Here we show some features specific to the electron–ion collisions.

Although no experimental data are available, there are several calcula-
tions of vibrational excitation of molecular ions. Figure 7.1 shows the result
of calculation by Sarpal and Tennyson [140]. It is the cross-section for the
electron-impact vibrational excitation v = 0 → 1 of H+

2 . The excitation cross-
section has a peak at the threshold (i.e., 0.2713 eV). This kind of threshold
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Fig. 7.1. Cross-section for the electron-impact vibrational excitation of H+
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lated by Sarpal and Tennyson [140]

peak is seen in most of the cross-sections for the electron-impact excitation
of ions. That is caused by an acceleration of the incoming electron due to the
attractive Coulomb force of the ion. The same group of authors made a similar
calculation for the excitation of NO+ [135]. In this case, the cross-section was
found to have fine structure due to a resonance. This resonance is caused by
a temporary capture of the electron by NO+ to form a highly excited neutral
molecule NO*. Because of the attractive interaction between the electron and
ion, this kind of resonance must be common in the electron–ion collisions.

Ionization (or dissociative ionization) of molecular ions has been experi-
mentally studied for a number of ion species. Experimental results for N+

2 are
shown in Fig. 7.2. They are the cross-sections for

e + N+
2 → N2+

2 + 2e (SI)
N+ + N + e (DE)
N+ + N+ + 2e (DI)

Here SI, DE, and DI mean single ionization, dissociative excitation, and dis-
sociative ionization, respectively. These were measured by Bahati et al. [11]
with a 4 keV-beam of N+

2 crossed with an electron beam. Spectrometrically
N2+

2 cannot be distinguished from N+ (see Sect. 5.7). But, with an analysis of
the kinetic energy distribution of the product ions, they could separate each
ionization channel. For example, N2+

2 in SI has almost the same kinetic energy
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as the incident ion, but the dissociation fragments (N+) have a wide range of
additional kinetic energies. The DE has the lowest threshold (8.4 eV) and a
large peak in the low energy region around 20–30 eV. The SI has the thresh-
old at 27.9 eV. This has the largest cross-section at the energies above 100 eV.
Finally the DI has the threshold at 31.2 eV and the smallest cross-section
among the three processes. The measured threshold of the N2+

2 production
was 43.5 eV above the ground state of N2. The minimum energy to produce
N+ + N+ from N2 is 38.8 eV (calculated from the ionization potential of nitro-
gen atom (14.5 eV) and the dissociation energy of N2 (9.8 eV)). Thus the N2+

2

produced is energetically unstable against dissociation to N+ + N+ (an asym-
metric dissociation, N2+

2 → N + N2+, being known to be negligible compared
with others). But the experiment did not show such an evidence. This may
mean a long lifetime of N2+

2 .
Lecointre et al. [97, 98] made a similar ionization experiment of CO+.

Figure 7.3 shows their result for

e + CO+ → CO2+ + 2e (SI)
C+ + O + e (DE)
C + O+ + e (DE)
C+ + O+ + 2e (DI)

In contrast to the case of N+
2 , the dissociative ionization has the largest

cross-section at the collision energy of about 60 eV and above. The cross-
section for SI is the smallest all over the energies considered. This means that
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CO2+ has a short lifetime and mostly dissociates into C+ and O+. (Asym-
metric dissociations (e.g., CO2+ → C2+ + O) were found negligible.) The
experimental studies of ionization of molecular ions have been done also for
H+

2 [1], CO2
+ [10], and O+

2 [23].

7.2 Electron–Ion Recombination

7.2.1 Three-Body Recombination

Consider an electron-impact ionization of a molecule

e + M → e + e + M+.

The inverse process of this is

e + e + M+ → e + M.

This is called a three-body recombination.
Three-body collisions can occur only when the particle density (i.e., the

electron density in this case) is high. In a molecular plasma, this process is
dominated by the dissociative recombination, unless the electron density is
very high. To estimate the role of the three-body recombination, the rate of
the process is evaluated as follows (mostly following Smirnov [148]).

First an electron interacts strongly with an ion. Then a third body (i.e.,
the second electron) comes close to the colliding system and takes away the
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excess energy arising from the recombination process (e + M+ → M). The
probability of the first process is given by

P (1) = Nionb3 , (7.1)

where b is the distance of the incoming electron from the ion and Nion is the
number density of the ions. It is assumed that Nion is equal to the number den-
sity of electrons (Ne). The rate coefficient of the second process is estimated
with

R(2) = vb2, (7.2)

where v is the relative velocity of the electron and the ion. The effective cross-
section for the collision of the second electron with the colliding system (e +
M+) is estimated by b2. The rate coefficient of the three-body recombination
is obtained as the product of (7.1) and (7.2),

α = P (1)R(2) = vb5Nion. (7.3)

Now we estimate b from the relation

b ∼ e2

T
. (7.4)

Here T is the plasma temperature in energy units and the thermal equilibrium
is assumed. The formula (7.4) means that the kinetic energy of the plasma
particles is balanced with the Coulomb energy of the electron and the ion.
Then we have

α ∼ e10m−1/2
e T−9/2Ne. (7.5)

There are several papers reporting the rate coefficient quantitatively. All of
them show the rate for the 3-body recombination in the form

α3-body = C

(
300
Te

)4.5

Ne × 10−20 cm3 s−1, (7.6)

where Te and Ne are expressed in K and cm−3, respectively. In (7.6), C
is a numerical constant having a value between 1 and 10. For instance,
Flannery [47] gives C = 2.7.

Now we compare the three-body recombination to the dissociative recom-
bination (DR, see Sect. 7.2.2). At 300 K, we have

α3-body ≈ 10−20Ne cm3 s−1

and
αDR ≈ 10−7 cm3 s−1.

From these relations, the 3-body process is dominant if Ne > 1013 cm−3

when Te = 300 K. From (7.6), the 3-body recombination rate decreases rapidly
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with increasing temperature. That decrease is much faster than the rate of
DR. The 3-body recombination, therefore, is completely negligible at a high
temperature (say, Te > 1,000 K).

7.2.2 Dissociative Recombination

In a two-body collision, we have two different processes of recombination

e + AB+ → AB + hν radiative recombination
e + AB+ → A + B dissociative recombination (DR)

The radiative process is very slow compared with the DR. We only deal with
DR here. Details of DR processes can be found, for example, in the review
articles by Florescu-Mitchell and Mitchell [48] and Adams et al. [3].

In principle, DR is a resonance process and written in the form

e + AB+ → AB∗∗ → A + B(∗)

That is, it takes place through a temporary capture of the incident electron
into an excited state of the target molecule. This mechanism is similar to
that of the dissociative attachment (see Sect. 5.8.1). Unlike the attachment,
recombination occurs also through an indirect mechanism, where the electron
is captured into one of the highly excited (the so-called Rydberg) states of
the neutral molecule. There are a large number of Rydberg states converging
to the ground state of the molecular ion. The dissociation is possible, when
we have a coupling of excited vibrational states of the Rydberg states and the
resonant state of the molecule. As is easily understood, nuclear motion of the
molecule is involved in the DR process in a complicated manner. The DR rate
or cross-section depends sensitively on the rotational and vibrational states of
the molecular ion. To understand the mechanism, extensive theoretical studies
have been done for, at least, simple molecules (see the reviews cited above).

Experiments of recombination have two intrinsic difficulties. First it is dif-
ficult to have sufficient number of ions collected together for targets. Another
difficulty is to produce an electron beam of very low energy, at which the DR
cross-section has a sizable magnitude. Despite these difficulties, measurements
of DR cross-sections have been carried out for many kinds of ions.

Experimental studies of DR are mainly based on two different approaches:
afterglow techniques and merged-beam methods. The early experimental
study of recombination was made with a stationary afterglow. In the method,
the recombination rate was determined from the time dependence of the elec-
tron density. No identification was made of the ion species involved. Later the
method was replaced with a flowing afterglow. In this method, desired ions are
produced with chemical means. These ions and accompanying electrons are
put into a flow of buffer gas (e.g., He). The spatial (i.e., along the flow) depen-
dence of the electron density is analyzed in terms of recombination. The ion
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is identified spectrometrically. With controlling the temperature of the flow
tube, the rate coefficient of DR is determined as a function of temperature.

DR cross-sections as a function of the collision energy are determined with
a merged-beam technique (see Sect. 3.5). A fast ion beam is merged with a fast
electron beam to enable a sufficient number of collisions between them. After
running for a while, the beams of ions and electrons are separated from each
other. The method has several advantages. A chance of collision is increased
compared with the crossed-beam experiment. By tuning the velocities of the
two beams, we can achieve a low relative velocity, which is favorable to the
recombination process. The neutral product resulting from the collision has
the same velocity as the primary ion beam and is easy to detect. There are two
different merged beam methods: single pass and multipass measurements. The
multipass measurement is performed with an ion storage ring (see, e.g., [96]),
where a high energy ion beam is injected into a quasicircular path consisting
of bending magnets. When the pressure in the ring is kept at extremely high
vacuum, the ion can be stored there for a long time (up to tens of seconds).
Ion storage rings have been developed for use in nuclear physics. A part of the
ion beam is usually merged with an electron beam. The main purpose of this
is the reduction of the thermal motion of ions (called electron cooling). But it
can also be used for an electron–ion collision experiment. More details of these
and other experiments can be found, for instance, in the two review articles
mentioned above [3, 48].

DR cross-sections and rate coefficients are summarized in several review
articles. Only a few examples are shown here. Sheehan and St.-Maurice [145]
extensively surveyed the experimental results for the ions of atmospheric mole-
cules (N+

2 , O+
2 , and NO+). From the survey, they determined the recom-

mended values of rate coefficient. Those are

α = 2.2 × 10−7 (Te/300)−0.39 cm3 s−1 N+
2 (v = 0) at Te < 1, 200K

α = 1.95 × 10−7 (Te/300)−0.70 cm3 s−1 O+
2 (v = 0) at Te < 1, 200K

α = 3.5 × 10−7 (Te/300)−0.69 cm3 s−1 NO+(v = 0) at Te < 1, 200K

Here the electron temperature, Te, is expressed in K. These rate coefficients are
shown in Fig. 7.4. The above values were determined under the assumption
that the initial ion is in the vibrationally ground state. Sheehan and St.-
Maurice also estimated the rate coefficient for vibrationally excited molecular
ions. Figures 7.5 and 7.6 compare the rate coefficients for v = 0 and v > 0
in the cases of N+

2 and O+
2 , respectively. For these ions (and also for NO+),

vibrational excitation of ions yields lower rate coefficients than the value for
the ground-state ions. Furthermore Sheehan and St.-Maurice discussed the
rate coefficient at the higher temperature (i.e., Te > 1,200 K).

In the recombination of ions of polyatomic molecules, different sets of neu-
tral products are possible to appear. The branching ratio of each product is of
practical importance. As is shown in Sect. 2.2, for example, an electron recom-
bination with H3O+ plays a role in the formation of interstellar molecules.
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With the use of the ion storage ring, ASTRID, Jensen et al. [84] determined
the branching ratio of the above process to be (at the collision energy of 0 eV)

(a) : (b) : (c) : (d) = 0.25 : 0.14 : 0.60 : 0.01

Within uncertainties, this result is in reasonable agreement with the values
obtained by another storage-ring (CRYRING) experiment by Neau et al. [119].
But there is a disagreement between these results and the measurement with
a flowing afterglow technique (see the review articles [3, 48]).

Another process assigned for the formation of interstellar molecules is

e + HCO+ → CO + H
O + HC
C + OH

Geppert et al. [51] determined the branching ratio with the ion-storage ring,
CRYRING. Their result gives

CO : HC : OH = 0.92 : 0.01 : 0.07.

The production of three atoms (H + C + O) is too much endothermic to
occur.

Other data on the branching ratio are summarized also in the review
articles [3, 48].
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Summary of the Roles
of the Molecular Processes in Plasmas

As a conclusion of the present volume, molecular processes are summarized
according to the roles they play in molecular plasmas. In principle, all the
processes occur simultaneously in the plasma and are intrinsically coupled
with each other. In the following, the processes listed in each category are
those which directly contribute to the role of the category. Comments on
other possible processes are given, when necessary.

1. Generation and maintenance of plasmas
– Electron-impact ionization (Sect. 5.7)
– Electron attachment (Sect. 5.8)
– Electron–ion recombination (Sect. 7.2)
Ions produced can be converted into other ions through charge transfer
and rearrangement processes (Sect. 6.4).

2. Establishment of electron energy distribution function (EEDF)
– Electron momentum–transfer (Sect. 5.3)
– Electron-impact excitations of rotational, vibrational, and electronic

states (Sects. 5.4–5.6)
– Electron-impact dissociation (Sect. 5.10)
Electron attachment (Sect. 5.8) and ionization (Sect. 5.7) induce a change
of electron density. But they have a minor effect on the EEDF, unless the
electron temperature is too high.

3. Electron transport
– Electron momentum–transfer (Sect. 5.3)
Electron-impact excitations of rotational and vibrational states (Sects. 5.4
and 5.5) may have a minor contribution.

4. Production of active species
(a) For the production of excited molecules

– Electron-impact excitation (Sect. 5.6)
(b) For the production of ions

– Electron-impact ionization (for positive ions) (Sect. 5.7)
– Electron attachment (for negative ions) (Sect. 5.8)
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(c) For the production of active neutral species (i.e., radicals and reactive
atoms)
– Electron-impact dissociative ionization (Sect. 5.7)
– Electron-impact dissociative attachment (Sect. 5.8)
– Electron-impact dissociation (Sect. 5.10)
– Dissociative recombination (for neutral fragments) (Sect. 7.2)

(d) For the production of high-energy photons
– Electron-impact emission (Sect. 5.9)

5. Ion transport
– Ion momentum–transfer (Sect. 6.2)
Ion-impact excitations of rotational and vibrational states (Sect. 6.3) may
have a minor contribution.

6. Conversion of active species
– Charge changing and rearrangement collisions (Sect. 6.4)
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Order of Magnitude of Macroscopic Quantities

In a study of kinetic or transport phenomena of electrons or ions in a plasma,
it is useful to have an idea about the magnitudes of fundamental macroscopic
quantities directly involving cross-sections. Here we consider electron collisions
with molecules in a plasma. A recipe of conversion of the resulting values
to the ion collision is also given. We assume a typical value (10−16 cm2) of
collision cross-section and evaluate such macroscopic quantities as mean free
path, collision frequency, and mean collision time. We also estimate typical
values of rate coefficient. Since we show the formulas for the quantities, it is
easy to evaluate them for other values of cross-section. The following symbols
are used:

v = electron velocity

Q = cross-section (= 10−16 cm2 as an assumption)

N = number density of the gaseous molecules

T = temperature of the molecular gas

Energies of electrons are indicated in units of eV. In the case of electrons
with a thermal distribution of energies, it is convenient to express the mean
energy in temperature units. All the tables have an entry for 300 K (corre-
sponding to 0.0259 eV).

1. Rate coefficient
The magnitude of rate coefficient is represented by vQ, whose typical
values are given in Table A.1. Rate coefficient in any real situation is given
by vQ averaged over the velocity distribution of electrons (see (3.19) in
the text). If the cross-section varies much as a function of velocity, the
magnitude of the rate coefficient may be much different from the values
shown in Table A.1.
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Table A.1. Representative values of rate coefficient, vQ, for electron collisions with
molecules, with an assumption, Q = 10−16 cm2

Energy Velocity Rate coefficient

(cm s−1) (cm3 s−1)

10 eV 1.88 × 108 2 × 10−8

1 eV 5.93 × 107 6 × 10−9

300 Ka 9.54 × 106 1 × 10−9

aMean electron energy.

Table A.2. Mean free path, collision frequency, and mean collision time for electron
collisions with molecules, with an assumption, Q = 10−16 cm2

Energy Pressure Mean free path Collision frequency Mean collision time

(cm) (s−1) (s)

10 eV 1 atm. 4.08 × 10−4 4.60 × 1011 2.18 × 10−12

1 torr 3.11 × 10−1 6.04 × 108 1.66 × 10−9

1 eV 1 atm. 4.08 × 10−4 1.45 × 1011 6.88 × 10−12

1 torr 3.11 × 10−1 1.91 × 108 5.24 × 10−9

300 Ka 1 atm. 4.08 × 10−4 2.34 × 1010 4.28 × 10−11

aMean electron energy.

2. Mean free path, collision frequency, and mean collision time
According to (3.8), (3.6), and (3.9) in Sect. 3.1, mean free path, collision
frequency, and mean collision time are given by

Mean free path =(NQ)−1

Collision frequency =NvQ
Mean collision time =(NvQ)−1.

Here we evaluate these quantities for two cases of pressure of the molecular
gases: 1 atm. and 1 torr. The gaseous temperature is assumed to be 300 K.
Then the corresponding number densities of the gaseous molecules are:

N = 2.45 × 1019 cm−3 for 1 atm. and 300K,

N = 3.22 × 1016 cm−3 for 1 torr and 300K.

The resulting values of mean free path, etc. are presented in Table A.2.
3. Conversion to the case of ion collisions

The above formulas are also applied to the ion–molecule collision. In that
case, however, the velocity v should be taken as the relative velocity vrel

between the ion and the molecule. That is given by

vrel = (2ECM/μ)1/2,
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where ECM is the collision energy in the center-of-mass frame and μ is the
reduced mass of the collision system. Or, in practical units, we have

vrel [in cm s−1] = 1.389 × 106(ECM [in eV]/μ [in amu])1/2.

When the ion energy (i.e., ECM) takes the same value as the electron
energy, the ratio of the ion (relative) velocity to the electron velocity (ve)
is given by

vrel/ve = 2.342 × 10−2(μ [in amu])−1/2.

Then the rate coefficient and collision frequency for ion collisions are
obtained by those quantities in the above tables multiplied by this velocity
ratio. The mean collision time for ions is the value in Table A.2 divided
by this ratio. Mean free path is the same in the two cases.
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Molecular Properties

An understanding of collision processes involving molecules needs the knowl-
edge of properties of those molecules. Information on the molecular properties
can be obtained from handbooks, data compilations, or review articles. Even
online databases are available these days. Sometime, however, it takes much
time to find proper information. In the present appendix, numerical data
are collected for the molecular properties necessary to understand the cross-
sections shown in the preceding chapters. All of the values in Tables B.1–B.4,
except for a few with notes, are taken from

CRC Handbook of Chemistry and Physics, ed. by D.R. Lide, 86th Edition
(Taylor & Francis, London, 2005)

When the same information is needed for other molecules than those listed
here, one should consult this reference. Another useful reference for the mole-
cular properties is

S.V. Khristenko, A.I. Maslov, and V.P. Shevelko, Molecules and Their
Spectroscopic Properties (Springer, Berlin, 1998)

Useful data are also available online from

NIST Chemistry Webbook, NIST Standard Reference Database Number
69, Eds. P.J. Linstrom and W.G. Mallard, June 2005, National Institute of
Standards and Technology, Gaithersburg, MD 20899, USA (http://webbook.
nist.gov).

Table B.5 is based on the data reported in

D.M. Bishop, L.M. Cheung, J. Phys. Chem. Ref. Data 11, 119 (1982)
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Table B.1. Ionization potential, dissociation energy, and electron affinity

Molecule Ionization potential Dissociation energy Electron affinity

(eV) (eV) (eV)

H2 15.426 H–Ha 4.516

N2 15.581 N–N 9.798

O2 12.070 O–O 5.165 0.450

Cl2 11.480 Cl–Cl 2.514 2.38

CO 14.014 C–O 11.156

NO 9.2644 N–O 6.535 0.026

HF 16.044 H–F 5.906

HCl 12.749 H–Cl 4.470

H2O 12.621 H–OH 5.152

N2O 12.886 O–N2 1.735 −0.03 ± 0.1

CO2 13.773 O–CO 5.45b

O3 12.43 O–O2 1.105 2.1028

NH3 10.070 H–NH2 4.665

CF4 14.7c F–CF3 5.667

CH4 12.61 H–CH3 4.553

SiH4 11.00 H–SiH3 3.977

C2H4 10.514 H–HC=CH2 4.822

SF6 15.32 F–SF5 4.059 1.05

aDissociating bond indicated.
bFrom Y. Itikawa, J. Phys. Chem. Ref. Data 31, 749 (2002).
cFrom L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 28, 967 (1999).

Table B.2. Dipole moment and dipole polarizability

Molecule Dipole moment (D)a Dipole polarizabilityb (Å
3
)

H2 0.8042

N2 1.7403

O2 1.5812

Cl2 4.61

CO 0.1098 1.95

NO 0.1587 1.70

HF 1.8262 0.80

HCl 1.1086 2.63

H2O 1.8546 1.45

N2O 0.1608 3.03

CO2 2.911

O3 0.5337 3.21

NH3 1.4718 2.26
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Molecule Dipole moment (D)a Dipole polarizabilityb (Å
3
)

CF4 3.838

CH4 2.593

SiH4 5.44

C2H4 4.252

SF6 6.54

aD=Debye (1 D = 0.393430 a.u.).
bIsotropic component.

Table B.3. Excitation energies of the lowest rotational and vibrational states of
diatomic molecules

Molecule Lowest rotational state Lowest vibrational state

(10−3 eV) (eV)

H2 (J=2)a 44.13 0.516

N2 (J=2) 1.480 0.289

O2 (J=2) 1.069 0.193

Cl2 (J=2) 0.181 0.069

CO (J=1) 0.477 0.266

NO (J=1) 0.412 0.233

HF (J=1) 5.097 0.491

HCl (J=1) 2.589 0.358

aFor homonuclear molecules, only even J states are accessible from the ground
(J = 0) state.

Table B.4. Vibrational energy of polyatomic molecules (IR-active modes are indi-
cated in Table B.5)

Molecule Mode of vibrationa Lowest vibrational state

(eV)

H2O ν1 s-stretch 0.453

ν2 bend 0.198

ν3 a-stretch 0.466

N2O ν1 NN stretch 0.276

ν2 bend 0.073

ν3 NO stretch 0.159

CO2 ν1 s-stretch 0.165

ν2 bend 0.083

ν3 a-stretch 0.291

O3 ν1 s-stretch 0.137

ν2 bend 0.087
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Table B.4. Continued

Molecule Mode of vibrationa Lowest vibrational state

(eV)

ν3 a-stretch 0.129

NH3 ν1 s-stretch 0.414

ν2 s-deform 0.118

ν3 deg.stretch 0.427

ν4 deg.deform 0.202

CF4 ν1 s-stretch 0.113

ν2 deg.deform 0.054

ν3 deg.stretch 0.159

ν4 deg.deform 0.078

CH4 ν1 s-stretch 0.362

ν2 deg.deform 0.190

ν3 deg.stretch 0.374

ν4 deg.deform 0.162

SiH4 ν1 s-stretch 0.271

ν2 deg.deform 0.121

ν3 deg.stretch 0.272

ν4 deg.deform 0.113

C2H4
b ν1 CH2 s-stretch 0.375

ν2 CC stretch 0.201

ν3 CH2 scis 0.166

ν4 CH2 twist 0.127

ν5 CH2 a-stretch 0.385

ν6 CH2 rock 0.153

ν7 CH2 wag 0.118

ν8 CH2 wag 0.117

ν9 CH2 a-stretch 0.385

ν10 CH2 rock 0.102

ν11 CH2 s-stretch 0.371

ν12 CH2 scis 0.179

SF6
c ν1 s-stretch 0.096

ν2 deg.stretch 0.080

ν3 deg.stretch 0.118

ν4 deg.deform 0.076

ν5 deg.deform 0.065

ν6 deg.deform 0.043

aThe following abbreviations are used: s-stretch symmetric stretching, a-stretch
antisymmetric stretching, bend bending, deg degenerate, deform deformation, scis
scissors, twist twisting, rock rocking, wag wagging.
bFrom T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated
Volume I NBS Ref. Data Series 39 (US Government Printing Office, Washington,
DC, 1972).
cFrom L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 29, 267 (2000).
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Table B.5. Dipole matrix element for the lowest transition from the ground state
of the IR-active mode of vibration

Molecule Mode IR intensity (A) (Dipole matrix element)2 a

(kmmol−1) (10−3 a.u.)

CO 61.2 1.76

NO 27.3 0.899

HF 77.5 1.21

HCl 33.2 0.711

H2O ν1 2.93 0.0495

ν2 62.5 2.42

ν3 41.7 0.686

N2O ν1 289 8.03

ν2 8.20 0.860

ν3 59.1 2.84

CO2 ν2 47.8 4.43

ν3 498.7 13.1

O3 ν1 2.38 0.133

ν2 4.4 0.39

ν3 85.7 5.08

NH3 ν1 4.9 0.091

ν2 148 9.62

ν3 3.2 0.057

ν4 27.1 1.03

CF4 ν3 935.3 45.0

ν4 12.3 1.20

CH4 ν3 65.5 1.34

ν4 31.8 1.50

SiH4 ν3 320.5 9.03

ν4 296.3 20.0

C2H4 ν7 81.25 5.29

ν9 24.9 0.495

ν10 20.3 1.52

ν11 13.51 0.279

ν12 9.76 0.418

SF6 ν3 1, 361 88.7

ν4 74 7.4

aCalculated from the IR intensity, A, with the use of the relation (5.35) in Sect. 5.5.



C

Atomic Units and Evaluation
of the Born Cross-Section

In most of the theoretical papers on atomic collisions, atomic units are used
for the presentation of theoretical formulas. According to the convention, the
Born cross-sections in this book are also expressed in atomic units. Here the
definition of atomic units is given. Examples of the evaluation of the Born
cross-section are also presented.

C.1 Definition of Atomic Units

The atomic unit (a.u.) is based on the relation

e = me = h̄ = 1

and the unit of length given by the Bohr radius

a0 = 4πε0h̄
2/mee

2.

The unit length, energy, time, and velocity of atomic unit are given by:

Length: a0 = 5.292 × 10−9 cm
Energy: Eh (hartree) = h̄2/mea

2
0 = 27.21 eV

Time: h̄/Eh = 2.419 × 10−17 s
Velocity: a0Eh/h̄ = 2.188 × 108 cm s−1

The unit mass of a.u. is:

Mass : me = 9.109 × 10−28 g

and 1 amu (or u) is given by

1 amu (or u) = 1.823 × 103 a.u.
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Cross-section is expressed in the units of

a2
0 = 2.800 × 10−17 cm2.

C.2 Example of the Calculation of the Born
Cross-Section for Rotational Transitions

Consider the electron-impact rotational transition due to the electron–dipole
interaction. The Born cross-section for the transition J0 = 0 → J = 1 is
given by (see (5.25))

QBorn,dipole
rot (J = 0 → 1) =

8π

3k2
0

〈M1〉2 ln
∣∣∣k0 + k1

k0 − k1

∣∣∣ . (C.1)

In atomic units, the wave numbers k0 and k1 are obtained from the corres-
ponding energies in such a way

k2
0 = 2E0, (C.2)

k2
1 = 2E1 = 2(E0 − ΔE(0 → 1)). (C.3)

To evaluate the Born cross-section, we need two molecular parameters: the
transition energy ΔE(0 → 1) and the dipole moment 〈M1〉.

Now, as an example, we calculate the cross-section of HCl at the colli-
sion energy of 1 eV. For the molecular parameters, we take the values from
Appendix B. They are

ΔE(0 → 1) = 2.589 × 10−3 eV = 9.514 × 10−5 a.u., (C.4)

〈M1〉 = 1.11D = 0.437 a.u. (C.5)

At E0=1 eV=3.6749 × 10−2 a.u., the relations (C.2) and (C.3) give

k0 = 0.27111,

k1 = 0.27076.

With the use of these values and the dipole moment (C.5), the Born cross-
section is calculated to be

QBorn,dipole
rot (J = 0 → 1) = 1.598 × 102 a.u. (C.6)

Since 1 a.u. of the cross-section is 2.800 × 10−17 cm2, we finally have

QBorn,dipole
rot (J = 0 → 1) = 4.475 × 10−15 cm2. (C.7)

There are different choices of the molecular parameters. In Fig. 5.11,
the Born cross-section is compared with the theoretical result of Pfingst
et al. [130]. In their calculation, Pfingst et al. employed the following set
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ΔE(0 → 1) = 2.627 × 10−3 eV, (C.8)
〈M1〉 = 0.47827 a.u. (C.9)

(The dipole moment was their own theoretical result.) Using these para-
meters, we have

QBorn,dipole
rot (J = 0 → 1) = 5.350 × 10−15 cm2. (C.10)

This is shown in Fig. 5.11 to be compared with the theoretical result of
Pfingst et al.

C.3 Example of the Calculation of the Born
Cross-Section for Vibrational Transitions

The Born cross-section for the vibrational transition v0 = 0 → v = 1 is given
by (see (5.33))

QBorn,dipole
vib (v = 0 → 1) =

8π

3k2
0

|〈1|M1|0〉|2 ln
∣∣∣k0 + k1

k0 − k1

∣∣∣. (C.11)

Only the dipole interaction is considered here. Similarly to the case of rota-
tional transition, we need two molecular parameters: the transition energy
ΔE(v = 0 → 1) and the dipole matrix element squared |〈1|M1|0〉|2.

Now, as an example, we calculate the cross-section for the transition v =
0 → 1 of the IR-active mode ν3 of CH4. The collision energy is set to be 1 eV.
We take the relevant molecular parameters from Appendix B. They are

ΔE(v = 0 → 1) = 0.374 eV = 0.0137 a.u., (C.12)
|〈1|M1|0〉|2 = 1.34 × 10−3 a.u. (C.13)

At E0 = 1 eV, we have from (C.2) and (C.3)

k0 = 0.27111,

k1 = 0.21450.

The Born cross-section for the vibrational transition is calculated to be

QBorn,dipole
vib (v = 0 → 1) = 0.3283 a.u.

= 9.193 × 10−18 cm2. (C.14)

In Fig. 5.17, the Born cross-section is compared with the theoretical result
of Nishimura and Gianturco [123]. Nishimura and Gianturco employed the
molecular parameters obtained by themselves:

ΔE(v = 0 → 1) = 0.402 eV, (C.15)
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|〈1|M1|0〉|2 = 3.37 × 10−3 a.u. (C.16)

Using these values, we have

QBorn,dipole
vib (v = 0 → 1) = 2.213 × 10−17cm2. (C.17)

This is shown in Fig. 5.17. This cross-section is much different from the value
(C.14). The difference is mainly due to the difference in the dipole matrix
element used. The theoretical value of the dipole matrix element (C.16) is
very large compared with the experimental value (C.13). This reflects the
difficulty of the calculation of the dipole matrix element.
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Cross-Section Sets for H2, N2, H2O, and CO2

Sets of cross-sections are shown here for the electron collisions with four rep-
resentative molecules: H2 (Fig. D.1), N2 (Fig. D.2), H2O (Fig. D.3), and CO2

(Fig. D.4). Those cross-sections are taken from the data reviews: [167] for
H2, [83] for N2, [81] for H2O, and [78] for CO2. Cross-sections shown are
listed below. Details of each cross-section are given in the respective review
papers.

1. H2 (Fig. D.1)
tot=total scattering cross-section (Qtot)
elas=elastic scattering cross-section (Qelas)
mom transf=momentum–transfer cross-section (Qm)
rot=cross-section for rotational transition (Qrot)
vib=cross-section for vibrational transition (Qvib)
diss=dissociation cross-section for neutral products (Qdis)
ion (tot)=total ionization cross-section (Qion(tot))
H+=partial ionization cross-section for the production of H+

B, E, b=cross-sections for the excitation of electronic states B 1Σ+
u ,

E 1Σ+
g , and b 3Σ+

u

2. N2 (Fig. D.2)
tot = total scattering cross-section (Qtot)
elas = elastic scattering cross-section (Qelas)
mom transf = momentum–transfer cross-section (Qm)
rot = cross-section for rotational transition (Qrot)
vib = cross-section for vibrational transition (Qvib)
diss = dissociation cross-section for neutral products (Qdis)
ion (tot) = total ionization cross-section (Qion(tot))
ion (diss) = sum of all the partial ionization cross-sections for the
dissociative ionization
B, C, a = cross-sections for the excitation of electronic states B 3Πg,
C 3Πu, and a 1Πg
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Fig. D.2. Cross-section set for e + N2
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3. H2O (Fig. D.3)
tot = total scattering cross-section (Qtot)
elas = elastic scattering cross-section (Qelas)
mom transf = momentum–transfer cross-section (Qm)
rot = cross-section for rotational transition (Qrot)
vib = cross-section for vibrational transition (Qvib)

Bend is the cross-section for the first excited state of the bending
mode and stretch is the sum of the corresponding cross-sections
for the symmetric and antisymmetric stretching modes.

attach = cross-section for the production of H−

ion (tot) = total ionization cross-section (Qion(tot))
OH(X) = cross-section for the production of OH(X)
OH A–X = emission cross-section for the radiation A–X from OH
H (n = 2 − 1) = emission cross-section of the Lyman α radiation
from H
H (n = 3 − 2) = emission cross-section of the Balmer α radiation
from H

4. CO2 (Fig. D.4)
tot = total scattering cross-section (Qtot)
elas = elastic scattering cross-section (Qelas)
mom transf = momentum–transfer cross-section (Qm)
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Fig. D.3. Cross-section set for e + H2O
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vib = cross-section for vibrational transition (Qvib)
(100), (010), and (001) are the excitation of the first excited state
of symmetric, bending, and antisymmetric modes, respectively.
Cross-sections below 1 eV were obtained by the method different
from those above 1 eV.

ion (tot) = total ionization cross-section (Qion(tot))
ion (diss) = sum of all the partial ionization cross-sections for the
dissociative ionization
O(S) = cross-section for the production of O(1S)
CO+

2 (A,B) = emission cross-sections for the radiations A–X and B–X
from CO+

2 .
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How to Find Cross-Section Data

There is no universal method to find cross-section data. Only through an
extensive survey of literature, we can reach the cross-section data we want.
Collision cross-sections are the basic knowledge in many fields of science and
technology. They are reported in quite a wide range of literature. Cross-
sections are found in papers of astrophysics, atmospheric science, atomic and
molecular physics, plasma physics, nuclear fusion, gaseous electronics, phys-
ical chemistry, radiation physics and chemistry, and biological science. It is
not easy, therefore, to find appropriate values of cross-sections. The following
materials may help the survey of cross-section data. This is not a complete
list of items useful for a data search. Depending on the subjects, there may
be many other means for that.

E.1 Data Compilations in Printed Form

The simplest way to obtain cross-section data is to consult a data compila-
tion or data book. For electron–molecule collisions, the most comprehensive
compilation of cross-section data is

Y. Itikawa, ed. Landolt-Börnstein, vol. I/17, Photon and Electron
Interactions with Atoms, Molecules and Ions, subvolume C, Inter-
actions of Photons and Electrons with Molecules (Springer, Berlin
Heidelberg New York, 2003)

This volume includes numerical data on the cross-section for

Ionization

Electron attachment
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Total scattering

Elastic scattering

Momentum–transfer

Excitations of rotational, vibrational, and electronic states

The recommended values of the cross-sections are tabulated for 71 molecular
species, but only for the cases where reliable experimental data are available.
An attached index is helpful to find the relevant data.

For diatomic molecules, another extensive data compilation is available:

M.J. Brunger, S.J. Buckman, Phys. Rep. 357, 215 (2002) Electron–
molecule scattering cross-sections. I. Experimental techniques and
data for diatomic molecules

This paper includes detailed information of the differential, as well as integral,
cross-section for elastic scattering and various excitation processes. It also
reports total scattering and momentum–transfer cross-sections, but nothing
for ionization and dissociation.

An extensive data compilation was also made by Zecca et al. Their result
was published in a series of papers.

A. Zecca, G.P. Karwasz, R.S. Brusa, La Rivista del Nuovo Cimento
19(3), 1 (1996) One century of experiments on electron–atom and
molecule scattering: A critical review of integral cross-sections I.
Atoms and diatomic molecules

G.P. Karwasz, R.S. Brusa, A. Zecca, La Rivista del Nuovo Cimento
24(1), 1 (2001) One century of experiments on electron–atom and
molecule scattering: A critical review of integral cross-sections II.
Polyatomic molecules

G.P. Karwasz, R.S. Brusa, A. Zecca, La Rivista del Nuovo Cimento
24(4), 1 (2001) One century of experiments on electron–atom and
molecule scattering: A critical review of integral cross-sections III.
Hydrocarbons and halides

These papers deal with not only diatomic but also polyatomic molecules.
When no experimental data are available, the authors estimated the cross-
section by a simple theory.

Other data compilations available for electron–molecule collisions are listed
in Appendix F. Those for ion–molecule collisions are presented in Appendix G.
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E.2 Journals Exclusively Focused on Atomic
and Molecular Data

The following two journals publish papers on compilations or reviews of atomic
and molecular data, including cross-sections.

Atomic Data and Nuclear Data Tables, published bimonthly by
Elsevier, Inc.

and

Journal of Physical and Chemical Reference Data, published quarterly
by the American Institute of Physics

Through the index of papers, one can reach the data tables needed.

E.3 Online Database

Online databases for collision cross-sections are still in the developing stage.
The up-to-date information about the online database is occasionally available
at the International Conference on Atomic and Molecular Data and Their
Applications (ICAMDATA), which is described below.

One example of the online database is available at

National Institute for Fusion Science (NIFS), Atomic and Molecular
Data Research Center, Toki, Japan (URL= http://dbshino.nifs.ac.jp/)

They maintain databases separately for electron–molecule and ion–molecule
collisions. The latter is mainly concerned with charge transfer collisions. They
also have a database on bibliographic information for atomic and molecular
physics. Their databases can be accessed freely, but users need to register first.

International organization often offers online databases. One of them is

International Atomic Energy Agency (IAEA), Nuclear Data Sec-
tion/Atomic and Molecular Data Unit, Vienna, Austria (URL=http://
www-amdis.iaea.org/)

Their databases are mainly concerned with fusion plasmas.
Both the NIFS and IAEA web sites have links to other related databases.

E.4 Review Papers

Review papers often report cross-section data. Although its coverage of data
is not comprehensive, many useful information are available from those review
articles. There are journals and periodic publications occasionally reporting
review articles in the field of atomic and molecular physics. One of them is
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Advances in the Atomic, Molecular, and Optical Physics, published
every year by Academic Press

In particular, its volume 33 (published in 1994) is a special volume for atomic
data. The volume was intended to provide a guide to those who need to use
cross-section data. For example, the following two chapters of the volume were
written directly for the purpose

J.W. Gallagher, Adv. At. Mol. Opt. Phys. vol. 33, p. 373 (1994) Guide
for Users of Data Resources

E.W. McDaniel, E.J. Mansky, Adv. At. Mol. Opt. Phys. vol. 33, p. 389
(1994) Guide to Bibliographies, Books, Reviews, and Compendia of
Data on Atomic Collisions

The latter paper is a continuation of the paper by the same group of
authors

E.W. McDaniel, M.R. Flannery, E.W. Thomas, S.T. Manson, Atomic
Data Nucl. Data Tables 33, 1 (1985) Selected Bibliography on Atomic
Collisions: Data Collections, Bibliographies, Review Articles, Books,
and Papers of Particular Tutorial Value

Other examples of review papers on atomic data are

W.M. Huo, Y.-K. Kim, IEEE Trans. Plasma Sci. 27, 1225 (1999)
Electron Collision Cross-Section Data for Plasma Modeling

W.L. Morgan, Adv. At. Mol. Opt. Phys. vol. 43, p. 79 (2000) Electron
Collision Data for Plasma Chemistry Modeling

L.G. Christophorou, J.K. Olthoff, Adv. At. Mol. Opt. Phys. vol. 44,
p. 59 (2001) Electron Collision Data for Plasma-Processing Gases

Although mainly for processing plasmas, the following book reviews the
electron collisions with molecules. In particular, the book gives the detailed
information of the cross-section data for ten specific molecules (CF4, C2F6,
C3F8, CHF3, CCl2F2, Cl2, SF6, CF3I, c-C4F8, and BCl3). Those information
are based on the data compilations published by the authors in J. Phys. Chem.
Ref. Data (see Appendix F).

L.G. Christophorou, J.K. Olthoff. Fundamental Electron Interactions
with Plasma Processing Gases (Plenum Press, New York, 2004)

E.5 Conference

Since 1997, a special international conference is held every 2 or 3 years on
atomic and molecular data. It is called
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The International Conference on Atomic and Molecular Data and
Their Applications (ICAMDATA)

It was held at

I. National Institute of Standards and Technology, Maryland, USA in 1997
II. Keble College, Oxford, UK in 2000

III. Gatlinburg, Tennessee, USA in 2002
IV. Toki, Gifu-prefecture, Japan in 2004
V. Meudon, France in 2006

Invited talks at the Conference have been published as

I. P.J. Mohr, W.L. Wiese, eds. Atomic and Molecular Data and their Appli-
cations, AIP Conf. Proc. 434 (American Institute of Physics, Woodbury,
NY, 1998)

II. K.A. Berrington, K.L. Bell, eds. Atomic and Molecular Data and their
Applications, AIP Conf. Proc. 543 (American Institute of Physics,
Melville, NY, 2000)

III. D.R. Schultz, P.S. Krstić, F. Ownby, eds. Atomic and Molecular Data and
their Applications, AIP Conf. Proc. 636 (American Institute of Physics,
Melville, NY, 2002)

IV. T. Kato, H. Funaba, D. Kato, eds. Atomic and Molecular Data and
their Applications, AIP Conf. Proc. 771 (American Institute of Physics,
Melville, NY, 2005)

V. E. Roueff, ed. Atomic and Molecular Data and their Applications, AIP
Conf. Proc. 901 (American Institute of Physics, Melville, NY, 2007)
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Data Compilations for Electron–Molecule
Collisions

A list of the compilations of cross-section data for electron–molecule collisions
is presented here. The compilations published since 1980 are listed. The list
includes only those compilations publicly available. Institution reports, for
instance, are not included there. The listings are arranged in groups by year
of publication and, within each group, alphabetically by the name of the
first author. For readers’ convenience, an index is given in Table F.1 for the
principal molecules dealt with in the preceding chapters.

1. S. Trajmar, D.F. Register, A. Chutjian. Phys. Rep. 97, 219 (1983) Elec-
tron scattering by molecules II. Experimental methods and data

2. Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto,
K. Takayanagi, M. Nakamura, H. Nishimura, T. Takayanagi. J. Phys.
Chem. Ref. Data 15, 985 (1986) Cross-sections for collisions of electrons
and photons with nitrogen molecules

3. Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi,
Y. Hatano, M. Hayashi, H. Nishimura, S. Tsurubuchi. J. Phys. Chem.
Ref. Data 18, 23 (1989) Cross-sections for collisions of electrons and
photons with oxygen molecules

4. H. Tawara, Y. Itikawa, H. Nishimura, M. Yoshino. J. Phys. Chem. Ref.
Data 19, 617 (1990) Cross-sections and related data for electron collisions
with hydrogen molecules and molecular ions

5. W.L. Morgan. Plasma Chem. Plasma Process. 12, 449 (1992) A crit-
ical evaluation of low-energy electron impact cross-sections for plasma
processing modeling. I: Cl2, F2, and HCl

6. W.L. Morgan. Plasma Chem. Plasma Process. 12, 477 (1992) A crit-
ical evaluation of low-energy electron impact cross-sections for plasma
processing modeling. II: CF4, SiH4, and CH4

7. I. Kanik, S. Trajmar, J.C. Nickel. J. Geophys. Res. 98, 7447 (1993) Total
electron scattering and electronic state excitations cross-sections for O2,
CO, and CH4
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Table F.1. Index by molecule

Molecule Reference

H2 [1, 4, 13, 27, 32]

N2 [1, 2, 9, 13, 16, 27, 30, 32, 36, 38]

O2 [1, 3, 7, 9, 13, 16, 27, 30, 32]

Cl2 [5, 19, 27, 32]

CO [1, 7, 10, 13, 26, 27, 32]

NO [1, 13, 27, 32, 33]

HF [1, 27, 32]

HCl [1, 5, 24, 27, 32]

H2O [1, 24, 26, 32, 35]

N2O [1, 24, 32, 33]

CO2 [1, 24, 26, 29, 30, 32]

O3 [24, 32]

NH3 [1, 24, 32]

CF4 [6, 8, 11, 20, 25, 30, 32]

CH4 [1, 6, 7, 24, 31, 32]

SiH4 [6, 12, 24, 30, 32]

C2H4 [1, 25, 31, 32, 34]

SF6 [1, 21, 25, 30, 32]

8. R.A. Bonham. Jpn. J. Appl. Phys. 33, 4157 (1994) Electron impact cross-
section data for carbon tetrafluoride

9. Y. Itikawa. Adv. At. Mol. Opt. Phys. 33, 253 (1994) Electron collisions
with N2, O2, and O: What we do and do not know

10. W. Liu, G.A. Victor. Astrophys. J. 435, 909 (1994) Electron energy
deposition in carbon monoxide gas

11. L.G. Christophorou, J.K. Olthoff, M.V.V.S. Rao. J. Phys. Chem. Ref.
Data 25, 1341 (1996) Electron interactions with CF4

12. J. Perrin, O. Leroy, M.C. Bordage. Contrib. Plasma Phys. 36, 3 (1996)
Cross-sections, rate constants and transport coefficients in silane plasma
chemistry

13. A. Zecca, G.P. Karwasz, R.S. Brusa. La Rivista del Nuovo Cimento
19(3), 1 (1996) One century of experiments on electron-atom and mole-
cule scattering: A critical review of integral cross-sections I. Atoms and
diatomic molecules

14. L.G. Christophorou, J.K. Olthoff, M.V.V.S. Rao. J. Phys. Chem. Ref.
Data 26, 1 (1997) Electron interactions with CHF3

15. L.G. Christophorou, J.K. Olthoff, Y. Wang. J. Phys. Chem. Ref. Data
26, 1205 (1997) Electron interactions with CCl2F2
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16. T. Majeed, D.J. Strickland. J. Phys. Chem. Ref. Data 26, 335 (1997) New
survey of electron impact cross-sections for photoelectron and auroral
electron energy loss calculations

17. L.G. Christophorou, J.K. Olthoff. J. Phys. Chem. Ref. Data 27, 1 (1998)
Electron interactions with C2F6

18. L.G. Christophorou, J.K. Olthoff. J. Phys. Chem. Ref. Data 27, 889 (1998)
Electron interactions with C3F8

19. L.G. Christophorou, J.K. Olthoff. J. Phys. Chem. Ref. Data 28, 131 (1999)
Electron interactions with Cl2

20. L.G. Christophorou, J.K. Olthoff. J. Phys. Chem. Ref. Data 28, 967 (1999)
Electron interactions with plasma processing gases: An update for CF4,
CHF3, C2F6, and C3F8

21. L.G. Christophorou, J.K. Olthoff. J. Phys. Chem. Ref. Data 29, 267 (2000)
Electron interactions with SF6

22. L.G. Christophorou, J.K. Olthoff. J. Phys. Chem. Ref. Data 29, 553 (2000)
Electron interactions with CF3I

23. L.G. Christophorou, J.K. Olthoff. J. Phys. Chem. Ref. Data 30, 449 (2001)
Electron interactions with c-C4F8

24. G.P. Karwasz, R.S. Brusa, A. Zecca. La Rivista del Nuovo Cimento 24(1),
1 (2001) One century of experiments on electron-atom and molecule scat-
tering: A critical review of integral cross-sections II. Polyatomic molecules

25. G.P. Karwasz, R.S. Brusa, A. Zecca. La Rivista del Nuovo Cimento 24(4),
1 (2001) One century of experiments on electron-atom and molecule scat-
tering: A critical review of integral cross-sections III. Hydrocarbons and
halides

26. T. Shirai, T. Tabata, H. Tawara. Atomic Data Nucl. Data Tables 79, 143
(2001) Analytic cross-sections for electron collisions with CO, CO2, and
H2O relevant to edge plasma impurities

27. M.J. Brunger, S.J. Buckman. Phys. Rep. 357, 215 (2002) Electron–
molecule scattering cross-sections. I. Experimental techniques and data
for diatomic molecules

28. L.G. Christophorou, J.K. Olthoff. J. Phys. Chem. Ref. Data 31, 971 (2002)
Electron interactions with BCl3

29. Y. Itikawa. J. Phys. Chem. Ref. Data 31, 749 (2002) Cross-sections for
electron collisions with carbon dioxide

30. Y. Sakai. Appl. Surface Sci. 192, 327 (2002) Database in low temperature
plasma modeling

31. T. Shirai, T. Tabata, H. Tawara, Y. Itikawa. Atomic Data Nucl. Data
Tables 80, 147 (2002) Analytic cross-sections for electron collisions with
hydrocarbons: CH4, C2H6, C2H4, C2H2, C3H8, and C3H6

32. Y. Itikawa, ed. Landolt–Börnstein, vol. I/17, Photon and Electron Inter-
actions with Atoms, Molecules and Ions, subvolume C, Interactions of
Photons and Electrons with Molecules (Springer, Berlin Heidelberg New
York, 2003) (See Appendix E for details)
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33. A. Zecca, G.P. Karwasz, R.S. Bursa, T. Wróblewski. Int. J. Mass Spec-
trom. 223–224, 205 (2003) Low–energy electron collisions in nitrogen
oxides: a comparative study

34. R.K. Janev, D. Reiter Phys. Plasmas 11, 780 (2004) Collision processes
of C2,3Hy and C2,3H+

y hydrocarbons with electrons and protons
35. Y. Itikawa, N. Mason. J. Phys. Chem. Ref. Data 34, 1 (2005) Cross-

sections for electron collisions with water molecules
36. Y. Itikawa. J. Phys. Chem. Ref. Data 35, 31 (2006) Cross-sections for

electron collisions with nitrogen molecules
37. I. Rozum, P. Limão-Vieira, S. Eden, J. Tennyson, N.J. Mason. J. Phys.

Chem. Ref. Data 35, 267 (2006) Electron interaction cross-sections for
CF3I, C2F4, and CFx (x=1–3) radicals

38. T. Tabata, T. Shirai, M. Sataka, H. Kubo. Atom. Data Nucl. Data Tables
92, 375 (2006) Analytic cross-sections for electron impact collisions with
nitrogen molecules
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Data Compilations for Ion–Molecule Reactions
and Related Processes

There are not so many data compilations for ion–molecule collisions, partic-
ularly those publicly available. Because of a wide variety of collision systems,
it is difficult to make a comprehensive survey of the data compilations for ion
collisions. Only for illustration, here we present two categories of data compi-
lations. One is the list of papers published in J. Phys. Chem. Ref. Data and
Atomic Data Nucl. Data Tables, and the other is the list of other compilations.

(I) Papers published in J. Phys. Chem. Ref. Data and Atomic Data Nucl.
Data Tables
(I.1) Ion–molecule reactions

1. E.E. Ferguson. Atomic Data Nucl. Data Tables 12, 159 (1973) Rate con-
stants of thermal energy binary ion–molecule reactions of aeronomic inter-
est

2. D.L. Albritton. Atomic Data Nucl. Data Tables 22, 1 (1978) Ion-neutral
reaction-rate constants measured in flow reactors through 1977

3. V.G. Anicich. J. Phys. Chem. Ref. Data 22, 1469 (1993) Evaluated bimole-
cular ion–molecule gas phase kinetics of positive ions for use in modeling
planetary atmospheres, cometary comae, and interstellar clouds

(I.2) Chemical reactions of neutral species

1. D.L. Baulch, R.A. Cox, R.F. Hampson Jr., J.A. Kerr, J. Troe,
R.T. Watson. J. Phys. Chem. Ref. Data 9, 295 (1980) Evaluated kinetic
and photochemical data for atmospheric chemistry
Followed by

Supplement I. J. Phys. Chem. Ref. Data 11, 327 (1982)
Supplement II. J. Phys. Chem. Ref. Data 13, 1259 (1984)
Supplement III. J. Phys. Chem. Ref. Data 18, 881 (1989)
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Supplement IV. J. Phys. Chem. Ref. Data 21, 1125 (1992)
Supplement V. J. Phys. Chem. Ref. Data 26, 521 (1997)
Supplement VI. J. Phys. Chem. Ref. Data 26,1329 (1997)
Supplement VII. J. Phys. Chem. Ref. Data 28, 191 (1999)
Supplement VIII. J. Phys. Chem. Ref. Data 29, 167 (2000)

2. N. Cohen, K.R. Westberg. J. Phys. Chem. Ref. Data 12, 531 (1983) Chemi-
cal kinetic data sheets for high–temperature chemical reactions

3. N. Cohen, K.R. Westberg. J. Phys. Chem. Ref. Data 20, 1211 (1991)
Chemical kinetic data sheets for high–temperature chemical reactions.
Part II

4. D.L. Baulch, C.J. Cobos, R.A. Cox, C. Esser, P. Frank, Th. Just, J.A.
Kerr, M.J. Pilling, J. Troe, R.W. Walker, J. Warnatz. J. Phys. Chem. Ref.
Data 21, 411 (1992) Evaluated kinetic data for combustion modelling
Followed by

Supplement I. J. Phys. Chem. Ref. Data 23, 847 (1994)
Supplement II. J. Phys. Chem. Ref. Data 34, 757 (2005)

(II) Others (for specific applications)

1. H. Mätzing. Adv. Chem. Phys. 80, 315 (1991) Chemical kinetics of flue
gas cleaning by irradiation with electrons

2. I.A. Kossyi, A.Yu. Kostinsky, A.A. Matveyev, V.P. Silakov. Plasma
Sources Sci. Technol. 1, 207 (1992) Kinetic scheme of the nonequilibrium
discharge in nitrogen–oxygen mixtures

3. T.J. Millar, P.R.A. Farquhar, K. Willacy. Astron. Astrophys. Suppl. 121,
139 (1997) The UMIST database for astrochemistry 1995

4. Y.H. Le Teuff, T.J. Millar, A.J. Markwick. Astron. Astrophys. Suppl. 146,
157 (2000) The UMIST database for astrochemistry 1999

5. L.W. Sieck, J.T. Herron, D.S. Green. Plasma Chem. Plasma Process. 20,
235 (2000) Chemical kinetics database and predictive schemes for humid
air plasma chemistry. Part I: Positive ion–molecule reactions
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adiabatic approximation, 50
adiabatic-nuclear rotation (ANR)

approximation, 51, 70
airglow, 7, 10
aurora, 9

beam attenuation method, 35, 115, 118
Boltzmann equation, 14, 37

effects of rotational transition, 76
inelastic collision, 68

Born approximation, 54
rotational transition, 73
vibrational excitation, 81

center of mass (CM) frame, 28, 31, 128
charge transfer, 19

effects on momentum–transfer, 135
symmetric, 135, 143, 144

collision frequency, 21, 31
collision probability, 24
collisional-radiative model, 18
crossed-beam experiment, 33

detailed balance, 122
differential cross-section, 25

beam experiment, 34
definition, 21
potential scattering, 27
quantum theory, 26

dipole moment, 47, 62, 69, 72, 74, 81, 82
dissociation, electron-impact, 16, 109
dissociative attachment, 19, 100, 124

partial cross-section, 101
total cross-section, 101

dissociative ionization, 92
dissociative recombination, 19, 150

edge plasma, 17
elastic scattering, electron collision, 14,

59
electric conductivity, 10, 65
electron attachment, 99

dissociative, see dissociative
attachment

three body, 103
electron energy distribution function,

EEDF, 14–16, 37
electron energy loss spectrum, EELS,

33, 59, 69, 86, 90, 112
electron-exchange effect, 52
emission cross-section, 9, 104

cascade effect, 106
excitation, electron-impact, 14, 18, 85

first excitation threshold, 119
Franck–Condon factor approximation,

51, 85, 89, 107

infrared (IR) absorption intensity, 81
infrared (IR)-active mode of vibration,

79, 81
integral cross-section, definition, 21
ion mobility, 131–133
ion molecule reaction, 6, 10, 12, 139
ion storage ring, 151
ionization, electron–impact, 14, 91

Binary Encounter–Bethe model, 96
counting cross–section, 92
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dissociative ionization, 92
mean energy loss, 99
of metastable molecule, 123
of molecular ions, 146
partial cross-section, 92
secondary electron, 97
singly differential cross-section, 97,

119
total cross–section, 92

laboratory frame, 31
Langevin cross-section, 134, 140
Langevin rate coefficient, 140
laser-induced fluorescence, LIF, 113

magnetic angle changer, 34
mean collision time, 23
mean free path, 23, 31, 35
merged beam method, 36, 151
modified effective range theory, MERT,

63
molecule assisted recombination, MAR,

19
momentum–transfer cross-section

electron collision, 10, 64
ion collision, 10, 130

neutral dissociation cross-section, 111

phase shift, 27, 63
polarizability, 53
polarization interaction

electron molecule collision, 52
ion molecule collision, 133, 140

quadrupole moment, 47, 76

Ramsauer minimum, 64
rate coefficient, definition, 24
recombination, electron–ion, 12, 14

dissociative, see dissociative
recombination

three body, 148
reduced mass, 29
relative flow method, 34
rotational transition

electron collision, 14, 15, 18, 69
ion collision, 136

rotationally elastic cross-section, 60, 77

scattering amplitude, 25
formal solution, 49

scattering cross-section
spherical potential, 27

shape resonance, 60, 68, 72, 77, 83, 118,
123

stopping cross-section, 118
elastic scattering, 119
ionization, 119

stopping power, 119
swarm experiment, 37

total dissociation cross-section, 111
total scattering cross-section, 23, 35, 62,

115, 122
translational energy spectroscopy, 32

vibrational excitation
electron collision, 14, 15, 18, 77

excitation of molecular ion, 145
ion collision, 136

excitation of projectile ion, 138
vibrationally elastic cross-section, 60
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