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PREFACE

Intermolecular interactions constitute one of the major forces determining numerous
specific properties and self organization of condensed matter including biological
systems. There is no better illustration of their importance than the introduction in
the famous textbook The Feynman Lectures on Physics:

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed
on to the next generations of creatures, what statement would contain the most information in the fewest
words? I believe it is the atomic hypothesis that all things are made of atoms — little particles that move
around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon
being squeezed into one another.

This statement refers directly to the concept of the potential energy function
describing interaction energy as a function of the distance sufficient to model various
properties of matter that are directly or indirectly related to the intermolecular
forces. Recent progress in computational and experimental techniques opens the
perspective for rational de novo design of new materials with desired properties
being governed by specific interactions.

The main purpose of this volume is to present an overview of selected state-of-
the-art computational methodologies and to present examples of applications. The
first six chapters contain an in-depth description of several new techniques applied
in modeling and designing new molecular materials.

The first chapter by Moszyriski presents in a systematic and comprehensive
manner the current state-of-the-art theory of intermolecular interactions. Numerous
examples illustrate how theoreticians and experimentalists working in tandem
may gather valuable quantitative results related to intermolecular interactions, like
accurate potential functions, interaction-induced properties, spectra and collisional
characteristics or dielectric, refractive or thermodynamic properties of bulk phases.
On the other hand the most advanced Symmetry Adapted Perturbation Theory
(SAPT) enables validation of more approximate variation-pertubation models which
could be applied to the analysis of specific interactions in much larger molecular
systems, for example enzyme-drug interactions discussed in Chapter VIII by
Berlicki et al.

The second chapter by Wesotowski presents a general overview of the recent
developments in Density Functional Theory (DFT), which currently constitutes the
most popular tool for modeling molecular materials. Particular emphasis has been

vii



viii Preface

given to the systematic discussion of approximations employed in DFT and their
performance for various types of molecular aggregates.

Mezoscopic and microscopic modeling methods applied in modeling biopolymers
are reviewed in the third chapter by Lesyng and coworkers, allowing for a better
description of biomolecular recognition processes as well as corresponding free
energy changes.

The fourth chapter by Michalak and Ziegler presents an excellent introduction
into DFT-based first principle molecular dynamics capable of modeling complex
chemical reactions. Considerable effort has been made by the authors to explain in
detail the specifics of ab initio calculations wherever they differ from conventional
techniques.

A very promising methodology bridging quantum mechanics and molecular
mechanics (QM/MM), allowing the mechanisms of enzymatic reactions to be
analyzed in detail, has been reviewed in the fifth chapter by Mulholland and Grant.

The chapter written by Ramos and coworkers reviews various computational
techniques used to study protein-protein interactions, with particular attention given
to thermodynamic characteristics of mutated proteins and their interactions.

The contribution of Paneth and coworkers demonstrates how substrate-enzyme
interactions could be explored using experimentally determined kinetic isotope
effects and QM/MM calculations.

The remaining three chapters illustrate various applications of molecular
modeling methods in exploring various properties of complex protein systems.
Nakano and coworkers analyse the mechanism of [NiFe] hydrogenase involved
in hydrogen production. Renugopalakrishnan studies bacteriorhodopsin which is
important in information storage technologies. Filipek and coworkers concentrate
on rhodopsin as being an important target for pharmacological intervention.

Intermolecular interactions define crucial characteristics of materials for hydrogen
storage materials. This topic is discussed in detail in the chapter by Cheng et al.
devoted to molecular dynamics simulations of single-walled carbon nanotubes
(SWNT) with molecular hydrogen. The properties of modified SWNTSs, in the
contribution from Politzer er al., are also analyzed from the point of view of
potential applications in molecular electronics.

Molecular electronic applications are also covered in the contribution from Zhou
and Hagelberg discussing interactions of various organic molecules with silicon
surface, whereas Zhou et al. concentrate on fullerene deposition on silicon and
GaAs surfaces.

The last chapter by Michalkova et al. presents a review of the experimental
and theoretical data on nerve agent interactions with different surfaces. Particular
attention is given to molecular simulations of interaction and decomposition of
phosphoroorganic compounds on various metal and metal oxide clusters.

Of course the examples discussed in this volume cover only a small fraction
of possible applications. We hope that with the rapid progress of computational
techniques many more molecular materials will soon be the subject of rational
design in silico.
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CHAPTER 1

THEORY OF INTERMOLECULAR FORCES:
AN INTRODUCTORY ACCOUNT

ROBERT MOSZYNSKI

Quantum Chemistry Laboratory
Faculty of Chemistry, Warsaw University
Pasteura 1, 02-093 Warsaw, Poland

Abstract:

Keywords:

Modern theory of intermolecular forces is reviewed. The concept of the interaction
potential is introduced within the Born-Oppenheimer separation of the electronic and
nuclear motions. Various supermolecule approaches for the calculation of accurate
interaction potentials are discussed. Perturbation theory of intermolecular forces is
reviewed in great details. The problem of symmetry-adaptation is explained and a general
symmetry-adapted perturbation theory is formulated. Convergence properties of various
symmetry-adapted expansions are surveyed, and illustrated on several examples. Physical
interpretation of the interaction potential in terms of the four fundamental interaction
components: electrostatics, induction, dispersion, and exchange-repulsion is thoroughly
exposed. Many-electron formulation of the symmetry-adapted perturbation theory in
both the wave function and density functional approaches is introduced. One-center
and multicenter multipole expansions neglecting the charge-overlap effects, as well as
the bipolar expansion accounting for these effects are discussed. The relation of some
supermolecule approaches with the perturbation theory of intermolecular forces is briefly
sketched. Approximate models that can be deduced from the rigorous theory of inter-
molecular forces, and applicable to the interactions of large systems are discussed. Finally,
perturbation theory of nonadditive interactions in trimers and of the collision-induced
electric properties of binary collisional complexes is also reviewed. The theory part is
completed by an exposition of methods needed on the route from intermolecular poten-
tials and collision-induced properties to physically measurable quantities such as the
Raman spectra, rovibrational spectra, scattering cross sections, as well as thermodynamic,
dielectric, and refractive properties of dilute gases. The present status of symmetry-adapted
perturbation theory applied to the calculations of state-of-the-art ab initio potential energy
surfaces and collision-induced properties is presented, and illustrated by means of appli-
cations to rovibrational spectra of Van der Waals molecules, scattering cross sections
and pressure broadening coefficients, collision-induced Raman spectra of atomic gases,
solvation processes, and thermodynamic, dielectric, and refractive properties of dilute
gases. Theoretical results are compared with high accuracy experimental data

intermolecular forces, Born-Oppenheimer approximation, supermolecular method, polar-

ization approximation, symmetry-adapted perturbation theory, electrostatics, induction,
dispersion, exchange-repulsion, multipole expansion, one-center and multicenter
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2 Robert Moszynski

expansions, bipolar expansion, charge overlap and damping effects, approximate models,
relation between supermolecule approaches and perturbation theory, nonadditive interac-
tions, collision-induced properties, optical spectra of Van der Waals complexes, scattering
cross sections, dielectric, refractive, and thermodynamic properties of dilute gases, state-
of-the-art ab initio potential energy surfaces, infrared spectra, integral and differential
cross sections, pressure broadening coefficients, thermodynamic virial coefficients for
binary complexes, high accuracy ab initio nonadditive potentials, radial distribution
functions from first principle computer simulations, solvation processes, state-of-the-art ab
initio Raman spectra, and dielectric and refractive properties of atomic gases, comparison
with high precision experimental data

1. INTRODUCTION

The importance of intermolecular interactions in physics, chemistry, and biology
does not need to be stressed. Intermolecular potentials determine the properties
of non-ideal gases (pure) liquids, solutions, molecular solids, and the behavior of
complex molecular ensembles encountered in biological systems. They describe the
so-called non-bonded contributions, as well as the special hydrogen bonding terms,
that are part of the force fields used in simulations of processes as enzyme-substrate
binding, drug-receptor interactions, etc. A few examples showing important applica-
tions of intermolecular potentials include the Monte Carlo and molecular dynamics
simulations of biological systems, studies of processes in the earth’s atmosphere,
or interstellar chemistry. One can even imagine significant technological advances
from the studies of weak intermolecular forces. With a proper manipulation of
the energetic and stereochemical features of the interactions between molecules
one may design artificial receptor molecules capable of binding substrate species
strongly and selectively, just as biological enzymes do, leading to the construction
of new materials.

Let us start this review by briefly repeating that the concept of the intermolecular
potential is based on the Born-Oppenheimer separation of the Schrodinger equation
for the electronic and nuclear motions. The solution of the first step, the electronic
structure problem, for a number of (clamped) nuclear coordinates yields the potential
surface for the nuclear motions. For an individual molecule the latter are the vibra-
tions, rotations, and translations of this molecule. For an ensemble of interacting
molecules, which can be distinguished as such because they are held together
by strong covalent or ionic chemical bonds, there is a hierarchy of the strong
intramolecular forces which determine the internal vibrations of the molecules, and
much weaker intermolecular forces which determine their relative translations and
rotations. This paper is concerned with the relatively weak intermolecular interac-
tions, Van der Waals forces and hydrogen bonding, in particular. They play a crucial
role in molecular complexes which may be collisional, as in crossed molecular beam
experiments, or truly bound, as occurring in high concentrations in cold supersonic
nozzle beams, but also, in lower concentrations, in bulk phases.
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Intermolecular potentials depend on the intermolecular degrees of freedom, i.e.
on the coordinates describing the relative translations and rotations of the molecules
in a complex, but also on the intramolecular coordinates describing the molecular
geometries. Because of the above mentioned hierarchys, it is mostly allowed to make
another adiabatic separation, namely between the intramolecular vibrations with
high frequencies and the intermolecular modes with much lower frequencies. The
latter can then be described with an intermolecular potential averaged over the fast
intramolecular vibrations. The intermolecular motions have mostly large amplitudes,
because the potential surfaces corresponding to the weak intermolecular forces are
rather flat. Often, there are multiple (equivalent or non-equivalent) minima on the
potential surfaces that are accessible through thermal motions of the complex or
quantum mechanical tunneling. An appropriate theoretical treatment of the dynamics
of such weakly bound complexes requires the knowledge of the full potential
surface, not just of the second derivatives, the force constants, at the minimum of
the potential, as in the harmonic oscillator model.

The interaction energy of two molecules A and B is defined in the Born-
Oppenheimer approximation as the difference between the energy of the dimer E,
and the energies of the monomers E, and E;

E,=Eu—E,—Eg. (1‘1)

It is assumed that the internal coordinates of the monomers A and B used in the
calculations of E, and E are the same as within the dimer AB. Thus, the interaction
energy depends on the separation R between the centers of mass of the monomers,
on the Euler angles characterizing their mutual orientation, and on monomer’s
internal coordinates.

Present day methods and computers have evolved to a stage where it is possible
to obtain accurate intermolecular potentials from ab initio electronic structure calcu-
lations. Basically there are two methods to do so: the supermolecule method and
the symmetry-adapted perturbation theory. In the supermolecular approach the
interaction energy is computed directly from Eq. (I=I) by subtracting the sum of
monomer’s energies from the energy of the dimer. In practical calculations, due to
the use of incomplete basis sets, this method always contains the basis set superpo-
sition error resulting from a nonphysical lowering of monomer’s energy in dimer’s
calculation due to “borrowing” of the basis set from the interacting partner. Since
for all many-electron systems the errors in the total energies are much larger than
the interaction energy itself, the accuracy of the computed potential depends on a
cancellation of these large errors. Moreover, a supermolecular calculation does not
allow any physical insight into the nature of intermolecular interactions. Methods
taking into account specific nature of intermolecular interactions, i.e. the pertur-
bation methods have actually been useful in providing an interpretation and an
estimation of reliability of potential energy surfaces obtained by the supermolecular
approach.

The purpose of this chapter is to review different aspects of the intermolecular
interaction phenomenon. Previous review articles were restricted to some specific
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aspects of intermolecular forces. Refs. (1-4) concentrated on the perturbation theory
of intermolecular forces, while Refs. (5-6) on the supermolecular methods. Finally,
Refs. (7-10) reported expositions of the dynamics of Van der Waals molecules.
It is now clear that the perturbation theory approach to intermolecular interactions
provides the basic conceptual framework within which the intermolecular forces are
discussed. It defines asymptotic constraints on potential energy surfaces obtained
by any theoretical method, and can accurately predict the complete intermolecular
potential energy surfaces for Van der Waals and hydrogen-bonded complexes.
Therefore, in this review we will mostly concentrate on the perturbation theory
approach, namely the symmetry-adapted perturbation theory (SAPT) for pair and
three-body interactions, and for the interaction-induced properties. However, the
supermolecule method, and methods needed on the route from intermolecular poten-
tials to quantities measured in the experiments will also be discussed. All these
theoretical aspects will be illustrated by high accuracy ab initio calculations with a
special emphasis on the comparison between state-of-the-art theoretical results and
high precision experimental data. Due to space limitations of the present review we
will not present experimental techniques used in precise measurements of spectra,
scattering cross sections, or bulk properties. We will also not discuss fitting methods
used on the route from the experimental data to the interaction potentials. However,
we would like to stress that very accurate potentials reproducing a wealth of the
experimental data can be obtained in this way. See, for instance, Refs. (11-18) for
some typical examples.

We start our review in Section P] with a brief discussion of the separation of the
electronic and nuclear motions, the so-called clamped nuclei or Born-Oppenheimer
approximation. This approximation is of fundamental importance for the theory of
intermolecular forces since by its very definition the concept of the interaction potential
appears in this approximation. We continue in Section B with a short exposition of
merits and drawbacks of the supermolecular method. The discussion of the simplest
Rayleigh-Schrodinger perturbation expansion of the interaction energy, including
an analysis of its convergence properties is presented in Section @l The exchange
effects and the symmetry adaptation problem are also discussed in this section. In this
section we formulate various symmetry-adapted perturbation theories, and discuss
the convergence properties of these SAPT expansions for model systems. We also
discuss the relation between the symmetry-forcing procedure (weak or strong) and
the convergence of the perturbation series. In Section[3 we show that the low-order
polarization and exchange corrections have a simple physical interpretation and can
be related to some monomer properties such as one- and two-particle density matrices,
linear and quadratic response functions, etc. Section [0l is devoted to the discussion
of the multipole expansion which can be viewed as the limit of SAPT for very large
intermolecular separations. We discuss one-center expansions based on the global
multipole moments and polarizabilities, as well as multicenter expansions based on
the distributed multipole analysis. We also outline the bipolar expansion that takes
into account the important charge overlap (penetration) effects. In Section [ the
many-electron implementation of SAPT is outlined. The many-electron theory is
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formulated both in the wave function and in the density functional approaches.
Section [§] describes the relations of the many-electron SAPT method with the
supermolecular approaches based on the Hartree-Fock method and the many-body
perturbation theory with the Mgller-Plesset partitioning of the dimer’s Hamil-
tonian. An approximate analysis of the free energy of solvation, as defined by
the selfconsistent reaction field theory, in terms of SAPT contributions is also
briefly outlined. The theory reported in Sections BH8] is exact, but it can hardly
be applied to the interactions of very large molecules such as, e.g. an inhibitor
molecule and an enzyme residue. Therefore, Section[lis devoted to some simplified
models of pair interactions between molecules. In particular, the relations of these
models with the modern theory of intermolecular forces, as well as their merits and
drawbacks, are discussed. A short exposition of the empirical force fields is also
given, again in connection with the theory of intermolecular forces. In Section
we formulate the symmetry-adapted perturbation theory of three-body interactions,
and show that the low-order contributions to nonadditive three-body potentials
can be expressed through the linear and quadratic response functions, and one-
and two-particle density matrices. We also discuss the physical interpretation of
various three-body contributions to the interaction energy. In Section [[T] we briefly
sketch the application of the SAPT approach to collision-induced dipole moments
and polarizabilities of Van der Waals complexes. Since the concept of the inter-
action energy appears in the Born-Oppenheimer approximation, interaction poten-
tials are not directly measurable. Section [[2] gives a brief overview of the methods
needed on the route from intermolecular potentials and collision-induced properties
to quantities measured in various experiments, such as Raman spectra, dielectric
second virial coefficients, rovibrational spectra, scattering cross sections, or thermo-
dynamic second virial coefficients. In this section we also mention simulation
techniques including modern approaches based on the density functional theory.
Applications of SAPT to several weakly bound binary complexes and larger clusters
with a special emphasis on the comparison between state-of-the-art theoretical
results and highly precise experimental data are surveyed in Section [[3] In this
section we also show how the present day theory can help the experimentalists to
interpret their data. Finally, in Section [[4] we give a brief outlook for the future of
the theory of intermolecular forces.

2. THE BORN-OPPENHEIMER APPROXIMATION

The Born-Oppenheimer separation’272 of the electronic and nuclear motions

in molecules is probably the most important approximation ever introduced in
molecular quantum mechanics, and will implicitly or explicitly be used in all subse-
quent sections of this chapter. The Born-Oppenheimer approximation is crucial
for modern chemistry. It allows to define in a rigorous way, within the quantum
mechanics, such useful chemical concepts like the structure and geometry of
molecules, the molecular dipole moment, or the interaction potential. In this approx-
imation one assumes that the electronic motions are much faster than the nuclear
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motions. Therefore, one can assume that slow changes in the nuclear positions
do not strongly affect the physical description of the electronic motions, leading
to an adiabatic separation of the electronic and nuclear problems. In the Born-
Oppenheimer approximation the electronic problem is solved for an (infinite) set
of nuclear coordinates. The eigenvalue of the electronic Schrodinger equation, the
electronic energy as a function of these coordinates, is nothing else than the potential
energy surface. This energy surface is used as the potential operator in the second
step of the Born-Oppenheimer approximation, the problem of nuclear motions in a
given potential.

Various derivations of the Born-Oppenheimer approximation can be found in the
literature. See Refs. (23-24) for typical reviews. The applicability of this approxi-
mation has been proven on several examples, cf. the seminal works of Kolos and
Wolniewicz2~2 for various states of the hydrogen molecule. The results of Kolos
and collaborators on H, and of other authors for other systems were reviewed in
several papers, cf., e.g. Refs. (24-32). Since intermolecular forces can only be
discussed for fixed geometries of the interacting monomers, the Born-Oppenheimer
approximation is a natural framework for the discussion of intermolecular interac-
tions. Therefore, in this section we will briefly review all approximations leading
to to the separation of the electronic and nuclear motions, and discuss situations in
which this fundamental approximation fails.

2.1. Born-Huang Expansion of the Total Wave Function

We consider a closed-shell dimer AB with N, electrons and n, nuclei that can be
assigned to the monomer A, and Ny electrons and n nuclei that can be assigned
to the monomer B. The set of electronic coordinates r;,i =1,... N, + N, will
be denoted by {r}, while the nuclear coordinates, Ry, y=1,...n,+ng will be
denoted in short by {R}. The coordinates of electrons and nuclei are defined in a
space-fixed frame. The nuclear masses will be denoted by M., and atomic units
m, =e=h=1 will be used throughout this chapter. The Schrédinger equation for
the total wave function W™ can be written as,

1

<_§ > MLV§+He] —8) v ({r}, {R}) =0, (1-2)

yeAB My

where H® denotes the nonrelativistic Coulombic Hamiltonian describing the
electronic motions for a fixed set of the nuclear coordinates. The sum of the
electronic and nuclear terms in Eq. (I=2)) will be called the total Hamiltonian,

1 1
—— — V24 HY. 1-3
52 ot (1-3)

yeaB My

H =
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The total wave function of the dimer can be represented by the Born-Huang
expansion22,

W ({r} RY) = 3w ({rk: {RDx({R}) (1-4)

where the electronic wave function W¢' fulfills the electronic Schrodinger equation,
HOW = B ({RY) W, (1-5)

and Y, denotes the wave function describing the nuclear motions. The electronic
equation ([53) is solved for a fixed set of nuclear coordinates {R}, so
the electronic wave function W¢' depends parametrically on {R}, while the
electronic energy E,({R}) is a function of these coordinates. The index k
numbers the solutions of the electronic Schrodinger equation, i.e. it labels the
electronic states. Note that the electronic energy E,({R}) for the dimer AB is
nothing else than the energy E,, appearing in the definition of the interaction
energy, Eq. (D).

By inserting the expansion ([=4) into the Schrédinger equation (=2)), multiplying
from the left by (\I'f‘)*, and integrating over the electronic coordinates we get the
following set of coupled differential equations for the nuclear wave function Y,

|:_l Z LV«? +Cu({R}) + E,({R}) — 6k:| Xk

2 YyEAB Mv
1
= Z |:Ckl({R}) + Z M (Vy : Bl;l +BI;[ : Vy):| Xis (1-6)
1k yeap “My
where
1
B];l = ﬁ@/’zlwy‘ﬁ?lﬂr}’ (1_7)
Y
and
el 1 1 2 el
Ckl({R}) = <q’k |_ 5 Z V y|\lfl >{r]' (1‘8)
yeAaB My
The notation (---|---[---),, means that the integration is performed only over

the electronic coordinates. The diagonal term C,.({R}) is the so-called diagonal
or adiabatic correction for the nuclear motions, while the nondiagonal terms are
often referred to as the nonadiabatic terms. Note parenthetically that the vector
B’;" vanishes for real electronic wave functions W¢!, so terms involving B’;" do not
appear on the Lh.s. of Eq. (I=6).

Equation (I=6) shows that the electronic and nuclear motions are coupled through
the nondiagonal terms C;;({R}), V, -BY/, and B}/ - V,. One should note that both the
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diagonal and nondiagonal terms appearing in Eq. (I=6)) are inversely proportional
to nuclear masses, so for heavy systems the r.h.s. of Eq. (I=8) and the diagonal
correction should be negligible.

We wish to end this section by saying that Eq. (I=8) can also be obtained by
minimizing the energy functional with respect to the functions Y,

EX Xas - ] = (TP — A (W) 1), (1-9)

where A is the Langrange multiplier and the trial wave function is given by Eq. (=4).
This means that Eq. (I=8) has a well defined meaning (in the sense of the variational
principle) even when the Born-Huang expansion (I=4)) is limited to a finite number
of terms.

2.2, Adiabatic and Born-Oppenheimer Approximations

In the adiabatic approximation22 one assumes that the right hand side of Eq. (I=6)
can be neglected. This approximately corresponds to the following ansatz for the
total wave function,

W ({r} (R} = ¥ ({r}: (RHx.({RD). (1-10)

The nuclear motions, i.e. the rotations and vibrations of the molecule, are described
by a Schroédinger-type equation,

1 1

<_§ > VV§+Ckk({R})+Ek({R})_Sk) X =0. (1-11)
yeAB My

Thus, in the adiabatic approximation the nuclear motions are described by a

Schrodinger equation with the potential operator given by the sum of the electronic

energy E,({R}) and the diagonal (adiabatic) correction C,({R}).

If the molecule is in its ground state, i.e. Eq. (I=2) is solved for the lowest
molecular state, it can be shown32 that the expectation value of the total (electronic
plus nuclear) Hamiltonian with the wave function W', of Eq. (II0) gives the
lowest energy calculated by solving Eq. (I=11)),

c(:0 = <\I’£[0|-’H|q’:glo> (1'12)

This means that the adiabatic energy represents the upper bound to the exact
eigenvalue of the total Hamiltonian.

The Born-Oppenheimer or clamped nuclei approximationi22 is obtained when,
in addition to using the wave function (I=10)), the diagonal (adiabatic) correction is
neglected in Eq. (I=11)), and the potential operator in the Schrodinger equation for
the nuclear motions is simply defined as the eigenvalue of the electronic Schrodinger
Equation (I=3). It can be shown2* that in the Born-Oppenheimer approximation the
energy obtained by solving Eq. (I=11) with C, put equal to zero represents a lower
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bound to the exact eigenvalue of the total Hamiltonian. One should note that this
result is of litle practical use since upper bounds are usually obtained.

2.3. Electronic Schrodinger Equation

The Schrodinger equation describing the electronic motions for a fixed set of nuclear
coordinates {R} is given by Eq. (I=3). This equation is the basis for the theory of
intermolecular forces, since the interaction energy is closely related to the electronic
energy of the dimer, cf. Eq. (I=I)). Different methods of solving Eq. (I=3) lead to
different approaches to the theory of intermolecular forces, and will be discussed
in great details in this chapter.

When deriving the coupled equations or the Schrédinger-type equation for the
nuclear motions we assumed that the electronic and nuclear coordinates are defined
in a space-fixed (laboratory) frame. Usually, in quantum chemical applications,
Eq. (I5J) is solved in a body-fixed frame attached to the molecule or to the Van
der Waals complex. It should be stressed, however, that the kinetic term and the
Coulomb interaction terms describing the electron-nucleus attraction, and electron-
electron and nucleus-nucleus repulsion are invariant with respect to the choice of
the coordinate system. This means that the mathematical form of the electronic
Schrodinger equation does not change when going from the space-fixed to the body-
fixed coordinate frame. Therefore, Eq. (I=3) can be solved in the body-fixed frame
(as it is usually done). Care should be taken, however, when using an analytical
representation of the electronic energy as the potential operator in the Schrodinger
equation for the nuclear motions. Here, the choice between space-fixed and body-
fixed frames will lead to different equations, and the analytical expression for the
potential energy surface must be written in terms of those nuclear coordinates that
are used in the second step of the Born-Oppenheimer approximation, cf. Section

=4

24. Schriodinger Equation for the Nuclear Motions

The Schrodinger equation describing the nulcear motions, Eq. (I=11)), contains too
many variables, as the translational motion of the center-of-mass (c.0.m.) has not
been separated out. When the c.0.m. motion is separated out, and when the origin of
the space-fixed coordinate system is located in the c.o.m. of the nuclei, Eq. (I=11))
takes the form,

2 M

y=2,y€EAB Y

<_l Z LV$+Ckk({R})+Ek({R})_€k) X« =0, (1-13)

where the adiabatic correction is given by,

2 2
1 1 1 1
CulRD = (U= ¥ V4o ( > %) —2<Zvr,.> ¥ -
tot i

y=2,y€AB Y y=2,y€AB

(1-14)
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Here, M, is the total mass of the nuclei. Note that when eliminating the motion of
the center-of-mass we arbitrarily eliminated the first nuclear coordinate (we could
eliminate any single coordinate ). Equation (I=13) can further be transformed to the
body-fixed frame. When applying the so-called Eckart conditions22 one would get
the standard Watson’s Hamiltonian describing the nuclear motions in molecules3¢.

Equation (I=13) or its body-fixed equivalent is of little use for Van der Waals
complexes, as it discriminates one nuclear coordinate, e.g. y = 1. Specific mathe-
matical forms of Hamiltonians describing the nuclear motions in Van der Waals
dimers have been developed (7). This point will be discussed in more details in
Section [[2.4] Here we only want to stress that whatever the mathematical form of
the Hamiltonian is used to solve the problem of nuclear motions, the results will
be the same, if the Schrodinger equation is solved exactly. However, in weakly
bound complexes there is a hierarchy of motions due to the strong intramolecular
forces which determine the internal vibrations of the molecules, and to much weaker
intermolecular forces which determine their relative translations and rotations. This
hierarchy allows to make a separation between the intramolecular vibrations with
high frequencies and the intermolecular modes with much lower frequencies. Such a
separation of the fast intramolecular vibrations and slow rotation-vibration-tunneling
motions can be performed if a suitable form of the Hamiltonian for the nuclear
motions in Van der Waals molecules is used.

2.5. Failures of the Born-Oppenheimer Approximation and the
Nonadiabatic Approach

Equation (Z8) does not show when the off diagonal terms on the right hand
side become important. To judge the importance of the nonadiabatic effects it is
most convenient to use the perturbation theory2~2%, The Hamiltonian F can be
represented by the sum

H=H,+H'. (1-15)
The zeroth-order operator will be defined by the following eigenvalue equation:
}[O‘Pefgfk = 5kqj::3§k» (1-16)

while the perturbation operator K’ is given by the difference K — #,, and fulfills
the condition,

(Wadol H'Wgo) = 0. (1-17)
The energy to the first-order is given by the expectation value of 7 with ¥,q',, and

is given by the lowest energy calculated by solving Eq. (I=11)). Thus, the corrections
due to nonadiabatic effects appear only in the second order of the perturbation
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theory. Using the well known expressions of the Rayleigh-Schrodinger perturbation
theory,

5(2) _ Z |<\If;3f0|.’7-[’|\lf;3fk>|2
A —
& —&

, (1-18)

where 8,&0) is the energy of the kth state of J, obtained by solving Eq. (I=L1)), one
immediately sees that 6’(()2) becomes important when the denominator in Eq. (I=18)
is small, i.e. when the rovibrational levels corresponding to the ground electronic
state (k =0) and to an excited electronic state (with a particular value of k) are
very close in energy. This occurs when the potential energy surfaces show avoided
crossings or conical intersections, i.e. when the electronic states interact via the
coupling terms appearing on the r.h.s. of Eq. (IZ6). It should be noted that since 7,
is only formally defined via the eigenvalue problem the matrix elements appearing
in the numerator of Eq. (I=18)) are not defined. It can be shown, however, that they
are given by,
1 1
<\leo|~% |\Iﬂmk> = <\Pmlo| - 5 Z M V2|\Pmk> (1-19)

yeAB My

and can be related to the quantities C,({R}) and B’fy’ by the following expression,
(Wigo 20195 = [ Xe(R)Cou (IR X (R)IR

+[%® ¥ 5

yEAB Y

(vy ‘BY +BY-V,) x,(R)dR.
(1-20)

The failures of the Born-Oppenheimer separation of the electronic and nuclear
motions show up in the spectra of molecules as homogeneous or heterogeneous
perturbations in the spectra?l. See, e.g. Ref. (42) for an example, a fully ab initio
study of the spectrum of the calcium dimer in a coupled manifold of electronic states.
Theoretical methods needed to describe the dynamics of molecules in nonadiabatic
situations are being developed now. See Ref. (43) for a review.

3. SUPERMOLECULAR APPROACH TO INTERMOLECULAR
INTERACTIONS

Supermolecular methods are based on the definition of the interaction energy,
Eq. (I=I). However, the electronic Schrédinger equation can rarely be solved in a
nearly exact way, so the eigenvalues appearing in Eq. (=) should rather be replaced
by some approximations, E AR E 4 E 5, and Elm, to the exact ground state energies
and to the exact interaction energy, respectively. These approximate energies are
obtained by using a specific (approximate) method of solving the clamped-nuclei



12 Robert Moszynski

Schrodinger equation. Usually the exact interaction energy is four to seven orders
of magnitude smaller than the terms subtracted in Eq. @ Since with the ab
initio methods available at present the errors E,; — E 5, E4,— E,, and Ey — E are
always much larger than the interaction energy itself, the quantity Eim can be a good
approximation to E;, if a cancellation of these large errors occurs. The experience
gained thus far? suggests that this may be the case if Eq. (II) is applied with
due care. The chosen approximate method must be size-consistent® and it should
sufficiently account for the electron correlation, i.e. go beyond the Hartree-Fock
level. Finally, the approximate monomers energies should be calculated with the full
basis of the dimer, i.e. the computed interaction energy should be corrected for the
basis set superposition error. When these three criteria are met by an approximate
electronic structure method, then a quite accurate description of the intermolecular
interaction is possible.

The size-consistency requirement is not easy to meet. Indeed, the popular
variational metods selfconsistent field methods based on restricted (RASSCF)
active spaces®2¢ limited configuration interaction in its single-reference (CI)
and multireference (MRCI) versions#, or the second-order perturbation theory
based on the CASSCF reference function (CASPT2)2 are not size-consistent. The
complete active space selfconsistent theory (CASSCF) is size consistent when
the active spaces of the dimer and of the monomers are correctly chosen. If the
same active space is used in the calculations for the dimer and for the monomers
the method is no longer size consistent. The limited CI expansions are usually
restricted to single and double excitations, and can approximately be corrected for
the size-inconsistency using a kind of correcting terms (size-consistency correc-
tions) due to Pople22, Davidson2, and others2. It should be stressed here that
for some difficult cases like the interactions involving open-shell monomers with
spatially denerate ground states or interactions in the excited states, size-consistent
methods based on the open-shell coupled-cluster ansatz in the Hilbert space32
or in the Fock space2 suffer from the intruder state problems223 and cannot
be used in practice. In such cases only size-inconsistent methods quoted above
are available.

For the interaction of closed-shell molecules several size-consistent methods
for solving the Schrodinger equation are available. The density functional theory
(DFT), although not based on the Schrodinger equation, also gives the energies of
molecules. Among the size-consistent approaches, the Mgller-Plesset perturbation
theory (MPPT) also known as many-body perturbation theory (MBPT)21 and the
coupled-cluster (CC) method22~£ gained a lot of popularity. The experience gained
thus far3 shows that the second-order of the Mgller-Plesset perturbation theory
(MP2) accounts for a large part of the electron correlation, and in most cases is
considered to give a qualitatively correct description of the interaction energy. See
Ref. (5) for examples illustrating this point. In many cases, e.g. for hydrogen-bonded
systems, the MP2 interaction energy is in a semiquantitative agreement with very
accurate results obtained by more elaborate methods. The inclusion of the third
order in the Mgller-Plesset expansion (MP3) does not improve (and often worsens)
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the results, and one has to go to the full fourth order (MP4) to get an improvement.
For the interaction of simple closed-shell monomers with single bonds the MP4
approach gives rather accurate results.

When a high accuracy is thought for one has to resort to nonperturbative methods
based on the coupled cluster ansatz. In many cases the CCD&& or CCSD&
approaches, i.e. the coupled cluster methods restricted to double or single and
double excitations, respectively, do not offer any benefits compared to the simple
MP2 method. It is fully established now that most accurate results are obtained
by using the so-called CCSD(T) method, i.e. the coupled-cluster method limited to
single, double, and noniterative triple excitations®%, See Refs. (5-6) for a detailed
discussion of this point. More elaborate methods that fully account for the triple
excitations®® are computationally very expensive, and cannot be used in practice,
even for small systems like the water dimer. For some systems even the quadrupole
excitations are very important®$®. A prominent example is the dimer of carbon
monooxide (CO),. For this system even the CCSD(T) method fails to reproduce the
correct dipole-dipole asymptotics of the potential energy surface®, and methods
incorporating the fifth-order of the Mgller-Plesset theory®2Z? are necessary.

For large systems correlated methods based on the wave function approach (i.e.
based on the clamped-nuclei Schrodinger equation) cannot be applied in practice
due to computational limitations. On the other hand different variants of the density
functional theory with gradient corrected exchange-correlation functionals such
as, e.g. B3LYPL™Z gained a lot of popularity. These methods perform very
well for the geometry optimizations of hydrogen-bonded complexes, so at first
glance one would expect that they should give reliable interaction energies for
such systems. It is worth noting that the DFT method is computationally much
less demanding than the MP2 method. In fact, the computational effort is about
the same as for a Hartree-Fock calculation, so DFT could be a good alternative
to computationally expensive methods based on the Mgller-Plesset theory and the
coupled cluster ansatz. Unfortunately this is not the case. Extensive comparisonsZ
between the supermolecule DFT and CCSD(T) results showed that DFT with any
gradient corrected exchange-correlation functional fails to reproduce the correct
anisotropy of the potential energy surfaces for Van der Waals and hydrogen-bonded
complexes. In some cases the differences were as large as a factor of two or even
more. Surprisingly, supermolecule DFT calculations failed for hydrogen-bonded
complexes, even though the geometry optimization gives the correct geometries
of the minima and saddle points on the potential energy surfaces. Thus, with the
exchange-correlation functionals available at present, DFT cannot be considered as
a viable computational tool for intermolecular potential energy surfaces.

The discussion of the preceding paragraphs clearly shows that indeed super-
molecule method should be applied with great care. So we wish to end this section
by saying that even though the supermolecule approach is conceptually very simple
it cannot be used by simply running standard black box programs of quantum
chemistry.
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4. PERTURBATION THEORY OF INTERMOLECULAR FORCES
4.1. Rayleigh-Schrodinger Perturbation Theory

We consider the interaction of two closed-shell monomers A and B in their ground
states, described by the wave functions ®; and ®§, respectively, which are eigen-
states of the respective monomer’s Hamiltonians H, and Hj with the corresponding
eigenvalues Ef and Ef, respectively. The Schrodinger equation for the noninter-
acting system AB can be written as,

H,®, = E,®,, (1-21)

where Hy= H, + Hy, ®, = &} P, and E, = E' + Ef. When the interaction between
the monomers A and B is switched on, the Schrodinger equation for the interacting
system AB is given by,

(Hy+V)¥ =EV, (1-22)

where V is the intermolecular interaction operator collecting all Coulombic inter-
actions between the nuclei and electrons of A and the nuclei, electrons of B, E
is the total energy of the dimer AB, and W is the electronic wave function of the
dimer. For simplicity we omitted the subscript “el” used in Section Bl We consider
the interaction of two closed-shell ground state monomers, so W will refer to the
ground state electronic wave function of the dimer and the index k numbering the
electronic state will be suppressed as well.
Equation (I=22)) can conveniently be rewritten in the following form,

W=+ Ry(Eiy =V, Ejy = (| V), (1-23)
where E,, = E — E, is the interaction energy. The operator f?o is the so-called
reduced resolvent of H,, which may be viewed as the inverse of the operator H,— E,
in the space orthogonal to ®,, and is defined by the following spectral expansion,

A | D) (P
Ro=2 F 5
o Ex— Lo

(1-24)

where E, and @, denote the excited state eigenvalues and eigenfunctions of H,.
Equations (I=23)) can be solved by applying the Rayleigh-Schrédinger (RS) pertur-
bation theory to the dimer wave function W and to the interaction energy E;,.. To
this end we parametrize the Hamiltonian H = H,+ V with a complex parameter
{, H({) = H,+ {V, where the physical value of { is obviously equal to one. The
interaction energy E;, and the wave function of the dimer ¥ become functions of

{, and can be expanded as power series in {,

W) =D+ "L and  En ()= {"En. (1-25)
n=1 n=1
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The individual corrections EISZ,) and CD;Q appearing on the r.h.s. of Egs. (I=23)
are referred, after HirschfelderZ, to as the nth-order polarization energy and polar-
ization wave function, respectively. The nth-order energy correction is given by
n) (n—1
EY = (@ | V], (1-26)
while the polarization wave functions can be obtained from the following recursion
relation,

pol — pol pol pol

n—1
O = RV + 3 EGR, DU, (1-27)
k=1

with &) = @,

Although the equations defining the polarization wave functions and energies
are simple, they cannot be applied in practice to describe weak intermolecular
interactions because the expansions (I=23) are either divergent or converge much
too slowly for = 1. As shown in extensive theoreticalZ? 2 and numericalZ2~ &l
studies the series (I=23)), if convergent, do not converge to the physical ground state
of the dimer, except for one- and two-electron dimers such as HJ (Ref. 79) and
H, (Ref. 80). For the interaction of two-electron systems the energy first reaches
very quickly the average of the energies of all states including the mathematical,
Pauli-forbidden, solutions of the Schrodinger equation corresponding to the same
dissociation limit (the so-called Coulomb energy),

_ZVfVVEim
S S

where v labels possible permutational symmetry of the states of the dimer that
can be obtained from a given set of the zeroth-order monomers states, and "E;, is
the corresponding interaction energy. Then the series converges very slowly to the
energy of the mathematical ground state of the Hamiltonian H which corresponds
to the fully symmetric, Pauli-forbidden solution of the Schrodinger equation®!. It is
worth noting here that Pauli-forbidden solutions of the Schrodinger equation appear
because the exclusion principle is not obeyed by the perturbation equations of the
polarization theory. The situation is even more complex when one of the monomers
has more than two electrons. It was shownZZ® by using group-theoretical arguments
that the polarization expansion is divergent in this case. These theoretical findings
were recently supported by numerical calculations for the ground state of LiH3282,

The origins of this pathological convergence pattern of the polarization expansion
can most easily be explained by considering the simplest case of a hydrogen atom
A interacting with a proton B at a large internuclear distance R, In this case @,
is the 1s, hydrogenic orbital located at the proton A. Since the exact wave function
V¥ is symmetric with respect to the reflection in the plane perpendicular to the
internuclear axis and passing through its midpoint, the correct form of ¥ at large

(1-28)
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R is ¥ = 1s, + ls,. Obviously, ®, = 1s, is not a good approximation to W. The
component ls; due to the perturbation V is as large as the unperturbed function
itself. Hence, the operator V cannot be considered as a small perturbation. Since
the polarization wave functions for this system are all localized at the nucleus A,
i.e. they decay exponentially with the distance from the nucleus A, the polarization
expansion can possibly recover the 1s, component of V¥, localized on the nucleus
B, only in very high orders.

For the interaction of many-electron systems the polarization expansion is strictly
divergent. This divergence is due to the fact that the physical ground-state of the
dimer is submerged in the Pauli-forbidden continuum of mathematical solutions of
the Schrodinger equation corresponding to other than antisymmetric eigenstates of
the Hamiltonian. The Pauli-forbidden continuum originates from the fact that, when
the exclusion principle is not obeyed, i.e. when the antisymmetry of ¥ is not forced,
the electrons assigned initially to the system A can fall into the Coulomb wells
of the system B by means of the strong nucleus-electron attraction, ejecting some
other electrons into the continuum. This means that if the exclusion principle is
violated, the physical ground-state is a bound state submerged in the continuum of
states of the same symmetry. For such a state the wave function is not normalizable,
and consequently, the standard Rayleigh-Schrédinger perturbation theory cannot be
convergent&,

This convergence failure of the polarization expansion is illustrated in Table [=1}
where we report high-order results for the ground states of the helium dimer He,
and lithium hydride LiH. An inspection of Table [[-1] shows that for the interaction
of two two-electron monomers (He atoms) the polarization expansion converges to
the Pauli-forbidden, mathematical ground state of the dimer¥. This is illustrated
in the second column of the table, where the convergence pattern is reported for
a very small interatomic distance, R = 1 bohr. Around the potential minimum the
polarization series also converge to the ground mathematical state, but the conver-
gence is prohibitively slow, and the perturbation expansion effectively recovers
only the Coulomb part of the interaction energy. The situation is different for the
interaction of a three electron monomer with a one electron system, LiH2. In this
case the physical ground state is submerged in the continuum of the Pauli-forbidden
mathematical states, and the polarization expansion diverges. This divergence is
observed for both R = 10 and 12 bohr. Still, the partial sums of the series first
quickly reach the Coulomb energy, and then the series slowly diverge.

Although the polarization expansion cannot be used to compute the interaction
energies of weakly bound complexes, it does provide the correct asymptotic
expansion of the interaction energy in the following sense

N
Ep =Y EW + O(R V), (1-29)

pol
n=1

where k = 2 if at least one of the interacting molecules has a net charge and k = 3
if both molecules are neutral. After projection with the operator "4 corresponding
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Table 1-1. Convergence of the polarization expansion for the interaction of two
ground-state helium atoms at R = 1 and 5.6 bohr, and of the lithium and hydrogen
atoms in their ground states at R = 10 and 12 bohr. The Coulomb energies represent
53.50% (He,, R = 5.6 bohr), 73.4% (LiH, R = 10 bohr), and 85.53% (LiH, R =12
bohr) of the energies of the fully symmetric (Pauli forbidden) states. The quantity
6(n) represents the percent error of the perturbation series through the nth-order
with respect to the variational interaction energy of the Pauli forbidden state

He, LiH

R=1 R=56 R=10 R=12
n o(n)
2 —54.22 —54.82 —49.31 —74.98
3 —38.19 —55.16 —53.21 —76.70
4 —25.37 —54.57 —56.94 —78.65
5 —17.11 —54.34 —59.63 —79.95
6 —11.07 —54.13 —61.88 —81.00
7 —6.99 —53.98 —63.72 —81.84
8 —4.14 —53.87 —65.27 —82.51
9 -2.27 —53.78 —66.58 —83.07
10 —1.06 —53.71 —67.68 —83.51
15 0.35 —53.54 —71.33 —84.81
20 0.09 —53.49 —73.80 —85.35
25 0.00 —53.47 -71.76 —85.73
30 —0.01 —53.46 —89.89 —86.34
35 —137.54 —87.85

to a given permutational symmetry v, the polarization expansion for the wave

function gives the correct? asymptotic expansion for the exact (unnormalized) wave
function ¥
N
= UADy+ Y ADY) + O(R VD), (1-30)
n=1

The function @, or a finite sum of the polarization wave functions are bad approx-
imations to the exact wave function W. Indeed, it was shown by Jeziorski and
Kolos& that ||W — ®|| ~ 1. By contrast, the function %A®, is a much better
approximation, since in view of Eq. (I30) ||V — “A®,|| = O(R™*)&.

Although the function *4®, would seem a natural zeroth-order approximation
for a perturbation expansion of the interaction energies, it unfortunately is not
an eigenfunction of H,. One could try to introduce a new partitioning of the
Hamiltonian, H = Ho—i— V, such _that "“4®d, is an eigenfunction of HO, but no
really successful construction of H0 has been reported to date. On the other hand,
one could keep the natural partitioning of the Hamiltonian, H = H,+ V, and
modify the perturbation equations in such a way that the function "“A®, can be
used as the zeroth-order approximation. Such a modification leads to symmetry-
adapted perturbation theories (SAPT). In the next section we review the problem
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of the symmetry adaptation of the perturbation expansions for the intermolecular
interaction energies of weakly bound complexes, we introduce the concept of
symmetry-forcing in the perturbation theory of intermolecular forces, and briefly
discuss the convergence of various SAPT expansions, and its relation with the
employed symmetry-forcing.

4.2 Symmetry Adaptation

As discussed in the previous section, the perturbation expansion based on Eqgs. ([Z23))
shows pathological convergence properties. To introduce the symmetry-adaptation
into Eqgs. (I=23) let us note that the exact solution of this equation possesses a
definite permutational symmetry v corresponding to an appropriate irrep of the
group Sy . y,- Thus, any operator enforcing the proper permutational symmetry
acting on ¥ will give W. This is no longer true if Eqs. (I223)) are parametrized
with a complex parameter {. The group Sy .y, is no longer a symmetry group of
the parametrized Hamiltonian H({) = H,+ {V, so the wave function W({) does not
belong to an irrep of this group. The key idea of the symmetry-adaptation consists
in replacing Egs. (I=23)) by equations in which W is replaced by a symmetry-forcing
operator acting on W, parametrizing these equations with a complex parameter
{, and expanding the parametrized equations as power series in {. The resulting
perturbation expansions will no longer be equivalent to the polarization expansion,
since the parametrized equations are equivalent to the original Schrodinger equation
only for { = 1.

To introduce the perturbation expansions corresponding to perturbation theories
with different symmetry adaptation, it is useful to introduce a general concept of
the interpolation function *({) defined such that2¢:

€(0)=0,  e(1)="Eiy, (1-31)

where the index v labels the permutational symmetry of the state of interest at
{ = 1. The perturbation expansion corresponding to a given symmetry adaptation
scheme is then defined as a power series expansion of *e({),

)

() = {"EY, (1-32)

n=1

while the interaction energy 'E,, is obtained by summing the expansion ([=32)) at
{=1.

Interpolation functions corresponding to various symmetry adaptation schemes
defined in Refs. (84,86-88) can conveniently be written in the following general
form,

(P|V "G "W ({))

O

(1-33)
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where the wave function *W({) is a solution of the equation,

(D|V "G "W (0)

"W() =D, +R, | ¢ =
= "( (@ G "W (0))

{V) FW(]), (1-34)

and "G, "G, and *F are operators enforcing the proper permutational symmetry,
such that "GHW({=1)= "GrU({=1)="F ¥ ({=1)=3,, "¥({=1). Thus,
for { = 1 Eqs. (I33) and ([-34) are equivalent to the Schrédinger equation (I=23).
One may also note here that when "G = "G = "F =1, i.e. when no symmetry is
enforced, the Taylor expansion of Eqs. (I=33) and (I=34)) defines the perturbation
equations of the polarization theory, Egs. (T226) and (Z7). Different choices of
the symmetry operators *G, ”G, and "F lead to different symmetry-adapted pertur-
bation expansions with various levels of mathematical sophistication, and different
convergence properties. The proposed symmetry-adapted perturbation theories can
be divided into two categories. In the first category, corresponding to the so called
weak symmetry forcing®28, the symmetry operator appears only in the energy
expressions. The perturbation equations do not contain any nonlocal symmetry
operator. Only these type of theories have been applied thus far to interactions of
many-electron systems. In the second class, corresponding to the strong symmetry
forcing® 88 the symmetry operators enter the perturbation equations and complicate
significantly their solution when the interacting monomers have more than two
electrons.

In the simplest symmetrized Rayleigh-Schrodinger (SRS) perturbation
theory22 ™% the symmetry forcing operator appears only in the energy expression.
Hence, this formalism employs weak symmetry forcing and the operators *G, "F,
and "G are given by,

"G = "F =1, 'G= YA, (1-35)

where *A is the projection operator on the appropriate representation of the
symmetric group Sy, y,, Where N, and Ny denote the number of electrons in the
monomer A and B, respectively. The SRS perturbation corrections to the interaction
energy, "E\, are given by&,

n—1

y(n v v n— vk v n—k
Es = "N [@OW ADSY =3 EQ (D MAD >}, (1-36)

pol pol
k=1

where "N = (D] 2AD,) "

Extensive numerical calculations for small systems (Hy (Ref. 79,87), H, (Ref.
89,90) and He, Ref. (81) show that the convergence properties of the SRS theory are
excellent. Since in most cases the polarization expansion is divergent, one can expect
that for many-electron monomers the SRS expansion will not be strictly convergent.
However, the experience gained thus far for large many-electron systems suggests
that a second-order SRS calculation correctly accounts for all major polarization
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and exchange contributions to the interaction energy. In the region of the Van der
Waals minimum it should be accurate to within a few percent.

Compared to the SRS theory, the perturbation scheme proposed by Murrell
and Shaw2!, and independently by Musher and Amos2? introduces only a slight
complication. As shown by Jeziorski and Kolos8 the corresponding symmetry-
forcing operators are given by,

vG= "G =4 F =], (1-37)

while the MSMA perturbation equations can conveniently be written as:

n—1
v (n) v v g vap(n—1) v (k) v g4 vap(n—k)
EMSMA: NO |:<¢)O|V A \I,MSMA>_Z EMSMA<(DO| A \PMSMA ]’
k=1

(1-38)

n—1

A () > vapp (=1 v (k) D vap(n—k)

Wysma = —RoV \I,MSMA+Z EnsmaRo "Wisma s (1-39)
k=1

with "W = ®,.
As shown in Refs. (79,86,93), the MSMA theory does not introduce any
improvement in the convergence properties compared to the SRS theory. In fact
the MSMA theory diverges already for the lowest 22 state of H;, while the SRS
theory remains convergent for this state¥Z. This divergence can be explained by
the analytical structure of the MSMA interpolation function around { = 1. It was
shown by Jeziorski, Schwalm, and Szalewicz2 that for the H;r ion the interpolation
function corresponding to the MSMA theory has a real pole for a value of the
parameter { slightly small that one. This explains the success of Padé summation
techniques applied to the MSMA perturbation series2.
It is important to stress here that in each order of the SRS and MSMA theories
the energy correction can be separated into the polarization and exchange parts,
VE(SQS/MSMA =E{) +'E o

pol exch*

(1-40)
The exchange contributions VES(Zh, vanish exponentially as a function of inter-
monomer distance in each order, so at large intermonomer separations the SRS
and MSMA results coincide with the RS results. This means that perturbation
schemes employing the weak symmetry forcing are compatible with the asymptotic
expansion of the interaction energy, cf. Eq. (I-29)). Note that the exchange terms
result from the exchange of electrons (quantum mechanical tunneling) between
the unperturbed monomers, and represent repulsive contributions to the interaction
energy. Therefore, the exchange contributions are often referred to as the exchange-
repulsion.
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The first perturbation expansion employing the strong symmetry-forcing was
introduced by Eisenschitz and London2* as early as in 1932, and rediscovered later
by Hirschfelder?, Van der Avoird2, and Peierls2. The corresponding symmetry-
forcing operators are given by2

"G= "G ="F = A, (1-41)

and the perturbation equations can be written as,

v (n v v g -1 v (k v g v
EEI?HAVZ NO |:<(D0|V AW LH/iV) Z EI(EI?HAV<<I)0 A \PELHAV>j| ’

(1-42)

V\I'rg;_)HAV = _kov A \I’(nLHI/zV‘i‘Z VE:E?HAVRO A V\I’(EnL;Ik/iv’ (1-43)
k=1
with "0 =@,

Extensive numerical studies for model systems show that forcing the symmetry
in the equations for the energy and wave function corrections in each order of the
perturbation theory is very efficient and the ELHAV theory converges very fast. For
the triplet state of LiH and at the interatomic distance corresponding to the Van der
Waals minimum the convergence radius of the ELHAV theory is equal to 1.608.
It is remarkable that the symmetry-forcing procedure characteristic of the ELHAV
method effectively eliminates the coupling with the Pauli-forbidden continuum
in which the ground state of the LiH is submerged, and leads to a convergent
SAPT series. Unfortunately, this excellent convergence of the ELHAV series is
observed only in high orders of the perturbation theory. Numerical investigations
and analytical solutions for the H ion have shown that the ELHAV expansion fails
to recover in the second order the well-known induction and dispersion components
of the interaction energy and, consequently, the correct asymptotics of the interaction
energy. This wrong asymptotic behaviour of the interaction energy persists in any
finite-order and for any system. This means that the ELHAV theory is not consistent
with the asymptotic conditions (I=29)) and (I=30)), and cannot be used in practice to
compute the interaction energies.

Since the ELHAV theory shows such excellent convergence properties, but a
wrong asymptotic behavior, Jeziorski and Kolos38 proposed a perturbation scheme
based on an intermediate symmetry-forcing. The corresponding symmetry-forcing
operators are given by38,

G=1G=1, 'F="4, (1-44)

and the perturbation equations can be written as,

S = (D |V Wiy — Z Ej (o] "W). (1-45)

k=1
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n—1
W = —RyV AW+ Y ERR, A WY, (1-46)

k=1

with ”\If}Q = @,. Unfortunately, the intermediate symmetry-forcing only partly
corrects the wrong asymptotic behavior of the perturbation series. It can be shown$Z
that the JK theory through the second order is fully equivalent to the SRS theory, and
thus fulfils Eqs. (T=29) and (I30Q) for N = 2 and 1, respectively. Higher order terms
in the JK expansion do not show the proper asymptotic behavior. However, the
convergence properties of the JK perturbation series are as good as for the ELHAV
theory®48%, Since for neutral systems errors introduced by the wrong asymptotic
behavior of the interaction energy vanish with the intermolecular distance R like
R, the JK theory may be considered as a convergent SAPT expansion giving the
correct asymptotics up to and including the R~ terms.

The symmetry forcing employed in the Hirschfelder-Silbey theory2® is more
sophisticated. In this approach, one considers simultaneously all eigenfunctions of
the Hamiltonian H which are asymptotically degenerate with the physical solution
of the Schrodinger equation for the dimer, i.e., one has to consider the interpo-
lation functions with symmetry labels w =1, ..., f corresponding to all irreducible
representations of Sy .. entering the induced product [v,]® [v5] 1 Sy, ,- This
induced product is carried by the (NAAZ NE) functions obtained by operating with
all (N, + Np)! permutations of the group Sy .y, on the product of two functions,
one of symmetry v, on A and one of symmetry v, on B. Since in this theory all
asymptotically degenerate solutions are coupled, Eqgs. (I=33) and ([[=34) have to
be slightly modified. The wave function *W({) on the r.h.s. of Eqs. (I=33) and
(=34) should be replaced the vector ( 'W({),..., 7¥({)), and the corresponding
symmetry forcing operators are given by,

~ ; f
VG = VG = "F = VK, vg(-( 1\1,’__., f\p): %Z A, (1_47)

n=1

The symmetry forcing operator of the HS theory acts on a vector of f functions
¥ and gives, as the result, a single function "4 Zﬁ:l K, Tt can be shown3 that
the perturbation equations of the Hirschfelder-Silbey theory can conveniently be
rewritten as,

n—1
vpp\n v v n— v (k v n—k
Ege = "N, [@ow AFTD) = 37 B (P YAF ”>}, (1-48)
k=1
R n f 0 a
F® = —RyVF"=D £33 g R, maFe—5), (1-49)
k=1v=1

<(D0|F(k)> = 8k0’ (1‘50)
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where F© = @, and

1S
FM = — 3" vy, (1-51)

=1

In each order of the HS theory the energy correction separates into the polar-
ization and exchange parts, and the exchange contributions vanish exponentially as
a function of intermonomer distance in each order, so at large intermonomer separa-
tions the HS results coincide with the RS results. However, it is worth noting here
that the Hirschfelder-Silbey28, although compatible with the asymptotic expansions
(223) and (=30, is affected by the Pauli-forbidden continuum and diverges for
LiH%,

Perturbation equations of the Hirschfelder-Silbey theory can be derived by using
the concept of the primitive (localized) wave function F formally defined as,

F=Yc, "V, (1-52)

where ¢, are some coefficients (to be determined). Obviously, the physical wave
function is recovered from F by projection,

"= YAF. (1-53)

It is easy to show that the primitive function F satisfies the following equation

f
(H—E,)F =QF =Y 'K "AF, (1-54)

where Q is the Coulomb part of the interaction energy, cf. Eq. (I=28), and the
exchange energies 'K are defined as,

K = Eip— . (1-55)

Equation (T=34)) holds for any choice of the coefficients C,» 80 an extra condition
needed to uniquely specify F must be imposed. The function F' of the Hirschfelder-
Silbey theory fullfils the following condition:

("A®y|Hy—Ey|F) =0, forv=1,..., f. (1-56)

Thus, indeed it may be viewed as a kind of localized function, although the local-
ization condition (I=36)) cannot easily be interpreted. Other localization schemes are
also possible21%. For instance, one could ask that F can be obtained from @, by
the action of the Bloch operator of the quasidegenerate perturbation theory. In this



24 Robert Moszynski

case one gets the so-called Bloch localizationi®. Another possible choice, the so-

called Kato localization1®, requires that the distance between the unperturbed wave
function and the primitive (localized) function is minimal. Perturbation equations
corresponding to these various localization schemes were derived in Ref. (104) (see
also Refs.(105-106) for their application in the context of the perturbation analysis
of the Hartree-Fock interaction energy). Unfortunately, the convergence properties
of the perturbation theories based on the Bloch and Kato localization conditions are
very poor already for the HeH system, so most probably these schemes will be of
little use for many-electron systems.

The convergence pattern of various symmetry-adapted perturbation theories with
weak and strong symmetry forcing is illustrated in Table for the distances of
the Van der Waals minima of the »*X state of HJ ion and the ¢’ state of
the LiH system. An inspection of the numerical results for H (Refs. 79,87) and
LiH (Refs. 83,107) reported in this table shows that none of the symmetry-adapted
perturbation schemes is perfect. The asymptotic problems with the ELHAV series
in low orders are clearly seen, especially for the lowest triplet state of LiH. The
convergence rate of the HS expansion does not differ much from that of the SRS
and MSMA series. It seems that the SRS theory employing weak symmetry forcing,
altough divergent, gives fairly accurate results in low orders, and represents a good
compromise between accuracy and numerical complication.

Various symmetry forcing schemes, convergence properties, and asymptotic
behavior are summarized in Table [[-=31 An inspection of this Table leads to quite
pessimistic conclusions. All perturbation theories that are asymptotically consistent

Table 1-2. Convergence of the SRS, MSMA, HS, and ELHAV expansions for the bzij state of H;
at R = 12.5 bohr and for the a*3* state of LiH at R = 11.5 bohr. 8(n) represents the percent error of
the perturbation series through the nth-order with respect to the variational interaction energy of the
physical state

H3, b*3F, R =12.5 bohr LiH, ¢’3*, R =11.5 bohr

SRS MSMA HS ELHAV SRS MSMA HS ELHAV
n 5(n)
2 —0.633 —0.633 —0.629 —32.474 —11.724 —11.724 —11.723 —80.749
3 0.277 0.288 0.287 —7.192 —12.334 —12.326 —12.334 —32.749
4 0.175 0.187 0.188 —1.618 —9.452 —9.443 —9.448 —13.099
5 0.069 0.081 0.083 —0.367 —7.838 —7.828 —7.833 —5.413
6 0.021 0.034 0.037 —0.084 —6.397 —6.387 —6.393 —2.269
7 0.000 0.013 0.016 —0.019 —5.240 —5.230 —5.234 —0.964
8 —0.009 0.004 0.007 —0.004 —4.290 —4.280 —4.284 —0.416
9 —0.013 —0.001 0.003 —0.001 —3.516 —3.505 —3.509 —0.182
10 —0.015 —0.002 0.002 —0.000 —2.884 —2.873 —2.877 —0.081
20 —0.016 —0.004 0.000 0.000 —0.398 —0.385 —0.366 0.000
30 —0.016 ——0.004 0.000 0.000 —0.205 —-0.192 —3.982 0.000

40  —-0.016 —0.004 0.000 0.000 —-13.722  —13.715 0.000
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Table 1-3. Summary of the symmetry forcing operators, convergence properties, and asymptotic
correctness of various symmetry-adapted perturbation theories

'G 'G F Forcing Convergence Asymptotics
RS 1 1 1 weak no yes
SRS 1 YA 1 weak no yes
MSMA YA YA 1 weak no yes
HS e K K strong no yes
ELHAV YA YA "A strong yes no
JK 1 1 YA strong yes no

with the polarization theory are divergent, and all convergent perturbation schemes
show a wrong asymptotic behavior.

Recently, Adams!® and Patkowski et al.1Z1% have shown that it is possible to
construct a symmetry-adapted perturbation expansion that converges for the inter-
action of many-electron systems and is simultaneously compatible through all orders
with the asymptotic expansions (I=29) and (I=30). This goal could be achieved by
an appropriate regularization of the attractive singularities in the Coulomb potential.
Indeed, one may think that the elimination of the singularities from the attractive
nucleus-electron potential will stop the electron flow from one monomer to the
other, and this should lead to a convergent perturbation theory. Patkowski et al.
10719 gplit the Coulomb electron-nucleus attraction into the singular v , and regular
v, parts. The subscripts p and ¢ indicate that v, and v, are responsible for the
polarization and tunnelling aspects of the interaction phenomenon. When the one-
electron Coulomb terms in the intermolecular interaction operator V are replaced
by the regularized functions, one obtains the regularized interaction operator V,

NB
-2 Zzﬁvp(rﬁl 22 Zov,(ry)
BeB i=1 a€cA j=1
Na Np 4 ZB

+ZZ +2 2 —

i=1 j=1Tij acA BeB Tap

(1-57)

where the summation over « and 3 runs over the nuclei of the monomer A and B,
respectively, Z,, is the charge of the nucleus vy, and the regularized potential v, is
given by,

v, (r) = % (1 - e*wz) . (1-58)

Here, 7 is the so-called regularization parameter. In principle, 7 is an arbitrary and
positive real number. Note that the full interaction operator V' is recovered from V,
in the limit n — oo. The tunneling part of V, V,, is given by,

le‘

v,=V ZZZBU (rg)— Zzzavt(rw), (1-59)

BeB i=1 acA j=1
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where

v,(r) = % —v,(r). (1-60)

In the limit n — oo V, tends to zero. Thus, the regularization parameter 1 effectively
introduces a partitioning of V' into a nonsingular, regular part V,, and a singular
part V,.

Since the operator V, does not have any singularities, the SRS theory employing
V,, as a perturbation is convergent and provides all long-range and the majority of
the exchange contributions to the interaction energy. The regularized corrections to
the wave function and to the interaction energy are given by Eqs. (IZ27) and (=36),
respectively, with V replaced by V,. For a suitable choice of the regularization
parameter 7 the regularized SRS expansion, R-SRS, must converge since the neglect
of V, shifts the unphysical Pauli-forbidden continuum above the physical ground
state. Given the fact that V, neglected in the R-SRS treatment is a short-range
potential, cf. Eqs. (I=39) and ([Z&0), the R-SRS expansion exhibits the correct
asymptotic behavior given by Eqs. (Z29) and (I=30). The remaining small part of
the interaction energy due to the singular perturbation V, =V —V , can efficiently be
recovered using the symmetry-forcing procedure characteristic of the JK or ELHAV
theories. Since the V, operator is of the short-range type and gives only exponentially
vanishing contributions to the interaction energy, there are no difficulties with
the wrong asymptotics of the ELHAV corrections and the ELHAV expansion
converges very fast in this case. The perturbation equations of the regularized
ELHAYV theory denoted by R-ELHAV are given by Egs. (CZ2) and ([=43), except
that the interaction operator V is replaced by V,, the zeroth-order Hamiltonian is
replaced by H,,+V,, and the reduced resolvent and the zeroth-order wave function
also correspond to the Hamiltonian H,+ V,. This means that zeroth-order wave
function is not the product of the wave functions of the isolated monomers A and B,
but rather the converged wave function of the regularized polarization expansion.
The explicit form the these equations is as follows,

v () v v 1 vagp(n—1)
ER_ELHAYV = N0[<q’p|vx A \PR—ELHAV>

n—1

v (k v g vppn—k
_Z EREELHAV<(I)p| A \PR—EZHAV ]’ (1'61)
k=1
V\I,(”) _ _IA? V 4 V'\I,(n_l)
R—ELHAV — pt R—-ELHAV
n—1
k A n—k
+ Z VEngLHAVRp ‘A V\Ifl(QfEI)JHAV’ (1_62)
k=1

where @, is the solution of the regularized Schrodinger equation,

(Hy+V,)®,=E,®,, (1-63)
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and ”\Ifg)iELH av = @, The reduced resolvent operator R ,» 1s defined in the standard
way,

R,=(H,+V,—E,)"'0,, (1-64)
where O, denotes an orthogonal projection operator on the space orthogonal to @,

Q,=1—[D (D, (1-65)

The regularization scheme discussed above is only one example of various
possible variants, cf. Ref. (110) for a review. Other variants differ in the way
the regular and singular parts are treated, and in the definitions of the regularized
Coulomb potential. For instance, one could solve the Schrodinger equation of the
dimer using a double perturbation theory with the regular potential V,, treated by the
standard Rayleigh-Schrodinger perturbation theory, and with the singular pertur-
bation V, treated by a perturbation theory with the strong symmetry-forcing. Or one
can devise an “all-in-one” R-SRS+R-ELHAV approach which employs @, as the
zeroth-order wave function for both the R-SRS and R-ELHAYV treatments. All these
approaches differ a bit in the convergence pattern of the perturbation expansions,
but the most important goal of the regularization procedure, namely the asymptotic
correctness of the interaction energy in all orders of the perturbation theory and the
convergence of the perturbation series, is achieved. This means that by introducing
the concept of regularization into the theory of intermolecular forces one could
finally define convergent perturbation expansions compatible with the multipole
expansion in all orders. Numerical results for the singlet and triplet states of the
LiH molecule show that the regularization of the intermolecular interaction operator
leads indeed to convergent perturbation expansions. The regularized SAPT even
provided an accurate description of the chemical bond in LiH. It remains to be seen
whether such good results will be obtained for larger systems as well.

S. PHYSICAL INTERPRETATION OF THE LOW-ORDER
POLARIZATION AND EXCHANGE ENERGIES

The polarization and exchange energies through the second order have an appealing
physical interpretation. Except for the second-order exchange terms they can also
be rigorously related to monomer properties which considerably facilitates their
practical evaluation.

5.1. Electrostatic Energy

The first-order polarization energy, often referred to as electrostatic energy, is
given by

EY =EY) = (D 0f |V | DL D). (1-66)

pol = elst
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As shown in Ref. (111) the expression for Eem can be rewritten in terms of the
total charge distributions p'{'(r) and p's'(r) of the unperturbed monomers,

EW //
elst |

where the total charge distribution for monomer A is given (in atomic units) by

P (ry)dr,dr,, (1-67)

PR (r) =2, ZO(r—R,) —p,y(r). (1-68)

The term containing Dirac’s delta Z,6(r — R,) represents the contribution from
the positive point charge Z, at the position R, of the nucleus @, and —p,(r) is
the electronic charge distribution, given by the diagonal element of the first-order
density matrix normalized to the number of electrons in the monomer A.

Equations ([=67) and ([=68)) show that the first-order polarization energy repre-
sents the energy of the electrostatic interaction of the unperturbed monomers’
charge distributions, and is referred to as the electrostatic energy. At large inter-
monomer distances R the electrostatic energy can be represented as a sum of
classical electrical interactions between the permanent multipole moments of the
unperturbed monomers. One should note, however, that the electrostatic energy also
contains important short-range components due to the mutual penetration (damping,
charge overlap) of the monomers’ electron clouds. This short-range part of the
electrostatic energy makes significant contribution to the stabilization energy of
der Waals complexes and cannot be neglected in any accurate calculation of the
potential energy surfaces for such systems.

5.2 First-order Exchange (Heitler-London) Energy

The first-order energy in the SAPT theories is given by

D, |V |AD
g _ (V[ AR (1-69)
(@, AD,)

where A is the antisymmetrizer. When @, is an exact eigenfunction of H, this
energy is identical with the so-called Heitler-London energy:

(AP, | H—E, | ADy)

ED —
i (AD,| AD,)

(1-70)

To separate the polarization and exchange parts of E() one has to use the following
decomposition of the total antisymmetrizer2

Ny,

- m(1+?)AAAB, (1-71)
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where A, and A are the antisymmetrizers for the monomers A and B, respectively
and P collects all permutations (with appropriate sign factors) interchanging at least
one pair of electrons between the interacting monomers. By inserting Eq. (I=Z1)
into Eq. (I=89) one finds that

E(l) — E(l)

elst

+E)

exch?

(1-72)
where

o (D | V—ELY | PD,)

elst

= 1-73
exch l+<¢0|?(p0> ( )

This expression vanishes exponentially at large R since the functions ®; and
®f decay exponentially with the distance from the centers of the respective
monomers2. The Eéizh component represents the main exchange contribution to
the interaction energy. At the Van der Waals minima it usually accounts for over
90% of the total exchange effect. The interpretation of Eéiih is very simple: it
represents the effect of taking the expectation value of the full Hamiltonian with
the simplest possible function (A®P,) representing in the zeroth order the resonance
tunneling of electrons between all available equivalent minima.

An accurate evaluation of E;Zh is difficult because the multiple electron exchange
operators included in P prevent us from expressing this quantity in terms of
monomer properties. For the intermonomer distances corresponding to typical Van
der Waals minima Eq. (IZ3) can greatly be simplified by considering only the
single exchange approximationi4:l2 Since the resulting approximate value of Ee(izh
is quadratic in the intermolecular overlap densities p,,, (r) = ¢, (r),, (r) (orbital i,

on A and ,, on B), it is denoted by E'), (5?),

EW

exch

($%) = — (P, | V— E)

elst

| P, D), (1-74)

where P, denotes the sum of all N N, transpositions of electrons between the
monomers. Equation (I=Z4) represents a very good approximation since its error
is of the fourth order in the intermonomer overlap densities. It can be shown that

Eéllh (S?) can be expressed through the one- and two-particle density matrices of

the unperturbed monomers1

- 1
Eéilh(Sz) = // <v(r1 ,Ty) — WEe(:lls)t) Pinc (4> 92)dq,dq,, (1-75)
AVp
where

Pin(A1> Q) = —pA(q; | 42)p5(q2 | Q1)

__/ / Iy(q,9; | 9,94)13(q,9, | 9,9;)dq;dq,,
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- f La(d195 | 4192)p5(2 | 03)dgs

- f pA(q; | 95)T5(q,9; | 929;)dqs, (1-76)

and v(r;, ;) is a modified interelectronic interaction potential

i(r;,1;) = rl.;l — N, Zzﬁrl;.‘ -N'Y Zar;j1

BeB acA
+NING Y Y ZZgR o, (1-77)
acA BeB
defined such that
> () =V. (1-78)

icA jeB

Finally, py and I'y, with X = A or B, are the conventional one- and two-particle
density matrices for monomer X, normalized to Ny and Ny (Ny — 1), respectively. In
Eqs. (I3 and ([ZZ6) q; = (r;, s;) denotes the space and spin coordinates of the ith
electron. Since theoretical methods for the evaluation of the density matrices py and
T’y for many-electron molecules are well developed, Eqs. (IE23) and (I=Z6) enable
practical calculations of the first-order exchange energy using accurate electronic
wave functions of the monomers A and B,

5.3. Induction Energy

The second-order polarization energy E;Q is given by

E® = —(®, | VR,V | D). (1-79)

pol —

The induction energy, E\), is obtained when the reduced resolvent R, Eq. (24,
is restricted to terms where one of the monomers is in the ground state and the
other in the excited state. The corresponding expression is given by

Ejnl = EG)(A < B)+ E(B < A), (1-80)
where
El(nzg(A <~ B)= _<(I)6‘ | QBkOA‘Q'B | (1)6‘>, (1-81)

and a similar definition holds for El(nzg (B < A). Here, Q) denotes the operator of

the electrostatic potential generated by the unperturbed monomer B

Qp =) (1), )= / %Pg’t(rj)dl'f (1-82)

icA i
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The operator f?o 4 is the part of the resolvent, Eq. (I=24)), in which B is in its ground
state and the sum is over the excited states of A.

Equation (I=81)) has the form of the second-order energy correction for the
monomer A perturbed by the static field generated by the unperturbed monomer B.
This field, corresponding to the potential w, induces a modification @f;g (A< B)=
—iio 4Q ¢ in the wave function of the monomer A, and the change in the energy
due to this modification is equal to El(nzg (A < B). Thus, the second-order induction
energy results from the mutual polarization of the monomers by the static fields
of their unperturbed partners. Asymptotically, at large R, El(nz; is fully determined
by the permanent multipole moments and static multipole polarizabilities of the
monomers. At finite R additional information is needed to account for the short-
range, penetration part of El(fd) . This information is contained in the short-range
part of the electrostatic potentials wy(r), X = A or B, and in the polarization
propagators of the monomers. The polarization propagator is a molecular property,
which fully describes the linear response of a molecule to an arbitrary one-electron
perturbation! 22 Tt is defined for an arbitrary frequency w by

I}, (0) = — (D | E{R,(—w)E}, | D)
— (D) | ELRA(0)E, | BF), (1-83)

where E! is the spin-free unitary group generator (orbital replacement operator),
defined by

2
E =Y aja, (1-84)
o=1

and a, (a,,) is a creation (annihilation) operator associated with the spinorbital
Y0, 0 = a or 3. Further, R 4(w) is the frequency dependent resolvent operator
defined as R,(w) = (Hy — E{ + 0)~'Q,, and Q, = 1 — |®2)(dD{|. The induction
energy El(nzj(A < B) is related to the polarization propagator at w = 0 by the

equationi2,

1 P
Epi(A < B) = 2 (0p)] (03)} 1T (0), (1-85)

where (wj)F is the matrix element of the electrostatic potential wg(r), i.e. (wg)f =
(Y|wg|). The Einstein summation convention over repeated lower and upper
indices is used in Eq. (I583)) and further on in this paper. Since the electron densities
(needed to calculate wy) and the static propagators can be calculated as the first and
second derivatives of the monomer energy with respect to appropriate perturbations,
the existing quantum chemical technologyi2~12 for the calculations of analytic
first and second derivatives can directly be employed to study induction interactions
in the region where the charge overlap effects play an important role, i.e. in the

region of the Van der Waals minimum and at shorter distances.
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Equation (I=83) can conveniently be rewritten in terms of the density suscepti-
bility functions of the monomers. The density susceptibility function of the monomer
X may be viewed as the coordinate representation of the polarization propagator,
and is given by the following expression:

ay(r, r'lw) =Y YT (0)$; (1), (r) b () by (). (1-86)

k& LU

It follows directly from the Eq. (I=83)) that the expression for the induction energy
can be rewritten as,

EQ(A < B) = % | [ @smon)a,r,r0)drdr. (1-87)

Although at first glance Eq. (I=¥7)) can be taken as a simple reformulation of Eq.
(=83), such a reformulation it is not purely of academic use, since the density
susceptibilities of the monomers can be expanded in terms of a single set of atomic
orbitals, making of a,(r,r'|w) a two index, and not a four index quantity and
thus greatly simplifying calculations of the induction energy for large systems. The
application of this technique is considered in more details in Section [

54. Exchange-induction Energy

The second-order exchange energy in the SRS theory, defined as E e(ilh =
Ega)s — El(mzj separates naturally into two contributions: exchange-induction and
exchange-dispersion energies
@ () 2
Eexch = Lexch—ind + Eexch—disp‘ (1_88)
The exchange-induction energy is an energetic effect resulting from the antisym-
metrization of the induction wave function,
o) = D) (A « B)DE + Dl D) (B < A 1-89
ind = Ping (A <= B) Py 4 DG, 4(B < A), (1-89)
and can be viewed as a coupling between the induction interaction and the electron
exchange. At the distances corresponding to the Van der Waals wells, it is sufficient
to consider only the single-exchange part of the exchange-induction energy. Higher-
order terms (in S?) have been computed for the helium dimer and found to be negli-
gible in the region of the Van der Waals minimum+22. In this approximation E, @

exch—ind
is given by the following expression!

(P, —P)) | B (1-90)

ind/ >

2 1

Eéxlh—ind Sz) =—(P, | (V _Eéls)t
where P, = (d;|P,®,) and ®!) is given by Eq. (I=R9). In the repulsive part of the
intermolecular potential the exchange-induction energy quenches a substantial part
of the induction contribution and cannot be neglected in any quantitatively accurate
calculation.
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5.5. Dispersion Energy

The second-order dispersion energy Edls is defined as the difference between the

second-order polarization and induction energies, Efg)p = Eéﬁ I(fg One can also
use the following direct definition
2 A
Etgis)p:_<q)0 | VRV | ®y), (1-91)

where the operator R ap 1S that part of IAQO, cf. Eq. (I224), which involves only
excited states on both monomers A and B. By its very definition the dispersion
interaction represents a pure intermolecular correlation effect. It may be viewed
as the stabilizing energetic effect of the correlations of instantaneous multipole
moments of the monomers. Since the classic work of Casimir and Polder!3 we
know that, asymptotically at large R, the energy of the dispersion interaction can
be expressed in terms of the dynamic multipole polarizabilities of the monomers.
A powerful generalization of the Casimir and Polder result has been reported in
Refs. (132-137). The authors of Refs. (132-137) have shown that the complete
dispersion energy, including the charge-overlap effects, can be expressed, via the
Casimir-Polder type integral, in terms of the polarization propagators of the isolated
monomers

E? — ——vll‘:]" o / M2 (i) (—iw)de. (1-92)
In the above expression we assumed that k,, k,,[;, [, and m,, m,, n,, n, label the
orbitals of monomers A and B, respectively. We also introduced the following
notation for the Coulomb integrals:

vl = W, (D, @)1y [, (1D, (2))- (1-93)

Equation (I=92)) is very important since in the region of the Van der Waals
minimum the charge-overlap contribution to the dispersion energy is always
substantial. Additionally, the powerful computational techniques, developed in the
1980’s to obtain accurate polarization propagatorsi® can be utilized via Eq. (IE92)
in the calculations of the dispersion energies at finite distances.

Similarly as in the case of the induction energy, Eq. (I-92)), can be rewritten in
terms of the dynamic susceptibilities of the isolated monomers:

1 ptee a(r, r|io)a(r, r|io ,
2= L [T [ [ [ Qe B0 b e e ey
477 J |ty — 1, |[r} — 1))

(1-94)

The density susceptibilities of the monomers can be expanded in terms of a single
set of atomic orbitals, making of a,(r, r'|w) a two index quantity and thus greatly
simplifying calculations of the dispersion term for large systems. See Section [
for a more detailed discussion of this technique applied to the calculations of the
dispersion energy.
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5.6. Exchange-dispersion Energy

is the energetic effect of the antisym-
metrization of the dispersion wave function CI)dlsp(A ‘B) = ;3 6131(;3, and can
be interpreted as a coupling between the dlspersmn interaction and the electron

exchange. In the single-exchange approximation Eexch gisp 18 given by 12

The exchange-dispersion energy Eexzh disp

(8%) = —(®y | (V= ESD (P, —P)) | @)

(@)
E disp

exch—disp

(A---B)).  (1-95)

The effect of multiple exchanges has been computed for the He dimer and found
to be negligible in the region of the Van der Waals minimum!2. The exchange-
dispersion contribution is relatively small, quenching usually only a few percent of
the dispersion energy.

5.7. Third-order Polarization and Exchange Contributions

The third-order polarization energy can written as the sum of three distinct contri-
butions,

E(3) E(3) + El(rii disp + Ec(l?s)p’ (1_96)

pol — “~ind

where the corrections with subscripts ind, ind-disp, and disp refer to the third-order
induction, mixed induction-dispersion, and dispersion energies, respectively.

The third-order induction energy can be represented as a sum of two terms
describing the (second-order) polarization of the monomer A by the fields of the
monomer B and vice versa, and of one mixed term corresponding to the simul-
taneous polarization of both monomers by the field of their partners. It has been
shown1 that the third-order induction energy (including the charge-overlap contri-
bution) can be expressed through the static polarization propagators and quadratic
response functions of the isolated monomers,

Ejpg = —<w3>f(w3>§/(wB)’;l’Hi’;f;;«o,0>

ind —

+ = (wA)n (wA)m (‘”A)m” Hz:innm (0,0)

+ (wp)f (@) vh TI (O)IL (0), (1-97)

mm’

where H;f,lfiz(a)l, w,) denotes the quadratic polarization propagator (quadratic

response function)28,
L (@1, @) = (@ | ELR, (—0) (B, = ol )Ro(—0) EL 07
+(0f | E RA(wz)(E PQ[)RA(Q))E,[(Q){})

(D) | ELR () (EL — p) Ry (—w0,) EC D) + (1 <> 2),
(1-98)
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where w = 0, + w,,
Pl =Py | Exg), (1-99)

and (1 <> 2) denotes three additional terms with all symbols with indices 1 and 2
interchanged (including those with &, [,, k,, and 1,).

The third-order intermolecular correlation contrlbutlon E[(:j Elnd separates into

two parts: the induction-dispersion energy ES and the third-order dispersion

md disp
energy E‘gi)p The induction-dispersion effect results from the coupling of the
induction and dispersion interactions and gives the following contribution to the

interaction energyl

3 3 3
El(mi disp _El(mz dlsp(A)—‘r_El(n(i dlbp(B)’ (1'100)
3 Kk K K
Epi_ap(A) = (wgn ot i
+o0
x / A5 (0, o)L (—io)do,  (1-101)

where the symbols have the same meaning as in Eqs. (I297) and (=92). The
expression for EU)_ gisp(B) can be obtained from Eq. (I-IQI) by interchanging
symbols pertaining to monomers A and B. It is worth noting that the induction-
dispersion contribution can be obtained in a second-order perturbation treatment
if in zeroth order the monomers are fully deformed by the induction effects!®.
This means that the induction-dispersion energy is a second-order intermolecular
correlation effect.

The third-order dispersion energy ths) is a true third-order intermolecular corre-
lation term. Despite some efforts2?, thls energy could not be expressed, even
asymptotically, through some monomer properties. The calculations for the water
dimer and the HF dimer!¥ have shown, however, that even for these polar systems
the contribution of the third-order dispersion energy is small (1-2 % of the total
interaction energy at the equilibrium configurations). It remains to be seen if this
optimistic result holds also for other complexes.

The partitioning of the third-order exchange energy into exchange-induction,
exchange-induction-dispersion, and exchange-dispersion components has not been
derived thus far even for pairwise additive interactions. In the second order this
splitting is rather natural since the first-order polarization wave function can be
written as the sum of wave functions describing the induction and dispersion inter-
actions, CD;Q = CID(1 CID((i:S)p(A -B). The third-order exchange energy is solely
defined by the 1ntermolecular 1nteract10n and exchange operators and the second-
order polarization wave function CDpol, so the splitting of EexCh into the sum

3)

Eéxchfind +E$Zh7md7disp +E£2h7disp is defined by the splitting of <D(01 into compo-

nents describing the induction, induction-dispersion, and dlspersmn interactions.
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(2)

This partitioning of ® |

a way that132:142

does not come out naturally, but it can be defined in such

+ Y (1-102)

disp?

DL = D) + D))

pol — ind—disp

and

3) 2 (3)
Eq= <q)O|V(Dind > Eind—disp

= (D[ VD) ). Efor = (D VOS ).
(1-103)

Calculations of the third-order exchange contributions have not been performed
thus far. The results reported in Ref. (81) for the total third-order exchange effect for
the helium dimer suggest that they quench a large part of the third-order polarization
contribution.

6. MULTIPOLE EXPANSION OF THE INTERACTION ENERGY

According to London’s theoryX231# the interaction energy can be represented as an
asymptotic expansion in powers of R~!,

= & Cyw,, 05 R
Eim(R,wA,wB,R)’\’Z%-

n=1

(1-104)

The Van der Waals constants C,(w,, wg, ﬁ) depend on the Euler angles w, and
wy specifying the orientation of the monomers in an arbitrary space-fixed frame,
and on the polar angles R = (8, ) determining the orientation of the intermolecular
axis (R is assumed to join the monomer centers of mass) with respect to the same
space-fixed frame.

Since the interaction energy as a function of R has an essential singularity at
infinity#2 due to the exponential terms resulting from the charge overlap and
exchange effects, the knowledge of the Van der Waals constants is not sufficient
to reconstruct the function E, (R, w,, wz, R) at finite R, even if the series (I-104)
were convergent. Actually, it appears that the series (I=104) diverge for any finite
value of R. Despite this divergence, for sufficiently large distances the expansion
(E104)) can approximate the exact interaction energy arbitrarily closely in the sense
that146

N —~
R C,(w,, w5, R
E (R, 0, 05, R) =} %

n=1

=O0R"™). (1-105)

Therefore, knowing the Van der Waals constants is very useful to estimate the
interaction energy at large distances, and is necessary to guarantee the correct
large R asymptotic behavior of the potential energy surface E; (R, w,, wg, R).
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The coefficients C, (wy, wg, ﬁ) are uniquely defined by the interaction function
E. (R, w4, wg, R) and can in principle be deduced from the following equations,

Cl(wA’wB’ﬁ) =Igi_I)I;REim(R, wA’wB’ﬁ)’ (1-106)

and

k=1

n—1 D
- - Co(wy 05 R
Ci(wy, 0, R) = I%i_r)lgoR" (Eim(R7 wy, 0, R)— Z %) .

(1-107)

The remainder of this section will be devoted to the discussion of computational
methods of Van der Waals constants without prior knowledge of the interaction
energy, and to other (possibly convergent) angular expansions of the interaction
energy components.

6.1. One-center Expansion

Explicit expressions for the Van der Waals constants may be obtained by invoking
the well-known%Z multipole expansion of the operator V. In an arbitrary space-fixed

coordinate system, this expansion can be written as

n—1

S Z Vi1 (1-108)
=0

RS

n=1

The operator V, , is physically interpreted as representing the interaction of the
instantaneous 2'4 moment with respect to center A with the instantaneous 2's
moment with respect to center B and can be expressed in terms of irreducible
spherical or reducible Cartesian tensor operators of multipole moments. The operator
V.1, can be written as

ly+lp
VlA,/B = XZA,/B Z (_1)"1C£/\’:13(R)[M1A ®M15]fr/l\+lg’ (1_109)
m=—Il,—lp
where
21,4215\ "
X0, = (=1)" A (1-110)
21,
and the spherical multipole moment operator is given by,
M =3 Z,rxCI(T,). (1-111)

peX
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Here, the summation index p runs over all particles, both nuclei and electrons,
of the molecule X, Z, are the charges of those particles, and cr(r) is a
spherical harmonic in the Racah normalization.28 The irreducible tensor product
of two multipole moment tensors M, = {M,*,m, = —1,,...,+l,} and M, =
(M, my=—ly, ..., +lp} is defined as,

la B
M, @M, 1, = > > MM (lymy;lgmg|Im). (1-112)

my=—ly mp=—lp

Here (I;m; lym, | Im) is the Clebsch-Gordan coefficient. 28

The spherical form of the multipole expansion is very useful if we are looking for
the explicit orientational dependence of the interaction energy. However, in some
applications the use the conceptually simpler Cartesian form of the operators V,
may be more convenient. Moreover, unlike the spherical derivation, the Cartesian
derivation is very simple, and “can be followed by everybody who knows how to
differentiate a function of x, y and 7”122, To express the operator Vi1, n terms of
Cartesian tensors we have to define the reducible, with respect to SO(3), tensorial
components of multipole moments,

ZZP pvi pmr s Ty (1-113)
peX
where r,, 4, 18 the 7;th Cartesian coordinate of the particle p, i.e. y; =1, 2 or 3, so that
Tpy, = X, ¥, and z,, respectively, {7y} denotes the set of indices {y;, v,..., ¥, }

and the coordinates are measured in a space-fixed system with its origin at the
center of mass of molecule X. In this notation the operator V, , can be written as

l 3]
VlAJB ZZM 03-'—[;} Ml{f}’ (1-114)
} B}

where the tensor T{[i’f{;f}] describing the orientational dependence of the interaction

between the instantaneous 2’4 moment on molecule A and the instantaneous 2’z
moment on molecule B is given by

T[lA+lB] R1A+lg+l( 1) (Va Va -"Va VB Vﬁ VB ) <l> ,
l 'l ] 1 s B1 B2 Ig R

(1-115)

and the sums run over all distinct sets {e,, a,, ---a; } and {B;, B,, - - - B, }. Explicit
expressions for the tensors TU”‘}JEZ*}] have been derived by Mulder et al.13 for
I, + 1z < 6. Specific formulas applying to linear and tetrahedral molecules have
been reported in Ref. (151) for [, +1, <7.

Although Egs. (IZI09) and (I=114) represent the very same multipole expansion

of the intermolecular interaction operator, the expressions for the transformations
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between the spherical and Cartesian form are quite complex. In view of the Laplace
equation, the partial traces V,V, (E) vanish. Therefore, the operators M,/ " can be
expressed in terms of erz *. The formal relationship between Cartesian tensors and
their irreducible spherical components has been thoroughly investigated by Coope
et al 13213315% and by Stonel21%, Stone derived!® a general scheme of reducing
a Cartesian tensor of rank »n into several spherical components and investigated in
detail properties of Cartesian-spherical transformation coefficients2,

The truncated multipole expansion,

N
Vv,
=%~ (1-116)
n=1 R"
can be used to define the Van der Waals constants. By applying the Rayleigh-
Schrodinger perturbation theory to the Schrodinger equation with the Hamiltonian

HN
HY = Hy+ V", (1-117)

and using 1/R as the expansion parameter Ahlrichs!#2 has shown that the Van der
Waals constants entering the asymptotic expansion (I=104)) can be computed from
the following recursive formulas,

C, =Y (O] vl (1-118)
k=1

and

Ol = 3" Ry(C,— V) DI H, (1-119)

where the superscript [n] at ®[" denotes the order in 1/R. For simplicity we have
omitted the dependence of the Van der Waals constants on the angles (w,, wg, R)
in Egs. (I-118) and (T=119). Note that the Hamiltonian H” has a purely continuous
spectrum. Consequently, the operator V" cannot be considered as a small pertur-
bation and the RS perturbation theory based on the partitioning (I=IT7) of the
Hamiltonian H” is divergent for each R, and has only a formal sense. Ahlrichs has
proved#2, however, that C, and ®["), as defined by Eqs. (I=L18) and (I=119)), exist
in the sense of the Hilbert space theory.

Although a direct application of Eqs. (I=118) and (I=119) is straightforward, in
practice the Van der Waals constants are obtained from the constants C*) appearing

in the asymptotic expansion of the polarization energies E;g

C( )
E%) ~ Z (1-120)
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and then representing each constant C, as a finite perturbation expansion in V,

M
Cc,=y. CcW. (1-121)

k=1

Here M denotes the smallest integer satisfying M > n/k — 1, where k = 3 if both
interacting molecules are neutral and k = 2 if one molecule has a net charge. Such
a procedure is legitimate since in view of Eq. (I=29)), the polarization expansion of
the interaction energy gives a correct asymptotic representation of the interaction
energy. It can also be shown& that the constants C¥) can be computed from the
standard equations of the polarization perturbation theory, provided that the operator
V is replaced by its truncated multipole expansion (I=L16) with N > n. For instance,
the Van der Waals constants C\" and C? are given by

GV = (P | V,Py), (1-122)

CO =Dy | ViRV, D). (1-123)

Equations (I=122)) and (I=123)) have been applied with success to compute Van der
Waals constants for quite large systems!3?~160,

Although Egs. (I=123) and (I=I38) can be applied in practice to compute the
Van der Waals constants C©), these constants depend in a quite complicated way
on the angles (w,, wg, R). If these constants were computed from Eqs. ([Z122)
and ([Z123), such calculations would have to be performed for each orientation
of interacting molecules. Therefore, it is preferable to introduce the multipole
expansions for the interaction energy components Eélls)l, El(rﬂ, nd Efllzfp, in a such
a way that the whole angular dependence is separated. As shown in Ref. (161)
for all intermolecular separations the kth-order polarization correction Ep()g can
be written in terms of a complete orthogonal set of angular functions labeled by
{A}y={L,, Ky, Lg, Kp, L},

k A} Sk ~
El =S WEN(R)A (@4, wp. R), (1-124)
(A} ~
Ay (0y, 0, R) = (=1)Latlstl

252 Gid)

My=—Ly Mg=—Lg M

Dy, @)Dy (05)CLHR),  (1-125)

where vaf «(®) denotes an element of the Wigner rotation matrix<%, CL is

the spherical harmonics in the Racah normalization, and the expression in large

parentheses is a 3j symboli#, Note that the expression for the angular function
A (@4, g, R) reported in Ref. (162) missed the factor (—1)E4+Ls+L (Ref. 163).
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By using the multipole expansion, we in fact replace the exact radial expansion
coefficients (A} €(kl (R) in Eq. (I]EE]) by the approximate coefficients A}SI(,Q (R),
which are power series in R~'. Closed expressions for the latter have been
given2219l ip terms of the irreducible spherical tensors of multipole moments and
polarizabilities.

The radial part of the electrostatic energy in the multipole approximation is given

gélls)t(R) = (_])LA 5LA+LB,L

(2L, +2L,+ 117" 0 0F
(QL)'(2L)! RLaTLpt1’

(1-126)

where Q’L()’(‘ denotes the spherical component of the 2* moment of the molecule X
computed in a convenient molecule-fixed coordinate system,

= (O | M ¥ | D)), (1-127)

and IVI,X is the multipole moment operator of the monomer X in the body-
fixed frame. Equation (I=126) shows that the first-order polarization energy in
the multipole approximation is represented by the classical electrical interaction
between the permanent multipole moments of the unperturbed monomers.

The radial component of the second-order induction energy in the multipole

approximation can be written as142:161.164.163.166

1 o0 o0 o0 o0 o
VERRI =2 3 X 3 X ClilianR
Y Z Z Z ZC)\}lnd B -, (1-128)
1,\—0/;‘_013—11/71

where {A} is the set of indices {A} = {l,,1,, 15, I3}, n=1,+1,+1;+13+2, and
the long-range induction coefficient describing the polarization of the monomer A,
C{{f}},inde, is given by

{A} LyLgl K, L
Cinpina—a = €11, 0,0, %1, 1, (0[Q, ®Q, I (1-129)
The symbol al (1 L)Ly (0) denotes the irreducible component of the multipole polar-
izability
2(EX — EY)
Ky n 0
af (W)= ) ————7——
(Ixl)Lx rg} (EX _ E())()z — w?

x [(@F | M, | &) @ (@ | My | D] (1-130)
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and the numerical constant §l Ll is given by

gaiat _ (_yyon, [ Qat 2ot IR+ 20 4 1) 12
EINTEIBICTATICIAT

x[2L,+ 1)Ly +1)(2L+1)]"?
Xy +150,0,+15,0|L,0)

Ly Iy Ly
x{ 1, 1, Lyt, (1-131)
L+l +1, L

where the quantity between curly braces denotes a 9 symbol28, The energies and
wave functions appearing in Eq. (IZ130) belong to the spectrum of the Hamiltonian
Hy of the monomer X. In view of Eq. (I:129) the first term on the r.h.s. of
Eq. (T=128) corresponds to the energy of the polarization of the monomer A by
the permanent multipole moments of the monomer B, so the induction energy in
the multipole approximation is represented by the classical interaction between
permanent multipole moments of one monomer and induced multipole moments of
the other.

Finally, the radial part of the dispersion energy in the multipole approximation

is given by&ﬂ*ﬁ*ﬂ’ﬁ

5(2)

dlsp(R) Z Z Z Z C{)\} dlspR_n’ (1'132)

Iy=11,=11g=11,=1

where the long-range dispersion coefficient C can be written as the Casimir-

dlsp
Polder integral{3!,

(A) LuLpL K .\ K .
C{/\} disp = flA*} IBB /0 (lﬁl,A)LA(lw)a(lzl/g)LB(lw)dw. (1-133)

Equations ([-124) and ([133) are valid in an arbitrary space-fixed coordinate
system. However, since the angular functions A, (w,, wg, ﬁ) are invariant with
respect to any frame rotationi®?, a specific choice of the coordinate system may
considerably simplify Eq. (I=123). In particular, in the body-fixed coordinate system
with the z axis along the vector R the polar angles R= (B, @) are zero. Using the

fact that C%, (ﬁ = (0, O)) = 8,022, one gets,

A{A}(wA’ wp) =(_1)LA+LE+L

Ly
L, L, L
X Z < A B )
ML, M,—-M,0

x Dy (@)DE ¢ (wp). (1-134)
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Table 1-4. Quantum numbers and angular functions specifying the angular dependence of the interaction
energy. The angle 6 is given by the difference 6 = @, — az. Only quantum numbers not equal to zero
are shown. The entries “a”, “d”, and “p” in columns 1 and 2 refer to atom, diatomic, and polyatomic
molecule, respectively

A B Quantum numbers Angular function
a a - 1
a d Lg P, (cosBp)
a p L=Lg, Kg C[léﬁ(ﬂBvaB)
d d Ly, Lg, L Py, (cosBs) Py, (cos Bg)exp(iM,6)
Lp)* .
d P Ly, Lg,Kp, L Py, (cos BA)D(—AI/Z.KB (0, B, vp) exp(iM ,0)
La)* Lg)* .
P P Ly Ky Ly Ky, L Dl (0. BODE ¢, (0. By, ) exp(iM8)

The summary of angular coordinates, quantum numbers, and angular functions for
some specific systems is given in Table[[=4] Further simplifications can be obtained
if one considers the molecular symmetry groups of the monomers. For all point
groups, except for the tetrahedral and cubic groups, all symmetry operators can
be constructed from the inversion I, n-fold rotation about the principal (z) axis
R.(2m/n), and twofold rotation about the x axis R, (). Therefore, to determine
the components of the multipole moment and polarizability tensors that span the
totally symmetric representation of the symmetry group, i.e. that are invariant under
operations of the symmetry group, it is enough to determine the action of these three
operators on the multipole moment and polarizability tensors8193 Tt follows from
Refs. (164-165) that the multipole moment and polarizability tensors transform
under these operations according to:

I 0 = (=D, afiy, =~ (=D afy,, (1-135)
R.(2m/n): Q) — e 2mMinQM, iy, = e’z’”'M/"aZ’l/)L, (1-136)
R(m: OF » (~1MQ,  alhy, — (~1agl, (1-137)

Using the transformation rules given above one can easily derive the (non-zero)
components of spherical tensors that are invariant under the molecular symmetry
group. This, in turn, can be used to obtain the multipole expansions of the
electrostatic, induction, and dispersion energies for the interactions of specific
systems, see, e.g. Refs. (167-168) for expressions applying to atom-diatom and
diatom-diatom interactions. In general, the symmetry-adaptation of a tensor to the
molecular symmetry group can be obtained by a reduction with respect to the full
rotation-reflection group O(3), followed by a subduction of the O(3) irreducible
representations to the point symmetry group of the molecule!®2. This symmetry-
adaptation scheme has been applied with success to derive all components of the
(hyper)polarizability tensors that are invariant under D_, 2.
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Although the spherical form of the multipole expansion is definitely superior if the
orientational dependence of the electrostatic, induction, or dispersion energies is of
interest, the Cartesian form{Z~1% may be useful. Mutual transformations between
the spherical and Cartesian forms of the multipole moment and (hyper)polarizability
tensors have been derived by Gray and LolZ2. The symmetry-adaptation of the
Cartesian tensors of quadrupole, octupole, and hexadecapole moments to all 51
point groups can be found in Ref. (176) while the symmetry-adaptation of the
Cartesian tensors of multipole (hyper)polarizabilities to simple point groups has
been considered in Refs. (172-175).

The long-range electrostatic and induction coefficients are exclusively expressed
through the multipole moments and polarizabilities of the isolated monomers, so
they can routinely be computed by various quantum-chemical methods. The calcu-
lations of the long-range dispersion coefficients are somewhat more sophisticated,
as they require the knowledge of the dynamic multipole polarizabilities at imaginary
frequency. Nowadays this problem is solved, however, and accurate long-range
dispersion coefficients can be computed. The review of all methods that can be
applied to obtain such coefficients is out scope of this review. Here we only want
to mention that the MBPT approach of Wormer and collaborators has been success-
fully applied to various Van der Waals complexes providing state-of-the-art values
of the long-range dispersion coefficientsZ~182,

The multipole expansion of the intermolecular interaction operator is divergent
in most part of the configuration space, the region of convergence being restricted
to the Cartesian product of all spheres r;, < R/2, r, < R/2, r; < R/2, and rg < R/2,
fori,a € A, and j, B € B18 where the indices i and j refer to electrons while a
and 3 to nuclei. This particular region corresponds to that part of the configuration
space in which the electrons initially assigned to molecules A and B are “localized”
on their original monomers. If the operators V, , are interpreted as multiplicative
operators in the Hilbert space, the series (I=108)) is divergent for each R.

The asymptotic expansions of the polarization corrections Eéﬁi are divergent
for all values of R, although this fact has been rigorously proven for k =2 and
only for the Hf and H, systems. Vigné-Maeder and ClaverieX® have shown that
the multipole expansion of the electrostatic energy is convergent, although to a
spurious value, if the unperturbed charge distributions of the interacting molecules
are approximated by Gaussian functions. Dalgarno and Lewisi8 have shown that
the multipole expansion of the second-order induction energy for the H; ion is
divergent for all R,

EQ~_% (2n+2)(n+2) '
ind n(n 4 1)22n+2R2n+2

n=1

(1-138)

Later Young18® proved that the multipole expansion of the second-order dispersion
energy for the H, molecule is divergent as well,

0 @)

@ Laslp _
Edmp Z Z R21A+21[,+2’ (1 139)

l4=11p=1
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where

QI 21+ DU+ 1)

lynlp 2204+2l+1

(1-140)

Both expansions are rapidly divergent, and not summable by any summation
techniques.

6.2. Multicenter Expansions

Since the single-center multipole expansion of the interaction energy is divergent,
one could use a kind of multicenter expansion. One can hope that the multipole
expansion will provide better results if multipole moments and polarizabilities
localized at various points of a molecule are used instead of global multipole
moments and polarizabilities. This idea forms the basis of the so-called distributed
multipole analysis of the electrostatic, induction, and dispersion interactions between
molecules& 123,

In the following considerations we will need the multipole expansion of the
operator ry," as series of products of operators depending on the coordinate of the
particle 1 with respect to a center a, r;, of the particle 2 with respect to another
center b, r,, and on the coordinates describing the relative position of the centers a
and b, R,

ol = Z Z( 1y (ZL —I—AZL)

L,=0Lp=0

Ls+Lyg

x Y (=), rpem, ©)]) L,

M=—L,—Ly

X Cyt P (RRA T (1-141)

where the one-electron multipole moment operator of the monomer X, mILW;‘, in the
laboratory system of axes, is given by the following expression,

mp'(r) = r'C. (r), ZmLA(r (1-142)

The space-fixed operators defined by Eq. (IE142)) can be transformed to the system
of axes located at the center a,

Ly Ny
~K My (L a ~K ~K
mpy = Z ADz(u:KA( Wy), M} :ZmL:(ri)' (1-143)
i=1

My=—L,
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A formal definition of the distributed multipole moments require some parti-
tioning of the space R? into regions corresponding to the set of centers {a} and {b}
in the molecules A and B, respectively,

RP=V, R=V,. (1-144)

acA beB

Usually, the region defined by V, will be associated with the atom a of the
molecule A. The distributed multipole moment at the site a is defined by the
following expression:

Q@) = [ ) (0)p (ryar. (1-145)

If we extend the integration volume V, to the full R® space we will get the
multipole moment of the monomer A in the coordinate system located at the
site a.

It should be stressed that the multipole moment Qf;‘ of the monomer A cannot
be obtained by a simple summation of the distributed moments Q’ZAA (a), since the
latter are defined with respect to local systems of axes located at the sites. However,
transforming the moments ij (a) to the center-of-mass of the monomer A using

the translation formulai®®,

K4 = Lya+Ky\(Li—K,y v
QLA(a)ZZ Z I +k I —k

Ia=0ky=—14 AT RA AT Ra

1, Ak Ly a1y

x (=1 (@)1 C T (L), (1-146)
where @f;‘ (a) denotes the distributed multipole moment tensor at the center a with
respect to the system of axes located in the center-of-mass of the monomer A,
one can make such a summation. The center-of-mass is translated by the vector

t, = (tu,’t\a) from the site a. For completness we also give the translation formula
for the multipole polarizability tensor:

N\
aj(‘ll]/)L(w) — Z Z tl+1 A=A
AN AN

x [+ 1)1 +1)2A+1)(2N +1)]'?
x (I=A,0;'=X,0] A, 0)

21 2\ 12 [—A A
AGIG)] rre
2 2 A AL

A A
XYY ChDE, (). (1-147)

Q=—AQ/=—N
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It follows from the partitioning of R* according to Eq. (I=144)) that the expression
for the electrostatic energy, Eq. (IZ&7), can be rewritten as,

E(l)

elst —

Sy [ [ AR gy (1-148)

acAbeB*Va 'V A}

Inserting for each pair (a, b) the multipole expansion of r;' with respect to centers

located at sites a and b, cf. Eq. (IZI4]), and using Egs. @ZEZ) and ([=143) one

gets the following expression for the multicenter distributed multipole expansion
of the electrostatic energy:

1/2
1) L (2LA+2LB+1)!
E ~ —1*é P
elst %( ) La+Lg,L |: (ZLA)'(ZLB)'
01! (a)Q;! (D) . b a
X Z — Ay (@5, 03 R,y), (1-149)
acA beB ab

where the function A, (w4, w5, R,,) is given by Eq. (CIZ3). Note that in the
case of the distributed multipole expansion the function A;,, depends on the Euler
angles @4 and % of the monomers A and B with respect to the local coordinate
systems located on sites a and b, respectively, while ﬁab are the polar angles of the
vector R, connecting the sites a and b.

The multicenter expansion of the induction energy in terms of the distributed
multipole moments and polarizabilities can be obtained is a similar way starting
from Eq. (I=87) rewritten as follows,

(23 Z Z// // <P$t(r3)Pmt(r4)aA(rl’r2|0)

aa’€eAbb'eB 71374
tot tot , 0
P (1)) p (1) g (15, 1y )) dr, dr,dr,dr,. (1-150)

Ti374

Inserting the multipole expansions of the operators r;3' and r;;' with respect to

the pairs of sites (a,b) and (a', b’), respectively, and defining the distributed
polarizability tensor,

/ / ~ ~ / LX /
aﬁi,,x)Lx(xx |w) :/V /v ay(r, r'|w) [le (ry@m (r )]Kx drdr’,
(1-151)

one gets the following expression for the multicenter expansion of the induction
energy in terms of the distributed multipole moments and polarizabilities:
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© C{/\ ida (aa'bb’)

(2
Ei- T Y (XY yobeton

a,d'€AbV'EB 1,1 =11p,15=0 {A} ab ab

A },ind B(aa/bb/))

o0 o0
ZZZ#

10 =015.1,=1 {A} R, a'l
XA}:\\}}(wivwaA/7wll;’wg’Rab’Ru’b')’ (1-152)
where
Clmaalaa'bb’) = o, | (ad'|0)[Qy, (b)) ®Qy, (B)]5:, (1-153)

Note that the formula for aﬁf 1y, (¥x'(0), Eq. (IISID, can be rewritten as the
. X .
following sum-over-states expression,

K
a0, (2¥10) =

2(EX —E})
S 200 T | M, | @ cDXM,cDX],
3 o Eprs ot |9 @) @ [y ), |
(1-154)
where (---|---), means that the integration is performed over the volume assigned

to the site x, i.e. V.. Note also that the multipole moment operators appearing in
Eqgs. (IZI31) and (I=1534), labeled by I, and [, are defined with respect to systems

of axes located at the site x and x’, respectively. Finally, the angular function

) L
A} (wA, wA,wB, wB,Rab,R ) 18 given by,

Ay a @ b VR R
Ay (wf, 0}, 0p, 0y, Ry, Ryy)
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x Clatls(R,,)C ™8 (R ). (1-155)
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The multicenter expansion of the dispersion energy in terms of the distributed
multipole polarizabilities can be obtained is same way starting from Eq. ([=94).
The final expression reads:

C{A ALisp(@a’bD')

@ S
EdlspN_ Z Z Z Z Z 1A+IB+1RI,A+]33+1

a.a' €AbbeB I, I =115 1,=1{A} R g

x Ay (0, 0f 0}, 0 R, Ryy), (1-156)

where

dlgp(aa bb') = = / (lAl’ )LA(aa |lw)a(l 1)Ly (bb']iw)dw,
(1-157)

and the angular function A{f}} is given by Eq. (I-133).

It should stressed that unlike in the case of the electrostatic energy, the expres-
sions for the long-range coefficients and the angular function A{ A deflmng the
multicenter multipole expansions of the induction and dlspersmn energies are
different. This difference is due to the fact that in the multicenter expansions the
products of the D functions, D) (w%) " (@9) and D) (wh) ’DXRL( b

maky m, k', mgkp

and of the spherical harmonics C's*'s (R )CZ (R (R, /) cannot be represented by
their Clebsch-Gordan series, since the arguments of the two 2 functions and of
the two C functions are different. Therefore, one cannot recouple the Clebsch-
Gordan coefficients to a 9 symbol, and simplify Eq. (I-133) to the form of
Eq. (E123).

The weakest point of the multicenter expansions based on the distributed
multipole moments and polarizabilities is the definition of regions assigned to
atoms. Indeed, the region of space associated with an atom (site) a is not uniquely
defined. The most natural definition comes from the Bader’s atoms in molecules
theoryX2. In this approach the atomic basins V, are defined in such a way that the
dividing surfaces between two atomic basins in a single molecule are the zero-flux
surfaces, determined from the following condition!2,

Vo, (r) -n(r) =0, (1-158)

where n(r) is the vector normal to the surface. According to Bader imposing the
zero flux condition leads directly to the topological definition of an atom in a
molecule. This is in a sense true since the electron density p, has maxima at the
positions corresponding to the nuclei of the constituting atoms a. This means that V,
can formally be defined as the region of space with boundaries given by the zero-
flux surface. Note parenthetically that the atomic basins defined in such a way are
highly non-spherical, and that the integration over V, may be difficult to perform.
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The use of the Bader’s basins together with Eq. (I=I43) as the basis for
the distributed multipole and polarizability analysis was proposed by Angyan
and collaboratorsiZ, Other definitions and other methods leading to a distri-
bution of multipole moments over the sites are possiblel87188.190.191,192,193.194
For instance, Sokalski and Poirier!2! proposed an allocation algorithm of the
distributed multipole moments based on the Mulliken population analysis. In this
approach, the so-called Cumulative Atomic Multipole Moment method, half of
the multipoles are allocated to each of the sets of sites a and b from which
the basis functions came. Other allocation algorithms are also available. We
refer the reader to Refs. (190-198) for a more detailed discussion of this point.
Eq. (ZIZ1) is the most natural definition of the distributed polarizability2Z.
However, other definitions are also possible812%:1%3 Usually, distributed polariz-
abilities are defined using some basis set partitioning techniques, and are highly
nonunique.

The multicenter multipole expansions of the electrostatic, induction, and
dispersion energies are usually convergent, although the convergence rate strongly
depends on the allocation algorithm used to define the distributed multipole
moments and polarizabilities. Note, however, that even though the series are
convergent, they do not converge to the exact electrostatic, induction, and dispersion
energies, since even a convergent multicenter expansion does not account for the
penetration (charge overlap) effects which decay exponentially with the distance
between the molecules. Therefore, multicenter expansions provide us with that part
of the interaction energy that is due to the interactions of permanent, induced, and
instantaneous multipole moments. The penetration part (charge-overlap effects and
damping), which is a purely quantum-mechanical effect, is not accounted for. This
part of the interaction energy is non-negligible, and cannot be neglected in any
accurate calculation.

6.3. Bipolar Expansion of the Interaction Energy

The electrostatic, induction, and dispersion terms can be expanded in a convergent
series closely related to the multipole expansion, but fully accounting for the
charge-overlap effects, the so-called bipolar expansion introduced by Buehler and
Hirschfelderi22% In the local coordinate systems with the origins located at the
centers of masses of the monomers A and B, separated by the distance R, and with
their x and y axes parallel and aligned along the z axes, the distance between two
particles in space can be expressed as follows,

ZZ

"2 Ly, lp=0m=—1_

x B)") (ry. 1y, RYC" (B,, 6,)C." (B, b,) (1-159)

llf

(2L, + D)2l +1)]'2
47

where r;, t~9i, (Z)i are the polar coordinates of the ith particle and /_ denotes the
smaller value of /, and I,. The coordinates of particle 1 are measured in the system
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A of axes, while those of the particle 2 in the system B. The expression for the
function B‘l z‘ (1, 1y, R) has a different form in four regions of space:

{I:R>r+nr}; {II:r,>R+n};
(1-160)
{LHI:r, >R+n}{IV:|rn—nr|<R<r+n}.

In the first three regions the expressions for B‘l:"l‘R (ry, ry, R) are simple combinatorial
formulas containing /,, I, and m times a product of powers of r,, r,, and R, while
in the last region the expression contains a (finite) sum of powers of r|, r,, and R:

Ig 1
(=1)/A+B (I +1p) ' r®
(La+HmD)(Lp+]m|)! RIATT3TT >

r.rnel

1 —Ilg—1
(=D)!2+B(1p—|m]) ity "

Ta—lp) g ImD! ~RATs

ly>1g, r,ryell
Bmg(rl’ r, R) =

—lp—1 1
(y=lmht A nE
(Ia=1p)\(Ig+|m|)!  RB=1a >

ly>1,, ri,relll

11131

=y
Zsz‘,:')B(k l) R et r, 1 €lV,
(1-161)

where Al,m,‘ (k, 1) are numerical coefficients that can be obtained from the recursion
formulas derived by Buehler and Hirschfelder!2:2%,

The expansion given above is exact, except for r, = 0. If the terms resulting from
the regions II-IV are neglected, one recovers the standard multipole expansion of
the interaction operator. Substituting the bipolar expansion of 1/r,, and analogous
expansions for other terms of the operator V into the matrix elements <<I>0|V|<I>l(3'3 ,
the bipolar expansion of a given polarization correction is obtained.

The bipolar expansion was first applied to intermolecular interactions by Koide==
and by Linder et al.222%_ The electrostatic energy was considered in Ref. (204)
while dispersion interactions were treated in Refs. (201-205) for two hydrogen
atoms, and in Ref. (206) for many-electron atoms. Later, this work was extended to
interactions of atoms with diatomics by Rosenkrantz and Krauss2 and to arbitrary
systems by Knowles and Meath2%,

For the case of molecule-molecule interactions the bipolar expansion does
not introduce any simplifications compared to the exact calculations using
sum-over-state expressions discussed in Section [3l However, this approach allows
to judge the importance of the charge-overlap (penetration) effects neglected in the
multipole approximation. Calculations performed thus far show that the overlap
effects are significant in the region of the Van der Waals minimum and for smaller
separations. The explicit knowledge of these effects can be used to devise functional
forms of the damping functions for the electrostatic, induction, and dispersion
energies, which in turn can be used in constructions of semiempirical potentials,
cf. Section

201
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6.4. Importance of the Charge-overlap (Damping) Effects

To illustrate the convergence of the multipole expansion with and without the
damping effects, and to compare the results with the full nonexpanded calculations,
in Figure[[-T]we report the dispersion energy for the He—K* ion computed in various
approximations22. The nonexpanded results were computed from the following
expression,

3
C2n

@ —BR
Edisp =Ae PR — Z R2n

f.(R; B). (1-162)

n=1

which, except for the long range coefficients C,,, was fitted to the ab initio SAPT
points22. The exponential term appearing in Eq. (I=1&2) is the so-called spherical
dispersion term, while the sum on the r.h.s. is often referred to as the damped
multipole expansion. The function f, is the damping function. The functional form

of f, is not known, but we know the limiting values of f,,
lim £,(R; B) =0, lim f,(R;B) =1. (1-163)

It follows from the limiting values that the damping function prevents the divergence
of the multipole expansion at small internuclear distances R. In many applications
the damping function is taken in the Tang-Toennies form29~22  cf. Section

" (BR)*
Z ko

f.(R; B) = 1 —exp(~BR) (1-164)

k=0

The results computed from Eq. (I=162) and a similar expression for the induction
energy will be referred to as the nonexpanded results. In many applications one
approximates the induction or dispersion terms by their damped multipole expan-
sions, cf. Section @3] The latter are given by Eq. (I=1&2)) with the parameter A set
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Figure I-1. Dispersion energy Eéizs)p for the He-K™* ion as a function of the internuclear distance R
represented by its multipole expansion (large dashed line), damped multipole expansion (small dashed
line), and by the nonexpanded results (full line)
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equal to zero. Finally, the multipole-expanded results are obtained from Eq. (I=162))
when puting A equal to zero and f, equal to one.

An inspection of Figure [[=T] shows that the multipole expansion of the dispersion
energy clearly diverges at small R. At larges distances, it fully recovers the nonex-
panded results from ab initio calculations. The inclusion of the damping functions
in the multipole expansion prevents the latter to diverge at small R, and except for
small internuclear distances the actual values of the dispersion energy computed
with the damped multipole expansion neglecting the spherical term are relatively
close the nonexpanded results. This shows that the part of the charge overlap effects
represented by the spherical term can be neglected in some approximate models
based on one-center or multicenter multipole expansions.

7. MANY-ELECTRON FORMULATION OF THE SRS THEORY

In principle, the theory reviewed in Sections BHAl can be applied to interactions
of arbitrary systems if the full configuration interaction (FCI) wave functions of
the monomers are available, and if the matrix elements of H, and V can be
constructed in the space spanned by the products of the configuration state functions
of the monomers. For the interactions of many-electron monomers the resulting
perturbation equations are difficult to solve, however. A many-electron version of
SAPT, which systematically treat the intramonomer correlation effects, offers a
solution to this problem.

A general approach to the intramonomer correlation problem is known as the
many-electron (or many-body) SAPT method 88141213213 Tp this method the zeroth-
order Hamiltonian H,, is decomposed as H, = F + W, where F = F, + Fj is the
sum of the Fock operators, F, and Fg, of monomer A and B, respectively, and W
is the intramonomer correlation operator. The correlation operator can be written
as W =W, + W, where Wy = Hy — Fy, X = A or B. The total Hamiltonian can
be now be represented as H = F + V 4+ W. This partitioning of H defines a double
perturbation expansion of the wave function and interaction energy. In the SRS
theory the wave function is obtained by expanding the parametrized Schrodinger
equation as a power series in { and A,

(F4+LV+IW)W(L, A) = E(L AW, A), (1-165)

where the parameters { and A are introduced to order the double perturbation
expansion, and their physical value is equal to one. Note that (0, 0) = ®'FPiF
is the product of the Hartree-Fock determinants of the unperturbed monomers, and
W(0, A) = D (A)DE(X), where DY (A) is the eigenfunction of the Hamiltonian Fy +
AWy, X = A or B. The polarization energy corrections are obtained by expanding
the function,

E(A, Q) = (P3N PF(A) | F+LV+AW [ WA, D)), (1-166)
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while the SRS energy corrections are obtained by expanding

(RGN PFA) | F+LV+AW | "AY(, D)
(DG (VDG AW, A))

re(L. ) = (1-167)

The expansion of Eqs. (I=166) and (I=167)) leads to the so-called double perturbation
expansion of the interaction energy,

> - nk nk
Epo= Y Y (ESY +ELD), (1-168)

n=1k=0

where the indices n and k denote the orders of Eé';f) and Ei:g with respect to
the intermolecular interaction and intramonomer correlation, respectively. The nth-
order polarization and exchange contributions can be obtained by a direct summation
of the expansion (I=168) over k. Explicit expressions for the individual corrections
E;Zf) and Eizﬁ)l can be obtained using the techniques of many-body perturbation
theory and the coupled-cluster method. See Refs. (116-119, 137-141, 214-219) for
the details of the derivations of open-ended expressions valid for the interaction of
the monomers of arbitrary size.

For typical closed-shell systems the convergence of the expansion ([=168) in
the intramonomer correlation is very satisfactory. However, in some cases the
convergence in W may be poor, and one has to resort to some nonperturbative
approaches. The nonperturbative treatments can most easily be devised by using
Eqs. (562, (C3), (83), and (I:32). Indeed, the monomers properties entering
these expressions can be evaluated with highly correlated wave functions of the
coupled-cluster singles and doubles (CCSD) method. The corresponding theoretical
developments can be found in Refs. (218-219) The SAPT program22%22! contains
modules that compute the polarization and exchange corrections to interaction
energy of closed-shell dimers that are correlated at the Mgller-Plesset or coupled-
cluster level. See Ref. (220-221) for more details.

The multipole representation of the intramonomer correlation corrections Eé,ls’f),
Ei(f; ), and Efnz;;) can be obtained by using the standard Mgller-Plesset expansions
of the multipole moments and static and dynamic polarizabilities. For example, the
relevant long-range dispersion coefficients are given by the Casimir-Polder integral
({E133) with exact polarizabilities replaced by their kth and Ith-order correlation
corrections in the Mgller-Plesset series with k -/ = n. Wormer et al.{Z developed
a diagrammatic many-body perturbation theory of the correlation effects on the
dynamic polarizabilities and a general scheme for the calculations of correlated long-
range dispersion coefficients. The long-range dispersion coefficients corresponding

the the sum ng; + Eéizslp) + Eéizp) can now be routinely computed using the Polcor
package 7178,

Application of the conventional wave function approach in the symmetry-adapted
perturbation theory (SAPT) has been shown to give very accurate description of the

dispersion interaction and has provided intermolecular potentials which performed
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very well in numerous applications to spectroscopy and to simulation of bulk
properties. The high accuracy of the conventional SAPT treatment comes, however,
at the price of the very steep scaling of the computational effort which grows roughly
as N7, where N is the number of atoms. This steep scaling of the computational time
with the system size makes applications to large polyatomic monomers unfeasible
at present. These failures of the conventional wave function SAPT approach leaves
a large class of weakly interacting polyatomic complexes without of an adequate
theoretical treatment.

Jansen and Hesselmann222-22 and independently Williams and ChabalowskiZ22,
and Misquitta et al.2Z, developed a method, referred to as SAPT(DFT), which
solves the difficulty described above. In this method, the electrostatic, induction,
and dispersion components of the interaction energy are obtained using the
electron densities p, and p, from DFT calculations and the frequency-dependent
density-density response functions a4 (r;, 1} |iw) and ag(r,, r}|iw) of the monomers
computed with the time-dependent DFT techniques. It has been proved essential that
the monomer exchange correlation potentials v .(r), employed in the calculations,
are asymptotically corrected at large |r|. To reconstruct the total interaction energy,
the electrostatic, induction, and dispersion energies are combined with the first and
second-order exchange terms computed using the wave function expressions (I=23),
(=20), and (=23 and the Kohn-Sham determinants of the monomers. Employing
the asymptotically corrected exchange correlation potentials for monomers is also
essential in this case.

The evaluation of the expressions (I=67), (I=87)), and (I=04) can be simplified by
using the density fitting technique22222!, In this approach the product ¢, (r)¢,(r)
is expanded in terms of auxiliary atomic orbitals ;. In such a case the orbital

expressions corresponding to Eqs. (I567), (IE87), and ([X04) greatly simplify. For
the dispersion energy Eq. (I=94)) takes the form:

I e . .
msp=—g/0 tr C, (i) J CL(iw) I do, (1-169)

where C, and C; denote the matrices of the expansion coefficients in Y, J stands
for the matrix of two-index Coulomb integrals, and X7 denotes the transposition
of the matrix X, The evaluation cost of Eq. (I-169) scales as M>I, where M is
the number of auxiliary orbitals (proportional to the number of atoms) and 7 is the
number of w-integration points (of the order of 10).

The resulting SAPT(DFT) potential energy curves turn out to be very accurate
in the wide range of intermolecular separations. For the benzene dimer2222 the
results are very close to those of the much more expensive CCSD(T) treatment.
For systems of the size of the benzene dimer and for the triple-zeta quality
basis sets, a SAPT(DFT) calculation actually takes less time than a conventional
supermolecular DFT calculation. Due to the favorable computational scaling the
SAPT(DFT) approach is applicable to much larger molecules than any method used
thus far for a reliable calculation of dispersion-dominated interaction potential.
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It should be stressed that although the SAPT(DFT) approach is very appealing,
it suffers from some drawbacks. The exact density functional theory in its time-
independent and time-dependent versions gives the exact electron densities and
density susceptibility functions of the monomers. This means that in principle the
SAPT(DFT) method can reproduce the exact electrostatic, induction, and dispersion
energies, if the exact exchange-correlation potential is known. This is not the case
for the exchange terms, which are written in terms of nondiagonal elements of the
density matrices and density matrix susceptibility functions. The latter quantities
are not defined within the DFT formalism, and are computed from the Kohn-Sham
orbitals, which, even if exact, do reproduce the exact electron density, but not the
entire density matrix. Surprisingly enough, the approximation of the exact density
matrix by the Kohn-Sham density matrix seems to work very well2Z,

8. RELATIONS BETWEEN THE PERTURBATION THEORY
OF INTERMOLECULAR FORCES AND SUPERMOLECULAR
APPROACHES

Symmetry-adapted perturbation theory is a useful tool for accurate calculations of
the potential energy surfaces for weakly bound complexes, but it can also be used to
interpret the results of supermolecular calculations. Numerous studies1%2.106. 29— 234
have been reported to interpret the supermolecule Hartree-Fock (HF) and Mgller-
Plesset (MP) perturbation theory interaction energies, as well as selfconsistent
reaction field (SCRF) free energies of solvation in terms of physically meaningful
contributions. It should be stressed that the supermolecule interaction energies
suffer from basis set superposition error, and it is not a priori obvious that for
comparison with SAPT one should take the results corrected for this error. However,
theoretical arguments and numerical results presented in Ref. (81) show that a
perturbation theory expansion in a finite basis can possibly converge only to the
supermolecular interaction energy computed using the so-called Boys-Bernardi
counterpoise correction for the basis set superposition error22. This means that the
use of the Boys-Bernardi counterpoise correction is fully legitimate, in agreement
with the conclusions reached in Refs. (236-242).

8.1. Hartree-Fock Theory

A symmetry-adapted perturbation theory approach for the calculation of the Hartree-
Fock interaction energies has been proposed by Jeziorska et al.12 for the helium
dimer, and generalized to the many-electron case in Ref. (106). The authors of
Refs. (105-106) developed a basis-set independent perturbation scheme to solve
the Hartree-Fock equations for the dimer, and analyzed the Hartree-Fock inter-
action energy in terms of contributions related to many-electron SAPT reviewed in
Section[7l Specifically, they proposed to replace the Hartree-Fock equations for the
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canonical orbitals of the dimer by noncanonical equations for orbitals localized on
the monomers. Several localizations conditions can be exploited, but it was found
advantageous® to employ a generalization of the localization condition used in
the (many-electron) Hirschfelder-Silbey theory28. The perturbation expansion of
the orbitals defines an expansion of the HF interaction energy, EHF

int ?

EHF — E(lo) +E(10) +E(20) +E(2O)

int elst exch ind,resp exch—ind,resp

+ Eéi(c)ll—def,resp +ee (1 -170)

where the subscript “resp” appearing in the symbols of the induction and exchange-
induction energies means that the orbital relaxation effects present in the electron
density and response functions were taken into account. All terms appearing on
the r.h.s. of Eq. (IEIZQ) were defined in Section [l except for the exchange-
deformation energy, Eiig&_def’resp. This contribution, specific to the Hartree-Fock
theory, does not appear in the SRS theory. Thus, it can be viewed as that part of
the exchange energy which cannot be recovered by perturbation theory employing
weak symmetry-forcing. For systems with long-range induction interactions this
contribution vanishes faster at large intermonomer distances than the exchange-
induction energy itself24324,

Numerical results for the equilibrium geometries of the He—-C,H,, He—CO, and
Ar-HF complexes!% are summarized in Table [[-3l Consecutive entries in this table
represent the contributions appearing on the r.h.s. of Eq. (IZIZ0). Also reported
are the total nth-order approximations to E}r, denoted by E}F(n). An inspection
of Table [[=3] shows that the perturbation expansion (I=Z0) converges rapidly. The
second-order approximation E!(2) reproduces the exact Hartree-Fock results to
within 3%. One may note that for some systems the exchange-deformation energy
is far from negligible, so the SRS theory does not fully recover the Hartree-Fock

interaction energy.

Table 1-5. Comparison of low-order approximations (in Hartree) to the Hartree-Fock
interaction energies of the He-C,H,, He—CO, and Ar-HF complexes. The expression
(—N) denotes the factor 10~V

Ar-HF He-C,H, He-CO
ELY —0.1487(—4) —0.1999(—4) —0.1921(=3)
e 0.9345(—4) 0.9907(—4) 0.6362(—3)
EHF(1) 0.7859(—4) 0.7911(—4) 0.4447(-3)
ESp —0.1915(—4) —0.5908(—5) —0.2272(-3)
ESorindesp 0.3508(—5) 0.5691(—5) 0.1570(=3)
EGor et sesp —0.4568(—5) —0.3891(—5) —0.3107(—4)
ENF(2) 0.5837(—4) 0.7498(—4) 0.3427(-3)

EHF 0.5652(—4) 0.7417(—4) 0.3326(—3)

int
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8.2 Mgller-Plesset Theory

An analysis similar to the one above has not been performed thus far for the
Mgller-Plesset theories. However, Chalasinski and collaborators222~23 proved that
the polarization part of the supermolecule nth-order Mgller-Plesset energy, AEMP",

nt
n < 4, is given by,

(2,n-2)

AEN = EQY A Eon o+ Egon

int elst,resp ind,resp + EeMXS}:l + . (1_171)
Here AEMP" denotes the nth-order correlation part of the supermolecule MPn
interaction energy. Equation (I=IZI) shows that the supermolecule MP2 inter-
action energy correctly accounts for the leading intramonomer correlation correc-
tions to the electrostatic and induction energies, and for the major part of the
dispersion energy. This explains why it could be used with success to several Van
der Waals and hydrogen-bonded complexess. The physical structure of the MPn
exchange terms, EMY, is not well understood. A perturbation theory analysis of
the MP2 equations for the pair functions in the localized representation33 suggests
that EM"2 accounts for the major part of the uncorrelated exchange-dispersion
energy Ee(ingdisp (the so-called K, term!2), and for some parts of Eg(ia and Ec(iz})l
corrections.

In order to get an idea how well a standard SAPT calculation can reproduce

AEMP? Bukowski et al.22 analyzed the performance of the ansatz,

MP2 (12) (22) (20) (1n (12) (20)
ESAPT = Eelst,resp + Eind,resp + Edisp + Eexch + Eexch + Eexchfdisp’ (1_172)

for the helium dimer at various distances. Note that Eq. (I=1Z2) is equivalent to
Eq. (IZIZI) except that EMP? is approximated by the sum E) + E!'? 4 g%

exch exch exch exch—disp*

The results are illustrated in Table An inspection of this table shows that
the agreement between the supermolecule MP2 interaction energy and the approx-
imate MP2-SAPT results computed from Eq. (ILIZ2)) is reasonable. The authors
of Ref. (245) also reported the inter- and intramonomer part of the MP2 inter-

action energy (denoted by AEMP(inter) and AEMP?(intra), respectively). These

nt nt

terms were computed using properly localized MP2 pair functions and Hartree-Fock

Table 1-6. SAPT and localized MP2 components of AEM 2 for the He dimer. Energies are
in Kelvin, and distances in bohr

Component R=4.0 R=56 R=70
AEMP2 —117.42 —16.003 —3.780
EMP2. —128.22 —16.250 —3.792
AEMP(inter) —132.74 —16.683 -3.812
EGY + ESon i —140.63 ~16.627 —3.848
AEMP(intra) 15.32 0.681 0.032
EWD 4@ L EN) 4 g0 12.31 0.378 0.012

elst,resp ind exch exch
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orbitals. See Ref. (245) for the details. The sum of AEMP(inter) and AE}F*(intra)
is obviously equal to AEMP2. It is interesting to note that the agreement between
the sum of the intermonomer correlation terms (dispersion and exchange-dispersion
energies) and the localized intermonomer part of AEMP is very good. The agreement
between the localized intramonomer part and the sum of the intramonomer corre-
lation contributions is less satisfactory. Since the electrostatic and induction terms
are included in AEMP?| the level of disagreement suggests that the first-order

exchange terms in MP2 and SAPT are different.

8.3. Coupled Cluster Theory

The relation between the supermolecule coupled cluster approach and the pertur-
bation theory of intermolecular forces in even less obvious than the case of the
Mgller-Plesset theory, and no formal analysis has been reported in the literature
thus far. Rode et al.%8 analyzed the long-range behavior of the CCSD(T) method$2,
and showed that this method, although very popular and in principle accurate, may
lead to wrong results for systems with the electrostatic term strongly depending on
the electronic correlation, e.g. the CO dimer.

For the CO dimer the supermolecule MP4 and CCSD(T) results are very different.
In particular, the location of the global and local minima, and of the saddle points
changes drastically when going from the MP4 to the CCSD(T) levels€. On the
other hand the standard many-electron SAPT approach based on the Schrodinger
equation gave a good agreement with the MP4 calculations. However, this simple
picture of close agreement between MP4 and standard SAPT is destroyed when the
electrostatic term Eélsl is included. In the multipole expansion this term describes
the interaction two MP2 dipole moments of the CO monomers. Since the dipole
moment changes sign when gomg from the Hartree-Fock to the MP2 levels of
theory2%¢, it is clear that the E\." contribution must be important. Since E{>> is
not 1nc1uded in the supermolecule MP4 interaction energy, the MP4 results cannot
reliable. However, also the CCSD(T) method does not fully account for Eilliz) nd
cannot be trusted in the case of the CO dimer. To explain th1s assertion we give
a brief diagrammatic analysis of the MP5 method, of the E 22) contribution to
the MPS5 interaction energy, and of CCSD(T). We follow the analysis of the MP5
diagrams proposed by Raghavachari et al.2.

The diagrammatic representation of Ee(:sztz) reported in Figure [[=2] shows that this
term is included in the supermolecule MP5 interaction energyZ. The diagrams
reported in Figure [[=2] correspond to the Egs, E3r + E3 (1), and E}o(11) diagrams,
respectively, of the MP5 theory2Z?£20 Note that the diagrams (b) and (c) in
Figure separately do not correspond to the E3; and E3, (/) terms defined in
Ref. (247), but their sum corresponds to the sum Eg; +E%Q(I). One may note
that unlike those in Figure the diagrams E3; and E3,(I) of Ref. (247) have
“long denominators”, cf. Figure [[231 However, as shown in Ref. (70) these “long
denominators” cancel out, and the final representation of the sum E3; + E3 To(1) is

given by diagrams with denominators that are excitation energies of the separate
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Figure 1-2. Schematic diagrammatic representation of the Eélljz) correction (Brandow skeletons). The
horizontal lines represent the denominators, while the vertical bar separates the monomers A and B.
The two-electron integral corresponding to the dotted interaction line is a Coulomb integral. The dashed
interaction lines represent antisymmetric two-electron integrals of the monomers. Diagram (a) is the
intermolecular perturbation theory form of the MP5 contribution Egg, diagram (d) of EQ (1), while (b)

and (c) are combinations of E3; and E%Q W)

Figure 1-3. Schematic representation of the E3; and E%Q(I) MP5 diagrams, and illustration of the
factorization of the “long denominators”
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monomers, as those shown in Figure This cancellation of the “long denom-
inators” is diagrammatically illustrated in Figure [[3) It is worth noting that the
individual terms E3; and E%Q (I) of the MP5 theory of Raghavachari et al.24 will

not approach, at large distances, the corresponding diagrams of the Eilljz)
Only their sum shows a correct long-range behavior.

The supermolecule CCSD(T) method®® does not include all diagrams which,
at large distances, approach the term Eillsztz). Table I of Ref. (247) shows that the
EéQ(II) diagrams are completely neglected in CCSD(T) calculations, while the
E%Q (1) terms are included with a coefficient of 1/2, rather than unity. Hence, in the

CCSD(T) theory only half of the sum E3. + E%Q(I) approaches, at large distances,

the corresponding contributions to Eilljz) . The remaining 3 E3; term does not appear
by itself in the Physically most important MP5 contribution to the interaction energy,
129)

namely the E.,~ term. In the case of the CO dimer, the omitted E},(II) and
% (EgT + E%Q (I)) terms of E\>? represent a substantial contribution (about 10%) to

elst
the interaction energy of the CO dimer, and seriously reduce the accuracy of the
CCSD(T) results®,

It should be stressed that the analysis presented above is general, and applies to
any system. However, for the majority of Van der Waals complexes the electrostatic
term Eilliz) will not be as important as it is for the CO dimer. On the other hand,
this analysis shows that any supermolecule method should be applied with great
care, and an understanding of the supermolecule results in terms of contributions

as defined by the symmetry-adapted perturbation theory is necessary.

correction.

84. Selfconsistent Reaction Field Theory

The solvent effects are often described within a semiempirical selfconsistent reaction
field theory (SCRF)28. In this theory the free energy of solvation is obtained from a
set of selfconsistent equations describing the interaction of the solute (denoted by S)
with the solvent modeled by a polarizable continuum characterized by a dielectric
constant €. In the SCRF formalism, as developed by Rivail and collaborators2£—2%
the solute-solvent system is modeled by a polarizable continuum (characterized
by a dielectric constant €) in which the solvent molecule is immersed within an
ellipsoidal cavity2!22, The Hamiltonian describing the solute in the cavity is
given by,

H = H,+ V5K, (1-173)
where H, is the Hamiltonian of the solute in the vacuum, and the operator VSRF
describes the interaction between the permanent multipole moments of the solute,
and the moments of the reaction field created by the cavity,

oo 1
VSCRE=3" 5" R'M]". (1-174)

=0 m=—1
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Here M]" denotes the operator of the mth spherical component of the multipole
moment of order /, and the reaction field moments are given by,

o)

,
RI'=3" > fir" (Ws|M"| ). (1-175)

I'=0 m=—1'

mm’

The numerical factors f;;™ are the so-called reaction field factors, and depend on
the dielectric constant € of the solvent, and on the geometrical parameters of the
ellipsoidal cavity. The wave function Wy appearing in Eq. (IZI'Z3) is solution of the
Schrédinger equation with the Hamiltonian given by Eq. (I=LZ3). Thus, in the SCRF
theory one solves a nonlinear Schrodinger equation that describes the interactions
of the solute molecule with a polarizable continuum representing the solvent. The
free energy of solvation is given by the expectation value,

G = SWslHot SVERT W)
(W | W) ”

(1-176)

where E; is the exact energy of the solute in the vacuum. One may note that the
factor of half appearing in the expression for AG is a direct consequence of the
fact that the solvent is assumed to be a linear dielectric.

In practice, the Schrodinger equation with the Hamiltonian of Eq. (I=1Z3)) is first
solved within the self-consistent field approximation22, leading to the so-called
SCREF free energy of solvation, AGS°RE, If the correlation corrections are included,
e.g. via the MP2 approach2323%  we get the MP2-SCRF free energy of solvation
AGMPZ—SCRF .

It should be stressed that the relation between the SCRF and SAPT approaches
is not obvious, as the former describes the solvation energetics in terms of the
free energy of solvation at a finite temperature 7, while in the latter one considers
the interaction energy between the molecule of the solute and all molecules of the
solvent at 7 = 0 K. One should also note that in the SCRF theory the solvent is
modeled by a polarizable continuum, so the SCRF Hamiltonian is semiempirical.
Still, by assuming a discrete equivalent of the SCRF Hamiltonian one can get
approximate relations between SAPT and SCRF at T =0 K. A SAPT analysis of the
free energy of solvation AG within the SCRF method was reported in Ref. (234).
It was shown that the free energy of solvation AG is given by,

Y1
36 =3 (3E0usB) + BB < 5)+--. ). (m)

i=1

where El(fj (B; <= S) is the part of the induction energy that describes the polarization
of the solvent (S), i.e. the interaction between the permanent moments of the
N solute molecules ({B;}Y,) with the moments induced on the solvent by the
electrostatic field of the solute. Equation (I=I7Z) shows that the SCRF theory
correctly accounts for the electrostatic and major induction effects, but neglects the
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Table 1-7. Comparison of the components and global solvation energies
(in keal mol ™) for the four forms of the palladium complex PdH;CI(NH,),
in dichloromethane calculated by the discrete and continuum methods

1-mer 2-trans 1-fac 2-cis
AGSCRF —16.8 —33.2 —11.1 —22.8
AGMP2-SCRE —15.6 —28.3 —10.3 —19.0
AGSAPT —22.2 —30.8 —11.0 —22.7
EF —13.1 —21.6 =77 —17.0
EMP2 —20.3 —26.5 —13.6 -21.0

int

129 .
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Figure 1-4. Relative stabilization energies for the four forms of the PdH;CI(NH;), complex in the
CH,ClI, solvent calculated by the discrete supermolecule and continuum SCRF methods at the MP2
level. The zero of energy corresponds to the 2-trans form in the vacuum
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induction energy corresponding to the interaction of the permanent moments of the
solvent with the moments induced on the solute by the electrostatic field of the
solvent, El(nzj (S < B,). For strongly polar solvents this term may be very important.
When comparing the SAPT and SCRF results care should be taken of the fact
that in the SAPT approach Eq. (IL1IZ7) is evaluated at 7 = 0 K, while the SCRF
calculations are done at a finite 7. To get one-to-one correspondence between the
two sets of calculations, the SAPT results should be Boltzmann averaged over all
configurations of the solvent molecules23 Tt is worth noting that Eq. (I-LZ7) can
efficiently be evaluated within the multipole approximation® for a large number
of the solvent molecules, and for a sufficient number of configurations to perform
the Boltzmann average. This approach would present an ab initio alternative to the
semiempirical SCRF-type calculations.

Ref. (234) reported a theoretical study of the solvent effects on various isomers of
the palladium hydride complex PdH,CI(NH;), in dichloromethane. The influence
of the solvent was investigated by discrete MP2 and SAPT, and continuum SCRF
calculations. The theoretical relation between SCRF and SAPT, Eq. (IEI77), was
fully confirmed by the numerical results from the discrete SAPT and continuum
SCREF calculations, cf. Table [[7] and Figure [=4 Interestingly, both the discrete
MP2 and continuum SCRF models predicted the same relative stabilities for the
isomers of PdH,CI(NHj;), in dichloromethane. Small energetic differences between
the results of the discrete and continuum calculations could be explained by the
entropy effects, neglected in the discrete model.

9. APPROXIMATE MODELS FOR PAIR
INTERACTION POTENTIALS

Accurate ab initio calculations of the interaction energy are very time consuming,
and therefore restricted to relatively small systems. For the interaction of large
molecules approximate models are usually used. These models are usually derived
from sound theoretical approaches discussed in the preceding sections, but contain
some simplifying assumptions to make the problem tractable with the present day
computers. Model potentials are obtained by introducing some approximations
into the equations of the perturbation theory or by introducing some empirical
parameters. In the remaining of this section we will briefly discuss such approximate
models with a special emphasis on their connection with the perturbation theory of
intermolecular forces.

9.1. Morokuma Partitioning of the Hartree-Fock Interaction Energy

In 1971 MorokumaZ23 proposed a simple partitioning of the Hartree-Fock interaction
energy into some physically interpretable contributions, hopefully related to the
components of the interaction energy as defined by SAPT. In this method one
removes from the Fock matrix and from the energy expression the integrals (in
the atomic basis) which are assumed to be unrelated to the considered type of
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interaction. Then, by calculating the energy with such a partial Fock matrix, one
gets the contribution coming from this type of interaction. The original scheme of
MorokumaZ23# consists of four steps. In the first step the expectation value of the total
Hamiltonian of the dimer AB is computed using the determinantal wave function of
the dimer constructed from the (nonorthogonal) orbitals of the monomers A and B,
and neglecting all integrals in the atomic basis that contain overlap between basis
functions of A and B, i.e. that contain products of the type p/Z(r) = x (r)x}(r),
where { )(;( }Zi | 1s the atomic basis of the monomer X, X=A or B. It can be shown
that such a procedure gives the following approximation to the energy of the dimer,

denoted by ENE(1):

Ejp(1) = EXF + E5 + Ey. (1-178)
where E?F is the Hartree-Fock energy of the monomer X, X=A or B, calculated
in the monomer basis. In the second step the integrals involving intermolecular
overlap are kept in the calculations of the expectation value of the Hamiltonian.
The corresponding energy of the dimer, E{}(2), can be decomposed as follows:

Ep(2) =ETF + ENF 4 E(Y + B + AP + A, (1-179)
where the so-called zeroth-order exchange terms A(LO) and AES) are the Landshoff and
Murrell delta terms<22. In fact EXE(2) — ENF — EXF is nothing else than the Heitler-
London energy of Eq. (IZZQ) calculated with the determinantal wave functions of
the monomers A and B. Eq. (I=I79) follows directly from the work of Jeziorski and
collaborators12, Note that the Murrell term decays as the fourth power of the typical
overlap integral S, while the Landshoff term behaves as S? in the monomer basis set,
and vanishes identically if the full basis of the dimer is used to compute the orbitals
of the isolated monomers A and B4, In the third step of the Morokuma scheme23
one repeats the calculation of step 1, except that the Hartree-Fock equations are
iterated up to selfconsistency. The third step is fully equivalent to the Hartree-
Hartree-Fock method proposed by Sadlej22. The orbitals of one monomer are
distorted by the electrostatic field of the other in a selfconsistent manner, i.e. the
orbital-dependent field wy, X=A or B, cf. Eq. (I82), is also polarized. It follows
from Ref. (259) that the energy of the dimer in the third step, E%E(3), can related
to some SAPT contributions as follows:
Ep(3) = ETF + N 4 ELY + E0O +AY + A

elst

+EX 4+ EBY 4. (1-180)

ind,resp ind,resp

where Efji)res represents the third-order induction energy computed from the
expression with linear and quadratic response functions from the random
phase approximation, and the dots denote the fourth and higher-order induction

contributions.
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Equation (I=I80) can be obtained from a variational calculation of the energy of
the dimer with a wave function that is product of determinantal wave functions of
the monomers constructed from the optimal (selfconsistent) orbitals. Unfortunately,
the optimization of the orbitals of one monomer in the electrostatic field of the other
does not prevent the unphysical transfer of electrons from one system to the other,
since the antisymmetry of the wave function of the dimer is not preserved, and
consequently, the Pauli principle is not satisfied. This may lead to some unphysical
results in the short range2®. It should also be stressed that the interaction part of
Eq. (IZIR0) cannot be obtained, as proposed in Ref. (261), by taking the expectation
value of the interaction operator V with the product of determinantal wave functions
of the monomers constructed from the optimal (selfconsistent) orbitals. This would
result in an overcounting of the induction terms, already in the second order.

The last step of the Morokuma scheme2® is the calculation of the Hartree-Fock
energy of the dimer with the selfconsistent orbitals of the dimer. Thus, in this step
one gets the exact Hartree-Fock energy of the dimer AB. In view of Eq. (I-170)
the energy of the dimer in the fourth step, EX5(4), can be decomposed as follows,

Eyp(4) = BN + Ef + Eo) + Eqgy + A7 + A

1 h
(20) (3;; t X<C20> (20) (1-181)
+ Eind,resp + Eind,resp + Eexch—ind + Eexch—def + .

In the original paper of Morokuma2® the sum of the exchange-induction and
exchange-deformation contributions was ascribed to the charge transfer.

The partitioning scheme of Morokuma22® was often criticized, because the charge
transfer term, defined as the difference between the interaction energies computed
in the fourth and third steps, was in some cases unusually large. This is solely due
to the basis set superposition error22, In the original paper of Morokuma2® and in
the subsequent applications the energies of the monomers were computed in their
respective bases, and not in the full basis of the dimer, so the basis set superposition
error strongly affected the results. Sokalski and collaborators282282 suggested to
perform the calculations for the monomers in the full basis of the dimer. Obviously,
this idea was a cure for the Morokuma partitioning, but the calculations became
more expensive than the ordinary Hartree-Fock calculations.

It follows from the description given above that the Morokuma partitioning is
basis-set dependent. In particular, it depends on which atomic orbitals are considered
as belonging to the molecule A and which to molecule B. Such an assignment is in
general arbitrary, e.g. a basis function centered off the nuclei may cause troubles
because it is difficult to decide a priori which molecule it belongs to. However,
Eqs. (EIZ8) and (I=I8T)) show that there is a clear relation between this partitioning
and the SAPT approach at the Hartree-Fock level. This means that the contributions
to the Hartree-Fock interaction energy as defined by MorokumaZ23# can be rewritten
in a basis-set independent way, and thus have a well defined meaning in the limit
of a complete basis.

In 1976 Kitaura and Morokuma2* suggested some improvements of the original

partitioning2®, Unfortunately, the improvements introduced in Ref. (264) made
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this partitioning much more complicated, and the relation with the SAPT approach
was lost. Unlike in the original Morokuma scheme2%, the physical contribu-
tions introduced in the 1976 paper cannot be rewritten in a basis set independent
way. The charge-transfer term was redefined, and does not have a well defined
meaning. Finally, a new mixing interaction contribution, sometimes large, had to
be added. The definitions of the contributions to the interaction energy as defined
in Ref. (264) are again basis set dependent. As a consequence some contributions to
the interaction energy do not have well defined limits when the basis set becomes
complete. For example, the basis set saturated values of the so-called polarization
component require two complete basis sets centered on A and B. In such a case,
however, the charge transfer term becomes (partly) redundant and the interaction
energy cannot be viewed as containing independent polarization and charge transfer
components262:26¢,

9.2. Variation-Perturbation Approach

The essential problem with the partitioning of the Hartree-Fock interaction energy
is related to the fact that the so-called Hartree-Fock deformation or delocalization
energy,

B =En —Ey), (1-182)
where EI({ILO) is the interaction part of the Heitler-London energy computed with
single determinantal wave functions of the monomers, cannot easily be interpreted in
terms of SAPT contributions. Early work of Jeziorski and Van Hemert2 suggested
that the deformation energy is mostly dominated by the second-order induction
energy, but subsequent works22:2% did not support this conclusion. It is now clear
how to understand the physical meaning of the Hartree-Fock deformation energy,
cf. Section [8]] but a computationally simple scheme does not come out naturally
from this work1%2:1%,

Sokalski and collaborators===2 proposed a variation-perturbation approach for
the calculation of the Hartree-Fock interaction energy in terms of some physi-
cally meaningful contributions that can be applied to the interactions of large
systems2Z122 The Hartree-Fock interaction energy is decomposed into the Heitler-
London and deformation contributions. The Heitler-London energy is computed
in the dimer-centered basis set from the variational expression (I=Z0)), which can
easily be evaluated usmg orthogonalized orbitals of the isolated monomers. The
electrostatic term, E. el [), is also at hand, so the zeroth iteration of the SCF procedure

269,270

for the dimer gives ESLO), Eéllf:), and a Heitler-London exchange term EME | which
is a very good approximation to Eé,l(g})l,
10 (0)
ES(I(;h = exch_'_A (1_183)

since the Murrell’s delta term decays with R as S*. Note that the Landshoff delta
term, present in Eq. (IEL79)), vanishes identically in the dimer-centered basis set2,
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The electrostatic term can further be decomposed into the multipole and penetr-
ation components,

EL = EGy e +EGY (1-184)

elst elst—mult elst—pen*

The multipole part can efficiently be estimated from the distributed multipole
analysisi!. In this way the electrostatic penetration contribution is obtained. One
may note that the accuracy of the electrostatic term can be increased by keeping
the penetration part from Eq. (I=184), and replacing the Hartree-Fock distributed
multipole moments by some correlated, e.g. MP2 moments. Finally, the intra-
monomer correlation term and the dispersion energy can be evaluated from the

expression,

EMP2 | pQO) _ pMP2 (1) (1-185)

intra disp int elst—mult >

where Ei:sflmult is the multipole part of the electrostatic energy calculated with the
MP2 multipole moments.

Although this scheme does not give a full information about the physical compo-
nents of the interaction energy, it efficiently splits them into terms decaying
exponentially with R, i.e. the Heitler-London exchange and electrostatic penetration,
and into terms decaying as some power of 1/R, i.e. the electrostatic multipole
term, Hartree-Fock deformation (dominated in the long range by the induction
energy), and the sum of the intra and intermonomer MP2 correlation terms which
are essentially dominated by the dispersion contribution.

We wish to end this section by saying that the variation-perturbation approach
as discussed above, introduces a natural hierarchy of gradually more and more
sophisticated models starting from the crude evaluation of the electrostatic energy
in the distributed multipole approximation, and ending with the inclusion of
the intramolecular and dispersion contributions at the MP2 or even more corre-
lated level.

9.3. Tang-Toennies Model

Even more simplistic models of intermolecular potentials were proposed by Tang
and Toennies2%2212 "and by Meath and collaborators2Z. In these models, referred
to as TT®1021% and XC2Z models, respectively, the interaction potential between
two rigid molecules is given by,

V(R, w,, 0p) = 5rep(R» Wy, ©p)

c "y 1-186
_Z%ﬁg (R; B(wy, wp)) » ( )
{A}
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where n =1, + 1, + 1+ 13 +2, &, denotes the repulsion energy, and f, is the

damping function, and is given by Eq. (I=164). In the TT model the repulsive term

was taken in the Born-Mayer formZZ,

Erep(R’ Wy, wB) = A(wA’ wB) €xXp (_B(wA7 wB)R) ’ (1'187)

while in the XC model it was assumed that the repulsion contribution can be derived
from the electrostatic by using the following semi-empirical expression,

grep(R’ wy, 0p) =[a(w,, wg) +b(w,, wp)R] ELY (1-188)

elst °

where the electrostatic term was represented by the following analytic form,
Ee(lls?) = —A(w,, wg) exp (ao(wA» wp)R+a,(w,, 0p) R +ay(w,, wB)sz) .
(1-189)

The angular dependence of all the parameters and of the long-range coefficients C,
is expressed through the angular functions Aj,,:

X(wy, wp) = ZX{A}A{A}(C’)As wp), (1-190)
{A}
AL~
Coa(@4, 05) = Y Cl Ay (0, @), (1-191)
{A}

where X in Eq. (IZI9Q) stands for any of the parameters A, B, a, b, a,, a;,
a,, etc., while the long-range coefficients C{{f}} are given by Eq. (I:129) for the
induction term, and by Eq. (I=133) for the dispersion. Very often the long-range
constants in such models are sums of the induction and dispersion long-range
coefficients.

The long-range coefficients appearing in Eq. (I=I36) can be obtained from
ab initio calculations or from some semiempirical models. As far as ab initio
calculations are concerned, the many-body perturbation theory approach developed
by Wormer and collaborators!” was successfully applied to various Van der
Waals complexes providing state-of-the-art values of the long-range dispersion
coefficientsZZ12-18  These coefficients, in turn, can be used to define the exact
asymptotics of the dispersion energy, or may serve as an ab initio input to
empirical potentials fitted to reproduce the high-resolution spectroscopic data,
see, e.g. Refs. (177,275) Very accurate values of the isotropic CG{O} dispersion
coefficients can be obtained from pseudo-spectral expansions in terms of (experi-
mental) dipole oscillator strengths2®. These data, available now for many systems
(see Refs. (276-294)) are considered to constitute benchmark values for ab initio
calculations.
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In the early works by Tang and Toennies on interatomic interactions2%2 the
repulsive term &, was fitted to the Hartree-Fock interaction energy. In the model
extended to the atom-molecule case2 the repulsion energy was fitted to the Heitler-
London energy computed with the Hartree-Fock determinants for the isolated
monomers. Nowadays the models of Eqs. (I-186) and (I=I89) are mostly used in
the fits of empirical potentials to some experimental data, see, e.g. Ref. (295), or to
fit the ab initio points to the functional form of Egs. (I=186) and (ZI82), see, e.g.
Ref. (296). One may note that the TT®!? model is a generalization of the simple
exp-6 potential introduced by Born and MayerZZ,

94. Atom-Atom and Site-Site Potentials

For the interaction of large molecules the angular expansions of the potential
parameters, Eqs. (IZ190) and (I=121]), may be slowly convergent, and the calculation
of the potential may become prohibitively time consuming. Therefore, in many
applications the so-called atom-atom potentials are used. The functional form of an
atom-atom potential partly follows from the distributed multipole analysis2Z,

V(R 0, 05) = ¥ Y [, 0f)

acA beB

Cab ®, W
—Z (RnA B)fn (Rop 0%, w}) ] (1-192)
ab

where n =1, 4+, +1;+1;+2 and the long-range coefficient appearing in Eq.
([E132) is given by,

Cff (wf, wp) = > C{)\ (ab)A{A (0, ). (1-193)
(A}
Similarly as in the Tang-Toennies model2192U-212 the repulsive term is taken in the

Born-Mayer form2Z,

glflel;)(Rab’ (l)i, LUZ) = Aab(wi’ (I)Z) €xXp (_Bab(wi’ wZ)Rab) . (1_194)

The parameters A,, and 3, are expanded in terms of the functions A Ay as follows,

ab(wA’wB)_ZXah ( Aa wB) (1-195)
{A}

where X, stands for A, or B,,. The parameters A[{:;} and ,85,/;} are usually fitted to
some ab initio data. See Ref. (298) for a model application of this approach to the
repulsive interactions in the water dimer.

Note that the angular expansion in Eqs. (IZ192) and (I=193) is simplified
compared to the distributed multipole expansion, cf. Eq. (I-133), so unlike in the
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Tang-Toennies model, the functional form of Eq. (IE192) is not exact. Therefore,
the long-range coefficients appearing in Eqs. (I-192)) and (I=193)) cannot be derived
from any ab initio calculations. However, Eq. (I=192) can possibly be used to fit
ab initio points to such an analytic form.

We wish to end this section by saying that in many cases Eq. (IZ192)) is even
further simplified by neglecting the angular dependence of the parameters in the
repulsive term and of the long-range coefficients, cf. Eqs. (IZI93) and (=193).
Obviously, such a functional form, although very simple, cannot be derived from
any theory. In fact, one should add “nonadditive” atom-atom terms depending on
three, four, etc. centers, in order to cure the problem.

9.5. Empirical Force Fields

For the interaction of very large systems such as polypeptides, polynucleotides,
or other biomolecular systems ab initio calculations are not feasible even at the
Hartree-Fock level, and one has to resort to some empirical models of interaction
potentials. Usually, these potentials depend on all intra and intermolecular degrees
of freedom and are called force fields. Several analytic forms of the force fields have
been designed. One of the most popular is the Amber (Assisted Model Building
with Energy Refinement) packageZ?, where the force field V is expressed in the

following way3®:

1 1
V: 5 Z K'.(V—Veq)z—’—z Z K(,(H—Oeq)z

bonds angles

+ > &[1 +cos(nd —y)]

dihedrals

A, By o g
+Z[r—1;——;+—f]. (1-196)

i<i LT Ty €

Other potential functions differ in the way the potential is partitioned into various
contributions representing intra and intermolecular interactions. Cornell and collab-
orators2® proposed an approach to determine the force field parameters based as
much as possible on ab initio calculations. In this work each biomolecular system
is divided into small residua, for which geometry optimization can be performed
by an ab initio method. Ab initio calculations give partial atomic charges on atoms
and the equilibrium geometry, i.e. the equilibrium values for the bond lengths, and
planar and dihedral angles.

The first and second terms in Eq. (I=I06) describe changes in the potential
energy of the system associated with deformations of bond lengths and planar
angles between two and three connected atoms, respectively. The summation is
performed over all bonds and planar angles in the molecule. All the bonds and
planar angles between adjacent atoms are described by simple harmonic potentials
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with parameters r,
mode frequencies.

The third term of Eq. (I=196) describes the energy change associated with a
rotation around a single bond in a molecule. The summation is performed over
all dihedral angles. The value of V, gives the height of the barrier to torsional
motions around a given bond. The value of the index n indicates the number of
equivalent minima on the potential energy curve for ¢ varying from 0° to 360°.
The phase y determines the minimum value of the torsional angle. Dihedral angle
parameters are calibrated to reproduce the energies of torsional motions for a set
of small model compounds. Torsional energy profiles are usually derived from ab
initio calculations with the MP2 method.

The last term in the formula (T=196) describes electrostatic and Van der Waals
interactions between atoms. In the Amber force field the Van der Waals interactions
are approximated by the Lennard-Jones potential with appropriate A;; and B;;
force field parameters parametrized for monoatomic systems, i.e. i = j. Mixing
rules are applied to obtain parameters for pairs of different atom types. Cornell et
al.3% determined the parameters of various Lenard-Jones potentials by extensive
Monte Carlo simulations for a number of simple liquids containing all necessary
atom types in order to reproduce densities and enthalpies of vaporization of these
liquids. Finally, the energy of electrostatic interactions between non-bonded atoms
is calculated using a simple classical Coulomb potential with the partial atomic
charges ¢; and g; obtained, e.g. by fitting them to reproduce the electrostatic
potential around the molecule.

The first two terms in Eq. (IZ196) are often referred to as “hard” degrees of
freedom since relatively high energies are required to cause significant deformations
from the equilibrium geometries. By contrast, the last two terms are considered as
“soft" degrees of freedom and a proper parametrization of these terms represents
the main challenge for designing a good force field. This is due to the fact that most
of the variations in the structure and relative energies of molecules result from a
complex interplay between torsional and non—-bonded contributions.

In the functional form of other force fields additional terms, such as the cross
terms are included. These terms couple internal coordinates, e.g. changes of planar
angle are coupled with adjacent bonds stretching. Cross terms are important in
many cases, e.g. for a better reproduction of vibrational spectra of molecules.

Cieplak et al.3¥ proposed to include an additional term in the formula of
Eq. (IE196)) that models the induction effects through the infinite order,

o K;» 0q and K, chosen to reproduce the experimental normal

Vina = — Z F.F (1-197)

where «; is the isotropic polarizability of ith atom, F; is the electrostatic field on the
atom i due to all other charges and induced dipoles, and FEO) is the electrostatic field
on the ith atom due to permanent atomic charges only. Calculations of the infinite
order induction terms are relatively time consuming, so in actual calculations the
approach of effective charges is more frequently used. In that approach no induction
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terms are explicitly included in the force field formula, but the charges on atoms
are adjusted so as to partially reproduce the induction effects.

It should be stressed that the functional form of the force field, Eq. (I=196) may
seem to be oversimplified, and one could think of much more elaborated models.
One should keep in mind, however, these force field are mostly used in Monte Carlo
or molecular dynamics simulations of biological systems or condensed phases (cf.
Section [[2.7)), and the calculation of V for a given geometry should be as fast as
possible.

10. NONADDITIVE INTERACTIONS

In this section we will review the symmetry-adapted perturbation theory of pair-
wise nonadditive interactions in trimers. This theory was formulated in Ref. (302).
We will show that pure three-body polarization and exchange components can be
explicitly separated out and that the three-body polarization contributions through
the third-order of perturbation theory naturally separate into terms describing the
pure induction, mixed induction-dispersion, and pure dispersion interactions.

In the earlier sections of this chapter we reviewed the many-electron formu-
lation of the symmetry-adapted perturbation theory of two-body interactions. As we
saw, all physically important contributions to the potential could be identified and
computed separately. We follow the same program for the three-body forces and
discuss a triple perturbation theory for interactions in trimers. We show how the pure
three-body effects can be separated out and give working equations for the compo-
nents in terms of molecular integrals and linear and quadratic response functions.
These formulas have a clear, partly classical, partly quantum mechanical interpre-
tation. The exchange terms are also classified; for the explicit orbital formulas we
refer to Ref. (302).

10.1. Supermolecular Approach

We consider the interaction of N monomers, X, X,, ..., Xy. The interaction energy
characterizing the interactions in the cluster is given by,

N
Epn = Exx,.xy = 2_Ex,» (1-198)
I=1

where Ey y, ., is the total clamped-nuclei energy of the cluster and Ey , I =
1,..., N, is the energy of the monomer X,. We follow the common usage and
indicate an m-body contribution to the interaction energy of an n-body cluster
(m < n) by E,,,(m, n). The interaction energy of the N-body cluster can be repre-

sented by the following many-body expansion,

Eint = im[z’ N] +Eint[3’ N]++Emt[N’ N] (1_199)
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Obviously, such an expansion of the interaction energy can be defined without
ambiguity only when the quantum states of all subsystems can rigorously be specified.
For strongly interacting systems, such as metals or chemically bound molecules,
this condition is not fulfilled and the suitability of the many-body expansion can be
questioned. See Refs. (303-307) for extensive studies of nonadditive effects in
clusters. The K-body contribution to the N-mer energy can be written directly in
terms of the total energies of all subclusters containing up to X monomers3%,

En[K, N]= i(—l)’“ (g:ﬁ) Sl NI, (1-200)

where S,,[1, N] is the sum of the total energies of all /-monomer subclusters of the
whole N-mer.

Eq. (IZ200) can be applied to compute E,,[K, N] within the supermolecular
approach2. However, the number of calculations that need to be performed increases
rapidly with N. Moreover, there is a substantial loss of significant figures resulting
from the performed subtractions, and care should taken when performing super-
molecule calculations.

10.2. Perturbation Theory of Three-Body Interactions

We consider the closed-shell systems A, B, and C. The total Hamiltonian of the
trimer ABC can be written as,

H=Hy+V* 4+ V¥ 4 v, (1-201)

where H, = H* + H® + HC is the sum of Hamiltonians of the isolated monomers,
the operator VX? collects all Coulombic interactions between electrons and nuclei
of monomers X and Y. The parametrized interaction energy of the trimer is defined
by the asymmetric energy expression

En(Lom. x) = (Do | LV +qVEC+ )V WL 1, X)), (1-202)

where &) = O DEDS is the ground state eigenvalue of the unperturbed Hamiltonian
H,, and ®f denotes the ground state wave function of the monomer X, and the
parameters {, m, and y have the physical value of unity. The function W({, , x) is
the exact solution of the Schrodinger equation of the trimer with the Hamiltonian
(20D

The interaction energy and wave function are expanded in the usual manner as a
power series in the three perturbation parameters £, 7, and Y,

i ijk i ijk
En(lon ) =Y I ERY . W) =Y Iyt ol

i,k irj:k

(1-203)
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Hence El()glk) and CDF(,ZI’( ) denote the polarization energy and wave function of ith-order
in VAB jth-order in V5¢, and kth-order in V. The energy and wave function
perturbation corrections are solutions of triple Rayleigh-Schrodinger (RS) pertur-
bation equations®32; see Ref. (302) for the explicit form of these equations.

As discussed above, the polarization expansion neglects the exchange effects.
We saw in the earlier sections that the simple symmetrized Rayleigh-Schrodinger
(SRS) perturbation theory®# shows satisfactory convergence properties (see Ref.
(310) for a computational study of the convergence properties for the quartet state
of H;) and can be applied in practice to many-electron systems. The expressions

for the energy corrections EWX are obtained by expanding the function,

(¥, | (QVAP+nVPC 4 VAW, 1, X))
(W, | AW, m, X))

En(Lsm, x) = . (1-204)

where A is the full antisymmetrizer of the trimer, as a triple perturbation expansion,

En(&om x) =D L/ X EW, (1-205)

i)k

and E©% = (. Note that we consider the interaction of three closed-shell monomers,
so the projection operator %A is simply the antisymmetrizer, and the symmetry
index v can be suppressed. Explicit expressions for E@% in the SRS theory are
reported in Ref. (302). The exchange contribution to the interaction energy in each
order can now be defined by

W) _ gl (i7%)
Egy =EWW —EJY. (1-206)

The expressions for E'(,Zk) and Eé;jc’: contain both pair-wise additive and three-body

contributions to the interaction energy, and pure three-body terms have to be separated
out. Thus, the polarization and exchange contributions to the interaction energy
can be decomposed into E/¥(2,3) and E/%(2, 3), and E/ (3, 3) and E/¥ (3, 3),

pol exch pol exch

respectively. By definition, all terms E @9 and EVY with i j+ik+ jk#0,1i.e., with at

pol exch
least two non-zero perturbation orders, are pure three-body contributions,

EW) =EU(3,3), EW)=EX)3,3), ij+ik+jk#0,  (1-207)

pol pol exch exch

while all contributions E;iﬁo), E;g{o), and E;g?k) are purely additive, i.e.
EO0 — g0 3y pO0) _ pOi0) 5 3 pO06) _ pO00) 5 3y

pol pol pol pol pol pol
(1-208)
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By contrast, the exchange contributions Eii(i?l), Eg:ig), and Eéggﬁ) are not necessarily

additive, since in general the antisymmetrizer will interchange the coordinates of
electrons belonging to all three monomers. The two-body contribution to Eiﬁ) can
formally be identified by moving in the expression for Ee(i(i?l) the third monomer to
infinity, i.e.

EY 2, 3)= lim lim EWY (1-209)

exch s> 00 Rep— exch |RAB:c0nstA'
Since the polarization wave functions <D$)10) defining Eéioc(fl) are purely additive, i.e.
<I>f)’0(;0) = @;ﬁo) (2,3), the two-body term as defined by Eq. ((C209) is equal to
as defined by the SRS theory of two-body interactions£. Thus, to extract pure
three-body contribution to E;;(i?l) one has to subtract the E é;oc(;) term of the two-body
SRS theory&.

10.3. Physical Interpretation of the Polarization Effects

The electrostatic energy Ee(,lg)t is additive, so the first nonadditive polarization contri-

bution is given by the second-order induction term,

Epl = Epa” + Epg + Epg” (1-210)

pol ind

where, e.g., Ei(nlio) is explicitly given by expression in terms of the linear response

function of Eq. (I=83),
(110) n n' yymm’
Eina = (@0a);,(0c),, 11507 (0). (1-211)
As before, m and n label arbitrary orbitals on B. Similar expressions for El(nl(? l),

etc., can be easily found by a proper permutation of A, B, and C. The operator wy,
X=A, B, or C, is explicitly defined by

Qx = %wx(rf), (1-212)

i=1

where
— -1
wx(r;) = vx(ri)+fpx(r,-)rij dr;, (1-213)

N, is the number of electrons of the monomer Y, vy(r;) describes the interaction
of the ith electron of the monomer Y with the nuclei of the monomer X, and px(r;)
is the electron density of the monomer X.

Equation (I=211)) clearly shows that Ei(nldlo) represents the three-body induction
term corresponding to the interaction of the electrostatic field of the molecule C
with the molecule B polarized by the electrostatic field of A. In the multipole
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approximation this contribution can be interpreted as the result of the interaction of
permanent moments of monomer C with moments induced on monomer B by the
electrostatic field of the monomer A.

Note that Eq. (IZ2I0) represents the only second-order non-additive polarization
term. The remaining non-additive polarization terms are all of third- order at least,
i.e., in Eq. @ZZIEI) i+ j+k > 3. The three-body induction energy, E md, is defined
as that part of EJ ®) , that can be obtained by complete neglect of the intermonomer

correlation effects The difference E;()o; El(m} represents all intermonomer corre-
lation effects, and separates into contributions due to pure third-order dispersion
interactions and to the coupling of the second-order dispersion interaction with the

induction interaction:

ES) = Ego+ E)_gip + Ein- (1-214)

The dispersion nonadditivity E((hg)p arises from the coupling of intermonomer pair
correlations in subsystems XY and YZ via the intermolecular interaction operator
VZX_ This contribution can be expressed as a generalized Casimir-Polder formula,

3) _ _ 1 vkm m'x, x'k'
disp 7 2 In “n'p ¥p'l
aa
e 174
X I, (—iw)IL

—o0

" (o)1 (iw)do. (1-215)
The orbitals p and x are on C and, as before, k and [ are on A and m, n on B. For the
interaction of three spherically symmetric atoms the third-order dispersion nonad-
ditivity contains the famous Axilrod-Teller-Muto triple-dipole interaction31:312,
The induction-dispersion contribution, in turn, can be interpreted as the energy
of the (second-order) dispersion interaction of the monomer X with the monomer
Y deformed by the electrostatic field of the monomer Z (note that we have six
such contributions). In particular, when X=A, Y=B, and Z=C the corresponding
induction-dispersion contribution in terms of response functions is given by,

(210) m_kymy kym
ind—disp — __( c) zlln,l 172i122
Il nynan .
/ T2 (i)IT"" (—iw, 0)do. (1-216)

Similar expressions for El(;jo)dlsp, etc., can be easily found by a proper permutation

of symbols pertaining to monomers A, B, and C.

The mechanism of the third-order three-body induction interactions is somewhat
more complicated. It can be shown that one can distinguish three principal
categories. The first mechanism is simply the interaction of permanent moments on
the monomer C with the moments induced on B by the nonlinear (second-order)
effect of the electrostatic potential of the monomer A plus contributions obtained
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by interchanging the roles of the monomers A and C. In terms of quadratic response
function it takes the form,

1 , ”

210 m m m nn'n’

ES" (B« A,0) = 5 (@) (@07 (@) T, (0, 0). (1-217)
Note that we have six contributions of this type corresponding to six possible
permutations of the indices A, B, and C.

The second mechanism is the interaction between the multipole moments induced
on A and C by the electrostatic potential of the monomer B. The induction
ener%y component corresponding to this particular interaction will be denoted by
Ei(n];] (A <= B; C < B), and can be written as,

Ef"(A < B; C < B) = (wp)} (wp) sk TIL, (0)ITZZ (0). (1-218)
Since by definition Ei(:d“)(A <~ B;,C <+ B)= Ei(;d”)(C < B; A < B), we have three
contributions of this kind.

The third mechanism corresponds to the interaction of multipole moments
induced in monomers B and C by the electrostatic potentials of monomers A and
B, respectively:

Eg” (A < B; B C) = ()} (@)} 1 T (O)TT (0). (1-219)
Again we have six contributions of this type corresponding to six possible permu-
tations of the indices A, B, and C.

We wish to end this section by saying that similarly as in the two-body case, non-
additive induction, induction-dispersion, and dispersion terms have well defined
asymptotic behaviors from the multipole expansions of the intermolecular inter-

action operators. For instance, the leading term in the multipole expansion of the
three-body dispersion energy for three atoms in a triangular geometry is given by

the famous Axilrod-Teller-Muto formula3L:312
(3) Gy
Eg(3,3) ~ ——5——(3cos 0, cos Ocos O + 1), (1-220)
RygRycRes
where
3 p® ) ) )
G = —/ a,(iw)ag(io)a-(iv)do. (1-221)
mJo

In Eq. (Z3220) Ry, denotes the distance between the atoms X and Y, while 6,,
0z, and 0 are the inner angles in the triangle ABC. General, open-ended formulas
for the multipole-expanded induction, induction-dispersion, and dispersion energies
through the third order are reported in Ref. (302). Specific applications to the Ar,—
HF trimer and comparison of the multipole-expanded and nonexpanded results is
given in Ref. (313).
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10.4. Exchange Effects

In order to arrive at a closed expression for Ei;’fh) the total antisymmetrizer of the
trimer is approximated by

—~ (N4 + Ng+Ne)!

A
N,IN,IN,!

AYAPAC (1+P), (1-222)

where Ny is the number of electrons of the monomer X, AX is the antisymmetrizer
for the monomer X, and the operator P collects all intermolecular two and three cycle
permutations,

j_‘) — PAB+PBC+PCA +PABC, (1_223)
with

P ==%"%"P; and P =333 (Py+Ppu). (1-224)

ieX jeY ieX jeY keZ
The leading first-order exchange nonadditivity is given by the sum,

ED = B0 4 pO10) | g0 (1-225)

exch exch exch ?

where the first term is

Ebey) = (@ | VAE(QYE — (07F)) | ®y) (1-226)

exch ™

and due to the truncation of the antisymmetrizer
0V =P—P" and (QV) = (®,] 0" | By). (1-227)

The other terms of Eq. (I=223)) follow by permutation of A, B and C. Similarly
as in the two-body case the first-order exchange nonadditivity can be expressed

through one- and two-particle density matrices of the isolated monomers3!4,

EQ.(3.3) = [ (#(r, 1) 7 (@, 4)
+07(r, ) vt (0. 4)

+ 0 (r, )y (s q’))dqdq/ (1-228)

where 9*2(r, 1) = 0*8(r,r') — E\*”/N,N,, and similar definitions hold for

vE€(r, r') and v (r, r’). Finally, the interaction-density matrix, y25€, is given by

int
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¥ar(a.4) == pa(al) [ ps(ala"Ipc(a’la)dq”
—ps(@14) [ pa(ala")pc(a’la)dq”
+pa(ald) [ po(a'la)pc(a’la)dd’
+s(a19) [ pa(ala")pc(a’la)dq’

—pa(qlq) f I';(qd'q"|d'q")p-(q"|q")dq"dq”

n

-p(d'lq") / I'y(qq"laq")p-(q4"|q")dq"dq”

+ f pA(ald)T5(q'q”|qd'q)p-(q"1q")dq"dq”
+ f pA(ald)5(d'q"|d'q")p-(q" |q)dq"dq”

+ / Iy(aq"laa")ps(d'1a")pc(9"9")dq"dg”

"

+ / I4(aq"lad)ps(a'19")pc(a"|a")dq"dg”

+ / Iy(aq"laq")Ts(q'q11a'q")pc(q71q,)dq"dq " dq,

+ / I'y(aq"laq")T(q'q"|q'q,)p(q,1q")dq"dq"dq, . (1-229)

In order to consider higher-order exchange effects, we write the first-order wave
function Q(L?O) as,

U0 _ Cb(lg (A < B)®EDS + — 12pt<I)A<D(13 (B < A)Df

pol

') (A---B)®L, (1-230)

dlsp

where CDI(TB(X < Y) is the standard induction wave function corresponding to
the polarization of the monomer X by the monomer Y, and q)((iils)p(X ---Y) is the
dispersion wave function for the pair XY31213,

The second-order exchange nonadd1t1v1ty splits into exchange-induction,

E®? and exchange-dispersion, EC three-body contributions:

exch—ind> exch disp”’

EZY o =(®y | (VA2 — (VA%)) 0P D) (A « B)DEDS)
— (D, | (VAB — (VABY)(0*P) D) (A < B)DEDS)
— (D | (VAB — (VABY)(Q'PY DL D) (B < A)D),

+ (D, | (VB —(VABY) QP LD (B < A)DS),  (1-231)
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ESa g =(®y | (VA — (V) PO DN (B < C) D)
— (@ | (VA = (VAE))(P) Dy L) (B < C) D)
+ (D | (VA2 — (VA2)) PO} DF D) (C < B))
— (@ | (VA — (VAE))(P) Dy DF DL (C < B))
+(®y | (VEC = (VE) PO (A < B)DED)
— (@, | (VP = (VEON) (PY DL (A < B)DFDS)
— (@, | (VI = (VEO))(P) DG DL (B < A)DS)

n

+ (D | (VEE = (VEN) PDLDN) (B A)DE), (1-232)
EGa sy =— (@ | (V2= (VAP))(Q*") D) (A~ B)DF)
+ (D | (VAE—(VAE) QD) (A B)DS) (1-233)

E(110) =<(I’0 | (VAB_ <VAB>)P(DOA¢(I) (B~ .. C))

— (@, | (VAE —(VABY)(P) D DY) (B--- C))
— (D | (VEC—(VEC))(PYDG) (A--- B)D)
+ (D, | (VEC — (V) PO (A--- B)DS). (1-234)

11. SYMMETRY-ADAPTED PERTURBATION THEORY
OF THE INTERACTION-INDUCED PROPERTIES

Potential energy surfaces of weakly bound dimers and trimers are the key quantities
needed to compute transition frequencies in the high resolution spectra, (differential
and integral) scattering cross sections or rate coefficients describing collisional
processes between the molecules, or some thermodynamic properties needed to
derive equations of state for condensed phases. However, some other quantities
governed by weak intermolecular forces are needed to describe intensities in the
spectra or, more generally, infrared and Raman spectra of unbound (collisional
complexes) of two molecules, and dielectric and refractive properties of condensed
phases. These are the interaction-induced (or collision-induced) dipole moments
and polarizabilities.

During a collision between two molecules the intermolecular interaction leads to
distortions of their charge distributions, so that a collisional complex possesses a
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dipole moment and polarizability in excess of the sum of these properties of the
isolated molecules. These excess properties, referred to as the interaction-induced
or collision-induced dipole moment and polarizability, are defined as incremental
parts of the properties of the complex AB due to intermolecular interactions. So,
the interaction-induced dipole moment of a pair of molecules A and B is given
by the difference between the dipole moment of the complex AB and the sum of
dipole moments of the noninteracting molecules A and B,

Apy=pi” =i =y, (1-235)

where u*f is a Cartesian component of the dipole moment of the dimer AB, and
wu and p? denote components of the dipole moments of the isolated molecules
A and B, respectively. Similarly, the interaction-induced polarizability Ac;; of a
pair of molecules A and B is defined as the excess polarizability of the collisional
pair AB due to intermolecular interactions, i.e.

Aaijz B—al —au, (1-236)

where a B is a Cartesian component of the dimer polarizability tensor, and a and

B denote components of the polarizability tensors of the isolated monomers A and
B respectlvely Equations (I-233) and ([=236) can be conveniently rewritten by
using the Hellmann-Feynman theorem,

JE,
A, =— <—‘> , (1-237)
OF; )y
P E,,
Aq;; = — (1-238)
J aFaF o

where E,,, denotes here the interaction energy for the dimer AB in the presence of a
static, uniformelectric field F. Equations (I=237) and (I=238]) show that the interaction-
induced dipole moment and polarizability can be obtained from standard finite
field calculations, if the field-dependent interaction energy can be computed using,
e.g. the symmetry-adapted perturbation theory. Subsequently the interaction-induced
dipole moments and polarizabilities can be obtained from finite difference formulas.

In view of Eqs. (IZ237) and (I=238), the components of the interaction-induced
dipole moment and polarizability can written as,

A AM[ ,pol + AIu’t exch + AMf,zlzld + Alu’t ,disp + AM[ exch +-- (1_239)

1) (1 @ @ 2
Aaij =Aa ij,pol + Aat/ exch + Aaz/ ind + Aalj disp + Aat/ exch +-

(1-240)
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where the superscripts indicate the order in the intermolecular potential. Obviously
an nth order contribution to Au,; or Ag;; is obtained by differentiating once or twice
the corresponding contribution of the nth order SAPT interaction energy.

Equation (I=239) relates the interaction-induced part of the dipole moment of the
complex AB to the distortion of the electron density associated with the electro-
static, exchange, induction, and dispersion interactions between the monomers. The
polarization contributions to the dipole moment through the second-order of pertur-
bation theory (AM,(-,]p)op A/.L,(.ild, and Aﬂf?d)isp) have an appealing, partly classical, partly
quantum, physical interpretation. The first-order multipole-expanded polarization
contribution E:):j (F) is due to the interactions of permanent multipole moments on
A with moments induced on B by the external field F, and vice versa. The terms
linear in F give Ap,f,lp)ol. The mechanism that yields the second-order induction
dipole A/.Lf.ﬁd is somewhat more complicated, and one can distinguish two principal
categories. The first mechanism is the interaction of a permanent multipole on
monomer A with a multipole on B induced by the nonlinear (second-order) effect
of both a permanent multipole on A and the external field F (plus a contri-
bution obtained by interchanging the roles of the monomers A and B). The second
mechanism is the interaction of a multipole moment on A, induced by a permanent
multipole on B, with a moment on B induced by the external field F, and vice
versa. Again, the energy terms that are linear in F give the corresponding interaction
induced dipoles. Finally, the dispersion term Ap,gij)isp represents the intermonomer
correlation contribution to the dipole moment of the dimer AB. Various physical
contributions to the interaction-induced polarizability can be classified analogously.
The polarization, induction, and dispersion contributions to the collision-induced
dipole moments and polarizabilities have well defined asymptotics coming from
the multipole expansion. See Ref. (163) for general open-ended expressions valid
for any collisional pairs.

It is worth noting that the contribution from the kth-order contribution to
the collision-induced dipole moment, Ap,ﬁy’j), can be written in terms of the
complete orthogonal set of angular functions labeled by {A} ={L,, K,, Ly, K, L},
A\ and m,

1 ~
Apl = 7 Y di(R) AD) (0, 04, R), (1-241)
3 (A} A

where m label the spherical rather than Cartesian component of the collision-induced
dipole moment, and the angular function A&)}Im (w4, wg, R) is given by,

L, Ly A

L
AN (@05 RY= 3 3 3 3 (L,My; LyMyNu) (N, s L, M1, m)

Mp=—Ls Mg=—Lp p=—\ M=—L

x Diy"k (@) D% (@) CY (R). (1-242)
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In Ref. (163) the techniques introduced above were illustrated for He—He and He-H,
collisional complexes. In Refs. (316,317) the property functions were applied in
full quantum-statistical calculations of the dielectric second virial coefficient and
of the polarized and depolarized Raman spectrum of the He gas. Some further
applications were reported by Rizzo and collaborators38—322,

12. FROM INTERMOLECULAR POTENTIALS
AND COLLISION-INDUCED PROPERTIES
TO THE MEASURED PROPERTIES
OF ISOLATED COMPLEXES
AND CONDENSED PHASES

In the previous sections we gave a detailed overview of the theory of intermolecular
forces applied to interaction potentials and collision-induced properties. The starting
point for these investigations is the electronic Schrodinger equation in the Born-
Oppenheimer approximation. The solution of this equation by a supermolecule
method or by symmetry-adapted perturbation theory provides us with the inter-
action potential and interaction-induced dipole and polarizability functions needed
to solve the nuclear motion problem—the second step in the Born-Oppenheimer
approximation—and to compute the quantities measured in high-resolution spectro-
scopic and scattering experiments or characterizing the condensed phases. In this
section we give a brief description of the theoretical methods needed on the route
from the intermolecular potentials and properties to rovibrational spectra, collision-
induced Raman spectra, collision cross sections (thermodynamic and dielectric)
second virial coefficients, and properties of condensed phases.

12.1. Collision-induced Raman Light Scattering in Atomic Gas

In the collision-induced Raman experiments the laser light of wavenumber w, is
scattered inelastically by the interacting atoms in the gas. The intensities of the
depolarized, D(v), and polarized, P(v), scattered light are given by323:324,

2
D(v) = ¢ *w,G(v), P(v) = @’ wyA(v), (1-243)
where v is the frequency shift, @ = w, —27v/c, and c is the speed of light. The
frequency shift v is negative for the Stokes and positive for the anti-Stokes bands.
The spectral functions G(v) and A(v) can be written as,

2heNd
e Zgj(ZJ-I- 1)

G(v) = @ity 2

x /0 e~ ET ! |(E' J'|y(R)|E, T )|XdE, (1-244)
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2hch\3
BN, (20 +1)

AW =Gy -

x/ e ERT(E', Ja(R)|E, J)*dE, (1-245)
0

where the trace, a(R), and anisotropy, y(R), are the invariants of the tensor, and
are defined by the equations:

(1-246)

xXx*

1
a= 3 Aa, +Aw,), yv=Aa,—-Ax

Furthermore E' — E = hv, J' = J,J£2, h is the Planck constant, k; is the
Boltzmann constant, 7 denotes the temperature, A\ = (hz/ZWMkBT)% is the de
Broglie wavelength, u is the reduced mass of the collisional complex, and / and
g, designate the nuclear spin and nuclear spin statistical weight, respectively. The
constants b7, are given by

2
, JJ2
bl =(2J +1) (o oo> , (1-247)

and the matrix elements of the trace and anisotropy of the polarizability appearing

in Eqs. (I:244) and ([=243) are defined as,
(EJIXR)ET) =[xt (RXR)YL(R)R. (1-248)

where the scattering wave functions x;(R) are solutions of the radial Schrodinger
equation describing the relative motion of the atoms in the potential V(R), subject
to the energy normalization condition.

12.2. Dielectric Second Virial Coefficients of Atomic Gases

It is well known that for atomic gases at low densities the Clausius-Mossotti function
can be related to the atomic polarizability via the following virial relation:

e—1 4o,

= B.(T)p*---, 1-249
) 5 Pt «(T)p ( )

where € is the dielectric constant, « is the atomic polarizability, and p denotes the
gas number density. At higher pressures deviations from the linear dependence on p
are observed, and they can be attributed to intermolecular interactions. Buckingham
and Pople32 have shown that the leading correction to Eq. (I=249)), quadratic in
the gas density, is given by B_(T )p?, where the second dielectric virial coeffi-
cient B.(T) is related to the interatomic potential V(R) and interaction-induced

polarizability trace by,

B.(T) = 2?” | " @(R) exp(=V(R)/k, T )RXdR. (1-250)
0
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At very low temperatures Eq. (I2230) is no longer valid, and one has to use the
exact quantum-statistical expression. The quantum equivalent of Eq. (I2230) has
been developed in Ref. (317) from the general relation between the second dielectric
virial coefficient and the ordinary (thermodynamic) second virial coefficient of an
atomic gas in a uniform electric field2,

Ak, T (asz(T; F))
F=0’

B.T) =
(1) 3 IF>

(1-251)

where B, (T, F') denotes the ordinary (pressure) second virial coefficient for the gas
in the electric field F. Using Eq. (I2231)) and an expression for B,(T; F) in terms

of the field-dependent Slater sum32, one finds the following formula for B (T )3,

277.)\3 0 (_1)J+21
B.(T) = ENQI+1) |14+ —L—
x [Ze—Ew/kﬂ<n, J|a(R)|n, J )
2 oo
+= / e‘hz"z/z“"BT(E,J|a(R)|E,J>dk], (1-252)
a Jo
where
(nJla(R)n ) = [ X (R)a(R)x, (R)R, (1-253)
0

|x,s) = W,,(R) denote the bound-state eigenfunctions of the Schrédinger equation
for the relative motion in the potential V(R), with eigenvalues E,;, and |E, J) are
the scattering states with energies E = h*k*/2u defined above.

Equation (I=231) can also be used to derive the semiclassical expansion of
the second dielectric virial coefficient. Indeed, one may hope that at intermediate
temperatures an expansion of B.(T) as a power series in h? will give sufficiently
accurate results, making full quantum-statistical calculations unnecessary. Thus,
one can approximate B,.(T') as,

B(T)=B(T)+B"(T)+BA(T), (1-254)

where the classical term B (T) is given by the r.h.s. of Eq. (Z230), while the

quantum corrections of the order h?> and A* (denoted by Bgl)(T) and Bgz)(T),

respectively), can be written as318,

wh?
k3 T?

R) (dV\® _dVd
| QR (AVAT_,dVida | g, (1-255)
k,T \dR dR dR

BO(T) = - [ exp(=vR) /Ky T)
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a h o
TSowE ], SPCVR/KD

BO(T) =
[ (R) f(R)—i—g(R)] R*dR, (1-256)

where the functions f(R) and g(R) are given by,

HR) = d’v +2 dv 2+ 10 1 /dvy’
~ \dR? R> \ dR 9%,T R \ dR

5 av\*
 36k3T2 <d_R) ’ (1-257)
B

dVdla 4dVda 10 1 [dV\’ da
dR* dR> R>dRdR 3k,TR\dR) dR

5 (dv\’'d
2 (£2) &2 (1-258)
9k2T2> \dR ) dR

It is worth noting that Eqs. (I2230) and (I=233)—({I=236) can be used to evaluate the
full quantum correction even at low temperatures by means of the simplest Padé

approximant [1/1]2.

12.3. Refractive (Kerr) Second Virial Coefficients of Atomic Gases

Similarly as the trace, the anisotropy of the polarizability tensor of diatomic colli-
sional systems can also be related to some macroscopic properties, namely to the
refractive properties of atomic gases. The so-called Kerr constant, the anisotropy
of the refractive index in the parallel and perpendicular directions to the external
static electric field is given by,

. 2(n —ny) 4wy,

lim =

F—0 27F? 81
where F is the external electric field in the z direction, n and n, denote the
refraction coefficients in the paralell and perpendicular directions to the field F,
7Y, is the atomic hyperpolarizability, and By and Cy are the second and third Kerr
virial coefficients. At high temperatures the second Kerr virial coefficient can be
related to the anisotropy of the collision-induced polarizability tensor32Z,

27 (v(R))
“Sk,T

p+By(T)p* + Cx(T)p* +- -, (1-259)

B(T)~B(T) = “VR/T R2R, (1-260)

A quantum expression and a semi-classical expansion can be derived32, as in the
case of the dielectric virial coefficient. We wish to end this short section by saying
that recently Rizzo and collaborators reported a general virial expansion of various
properties of atomic gases32.
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12.4. Rovibrational Spectra of Weakly Bound Complexes

High-resolution spectroscopic experiments provide a detailed experimental infor-
mation on the shape of the intermolecular potential in the attractive regions. Recent
improvements in supersonic beams and new laser techniques increased dramati-
cally the sensitivity and resolution in the near-infrared region and opened to high-
precision measurements the difficult far-infrared region. The latter development
made it possible to investigate directly intermolecular vibration bands which are very
sensitive probes of the shape of intermolecular potentials. The new spectroscopic
techniques provide a lot of accurate data on interaction potentials for atom-molecule
complexes, as well as on more complicated systems such as the HF, ammonia or
water dimers.

Weakly bound complexes display unusual structural and dynamical properties
resulting from the shape of their intermolecular potential energy surfaces. They
show large amplitude internal motions, and do not conform to the dynamics and
selection rules based on the harmonic oscillator/rigid rotor models32. Consequently,
conventional models used in the analysis of the spectroscopic data fail, and the
knowledge of the full intermolecular potential and dipole (or polarizability) surfaces,
and the exact quantum-mechanical calculations of the energy levels and intensities
are essential to determine the assignments of the observed transitions.

Depending on the strength of the anisotropy in the interaction potential, nuclear
motions in weakly bound Van der Waals complexes are usually described using a set
of coordinates related to a space-fixed or body-fixed frameZ. When the anisotropy
of the potential in the region of the Van der Waals minimum is relatively weak one
can expect that the molecule in the complex should behave as a nearly free rotor,
i.e. that the space-fixed description is appropriate. As a consequence, the energy
levels and infrared transitions can be approximately classified by the use of the
case (a) coupling of Bratoz and Martin3¥ (see Ref. (7) for reviews). Moreover,
the intramolecular vibrations can, to a good approximation, be decoupled from
the intermolecular modes due to their high frequency, and vibrationally averaged
rotational constants can be used. For a general AB complex with molecules A and
B characterized by two sets of rotational constants Ay, By, and Cy, X=A or B, we
have the following Hamiltonian describing the nuclear motion,

n* 2
H=T,+Ty;— —R Vv, 1-261
at s 2R OR? +2;,LR2+ ( )
Ty = Axjix + ijix + Cxjxs (1-262)

where u is the reduced mass of the dimer, jy is the angular momentum of the
molecule X, X=A or B, Ay, By, and Cy are the rotational constants of the monomer
X, and 1 denotes the angular momentum associated with the end-over-end rotation
of the complex.
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The wave function Y™ (w,, wg, R, ﬁ) can be expanded in a basis of products of
radial and angular functions of the form,

(@4, 0p, R,R|n, jo, kg, jps ks jap, I; IM) = Nep,,(R)

Jja Jp min(J, jsp) G )"
x > ) > @mj:kA( A)@mj:kg(wB)

ma=—jy mp=—Jjp kyp=—min(J, jap)

X (Jamas jg> mgljapkag)

1
x 3 Cin,(R)<jABkAB;lm1|‘lM>’ (1-263)

my=—1

where N is the normalization constant, ¢,(R) denotes the radial function, and R
stands for the spherical polar angles of R with respect to a space-fixed frame.
Note that the functions D,,{AkA and DY#)" appearing in Eq. ([2263) describe
rotations of the molecules A and B, respectlvely, within the complex. These rotations
characterized by the quantum numbers j, and j; are first coupled to the total internal
angular momentum j,,. The overall rotation of the complex is described by the
spherical harmonics C,’n,. The end-over-end angular momentum / is coupled with
the total internal angular momentum j, to give the total angular momentum J. The
angular basis functions have a well defined parity p = (—1)/4+/s+ with respect to
the space-fixed inversion, so the full Hamiltonian, Eq. (I=261)), is blocked in both
p and J. Within each block various j,, jz, and [ are mixed through the potential.
The basis functions of Eq. (I=2263)) look quite complicated, but they simplify a lot
for specific cases, cf. Table [=8]

For an atom—-diatom system the basis ([2263) reduces to the product of radial
functions and Clebsch-Gordan coupled spherical harmonics,

[C'F)® C'(R)], = > (jm;im]|IM) C), Oc’ (R) (1-264)

my,m;

where T are the polar angles of the vector r pointing from one atom to the other in
the diatomic molecule in the space-fixed system of axes. In the limit of vanishing

Table 1-8. Quantum numbers and space-fixed basis functions for different dimers. The entries “a”, “d”,

FrRt)

and “p” in columns 1 and 2 refer to atom, diatomic, and polyatomic molecule, respectively

A B Ja k4 JB kg JaB Angular basis function

a a 0 0 0 0 0 cl,(R)

a d 0 0 Js 0 Js [C/8(F5) ® C'(R)]Y,

a  p 0 N (DY) (wy) ® C'(R)T,

d d 0 s 0w [[CAE)@CHEF)P @ C R,

d p s 0 s kg [[CAE)®DYE 0y @ CR)Y,
P p Ja ky Js kg Jas [[D.(,sz) (w,) ®D(IB> (wp)}18 ® Cl(ﬁ)]/jw
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anisotropy the quantum numbers j, which describes the rotation of the diatom
in the dimer, and I, which corresponds to the rotation of the vector R are good
quantum numbers. The total angular momentum J = j+1 is always conserved,
due to the isotropy of space, but j and / are broken by the anisotropy in the
potential. A degenerate (j, /)-level splits into sublevels J = |j—1|, ..., j+ [ under
the influence of the anisotropy. If these splittings are small, like in the Ar-H,3!
and He-C,H,3%2 cases, the states can still be labeled to a good approximation by
jand L.

When the leading anisotropic term is large compared to the rotational constant of
the complex, and small compared to the rotational constants of the free molecules,
the energy levels and infrared transitions can approximately be classified using the
case (b) coupling of Bratoz and Martin32, i.e. the molecules in the complex should
behave as hindered rotors. Choosing the embedded reference frame such that the
vector R connecting the centers of mass of the molecules A and B defines the new

z axis, the Hamiltonian describing the nuclear motion can be written as332-33%

o e P Gatis)’ —2Ga+is) T

— V.
2R IR? 2uR?

H=T,+T;—

(1-265)

Here, the operator J is the total angular momentum operator in the space-fixed
frame, and Ty, X=A and B, is defined by Eq. (I:2262)). Note, that the present
coordinate system corresponds to the so-called “two-thirds body-fixed” system of
Refs. (7-334). Therefore, the internal angular momentum operators j, and jg, and
the pseudo angular momentum operator J do not commute, so the second term in
Eq. (I22683) cannot be factorized.

The wave function describing the nuclear motion can now be expanded in a basis
of products of radial and angular functions of the form,

(w4, wg, R, RN, ju ky, jpo kg, jag. Ks IM) = ,(R)
Jja JB
X Z Z (Jamas jg> mgljapK)

mpy=—js mp=—jp

x (DI, (@) DL (05) Difk (. B.0)

maky mpgkpg

+ (=1 DI (@)D, (@) DL (@, B,0)),  (1-266)
where (B3, a) are the polar angles of the R vector in the space-fixed coordinates.
The angular basis functions have a well defined parity p, and the full Hamiltonian,
Eq. (I2283), is blocked in both p(—1)’ and J. Within each block functions with
different K are mixed through the off-diagonal Coriolis interaction, 2(j, 4+ j.z)J, +
2(j4 + jys)J - For specific systems the angular part of the basis function (T=266)
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can be simplified using the rules given in Table [[=4] for the angular expansions of
the interaction potentials.
For an atom—diatom system the basis ([=266)) reduces to

[CL(D, ©) Dy k (a, B, 0) + p(—1)! CL o (8, @) Dy (a, B, )],
(1-267)

where ¥ and ¢ are the spherical angles of the r vector in the body-fixed coordi-
nates. The only rigorously conserved quantum numbers are, again, the total angular
momentum J and the spectroscopic parity o = p(—1)’. The diatom rotational
quantum number j, and the projection K of J (or j) onto the intermolecular axis,
are only approximately conserved. This conservation is broken by off-diagonal
Coriolis interaction. Since K is the projection of an angular momentum, states
with K =0, £1, etc., are denoted as 3, II, etc. In addition, levels with o = +1
and o = —1 will be designated by superscripts e and f, respectively. For K =0
only e parity states exist. The case b coupling of Bratoz and Martin32? gives a
very simple classification of the rovibrational energy levels of the complex: each
monomer rotational level j is split into j+ 1 levels corresponding to any J > |K|
with K =0, &1, £2,..., &j. The inclusion of the Coriolis interaction introduces
further splitting of the states with |K| # 0 (the so-called /-doubling) into states with
e and f parity labels.

It should be stressed that for a fixed set of quantum numbers j,, k,, jg, kg,
Jags J» M, and K running from —min(J, j,5) to +min(J, j,5) the basis functions
of Eq. (I:2266) span the same space as the basis functions of Eq. (I=263) with [
running from |J — j,z| to J+ j,z. This means that the Hilbert spaces spaned by
the basis functions ([2263) and ([=266) are isomorphic. Consequently, the final
quantum states (eigenvalues and eigenvectors) will be the same in both bases. The
specific choice of the mathematical form of the Hamitonian, Eq. ([=2&1)) or (I2263),
and consequently, of the basis depends on the anisotropy of the potential energy
surface.

We wish to add that Martin and Bratoz33? also considered a case (c) corre-
sponding to almost rigid complex. The treatment of the dynamics in the case (¢)
does not differ from the standard treatment of rotations and vibrations in rigid
molecules with the Watson’s Hamiltonian for nuclear motions.

The infrared transitions obey the following selection rules: |[Ap| =1, and |AJ| =1
or 0. The wave functions for the initial and final states obtained by solving the
Schrodinger equation with the Hamiltonian of Eq. (I2261)) or (I=283)) can be used to
compute the infrared absorption intensities for the complex. The infrared absorption
coefficient 7(J” — J') for the transition J” — J’ is proportional to,

exp(—E, /kgT)

i B ) S = T, (1-268)
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where E, denotes the energy of the state labeled by J, Z(7) is the partition function,
the line strength is given by,

J" 7

1
S = X8 0 )

M'==J"M'=—J m=—1

2

, (1-269)

and u,, is the spherical component of the dipole moment of the dimer (for the
far-infrared transitions) or the spherical component of the transition dipole (for the
near-infrared transitions).

12.5. Scattering Cross Sections for Rotational Excitation

Molecular beam scattering experiments provide direct and detailed information
about the repulsive part of the interaction potential between the colliding particles.
With such scattering data available, detailed studies of the short and intermediate-
range parts of the potential energy surfaces can readily be made, provided that
accurate theoretical methods, e.g. quantum close-coupling approach, are used to
describe the scattering phenomena.

The coordinate system used in the close-coupling method is the space-fixed
frame. For simplicity we consider the atom—diatom scattering. The wave function
XM (R,x,R) for an atom-rigid rotor system corresponding to the total energy E,
total angular momentum J, and its projection M on the space-fixed z axis can be
written as an expansion,

X2 (RE.R) =Y ¢ (R[CE) @ C' Ry, (1-270)
Jil

where the angular functions are defined by Eq. (I2264). The radial functions
,j'z (R) are solutions of the system of coupled differential equations (close-coupling
equations):

RE LRI y
[ R VLR 4 By 1)~ E| )4 (R) =

B 2uR IR? 2uR?
- Z Vﬁ,j’[’ (R)¢;’l/,E(R)’ (1-271)
G'#GD

where b, is the rotational constant of the diatom in its ground vibrational state,
and the angular matrix elements of the potential, Vjﬂq jr(R), can be written in terms
of the Percival-Seaton coefficients232. One may note that for a given state j, the

associated channels (j, /) are found from the triangular condition
T —jl<l<J+]. (1-272)

The asymptotic form of the radial functions qb{l £(R) determines the matrix elements
of the scattering matrix, S{l’ yr- These in turn define the state-to-state integral and
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differential cross sections by the usual expressions33¢. For instance, the integral
cross section is given by,

i — ST vy — 8w S |2 1-273
0'(] .]) (2]//+1)k%/]2;);],| U, jl J"J 11| ( )
where
R2k2,
L =E—byj'(j" +1). (1-274)
2u

After a proper Boltzmann averaging of the integral cross section over the kinetic
energy in the center of mass system, E,,, one get the rate constants,

kpp (1) = (vo(j" = j)) = <8kuT)

eey (E
ZM (" — jYe Tt d (ﬁ) (1-275)
B

kg T
where v denotes the relative velocity.

It is worth noting that the elements of the scattering matrix also define generalized
cross sections which, after the Boltzmann average, give the pressure broadening
coefficients of the spectral lines of the diatom in the bath of colliding atoms, as well
as the quantum expressions for various transport coefficients of diatomic molecules
in dilute atomic gases, such as the viscosity coefficient, diffusion coefficient, thermal
conductivity, etc,237:338,

12.6. Thermodynamic Second Virial Coefficients

It is well known that the equation of state for a gas at a temperature 7 is given by
the virial expansion of the form,

Lyt BT - (1-276)
kgT

where p denotes the pressure and B,(T) is the second virial coefficient which
is related directly to the intermolecular potential. Thus, ab initio calculations of
the potentials and, subsequently, of the virial coefficients give theoretical equation
of state for dilute gases. Thermodynamic second virial coefficients also provide
additional information about the accuracy of the theoretical interaction potentials,
in particular about the correctness of the volume of the Van der Waals well. For
the atom-linear molecule case the expressions for the classical virial coefficient,
B;O)(T), and the first quantum correction, Bél)(T) were derived by Pack32. The
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first quantum correction splits into terms due to relative translational motions,
Bg)(T), to molecular rotations, Bi,‘l) (T), and to the Coriolis term, B(C1 )(T):

B,(T)=B"(T)+BY,(T)+B(T)+BY(T), (1-277)

where the consecutive terms on the r.h.s. of Eq. (IZZ77) are given by32:

00 o R
BY(T) = wN, /0 [0 (1 —exp [—%D R?sin 9dRd Y,

B

(1-278)
I N,7h*$? V(R, )
B (D == 24 / / [ }
X <B_V) R?sin 9dRd ¥, (1-279)
R
BS)(T) NAWB bo/ / |: V(R, 19):|
X Z I(1+1)V,(R)P,(cos 9)R* sin 3dRd 3, (1-280)
W NATrh2B2 V(R, 9)
Be(D = C 24u f / [ ]
x Z 1(14+1)V,(R)P,(cos 9) sin 9dRd . (1-281)

1=0

Here, V(R, ¥) is the interaction potential depending on the distance R from the atom
to the center of mass of the molecule and on the angle © between the molecular
axis and the line connecting the atom with the center of mass of the molecule, N,
is Avogadro’s constant, and V,(R) are the radial coefficients in the expansion of
the potential in Legendre polynomials P,,

V(R, 9) = i V,(R)P,(cos ). (1-282)

=0

Let us end this section by saying that the expressions ([=278)-({[=281) as well as
the specific form of the expansion (I=282)) can be generalized to the interaction of
arbitrary molecules332:340,



Theory of Intermolecular Forces: An Introductory Account 95

12.7. Simulations of Condensed Phases

Computer simulations which model microscopic behavior of condensed phases
provide important insight into various physical, chemical, and biological phenomena
that cannot easily be obtained by quantum-mechanical methods. Among quantities
computed using simulations methods one can cite transport properties such as
diffusion and viscosity or thermal conductivity, radial distribution functions related
to the X-ray or neutron scattering form factors, etc. It is not surprising that computer
simulations have recently become a rapidly developing field of science3!,

Two types of computer simulation procedures are used to describe properties
of condensed phases: the Monte Carlo method based on the Metropolis algorithm
and the molecular dynamics approach. Both approaches consider a cell containing
typically between 10° and 10° molecules interacting via a given potential which
may contain non-additive terms. The cell is considered to be surrounded by identical
replicas of itself on each side. The Monte Carlo method3# is based on random
changes of molecular coordinates within the cell. If the energy change produced
by the shift of molecular coordinates is zero or negative with respect to the
previous configuration of molecules, the new configuration is accepted. If the energy
increased by the change of coordinates, the new configuration is accepted in a
proportion of the cases which is given by exp(—AU/k,T ), where AU is the energy
shift. Very many changes of coordinates are made in this way, producing a series
of configurations which occur with a probability proportional to the Boltzmann
factor exp(—Uy /kyzT ), where Uy, is the total potential energy for a given config-
uration. The series of configurations obtained in such a way are analyzed to give
static properties of the system, such as the internal energy, pressure, and radial
distribution functions.

In the molecular dynamics approach2 a basic cell and its replicas are again
defined. Starting from an initial configuration with a well defined total (kinetic
plus potential) energy, the motions of the molecules are followed by numerical
integration of the classical equations of motion of all molecules. The forces acting
on each molecule are summed, and new positions and velocities are calculated after
a small time step, usually of the order of 107" s. This procedure is repeated for
typically 103 to 10° time steps. At each step of the time chain the average contri-
butions similar to those obtained in the Monte Carlo procedure can be evaluated.
In addition, the partition of the total energy into kinetic and potential terms can be
obtained, and the distribution of molecular velocities can be studied. The molecular
dynamics method is a more powerful technique than the Monte Carlo procedure,
as it yields in addition to equilibrium properties of the system also the transport
properties, such as the diffusion coefficients, viscosity or thermal conductivity.

We wish to end this section by saying that now it is possible to perform
molecular dynamics simulations “on the fly” without precomputing the potential
energy surface. This idea was introduced by Carr and Parrinello2#3% and is
known as the Carr-Parrinello dynamics. In this approach the nuclear motions are
treated classically within the molecular dynamics method, but the energy and force
are precomputed for each configuration of the nuclei with a suitable version of
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the density functional theory. If applicable with trust, this method would unable
computer simulations of condensed phases without calculations of the potential
energy surfaces. Applications to the liquid water are very promising3%, so for large
systems this method will become a viable alternative to classical simulations based

on empirical force fields.

13. ILLUSTRATIVE APPLICATIONS

13.1. Pair Potentials and Modelling of Spectroscopic, Collisional,
and Thermodynamic Properties of Binary Complexes

All the formulas described in Section. [7] have been implemented in the computer
program SAPT22222l which can routinely be used to compute intermolecular
pair potentials. Some of the results, for Ar—H,331346-341 " He HF38-30  water
dimer3!32 He-C0O3234, Ne-C0O22, He-C,H,3%3%  and Ne-C,H,32 were
already summarized in the previous review articles? ™2, Among the results which
were recently obtained, the pair potentials of He—-CO,2%¢ and Ar—CH,3%0~3% were
very thoroughly tested with various experimental data from high-resolution spectro-
scopic and collisional experiments, as well as with the thermodynamic second virial

coefficients3%.

13.1.1. He-CO, complex

A typical feature of the potentials for weakly interacting systems is that their
shape is determined by a subtle balance between the geometry dependence of the
repulsive short range interactions and the, mostly attractive, long range forces. This
is also the case for He—CO,. The potential surface of He—CO,22 has a T-shaped
equilibrium structure, with R, = 6.34 bohr, ®, = 92.2°, and D, = —53.49 cm™ !,
where R,, ©,, and D, are the equilibrium distance, equilibrium angle between
the vectors pointing from the carbon atom to the helium atom, and from one
oxygen atom to the other, and the binding energy, respectively. See Figure
for the shape of the potential energy surface. The total interaction energy and
its components around the global and local minima are reported in Table
Table shows that the first-order exchange energy and the dispersion energy are
two major contributions to the interaction potential determining its anisotropy in
the region of the global minimum, while the induction energy is less important and
strongly quenched by its exchange counterpart (the exchange-induction energy).
Surprisingly, the electrostatic energy, which is of purely penetrational character,
is more important than the weak quadrupole-induced dipole induction interaction.
Obviously, the dispersion energy favors the linear He- - - O=C=0 minimum in the
potential energy surface. However, the short-range energy, dominated by the first-
order exchange energy, behaves, to a good approximation, in a reversed manner
to Ec(uzs)p, and shows a stronger anisotropy. Thus, the position of the minimum is
mainly determined by the anisotropy of the exchange-repulsion term. The barrier
for moving away from this minimum to the linear OCO-He geometry (® = 0°) is
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Figure 1-5. Contour plot of the SAPT potential for the He—CO, complex

relatively high, suggesting that the He atom will show a hindered rotation around
the CO, rotor.

A different picture is observed for the local minimum of €, = —28.94 cm™'
located at the linear He- - - O=C=0 geometry for R,, = 8.03 bohr. Around the local

Table 1-9. Angular dependence of the He — CO, interaction energy (in cm™') near the
global (R = 6 bohr) and local (R = 8 bohr) minima

S} 0° 30° 60° 90°
Global minimum
EY) —643.93 —274.03 —39.51 ~7.88
ED, 3066.48 1335.32 205.40 42.72
E2) —387.72 —137.13 ~16.68 —4.94
EQ 361.63 128.80 13.69 1.81
Eg) ~703.23 —417.71 —144.75 —81.26
(2)
EQ\ o 94.97 44.72 7.63 1.83
ESAPT 1601.11 587.31 12.55 —49.53

int

Local minimum

E) ~5.93 ~3.15 ~0.60 ~0.10
EY 35.65 19.00 3.60 0.52
EZ) 230 ~1.25 —0.31 ~0.20
EQ 1.12 0.59 0.09 0.01
Eg) ~56.64 ~40.19 ~19.43 ~13.07
EQ i 1.49 0.76 0.14 0.03

ESAPT —27.86 —25.08 —16.68 —12.83

int
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minimum the anisotropy of the potential is much less pronounced. Unlike the
global minimum, the local minimum is mostly bound by the dispersion forces,
despite nonnegligible values of the repulsive exchange components, cf. Table
Surprisingly, the short-range electrostatic energy is again much more important than
the long-range induction term and substantially contributes to the well depth of the
secondary minimum.

The potential energy surface for the He—CO, complex was used2 in converged
variational calculations to generate bound rovibrational states and the infrared
spectrum corresponding to the simultaneous excitation of the v, vibration and
internal rotation in the CO, subunit within the complex. Due to the high barrier
separating the minima, the complex behaves like a semirigid asymmetric top and
the rovibrational energy levels can classified with the asymmetric top quantum
numbers. The computed frequencies of the infrared transitions in the v, band of
the spectrum are in a very good agreement with the high resolution experimental
data of Weida et al.28, This is illustrated in Figure [[Z6] were we compare the
theoretical spectrum with the results of high-resolution measurements3%. Indeed,
the agreement between the computed and observed transition frequencies and inten-
sities is excellent. Since this piece of the spectrum probes the anisotropy of the
potential in the region of the potential well, the level of agreement presented on
Figure [[=6] suggests that the ab initio potential is very accurate in this region.

100.0 T T T T T T T T

50.0 B

(=)
(=)

Intensity

-50.0 B

_100.0 1 1 1 1
2344.0 2346.0 2348.0 2350.0 2352.0 2354.0

Frequency (cm_l)

Figure 1-6. Theoretical (upper panel) and experimental (lower panel) infrared spectrum for the He—CO,
complex
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In the experimental work of Ref. (365) several weak spectroscopic transitions
were observed that could not be assigned to the v, fundamental band of the complex.
On the basis of the integrated band intensities it was assumed that these transitions
correspond to the vy intermolecular bending mode, although no definite assign-
ments could be proposed. Only the position of the first excited bending state could
approximately be located at 942 cm™! above the ground state. The calculations of
bound rovibrational levels reported in Ref. (296) showed a large number of levels
that can be attributed to the v5 band. In particular, the first bending frequency was
predicted at 8.805cm™!, in very good agreement with the experimental estimate
quoted above. Assuming that the initial states in the unassigned portion of the exper-
imental spectrum correspond to the v; states of the complex, one could try to assign
these lines, and a tentative assignment of the observed vs band was proposed2.
The agreement in the line positions is within 0.1-0.3cm™!. Such an accuracy can
be expected from the theoretical side. The v, transitions were reproduced within
0.05cm™!. Since they correspond to low-lying energy states they can be computed
accurately, the interaction potential being accurate in region of the global minimum.
The v; lines lie much higher in energy and are sensitive to the regions of the
potential surface close to the dissociation limit. Here the SAPT potential may be
less accurate, so an error in the transition frequencies of the order of tenths of the
wavenumber is not surprising. The theoretical intensity pattern closely follows the
experimental one suggesting that the proposed assignment is correct.

As a further test of the ab initio potential, calculations of the pressure broadening
coefficients of the R branchrotational lines of the v, spectrum of CO, in ahelium bath at
various temperatures were performed2%, [The pressure broadening coefficients reflect

10 st
2
=

Figure 1-7. Theoretical (open circles) and experimental (full circles) pressure broadening coefficients
of the CO, spectral lines in the helium bath at various temperatures
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thebroadeningofthespectrallinesofamoleculeinabathofagasatatemperature 7.] Very
good agreement is found with the wealth of experimental results for various rotational
states of CO, atdifferenttemperatures, cf. Figure[[=7] The agreementbetween the theory
and experiment observed on Figure [[=7] suggests that the anisotropy of the ab initio
potential in the repulsive region is correct. Finally, the potential was also tested22 by
computing the second virial coefficients at various temperatures. Again, the agreement
betweentheory andexperimentis satisfactory, cf. Figure[[=8] suggesting thatthe volume
ofthe Vander Waals wellis correctly reproduced by the ab initio potential.

All these comparisons between theory and various high precision experimental
data show that the ab initio SAPT potential for He—CO, reproduces various physical
properties of the complex. This suggests that the potential is accurate not only
around the van der Waals well, but also its anisotropy in the attractive and repulsive
regions, as well as the volume of the van der Waals well are correct.

The SAPT potential for the He—CO, complex was also used in the calculations of
the rovibrational spectra of the Hey,—CO, clusters2%. High resolution experimental
data were also reported in this paper. Comparison of the theoretical and experimental
effective rotational constants B and other spectroscopic characteristics as functions
of the cluster size N is shown on Figure Again, the agreement between the
theory and experiment is impressive showing that theory can describe with trust
spectroscopic characteristics of small clusters He,—CO,. This especially true for
the effective rotational constant and the frequency shift of the CO, vibration due
to the solvation by the helium atoms. One may note in passing that the clusters
Hey—CO, with the number of helium atoms N around 20 do not exhibit all the
properties of the CO, molecule in the first solvation shell of the (quantum) liquid
helium at very low temperatures.
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Figure 1-8. Theoretical (full line) and experimental (open circles) second virial coefficient of He—CO,
at various temperatures
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Figure 1-9. Variation of the vibrational band origin Av,, effective rotational constant B, and centrifugal
distortion constant D with the size N of the cluster He,—CO,. Circles and dots indicate the experimental
and theoretical results, respectively. The upper panel also includes for comparison the value of Ay,
for clusters of He with OCS and N,O. The inset in the middle panel shows the results calculated in
an extended range of helium atoms in the cluster. The dashed lines indicate the nanodroplet results of
Miller and collaborators3%Z

13.1.2. Ar-CH, complex

An example that we describe in somewhat more detail is the pair potential of
Ar-CH, calculated by SAPT3%, The position of the argon atom is described by
the vector R = (R, ©, ®) pointing from the center-of-mass of methane to the Ar
atom. A two-dimensional cut that displays most of the interesting features of this
three-dimensional intermolecular potential is shown in Figure For large R
the preferred direction of approach of the Ar atom is along one of the C—H bonds
(® =55°), as if the C-H--- Ar bond were a hydrogen bond. At shorter distance,
however, also the steric repulsion is the largest for this orientation, and the deepest
attractive well occurs where the short range repulsion is the weakest, i.e. for the Ar
atom in between three C—H bonds (® = 125°). In Figure one can observe the
origin of this behavior. The long range attraction is mostly caused by dispersion
forces. The attraction caused by induction is much smaller at large R, but increases
steeply with decreasing R, when the charge clouds of Ar and CH, start to overlap.
This latter effect is due to penetration, i.e., incomplete screening of the nuclear
charges by the electron clouds. The small R behavior is dominated by the short
range repulsion, however, with the contributions of first-order exchange, exchange-
induction, and exchange-dispersion in decreasing order of importance. Both the
long range attraction and the short range repulsion are largest for Ar along one of
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Figure 1-10. Contour plot of the SAPT potential (left panel) and the angular dependence of the potential
and its components (right panel) for Ar—CH,

the C—H bonds (® = 55°), and smallest when the Ar atom approaches one of the
faces of the CH, tetrahedron (® = 125°). Since the long range R™" contributions
decrease less rapidly with increasing R than the exponential short range terms this
explains the observed behavior, which is typical for a Van der Waals complex.
Even for hydrogen bonded complexes one finds such behavior, but in that case the
(first-order) electrostatic and (second-order) induction forces are more dominant,
and the equilibrium geometry of the complex is often determined by these long
range forces.

The same Ar—CH, potential was used in extensive close-coupling calculations
for elastic and rotationally inelastic scattering at various energies. Both the total
differential Ar—CH, scattering cross sections2%! and the integral state-to-state cross
sections for the rotational transitions of CH, induced by collisions with Ar (360)
agree well with the experimental data of Buck et al.3®® and Chapman et al.3®. This
is illustrated on Figures [[=11] and

An inspection of these figures shows that the overall agreement between theory
and experiment is very good, suggesting that the anisotropy of the potential in
the repulsive region is correct. Surprisingly enough, the ab initio SAPT potential
performs better than the empirical potential of Ref. (368) fitted to the experimental
total differential scattering cross sections.

Another test to which the Ar—CH, potential was subjected, is the calculation
of the second virial coefficients at various temperatures. The agreement between
the theory and experiment is illustrated on Figure [=131 An inspection of this
figure show that the agreement between the measured and computed second virial
coefficients is good, so similarly as in the case of He—CO, mixtures, the volume of
the interaction potential well for Ar—CH, is correct.

Finally, the SAPT potential of Ref. (360) was used to generate the infrared
spectrum of the Ar—-CH, complex. This spectrum, in the region of the v; mode of
CH,, was measured by Miller in 1993 and presented at the 1994 Faraday Discussion



Theory of Intermolecular Forces: An Introductory Account 103

20 B 1
12
15 10
8
10
6 ,
I
5 4
. I I
0 o [ | [ 0 = 5
6 4 5 6
5 i’ >

3 4

8

6

: ‘

2

0 || il ||| (TR T

2334455566677

Figure 1-11. Theoretical and experimental relative integral cross sections for Ar—CH,. The experimental
data are displayed in red, the results displayed in blue and green were generated from the SAPT and
empirical potentials, respectively. The labels A, E, and F refer to the total nuclear spin states of methane.
The empirical potential was fitted to the total differential cross sections
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Figure 1-12. Theoretical and experimental total differential cross sections for Ar—CH,. The full and

dashed lines correspond to the close-coupling results generated from the SAPT potential and from the
empirical potential fitted to these data, respectively
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Figure 1-13. Theoretical (full line) and experimental (circles and rectangles) second virial coefficient
of Ar—CH, at various temperatures

on Van der Waals molecules3’. It shows a lot of detailed structure, with many

lines more or less grouped in seven bands, over a range of 40cm™' around the
band origin of the »; mode (3020 cm~!) which could not yet be assigned or under-
stood, however. Recently, the bound levels of Ar—CH, were calculated from the
SAPT potential. Also the quasi-bound levels of the complex with the v; mode
excited were calculated with the use of the same ground state potential surface,
but it was explicitly taken into account that the v; mode has three degenerate
sublevels and the Coriolis coupling between the vibrational angular momentum
of these sublevels and the (hindered) internal rotation of the CH, subunit inside
the complex was included. With the use of the w; transition dipole moment
function—it was assumed that the weak interaction with Ar does not affect this
transition dipole moment—the infrared spectrum in the region of the v; mode could
then be generated completely ab initio. This spectrum is shown in Figure [-14]
next to Miller’s experimental high resolution spectrum. It is obvious that the
agreement is very good and that the structure of the measured spectrum can be
fully understood from the ab initio calculations. More details are given in two
papers3%238  where it is shown in more detailed displays of each of the seven
bands that even the individual lines agree very well in most cases, and can thus be
assigned.

These examples, and the previous summaries of the results for other dimersZ$,
demonstrate that the pair potentials from ab initio SAPT calculations are indeed
accurate. Another, more global, comparison with experiment which confirms this
finding was made by computations of the (pressure) second virial coefficients of all of

these dimers over a wide range of temperatures3%,
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Figure 1-14. Experimental (upper panel) and theoretical (lower panel) infrared spectrum of the Ar-CH,
complex

13.2. Nonadditive Interactions, Spectroscopic Signatures of Molecular
Clusters, and Simulations of Condensed Phases

In this section we present some results obtained with the SAPT code for three-body
interactions, SAPT33Z, Routine applications of SAPT to three-body interactions
are relatively scarce. Here we concentrate on the water clusters with a special
emphasis on the simulations of the liquid water properties starting from ab initio
SAPT potentials for pair and three-body interactions and on clusters of water
with hydrogen chloride in the context of protolytic dissociation of HCI in small
water clusters. Other applications of SAPT to, e.g. Ar,—HF trimer can be found in
Ref. (313).
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13.2.1. Water clusters and simulations of gaseous and liquid
water properties

Small water clusters (H,0), are hydrogen bonded complexes with each monomer
acting simultaneously as a proton donor and proton acceptor. The trimer has a
triangular equilibrium structure with rather strongly non-linear hydrogen bonds, the
tetramer has a square planar system of hydrogen bonds, and the pentamer has a
slightly puckered, pentagonal hydrogen bonded framework, cf. Figure for a
schematic representation of geometries corresponding to the global minima of these
clusters.

The importance of various pairwise additive and non-additive interaction energy
contributions for the equilibrium geometries of the water trimer, tetramer, and
pentamer were studied in Ref. (372). See Table for the results. The results
reported in Table show that a substantial part of the binding energy
originates from the three-body contributions: 17% for the trimer, 26% for the
tetramer, and 29% for the pentamer. The dominant three-body term is the second
order induction energy, mainly due to the dipole induced-dipole interactions, but
also the third order induction energy is important, so if one wishes to include
induction effects by iterationZ2832 of the induced dipole moments and the corre-
sponding electric fields, one should proceed with this iteration beyond the first
step. The contribution of the third order induction-dispersion energy is small
and, even though the dispersion energy is an important component of the pair
hydrogen bonding energy, the Axilrod-Teller three-body dispersion energy is even
smaller. The three-body exchange effects are substantial, however, so one cannot
restrict the treatment of non-additive effects in water to the classical induction
terms only.

Simulations of the liquid water properties have been the subject of many papers,
see Ref. (374) for a review. Recently a two-body potential for the water dimer
was computed by SAPT(DFT)3Z2. Its accuracy was checked3Z by comparison
with the experimental second virial coefficients at various temperatures. As shown
on Figure [[-16 the agreement between the theory and experiment is excellent.
Given an accurate pair potential, and three-body terms computed by SAPT3Z,
simulations of the radial O-O, O-H, and H-H distribution functions could be
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Figure 1-15. Structures of the global minima for the water trimer (H,O)3, tetramer (H,0),, and pentamer
(H,0)s
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Table 1-10. Decomposition of the pair and three-body interaction energies (in kcal/mol) for
the structures corresponding to the global minima of small water clusters

Trimer Tetramer Pentamer

2-body E) —26.645 —48.963 —64.090
E2) —12252 —25.364 —34.146

Eg) —9.121 —16.088 —20.932

Eean 36.583 72.445 96.634

ESAPT —11.435 —17.970 —22.534

ELPM —11.624 —18.111 —22.201

3-body E2) —1.351 —3.169 —4.551
EY) —0.688 —1.165 ~1.251

ES) —0.090 0.026 0.195

ES) 0.060 0.077 0.045

Eexet —0.345 —1.958 3.558

ESRPT —2.414 —6.189 —-9.120

ELCSPD 2371 —6.081 —8.978

4-body cospa —0.562 ~1.220
5-body E P —0.009
total ESAPT —13.849 —24.159 —31.654
ELCSPM —13.995 —24.754 —32.481

int

performed, and compared with the experimental data2Z. The old work of Clementi
and collaborators3Z83%2 suggested that higher many-body (four-body, etc.) terms are
important, so simulations of the radial distribution functions also included these
higher terms in the many-body expansion of the total interaction potential. The
results of the Monte Carlo simulations that used the SAPT(DFT) pair potential,
SAPT three-body potential, and higher N-body contributions from the iterative
induction calculations2832 are presented in Figure [[ZI71 An inspection of this
figure shows that pair potential alone reproduces reasonably well the minima and
maxima of the radial O—H and H-H distribution functions. However, it fails to
reproduce the O-O radial distribution function. Adding the three-body terms makes
the agreement between theory and experiment almost quantitative for the O-H and
H-H radial distribution functions, and semiquantitative for the O-O distribution
function. Finally, taking into account four-body and higher many-body effects
one can get a quantitative agreement between the theory and experiment. The
results presented in Figures and [[=T7] show that using high accuracy ab initio
methods for the calculation of pair and nonadditive potentials it is possible now to
characterize the equation of state for a dilute gas, and the structural characteristics
of the liquid, as well as some thermodynamic characteristics such as the temperature
dependence of the water density.
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Figure 1-16. Theoretical (full line) and experimental (open triangles) second virial coefficient for
gaseous water at various temperatures

13.2.2. Clusters of water and HCI and their spectroscopic signatures

Theoretical and experimental studies of the interactions between water molecules
and hydrogen chloride are of fundamental importance for the understanding of
the production of stratospheric chlorine molecules which, in turn, take part in the
catalytic ozone depletion reactions. This mainly heterogeneous atmospheric reaction
begins with the adsorption of the HCI molecules on the surface of water icicles is
the source of the stratospheric chlorine atoms in the polar regions38~382  Chlorine
molecules are photolysed by solar radiation and the resultant chlorine atoms take
part in the destruction of the stratospheric ozone. The study of the (H,0),HCl
clusters is an important step towards understanding of the behavior of the HCI
molecule on the ice surface333~386,

Only the first two members of the (H,0),HCl series have been observed by means
of high resolution spectroscopy. The rotational spectrum of the dimer H,OHCl
has been first recorded and analyzed by Legon et al.3¥!, and reinvestigated by
Kisiel and collaborators3%. Recently, Kisiel et al.3832 reported the observation
of the second member of the series (H,0),HCI, also by rotational spectroscopy.
Refs. (391-392) reported a detailed theoretical investigations of (H,0),HCI, and
compared theoretical predictions with the experimental results from the rotational
spectroscopy2232, The structure, molecular properties, and the qualitative picture
of the vibration-rotation-tunneling dynamics were in excellent agreement with the
experimental data®?3%! This very good agreement between theory and experiment
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(upper right panel), and H-H (lower right panel) radial distribution functions computed from the pair
SAPT(DFT) (dotted line), pair+three-body (thin line), and full, pair+three-body+N-body, potentials
(thick solid line), respectively

is illustrated on the example of the dipole moment and nuclear quadrupole coupling
constants of the trimer. Unlike the water trimer, the (H,0),HCI trimer has a strong
dipole moment of 2.31 D. This could be guessed since the trimer was observed
in the microwave experiments. Somewhat surprisingly, the dipole moment of the
cluster is strongly enhanced compared to the dipole moment resulting from the
addition of the three dipole moment vectors of the respective monomers. The latter
quantity represents only 48% of the dipole moment of the cluster. This suggests that
the mechanism leading to such a large dipole moment enhancement is governed by
the polarization of the HCl molecule by the electric charge distributions on the two
water monomers{®, The best theoretical estimates32! of the total dipole moment of
(H,0),HCI and of the components along the principal axes of the inertia tensor of
the cluster, obtained at the CCSD(T) level, agree very well with the experimental
values derived from the Stark effect measurements in the microwave spectraﬂ’, see
Table [[=11] for the comparison. The theoretical total dipole moment agrees with the
microwave experiment within 0.6%. The a component is reproduced within 0.2%,
while for the small b component the error of the ab initio calculations amounts to
7%. However, due to some constraints in the interpretation of the experimental data,
the ¢ component was set equal to zero. Therefore, the experimental value of the b
component should be considered as effective, and the overall agreement between
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Table 1-11. The dipole moment (in D) and nuclear quadrupole coupling constants (in MHz)
for the chlorine nucleus of the (H,0),HCI cluster

aug-cc-pVDZ aug-cc-pVTZ  Extrap. Best est. Experiment
M 2.422 2.375 2.355 2.314 2.328(3)
Mg 2.349 2.295 2.272 2.227 2.232(3)
oy, —0.574 —0.595 —0.604 —0.615 0.662(2)
Mo 0.150 0.151 0.151 0.149 0.00
X:z —43.15 —46.16 —47.43 —49.4(5)
Xx 19.94 21.23 21.77 22.8(5)
Xyy 23.21 24.93 25.65 26.6(15)

the theory and experiment is satisfactory. It is worth noting that a good agreement
between the theory and experiment was obtained for the components of the nuclear
quadrupole coupling constants. The results are also reported in Table [Z11] Here
the calculations were performed using the analytical derivatives of the second-
order Mgller-Plesset energy. This shows that structure predicted by the ab initio
calculations is indeed very accurate, and that the ground-state averaging effects are
not very important.

Let us discuss in more details comparisons between theory and micro-
wave experiments for the (H,0),HCI trimer. To predict a qualitative pattern of
the lines in high-resolution spectra of the (H,0),HCI trimer one has to consider
the permutation-inversion (PI) group of the complex33. The full PI group of
the cluster is given by the product G = G, ® S, ® S5, where G, = {E, E*} is
a two-element group of inversion (E denotes the identity, and E* the space-
fixed inversion), S, is the permutation group of two oxygen atoms, and Ss is
the permutation group for the five hydrogen atoms. The full PI group contains
2 x 2 x 5! =480 elements. Such a big group would be very impractical to classify
the vibration-rotation-tunneling (VRT) levels and to label possible spectroscopic
transitions. However, most of the elements of this group correspond to unfeasible
operations. Indeed, out of the 5! permutations of the protons in the cluster, only
the permutations (12), (34), and (12)(34) are feasible. Other permutations would
correspond to the motions in the complex that break chemical bonds. Moreover,
the barrier to the exchange of two water monomers in the cluster is relatively
high, ~ 8 kcal/mol, so the permutation-inversion operations related to S, can be
neglected as well. Thus, we end up we the following PI group of feasible operations:
Gy ={E, E*, (12), (34), (12)(34), (12)*, (34)*, (12)(34)*}. One may note that the
permutation-inversion operation E* correspond to the flipping motions in the trimer,
while the PI operations (12)* and (34)* govern the so-called tunneling motions.
The flipping motion is accomplished by rotating one water monomer about its
donor hydrogen bond, while the two bifurcation-tunneling pathways involve one
monomer having its protons on the opposite sides of the hydrogen-bonded ring.
The free donor proton replaces the hydrogen-bonded one, and the latter is moved
to the other side of the ring. During this exchange a flipping of the free acceptor
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proton takes place. Ab initio calculations show that the barriers for the flipping
and bifurcation-tunneling motions in the trimer are relatively low, of the order of
0.3 kcal/mol for the flipping and 2 kcal/mol for the bifurcation-tunneling. The VRT
states of the complex can be classified according to the irreducible representations
(irreps) of the Gy group which can conveniently be represented as a direct product
Gy={E,E*}®{E, (12), (34), (12)(34)}, so the classification of the VRT states can
be obtained from the correlation between the states classified under G, = {E, E*}
and Gg. The energy levels corresponding to the G, classification will be denoted
by E,+ and E, . The correlation between the irreps of G, and Gg shows that
the states A* are split into quartets with symmetry labels A7, and By,. Thus, the
bifurcation-tunneling motions introduce the splitting of the flipping tunneling states
into quartets. Since the barriers corresponding to the bifurcation-tunneling motions
are larger, one may expect that the splitting into quartets will be much smaller than
the splitting corresponding to the flipping motions. The schematic representation of
the energy levels for the nonrotating (H,0),HCI trimer are presented in Figure [[-18]
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Figure 1-18. Schematic representation of the VRT levels for the non-rotating (H,0),HCI trimer and
its HODOH,HCI isotopomer according to the PI groups Gg and G,
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An approximate location of the energy levels in Figure [[=I8] can be justified by
considering the following (very general) Hamiltonian for the nuclear motion:

H= Hﬂip +Hbif +Hr0t +HC0r’ (1-283)

where the consecutive terms on the r.h.s. denote Hamiltonians describing the
flipping and bifurcation-tunneling motions (the so-called internal motions), the
external rotational part given by the asymmetric top Hamiltonian, and the Coriolis
coupling term. To simplify the discussion let us consider the nonrotating J =0
case, so that the two last terms on the r.h.s. of Eq. (I2283) can be neglected,
assume that the intermolecular potential does not depend on the bifurcation-
tunneling coordinates and that the eigenvalues and eigenfunctions of the Hamil-
tonian describing the flipping motion are known. The corresponding wave functions
W,. are adapted to the G, group. Then, the eigenvalues of H,, can be found by
computing the expectation value of this Hamiltonian with wave functions obtained
from {V¥,., ¥,-} by symmetry adaptation to Gg. The corresponding wave functions
are obtained by applying Wigner’s symmetry projection operators of the group
G, ={E, (12),(34), (12)(34)} on ¥,. and W¥,_. The quantity « represents the
splitting of the levels exclusively due to the flipping motions. The parameters 37 ,,
which define the splitting of the tunneling flipping states into quartets, are given
by the following matrix elements:

ﬁfz = ("W |H" 7 ,0,.),  m = (12), m=(34). (1-284)

Obviously, the ground state of the complex must be described by the totally symmetric
(nodeless) wave function, so it is of A} symmetry. This suggests that both 8] and
B are negative. It is, nevertheless, very difficult to estimate the magnitude of the
parameters E ,. and ,sz without a prior knowledge of the potential energy surface of
the cluster.

Having the qualitative pattern of the VRT levels, one can turn to electric dipole
allowed transitions. The allowed dipole transitions between states labeled by the

irreps I} and T, of Gy are obtained from the relation22:

Lo =A;, (1-285)

where I'™ is the antisymmetric irrep of Gg. This leads to the following dipole
selection rules:

Al, < Al, B, < B, (1-286)

Thermal relaxation between states of the same A, , or B;, symmetry will occur
independently of the parity, so at very low temperatures the upper quartet states
will be much less populated.

The knowledge of the permutation-inversion group allows us to determine the
intensity pattern that should be observed in the microwave experiments. It can be
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obtained by considering the spin-statistical weights. These have been obtained by
generating the representation spanneq py all possible proton spin functions, Ff;fn =
18A, ®6A, & 6B, @ 2B,, and by requiring that:

Lipin ® Iyrr D Ly = B, (1-287)
where I3, denotes one of the irreps entering the decomposition of I} . The

resulting spin-statistical weights show that the intensity pattern in the high-resolution
spectra should be 9:3:3:1.

The qualitative picture of the tunneling dynamics and the large values of the
computed a and b components of the dipole moment suggest that the lowest lying
vibrational states of (H,0),HCl will arise from the vibration-rotation-tunneling
motions of the two water subunits in the cluster, and are predicted to be of BT, BT,
A, and AT symmetry with the spin-statistical weights of 18:9:9:2, respectively.
Thus, the rotational spectrum should consist of transitions allowed by the a and b
dipole moment components, which are further split into quartets belonging to the
four low-lying vibration-rotation-tunneling states.

The qualitative picture of the spectroscopic features of the (H,0),HCI cluster
presented above is in a perfect agreement with the microwave measurements
of Kisiel and collaborators322. The observed rotational spectra show four states,
denoted in Ref. (389) by S, §’, W, and W’. On the basis of analysis it was possible
to assign these states to By, By, A5, and A symmetries, cf Figure The
small and large splittings follow approximately the pattern of the levels presented
in Figure[T-18] suggesting that the barriers for the internal (flipping and bifurcation-
tunneling) motions are realistic. Furthermore, the spectrum of the HCIHODOH,
isotopomer shows splittings into doublets, again in agreement with the G, picture.
The most intense transitions are the a-type transitions, in agreement with the large
value of the a component of the dipole moment of the cluster. The c-type transi-
tions were not observed, and this is nicely explained by the very small value of the
¢ component of the dipole moment. Finally, the intensity pattern observed in the
rotational spectrum is 4:2:2:1, while theory based on the G4 group predicts 9:3:3:1.
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Figure 1-19. Stick diagram of the (a) and (b)-type Jgy . = log = J/ . = 2, rotational transitions in
(H,0),HC1 ' '
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Small disagreement may be due to some specific non-equilibrium properties of the
supersonic expansion.

In a subsequent paper32 quantitative predictions of the vibration-rotation-
tunneling motions in the trimer were reported. Dynamical calculations were based
on the SAPT pair and three-body potential energy surfaces for the flipping motions
of the non-hydrogen-bonded protons in the (H,0),HCI trimer. The corresponding
experimental spectrum has not been reported thus far, so it is difficult to judge the
accuracy of these theoretical predictions.

13.3. Solvation Processes in Small Water Clusters

The proton transfer is one of the most important reactions in chemistry since it takes
place in organic, inorganic, and bioorganic processes, both in the stoichiometric
and catalytic regimes. Moreover, the proton transfer occurring in the (H,0),HCl
cluster is particularly important since the formation of Cl~ from HCI interacting
with water molecules seems to be a prerequisite for the Cl, formation responsible
for the ozone depletion. Thus, in the study of the (H,O),HCI trimer, the proton
transfer has also been investigated. It is known that the neutral forms (H,0),HCI,
and the ionic forms (H;O*Cl")(H,0),_,, can coexist for n equal to 4 and 5, but
the ionic form (H;O*Cl™)(H,O) has not been observed thus far. In order to get
an estimation of the barrier for the HCI dissociation in the (H,0O),HCI cluster, the
structure of the dissociated trimer was optimized32 with the distances of the OH
bonds in the hydronium ion kept frozen and equal to 1.04 A 1.03 A and 0.98 A. The
structure of the dissociated complex remains a cyclic geometry. Compared to the
neutral global minimum this structure shows a global shortening of the distances
between heavy atoms since the interaction between the different entities is stronger
due to their ionic character. For instance, the O- - - O distance is 2.497 A at the MP2
level compared with the corresponding distance of 2.79 A for the global minimum.

From the energetic point of view, the ionic form lies +11.73kcal/mol higher
than the global minimum at the CCSD(T) level. Compared to a similar study for
the water trimer32¢, the values for the HCI dissociation are substantially smaller by
around 20 kcal/mol than the one obtained by Siegbahn for the dissociation of the
water trimer computed with the same optimization constrains. This difference can
be interpreted as a crude sign of the stronger acidity of hydrogen chloride compared
to water. To conclude, we should add that a transition state implying a proton
transfer can also be characterized. Its structure is cyclic and corresponds to the
proton transfer from one water molecule to the other, with a symmetric substructure
(H5O5) interacting with the chlorine anion. In the (HsO3) substructure, one of
the hydrogen atom is equidistant from the two water molecules of 1.22 A. This
transition state connects the (global) neutral minimum through an ionic pathway
with a high barrier of +13.76kcal/mol at the CCSD(T) level. The height of this
barrier suggests that the dissociation process will be extremely slow, even at high
temperatures.
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One may ask whether the dissociation process can occur in the next hydrate of
this series, namely the tetramer (H,O),HCI. It is known from the crystallographic
X-ray diffraction study that a stable crystal of (H,0);HCI stoichiometry exists32,
and its (rotationally unresolved) near-infrared spectrum was observed32, The X-ray
and spectroscopic data on the crystal suggest that the HCl molecule in the crystal
is fully dissociated, i.e. the stoichiometry of the tetramer should rather be written
as (H,0),(H;0)*CI". On the other hand the near-infrared spectrum of the tetramer
in the argon matrix32 suggests that HCI is not dissociated.

The protolytic dissociation process in the tetramer was studied in Ref. (400)
As could be guessed from the matrix isolation studies of the cluster, the global
minimum on the potential energy surface of the trihydrate corresponds to a neutral
form of the cluster. Calculations predicted a cyclic rectangular hydrogen-bonded
structure with both HCI and three water monomers acting simultaneously as proton
donors and acceptors. The structure of the neutral trihydrate does not agree with the
structure “guessed” in Ref. (399) from the analysis of the infrared matrix isolation
spectra. The authors of Ref. (399) suggested that the OH stretch at 3430 cm ™! is too
small for a water molecule forming hydrogen bonds with only two molecules, and
suggested that this particular water molecule should be surrounded by two other
waters and by the HCI molecule. However, the harmonic frequencies corresponding
to the theoretical structure of the global minimum2® agree quite well with the
experimental frequencies of Ref. (399). In particular, the OH stretch frequency
in the arrangement CIH---OH---O, is 3379cm™!, in a good agreement with the
experimental value of 3430cm™!. This suggests that the analysis of the matrix
isolation spectra leading to a geometry with one water molecule attached to a cyclic
(H,0),HCl trimer22 is not correct.

There is another minimum on the potential energy surface of the (H,0),HCI
trihydrate corresponding to an ionic form of the cluster. The ionic minimum is
characterized by a cyclic structure with the C1™ ion hydrogen-bonded simultaneously
to the two water molecules and the hydronium ion. It is interesting to note that the
ionic form is less stable, as it is located 5.2 kcal/mol above the neutral minimum.
Therefore, the ionic structure of the trihydrate observed in the X-ray experiments
27 cannot directly be related to this ionic minimum. In fact, the structure observed
in crystals must be considered as effective, taking into account the crystal field
effects.

The mechanism leading from the neutral to ionic minima is presented in
Figure [:2200 First, the proton is transferred from the HCl molecule to the water
molecule. This step is followed by another proton transfer from the hydronium ion
to the second water molecule and by a flipping motion of the free (non-hydrogen-
bonded) OH bonds from the up-up-down to the down-down-up position. The latter
step is responsible for the formation of the transition state. The next step is achieved
by performing a flipping motion of the free OH bonds directly to the ionic minimum.
Although the optimizations were performed at the B3LYP level, B3LYP energetic
locations of the structures were confirmed by single-point CCSD(T) calculations,
so the mechanism presented on Figure should be reliable.
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Figure 1-20. Mechanism of the protolytic dissociation in the tetramer (H,0);HCI

Since the ionic minimum does not correspond to the structure derived from
X-ray experiments it was interesting to check?® whether one can somehow mimic
the crystal field effects, and calculate an effective structure of the tetramer in the
presence of a continuum. In order to mimic the crystal field effects the ionic structure
of the trihydrate was optimized2% using the self-consistent reaction field method 2.
The SCRF geometry was found to be very different from the ionic geometry in the
gas phase. In fact both the SCRF calculations and the X-ray diffraction measure-
ments22 predict globally the same, almost planar structure close to a rectangle,
differing just by some details. Also the agreement between the computed and
measured32 infrared frequencies is rather good (with a root-mean-square deviation
of ~50cm™"). This kind of agreement supports the conclusion®® that the ionic
dissociation in the trihydrate cannot be observed in the gas phase.

The barriers to the HCI dissociation in the trimer and tetramer are very high,
making the dissociation process extremely slow. However, we all know that in
solution HCl is fully dissociated. Therefore the authors of Ref. (386) tried to find
how many water molecules are needed to dissociate HCI in the (H,0),HCI cluster.
To this end the geometries corresponding to the neutral and ionic minima on the
surface were optimized, and the lowest-energy pathways connecting these minima
were determined. These pathways can be considered as mechanisms governing the
chemical reaction of HCI dissociation in the presence of a few water molecules.
Contrary to the tetramer, the global minimum of the pentamer (H,0),HCI is ionic.
It corresponds to a zwitterion consisting of the Cl™ anion separated from the
hydronium cation H;O" by a ‘crown’ of three neutral water molecules. There is
also a neutral minimum corresponding to a cyclic hydrogen-bonded structure with
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water molecules and HCI serving at the same time as proton donors and acceptors.
This structure is roughly 2.4 kcal/mol less stable than the ionic structure. Note
parenthetically that in Ref. (386) the optimizations were performed at the B3LYP
level. However, the B3LYP energetic locations of the structures were confirmed by
single-point CCSD(T) calculations38.

In order to find the mechanism leading from the ion to the neutral pentamer,
i.e. of the association, the reverse process of dissociation, the authors of Ref. (386)
observed that the neutral system is cyclic while the ion has the cage-like structure
of Figure[[-2T] A likely ionic intermediate minimum is obtained by flipping a
proton (marked by the hash ‘#” symbol in the global minimum structure shown on
Figurd[=2T)), thus breaking the three-fold symmetry of the global minimum. This flip
proceeds via the transition state “TSflip0’. To get from the local minimum ‘Ionicl’
thus obtained to the next local minimum, denoted on the figure by ‘lonic2’, we
must cross a transition state referred to as TS1. This transition state is obtained by a
proton transfer from the hydronium ion at the bottom to one of the water molecules
in the crown, which now becomes a hydronium ion. It leads to a reorganization
of the hydrogen bonds and to the formation of one hydrogen bond between the
new hydronium ion and one of the waters in the crown. The structure ‘Ionic2’
is 2.67 kcal/mol higher in energy than the global minimum. Since two protons
on neighboring water molecules are sticking down in ‘lonic2’, it is energetically
favorable to flip one proton, so that it points up. This gives the structure labeled
by ‘Ionic3’. This flipping motion proceeds via the transition state “TSflip’, where
the flipping proton is again marked by a hash sign. The one but last step in the
dissociation is the formation “TS2’, which leads to a rather high lying saddle point.
Finally the Zundel cation donates a proton to Cl™. During this proton transfer,
the weak H bond breaks between the C1™ anion and one of the water moieties with
the distance increasing from 2.6 to 5.3 A.

On the basis of the mechanism summarized above one can expect that the
dissociation reaction in the pentamer will not be particularly fast. The barriers
corresponding to the ‘TS1’ and ‘TS2’ structures are relatively high, but lower
than the barriers in the dissociation pathways of the trimer and tetramer. One can
expect that for the hexamer (H,0);HCI the barriers will be even lower, making the
dissociation process very fast. The global minimum on the potential energy surface
of the hexamer is again ionic38¢. The corresponding structure looks like an open
book: one page is spanned by the ions and two water molecules, and the other
again by the ions and the other two waters. Unlike in the pentamer, the hydronium
and chloride ions are not separated by water molecules, but remain in a relatively
close contact. There is also a neutral minimum corresponding to a cyclic hydrogen-
bonded structure with water molecules and HCI serving at the same time as proton
donors and acceptors. This structure is roughly 7.1 kcal/mol less stable than the ionic
structure.

It is interesting to note that the analysis of the pair and three-body contributions
to the total interaction energy quantitatively explains the relative stability of the
ionic and neutral minima of the pentamer. This is illustrated in Table where
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Figure 1-21. Mechanism of the protolytic dissociation in the pentamer (H,0),HCI

two- and three-body contributions to the interaction energy for various subclusters
of the ionic global minimum and neutral local minimum of the (H,0),HCI pentamer
are reported. As expected, the main stabilizing term (—107.75kcal/mol) is the
interaction between the anion (monomer 5) and the cation (monomer 1). It gives
about half of the total interaction energy. However, this contribution is not sufficient
to stabilize the ionic cluster by itself, since the reaction

HCl+H,0 — CI” +H,0", (1-288)

is endothermic by 163.05 kcal/mol at the CCSD(T) level. Thus, the ion—ion inter-
action is not sufficient to let the reaction proceed, but together with the pair
interactions between the neutral water molecules in the crown (molecules 2, 3,
and 4) and the hydronium cation (three times ~ —25.4kcal/mol) and C1~ (three
times &~ —11.7 kcal/mol) the reaction becomes energetically possible. The nonad-
ditive three-body effects are destabilizing the global minimum, and they contribute
about &~ 10% of the pair interactions. Higher order terms in the many-body
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Table 1-12. Two- and three-body contributions (in kcal/mol) to the total interaction energies for the
ionic and neutral structures of the (H,0),HCI pentamer

Ionic Neutral
Subcluster ~ Pair Subcluster 3-body Subcluster Pair Subcluster 3-body
(1,5) —107.75 (1,3,4) 5.21 (1,2) —2.60 (34.5) 1.50
(1,2) —25.37 (1,2,4) 5.20 (1,3) —1.07 (2,4,5) —2.44
(1,3) —25.43 (1,2,3) 5.19 (14) —0.99 (2,3)5) —0.43
(1,4) —25.40 (3.4,5) 1.46 (1,5) —3.38 (2,3,4) —-1.72
(2,5) —11.70 (24.5) 1.45 (2,3) —3.21 (1.4,5) —1.89
(3.5) —11.69 (2,3,5) 1.45 (2,4) —1.01 (1,3,5) —0.84
(4.5) —11.71 (14,5) 0.50 (2,5) —1.43 (1.3,4) —0.33
(2,3) 1.22 (1,3,5) 0.49 (3.4) —3.54 (1,2,5) —3.88
(2.4) 1.21 (1,2,5) 0.48 (3.5) —0.68 (1.2,4) —0.28
(3.4) 1.21 (2,3,4) 0.48 4,5) —0.30 (1,2,3) —1.67
total —215.41 total 21.91 total —17.91 total —11.98

expansion of the total interaction energy are negligible28. In the case of the neutral
structure the situation is quite different. Although the largest contributions to the
total pair interaction energy come from the closest water—water interactions, they
contribute only 30%, and all other pair interactions including the distant ones have
to be summed up to give the net interaction effect. The nonadditive effect is almost
as large as the total pair interaction energy. Evidently, the three-body forces play
an important stabilizing role in determining the structure of the neutral pentamer.
Again higher-order many-body effects are small. They contribute ~ 6.5% of the
total interaction energy at the CCSD(T) level.

The association process from the ionic to the neutral form proceeds in four
steps. See Figure for the details. In the first step we go to a transition state
‘TS1’, which contains the Zundel cation. A hydrogen bond on one page of the
hexamer “book” is broken, and another is formed. The next structure occurring
on the pathway is a local minimum ‘Ionicl’. This structure closely resembles to
the “TS1’ structure, except that there is no Zundel cation. The next step is the
formation of the second transition state ‘TS2’. This structure has a proton that is
shared equally by a water molecule and the hydrogen chloride. In the last step a
proton transfer towards the chloride ion occurs, leading to the neutral structure. It is
worth noting that the dissociation process in the hexamer should be relatively fast.
Indeed, starting from the neutral structure we have just to overcome two relatively
low barriers.

In a very ingenious experiment the authors of Ref. (401) could get a direct
probe of the HCI dissociation in water clusters pump-and-probe femtosecond
spectroscopy. They observed that the dissociation process takes place sponta-
neously in the presence of five water molecules, while the dissociation of
HCI in smaller clusters can only be photoinduced. Theoretical predictions
reported in Ref. (386) fully confirm these experimental findings. In fact
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Figure 1-22. Mechanism of the protolytic dissociation in the hexamer (H,0)sHCl
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theoretical results were published before the experimental paper, and were
widely discussed in a commentary®*2 on Ref. (401) in the Science Compass.
The example of the HCIl dissociation in small water clusters shows again
that highly accurate methods of modern quantum chemistry together with the
theory of intermolecular forces and theoretical spectroscopy are capable of
correctly predicting such complicated phenomena like the mechanisms of acidic

dissociation.

134. Collision-induced Properties and Modelling
of Raman Spectra of Atomic Gases

The collision-induced light scattering in the helium gas has been the subject of
many experimental studies22~2% Most of these measurements were done at high
densities?3-49% 5o the reported Raman intensities were affected by three-body
contributions, and pure pair spectra had to be separated out?® by applying simplified
models. Only the polarized and depolarized Raman spectra reported by Proffitt,
Keto, and Frommhold424L were shown to be free from three-body contributions.

These experimental advances stimulated associated theoretical developments.
In an extensive theoretical study Dacre and Frommhold*! have checked the
accuracy of the ab initio CISD (CISD stands for the Configuration Inter-
action method restricted to single and double substitutions) trace and anisotropy
polarizabilities of He,¥2 by exposing them to the test of computing the
observed Raman intensities. While the depolarized spectra computed from Dacre’s
polarizability22 showed good agreement with the experiment, the theoretical
polarized spectrum was much less intense than the spectrum derived from the
experiment3!,

The reasons for the less satisfactory agreement between the theoretical and
experimental polarized Raman spectra may be both on the theoretical and on
the experimental sides. The experimental polarized spectrum is obtained as the
difference of two nearly equal signals excited with different beam polarizations
40410 and the accuracy of the polarized intensities deduced from the experiment is
rather poor. On the other hand, the theoretical values of the interaction-induced trace
may suffer from the size-inconsistency of the cisD method or from the basis-set
superposition error.

In Ref. (316) the SAPT approach has been applied to compute the interac-
tion-induced polarizability of the helium diatom. Before discussing the Raman
spectra obtained from the SAPT collision-induced polarizabilities, let us discuss
the importance of various physical contributions to the parallel and perpendicular
components of the collision-induced polarizability tensor.

This is analyzed in Tables[[=13]and [[-T4 where the computed values of Aa_, and
A, in terms of SAPT contributions at various interatomic distances are reported.
The largest contributions to the components of the interaction-induced polarizability
are given by the first-order terms. Except for the smallest interatomic distance (R =3

bohr), the sum Aagiljml + Aag,)exch, i = z or x, reproduces more than 88% of the total
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Table 1-13. SAPT contributions (in 10~ a.u.) to the parallel component of the interaction-
induced polarizability of He, as function of the interatomic distance R (in bohr)

R 3.0 5.6 7.0 10.0
Aal) 342217 44.626 22.184 7.572
Aa —616.256 —9.498 —0.627 —0.001
Aa? 143.300 1.507 0.217 0.020
ad® —129.820 —0.799 —0.034 —0.000
Aal)y 57.033 2.976 0.603 0.045
Aa g ~7.158 —0.250 —0.021 0.000
AaSAPT —5.744 39.645 22.370 7.653

Table 1-14. SAPT contributions (in 10~ a.u.) to the perpendicular component of the
interaction-induced polarizability of He, as function of the interatomic distance R (in bohr)

R 3.0 5.6 7.0 10.0
Aoty —114.194 —21.407 ~11.037 —3.785
Al —112.193 —1.140 —0.057 —0.000
Aa® 10.974 0.203 0.047 0.005
Aa? i 1.300 0.000 0.000 0.000
Ao, 18.550 0.923 0.217 0.021
Aa®? —2.888 —0.047 —0.003 0.000

xx,exch—disp

AaSAPT —185.932 —21.442 —10.851 —3.752

interaction-induced polarizability. The interatomic correlation contributions are of
relatively modest importance. For example, in the region of the potential minimum
(R = 5.6 bohr) the sum of the dispersion and exchange-dispersion terms contributes
to Aer_, and A, only 7% and 4%, respectively.

The computed polarizability invariants have been analytically fitted and used
in quantum-dynamical calculations of the binary collision-induced Raman spectra.
The results of the dynamical calculations are summarized in Figure [2231 An
inspection of this figure shows that the agreement of the theoretical and measured 42
depolarized Raman intensities is satisfactory. Most of the intensities agree within
3% or better. Only at very low and high frequency shifts this good agreement
deteriorates somewhat. Still, the predicted intensities at high frequencies are within
the experimental error bars. At very low frequencies the theoretical results are
outside the experimental error bars, but these discrepancies are consistent with the
estimated (combined) error of the SAPT and dynamical calculations.

The theoretical polarized Raman intensities agree with the experiment within
the large (£50-60%) experimental error bars over a wide range of the frequency
shifts. Except for the low frequency region, the predicted polarized spectrum is



Theory of Intermolecular Forces: An Introductory Account 123

o
1

D(v) (10™%cm?®)

100 200 300 100 _,.200 300
-v (em™) -v (em™)

Figure 1-23. Theoretical (full lines) and experimental (open circles) depolarized (left panel) and
polarized (right panel) Raman spectra of the He gas at room temperature

much less intense. It is worth noting that our results for the depolarized and
polarized Raman intensities are in good agreement with those generated from
the CISD polarizability invariants2l. Both these observations suggest that the
theoretical results are rather well converged, and that the error in the ab initio
polarized intensities is considerably smaller than the experimental error of 50
to 60%. It was concluded in Ref. (316) that the improvement of the agreement
between theory and experiment for these intensities should come mainly from the
experimental side.

In 2000 Chrysos and collaborators#3-41¢ from the University of Angers in
France reported new measurements of the depolarized and polarized Raman spectra
of the helium gas at room temperature23-212 The agreement between the new
experimental data and the calculations of Ref. (316) was excellent. In particular,
the computed and measured polarized spectra showed a remarkable agreement
over the whole frequency range scanned in the experiment, cf. Figure 224
In fact the experimental and theoretical curves on Figure are almost
indistinguishable. Moreover, low temperature measurements3® were also in a
perfect agreement with the theoretical results generated from the polarizability
invariants of Ref. (316) . This level of agreement between theory and exper-
iment suggests that invariants of the collision-induced polarizability tensor for the
helium diatomic collisional complex, as computed by SAPT3¢, are indeed very
accurate. Similarly good agreement was obtained for the Raman spectra of the neon

diatomZ418

13.5. Modelling of Dielectric and Refractive Properties of Atomic Gases

The dielectric properties of the helium gas are of great experimental interest, and it is
not surprising that since the early 1960’s increasingly accurate measurements2~428
are reported in the literature. In Ref. (317) a detailed study of the importance of the
quantum effects and of the applicability of the semiclassical expansion has been
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Figure 1-24. Theoretical (full line) and new experimental (circles) polarized spectrum of the He gas at
room temperature

reported. This study started from the ab initio SAPT trace polarizability3L® and it

involved semiclassical and full quantum calculations of the second dielectric virial
coefficient for the “He gas at various temperatures.

Before comparing theory and experiment let us discuss the convergence of the
semiclassical expansion of the dielectric second virial coefficient. In Table
the classical dielectric virial coefficient the first and second quantum corrections,
and the full quantum result are reported. An inspection of this table shows that the
quantum effects are small for temperatures larger than 100 K, and B.(7) can be
approximated by the classical expression with an error smaller than 2.5%. At lower
temperatures the dielectric virial coefficient of “*He starts to deviate from the classical
value. Still, for T > 50K the quantum effects can be efficiently accounted for by
the sum of the first and second quantum corrections. Indeed, for T = 50, 75, and
100K the series B (1) + Bgl)(T) + Bf)(T) reproduces the exact results with errors
smaller than 2%. At temperatures below 50 K the semiclassical expansion of the
second dielectric virial coefficient in powers of h? starts to diverge. Given the overall
pattern of convergence of the semiclassical expansion, it was interesting to check
whether any rational approximations involving the low-order quantum corrections can
reproduce the converged quantum result. Since only the three terms in the expansion
of B.(T) as a power series in h* were computed, only the simplest [1/1] approx-
imant could be used. The values of this approximant at various temperatures are
also reported in Table Except for the lowest temperatures, the simple [1/1]
Padé approximant works surprisingly well. For T = 15 and 20K the sum of the
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Table 1-15. Second dielectric virial coefficient of *He (in cm®mol~?) as function of the
temperature (in K)

2
T BO(T) BI(T)  BA(T) SBO(T)  [1/1] B(T)
n=0

4 —0.0842 0.7178 —6.5461 —5.9125 —0.0133 —0.0081
5 —0.0512 0.3040 —2.0226 —1.7699 —0.0115 —0.0081
7 —0.0298 0.1028 —0.4354 —0.3624 —0.0102 —0.0085
10 —0.0209 0.0403 —0.1088 —0.0894 —0.0100 —0.0093
15 —0.0174 0.0169 —0.0282 —0.0287 —0.0111 —0.0108
20 —0.0170 0.0100 —0.0121 —0.0191 —0.0125 —0.0121
30 —0.0183 0.0054 —0.0041 —0.0171 —0.0153 —0.0152
40 —0.0203 0.0036 —0.0021 —0.0187 —0.0179 —0.0179
50 —0.0223 0.0028 —0.0012 —0.0208 —0.0204 —0.0204
75 —0.0274 0.0018 —0.0005 —0.0261 —0.0260 —0.0260
100 —0.0320 0.0013 —0.0003 —0.0309 —0.0309 —0.0309
125 —0.0362 0.0011 —0.0002 —0.0353 —0.0353 —0.0353
150 —0.0401 0.0009 —0.0001 —0.0393 —0.0393 —0.0393
175 —0.0438 0.0008 —0.0001 —0.0431 —0.0431 —0.0431
200 —0.0472 0.0007 —0.0001 —0.0466 —0.0466 —0.0466
250 —0.0536 0.0006 —0.0001 —0.0530 —0.0530 —0.0530
300 —0.0593 0.0005 —0.0000 —0.0588 —0.0588 —0.0588

classical term and first and second quantum corrections overestimates the exact result
by 265% and 58%, quantum corrections overestimates the exact result by 265%
and 58%, respectively, while the [1/1] approximant reproduces the quantum results
with errors of the order of 3%. This result is gratifying since the calculation of the
quantum corrections is much simpler than full quantum-statistical calculations. It
remains to be seen, however, if this optimistic result holds for other systems as well.

The comparison of the theoretical and experimental values of the second dielectric
virial coefficient can serve as a further check of the accuracy of the ab initio trace
polarizability. An example of such a comparison is shown on Figure where
the theoretical and experimental second dielectric virial coefficients for the “He gas
at various temperatures are reported.

At high temperatures the ab initio results agree well with the data from indirect
measurements322426-428 ' The only exception is the value at T = 242.95K. Here
the theoretical result is slightly outside the experimental error bars. The agreement
with the results of direct measurements222421~32 jq Jess satisfactory. The ab initio
results agree very well with the old experimental data of Orcutt and Cole22?, and
disagree with the data of Vidal and Lallemand2#2%, Since the theoretical values
agree with the majority of the high-temperature experimental data, and since the
second dielectric virial coefficient changes very slowly with temperature, it is very
likely that the results of direct measurements reported by Vidal and Lallemand2
are contaminated by nonadditive three-body effects.

At low temperatures the situation is more complex. The ab initio result at 77.4 K
agrees very well with the value from indirect measurements reported by Huot and
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Bose#I. Other low temperature data were obtained from direct measurements2
and show much scatter. At 7 = 13.804 K the ab initio value agrees with the
measurement, while at 7 = 7.198K the theoretical result is almost within the
experimental error bars. At other temperatures the disagreement is quite substantial,
and it is unlikely that the present value of the theoretical polarizability trace differs
from the exact one to the extent sufficient to explain the observed differences.
Therefore, these data should probably be remeasured. In fact, given the level of
agreement between the theoretical and experimental polarized Raman spectra2l4413
the theoretical values of the dielectric virial coefficient are probably more accurate
than some of the experimental data.

The low temperature refractive properties of the He gas have not been studied
extensively. However, the second virial Kerr coefficient can be related to the zeroth
moment of the polarized Raman spectrum, and thus deduced from the Raman
experiment. For the helium gas at the liquid nitrogen temperature the experiment
gives 1.46 a.u.2® the full quantum calculation 1.4532 while the classical result
computed according to Eq. ([Z260) gives 1.6332. This shows that also for the
Kerr effect the quantum corrections are important. A systematic study of these
corrections and of the convergence of the semiclassical expansion has not been
reported thus far, even though all necessary expressions are derived32.

Recently, Rizzo and collaborators reported ab initio calculations of the
polarizability invariants for the helium2822 neon32, and argon3!®3L2 dimers,
followed by quantum-statistical and classical calculations of the dielectric second
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Figure 1-25. Theoretical (full line) and experimental second dielectric virial coefficients of the He gas
at various temperatures
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virial coefficients. For the helium dimer the polarizability invariants reported
in Refs. (318,319) are in a fair agreement with the older data from SAPT
calculations2!®, but the agreement between the computed ad experimental dielectric
second virial coefficients is about the same as in Ref. (317) . For heavier gases
the quantum effects were shown to be very small28-322, Rizzo and collaborators
also reported calculations of some other density dependent properties of atomic
gases32. In particular, they found the second virial coefficient related to the electric
field induced second harmonic generation should be large in the binary mixtures of
He/Ar and Ne/Ar over a wide range of temperatures. Howeve, these findings have
to confirmed by experiments.

14. CONCLUSIONS AND OUTLOOK FOR THE FUTURE

The aim of this chapter was to show the reader that much can be learned about
intermolecular forces from ab initio quantum-mechanical studies, and from sound
comparisons between the theory and high precision experiments. We paid special
attention to the theory and computational methods required to calculate accurate
interaction potentials, interaction-induced properties, bound states, spectra, and
collisional characteristics of Van der Waals and hydrogen-bonded complexes, as
well as dielectric, refractive, and thermodynamic properties of bulk phases. The
examples given in the latter part of this chapter were meant to illustrate how the
experimentalist and theoretician working in a tandem can gather a large amount of
useful quantitative informations about the interactions between molecules. We hope
that we succeeded in convincing the reader that the field of intermolecular forces
and of the dynamics of bound and collisional Van der Waals and hydrogen-bonded
complexes is a branch of science well worth pursuing, both from the theoretical
and experimental sides.

Let us stress that several topics related to intermolecular forces were not covered
by the present review. First of all, the problem of intramolecular degrees of freedom
was not discussed. As far as the calculations of the interaction potentials are
concerned, the dependence of the potential on the internal degrees of freedom
must be considered. This does not introduce any significant complications in the
calculations if the geometries of the monomers are not strongly distorted from
their equilibrium values. Ab initio calculations of full potential energy surfaces
(including the intramonomer coordinates) are tedious, and this explains why fully
dimensional potentials are restricted to simple systems346334422430 " See however,
Ref. (431) for an ab initio calculation of the full flexible potential for the water
dimer. Dynamics of Van der Waals complexes including the intramonomer excita-
tions is much more complicated. Again, for simple cases fully dimensional calcu-
lations can easily be done=t=22=222~22 " put for larger systems new ideas are
needed. Some work in this direction has been done by Leforestier and collab-
orators33, Still, the advances in the computer power are so fast that nowadays
it is possible to perform nearly exact dynamical calculations for systems like
He-HC;N (HC;N is the cyanoacetylene molecule) including all bending and
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stretching motions of HC;N2¢. The problem of averaged geometries of the
monomers that would somehow take into account, in an effective way, the intra-
monomer vibrations is only important for monomers with large rotational constants
like H, or HF. For these monomers the equilibrium geometry is quite different
from the vibrationally averaged geometry, and a judicious choice of the average
geometry must be done22. For systems with small rotational constants the problem
of the intramonomer degrees of freedom and of the average geometry is important
only in the case of “soft degrees of freedom”, such as coordinates describing
the low frequency bending modes in cyanoacetylene. Again, new ideas as far as
the description of the coupling between these soft intramolecular modes and the
intermolecular modes are needed.

The subject of interactions between open-shell monomers3Z-#1 was not
discussed even though these interactions play an important role in the theory of
chemical reactions?¥2, For instance, the kinetics of a chemical reaction strongly
depends on the Van der Waals interactions in the entrance channel, far from the
region where the true reaction occurs#23, Open-shell interactions and dynamics are
very important for modeling of processes occurring in the atmospheric chemistry.
Important progress has been done in this field, especially for high-spin open-shell
complexes? like the oxygen dimer. Open-shell complexes are characterized by
surfaces that show conical intersections®3. The nonadiabatic couplings are due
to these intersections, and strongly modify the dynamics of open-shell Van der
Waals complexes. As rightly stated by Yarkony2, “nonadiabatic chemistry is an
intellectually demanding area of research, one of limited number of areas of the
electronic structure theory that has not been trivialized by standardized electronic
structure codes”. Also interactions of atoms or molecules in their excited states
are revisited now. This is especially interesting since some new types of interac-
tions, e.g. resonant interactions, appear®344¢  A]] these topics are subject of very
intense theoretical and experimental studies, and much progress in this field is being
done and has to be done. An important problem in this context is the dynamics
of open-shell complexes on multiple potential energy surfaces. This problem was
considered by Dubernet and Hutson2~22 1() years ago for the bound states within
the diabatic approximation, and by Alexander and collaborators for the collisional
processes3L— 433,

Actually, rigorous diabatization procedures are highly needed. The diabatic repre-
sentation of the Schrédinger equation for the nuclear motions is thought to take into
account as much as possible of the nonadiabatic couplings. Unfortunately, the diaba-
tization procedures employed at present are to some extent arbitrary, and minimize
just the angular or radial couplings. As a matter of fact, the diabatization procedures
employed in high-accuracy ab initio calculations23~#1 are rather dictated by the
availability of some procedures in the quantum-chemical programs, and not the
analysis of the physical problem.

Trimers and larger clusters involving open-shell monomers with spatially degen-
erate ground states are experimentally investigated by high-resolution optical
spectroscopies and by photoelectron spectroscopy. On the theory side Chalasinski



Theory of Intermolecular Forces: An Introductory Account 129
and collaborators®¢~42 proposed an approximate treatment of nonadditive three-
body effects in open-shell trimers. These authors suggested that the nonadditive
effect in spatially degenerate trimers can partly be assigned to the so-called orien-
tational nonadditivity related to the orientation of partially occupied degenerate
orbitals with respect to the closed-shell monomer in the trimer, and partly to the
so-called genuine nonadditive contribution similar in nature to closed-shell interac-
tions. The definitions of the orientational and genuine nonadditivities are to some
extent arbitrary. Visibly, much work in this direction is needed.

Very little is known about the relativistic and QED interactions23450461  These
interactions, although very small, modify the long-range behavior of the potential
energy surfaces, and have a strong influence on some quantities determining very
low-energy scattering cross sections, e.g. the scattering length292493 Recently, the
forty years old theory developed by Meath has been revisited444% and important
advances in this direction are bewing done.

Among the relativistic interactions the spin-orbit coupling plays a special role. This
term couples various electronic states, and thus modify the spectra, already for diatomic
molecules#®22 The spin-orbit coupling also affects the long-range behavior of the
potential energy surfaces. In general, the spin-orbit coupled potentials have a different
asymptotics from the clamped-nuclei (Born-Oppenheimer) potentials2$Z, Theory of
intermolecular forces in the (a), (b), or (¢) Hund’s coupling cases is being developed.
The long-range behaviour in the multipole approximation is well understood2%8— 421 jf
only the spin-orbit coupling of the isolated monomers is concerned. The effects of the
intermolecular spin-orbit coupling, thus far neglected in ab initio calculations of the
long-range interactions, are being investigated now2#2¢7,

All the subjects quoted above are very important for the studies of ultracold
molecules, a new emerging field at the border of chemistry and physics. In
recent years experimental developments in cooling and trapping of atoms and
molecules have opened the possibility of studying collisional dynamics at ultralow
temperatures. Experimental techniques based on the buffer gas cooling*2 or Stark
deceleration?Z produce cold molecules with a temperature well below 1 K. Optical
techniques, based on the laser cooling of atoms to ultralow temperatures and
photoassociation spectroscopy to create molecules*242 lead to temperatures of
the order of a few uK or lower. Experimental investigations of the collisions
between ultracold atoms lead to precision measurements of atomic properties and
interactions. Such collisions also produce ultracold molecules that can be used in
high-resolution spectroscopic experiments to study inelastic and reactive processes
at very low temperatures. In particular, dynamical studies of chemical species and
reactions in the ultracold regime will open a new era in our understanding of basic
chemical processes. Moreover, spectroscopy at ultralow temperatures will show an
unprecedented accuracy since the Doppler broadening effects on the spectral lines
will almost be absent. Such precision measurements will be a big challenge for
theory, and will certainly lead to new theoretical and computational developments.
It seems that this new emerging field of cold molecules in 2000’s will be as exciting
as the field of Van der Waals molecules in 1990’s.
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We wish to end our story of intermolecular forces by saying that it is exciting
that challenging subjects remain to be solved. However, it is good to note that
the present level theory can be applied with trust to more and more complicated
systems, such as biological systems, and can give qualitative, or some time even
semi-quantitative, explanations of the complicated processes encountered in the
living matter211:272476—479
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computational methods for modelling interactions
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Abstract:

Keywords:

The emergence of a family of computational methods, known under the label ‘density
functional theory’ or ‘DFT’, revolutionalized the field of computer modelling of complex
molecular systems. Many computational schemes belonging to the DFT family are
currently in use. Some of them are designed to be universal (nonempirical) whereas other
to treat specific systems and/or properties (empirical). This review starts with the intro-
duction of the formal elements underlying all these methods: Hohenberg-Kohn theorems,
reference system of noninteracting electrons, exchange-correlation energy functional, and
the Kohn-Sham equations. The main roads to approximate the exchange-correlation-
energy functional based on: local density approximation (LDA), generalized gradient
approximation (GGA), meta-GGA, and adiabatic connection formula (hybrid functionals),
are outlined. The performance of these approximations in describing molecular properties
of relevance to intermolecular interactions and their interactions with environment in
condensed phase (ionization potentials, electron affinities, electric moments, polarizabil-
ities) is reviewed. Developments concerning new methods situated within the general
Hohenberg-Kohn-Sham framework or closely related to it are overviewed in the last
section
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1. INTRODUCTION

Works of Hohenberg and Kohn! and Kohn and Sham? provided the formal
framework underlying a group of very successful computational methods. These
methods are used to obtain ground-state properties of molecules and materials
in Born-Oppenheimer approximation. In the literature, the Hohenberg-Kohn-Sham
framework is referred frequently as density functional theory (DFT). One of its key
elements is the use of explicit functionald] of electron density to express certain
components of the total electronic energy. Here, we refer to it as Hohenberg-Kohn-

Sham DFT. Compared to wave-function based methods, the Hohenberg-Kohn-Sham

formal framework involves several new ideas: (i) the interpretation of the ground-

state energy of a given system as a minimum of a functional which depends
explicitly on electron density (E[p]), (ii) the reference system of noninteracting
electrons, (iii) the one-electron equations to minimize the total energy functional,

and (iv) the exchange-correlation-energy functional referred to in this work as E,[p].

Initially, these new concepts met no or only lukewarm interest in the theoretical

chemistry community for two principal reasons:

(a) Opposite to the hierarchical structure of wavefunction-based methods making
it possible to approach the exact results with arbitrary accuracy (at least for
small systems), approximations to E,_[p] needed in practical calculations cannot
be ordered in such a hierarchy. E [p] is defined implicitly but its analytic
form is not known. Various theoretical considerations or empirical strategies
lead to different approximations to this functional. Therefore, the Kohn-Sham
formalism cannot be considered as a finished computational scheme but rather as
a general theoretical framework encompassing various possible computational
schemes. Among them, there are such which use only fundamental physical
constants and exact mathematical conditions but also such which use extensively
empirical data. This makes it very difficult to order all these methods in a series
approaching systematically the exact solution.

(b) Replacing wavefunction by electron density as the fundamental variable makes
a clear break with the main-stream tradition in quantum chemistry and the
accumulated computational experience. In some cases, where wavefunction-
based methods do not encounter any fundamental difficulties, practical imple-
mentations of the Kohn-Sham framework lead to qualitatively erroneous results.
For instance: (i) in one electron systems, for which the Coulomb- and exchange
energy match perfectly, whereas the use of an approximated density-dependent
functional results in a spurious energy component known as the self-interaction
error?; (ii) anionic systems are frequently not stable2; (iii) artificial splitting
of degenerate energy levels differing in their electron densities, which is the
results of different errors of the exchange-correlation-energy functional for
different states?; (iv) the process of dissociation into radical fragmentsZ; and (v)

* “By a functional, we mean a correspondence which assigns a definite (real) number to each function

(or curve) belonging to some class.”3
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accounting for long-range intermolecular attraction (London dispersion forces).
The fact that removal of these errors cannot be built-in into the Kohn-Sham
framework in a straightforward manner is, therefore, rather discouraging.
The ideas of Hohenberg, Kohn, and Sham were, however, promptly adopted
in the solid-state physics community. Even the simplest approximations to the
exchange-correlation functional brought computational schemes of great potential
in describing properties of solids. Nevertheless, a gradual increase of interest in the
Hohenberg-Kohn-Sham DFT in the theoretical chemistry community resulted in the
emergence of various practical computational methods, which dominate nowadays
the field of computer modelling of molecular systems at quantum mechanical level
(see Figure 2=T)).
It is worthwhile to indicate here that the label “density functional theory” might
be used in twd] different contexts: pragmatic and methodological.
Pragmatic DFT: DFT methods make it possible to calculate properties of
molecular systems with acceptable accuracy at lower computational cost than
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Figure 2-1. Total number of citations of the paper by Kohn and Sham.? Source: WSI Web of Science,
Thomson Corp. 2005

* Although not covered in this review, it is worthwhile to mention the third face of DFT, the so-called
conceptual density functional, which aims at linking mathematical objects of DFT with intuitive
concepts of chemistry used to rationalize reactivity of chemical molecules (see Chermette,® for
review).
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the conventional wavefunction-based methods without, however, providing a
practical strategy to approach the exact solution even for the simplest chemical
systems. Moreover, the accuracy of the results can be improved further for
a particular class of systems and/or properties owing to the possibility of
using empirically fitted parameters. Each method obtained within the empirical
strategy involves, however, such possible dangers as: lack of correlation among
the quality of different observables calculated for the same system and/or rapid
deterioration of the quality of the results once the investigated system falls out
its original domain of applicability.

Methodological DFT: Hohenberg-Kohn-Sham density functional theory repre-
sents an alternative strategy to solve Schrodinger equation in Born-
Oppenheimer approximation. Converting it into an efficient computational tool
involves new challenges for many-body such as identification of properties
of certain mathematical objects of key importance in DFT or formal justifi-
cation for some intuitive or ad hoc assumptions made in practical calculations.
Works on these challenges may lead to practical benefits such as: (a) identifi-
cation of the physical origin of failures of some approximations to E,[p], (b)
improved confidence of the results concerning new types systems and problems
for which empirical methods have not been previously testes, and (c¢) more
rational balance between the accuracy and computational costs in designing a
computer modelling experiment.

The two faces of DFT, methodological and pragmatic, are obviously linked by

a common ultimate objective — a reliable computational method for modelling
polyatomic systems at quantum mechanical level. Progress in each of these domains
proves to be beneficial. The exact mathematical properties of the exchange-
correlation functional (and others closely related objects in DFT) provide guidelines
for designing better approximations. Alternatively, successful approximations based
on intuition or ad hoc assumptions prompt frequently the research aimed at finding
their formal origin.

In view of the rapid growth of applications of DFT methods, a general overview
of the pragmatic face of DFT becomes impossible. Such task should be left for
specialized reviews dealing with particular systems or properties. This work concen-
trates of the methodological issues and covers its pragmatic aspects in a selective
way. The assumptions/approximations underlying the overviewed methods are given
and discussed in the context of their strengths and weaknesses in describing inter-
actions between a molecule and its environment in condensed phase. Properties of
molecular systems such as electric moments and polarizabilities are considered here
because they are the simplest observables, the quality of which relates directly to
the accuracy of the exchange-correlation effective potential (one of the key approx-
imate quantity in the Hohenberg-Kohn-Sham framework). lonization potentials,
electron, and bonding parameters in weak intermolecular complexes are discussed
here as the simplest energy-related quantities which depend on the accuracy of both
the exchange-correlation energy functional and the exchange-correlation effective
potential.
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The present review is organized in the following way. It starts with the key
elements of the Hohenberg-Kohn-Sham density functional theory. In the following
parts, the mainstream strategies to construct approximate methods based on the
Kohn-Sham equations are overviewed. The overall performance of each group
of approximate methods in reproducing molecular properties, which are of key
importance in describing the interactions of a molecule with its environment, is
reviewed in the subsequent section. The final part concerns current developments.

Except for occasional discussions of the basis set dependence of the results, the
numerical implementation issues such as: grid integration techniques, electron-density
fitting, frozen-cores, pseudopotentials, and linear-scaling techniques, are omitted.

Atomic units are used in all equations and all considerations concern non-
relativistic quantum mechanics in Born-Oppenheimer approximation. Square
brackets, as in E[p] for instance, are used to indicate that the relevant quantity
is a functional i.e. the correspondence between a function in real space p = p(r)
and a real number (energy in this example). Abbreviations or acronyms denoting
different approximate exchange-correlation functionals reflect their common usage
in the literature. They are collected in Appendix. Unless specified, the equations
are given for the spin-compensated case.

2. THE KOHN-SHAM EQUATIONS

The formal framework of all the computational methods considered in this review
and branded commonly in the literature as “DFT methods” consists of the following
elements: (i) the first Hohenberg-Kohn theorem defining the density functional
E[p], (ii) the second Hohenberg-Kohn theorem introducing variational principle
according to which the ground state electron density and energy can be obtained via
minimization of E[p], subject only to the requirement that E[p] integrates to a given
number of electrons, (iii) the reference system of noninteracting electrons of the
electron density which is the same as that of the real system. The last element proved
to be of inestimable value. Opposite to the real system of interacting electrons, for
which the singledeterminantal wavefunction is only an approximation, the exact
wavefunction has such a simple form in the fictitious system of noninteracting
electrons. The exact properties of such a system can be thus used as guidelines in
designing approximations applicable for real - interacting — system.

Kohn and Sham introduced yet another functional of the total energy
(EXS[d,, &, .., dy]), which unlike that of Hohenberg-Kohn (E[p]) does not depend
explicitly on the electron density (see Eq. 2). EXS[d,, d,, .., dy]) is expressed
analytically by means of orthogonal one-electron functions {$X5} (i=1, N)
yielding the electron density p.

p=22 ¢ (AL () (2-1)

i=1

It is possible that different sets of one-electron functions yield the given electron
density p. Kohn-Sham orbitals are defined as this set which minimizes the kinetic
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energy of noninteracting electrons. The procedure leading to these orbitals for an
arbitrary p is known in as Levy constrained search?. These orbitals can be used
to construct the exact wavefunction for the reference system of noninteracting
electrons, which has the form of a single determinant. However, the resulting
wavefunction is not the optimal singledeterminantal function for the real system of
interacting electrond]. The singledeterminantal wavefunction derived from Hartree-
Fock calculations leads obviously to a lower energy for the same system. This
energy lowering originates from the fact that the Hartree-Fock electron density
(pyr) differs from the exact one (pyr # p).

Following the second Hohenberg-Kohn theorem!, the ground-state electron
density can be obtained by means of the minimization of the total energy functional.
The introduction of orbitals corresponding to the reference-system of noninteracting
electrons, makes it possible to perform the search for the energy minimum, not
directly among all admissible electron densities, but among of the Kohn-Sham
orbitals. This search procedure corresponds to minimizing the E[d,, d,, .., by]
functional which reads:

S _ Y I,
EX[@, @50 noy] = =23 5V eidr
i=1
+ [ dF v, (o)
1 o p(Pp(F)
+E.[p]

The orthogonal orbitals, which minimize the Kohn-Sham energy functional are
obtained from the following set of one-electron equations-zﬁ fori=1, N:

1 - - -
|57V b1 |6 = s (3)
where the multiplicative potential VX[p](r) reads:

KS 7 - =/ p(?l)
Vej;f[P](r) = Vm(r)—|—/ dr 7]

+ v [p1(7) (2-4)

and is the same for all orbitals.

The determinant constructed from Kohn-Sham orbitals is referred to sometimes as “Kohn-Sham
wavefunction”. This terminology might be misleading because such a wavefunction does not corre-
spond to the real system but to the fictitious system of noninteracting electrons.

It is assumed here that the exact electron density of the real (interacting) system is also the exact
electron density of the fictitious system of noninteracting electrons. Such electron densities are pure-
state noninteracting v-representable. In practice, this assumption cannot be easily verified.
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The analytic form of the first two terms in the Kohn-Sham effective potential
(VES[p](r)) is known. They represent the external potential (v, which is the nuclear
attraction potential in most cases) and Coulomb repulsion between electrons. The
second term is an explicit functional of electron density. The last term, however,
represents the quantum many-body effects and has a traditional name of exchange-
correlation potential. v, is the functional derivativd] of the component of the total
energy functional called conventionally exchange-correlation energy (E, [p]):

SE, [p]

nlol() = 5

(2-5)

E,.[p] is defined as the component of the total energy functional, which remains
after subtracting all terms in the Hohenberg-Kohn total energy functional, which
can be evaluated exactly:

E..[p] =E[p] = T,[p] —J[p] — V[p] (2-6)

The quantity T,[p] denotes the kinetic energy in the reference system of noninter-
acting electrons defined in the Levy constrained search procedure. The numerical
value of T[p] can be obtained exactly provided the orbitals minimizing the kinetic
energy in the reference system of noninteracting electrons are known. This is the
case of the orbitals derived from the Kohn-Sham equations. Therefore, the analytic
form of Tp] is not needed in Kohn-Sham calculations. The above definition
of E.[p] shows clearly that the name exchange-correlation functional might be
confusing — it contains also the contribution from the kinetic energy because the
numerical values of T [p] and T[p] (the kinetic energy of the real i.e. interacting
system) are not equal.

It is worthwhile to underline that the exact v, is the functional of p (v,. = v, [p])
not just a function of p (v,, = v,.(p)) as assumed in most of the practical methods.
Therefore, its non-local dependence on p is not excluded.

The physical meaning of the left-hand-side of Eq. (6) is given in its adiabatic
connection definition,.2~12 which links smoothly the artificial system of nonin-
teracting electrons with the real one by means of a coupling strength parameter
0 < A <1 (A is the parameter multiplying electron-electron repulsion energy in the
Schrédinger equation):

E,lp]= [ U pldr (2-7)

where U_*[p] =< ¥ [p]|Ve.|¥*[p] > — Ulp] (¥*[p] is the ground-state
wavefunction at coupling strength A, v,, is the Coulomb repulsion, and U[p] is the
Hartree energy).

* Note that the exchange-correlation functional is not linear, therefore, E, [p] # [ pvy.dr.
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Each of the two equivalent definitions of E,.[p] (Egs. 6 and 7) as well as possible
alternative ones, some of them will be discussed in the last section of this review, can
be used as the basis for construction of approximations. The Kohn-Sham equations
and the Kohn-Sham energy expression involve two approximate quantities: E,_[p]
and v,.. At a given external potential V,,, defined by nuclear charges and positions
of nuclei in most cases, any deviation from the exact ground-state electron density
can be attributed to errors in v, applied in practical calculations. Therefore, the
quality of the calculated one-electron properties at a given geometry of the nuclei
depends exclusively on the quality of v, . Moreover, since the energy gradients
with respect to nuclear coordinates (Ry) can be expressed as:

oE 0E . dp .. . 0P L
— = [ = ()= (di = [ v () - (P (2-8)
IRy P IR, SRy

The quality of forces acting on nuclei depends directly on the accuracy of the
used approximation for v,.. The situation is more involved in the case of energy
differences, where the quality of the applied approximation to E, [p] influences the
accuracy of both the electron density (through v, which is its functional derivative)
and the total energy calculated for this density. Currently, various approximations
for these two quantities are in use. In the following part, the most common approx-
imations to E, [p] are reviewed.

3. COMMONLY USED APPROXIMATIONS
TO THE EXCHANGE-CORRELATION-ENERGY FUNCTIONAL

The groups of approximations discussed below are ordered according to the classifi-
cation introduced by Perdew known as “Jacob’s ladder” of approximate functionals.
At the lowest rung, the exchange-correlation energy depends explicitly on electron
density only. Moving to higher rungs introduces also other quantities, which are
used to approximate the exchange-correlation energy. Usually, no distinction is
made between the approximation for v, and Exc[pﬂ in the literature because these
two quantities are linked by Eq. (5).

3.1. The Starting Point: Local Density Approximation

For the uniform electron gas, all the functionals defined in the previous section
can be obtained exactly or calculated with arbitrary accuracy. The expression for
the exchange energy of noninteracting electrons given by Diract? and introduced

* Such a distinction is made here for two reasons: a) In the cases where the theoretical considerations
lead to a given v, directly, the “parent” functional is not known. b) In the process of developing
approximations to the exchange-correlation functional, it is frequently the case that the functional is
tested on electron densities obtained with a potential corresponding to another exchange-correlation
potential i.e. not self-consistently.
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into quantum chemistry by Slaterd2, represents the largest contribution to E,.. The
remaining component defines the correlation energy functional in this case (E [p] =
E..[p] —E,[p]). Ceperley and Alderi¢ applied Quantum Monte Carlo simulations to
obtain numerical values of E_[p] for the uniform electron gas and densities spanning
a wide range (1 <r, <200, where r, = (3/47p)'/*). We recall here that the analytic
dependence of an approximate E, [p] on the electron density is needed for deriving
the associated exchange-correlation effective potential. For this purpose, an analytic
fit for the dependence of the density of the correlation energy (&.(p)) on the electron
density is needed!Z8, Currently, the most commonly used fit to the Ceperley-Alder
data is the one made by Vosko et al..Z Unless specified, the label LDA will be used
for this functional dependence throughout this reviewf].

The essence of the local density approximation is the assumption that the
exchange-correlation energy of a non-uniform electron density can be approxi-
mated as a sum of contributions from small volume elements each characterized
by uniform electron density (g,.(p)(r)). Since the exchange-correlation energy
of uniform electron gas is available with arbitrary accuracy, the LDA exchange-
correlation functional takes the following simple form:

EXP[o] = [ dF p(F)et2 (o) (2-9)

Deviation of the homogeneity can be considered small if the gradient of electron
density satisfies the following condition:

v
[¥el __ (37p)'"? (2-10)
P

Unfortunately, the above condition does not hold for atomic and molecular electron
densities. Surprisingly however, LDA appears to be a very reasonable approxi-
mation as far as many properties are concerned (geometries of molecules, vibra-
tional properties, electric moments, for instance). As a rule, however, the energy
differences derived from LDA are not acceptable for chemical applications. Its
practical advantage over other approximations originates from the fact that it is
computationally the cheapest one. It has to be born in mind that it is a functional
obtained without any empirical data. The Kohn-Sham equations applying LDA
can be seen as the entry-level density-functional-theory formalism, which plays
a similar role in Hohenberg-Kohn-Sham DFT, as does the Hartree-Fock theory
among wavefunction-based methods. However, there is no simple relation between
the domains of applicability of Hartree-Fock and LDA Kohn-Sham methods.

* Different fits were obtained by Vosko, Wilk, and Nusair for the spin-compensated and spin-
polarized cases.
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3.2. The First Breakthrough: Generalized Gradient Approximation

A straightforward step beyond Local Density Approximation consists of intro-
ducing electron-density gradient (Vp) in the explicit dependence of the exchange-
correlation energy on electron density.l For slowly varying electron densities,
the gradient expansion approximation (GEA) leads to the following form of the
exchange-correlation energy functional:

- . |Vpl®
ES (o] = [ dF A ()" + [ dF Colp) 5+ (2-11)

where the coefficients A,. and C,, are functions of electron density and can be in
principle obtained from formal considerations (see Perdew!2 for review). They can
also be replaced by fitted constants in Eq. (1 1)E

Unfortunately, neither way leads to a noticeable improvement over LDA.21~2 [n
the eighties, a new route to approximate the exchange-correlation energy has been
proposed which also uses electron-density gradients but the gradient-dependence is
not build in by means of Eq. (11) but in a different — more general — way called
generalized gradient approximation (GGA):

ES[o] = [ dF p(P)e5 (b, V) (2-12)

Opposite to local density approximation, for which the density of exchange-
correlation energy can be obtained following a unique strategy (i.e. using reference
data for the uniform electron gas), many strategies can lead to different analytic
forms of €994 (p, Vp). They range from the ones, which use exact physical or mathe-
matical properties of the exchange-correlation functional leaving none or only a few
free parameters (opening the way for a possible empirical data fit) in the analytical
expression for €94 (p, Vp) to the ones relaying on experimental data more exten-
sively. The B88 exchange functional, which is now one of the most common among
the GGA functionals, was obtained by imposing the correct asymptotic distance
dependence of the density of the exchange energy for atomic systems.2 Perdew and
co-workers used the properties of the exchange-correlation hole in the construction
of several approximate GGA functionals: PW862 for exchange, P86 for corre-
lation,2¢ PW918,Z1 and PBEZ for exchange and correlation. The popular LYP
correlation functional was derived based on the properties of the exact Hartree-
Fock orbital of the helium atom.23% Handy, Tozer, and collaborators explored the
empirical strategy to construct exchange-correlation functional of the GGA form
in which a large number of empirical parameters are used to express &,,%* in
Eq. (12) as an explicit function of electron density and its gradient!. The param-
eters were obtained by means of the least-squares procedure using the training

* The purely empirical constant (3) value of the C,.(p) in the case of exchange energy has been in use
in the Xap extensionZ of the Slater’s Xa method.L2



Hohenberg-Kohn-Sham Density Functional Theory 163

data comprising reference numerical values of: total energies, ionization potentials,
energy gradients, and numerical values of the exchange-correlation potential. The
HCTH and HCTH-A functionals, obtained using this strategy, depend on 15 and
12 parameters, respectively.!

Exchange-correlation functionals of the GGA form have been proposed in the
literature, which take the empirical information into account in different extent.
Without claiming completeness, the list includes such functionals as: B86,3 G96,33
FT97,% mPW91,3 revPBE,2¢ RPBE,¥ and OPTX,3® and mPBE.2

3.3. Meta-GGA

In both LDA and GGA, &,.(r) at a given position in space (r) is determined by
local properties of electron density at the same position. In LDA, only electron
density at r is needed (g,."P*(r) = £, "P*(p(r)). In the GGA case, both electron
density and its gradient are required (g 5% (r) = £ 9% (p(r), Vp(r)). Including the
dependence on higher derivatives leads to another class of semi-local functionals
taking the following general form:

EZp] = / dr p(¥)elt*(p, Vp, V2p, 7) (2-13)

where
N
T=2% —he (HVei(7) (2-14)
i=1

is the density of the kinetic energy and V?p is Laplacian of the electron density.
Today, meta-GGA functionals are less commonly used than the ones of the
GGA type discussed in the previous sections. However, the interest in this type of
approximation to the exchange-correlation energy is increasing. These developments
parallel the ones concerning GGA, which happened more than a decade ago. The
near future will bring probably a more systematic knowledge of strengths and
weaknesses of the meta-GGA route. Therefore, these functionals are also discussed
here. Similarly as in the case of the generalized gradient approximation, the density
of the meta-GGA exchange-correlation energy can take different analytic forms. The
exchange-energy component of £/¢%4 (p, Vp, V2p, 7) can be obtained by means of
Taylor expansion of the spherically averaged exchange hole.24! Perdew, Scuseria,
and collaborators#? designed a nonempirical meta-GGA (TPSS), which in fact does
not depend on Laplacian at all ™5 = g"¢%4 (5 Vp, 7). The elimination of the
dependence on Laplacian is justified by the fact that, although both Laplacian and the
kinetic energy density appear in the Taylor expansion of the exchange-correlation
hole, they carry the same information in the limit of slowly varying electron
densities. Usually, however, the empirical functionals of the meta-GGA type depend
on both quantities. Proynov et al.£ proposed a Laplacian-dependent correlation
functional. This functional was recommended to be used in combination with two
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GGA exchange-energy functionals (B88 and PW86). Filatov and Thiel2* introduced
the exchange-correlation functional depending explicitly on the Laplacian of the
electron density in its exchange- and correlation parts. By construction, the exchange
part of the proposed functional reproduces the gradient expansion for the exchange
energy at small gradients up to the fourth order and leads to the exchange effective
potential with the correct asymptotic behavior (—1/r). The free parameters in their
model were fitted using exact exchange- and correlation energies in atoms.

34. Hybrid Functionals

Introduction of the orbital dependence into the exchange-correlation energy is an
apparent step away from the original Hohenberg-Kohn-Sham formulation of density
functional theory#2 where only the kinetic energy part of the total energy involves
explicit orbital dependence. Moreover, the evaluation of the exchange-correlation
potential is not possible in a straightforward manner (i.e. as a functional derivative
of E,.[p] with respect to p) because of the explicit dependence of the exchange-
correlation energy on orbitals. The general form of the hybrid exchange-correlation
functional reads

EP @), 0. ..o oyl =a(E e, @, ... ox]— EZ9[p]) + ES[p]
(2-15)

where E_ [¢;, ¢,, ..., ¢y] is the Hartree-Fock expression for the exchange energy.

The formal basis for expressing the exchange-correlation energy as an explicit
functional of Kohn-Sham orbitals is given in its adiabatic-connection definition
(Eq. 7). Moreover, explicit orbital-dependence appears naturally in the Gorling-
Levy# perturbational formulation of density functional theory. For an overview
of the formal aspects, see Gorling.2Z The first approximate exchange-correlation
functional constructed based on the adiabatic connection formula was the “Half-and-
Half” functional by Becke.2® The constant a = 0.5, which was chosen arbitrarily,
corresponds to replacement of the integral in Eq. (7) by the numerical values of U,
at only two points at A =0 (where E, [¢;, ¢,, ..., ¢y] is exactly equal to U,.) and
at A =1 (where E, [p] is approximately equal to U, ). Another functional based

* In the Kohn-Sham equations, the use of such a functional is not straightforward because of the
explicite orbital dependency (see the section dealing with optimized effective potential). Strictly
speaking, therefore, most of common computer implementations do not solve the associate Kohn-Sham
equations.
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on the adiabatic connection formula (B3PW91) was introduced by Becke® shortly
afterwards. It readsﬁ

EZ" e, @)ooy =ag (EJ@1. @5, ... ox]— EEPA[p])

+EL ]+ a, EX¥[p]+a EP"'[p]  (2-16)

The parameters a, = 0.2, a, =0.72, and a, = 0.81 were obtained by a linear least-
square fit to the 56 atomization energies, 42 ionization potentials, 8 proton affinities,
and 10 first-row total atomic energies. The approximate GGA functionals in the
above expression (B88 for exchange and PW91 for correlation) were introduced
in the previous sections. Stephens et al.2 applied the LYP correlation functional
instead of PW91 in the above expression retaining the same numerical values of the
parameters a,, a,, and a,. The resulting functional, known under the label B3LYP,
is probably the most commonly used approximation to the exchange-correlation
energy nowadays.

Other commonly used hybrid functionals include: B97,2X mPWIPW2 and
PBE0,2223 O3LYP,2 and the one constructed by Kafafi.2

3.5. Beyond Meta-GGA

The hybrid exchange-correlation functionals discussed so far apply one of the
possible GGA functionals as their orbital-free component. Using meta-GGA for
this purpose leads to the functionals branded as hyper-GGA by Perdew — the
convention adopted also in this review. Such functionals, take the following general
form

EfA[o] = [ dF p(7) &9 (p, Vp, Vp, 7, 8,) (2-17)

where &, is the density of the ‘exact exchange’ energy evaluated using the Hartree-
Fock expression and Kohn-Sham orbitals.

The TPPSh functional?? is a one-parameter combination of the parameter-free
meta-GGA (TPSS) with ‘exact exchange’. Other functional of this type were also
proposed. 23~

In the previous sections, the following nonempirical functionals were mentioned:
LDA, PBE, and TPSS. These functionals represent the lowest three rungs on the
Jacob’s ladder: LDA, GGA, and meta-GGA. At the GGA-and meta-GGA levels,
the approximate exchange-correlation functionals were obtained, not directly, but
through construction of approximations to the exchange-correlation hole (n,.(r, "))

* The term depending explicitly on the Kohn-Sham orbitals is called sometimes “exact-exchange”. This
nomenclature might be misleading because it uses the exact expression for the exchange energy from
the Hartree-Fock theory. However, the numerical value of the exchange energy as defined in density
functional theory can be obtained from this expression only for a particular set of orbitals.240
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in a way enforcing selected known properties of the exact hole.3® So far, no hyper-
GGA functional was constructed following the same strategy. The construction of
a completely nonempirical hyper-GGA functional is expected in the next future.3
The performance of the Perdew’s nonempirical series of approximations to the
exchange-correlation energy (LDA, PBE, TPSS, and PBEO) representing the lowest
four rungs of the Jacob’s ladder is analyzed together with that of various popular
empirical functionals.

4. PERFORMANCE OF COMMON APPROXIMATIONS
TO THE EXCHANGE-CORRELATION ENERGY

Every year brings more than one thousand of applications of density-functional-
theory based methods in different fields (see Figure B-T)). A comprehensive review
of their performance in all domains of applicability is not practical. This overview
focuses on nonbonded intermolecular interactions. Separate sections deal with: (i)
ionization potentials, (i) electron affinities, (iii) electric moments, (iv) polarizabil-
ities — key quantities on the theory of intermolecular interactions, and the bonding
parameters for two groups of weak intermolecular complexes: (v) hydrogen-bonded
complexes, and (vi) van der Waals complexes. A representative group of studies
in which the density-functional-theory results were tested against either high-level
wavefunction-based calculations or experiment (or both) was selected for each
section.

4.1. Electric Properties: Electric Moments

Local density approximatiorﬁ was used by Dickson and Becke® to derive dipole
moments for CO, HF, H,0, and NH; and quadrupole moments for H,, N,, O,,
CO, HF, H,0, NH;, and CH,. These studies have a benchmark character because
the analyzed properties were calculated at the basis-set limit using the numerical
density-functional code NUMOL.% The results are in a very satisfactory agreement
with experimental data (see Tables P=1] and B=2)). For HF, H,0, and NH;, the
agreement with experiment is excellent. The largest absolute and relative errors of
the dipole moment occur for the CO molecule. Keeping in mind the fact that the sign
of the small dipole moment of this molecule corresponding to C~O" polarization
has been attributed traditionally to the correlation effects, the Kohn-Sham LDA
result predicting the correct polarization was noted as a success of density functional
theory although this effect is significantly overestimated.

Studies using the GGA- (BLYP) and hybrid- (HCTH, B3LYP, B97, B97-1)
functionals combined with the Sadlej’s basis set demonstrate that all considered
functionals also lead to very reasonable dipole moments for a representative a set

* The LDA correlation functional used in these calculations was not the VWN parameterization of the
Ceperly and Alder reference data for the uniform electron gas but that of Perdew and Wang.18
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Table 2-1. Calculated (LDA) and
experimental dipole moments (in
atomic units) of small molecules®,

Molecule weale WExP

(6(0] 0.0907 0.048
HF 0.7064 0.707
H,0 0.7300 0.727
NH; 0.6010 0.579

of small organic molecules (CO, H,0, H,S, HCI, HF, LiH, LiF, NH;, PH,, and
SOz).Q Among the considered functionals, B3LYP, B97, and B97-1, lead to similar
absolute mean errors (0.0177, 0.0158, and 0.0145 atomic units, respectively), which
are about two times smaller then the ones of the BLYP and HCTH results (0.0361
and 0.0355 atomic units, respectively). For comparison, the errors of Hartree-Fock
and second-order Mgller-Plesset dipole moments equal 0.0675 and 0.0181 atomic
units, respectively. For quadrupole moments, all considered methods (DFT and
wavefunction based) lead to similar errors in the order of 0.10 atomic units.
Jasien and Fitzgerald® demonstrated that the LDAf dipole moments of such
molecules as HF, H,O, NH;, formamide, imidazole, pyridine, cytosine, match
very closely the experimental ones (the relative errors between 1 and 7%). For
uracil and thymine, and adenine, the differences between LDA and experimental
dipole moments are slightly larger (relative errors up to 12%) and compared better
to the ones derived from second-order Mgller-Plesset calculations. The authors
underlined the noticeable effect the inclusion of the hydrogen 2p polarization

Table 2-2. Calculated (LDA) and
experimental zz components of the
trace-less quadrupole moment calcu-
lated with respect of the center of
mass (in atomic units) of small
molecules.2

Molecule o, 0,
H, 0.437 ;

N, —-1.137 —1.09
0, —0.356 0.25
CcO —1.478 —1.44
HF 1.707 1.75
NH; —2.251 —2.45
H,0 —0.111 ~0.10

* The LDA exchange-correlation potential used in this study was not the common Vosko, Wilk, Nusair
parameterization of the Ceperley-Adler data for the uniform electron gas but the potential of Heidin
and Lundgqvist.&
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functions into the basis set. The good overall performance of the LDA- and GGA
functionals in reproducing experimental dipole moments of small organic molecules
has been demonstrated.£~% Almost invariably, LDA leads to significantly better
dipole moments than the ones derived from Hartree-Fock calculations. Typically,
the choice of the basis set rather than the type approximation for E, [p] deter-
mines the quality of the dipole moments as demonstrated in a comprehensive study
of a representative set of biologically relevant molecules by Rashin et al.& and
St.-Amant et al.£ and for a set of over 100 first-row and second-row molecules by
Scheiner et al.&Z

Filatov and Thiel#* compared the performance of their meta-GGA exchange-
correlation functional with that of B3LYP in reproducing experimental dipole
moments for 26 small organic molecules. In most cases, the dipole moments are
slightly overestimated. The largest magnitude (about 0.2-0.3 atomic units) of this
overestimation takes place for NH;, N,H,, H,O,, and CH;Cl. For CN and SiO,
the dipole moments are underestimated by about 0.2 atomic units. The average
accuracy of the B3LYP results for the same set of molecules is similar.

4.2, Electric Properties: Polarizabilities

McDowell et al.®2 analyzed the applicability of the LDA- and GGA (BLYP)
functionals for calculating polarizabilities of such molecules as: HF, HCI,
F,, Cl,, NH;, PH;, H,0, H,S, SO,, CO,, and C,H,. The Kohn-Sham results
were compared with experiment and the polarizabilities obtained from conven-
tional wavefunction-based methods (Hartree-Fock, second- and fourth-order Mgller-
Plesset perturbation theory, and coupled-cluster method using Brueckner orbitals).
The studied properties were calculated either analytically or using finite-field
method. Sadlej’s basis set was used. Both LDA- and GGA average dipole polar-
izabilities are systematically overestimated (typically by about 10%) whereas the
dipole polarizability anisotropies are slightly less underestimated. The magnitude
of this error is similar that of the corresponding Hartree-Fock polarizabilities. The
errors are, however, opposite in sign. This indicates that the way correlation effects
are taken into account in the Kohn-Sham equations is rather unsatisfactory at the
LDA- and GGA levels.

Dickson and Becke? performed finite-field LDA calculations of the dipole polar-
izabilities and hyperpolarizabilities of the following compounds: H,, N,, O,, CO,
HF, H,0, NH,;, and CH,. These studies have a benchmark character (for dipole
polarizabilites and first hyperpolarizabilities). The calculated dipole polarizabilities
are systematically overestimated (see Table P=3)). Other studies reveal the similar

trend] that LDA overestimates the dipole polarizabilities of small organic molecules.
©9-12

* There are exceptions from this trend. A noted example is the polarizability of sodium clusters
significantly underestimated by semi-local functionals.Z
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Table 2-3. Calculated (LDA) and
experimental average dipole polariz-
abilites (¢ =1/3(a,, +a,,+a,,), in
atomic units) of small molecules.22

Molecule Ogqle Qlexp

H, 5.91 5.43
N, 12.3 11.74
0, 10.93 10.78
co 13.70 13.08
HF 6.23 5.60
H,0 10.60 9.64
NH; 15.54 14.56
CH, 17.69 17.27

The calculated first hyperpolarizabilities (see Table Z=4)) are surprisingly close
to the experimental data, which is probably fortuitous because they were calcu-
lated without taking into account vibrational effect. These studies demonstrated also
that the double-zeta basis set augmented by field-induced polarization functions,
although sufficient for calculations of dipole and quadrupole moments of the studied
molecules at the Kohn-Sham LDA level, is not sufficient in the case of hyperpo-
larizabilities.

It should be underlined that the comparisons with experiment are not straight-
forward. It has been demonstrated that zero-point vibrations result in the increase
of the average dipole polarizabilities.Z+Z2 The effect of neither zero-point vibrations
nor anharmonicity was taking into account in Dickson and Becke calculations.
Therefore, a good agreement between the calculated and experimental results cannot
be considered as a proof for the adequacy of these approximations. It indicates rather
the flaws of the LDA- and GGA functionals. Studies applying the B3LYP hybrid
functional 22228 indicate that this overestimation can be only partially reduced by
inclusion of the ‘exact exchange’. B97-1, which is a reparameterized variant of the
hybrid functional of Becke (B97) was shown to perform better.

Table 2-4. Calculated (LDA) and
experimental average first dipole
hyperpolarizabilites (8 =3/5(B,., +
Byyy +B.;), in atomic units) of small
molecules.2

Molecule Beale Bexp
co 30.5 30(3)
HF -9.2 —11
H,0 —2438 -2

NH, —55.(6) —48
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In the discussed before studies on a set of ten small organic molecules, Cohen and
Tantirungrotechai® demonstrated that the average molecular polarizabilities derived
using GGA- and hybrid functionals are quite reasonable although overestimated in
line with previously discussed trends. The hybrid functionals (HCTH, B3LYP, B97,
B97-1) lead to similar errors (about 1.5 atomic units) whereas the errors derived
from GGA(BLYP) are larger (2.25 atomic units). As far as the anisotropy of dipole
polarizability is concerned, the B3LYP, B97, and B97-1 functionals lead to results
which are even better that the ones derived from the Hartree-Fock and second-
order Mgller-Plesset calculations. The BLYP and HCTH functionals performed
noticeably worse.

The GGA functionals applied in the coupled perturbed Kohn-Sham calculations to
obtain electric response properties of the HF molecule perform quite reasonably.Z
The reference value of the dipole moment (0.707 atomic units) derived from coupled
cluster calculations is slightly underestimated by most GGA functionals. It varies
between 0.673 and 0.685 atomic units. Dipole polarizabilities tend to be overesti-
mated by up to 10-20%, whereas the hyperpolarizabilities show a strong dependence
on the chosen GGA functional (3,,, varying between —6.09 and —12.23 atomic
units as compared to the coupled cluster value of —9.869 atomic units). The authors
investigated also the basis set effect on the calculated properties showing that some
of the response properties require larger than standard basis sets. For instance, the
dipole moment decreases within less than 15% with the increase of the basis set
from double zeta of Dunning (DZ) to that of Sadlej (pVTZ). The static dipole
polarizabilities, however, is affected by more than factor five. The effect of the
basis set on the hyperpolarizabilities is also significant (factor two when going from
DZ to pVTZ.

The overestimation of the average dipole polarizabilities by the GGA and LDA
functionals has been attributed to their incorrect asymptotic behavior at molecular
tails. 228 The exact v_, is long-ranged. In the asymptotic region, the exact exchange-
correlation potential is proportional to —1/r, where r is the distance from the
atom or the center of the molecule. Compared to the —1/r behavior, the GGA-
and LDA exchange-correlation potentials are noticeably more short-ranged. As a
result, the electrons in the outmost shell are bound too weakly, which leads to the
increase in their responses if calculated at the GGA and LDA levels. The numerical
values of exact v, are available for some atoms and small molecules obtained
by means of special techniques to construct it from electron density derived from
high-level wavefunction-based methods (see, for instance, Zhao et al.Z2). Instead
of constructing the exact v,., the correct asymptotic behavior at long range can
be built in into an approximated functional by construction as it is the case of the
LBY% potentialﬁ,ﬂ’ Indeed, calculations using LB94 potential lead to responses,
which are much closer to the ones obtained by means of the exact v,.. Moreover,

* Since the LB94 exchange-correlation potential was constructed directly and not as the functional
derivative of some approximate expression for E, [p], there exist no corresponding exchange-
correlation energy functional.
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Table 2-5. Average dipole polarizabilites (in atomic units) of noble-
gas atoms and small molecules calculated using different exchange-
correlation potentials and the reference data (benchmark wave-
function calculations or experimental). 2

atom/molecule QrpaA QL Bo4 Oyxe(exact) Qreference
He 1.6576 1.3896 1.3824 1.3832
Be 43.79 42.87 39.57 37.73
Ne 3.049 2.590 2.670
H, 59 5.61 5.16 5.1816
N, 12.27 11.46 11.68 11.74
HF 6.20 5.31 5.49 5.52
HCl 18.63 17.86 17.25 17.39
H,0 10.53 9.20 9.45 9.64
CO 13.87 12.62 12.86 13.08

application of the exact and the LB94 exchange-correlation potentials leads to much
better response properties than does the LDA potential (see Table R=3]).

The crucial role of the asymptotic behavior of v, for obtaining the correct
response properties has been recently demonstrated for various cases (see for
instance Mori-Sanchez et al.3!; Hirata et al.&2),

The practical difficulties in describing all response properties by means of a given
approximation to the exchange-correlation potential have been illustrated in the
recent report by Jacob et al.3 concerning complexation-induced dipole moments
in weak complexes of the CO,...Rg (Rg=He, Ne, Ar, Kr, Xe, and Hg) type.
The dominant effect responsible for emergence of the dipole moment of such a
complex is the polarization of the rare gas atom by the electric field generated
by the quadrupole moment of CO,. As discussed previously, the LDA- and GGA
functionals lead to overestimated dipole polarizabilities. This overestimation is even
larger than 10% for some rare-gas atoms. The same approximations, however, lead
to a very reasonable description of the quadrupole moment of CO, (1.55 atomic
units in the PW91 case compared to the experimental value of 1.595 atomic units).
The opposite tendencies occur for the SAOP exchange-correlation potential,
which leads to significantly better dipole polarizabilities of rare gas atoms (errors
reduced by a factor of two) but which leads to much worse quadrupole moment of
CO, (1.85 atomic units). As a result, neither PW91 nor SAOP exchange-correlation
potentials lead to the complexation-induced dipole moment in the whole CO,...Rg
series with uniform accuracy.

4.3. Ionization Potentials and Electron Affinities

In Kohn-Sham density functional theory, the ionization potential is the negative of
the eigenvalue of the highest occupied Kohn-Sham orbital.8~8 The IP = —& .0
relation holds, however, only for the exact exchange-correlation potential.
Numerical confirmations for this relation exist for model systems such as the
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helium atom¥ This relation does not hold, however, for approximate exchange-
correlation potentials. Due to the too rapid decay of the LDA- and GGA exchange-
correlation potentials in the asymptotic region, the ionization potentials calculated as
IP = —&0um0 by means of these approximations can be expected to be systemat-
ically underestimated. Indeed, numerical calculations confirm this8320~22) For
similar reasons, the situation is even worse for electron affinities. Frequently, LDA
or GGA do not lead to stable states of negative ions. 3202

Instead of using the IP = —¢g,,,, relation, the ionization potential can be also
calculated as the energy difference between neutral and charged species. This
strategy leads typically to better numerical results. For atoms, the numerical values
of —&,040 are about two times smaller than the first ionization potential if derived
using LDA- and GGA potentials (see Table 2=6l).

Similarly, as the case with response properties discussed in the previous section,
imposing the correct asymptotic behavior of v, improves the agreement between the
numerical values of —&p,,, and the experimental ionization potentials.832021:24 For
these reasons, the ionization potentials and electron affinities are usually obtained
as energy differences (ASCF) in calculations using common approximations to
the exchange-correlation functional. The discussed hereafter numerical values were
obtained in this way.

Table 2-6. LDA and GGA(BLYP or PW91) atomic ionization potentials (in Hartree)
calculated as energy differences (ASCF) or as —&gopo (‘LDA results from Vydrov
and Scuseria2®; °LDA results from Perdew et al.2Z, "LDA results from van Leeuwen
and Baerends®; GGA results from Grabo and Gross2).

Atom ASCF*  —euomo  ASCF  —epomo  ASCF  —gpomo  EXp.

LDA BLYP PWOI
He 0.892 0.571° 0.912 0.585 0.583 0.903
Li 0.200 0.116° 0.203 0.111 0.207 0.119 0.198
Be 0.331 0.206° 0.330 0.201 0.333 0.207 0.343
B 0.315 0.225°¢ 0.309 0.143 0.314 0.149 0.305
C 0.429 0.425 0.218 0.432 0.226 0.414
N 0.548 0.542 0.297 0.551 0.308 0.534
(6] 0.508 0.273¢ 0.508 0.266 0.505 0.267 0.500
F 0.659 0.381°¢ 0.656 0.376 0.660 0.379 0.640
Ne 0.812 0.490° 0.808 0.491 0.812 0.494 0.792
Na 0.195 0.113¢ 0.191 0.106 0.198 0.113 0.189
Mg 0.283 0.280 0.168 0.281 0.174 0.281
Al 0.220 0.212 0.102 0.221 0.112 0.220
Si 0.302 0.168° 0.294 0.160 0.305 0.171 0.300
P 0.386 0.376 0.219 0.389 0.233 0.385
S 0.386 0.224°¢ 0.379 0.219 0.379 0.222 0.381
Cl 0.484 0.300¢ 0.476 0.295 0.482 0.301 0.477

Ar 0.585 0.381° 0.576 0.372 0.583 0.380 0.579
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The relation between other than g0y, eigenvalues of the exact Kohn-Sham
orbitals and higher ionization potentials is currently an object of studies by Baerends
and collaborators. 222

Benchmark atomic ionization energies and electron affinities (from H to Zn)
calculated as energy differences (ASCF) for LDA- and three nonempirical GGA
functionals developed by Perdew and collaborators2! indicate that errors of these
quantities depend strongly on the choice of the GGA functional.

Ernzerhof and Scuseria2® analyzed the electron affinities and ionization potentials
obtained using the LDA-, PBE-, and PBE1PBE functionals with the reference date
taken from the G2-1 data set.22 Whereas the PBE functional leads to significantly
more accurate results than does LDA, no noticeable improvement occurs at the
meta-GGA level.

The asymptotic behavior of the exchange-correlation potential far from the
molecule has been identified as the key factor determining the accuracy of
the ionization potentials of anions and electron affinities of neutral molecules.2
Recently, Wu et al.2! proposed a variational method, which enforces the correct
long-range behavior of v, . Indeed, a noticeable improvement compared to the
Kohn-Sham results derived using conventional approximations (LDA-, GGA-, and
hybrid functionals) was reported for atoms (H, He, Li, Be, B, C, N, O, and F) and
diatomics (BeH, CH, NH, OH, CN, BO, NO, OO, FO, and FF). The still signif-
icant discrepancies between the experimental and calculated ionization potentials
(or electron affinities) were attributed to errors of the exchange-correlation potential
in the molecular interior.

The discrepancies between the calculated values of —gygyo and experimental
ionization potentials are frequently attributed to self-interaction error. Indeed,
applying the Perdew-Zunger technique? to correct this error of the LDA-, GGA-
(PBE), and meta-GGA (TPSS) functionals improves the numerical values of
—&pomo-= Interestingly, these studies showed that the Perdew-Zunger correction
does not improve ionization potentials and electron affinities if calculated as energy
differences (ASCF).

Staroverov et al.l® tested the performance of nonempirical and empirical
exchange-correlation functionals of the LDA- GGA-, hybrid-, and meta-GGA
types on 58 electron affinities and 86 ionization potentials. In all calculations, the
6-3114++G(3df,3pd) basis set was applied and the reported results were obtained
at the B3LYP optimized geometries. Experimental data was used as a reference.
Among the nonempirical functionals, the quality of the obtained results improves
upon introduction of gradients but no improvement follows the introduction of
7-dependence into E, [p] (meta-GGA functionals). The mean absolute errors of
the electron affinities amount to: 0.244eV for LDA, 0.118eV for GGA (PBE),
and 0.137 eV for meta-GGA (TPSS). For comparison, the corresponding values for
empirical functionals amount to: 0.187 eV (HCTH) and 0.124 eV (B3LYP). As far as
ionization potentials are concerned, the mean absolute errors are rather constant for
nonempirical functionals: 0.232eV (LDA), 0.235eV (PBE), and 0.242eV (TPSS),
0.232eV (HCTH). They are slightly smaller (0.184 eV) in the case of B3LYP.
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Joantéguy et al.l performed a dedicated study of the performance of LDA-,
GGA-, and hybrid functionals in determining the ionization potentials of unsatu-
rated molecules. The authors concluded that the accuracy better than 0.1 eV cannot
be reached using the considered functionals: LDA, BP86, B3P86, B3LYP, and
B3PWOIL1.

The benchmark calculations of ionization potentials and electron affinities of the
atoms and molecules in the G2 data set2 calculated using the hybrid functional
(B97) show that this functional is adequate. The average absolute deviation from
experimental data amounts to 0.055eV and 0.056eV for ionization potential and
electron affinity, respectively.2!

Hoe et al.12 analyzed the performance of the OPTX exchange functional, which
has the GGA form, used in combination with LYP for correlation (OLYP) and in the
hybrid scheme (O3LYP), in reproducing ionization energies (first and second) of
atoms from H to Ar. In both schemes, replacing the original Becke (B88) approxi-
mation by OPTX reduces the errors in the calculate ionization potential significantly.
The performance of the OPTX exchange functional in obtaining various properties
including ionization potentials and electron affinities was also analyzed by Xu and
Goddard.1% The mean absolute deviation from experimental ionization potential for
the G2 set of molecules amount to: 0.187eV (BLYP), 0.185eV (B3LYP), 0.168 eV
(OLYP), and 0.139eV (O3LYP). For electron affinities, the corresponding devia-
tions are equal to: 0.106eV (BLYP), 0.133eV (B3LYP), 0.103eV (OLYP), and
0.107eV (O3LYP).

LDA- and GGA functionals do not lead to a satisfactory description of negative
anions (some even do not exist at the LDA- and GGA levels), which was attributed
to the wrong asymptotic behaviour of the corresponding v,.2 and/or self-interaction
error. 2219419 Nevertheless, quite reasonable numerical values of electron affinities
calculated using hybrid functionals were reported for several anionic systems,121%
The Half-and-HalfLYP functional slightly underestimates the experimental values
for this quantity, whereas B3LYP slightly overestimates it. The admixture of a
small amount of the ‘exact exchange’ appears to be crucial.

4.4. Intermolecular Interactions

4.4.1. Hydrogen bonding

The interest in hydrogen bonding arises from its key effect on the structure
of biomolecules, molecular crystals, and clusters of various sizes. Kohn-Sham
calculations applying local density approximation are rather useless in practical
computer simulation studies as shown by dedicated studies on model hydrogen-
bonded complexes. LDA equilibrium donor-acceptor distances (r,) are systemati-
cally slightly underestimated whereas the LDA well depths (D,) are significantly
overestimated. This tendency was demonstrated for: water dimer!®1% ammonia
dimer,!? formamide dimer,!! N-methylacetamide-water complex?, and for a

number of other hydrogen-bonded complexes.12:113



Hohenberg-Kohn-Sham Density Functional Theory 175

For various hydrogen-bonded complexes, it was shown that common GGA
functionals such as BLYP, BPW86, PW86P86 perform better than LDA 1%~ 1L
U3=117 The hybrid functional B3LYP perform as good or better then the GGA
functionals. 1% 112—115 118,119

The GGA functionals were also shown to perform rather well even in cases
of weaker hydrogen bonds. For hydrogen bonds involving aromatic -acceptors
(H,0-C¢Hy, NH;-C Hy, HCI-C¢H, H,O-indole, and H,O-methylindole), Zhao
et al.12% demonstrated a reasonably good performance of PW91, which was inferior,
however, to that of the empirical hyper-GGA functional PWB6K introduced by
these authors.

The bonding parameters of the dispersion-dominated complex of square-planar
platinum(II) and water derived from second-order Mgller-Plesset calculations are
reasonably reproduced in the GGA calculations. For several orientations of the water
ligand, both considered functionals (PW91 and BLYP) led to qualitatively correct
potential-energy curves deviating slightly from the Mgller-Plesset reference data.
Systematically, the PW91 functional overestimates, whereas BLYP underestimates,
the strength of the interaction.12!

Tsuzuki and Liithi (2001)22, analyzed the performance of two GGA functionals
(BLYP and PW91) and the B3LYP hybrid functional on a representative set
of 12 hydrogen-bonded complexes. The DFT results were compared with the
ones derived from second-order Mgller-Plesset- and coupled-cluster (CCSD(T))
calculations. The effect of the basis set up was carefully examined. Basis sets
as large as cc-pV5Z were used. Using the agreement with the CCSD(T) results
as the accuracy criterion indicates that the PW91 functional leads to the best
interaction energies (relative errors amount to 5% for (NH;),, HCOOH-HCOOH,
HCONH,-HCONH,, H,0-CH,;OH, HCN-HF, and H,0-HCONH, complexes.
The B3LYP and BLYP functionals lead to noticeably underestimated inter-
action energies. The largest relative errors of the interaction energy occur in the
CH;0CH;-H,O0 case for all considered approximations to the exchange-correlation
energy which amount to 17%, 34%, and 45% for PW91, B3LYP, and BLYP,
respectively.

Milet et al.12 investigated the performance of common GGA functionals (BP86,
BLYP, and BPW91) and the corresponding hybrid approximations to the exchange-
correlation energy in reproducing angular dependence of the potential energy surface
in the OH-H,O and (H,0), hydrogen-bonded intermolecular complexes. The
comparison with benchmark results obtained using wavefunction-based methods
show that the considered functionals are not capable to reproduce this feature of
the potential energy surface.

Xuand Goddard 12 studied the performance of the hybrid functional (X3LYP) using
an empirical combination of B88, PW91, and ‘exact exchange’ for various systems
and properties including bonding properties of the water dimer. The results obtained
using other GGA functionals (BP86, BLYP, BPW91,PW91, mPW91,PBE, XLYP)as
well as hybrid approximations to the exchange-correlation energy (Half-and-HalfLYP,
B3P86, B3LYP, B3PW91, PWI1PW, mPWI1PW, O3LYP) were also reported. Due
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to large contributions arising from anharmonicity and zero-point vibration effects,
extracting parameters of the potential energy surface from experimental data is not
straightforward. For the water dimer, however, accurate bonding parameters derived
from high-level wavefunction-based calculations are available.12 It was found that
GGA functionals lead to the OO equilibrium distance within 0.04 A of the reference
value (r, = 2.91240.005 A) and the value of the well depth D, within 0.04eV of
the reference value (D, = 0.218 +0.004 V). The best parameters were obtained by
means of the PBE1PBE hybrid functional. The agreement with the reference data was
within 0.016 A and 0.002 eV for r, and D, respectively.

The mPBE functional® is a modification of the nonempirical PBE functional
into which one empirical parameter was reintroduced. Compared to PBE, mPBE
leads to significantly worse interaction energy for the water dimer, whereas the
interaction energies in the cases of hydrogen fluoride and hydrogen chloride dimers
are only slightly improved.

The recent report by Zhao and Truhlarl? provides a wealth of numerical
data for analysis of the performance of commonly used approximations to E, [p]
in describing nonbonded interactions and hydrogen-bonding in particular. LDA-,
GGA-, meta-GGA-, hybrid-, and hybrid meta-GGA (hyper-GGA in Perdew’s
nomenclature) functionals were considered. Literature benchmark well depths (D,)
derived from high-level wavefunction-based calculations were used as reference
in testing the performance of the considered DFT methods. Among the GGA
functionals, PBE was found to perform the best. This functional does not depend
on empirical parameters and its better performance than that of empirical GGA
functionals is noteworthy. However, the TPSS functional, which is the nonempirical
meta-GGA, does not perform better than PBE — its nonempirical GGA cousin.
Except for LDA, the best functional in each group of approximate functionals leads
to better average structural and energetic performance than second-order Mgller-
Plesset calculations.

Staroverov et al.l® tested the performance of nonempirical and empirical
exchange-correlation functionals of the LDA-, GGA-, hybrid-, meta-GGA
type on ten hydrogen-bonded systems (HF),, (HCl),, (H,0),, HF-HCN,
HF-H,0, CN™-H,0, OH -H,0, HCC -H,0, H;0"-H,0, and NH,*-H,O0. In all
calculations, the 6-3114++G(3df,3pd) basis set was applied. Second-order Mgller-
Plesset dissociation energies were used as the reference. Among nonempirical
functionals, the quality of the obtained results parallels their position on the “Jacob’s
ladder” of approximate functionals. The mean absolute errors of the dissociation
energy amount to: 5.78 kcal/mol for LDA, 1.00kcal/mol for GGA (PBE), and
0.59 kcal/mol for meta-GGA (TPSS). For comparison, the corresponding values
for empirical functionals equal 0.91 kcal/mol and 0.43 kcal/mole for HCTH and
B3LYP, respectively.

4.4.2. Van der Waals complexes

Even qualitatively, the correct description of the whole potential energy surface of
a weakly bound intermolecular complex is not possible by means of the commonly
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used approximations to the exchange-correlation energy. The semi-local approxima-
tions (LDA, GGA, meta-GGA) are fundamentally flawed. At large intermolecular
separations, only electrostatic- and induction components of the interaction energy
can be accounted for by means of these approximations. The accuracy of these
two components of the interaction energy depends obviously on the accuracy
of such quantities as electric moments and polarizabilities derived using approx-
imate functionals — the subject covered in one of the proceeding sections. The
dispersion energy-component of the asymptotic behavior proportional to —r,;~°
(where 1,5 is intermolecular distance) cannot be obtained from Kohn-Sham calcu-
lations applying semi-local approximations to the exchange-correlation energy
because these functionals are additive in the case of non-overlapping electron
densities (p, and pg):

Excsemi-local[pA + pB] — Excsemi-local [pA] + Excsemi—local[pB] (2_18)

Current hybrid functionals do not improve this situation. Their non-local component
(Hartree-Fock exchange) cannot give rise to any attraction. To describe quantita-
tively the long-range interactions, either a non-locafd approximation to E, [p] must
be applied within the Kohn-Sham framework or methods using other-than-Kohn-
Sham formalism should be used. Some of such approaches will be discussed in the
last section of this review. Here, we mention an especially promising combination
of symmetry adapted perturbation theory with of the Kohn-Sham orbitals.122

Close to the equilibrium geometry, however, there is no principal reason why
semi-local approximations should be bound to fail. In practice, however, description
of the equilibrium geometry part of the potential energy surface of van der Waals
complexes lays at the border area of applicability of the most common approximate
exchange-correlation functionals. Empirical GGA exchange-energy functionals such
as the one of Lacks and Gordoni2® or mPW913 were parameterized using the
potential-energy-surface data for such complexes.

For obtaining interaction energies and equilibrium geometries, local density
approximation is even less adequate than it is in the case of hydrogen-bonded
complexes. The intermolecular distances are too short and the interaction energies
are overestimated, 13123 127—129 130.31 The gverestimation of the interaction energy
in the case of noble-gas dimers by factor three as it is the case for Ar, or even ten
for He,12! makes LDA rather useless for this type of systems.

For van der Waals complexes, the interaction energy depends very strongly on
the choice of the GGA functional 1212 This trend is in a sharp contrast to a rather
uniform — and usually acceptable — performance of various GGA functionals in

* The term “non-local” is used sometimes in the literature in association with gradient-dependent
(GGA) functionals. This nomenclature is not applied in this work. The LDA-, GGA-, and meta-GGA
functionals are referred to as semi-local as they do not account for any long-range non-locality of
the exchange-correlation energy density: e, ™ (r) =g (p(r), Vp(r), V?p(r), 7(r)) whereas
stnon_loca] (r) = SXC [p] (r)'
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describing hydrogen-bonded complexes. In particular, it is the exchange component
of the E,““*[p], which is responsible for this erratic behavior,126122:132133 [Jsing
the B88 exchange functional leads frequently to lack of any bonding in cases
where bonded structures exist in reality: noble-gas dimers or mr-stacking for
instance 3103113127128 134—136 - A far as hybrid functionals are concerned, the
situation is similar. Typically, B3LYP does not lead to satisfactory results for
noble-gas dimers and m-stacked complexes.123137:138

Numerical experience shows that the Lieb-Oxford bound,’2 which is the
condition satisfied by the exact exchange-correlation-energy functional, should be
used as the selection criterion among GGA functionals. Such functionals (PBE,
PW91, RBPE, mPW91, for instance) lead usually to better bonding parameters
than the ones obtained by means of the functionals that violate the Lieb-Oxford
bound.3120.2.032.133.36.1%0 Teyzuki and Liithi (2001) confirmed numerically this
regularity for a representative sample of nonbonded complexes.

The weak nonbonding interactions play also a key role in the conformational
equilibria of flexible molecules. In the case of 2-phenylethanol and n-butylbenzene
in neutral- and cationic forms, interactions between the side-chain and the aromatic
ring are sterically possible. Using the second-order Mgller-Plesset relative energies
of different conformers, Patey and Dessent4? demonstrated that the performance of
PW91 functional is notuniform. Itleads to very reasonable relative energies of different
conformers of n-butylbenzene whereas it fails in the case of the 2-phenylethanol ™.

The important type of systems, where common LDA- and GGA functionals were
shown to fail, includes the charge-transfer complexes formed by ethylene or ammonia
interacting with a halogen molecule (C,H,-X,, NH;-X,, X=F, Cl, Br, and I). These
approximations lead to an unacceptable overestimation of the binding energy{!.42
regardless the exchange functional satisfies the Lieb-Oxford bound or not.

Milet et al.l2 demonstrated also that the common approximations to the
exchange-correlation energy of the GGA type: BP86, BLYP, and BPWO1, as well as
the corresponding hybrids cannot account satisfactorily for angular dependence of
the interaction energy in the CO —H,0, He — CO, complexes. All the considered
functionals lead to potential-energy curves lying significantly above the exact ones
(the SAPT and CCSD(T) potential-energy curves, which are indistinguishable, were
used as the reference). The relative energies at the maxima of the potential-energy
curves were especially unsatisfactory (overestimation by at least factor two) for
the He — CO, case and all considered approximations to the exchange-correlation-
energy functionals except for B3LYP.

Tao and Perdew!® reported recently a systematic study of the perfor-
mance of nonempirical functionals (LDA, PBE, and TPSS) and a one-parameter
hyper-GGA (TPSSh) in reproducing bonding parameters of noble-gas dimers
(He,, Ne,, Ar,, Kr,,HeNe, HeAr, HeKr, NeAr, NeKr, and ArKr). The mean absolute
error in equilibrium distance amounts to 0.86, 0.28, 0.60, and 0.61 bohr for LDA,
PBE, TPSS, and TPPSh, respectively. The corresponding mean absolute errors in
binding energy are equal to 0.35, 0.08, 0.10, 0.11 kcal/mol. The improvement upon
LDA following the introduction of gradients is evident. However, introduction of the



Hohenberg-Kohn-Sham Density Functional Theory 179

kinetic-energy-density dependence does not improve the calculated bonding param-
eters but worsens them slightly. Moving to the highest rung of the “Jacob’s ladder” of
approximate functionals (TPSSh) causes even a smaller effect on calculated bonding
parameters. For each van der Waals complex considered, the TPSS and TPSSh results
are very similar. The results of Tao and Perdew!2? supplement the similar analyses by
Ruzsinszky et al.£3! concerning noble-gas and alkaline-earth dimers.

The empirical mPBE functional22 discussed in the previous section leads
to slightly better equilibrium interatomic distances for the He,, Ne,, and Ar,
dimers without, however, affecting the interaction energies compared to the parent
functional (PBE).

Kamiya et al.1% applied the mPW91PW91 and mPW 1PW91 functionals to rare
gas dimers. The GGA exchange component of these functinals was parameterized
originally using the exchange energy in He, and Ne, dimers. Although the distance-
dependence of the interaction energy in the helium and neon dimers was shown
to be reasonably good, the results for the argon dimer are disappointing.i*3 The
minimum energy is underestimated by about a factor of four and the equilibrium
geometry is shifter by almost one Angstrom towards longer interatomic distances
compared to the reference data.

Zhao and Truhlari3® analyzed the performance of several recently developed
approximate exchange-correlation functionals in describing stacking interac-
tions in systems of biological interest: nucleic acid bases complexes (adenine-
thymine, guanine-cytosine, cytosine-cytosine, uracil-uracil) and stacked amino
acids pairs (phenyloalanine-phenyloalanine, phenyloalanine-lysine, phenyloalanine-
leucine, phenyloalanine-tyrosine). It is important to underline that the applicability
of empirical approximations to the exchange-correlation functional for this type of
systems has been object of studies for more than a decade. It is rather clearly estab-
lished that the B3LYP and most of the GGA functionals lead to quantitative wrong
potential-energy curves in this case.13133:13814% Tp the case of nucleic acid bases
complexes, Zhao and Truhlar used benchmark results derived from wavefunction-
based calculations as a reference to test the performance of the functionals they
proposed. For complexes formed by amino acids, the reference geometry was
extracted from X-ray crystallographic structure of relevant proteins. The empirical
functional dubbed PWB6K leads to the best results.

The discussed in the previous section report by Zhao and Truhlar!2 provides
a comprehensive overview of the performance of commonly used approxima-
tions to E, [p] in describing also van der Waals complexes. The performance
of empirical and nonempirical approximations to the exchange-correlation energy
situated on all five rungs of the Jacob’s ladder was analyzed, using the benchmark
interaction energies derived from high-level wavefunction-based calculations as
a reference, for the following type of complexes: HeNe, HeAr, Ne,, NeAr,
CH,-Ne, C¢H¢-Ne, (CH,),, (C,H,),, and (C,H,),. As expected, the errors are
the largest for LDA. Among the GGA functionals, the mean absolute error of D,
was the smallest for PBE (0.27 kcal/mol). Even highly empirical HCTH functional
leads to larger deviations from the reference data. None among the seven considered
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meta-GGA functionals leads to better accuracy than PBE. B97-1 leads to the
smallest errors (0.19 kcal/mol for B97-1) among the hybrid functionals and the best
hyper-GGA functional (MPWBI1K) leads to very similar mean absolute error in D,
(0.20 kcal/mol).

The fact that semi-local approximations to the exchange-correlation energy cannot
account for non-electrostatic components of the interaction energy in intermolecular
complexes suggests a practical solution to obtain better interaction energies than
the ones derived from the Kohn-Sham calculations applying such functionals. The
missing term proportional to the —R,;~°, damped at short interatomic separations
to reduce double-counting, has been used by several authors for this purpose.i32,
145—148 Wy and Yang!® demonstrated that without taking into account the long-
range dispersion forces, conventional approximations to the exchange-correlation
functional lead to unrealistic relative energies of different conformers of flexible
biopolymers. The energy difference between the 3,,-hellical and a-helical confor-
mations of polypeptides (n =2, 3, 5, 8), calculated by means of GGA (BLYP,
BPW91, or PWO91) and hybrid (B3LYP) functionals, was shown in qualitative
disagreement with second-order Mgller-Plesset results. Therefore, adding terms
proportional to —R,;~°, on top of the calculated Kohn-Sham interaction energies
was also recommended as a practical solution.

Another interesting empirical solution was proposed recently by Lilienfeld
et al.12 A special term taking the form of an atom-centered pseudopotential was
added to the effective Kohn-Sham potential to correct the energies derived from the
Kohn-Sham GGA calculations. The method was tested on noble-gas and benzene
dimers.

The Hartree-Fock-Kohn-Sham scheme, in which the total energy is represented
as the sum of the Hartree-Fock energy (orbital-dependent) and a density-dependent
correlation contribution, was applied by Pérez-Jorda et al.i3! to derive the bonding
parameters in noble-gas dimers: He,, Ne,, Ar,, HeNe, HeAr, and NeAr. The
authors tested several approximate expressions for the term representing the corre-
lation functional and found that the functional of Wilson and Levy{3? performs
the best: equilibrium geometries agreed within less than 0.2 A with the reference
values whereas the relative errors of the interaction energies are smaller than 25%
for all cases except for the helium dimer for which the calculations overestimate
the interaction energy by about 50%.

S. ONGOING DEVELOPMENTS

Density functional theory of atoms and molecules is a lively area as evidenced by
reports dealing with methodological developments appearing regularly in the liter-
ature as well as a constantly growing body of numerical results, which provide useful
guidelines concerning applicability of a given approximation/parameterization.
Ongoing methodological developments are mainly motivated by still unresolved
issues which lay at the origin of spectacular failures of methods based on the
Kohn-Sham equations: lack of dispersion attraction at long range, wrong description



Hohenberg-Kohn-Sham Density Functional Theory 181

radical dissociation processes, for instance. Reducing the errors in calculated
properties also in cases where current methods lead to acceptable accuracy is also
desired. The overview of the performance various approximations to the exchange-
correlation functional shows that the semi-local series (LDA, GGA, meta-GGA)
cannot handle such problems in a satisfactory manner. Both formal considerations
(adiabatic connection and Levy-Gorling perturbation formulation of DFT) as well
as numerical examples indicate that explicit dependence of the exchange-correlation
energy on orbitals is unavoidable. Recently, Baerends!2* demonstrated that going
even further, namely expressing the exchange-correlation energy by means of
unoccupied Kohn-Sham orbitals, lead to a correct description of the dissociation
of H, molecule — a problem for which a practical solution within the Kohn-Sham
framework remains to be found.

The principal objective in development of new DFT methods is the elimi-
nation or reduction of practical consequences of these flaws of current approx-
imations. Current methodological works can be expected to lead to new
methods/approximations, which will soon be refined to such extent that they will
find the way to standard program packages and will enrich the still growing family of
DFT methods available for a computational chemist. The developments reviewed in
sections: optimized effective potential, weighted density approximation, exchange-
correlation-energy functional van der Waals density functional of Langreth and
Lundgvist, and current-dependent exchange-correlation functional aim at better
approximations to the exchange-correlation potential and/or energy in the Kohn-
Sham equations. Other sections deal with methods not involving these equations
but using closely relevant ideas and concepts.

5.1. Optimized Effective Potential

In wavefunction-based methods of quantum chemistry such as Hartree-Fock, many-
body perturbation theory (Mgller-Plesset), and coupled-cluster formalisms for
instanceﬂ the total energy can be expressed analytically as an explicit function
of occupied and/or unoccupied orbitals. In such a case, the functional derivative
of energy with respect to each orbital can be obtained analytically. Such deriva-
tives have no direct use in the Kohn-Sham equations because v, is the functional
derivative of one of the components of the total energy (E,.[p]) with respect to
electron density. Optimized effective potential (OEP) is a concept providing the
link between the two types of derivatives.i3 In principle, one can construct OEP
corresponding to any conventional quantum chemistry framework: Hartree-Fock-,
Mgller-Plesset-, coupled-cluster-, or even configuration interaction methods (see
Hirata et al.13, for a general overview). The basic equation linking OEP to the
quantities occurring in the parent wavefunction-based method was given by Sharp
and Horton!** and by Talman and Shadwick.13¢

* Exchange-correlation functionals, which depend explicitly on Kohn-Sham orbitals such as meta-GGAs,
hybrid- and hyper functionals discussed before fall also in this cathegory.
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For many years, OEPs have been constructed using the orbital dependence of
the energy taken from the Hartree-Fock theory (exchange-only OEP). The interest
in exchange-only OEP increased owing to an additional approximation introduced
by Krieger, Lee, and Iafrate!2 allowing one to construct the exchange-only OEP
very accurately at low computational cost. As a result, OEP is associated frequently
with exchange-only case. Studies on exchange-only OEP brought many benefits.
It has been demonstrated that one can obtain the Hartree-Fock energy almost
perfectly using a multiplicative potential.12812 The fact, that exchange-only OEP
and Hartree-Fock methods do not led to exactly the same solution, results from
the reasons which will not be discussed here further. We underline, however, that
the numerical differences are of no chemical importance. Exact-exchange OEP
studies provide also important data for interpretation of eigenvalues in the Kohn-
Sham equations which are considered auxiliary quantities in the orthodox interpre-
tation of the Kohn-Sham theory except for the ones corresponding to the highest
occupied one. %

Current post-Hartee-Fock OEP methods were shown to handle successfully such
cases for which other strategies to approximate the exchange-correlation potential
fail.8 They are very promising although their efficient numerical implementations
making it competitive with the corresponding parent correlated wavefunction-based
methods have not been developed yet.

5.2 Weighted Density Approximation

Weighted density approximation®~12 provides a strategy to construct non-local

approximation to the exchange-correlation-energy functional using the relation
between E, [p] and the exchange-correlation hole n, (r, r'):

ol 1 - - xc _" 7 ol
E o)1= [ o [ 2CT) gy (2-19)
2 |r —7|
In order to satisfy the exact condition:
/ (7, 7)dr = —1 (2-20)
n,. is approximated as:
n (7)) = p(F)G PR T (F)] (2-21)

where the function GVPA(r, r’; p°) has a postulated analytic form, which depends
parametrically and on yet another function p°(r). The exact condition given in
Eq. (20) leads to the following equation for p°(r):

[ BIGF T o ()1 =1 (2-22)
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For a given function GYPA(r,r’; p°), obtaining p°(r) involves a significant
numerical effort because, at each point in space r, p°(r) depends on electron density
p in the whole space. Once p°(r) is obtained, it is used in Egs. (19) and (21) to
derive the corresponding E, [p].

Weighted density approximation has been shown to improve upon LDA- and
GGA results as far as ground-state properties of such materials as SrO, CaO,
KNbO;, KTaO;, BaTiO,,1818 silicon1% and the dielectric response of oxides1&
are concerned. So far, only a few applications of the WDA strategy to molecules
were reported.1

5.3. Exchange-correlation Energy-functional from Adiabatic
Connection Fluctuation-dissipation Theorem

Adiabatic-connection fluctuation-dissipation theorem allows one to express
the exchange-correlation energy-functional by means of imaginary-frequency

density response function (x,) of the system with the scaled Coulomb potential
(A/[r =¥ 2L

1

1 o1 1 L I
En,[p]z—ifd)\/dr/dr 7 |:Tr0/du)(}\ r, T :lu)—|—p(r)8(r—r):|

0
(2-23)

Recent years brought the whole series of works aimed at constructing approxi-
mations to the exchange-correlation-energy functional based on Eq. (23) in which
different levels of approximations are used for x,. Especially useful is the random
phase approximation applied to derive: the whole exchange-correlation functional,
its long-range, or short-range parts. 18717 Furche, 200522; The functionals of this
type can, in principle, provide a practical solution to the outstanding problems
faced by commonly used approximations: the correct dissociation of open shell
fragmentsm'zﬁ; or description of van der Waals interactions, 183170171 for instance.
However, further approximations concerning (,) are indispensable in order to use
this formalism in practical simulations, 182> 174~ 176

54. Van der Waals Density Functional of Langreth and Lundqvist

As indicated in the discussion of the performance of the common approximate
exchange-correlation functionals in describing bonding of van der Waals complexes,
the long-range behavior of the potential-energy curves cannot be properly described
by means of semi-local functionals. Langreth, Lundquist, and collaborators proposed
a solution of this deficiency by building in non-locality into the exchange-correlation
functional..#1% The correlation-functional is split into two components: local
and non-local. Whereas the local part is approximated using LDA, the non-local
component is constructed in such a way that the correct long-range behavior of the
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correlation energy is built in minimizing also the possible double-counting. The
exchange energy is approximated by means of the revPBE functional of the GGA
type. The method has been applied originally for systems of layered geometries,1Z*
Ar,, Kr,, and (C4Hy), dimers,22 dimers of polycyclic aromatic hydrocarbons, 2
parallel polymers,iZ for instance.

Hirao and collaborators, 238 proposed a closely linked approach to treat weakly
bound complexes in which van der Waals density functional of Langreth, Lundqvist,
and collaborators provides a key ingredient. The results of the tests on model

systems (He,, Ne,, and Ar,) are very encouraging.

5.5. Current-dependent Exchange-Correlation Functional

The aforementioned trend that semi-local functionals leads to overestimated dipole
polarizabilities suggests a common origin of this flaw. In the case of small
molecules, imposing correct asymptotic behavior of v, solves the problem to certain
degree. In the case of extended systems, however, the calculated responses are even
less reliable. Common approximations to the exchange-correlation potential fail
dramatically for extended polymers.8 181=18¢ Unfortunately, imposing the correct
asymptotic behavior of v, does not help. The wavefunction-based methods predict
that the dependence of the polarizability on the polymer length is sub-linear. Semi-
local and hybrid approximations for the first- and second functional derivatives
of the exchange-correlation energy, which are needed in linear-response time-
dependent DFT calculations (for review, see Casida'®), lead to a significant overes-
timation of the dipole polarizability especially for long chains. For the chain of ten
monomers in polyethylene, the polarizability calculated using such approximations
is two times too high (van Faassen et al., 20031%). Similar overestimation has
been reported for polysilane, polysilene, polymethinemine, polybutatriene, polydi-
acetylene, 18 polymethineimine,¥ and a model system comprising a chain of
hydrogen atoms&:183 for which accurate CCSD(T) or fourth-order Mgller-Plesset
polarizabilities are available. For hyperpolarizabilities, a similar failure has been
reported.28 A highly non-local and collective nature of electronic polarization has
been identified as the cause of this qualitative failure.18 Both the current-dependent
exchange-correlation functionali® and the optimized effective potential based on
‘exact exchange’ account for the non-local effects more appropriately than semi-
local functionals (LDA, GGA, or meta-GGA) and, indeed, lead to significantly
better description of the polarizability of long polymer chains.88 These methods,
however, are computationally more expensive than the conventional ones.

The introduction of current-dependence into the exchange-correlation energy
functional proved to be beneficial in yet another area. The fact, that the exchange-
correlation energy is approximated, leads to a strong dependence of the degenerate
open-shell atomic energies on the occupancy of the atomic orbitals.® This leads
to uncertainties of the order of 3 to 5kcal/mol in the atomic ground state energy
of second and third period main group elements and the first transition series.
In this respect, GGA is a worse approximation than LDA because it leads to
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larger uncertainties.’2? Becke!2 showed that, expressing the exchange-correlation
energy as a functional depending also on current reduces the spread between DFT

calculated energies of different degenerate states to below 1.0kcal/mole for such
atoms as B, C, O, F, Al, Si, S, and CI.

5.6. Density Functional Theory without the System
of Noninteracting Electrons

The Kohn-Sham reference system corresponds to a singledeterminantal
wavefunction. It is the exact wavefunction for an artificial system of noninteracting
electrons. Such flaws of current approximations to E, [p], which lead to qualitative
wrong description of states described by multideterminantal wavefunction (dirad-
icals for instance) are commonly attributed to this fact. The idea of combining
the second Hohenberg-Kohn theorem with other reference state than a system of
noninteracting electrons is, therefore, very appealing. In principle, one can construct
various beyond-Kohn-Sham formulations of density functional theory depending on
the choice of the reference system (see the pioneering work by Savini2! for an
overview). However, the decomposition of the total energy into density functionals
of known and unknown analytic form depends on the choice of the reference
state. Using functionals, which were developed as approximations to the exchange-
correlation energy defined in the Kohn-Sham framework, in other frameworks
involves the risk of double-counting. Currently, different practical realizations of
multideterminantal reference state based strategy are under development in several
groups. 122712

5.7. Dispersion Interactions from the Analysis of the Dipole
Moment of the Exchange Hole

Becke and Johnson222% proposed recently a new method to treat van der Waals

complexes, to be used in association with either Hartree-Fock or Kohn-Sham
orbitals. In this model, the total energy is expressed as:

Eo =Eur+ ECBR + Edisp (2'24)

where Ej: is the Hartree-Fock energy, E-®® is the correlation functional of the meta-
GGA type,22 and Eyip 1s a special parameter-free term obtained from the analysis of
the position-dependent dipole associate with the exchange hole. This dipole moment
depends on electron density, its gradients and Laplacian, and the density of the
kinetic energy. The model predicts the C4 dispersion coefficients with a very good
accuracy.2 The mean percentage error of these coefficients calculated for 178
cases amounts to only 11.1%. The same model leads also to very good interaction
energies in weakly bound systems.22 The mean percentage errors of the interaction
energy based on representative complexes amount to: 10% for 24 dispersion bound

complexes ranging from the helium- to benzene dimers, 8% for seven complexes
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comprising one polar and one nonpolar molecule (CH,-NH,, C,H,-HF, complexes
for instance), and 6% for the six complexes formed by two polar molecules.

5.8. Subsystem Formulation of DFT

Cortona2® proposed an alternative strategy to approximate the Hohenberg-Kohn
energy functional compared to that of Kohn and Sham. In this formulation,
construction of the Kohn-Sham orbitals for the whole system under investigation is
not needed because the total electron density of the system under consideration is
constructed using several sets of one-electron functions (embedded orbitals). Each
set corresponds to a subsystem comprising an integer number of electrons. The
orbitals of each subsystem (denoted as A below) are derived from Kohn-Sham-type
one-electron equations

1 - o -
[—5V2 + VP00 Pt = pA](r)] () = &} (7) (225)
The effective potential for each set of embedded orbitals reads:

V:,(fjstED[PA’ Prorar — Pal(F) = cff[PA]G’) + V;;flh[PA’ Prora — Pal(F)

(2-26)

where,
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P=PTotal

In the above formula, T,"[p,, p,] = T.[p; +p,] —T.[p,] — T.[p,] denotes the bifunc-
tional, i.e. the functional of two electron densities, representing the nonadditivity
of T,[p].

In the original work of Cortona,== the subsystems correspond to spherically
symmetric atoms in solids. This formalism can be also applied for polyatomic
subsystems — interacting molecules in particular.2

It is worthwhile to underline the key difference between the Cortona and Kohn-
Sham frameworks to obtain ground-state energy and density in practical calculations

203

* The label KSCED standing for Kohn-Sham Equations with Constrained Electron Density is used
here to indicate that, despite the similarity to Kohn-Sham equations, the effective potential and the
one-electron functions differ from the corresponding quantities in these two frameworks.
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based on Hohenberg-Kohn theorems. They differ only in the treatment of the
kinetic energy in the reference system of noninteracting electrons. In practical
Kohn-Sham calculations, this quantity is calculated exactly whereas it is calculated
in a combined way in the subsystem-based framework (exact for T[p,] and T,[p,]
and approximate for T,"[p,, p,]). Since the exchange-correlation energy is treated
in the same way in both formalisms, the results of the calculations are prone to
the same flaws of applied approximations to E, [p]. In particular, the treatment of
dispersion forces is not possible using semi-local approximations to this functional.
The approximations to the nonadditive kinetic energy is not relevant in this context
because the exact T,"[p,, p,] disappears for non-overlapping electron densities.
For overlapping electron densities, however, even simple approximations such as
LDA and GGA applied simultaneously to both approximate components of the total
energy functional (i.e. E..[p] and T,"[p,, p,]) lead to very reasonable interaction
energies, 203:200

Equations (25-26) provide also the formal foundations of the orbital-free and
first-principles based multi-level type of computer simulations in which only one
subsystem is described at the orbital level (denoted with A in Egs. (25)—(27)),
whereas the other subsystem(s) is (are) described using simpler methods for
obtaining prom-Pa-2Z For a more complete review, see Dulak et al.2%® and

Wesolowski.22

5.9. Density-matrix Functional Theory

Density-matrix functional theory is a natural extension of density functional theory
of Hohenberg, Kohn, and Sham. Zumbach and Maschke2 introduced the analog of
the Kohn-Sham equations in which the exchange-correlation energy is expressed as
a functional of one-particle density matrix (I'). Similarly, as in the case of the Kohn-
Sham equations, practical applications of such a scheme hinge on approximation to
the exchange-correlation functional (E, [I']). Several theoretical groups are working
on such approximations.2X~27 For recent tests of the performance of various
approximations to E, [I7], see also Staroverov and ScuseriaZ® (2002) and Cohen
and Baerends.2? Pernal and Cioslowski22 investigated formally the applicability
of some approximations to E,.[I] to describe the interactions in the case of two
weakly interacting systems. Their analysis showed that the simple approximations
based on natural spin orbitals are not capable to recover the dispersion-energy
component of the interaction energy.

6. CONCLUDING REMARKS

The Hohenberg-Kohn-Sham density functional theory provides the common formal
framework for various computational methods. Since each of the methods in use
involves approximations, the calculated properties are not exact. Nevertheless, these
methods proved to be very useful in chemistry and materials science. The huge and
ever growing number of applications (see Figure B=T)) speaks for itself. Frequently,
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the errors of calculated quantities are acceptable for practical purposes. Obviously,
reducing further these errors is very desirable. There are cases, however, where the
results of the Kohn-Sham calculations are qualitatively wrong. For these reasons,
further developments are needed. Using nonbonding interactions as an illustration,
we have shown that development of methods situated within the Hohenberg-Kohn-
Sham formulation of density functional theory is a dynamic field in which various
strategies are being applied to address these unresolved issues. Noncovalently
bonded complexes define one of the frontiers of applicability of density-functional-
theory methods. At the local density approximation level, the Kohn-Sham equations
lead to a very reasonable description of strong chemical bonds. Introduction of
gradient-dependent functionals made it possible to extend the domain of applica-
bility of the Kohn-Sham equations to hydrogen-bonded complexes more than one
decade ago. Van der Waals complexes close to the equilibrium geometry belong
to the domain of applicability of Hohenberg-Kohn-Sham DFT only if especially
tailored or selected methods are used. Description of interactions between non-
overlapping electron-densities (London dispersion forces) is not possible by means
of the methods, which are in common use today. New formalisms, which might
lead to efficient computational methods to describe such interactions, are in view.

This review, attempted also to provide a roadmap in the jungle of currently used
approximations to the exchange-correlation energy functional. Eq. (6) provides its
formal definition but does not give direct hints concerning approximating it. Each
of equivalent definitions of the exchange-correlation functional (Egs. (7), (19),
and (23), for instance), opens the door for a possible strategy to approximate the
exchange-correlation energy functional. Relying only on first-principles, leads to
nonempirical functionals within each strategy. However, following a given strategy
leaves usually space for parameters which can be determined using reference data
for molecular systems leading thus to empirical functionals. In this review, the
functionals were grouped also according the Perdew’s hierarchy of methods known
as Jacob’s ladder of functionals. Each group: LDA, GGA, meta-GGA, and hyper-
GGA corresponding to the ascending rungs of the ladder, collects functionals of
the exchange-correlation energy which depends explicitly on a particular set of
quantities such as electron density, electron-density gradients, density of the kinetic
energy, and finally the Kohn-Sham orbitals (occupied or all). In principle, moving
upwards on the ladder should increase the accuracy of the calculated properties.
Frequently, it is the case but not always because each rung collects usually several
functionals (empirical and nonempirical) of different accuracy. Except for the lowest
rung (LDA), where the exact results for the uniform electron gas lead to a unique
functional, each other rung on the ladder collects various functionals which use
empirical parameters to various extent. The family of functionals developed by
Perdew, Scuseria, and collaborators represent a nonempirical series covering all but
the highest rung occupied currently by the TPSSh functional, which depends on one
empirical parameter. Moving from the lowest rung (LDA) to the next one (PBE)
leads invariably to the improvement of accuracy of the calculated observables.
Moving to even higher level (TPSS) also reduces errors but exceptions occur
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(bonding distance in noble-gas dimers for instance). This might indicate that an
alternative nonempirical construction is possible at the meta-GGA level or that
the series starting from LDA, GGA, meta-GGA, and ending with hyper-GGA
approaches the exact exchange-correlation energy in the oscillatory manner.

Owing to their flexibility, empirical functionals can outperform the nonempirical
ones for some systems and properties. The growing number of systematic studies
of the accuracy of various observables in different systems obtained by means
of empirical approximations to the exchange-correlation energy might bring not
only practical rules concerning their applicability but also more insight into the
meaning of some empirical parameters. Such interaction between both practical
and methodological aspects of present-day density functional theory can be only
beneficial for the whole field of computer modelling of complex chemical systems
and materials.



190

APPENDIX

Wesotowski

Table 2-7. Acronyms and abbreviations used for approximate exchange, correlation, and exchange-
correlation functionals discussed in this work and corresponding to their common use in the literature.
In some cases, the same label is applied for exchange, correlation, or exchange-correlation functionals
(PWOI for instance). In some cases, the labels used in the text are obtained as combinations of the ones
included here: B3LYP denotes the combination of the B3 exchange- and LYP correlation functionals,

for instance

Acronym used in text

Explicit dependence

Energy component

Reference

S or Dirac
VWN

WL

PW92

B86

PW86

P86

B or B88
LYP

PW91 or PW
RPBE

G96

PBE

HCTH
revPBE
mPW91 or mPW
HCTH-A
OPTX or O
mPBE

LAP

TPSS
Half-and-Half
B3
PBEIPBE
B97

mPW1

PBEO

03

X
TPSSh
PWB6K

p. Vp
p. Vp
p. Vp
p. Vp
p. Vp
p. Vp
p. Vp
p. Vp
p. Vp
p. Vp
p. Vp
p. Vp
p. Vp
p. Vp
p. Vp
p, Vp
p. Vp, T
P, Vp, &
P, Vo, &;
P, Vp, &
P, Vo, &;
P, Vp, &
P, Vo, &;

P, Vo, &;

p, Vp, &

p, Vp, T, &

p, Vp, Vip, &, 7

exchange

correlation
correlation
correlation

exchange

exchange

correlation

exchange

correlation
exchange-correlation
exchange

exchange
exchange-correlation
exchange-correlation
exchange

exchange
exchange-correlation
exchange
exchange-correlation
correlation
exchange-correlation
exchange

exchange
exchange-correlation
exchange-correlation
exchange
exchange-correlation

exchange
exchange
exchange-correlation
exchange-correlation

Dirac,2 Slater
Vosko et al. &
Wilson and Levy,22
Perdew and Wang, 18
Becke, 32

Perdew and Yue,2
Perdew,2

Becke, 2

Lee et al. 3
Perdew,2

Hammer et al.3
Gill, 2

Perdew et al.28
Hamprecht et al.3!
Zhang and Yang,3¢
Adamo and Barone,32
Hamprecht et al. 3!
Handy and Cohen,38
Adamo and Barone,2
Proynov et al.®

Tao et al.2

Becke, 28

Becke, 2

Perdew et al.28
Becke,2!

Adamo and Barone,22
Adamo and Barone,22
Ernzerhof and Scuseria, 22
Handy and Cohen, 38

Xu and Goddard12

Tao et al.2

Zhao and Truhlar,2
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Abstract:

Keywords:

In order to model (bio)molecular systems and to simulate their dynamics one requires
the potential energy functions at the microscopic, classical and/or quantum levels, as
well as fast generators of the free-energy functions at the mezoscopic level. A brief
overview of the methods which allow computations of the potential energy functions and
the free energies is presented. The ongoing research is focused on designing molecular
mezoscopic interaction potentials, applicable to nanoscale (bio)molecular systems, and on
utilizing conformationally dependent atomic charges. In particular, the coupling of a fast
quantum SCC-DFTB method with the Poisson-Boltzmann (PB) or Generalized Born (GB)
models is discussed, and the role of the SCC-DFTB CM3 charges in computations of the
mean-field electrostatic energies of molecular systems in real molecular environments is
indicated. These charges reproduce very well molecular dipole moments, and are obtained
from the Miilliken ones by applying a mapping procedure, using a quadratic function
of the Mayer’s bond orders. The PB and GB models give electrostatic reaction field
energies of molecular environments, in particular, provide electrostatic contributions to
the solvation energies. It is assumed that the solvation energy consists of the mean-field
electrostatic and nonpolar (hydrophobic) energy contributions. Typically, the nonpolar
term consists of the cavity formation free energy, and sometimes also of a mean van der
Waals interaction energy of the molecular system with its environment. This allows to
reproduce experimental solvation/hydration energies assuming different analytical forms
of the nonpolar energy terms. Refined GB models, with new formulae for the Born
radii are discussed. The nonpolar energies are quite well reproduced using the solvent
accessible surface area (SASA), or a polynomial series depending on reciprocal values
of the Born radii. Presence of the mean van der Waals energy on the quality of the fits
is also discussed. Reliable mezoscopic models and theories play a key role in describing
the functioning of nanoscale (bio)molecular systems

microscopic models; density functional; SCC-DFTB; CM3 charges; mezoscopic

models; Poisson-Boltzmann; Generalized Born; nonpolar interactions; solvent accessible
surface area
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1. INTRODUCTION

Studies of complex (bio)molecular systems and materials span a broad range of
temporal and spatial scales. Typically, quantum or quantum-classical dynamics
describe proton and/or electron transfer processes in the time scales ranging
from femtoseconds to picoseconds (107! — 107!%5). In turn, microscopic, atomic
classical molecular dynamics simulations permit describing motions in the time
scale of picoseconds to nanoseconds (107'2 —107%s). Motions of the entire
molecular fragments, which can be described using effective, mezoscopic or coarse-
grained dynamical models, are applicable in the time frame spanning a range
from nanoseconds to microseconds (10712 —107s). Typically, longer time scales
correlate with larger spatial scales of molecular objects. The diagram below presents
temporal and spatial scales accessible by current simulation techniques.

Different scales presented in Figure B=1] are related to different approximation
levels. For an overview of conventional molecular modelling methods, (see e.g.1™2).
Bridging the above mentioned disparate time scales for the description of biolog-
ically relevant collective motions requires hierarchical, multi-scale approaches. In
practice, to describe real complex (bio)molecular or material systems and processes
various models have to be coupled to each other. Selected coupling mechanisms
will be briefly reviewed.

For the past several years we have been developing and applying quantum
dynamics (QD) and quantum-classical molecular dynamics (QCMD) methods,
which are based on the explicitly time-dependent Schroedinger equation. For an
overview of the models and simulation results see e.g.? and the references cited

s —]
- Classical models
s — el ‘ |nc!l:|dmg .
.. | (micro)fluid dynamics
______ Mesoscopic
#s— T and
coarse grained MD
ns —|--+~.|  Atomistic
MD and QM/MD .
PS—1" ) Qemd |
(lnd .-. ‘\‘ ‘\.
fs . QD \“‘ \" “:
) l I ' '
nm pm mm

Figure 3-1. A diagram presenting spatial and temporal scales accessible by simulation methods
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therein. Therefore, we will not be discussing these approaches. Also a very broad
range of macroscopic models is outside the scope of this review. We will mostly
concentrate on microscopic, atomistic and mezoscopic approaches, including the
coarse-grained ones.

Both classical molecular mechanics (MM) and molecular dynamics (MD) with
microscopic, atomistic representations are well established and routinely applied
techniques. These will be briefly reported in Chapter 2.1. Mezoscopic coarse-grained
models are presented in 2.2. An example of coupling of conventional MM or
MD approaches with quantum mechanical (QM) ones will be discussed using the
self-consistent charge density-functional tight-binding method (SCC-DFTB) as a
well established test case. SCC-DFTB is widely and successfully applied in the
studies of material and (bio)molecular systems. Quantum energy calculations allow
determination of the potential energy function for molecular and macromolecular
systems, which can be used simultaneously with MM, MD or QD simulations.

Influence of the molecular environment on the structure and dynamics of
molecular subsystems will be outlined referring to the solvation free energy
(Chapter ). Implicit solvent models based on the Poisson-Boltzmann (PB) equation
and the Generalized Born (GB) model is discussed in 5 and 6. The PB or GB models
are used for studies of molecular electrostatic properties and allow proper assign-
ments of positions of protons (hydrogen atoms) within the given (bio)molecular
structure.

Mean-field hydrophobic interactions will be briefly presented as well. Finally,
implementation of the mean-field electrostatic and hydrophobic potentials to an
effective MD approach will be also presented.

The aim of challenging simulations is to study atomic/molecular objects and
events which occur on spatial scales from nanometers to microns, and on a range
of timescales from nanoseconds to milliseconds. Future perspectives will be briefly
outlined.

2. MICROSCOPIC AND MEZOSCOPIC MOLECULAR MODELS

2.1. Atomic Resolution of Molecular Models and Microscopic Potential
Energy Functions

A molecular system consists of electrons and nuclei. Their position vectors are
denoted hereafter as r,, and g,, respectively. The potential energy function of
the whole system is V(r,, q,). For simplicity, we skip the dependence of the
interactions on the spins of the particles. The nuclei, due to their larger mass,
are usually treated as classical point-like objects. This is the basis for the so
called Born-Oppenheimer approximation to the Schroedinger equation. From the
mathematical point of view, the ¢g,,. variables of the Schroedinger equation for
the electrons become the parameters. The quantum subsystem is described by the
many-dimensional electron wave function W(r,;; g,)-

Hel (rel; qnuc) v (re]; Qnuc) =U (q”uc) v (rel; Qnuc) (3-1)
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Another possible description is given by the 3D electron density p®(7,;; ¢,,..) Which
is a scalar function of r, and contains g¢,,,. as parameters. These two representations
of the electron subsystem form the basis for the development of either conventional
quantum chemistry methods or electron Density Functional Theory (DFT). The
electron subsystem generates an effective potential, U(g,,.), acting on the classical
nuclei, which can be expressed as an average of the full potential V over the electron
wave function W, and written as:

U(Qnuc) =< \P|Hel|\l,> . (3-2)

The possibility of assigning the effective potential to the molecular scaffold allows
treatment of the molecular system as a mechanical object. This effective potential
U(q,,.) determines its atomic architecture (static properties) and atomic motions
(dynamic properties).

One should note that the approximation presented above leads to a reduction of
the dimensionality of the original potential and is a typical procedure applied in the
studies of atomic and molecular systems. Integrating over the electronic degrees of
freedom brings us from the “subatomic” to an “atomic” level. A further reduction
of the dimensionality would lead to “mezoscopic” and “macroscopic” models,
respectively. At the mezoscopic level, the objects under study are groups of atoms
or groups of entire molecules. Macroscopic space dimensions are characteristic for
cells and tissues and for all processes which involve those systems. One should
note, however, that some molecular systems (or materials) and processes they
involve cannot be assigned in a unique way to a given level mentioned above.
For example, such objects like Bose-Einstein condensates are mezoscopic quantum
systems existing in mezoscopic or macroscopic environments.

Popular microscopic theories and models are listed below:
e Molecular time-independent Quantum Mechanics (QM), including Density

Functional Theory (DFT),

e Molecular time-dependent quantum mechanics, typically called Quantum
Dynamics (QD),

Classical Molecular Dynamics (MD),

Classical Monte Carlo (MC),

Quantum Monte Carlo (QMC),

Classical Langevin Molecular Dynamics (LD),

Classical (time-independent) Molecular Mechanics (MM), including multi-
dimensional Energy Minimization (EM) techniques,

e Quantum-Classical Molecular Dynamics (QCMD).

Commonly applied mezoscopic models and theories are the following:

e Poisson-Boltzmann models (PB),

e Generalized Born models (GB),

e Brownian Dynamics (BD),

e Discrete or continuous coarse-grained models of (bio)polymers
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Figure 3-2. Molecular Mechanics (MM) and Molecular Dynamics (MD) methods. In coarse-grained
models, groups of nuclei (atoms) are replaced by larger objects

Popular hybrid models:
e QM/MM models, with MM linked to a quantum method which generates the
energy and forces for the molecular object or its fragment.
More detailed description of most of the above methods can be found in the book
of Leach.2
In conventional MM the potential energy function (PEF) is parameterized and
these optimized parameters are called “force-field” parameters. Such methods are
widely applied in the studies of nucleic acids, proteins, their complexes and other
biomolecular systems. A typical, simple force field of a molecular system is defined
by the following equation:

U= Vbond + Vang + Vtars + ‘/impr + Ves + VVdW’ (3_3)

where the first four, so called bonded terms, are typically approximated with
harmonic potentials for bond, bond-angle, dihedral and improper (out of plane)
interactions. The V,, is the Coulombic pair-wise, charge-charge interaction, and
Vyaw 1s the potential for the Van der Waals forces; both terms are classified as
nonbonded ones.

Typically, MD equations of motion are integrated with a time-step of 1
femtosecond (10~'s), which allows for overall simulation time of nanoseconds
(107s), and sometimes for smaller systems reaching microseconds (107%s). Longer
simulations become numerically unstable. Coarse-grained models allow longer
integration time-steps and, therefore, much longer simulation times than the micro-
scopic ones, and can for example be applied to protein folding problems. Regardless
of the molecular representation, in order to reach long simulation times one has
to apply stable computational algorithms, in particular symplectic algorithms.®
Another approach makes use of curvlinear degrees of freedom and applies the
Lagrangian formalism.?
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In order to obtain reliable simulation results of (bio)molecular systems at physi-
ological conditions, protonation states of all ionizable groups have to be defined.
This means that positions of all protons (hydrogen atoms) have to be properly
assigned in the (bio)molecular structure. This requires application of the so called
“computational titration” procedure. Such procedure is based on mezoscopic PB
or GB models. Solving the PB differential equation allows for determination of
local electrostatic fields inside and outside biomolecular structures, in particular in
locations of mobile, dissociable protons. Solution of the PB equation requires the
knowledge of the effective atomic charges, q,, the dielectric scalar field, & = &(x),
resulting from molecular polarizabilities, and the concentration of ions present in
a solvent surrounding the biomolecular structure. For an overview of this method
and its applications to enzymes, see.®2 The GB model is a semi-analytical approx-
imation to the PB model. It allows determination of the electrostatic energy of a
set of atomic charges in a polarizable environment. The GB model is much faster
than the PB one.

Biomolecular structures which are titrated using either the PB or GB methods
are “electrostatically well-balanced”. Therefore, they can further be studied using
microscopic classical or quantum methods. However, since the titration procedure
requires the optimal structure, the modelling procedure should be carried out in a
self-consistent way. Such strategy is presented in Figure B3]

2.2. Coarse-grained Models for Biomolecules

Even though all-atom explicit solvent MD simulations are currently becoming
feasible for larger systems and for time scales up to hundreds nanoseconds, a vast

Experimental Structure
data design
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!
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!
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Another
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Figure 3-3. General scheme for modelling of biomolecular structures
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number of interesting biological phenomena occur on the scales of micro- or milli-
seconds. Additionally, such processes as translation, transcription or signal trans-
duction involve complexes of macromolecules of nanoscale size. Due to the growing
number of large structures available from X-ray crystallography, low resolution
models of proteins and nucleic acids together with simplified force fields are needed
to efficiently study their dynamical properties. These models involve reducing the
degrees of freedom of the system by coarse-graining its representation; each residue
is composed of one or few interacting centers/beads. However, lowering the level of
atomic detail makes the formula for the effective potential energy (more accurately,
a potential of mean force) very difficult to parameterize. Usually, such mezoscopic
force fields are parameterized based on some reference configurations, therefore,
their drawbacks may involve a bias towards a reference state and inability to transfer
among different systems. But overall, the success of coarse-grained models in recent
years caused growing interest in their further development. Rough classification
and description of these models is presented in the following sections (for a more

detailed reviews see e.g. 101,

2.2.1. Elastic Network Models

The simplest of these approaches includes Gaussian Network Models (GNM) or
Elastic Network Models (ENM) which assume that the native state represents the
minimum energy configuration. A structure is represented as a network of beads
connected by harmonic springs.1212 One bead represents one residue and is usually
centered on the position of the C, carbon. Single parameter harmonic interactions
are assigned to bead pairs which fall within a certain cutoff distance R.. In case
of proteins, R, is usually around 8—10 A. The representation of the molecule in the

Figure 3-4. Representation of the molecule in the ENM. Each node represents the center of the bead
which is the C,, carbon (CA) in case of one-bead protein models. The lines (pseudobonds) represent the
harmonic interactions between beads that are within certain distance apart
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ENM is presented in Figure[3=4] ENMs assume harmonicity of motions, and isotropic
fluctuations with no directional preferences. Hence, the movements may be predicted
only around a local minimum and dissociation of pseudobonds is not possible. The
model is commonly used with Normal Mode Analysis techniques to predict principal
modes, which are the ones that are believed to be functionally important. In spite
of these approximations, the ENMs were able to predict global dynamics e.g., of
the ribosome412 or other macromolecules!® and the swelling path of virusesZ in
accordance with experimental cryo-EM maps. They also succeeded in reproducing
the X-ray crystallographic temperature factors (e.g.18). Many methods are recently
being developed which are an extension of the ENM or GNM. An Anisotropic
Network Model has been proposed which incorporates the anisotropy of motions.2
Newer approaches involve a mixed level of coarse-graining in the ENM which
enables to analyze different parts of the structure with different level of detail. 2

2.2.2. Go-like models

Go model has been originally developed to study folding of proteins.222 It is a
one-bead model with no amino-acid specificity in which the native state is considered
to be the energetic minimum. The bias toward a native configuration is maintained
by setting attractive interactions between nonbonded beads that have a native contact
i.e., whose mutual distance is below a predefined cutoff. These native contacts derived
from the native conformation are stored in the contact matrix and are assumed
stabilizing. Other nonbonded interactions, the so called non-native contacts, are
set as repulsive. The force field may include bond, dihedral and van der Waals inter-
actions depending on the type of the Go model. The model is used with molecular
or Langevin dynamics, as well as with Monte Carlo simulations.Z~2¢ Go-type
models have been successful in reproducing the thermodynamics and kinetics of
folding because they represent a perfectly funneled toward the native state landscape.
This indicates that many proteins have interactions that are minimally frustrated.

2.2.3. Knowledge-based potentials

In these models, the potential energy function is based on the molecular mechanics
all-atom force field and includes the bond, angle, dihedral and non-bonded energy
terms. The parameterization is based on the statistical analysis of sets of exper-
imental structures. If a variable q describes a degree of freedom in the system
(e.g., bond distances, angles, dihedrals) then, P(q), the probability distribution
associated with this degree of freedom, is related to the potential of mean force,
W(q), by the following equation

W(q) = —kzT1In(P(g)) + constant (3-4)

where kg is the Boltzmann constant and T temperature. For the derivation of
the potential of mean force see Section 4.1. W(q) coincides with the potential
energy associated with the variable q only in case of a single degree of freedom
or if the degrees of freedom are uncorrelated. However, W(q) is often used as
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an approximation to the potential energy in the so-called knowledge-based force
fields.ZZ28 With such force fields the motions are often explored using molecular
or Langevin dynamics.

A class of one-bead models which were based on classical molecular mechanics
force fields including bonded and nonbonded energy terms were proposed originally
for studies of proteins.2:3%3 QOther one-bead models are currently being developed
allowing for simulations of global conformational changes where the bias towards
the starting configuration is maintained only for local interactions. The one-bead
model has been recently able to reproduce such large fluctuations as the flap
opening in the HIV-1 protease32 and to predict the decrease in flap opening time
due to certain mutations.2! The global motions of the ribosome were also explored
by a one-bead model with half a microsecond molecular dynamics.2 The use of
anharmonic Morse potentials in the force field allowed for larger fluctuations from
the starting conformation.

Two-bead models were originally proposed by Levitt.22 A residue is represented
by two centers, in case of proteins one is placed on C, carbon and the other on the
centroid of the side-chain. The parameters are amino-acid specific and based on all-
atom force fields. The model of Bahar and Jernigan includes in the energy formula
also the angle-dihedral correlations.22 A similar model with parameterization based
on the all-atom simulations for oligopeptides was developed by Scheraga group
(see® and references therein). A two-bead model for the DNA with two beads
representing a nucleotide was also proposed.2Z The base-base breakable interactions
represent the hydrogen bonds of pairing nucleotides therefore the model was able
to correctly reproduce DNA denaturation process. A two-bead model for the RNA,
with one bead placed on the position of the phosphorus atom and additional bead
placed in RNA helical regions, to fill the volume in the center of the helix, was
applied to the small ribosomal subunit assembly. 3822

The multiple-bead models represent coarse-graining to a lesser extent. There are
a few developed multiple-bead models for proteins.2# The advantage of these
models is that they treat explicitly the atoms of the protein backbone allowing for
the description of hydrogen bonds. The multiple-bead models for DNA or RNA are
also a subject of studies.£2724

In case of the dynamics, the simplification of the models and force fields allows
to reach the spatial and temporal scales which are close to biological ones. However,
one must be careful to choose an appropriate coarse-grained model in order to get
rid of only those degrees of freedom that are not relevant to the problem under study.
Future directions for the reduced biological models will include focusing on making
the force field the most transferable with the least set of parameters involved.

3. SCC-DFTB METHOD AND CM3 CHARGES

The SCC-DFTB is a very fast density functional method applicable to large
(bio)molecular systems.22 Current implementations of this approach allow to carry
out quantum-mechanical calculations for molecular systems containing several
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hundred atoms. In order to precisely describe electrostatic interactions between
the (bio)molecular object and its environment, the atomic charges of the object
should precisely reproduce experimental molecular dipole moments. The conven-
tional Miilliken atomic SCC-DFTB charges are defined as:

q,ll/lulliken — Z(PS)/L[L (3_5)

ek

where P is the density matrix, and S is the overlap matrix. Although dipole
moments obtained from the Miilliken charges are typically of poor quality, the
error contributed from each type of bond is systematic. It turns out that systematic
corrections for the bond dipole moments for each type of bond can be designed.
Such a simple idea works very well.2¢ The procedure of mapping the SCC-DFTB
Miilliken charges to the charge model 3 (CM3) is described in detail in,% and is

given by the formulae:

g = """+ 3" Ty (Byy) (3-6)
Kk

where T}, is a quadratic function of the Mayer’s bond orders By, :
T =Dz 7, B +Cz7, (Byw)? (3-7)

The C and D coefficients are parameters fitted to reproduce a set of experimental
dipole moments. The atomic CM3 charges are conformationally dependent. They
can either be averaged over a number of representative conformations and fixed, or
computed “on the fly” for example, in the course of MD simulations.

Since the CM3 charges reproduce the dipole moments very well, they can
reproduce also other electrostatic properties. These charges can, in particular, be
used in the PB and GB models (see next sections). These models provide electro-
static reaction field energies of the molecular environment, in particular, giving
electrostatic contributions to solvation energies.

4. SOLVATION FREE ENERGY

Once the computational model of the molecule is created, it is of most interest
to study its properties in the natural environment, in particular, water solvent.
Surrounding the molecule with water, allows us to study the solvation process.
Like molecules, the solvent may be also described with different levels of accuracy.
Beginning with all-atom models of water,222 which allow for the studies of solvent
structure around solutes but are time consuming and the results are model dependent,
to continuous dielectric models,22~32 which are faster but less accurate and give no
knowledge about the solvent itself. Thus, the difference in the level of description
for both models is either an advantage or a drawback. These models are commonly

known as explicit or implicit solvent models, respectively.
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One of the crucial parameters describing the solvation phenomena is the free
energy change. The main idea in most implicit solvation models is the decomposition
of the solvation free energy, AG,,, into the electrostatic and nonpolar part,

solv

AG,,, =AG,+AG (3-8)

solv np»

The electrostatic term (AG,,) results from the decomposition of the solvation
process into the work performed to discharge the solute in vacuum and the work
performed to recharge it again in the solvent. The nonpolar term (AG,,) arises
from the energetic cost of the insertion of the solute shaped cavity into continuum
solvent. The most accurate solution for the AG,, brings us to the solution of
the Poisson-Boltzmann equation.333* However, for large systems and for studies
of the dynamics, more useful is the Generalized Born223¢ method because of its
relatively small computer power and time requirements, and its reliability despite
the simplicity of the model. Both GB and PB methods will be described in more
detail later in this section.

The nonpolar (or hydrophobic) component, AG,, may be decomposed into a
surface component, which is proportional to the solvent accessible surface area
(SASA) of the solute and the component representing the solute-solvent non-
electrostatic interactions,

Aan = AGSASA + AGVdW' (3'9)

The methods to calculate the surface component of the nonpolar part of the solvation
free energy have been greatly evolving during the recent years. From the most
simple models, assuming that the AGy,, is proportional to SASA,® to empirical
models based on weighted solvent accessible surface areaX (WSAS) or atomic
surface tensions2? (SMx models of Cramer and Truhlar). The relatively new analytic
implicit solvent model (AGBNP),2! uses simple weighted SASA but also accounts
for the van der Waals solute-solvent interactions. A more detailed description of
the latter model will be given later in this section. The above mentioned work of
Cramer and Truhlar2? gives a very extensive description of implicit solvent models
with an enormous list of references.

Even though fast, implicit solvent approach does not give any knowledge about
the solvent structure around the solute. This kind of information can be obtained
only from explicit solvent simulations. Such explicit system has many degrees of
freedom and thus fluctuates. It is therefore described on a microscopic level with
the tools of statistical physics. The Gibbs free energy is then given by the following
formula:

G=—k;TInZ, (3-10)
Z= [ exp(=BPV)aV [ dp™ dg™ exp(—H(G™, p™)  (-11)

where Z is a partition function in the isobaric-isothermic ensemble, p and g stand
for the positions and momenta of elements of the system, H is the hamiltonian of
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the system, P and V are the pressure and volume of the system. The integrations
are taken over the whole phase space I'(¢°V, p*V) and over the volume from 0 to
infinity. For real systems such as liquid solutions, integral in the equations (3—11)
cannot be analytically solved. From computer simulations of the system with explicit
solvent, one may though estimate the free energy change, AG (rather than absolute
value of G) using one of the common approaches: thermodynamic integration, free
energy perturbation, potential of mean force® (PMF), Landau free energy& ™
(LFE) or Widom particle insertion method.&% The PMF and LFE methods will be
described in the following section. It is worth noting, that the results obtained from
the simulations are generally dependent on the choice of the water model. 484268

In between the implicit and explicit solvent models, there are mixed models, such
as the solvation shell approximation.£Z~% This model describes explicitly only the
first solvation shell molecules and treats as implicit the solvent region beyond the
first solvation shell. Such treatment both provides the information about the solvent
structure near the solute and allows for faster computation.

4.1. Potential of Mean Force and Landau Free Energy

Both the PMF and LFE express the free energy as a function of a certain degree
of freedom. In case of PMF, as it has already been mentioned, it is usually one of
the configurational degrees of freedom. The LFE is a function of arbitrary order
parameters which form the additional degrees of freedom.

If the free energy function argument is &, then the probability density of ¢ is
described by the following equation:

p(&) =2 x| [ exp(~BPV)AV [ exp(~BV(g"™ ", £)dg™ ]
(3-12)

where Z, is a configurational partition function of the full (PV=m, &) system (the
momenta are skipped in the above and following equations because they are either
not considered as in the Monte Carlo simulations or do not contribute, in general,
to the free energy change as in MD simulations):

Ze= [ exp(=pPV)V [[ exp(~BV(g™ ¥, £)dg" ¥ dE  (3-13)

Further analysis will be divided into two topics, PMF and LFE.

For the PMF (m > 0, & =¢’"), Z; becomes simply Z, a configurational partition
function of a system of N particles. In a special case, if m = 2, then ¢°" for the
pairwise potential V may be denoted as R — the distance between two chosen
particles. Using this for calculating the intergral of Eq. 3=12)) denoted in parentheses,
leads to the following form:

p(R) = exp(=BW(R)) x 2~ (3-14)
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where W(R) is the PMF, p(R), after multiplying it by the factor of p*/(N(N — 1))
(where p is a bulk density of a system considered), is a radial distribution function,
usually denoted as g(R). Thus the PMF may be written as:

W(R) = —k,T In g(R) 4 constant, (3-15)

where g(R) corresponds to P(g) of equation (3-4) in case of R being the distance
between particles.

For Landau free energy (m =0, § — the order parameter), Z, is a partition
function of an extended system with additional variable £. The integral denoted in
square brackets in Eq. (3=12)) is simply the configurational partition function of the
system with a fixed value of &-Z. The statistical definition of the Gibbs free energy
function combined with Eq (12) results in the following expression:

G(§) =—kpTInZ=—kyTInp(§) —kpTInZ, = —kyTIn p(§) + const.
(3-16)

In practice, it is rarely possible to sample reasonable range of ¢ within single
simulation. To enhance sampling one usually adds a biasing potential, which directs
the sampling to the desired range but also reduces the variance allowing for a
shorter simulation time (smaller sample but the same error). Because one changes
the Hamiltonian by adding the biasing potential, one has to subtract it from the free

energy G(&),
G (&) = —kpTIn pyys(€) = Vi, (§) 4 const (3-17)

where p,,,, is the probability density function in the biased ensemble and V,,,, is
some biasing potential.
Besides “unbiasing”, one also has to reweigh any averaged values:

<Y> = <Yexp(_lBVbia.v(g))>bius X [(exp(_ﬁVbius(f))>bias]_l (3'18)

where (Y) is the ensemble average of Y and (Y),, . is the average of Y in the
biased ensemble.

When the range of £ to be sampled is too large, one divides this range into smaller
overlapping windows and performs consecutive simulations in each window. This
approach forms the basis for the widely used umbrella samplingZ? method.

In Figure B=3l we present an exampleZ! of LFE as a function of solute parameters:
charge — ¢, Lennard-Jones diameter — o, or Lennard-Jones potential well-depth — €.
Figure shows examples of G(o) and G(g) derived from the results of Monte
Carlo simulations of single solutes in explicit solvent together with fitted functions.
Each curve was created via umbrella sampling. Such parameterization of the free
energy, G(o), (and G(g) — not presented here), was also widely reported in the
literature. &-22- 12
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Figure 3-5. Free energy as a function of the solute parameters ¢ and o; a) G(g) — left plot, fixed
o = 0.35nm, the five curves correspond to different fixed charge values denoted in the legend, b)
G(o) - right plot, fixed q = +1e, the five curves correspond to different fixed & values given in the
legend. All plots show the data acquired in the Monte Carlo simulations together with fitted functions

5. OUTLINE OF THE POISSON-BOLTZMANN (PB) MODEL

The electrostatic field in the stationary state is described by the Poisson-Boltzmann
equation. The PB model constitutes the fundamental equation of electrostatics and is
based on the differential Poisson equation which describes the electrostatic potential
®(r) in a medium with a charge density p(r) and a dielectric scalar field &(r):

V(&(r) Vb(r)) = —4mp(r) (3-19)

In the mezoscopic model the system is composed of two regions described by an
interior and exterior charge density (see Figure 3=6)). The interior region, represents
a (bio)molecule as a collection of fixed point charges placed at positions of atoms 7;.
A low dielectric constant, typically between 2 and 20 is assigned to this region.
The exterior is modeled in a continuum manner by surrounding the molecule with
an implicit solvent representation characterized by a high dielectric value, typically
around 80. To account for the distribution of the ions around the molecule, the
mobile ion density is approximated by a Boltzmann distribution at temperature T.

Figure 3-6. A diagram of mapping of the molecular system onto a grid in the PB model. The molecule
represented with a fixed point charges is depicted in gray. The exterior is described by parameter k
dependent on the ionic strength. The electrostatic potential is solved in the nodes of the 3D grid
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Assuming the above, the Poisson equation takes the following form:
V(e(F)Vh(F)) =47 3" q,6(F —7;) + A(F)&* sinh(¢(F)/ksT)  (3-20)

where A is O inside the molecule and 1 elsewhere, A is the Dirac function. The
K% is proportional to the ionic strength of the exterior /, and is related to the

Debye-Hiickel parameter (k> = /&) defined as

_2_ 8meN, 1

K= A (3-21)
1000k, T

where N, is the Avogadro number and e is the charge of the electron.

Finite difference method (FD) and finite element method (FE) are both well
known algorithms for solving the PB equation. More detailed description of this
equation is available in.333* The methods mentioned above are commonly used
in various software packages, for example in the University of Houston Brownian
DynamicsZ (UHBD) and DelphiZZ programs which implements FD algorithm, and
in the Adaptive Poisson-Boltzmann Solver (APBS)Z which implements as well
the multilevel finite element method. Solving the PB equation enables one for
example to visualize the electrostatic potential around the molecule and to obtain
the electrostatic energy of the system.

6. OUTLINE OF THE GENERALIZED BORN (GB) MODEL

Unfortunately, due to large computational costs, calculations based on numerical
solutions of the PB equation are of limited applicability. Therefore, several approx-
imations to the original Born model2 have been developed. The GB model is one
of the semi-analytical approaches. In the GB model22¢ each atom is represented
as a sphere with the radius p and with a charge ¢ placed at its center. In this
model, the energetic cost of transferring the charge distribution into the solvent (the
electrostatic part of the solvation energy) is defined as:

1/1 1 q
AG :__(___ qiq;

elec 2 Ep SW) % ; —r%
I + RiRj exp (W)

where 1;; is the distance between atom i and atom j, &, and &, are the dielectric
constant of the interior and exterior of the molecule, respectively. Denominator is
a smooth, analytical function, which fulfills two limiting conditions: when the two
atoms are infinitely separated r — oo, and when the atoms are totally overlapped
r; = 0. R; are the so called effective Born radii, and reproduce the electrostatic free
energy of a molecule when the charge of the atom i is “turned on”.

_ 1/1 1\q
AG! =——<———>q—‘ (3-23)

(3-22)

single 2 \e € R

P w i
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6.1. Models for Computing the Generalized Born Radii

A number of popular methods for computing the GB radii were proposed. The most
popular one is based on the Coulomb field approximation, in which the generalized
Born radii are defined by the equation:

o1 1
— / — &7 (3-24)

R, 4w ré
solvent

Exchanging the integral areas from the solvent area to the solute one, it is possible
to get a more convenient form for calculations2:

1 1 1 1
—=——— | O(f|—p)=dF 3-25
x5 471[ (IFl = p)— (3-25)
solute
where O is a step function, and p; is the VAW radius of atom i. Another method to
compute the GB radius is based on the Kirkwood model and was recently proposed

by Grycuk.2 In this case, the GB radii are defined as:

1

3

1 3 I ..
solvet

A few analytical formulae to compute the GB radii in the above two models were
proposed. Recently Wojciechowski and Lesyng® proposed a generalization of this
model mapping the exponents of 6 and 1/3 into n and 1/(n-3), respectively. In their
model, the parameter n depends on the ratio of the solvent and solute dielectric
constant. At present, this model reproduces the PB energy in the best way.

One should note also that Feig and others proposed another method to compute

the GB radii, depending on the solvent and solute dielectric constants&22:
1 E
R, =— ; +D+ 1 (3-27)
C,A,+C, (—3+2 ) A, Eoxt

7. NONPOLAR CONTRIBUTION TO THE FREE ENERGY
OF SOLVATION

Models for which the parameterizations are based on the solvent accessible surface
area (SASA) are widely known in literature.3® The nonpolar component of the free
energy of solvation is described in these models as a polynomial of A;, where A,
is the SASA of the atom i. A very good example of such approach is the Surface
Generalized Born/Nonpolar Model (SGB/NP), proposed by Gallicchio and Levy.3
The nonpolar contribution is expressed as:

AG,, = i[v(h)f\i +a()] (3-28)
i=1
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where y(k;) and a(k;) are adjustable parameters, which are dependent on the atom
type (k;). The first term y(k;) A, in the equation (3-8) is proportional to the SASA of
the solute, and the y parameters are interpreted as surface tension coefficients. The
AGBNPZ is the second and more flexible model of fitting the nonpolar contribution
G,, to the free energy of solvation, proposed by the same authors. The nonpolar
part of the hydration free energy G,, is divided into two terms:

N a.

AG,,=AG,, +AG = ; [Y(fi)Ai + a(fi)m] (3-29)
The first term (AG,,,) is connected with the surface area model, and the y parameter
has the same physical meaning as the one in the SGB/NP model. The second term
(AG,qy) is the solute-solvent van der Waals free energy term, which introduces
another set of parameters. The first one, B, corresponds to the Born radius of the
atom i, the second, R, = 1.4 A is the radius of the water molecule, the next one
a;= —%prsiwofw, where 0, = ./0,0,, &, = ./€;:€, and p, = 0.033428 A, is the
number density of water at standard conditions. p,, and o, are the OPLS Lennard-
Jones parameters for the atom i, &, = 0.155kcal/mol, and o, = 3.15365A are
the Lennard-Jones parameters of the TIP4P water oxygen. The last, dimensionless
parameter a(k;) is fitted in this model.

8. CONCLUSIONS

We briefly overviewed some promising modelling methods and simulation
techniques, being developed and applied in the studies of large (bio)molecular
systems. The coherent use of the interdisciplinary microscopic and mezoscopic
(“coarse-grained”) approaches allows for a more precise computation of the
free energy of (bio)molecular systems, and for simulations of their dynamics at
the mezoscopic level. This in turn allows for a better description of specific
(bio)molecular recognition processes and spontaneous formation of functional
(bio)molecular and nano-structures, amongst them proteins, nucleic acids, protein-
RNA or protein-DNA complexes, and nanotubes. Merging the techniques for
various time and spatial scales enables better description and understanding of
functioning of enzymes or biomolecular complexes such as e.g. ribosomes. These
methods may also help to design functional nanomachines, based on the knowledge
of the existing “biomolecular solutions”, which were selected in the evolu-
tionary process. The newly developed methodologies should also allow for better
description of energy transfer processes and molecular memory mechanisms.
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Density functional theory (DFT)-based molecular dynamics (MD) has established itself as
a valuable and powerful tool in studies of chemical reactions. Thanks to the rapid increase
in power of modern computers, ab initio MD has nowadays become practical. Within
the Car-Parinello approach, first-principle MD is already quite popular methodology in
molecular modeling. MD reveals the dynamical effects at finite temperatures and is
particularly useful in probing the potential energy surfaces. Also, it can be utilized to
directly determine the reaction free-energy barriers, as it explicitly includes temperature
and thus the entropic effects. The first part of the chapter provides a brief introduction to
ab initio MD, within the Born-Oppenheimer and Car-Parinello approaches. Here, we
introduce basic concepts of Car-Parinello MD, with focus on the practical aspects of
the simulation. The next part of the chapter summarizes the approaches used to overcome
high-energy barriers in a simulation, and thus to probe the part of the potential energy
surface relevant for chemical reactions (from the reactants to products through transition
states). A special emphasis is placed on the MD simulation along the intrinsic reaction
path. The last part of the chapter presents examples from CP-MD simulations from the
studies on a complex catalytic process: copolymerization of ethylene with polar monomers
catalyzed by late transition-metal-complexes

First-Principle Molecular Dynamics, Car-Parinello Molecular Dynamics, Density
Functional Theory, Reaction Paths, Olefin Polymerization

1. INTRODUCTION

Design of molecular materials with specific properties often requires interdisci-
plinary research involving various experimental and theoretical techniques. Molecular
modeling by ab initio methods based on quantum-mechanics is now commonly used
in such studies. However, theoretical investigations are still dominated by tradi-
tional, static approaches in which the stationary points on the respective potential
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energy surfaces are determined from calculations modeling the molecular systems
at OK. In the studies on complex chemical processes, however, the dynamical
effects at finite temperature are often important and should not be neglected.

Molecular dynamics (MD) has been traditionally linked to purely classical
modeling, e.g. based on empirical force fields, or with classical trajectory calcula-
tions, based on predetermined potential energy surfaces. Unfortunately, such poten-
tials are extremely expensive to evaluate for chemically interesting systems. Never-
theless, attempts to conduct ab initio molecular dynamics, in which the classical
description of nuclear motion is combined with quantum-mechanical determination
of the forces, dates back several decades.

Ab initio MD simulations were not practical until the last decades of the 20th
century due to their computational cost. In addition to rapid increase in computa-
tional power of modern computers, the factor of great importance for expansion of
the ab initio molecular dynamics was a novel, practical scheme proposed by Car
and Parinello.! This methodology gave rise to a growing interest in ab initio MD
and thus, quickly dominated the field.

The original Car-Parinello articlel was published 20 years ago. Since that time,
first-principle molecular dynamics (MD) has already established itself as a valuable
and powerful tool in molecular modeling. A wide range of applications covers
various areas of chemistry and physics. Examples of applications of the ab initio MD
methodology can be found in all the fields in which other computational techniques
of molecular modeling are used. The number of publications reporting ab initio MD
studies is quickly growing; the recent review articles? 2 summarize some of the
most important studies. It is worth mentioning that first principle MD can already
be successfully applied to relatively large molecular systems, such as biologically
active compounds, or the real intermediates in catalytic processes. Implementations
of the hybrid quantum-mechanics-molecular-mechanics (QM/MM) approaches and
the solvation models open ways toward exploring even larger and more realistic
models of reactive systems.

One of the main advantages of the MD over the static quantum chemical
approaches is that it can be utilized to directly determine the reaction free energy
barriers, as it explicitly includes entropic effects. An estimation of the free energy via
a normal (static) DFT approach requires frequency calculations that are relatively
expensive for large molecular systems. Such an approach assumes in addition the
harmonic (normal mode) approximation, which breaks down for processes where
weak intermolecular forces dominate. 2

The main purpose of this chapter is to present the basics of ab initio
molecular dynamics, focusing on the practical aspects of the simulations, and
in particular, on modeling chemical reactions. Although CP-MD is a general
molecular dynamics scheme which potentially can be applied in combination with
any electronic structure method, the Car-Parinello MD is usually implemented
within the framework of density functional theory with plane-waves as the basis set.
Such an approach is conceptually quite distant from the commonly applied static
approaches of quantum-chemistry with atom-centered basis sets. Therefore, a main



Modeling Chemical Reactions 227

emphasis of the first part of the chapter will be put on the basic ‘magic’ parameters of
ab initio MD methodologies. The second part of the chapter will briefly summarize
the approaches used to overcome high-energy barriers in a simulation, and thus to
probe the part of the potential energy surface relevant for chemical reactions (from
the reactants to the products through the transition states). A special emphasis will
be put on the MD simulations along the intrinsic reaction paths, illustrated by a few
examples. The last part of the chapter will present an example of MD application
taken from studies on a complex chemical process: the copolymerization of olefins
catalyzed by late transition-metal-complexes.

2. BASIC CONCEPTS AND PRACTICAL ASPECTS
OF CAR-PARINELLO MD

In this section we will briefly present the basic concepts of ab initio molecular
dynamics within the Born-Oppenheimer and Car-Parinello approach. It is not our
intention to cover the theoretical background of the Car-Parinello MD scheme
in details. Instead we would like to concentrate on the practical aspects of the
simulation and only briefly comment on the physical meaning of the basic param-
eters that must be specified in the input for a simulation. A more detailed discussion
of the theoretical basis for the CP MD can be found in an excellent review article
by Marx and Hutter.2

2.1. Born-Oppenheimer MD and Car-Parinello MD

The idea of a classical treatment of the nuclear motion within the molecular dynamics
(MD) scheme with ab initio determined, quantum-mechanical forces acing on
nuclei is as old as quantum mechanics.2 The commonly used Born-Oppenheimer
approximation? introduces the concept of potential energy surface (PES).
Different time-scales for nuclear and electronic motion allows for the adiabatic
separation of the nuclear and electronic wave-function. In the Born-Oppenheimer
molecular dynamics (BO-MD) the nuclei move according to Newton laws,
while the quantum mechanics is required to determine the potential for this motion:

Maka = _VaEO(\I}; R)
H,(R)¥,(R) = E,(¥; R)¥,(R) (4-1)

In the equations above ﬁe is the electronic Hamiltonian, W, denotes the electronic
wave-function, and R is a vector of nuclear coordinates, whereas E,(R) defines
the PES.

Thus, in BO MD the fully converged electronic wave—function and the forces
acting on the nuclei must be dermined at each timestep by solving the
time-independent Schrodinger equation. The time consuming evaluation of the
wave-function and the gradients is the main drawback of the BO MD approach

(see Figure E=T).
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BO-MD CP-MD

Ete.

Figure 4-1. Basic ideas of the Born-Oppenheimer MD and Car-Parinello MD

The scheme proposed by Car and Parinello! in 1985 offers an attractive solution
to this problem, by propagating the wave-function together with the nuclei. The
ingenious idea of Car and Parinello was to include the fictitious kinetic energy term
describing the ‘wave-function motion’ into the classical Lagrangian:

. 1 - 1 .
L=L(R,R)= i Z(¢i|¢i) + 3 Y MR’ + Ey(W; R) + constraints

(4-2)

The first term in this Lagrangian contains the fictitious mass of the wave-function, w.
This fictitious kinetic energy term should not be confused with the real kinetic
energy of electrons included in the electronic Hamiltonian.

The Euler-Lagrange equation leads to the Car-Parinello equations of motion of
the form:

. 9
MaRa = _VaEO(q,; R) + ﬁ{constraints}
0 SE(‘I”R)-FH{O traints} (4-3)
i— T s — nstrain -
ry; 6(#1 0 a(/jl C

Thus, in the Car-Parinello MD scheme the initially converged wave function is
propagated according to Eq. (2), and does not need to be re-optimized at every
timestep (see Figure E=T)).
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The consequence of the presence of the fictitious kinetic energy term in the
CP Lagrangian is that the physical energy, i.e. the sum of kinetic energy of the
nuclei and the potential energy is not conserved in CP MD. The conserved energy
E.,.; contains in addition the fictitious kinetic energy of the wave-function. This is
illustrated in Figure

The practical implication is the fact that in the CP MD simulation the molecular
system does not evolve right on the Born-Oppenheimer PES, but stays close to it.
A measure of deviations from the BO PES is the fictitious kinetic energy (wave-
function temperature). Figure demonstrates that this deviation is minor, as the
electronic (fictitious) temperature is relatively low. The wave function stays ‘cold’
(compared to the ‘hot’ nuclei); in the MD terminology the term ‘cold electrons’ is
often used in this context.

The evolution of the wave-function ‘slows down’ the nuclei, as the kinetic energy
of the nuclei is lower in CP MD than in BO MD. This is illustrated in Figure d=3]
that compares the kinetic and potential energy from BO and CP MD simulations
started from the same nuclear configuration and the same wave function.

2.2, Forces in ab initio MD; Plane-wave-based Electronic Structure
Methods

The Car-Parinello MD approach is usually applied in combination with plane wave
based electronic structure methods. Use of plane waves in Car-Parinello MD is in
many ways easier than the atom-centered basis sets (Gaussian-type or Slater-type
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Figure 4-2. Energy conservation in CP-MD: the potential energy (E,, main axis), temperature (kinetic
energy, T, auxiliary, right-hand side axis), physical energy (T +E,, auxiliary axis), and conserved energy
(Econs)- The difference between E,,,, and T+E, is the fictitious kinetic energy of the wavefunction.
The data from the simulation for the ethylene molecule with the CPMD program{3 (Troullier-Martins
pseudopotentials1#L2, time step of 4 a.u., fictitious mass 400 a.u., cut-off energy 70 Ry, unit cell
12Ax 12 AxI2 A)
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Figure 4-3. A comparison of the Car-Parinello and Born-Oppenheimer molecular dynamics: the potential
energy (top) and temperature (kinetic energy, bottom) from the CP-MD and BO-MD simulations for

ethylene, started from the same geometry and wave function. The results obtained form the simulations

with the CPMD program{2 (Troullier-Martins pseudopotentials,12 time step of 4 a.u., fictitious mass

400 a.u., cut-off energy 70 Ry, unit cell 12 A x 12 A x12 A)

orbitals). The difficulty with atom based basis sets is in the evaluation of the forces.
Namely, the derivative of the expectation value of the Hamiltonian (electronic
energy), (W|H|W), with respect to nuclear positions, contains not only the terms
originating from the Hamiltonian (W|(dH /dR)|'¥), but also the contributions from
the wave-function dependence on the nuclar coordinates, ((9W¥/0R)|H|¥) and
(W|H|(0W/dR)). These terms vanish if a complete basis set is used (Hellmann-
Feynman theorem). & However, with an incomplete basis set these contributions
(so called Pulay forces)3L are non-negligible and must be evaluated.

The problem disappears in the complete basis set limit. Also, it does not exist
for origin-less basis set, such as plane waves. For this reason the plane wave
based methods are attractive for molecular dynamics simulations where the energy
derivative must be evaluated many times.

The wave function expanded in plane waves takes on the form of periodic Bloch
functions

1 . I
ll’i,k — _ezkr Cé(etGr (4_4)
Q G

where () is the system volume, cG"k is a set of expansion coefficients, and G is a
reciprocal lattice vector. In practical calculations the infinite sum over the G-vectors
must be truncated, and this determines the quality of the basis set. The cutoff kinetic
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energy, E.,, s s the parameter controlling the truncation of the basis set: at each
k-point in the basis set included are all the G-vectors for which

1
5 Ikt GI* = Eousoyy (4-5)

In all-electron calculations with the plane wave basis set the cutoff energy must be
very high, in order to correctly reproduce rapid oscillations of the wave-function
in the region close to the nuclei. Certainly, this affects the computational time.
Therefore, the plane wave based methods are combined with pseudopotentials
or augmentation approaches, to reduce the computational cost connected with a
description of the core-states, less important for chemistry.

2.3. Finite Temperature Simulations: Thermostats

In standard molecular dynamic simulations the temperature is not constant. The
MD simulation samples the microcanonical ensemble, or NVE ensemble, as the
volume (unit-cell size) is assumed to be constant. The control of temperature is on
the other hand especially important in the simulation of chemical reactions, when
the excess of heat dissipated or adsorbed during the reaction strongly influences the
kinetic energy (temperature) of the system.

Kinetic energy and temperature are related according to the following equation:

E., = %NkBT (4-6)
where k; is the Boltzman constant, and N is the total number of degrees of
freedom. Thus, the most obvious way to control the temperature is to monitor the
average kinetic energy and to scale up or down the velocities of the nuclei. Several
approaches of this kind have been used in classical molecular dynamics.2~2

The most popular way to control the temperature in the CP MD simulation was
introduced by Nose and Hoover.22 This approach includes an extra friction term
(velocity dependent) into the Car-Parinello equations of motions (cf. Eq. 3):

MR, =—V,E(V;R) + ﬁ{constraints} —M,R,¢, (4-7)

and the thermostat friction variable { changes according to its own equation of
motion:

0.{, =Y |M,R* — Nk,T | (4-8)

o

thus altering periodically the system kinetic energy (velocities) with the frequency
o, = (NksT/Q,)">.

The Nose-Hoover thermostat exhibits non-ergodicity problems for some systems,
e.g. the classical harmonic oscillator. These problems can be solved by using a chain
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of thermostats, 228 i.e. introducing the second thermostat that is thermostatting the
first thermostat, etc. This is done by introducing a friction term due to the second
thermostat into the equation of motion of the first termostat, in the same way as
the first thermostat modified the equations of motion of the nuclei (Eq. 7). Namely,
Eq. 8 takes the form:

QIZI = Z LMakz - NkBTJ - QZZI éLz (4-9)

a

and the equations of motion for the second, and all the other thermostats in the
chain, are similar to Eq. 9 (or Eq. 8 for the last thermostat in the chain).

The Nose-Hoover thermostat, or chain of thermostats, can be used as well
to control the wave function temperature, i.e. the fictitious kinetic energy. This
prevents drifting of the wave function from the Born-Oppenheimer PES during
long simulations. Wave function thermostats are introduced in a similar way to
Egs. 7-9.

It should be pointed out that the use of a thermostat affects the energy conservation
in MD. Namely, in thermostatted dynamics the ‘conserved energy’ (kinetic and
potential energy of nuclei plus the fictitious kinetic energy of the wave function)
discussed in Section 2.1 is no longer conserved. Instead, the energy that includes
additional terms due to the thermostats (nuclear and ‘electronic’) is constant. For
example, for a system thermostatted by a chain of nnuclear thermostats, controlled
by variables {{,} and {Q;}, the conserved energy takes the form:

1 - 1 .
B = S Y (i) + 5 MR+ Ey(W: R)

‘l n . n
5 X 0ub” + X kTG + Nk TE, (+10)
m=1

m=2

Another method of controlling the temperature that can be used in CP MD is the
stochastic thermostat of Andersen.Z In this approach the velocity of randomly
selected nucleus is rescaled; this corresponds in a way to the stochastic colli-
sions with other particles in the system. Therefore, this approach is often called a
stochastic collision method. The Andersen thermostat has recently been shownZ2
to perform very well in the Car-Parinello molecular dynamic simulations of
bimolecular chemical reactions.

24. Practical Aspects of Car-Parinello MD Simulation

2.4.1. Elements of MD simulation

Typical molecular dynamics simulation requires a few initial steps; this is illustrated
in Figure =4 Often each of these steps is realized as a separate run of the MD
program. First of all, the wave function must be fully converged for the initial
configuration of nuclei. If the simulation is supposed to sample the vicinity of
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Wave-function T=0K;
co nveigence nuclei frozen
b 4
Geometry T=0K;
oplimizatinn

T=0K — targetT;

Warming-up various approaches
{
Equilibration target T; ,
free or constrained
I dynamics;
v nuclei and wave-function
MD sampling propagated

Figure 4-4. Steps in MD simulation

a minimum on the PES, the wave function convergence run is followed by the
geometry optimization. Sometimes the geometry optimization is done by dynamics
with a friction used for nuclei, to damp the oscillations; in such a case the user has
to specify the friction coefficient.

Prior to the simulation at finite temperature, the system must be heated up to the
target temperature and thermally equilibrated. The temperature should be distributed
among all the normal modes in the system. Thermal equilibration usually requires
running dynamics for a long period of time (of the order of picoseconds). This
time may be shortened if the warm-up procedure does not displace the system far
from equilibrium. Thus, the warm-up may be realized by a sequence of kinetic
energy pulses, followed by a short relaxation (free dynamics). If these pulses are
orthogonal, then different normal mode become excited. It should be emphasized
also at this point, that prior to the constrained dynamics simulation, the warm-up
and equilibration should be performed with the same constraints that will be used
in the sampling simulation.

2.4.2. Parameters originating from equations of motion: time steps
and the fictitious mass

The Car-Parinello equations of motion (Eq. 3) contain the basic parameter of the
method, i.e the fictitious mass of the wave function, w.

The equations of motion are integrated by means of the finite-difference methods,
most often employing either the original Verlet algorithm, in which

R(1+Ar) =2R(t) —R(t — At) + A(1) A (4-11)
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or the velocity Verlet method in which:
R(t+ A1) =R(t) + V() At +A(1)Ar?

V(t+A)=V()+ %AI[A(I)—FA(H—AI) (4-12)

In the above equations R(#), V(¢), and A(f) denote vectors of positions, velocities
and accelerations at time t.

Thus, integration of the equations of motion introduces another basic parameter
common for any MD simulation, i.e. the integration time-step, Ar.

The fictitious mass controls the magnitude of the drift from the BO PES; the
smaller its value is, the smaller is deviation from the BO PES. However, lowering u
implies that one has to decrease the time step. The maximum time step is related
to the fictitious mass and the cutoff energy according to the following rule:2

1

Mt (72 ) (#13)

Ecuwff

The actual values used for the two parameters are u = 500—1500 a.u. and A7 = 5-10
a.u. It is worth mentioning that in BO MD significantly larger time steps can be
used (up to 100 a.u.)

2.4.3. Parameters originating from the plane-wave methods: kinetic energy
cutoff, unit cell

Use of the plane wave based electronic structure methods introduces two basic
parameters: the kinetic energy cutoff value, controlling the basis set quality, and the
periodic unit-cell (supercell) size, present due to periodic nature of these approaches.
Both of these parameters should be large enough to guarantee the convergence in
the total energy and in all the physical quantities that are supposed to be determined
from the simulation.

As we have already mentioned in Section 2.2, a huge number of plane waves
is required for all electron calculations, in order to properly describe the core
region. Therefore, different approaches are used to exclude the core states from the
electronic problem to be solved. There is no universal rule concerning the cutoff
energy; for each method different values are typically required for convergence.

In Figures -3 and -6l we present examples from calculations on the ethylene and
butadiene molecules performed with the Trouillier-Martins pseudopotentials. 112
The total energy requires 70-80 Ry for convergence (Figure F=3). Similarly, a 70
Ry cutoff is needed for the energy difference between the cis and trans isomers of
butadiene; here, however, a 30 Ry value gives already a quite reasonable, qualitative
estimate. The C-C bond distances (Figure [4-6)) requite 70-80 Ry to achieve full
convergence; again 30 Ry gives a rough qualitative estimate. In general, for the
calculations with Trouillier-Martins!#12 pseudopotentials the required cutoff value
varies between 60 and 100 Ry. For the ultrasoft VanderbiltZ2 pseudopotentials much
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Figure 4-5. Plane-wave convergence of the ethylene total energy (a, in hartree) and the energy difference
between cis- and trans- isomers of butadiene (b, in kcal/mol). Results of the simulations with the CPMD
program 2 (Troullier-Martins pseudopotentials,1412 time step of 4 a.u., fictitious mass 400 a.u., unit cell
12Ax 12 Ax12A)

lower values are needed, typically in the range of 20-40 Ry. The relatively ‘hard’
Goedecker pseudopotentials2? require usually 100-200 Ry. For the applications of
the Projector-Augmented Wave (PAW) method by Blochl, 2332 a low cutoff values
can be used, comparable to those for the ultrasoft pseudopotentials.

Periodicity, natural for the plane wave based methods, implies interactions
between the molecules in the neighboring cells. This is certainly a shortcoming for
molecular calculations in the gas-phase. The unit-cell-size parameter must be large
enough to prevent interactions between nearest neighbors. The correct size can be
chosen by monitoring the convergence of the physical quantities. In Figure E=7]
an example for the ethylene molecule is presented. In this case the orthorhombic
cell with an edge of at least 7-8 A is needed to achieve convergence in total
energy. Typically, the cell-size parameter should be 4-5 A larger than the largest
interatomic distance in the molecule.



236 Michalak and Ziegler

1.38
1.37 9\

Z 136 \

Q135

< X

z 1.34

1.33 e
1.32 T T T T T T T T T T

alA]

Figure 4-6. Plane wave convergence of the carbon-carbon bond length in the ethylene and butadiene
molecules, from the simulations with the CPMD programX2 (Troullier-Martins pseudopotentials, 1413
time step 4 a.u., fictitious mass 400 a.u., unit cell 12 A x 12 A x 12 A)
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Figure 4-7. Unit-cell-size convergence for the total energy of ethylene. Results from simulations with
the CPMD programZ2 (Troullier-Martins pseudopotentials,i4L2 time step of 4 a.u., fictitious mass 400
a.u., cut-off energy 70 Ry)

2.4.4. Thermostat parameters

Controlling the temperature implies specifying the parameters characteristic for the
thermostat method used in the simulation. In the case of the most popular Nose-
Hoover thermostat the basic quantities are the target temperature and the thermostat
frequency.

The value of the frequency parameter controlling the temperature of nuclei should
enable an efficient coupling of the thermostat to the molecular vibrations. For chain-
thermostats the frequency for each item in the chain should be specified. In general,
a larger number of thermostats in a chain makes it possible to couple to the normal
modes of different vibrational frequencies. In the extreme case, each normal mode
can be separately thermostated; in the MD terminology such a procedure is called
‘massive’ thermostating.33
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The thermostats for the wavefunction should not be coupled to the nuclear
thermostats. Therefore, the value of the frequency parameter should be a few times
larger than that of maximum of the phonon spectrum.?

3. MODELING CHEMICAL REACTIONS; MD ALONG INTRINSIC
REACTION PATHS

In this section we discuss first in general the techniques used to simulate the
chemical reactions with relatively high activation barriers. After that we provide a
more detailed discussion of the constrained dynamics approach. Special emphasis
will be put on MD along the intrinsic reaction coordinate (IRC), illustrated by a
few simple examples. 32

3.1. Towards Overcoming High Energy Barriers

The typical time scale for the Car-Parinello MD simulation is presently of the
order of picoseconds. This time scale is usually not sufficient to directly observe
a chemical reaction in a single free dynamics simulation, due to relatively high
activation-energy barriers. Thus, many approaches have been proposed to simulate
such rare reactive events.

The two most popular simulation methods dealing with the reactive events
are the constrained dynamics and the bias-potential (umbrella sampling)
approaches.2~ 38 The former method**~3 introduces a geometrical constraints that
freezes the movement along a selected pathway; the constraint value is changed
in order to drag the system from the reactant to product; in the following section
we will discuss this approach in details. In the latter method2® the potential energy
surface is modified by an additional bias potential, introduced in order to lower the
activation barrier for the studied reaction.

In standard implementations of the umbrella sampling techniques the bias
potential is defined in configurational space, as a function of selected geometrical
variables. However, new attempts have recently been made to alternatively apply
bias potential dependent on the electronic degrees of freedom.2~# Very promising
initial applications have demonstrated that such approaches can be useful for
exploring the regions on the potential energy surfaces separated by non-negligible
barriers.

Another group of recently proposed methods is aimed at exploring directly
the free-energy surface (FES)£~2 rather than the corresponding potential energy
surface. The approach by Fleurat-Lassard and Ziegler® is directed towards the
determination of the minimum-free energy reaction path, while the metadynamics
approach proposed by Parinello et al.2442 introduces additional fictitious terms into
the Car-Parinello Lagrangian, to efficiently sample the regions on the free-energy
surfaces corresponding to different species separated by high barriers, within a few
picoseconds of simulation.
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3.2. Constrained Dynamics, Thermodynamic Integration,
and Free-energy Barriers

Various methodologies have been developed to determine the free energy barriers
from MD simulations. One of the common approaches applied in ab initio MD,
known as the potential of mean force method has been derived from the thermo-
dynamic integration technique.*32 In a canonical (NVT) ensemble the free energy
difference, AA, between the two states, 0 and 1, can be calculated as the integral

AN UOE(X, A)
Adg_y :/0 Wd)\:fo <T a (4-14)

where the parameter A is smoothly changing between the two states, E stands for
the potential energy, and X denotes the coordinates of the atoms, X = {X;, i =
1, ..., 3N}; the subscript A represents an ensemble average at fixed A.

In a simulation performed to model a chemical reaction, the parameter A corre-
sponds to an arbitrarily chosen reaction coordinate, such as a bond length, an angle,
a torsion, or a combination of these parameters. Such a reaction coordinate defines
a constraint in configurational space. Constrained dynamics2® at finite temperature
can be performed for a series of fixed A values, corresponding to a transition from
the reactants to the product through the respective TS.

The idea of constrained dynamics performed for a set of points along such a
‘reaction path’, i.e. for a set of fixed values of the reaction coordinate, A, is not
specific to MD. Similar approaches have been commonly used in computational
studies based on static quantum-chemical calculations. Such approaches are known
as linear transit calculations, reaction path scans, etc. A set of constrained geometry
optimizations with the constraint ‘driving’ the system from reactants to products is
a popular way to ‘bracket’ a transition state, for instance.

From a constrained MD simulation the free energy difference can be calculated as

M points

AA= Y (F), AA (4-15)

where F; denotes the force required to satisfy the constraint corresponding to A;.

One of the requirements typical for this approach is the fact that the system must
be properly equilibrated for each A; value. Thus, the simulation must be carried out
for a long period of time, in order to obtain the converged value of the average
force F;. In practice, for each A; the simulation will consist of a following sequence
of the MD runs: initial calculation of the converged wave function, constrained
geometry optimization, warming-up the system, long-time equilibration (constrained
as well), and finally a long sampling simulation, performed to eventually calculate
the average restraint force.

Alternatively in the slow-growth approach the constraint value is changed in
a continuous manner from the initial to the final state. Thus, all the initial steps,
including a time-consuming thermal equilibration needs to be performed only once,
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for the initial geometry. If the system is initially equilibrated, and the rate of the
constraint change is small, the system stays (approximately) equilibrated during
the simulation. It should be emphasized that the a small rate for the change of
the constraint is crucial. Preferably the difference between the constraint value
at two subsequent points should be negligible compared to the thermal-motion
displacement in one time-step. i.e. it should be a few orders of magnitude smaller.
In practice, the rate of the constraint change is often determined by the number
of time steps chosen to model the whole reactive event. This number is chosen
to obtain a compromise between the computational cost and the accuracy. The
typical number of time-steps used in a simulation modeling a reaction that involves
a bond formation/bond breaking varies between 20 000 and 200 000. Thus, if the
inter-atomic distance is used as a reaction coordinate, changing by 4-10 a.u., the
rate of the constraint change will vary between 1*10~° and 5*10~* a.u./timestep.

However, even with a small rate for the constraint change, the reaction barriers
obtained from thermodynamic integration by the slow-growth simulations are
dependent on the choice of the reaction coordinate. First of all, an unfortunate
choice of the reaction coordinate may correspond to an unfavorable reaction path,
which does not pass the transition state region, and thus leads to a substantial
overestimation of the barrier.

Further, even if the reaction path goes trough the transition state, a large hysteresis
in the free energy profile can be observed. This can happen if the RP does not
run along, but crosses the bottom of the valley connecting the transition state
with reactant/product. We schematically illustrate this in Figure Note that in
a constrained simulation the system is allowed to spontaneously evolve in all the
directions perpendicular to the corresponding reaction path, defined by the fixed
value of the reaction coordinate. If, as in panel a of the figure, the reaction path
goes along the bottom of the valley and the reaction coordinate is changing slowly,
the cut of the potential energy surface in the perpendicular direction practically does
not change for the two consecutive points on the RP. Thus, the system regularly
oscillates around the minimum and stays equilibrated during the whole simulation.
However, if the reaction path crosses the bottom of the valley (Figure b), then
the projection of the gradient on the direction perpendicular to the RP can be large
for some points. For such points the fixed constraint value in fact does not freeze
the motion along the valley, and thus it does not prevent the system from ‘sliding’
downhill the potential energy surface. In other words, the cut of the potential energy
surface in the direction perpendicular to the RP may change dramatically for the two
consecutive points on the RP. For example, with the constraint defining the path
shown in Figure =8b, from one point the system will spontaneously evolve towards
the TS, while from another point towards the minimum. Eventually, the system
can easily loose its equillibration as a result of ‘chaotic’ movements following the
change in the constraint value. This leads to a hysteresis in the free energy profile
for a forward and backward scan. It should be pointed out, however, that for an
infinite sampling, i.e. infinitesimal change in the constraint value, the hysteresis
problem would theoretically disappear.
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Figure 4-8. Implications of the choice of the reaction coordinate on the constrained MD simulation.
In panel a the assumed reaction path goes along the bottom of a valley connecting TS and the
reactants/products. In panel b RP crosses the bottom of the valley

3.3. MD along Intrinsic Reaction Paths

As we mentioned previously, in practical applications the reaction coordinate is
usually chosen as a single geometrical variable (bond length, bond, angle, torsion
angle) or at most as a linear combination of few variables. Except from the simplest
reactions, such an a proiri choice of the reaction coordinate cannot guarantee neither
that the RP reaches the true TS region, nor that it goes along the bottom of the
valley connecting TS with the reactants/products.

Therefore, an a posteriori approach seems to be an attractive alternative, in
which the finite temperature MD simulation is performed along the pre-determined
reaction paths.33 Such an approach seems to cost more computational time, as it
requires determination of the reaction path prior to MD simulation. However, it can
be often less expensive than repeating a simulation due to unexpected problems,
e.g. a pronounced hysteresis.

Such an a posteriori approach can be implemented quite easily and naturally using
the machinery of constrained dynamics. The point is in using a proper constraint
that freezes the motion along the predetermined, reference reaction path. Such a
constraint was defined,22 based on the fact that in order to freeze the motion in a
direction given by a vector ¢/, the projection of the displacement vector r on %
must be zero, rer? = 0.

The choice of reaction path definition used as the reference for such a constrained
dynamics is arbitrary; any path may be used in practice. However, a natural choice in
order to ensure that the simulation moves along the bottom of the potential energy valley
connecting reactants/products with TS is the intrinsic reaction path (IRP) of Fukui. 442
IRP by definition goes along the bottom of such a valley. IRP simply corresponds to a
steepest descent path in a mass-weighted coordinates:

dx; = ——dt (4-16)
ox;
where x; stands for the mass-weighted cartesian coordinate x; = ml1 2 x ;i=1,..,3N

and m; corresponds to the atomic mass of the atom with a position described by
the i-th coordinate.
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To summarize, the steps involved in the slow-growth MD simulation along the
IRP or any other predetermined reaction path are as follows: (i) determination of the
geometries of the reactant/product and the TS; (ii) determination of IRP (or other
path used as reference for the simulation), recording the path; (iii) constrained, slow-
growth MD simulation with a constraint that freezes the motion along the reference
path. It should be pointed out, that before starting the slow-growth simulation, the
system corresponding to the first point on the path must be thermally equilibrated
(with the same constraint).

34. Illustrative Examples

In this section we will present results32 from the MD simulations along the IRC
performed for five model reactions: the HCN — CNH isomerization reaction,
the conrotatory ring opening of cyclobutene, ethylene-butadiene cycloaddition,
the prototype SN2 reaction: CI~ 4+ CH;Cl — CICH; + Cl1™, and the chloropropene
isomerization: Cl — CH, — CH=CH, — CH,=CH — CH,CL

All these results were obtained with the Car-Parrinello projector augmented
wave (PAW) code developed by Blochl. &332 The wave function was expanded in
plane waves up to an energy cutoff of 30 Ry. The frozen core approximation has
been employed; a Ne core has been used for Cl, and a He core for the first-row
elements. Periodic boundary conditions were used, with a unit cell spanned by the
lattice vectors ([0 R R] [R 0 R] [R R 0]; R=7-10 A, depending on the size of the
system). All simulations were performed using the local density approximation in
the parametrization of Perdew and Zunger2® with gradient corrections due to Becke
and Perdew.273 To prevent electrostatic interactions between neighboring unit
cells, the charge isolation scheme of Blochl was used.32

To achieve an evenly distributed thermal excitation, the nuclei were brought to a
temperature of 300 K by applying a sequence of 30 sinusoidal pulses, each of which
was chosen to raise the temperature by 10K. Each of the excitation vectors was
chosen to be orthogonal to the already excited modes. The warmed-up systems were
equilibrated for the 10 000 timesteps. The time step of 7 au. was used. Constraints
were maintained by SHAKE algorithm.3¢ A temperature of 300 K was controlled by
a Nose’ thermostat.22* The fictitious kinetic energy of the electrons was controlled
in a similar fashion by a Nose’ thermostat.22

Prior to the MD simulations, the transition state (TS) structures were determined
by the method described by Blochl.2 The intrinsic reaction paths were determined
by the steepest descent in mass-weighted coordinates going from the TS to the
reactants and products; this corresponds to a 0K simulations with a friction
coefficient of 1.0. To increase the efficiency of the IRP determination, the nuclear
displacements were scaled up by a factor of 2.0, until the average displacement
in the geometry reached a value of 0.001 A or an increase in the potential energy
was noticed. The slow-growth MD simulations were performed with a constraints
freezing the motion along IRP, for the equidistant points on the IRP, with an
increment of 0.0002amu~"/? x bohr at every timestep. This corresponds to a total
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number of 39300, 66450, 22600, and 55300 timesteps for simulations of the
HCN— CNH isomerization, ring opening of cyclobutene, SN2 reaction, and the
chloropropene isomerization, respectively. In case of the last two reactions, only
the path from leading from the TS to the products was studied.

3.4.1. HCN — CNH isomerization

As the simplest example of the MD simulation along the IRC, the isomerization of
hydrogen cyanide to hydrogen isocyanide has been chosen, This reaction has been
extensively studied by both experimental and theoretical methods2~2 and widely
used as a test case for the IRP determination methods.2~8

The structures of HCN, CNH, and the triangular TS are shown in Figure d=9 The
IRC energy profile is shown in Figure E=10h; the free energy profile together with
the average potential energy profile obtained from the MD simulations at 300K are
presented in Figure B=I0b. The average potential energy in Figure has been
calculated as running average with the window of 200 timesteps. The portion of
the IRP from HCN to TS is shorter than the path from TS to CNH, with lengths
of IRP s =3.58 and s = 4.28 amu~'/? x bohr, respectively. From the simulations
the reaction is endothermic with AE = 414.0kcal/mol, with the activation barrier
of 44.7 kcal/mol. These values agree well with the results of static DFT studies.
The average potential energy profile of Figure E=10b is practically indistinguishable
from the IRC profile, within the accuracy of 0.1 kcal/mol.

In Figure E-ITh the changes in the interatomic distances along the
IRP are presented, while Figure E-IIb shows the corresponding changes
during the 300K MD simulation along the IRP. The geometries of
the reactant, product and the TS are in a very good agreement
(within  0.005A) with both, the previous static DFT calculations&:£
and the experimental data. For HCN the CN, CH, and NH distances are 1.16, 1.08
and 2.25 A, respectively; the corresponding values for the CNH molecule and the
TS are 1.17, 2.20, 1.01 A, and 1.20, 1.21, 1.38 A, respectively.

Figure F=1Tb demonstrates that during the simulation all geometrical param-
eters regularly oscillate around the IRP values. It is illustrative to compare the
results of the MD along the IRP with the similar simulations performed with
the a priori assumed reaction coordinate. Here the difference between NH and
CH distances was chosen as a reaction coordinate, i.e. the substitution constraint
was used, Ryy — Rey = const. The MD simulations from both approaches were

L n!::}r-a 1 —_— l?“ —_— @
HCN T8 CNH

Figure 4-9. Isomerisation of hydrogen cyanide to hydrogen isocyanide: the structures of the reactant,
TS, and the product
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Figure 4-10. Isomerisation of hydrogen cyanide to hydrogen isocyanide: the IRC energy profile (panel
a), and the free-energy profile together with the average potential energy profiles (panel b), calculated
from the 300K MD simulations along the IRP
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Figure 4-11. TIsomerisation of hydrogen cyanide to hydrogen isocyanide: the changes in the CH, NH,
and CN distances along the IRP, during the 300K MD simulation

performed with similar settings, including the same number of timesteps. In the simula-
tions with a priori RC, the constraint value was smoothly changed between the
values characteristic for the HCN and CNH molecules.
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The computed reaction barrier practically does not differ from the value obtained
from the simulation along IRP, the reaction free energy is higher by c.a. 1.2 kcal/mol
than the change in the average potential energy between HCN and CNH. However,
in the region after passing the TS (Ryy — Rcy = from 0.6 to 1.2 bohr) the reaction
path defined by the constraint visibly deviate from the IRC. Since the applied
constraint does not represent the minimum energy path, the molecular system
spontaneously evolve toward lower energies, partially loosing equilibration. After
passing TS, the substitution constraint does not prevent going downhill the potential
energy surface; this is reflected by damped oscillations between the constraint values
of 0.2 and 0.6 bohr. Afterwards, the unequilibrated systems exhibits increased
variation in all the interatoomic distances between the constraint values of 0.6 and
1.2 bohr.

This effect is clearly illustrated in Figure in which we compare the
hydrogen paths from the two simulations, plotted together with the hydrogen path

Figure 4-12. Isomerisation of hydrogen cyanide to hydrogen isocyanide: relative motion of the atoms
during the isomerisation of hydrogen cyanide to hydrogen isocyanide calculated from the 300K MD
simulations along the IRP (oscillating line in panel a) and from the 300 K MD simulation with the
constraint Ryy-Rey = const. (oscillating line in panel b). The corresponding data along the IRP are
given as a solid middle-line. The nitrogen atom is fixed at the origin (0,0); the carbon atom is located
on the x-axis; the lines correspond to the trajectories of the hydrogen atom relative to CN. Only the
vicinity of the TS is included in the plots. For the whole pathway see Ref. 33
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corresponding to IRP. For clarity of the figure only the vicinity of TS is shown here.
While the hydrogen path from the simulation along the IRP (Figure B=12h) oscil-
lates very regularly around IRP, in the case of the simulations with the substitution
constraint (Figure @=12b) strong irregularities can be observed. Here, after passing
the TS the oscillations are first damped — the hydrogen atom runs away from the
IRP, and then increased in a quite chaotic fashion — a sign that the system has lost
its equilibration. In this simple reaction involving a small, triatomic molecule, the
problem discussed above does not affect the reaction free energy very much, since
the molecule regains equilibration relatively quickly. In the large molecular systems
with many degrees of freedom, however, the equilibration lost at some point can
lead to inaccurate estimation of the reaction free energies as well as the reaction
barriers.

3.4.2. Conrotatory ring opening of cyclobutene

The reaction of cyclobutene ring opening leading to 1,3-cyclobutadiene has been
extensively studied by experimental and theoretical methods. &8¢~ 11

The ring opening of cyclobutadiene is predicted by symmetry rules to proceed as
a conrotatory process. The kinetic product of the reaction is gauche-1,3-butadiene
with deviation from planarity of ca. 30°. The structures of the cyclobutene, TS, and
gauche-1,3-butadiene are shown in Figure F=13]

The kinetic product can be further transformed into the most stable trans- isomer.
Here, we study only the pathway leading to a gauche- rotamer. The mechanism of
the reaction involves four main processes: (i) breaking of the C, — C, o-bond; (ii)
rehybridiration of the carbon skeleton, i.e. formation of the conjugated m-electron
system by partial breaking of the C,=C; mw-bond and partial formation of the C,=C,
and C;=C, m-bonds; (iii) skewing of the carbon skeleton by rotation around C, — C,
bond; (iv) conrotatory movement of the two methylene groups. Recent static DFT
IRC studies® demonstrated that the reaction proceeds in a concerted fashion rather
than according to a stepwise mechanism. Since the reaction path involves concerned
changes in all geometrical parameters, it represents an interesting test case for the
MD along the IRP.

The results of our calculations are summarized in Figure B=14] and E=13] The
results are in a good agreement with the recent, static DFT studies® and the
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Figure 4-13. Conrotatory ring opening of cyclobutene: the reactant, TS, and the product geometries
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Figure 4-14. Conrotatory ring opening of cyclobutene: IRC energy profile and free energy profile
from the MD simulation at 300K

experimental data.2~% We will not repeat here the detailed comparison and the
discussion from the original article.33 We would only like to emphasize that the
MD along the IRP leads to smooth free energy profiles (Figure B=14)) even in cases
where the reaction involves concerted changes in many geometrical parameters. All
the geometrical variables regularly oscillate around their IRP values (Figure B=13)
and the system practically stays equilibrated during the whole slow-growth MD
simulation.

3.4.3. Ethylene-butadiene cycloaddition

The basic Diels-Alder cycloaddition reaction involving ethylene and butadiene is
probably one of the best known chemical reactions. It has been studied extensively
by a variety of both, experimental and theoretical techniques.Z2 We have performed
MD along the IRC for the key reaction pathway leading from reactants to the
boat-like product of C, symmetry (Figure E=18)); the isomerization of the product
was not studied here.

Similarly to the previous reaction, the ethylene-butadiene cycloaddition is a
nice example of a reaction in which the finite temperature pathway (300K here)
follows the IRC. The changes in the crucial geometrical parameters are summa-
rized in Figure B=I7] It can be clearly seen that all the geometrical parameters
oscillate around their IRC values. Quite large deviations are observed only for the
‘reactive’ C-C-C-C torsion angle in the initial part of the simulation. This is under-
standable, since before the C-C bond forming, there is a lot of freedom as far as
the mutual orientations of the reactants are concerned. For the same reason, there
exists deviation from the IRC for the C(Et)-C(Btd) distances in the very first part
of the reaction pathway.
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Figure 4-15. Conrotatory ring opening of cyclobutene: the changes in the interatomic distances (a),
angles (b), and torsional angles (c) along the IRC and from the 300K MD simulation
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Figure 4-16. Ethylene-butadiene cycloaddition: reactants, products and TS structures

Figure 4-17. Ethylene-butadiene cycloaddition: the changes in the interatomic distances (a), angles (b),
and torsional angles (c) along the IRC and from a 300K MD simulation
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3.4.4. Prototype SN2 reaction C1~ + CH;Cl — CICH; +Cl™

The halogen exchange reactions between methyl halides and a halogen anion,
X~ +CH;X — XCH, + X~ (X=F, Cl, Br, 1), have been studied by many experimental
and theoretical techniques as a prototype SN2 reaction. &2 ~2¢ We have performed the
MD simulations along IRC for the chlorine exchange reaction (Figure [d=13]).

The reaction profile is characterized by a double-well shape with two minima,
corresponding to Van der Waals complexes (VAW), X~ ----CH,; X, located symmetri-
cally around the barrier. Using MD we studied the major part of the reaction, i.e. the
path between VAW complex and the TS; the reaction path corresponding to the
formation of the VAW complex from the isolated chlorine anion and chloromethane
has not been studied. The structures of the two VAW complexes and the TS are
shown in Figure =18 Due to the reactants-products symmetry, in the following we
present the results of the MD simulation along the part of the IRP leading from the
transition state to a VAW complex.

The results of our simulation are summarized in Figure B-191 The detailed
discussion was presented in the original article.33 Here we will only discuss some
major points. The reaction mechanism involves Walden inversion of chloromethane,
with the planar CH; group in the symmetrical transition state geometry. The IRP
involves linear movement of the carbon and two chlorine atoms, accompanied by
bending the C-H bonds toward tetrahedrical orientation.

At 300K, in the TS region the atomic movements are dominated by two soft
modes: the bending of the CI-C-ClI angle, i.e. the movement of the CH; fragment
perpendicular to the CI-Cl axis, and the symmetrical stretching of the two C-
Cl bonds. The plots of Figure show that during the MD simulation all
bonded interatomic distances oscillate around their IRP values with relatively small
amplitudes. In the case of non-bonded distances, however, a large deviations from
their IRP values may be observed for the RC values corresponding to the region after
the C-Cl bond-formation, i.e. s > 2.8 amu~!/? x bohr. This is because the dynamic
VdW complex at 300K does not resemble its static image at OK. After the formation
of the C-Cl bond, the chloromethane molecule starts rotating. Thus, the CI-C-Cl
angle adapts values from the whole range between 0° and 180°. In other words, at
300K in the VAW stage all mutual orientations of the chlorometane and chlorine
anion are possible, incuding the linear H;C-Cl----C1~ complex. This is reflected
by large changes in the non-bonded C-Cl and CI-Cl distances. In Figure are

@) —e — | & & o™ — o—4 @

Figure 4-18. SN2 reaction: the key structures
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presented two representative geometries of the complex at the final stage of the
reaction, illustrating the above discussion.

The example of the prototype SN2 reaction demonstrates that the algorithm of
MD along the IRP applied here works correctly also in the case of a reaction with
relatively large deviations of the molecular geometries at finite temperatures from
the corresponding structures at the zero-temperature IRP.

3.4.5. Cl-CH,-CH=CH, - CH,=CH-CH,Cl isomerization

The isomerization of 3-chloropropene (allyl chloride) involves a transfer of the
chlorine atom between two terminal carbon atoms, through an allylic TS state. The
structures of the reactant, TS and the kinetic product are shown in Figure
Again, due to the reactant-product symmetry, only the part of the reaction path
leading from the TS to a kinetic product will be discussed here.

The most stable conformation of the allyl chloride is a gauche-rotamer. The
energy difference between gauche- and cis-species is 0.9 kcal/mol according to
our calculations. Recent experimental data2 suggest an energy difference of
0.3-0.4 kcal/mol, while recent RHF and MP2 calculations give the value of
0.9-1.3 kcal/mol. The gauche- and cis-rotamers are separated by a barrier of
2.9 kcal/mol. Here, our result reproduces the experimental value.2 However, the
IRP for the chlorine transfer reaction leads from the allylic TS to a minimum
corresponding to a cis-conformer, which can later rotate to form a gauche-species.
Therefore, in the following we present the results of the MD simulation along the
IRP leading to a cis-rotamer.

The results are summarized in Figure =211 During the MD simulation, all the
bonded inter-atomic distances and bond angles oscillate around their IRP values.
The plots of Figure B=21] however, exhibit quite interesting features. Namely, at
s = 7.5amu~"/? x bohr one can observe large deviations of the non-bonded C-
Cl distance and the CI-C,-C,-C; torsion from the corresponding IRP values (see
Figure=21)). Despite the fact that the IRP leads from TS to the cis-rotamer, at 300K
the system spontaneously evolves towards the gauche-geometry. This leads to a
decrease in the free energy, and is accompanied by a deviation of the non-bonded
inter-atomic distances from their IRP values. After reaching the region with the
geometry closer to the gauche-rotamer, the molecule is brought back to the IRP
and eventually reaches the geometry of the cis-product, since the constraint used in
the MD simulations forces the system to move along the IRP.

-

Cl -CH,-CH=CH, TS CH,=CH-CH,-CI

Figure 4-20. Chloropropene isomerization: structures of the reactant, TS and the product
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Thus, the chloropropene isomerization reaction represents an interesting example
of a system for which MD reveals a ‘thermal shortcut’, i.e. the 300 K path does
not follow the zero-temperature IRP, leading directly to a different, more stable
conformer. This example emphasizes the strength of the finite-temperature MD
simulations that can often reveal the reaction paths not noticeable by the static
(zero-temperature) investigations. At the same time, this example demonstrates that
the algorithm used here works well even in the cases when the system geometry
deviates far from the IRP during the finite-temperature simulation.

4. MOLECULAR DYNAMICS IN THE STUDIES
OF THE ETHYLENE - METHYL ACRYLATE
COPOLYMERIZATION

In this section we will present results of ab initio molecular dynamics simula-
tions performed for more complex chemical reactions. Catalytic copolymerization
of a-olefins with polar group containing monomers, chosen here as an example, is
a complex process involving many elementary reactions. While for many aspects
of such a process the standard approach by static quantum chemical calculations
performed for the crucial reaction intermediates provides often sufficient infor-
mation, for some aspects it is necessary to go beyond static computations. In the
case of the process presented here, MD was priceless in exploring the potential
energy surfaces for a few elementary reactions that were especially difficult for
a static approach, due to a large number of alternative transition states and thus,
alternative reaction pathways.Z

This section is organized as follows: first the mechanism of the polar copolymer-
ization process will be presented, then the results from the static calculations will
be briefly summarized, and finally the MD results will be discussed.

4.1. The Polar Copolymerization Process and its Mechanism

Polyolefins are nowadays the materials of great importance, commonly known not
only from many industrial applications, but as well from their use in everyday
life. The properties of the polymeric material depend on numerous factors. The
choice of monomer is obviously of major importance, although it does not uniquely
determine the polymer. Among the primary factors is the molecular weight of macro-
molecules in the polymer, as well as the molecular weight distribution. Further,
the architecture of the macromolecules, i.e. the overall degree of branching as
well as the topology of branches strongly influences the polymer properties. These
factors are only partly determined by the general mechanism of a process (radical,
anionic, cationic, coordination-type polymerization), as they can be often strongly
influenced by a specific mechanism, e.g. following the choice of catalyst/initiator,
the thermodynamic parameters of the process (temperature, pressure), etc. This
implies that a great variety of new polymeric materials can be potentially designed.
Polyethylene homopolymers or copolymers with other olefins are good example, as
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various classes of polyethylenes (HDPE, LDPE, LLDPE) are produced in different
processes, often controlled by structure of ligands on the catalyst, temperature,
pressure, etc.Z

The development of a single-site Ziegler-Natta-type catalysts capable of copoly-
merizing a-olefins with monomers containing polar groups is one of the major goals
in a design of new polymerization catalysts.Z2 Of special interest are the oxygen
and nitrogen containing monomers, such as vinyl alcohols, ethers, esters, nitriles,
etc. Even a small incorporation of polar comonomer into the polyolefin chain can
strongly modify the properties of the copolymer, compared to homopolymer. The
traditional heterogeneous Ziegler-Natta catalyst8 8 and the early-transition metal
complexes®~88 are poisoned by polar monomers. Introducing the new generation
of non-metalocene catalysts based on the late-transition-metals gives potentially a
chance to develop systems that are active as catalysts for polar copolymetrizations.
The late-transition-metal-based complexesZ2~2? are more functional group tolerant.
The first successful example was the Brookhart Pd-diimine catalyst,Z capable of
copolymerizing ethylene with acrylates.22? Interestingly, the analogous Ni-based
catalyst is not active in polar copolymerization under the same reaction conditions,
although it is an effective catalyst for the a-olefin homopolymerization. Thus, the
first step toward designing new catalysts, is to understand the differences between
the palladium- and nickel based systems.

The mechanistic aspects of the homopolymerization processes catalyzed by
the diimine catalysts have been studied extensively by experimental 2~ and
theoretical methods2~1%, Molecular modeling by a combined approach that links
quantum-chemical calculations (static DFT and MD) with the stochastic (Monte-
Carlo like) simulations of the polymer growth was helpful in understanding the
relationship between the catalyst, temperature, and pressure of the process and the
topology of the resulting macromolecules. This topic was reported in a series of
articles,—=—=—=2020 and summarized in monographic reviews,{27 g0 it will
not be discussed here. This section will cover the polar copolymerization of ethylene
with methyl acrylate, focused mainly on investigations by the molecular dynamics
approach; the main goal of these studies was to understand the aforementioned
differences between Pd- and Ni-diimine catalysts. The computational study summa-
rized here was followed by the applications of molecular modeling techniques to
other copolymerization processes. 12718

The mechanism of polar copolymerization (Figuresd=22land 4-23)) involves in the
first step binding of the non-polar or polar monomer to the catalyst. In the standard
Coose-Arlman mechanism 78 for a-olefin polymerization the monomer insertion
follows the complexation of the olefin by its double C=C bond (m-complex,
2 and 4 in Figure E=27)). Alternatively, the polar monomer can be coordinated by its
functional group, e.g. carbonyl oxygen atom in the case of acrylates (o-complex, 3).
The competition between the two binding modes of acrylate is one of the important
factors for the catalyst activity. This is because the insertion of the polar monomer
in a random copolymerization mechanism may start from the m-complex only.
A formation of a stable o-complex results in poisoning of the catalyst.
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Figure 4-22. Mechanism of ethylene-methyl acrylate copolymerization: monomer insertion
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Figure 4-23. The steps in the copolymerization mechanism following the acrylate insertion

The ethylene insertion leads to alkyl agostic complexes (y- and (-agostic), a
starting points for further insertions. The polar monomer insertion results in the
formation of chelates (9, 10, 11), more stable than the corresponding agostic
complexes (-y- and B-agostic, 7 and 8). It has been found experimentally? that the
6-member chelate (11) is a resting state for the catalyst in acrylate polymerization
catalyzed by Pd-diimine complexes. Formation of the chelates is followed by the
insertion of the next monomer, again starting from the respective mw-complexes
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(12-14 and 15-17 in Figure @=23). Here as well, the polar monomer may be bound
alternatively by its functional group (18-20) and potentially poison the catalyst.
Thus, the potential factors of importance for polar copolymerization that should be
considered are the competition between the two binding modes of the polar olefin,
the competition between polar and non-polar olefin, the difference in their insertion
barriers, and difficulty of the opening chelates by ethylene coordination, following
the acrylate insertions. This factors were studied by a combined static DFT and
MD studies.

4.2, DFT and MD Studies on the Monomer Binding and Insertion

DFT calculations with Becke-Perdew exchange-correlation functional were carried
out for all the reaction intermediates present in the catalytic cycle of polar copoly-
merization, based on the simplified diimine catalyst in which the bulky diimine
substituents were replaced by hydrogen atoms (model catalyst: N*"N-M*, N*N =
-N(Ar)-CR-CR-N(Ar)- R=H, Ar=H, M=Ni, Pd). Some of the calculations, for
the most important structures, were repeated using the real catalyst, containing
bulky diimine substituents [real catalyst: Ar=C4H,(0-i-Pr),, R=CH;].

Figure B=24] presents the energy profile for the acrylate insertion, resulting from
the calculations performed for the structures based on the model catalyst. The lowest
energy reaction intermediates for the 2,1-insertion are present in the figure, as the
2,1-insertion was found to have higher barriers for both, the Ni- and Pd-based
systems.

keal/mol Alkyl agostic
+ acrylate
0+ - Insertion TS
-5 =
-10
-15—+ —
=207
- Acrylate Acrylate 4.9
257 o-complex a-complex
-8.2
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-I.1 chelate
40+
+L0
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chelate

Figure 4-24. An energy profile for the 2,1-patwhway of methyl acrylate insertion into the M-alkyl bond
(M =Ni, Pd) calculated for the model catalyst
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The first step in the copolymerization mechanism involves a competition between
the complexation of the polar and non-polar olefin, and in the former case a
competition between the two binding modes. Formation of the m-complex, 4, is
necessary for the monomer insertion. The o- complex 3 can poison the catalyst,
if it is strongly preferred energetically. The relative stability of the two binding
modes has been found to be different for the Ni- and Pd- complexes.1%.1% For the
Pd system, active in the polar copolymerization, the m-complex is indeed preferred
by 3.6 (model catalyst) and 3.0 kcal/mol (real catalyst), while for the Ni catalyst
the o-complexes have lower energy by 4.0 (generic catalyst) or 3 kcal/mol (real
catalyst). Thus, the Ni-catalyst is initially poisoned by formation of the ‘inactive’
o-complex, while in the case of the Pd-complexes a formation of the acrylate
m-complex leads to its insertion. The structures of the alternative complexes are
shown in Figure {23

The difference in the preferred binding mode observed for the Pd- and Ni-
based catalysts can be the crucial factor determining activity/inactivity of these
two systems in polar copolymerization. However, the question arises about the
stability of the alternative binding modes at finite temperature. If the minima
were separated by relatively low barriers and fast interconversion between the two
isomer complexes could occur, then this difference would be of minor importance.
In order to check the stability of the two modes and get the insight into the
mechanism of possible interconversions, a series of molecular dynamics simulations
was performed.

In the first stage of this study, the unconstrained MD simulations at T = 300K
were performed for all the complexes. In addition, for the higher energy
complexes (Pd/c-complex and Ni/m-complex) the unconstrained MD simulations
were performed at T = 700K, in order to check whether they would spontaneously
evolve towards the corresponding global minima. Figure presents the changes
in the crucial geometric parameters (metal-carbon and metal-oxygen distances)
along the respective MD trajectories. The results clearly demonstrate that both, the
- and o-complexes of methyl acrylate are stable at 300K and 700K for both the
metals. That is, all the simulations represent thermal vibrations around the starting
equilibrium structure. Thus, the thermal motion is not able to carry out an intercon-
version between equilibrium structures of different isomers. For all the systems the
Me-C and Me-O distances oscillate around their equilibrium values with relatively
small amplitudes. In the m-complexes the Me-C distances change by £0.0014,

Figure 4-25. The - and o- complexes of methyl acrylate with the model catalyst
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Figure 4-26. Unconstrained MD simulations for methyl acrylate bound to the palladium/nickel diimine
complex through the oxygen (top-right/bottom-right) and the C=C (top-left/bottom-left) functionalities.
The three panels in each of the four graphs represent variations in the metal-carbon (top two panels) and
metal-oxygen (bottom panel) distances. The simulations were carried out at 300 K for all the systems,
and 700K for the local minima, as indicated

while the Me-O distances change by £0.008A at 300K. In both the Ni- and Pd-
m-complexes the amplitudes for the Me-C distances are much smaller than for the
Me-O distances, since the latter represent the separation between non-bonded atoms,
and are affected by the phases of all the vibrations in the system. Obviously, in the
O-complexes this trend is inverted: here, the amplitudes for the Me-O bond lengths
are substantially smaller (0.001A) than for the Me-C non-bonding distances (up
to £0.005A).

The trajectories obtained from the simulations at 700 K performed for the Pd-O-
and Ni-m-complex are different from those at 300K only by the amplitude of the
oscillations. From the plots of Figure E=26] there is no doubt that these local minima
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are stable on the 700K free energy surface and do not tend to transform into the
global minima geometries.

In the next stage, the MD simulations were performed, in order to qualitatively
model the possible inter-conversion reactions: m — o and ¢ — . Our MD studies
of the four interconversion processes consist for each reaction of two parts. In
the first (constrained) part the system is dragged along a reaction coordinate (the
constraint RC = Rpy.-Rpy-) from one form to the other while the thermal motion
(trajectory) of all the other normal modes are recorded along with the change in
energy. An unconstrained (relaxation) MD simulation is carried out in the second
part after the system has reached the final value of the reaction coordinate RC. In
this part thermal motion is allowed along all the normal modes including RC.

An example of such a simulation starting from the acrylate w-complex is summa-
rized in Figure d=27] in which the crucial interatomic distances and selected geome-
tries are displayed. The data in the figure show that at the end of the simulation
the o-complex is not formed. Instead, the methyl acrylate molecule dissociate.
Similar results were obtained for the system with Pd-catalyst. Thus, MD simulations
suggest a dissociative pathway for the interconversion reactions between the two
binding modes.
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Figure 4-27. Changes in the two distances between the olefin carbons and the metal (M —C(1) and
M — C'(m)) as well as the metal-oxygen distance M-O from constrained MD and the following relaxation
(unconstrained) simulations for the methyl acrylate -complex — > o-complex interconversion with the
Ni-based diimine catalyst. The initial and finalgeometries are shown in the figure
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The origin of the m— /o— binding mode preference was investigated by applying
the Ziegler-Rauk fragment analysis of the interaction energy as well as the analysis
of two-electron Fukui functions and the molecular electrostatic potential of the
catalyst and monomer based on the static DFT results. %12 All these analyses led
to similar conclusions: the preference of the acrylate o-complex has an electrostatic
origin. Thus, use of neutral or anionic catalyst instead of the cationic systems should
result in stabilization of the w-complex compared to the o-complex.

Concerning the polar monomer insertion, it was found out that the activation
barriers are lower for the Ni- than for the Pd-diimine catalysts (see Figure B=24).
The 2,1-acrylate insertion barrier for the model Ni-catalyst (12.2kcal/mol) is
substantially lower than for the Pd-analogue (19.2 kcal/mol). For the real catalyst
the barriers are relatively close for both systems: 12.4kcal/mol for Pd-, and
13.5kcal/mol for Ni-complex. For comparison, the geometry of the ethylene
insertion TS was determined with the real Ni-catalyst. The ethylene insertion barrier
is 14.2 kcal/mol for the Ni-, while for the analogue Pd-catalyst it is 16.7 kcal/mol.
Thus, it is not the acrylate insertion that makes the copolymerization difficult in
the Ni-case, as for both catalysts the acrylate inserion barriers are lower than the
ethylene insertion barriers.

The stability of the insertion products is also quite similar for Ni- and Pd-
catalysts. For both systems, insertion leads to a complex with a vy-agostic M-H
interaction, 7, that can easily isomerize to form more stable [3-agostic complex, 8, or
can directly lead to the structure involving the chelating M-O bond, 9. The 4-member
chelate, 9, is more stable than the y-agostic complex by 15.2 kcal/mol, and is less
stable than the structures with a 5- and 6-member ring, 10 and 11. Comparing the
thermodynamic stability of isomeric chelates, there is a slight difference between the
two catalysts. Namely, for the Pd catalyst the complex with a 6-member ring is the
most stable isomer, whereas in the Ni case, the S-membered chelate has the lowest
energy. It should be emphasized however, that all the chelates are substantially
lower in energy compared to the agostic complexes for the Ni-catalyst than for Pd
(see Figure B=24)). This again reflects higher oxophilicity of the Ni-system.

4.3. MD Studies on the Chelate Opening by Ethylene

The chelate opening by coordination of the next monomer was expected to be
a factor of importance for explaining the activity/inactivity of the Pd-/Ni-system.
Therefore, the chelate opening reactions were investigated in details by both, static
DFT and the molecular dynamics approach.

It should be pointed out that in the lowest energy structures of the m-complexes
of the monomer formed from the chelates, the chelating bond M-O is still present,
with the oxygen atom moved to the axial position. This is true for all sorts of
chelates (4-, 5-, 6-membered), for both the monomers, ethylene and acrylate, as well
as for both metals, Ni and Pd. The structure of the lowest energy ethylene complex
formed from the 6-member chelate is shown in the first part of Figure
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Figure 4-28. The m- complexes of ethylene formed from the 6-member chelate (after methyl acrylate
insertion) with the model (14, 14a, 14b, 14¢) and real catalyst (14, 14a")

On the other hand, it can be expected that on the respective potential energy
surfaces, there should exist a variety of the isomeric structures without the M-
O bond. Two examples (14a, 14b) are shown in Figure Thus, in order to
understand the details of the mechanism, one has to consider the one-step chelate
opening reaction by the monomer insertion, as well as the two-step process in which
the M-O bond is broken (chelating ring is opened) prior to the monomer insertion,
and the insertion starts from the higher energy complex without a M-O bond.

The static DFT calculations were not conclusive on the chelate opening,1% due
to a huge variety of the structures with and without M-O bond, and thus a huge
variety of possible reaction pathways. Dozens of isomeric structures were optimized
by DFT calculations for each type of chelate. Static calculations suggested two-step
chelate opening, however the optimized insertion transition states were doubtful,
as they were not necessarily connected to the most favorable of many possible
pathways. Therefore, applying the MD approach was expected to be very helpful at
this point. The additional advantage of the MD approach was that the simulations
allow one to determine directly the free energy differences, not only the energy
differences.

Among the main goals of these MD simulations were: (i) determine the stability
of the local minima — higher energy structures without the M-O bond at finite
temperatures; (ii) determine the monomer insertion pathways and their energetics
for the insertion starting from the global minimum structure of the m-complex;
here the TS determination by the static DFT approach was especially difficult;
(iii) determine the energetics for the monomer insertion pathways starting from the
alternative, higher energy complexes with a M-O bond; (iv) determine the energetics
for the opening of the chelates prior to the ethylene insertion, i.e. at the monomer
ar-complex stage; (v) determine the energetics for the monomer insertion pathways
starting from the alternative, higher energy complexes without M-O bond. The set
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of MD simulations performed for the Pd- and Ni-complexes was expected to reveal
differences in their abilities as copolymerization catalysts due to a difference in
their aptitude towards the chelate opening.

All the structures without the M-O chelating bond are higher in energy compared
to the most stable, chelated structures. In Figure [4=28] two examples of such isomers
for the Ni-catalyst are presented; the structures for the Pd-systems are qualitatively
similar. The complexes 14a and14b are higher in energy then 14 by 16.9 kcal/mol
and 6.3 kcal/mol, respectively. The corresponding Pd-complexes were found to be
higher in energy then the most stable isomer by 11.8 and 1.7 kcal/mol, respectively.
Thus, the energy differences between the analogous chelated and non-chelated struc-
tures are larger for Ni then for Pd by ca. 5 kcal/mol. This difference can be attributed
to an increased stability of the Ni-chelates compared to Pd- (see Figure [{=24),
reflecting the higher oxophilicity of the Ni-systems.

In order to determine the stability of the non-chelated complexes 14a and 14b
at finite temperatures, we have performed unconstrained MD simulations (at 300K
and 1300K) for the respective Pd- and Ni-based systems. The results showed that
for both metals the geometries oscillate in the vicinity of the corresponding local
minima. No spontaneous isomerization towards chelated structures was observed,
nor towards any other isomers. Thus, it can be concluded that the non-chelated
isomers are stable on their free-energy surfaces, and separated from other isomers
by a non-negligible barriers.

The opening of the six-member chelate prior to ethylene insertion was studied by
a slow-growth MD simulation for Ni and Pd ethylene-chelate complexes 14. The
M-O distance was used as a reaction coordinate, increasing from the values in 14
(2.29 A for Pd and 2.08 A for Ni) up to 4.23 A (8 bohr). The TS regions were located
at a M-O distance of 3.12 A and 3.71 A for Ni and Pd, respectively. The activation
energies and free energies are: AE* = 6.8kcal/mol, AG* = 11.3kcal/mol for Pd,
and AE* = 10.9kcal/mol, AG* = 14.4kcal/mol for the Ni-catalyst. Thus, for the
Pd catalyst the activation barrier was found to be slightly lower than for the Ni
complex.

The MD simulations were performed for the model catalyst, in which the presence
of the bulky substituents was neglected. It might be expected that the steric bulk
would facilitate the chelate opening, since the chelating oxygen occupies an axial
position and must interact strongly with the catalyst substituents. In order to
investigate the steric effect, the static DFT calculations were carried out for the
complexes 14" and 14a’ with the real Ni- and Pd- diimine catalysts (analogous to
14 and14a). The optimized example geometries of 14" and 14a’ with the Ni-catalyst
are presented in the bottom part of Figure B=24] The results show that indeed,
the energy difference between 14" and 14a’ is strongly decreased compared to the
model systems (14, 14a) for both, the Ni- and Pd- complexes. The opened-chelate
complex 14a’ is higher in energy than 14’ by 4.2 kcal/mol and 7.5 kcal/mol, for the
Ni- and Pd-catalyst, respectively. Thus, for the real systems the chelate opening
prior to insertion, 14' — 14a’ becomes more facile compared to the model systems;
the corresponding reaction energies are decreased by 12.7 kcal/mol and 4.3 kcal/mol
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for the Ni- and Pd-system, respectively. This effect appears as a result of a strong
destabilization of the chelated systems in the congested geometries of 14'. The
systems without addional chelating bonds, 14a’, are only slightly influenced by the
bulky substituents on the catalyst. It is not surprising that the effect of the steric
bulk is substantially larger for Ni than for Pd, as all the bonds involving Ni are
typically shorter than those containing Pd by 0.1-0.2 A, and thus, the nickel systems
are more congested. These results clearly demonstrate that the steric bulk in real
systems facilitate the chelate opening.

In order to determine the ethylene insertion starting from the chelated complexes,
the slow growth MD simulations were performed, with the distance between the
a-carbon of the chain and an olefin carbon chosen as a reaction coordinate.. The
activation barriers obtained from the simulations are presented in Table B=1l The
results clearly show that in each case the barriers are substantially lower for the Ni-
than for the Pd-catalyst. For all the systems, the ethylene insertion reactions starting
from the most stable chelate structures 12, 13, and 14 have very high barriers
(38-53 kcal/mol and 32-41kcal/mol, for Pd and Ni, respectively). These values
are much higher than the ‘standard’ ethylene insertion barriers into the metal-alkyl
bond (AE* = 16.8 kcal/mol and 14.2 kcal/mol for Ni and Pd, respectively). These
high barriers demonstrate that the ethylene insertion definitely cannot proceed from
the most stable ethylene-chelate structure.

The example trajectories from the reaction with 6-membered chelate are summa-
rized in Figure The Figure summarizes the structures, together with crucial
inter-atomic distances (metal-oxygen and the metal-y-hydrogen) along the MD
trajectories. The results demonstrate that for both metals, the chelating bond is
practically present along the whole insertion pathway. The Ni-O and Pd-O bonds
are weakened after passing the TS region; they are extended by 0.07 A and 0.35 A
compared to the initial structures, respectively. In both cases, the insertion leads
directly to the 8-member chelate, as reflected by the Ni-O and Pd-O bond short-
ening after passing the TS. For both, Ni and Pd, catalyst there is practically no

Table 4-1. Ethylene Insertion Barriers after the Acrylate Insertion Obtained
from the MD simulations

activation barriers®

Ni — catalyst Pd-catalyst
Initial complex AE* AG* AE* AG*
4-chelate:
12 28.1 329 35.8 38.2
5-chelate:
13 339 36.5 41.2 44.7
6-chelate:
14 38.8 40.8 49.9 53.4

14a 18.8 20.4 24.0 30.4
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Figure 4-29. Changes in the interatomic distances for M-O (carbonyl) and M-Hg (M = Ni, Pd) along
the MD trajectory obtained from the ethylene insertion starting from the complex 14 [top] and examples
of the structures observed along the trajectory [bottom]; S denotes a reaction progress variable

interaction between the metal and the vy-hydrogen (i.e. a-hydrogen in the initial
structure); the distance between the metal atom and the y-hydrogen increase as the
insertion proceed. This is different from the usual olefin insertions observed in the
homopolymerization reactions, where the TS is usually stabilized by a y-hydrogen
interacting with the metal. It seems very likely that the lack of this y-hydrogen
stabilization is responsible for the very high insertion barriers observed here. In the
most stable structures of 14, 15 and 16 the a-hydrogen of -CH(R')(R?)COOCH,
group (i.e. the y-hydrogen of the product) points towards ethylene, and during the
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Figure 4-30. Changes in the interatomic distances for M-O (carbonyl) and M-H, (M = Ni, Pd) along the
MD trajectory obtained from the ethylene insertion starting from the complex 14c [top] and examples
of the structures observed along the trajectory [bottom]; S denotes a reaction progress variable

insertion pathways the —-CHR'R? group rotates in a direction that increases the
metal-hydrogen distance.

Therefore, we also performed simulations for the alternative isomers of 14, in
which the hydrogen is located ‘on the opposite side’ of ethylene, so that there exist a
possiblility of the y-agostic interactions (structure 14¢ in Figure B=28)). Figure
reports the trajectories from the MD simulation modeling the insertions starting from
the Ni- and Pd-complexes 14c¢: the metal-oxygen and metal-y-hydrogen distances
are presented, together with the example structures along the corresponding trajec-
tories. Figure[d=30]shows that indeed, during the reaction the y-hydrogen approaches
the metal, and in the TS region the Pd-H, and Ni-H, distances are typical for
y-agostic interactions (1.93 and 1.81 A for Pd and Ni, respectively). The system
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spontaneously evolves towards an 8-member chelate for both metals after passing
the TS as reflected in a decrease in the metal-oxygen distances. It should be pointed
out here, that again the chelating metal-oxygen bond is present along the whole
pathway. In the TS region the metal-oxygen distance is extended only by 0.16 A and
0.22 A for Ni and Pd, respectively. The conclusion drawn on the basis of our finite
temperature MD calculations differ from those obtained previouslyl® from static
DFT calculations where the chelating bond breaks before reaching the insertion
TS. This demonstrates that the MD approach is especially valuable for studying
reactions, for which there exist a large number of isomeric structures, giving rise
to many alternative pathways with different isomeric TS geometries.

The activation barriers for the insertion starting from 14¢ are visibly lowered
compared to those obtained for 14. (Table B=I)). Decrease in the barriers demon-
strates a role of the y-agostic interactions in stabilization of the TS for the olefin
insertion reactions. However, for both metals the barriers are still substantially
higher than the activation barriers for olefin insertion observed in the homo-
polymerization processes.

Finally, for the Pd-catalyst the MD simulations were performed for yet another
ethylene insertion pathway, starting form the higher energy m-complex 14a, in
which the chelating Pd-O bond does not exist. For such an insertion pathway
the earlier'® static DFT calculations demonstrated that the barriers for insertion
starting from w-complexes without chelating M-O bonds are comparable to the
barriers of ethylene insertion in the homo-polymerization processes. Also, the DFT
calculations suggested that in such a case the oxygen atom practically does not play
a role in the insertion.

Figure B=31] shows the Pd-O and Pd — H, distances along the MD trajectory, the
activation barriers are listed in Table =1l The results demonstrate that at T = 300K
the insertion proceeds according to the mechanism typical for ethylene homopoly-
merization. The distance between the metal and the y-hydrogen decreases along the
pathway, and the insertion product is a y-agostic complex. The presence of carbonyl
oxygen does not influence the reaction: this oxygen atom stays remote from the
metal (5.3-6 A). The calculated activation barrier [AE* = 17.1kcal/mol, AG* =
19.1kcal/mol] for the insertion is comparable with the homopolymerization
activation barriers. Very similar results were obtained for the insertion starting from
14b: AE* = 17.02kcal/mol, AG* = 22.3kcal/mol.

The results of the MD simulations clearly demonstrate that the insertion starting
from the higher energy isomers of the ethylene-chelate complexes in which the
chelating bond has been broken have much smaller activation barriers, that are
comparable to those observed in ethylene homopolymerization. This, however,
does not explain the differences in the copolymerization activity of Pd and
Ni-diimine complexes, as the barriers for the ethylene insertion into Ni-alkyl
bond are smaller (14.2kcal/mol) than those for Pd-alkyl bond (16.8 kcal/mol).
Thus, it may be concluded that the ethylene insertion following the insertion of
the polar monomer is not a crucial factor for the diimine catalyst copolymer-
ization activity. It is the initial poisoning of the catalyst by formation of the
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Figure 4-31. Changes in the interatomic distances for M-O (carbonyl) and M-H, (M = Ni, Pd) along the
MD trajectory obtained from the ethylene insertion starting from the complex 14a [top] and examples
of the structures observed along the trajectory [bottom]; S denotes a reaction progress variable

O-complexes and the chelate opening prior to the ethylene insertion that seems
to be responsible for differences in catalytic activity of the Ni- and Pd-diimine
complexes.

The example of the complex catalytic process studied here shows that ab initio
MD can be applied as a very useful supplementary methodology combined with
the ‘standard’ static DFT approach. Many details of the molecular mechanisms
of such processes can be disclosed and rationalized on the basis of the static
computations and do not require additional computational effort introduced by
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MD. However, MD is a very helpful approach when, for instance, there exist
many alternative pathways linking the same reactants with the products and
it is difficult to draw conclusions without exploring such pathways at finite
temperature.

5. CONCLUDING REMARKS

The first-principle molecular dynamics has reached the stage in which it can be
applied in modeling of relatively large molecular systems. Although the time-scale
of typical ab initio MD simulations is still not sufficient to observe the chemical
reactions occurring spontaneously, a development of various approaches towards
overcoming the high activation barriers makes it possible to investigate molecular
mechanisms of complex chemical reactions. The number of successful applications
of ab initio MD in wide areas of chemistry and physics is quickly growing. It seems
very likely that soon further developments of ‘routine pathways’ for certain types
of applications and further improvements of existing MD software will lead to a
revolution similar to the one that has been taking place in the area of applications
of static quantum-chemical programs. DFT-based molecular dynamics already has
become one of standard molecular modeling tools used to support experimental
investigations and to stimulate new experiments. Already now, the role of ab initio
MD methodologies in interdisciplinary studies directed towards a rational design of
new molecular materials cannot be underestimated.
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COMPUTATIONAL ENZYMOLOGY: INSIGHTS
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Abstract: Modern modelling methods can now give a uniquely detailed understanding of enzyme-
catalysed reactions, including analysing mechanisms and identifying determinants of
specificity and catalytic efficiency. A new field of computational enzymology has
emerged, which has the potential to contribute significantly to structure-based design,
and in developing predictive models of drug metabolism; for example, in predicting the
effects of genetic polymorphisms. This review outlines important techniques in this area,
including quantum chemical model studies, and combined quantum mechanics/molecular
mechanics (QM/MM) methods. Some recent applications to enzymes of pharmacological
interest are also covered, showing the types of problems that can be tackled, and the
insight they can give

Keywords: QM/MM, molecular dynamics, transition state, drug metabolism, polymorphism,
cytochrome P450, pharmacogenomics

1. INTRODUCTION

Computational modelling of the mechanisms of enzyme-catalysed reactions has
advanced significantly over recent years, and has matured to the point where a
new field of computational enzymology has emerged.i=2 Computer simulation and
modelling methods can investigate fundamental questions about enzyme mechanism
and catalysis that cannot be easily analysed by experiment. A number of different
types of modelling methods have provided insight into enzyme reactions. In
particular, combined quantum mechanics/molecular mechanics (QM/MM) methods
are increasingly important in this growing field of computational enzymology.2
Recent years have seen a large and continuing increase in the computational analysis
of enzyme mechanisms. In the early— to mid-1990s, the number of computational
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studies of enzymic reactions was relatively small.2~ Today, the number of compu-
tational studies of enzyme mechanisms is so large that it is practically impossible
to cover the majority—even of just recently published studies—in a single review.
There has also been a significant increase in the sophistication and reliability of
these studies.

In addition to identifying probable chemical mechanisms, modelling can also
analyse questions of enzyme specificity, predict the effects of mutations or
genetic variation, and assist with the derivation of structure—activity relationships.
Altogether, computer modelling is making an increasingly important practical
contribution to enzymology, and biochemistry more widely.3

The possible range of applications is huge. The large amount of data provided
by biological research in genomics, proteomics, glycomics, and structural biology
poses a great challenge. Modelling should aid in using this information to develop
new drugs, medical therapies, and biologically based technologies (e.g. in nanotech-
nology). One exciting, developing area is computational protein design,2? which
promises a route to new catalysts, and to components for biologically inspired
nanotechnology and molecular medicine. Computer modelling is increasingly
important for the interpretation of experimental data from the range of sophisticated
physical techniques that are being applied to the study of biological systems.

2. AIMS IN MODELLING ENZYME REACTIONS

Experimental data, particularly protein structures, usually form the essential starting
point for modelling an enzyme-catalysed reaction. Using structural data (usually a
protein structure from X-ray crystallography, although in some cases a homology
model could be sufficiently reliable), modelling can investigate mechanistic and
other questions that are difficult to answer by experiment alone.!

A first, vital step in studying an enzymic reaction is to establish its chemical
mechanism. This requires identifying the roles of catalytic residues, which are often
not obvious (indeed even exactly which residues are involved may not be certain).
One very important advantage of modelling is that it can analyse transition states
directly. Transition states are obviously central to questions of chemical reactivity
and catalysis in enzymes: they cannot be studied directly experimentally because
of their vanishingly short lifetimes.

Next, to understand a catalytic mechanism, any specific interactions that stabilize
transition states or intermediates in the reaction must also be identified and analysed.
Interactions of this type are often not apparent from experimental structures. In
addition to providing detailed, atomic-level analysis of the reactive processes in
an enzyme, identifying interactions of this type may help in the design of ligands.
Many enzymes show very high apparent binding affinities for transition states
and intermediates, and therefore, such interactions may offer potentially enhanced
affinity if they can be exploited in designed ligands; for example, in the design of
pharmaceutical lead compounds.
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Modelling can pinpoint functional groups and analyse catalytic interactions. In
several enzymes, catalytic interactions have been identified via calculation. For
example, in the flavin-dependent monooxygenases, para-hydroxybenzoate hydrox-
ylase and phenol hydroxylase, a conserved proline residue was found from QM/MM
modelling, which specifically stabilizes the transition state for aromatic hydroxy-
lation, 1213

Among the many challenges presented by enzymes to the modeller, is the fact
that proteins have complex dynamics: as molecular dynamics simulations (with
empirical ‘molecular mechanics’ potential functions) and spectroscopic experiments
have shown, proteins and other biological macromolecules undergo a wide variety
of complex internal motions, some of which are vital to their function.i Many
enzymes also undergo large changes in conformation as part of their reaction
cycles.t2 The function of these conformational changes, and their relationship to
the chemical steps in an enzymic reaction, should be examined.

There has been much recent debate about the possible contribution of protein
dynamics to enzyme catalysis, but simulations indicate that the direct effect of
protein dynamics in determining the chemical reaction rates of enzymes is generally
relatively small.112 It is nevertheless important, in general, to consider the effects
of protein conformational fluctuations and variations on enzyme reactions; that
is, where possible, to investigate a representative sample of conformations (which
could, for example, be generated from molecular dynamics or Monte Carlo simula-
tions). In many enzyme reactions involving hydrogen transfer, quantum effects such
as nuclear tunnelling are also important.122

It is important to emphasize that, in order to understand why an enzyme is
an effective catalyst, (i.e. to understand why the reaction in the enzyme is faster
than the uncatalysed reaction), the enzymic reaction and its equivalent reaction in
solutions (the ‘reference reaction’) should be compared. However, the appropriate
reference reaction for comparison may not be obvious for all enzymes.

For practical applications, the motivation in modelling an enzymic reaction may
be to predict the effects of a mutation—designed or natural—on activity, or perhaps
in altering or broadening the specificity of an enzyme for alternative substrates.
Overall, it is clear that modelling the mechanisms of enzyme-catalysed reactions,
and understanding enzyme specificity and catalysis, presents many different levels
of complexity. To investigate different types of questions in this area, different
modelling or simulation approaches may be more appropriate, depending on the
issue of interest.

3. METHODS FOR MODELLING ENZYME-CATALYSED
REACTION MECHANISMS

Perhaps the most obvious challenge in investigating enzyme reactions by compu-
tational modelling is posed by the very large size of enzymes, exacerbated by
the need to include at least a representative part of their environment; that is, the
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surrounding solvent, perhaps membrane or other proteins, cofactors or DNA which
may be bound to the enzyme.

Standard ‘molecular mechanics’ (MM) force fields have been developed that
provide a good description of protein structure and dynamics,2 but they cannot
be used to model chemical reactions. Molecular dynamics simulations are very
important in simulations of protein folding and unfolding,22 an area in which
they complement experiments and aid in interpretation of experimental data.2
Molecular dynamics simulations are also important in drug design applications, 2
and particularly in studies of protein conformational changes,22¢ simulations of
the structure and function of ion channels and other membrane proteins,z—7’2—9 and
in studies of biological macromolecular assemblies such as F-1-ATPase.3

The first protein molecular dynamics simulation was carried out almost thirty
years ago, on bovine pancreatic trypsin inhibitor (BPTI), in the gas phase.3!
Since that pioneering early work, a number of empirical molecular mechanics
force fields have been developed for proteins, nucleic acids, lipids and other
biological molecules. It is important to distinguish between programs used for
biomolecular simulation, and the force fields that have been developed for them.
Several good quality parameter sets have been developed, and may be applied
with several different programs. Among the most widely-used computer programs
for biological molecular dynamics simulations are AMBER,2 CHARMM,3
GROMOS, % NAMD,2? and TINKER.2¢ Several other molecular dynamics simula-
tions packages are available, including commercial and academic programs.

A force field is made up of the parameters and the energy function used. Current
protein force fields use similar, simple potential energy functions to allow large
systems to be simulated over multinanosecond timescales. Bonds and valence
angles are represented by harmonic terms. Electrostatic interactions are repre-
sented by invariant atomic point partial charges. Dispersion and exchange repulsion
interactions are represented by a Lennard-Jones energy function (typically of the
12-6 variety). The simple molecular mechanics representation is obviously limited
in many important respects. For example, the simple model including atomic
point change model cannot capture the full electrostatic properties (e.g. multipole
moments) of a molecule. Also, changes in electronic polarization are not included:
the atomic charges do not change in response to changes in the molecular confor-
mation or its environment. Kim et al. have analysed the effects of solvent and
protein polarizability in simulations of bovine pancreatic trypsin inhibitor in explicit
water.2® The effects were found to be similar in relatively non-polar parts of the
protein, but significant where relatively strong electrostatic fields occur in the
protein (near charged amino acid residues).

The simple harmonic terms used to represent the energy of bond stretching in
typical protein molecular mechanics force fields cannot model the making and
breaking of chemical bonds. Also, molecular mechanics parameters are usually
developed based on the properties of stable molecules, and so might not be appli-
cable to transition states and intermediates. Molecular mechanics functions and
parameters can be developed specifically for reactions, an approach that has been
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applied to many organic reactions in solution.22 However, the parameters are
generally applicable only to a specific reaction, meaning that laborious reparam-
eterization is required in every case. The form of the potential function may be
significantly limited; for example, electronic polarization may not be included.

Several reviews of protein force fields have been published recently. 24! All-
atom force fields include all atoms, while united-atom force fields treat only heavy
(non-hydrogen) atoms and polar hydrogen atoms explicitly, including non-polar
hydrogen atoms only implicitly, as part of the carbon atom to which they are
bonded. For proteins, OPLS/AA,%24 CHARMM?22,# and AMBER (PARM99)
3243 are among the most popular all-atom force fields. Modern protein MM force
fields show comparable results in molecular dynamics simulations.2¢ Consistent
force fields have also been developed for other types of biological macromolecules
(for example, lipids¥ and nucleic acids#32). Polysaccharides present a particular
challenge, because of their structural and conformational complexity, and the diffi-
culty of balancing inter— and intramolecular interactions.22 A QM/MM approach,
treating the sugar by QM, may be preferable in some cases.2 Standard semi-
empirical molecular orbital quantum chemical methods such as AM1 and PM3 do
not treat carbohydrate conformations well, but reparameterization can improve this
situation (for example, the PM3CARB-1 model).2

Important united-atom protein force fields include GROMOS87 and 96,3436
CHARMM PARAMI19,2 OPLS/UA (united-atom),2 and the original AMBER
force field.2 United-atom force fields were developed to reduce the computer time
required for molecular dynamics simulations by reducing the number of atoms. They
are still important today, in studies using either explicit or implicit solvation models.
They are particularly widely used in studies of protein folding, often employing
a continuum solvation description to reduce computation demands in these long
timescale simulations, by avoiding the need to include explicit water molecules.
Several implicit solvent models have been developed for use with the CHARMM
PARAMI19 force field, including EEF1 (effective energy function),2 ACE (analytic
continuum electrostatics),2 models based on the Generalized Born approach,g’ﬁ
and other fast implicit solvation models for molecular dynamics simulations.&
Assessment of the performance (both accuracy and efficiency) of implicit solvent
models (e.g. by comparison with explicit solvent simulations) is a highly active
area of research.

Most biomolecular molecular mechanics force fields have been developed with
simple point charge models of water, in particular the TIP3P water model,% and
variants thereof. Electronic polarization is included only in an approximate, gross
way in models such as TIP3P; for example, the dipole moment of such models is
higher than that observed in the gas phase, thus including the effects of polarization
in the condensed phase. Similarly, as mentioned above, protein MM force fields
only include electronic polarization in an average, and invariant, way. Polarizable
force fields for biological molecules are the subject of much current research
and development effort.£2Z The next generation of protein MM force fields will
probably include electronic polarization explicitly. Other improvements to protein
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MM force fields include the use of ab initio quantum chemical results to improve
the potential energy surface for peptide backbone dihedral angle rotation. 2228

Quantum chemical methods aim to treat the fundamental quantum mechanics
of electronic structure, and so can be used to model chemical reactions. Such
quantum chemical methods are more flexible and more generally applicable than
molecular mechanics methods, and so are often preferable and can be easier to
apply. The major problem with electronic structure calculations on enzymes is
presented by the very large computational resources required, which significantly
limits the size of the system that can be treated. To overcome this problem, small
models of enzyme active sites can be studied in isolation (and perhaps with an
approximate model of solvation). Alternatively, a quantum chemical treatment of
the enzyme active site can be combined with a molecular mechanics description of
the protein and solvent environment: the QM/MM approach. Both will be described
below.

3.1. Quantum Chemical Approaches to Modelling Enzyme Reactions:
Cluster (or Supermolecule) Approaches

The active site of an enzyme is a relatively small region, containing the catalytic
residues, substrate(s), and any cofactors. The substrate(s) are typically bound at the
active site by multiple weak interactions, such as hydrogen bonds, electrostatic and
van der Waals interactions. By focusing on the few key groups, quantum chemical
modelling is possible. This is sometimes called the ‘supermolecule’ approach. For
modelling reactions, quantum chemical techniques (e.g. ab initio molecular orbital
or density functional theory calculations) can be used routinely to study non-
periodic, molecular systems including tens of atoms. ‘Cluster’ models of around
this size can represent essential features of enzyme reactions, and can identify
likely mechanisms. Small molecules represent important functional groups (e.g. key
amino acid side-chains involved in catalysis or binding the substrate, or cofactors,
and so on), with their positions typically taken from a representative X-ray crystal
structure of an enzyme complex. This approach has been particularly useful for
metalloenzymes, where all the important chemical steps may take place at one
metal centre (or a small number of metal ions bound at one site), and the metal
also restrains its ligands, limiting the requirement for restraints to maintain the
correct active site structure in calculations. Reliable, semi-quantitatively accurate
calculations are practical using methods based on density functional theory—such
as the widely used B3LYP hybrid functional—which give good results for many
organometallic reactions. Some recent applications of calculations of this type are
outlined below. The extensive work of Siegbahn et al.”Z on many metalloenzymes
demonstrates the insight that such calculations can give for enzyme mechanisms. It
is possible, for example, to discriminate between alternative proposed mechanisms:
a mechanism can be excluded if the calculated barriers are significantly higher than
the experimentally derived activation energy.
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A small model might not include all the important functional groups. However,
a larger model is not always a better model, as it may introduce greater conforma-
tional complexity: structural changes away from the active site might affect reaction
energies in unrealistic ways. Including unshielded charged groups could also have
unrealistically large effects on reaction energies. Environmental effects can be
included approximately through continuum solvation models, although these cannot
completely represent the heterogeneous electrostatic environment in a protein.

Approximate electronic structure methods (e.g. the semi-empirical molecular
orbital techniques AM1 and PM3) can be applied to larger molecular systems
(of the order of hundreds of atoms). However, these approximate methods are
inaccurate for many systems (giving very large errors in some calculated energies
of reaction), and often cannot be applied straightforwardly to some types of
system (e.g. many transition metals). Techniques such as ‘linear-scaling’ methods
allow semi-empirical electronic structure calculations on whole proteins. 228
Similarly, the scaling properties of high-level quantum chemical methods are being
improved to permit applications to larger molecular systems. Increasingly important
in biomolecular simulations® is the ab initio molecular dynamics technique,
first proposed by Car and Parrinello around 20 years ago,%28 which combines
molecular dynamics simulation and density functional theory. The direct appli-
cation of electronic structure allows the treatment of chemical reactions, and
includes electronic polarization effects. The major practical limitation is that ab
initio molecular dynamics simulations are extremely computationally demanding,
so the sizes of the systems that can be simulated, and the timescale of feasible
dynamics simulations, are relatively limited. For this reason, combined QM/MM
techniques are attractive for ab initio molecular dynamics simulations. An example
is a scheme for Car-Parrinello QM/MM molecular dynamics simulations with the
CPMD and EGO programs.& With the QM/MM approach, Car-Parrinello ab initio
molecular dynamics simulations of large systems can be performed, which explicitly
include the steric and electrostatic effects of the protein and solvent.

3.2. Empirical Valence Bond Methods

In the empirical valence bond method, resonance structures (e.g. ionic and covalent
resonance forms) are chosen to represent the reaction, with the energy of each
resonance form given by a simple empirical force field (with realistic treatment
of stretching important bonds, for example).8 The potential energy is given by
solving the secular equation for the resonance forms. The Hamiltonian is calibrated
to reproduce experimental—or alternatively ab initio quantum chemical—data for
a given solution reaction.®¢ The protein and solution are treated by an empirical
force field. The free energy of activation for the reaction in solution, and in the
enzyme, can be calculated using free energy perturbation simulations.8Z As in any
valence bond representation, it is essential that the chosen valence bond forms
should represent all the resonance forms that are important in the reaction. Recent
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applications include comparison of alternative nucleotide insertion mechanisms for
T7 DNA polymerase,®® and the reaction mechanism of human aldose reductase.®

3.3. Combined Quantum Mechanics/Molecular Mechanics (QM/MM)
Methods

Enzyme-—substrate complexes are very large, containing thousands of atoms, and
are currently beyond even semi-empirical quantum chemical methods for modelling
reactions. For modelling a reaction, it is necessary to optimize many important
points (such as transition state structures), and preferably entire reaction pathways.
To generate a representative collection of molecular structures, extensive conforma-
tional sampling may be needed: a single structure may not be truly representative.2
These are significant challenges for large molecules. It is important also to treat
the environment of the enzyme (e.g. aqueous solution, concentrated solutions, in
membranes, or in complexes with other proteins or nucleic acid). To calculate free
energy profiles (potentials of mean force),2! a simulation method must be able to
calculate molecular dynamics trajectories of at least many picoseconds. Combined
quantum mechanics/molecular mechanics (QM/MM) methods are increasingly able
to meet these challenges.222 QM/MM techniques allow the study of large models,
and, with low levels of QM theory, molecular simulations are feasible.2? As well
as activation free energies, quantum effects such as tunnelling and zero-point
corrections can be calculated.2! Transition state structures can also be optimized
with QM/MM methods. 222

The first QM/MM study of an enzyme-catalysed reaction was the seminal study of
the reaction mechanism of hen egg-white lysozyme by Warshel and Levitt in 1976.2
In recent years, the use—and sophistication—of QM/MM methods has grown
significantly. In the QM/MM approach, a small part of the system is treated quantum
mechanically; that is, by an electronic structure method, for example, at the ab initio
or semi-empirical molecular orbital, or density functional theory QM level. This
allows the bond-breaking and making, and electronic rearrangement, that is involved
in a chemical reaction, to be modelled. For an enzymic reaction mechanism, the QM
region would typically be the enzyme active site, including the reacting groups of
the enzyme, substrate, and any co-factors. The large non-reactive part is described
more simply by empirical molecular mechanics. The combination of the flexibility
of a QM electronic structure method with the efficiency of a molecular mechanics
force field permits the modelling of reactions in large systems. Molecular mechanics
methods treat protein structure and interactions well, as described above. Different
ways of coupling the QM and MM regions are possible. For application to enzymes,
including interactions between the QM and MM regions is probably important.

QM/MM methods have proved their value for enzyme reactions in differen-
tiating between alternative proposed mechanisms, and in analysing contributions
to catalysis. A current example is the analysis of the contribution of confor-
mational effects and transition state stabilization in the reaction catalysed by
the enzyme chorismate mutase.22 QM/MM calculations can be performed with
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ab initio or semi-empirical molecular orbital, density functional, or
approximate density functional (e.g. self-consistent charge density functional tight-
binding (SCC-DFTB)) levels of QM electronic structure theory. QM/MM calcu-
lations at higher QM levels (e.g. ab initio or density functional level QM)
are required for some systems, but can be very demanding of computational
resources.

The most straightforward type of QM/MM coupling is a simple subtractive
model (sometimes denoted as mechanical embedding), in which the electrostatic
interaction between the QM and MM regions is treated by including MM atomic
point charges for the QM atoms. If these charges do not change in response to
the influence of their environment, then electronic polarization is not included.
Enzymes are polar and heterogeneous, and so including polarization of the QM
region by its MM environment is probably important in modelling an enzymic
reaction. Most QM/MM studies of enzymic reactions have included polarization
of the QM system by the MM system, by directly including the charges of the
MM group in the QM calculation. In this way, the electronic structure calculation
includes the effects of the MM atomic charge. The partial atomic charges of the MM
atoms are included in the Hamiltonian for the QM region (through the one-electron
integrals). No electrons are present on the MM atoms, and therefore it is necessary
to include some representation of QM/MM dispersion and exchange repulsion inter-
actions. Typically, MM (classical) van der Waals interactions (e.g. Lennard-Jones
functions, as described above) between QM and MM atoms are included. MM van
der Waals radii must therefore be chosen for the QM atoms. A limitation of this
approach is that the same van der Waals parameters are used for the QM atoms
throughout a simulation: in modelling a chemical reaction, the chemical nature of
the groups involved (treated by QM) may change, altering their interactions, and so
the use of unchanging MM parameters could be inappropriate and lead to inaccu-
racies. Riccardi et al. have recently tested the effects of van der Waals interactions
in QM/MM simulations.X2 Condensed phase thermodynamic quantities (e.g. the
calculated reduction potential and potential of mean force) were found not to be
very sensitive to the van der Waals parameters used. This group recommended that
work to improve the reliability of QM/MM methods for condensed phase properties
should focus on other factors, such as the treatment of long-range electrostatic
interactions.

Often, standard MM van der Waals (Lennard-Jones) parameters optimized for
similar MM groups are used for QM atoms in QM/MM calculations. This is
convenient, but it is important to test that these van der Waals parameters provide
a reliable description of QM/MM interactions. Where necessary, the (MM) van der
Waals parameters for the QM atoms can be optimized to reproduce experimental
or high level ab initio results (e.g. interaction energies and geometries) for small
molecular complexes. Van der Waals terms are important in differentiating MM
atom types in their interactions with the QM system; that is, they are important
in differentiating between MM atoms of the same charge (e.g. halide ions), which
would otherwise be indistinguishable to the QM system. In general, the van der
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Waals terms are important at close range, and play a determining role for QM/MM
interaction energies and geometries.

The treatment of QM/MM electrostatic interactions is not as straightforward
when semi-empirical QM methods are used, because semi-empirical molecular
orbital methods such as AMI1 and PM3 include only valence electrons directly.
Core electrons are treated together with the nucleus as an atomic ‘core’. In semi-
empirical QM/MM methods (such as the AM1/CHARMM method developed by
Field et al.122), QM/MM electrostatic interactions are calculated by treating the
MM atoms exactly as if they where semi-empirical atomic cores.

Polarization of the MM environment by the QM region is usually not included,
because MM protein force fields do not as yet allow for polarization, or indeed
any changes in atomic charges. QM/MM methods which include polarization of
the MM system have been developed for small systems.1% QM/MM calculations
should help in developing polarizable MM force fields; for example, in investigating
polarization effects for small (QM) regions in large biomolecules.1¥

The total energy of a system in a QM/MM calculation can be written as the sum
of four contributions:

E,;p = Equ+ Exv + Equiymv + Eoundary

The energy of the QM region, Eqy, is calculated as in an electronic structure
calculation. The energy of the MM region, Ey;,, is given by a molecular mechanics
force field. The boundary energy, Eg,ynqary» arises (as in MM simulations) because
the simulation system can only include a finite number of atoms, so terms to
reproduce the effects of the bulk must be included. Typically, harmonic restraints are
applied for the atoms towards the edge of the simulation system. Atoms still more
distant from the centre of the simulation system under investigation may be held
fixed. Molecular dynamics simulations can be carried out for truncated systems by
the stochastic boundary molecular dynamics method. %1% To include the effects of
dielectric screening, it may also be necessary to reduce charges at the outer boundary
of the simulation system, to avoid overestimating the effects of charged groups on
the reaction at the active site.X2 The QM/MM interaction energy, Eqm/mms 18 made
up of terms due to electrostatic interactions and van der Waals interactions, and any
bonded interaction terms between the QM and MM regions. MM bonding terms
(energies of bond stretching, angle bending, torsion angle rotation, and so on) are
typically included for any QM/MM interactions that involve at least one MM atom.
QM/MM electrostatic interactions are usually included in the electronic structure
calculations; that is, in an ab initio QM/MM calculation. The MM atomic charges
are typically included directly through the one-electron integrals as outlined above.
The nuclei of the atoms in the QM system also interact with the MM atomic partial
charges. QM/MM van der Waals interactions are usually calculated by a molecular
mechanics (e.g. Lennard-Jones) energy function, as described above.

In a QM/MM calculation, the whole enzyme system is typically truncated,
in order to reduce the computational effort required: for example, only a part
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of the whole protein might be included in the simulation. This might be an
approximately spherical region around the active site. Ideally, the effects of
longer range electrostatic interactions in the protein should be included explicitly.
The generalized solvent boundary potential (GSBP) method! has been imple-
mented for reliable treatment of electrostatics for spherical boundary conditions
in QM/MM simulations of truncated macromolecules (at the self-consistent-charge
density functional tight-binding QM/MM level).12 QM/MM simulations using
the generalized solvent boundary potential method have been found to be more
consistent with available experimental data than standard stochastic boundary
molecular dynamics simulations, which can produce artefacts. The use of truncation
schemes for QM/MM electrostatic interactions can lead to problems, particularly
where extensive conformational sampling is performed. For QM/MM simula-
tions of periodic systems (periodic boundary conditions are now typical in MM
molecular dynamics simulations), Nam et al. have developed an efficient linear-
scaling Ewald method for long-range QM/MM electrostatic interactions in QM/MM

calculations.13

3.3.1. OM/MM partitioning methods and schemes

For the majority of enzyme-catalysed reactions, covalently bonded parts of the
system must be separated into QM and MM regions. There has been considerable
research into methods for QM/MM partitioning of covalently bonded systems.
Important methods include the local self-consistent field (LSCF) method, 1413 and
the generalized hybrid orbital (GHO) technique.l® Alternatively a QM atom (or
QM pseudo-atom) can be added to allow a bond at the QM/MM frontier; for
example, the link atom method or the connection atom method.

The local self-consistent field (LSCF) methodX? has been used at the semi-
empirical 18 and ab initiol levels. The LSCF approach avoids the need for dummy
atoms and provides a reasonable description of the chemical properties of the frontier
bond. The generalized hybrid orbital (GHO) method for QM/MM calculations uses
hybrid orbitals as basis functions on the frontier atom of the MM fragment. This
method removes the need for extensive specific parameterization, which is necessary
with the LSCF method. A key aspect of the GHO method is that the parameters
for the boundary atom are transferable. Garcia-Viloca and Gao have developed the
GHO approach to combine the semi-empirical PM3 method with the CHARMM
MM force field.!2 These workers have developed parameters—consistent with
the PM3 method—for a carbon boundary atom. They found the combined GHO-
PM3/CHARMM model to perform well on molecular structures and proton affinities
for a number of organic molecules. More recently, the GHO approach has been
developed at the ab initio,!22 self-consistent-charge density functional tight-binding
(SCC-DFTB),12! and density functionali22 QM levels.

Alternatively, to satisfy the valence of the frontier atom in the QM system, the
approach of adding a (QM) ‘dummy junction atom’ or ‘link atom’ can be used.12
Usually, the link atom is a hydrogen atom,12 but other atom types have also been
used. The link atom approach introduces additional, artificial, degrees of freedom
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associated with the link atom. Also, clearly a C—H bond is not chemically exactly
equivalent to a C—C covalent bond. However, the simplicity of the link atom
method has led to its widespread use in QM/MM modelling. The results of QM/MM
calculations can be highly dependent on the positioning of the link atom, and can
also depend on which MM atoms are excluded from the classical electrostatic field
that interacts with the QM region. However, Reuter et al. found the LSCF and
link atom approaches to give similar results for a variety of molecular properties
in semi-empirical QM/MM calculations.2 It has been recommended that a link
atom should interact with all MM atoms except for those closest to the QM atom to
which the link atom is bonded. Given a reasonable choice of the boundary between
QM and MM regions (e.g. choosing the QM/MM boundary to lie across a carbon—
carbon single bond, distant from chemical changes and also from highly charged
MM atoms), the link atom method can give good results.

Another approach to treating the boundary between covalently bonded QM and
MM systems is the connection atom method,2212¢ in which, rather than a link atom,
a monovalent pseudo-atom is used. This ‘connection atom’ is parameterized to give
the correct behaviour of the partitioned covalent bond, and has been implemented at
semi-empirical molecular orbital (AM1 and PM3)!2 and density functional theory
126 Jevels of QM theory. It has been suggested that the connection atom approach
is more accurate than the standard link atom approach.12

Brooks et al. have developed a Gaussian delocalization method for molecular
mechanical charges in QM/MM calculations,12 to include delocalization of electron
density that should be present for atoms in the MM region. This approach could
have the benefit that the MM host atom charge may not have to be excluded from
the QM calculation, as would be necessary when treating it simply as a point charge.
This group have also proposed a ‘double link atom’ method to overcome some of
the problems of electrostatic interactions that can arise with the single link atom
method.

Cui et al. have tested a number of different QM/MM partitioning methods
based on the link atom approach, for enzymic reactions, with the SCC-DFTB QM
method.128 These workers have also developed a new QM/MM partitioning method,
described as the divided frontier charge approach. In this method, the partial charge
associated with the MM atom bonded to the QM atom is evenly distributed to
the other MM atoms in the same molecular mechanical group. QM/MM-calculated
proton affinities and deprotonation energies can be highly sensitive to the particular
link atom scheme employed, which can lead to absolute errors of the order of
15-20kcal mol™' compared to pure QM calculations, though more sophisticated
link atom schemes perform better. Activation barriers and reaction energies for
proton transfer reactions (in the gas phase and in enzymes) were found to be
relatively insensitive to the choice of link atom scheme (e.g. to within a range
of 2—4kcal mol™") because of cancellation of errors. It is encouraging that the
effect of using different link atom schemes in QM/MM simulations was found
to be relatively small for chemical reactions in which the total charge does not
change.
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4. EXAMPLES OF RECENT MODELLING STUDIES OF ENZYMIC
REACTIONS

To illustrate the practical contribution that modelling can make to understanding
enzyme-catalysed reactions (and to demonstrate the capabilities of modelling
methods), a few recent applications are outlined below. This is an evolving field,
not yet capable of quantitative, exact predictions of reaction rates or the effects of
mutation. For this reason, it is vital to try to connect modelling with experimental
investigations of enzymes. This can help to validate predictions from modelling. For
example, it can be useful to compare activation barriers for a series of alternative
substrates with the activation energies derived from experimental rates. Demon-
stration of a correlation between calculated and experimental barriers can validate
mechanistic calculations as being truly predictive.12

Enzyme structures from experiment are the usual starting point for modelling
enzymic reactions. Most important are protein structures from X-ray crystallog-
raphy, which has produced a large and ever-growing number of structures of
biological macromolecules. The RCSB Protein Data Bank (PDB) is the standard
source for three-dimensional structures of proteins and nucleic acids.!2® The
resolution of a crystallographic protein structure is one indication of its precision,
ranging from low resolution where perhaps just the overall shape of the protein may
be revealed, to higher resolution (e.g. below 2A resolution) where most heavy atom
positions can be determined. However, even in high resolution structures, there
can be considerable uncertainty due to the dynamic nature of proteins, which can
give rise to conformational variability. The molecular model of a protein structure
from crystallography represents an average over all the molecules in the crystal
and over the time course of the experiment. This averaging is manifested in the
presence of alternative conformations for amino acid side-chains in many protein
crystal structures. Similarly, some parts of the structure (such as surface loops or
terminal regions of the protein) may have no well-defined conformation or position,
and so might not be resolved by crystallography. Such factors should be carefully
considered when building a molecular model for computational studies. Another
important factor is the selection of the correct protonation states for ionizable groups
in the protein.

4.1. Chorismate Mutase: Analysing Fundamental Principles of Enzyme
Catalysis

Recent investigations of the enzyme chorismate mutase show how modelling can
contribute to fundamental debates in enzymology, such as analysing the importance
of transition state stabilization in catalysis, and alternative proposals to explain
enzyme catalytic proficiency.

Chorismate mutase catalyses the Claisen rearrangement of chorismate to form
prephenate. It is an excellent system for analysing catalysis because the same reaction
occurs in solution with the same reaction mechanism: no covalent catalysis by the
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enzyme is involved. The activation free energy (A*G = 15.4kcal mol™', A*H =
12.7kcal mol™") found experimentally for chorismate mutase from Bacillus subtilis
enzyme is significantly lower than that for the uncatalysed reaction in aqueous
solution (A*G = 24.5kcal mol™', A*H =20.7kcal mol™').22! This equates to a rate
acceleration of 10° by the enzyme (AA*G = 9.1kcal mol™"). QM/MM calculations
(at the approximate semi-empirical AM1/CHARMM or ab initio QM level) have
shown stabilization of the transition state by the enzyme.2:132-13¢ Similar studies
have also shown that the conformation of chorismate bound to the enzyme is signif-
icantly different from that in solution, and is similar to the transition state.28-131-140
It has recently been controversially argued that transition state stabilization is not
involved in chorismate mutase catalysis: Bruice et al. have proposed that catalysis
is almost entirely due to the selection of a reactive conformation, described as a
near-attack conformation (NAC).14.142 This proposal has changed over time, but
has been forcefully promoted by these workers as a potentially generally signif-
icant effect in enzyme catalysis, creating considerable debate. The NAC proposal
is similar to the hypothesis that enzymes function by distorting (or straining) their
substrates into reactive conformations. Essentially, the proposal is that by binding
a particular conformation, from which the reaction has a small barrier, very little
additional stabilization of the transition state is needed. The reactive conformation
is very improbable in solution, but is favoured in the enzyme. Estimates of the
free energy cost of NAC formation (e.g. from MM molecular dynamics simula-
tions—with or without restraints on the substrate) led to the proposal that catalysis
in chorismate mutase is due entirely to its ability to maintain high populations
of NACs.

The exact free energy cost of forming a NAC—and the catalytic benefit associated
with forming such a conformation—will depend on the definition used. There is
no unique or general definition of a NAC: several different proposals have been
put forward. The lack of a general or rigorous definition makes this hypothesis
weak, subjective, and unsatisfactory. There is a danger of the definition of a
NAC being fitted to the catalytic effect it is designed to explain, making it a
circular definition. Bruice et al. have calculated NAC populations from unrestrained
molecular dynamics simulations (e.g. in solution and in the enzyme). Unfortunately,
high energy conformations are sampled too infrequently (even in multinanosecond
dynamics simulations), producing an unreliable, overestimated free energy cost
for their formation, and so an overestimation of the catalytic benefit of NAC
formation. Thermodynamic integration molecular dynamics simulations have also
been performed to try to estimate the free energy cost of NAC formation in different
environments,*3 but these used a different definition of a NAC. It is hard to judge
these simulations, as the published technical details are limited. There is also a
concern that the accuracy of the methods (particularly molecular mechanics) used
by Bruice et al. have not been fully tested for their treatment of conformational
energies and interactions.

It is nevertheless certainly useful and interesting to study the catalytic benefit of
forming a potentially more reactive conformation of the substrate. Many modelling
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studies, dating back to the first QM/MM study of the enzyme,’¥2 have shown
the structure of chorismate bound to the enzyme to be significantly altered from
its conformation in solution or in the gas phase. The energetic cost of forcing
the conformation of chorismate (in solution) into the more restricted conformation
found in the enzyme has been calculated by free energy perturbation molecular
dynamics simulations as 3.8—4.6kcal mol™', or 5kcal mol™' by semi-empirical
QM/MM (AM1/CHARMM) or empirical valence bond methods, respectively. There
is good agreement!3*28 between these results, obtained with different theoretical
methods. These findings indicate a catalytic contribution of the conformational
effect of only around 40-55 per cent of the total AA*G between enzyme and
solvent.

These results suggest that catalysis is not purely due to conformational effects.
In agreement with earlier QM/MM findings for the enzyme-catalysed reaction,
they imply that in the enzyme, the transition state is significantly stabilized
relative to the bound substrate. These earlier studies generally employed relatively
low level QM/MM methods, however, leading to questioning of their accuracy.
The central issue of whether the transition state is stabilized relative to the
bound substrate has recently been examined with high-level QM/MM methods
(B3LYP/6-31G(d)/CHARMM).L# Sixteen different adiabatic reaction pathways
were calculated using a combination of the Jaguar®2 and Tinker3 programs
for QM/MM calculations. #¢ These pathways were taken from structures derived
from semi-empirical QM/MM (AM1/CHARMM and PM3/CHARMM) molecular
dynamics simulations of the transition state.

The substrate was chosen as the QM region, and treated at the hybrid density
functional B3LYP/6-31G(d) level of theory, which treats this reaction well, 132
Similar results are obtained when some active site amino acid side-chains
(e.g. Glu78 and Arg90) are also included in the QM region. 42148 Electrostatic
interactions dominate at the active site of chorismate mutase, making a QM/MM
treatment of the active site interactions appropriate and reliable.12¢ The simulation
system was an approximately 25A radius sphere of protein and solvent, treated
with the CHARMM force field.% The outer 5A of the system was fixed, and all
other atoms were free to move. The reaction coordinate used was the difference
in length between the forming C—C and breaking C—-O bonds, which has been
shown to be appropriate for modelling the reaction.2243% Reaction pathways were
calculated by a series of geometry optimizations along the reaction coordinate,
with the reaction coordinate harmonically restrained. The average B3LYP/6-31G(d)
barrier over the sixteen pathways was 12.0kcal mol~' (with a standard deviation
of only 1.7kcal mol™"), in excellent agreement with the experimental activation
enthalpy (12.7kcal mol™"). The variation in the calculated energy barriers between
the different pathways (ranging from 9 to 15kcal mol™') was due almost entirely
to differences in the structure of protein environment. The average length of the
breaking C—O bond at the transition state was 2.02A, while the average length of
the forming C—C bond was 2.63A.
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To analyse catalysis, ideally energy profiles in the enzyme and in solution should
be compared. The barrier to reaction in solution, relative to the enzyme-bound
conformation, has been found to be comparable to that in the gas phase. 2136137
Therefore, for chorismate mutase, the reaction in the gas phase can be used as
a meaningful and convenient comparison. The difference between the QM/MM
energy (i.e. the energy in the enzyme) and the gas-phase (QM-only) energy shows
the stabilization of the reacting system by its (MM) protein environment. This stabi-
lization is large and negative throughout the reaction, due to favourable Coulombic
interactions between the di-anionic substrate and several positively-charged amino
acid side-chains in the active site. Significantly, the stabilization energy was found
to vary systematically along the reaction coordinate. For all the calculated paths, the
transition state was stabilized significantly more than the reactant. The product was
found to be destabilized (relative to the reactant) in most cases. The transition state
stabilization energy was found to correlate very well with the calculated barrier
height. This shows that the barrier to reaction in the enzyme is determined by the
amount of transition state stabilization, not the conformation of the substrate. The
calculated average stabilization of the transition state was 4.2kcal mol™" (relative
to the reactant; that is, differential transition state stabilization). This stabilization
is primarily due to specific electrostatic interactions at the active site.13213¢.137

Through the use of high-level QM/MM calculations, and by studying multiple
reaction pathways, this work provides a good estimate of transition state stabi-
lization by chorismate mutase.l* The average transition state stabilization#
(4.2kcal mol™") and the previously calculated cost of forming the bound confor-
mation in the enzyme, compared to solutiont3Z28 (3.8-Skcal mol™') add together
to give a value very close to the catalytic rate acceleration by chorismate mutase
as derived from experiment (AA*G = 9.1kcal mol™'). This suggests that confor-
mational effects and transition state stabilization (relative to the bound substrate)
contribute similar amounts to catalysis in this crucial model enzyme. The same
interactions are responsible for binding the substrate in the reactive conformation,
and for transition state stabilization. Chorismate mutase is therefore a good example
of an enzyme in which transition state stabilization is central to catalysis.

4.2. Cytochrome P450: Mechanism and Structure-Reactivity
Relationships

Cytochrome P450 enzymes are important in pharmaceutical research and devel-
opment, because of their roles in drug metabolism.12 They are a ubiquitous class
of haem enzymes, which act as monooxygenases in a wide variety of biological
reactions.

Structure—reactivity relationships could help in predicting biotransformations of
pharmaceuticals and other xenobiotics, and so help drug development.2

The catalytically active form of the enzyme for oxidation is believed to be a haem
oxo-iron(IV) porphyrin radical cation, called Compound I. The key step in substrate

oxidation involves hydrogen atom abstraction or C=C bond addition by the oxygen
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atom of the Compound I intermediate. Among the many reactions catalysed by
P450 enzymes are the hydroxylation of alkanes and aromatic compounds, and the
epoxidation of alkenes. Many of these reactions are potentially useful in synthetic
and other practical applications. Shaik ef al. have investigated the mechanism
of alkane hydroxylation by cytochrome P450, using density functional theory-
based quantum chemical and QM/MM modelling methods.12-132 For example, the
potential energy surface for the so-called ‘rebound’ mechanism (with methane as a
substrate) was calculated for two spin states, the high spin (HS) quartet state and
low spin (LS) doublet state. In this rebound mechanism, Compound I first abstracts
a hydrogen atom from the alkane, followed by recombination of the hydroxo-
radical on the iron with the alkyl radical, generating the ferric-alcohol complex.
Calculations were carried out on a model of Compound I, with SH™ used to represent
its cysteinate (SCys™) ligand. Although it itself is probably not a P450 substrate,
methane was used as a model alkane substrate. The B3LYP hybrid density functional
theory method was used, as it has been found to accurately predict energetics and
structures for many transition metal complexes, and particularly for bioinorganic
systems such as P450 Compound I. Shaik and co-workers have also studied P450
reaction mechanisms of ethane,3 such as epoxidation by Compound 1.13#:13 The
results showed the possibility of intermediates with significantly different lifetimes,
and different electronic configurations.

Quantum chemical calculations on small models can help in developing structure—
reactivity relationships, as recent research on aromatic hydroxylation by cytochrome
P450 has shown. In drug metabolism, hydroxylation of C—H bonds is a particularly
important class of reaction.12¢ This type of reaction can activate pro-drugs, or affect
the bioavailability of drugs. An important goal in pharmaceutical research is the
development of structure—activity relationships to predict conversions of drugs in
the body. Such relationships should allow the reliable prediction of the metabolism
and toxicology (ADME/TOX) properties of drugs. Previous work showed that
structure—activity relationships based only on substrate structures and properties
are of limited use. More detailed models are required, which take into account the
reaction mechanism and specificity of different cytochrome P450 isozymes.

An example of a development in this direction comes from modelling
investigations of the hydroxylation of simple aromatic compounds by P450
Compound 11213 The model used contained the porphyrin macrocycle ring
(without side-chains), with the cysteinate iron ligand represented by a methyl
mercaptide group (CH;S™). The calculations identified two different possible orien-
tations of the substrate approach for the addition of Compound I to benzene: ‘side
on’ and ‘face on’ (the second with a lower barrier). This had not previously been
observed. Both orientations may be involved in the reactions of different drugs in
different P450s. Analysis of spin and charge distributions showed that the transition
state for aromatic hydroxylation has mixed radical and cationic character. The
effects of substituents on the barrier for addition were also studied. This work
produced a new structure—reactivity relationship for substituted aromatics, which can
be used to predict barriers to aromatic hydroxylation for simple substituted aromatic
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compounds. This applied a two-parameter approach, combining simple empirical
radical and cationic electronic descriptors, based on the calculated properties of the
transition state.

The reactive properties of Compound I may be affected by the different protein
environments in different cytochrome P450 enzymes. Different P450 isozymes
exhibit very different hydroxylation preferences and substrate specificity. These
differences could potentially be caused by orientation or binding effects,’2 and
can also be affected by the intrinsic chemical reactivity of different positions in
the substrates. Genetic polymorphism may also have a significant effect, which can
affect drug metabolism.2 It has also been suggested that the electronic properties
of Compound I may be altered in specific and important ways by the protein
environment, and that this could be a determining factor in the reactivity and
specificity of cytochrome P450 enzymes. To investigate the effects of the protein
on the electronic properties of Compound I, QM/MM methods can be used. The
potential of QM/MM methods here has been highlighted by recent studies of the
bacterial P450,,,, enzyme, which have led to considerable debate about the nature
of factors behind the catalytic activity of the enzyme. 181162

The first QM/MM study of human cytochrome P450 enzymes (including
modelling of complexes with the drugs diclofenac and ibuprofen) has recently been
published.1¥ Compound I has three unpaired electrons: two on the Fe-O centre,
and one shared between the proximal cysteinyl sulfur atom and the porphyrin
ring. The electronic and geometric structure of Compound I was studied with
B3LYP/CHARMM QM/MM calculations. Three human P450s that are important
in drug metabolism (P450 2C9, 2B4, and 3B4) were studied. The results showed
that Compound I is remarkably similar in all the different P450 enzymes. The third
unpaired electron was found mostly on the porphyrin ring. This result was found
with little sensitivity to the density functional, the basis set, or the size of the QM
region used in the QM/MM calculations. Substrate complexes were also studied,
and it was found that the presence of drug molecules also has essentially no effect
on this result. Some variability in the calculated spin density on the cysteinyl sulfur
(from 30 to 47 per cent) was found, mostly due to details of the set up of the system;
for example, the choice of protein starting structure in QM/MM minimization.18
These conformational effects were found to be larger than the calculated differ-
ences between human P450s. These results indicate that the electronic properties of
Compound I in the different human P450s are not distinguishable, which implies
that observed differences in substrate selectivity are not caused by differences in
their electronic properties.

4.3. Other Recent Modelling Studies of Enzyme-Catalysed Reactions

To show the breadth and type of current modelling investigations of enzymic
reactions, some interesting and representative studies are briefly mentioned here.
For example, the mechanism of antibiotic breakdown by a 3-lactamase enzyme
has recently been investigated. B-lactamase enzymes are the most widespread
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cause of bacterial resistance against 3-lactam antibiotics. They are therefore a
serious and growing danger to the effectiveness of antibacterial chemotherapy,
and pose a major threat to human health. The reaction mechanism of a Class A
B-lactamase (with benzylpenicillin) has been investigated by QM/MM modelling.
Glul66 was identified as the base in both acylation and deacylation reactions in the
mechanism of breakdown of B-lactam antibiotics (such as penicillin) in the TEM1
B-lactamase enzyme, by QM/MM (AM1/CHARMM) modelling with high level
(B3LYP hybrid density functional) QM energy corrections.184-1¢ This QM/MM
approach has also been used to investigate the reaction mechanism of the enzyme
fatty acid amide hydrolase,l—67 which is central to endocannabinoid metabolism, and
a promising target in the treatment of disorders of the central and peripheral nervous
systems.

QM/MM modelling using variational transition state theory with the small
curvature approximation for tunnelling corrections has been used to investigate
the proton transfer step in the reaction of methylamine to formaldehyde, catalysed
by methylamine dehydrogenase. These variational transition state theory/small
curvature tunnelling methods (VTST/SCT) allow kinetic isotope effects (KIEs)
to be calculated for reactions in enzyme.2! Alhambra et al.l% have calculated
kinetic isotope effects by these VTST/SCT techniques in QM/MM studies of
methylamine dehydrogenase, using the PM3 method (with specific reaction param-
eters) combined with the CHARMM?22 MM force field.2 The classical activation
free energy (20.3kcal mol™') was reduced to 17.1kcal mol™" when the quantum
mechanical vibrational energy was included. Including quantum tunnelling contribu-
tions produced an effective (phenomological) activation energy of 14.6kcal mol ™',
which agrees well with the experimental value of 14.2kcal mol™'. The calcu-
lated hydrogen/deuterium primary KIE of 18.3 for the per-deuterated substrate
also agrees well with the experimental result (17.2). The VTST/SCT method
allows the separation of different contributions (e.g. of tunnelling). QM/MM
methods (PM3 with specific reaction parameters, combined with the AMBER
MM force field) and variational transition state theory combined with multi-
dimensional tunnelling in the small curvature approximation corrections have also
been applied separately to analyse proton transfer for two substrates (methy-
lamine and ethanolamine) in methylamine dehydrogenase.i® The calculated kinetic
isotope effects covered a wide range, but were reasonably close to the experimental
values. Two different structural configurations were found for the ethanolamine
substrate, giving rise to quite different kinetic behaviours, with different amounts of
tunnelling.

Bjelic and Aqvist have investigated the substrate binding mode and reaction
mechanism of a malaria protease with a novel active site, which is a target for
anti-malarial drug design, using a validated homology model.X2 The only amino
acid residue found to be directly involved in the enzyme-catalysed reaction was an
aspartate side-chain, with some stabilization by a histidine residue. The calculated
reaction rate (for a hexapeptide substrate derived from human haemoglobin) agreed
well with experimental kinetic data.
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Other interesting recent studies include the application of density functional
theory electronic structure methods to model the reaction mechanisms
of class III ribonucleotide reductase,’Z! naphthalene dioxygenase,Z2 and
4-hydroxyphenylpyruvate dioxygenase.lZ Semi-empirical QM/MM methods (at
the PM3/CHARMM level) have been applied to model 4-chlorobenzoyl-CoA
dehalogenase; in particular, the formation of the Meisenheimer intermediate.™
The isomerization of proline in cylcophilin (and mutants) has been studied using
SCC-DFTB/CHARMM QM/MM methods..2 QM/MM methods have also been
used to investigate the contribution of the protein backbone in the mechanism

in 4-oxalocrotonate tautomerase.lZ® Kinetic isotope effects have been calculated

with QM/MM methods for the enzymes chorismate mutase’Z and catechol

O-methyltransferase,.8 among others. For macrophomate synthase, the Diels-Alder
and the Michael-Aldol reaction mechanisms have been compared by QM/MM
Monte Carlo free energy perturbation simulations.!? Density functional theory
calculations and QM/MM molecular dynamics simulations have been used to
investigate a metallo B-lactamase.X® QM/MM modelling demonstrated substrate
autocatalysis in uracil DNA-glysosylase.X8 The free energy profile in chorismate
mutase has been calculated from multiple steered molecular dynamics simulations
with a density functional QM/MM technique.X8 The inhibition mechanisms of
neutrophil elastase by peptidyl alpha-ketoheterocyclic inhibitors have been studied
with QM/MM methods, highlighting the potential of QM/MM calculations in
structure-based drug design.8 Ab initio techniques have been used to investigate
the catalytic site of galactose oxidase and a designed biomimetic catalyst.& The
nature of the proton bottleneck in redox-coupled proton transfer in cytochrome c

oxidase has been investigated.182

5. CONCLUSIONS

Computer modelling and simulation are powerful and effective tools to inves-
tigate enzyme reaction mechanisms, specificity, and catalysis. A thriving field of
computational enzymology has recently emerged, and continues to grow. Enzymes
are complex and challenging systems to model, making care and detailed testing
essential. Applied with care, modelling techniques can provide uniquely detailed,
molecular-level analysis into the fundamental processes of enzyme catalysis, and
practical insight into important biochemical and biological problems. The impor-
tance and impact of modelling and simulation methods in this area will undoubtedly
continue to increase.
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Abstract:

Keywords:

Protein-protein recognition and complex formation are key issues in understanding
cellular functions. Therefore, having in mind that it is of extreme importance to detect
the functional sites in proteins interfaces, the present review focuses on computational
approaches used to calculate the binding free energy contributions of each of the interface
residues. Usually these methods do not allow the calculation of the contribution of each
residue for binding in the wild type complex, but instead the difference in binding free
energy between the wild type and a given residue. Although the first would be more
meaningful from a phenomenological point of view, the second is the only one that
is possible to measure experimentally. A number of quantitative models with different
levels of rigor and speed are available for determination of the relative binding energy
upon alanine mutation of residues in protein-protein interfaces. These algorithms can be
divided essentially in two types: (a) empirical functions or simple physical methods and
(b) fully atomistic methods

Computer simulations complement experimental analysis, and add molecular insight
to the macroscopic properties, by allowing the decomposing of the binding free energy
into contributions of the various energetic factors. The capacity of predicting protein-
protein associations is essential in computational chemistry because it establishes the
connecting bridge between structure and function of biomolecular systems, and it allows
the characterization of the energetics of molecular complexes
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1. INTRODUCTION

Proteins tendency to bind to one another and to different ligands, forming specific
stable complexes, is fundamental to all biological processes because protein-protein
interactions networks are the basis of most cellular functions.2™2 Hence, to under-
stand and to target protein-protein interactions is an important challenge because
it allows the design of new protein-protein interactions and the comprehensive
knowledge of the physical basis of affinity, it permits to engineer new functions
and adjust cellular behavior in a predictive manner, and it enables the under-
standing of molecular recognition.2~1¢ Molecular recognition has many practical
applications, which include the design of sensors or separation techniquesi8L2,
and the rational design of new therapeutic agents.! Most known drugs bind specifi-
cally to a disease-causing bio-molecule and inhibit its function.22~22 Therefore, the
prediction and design of ligands that can reversibly bind to pharmaceutical targets
is the key of structure-based drug design. Drug discovery is increasingly becoming
more systematic and rationalZ, and the ability to predict the binding affinity of
a candidate molecule without having to synthesize it will save a lot of time and
resources. 226

The recent increase of information from crystallographic structures, alanine-
scanning mutagenesis of protein-protein interfacial residues, and structural and
thermodynamic studiesZZ~3% have enabled the understanding of the structure and
chemistry involved in binding reactions.2}22 It has been discovered that a larger
value of the binding energy in a given complex is related only to several amino acids
at the protein-protein interface: the hot spots.33~ 2 These energetic determinants are
compact, centralized regions of residues crucial for protein association.242 Thus,
hot spots44 have been defined as those sites where alanine mutations cause
a significant increase in the binding free energy of at least 4.0 kcal/mol4?, even
though lower values are used for statistical analyses. The warm-spots are those with
binding free energy differences ranging from 2.0 to 4.0 kcal/mol, and the null-spots
are the residues with binding free energy differences lower than 2.0 kcal/mol. In
Figure it is represented a complex formed between an immunoglobulin and
a hen egg lysozyme highlighting the computational mutated residues with a vdW
representation.

As the experimental determination of hot spots is time consuming and costly,
an effort has been made in achieving accurate, predictive computational method-
ologies for alanine scanning mutagenesis, capable of reproducing the experimental
mutagenesis values. Therefore, it is important to accurately calculate the binding
free energies of known three-dimensional structures and the effect of mutations in
the corresponding affinities..2 Binding free energy determination by computational
alanine scanning mutagenesis methods allows a rational design of complexes of
high affinity and specificity,2Z as well as of small molecules that can mimic the
large interface that is typical of protein-protein complexes.3¢

Consequently, the capacity of predicting protein-protein associations is essential
in computational chemistry. It is a very useful link between structure and function
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Figure 6-1. Complex formed between an immunoglobulin and a hen egg lysozyme highlighting the
mutated residues with a vdW representation. The null-spots are represented in yellow (relative binding
energy < 2.0kcal/mol), the warm-spots in orange (relative binding energy between 2.0 and 4.0 kcal/mol),
and the hot spots in red (residues with a relative binding energy higher than 4.0 kcal/mol)

of biomolecular systems, and it allows the characterization of the energetics of
molecular complexes. 2248~ 8

2. COMPUTATIONAL CALCULATION OF THE RELATIVE
BINDING ENERGY

The theoretical prediction of free binding energy differences, and the understanding
of the physical foundations of affinity and specificity of complex interaction, prior
to experimental design are crucial in computational biochemistry.28& To apply
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a quantitative model of the binding affinity determination of a broad variety of
protein-protein interfaces complements experimental analysis, and adds molecular
insight to the macroscopic properties measured therein, 22062~ 68

In hot spot determination, it is sufficient to calculate a relative binding free energy
(the difference in binding free energy between different ligands that bind to the same
protein), and therefore the expensive calculation of the absolute binding free energy
can be avoided.£~Z Absolute binding free energies are more difficult to obtain
because they contain significant entropic contributions, which are not easy nor
simple to calculate.22%¢22 These entropic contributions are usually cancelled when
calculating relative free energies, as are a large number of inaccuracies resulting
from the theoretical molecular models, hamiltonians, and calculation protocols,
conferring to the relative free energies a much greater accuracy than to the absolute
free energies.

The difference in binding free energies between the wild type and the alanine
mutated complex is defined as:

AA(}binding = A(}bindingfmutam - A(}hindingfwildtype (6-1)
with the binding free energy described as:

AC}binding—molecule = Gcomplex - (Greceptor + Gligand) (6_2)

A huge number of methods with different levels of rigor and speed are accessible
to measure the relative binding energy, and therefore to identify the hot spots.
These algorithms of varied complexity, which have been employed to address
the binding energy between biological molecules, can be divided essentially in
two types. First, empirical functions or simple physical methods that use exper-
imentally calibrated knowledge-based simplified models to evaluate the binding
free energy. Second, versatile/universal fully atomistic methods that estimate the
free energy of association or changes in the binding free energies, as a result of
mutating the residues of the interacting molecules based only in the respective
hamiltonians. 2

All different types of methods have some degree of limitations and problems.
An equilibrium must be achieved between the use of simple algorithms that allow
fast calculations and the inclusion, conservation, and consideration of the important
atomic detail of biomolecules.Z2 Consequently, when deciding on the computational
approach for predicting the binding free energies it is important to foresee the
computational time required, without forgetting that sometimes it is affordable and
advantageous to carry out more accurate time-consuming calculations because an
atomic-detail description of biomolecules is often important in elucidating their
structures and functions.Z

The more rapid methods for estimation of binding free energies are the empirical
or knowledge-based (statistical) scoring approaches, which are based on very simple

energy functions2~Z or on the frequency of occurrence of different atom-atom
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contact pairs in complexes of known structure.88 These empirical methods in
conjunction with simple physical models$22* are fast methodological approaches
that have become increasingly useful for rapid protein-protein interface determinants
analysis. However, in highly simplified approximations, the simplicity of the energy
function along with the lack of conformational sampling and explicit water treatment
makes these approaches very fast, but usually at the cost of accuracy by neglecting
important components of the binding free energy.Z#8286

Methods that are more sophisticated like full atomistic simulations, rely on the
adequate realistic sampling of the conformational space of the complex and the free
molecules, which requires accurate force fields and simulation protocols. 2287—2
These methods®® include both the rigorous free energy perturbation (FEP)2 and
thermodynamic integration (TI)22, and more approximate methods such as MM-
PBSA.&2 A-dynamic2, chemical Monte Carlo/molecular mechanics&2 or ligand
interaction scanning? are also methodological approaches, which have been
proposed to identify the interfacial hot spots.

An important advantage of computer simulations over experiments is that they not
only provide quantitative estimates but also, and mainly, they enhance our molecular
understanding of the nature of complex formation in terms of the biophysical
features of the process. They open the possibility of decomposing the binding free
energy (AGy;,qi) into contributions from the atoms of the residues that constitute
the binding interface, as well as into the various energetic factors2221 such as
the electrostatic energy AE_  osaico the van der Waals energy AE,,,, the free
energy of polar solvation AG and the free energy of nonpolar solvation
A(}non—polar solvation

There is another type of hot spot determination methods: structure-based quali-
tative methods. The PP_SITE method uses hydrogen bonds and hydrophobic charac-
teristics to describe interactions between proteins and to decompose the contribution
of atoms in hot spot residues.? Hu et al derived another qualitative method recently
based in the sequence and structure alignments proteins. Residues are characterized
as hot spots based in their conserved, polar characteristics.2

The purpose of this review is not an exhaustive description of all the methods in
the literature to calculate relative binding differences, and therefore we are going
to present only those, which have been applied to computational mutagenesis,
especially alanine scanning mutagenesis.

polar solvation»

3. EMPIRICAL APPROACHES AND SIMPLE PHYSICAL MODELS

The empirical approaches or knowledge based scoring functionsZ2Z426—12.82— 8499100

for calculating binding free energies for a given protein-ligand complex, include
protein flexibility through conformational searches or sampling of rotamer libraries,
as well as through empirical solvation models.X® The simple functions on which
they are based account for example for the hydrogen bonds, ionic interactions,
the lipophilic protein-ligand contact surface and the number of rotatable bonds in
the ligand.® Solvent screening and polarization effects are either not included or
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approximated by a distance dependent dielectric constant making these algorithms
very fast. 219 The dataset for the calibration of the function consists of a small
group of proteins, and therefore these scoring functions use generally adjustable
parameters, which have been proven to be transferable to complexes other than

those used for the parametrization.%

3.1. Wallqvist Model

This model has been developed in 1994,12 from a methodological analysis of
38 crystal complexes, to calculate the statistical probability for the occurrence of
adjacent surface contacts between various atom types within a binding interface.
Consequently, this model is used to calculate the individual atomic components
of the interfacial interactions having as a basis an effective binding parameter,
specific to each atomic interaction, weighted by an atomic pairwise surface burial.
The strength of the atomic interactions is used to rank, by order of importance,
each binding component with respect to its contribution to the total binding
strength. Computational alanine mutations of these complexes are then used to
compare the calculated changes in binding free energy with those obtained after
the mutations take place.l2 The alanine mutation is constructed by simply deleting
all the side-chain atoms, except the CaH; methyl group of the mutated residue,
without readjusting the surrounding protein environment. The model accounts for
the change in binding free energy due to the direct effect of loosing interfacial
residue atom contacts in the wild-type structure, and the indirect effect of releasing
crystallographically ordered water molecules associated with the mutated residues,
which are treated as ligands that stabilize the interaction of the bound complex.
19 The total binding free energy is calculated as a sum of the binding energy
due to interactions between each member of the complex AG, and the binding
energy due to interactions between the crystallographic water molecules and the
complex AG ,g.yaer:

AGcalculated = AC’A:B + AC’AB:water (6_3)

The free energy is defined as a sum over all atom types i and j of molecules A and
B, being ;; an effective binding parameter and A;; the mutual surface jointly buried
by the atom types i and j in the complex.[3 is a constant for the entropy-penalty for
the association of two molecules:

AGpreol = Z Z aiinj +B (6-4)

ieA ieB

This method was applied to the study of the interface of three complexes: barnase-

barstar!®, D1.3-HEL1® and D1.3-E5.2.1% The method shows with some exceptions

a theoretical result within 4=1.5kcal/mol of the experimental ones.1%
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3.2 Molecular Statics (MS) Method

This computational method dissects the free energy of binding into two elements,
nonpolar and polar. It consists in using the continuum solvation model and solving
the Poisson-Boltzmann (PB) equation for the polar factoriZ4% and calculating the
nonpolar contribution to the binding free energy with the surface area method.
A limited rotamer search is done in order to derive the structures of alanine mutant
proteins bound with substrate from the static X-ray crystallographic structures.
When steric overlaps occur, caused by the structural perturbation, they are relieved
by using the Ponder and Richardsi®? side-chain rotamer library before energy
evaluation.2Z Tt contrasts with other algorithms where the crystal structure is treated
in a dynamic manner. 1210111
The free energy is calculated as a sum of the polar and the nonpolar parts:

Gmolecu]e = Gpolar solvation + Gnonpolar solvation (6'5)

This methodology was applied to calculate the relative binding free energy of 63
pairs of nine different mutant proteins with seven substituted R-malate substances of
Escherichia Coli isocitrate dehydrogenase. The average difference for the calculated
and the observed relative binding difference was 0.5 kcal/mol.&

3.3. Partitioning Approach

This method avoids the convergence and accuracy problems of molecular dynamics
or Monte Carlo simulations of systems containing explicit solvent molecules, by
evaluating the electrostatic free energy of just one solute conformation surrounded
by a dielectric continuum, and by adding the surface term and an estimate of the
loss of the configurational entropy upon binding.Z

The binding energy function is partitioned into three terms: the hydrophobic
or cavity term AGy, the electrostatic term AG, and the entropic term AG, . The
hydrophobic term, which is generally the major driving force in biomolecular
complexes, reflects the variation of water/non-water interface area. The electrostatic
contribution that is very important for specificity is composed by the coulombic
interactions and desolvation of partial charges transferred from an aqueous medium
to a protein core environment. This term is calculated by solving the Poisson-
Boltzmann (PE)-equation with an internal dielectric constant value of 8. The
entropic term results from the decrease in the conformational freedom of functional
groups buried upon complexation.

An additional constant term C accounts for the change of entropy of the system
due to the decrease of free molecules concentration (critic factor) and the loss of
rotational/translational degrees of freedom. Conformational strain and dynamics of
the process are incorporated in the C parameter and can be adjusted from one set
of complexes to another.ZZ The free energy is defined as:

AG = AG, + AG, + AG, +C (6-6)
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This method predicts, within £2.5 kcal/mol the binding energy of small molecule-
protein, peptide-protein and protein-protein complexes.”

34. Kortemme- Simple Physical Model

This model is based on an all-rotamer description of the side-chains. The energy
function is dominated by the Lennard-Jones potential to describe atomic packing
interactions, by an implicit solvation model%, an orientation-dependent hydrogen-
bonding potential derived from high-resolution protein structuresi!?, by statistical
terms approximating the backbone-dependent amino acid-type and rotamer proba-

bilities, and by an estimate of unfolded reference state energies:

AG = Wattr ELJattr +WrepELJrep +WHB (sc-bb) EHB (sc-bb) +wHB(sc—sc) EHB(SC—SC)
20
+wso] Gsol + W(p\llEgp\lJ (aa) + Z naaEzr:lf (6'7)

aa=1

E{juw 18 the attractive part of a Lennard-Jones potential; E, ., is a linear distance-
dependent repulsive term; Eyp -y is the orientation-dependent side chain-backbone
hydrogen bond potential; Eyp .-, i8 the orientation-dependent side chain-side chain
hydrogen bond potential; G is the free energy of solvation calculated with the
implicit solvation model, W is the relative weight of the different energy terms;
E,,(aa) is the amino acid type-dependent backbone torsion angle propensity; and
E is the amino acid type-dependent reference energy (n,, is the number of amino
acids of a certain type).

Although this alanine scanning mutagenesis method has been applied to 19
complexes with a relative high success rate (69% hot spot correct detection), it is
not a fully atomistic method and has some limitations. Some of the most important
consist in the fact that, as the terms in the energy function are pairwise additive
multiple mutations are always assumed to be additive which is not always the
case. 1314 Therefore, alanine shaving cannot be done, and cooperativity cannot
be measured. It is also assumed that there are no conformational changes in the
mutant upon binding, and cofactors, metal ions, hydrogen-bonding water molecules
bridging side-chains in the protein interface, or other nonpeptide ligands or binding
partners (such as nucleic acids) are not taken into account.28

4. LINEAR INTERACTION ENERGY (LIE)

LIE is a semi empirical method first proposed by Aqvist, 2~ which reduces the

computational time involved in the binding free energy calculations by considering
only the physical relevant states, instead of spending time on sampling intermediate
states as Free energy perturbation (FEP) or Thermodynamic integration (TI) do. It
is based on a linear response approximation in which the binding free energy is the
combination of the weighted electrostatic and van der Waals interactions between
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the ligand and the receptor. It requires just two simulations, one of the solvated
ligand-protein system and another of the ligand alone in solution.

Molecular dynamics or Monte Carlo simulations are used to generate the
ensembles: one with the ligand free in solution and the other with the ligand bound
to the macromolecule. The average differences between electrostatic interaction and
vdW interaction energies of the ligand with other molecules are then calculated, in
agreement with equation (6=8)), using both trajectories!:

AG=a < AE,, > +p < AE, > (6-8)

o and [3 are semi empirical parameters: « is equal to 0.5 from linear response theory,
adjusted for the presence of OH groups, and 3 varies from 0.15 to 1.0 depending
on the hydrophobicity of the ligand binding site.2 < AE,,,. > and < AE,, > are
the average differences between the electrostatic interactions and the van der Waals
interactions in ligand bound and free trajectories. Several values have been proposed
for the empirical parameter 3. It has been found out that the more hydrophobic
groups are buried after binding, the more favourable is the binding and the larger
the value of 3.2 This can be justified by the fact that both the solute-solvent van
der Waals energies and the hydrophobic solvation free energies depend on the same
variables (such as the accessible surface area), and that average van der Waals
energies scale almost linearly with solute size.1!2

LIE calculations have been performed in various systems using different
programs, force fields and computational procedures, and the resulting optimiza-
tions can vary considerably.1Z7126 Although different protocols are needed for
different systems, a significant part of the large variety of parameter values obtained
is dependent on the computational procedure used.. One of the critical technical
issues in this type of calculations seems to be the treatment of electrostatic inter-
actions, at least for charged ligands. The implementation of boundary conditions,
cutoffs, sampling time and system neutrality is thus of considerable importance, as
well as ensuring compatibility of the simulations of the bound and free states with
respect to electrostatic solvation energies.1® An interesting extension of the LIE
method that employs the surface generalized Born model of Still et al. (1990)1Z
for the solvent has also been reported. 128122

5. MM-PBSA

Another methodological approach, which has become more attractive in the last
few years for estimating binding free energies of protein-protein complexes, is
the MM-PBSA method (Molecular Mechanics/Poisson-Boltzmann Surface Area).
This method is a fully atomistic approach that combines molecular mechanics and
continuum solvent, and has several appealing features as the possibility of being
applied to a variety of systems not suitable for FEP such as very large protein-protein
complexes. 21227137

In this section, we shall focus our attention on some important points of this
methodological approach to calculate relative binding free energies. It is important
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to have a more comprehensive knowledge about computational simulations, and
therefore we first review the force-field methods existent for all type of complexes
involving proteins, acid nucleic, carbohydrates and lipids, as well as the solvation
models, before giving an overview of the MM-PBSA methodology.

5.1. Force Fields for Bimolecular Simulations

Molecular dynamics (MD) simulations provide a detailed description of complex
systems in a wide range of time and spatial scales.!2® Simulations involve a statistical
uncertainty component as the result of the finite length of the simulation.12712 MD
methods generate a series of time-correlated points in phase space by propagating
a suitable starting set of coordinates and velocities according to Newton’s second
equation. This kind of computational simulations are useful in studies of time
evolution of a variety of systems: biological molecules, polymers, or catalytic
materials, and in a variety of states: crystal, aqueous solutions, or in the gas phase.

Molecular Mechanics (MM) force field-based methods represent a major tool
for the theoretical understanding of biomolecular systems.1#1% A force field
is a mathematical expression that describes the dependence of the energy of
a molecule on the coordinates of the atoms in the molecule. It is based in
the observation that different molecules tend to be composed of units that are
structurally similar. A force field is used in structure determination, conforma-
tional energies, rotational and pyramidal inversion barriers, vibrational frequencies,
Monte Carlo and molecular dynamics. Examples of force fields are: Molecular
Mechanic Force Field for Small Molecules (MM2/3/4)14¢; Chemistry at Harvard
Macromolecular Mechanics (CHARMM)Z148: Agsisted Model Building with
Energy Refinement (AMBER){£~13L: Optimized Parameters for Liquid Simulation
(OPLS)43; Consistent Force Field (CFF){23; Valence Consistent Force Field3;
Merck Molecular Force Field 94 (MMFF94);13~15 Universal Force Field
(UFF)42%; Groningen Molecular simulation Program Package (GROMOS);12180
CVFF, the force field developed at BIOSYM (now ACCELRYS){&; the force field
described by Daggett et al. within Levitt’s simulation program ENCAD.182 Such
force fields have been developed for many types of molecules!® 1 but we will

focus on those applied regularly for biomolecular studies.
The potential energy function applied in most force fields is an additive function
of pairs of atoms such as:

. . K
U(R) = X S -1+ X 50 0-00"+ X St 1 +cos (x— )]

bonds angles dihedral
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Equation (9) is a collection of simple functions, which represent a minimal set
of forces that can describe molecular structures. Bonds, angles, and out-of-plane
distortions (improper dihedral angles) are treated harmonically and dihedral or
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torsional rotations are described by a sinusoidal term. In equation (9), the first
four terms represent the intramolecular parameters.Z2 1 is the bond length, 0 is the
valence angle, X is the dihedral or torsion angle, ¢ is the improper angle, r; is the
distance between atoms i and j. K and 1, are the bond force constant and reference
distance respectively; K, and 8, are the valence angle force constant and reference
angle respectively; K, n, ¢ are the dihedral force constant, multiplicity and phase
angle respectively; and K, and ¢, are the improper force constant and reference
improper respectively. The last two sets of parameters are the nonbonded parameters
between atoms i and j, with q the partial atomic charges, ¢;; the Lennard-Jones well-
depth, o;; depending on the atom pair involved and 2'/°c;; the minimum interaction
radius used to treat the vdW interaction. Parameterization plays a crucial role in
reproducing the experimental datalZ leading to subtle differences between the
different existent force fields. 2214173 Although not commonly used, equation (9)
can have extra terms, namely the cross terms that describe any coupling between
already existing ones.

Besides the amino acid force fields mentioned above, a number of force fields
have been especially developed for carbohydrates, nucleic acids and lipids. They
follow the same fundamental philosophy used in protein simulations. The nature
of nucleic acids requires a more accurate treatment of the balance between the
conformational energy and the interactions with the solvent.1212 Some of the most
important force fields developed for nucleic acids are: parm941£ and parm98/991%
of the AMBER package and CHARMM271Z of the CHARMM package. Other
force fields are also available such as the one developed by LangleyiZ,
GROMOS, 218 CYFF and MMFF.12713 When treating nucleic acids it is
important to use methods that smooth the truncation of the long-range electro-
static interactions, either Ewald-like methods (PMEZ& or PPPM-2 ) or simpler
methods like switching/shifting functions.t8 Lipids represent a major challenge,
and therefore current lipid force fields include both all-atom and united extended-
atom models. 813 There are course-grain lipid models designed for simulations
of extended lipid bilayers.187187 In the area of carbohydrates, CHARMM, 188182
AMBER,20~2 and OPLS!2 have developed parameters for computational
simulations.

Transferability, using the same set of parameters to model a series of related
molecules, is an important feature of a force field. Concerning the specialized
biomolecular force fields, their transferability varies. For example, AMBER is
more transferable than CHARMM especially with recent efforts on more automated
methods of parameter assignment.12123 Egsentially the quality of a force field
depends on how appropriate is the mathematical form of the energy expression and
how accurate are the parameters.

5.2. Solvation

Electrostatics and solvation play important roles in the structure and dynamics of
biomolecules, and accurate descriptions of the effects of solvation are indispensable
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for computer simulations of protein-protein complexes..2712 Solvation can be
described as the process of transferring one molecule from a fixed position in an
ideal gas phase to a fixed position in the fluid phase, at constant temperature and
pressure. The effect of a solvent may be divided in “short-range” effects, “mid-
range” effects and “long-range” effects. The ‘“short-range” effects are repulsive
interactions, arising from Pauli’s exclusion principle, 1/r'? dependent, and usually
assumed to be proportional to the volume of the cavity. The “mid-range” effects,
dispersive interactions also called van der Waals contributions, are 1/r® dependent
and assumed to be proportional to the contact surface area. The “macroscopic” or
long-range electrostatics” effects, involving screening of charges, are 1/r dependent
and responsible for the generation of a dielectric constant different from 1.22

The solvation free energy is the consequence of the transference of a molecule
from vacuum to water and may be written as:

AG AC}cavity + AC}dispersion + AGelectrostatic =AG + AG

electrostatic

(6-10)

solvation — non-polar

AGgigpersion 18 the energy of the van der Waals interactions between solvent and
solute. It is usually favourable for solvation (negative), partially compensating
for the entropic cost. Since the van der Waals interactions decrease quickly with
distance (1/r°), the first solvation shell contributes mostly to the AGgipersions and it
is roughly proportional to the solvent accessible surface area S. AG,,,;, is a term
which includes the entropy penalty for reorganizing the solvent molecules around
a solute and the work done against solvent pressure to create a cavity in the solvent
to immerse a solute. The creation of the cavity costs energy, e. g. the loss of
solvent-solvent van der Waals interactions, producing a positive AG,,,;,, value. The
reorganizational entropy should be correlated with the number of water molecules
in the first solvation shell, because the solvent molecules more affected by a solute
are those in the first solvation shell, and therefore this term is proportional to the
solvent accessible surface area of the solute. Thus, the AG,, 1, i$ the free energy
of solvating a molecule from which all charges have been removed (partial charges
of every atom are set to zero), and is equal to the sum of the dispersion and the
cavity energies. AG,..rostic 15 the free energy of first removing all charges in the
vacuum, and then adding them back in the presence of the solvent environment.22
Electrostatic interactions are long range and critically dependent on the boundary
shape between a solute and solvent.

There are various methods for treating solvation, ranging from a detailed
description at the molecular level to reaction field models where the solvent is
modelled as a continuum method.22

The explicit water models most currently used are TIP3P, TIP4P22, TIP5P2%,
SPC and SPC/E.2% The parameters in all models are empirically adjusted so that
they reproduce the enthalpy of vaporization and the density of water.12 TIP3P
is probably the most commonly used model. However, when selecting a water
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model to use for a particular study the most important is that it is compatible
with the biomolecular force field being used. This approach appears to give
reasonable dynamic and thermodynamic properties with the presently available
force fields. Even though explicit solvent representations offer a high degree of
microscopic detail, they are the most computationally demanding of the solvation
methods.22~2Y7 To include a large number of solvent molecules explicitly increases
the number of atoms present in the simulation, and places severe limits in the type
of problems that can be studied. However, in explicit solvent simulations, as long
as sufficient conformational sampling is performed, many different aspects that
contribute to relative binding free energies can be included automatically. These
aspects involve changes in the rotational, translational, conformational and vibra-
tional entropy of the partners; entropy changes associated with solvent ordering
around hydrophobic or charged groups; solute conformational strain; changes in
electrostatic and van der Waals interactions within and between the partners and
the solvent; and counterions reorganization.2

However, to overcome the limitations of explicit solvent simulations especially
the elevated computationally cost and to allow the calculation of the AGy,ions
a high number of implicit solvation models for proteins have been developed that
combine an empirical force field for the molecular solute interactions in vacuum
with a solvation correction. Implicit solvent methods such as Poisson-Boltzmann
(PB)42:£0.73.107.108.194208= 211 and Generalized Born model (GB)2%8212~214 offer signif-
icant computational savings by implicitly accounting for solvation effects via a
simple dielectric model.2:2 The GB model has been widely used and is incorporated
in several molecular mechanics programs. The programs2®2 most extensively
used that solve the Poisson-Boltzmann equation2822 for a protein-solvent system
are Delphi22, GraspZ! and UHBD.22 The Poisson-Boltzmann equation is given
by the expression:

V(e (F) Vo (£)) = —4mp (7) (6-11)

Where ¢(7) describes the electrostatic potential in a medium with a charge density
p(7) and a dielectric scalar field £(7). The Poisson-Boltzmann equation is a second-
order elliptic partial differential equation that can be solved analytically for regularly
shaped solutes and numerically for most irregularly shaped slots in different ways.
For example, in the Delphi program, it is used the Finite Difference Method in which
the solute with its associated charges is mapped on to a grid and the electrostatic
potential due to the presence of a dielectric continuum solvent is determined in
each grid point. In this method, the protein is modelled as a dielectric continuum
of low polarizability embedded in a dielectric medium of high polarizability.22 It
is assumed that the solvent is a homogeneous medium characterized by a single
dielectric constant with a value usually near 80, which is taken to be equal to the
bulk value for pure water. Separated by an abrupt interface it meets the solute that
is represented as a dielectric body whose shape is defined by atomic coordinates
and radii, and with an internal dielectric constant usually between 1 and 20. The
protein dielectric constant, which accounts for responses to an electric field that are
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not treated explicitly, is an adjustable parameter.22* It is not a universal constant
but simply a parameter that depends on the model and the relevant region in the
protein, 22

Implicit solvation models are an emergent field, which is widely applied in many

computational simulations with a reasonable time cost.220~232

5.3. The MM-PBSA approach fundamental theory

The MM-PBSA method is based on partitioning the free energy into a sum of
enthalpic and entropic contributions.#:23¢ It describes the free energy of the complex
and respective monomers as a sum of the internal energy (bond, angle and dihedral),
the electrostatic and the van der Waals interactions, the free energy of polar
solvation, the free energy of nonpolar solvation and the entropic contribution for
the molecule free energy:

Gmolecule = Einlemal +Eelectrostatic + Evdw + Gpolar solvation + Gnnnpolar solvation — TS
(6-12)

A fundamental question with the MM-PBSA approach is how to best determine the
contribution from the entropy change2?2% upon binding. The entropy contribution
of ligands to a common protein receptor is often assumed to cancel when the
ligands are of similar size and when the interest is the relative binding free energy.
However, if it is necessary to obtain the absolute binding free energy, the solute
entropic contribution must be determined in a consistent fashion to yield meaningful
results. There are several approaches to estimate the solute entropy, including
the normal-mode analysis22, the quasi-harmonic analysis2?~2%2 and the quasi-
Gaussian approach. 242

One of the most important applications of this method concerns computational
fluorine or alanine-scanning mutagenesis.127 13113324 Ag it was already pointed
out, mutagenesis studies allow the determination of hot spots having a major impact
in structure-based drug design. This method is based in a post-processing treatment
of the complex by using its structure, and calculating the respective energies for
the complex and all interacting monomers. To generate the structure of the mutant
complex a simple truncation of the mutated side chain is made, replacing C, by a
hydrogen atom, and setting the Cg-H bond direction to that of the former Cg-C,,.
The complexation free energy can be calculated using the thermodynamic cycle in
Scheme 6-1, in which AG,, is the interaction free energy between the ligand and
the receptor in the gas phase and AGlioglV, AG™ and AG]| are the solvation free
energies of the ligand, the receptor and the complex respectively. The first three
terms of equation 12 are calculated with no cutoff. The electrostatic solvation free
energy is that of first removing all charges in vacuum, and then adding them back
in the presence of the solvent environment, 2222

It is calculated by solving the Poisson-Boltzmann equation with the software

Delphi v.4 or other equivalent software, —4—==2222220 Normally, it is obtained by
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ligand,q + receptor,q % complex,q

— AG'E — AG™ +AG™

solv solv solv

. AGgas
ligandg,s + receptorgys ——————> complexgyg

Scheme 6-1. Thermodynamic cycle used to calculate the complexation free energy

taking the difference between suitable states, in reaction field energies. This means
that it has got to be solved twice, once in vacuum and a second time for the desired
solution environment:

1
AC}electroslatic = E Z ql(d)lgo - d):) (6'13)

However, there is in the DelPhi package2%, an alternative way to calculate the
electrostatic solvation free energy based on the concept of induced charges, which
is obtained with a simple Coulomb calculation between the induced charges and
the real charges as if they were in vacuum. The first method of calculation uses two
runs, with the grid positions for both real and induced charges. The second method
uses the actual position for real charges and the optimized position for induced
charges, and utilizes the surface of the molecule where no fixed charges are present,
to calculate the potential without requiring a second finite-difference run.

The nonpolar contribution to solvation free energy, due to van der Waals inter-
actions between the solute and the solvent and cavity formation, is modelled as
a term that is dependent in the solvent accessible surface area of the molecule.
It is estimated using an empirical relation: AE,; ., = 0'/A+Db, in which A is the
solvent-accessible surface area and is calculated with programs based on an idea
primarily developed by Mike Connolly.22 o and b are empirical constants with
values 0.00542kcal A= mol™" and 0.92kcal mol™" respectively. The cavity term
equals the work to create the cavity against the solvent pressure and the entropy
penalty associated with the reorganization of solvent molecules around the solute.
Therefore, the linear dependence of A can be explained by the fact that the solvent
molecules more affected by this reorganization are in the first solvation shell,
and this number is proportional to the accessible surface area of the solute. The
solute-solvent van der Waals interaction energy falls off rapidly with distance and
is consequently dependent upon the number of solvation molecules present in the
first shell.

At this point it is necessary to emphasize that the success rate of this method is
dependent on the protocol used. As it is resumed in Scheme 6-2, many different
approaches have been tried.Z! They vary from a static to a dynamic analysis of the
complexation process, 1134248
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Simulation
Type
I
| 1
Dynamics Minimization
f— — |
[ I 1
Implicit Explicit Explicit Implicit
Solvent Solvent Vacuum Solvent Solvent
Cap Box Cap +Reaction field

Scheme 6-2. Resume of the Methodological Approach for Computational Alanine Scanning Mutagenesis

The simulation protocol can vary also from the use of implicit or explicit solvation
models. The MM-PBSA method by Massova/Kollmani3%133 is a full atomistic
method that, although not accurate enough in the original implementation, unlocked
the possibility for the development of a newly improved methodology. In Scheme 2
we present a resume of our own computational alanine scanning study.ZZ Initially
we have tried different solvent representations (explicit or implicit), and different
internal dielectric constants for proteins (¢ = 1-15). Subsequently, we have tried
protocols with a different number of dynamics simulations trajectories. Finally, we
tried a less expensive method, a minimization approach. After careful analysis of the
results we concluded that what gives a higher success rate are MD simulations using
the Generalized Born Solvation model. A set of different internal dielectric constants
used to calculate the first 3 terms of equation (12) as well as the free solvation
energy is used, depending on the type of amino acid that is mutated. Therefore,
for the charged amino acids (aspartic acid, glutamic acid, lysine, arginine) and
histidine a constant of 4 should be used, for the remaining polar residues (aspargine,
glutamine, cysteine, tyrosine, serine and threonine) not ionized at physiological
pH the internal dielectric constant should be 3, and for the non-polar amino acids
(valine, leucine, isoleucine, phenylalanine, methionine and tryptophan) the internal
dielectric constant should be 2. The different internal dielectric constants mimic the
different degrees of relaxation of the interface when different types of amino acids
are mutated for alanine. 22!

Wang et al. developed a Virtual mutagenesis (VM) method in 2000 which
evaluates the relative free energy upon amino acid mutagenesis. It consists in taking
one snapshot that has the closest binding free energy to the average binding free
energy value obtained from the MD trajectory, and making mutations by a fast
screening procedure. For each mutation, a systematic conformation search for a
total of 100 conformations is performed. Only those conformations with no steric
clash with other atoms are further investigated. Each surviving conformation is
minimized with a distance dependent dielectric constant while all other residues
in the molecule are kept fixed. The binding free energy is then calculated using
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MM-PBSA. The final binding free energy for each mutation is the average value
for all rotamers.132

A procedure, conceptually similar to the MM/PBSAZOZL1I3:114129—131.249—252
approach, was developed. A simpler energy function823323 was used in conjunction
with Monte Carlo simulations22~2 o sample the conformational space and
adequately describe the multitude of the low-energy states available to the system.
The resulting conformational states are evaluated with a detailed free energy model,
which includes the molecular mechanics AMBER force field22 and the solvation
energy term based on the continuum generalized born model and the solvent acces-
sible surface area (GB/SA) solvation model.2272% To represent alternate protein
conformations it was applied a simulation approach to model ligand binding with
the ensembles of multiple protein conformations. This method can account for
protein flexibility by considering a finite number of protein states that have signif-
icant differences in both side-chain and main-chain conformations. Although the
two methods give good qualitative results, the MM-PBSA approach can be used
more accurately for a quantitative analysis.2

MM-PBSA, wherein only the initial and final states of the system are evaluated,
is computationally less expensive than free energy perturbation methods, making it
suitable for a greater variety of systems and problems, and representing a promising
direction for evaluating binding affinities. &2

6. FREE ENERGY PERTURBATION (FEP)
AND THERMODYNAMIC INTEGRATION (TI)

Free energy perturbation (FEP) and thermodynamic integration (TI) methods2%6~ 223

have been successfully applied to predict the binding strength of proteic
complexes.22% These rigorous methods yield accurate free energy differences
relying on equilibrium sampling of the entire transformation path, from an initial
to a final state.22 They are implemented numerically and utilize a thermody-
namical cycle, and the fact that the free energy is a state function. Thus, sufficient
statistical sampling must be carried out which turns them computationally very
intensive and limits their use in screening effects of a large number of struc-
tural perturbations, 280272274~ 281 Thege methods follow the thermodynamic cycle in

Scheme 6-3:

1
L1+p —A8b, ¢y

L1->L2 LI->L2
Asoly AGp

2
L2+p AGb L)

Scheme 6-3. Thermodynamic cycle used to calculate the relative free energies between two ligands that
bind to the same protein
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In agreement with Scheme 3 the free energy of binding is defined by equation (14)
as a difference between the binding free energy for ligandl AG| and ligand2 AGZ,
with the AG,;, and AG, the non-physical transmutation free energies from ligand1
to ligand2 in free and bound states, respectively:

AAG = AG] — AG] = AGY ™ — AGI%HL2 (6-14)

solv
FEP calculations use the formulation present in equation (15):

H(\,.,) —H(A)
RT )>A

N1
AG=-RT) In <exp(—

(6-15)

AG is the free energy difference between two states L1 and L2. The transformations
are made by using a coupling parameter A such that A = 0 corresponds to one
ligand and A =1 to the other. H(A;) represents the Hamiltonian of system A; and
<>,; indicates an ensemble average. After deciding the simulation protocol (length
of trajectories, equilibration, number of A-points and their spacing) the difference
between TI and FEP resides in the formula chosen to evaluate the relative free
energy.®8 Therefore, within TI, the average of derivatives of the hamiltonian at each
A, H(A), are calculated and then numerical integration is used over A to calculate
the free energy difference between two states. The TI method follows equation (16):

AG=j<£%9%A (6-16)

Molecular dynamics free energy simulations (MDFE)2228 yge the FEP and TI
methodologies. The MDFE results provide the opportunity to rank the impor-
tance of different amino acids to complex formation and to decompose the energy
in their different types of terms of differential binding.222 Molecular dynamics
simulations together with Poisson-Boltzmann free energy calculations (PBFE)284:282
represent a less expensive alternative to MDFE, suitable for examining multiple
active site mutations.23? They are useful to complement MDFE results if they are
available. 288287 MDFE, an alchemical transformation of the ligand or protein is
present, and in contrast, in PBFE a chemical binding reaction is studied. Good
agreement was found (1kcal/mol) between MDFE and PBFE when an internal
dielectric constant of four was used.22

The increasing number of applications of free energy calculations has shown that
the use of these methods is not as simple as expected. One of its severe limitations is
the sampling of the conformational space,28 which must be long and in the correct
region of space. Thus, large efforts for improving this methodology have been
made, especially in improving the treatment of long-range electrostatic interactions
and molecular polarization.ﬁ’l—29 However, combined with other modelling tools,
free energy calculation methods can be used in a broader range of research, such as
to evaluate stability of folding structures, to determine hot spots in protein-protein
interfaces and to design new therapeutic drugs. &2
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7. PROFEC AND OWFEG

PROFEC (pictorial representation of free energy changes)? is a methodological
approach that provides a rapid estimate of docking free energy changes for modified
ligands, based on a grid around the ligand determined by FEP analysis of a single
MD trajectory of the complex, according to the traditional FEP equation:

AG, (i,j,k) = =B ' In < exp(—BAV(i, j, k)) >, (6-17)

in which Av(i, j, k) is the van der Waals interaction energy between the particle and
the surrounding atoms. The electrostatic contribution can be examined by calcu-
lating the derivative of the binding free energy with respect to charge at each grid
point, under the assumption that a particle has already been inserted. Two MD
simulations, one of the protein-ligand complex and one of the ligand in solution
are performed, and the free energies of all grid points are then displayed as contour
surfaces around the protein. This PROFEC method could quantitatively suggest
relatively more favourable regions for molecular change, and was shown to be
promising.2 Typically, PROFEC should be used in combination with one of the
more detailed approaches such as traditional FEP, LIE or MM-PBSA to compu-
tationally validate the changes suggested prior to experimental design. However,
PROFEC has limitations such as its inability to evaluate free energies when multiple
sites are modified or when modifications induce large conformational changes.

The one-window free energy grid (OWFEG){22% methodology also utilizes a
single-window (A = 0) trajectory to create a grid from FEP to added probe atoms,
but has introduced two modifications in the PROFEC approach. First, each grid
point undergoes translation and rotation along with the atom of the ligand, taking
into account the possible flexibility in the ligand by allowing the grid points to drift
as if they were connected to the ligand. Second, three probes with neutral, positive,
and negative charges were used instead of only a neutral probe to examine the
desirability of introducing charged groups along the grid, providing suggestions as
to what type of charges should be placed at that grid point.4

8. A - DYNAMICS AND CHEMICAL MONTE
CARLO/MOLECULAR DYNAMICS (CMC/MD)

The most time-consuming and rigorous methods are based on molecular force
fields and involve slow gradual transformations between the states of interest using
either molecular dynamics (MD) or Monte Carlo (MC) simulations for generating
ensemble averages.22!

Molecular dynamics (MD) and Monte Carlo (MC) methods have provided
dynamic and atomic insights to understand complex biological systems. Thus,
many techniques such as the A-dynamics and the chemical Monte Carlo/Molecular
Dynamics (CMC/MD) method have been developed to improve their efficiencies.12

Inspired by the work of Tidor (1993)2222 Kong and Brooks (1996)2 have

proposed a new approach to multiple state free energy calculations. It is a variant
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of free energy simulations called A-dynamics, that simulates a group of several
molecules and directly yields estimates of their relative binding affinity in only a
single run of simulation.==2=l.== This method uses MD to propagate both
the atomic coordinates and the chemical space (coupling parameter). It is, however,
possible to use MC in order to sample the coupling parameter stochastically
combined with MD for propagating the atomic coordinates.

The methodology is based on the idea that multiple ligands will compete for a
common receptor based on their relative free energies, and that this can be explored
using multiple copy simultaneous search approaches2Z, providing a route to assess
several free energies. Equation (18) in which the coupling parameter A is treated
as a dynamic variable, is used in this method:

V({)\}) = Venv+ZAi2(Vi _Fi) (6'18)

i=1

where L is the total number of ligands, V,,, is the interaction involving the
surrounding atoms, V; is the interaction involving any of the atoms in ligand i, A,
is the coupling parameter and F, is a reference energy. In traditional free energy
calculations a coupling parameter A, provides the link between the initial and the
final systems. In most free energy simulations, A varies from O to 1. However, the
A-dynamics technique considers A to be another particle in the simulation.

The chemical Monte Carlo/Molecular Dynamics (CMC/MD) methodology 22222280
was developed by Pitera and Kollman in order to rank binding affinities for
several ligands in a single MD simulation, and is conceptually similar to the A-
dynamics. In a CMC/MD calculation, there are two parts of the simulated system:
the surroundings and the Monte Carlo region. The MD is used to sample confor-
mations of each ligand, and the MC is used to sample chemical space of all
ligands. 222228 The Metropolis algorithm22~ 3% (generates a random walk of points
distributed according to the Boltzmann probability distribution) is used to determine
whether the substitution is accepted. At the end of the simulation, free energy
differences between ligands are given by the ratio of the populations of each ligand.22

Both A-dynamics and the CMC/MD have been successfully used to estimate
relative binding free energies of similar compoundsi22%, However, it is difficult
to control the actual spatial coordinates for different ligands since in practice
they cannot be allowed to drift away from each other. Restraining the various
ligands to each other2422 can overcome this limitation, but impose other limitations
concerning the amount of conformational space that can be explored.#

9. CONCLUSION

Most protein-protein binding energies are related only to a group of a few amino
acids at intermolecular protein interfaces: the hot spots. The characterization of the
energetics of molecular complexes, especially the detection of these hot spots is
essential to structure-based drug design.
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The capacity of predicting protein-protein hot spots, and the characterization and
understanding of the physical foundations of affinity and specificity of the complex
interaction, prior to the experimental design, is crucial in computational biochem-
istry. To apply a quantitative model for the determination of the relative binding
free energy upon mutation of residues in protein-protein interfaces complements
experimental analysis, and adds molecular insight to the macroscopic properties
measured therein. An important advantage of computer simulations over experi-
ments is the possibility of decomposing the binding free energy into contributions
of the various energetic factors.

A huge amount of methods with different levels of rigor and speed are accessible
to measure the relative binding free energy upon computational mutagenesis. These
algorithms can be divided essentially in two types: (a) empirical functions or simple
physical methods and (b) fully atomistic methods. Empirical methods in conjunction
with simple physical models are fast methodological approaches but usually at
the cost of accuracy and versatility by neglecting important components of the
binding free energy. Methods that are more sophisticated such as full atomistic
simulations rely on the adequate realistic sampling of the conformational space
of the complex and the free molecules, which requires accurate force fields and
simulation protocols. We have highlighted the new possibilities of the improved
MM-PBSA approach.Z2Z! This improved all atom method can nowadays be applied
to an alanine scanning mutagenesis study of a complete protein-protein interface
presenting a high success rate. Being a fully atomistic method it also opens the
possibility of a predictive behaviour (essential in computational biochemistry).
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Abstract:
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Isotope effects provide a powerful tool for learning structures of transition states,
species that are not amenable for direct observation. In the case of enzymatic processes,
however, their application for the purpose of transition state structure elucidation is often
obscured by reaction complexity. However, experimental measurements of isotope effects,
enhanced by theoretical QM/MM modeling of the chemical step of enzymatic catalysis,
allows study of the changes that occur upon conversion of substrates to transition states.
Information obtained about the nature of specific interactions within the active site of an
enzyme may be used for practical purposes. In this communication we will summarize
studies of haloacid dehalogenases, ornithine decarboxylase, and methylmalonyl-CoA
mutase to exemplify these studies. Studies of transition state structure will also be
presented for purine nucleoside phosphorylases (PNP). Experimental measurements of
kinetic IEs for this enzyme together with theoretical analysis of their values led to rational
synthesis of new inhibitors of this enzyme. The application of transition state theory to
PNP has led to the most potent and specific inhibitors known for this important enzyme

QM/MM calculations, isotope effects, rational drug design, PNP, purine nucleoside
phosphorylase, DADMe, Immucillin, nucleosidase, transition state analogue

1. INTRODUCTION

The amazing rate enhancement observed in enzymatic catalysis results from stabi-
lization of the transition states and/or destabilization of the substrates. These effects
are achieved by interactions of the reactants with the protein residues. Depending
on the particular reaction some interactions may play a dominant role, or many
different types, such as electrostatics, hydrophobic interactions, geometric distortion,
or hydrogen bonds, may concurrently contribute to catalysis. Understanding these
interactions is the key factor in exploiting enzymatic reactions for the purpose
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of medicine, bioremediation, industrial applications, and other uses. For stable
molecules a plethora of physicochemical methods is available to extract infor-
mation for atomic interactions. For short-lived intermediates and in particular for
transition states the arsenal of chemical tools is much more limited. Two recently
developed approaches used separately or together are most promising. One of these
is molecular modeling in which catalytic mechanism is approached theoretically.
The other is the use of isotope effects; especially kinetic isotope effects (KIEs)
because their magnitudes can be directly related to properties of transition states.
In this communication we present aspects of using these two tools. We first show
how molecular modeling and isotope effects can be used in learning details of
hydrogen bonds within the active sites of enzymes. Then we illustrate successful
applications of these methods to rational synthesis of biologically active inhibitors.

Regardless of whether hydrogen bonds play a dominant role in an enzymatic
reaction, they are always present in enzymatic systems. In extreme cases the
presence or even direction of a single hydrogen bond may be responsible for a
100-million fold rate enhancement. For example, in penicillin-binding enzymes
that are responsible for the bacterial cell growth the antibiotic binds covalently to
the enzyme. Hydrolysis of this acyl-enzyme complex (deacylation) is retarded in
these enzymes with the consequence of cell death. Active sites of [B-lactamases,
on the other hand, bind antibiotics in a similar way but facilitate hydrolysis to
destroy antibiotics and lead to antibiotic resistance. B3LYP/6-31G(d)/OPLS-AA
studies of the deacylation steps in both types of enzymes! revealed mechanistic
differences in the ability of (3-lactamases to preserve a hydrogen bond to an active
site tyrosine (Tyr150) upon acylation, as opposite to penicillin-binding enzymes.
Similarly, energies calculated at the MP2/6-31G(d) theory level on AM1/CHARMM
optimized structures of transition state of chorismate mutase catalyzed isomerization
shown? that rotation of a hydroxyl hydrogen from Cys75 to Glu78 may contribute
as much as 9 kcal/mol to the stabilization of the transition state.

Both examples also illustrate the state-of-the-art methodology used in molecular
modeling of enzymatic reactions. Due to the size of enzymes quantum-chemical
theory levels cannot be currently applied to whole systems. As the remedy for this
situation the system is usually divided into at least two zones. The smaller one
includes reactants and catalytically important fragments of the enzyme and is treated
at the quantum level. The remaining part, which usually consists of the remaining
part of the enzyme and water molecules, is treated at the molecular mechanics
level. This so called QM/MM approach, suffers from many conceptual pitfalls,3~¢
but still has proved to be highly successful in studying mechanisms of enzymatic
reactions.

2. BINDING CAN BE REFLECTED IN ISOTOPE EFFECTS

One of the first measures of how strongly hydrogen bonds can be reflected in isotope
effects was the experimental determination of the oxygen isotope effect on binding
of an inhibitor, oxamate, to lactate dehydrogenase.Z The inverse isotope effect
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Figure 7-1. Model of the NAD-oxamate-LDH ternary complex

of 0.984 for both carboxylic oxygens indicated that these atoms are much more
strongly hydrogen bonded in the enzyme than they are in aqueous solution. These
experimental findings have been rationalized by semiempirical AM1 calculations.?
The isotope effect has been matched theoretically using three active site residues,
the inhibitor and truncated NAD' model shown in Figure[Z-T]and ascribed to strong,
bifurcated hydrogen bonds from the guanidinium moiety of Argl06 to oxamate,
shown in the center of the figure.

3. ISOTOPE EFFECTS AND HYDROGEN BONDING

Recently, we have modeled? intrinsic carbon kinetic isotope effects on the
ornithine decarboxylase-catalyzed decarboxylations. Decarboxylations occur from
the pyridoxal 5'-phosphate (PLP) - substrate complexes. These reactions provide a
good model case since a number of '*C kinetic isotope effects for the wild-type
enzyme and its mutants, as well as for physiological and slow substrates, have been
reported. X2 Using AM1/CHARMM/MD calculations on nearly 18000-atom models
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we have shown that different hydrogen bonding for the physiological substrate
and the native enzyme compared to systems containing either slow substrate or
mutated enzyme leads to different intrinsic isotope effects. In particular, intrinsic
13C Kkinetic isotope effects of 1.041, 1.059, and 1.058 were calculated for wild-
type enzyme and ornithine, wild-type enzyme and lysine (slow substrate), and
Glu274Ala mutated enzyme and ornithine, respectively. The difference between the
first value and the remaining two is very large and strongly influences interpretation
of the observed isotope effects. All three transition states occupy similar positions
of the reaction path and are characterized by similar activation barriers. The main
difference between them lies in the different hydrogen bonding to the departing
carbon dioxide. These are collected in Table [/-1] In case of slow substrate and
mutated enzyme only one hydrogen bond has been found that originates from a
water molecule or from the hydroxyl group of PLP. In case of the complex in
wild-type enzyme involving physiological substrate, two such hydrogen bonds have
been found (see Figure [7-2).

Hydrogen bonding networks may also be responsible for the difference in chlorine
kinetic isotope effects on the DL-2-haloacid dehalogenase reaction. This enzyme
catalyzes hydrolysis of both R- and S- stereoisomers of 2-chloropropionic acid.
The experimental chlorine kinetic isotope effects differ by 20% indicating that
reaction complexity masks the intrinsic isotope effect to different extent for the
two stereoisomers or that the intrinsic isotope effects are different for these two
molecules. SM5.4A/AM1 calculations that included three putative residues of the
active site of the enzyme and substrates indicated that the latter explanation is
plausible. The presence of a hydrogen donating group in contact with the carboxyl
group of the R-isomer allows for hydrogen bonding contact to the departing chloride
in the transition state, as shown in Figure [Z-3] and lowers the chlorine kinetic
isotope effect.

Observation of a variable number of hydrogen bonds to the active atoms for
two substrates of the same enzyme and for a wild-type and mutated enzyme
described above is new and striking. However, acceleration of enzymatic reactions
by increased numbers and/or strengths of hydrogen bonds at the transition states
have been documented previously.!! In particular, using AM1/CHARMM calcula-
tions Gao and coworkers!? showed increased hydrogen bonding at the transition
state for the reaction catalyzed by a protein tyrosine phosphatase. Also transient

Table 7-1. Hydrogen bonds (in A) to the departing carbon dioxide in
PLP-substrate complexes

enzyme wild-type wild-type Glu247Ala
substrate ornithine lysine ornithine
H,0952 2.90(2.69)a - -

H,088 2.81(3.11) 3.05(2.85) -

PLP - - 2.69(2.64)

# values in parenthesis correspond to transition states
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Figure 7-2. Hydrogen bonds to carboxylic oxygen atoms of ornithine

formation of hydrogen bonds to a transition state or highly reactive intermediates has
been observed in molecular dynamics and AM1/CHARMM calculations. Thiel and
coworkers suggested2 that a hydrogen bond between the amide oxygen of Pro293
and the transferring OH forms temporarily near the transition state. This hydrogen
bond seems to stabilize the transition state and shepherd the reaction. Similarly,
recent studies on a class C B-lactamase? using Amber and HF/6-31G(d,p) theory
levels showed the steering effect of hydrogen bonds. Increased strength of hydrogen
bonds between a water molecule and Tyr150 in the acylation transition state and
between the substrate, cofactor, and Ser64 in the deacylation transition state has
been found. Both events are associated with a temporary weakening of hydrogen
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Figure 7-3. Orientations of 2-chloropropionate stereoisomers in a model of the DL-2-haloacid dehalo-
genase active stite

bonds from water to the substrate and from the substrate to Ala318, respectively.
This latter hydrogen bond reaches its maximum strength for a short-lived interme-
diate between the two transition states.

Molecular modeling provides possibility of studying interactions within the active
site even when corresponding intermediates are too short-lived to be detected
experimentally. We have examined the hydrogen bonding network in the active
site of methylmalonyl-CoA mutase (MCM). This enzyme catalyzes conversion of
methylmalonyl-CoA to succinyl-CoA via radical intermediates that are initiated
by carbon — cobalt bond homolysis of the B,, cofactor. Details of the substrate
binding pattern are not amenable to experimental scrutiny since the process initiates
homolysis and subsequent chemical conversion of the substrate. Computationally,
however, it was possible to optimize the ternary complex and characterize hydrogen
bonds for this structure, as well as for the transient intermediate, the transition state,
and radical products of the homolysis step. We will describe these challenging
calculations in more detail.

The active site of MCM is described by the model presented in Figure[Z-4] The model
was based on the 4REQZL2 crystal structure deposited in the Protein Data Bank and
corresponds to the closed and reactive conformation of the enzyme with the reactant
bound to the active site. The model (Figure[Z-4)) includes all amino acids (1372 atoms)
within 15 A from the cobalt atom of AdoCbl. Hydrogen atoms, not included in the
4REQ crystal structure, were added using GaussView program.i® The N- and C-
termini were capped with NHMe and C(O)Me moieties respectively, where protein
chains were truncated. The quantum part includes the corrin ring without sidearm
chains, ribose and imidazole as the upper and lower ligands respectively, giving 71
atoms. The remaining part of the cofactor, reactant, and the active site residues were
included in the MM part of the model. The reactant (methylmalonyl-CoA, MCA)
was truncated at the 15 A boundary of the model. The ‘link-atoms’ formalismZ
was used to saturate the shells of QM-atoms covalently bonded to MM-atoms.

Geometry optimizations were carried out using Morokuma’s ONIOM approach
as implemented in Gaussian03.18 QM-atoms (Figure [7=4] as balls) were treated
using Turbomole’s122% spin unrestricted procedure with BP86 functional?! and the
def-SV(P) basis set.Z For the DFT energy and gradients the resolution of the
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Figure 7-4. Model of MCM, balls indicate QM part and sticks indicate the MM part. Hydrogen atoms
and water molecules are not shown

identity (RI) method2~2 was employed. The MM-atoms were treated using the
Amber force field.2¢ Missing parameters for vitamin B,, were taken from literature,
21 while for the truncated substrate were generated on the basis of B3LYP/6-31G(d)
optimization, 23!

The resulting wild-type model was also explored by a mutation Tyr89Phe.
The mutant was fully optimized at the same theory level. On wild-type enzyme,
relaxed potential energy scan (PES) calculations along the cobalt — carbon bond
were carried out with steps 0.15 A. We observed that the PES reached a maximum
followed by a drastic drop indicating a discontinuity in the energy profile. We
performed transition state searching, starting from the points on both sides of the
discontinuity. The transition state (TS) for the homolysis step was characterized
by only one normal mode with an imaginary frequency. This mode corresponds to
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cobalt — carbon bond breaking. This assignment was confirmed by IRC calcula-
tions which located stationary points. It revealed that the product (P) is the radical
pair resulting from homolysis. The other stationary point of the IRC path was an
intermediate (I) that differs from the wild-type in dAdo conformation.

Mancia and Evans? suggested that binding of the substrate to MCM causes
conformational changes during which the most significant movement is associated
with Tyr89. According to investigations on the Tyr89Phe mutant,2? the loss of
interactions involving the hydroxyl group of Tyr89 and substrate molecule increased
the rearrangement barrier between substrate- and product-derived radicals. Vlasie
and Banerjee® studied the tole of Tyr89 in acceleration of cobalt — carbon bond
homolysis by creating two mutants Tyr89Ala and Tyr89Phe. They observed that
both mutants have significant influence on homolysis and subsequent substrate
radical generation. Moreover, Tyr89Phe mutation caused the lost of catalytic activity
of MCM and Tyr89 was found to be the major factor accelerating cobalt — carbon
homolysis rate.

McDonald and Thornton¥ studied hydrogen bond criteria in proteins and
proposed empirical rules of hydrogen bond identification: D— A <3.9A, H—A <
2.5A, D-H—A>90.0°, AA—A—D > 90.0°, AA—A—H > 90.0°. Based on
those rules, we identified atoms which may participate in stabilization of the active
site of MCM by forming hydrogen bonds with reactant (MCA) and dAdo molecules
in the four structures described above: wild-type, TS, P and Tyr89Phe. Distances
hydrogen — acceptor are collected in Table for all models and Figure [7-3]
illustrates the hydrogen bonds.

MCA is held in place by Arg207, His244 and Tyr89. The planar guanidinium
group of Arg207 participates in hydrogen bonds with the carboxyl group of MCA.
One of the two NH, groups and the NH group donates two hydrogens in the
‘wild-type’ model. The most significant changes in hydrogen bond network were
observed in Tyr89Phe. MCA looses one bond with Arg207 and all bonds with
His244. His244 is a hydrogen donor for carboxyl and carbonyl groups of MCA in
a ‘wild-type’ model. Arg207 forms a new hydrogen bond with the side arm amide

Table 7-2. Distances between hydrogen — acceptor (H-A) in A

wild-type TS P Tyr89Phe

Arg207 -NH MCA(COO0™) 2.10 - - -

Arg207 -NH, MCA(COO™) 1.81 1.88 2.07 1.95
His244 MCA(COO0™) 2.15 1.69 1.69 -

His244 MCA(=0) 2.00 - - -

Tyr89 MCA(COO0™) 1.76 1.84 1.70 mutated
Tyr89 H,0170 1.76 1.80 1.79 mutated
Phel17 amid H,0170 - - 2.29 -

Arg207 -NH, amid-cor - 2.40 2.10 2.15
Tyr243 -OH Thr331 =0 amid 1.70 1.68 1.68 1.69

Tyr243 -OH H,0576 2.09 - - 1.98
dAdo -OH H,0576 - 1.89 1.87 -
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Figure 7-5. Hydrogen bonds identified in the active site of MCM models

group of the corrin ring. The loss of one hydrogen bond by MCA as a consequence
of Tyr89Phe mutation causes its distortion and orientation changes (see Figure [7-6).
Tyr243 participates in a weak hydrogen bond with the amide oxygen of Thr331
and with crystallographic water H,O576 in the ‘wild-type’ and Tyr8§9Phe mutant.
Starting with the ‘wild-type’ enzyme we observed significant changes in the
hydrogen bond network in the active site only between the starting model and inter-
mediate I. Since there were no significant differences in hydrogen bonds between
structures of intermediate I and the transition state TS, only the TS is shown in
Table The substrate molecule loses two H-bonds, one with Arg207 and one
with His244. As the second Arg207 bond weakens, the bond with the corrin amide
arm strengthens. This bond does not exist in the ‘wild-type’ model but is formed as
a weak bond in intermediate I and the TS, and is the strongest in the product P. Also
the bond between MCA(COO™) and His244 becomes stronger. His244 creates the
strongest hydrogen bond with carboxyl group of MCA. We did not observe any
significant changes in bonding of Tyr89 with carboxyl group of MCA, but it slowly
loses the H-bond with crystallographic water H,O170 in the favor of a weak bond
with the Phel17 amide, which is present only in product P. The reactant molecule
is strongly held in place by a hydrogen bond network in opposition to dAdo, which
is bonded only with one crystallographic water H,0576. It is worth noting, that
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Figure 7-6. Overlay of the active site residues in ‘wild-type’ MCM (coloured in green), TS model (red)
and Tyr89Phe (blue)

creation of the dAdo - H,0576 hydrogen bond occurs simultaneously with disap-
pearance of the Tyr243 - H,0576 bond. Tyr243 creates a strong hydrogen bond
with the Thr331 amide, which is stable during the full reaction.

Computational QM/MM studies presented thus far provide better understanding
of enzymatic catalysis and description of interactions within the active sites.
Comparison of experimentally determined isotope effects with corresponding values
predicted theoretically serves to indicate that theoretical methods yield meaningful
results. In the remaining part of this contribution we will show how information
about properties of the transitions state gathered collectively from molecular
modeling and measurements of kinetic isotope effects can be effectively used in
devising new compounds with therapeutic applications.

4. PURINE NUCLEOSIDE PHOSPHORYLASE - MULTIPLE KIEs
STUDY AND TS ANALOGUES DESIGN

The purine nucleoside phosphorylases (PNPs) are N-ribosyltransferases (Figure [7-7))
where transition state analogue design on the basis of kinetic isotope effects
analysis has had success. The inhibition of phosphorylation catalyzed by human
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Figure 7-7. Purine nucleoside phosphorylase (PNP) catalyzed phosphorolysis is shown

PNP suppression of T-cell division and is considered to be crucial for T-cell
derived cancers, autoimmune disorders or graft versus host disease treatment. 2232
Plasmodium falciparum (P. f.) PNP has also been considered as a target for
antibiotic design, especially where malaria drug resistance is increasing. The main
source of purine for this purine auxotroph is hypoxanthine formed from inosine
phosphorolysis catalyzed by PNP. Thus, parasites are sensitive to PNP inhibition.
It was shown that blocking of PNP activity causes parasite death in erythrocyte
cultures.3#~ % However it is unknown if the inhibition of the parasite isozyme alone
is sufficient for therapy or if inhibition of the human host PNP is also required for
parasite death. Specific inhibitors could help to answer this question, so analysis
of transition state properties and design of specific analogues for those enzymes is
important.

The transition state of bovine PNP was solved previously by multiple kinetic
isotope effect analysis revealing partial bond order to the leaving group and very
low bond order to the phosphate oxygen nucleophile.£:~22 Despite of the substantial
sequence similarity (86 %) between human and bovine PNP their transition states
look different as concluded from kinetic isotope effect analysis (Figure [7=8). The
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Figure 7-8. Intrinsic isotope effects for human, P. falciparum and bovine PNPs. Numbering of atoms
is shown as subscripts
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P. falciparum PNP also pro